
Sun Java System Message Queue
4.2 Release Notes

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–3701–10
September, 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

080905@20795

Contents

1 Sun Java System Message Queue 4.2 Release Notes ..5
Release Notes Revision History ..6
Installing or Upgrading to Message Queue 4.2 ...6
Message Queue 4.2 Supported Platforms and Components ...7

Operating System Platform Support ..7
System Virtualization Support ..7
Component Dependencies ..8

New Features in Message Queue 4.2 and Recent Releases ...9
New Features in Message Queue 4.2 .. 10
New Features in Message Queue 4.1 .. 16
New Features in Message Queue 4.0 .. 20

Feature to be Deprecated in Future Release ... 23
Bugs Fixed in Message Queue 4.2 and Recent Releases .. 24

Bugs Fixed in Message Queue 4.2 ... 24
Bugs Fixed in Message Queue 4.1 ... 25
Bugs Fixed in Message Queue 4.0 ... 26

Documentation Updates in Message Queue 4.2 .. 27
Compatibility Issues .. 27
Changes in Message Queue 4.2 Documentation Set .. 28
New Destination Metrics .. 29
Automatic Broker Startup on Solaris 10 OS .. 30
Changes to JMX API .. 30
Support for DN Username Format for Client Authentication ... 35
JAAS Authentication Enhancement .. 36

Known Issues and Limitations ... 36
Installation Issues ... 36
Deprecated Password Option ... 41
Administration/Configuration Issues ... 42

3

Broker Issues ... 43
Broker Clusters ... 44
JMX Issues ... 46
SOAP Support .. 46

Redistributable Files .. 47
Accessibility Features for People With Disabilities ... 47
How to Report Problems and Provide Feedback ... 47

Sun Java System Software Forum ... 48
Java Technology Forum .. 48

Sun Welcomes Your Comments ... 48
Additional Sun Resources .. 48

Contents

Sun Java System Message Queue 4.2 Release Notes • September, 20084

Sun Java System Message Queue 4.2 Release
Notes

Version 4.2

Part Number 820-3701

These release notes contain important information available at the time of release of Sun JavaTM

System Message Queue 4.2. New features and enhancements, known issues and limitations, and
other information are addressed here. Read this document before you begin using Message
Queue 4.2.

These release notes also contain information about the 4.0 and 4.1 releases of Message Queue:
see “New Features in Message Queue 4.0” on page 20 and “New Features in Message Queue
4.1” on page 16, respectively, for information about features introduced in those releases.

The most up-to-date version of these release notes can be found at the Sun Java System Message
Queue documentation web site, http://docs.sun.com/coll/1307.3. Check the web site prior
to installing and setting up your software and then periodically thereafter to view the most
up-to-date release notes and product documentation.

These release notes contain the following sections:

■ “Release Notes Revision History” on page 6
■ “Installing or Upgrading to Message Queue 4.2” on page 6
■ “Message Queue 4.2 Supported Platforms and Components” on page 7
■ “New Features in Message Queue 4.2 and Recent Releases” on page 9
■ “Feature to be Deprecated in Future Release” on page 23
■ “Bugs Fixed in Message Queue 4.2 and Recent Releases” on page 24
■ “Documentation Updates in Message Queue 4.2” on page 27
■ “Known Issues and Limitations” on page 36
■ “Redistributable Files” on page 47
■ “Accessibility Features for People With Disabilities” on page 47
■ “How to Report Problems and Provide Feedback” on page 47
■ “Sun Welcomes Your Comments” on page 48
■ “Additional Sun Resources” on page 48

1C H A P T E R 1

5

http://docs.sun.com/coll/1307.3

Third-party URLs are referenced in this document and provide additional, related information.

Sun is not responsible for the availability of third-party Web sites mentioned in this document.
Sun does not endorse and is not responsible or liable for any content, advertising, products, or
other materials that are available on or through such sites or resources. Sun will not be
responsible or liable for any actual or alleged damage or loss caused by or in connection with the
use of or reliance on any such content, goods, or services that are available on or through such
sites or resources.

Release Notes Revision History
The following table lists the dates for all 4.x releases of the Message Queue product and
describes the changes in this document associated with each release.

TABLE 1–1 Revision History

Date Description of Changes

May 2006 Initial release of this document for Message Queue
4.0.

January 2007 Initial release of this document for Message Queue
4.1 Beta. Adds description of JAAS support.

April 2007 Second release of this document for Message Queue
4.1 Beta. Adds high availability feature.

September 2007 Third release of this document forMessage Queue
4.1. Adds description of support for Java Enterprise
System Monitoring Framework, fixed C ports, bug
fixes, and other features.

April 2008 First draft release of this document forMessage
Queue 4.2. Adds new features for this release.

Installing or Upgrading to Message Queue 4.2
You can perform a fresh install of Message Queue 4.2 or an upgrade from Message Queue 3.6 or
later by using the Message Queue 4.2 installer. The procedure and all other information relevant
to installing or upgrading on the Solaris, Linux, and Windows platforms is documented in the
Sun Java System Message Queue 4.2 Installation Guide, which has not been updated for Message
Queue 4.2.

If you are upgrading from a version of Message Queue earlier than version 3.6, refer to the Sun
Java Enterprise System 5 Upgrade Guide for UNIX, Sun Java Enterprise System 5 Update 1
Upgrade Guide for UNIX

Release Notes Revision History

Sun Java System Message Queue 4.2 Release Notes • September, 20086

http://docs.sun.com/doc/820-5204
http://docs.sun.com/doc/820-2510
http://docs.sun.com/doc/820-2510

Also, please check “Installation Issues” on page 36 for known installation and upgrade issues
and limitations.

Message Queue 4.2 Supported Platforms and Components
This section covers the following topics regarding Message Queue 4.2 system requirements:
■ “Operating System Platform Support” on page 7
■ “System Virtualization Support” on page 7
■ “Component Dependencies” on page 8

Operating System Platform Support
Message Queue 4.2 is supported on Solaris, Linux, and Windows operating system platforms.
Table 1–2 shows the supported versions of each of these platforms. For the hardware
requirements of each platform see the Sun Java System Message Queue 4.2 Installation Guide

TABLE 1–2 Supported Platform Versions

Platform Supported Versions

Solaris Solaris 9 (SunOS 5.9), all updates (SPARC, x86)

Solaris 10 (SunOS 5.10), all updates (SPARC, x86, x64)

Linux Red Hat Enterprise Linux Advanced Server 3.0, 4.0, 5.0, all updates, 32– and 64–bit
versions (x86, x64)

Red Hat Enterprise Linux Enterprise Server 3.0, 4.0, 5.0, all updates, 32– and 64–bit
versions (x86, x64)

Windows Windows Vista

Windows XP Professional, SP2 (x86)1

Windows 2000 Advanced Server, SP4 (x86)2

Windows Server 2003 Standard and Enterprise Editions, SP2, 32– and 64–bit versions
(x86, x64)3

1 No Home, Tablet PC, or Media Center Edition support
2 No Professional or Server Edition support
3 No Web or Small Business Server Edition support

System Virtualization Support
System virtualization is a technology that enables multiple operating system (OS) instances to
execute independently on shared hardware. Functionally, software deployed to an OS hosted in
a virtualized environment is generally unaware that the underlying platform has been

Message Queue 4.2 Supported Platforms and Components

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 7

http://docs.sun.com/doc/820-5204

virtualized. Sun performs testing of its Sun Java System products on select system virtualization
and OS combinations to help validate that the Sun Java System products continue to function
on properly sized and configured virtualized environments as they do on non-virtualized
systems. For information about Sun support for Sun Java System products in virtualized
environments, see http://docs.sun.com/doc/820-4651.

Component Dependencies
In addition to platform-specific requirements, Message Queue 4.2 also depends on certain basic
components that must be installed in order to develop and run Message Queue clients.
Table 1–3 describes these components. Other versions or vendor implementations can also be
used, but they are untested by Sun Microsystems and therefore not officially supported.

Note – The Message Queue Installer allows you to select an existing JDK/JRE or to install the
JDK version (1.5.0_15).

TABLE 1–3 Required Support Components

Component Supports Supported Versions

Java Runtime
Environment (JRE)

Message Queue broker and
administration tools

J2SETM Runtime Environment 1.5.0_15 or later

JavaTM SE Runtime Environment 1.6.0

(Sun Microsystems versions only)

Java Software
Development Kit
(JDK), Standard
Edition

Java client development and
deployment

J2SE Development Kit 1.5.0_15 or later

Java SE Development Kit 1.6.0

(Sun Microsystems production versions only)

Table 1–4 shows additional components that you can install to provide further support for
Message Queue clients. You may not need all of the components listed: for example, if you are
not writing a C client, you will not need the C compiler, C++ runtime library, NSPR, or NSS.

TABLE 1–4 Optional Support Components

Component Supports Supported Versions

Application server HTTP/HTTPS Sun Java System Application Server Enterprise
Edition, Version 9.1 Update Release 2

Web server HTTP/HTTPS Sun Java System Web Server Enterprise Edition,
Version 7.0, Update 2

Message Queue 4.2 Supported Platforms and Components

Sun Java System Message Queue 4.2 Release Notes • September, 20088

http://docs.sun.com/doc/820-4651

TABLE 1–4 Optional Support Components (Continued)
Component Supports Supported Versions

Database JDBC-based data store HADB, Version 4.4.3.5

Java DB (Apache Derby), Version 10.2.2

MySQL Community Edition, Version 5.0

Oracle10g

postgreSQL, Version 8.1

Note – The PointBase database is no longer
supported.

Highly-available database High-availability broker
clusters

HADB, Version 4.4.3.5

MySQL Cluster Edition, Version 5.0

Oracle10g

Lightweight Directory
Access Protocol (LDAP)
directory server

Message Queue user
repository and administered
objects

Sun Java System Directory Server, Version 6.0

Java Naming and
Directory Interface
(JNDI)

Administered object support
and LDAP user repository

JNDI Version 1.2.1

LDAP Service Provider, Version 1.2.2

File System Service Provider, Version 1.2 Beta 31

C Compiler and
compatible C++ runtime
library

Message Queue C clients Solaris: Sun Studio, Version 11 or later, C++
compiler with standard mode and C compiler

Linux: gcc/g++, Version 3.2.3

Windows: Microsoft Windows Visual C++,
Version 6.0 SP3

Netscape Portable
Runtime (NSPR)

Message Queue C clients Version 4.7–12

Network Security
Services (NSS)

Message Queue C clients Version 3.11.9–12

1 Administered object support only; supported for development and testing, but not for deployment in a production environment
2 Bundled as a shared package in the download bundle

New Features in Message Queue 4.2 and Recent Releases
The new features in Message Queue 4.2, 4.2 and 4.0 are described in the following sections:

■ “New Features in Message Queue 4.2” on page 10
■ “New Features in Message Queue 4.1” on page 16
■ “New Features in Message Queue 4.0” on page 20

New Features in Message Queue 4.2 and Recent Releases

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 9

New Features in Message Queue 4.2
Sun Java System Message Queue is a full-featured message service that provides reliable,
asynchronous messaging that conforms to the Java Messaging Specification (JMS) 1.1. In
addition, Message Queue provides features that go beyond the JMS specification to meet the
needs of large-scale enterprise deployments.

Message Queue 4.2 is a minor release that includes a number of feature enhancements and bug
fixes. This section explains how to install or upgrade toMessage Queue 4.2 and describes the
new features included in this release:

■ “Multiple Destinations for a Publisher or Subscriber” on page 10
■ “Schema Validation of XML Payload Messages” on page 12
■ “C-API Support for Distributed Transactions” on page 13
■ “Installer Support for Sun Connection Registration” on page 14
■ “Support for MySQL Database” on page 16

For information about features introduced in Message Queue 4.0 and 4.1, see “New Features in
Message Queue 4.0” on page 20 and “New Features in Message Queue 4.1” on page 16,
respectively.

Multiple Destinations for a Publisher or Subscriber
In Message Queue 4.2, a publisher can now publish messages to multiple topic destinations and
a subscriber can consume messages from multiple topic destinations. This capability is achieved
by using a topic destination name that includes wildcard characters, representing multiple
destinations. Using such symbolic names allows administrators to create additional topic
destinations, as needed, consistent with the wildcard naming scheme. Publishers and
subscribers automatically publish to and consume from the added destinations. (Wildcard
topic subscribers are more common than publishers.)

Note – This feature does not apply to queue destinations.

The format of the symbolic topic destination name consists of multiple segments, in which
wildcard characters (*, **, >) can represent one or more segments of the name. For example,
suppose you have a topic destination naming scheme as follows:

size.color.shape

where the topic name segments can have the following values:

■ size: large, medium, small, ...
■ color: red, green, blue, ...
■ shape: circle, triangle, square, ...

Message Queue supports the following wildcard characters:

New Features in Message Queue 4.2 and Recent Releases

Sun Java System Message Queue 4.2 Release Notes • September, 200810

■ * matches a single segment
■ ** matches one or more segments
■ > matches any number of successive segments

You can therefore indicate multiple topic destinations as follows:

large.*.circle would represent:

large.red.circle

large.green.circle

...

**.square would represent all names ending in .square, for example:

small.green.square

medium.blue.square

...

small.> would represent all destination names starting with small., for example:

small.blue.circle

small.red.square

...

To use this multiple destination feature, you create topic destinations using a naming scheme
similar to that described above. Client applications can then create wildcard publishers or
wildcard consumers using symbolic destination names. For example:

...

String DEST_LOOKUP_NAME = "large.*.circle";
Topic t = (Destination) ctx.lookup(DEST_LOOKUP_NAME);

TopicPublisher myPublisher = mySession.createPublisher(t)

myPublisher.send(myMessage);

...

String DEST_LOOKUP_NAME = "**.square";
Topic t = (Destination) ctx.lookup(DEST_LOOKUP_NAME);

TopicSubscriber mySubscriber = mySession.createSubscriber(t);

Message m = mySubscriber.receive();

In the first example, the broker will place a copy of the message in any destination that matches
the symbolic name large.*.circle. In the second example, a subscriber will be created if there
is at least one destination that matches the symbolic name **.square and will receive messages
from all destinations that match that symbolic name. If there are no destinations matching the
symbolic name, the subscriber will not be created until such a destination exists.

New Features in Message Queue 4.2 and Recent Releases

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 11

If an administrator creates additional destinations that match a symbolic name, then wildcard
publishers created using that symbolic name will subsequently publish to that destination and
wildcard subscribers created using that symbolic name will subsequently receive messages from
that destination.

In addition, Message Queue administration tools, in addition to reporting the total number of
publishers (producers) and subscribers (consumers) for a topic destination, will also report the
number of publishers that are wildcard publishers (including their corresponding symbolic
destination names) and the number of subscribers that are wildcard subscribers (including
their symbolic destination names), if any.

Schema Validation of XML Payload Messages
This new feature in Message Queue 4.2 enables validation of the content of a text (not object)
XML message against an XML schema at the point the message is sent to the broker. The
location of the XML schema (XSD) is specified as a property of a Message Queue destination. If
no XSD location is specified, the DTD declaration within the XML document is used to perform
DTD validation. (XSD validation, which includes data type and value range validation, is more
rigorous than DTD validation.)

Client applications using this new feature should upgrade Java SE version to JRE 1.5 or above.

To enable XML schema validation, you set the following physical destination properties:

TABLE 1–5 Physical Destination Properties for XML Schema Validation

Property Type
Default
Value Description

validateXMLSchemaEnabled Boolean false XML schema validation is enabled?

If set to false or not set, then XML schema validation is
not enabled for the destination.

XMLSchemaURIList String null Space separated list of XML schema document (XSD)
URI strings

The URIs point to the location of one or more XSDs to
use for XML schema validation, if enabled.

Use double quotes around this value if multiple URIs are
specified.

Example:

“http://foo/flap.xsd http://test.com/test.xsd”

If this property is not set or null and XML validation is
enabled, XML validation is performed using a DTD
specified in the XML document.

New Features in Message Queue 4.2 and Recent Releases

Sun Java System Message Queue 4.2 Release Notes • September, 200812

TABLE 1–5 Physical Destination Properties for XML Schema Validation (Continued)

Property Type
Default
Value Description

reloadXMLSchemaOnFailure Boolean false Reload XML schema on failure enabled?

If set to false or not set, then the schema is not reloaded if
validation fails.

When XML validation is enabled, the Message Queue client runtime will attempt to validate an
XML message against the specified XSDs (or against the DTD, if no XSD is specified) before
sending it to the broker. If the specified schema cannot be located or the message cannot be
validated, the message is not sent, and an exception is thrown.

The XML validation properties can be set at destination creation or update time by using the
imqcmd create dst or imqcmd update dst command, respectively. The XML validation
properties should be set when a destination is inactive: that is, when it has no consumers and
producers, and when there are no messages in the destination.

Note – If an XSD is not accessible at runtime, it might be necessary to modify the
XMLSchemaURIList while a destination is active.

If any of the XML validation properties are set while a destination is active (for example, if a
producer is connected to the destination), the change will not take effect until the producer
reconnects to the broker. Similarly, if an XSD is changed, as a result of changing application
requirements, all client applications producing XML messages based on the changed XSD must
reconnect to the broker.

If the reloadXMLSchemaOnFailure property is set to true and XML validation fails, then the
Message Queue client runtime will attempt to reload the XSD before attempting again to
validate a message. The client runtime will throw an exception if the validation fails using the
reloaded SXD.

C-API Support for Distributed Transactions
According to the X/Open distributed transaction model, support for distributed transactions
relies upon a distributed transaction manager which tracks and manages operations performed
by one or more resource managers. In Message Queue 4.2, the Message Queue C-API now
supports the XA interface (between a distributed transaction manager and Message Queue as a
XA-compliant resource manager), allowing Message Queue C-API clients running in a
distributed transaction processing environment (such as BEA Tuxedo) to participate in
distributed transactions.

This distributed transaction support consists of the following new C-API functions (and new
parameters and error codes) used to implement the XA interface specification:

New Features in Message Queue 4.2 and Recent Releases

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 13

MQGetXAConnection()

MQCreateXASession()

If a C-client application is to be used in the context of a distributed transaction, then it must
obtain a connection by using MQGetXAConnection() and create a session for producing and
consuming messages by using MQCreateXASession(). The start, commit, and rollback, of any
distributed transaction is managed through APIs provided by the distributed transaction
manager.

For details of using the distributed transaction functions, see “Working With Distributed
Transactions” in Sun Java System Message Queue 4.2 Developer’s Guide for C Clients

Message Queue 4.2 provides programming examples based on the Tuxedo transaction
manager. For information on the use of these sample programs, see “Distributed Transaction
Sample Programs” in Sun Java System Message Queue 4.2 Developer’s Guide for C Clients

Note – The distributed transaction functionality is supported Solaris, Linux, and Windows
platforms, however, to date it has only been certified on the Solaris platform.

Installer Support for Sun Connection Registration
The Message Queue installer has been enhanced to allow for registration of Message Queue
with Sun Connection, a Sun-hosted service that helps you track, organize, and maintain Sun
hardware and software.

As part of Message Queue installation, you can choose to register Message Queue with Sun
Connection. Information about the installed Message Queue, such as the release version, host
name, operating system, installation date, and other such basic information is securely
transmitted to the Sun Connection database. The Sun Connection inventory service can help
you organize your Sun hardware and software, while the update service can inform you of the
latest available security fixes, recommended updates, and feature enhancements.

The following installer screen has been added to Message Queue 4.2 for Sun Connection
registration:

New Features in Message Queue 4.2 and Recent Releases

Sun Java System Message Queue 4.2 Release Notes • September, 200814

http://docs.sun.com/doc/820-5206/gheqr?a=view
http://docs.sun.com/doc/820-5206/gheqr?a=view
http://docs.sun.com/doc/820-5206/gherr?a=view
http://docs.sun.com/doc/820-5206/gherr?a=view

Registration requires that you have a Sun Online account or create one. If you do not already
have an account, the installer provides the following screen for creating a Sun Online account:

New Features in Message Queue 4.2 and Recent Releases

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 15

You can register Message Queue during installation using the above screens, or wait until after
installation has been completed and run the installer in register-only mode, as follows:

installer -r

The register-only mode requires that Message Queue 4.2 already be installed and will display
only the installer screens related to registration.

Support for MySQL Database
Message Queue 4.2 supports MySQL database as a JDBC-based data store. MySQL Cluster
Edition can be used as a JDBC database for a standalone broker, and MySQL Cluster Edition
can be used as the highly-available shared data store needed for a high-availability broker
cluster. For information on configuring Message Queue to use MySQL, see “Configuring a
JDBC-Based Data Store” in Sun Java System Message Queue 4.2 Administration Guide and also
“High-Availability Cluster Properties” in Sun Java System Message Queue 4.2 Administration
Guide.

New Features in Message Queue 4.1
Message Queue 4.1 was a minor release that included a number of new features, some feature
enhancements, and bug fixes. This section describes the new features in the 4.1 release and
provides further references for your use:

■ “High-Availability Broker Clusters” on page 17

New Features in Message Queue 4.2 and Recent Releases

Sun Java System Message Queue 4.2 Release Notes • September, 200816

http://docs.sun.com/doc/820-4916/aeodi?a=view
http://docs.sun.com/doc/820-4916/aeodi?a=view
http://docs.sun.com/doc/820-4916/ggult?a=view
http://docs.sun.com/doc/820-4916/ggult?a=view

■ “JAAS Support” on page 18
■ “Persistent Data Store Format Change” on page 18
■ “Broker Environment Configuration” on page 18
■ “Java ES Monitoring Framework Support” on page 19
■ “Enhanced Transaction Management” on page 19
■ “Fixed Ports for C Client Connections” on page 19

For information about features introduced in Message Queue 4.0, see “New Features in Message
Queue 4.0” on page 20.

High-Availability Broker Clusters
Message Queue 4.1 introduced high-availability broker clusters. As compared to conventional
broker clusters, which provide only messaging service availability (if a broker fails, another
broker is available to provide messaging service), high-availability broker clusters also provide
data availability (if a broker fails, its persistent messages and state data are available to another
broker to use to take over message delivery).

The high-availability implementation introduced in Message Queue 4.1 uses a shared
JDBC-based data store: instead of each broker in a broker cluster having its own persistent data
store, all brokers in the cluster share the same JDBC-compliant database. If a particular broker
fails, another broker within the cluster takes over the message routing and delivery for the failed
broker. In doing so, the failover broker uses data and state information in the shared data store.
Messaging clients of the failed broker reconnect to the failover broker, which provides
uninterrupted messaging service.

The shared JDBC-based store used in the Message Queue 4.1 high-availability implementation
must itself be highly available. If you do not have a highly available database or if uninterrupted
message delivery is not important to you, you can continue to use conventional clusters, which
provide service availability without data availability.

To configure a Message Queue 4.1 high-availability broker cluster, you specify the following
broker properties for each broker in the cluster:

■ Cluster membership properties, which specify that the broker is in a high-availability broker
cluster, the ID of the cluster, and the ID of the broker within the cluster.

■ Highly available database properties, which specify the persistent data model (JDBC), the
name of the database vendor, and vendor-specific configuration properties.

■ Failure detection and failover properties, which specify how broker failure is detected and
handled using a failover broker.

To use the high-availability broker cluster implementation, you must do the following:

1. Install a highly available database.
2. Install the JDBC driver .jar file.
3. Create the database schema for the highly available persistent data store.

New Features in Message Queue 4.2 and Recent Releases

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 17

4. Set high-availability properties for each broker in the cluster.
5. Start each broker in the cluster.

For a conceptual discussion of high-availability broker clusters and how they compare to
conventional clusters, see Chapter 4, “Broker Clusters,” in Sun Java System Message Queue 4.2
Technical Overview. For procedural and reference information about high-availability broker
clusters, see Chapter 10, “Configuring and Managing Broker Clusters,” in Sun Java System
Message Queue 4.2 Administration Guide and “Cluster Configuration Properties” in Sun Java
System Message Queue 4.2 Administration Guide.

If you have been using a highly available database with Message Queue 4.0 and want to switch to
a high-availability broker cluster, you can use the Database Manager utility (imqdbmgr to
convert to a shared persistent data store. Also see “Broker Clusters” on page 44 for more
known issues and limitations.

JAAS Support
In addition to the file-based and LDAP-based built-in authentication mechanisms, Message
Queue 4.1 introduced support for the Java Authentication and Authorization Service (JAAS),
which allows you to plug an external authentication mechanism into the broker to authenticate
Message Queue clients.

For a description of the information that a broker makes available to a JAAS-compliant
authentication service and an explanation of how to configure the broker to use such a service,
see “Using JAAS-Based Authentication” in Sun Java System Message Queue 4.2 Administration
Guide.

Persistent Data Store Format Change
Message Queue 4.1 changed the JDBC-based data store to support high-availability broker
clusters. For this reason the format of the JDBC—based data store is increased to version 410.
Format versions 350, 370, and 400 are automatically migrated to the 410 version.

Please note that the format of the file-based persistent data store remains at version 370 because
no changes were made to it.

Broker Environment Configuration
The property IMQ_DEFAULT_EXT_JARS has been added to the Message Queue 4.1 environment
configuration file, imqenv.conf. You can set this property to specify the path names of external
.jar files to be included in CLASSPATH when the broker starts up. If you use this property to
specify the location of external .jar files, you no longer need to copy these files to the lib/ext
directory. External .jar files can refer to JDBC drivers or to JAAS login modules. The following
sample poperty, specifies the location of JDBC drivers.

IMQ_DEFAULT_EXT_JARS=/opt/SUNWhadb4/lib/hadbjdbc4.jar:/opt/SUNWjavadb/derby.jar

New Features in Message Queue 4.2 and Recent Releases

Sun Java System Message Queue 4.2 Release Notes • September, 200818

http://docs.sun.com/doc/820-4917/aerdj?a=view
http://docs.sun.com/doc/820-4917/aerdj?a=view
http://docs.sun.com/doc/820-4916/aeohv?a=view
http://docs.sun.com/doc/820-4916/aeohv?a=view
http://docs.sun.com/doc/820-4916/aeooa?a=view
http://docs.sun.com/doc/820-4916/aeooa?a=view
http://docs.sun.com/doc/820-4916/gepfq?a=view
http://docs.sun.com/doc/820-4916/gepfq?a=view

Java ES Monitoring Framework Support
Message Queue 4.1 introduced support for the Sun Java Enterprise System (Java ES)
Monitoring Framework, which allows Java ES components to be monitored using a common
graphical interface. This interface is implemented by a web-based console called the Sun Java
System Monitoring Console. Administrators can use the Console to view performance
statistics, reate rules for automatic monitoring, and acknowledge alarms. If you are running
Message Queue along with other Java ES components, you might find it more convenient to use
a single interface to manage all of them.

For information on using the Java ES monitoring framework to monitor Message Queue, see
XREF.

Enhanced Transaction Management
Previously, only transactions in a PREPARED state were allowed to be rolled back
administratively. That is, if a session that was part of a distributed transaction did not terminate
gracefully, the transaction remained in a state that could not be cleaned up by an administrator.
In Message Queue 4.1, you can now use the Command utility (imqcmd) to clean up (roll back)
transactions that are in the following states: STARTED, FAILED, INCOMPLETE, COMPLETE, and
PREPARED.

To help you determine whether a particular transaction can be rolled back (especially when it is
not in a PREPARED state), the Command utility provides additional data as part of theimqcmd
query txn output: it provides the connection id for the connection that started the transaction
and specifies the time when the transaction was created. Using this information, an
administrator can decide whether the transaction needs to be rolled back. In general, the
administrator should avoid rolling back a transaction prematurely.

Fixed Ports for C Client Connections
In Message Queue 4.1, C clients, like Java clients, can now connect to a fixed broker port rather
than to a port dynamically assigned by the broker's Port Mapper service. Fixed port connections
are useful if you're trying to get through a firewall or if you need to bypass the Port Mapper
service for some other reason.

To configure a fixed port connection you need to configure both the broker and the C client run
time (both ends of the connection). For example, if you want to connect your client via ssljms
to port 1756, you would do the following:

■ On the client side, set the following properties:
MQ_SERVICE_PORT_PROPERTY=1756

MQ_CONNECTION_TYPE_PROPERTY=SSL

■ On the broker side, set the imq.serviceName.protocolType.port property as follows:

imq.ssljms.tls.port=1756

New Features in Message Queue 4.2 and Recent Releases

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 19

Note – The MQ_SERVICE_PORT_PROPERTY connection property has been backported to Message
Queue 3.7 Update 2.

New Features in Message Queue 4.0
Message Queue 4.0 was a minor release limited to supporting Application Server 9 PE. It
included a few new features, some feature enhancements, and bug fixes. This section includes a
description of new features in this release:

■ “Support for JMX Administration API” on page 20
■ “Client Runtime Logging” on page 20
■ “Connection Event Notification API” on page 21
■ “Broker Administration Enhancements” on page 21
■ “Displaying Information About a JDBC-Based Data Store” on page 22
■ “JDBC Provider Support” on page 22
■ “Persistent Data Store Format Changes” on page 22
■ “Additional Message Properties” on page 22
■ “SSL Support” on page 23

Caution – One of the minor but potentially disruptive changes introduced with version 4.0 was
the deprecation of the command-line option to specify a password. Henceforth, you must store
all passwords in a file as described in “Deprecated Password Option” on page 41, or enter them
when prompted.

Support for JMX Administration API
A new API was added in Message Queue 4.0 for configuring and monitoring Message Queue
brokers in conformance with the Java Management Extensions (JMX) specification. Using this
API, you can configure and monitor broker functions programmatically from within a Java
application. In earlier versions of Message Queue, these functions were accessible only from the
command line administration utilities or the Administration Console.

For more information see the Sun Java System Message Queue 4.2 Developer’s Guide for JMX
Clients.

Client Runtime Logging
Message Queue 4.0 introduced support for client runtime logging of connection and
session-related events.

Fore information regarding client runtime logging and how to configure it, see the Java Dev
Guide pag 137.

New Features in Message Queue 4.2 and Recent Releases

Sun Java System Message Queue 4.2 Release Notes • September, 200820

http://docs.sun.com/doc/820-5207
http://docs.sun.com/doc/820-5207

Connection Event Notification API
Message Queue 4.0 introduced an event notification API that allows the client runtime to
inform an application about changes in connection state. Connection event notifications allow
a Message Queue client to listen for closure and re-connection events and to take appropriate
action based on the notification type and the connection state. For example, when a failover
occurs and the client is reconnected to another broker, an application might want to clean up its
transaction state and proceed with a new transaction.

For information about connection events and how to create an event listener, see the Java Dev
Guide, page 96.

Broker Administration Enhancements
In Message Queue 4.0, a new subcommand and several command options were added to the
Command utility (imqcmd) to allow administrators to quiesce a broker, to shutdown a broker
after a specified interval, to destroy a connection, or to set java system properties (for example,
connection related properties).

■ Quiescing a broker moves it into a quiet state, which allows messages to be drained before
the broker is shut down or restarted. No new connections can be created to a broker that is
being quiesced. To quiesce the broker, enter a command like the following.
imqcmd quiesce bkr -b Wolfgang:1756

■ To shut down the broker after a specified interval, enter a command like the following. (The
time interval specifies the number of seconds to wait before the broker is shut down.)
imqcmd shutdown bkr -b Hastings:1066 -time 90

If you specify a time interval, the broker will log a message indicating when shutdown will
occur. For example,
Shutting down the broker in 29 seconds (29996 milliseconds)

While the broker is waiting to shut down, its behavior is affected in the following ways.
■ Administrative jms connections will continue to be accepted.
■ No new jms connections will be accepted.
■ Existing jms connections will continue to work.
■ The broker will not be able to take over for any other broker in a high-availability broker

cluster.
■ The imqcmd utility will not block, it will send the request to shut down to the broker and

return right away.
■ To destroy a connection, enter a command like the following.

imqcmd destroy cxn -n 2691475382197166336

Use the command imqcmd list cxn or imqcmd query cxn to obtain the connection ID.

New Features in Message Queue 4.2 and Recent Releases

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 21

■ To set a system property using imqcmd, use the new –D option. This is useful for setting or
overriding JMS connection factory properties or connection-related java system properties.
For example:

imqcmd list svc -secure -DimqSSLIsHostTrusted=true

imqcmd list svc -secure -Djavax.net.ssl.trustStore=/tmp/mytruststore

-Djavax.net.ssl.trustStorePassword=mytrustword

For complete information about the syntax of the imqcmd command, see Chapter 15,
“Command Line Reference,” in Sun Java System Message Queue 4.2 Administration Guide.

Displaying Information About a JDBC-Based Data Store
In Message Queue 4.0 a new query subcommand was added to the Database Manager utility,
imqdbmgr. This subcommand is used to display information about a JDBC-based data store,
including the database version, the database user, and whether the database tables have been
created.

The following is an example of the information displayed by the command.

imqdbmgr query

[04/Oct/2005:15:30:20 PDT] Using plugged-in persistent store:

version=400

brokerid=Mozart1756

database connection url=jdbc:oracle:thin:@Xhome:1521:mqdb

database user=scott

Running in standalone mode.

Database tables have already been created.

JDBC Provider Support
In Message Queue 4.0, Apache Derby Version 10.1.1 is now supported as a JDBC-based data
store provider.

Persistent Data Store Format Changes
Message Queue 4.0 introduced changes to the JDBC-based data store for optimization and to
support future enhancements. For this reason the format of the JDBC-based data store was
increased to version 400. Note that in Message Queue 4.0, the file-based data store version
remains 370 because no changes were made to it.

Additional Message Properties
Message Queue 4.0 added two new properties which are set on all messages that are placed in
the dead message queue.
■ JMS_SUN_DMQ_PRODUCING_BROKER indicates the broker where the message was produced.

New Features in Message Queue 4.2 and Recent Releases

Sun Java System Message Queue 4.2 Release Notes • September, 200822

http://docs.sun.com/doc/820-4916/aeonc?a=view
http://docs.sun.com/doc/820-4916/aeonc?a=view

■ JMS_SUN_DMQ_DEAD_BROKER indicates the broker who marked the message dead.

SSL Support
Starting with Message Queue 4.0, the default value for the client connection factory property
imqSSLIsHostTrusted is false. If your application depends on the prior default value of
true, you need to reconfigure and to set the property explicitly to true.

You might choose to trust the host when the broker is configured to use self-signed certificates.
In this case, in addition to specifying that the connection should use an SSL-based connection
service (using the imqConnectionType property), you should set the imqSSLIsHostTrusted
property to true.

For example, to run client applications securely when the broker uses self-signed certificates,
use a command like the following.

java -DimqConnectionType=TLS

-DimqSSLIsHostTrusted=true ClientAppName

To use the Command utility (imqcmd) securely when the broker uses self-signed certificates, use
a command like the following (for listing connector services).

imqcmd list svc -secure -DimqSSLIsHostTrusted=true

Feature to be Deprecated in Future Release
Message-based monitoring, which allows you to monitor a broker and its destinations using
metrics information written to metrics topic destinations, will be deprecated in future releases.

Message-based monitoring makes use of the broker's configurable Metrics Message Producer to
write metrics data into JMS messages, which are then sent to metrics topic destinations,
depending on the type of metrics information contained in the messages. This metrics
information can then be accessed by writing a client application that subscribes to the
appropriate metrics topic destination, consumes its messages, and processes the data as desired.

The message-based monitoring feature has been supplanted by the JMX Administration API
that was implemented in MQ 4.0 (see “Support for JMX Administration API” on page 20). The
JMX API is more comprehensive (it includes more metrics data than is written to topic
destinations) and is based on the JMX industry standard.

There is no compelling reason to use message-based monitoring now that Message Queue
supports the JMX API. Information about message-based monitoring will remain in the
Message Queue documentation until the feature is formally deprecated.

Feature to be Deprecated in Future Release

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 23

Bugs Fixed in Message Queue 4.2 and Recent Releases
Message Queue 4.2 includes new bug fixes and also incorporates bugs that were fixed in the
Message Queue 4.1 and Message Queue 4.0 releases.

The following sections list bugs that were fixed in their respective releases:

■ “Bugs Fixed in Message Queue 4.2” on page 24
■ “Bugs Fixed in Message Queue 4.1” on page 25
■ “Bugs Fixed in Message Queue 4.0” on page 26

Bugs Fixed in Message Queue 4.2
The following table describes the bugs fixed in Message Queue 4.2.

TABLE 1–6 Bugs Fixed in Message Queue 4.2

Bug Description

6581592 When the installer or uninstaller is run in text mode (installer –t), the Summary screen
shows the directory containing the log/summary files but does not list the names of these files.

6585911 The installer's JDK Selection screen incorrectly includes the JRE bundled with the installer
and used to run the installer.

6587112 The installer summary screen shows garbage in multi-byte locales.

6587127 When running the installer by referencing an answer file (installer -a filename -s), if the
answer file does not exist, the error messages are inconsistent and unclear.

6590969 Allows DN username format in client connection authentication.

6594381 Installation of Message Queue 4.1 localization RPM's (which happens when you select the
“Install Message Queue multilingual packages” checkbox on the Multilingual Packages
screen) will fail if older versions of Message Queue localization RPM's exist on your system.

6599144 When uninstalling Message Queue 4.2, splash screen and uninstaller hangs and screens
appear empty and gray on Java SE 6, but work on Java SE 5.

6615741 Message delivered in a transacted consumer session that is rolled back is not redelivered if the
original consumer closed before rollback.

6629922 Distributed transaction handler does not redeliver message to inactive consumer in correct
order.

6635130 Broker fails to notify producer of non persistent messages to resume production after having
been paused because destination had reached memory or message limits.

6641117 Message delivered in a transacted consumer session that is rolled back is not redelivered if the
original consumer closed after rollback.

Bugs Fixed in Message Queue 4.2 and Recent Releases

Sun Java System Message Queue 4.2 Release Notes • September, 200824

TABLE 1–6 Bugs Fixed in Message Queue 4.2 (Continued)
Bug Description

6683897 Message Queue installer's summary screen reports configuration error even though
configuration appears to complete successfully: installer cannot write to /dev/sterr on some
computers.

6684069 In broker cluster in which large number of messages are delivered to remote client in
consumer transaction, commit transaction fails.

6688935 Default value of Portmapper read timeout is too small.

6695238 C-client applications cannot connect to a broker installed in a location that has spaces in the
path.

6710168 Consumer no longer consumes messages if destination is paused twice without being
resumed between the pauses.

6710169 JMX operation ConsumerManagerMonitor.getConsumerInfo always returns
SESSION_TRANSACTED for the acknowledgement mode.

Bugs Fixed in Message Queue 4.1
The following table describes the bugs fixed in Message Queue 4.1.

TABLE 1–7 Bugs Fixed in Message Queue 4.1

Bug Description

6381703 Transacted remote messages can be committed twice if the broker originating the message
restarts.

6388049 Cannot clean up an uncompleted distributed transaction.

6401169 The commit and rollback options for imqcmd do not prompt for confirmation.

6473052 Default for autocreated queues should be round robin. (MaxNumberConsumers = -1).

6474990 Broker log shows ConcurrentModificationException for imqcmd list dst command.

6487413 Memory leak when limit behavior is REMOVE_OLDEST or REMOVE_LOWER_PRIORITY.

6488340 Broker spins, and client waits for reply to acknowledge.

6502744 Broker does not honor the dead message queue's default limit of 1000 messages.

6517341 Client runtime needs to improve reconnect logic when the client is connected to a
high-availability broker cluster by allowing the client to reconnect no matter what the value of
the imqReconnectEnabled property is.

6528736 Windows automatic startup service (imqbrokersvc) crashes during startup.

Bugs Fixed in Message Queue 4.2 and Recent Releases

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 25

TABLE 1–7 Bugs Fixed in Message Queue 4.1 (Continued)
Bug Description

6561494 Messages are delivered to the wrong consumer when both share a session.

6567439 Produced messages in a PREPARED transaction are delivered out of order if they are committed
after broker restarts.

Bugs Fixed in Message Queue 4.0
The following table describes the bugs fixed in Message Queue 4.0.

TABLE 1–8 Bugs Fixed in Message Queue 4.0

Bug Number Description

4986481 In Message Queue 3.5, calling Session.recover could hang in auto-reconnect mode.

4987325 Redelivered flag was set to false for redelivered messages after calling Session.recover.

6157073 Change new connection message to include the number of connections on the service in
addition to the total number of connections.

6193884 Message Queue outputs garbage message to syslog in locales that use non-ASCII
characters for messages.

6196233 Message selection using JMSMessageID doesn't work.

6251450 ConcurrentModificationException on connectList during cluster shutdown.

6252763 java.nio.BufferOverflowException in java.nio.HeapByteBuffer.putLong/Int.

6260076 First message published after startup is slow with Oracle storage.

6260814 Selector processing on JMSXUserID always evaluates to false.

6264003 The queue browser shows messages that are part of transactions that have not been
committed.

6271876 Connection Flow Control does not work properly when closing a consumer with
unconsumed messages.

6279833 Message Queue should not allow two brokers to use the same jdbc tables.

6293053 Master broker does not start up correctly if the system's IP address is changed, unless the
store is cleared (using —reset store.)

6294767 Message Queue broker needs to set SO_REUSEADDR on the network sockets it opens.

6304949 Unable to set ClientID property for TopicConnectionFactory.

6307056 The txn log is a performance bottleneck.

Bugs Fixed in Message Queue 4.2 and Recent Releases

Sun Java System Message Queue 4.2 Release Notes • September, 200826

TABLE 1–8 Bugs Fixed in Message Queue 4.0 (Continued)
Bug Number Description

6320138 Message Queue C API lacks ability to determine the name of a queue from a reply-to
header.

6320325 The broker sometimes picks up JDK 1.4 before JDK 1.5 on Solaris even if both versions are
installed.

6321117 Multibroker cluster initialization throws java.lang.NullPointerException.

6330053 The jms client throws java.lang.NoClassDefFoundError when committing a
transaction from the subscriber.

6340250 Support MESSAGE type in C-API.

6351293 Add Support for Apache Derby database.

Documentation Updates in Message Queue 4.2
This section contains information regarding Message Queue 4.2 documentation updates:

■ “Compatibility Issues” on page 27
■ “Changes in Message Queue 4.2 Documentation Set” on page 28
■ “New Destination Metrics” on page 29
■ “Automatic Broker Startup on Solaris 10 OS” on page 30
■ “Changes to JMX API” on page 30
■ “Support for DN Username Format for Client Authentication” on page 35
■ “JAAS Authentication Enhancement” on page 36

Compatibility Issues
This section covers compatibility issues regarding Message Queue 4.2.

Interface Stability
Sun Java System Message Queue uses many interfaces that may change over time. Appendix B,
“Stability of Message Queue Interfaces,” in Sun Java System Message Queue 4.2 Administration
Guide classifies the interfaces according to their stability. The more stable an interface, the less
likely it is to change in subsequent versions of the product.

Issues Related to the Next Major Release of Message Queue
The next major release of Message Queue might introduce changes that make currentMessage
Queue client appliations incompatible with that release. This information is provided in the
interest of full disclosure.

Documentation Updates in Message Queue 4.2

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 27

http://docs.sun.com/doc/820-4916/aeopa?a=view
http://docs.sun.com/doc/820-4916/aeopa?a=view
http://docs.sun.com/doc/820-4916/aeopa?a=view

■ The locations of individual files installed as part of Sun Java System Message Queue might
change. This could break existing applications that depend on the current location of certain
Message Queue files.

■ Message Queue 3.5 and earlier brokers might no longer be able to operate in a cluster with
newer brokers.

■ In future releases, Message Queue clients might not be able to use JDK versions that are
earlier than 1.5.

■ In future releases, Message Queue clients might not be able to use JDK versions that are
earlier than 1.6.

Changes in Message Queue 4.2 Documentation Set
The Message Queue 4.2 documentation set includes updates to the Message Queue 4.1
documentation set as described below:

Technical Overview
The Sun Java System Message Queue 4.2 Installation Guide has been updated to reflect new
features in Message Queue 4.2 and an updated framework for high-availibility broker clusters.

Administration Guide
The Administration Guide has been updated to reflect new features in Message Queue 4.2.

Installation and Upgrade Information
The Sun Java System Message Queue 4.2 Installation Guide has not been updated to reflect new
features in Message Queue 4.2, specifically the new Sun Connection registration functionality in
the installer. This information is provided in these Message Queue Release Notes

Developer's Guide for Java Clients
TheDeveloper’s Guide for Java Clients has not been updated to reflect new features in Message
Queue 4.2. This information is provided in these Message Queue Release Notes

Developer’s Guide for C Clients
TheDeveloper’s Guide for C Clients has not been updated to reflect new features in Message
Queue 4.2. This information is provided in these Message Queue Release Notes

Developer's Guide for JMX Clients
has not been updated to reflect new features in Message Queue 4.2. This information is
provided in these Message Queue Release Notes

Documentation Updates in Message Queue 4.2

Sun Java System Message Queue 4.2 Release Notes • September, 200828

http://docs.sun.com/doc/820-5204
http://docs.sun.com/doc/820-5204

New Destination Metrics
Message Queue 4.2 includes new destination metrics that can be useful in monitoring
destinations in a broker cluster. In a broker cluster, destinations are propagated to all brokers in
the cluster. However, a message, when produced, is stored in the target destination of the
message producer's home broker, and is sent to the corresponding destination on another
broker in the cluster only if there is an active consumer for that destination. As a result, the
messages stored in a specified destination depends on the broker in the cluster on which the
specified destination resides.

Put another way, in a broker cluster, the messages stored in a given destination on a given
broker in the cluster, consist of messages produced directly to the destination as well as
messages sent to the destination from remote brokers in the cluster. In analyzing message
routing and delivery in a broker cluster, it is sometimes helpful to know how many messages in
a destination are local (locally produced) and how many are remote (remotely produced).

The following table shows two new physical destination metric quantities included in Message
Queue 4.2. The new metric quantities are available through the imqcmd list dst and imqcmd

query dst commands and through new JMX attributes (see “Destination Monitor MBean” on
page 33.

TABLE 1–9 Physical Destination Metrics

Metric Quantity Description Log File?
metrics dst

Metric Type Metrics Topic

Num messages remote Current number of
messages stored in
memory and persistent
store that were produced
to a remote broker in a
cluster. This number does
not include messages
included in transactions.

No Not
Available
1

Not Available

Total message bytes remote Current total size in bytes
of messages stored in
memory and persistent
store that were produced
to a remote broker in a
cluster. This value does not
include messages included
in transactions.

No Not
Available
1

Not Available

1 Available only with imqcmd query dst command

Documentation Updates in Message Queue 4.2

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 29

Automatic Broker Startup on Solaris 10 OS
This section describes how to configure automatic broker startup on Solaris 10 operating
systems. Rather than using an rc file to implement automatic broker startup when a computer
reboots, the following procedure makes use of the Solaris 10 Service Management Facility
(SMF).

For more info on using the Service Management Facility, please refer to Solaris 10
documentation.

▼ To implement automatic broker startup on Solaris 10 OS

Import the mqbroker service into the SMF repository.
svccfg import /var/svc/manifest/application/sun/mq/mqbroker.xml

Verify that the import was successful by checking the state of the mqbroker service.
svcs mqbroker

Output resembles the following:
STATE STIME FMRI

disabled 16:22:50 svc:/application/sun/mq/mqbroker:default

The service is initially shown as disabled.

Eanable the mqbroker service.
svcadm enable svc:/application/sun/mq/mqbroker:default

Enabling the mqbroker service will start the imqbrokerd process. A reboot will subsequently
restart the broker.

Configure the mqbroker service to pass any desired arguments to the imqbrokerd command.
The options/server_args property is used to pass arguments toimqbrokerd. For example to
add -loglevel DEBUGHIGH, do the following:
svccfg

svc:> select svc:/application/sun/mq/mqbroker

svc:/application/sun/mq/mqbroker> setprop options/server_args=\"-loglevel DEBUGHIGH\"
svc:/application/sun/mq/mqbroker> exit

Changes to JMX API
Message Queue supports the Java Management Extensions (JMX) API for configuring and
monitoring broker functions programmatically from within a Message Queue client

1

2

3

4

Documentation Updates in Message Queue 4.2

Sun Java System Message Queue 4.2 Release Notes • September, 200830

application. Message Queue 4.2 includes extensions to the JMX API to support new features
and functionality in the release. New JMX attributes, operations, and/or lookup keys are defined
for the following Mbeans:

■ “ConsumerManager Monitor MBean” on page 31
■ “Destination Configuration MBean” on page 32
■ “Destination Manager Configuration MBean” on page 33
■ “Destination Monitor MBean” on page 33
■ “ProducerManager Monitor MBean” on page 34

ConsumerManager Monitor MBean
The attributes, operations, and lookup keys in the following tables support the feature described
in “Multiple Destinations for a Publisher or Subscriber” on page 10.

The name of the following attribute is defined as static constants in the utility class
com.sun.messaging.jms.management.server.ConsumerAttributes.

TABLE 1–10 ConsumerManager Monitor Attributes

Name Type Settable? Description

NumWildcardConsumers Integer No Number of wildcard message consumers associated
with the broker

The names of the following operations are defined as static constants in the utility class
com.sun.messaging.jms.management.server.ConsumerOperations.

TABLE 1–11 ConsumerManager Monitor Operations

Name Parameters Result Type Description

getConsumerWildcards none String[] Wildcard strings used by current consumers
associated with the broker

getNumWildcardConsumers wildcard-String Integer Number of current consumers associated with
the broker that are using the specified wildcard
string

The following lookup keys are defined as static constants in the utility class
com.sun.messaging.jms.management.server.ConsumerInfo.

Documentation Updates in Message Queue 4.2

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 31

TABLE 1–12 Lookup Keys for Message Consumer Information

Name Value Type Description

DestinationNames String[] Destination names that match wildcards used by wildcard
consumers

For topic destinations only.

Wildcard Boolean Wildcard consumer?

For topic destinations only.

Destination Configuration MBean
The attributes in the following table support the feature described in “Schema Validation of
XML Payload Messages” on page 12.

The names of the following attributes are defined as static constants in the utility class
com.sun.messaging.jms.management.server.DestinationAttributes.

TABLE 1–13 Destination Configuration Attributes

Name Type Settable? Description

ValidateXMLSchemaEnabled Boolean Yes XML schema validation is enabled?

If set to false or not set, then XML schema
validation is not enabled for the destination.

XMLSchemaURIList String Yes Space separated list of XML schema document
(XSD) URI strings

The URIs point to the location of one or more
XSDs to use for XML schema validation, if
enabled.

Use double quotes around this value if multiple
URIs are specified.

Example:

“http://foo/flap.xsd
http://test.com/test.xsd”

If this property is not set or null and XML
validation is enabled, XML validation is
performed using a DTD specified in the XML
document.

ReloadXMLSchemaOnFailure Boolean Yes Reload XML schema on failure enabled?

If set to false or not set, then the schema is not
reloaded if validation fails.

Documentation Updates in Message Queue 4.2

Sun Java System Message Queue 4.2 Release Notes • September, 200832

Destination Manager Configuration MBean
The new Destination Configuration MBean attributes, above, that support the new feature,
“Schema Validation of XML Payload Messages” on page 12, can be used in creating a
destination using the create operation of the Destination Manager Configuration MBean.

Destination Monitor MBean
The first set of attributes in the following table support the feature described in “Multiple
Destinations for a Publisher or Subscriber” on page 10 and the second set of attributes support
the enhancement described in “New Destination Metrics” on page 29.

The names of the following attributes are defined as static constants in the utility class
com.sun.messaging.jms.management.server.DestinationAttributes.

TABLE 1–14 Destination Monitor Attributes

Name Type Settable? Description

NumWildcardProducers Integer No Current number of wildcard message producers
associated with the destination

For topic destinations only.

NumWildcardConsumers Integer No Current number of wildcard message consumers
associated with the destination

For topic destinations only.

NumWildcards Integer No Current number of wildcard message producers and
wildcard message consumers associated with the
destination

For topic destinations only.

NumMsgsRemote Long No Current number of messages stored in memory and
persistent store that were produced to a remote broker
in a cluster. This number does not include messages
included in transactions.

TotalMsgBytesRemote Long No Current total size in bytes of messages stored in
memory and persistent store that were produced to a
remote broker in a cluster. This value does not include
messages included in transactions.

The operations in the following table support the feature described in “Multiple Destinations
for a Publisher or Subscriber” on page 10.

The names of the following operations are defined as static constants in the utility class
com.sun.messaging.jms.management.server.DestinationOperations.

Documentation Updates in Message Queue 4.2

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 33

TABLE 1–15 Destination Monitor Operations

Name Parameters Result Type Description

getConsumerWildcards none String[] Wildcard strings used by current consumers
associated with the destination

For topic destinations only.

getProducerWildcards none String[] Wildcard strings used by current producers
associated with the destination

For topic destinations only.

getWildcards none String[] Wildcard strings used by current consumers
and producers associated with the destination

For topic destinations only.

getNumWildcardConsumers wildcard-String Integer Number of current consumers associated with
the destination that are using the specified
wildcard string

For topic destinations only.

getNumWildcardProducers wildcard-String Integer Number of current producers associated with
the destination that are using the specified
wildcard string

For topic destinations only.

ProducerManager Monitor MBean
The attributes, operations, and lookup keys in the tables below support the feature described in
“Multiple Destinations for a Publisher or Subscriber” on page 10.

The name of the following attribute is defined as static constants in the utility class
com.sun.messaging.jms.management.server.ProducerAttributes.

TABLE 1–16 ProducerManager Monitor Attributes

Name Type Settable? Description

NumWildcardProducers Integer No Number of wildcard message producers associated
with the broker

The names of the following operations are defined as static constants in the utility class
com.sun.messaging.jms.management.server.ProducerOperations.

Documentation Updates in Message Queue 4.2

Sun Java System Message Queue 4.2 Release Notes • September, 200834

TABLE 1–17 ProducerManager Monitor Operations

Name Parameters Result Type Description

getProducerWildcards none String[] Wildcard strings used by current producers
associated with the broker

getNumWildcardProducers wildcard-String Integer Number of current producers associated with
the broker that are using the specified wildcard
string

The following lookup keys are defined as static constants in the utility class
com.sun.messaging.jms.management.server.ProducerInfo.

TABLE 1–18 Lookup Keys for Message Producer Information

Name Value Type Description

DestinationNames String[] Destination names that match wildcards used by wildcard
producers

For topic destinations only.

Wildcard Boolean Wildcard producer?

For topic destinations only.

Support for DN Username Format for Client
Authentication
Message Queue 4.2 supports DN username format in client connection authentication against
an LDAP user repository. The support involves the following new broker property (and value):

imq.user_repository.ldap.usrformat=dn

This property lets the broker authenticate a client user against an entry in an LDAP user
repository by extracting from the DN username format the value of the attribute specified by
the following property:

imq.user_repository.ldap.uidattr

The broker uses the value of the above attribute as the name of the user in access control
operations.

For example, if imq.user_repository.ldap.uidattr=udi and a client authentication
username is in the format udi=mquser,ou=People,dc=red,dc=sun,dc=com, then “mquser”
would be extracted for performing access control.

Documentation Updates in Message Queue 4.2

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 35

JAAS Authentication Enhancement
Message Queue 4.2 JAAS authentication supports authentication by IP address as well as by
username.

Known Issues and Limitations
This section contains a list of the known issues with Message Queue 4.2. The following product
areas are covered:

■ “Installation Issues” on page 36
■ “Deprecated Password Option” on page 41
■ “Administration/Configuration Issues” on page 42
■ “Broker Issues” on page 43
■ “Broker Clusters” on page 44
■ “JMX Issues” on page 46
■ “SOAP Support” on page 46

For a list of current bugs, their status, and workarounds, Java Developer ConnectionTM

members should see the Bug Parade page on the Java Developer Connection web site. Please
check that page before you report a new bug. Although all Message Queue bugs are not listed,
the page is a good starting place if you want to know whether a problem has been reported.

http://bugs.sun.com/bugdatabase/index.jsp

Note – Java Developer Connection membership is free but requires registration. Details on how
to become a Java Developer Connection member are provided on Sun’s “For Developers” web
page.

To report a new bug or submit a feature request, send mail to imq-feedback@sun.com.

Installation Issues
This section describes issues related to the installation of Message Queue version 4.2.

Product Registry and Java ES
Message Queue 4.2, like Message Queue 4.1, is installed by a relatively new installer, which also
installs and upgrades the Java Enterprise System (Java ES) shared components required by
Message Queue; for example, JDK, NSS, JavaHelp, and so on.

The new Message Queue installer and the older Java ES installer, which was used to install
previous Message Queue versions, do not share the same product registry. If a version of
Message Queue that was installed with the Java ES installer is removed and upgraded to

Known Issues and Limitations

Sun Java System Message Queue 4.2 Release Notes • September, 200836

http://bugs.sun.com/bugdatabase/index.jsp

Message Queue 4.2 by the Message Queue installer, the Java ES product registry might be in an
inconsistent state. As a result, if the Java ES uninstaller is run, it may inadvertently remove
Message Queue 4.2 and the shared components upon which it depends, even though it did not
install them.

The best way to upgrade Message Queue software that was installed by the Java ES installer is as
follows.

1. Use the Java ES uninstaller to remove Message Queue and its shared components.
2. Use the Message Queue installer to install Message Queue 4.2.

Installing on Windows
When installing Message Queue on Windows, please note the following limitations.

■ The installer does not add entries for Message Queue to the Start>Programs menu. (Bug
6567258)
Workaround: To start the Administration Console use the command line as shown in
“Starting the Administration Console” in Sun Java System Message Queue 4.2
Administration Guide.

■ The installer does not add the IMQ_HOME\mq\bin directory to the PATH environment
variable.(Bug 6567197)
Workaround: Users need either to add this entry to their PATH environment variable or
provide a full path name when invoking Message Queue utilities
(IMQ_HOME\mq\bin\command).

■ The installer does not add entries to the Windows registry to indicate that Message Queue is
installed. (Bug 6586389)

■ When run in silent mode with an answer file, the installer returns right away. The
installation does happen; but the user has no way of knowing when the silent installation is
actually done. (Bug 6586560)

■ Attempting to run the installer in text mode (installer –t) on Windows causes an error
message that is displayed in English even when the installer is run in non-English. Text
mode is not supported on Windows. (Bug 6594142)

■ The installer does not, by default, install Message Queue on the same drive on which the
operating system is installed. (Bug 6673511)

■ For installation and uninstallation on Windows, there are no .bat files that the user can run,
nor can user uninstall by using Add/Remove Programs in the Windows Control Panel. (Bug
6673417)

■ On Windows Vista, you cannot install Message Queue under C:\Program Files unless you
install from a Command Prompt as Administrator. (Bug 6701661)
Workaround: To install from a Command Prompt as Administrator:
1. Start→Programs→Accessories→Command Prompt.

Known Issues and Limitations

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 37

http://docs.sun.com/doc/820-4916/aeoaz?a=view
http://docs.sun.com/doc/820-4916/aeoaz?a=view

2. Right click on Command Prompt.
3. Select Run as Administrator.
4. Change directory to the Message Queue 4.2 install image.
5. Run installer.vbs.

■ When the uninstaller is run in dry run mode (uninstaller -n), it incorrectly performs an
uninstall. (Bug 6719051)
Workaround: Perform a silent install using the following command:
uninstaller -s

■ The “Install Home” string on the installer Home page is not localized. (Bug 6592491)

Installing on Solaris
■ When the installer is run in dry run mode (installer –n), the Summary Screen shows

some error messages and also displays an install status of “Incomplete”. This is incorrect and
misleading; a dry run does not install anything on the system; it only creates the answer file
that can be subsequently used to perform a silent install. (Bug 6594351)

■ The installer does not perform Sun Connection registration when run in silent mode with
an answer file (installer -a filename -s). (Bug 6710268)

■ When running the installer in text mode, when entering a username or password for Sun
Connect registration or creating an online account, you cannot correct a user name or
password using the backspace key. (Bug 6673460)
Workaround: Use the Control-H keys instead of the backspace key, or use a different
terminal emulator like dtterm or xterm.

■ The Upgrade screen on the installer does not always correctly report the existing installed
version of Message Queue or of the installer engine. (Bug 6679765)

■ When using the installer in text mode and attempting Sun Connection registration with an
invalid user and password names, the installer displays an “unable to register” dialog,
throws a Null pointer exception, and exits. (Bug 6666365)

Installing on Linux
The following issues affect installation on the Linux Platform
■ On the JDK Selection panel, the scroll list displays only one item. This makes it difficult to

select other JDK's in the list. (Bug 6584735)
■ If the JDK is current and the user selects “Install default JDK” on the JDK Selection Screen,

the installer still tries to install it and reports that it cannot install the package. Installation
completes successfully despite this issue. (Bug 6581310)

■ If the currently installed JDK is a later version than JDK 1.5.0_15 (the version normally
installed by the Message Queue installer), then the Message Queue uninstaller cannot find
the default IMQ_JAVAHOME directory and returns an error. (Bug 6673415)

Known Issues and Limitations

Sun Java System Message Queue 4.2 Release Notes • September, 200838

Workaround: Install JDK 1.5 manually as follows before running the Message Queue
uninstaller.

cd installImage/Product/UNIX/LINUX/X86/2.4/Packages

rpm -i --force jdk-1.5.0_15–linux-arch.rpm

where arch is either i586 or amd64.
■ When the installer is run in dry run mode (installer –n), the Summary Screen shows

some error messages and also displays an install status of “Incomplete”. This is incorrect and
misleading; a dry run does not install anything on the system; it only creates the answer file
that can be subsequently used to perform a silent install. (Bug 6594351)

Installing on All Platforms
These issues affect installation on all platforms.

■ The Ready to Install screen displays the product name as “mq” rather than as Sun Java
System Message Queuye 4.2. (Bug 6650841)

■ When the Installer is in the process of installing Message Queue 4.2 and the Progress screen
is displayed, the Cancel button is active. Selecting the Cancel button at this time results in
incomplete or broken installs. (Bug 6595578)

■ The Installer Summary Screen contains a number of links that when clicked will launch a log
or summary page viewer. If you dismiss this viewer window using the window close button
“X” instead of the button labelled “close', you will not be able to bring this viewer window
back up. (Bug 6587138)

Workaround: Use the button labeled Close to close the window.
■ When a computer system has older versions of Message Queue and NSS/NSPR, the

installer's Upgrade screen only lists Message Queue as requiring upgrade; it does not
mention that NSS and NSPR need to be upgraded as well. All the relevant software will
nevertheless be upgraded (as indicated by The ReadyToInstall screen which shows the
correct information). (Bug 6580696)

■ List of JDKs on JDK Selection Screen is active even when “Choose a JDK” option is not
selected. (Bug 6650874)

Version Anomalies in the Installer
The installer displays Message Queue version information in an opaque form. (Bug 6586507)

On the Solaris platform, refer to the following table to determine the Message Queue version
displayed by the installer.

Known Issues and Limitations

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 39

TABLE 1–19 Version String Translation

Version as Displayed by the
Installer on Solaris OS Corresponding Message Queue Release

4.2.0.0 4.2

4.1.0.2 4.1 Patch 2

4.1.0.1 4.1 Patch 1

4.1.0.0 4.1

3.7.2.1 3.7 UR2 Patch 1

3.7.0.2 3.7 UR2

3.7.0.1 3.7 UR1

3.6.0.0 3.6

3.6.0.4 3.6 SP4

3.6.0.3 3.6 SP3

3.6.0.2 3.6 SP2

3.6.0.1 3.6 SP1

Note – For Patch releases to 3.6 SP4 (for example, 3.6 SP4 Patch 1), the releases string displayed
by the installer stays the same. You need to run the command imqbrokerd -version to
determine the exact version.

On the Linux platform, the version number displayed by the installer is in the following form.

majorReleaseNumber.minorReleaseNumber-someNumber

For example, 3.7–22. This tells us only that this is one of the 3.7 releases, but not which specific
one. To determine the installed Message Queue version, run the command:

imqbrokerd -version.

Localization Issues
The following issues relate to localization problems.
■ When the installer is run in text mode (installer –t), in a non-English locale, multi-byte

characters show up as garbage. (Bug 6586923)
■ On the Installer Progress screen, the progress bar shows strange characters. The tooltip is

hard coded in non-English locales. (Bug 6591632)

Known Issues and Limitations

Sun Java System Message Queue 4.2 Release Notes • September, 200840

■ Text mode (installer –t) is not supported on Windows. Running the installer in text
mode on Windows will cause an error message to be displayed. This message is not localized
when the installer is run in non-English locales. (Bug 6594142)

■ The License screen of the installer displays English license text no matter which locale the
Installer is run in. (Bug 6592399)
Workaround: To access localized license files, look for at the LICENSE_MULTILANGUAGE.pdf
file.

■ Installer usage help text is not localized. (Bug 6592493)
■ The string “None” that is seen on the Installer summary HTML page is hard coded in

English. (Bug 6593089)
■ When the installer is run in a German locale, the Welcome screen does not show the

complete text that is seen in other locales. (Bug 6592666)
■ The string “Install Home” seen on the Installer Install Home screen is not localized. It

appears in English even when the installer is run in non-English locales. (Bug 6592491)
■ When the installer is run in text mode (installer –t), the English response choices “Yes”

and “No” are used no matter what locale the installer is run in. (Bug 6593230)
■ The tooltip for the browse button on the Installer JDK Selection screen is hard coded in

English. (Bug 6593085)

Deprecated Password Option
In previous versions of Message Queue, you could use the —p or —password option to specify a
password interactively for the following commands: imqcmd, imqbrokerd, and imdbmgr.
Beginning with version 4.0, these options have been deprecated.

Instead, you can create a password file that specifies the relevant passwords and reference the
password file using the -passfile command option, or simply enter a password when
prompted by the command.

A password file can contain one or more of the passwords listed below.

■ A keystore password used to open the SSL keystore. Use the imq.keystore.password
property to specify this password.

■ An LDAP repository password used to connect securely with an LDAP directory if the
connection is not anonymous. Use the imq.user_repository.ldap.password property to
specify this password.

■ A JDBC database password used to connect to a JDBC-compliant database. Use the
imq.persist.jdbc.vendorName.password property to specify this password. The
vendorName component of the property name is a variable that specifies the database
vendor. Choices include hadb, derby, pointbase, oracle, or mysql.

Known Issues and Limitations

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 41

■ A password to the imqcmd command (to perform broker administration tasks). Use the
imq.imqcmd.password property to specify this password.

In the following example, the password to the JDBC database is set in the password file to
abracadabra.

imq.persist.jdbc.mysql.password=abracadabra

You can use a password file in one of the following ways.

■ Configure the broker to use the password file by setting the following properties in the
broker's config.properties file.

imq.passfile.enabled=true

imq.passfile.dirpath=passwordFileDirectory
imq.passfile.name=passwordFileName

■ Use the -passfile option of the relevant command, for example:
imqbrokerd -passfile passwordFileName

Administration/Configuration Issues
The following issues pertain to administration and configuration of Message Queue

■ On Windows platforms, the built-in Windows Firewall, which is enabled by default, must be
manually configured with a firewall rule that allows the broker to accept incoming
connections from clients. (Bug 6675595)
1. Double-click on Windows Firewall in the Control Panel

You will have to click Continue on the User Account Control dialog for the Windows
Firewall Settings dialog to open.

2. In the Windows Firewall Settings dialog, click the Exceptions tab.
3. Click Add program.
4. In the Add a Program dialog, select java.exe and click Browse.

Windows identifies the broker process as a Java Platform SE binary. Therefore, locate the
java.exe used by the broker (usually at jdk1.5.0_15\jre\bin\java.exe).

5. Click Change scope.
6. In the Change Scope dialog, select “Any computer (including those on the Internet.”
7. Click OK.
8. In the Add a Program dialog, click OK.
9. In the Windows Firewall Settings dialog, click OK.

Known Issues and Limitations

Sun Java System Message Queue 4.2 Release Notes • September, 200842

■ On Windows platforms, the imqadmin and imqobjmgr commands throw an error when the
CLASSPATH contains double quotes. (Bug 5060769)

Workaround: Open a command prompt window and unset the CLASSPATH:

set classpath=

Then run the desired command the same command prompt window, for example:

mqInstallHome\mq\bin\imqadmin
■ The -javahome option in all Solaris and Windows scripts does not work if the value

provided contains a space. (Bug 4683029)

The javahome option is used by Message Queue commands and utilities to specify an
alternate Java 2 compatible runtime to use. However, the path name to the alternate Java
runtime must not contain spaces. The following are examples of paths that include spaces.

Windows: C:\jdk 1.4

Solaris: /work/java 1.4

Workaround: Install the Java runtime at a location or path that does not contain spaces.
■ The imqQueueBrowserMaxMessagesPerRetrieve attribute specifies the maximum number

of messages that the client runtime retrieves at one time when browsing the contents of a
queue. The attribute affects how the queued messages are batched, to be delivered to the
client runtime, but it does not affect the total number of messages browsed. The attribute
only affects the browsing mechanism, it does not affect queue message delivery. (Bug
6387631)

Broker Issues
The following issues affect the Message Queue broker.

■ Broker becomes inaccessible when persistent data store opens too many destinations. (Bug
4953354)

Workaround: This condition is caused by the broker reaching the system open-file
descriptor limit. On Solaris and Linux use the ulimit command to increase the file
descriptor limit.

■ Consumers are orphaned when a destination is destroyed. (Bug 5060787)

Active consumers are orphaned when a destination is destroyed. Once the consumers have
been orphaned, they will no longer receive messages (even if the destination is recreated).

■ When a JMS client using the HTTP connection service terminates abruptly (for example,
using Ctrl-C) the broker takes approximately one minute before releasing the client
connection and all the associated resources.

Known Issues and Limitations

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 43

If another instance of the client is started within the one minute period and if it tries to use
the same ClientID, durable subscription, or queue, it might receive a “Client ID is already in
use” exception. This is not a real problem; it is just the side effect of the termination process
described above. If the client is started after a delay of approximately one minute, everything
should work fine.

■ When using MySQL database for a data store, storing messages greater than 1 MB throw a
“Packet for query is too large...” SQLException. (Bug 6682815)
Workaround: Start the MySQL server with the --max_allowed_packet option set to a value
greater than the 1 MB default. For example, use the following value:
--max_allowed_packet=60M

■ When using MySQL database for a highly-available shared data store, a mechanism is
needed to configure the MySQL storage engine as NDBCLUSTER. (Bug 6691394)
Workaround: Add the following property value to the broker's config.properties file::
imq.persist.jdbc.mysql.tableoption=EMGINE=NDBCLUSTER

■ When using Oracle's 9i (JDBC 9.2.0.x) driver, broker throws “Failed to persist property...”
exception. (Bug 6626825)
Workaround: Use Oracle's 10g (JDBC 10.2.0.x) driver, for which the broker is optimized.
imq.persist.jdbc.derby.table.MYCONSTATE41.index.IDX2=

CREATE INDEX &(index) ON $(name) (MESSAAGE_ID)

■ When using Java DB database for a data store, storing a message throws a “lock could not be
obtained within the time requested” SQLException. (Bug 6691394)
Workaround: Add the following property value to the broker's config.properties file::
imq.persist.jdbc.derby.table.MYCONSTATE41.index.IDX2=

CREATE INDEX &(index) ON $(name) (MESSAAGE_ID)

Broker Clusters
The following issues affect broker clusters.

■ Only fully-connected broker clusters are supported in this release. This means that every
broker in a cluster must communicate directly with every other broker in the cluster. If you
are connecting brokers into a conventional cluster using the imqbrokerd -cluster
command line argument, be careful to ensure that all brokers in the cluster are included.

■ If a client is connected to a broker in a high-availability broker cluster, the client runtime
will attempt to reconnect until it succeeds (it ignores the value of the
imqAddressListIterations connection factory attribute.)

■ A client can only browse the contents of queues that are located on its home broker. The
client can still send messages to any queue or consume messages from any queue in the
cluster; the limitation only affects queue browsing.

Known Issues and Limitations

Sun Java System Message Queue 4.2 Release Notes • September, 200844

■ In a conventional cluster that includes version 4.2 brokers, all brokers must be version 3.5 or
later.

■ Message Queue 4.2 and 4.1 brokers cannot interoperate in a cluster by default with Message
Queue 3.7 or 3.6 brokers because the default value of
imq.autocreate.queue.maxNumActiveConsumers changed between these versions. (Bug
6716400)
WorkaroundChange the value of the Message Queue 4.2 and 4.1 brokers'
imq.autocreate.queue.maxNumActiveConsumers from the default value of -1 to the
previous version's default value of 1.

■ When converting from a conventional cluster to a high-availability cluster, you can use the
Message QueueDatabase Manager utility (imqdbmgr) to convert an existing standalone
JDBC—based data store to a shared high-availability data store as documented in
“Converting a Standalone Data Store to a Shared Data Store” in Sun Java System Message
Queue 4.2 Administration Guide

■ A broker using HADB cannot handle messages larger than 10 MB. (Bug 6531734)
■ The conversion to an HADB store using the command imqdbmgr upgrade hastore can fail

with the message “too many locks are set” if the store holds more than 10,000 message. (Bug
6588856)
WorkaroundUse the following command to increase the number of locks.
hadbm set NumberOfLocks=<desiredNumber>

For additional information see “HADB Problems” in Sun Java System Application Server 9.1
Enterprise Edition Troubleshooting Guide.

■ If more than 500 remote messages are committed in one transaction, the broker might
return the error “HADB-E-12815: Table memory space exhausted.” (Bug 6550483)
For additional information, see “HADB Problems” in Sun Java System Application Server 9.1
Enterprise Edition Troubleshooting Guide.

■ In a broker cluster, a broker will queue messages to a remote connection that has not been
started. (Bug 4951010)
Workaround: The messages will be received by the consumer once the connection is started.
The messages will be redelivered to another consumer if the consumer’s connection is
closed.

■ When consuming more than one message from a remote broker in one transaction, it is
possible that the following error message will be logged to the broker. The message is benign
and can be ignored:

[26/Jul/2007:13:18:27 PDT] WARNING [B2117]:

Message acknowledgement failed from

mq://129.145.130.95:7677/?instName=a&brokerSessionUID=3209681167602264320:

ackStatus = NOT_FOUND(404)\

Reason = Update remote transaction state to COMMITED(6):

Known Issues and Limitations

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 45

http://docs.sun.com/doc/820-4916/gecjh?a=view
http://docs.sun.com/doc/820-4916/gecjh?a=view

transaction 3534784765719091968 not found, the transaction

may have already been committed.

AckType = MSG_CONSUMED

MessageBrokerSession = 3209681167602264320

TransactionID = 3534784765719091968

SysMessageID = 8-129.145.130.95(95:fd:93:91:ec:a0)-33220-1185481094690

ConsumerUID = 3534784765719133952\par

[26/Jul/2007:13:18:27 PDT] WARNING Notify commit transaction

[8-129.145.130.95(95:fd:93:91:ec:a0)-33220-1185481094690,

[consumer:3534784765719133952, type=NONE]]

TUID=3534784765719091968 got response:

com.sun.messaging.jmq.jmsserver.util.BrokerException:

Update remote transaction state to COMMITED(6):

transaction 3534784765719091968 not found, the transaction may have already

been committed.:

com.sun.messaging.jmq.jmsserver.util.BrokerException: Update remote transaction

state to COMMITED(6): transaction 3534784765719091968 not found, the transaction

may have already been committed.r

This message gets logged when notifying the commit to the message home broker for later
messages in the transaction when the imq.txn.reapLimit property is low compared to the
number of remote messages in one transaction. (Bug 6585449)

Workaround: To avoid this message increase the value of the imq.txn.reapLimit property.

JMX Issues
On the Windows platform, the getTransactionInfo method of the Transaction Manager
Monitor MBean returns transaction information that has incorrect transaction creation time.
(Bug 6393359)

Workaround: Use the getTransactionInfoByID method of the Transaction Manager Monitor
MBean instead.

SOAP Support
You need to be aware of two issues related to SOAP support

■ Beginning with the release of version 4.0 of Message Queue, support for SOAP administered
objects is discontinued.

■ SOAP development depends upon several files: SUNWjaf, SUNWjmail, SUNWxsrt, and
SUNWjaxp. In version 4.1 of Message Queue, these files are available to you only if you are
running Message Queue with JDK version 1.6.0 or later.

Known Issues and Limitations

Sun Java System Message Queue 4.2 Release Notes • September, 200846

■ Previously the SAAJ 1.2 implementation .jar directly referenced mail.jar. In SAAJ 1.3 this
reference was removed; thus, Message Queue clients must explicitly put mail.jar in
CLASSPATH.

Redistributable Files
Sun Java System Message Queue 4.2 contains the following set of files which you may use and
freely distribute in binary form:

fscontext.jar

imq.jar

imqjmx.jar

imqxm.jar

jaas.jar

jms.jar

libmqcrt.so (HPUX)
libmqcrt.so (UNIX)
mqcrt1.dll (Windows)

In addition, you can also redistribute the LICENSE and COPYRIGHT files.

Accessibility Features for People With Disabilities
To obtain accessibility features that have been released since the publishing of this media,
consult Section 508 product assessments (available from Sun upon request) to determine which
versions are best suited for deploying accessible solutions. Updated versions of applications can
be found at http://sun.com/software/javaenterprisesystem/get.html.

For information on Sun’s commitment to accessibility, visit http://sun.com/access.

How to Report Problems and Provide Feedback
If you have problems with Sun Java System Message Queue, contact Sun customer support
using one of the following mechanisms:
■ Sun Software Support services online at http://www.sun.com/service/sunone/software.

This site has links to the Knowledge Base, Online Support Center, and ProductTracker, as
well as to maintenance programs and support contact numbers.

■ The telephone dispatch number associated with your maintenance contract.

So that we can best assist you in resolving problems, please have the following information
available when you contact support:
■ Description of the problem, including the situation where the problem occurs and its

impact on your operation.
■ Machine type, operating system version, and product version, including any patches and

other software that might be affecting the problem.

How to Report Problems and Provide Feedback

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 47

http://sun.com/software/javaenterprisesystem/get.html
http://sun.com/access
http://www.sun.com/service/sunone/software

■ Detailed steps on the methods you have used to reproduce the problem.
■ Any error logs or core dumps.

Sun Java System Software Forum
There is a Sun Java System Message Queue forum available at the following location:

http://swforum.sun.com/jive/forum.jspa?forumID=24

We welcome your participation.

Java Technology Forum
There is a JMS forum in the Java Technology Forums that might be of interest.

http://forum.java.sun.com

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions.

To share your comments, go to http://docs.sun.com and click Send Comments. In the online
form, provide the document title and part number. The part number is a seven-digit or
nine-digit number that can be found on the title page of the book or at the top of the document.
For example, the title of this book is Sun Java System Message Queue 4.2 Release Notes, and the
part number is 820-3701.

Additional Sun Resources
Useful Sun Java System information can be found at the following Internet locations:

■ Documentation
http://docs.sun.com/prod/java.sys

■ Professional Services
http://www.sun.com/service/sunps/sunone

■ Software Products and Service
http://www.sun.com/software

■ Software Support Services

Sun Welcomes Your Comments

Sun Java System Message Queue 4.2 Release Notes • September, 200848

http://swforum.sun.com/jive/forum.jspa?forumID=24
http://forum.java.sun.com
http://docs.sun.com
http://docs.sun.com/prod/java.sys
http://www.sun.com/service/sunps/sunone
http://www.sun.com/software

http://www.sun.com/service/sunone/software

■ Support and Knowledge Base
http://www.sun.com/service/support/software

■ Sun Support and Training Services
http://training.sun.com

■ Consulting and Professional Services
http://www.sun.com/service/sunps/sunone

■ Developer Information
http://developers.sun.com

■ Sun Developer Support Services
http://www.sun.com/developers/support

■ Software Training
http://www.sun.com/software/training

Additional Sun Resources

Chapter 1 • Sun Java System Message Queue 4.2 Release Notes 49

http://www.sun.com/service/sunone/software
http://www.sun.com/service/support/software
http://training.sun.com
http://www.sun.com/service/sunps/sunone
http://developers.sun.com
http://www.sun.com/developers/support
http://www.sun.com/software/training

50

	Sun Java System Message Queue 4.2 Release Notes
	Sun Java System Message Queue 4.2 Release Notes
	Release Notes Revision History
	Installing or Upgrading to Message Queue 4.2
	Message Queue 4.2 Supported Platforms and Components
	Operating System Platform Support
	System Virtualization Support
	Component Dependencies

	New Features in Message Queue 4.2 and Recent Releases
	New Features in Message Queue 4.2
	Multiple Destinations for a Publisher or Subscriber
	Schema Validation of XML Payload Messages
	C-API Support for Distributed Transactions
	Installer Support for Sun Connection Registration
	Support for MySQL Database

	New Features in Message Queue 4.1
	High-Availability Broker Clusters
	JAAS Support
	Persistent Data Store Format Change
	Broker Environment Configuration
	Java ES Monitoring Framework Support
	Enhanced Transaction Management
	Fixed Ports for C Client Connections

	New Features in Message Queue 4.0
	Support for JMX Administration API
	Client Runtime Logging
	Connection Event Notification API
	Broker Administration Enhancements
	Displaying Information About a JDBC-Based Data Store
	JDBC Provider Support
	Persistent Data Store Format Changes
	Additional Message Properties
	SSL Support

	Feature to be Deprecated in Future Release
	Bugs Fixed in Message Queue 4.2 and Recent Releases
	Bugs Fixed in Message Queue 4.2
	Bugs Fixed in Message Queue 4.1
	Bugs Fixed in Message Queue 4.0

	Documentation Updates in Message Queue 4.2
	Compatibility Issues
	Interface Stability
	Issues Related to the Next Major Release of Message Queue

	Changes in Message Queue 4.2 Documentation Set
	Technical Overview
	Administration Guide
	Installation and Upgrade Information
	Developer's Guide for Java Clients
	Developer’s Guide for C Clients
	Developer's Guide for JMX Clients

	New Destination Metrics
	Automatic Broker Startup on Solaris 10 OS
	To implement automatic broker startup on Solaris 10 OS

	Changes to JMX API
	ConsumerManager Monitor MBean
	Destination Configuration MBean
	Destination Manager Configuration MBean
	Destination Monitor MBean
	ProducerManager Monitor MBean

	Support for DN Username Format for Client Authentication
	JAAS Authentication Enhancement

	Known Issues and Limitations
	Installation Issues
	Product Registry and Java ES
	Installing on Windows
	Installing on Solaris
	Installing on Linux
	Installing on All Platforms
	Version Anomalies in the Installer
	Localization Issues

	Deprecated Password Option
	Administration/Configuration Issues
	Broker Issues
	Broker Clusters
	JMX Issues
	SOAP Support

	Redistributable Files
	Accessibility Features for People With Disabilities
	How to Report Problems and Provide Feedback
	Sun Java System Software Forum
	Java Technology Forum

	Sun Welcomes Your Comments
	Additional Sun Resources

