Programmer’s Guide
Sun™ ONE Identity Server

Version 6.0

December 2002
816-6687-10



Copyright © 2002 Sun Microsystems, Inc. All rights reserved.

Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries.

Federal Acquisitions: Commercial Software -- Government Users Subject to Standard License Terms and Conditions. The product
described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of the
product or this document may be reproduced in any form by any means without prior written authorization of the Sun
Microsystems, Inc. and its licensers, if any.

THIS DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Some preexisting portions Copyright (c) 1999 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)."

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally
appear.

4. The names "' and "Apache Software Foundation" must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002 Sun Microsystems, Inc. Tous droits réservés.

Sun, Sun Microsystems, le Sun logo, et iPlanet sont des marques dposes ou des marques dposes registre de Sun Microsystems, Inc.
aux Etats-Unis et d'autres pays.

Le produit dé crit dans ce document est distribué selon des conditions de licence qui en restreignent I'utilisation, la copie, la
distribution et la décompilation.

Aucune partie de ce produit ni de ce document ne peut étre reproduite sous quelque forme ou par quelque moyen que ce soit sans
l'autorisation écrite préalable de Sun Microsystems, Inc., le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE "EN L'ETAT", ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRESENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE A LA VENTE, OU A
UN BUT PARTICULIER OU DE NON CONTREFACON SONT EXCLUES, EXCEPTE DANS LA MESURE OU DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES A LA LOI.



Contents

ABOUL This GUIDE ... e 11
About Identity SErVEr 6.0 . . .. .. o 11
What You Are Expected t0 KNOW . .. ... e 11
Identity Server Documentation Set . ........ ... ... 12
Documentation Conventions Used in ThisGuide ............ ... ... i 13
Typographic CONVENLIONS . .. .. .. e e e e et e e e e 13
TermMINOIOQY . .. oot 13
Related INformation . ... ... 14
Documentation COMMENTS . . . ... ottt et e e 15
Chapter 1 INtrodUCHiON ... ... e e 17
ldentity SErVEr OVEIVIEW . . ... e e e 17
Data Management COMPONENTS . ... ...ttt e et 17
Application Management SEIVICES . . . .. ..ottt e 19
MaNAGING ACCESS . . . o .t ettt et e e e e e e e e e e e e e e 20
Extending [dentity Server .. ... ... 21
Service Definition With XML . . ... o 21
Identity Server Console Customization .............. . i 22
JAVA PaCKaAgES . . ..o 22
Identity Server File System ... ... 24
Chapter 2 The ldentity Server Console . ..... ... . e 27
OV IV W . oo 27
ConSs0ole INTEITaCE . ... 28
ATCNITECTUNE . .. e 28
Customizing The Cons0le . .. ... e 29
Default Console DIreCtOry .. ... ... e e e 30
Creating Custom Organization Files .. ... .. e 30
Precompiling JSP Files ... ..o 32
Customizing The User Profile View . . . ... .. 32



4

Miscellaneous CUSTOMIZAatiONS . ... ... . .t e e e e e 33

Changing Default Attribute Display . .......... i e 33
Localizing The CONSOIE . . . . ... e e e 34
Customizing Background Colors . ........ ... 34
Labelling The Module Tab ... ... 35
Displaying Container ODJeCtS . ... ... ..t 35
Console Sample . ... 36
Chapter 3 Authentication Service . ... ... .. . 37
OV IV W . oo 37
Accessing The Authentication SErvice ... ... ... ... e 38
Authenticating The ReQUEST . . . . ... i e e 39
MiSCEllaNEOUS FEATUIES . . . . .ot e e e 41
The Authentication User INterface . ............ . i e 42
Customizing The Authentication Interface .......... ... . i et 43
JSP TemMPIates . . ..t 45
Authentication Module Configuration Files .......... ... .. . i 47
Default Authentication Modules ... . ... 47
Core AUthentication SEIVICE ... ... ... . e 47
Proprietary Authentication Modules .. ......... ... . 47
Assigning The Authentication Method ........ .. ... . . 48
Custom Authentication Modules . . ... ... . 54
Creating A New Authentication Module . ... ... 55
Configuring Localization Properties . ... ..... ...t e 56
Configuring Module Credential Requirements . ............. ... it 57
Modifying amAuth. XMl . .. 61
Application AULhentication . .. ... ... 61
Authentication API For Java Applications . ......... ... 62
Authenticating Non-Java Applications .. ........ ... 63
The remote-auth.dtd Structure .......... ... . 63
AULNENtICatioN SPI . ... 71
URL Parameters . .. ... 71
C Programs and Authentication .. .......... ... i 73
Authentication Request / Response FIOW .. ... ... 74
Authentication SamIPIes . . ... . o 77
Remote ClEnt APl .. .. 77
Login ModUule . ... 77
Chapter 4 Single Sign-On . ... .. 79
OVEBIVIBW . . 79
Contacting A PoliCY AQENt . ... o e 80
Creating A SessioN TOKEN . ... . i e e 80

Identity Server Programmer’s Guide « December 2002



Providing User Credentials . ... .. ... ... i e 80

Cookies and Session TOKENS . . ... .. i e e e e 81
Cross-Domain SUPPOrt FOF SSO . . ... 81
Enabling Cross-Domain Single Sign-On .. .. ... .. 82
Configuring For Cross-Domain SSO . ... ... 83
S 0 AP 85
Non-Web-Based Applications . ... ... .. e 85
AP OVEIVIBW . . .o e 86
Sample APL COde . .. ..o 90
Sample SSO Java Files . ... ... 94
SSO Servilet Sample .. ... 94
Remote SSO Sample .. ... 95
Command Line SSO Sample . ... .. o 95
Chapter 5 Identity Management . ... ... ... ... 97
L Y= = 97
ADSEIract ObJECES . . ... 98
ObJeCt TeMPIALES . . . .o 99
Structure Of UMS. XM . ..o 100
Modifying UmMS. XMl . ..o 101
Identity Server SDK . ..o 102
SDK INEEI ACES . . .ot 103
The SDK AN Cache . ... . . 106
Installing the SDK Remotely .. ... .. e 107
amENtrySpecific.Xml . ... e 107
amEntrySpecific.xml Schema . ... ... 107
Management Sample FUNCLIONS . .. ... ... o e 109
Create, Delete Or Modify USErS ... ... e 109
Create Organization . ... ... ... ...t e e 109
Retrieve Templates ... ... 110
Create Users With Modified LDAP Schema .......... .. . i 111
Chapter 6 Service Management . . ... ... ... . e 113
OVEBIVIBW . o e e e 113
XML Service Files . ... 114
Document Type Definition Structure Files ........... ... . i i 114
Service Management SDK .. ... .. 115
Service DefiNitioN ... ... . 115
DefiNiNg A SEIVICE . .. o e 115
Creating A Service File . ... 117
Extending The Directory Server SChema . ... e 120
Importing the XML Service File .. ... ... e e 122



6

Configuring Localization Properties . ........ ... i 123

Updating Files For Abstract ODbJectS . . .. .. ... o e e 124
Registering The Service . ... ... o 124
DT D RIS .ot 125
The SMS.Atd StFUCTUNE . . . ... e e e e e 126
The amAdMIN.Atd SIIUCTUIE .. .. .. e e e e 135
XML RIS o 150
Default XML Service Files . ... ... 150
Batch Processing XML Files . . . ... e e 153
CUStOMIZING USEE Pages . . . oot et e e e 156
Service Management SDK . ... .. 156
Chapter 7 PoliCy Service . ... ... e 159
What IS POLICY ? .o 159
POlICY SEIVICE . .. 160
ATCNITEC U . . e e 161
POl Y TYPES it 162
SUD LS . . 163
Policy Definition Type DOCUMENT . .. ... ... et et 164
Policy Element .. ... 164
RUlE Element .. o 164
ServiceName EIement . ... ... 165
ResourceName Element . ... ... . 165
AttributeValuePair Element . . ... ... 165
SUbjJeCtS Element . .. o 166
SUbjeCt Element . . .. 166
Referrals EIement . ... ... o 166
Referral Element ... ... 166
ConditionNs ElemMent . .. ... 167
Condition Element . . ... .o 167
Java SDK FOr POLICY . ..o 167
Policy Evaluation Java APIS . . ... .. 168
Policy Management Java APIS . ... ... 169
Policy PluginJava APIS ... ... 170
C Library FOr POliCY . .. ... 171
C APIsfor Policy Evaluation . ... ... ... 172
AM PrOPEIT S b . o 185
Information And Utility APIS . ... . 192
o 194
AM _POIICY o 196
Specialization Methods . . .. ... . 201
Initialization Variables . ... ... ... 203
Specialization Methods For Web AQents . . ... ... e 205

Identity Server Programmer’s Guide « December 2002



Initialization Variables . ... .. . . e 218

Chapter 8 Using The SAML ServiCe . .. ...t e e e 219
OV IV W . ettt e e e e e e 219
ASSEITION TY DS ottt ettt e e 221
Profile TYPES . .. 222
SAML SOAP RECEIVEL . . .ottt et e e e e e 224
ACCeSSING The SAML SEIVICE . . . oot e e e e 226
AMSAM XM . 226
SAM L SDK . o 227
com.sun.identity.saml . ... .. 227
com.sun.identity.samlassertion . .......... ... 228
com.sun.identity.samlLcommon . ... ... 228
com.sun.identity.samlplugins . .. ... ... 229
com.sun.identity.samlprotocol .. ... .. 229
com.sun.identity.samlxmlsig . ....... .. e 231
SAML Service Samples . ... 231
Chapter 9 Federation Management ... ..... ... ... ..ttt 233
OV IV W ot 233
The Liberty Allance ProjeCt . ... o e e 234
Liberty Specification CoNCEPLS . ... .ottt 235
Federation Management PrOCESS ... ...ttt e 236
Federation Management Protocols . ... 238
Federation Management APl .. ... 240
Customizing The Module . ... .. e 241
Federation Management Samples . ...t 242
Chapter 10 LOQQing SEIrVICE . . ...ttt e 245
OV IV W oo 245
Logging ArChitecture . ... . e 246
Logging Service XML File ... ... 247
L0 SOCUIITY .ot 247
LOg MESSAgE FOIMALS . . . .o oottt e e e e e e e e e 247
Flat File FOrmat .. ... e 247
Relational Database FOrmat . . ... ..o e 248
LOgging APl o 249
LOgger Class . ..ottt 249
LOgRECOrd Class . ... oot e 249
LOgging EXCEPLIONS . ..ottt 250
Sample Logging Code . ... .ot 251
LOgging SPl . 251



8

Plugin Log Verifier ... . 251

Plugin Authorization Mechanism . ... . . e 252
LOg FIlES . 252
SSO-related LOgS . .. oot 252
Console-related LOgS . . .. oo oot 253
Authentication-related LOgS .. .. .. ... ..t 253
Federation-related LOQS . ... ...t 253
DebUg Files .. 253
SECUNE LOQOING . . oottt e 254
Chapter 11 Client Detection . ... ... ... . e e 255
OV IV W . o e e 255
ClIENt DAta . . ..ot 256
Client Detection APl . ... 257
Client Detection Module Interface ........... .. i 258
Chapter 12 Identity Server Utilities .. ... . . e e 263
BaCKUPD AN RESTOIE . .. oottt e e 263
BaCKUD SCIIPt . oo 264
RESIONE SOt . . oottt 267
ULty AP o 268
AP SUMIMIAIY . oo e 268
Appendix A AMConfig.properties File . ... ... .. . 271
OV IV W . oo 271
DeploymeNnt DireCtiVES . . ... o e 272
ldentity SErver DireCtiVes . . ... i e 272
DIrEC O Y SNV . oot 273
Configuration DireCtiVES . .. oot e 274
DU SEIVICE . .o 274
LS SEIVICE oot e 275
QA L o 276
MiISCEIHANEOUS SEIVICES . . .\ ottt e e e e e e e e 276
Read-Only DireCtiVeS . ..ot 279
Base DireC 0Ny ..ottt 280
Shared SECIEt . oo e 280
DeploymeNnt DeSCriPtOrS . . oo\t ee 280
SESSION PrOPEITIES .. oottt 280
Cross Domain Single Sign-On SUPPOIt .. ..ot e 281
SeCUreRaNAOM ProPertieS . ..ot 282
SOCKEtFACTOrY PrOPEItIES .\ttt 282
BNy PtiON o 282

Identity Server Programmer’s Guide « December 2002



Remote Installation . ... . . 283

IP Address ChecKing . . ... ..o e 283
Remote Policy API DIreCtiVeS .. ... ... e 283
FODN M ..o e e e e e e 285
Appendix B Directory Server CoOnCePtS ...ttt e e 287
OV VI W oo 287
ROIES . . 288
Managed ROIES . .. ... 288
How Identity Server UseS ROIES .. .. ...t e 290
Access Control INStructions (ACIS) .. ..ot 292
DEfiNINg ACIS . .o 293
Format of Predefined ACIS . ... .. 293
Class Of SBIVICE . .. oottt 296
CoS Definition BNty . ..o 297
CoS Template ENtry ... 297
Conflicts aNd COS . .. ..o i 298
Application SChema . ... . . 298
X 299



10 Identity Server Programmer’s Guide « December 2002



About This Guide

The Sun™ ONE Identity Server Programmer’s Guide offers information on how to
deploy and customize the Sun ONE Identity Server. This preface contains the
following sections:

= About Identity Server 6.0

< What You Are Expected to Know

= Identity Server Documentation Set

= Documentation Conventions Used in This Guide

e Related Information

About Identity Server 6.0

Sun ONE Identity Server, prior to the 6.0 release, was known as iPlanet Directory
Server Access Management Edition (DSAME). The product was renamed shortly
before the launch of version 5.1. Identity Server is designed to help organizations
manage identities and enforce secure access to their network services and
web-based resources. It contains a number of services towards this end as well as
the Sun ONE Directory Server as a data store. For the latest information about new
features and enhancements in this release of Identity Server, please see the online
release notesat htt p: // wws. sun. com sof t war e/ or the Sun ONE Identity Server
Product Brief.

What You Are Expected to Know

This Programmer’s Guide is intended for use by IT administrators and custom
software developers who manage identities and access to their web resources using
Sun ONE servers and software. It is recommended that administrators understand
directory server technologies, including Lightweight Directory Access Protocol

11



Identity Server Documentation Set

(LDAP), and have some experience with Java™, Java Server Pages, Hyper Text
Markup Language (HTML) and eXtensible Markup Language (XML). Particularly,
they should also be familiar with Sun ONE Directory Server and the
documentation provided with that product.

ldentity Server Documentation Set

The Identity Server documentation set contains the following titles:

12

Product Brief provides an overview of the Identity Server application and its
features and functions.

Installation and Configuration Guide provides details on how to install and
deploy the Identity Server on Solaris™, Linux and Windows® 2000 systems.

Administration Guide describes how to use the Identity Server console as well as
manage user and service data via the command line.

Programmer’s Guide (this guide) documents how to customize an Identity
Server system specific to your organization. It also includes instructions on
how to augment the application with new services using the public APlIs.

Policy Agent Guide documents how to install and configure an Identity Server
policy agent on a remote server. It also includes troubleshooting and
information specific to each agent.

Getting Started Guide documents how to use various features of the Identity
Server product to set up a simple organization with identities, policies and
roles.

The Release Notes file gathers an assortment of last-minute information,
including a description of what is new in this release, known problems and
limitations, installation notes, and how to report problems.

NOTE Be sure to check the Identity Server documentation web site at

http://docs. sun. com db/ prod/ sli dsrv#hi ¢ for updates to the
release notes and for revisions to the documentation. Updated books will
be marked with a revision date.

Identity Server Programmer’s Guide ¢ December 2002



Documentation Conventions Used in This Guide

Documentation Conventions Used in This Guide

In the Identity Server documentation, certain typographic conventions and
terminology are used. These conventions are described in the following sections.

Typographic Conventions

This book uses the following typographic conventions:

Italic type is used within text for book titles, new terminology, and emphasis.

Monospace font is used for sample code and code listings, APIs and
programming language elements (such as function names and class names). It
is also used for filenames, pathnames, directory names, HTML tags, URLs, and
any text that must be typed on the screen.

<sample text> is used to represent a variable placeholder. When this
convention is used in a directory path or URL, the text and surrounding carats
should be replaced with deployment-specific information. For example, the
following command uses <f i | enarme> as a variable placeholder for an
argument to the gunzip command:

gunzip -d <filenane>.tar.gz

NOTE Notes, Cautions and Tips highlight important conditions or limitations. Be

sure to read this information.

Terminology

Below is a list of general terms used in the Identity Server documentation set:

<i dentity_server_root>isavariable placeholder for the path to the home
directory where Sun ONE Identity Server is installed.

<di rectory_server_root > is a variable placeholder for the path to the home
directory where Sun ONE Directory Server is installed.

About This Guide 13



Related Information

Related Information

In addition to the documentation provided with Identity Server, there are several
other sets of documentation that might be helpful. This section lists these and
additional sources of information.

Sun ONE Directory Server Documentation

iPlanet Directory Server 5.1 documentation can be found at
http://docs. sun.com db/col I/ S1_i pDi rectoryServer_51.

Sun ONE Web Server Documentation

iPlanet/Sun ONE Web Server documentation can be found at
http://docs. sun. conidb/col I/ S1_i pwebsrvree60_en.

Sun ONE Certificate Server Documentation

iPlanet Certificate Server documentation can be found at
http://docs. sun.confdb/coll/S1_sl1CertificateServer_A47.

iPlanet Proxy Server Documentation

iPlanet Proxy Server documentation can be found at
http://docs. sun. conidb/col I/ S1_i pwebproxysrvr 36.

Other iPlanet Product Documentation

Documentation for all other iPlanet and Netscape servers and technologies can be
found at ht t p: / / docs. sun. coni db/ pr od/ sunone.

Download Center

Links to download any of Sun’s Sun ONE/iPlanet software are at
http://wws. sun. coni sof t war e/ downl oad/ .

Sun ONE Technical Support

Technical Support can be contacted through
http://ww. sun. com servi ce/ support/software/iplanet/index. htn.

Professional Services Information

Professional Service can be contacted through
http://ww. sun. com servi ce/ sunps/i pl anet/.

Sun Enterprise Services for Solaris Patches And Support

Solaris patches and support can be obtained through
http://ww. sun. com service/

14  Identity Server Programmer’s Guide « December 2002



Documentation Comments

Developer Information

Information on Identity Server, LDAP, the Sun ONE Directory Server, and
associated technologies can also be found at
http://devel oper.ipl anet. conf tech/directory/

Documentation Comments

Sun Microsystems and the documentation writers of Identity Server are interested
in improving the documentation and welcome any comments and suggestions.
Please email these comments to docf eedback@un. com

About This Guide 15



Documentation Comments

16 Identity Server Programmer’s Guide « December 2002



Chapter 1

Introduction

The Sun™ One Identity Server Programmer’s Guide describes the programmatic and
back-end aspects of Identity Server. It includes instructions on how to augment the
application with new services using the eXtensible Markup Language (XML) files

for configuration, the public Java™ APIs for integration and the Java Server Pages
(JSP) for customization. This guide also includes instructions on how to customize
an Identity Server application for use by a specific organization. This introductory
chapter contains the following sections:

= ldentity Server Overview
= Extending Identity Server

= ldentity Server File System

ldentity Server Overview

An identity is a Lightweight Directory Access Protocol (LDAP) representation of a
user or an object. The Sun ONE Identity Server integrates identity management
with the capability to create and enforce authentication processes and access
policies. These capabilities enable organizations to deploy a comprehensive system
that helps to secure and protect their enterprise assets as well as deliver their
web-based applications. Towards this end, Identity Server contains components
and application management utilities or services.

Data Management Components

Identity Server provides the following components to simplify the administration
of identities and the management of data:

17



Identity Server Overview

Service Management—provides a solution for customizing and registering
application management parameters. Configuration parameters or attributes
are grouped into services which can then be managed using the Identity Server.
The solution includes an Document Type Definition (DTD) that defines the
structure for creating an XML service file as well as Java interfaces that are
used to integrate and manage the service.

Identity Management—provides a solution for managing identities. It includes
Java interfaces for creating, modifying and removing identity-related objects
(users, roles, groups, people containers, organizations, organizational units
and sub-organizations) as well as an XML template that defines an object’s
LDAP attributes.

Policy Management—provides a solution for defining and retrieving access
privileges to an enterprise’s secure resources. It includes Java interfaces that
applications can use to obtain an identity’s policy settings. The applications
then use these settings to evaluate policy decisions when a user requests action
on a secure resource.

Federation Management—provides a solution for defining authentication
domains, service providers and identity providers in order to give users the
functionality of federation. This module integrates the Liberty Alliance
Project’s Version 1.0 specifications.

Session Management—provides a solution for viewing user session
information and managing same. It keeps track of various session times as well
as allowing the administrator to terminate a session.

Sun ONE Directory Server—provides the storage facility in an Identity Server
deployment. It holds all configured identity data as well as access policies. The
majority of the data is stored in the Directory Server using LDAP; certain of it is
stored as XML.

Sun ONE Web Server—provides the container in which the Identity Server is
run. Because Identity Server uses Java and JSP technologies, the Web Server is
needed to implement the Servlet API.

18 Identity Server Programmer’s Guide « December 2002



Identity Server Overview

Application Management Services

When Identity Server is installed, a number of application management utilities or
services are installed. A service is a grouping of an application’s configuration
parameters (also called attributes). The attributes can be randomly grouped
together for easy management or specifically grouped together for one purpose.
Additional information on services can be found in Chapter 6, “Service
Management” and the Sun ONE ldentity Server Administration Guide. The current
installed services are:

= Administration—provides properties for the configuration of the Identity
Server application and attributes for the customization of the application
specific to each organization.

= Authentication—provides an interface for gathering user credentials and
issuing single sign-on (SSO) session tokens that integrates HTML, XML and
htt p/ htt ps. It contains an SDK for writing plug-ins for different
authentication servers. It also contains a SSO SDK for integrating token
validation and authentication credential storage into the plug-in.

= Client Detection—provides an interface and configurable properties for
detecting the client type of the browser attempting to access Identity Server.

= Logging—provides Java interfaces for audit trail and logging ability. Both
file-based logs and logs stored in a relational database are supported. On
Solaris, Identity Server uses var / opt / SUN\Vamas the default directory for logs
and debug files. On Windows® 2000, <i dentity_server _r oot > is the default.

< Naming—provides configurable attributes that allow client browsers to find
the correct URL for all services in a deployment that is running more than one
Identity Server. This ensures that the URL returned for the service is the one for
the host that the user session was created on.

= Platform—provides configurable attributes for the entire Identity Server
deployment.

= Policy Configuration—provides properties for the configuration of the Identity
Server application and attributes to configure the Policy Service specific to each
organization.

= Security Assertion Markup Language (SAML)—provides an interface
integrating SAML, Simple Object Access Protocol (SOAP) and ht t ps for
sending and receiving security information. This service encrypts data passed
between different security entities. APIs are provided to this end.

= Session—provides attributes to configure the session properties inherited by
all identities for each organization.

Chapter 1 Introduction 19



Identity Server Overview

20

= User—provides attributes to configure the user properties inherited by all
identities for each organization.

= Security Service—provides a certificate authority service for users and
components. For users, it issues and revokes certificates. For components, it
issues user certificates for agents or server certificates for Sun ONE servers.

In addition to its configured services, Identity Server provides a graphical user
interface that allows the application user to manage identity objects, services and
policy information via a web browser. This ldentity Server console is built using
the Sun ONE Application Framework and can be called by all users, from top level
administrator to end users. (A policy defines the specific access privileges for each
user.) The console can be customized for each configured organization by
modifying and integrating a set of JSP and related files. For data backup and
restoration, schema management and metadata integration, ldentity Server offers
command-line executables. Information on both of these topics can be found in
Chapter 2, “The Identity Server Console.”

Managing Access

Identity Server can manage access to its protected resources in either of two ways:
an administrator can authenticate and access Identity Server via a web browser or,
a Java application can access Identity Server directly, requesting user
authentication information through the use of Identity Server APIs.

Web Access

When a user requests access to a secure application or page using a web browser,
they must first be authenticated. The request is directed to the Authentication
Service which determines the type of authentication process to initiate based on the
method associated with the requestor’s profile. For instance, if the user’s profile is
associated with LDAP authentication, the Authentication Service would send an
HTML form to their web browser asking for an LDAP user name and password.
(More complex types of authentication might include requesting information for
multiple authentication types.) Having obtained the user's credentials, the
Authentication Service calls the respective provider to perform the authentication.
(The provider in the LDAP example would be the Directory Server.) Once verified,
the service calls the SSO API to generate a Single Sign-On (SSO) token which holds
the user's identity and then generate a token ID, a random string associated with
the SSO token. This complete token is sent back to the requesting browser in the
form of a cookie. The authentication component then directs the user to the
requested secure application or page. Additional information on the
Authentication Service can be found in Chapter 3, “Authentication Service.”

Identity Server Programmer’s Guide ¢ December 2002



Extending Identity Server

NOTE Web access might also include an additional security measure to evaluate a
user’s access privileges; this includes web agents. For more information, see
the Sun ONE Identity Server Policy Agent documentation.

Application Access

Java applications can access ldentity Server directly, requesting user configuration
information using the ldentity Server APIs. For example, a mail service might store
its users’ mailbox size information in Identity Server and the Identity Server SDK
can be used to retrieve this information. To process this request, the system
running the application must have the Identity Server SDK installed. There must
also be at least one instance of the Sun ONE Web Server running the Identity
Server. Additional information on the Identity Server SDK can be found in Chapter
5, “Identity Management.”

NOTE Some services can also be accessed by C applications. Please see Chapter 3,
“Authentication Service” and Chapter 7, “Policy Service” for further
information on this functionality.

Extending ldentity Server

One of the architectural goals of Identity Server is to provide an extensible
interface. This extensible interface is defined by the following functions:

1. Custom services can be defined for the deployment using XML.

2. Console templates can be modified and/or customized for each organization
using Java Server Pages (JSP).

3. Default services can be implemented using a set of Java APls.

Service Definition With XML

As mentioned in the “Identity Server Overview,” on page 17, Identity Server
contains a number of application management utilities or services. A service is a
grouping of configuration parameters defined under one name. These attributes can
be randomly grouped together for easy management or specifically grouped
together for one purpose. (Identity Server ships with a number of internal services
of the latter type. More information on these internal services can be found in the
Sun ONE Identity Server Administration Guide.) All Identity Server services are

Chapter 1 Introduction 21



Extending Identity Server

22

written using the XML. Administrators or service developers can modify the
internal XML service files or configure the custom XML service files based on their
need. More information on services and how they are integrated into the Identity
Server deployment can be found in Chapter 6, “Service Management.”

NOTE Identity Server services manage attribute values that are stored in Sun ONE
Directory Server. They do not implement the behavior of the attributes or
dynamically generate code to interpret them. It is up to an external
application to interpret or utilize these values.

ldentity Server Console Customization

The Identity Server console is used for managing and monitoring identities,
services and protected resources throughout the Identity Server deployment. It’s
framework uses XML files, JSP templates and Cascading Style Sheets (CSS) to
control the look and feel of the screens that a user accesses. These files can be
duplicated and modified to make changes to the design for each registered
organization; for instance, an organization’s logo can be added in place of the Sun
logo. The entire template can also be replaced with an organization’s custom
HTML page. Additional information on customizing the Identity Server console
can be found in Chapter 2, “The Identity Server Console.”

Java Packages

The ldentity Server packages provide public interfaces to implement the behavior
of Identity Server’s default or customized services. The packages are:

Identity Server SDK

Identity Server provides the framework to create and manage users, roles, groups,
people containers, organizations, organization units, and sub-organizations. It also
includes the functionality to create and modify service templates. This APl is the
core of the identity, service and policy management modules and provides Java
classes that can be used to customize them. The API package name is

comipl anet. am sdk.

Service Management SDK

The Identity Server provides Java APIs for service management. These interfaces
can be used by developers to register services and applications, and manage their
configuration data. The API package name is com sun. i dentity.sm

Identity Server Programmer’s Guide ¢ December 2002



Extending Identity Server

Utility API
This API provides a number of Java classes that can be used to manage system

resources. This includes, among others, thread management and debug data
formatting. The API package name iscom i pl anet.amutil.

Logging API
The Logging service records, among other things, access approvals, access denials

and user activity. The Logging API can be used to enable other Java applications to
call it. The API package names begin with com sun. i dentity.| og.

Client Detection API

Identity Server can detect the type of client that is attempting to access its resources
and respond with the appropriately formatted pages based on its type. The API
package used for this purpose is com i pl anet . servi ces. cdm

SSO API

Identity Server provides Java interfaces for validating and managing the single
sign-on (SSO) tokens, and for maintaining the user’s authentication credentials. All
applications wishing to participate in the SSO solution can use this API. The API
package name iscom i pl anet . sso.

Java SDK For Policy

The Policy API can be used to evaluate and manage Identity Server policies as well
as provide additional functionality for the Policy Service. The APl package hames
begin with com sun. i dentity. policy.

SAML SDK

Identity Server uses the SAML API to exchange acts of authentication,
authorization decisions and attribute information. The APl package names begin
with com sun. i dentity.sam .

Federation Management API

Identity Server uses the Federation Management API to add functionality based on
the Liberty Alliance Project specifications. The API package name is
comsun. liberty.

Chapter 1 Introduction 23



Identity Server File System

NOTE

The complete set of Javadocs can be accessed from any web browser by
copying the <i dentity_server _root >/ SUN\Vani docs/ directory into
<identity_server_root>/ SUNVanT public_htm / and using
http://<ldentity Server_host.domai n>: <port >/

docs/index. ht m

|ldentity Server File System

Identity Server installs its packages and files in a directory named SUN\Vam The file
system layout for a Solaris installation is as follows:

<identity_server_root> SUN\Vam

bi n/ contains Identity Server executables such as anser ver and
amadni n in addition to LDAP command line applications.

capi / contains the C API for integrating C applications with the
Identity Server.

conf i g/ contains ldentity Server configuration files as well as the
XML files which define Identity Server services.

docs/ contains Identity Server documentation.

dt d/ contains the defining XML DTDs used by Identity Server
applications and services.

j ava/ contains the Java Development Kit.
| dapl i b/ contains files needed to run the | dapnodi f y application.
| di f contains the Identity Server LDAP schema.

I i b/ contains Identity Server jar files as well as platform specific C
libraries.

| ocal e/ contains the internationalization resource files.

mi gr at i on/ contains tools for Sun ONE Directory Server data
migration from earlier versions to version 5.1.

publ i c_ht M / contains pre-authentication HTML files used by
Identity Server. This directory is also configured as the root of the Sun
ONE Web Server therefore, copying the docs directory into it will
allow accessibility to the product documentation through a web
browser on a non-Solaris machine.

24 I|dentity Server Programmer’s Guide « December 2002



Identity Server File System

sanpl es/ contains sample Java programs on how to use the Identity
Server APIs.

server s/ contains the files and documentation for the deployed Sun
ONE Web Server.

web- apps/ contains the WAR-based deployments and their associated
files: Services (authentication, policy management, identity
management, SSO, service management, etc.) and Applications
(Identity Server console).

Chapter 1 Introduction 25



Identity Server File System

26  Identity Server Programmer’s Guide « December 2002



Chapter 2

The Identity Server Console

The Identity Server console is a web interface for managing and monitoring
identities, services and resources throughout the Identity Server deployment. It is
built with Sun™ One Application Framework, a Java™ 2 Enterprise Edition (J2EE)
web application framework used to help developers build functional web
applications. XML files, Java Server Pages (JSP) and Cascading Style Sheets (CSS)
are used to define the look of the web pages. This chapter explains the console, its
pluggable architecture and how to customize it. It contains the following sections:

e Overview

= Customizing The Console

= Customizing The User Profile View
= Miscellaneous Customizations

= Console Sample

Overview

The Identity Server console is a browser-based interface for creating, managing
and monitoring identities, web services and enforcement policies throughout an
Identity Server deployment. It allows administrators with different levels of access
restrictions to, among other things, create organizations, add (or remove) users to
(or from) those organizations, and establish enforcement policies that protect and
limit access to the organization’s resources. Towards this end, the console ships
with four modules: Identity Management (including user and policy
management), Service Configuration, Current Sessions and Federation
Management. Customization of these modules and the Identity Server console can
be achieved, in varying degrees, by modifying the JSP and XML files of the
graphical user interface (GUI) as well as extending the JATO ViewBeans.

27



Overview

NOTE The client web browser must support JavaScript, v. 1.2 and Cascading Style
Sheets.

Console Interface

The console is divided into three frames as pictured in Figure 2-1: Header,
Navigation and Data. The Header frame displays branding information as well as
the Full Name of the currently logged-in user. (The Full Name refers to the value of
the cn attribute in the user’s LDAP profile.) The Common Name, which may or
may not be the same as the user ID, also links to the user’s profile. The Header
frame also contains a set of tabs to allow the user to switch between the
management modules, hyperlinks to the Identity Server Help, a Search function for
searching the directory information tree (DIT) and a Logout link. Actions
performed in the Header frame affect the other two frames. The Navigation frame
displays the object hierarchy of the module chosen. The Data frame displays the
attributes of the object selected from the hierarchy in the Navigation frame.

Plug-In Modules

An external application may also be plugged-in to the Identity Server console as a
module, gaining complete control of the Navigation and Data frames for its specific
functionality. In this case, a tab with the name of the custom application needs to
be added to the Header frame. An XML definition of the module name, class, and
i 18n filename is used to track registered views, and route request traffic to them.
The application developer would create the JSPs for both left and right frames, and
all view beans, and models associated with them.

Architecture

When the Identity Server console receives an http(s) request from a web browser, it
first determines whether the requestor has been authenticated. If there is no valid
single sign-on (SSO) token, the request is redirected to the Authentication Service.
When the user has successfully authenticated to the Identity Server, the
Authentication Service redirects the original request back to the console. The
console will be dynamically built for the authenticated user based on the access
assigned to them.

28 Identity Server Programmer’s Guide « December 2002



Customizing The Console

Figure 2-1 The Identity Server Console

INER TR BT oo Lanvhgs wnbu | LAsvorn b | § il i) Slansjminis|

e B Ll L] 5

Crgardraniana (9 mse
e, I

| 1| Meyrwee

Customizing The Console

The ldentity Server console uses JSP, CSS and XML files to define the look and feel
of the HTML pages used to generate its frames. An administrator can customize
the console by changing the tags in these files accordingly. All of these files can be
foundinthe<identity server root > SUNWam web- apps/ appl i cati ons/
consol e directory. The files in this directory provide a default interface. To
customize the console for a specific organization, this console directory could be
copied and renamed to reflect the name of the organization (or any value). It would
be placed at the same directory level as the default and the files within it would
then be modified as needed. For example, the customized console files for the
organization dc=exanpl e, dc=comcould be found in the

<i dentity_server_root > SU\WAM web- apps/ appl i cat i ons/ exanpl e directory.
(The console can also be modified by simply replacing the default images in
<identity_server_root> SUN\Vam web- apps/ appl i cati ons/ consol e/ i mages,
with new, similarly named images.)

Chapter 2  The Identity Server Console 29



Customizing The Console

30

Default Console Directory

The look and feel of the console is defined by both CSS and JSP. These files are
contained in the default console directory, located in <i dentity_server _r oot >/
SUNVam web- apps/ appl i cati ons/. When copied and renamed for a specific
organization, the files can be modified to reflect the organization’s standards.
Following is the default structure of the directory:

= aut h contains JSPs for the Authentication Service.

= base contains JSPs that are not service-specific.

= css contains adni nstyl e. css which defines styles for the console.
= dss contains JSPs related to the Security Service.

= federation contains JSPs related to the Federation Management module.
< htnl contains miscellaneous HTML files.

= i mages contains images referenced by the JSP.

= j s contains JavaScript files.

= policy contains JSPs related to the Policy Service.

= servi ce contains JSPs related to the Service Management module.
= sessi on contains JSPs related to the Session Management module.

= user contains JSPs related to identity management. This includes views for
creating and displaying objects.

CAUTION JSP are HTML files that include references to tag library descriptor files
(- t I d) and Java classes which, when generated, form a web page. New tags
can not be introduced into the JSP although tags can be removed.

Creating Custom Organization Files

To customize the Identity Server console for a specific organization, the default
console directory should first be copied and renamed (ideally to reflect the name of
the organization). The copy is placed on the same level as the default directory and
the files modified as needed.

1. Change to the directory where the default templates are stored.

cd <i dentity_server_root >/ SUN\VAN web- apps/ appl i cati ons

Identity Server Programmer’s Guide ¢ December 2002



Customizing The Console

2. Create a new directory at that level.
The directory name could be the name of the organization.

3. Copy all the properties and JSP files from the consol e directory into the new
directory.

Inthe <i dentity_server_root >/ SU\WAM web- apps/ appl i cati ons directory
there is already a consol e folder that contains the properties and JSP files that
should be copied into the organization’s new directory. Ensure that any image
files are also copied into this directory.

4. Customize the files in the new directory.
Modify any of the files in the new directory to reflect the organization.
5. Modify the AMBase. j sp file.

This file can be found in <i dentity_server _r oot >/ SUN\Vam web- apps/
appl i cati ons/ consol e/ base. The line String console = "../consol e";
needs to be changed to Stri ng console = "../<new directory_name>";.
The String consol el mages tag also needs to be changed to reflect a new
image directory, if applicable. The contents of the file are copied in Code
Example 2-1.

Code Example 2-1 The AMBase.jsp File

<l--

Copyright © 2002 Sun M crosystens, Inc. Al rights reserved.
Use is subject to license terns.

-->
<% String console = "../consol e";

String consoleUrl = console + "/";

String consol el nages = consol eUrl + "images";
%

6. Modify the JSP Directory Name attribute in the particular organization’s
Administration Service.

This attribute will point the Authentication Service to the directory which
contains the organization’s customized console interface.

Chapter 2  The Identity Server Console 31



Customizing The User Profile View

Precompiling JSP Files

The JSP files used for the console interface need to be compiled. By default, the files
are compiled automatically when the first user accesses the console. Because of
this, the first user must wait before they are directed to the interface. The system
administrator can precompile the JSPs by running the following command:

<identity_server_root> SUNVam servers/ bin/ https/bin/jspc -webapp
<identity_server_root> SUNVam web- apps/ appl i cati ons

Customizing The User Profile View

32

The Identity Server console creates a default User profile view based on
information defined in amJser . xni . (Attributes defined as User attributes in
specific XML service files can also be displayed.) A customized User profile view
with functionality more appropriate to the organization’s environment can be
defined by creating a new ViewBean and/or a new JSP.

NOTE A ViewBean is a JavaBean written specifically for rendering display. In
Identity Server, each identity has its own Profile ViewBean. For example,
the user profile has the UMJser Pr of i | eVi ewBean.

To illustrate, an organization might want User profile attributes to be formatted
differently than the default vertical listing provided. Another customization option
would be to break up complex attributes into smaller ones. (Currently, the server
names are listed as <pr ot ocol >:// <l dentity Server_host. domai n>: <port >.
Instead, the display can be customized with three fields:

<protocol _chooser _field>://<server_text_field> <port_text_field>.

For a third option, JavaScript can be added to the ViewBean to dynamically update
attribute values based on other defined input. The custom JSP should be placed in
the <i dentity_server _root >/ SUN\Vam web- apps/ appl i cati ons/ consol e/ user
directory and the ViewBean placed in the classpath

com i pl anet. am consol e. user. The value of the attribute User Profile Display
Class in the Administration Service (i pl anet - am adni n- consol e- user -

profil e-cl ass inthe amAdmi nConsol e. xn service file) would then be changed to
the name of the newly created ViewBean. The default value of this attribute is
comipl anet.am consol e. user. UMJser Prof i | eVi enBean.

Identity Server Programmer’s Guide ¢ December 2002



Miscellaneous Customizations

Miscellaneous Customizations

Included in this section are instructions for several customizations that can be

configured for the Identity Server console.

Changing Default Attribute Display

The console auto-generates pages based on the definition of a service’s attributes in
an XML service definition file. As documented in “The sms.dtd Structure,” on

page 126, each service attribute is defined with XML attributest ype and synt ax.

Type specifies the kind of value the attribute will take; syntax defines the format of

the value. These syntax can be changed to alter the console display. Table 2-1is a

listing of the different values that can be used with these XML attributes.

Table 2-1  Attribute Display Elements
Type Syntax Ul Element
Single boolean checkbox
radio button
string text field
link
button
password text field
paragraph scrolling text field
list string value list choices
value list choices
single_choice string pull-down menu choices
radio button choices
multiple_choice string choice list

Chapter 2  The Identity Server Console

33



Miscellaneous Customizations

34

For example, an attribute of the si ngl e_choi ce type displays its values as a drop
down list which allows only one value to be selected. This list can also be presented
as a set of radio buttons which allows only one value to be selected. Code
Example 2-2 specifies the ui t ype for the attribute namedt est-attri but e as radio
button choices. Deleting ui t ype from the attribute schema and the default
torpedoing menu is displayed.

Code Example 2-2 uitype XML Attribute Sample

<AttributeScherma nanme="test-attribute"

t ype="si ngl e_choi ce"

synt ax="string"

any="di spl ay"

ui type="radi o"

i 18nKey="d105" >

<Choi ceVal ues>
<Choi ceVal ue i 18nKey="u200">Dai | y</ Choi ceVal ue>
<Choi ceVal ue i 18nKey="u201" >Wekl y</ Choi ceVal ue>
<Choi ceVal ue i 18nKey="u202" >Mont hl y</ Choi ceVal ue>

</ Choi ceVal ues>

<Def aul t Val ues>

<Val ue>Acti ve</ Val ue>
</ Def aul t Val ues>
</ Attribut eSchema>

Localizing The Console

All textual resource strings used in the console can be found in the
<identity_server_root>/ SUN\Van | ocal e/ amAdni nModul eMsgs. properties
file. The default language is English (en_Us). Modifying this file with messages in a
foreign language will localize the console.

Customizing Background Colors

All background colors are configurable using the Identity Server style sheet

adnmi nstyl e. css located in the <i dentity_server _root >/ SUNVanm web- apps/
appl i cati ons/ consol e/ css directory. For instance, to change the background
color for the navigation frame, modify the BODY. navFr arme tag. It takes either a text
value for standard colors (blue, green, red, yellow, etc.) or a hexadecimal value
(#ffO000, #aadd?22, etc.). Replacing the default with another value will change the
background color of the navigation frame after the console is closed and reopened.
Code Example 2-3 illustrates this concept.

Identity Server Programmer’s Guide ¢ December 2002



Miscellaneous Customizations

Code Example 2-3 BODY. navFr ane Portion of admi nstyl e. css

BODY. navFr ane {
col or: bl ack;
background: #ffffff;
}

Labelling The Module Tab

The attribute View Menu Entries in the Administration Service (i pl anet - am

admi n- consol e-vi ew nenu in the amAdni nConsol e. xm service file) points to the
ViewBeans that carry the label information used on the four module tabs plugged
into the Identity Server console. The label information itself is found in the console
properties file amAdmi nMbdul eMsgs. properti es, located in

<i dentity_server_root > SUNWanT | ocal e/ . To modify the label for each tab,
find the key and value pair in amAdni nMbdul eMsgs. properti es, change the value
and restart the Identity Server. The labels are identified in this file as:

Code Example 2-4 Module Tab Key And Value Pairs

nmodul e101_identity=ldentity Management
nmodul e102_servi ce=Servi ce Configuration
nmodul e103_sessi on=Current Sessi ons

nmodul e104_f eder ati on=Feder ati on Managenent

Displaying Container Objects

To get container objects to display in the Identity Server console, the following
attributes need to be enabled in the Administration Service.

= Show People Containers
< Display Containers In Menu
= Show Group Containers

Display Containers In Menu must be enabled in order for the console to show
either people containers or group containers.

Chapter 2  The Identity Server Console 35



Console Sample

Console Sample

Sample files have been included to help understand how the Identity Server
console can be customized. They help to explain the Java™ 2 Enterprise Edition
(J2EE) web application framework used. In addition, Java classes are extended
from the console APIls and new JSP files are created. Existing XML and properties
files are also used. These files are located in <i denti ty_server _root >/ SUNVanT
sanpl es/ consol e. Open the README file in this directory for instructions on how to
run the sample.

36 Identity Server Programmer’s Guide ¢ December 2002



Chapter 3

Authentication Service

The Authentication Service is the point of entry for Sun™ One Identity Server. A
user must pass an authentication process before being allowed access to the
console or any resource that is secured using the Identity Server. As well, an
application or service must pass the authentication process before it can be
considered a trusted source by ldentity Server. This chapter explains the process,
its pluggable architecture, and the authentication APIs. It contains the following
sections:

e Overview

= The Authentication User Interface
e Default Authentication Modules
e Custom Authentication Modules
= Application Authentication

= Authentication SPI

< URL Parameters

= C Programs and Authentication

= Authentication Samples

Overview

Identity Server provides secure access to web-based (and non-web-based)
applications and the data that they store. Gaining access to either of these resources
requires that the user or application be given permission by the Authentication
Service. When the requestor tries to access a protected resource, it is directed to
submit credentials to one (or more) of several authentication modules; for instance,

37



Overview

the LDAP module generally requires authentication with the user’s Directory
Server ID and password while the SafeWord™ module requires authentication to
the ACE/Server. The Authentication Service then acts as an authority, granting or
denying access upon completion of the required process. If access is granted, a
session token is created and assigned to the requestor who is then, by default,
directed to the Identity Server console. When the console finds and validates the
token, the appropriate page is displayed based on the identity’s request and their
parent organization. If there is no valid session token, the console denies access.

NOTE Upon successful authentication, the requestor is directed to the Identity
Server console unless they have initially requested an external protected
resource, have a got o parameter in their URL or have an authentication
method which contains values for redirect URLs based on success or failure.

Accessing The Authentication Service

There are a number of ways to authenticate to the Identity Server in order to allow
access to protected resources. Java™ applications can use the authentication API
while C applications can open a connection using a web browser. End users also
access the Authentication Service using a web browser. In addition, there is a

r enot e- aut h. dt d that defines the XML structure used to format the XML request
messages.

Authentication For Java Applications

External Java applications can authenticate to the Identity Server or any of its
protected resources (including the Sun ONE Directory Server data store) using the
Authentication API for Java. This API provides interfaces to initiate the
authentication process and communicate authentication credentials to the
Authentication Service. The APl is defined in a Java package called

com sun. i dentity.aut henti cati on. Developers incorporate the classes and
methods from this package into their Java applications to allow communication
with the Authentication Service. The application’s Java request is first converted to
an XML message format and passed to the Identity Server over htt p or ht t ps.
(XML messages are structured according to the r enot e- aut h. dt d which is
discussed further in “The remote-auth.dtd Structure,” on page 63.) The XML
message is then converted back into Java which is able to be interpreted by the
Authentication Service. These API are discussed further in “Authentication API
For Java Applications,” on page 62.

38 Identity Server Programmer’s Guide ¢ December 2002



Overview

Authentication For C Applications

Identity Server includes the resources for C applications to authenticate to the
Identity Server. They must first open a connection to the Identity Server using the
URL, http://<ldentity Server_host. domai n>/

<servi ce_depl oy_uri >/ aut hservi ce. Then the application sends a request in
XML message format and passes it to the Identity Server over htt p or htt ps. The
XML message is then processed by the Authentication Service. After passing the
authentication process, a validated session token will be sent to the C application.
XML messages are structured according to the r enot e- aut h. dt d which is
discussed further in “The remote-auth.dtd Structure,” on page 63.

Authentication For Users Using A Web Browser

A user with a web browser can authenticate to Identity Server using the
authentication user interface. The URI for this web-based interface is
http://<ldentity Server_host. domai n>/ <servi ce_depl oy_uri >/ U/ Logi n.
Once authenticated, the user gains access to the ldentity Server console and based
on their privileges:

= Administrators can access the identity administration portion of the console in
order to manage authentication data.

= End users can modify authentication data in their own user profiles.

Authenticating The Request

The authentication framework has the job of validating the authentication request.
The framework integrates the standard Java Authentication and Authorization
Service (JAAS) API with proprietary APIs that support Identity Server-specific
features. Identity Server adds features on top of the JAAS framework including
account locking, web-based Ul, and an XML over HTTP interface that allows
authentication APIs to work on a remote machine. Because of this architecture, any
custom JAAS authentication modules will also work within the Authentication
Service.

NOTE This guide is not intended to document the JAAS framework. For more
information on these APIs, see the Java Authentication And Authorization
Service Developer’s Guide atht t p: //j ava. sun. com securi ty/
j aas/ doc/ api . ht Ml . Additional information can be found at
http://java. sun. coni product s/ j aas/.

Chapter 3  Authentication Service 39



Overview

Requesting Authentication

The authentication framework starts the authentication process by reading a Java
request. When a request is received, the framework creates a session for the
requestor and begins the authentication process by calling the Authentication
Service Provider Interface (SPI) to allow interaction between the requestor and the
login module for credential gathering. The SPI references the authentication
module configuration file to determine the login requirements for the specific
authentication module. (More information on the authentication module
configuration file can be found in “The Auth_Module_Properties.dtd Structure,”
on page 57.)

Using The Authentication SPI

Identity Server provides the Authentication SPI to invoke a specific authentication
module. The SPI is defined in the com sun. i dentity. aut henti cati on. spi
package. All configured modules, custom and default, can extend the

AM_ogi nModul e and implement the process, i nit and get Pri nci pal methods.
These methods access Identity Server objects for post-processing of user profiles,
service templates, and attributes. More information on the Authentication SPI can
be found in “Authentication SPI,” on page 71.

NOTE The Authentication API are also able to invoke authentication modules
written using the pure JAAS API.

Client Detection

Within the framework, the first step in authenticating a user is to identify the client
type making the HTTP request. The Authentication Service uses the URL
information to retrieve the browser type’s characteristics. Based on these
characteristics, the correct authentication pages are sent back to the client browser;
for example, HTML pages. Once the user is validated, the client type is added to
the session token where it can be retrieved by other services. More information on
client detection can be found in Chapter 11, “Client Detection.”

NOTE Although Identity Server has the capability to support multiple clients
(including wireless), currently it only defines client data for HTML clients.

40  Identity Server Programmer’s Guide ¢ December 2002



Overview

Miscellaneous Features

The Authentication Service includes a number of new features. Account locking
and Fully Qualified Domain Name (FQDN) Mapping are explained below.

Account Locking

Account locking prohibits the user from authenticating after a fixed number of
consecutive unsuccessful login attempts. Identity Server allows two additional
login attempts after the user is warned about an impending lockout. The locking
can be initiated by changing the status of an attribute in LDAP or by memory
locking which occurs when the time-out duration is greater then 0. Email
notifications are sent to administrators regarding any account lockouts. (Account
locking activities are also logged.) For more information on the account locking
attributes, see the Sun ONE Identity Server Administration Guide.

NOTE Only modules that throw an Invalid Password Exception can leverage the
Account Locking feature.

FQDN Mapping

FQDN Mapping enables the Authentication Service to take corrective action in the
case where a user may have typed in an incorrect URL (such as specifying a partial
host name or using an IP address to access protected resources). FQDN Mapping is
enabled by modifying the com sun. i dentity. server. f gdnMap attribute in the
AMConf i g. properti es file. The format for specifying this property is:

comsun.identity.server.fqdnMp[<i nval i d- nane>] =<val i d- nane>

The value <i nval i d- name> would be a possible invalid FQDN host name that may
be typed by the user, and <val i d- name> would be the actual host name to which
the filter will redirect the user. Any number of mappings can be specified in
AMConf i g. properti es (as illustrated in Code Example 3-1) as long as they
conform to the stated requirements.

Code Example 3-1 FQDN Mapping Attribute In AMConf i g. properties

comsun.identity.server.fqgdnMap[isserver] =i sserver. mydomai n. com
comsun.identity.server.fqgdnMap[i sserver. mydonai n] =i sserver. nydo

mai n. com
com sun.identity.server.fqgdnMap[<I P

addr ess>] =i sserver. mydonai n. com

Chapter 3  Authentication Service 41



The Authentication User Interface

Possible Uses For FQDN Mapping

This property can be used for creating a mapping for more than one host name
which may be the case if applications hosted on this server are accessible by more
than one host name. This property can also be used to configure ldentity Server to
not take corrective action for certain URLs. For example, if no redirect is required
for users who access applications by using an IP address, this feature can be
implemented by specifying a map entry such as
comsun.identity.server.fqdnMap[ <l P>] =<I P>.

NOTE If more than one mapping is defined, ensure that there are no overlapping
values in the invalid FQDN name.Failing to do so may result in the
application becoming inaccessible.

The Authentication User Interface

42

The Authentication Service has a separate user interface from the Identity Server
console. It provides the web-based interface for all authentication modules
installed in the Identity Server deployment. The interface provides a dynamic and
customizable means for gathering user credentials for authentication by presenting
the web-based login requirement pages to a user requesting access. Figure 3-1is a
screenshot of the default user interface for LDAP authentication.

Figure 3-1 Default LDAP Authentication User Interface

Ll

TunHE

Identity Server Programmer’s Guide ¢ December 2002



The Authentication User Interface

Like the Identity Server console, the Authentication Service interface is built with
J2EE Assisted Take-Off (JATO), a Java 2 Enterprise Edition (J2EE) application
framework used to help developers build functional web applications. It uses the
Authentication API to authenticate users to their specified authentication module.
(This component can be deployed on non-Identity Server machines.)

The Authentication Service interface uses Java Server Pages (JSP) and XML files to
convey graphical-based user information such as login, logout and time-out
information as well as error messages. The JSP templates define the layout of the
pages and are located in <i denti ty_server _r oot >/ SUN\Vant web- apps/

servi ces/ confi g/ aut h/ def aul t . The XML templates are the authentication
module configuration files, discussed in “Configuring Module Credential
Requirements,” on page 57. They are also located in <i denti ty_server_r oot >/
SUNVam web- apps/ ser vi ces/ confi g/ aut h/ def aul t . Both of these types of files
can be modified to customize the user experience at the following levels:

= Organization

e Locale

= Sub-organization

= Service or Application

« Client type

Customizing The Authentication Interface

The JSP templates and module configuration properties files can be modified to
reflect an organization’s branding or to add organization-specific functionality. For
example, if there are three organizations in the Identity Server deployment—or g1,
or g2, or g3—and or g1 has customized templates, these templates will be located in
<identity_server_root>/ SUN\Vam web- apps/ servi ces/ confi g/ aut h/ or g1.
Any organization that does not have its own directory of modified templates will
continue to use the default set of files located in <i dentity_server _root >/
SUNVam web- apps/ ser vi ces/ confi g/ aut h/ def aul t. In the example, both
directories contain a full set of templates. Or g1 would use the set in the or g1
directory while or g2 and or g3 would use the set in the default directory.

Creating A Directory
1. Go to the directory where the JSP templates are stored.

cd <identity_server_root >/ SUNVamM web- apps/ servi ces/ confi g/ aut h/

Chapter 3  Authentication Service 43



The Authentication User Interface

a4

2. Create a directory using the appropriate path based on the level of

customization.

The directory name should match the name that appears in the Identity Server
console. Table 3-1 lists the different path names for each level based on its
customization of either a default or configured organization.

Table 3-1

Directory Locations Based On Customization Level

Level

Default Organization Location

Configured Organization Location

Organization

Sub-organization

Locale

Service or
Application

Client Type
(HTML, WML,
etc.)

<identity_server_root>/S
UNWANT web- apps/ servi ces/
confi g/ auth/ defaul t

<identity_server_root>/S
UNWANT web- apps/ servi ces/
confi g/ aut h/ def aul t/ sub-
orgl

<identity_server_root>/S
UNWANT web- apps/ servi ces/
config/auth/default_| oca
le

<identity_server_root>/S
UNWANT web- apps/ servi ces/
config/auth/default/serv
icel

<identity_server_root>/S
UNWANT web- apps/ servi ces/
config/auth/default/clie
nttypel

<identity_server_root>/S
UNWANT web- apps/ servi ces/
config/auth/orgl

<identity_server_root>/S
UNVWanT web- apps/ servi ces/
config/auth/orgl/sub-org
1

<identity_server_root>/S
UNWANT web- apps/ servi ces/
config/auth/orgl_Il ocal e

<identity_server_root>/S
UNWANT web- apps/ servi ces/
config/auth/orgl/service
1

<identity_server_root>/S
UNVWaNT web- apps/ servi ces/
config/auth/orgl/clientt
ypel

3. Copy all the module configuration properties files and JSP templates into the

new directory.

All of the files in the <i denti t y_ser ver _r oot >/ SUN\VanT web- apps/
servi ces/ confi g/ aut h/ directory need to be copied into the new directory.

4. Customize the files in the new organization directory.

Make sure that any image files (for example, JPEG or GIF files for logos) are
copied into <i denti ty_server _r oot >/ SUNVan web- apps/ servi ces/

| ogi n_i mages. Any HTML specific tags can be modified to other desired
HTML tags or any other client type specific tags.

Identity Server Programmer’s Guide ¢ December 2002



The Authentication User Interface

NOTE All JSP background colors, page layouts, and fonts are configurable
using the style sheets located in <i dentity_server_root >/
web- apps/ servi ces/ css.

JSP Templates

The following JSP templates can be found in <i dentity_server _r oot >/ SUN\Van
web- apps/ servi ces/ confi g/ aut h/ def aul t . Strong HTML skills as well as an
understanding of web servers can help in the modification of these files.

Table 3-2

List of Customizable JSP Templates

GUI Template

Purpose

auth_error_template.jsp

authException.jsp

account_expired.jsp

configuration.jsp

disclaimer.jsp

Exception.jsp
invalid_domain.jsp

invalidPCookieUserid.jsp

invalidPassword.jsp

Login.jsp

login_denied.jsp

login_failed_template.jsp
Logout.jsp

maxSessions.jsp

Informs the user when an internal authentication error
has occurred.

Informs the user that an error has occurred during
authentication.

Informs the user that their account has expired and
should contact the system administrator.

Informs the user that there has been a configuration
error.

This is a sample, customizable disclaimer page used in
the Self-registration authentication module.

Informs the user that an error has occurred.
Informs the user that there is no such domain.

Informs the user that a persistent cookie user name does
not exist in the persistent cookie domain.

Informs the user that the password entered does not
contain enough characters.

This is a Login/Password template.

Informs the user that no profile has been found in this
domain.

Informs the user that authentication has failed.
Informs the user that they have logged out.

Informs the user that the maximum sessions have been
reached.

Chapter 3  Authentication Service 45



The Authentication User Interface

46

Table 3-2  List of Customizable JSP Templates (Continued)

GUI Template

Purpose

membership.jsp

Message.jsp

missingRegField.jsp

module_denied.jsp

module_template.jsp

noConfig.jsp

noConfirmation.jsp

noPassword.jsp

noUserName.jsp

noUserProfile.jsp

org_inactive.jsp

passwordMismatch.jsp

profileException.jsp

Redirect.jsp
register.jsp

session_timeout.jsp

userDenied.jsp

userExists.jsp

userPasswordSame.jsp

A login page for the Self-registration module.

A generic message template for a general error not
defined in one of the other error message pages.

Informs the user that a required field has not been
completed.

Informs the user that the chosen authentication module
has been denied.

A customizable module page.

Informs the user that no configuration has been
defined/found for them.

Informs the user that the password confirmation field
has not been entered.

Informs the user that no password has been entered.

Informs the user that no user name has been entered. It
links back to the login page.

Informs the user that no profile has been found. It gives
them the option to try again or select New User and links
back to the login page.

Informs the user that the organization they are
attempting to authenticate to is no longer active.

This page is called when the password and confirming
password do not match.

Informs the user that an error has occurred while storing
the user profile.

This page carries a link to a page that has been moved.
A user self-registration page.

Informs the user that their current login session has
timed out.

Informs the user that they do not possess the necessary
role (for role-based authentication.)

This page is called if a new user is registering with a user
name that already exists.

Called if a new user is registering with a user name field
and password field have the same value.

Identity Server Programmer’s Guide ¢ December 2002



Default Authentication Modules

Table 3-2  List of Customizable JSP Templates (Continued)

GUI Template Purpose
user_inactive.jsp Informs the user that they are not active.
wrongPassword.jsp Informs the user that the password entered is invalid.

Authentication Module Configuration Files

The authentication module configuration XML files are based on the

Aut h_Mbdul e_Properti es. dt d and the syntax of this DTD should be followed
when customizing these files. Modifying elements in these XML files will
automatically and dynamically customize the authentication interface. More
information on modifying this type of file can be found in “Configuring Module
Credential Requirements,” on page 57.”

Default Authentication Modules

Identity Server is installed with a set of default authentication modules that can be
used to communicate with proprietary technologies. These modules are explained
below.

Core Authentication Service

The Core authentication service is the configuration base for all other proprietary
authentication modules. It must be registered to an organization before any user
can log in using one of the default authentication modules. It allows the Identity
Server administrator to define default values for the Core authentication
parameters. These values can then be picked up if no overriding value is set in the
specific authentication module chosen. The default values for the Core service are
defined in the amAut h. xm file and stored in the Directory Server after installation.

Proprietary Authentication Modules

Identity Server provides authentication modules able to communicate with
proprietary technologies. The authentication modules currently included are:

Chapter 3  Authentication Service 47



Default Authentication Modules

48

Anonymous—This module allows a user to log in without specifying a user
name and/or password. Additionally, an Anonymous user can be created. Log
in as Anonymous is then possible without a password. Anonymous
connections are generally customized by the Identity Server administrator to
have limited access to the server.

Certificate—This module allows a user to log in through a personal digital
certificate (PDC) that could optionally use the Online Certificate Status
Protocol (OCSP) to determine the state of a certificate. Sun ONE Certificate
Server (CS) can be installed as a validation authority. For more information on
CS, see the documentation set located at

http://docs. sun. conl db?p=col | / S1_s1Certifi cateServer_47.

LDAP—This module allows for authentication using LDAP bind, an operation
which associates a user ID password with a particular LDAP entry.

Membership—This module allows a new user to register themselves for
authentication with a login and password as well as other fields such as first
name, last name, etc.

NT—This module allows for authentication using a Windows NT server.

RADIUS—This module allows for authentication using an external Remote
Authentication Dial-In User Service (RADIUS) server.

SafeWord—This module allows for authentication using Secure Computing’s
servers and tokens.

Unix—This Solaris only module allows for authentication using a user’s UNIX
identification and password.

The default authentication module used after installation is LDAP.

Assigning The Authentication Method

An authentication module can be assigned as the method to authenticate identities
that belong to any of the following objects:

organization
role

service

user

module

Identity Server Programmer’s Guide ¢ December 2002



Default Authentication Modules

Once a module is defined as the authentication method for one of these objects, it
can than be configured with URLSs to redirect the identity on either a successful
authentication or a failed authentication. When more than one URL is set, Identity
Server has a defined hierarchy to pick the proper redirection URL.

NOTE For more information on how to define the authentication module using the
Identity Server console, see the Sun ONE Identity Server Administration
Guide.

Authentication By Organization

The authentication method for an organization is set by registering the Core
Authentication service to the organization and configuring the Organization
Authentication Configuration attribute. The authentication service(s) defined must
also be registered to the organization.

NOTE Authentication by organization is the default definition. It can also be
accessed by providing the “org” parameter in the authentication URL. More
information on this function can be found in “URL Parameters,” on page 71.

Successful Organization-based Authentication Redirection URLs

Identity Server bases a successful organization-based authentication redirection
determination by checking for a redirection URL in the following places:

1. A URL set by the module.
2. A URL set by a got o URL parameter.

3. AURLsetforclient Type ini pl anet-am user-success-url inuser’s
amser . xnl service file.

4. A URLsetforclientTypeinipl anet - am aut h-1 ogi n- success-url inthe
user’s role.

5. AURLsetforclient Type ini pl anet -am aut h-1 ogi n-success-url inthe
organization.

6. A URLsetforclientType ini pl anet - am aut h-1 ogi n-success-url asthe
global default.

7. iplanet-amuser-success-url setatuserentry
8. iplanet-am auth-Iogin-success-url setat user's role entry

9. iplanet-am auth-1ogin-success-url setatthe org entry

Chapter 3  Authentication Service 49



Default Authentication Modules

10. i pl anet - am aut h- 1 ogi n-success-url as the global default if not set in org

Failed Organization-based Authentication Redirection URLs

Identity Server bases a failed organization-based authentication redirection
determination by checking for a URL in the following order:

1. A URL set by the module.
2. A URL set by a got oOnFai | parameter.

3. AURLsetforclientTypeiniplanet-amuser-failure-url setatthe user
entry.

4, A URLsetforclientTypeiniplanet-amauth-1ogin-failure-url setat
the user’s role entry.

5. AURLsetforclient Type inipl anet-am auth-1ogin-failure-url setat
the organization entry.

6. iplanet-amauth-1ogin-failure-url asthe global default if it is not set in
the organization.

7. iplanet-amuser-failure-url setatthe userentry.
8. iplanet-amauth-1ogin-failure-url setatthe user’srole entry.
9. iplanet-amauth-1ogin-failure-url setatthe organization entry.

10. i pl anet - am aut h-1 ogi n-fai |l ure-url asthe global default if it is not set in
the organization.

Authentication By Role

The authentication method for a role is set by registering the Core Authentication
service to the role and configuring the Organization Authentication Configuration
attribute. The authentication service(s) defined must also be registered to the
organization in which the role exists.

NOTE Authentication by role is accessed by providing the “role” parameter in the
authentication URL. More information on this function can be found in
“URL Parameters,” on page 71.

Successful Role-based Authentication Redirection URLSs

Identity Server bases a successful role-based authentication redirection
determination by checking for a URL in the following order:

50 Identity Server Programmer’s Guide ¢ December 2002



Default Authentication Modules

A URL set by the module.
A URL set by the got o parameter.

A URL matching cl i ent Type ini pl anet - am user - success-ur| setin the
user entry.

A URL matchingcl i ent Type ini pl anet - am aut h-| ogi n- success-ur| setat
the role to which the user authenticates.

A URL matchingcl i ent Type ini pl anet - am aut h- 1 ogi n-success-ur| setat
the user’s role.

A URL matchingcl i ent Type ini pl anet - am aut h-1 ogi n-success-ur| setat
the organization.

A URL matchingcl i ent Type ini pl anet - am aut h-| ogi n- success-url as
the global default.

i pl anet - am user - success- ur| setin the user entry.

i pl anet - am aut h-1 ogi n-success-url set at the role to which the user
authenticates.

10. i pl anet - am aut h- 1 ogi n-success-url set at the user’s role.

11. i pl anet - am aut h- | ogi n-success-ur | set at the organization.

12. i pl anet - am aut h- | ogi n-success-url from the global default.

Failed Role-based Authentication Redirection URLS

Identity Server bases a failed role-based authentication redirection determination
by checking for a URL in the following order:

1
2.
3.

A URL set by the module.
A URL set by the got oOnFai | parameter.

A URL matchingcl i ent Type ini pl anet-am user-fail ure-url setinthe
user entry.

A URL matchingcl i ent Type ini pl anet - am aut h-1 ogi n-fai | ure-url setat
the role to which the user authenticates.

A URL matchingcl i ent Type ini pl anet - am aut h-1 ogi n-fai l ure-url setat
the user’s role.

A URL matchingcl i ent Type ini pl anet - am aut h-1 ogi n-fai l ure-url setat
the organization.

Chapter 3  Authentication Service 51



Default Authentication Modules

52

10.
11.
12.

A URL matching cl i ent Type ini pl anet-am aut h-1ogin-failure-url as
the global default.

i pl anet -am user-failure-url setin the user entry.

i pl anet - am aut h-1 ogi n-fail ure-url setatthe role to which the user
authenticates.

i pl anet -am aut h-1 ogi n-fail ure-url setat the user’s role.
i pl anet-am aut h-1ogi n-fail ure-url setatthe organization.

i pl anet-am aut h-1ogi n-failure-url from the global default.

Authentication By Service

The authentication method for a service is set by registering the Core
Authentication service and configuring the Organization Authentication
Configuration attribute. The authentication service(s) defined must also be
registered to the organization in which the role exists.

NOTE Authentication by service is accessed by providing the “service” parameter

in the authentication URL. More information on this function can be found
in “URL Parameters,” on page 71.

Successful Service-based Authentication Redirection URLS

Identity Server bases a successful service-based authentication redirection
determination by checking for a URL in the following order:

1.
2.
3.

A URL set by the module.
A URL set by the got o parameter.

A URL matching cl i ent Type ini pl anet - am user - success-url setinthe
user entry.

A URL matchingcl i ent Type ini pl anet - am aut h-| ogi n-success-ur| setat
the service entry.

A URL matchingcl i ent Type ini pl anet - am aut h-1 ogi n-success-ur| setat
the user’s role.

A URL matchingcl i ent Type ini pl anet - am aut h-| ogi n-success-ur| setat
the organization.

A URL matchingcl i ent Type ini pl anet - am aut h-1 ogi n-success-ur| setat
the global default.

Identity Server Programmer’s Guide ¢ December 2002



10.
11.
12.

Default Authentication Modules

i pl anet - am user - success- url set at the user entry.

i pl anet - am aut h-1 ogi n-success-ur| set at the service entry.

i pl anet - am aut h-1 ogi n-success-url setat user’s role entry.

i pl anet - am aut h- | ogi n- success-ur| set at the organization entry.

i pl anet - am aut h-1 ogi n-success-url as the global default if not set in the
organization.

Failed Service-based Authentication Redirection URLS
Identity Server bases a failed role-based authentication redirection

1.
2.
3.

10.
11.
12.

A URL set by the module.
A URL set by the got oOnFai | parameter.

A URL matching cl i ent Type ini pl anet -am user-fail ure-url setatthe
user entry.

A URL matchingcl i ent Type ini pl anet -am aut h-1 ogi n-fai | ure-url setat
the service entry.

A URL matchingcl i ent Type ini pl anet -am aut h-1 ogi n-fai | ure-url setat
the user’s role entry.

A URL matchingcl i ent Type ini pl anet - am aut h-1 ogi n-fai l ure-url setat
the organization entry.

A URL matchingcl i ent Type ini pl anet -am aut h-1 ogi n-failure-url as
the global default if not set in the organization.

i pl anet-am user-failure-url setatthe userentry.

i pl anet-am aut h-1ogi n-failure-url setatthe service entry.

i pl anet-am aut h-1ogi n-failure-url setatuser’srole entry.

i pl anet-am aut h-1 ogi n-fail ure-url setatthe organization entry.

i pl anet -am aut h-1 ogi n-fail ure-url asthe global default if not set in the
organization.

Chapter 3  Authentication Service 53



Custom Authentication Modules

Authentication By User

The authentication method for a user is set by registering the Core Authentication
service to the user and configuring the Organization Authentication Configuration
attribute. The authentication service(s) defined must also be registered to the
organization in which the role exists. More information on how this is done can be
found in the Sun ONE Identity Server Administration Guide.

NOTE Authentication by user is accessed by providing the “user” parameter in the
authentication URL. More information on this function can be found in
“URL Parameters,” on page 71.

Authentication By Authentication Level

The authentication method for a particular authentication level is set by the
administrator. More information on how this is done can be found in the Sun ONE
Identity Server Administration Guide.

NOTE Authentication by authentication level is accessed by providing the
“authLevel” parameter in the authentication URL. More information on this
function can be found in “URL Parameters,” on page 71.

Authentication By Module

The authentication method for a module is set by registering the Core
Authentication service to the module and configuring the Organization
Authentication Configuration attribute. More information on how this is done can
be found in the Sun ONE Identity Server Administration Guide.

Custom Authentication Modules

54

The Authentication Service framework allows an organization to plug-in custom
authentication modules. The following section discusses the steps necessary to
create a custom authentication module.

NOTE To write a custom authentication module, knowledge of the JAAS API is
necessary, especially for defining the module’s configuration properties.

Identity Server Programmer’s Guide ¢ December 2002



Custom Authentication Modules

Creating A New Authentication Module

1.

Create an XML service file for the new authentication module.

The XML service file is written, and imported, into Identity Server in order to
manage the authentication module’s parameters using the Identity Server
console. The name of the XML service file follows the format

amAut h<nodul enane>. xml (for example, amAut hSaf eWor d. xm or

amAut hLDAP. xm ) and it is located in <i dentity_server _r oot >/ SUNVam
confi g/ xnml . Information on writing this XML service file, based on the

sns. dt d, can be found in Chapter 6, “Service Management.”

Create a localization properties file for the new module.

The localization properties file defines language-specific screen text for the
attribute names of the module. It is located in the directory

<identity_ server_root>/ SUN\Wam | ocal e/ . More information on this file
and how to configure it can be found in “Configuring Localization Properties,”
on page 56.

Create an authentication module configuration file.

An authentication module configuration file specifies the credentials required
from an identity (either user, service, or application) in order to authenticate to
a specific authentication module. It is located in <i denti ty_server_r oot >/
SUNVam web- apps/ ser vi ces/ confi g/ aut h/ def aul t. The required
credentials might include, but are certainly not limited to, user name and
password. Information on how to create the file, based on the syntax of the
Aut h_Mbdul e_Properti es. dt d, can be found in “Configuring Module
Credential Requirements,” on page 57.

Modify the amaut h. xm file.

The amAut h. xm defines the “parent” Core Authentication service. It is located
in<identity_server_root>/ SUN\Wanm confi g/ xn . This file must be modified
in order for the Authentication Service to recognize any custom authentication
module. Information on amAut h. xmi modifications can be found in
“Modifying amAuth.xml,” on page 61. Information on modifying XML service
files in general can be found in Chapter 6, “Service Management.”

Import the custom module’s XML service file into the Authentication Service
using the amadni n command line tool.

The syntax of the amadni n command line tool and instructions on how to use it
can be found in the Sun ONE Identity Server Administration Guide.

Chapter 3  Authentication Service 55



Custom Authentication Modules

56

NOTE Identity Server contains a sample exercise for creating a custom
authentication module. For more information, see the “Login
Module,” on page 77.

Configuring Localization Properties

A localization properties file specifies the localized screen text and messages that
an administrator or user will see when directed to an Authentication Service’s
attribute configuration page. Each authentication module has a corresponding
localization properties file. The name of the file follows the format

amAut h<nodul enane>. properti es; for example, amAut hLDAP. properti es. The
default character set is 1ISO-8859-1 (English). Each authentication module has its
own localization properties file, located in <i denti ty_server _r oot >/

SUNVam | ocal e/ . This directory contains a sub-directory for each locale. The
default English directory is en_US. For reference, Code Example 3-2 is a portion of
the file amAut hLDAP. properti es. (The file is in the <i denti ty_server _r oot >/
SUNVam | ocal e/ en_US directory.) Following are the concepts behind the
configuration of this file.

= The data following the equal (=) sign in each key/value pair (displayed in
English here) would be translated to a specific language as necessary and
copied into the corresponding locale directory. In Code Example 3-2, the
alphanumeric keys (a1, a2, etc.) map to fields defined by the i 18nKey attribute
in the amAut hLDAP. xm service configuration file.

= The alphanumeric keys determine the order in which the fields are displayed
in the Identity Server console. The keys are taken in the order of their ASCII
characters (al is followed by al0, followed by a2, followed by b1). For example,
if an attribute needs to be displayed at the top of the service attribute page, the
alphanumeric key should have a value of a1. The second attribute could then
have a value of either a10, a2 or b1, and so forth.

Code Example 3-2 Portion of amAut hLDAP. pr operti es

Pl nval i d=Current Password Entered |Is Invalid
PasswdSane=Passwor d shoul d not be sane

PasswdM nChar s=Password shoul d be at |east 8 characters
al=Primary LDAP Server and Port

a2=Secondary LDAP Server and Port

a3=DN to Start User Search

a4=DN for Root User bind

ab5=Password for Root User Bind

Identity Server Programmer’s Guide ¢ December 2002



Custom Authentication Modules

Code Example 3-2 Portion of amAut hLDAP. properti es (Conti nued)

Pl nval i d=Current Password Entered Is Invalid
ab=User Naming Attribute
a7=User Entry Search Attribute

Configuring Module Credential Requirements

The authentication module configuration file specifies each authentication
module’s credential requirements by defining the screens that a user might see
when directed to authenticate. Modifying elements in this XML file will
automatically and dynamically customize the authentication interface. The name of
this file follows the format <modul ename>. xni ; for example, Saf eWor d. xml or
LDAP. xn . Each authentication module has its own configuration file, located in
<identity_server_root> SUN\Wan! web- apps/ servi ces/ confi g/ auth/ default.

If there is more than one organization in the Identity Server deployment, each
organization has its own authentication directory named
<identity_server_root >/ SUN\Vani web- apps/ servi ces/ confi g/ aut h/

or g_nane. If an organization has more than one locale, the files are stored
separately, in directories appended with a locale, asin <i denti ty_server _r oot >/
SUNVam web- apps/ servi ces/ confi g/ aut h/ or g_name_I ocal e. Additionally,
with service authentication, there might be an authentication directory
corresponding to the service under the LDAP organization tree.

NOTE Customization of the authentication screens are only supported at the
organization, sub-organization and service levels. In a search for the correct
module configuration properties files, Identity Server first searches the
org_name_| ocal e directory, followed by the or g_nane, the
def aul t _| ocal e and the def aul t directories.

The Auth_Module_Properties.dtd Structure

The Aut h_Modul e_Properti es. dt d defines the structure for the XML-based
authentication module configuration files. It provides definitions to initiate,
construct and send the required authentication interface to the authentication
framework. The DTD is located in <i dentity_server _root >/ SUN\Van dt d. An
explanation of the elements defined by the Aut h_Mbdul e_Properti es. dtd
follows. Each element includes required and/or optional XML attributes.

Chapter 3  Authentication Service 57



Custom Authentication Modules

ModuleProperties Element

ModuleProperties is the root element of the authentication module configuration file.
It must contain at least one Callbacks sub-element. The required XML attributes of
ModuleProperties are nodul eNanme which takes a value equal to the name of the
module and ver si on which takes a value equal to the version number of the
authentication module configuration file itself. Code Example 3-3 below is the
LDAP. xml file that defines the screens for the LDAP authentication module. Note
the ModuleProperties element on the first line of code.

Code Example 3-3 LDAP.xmlI

<Modul eProperties nodul eName="LDAP" version="1.0" >
<Cal | backs | ength="2" order="1" ti meout="120"
header =" LDAP Aut hentication" >
<NaneCal | back>
<Pronpt> User Name: </Pronpt>
</ NaneCal | back>
<Passwor dCal | back echoPassword="fal se" >
<Pronpt > Password: </Pronpt>
</ Passwor dCal | back>
</ Cal | backs>
<Cal | backs | engt h="4" order="2" timeout="120"
header =" Change Password" >
<Passwor dCal | back echoPassword="fal se" >
<Pr onpt >#REPLACE#&I t ; BR&gt; O d Password </ Pronpt>
</ Passwor dCal | back>
<Passwor dCal | back echoPassword="f al se" >
<Pronpt > New Password </ Pronpt>
</ Passwor dCal | back>
<Passwor dCal | back echoPassword="fal se" >
<Pronpt > Confirm Password </ Pronpt >
</ Passwor dCal | back>
<ConfirmationCal | back>
<Opti onVal ues>
<Opti onVal ue>
<Val ue> Submt </Val ue>
</ Opti onVal ue>
<Opti onVal ue>
<Val ue> Cancel </Val ue>
</ Opt i onVal ue>
</ Opti onVal ues>
</ ConfirmationCal | back>
</ Cal | backs>
<Cal | backs | engt h="0" order="3" timeout="120"
header =" Your password has expired."
error="true" >
</ Cal | backs>
</ Modul eProperties>

58 Identity Server Programmer’s Guide ¢ December 2002



Custom Authentication Modules

Callbacks Element

The Callbacks element is used to request the information a module needs to gather
from the client requesting authentication. Each Callbacks element signifies a
separate screen that can be called during the authentication process. It can contain
one or more of four sub-elements: NameCallback, PasswordCallback, ChoiceCallback or
ConfirmationCallback. The required XML attributes of Callbacks are | engt h which
takes a value equal to the number of callback requests for the defined element and
or der which takes a value equal to the number this particular callback is in the
sequence of callbacks. The or der attribute value starts with the number ‘1’. The
optional XML attributes are t i meout , t enpl at e, i mage, header anderror.

« timeout —takes a value equal to the amount of time in seconds before the
request for information times out. It ensures that the user responds in a timely
manner. If greater than the timeout value, a timeout page will be sent.

= tenpl at e—defines the file used as a display template for this screen.
< i mge—defines a custom background image to be displayed on this screen.

= header —defines text information that can be displayed in the browser
window for this screen.

= error—takes a true or false value which defines whether the error message
generated by the authentication module will be used.

Code Example 3-3 on page 58 defines three screen’s callback elements that can be
called by the LDAP Authentication module. The first asks the requestor for a name
and password. The second screen allows the requestor to change their password.
The final screen sends a message to reset the password.

NamecCallback Element

The NameCallback element is used to request data that is entered by the user, for
example, a user identification. It can contain one sub-element: Prompt. The optional
XML attributes are i sRequi red and at t ri but e. i sRequi r ed takes a value of true
or false and defines whether the element is required information. (A value of true
displays an asterisk next to the attribute’s name in the GUL.) at t ri but e takes a
character value of the corresponding LDAP attribute of this value.

PasswordCallback Element

The PasswordCallback element is used to request password data that is entered by
the user. It can contain one sub-element: Prompt. The XML attributes are
echoPasswor d, i sRequi red and at t ri but e. echoPasswor d is required and takes a
value of true or false and defines whether the password should be displayed on the

Chapter 3  Authentication Service 59



Custom Authentication Modules

60

screen or not. i sRequi r ed is optional and takes a value of t rue or f al se and
defines whether the element is required information. (A value of true displays an
asterisk next to the attribute’s name in the GUL.) at t ri but e is also optional and
takes a character value of the corresponding LDAP attribute of this value.

ChoiceCallback Element

The ChoiceCallback element is used when the application user must choose from
multiple values. It can contain two sub-elements: Prompt or ChoiceValues. The XML
attributes are mul ti pl eSel ecti onsAl | owed, i sRequi red and attri but e.

mul ti pl eSel ecti onsAl | owed is a required attribute and takes a value of t r ue or
f al se. It defines whether the user can choose a number of values or only one from
the available choices. i sRequi r ed is optional and takes a value of t r ue or f al se.
(A value of true displays an asterisk next to the attribute’s name in the GUI.)

attri but e is also optional and takes a character value of the corresponding LDAP
attribute of this value.

ConfirmationCallback Element

The ConfirmationCallback element is used to send ‘button’ information, such as
button text which needs to be rendered on the module’s screen, as well as receive
the button information, such as which button is clicked by the user. It can contain
one sub-element: OptionValues. There are no XML attributes.

Prompt Element

The Prompt element is used to set the prompt that will display on the browser
screen to request the information. It has no sub-elements or XML attributes.

ChoiceValues and ChoiceValue Element

The ChoiceValues element provides a list of values from which the user can select. It
must contain at least one sub-element of the type ChoiceValue which defines one
choice. ChoiceValue must contain the sub-element Value. ChoiceValues has no XML
attributes but ChoiceValue can contain the XML attribute i sDef aul t . i sDef aul t
specifies if the defined value has to be selected by default when displayed; it takes
a value of true or false.

OptionValues and OptionValue Element

The OptionValues element provides a list of text information for buttons that need
to be rendered on the login screen. It must contain at least one sub-element of the
type OptionValue which defines one button text value. OptionValue must contain
the sub-element Value. OptionValues has no XML attributes but OptionValue can
contain the XML attribute i sDef aul t. i sDef aul t specifies if the defined value has
to be selected by default when displayed; it takes a value of t r ue or f al se.

Identity Server Programmer’s Guide ¢ December 2002



Application Authentication

Value Element

The Value element is used by the client to return a value provided by the requestor
back to the Identity Server. It has no sub-elements or XML attributes.

Modifying amAuth.xml

The amAut h. xm defines the “parent” authentication service named Core.
Following are the attributes in this file that need to be extended in order for the
Authentication Service to recognize a new authentication module. amAut h. xm is
located in <i dent i ty_server _r oot >/ SUN\Vant confi g/ xm .

e iplanet-am aut h-aut hent i cat or s—specifies the Java classes of the
authentication services available to an organization within the Identity Server
deployment. By default, this includes the Anonymous, Certification, LDAP,
Membership, RADIUS, SafeWord, and Unix modules. To define a new
authentication module, this field takes a value equal to a text string that
specifies the full class name (including package) of the new module.

e iplanet-am auth-al | owed- nodul es—lists the authentication modules
available to the specific organization. An administrator can choose the
authentication method for their organization. The default authentication
method is LDAP.

After modifying amaut h. xm , the command line tool amadmi n is used to remove
the old Core service file and load the modified one.

1. amadmin --runasdn <adm n_dn> --password <password>
--del eteService i Pl anet AMAut hServi ce

2. amadm n --runasdn <adm n_dn> --password <password> --schema
amAut h. xm

More information on the command line tool can be found in the Sun ONE
Identity Server Administration Guide.

Application Authentication

Java™ applications use the authentication API to access, and authenticate to, the
Authentication Service while C applications use a web browser. Both types of
applications use the r enot e- aut h. dt d to format the structure of the XML request
messages used to transfer the authentication information.

Chapter 3  Authentication Service 61



Application Authentication

62

Authentication API For Java Applications

External Java applications use the Authentication Java API to initiate the
authentication process and communicate with the required authentication module.
These Authentication Java API are organized in a package called

com sun. i dentity. aut henti cati on and can be executed locally or remotely to
communicate locally with the Authentication Service. Communication between the
API and the framework occurs by sending XML messages over HTTP(s).

NOTE The ldentity Server Javadocs can be accessed from any browser by
copying the complete <i dentity_server_r oot >/ SUN\VAm docs/
directory into the <i dentity_server _r oot >/ SUN\VWaA publ i c_ht ni
directory and pointing the browser to
http://<server_nane. domai n_namne>: <port >/ docs/i ndex. htm .

The Aut hCont ext class is defined for each request desiring to authenticate to the
Identity Server. Since Identity Server can handle multiple organizations, the

Aut hCont ext class must be initialized, at least, with the name of the organization
to which the requestor is authenticating. Typical code would instantiate this class
to begin the login process. The caller would then use the get Requi r enent s method
to ask for the requestor’s credentials. The credentials are then submitted to the class
using subni t Requi r enent s. If more information is required, the above process
continues until all the required information has been supplied. The get St at us
method is then called to check if the user has been successfully authenticated. If
successful, the caller can then get the Subj ect and SSOToken for the user; if not, the
caller obtains a Logi nExcept i on. Identity Server is shipped with a sample that
uses this class; for more information, see the section “Remote Client API,” on

page 77.

NOTE The Authentication API are also able to invoke authentication modules
written using the pure JAAS API.

Identity Server Programmer’s Guide ¢ December 2002



Application Authentication

Authenticating Non-Java Applications

Non-Java applications can also authenticate to the Identity Server. Using the URL
htt p:// <host . domai n: port >/ <servi ce_depl oy_uri >/ aut hservi ce, the
application opens a connection and then exchanges XML messages with the
Identity Server. The XML messages are structured according to the

renot e- aut h. dt d. Information on this document can be found in “The
remote-auth.dtd Structure,” on page 63. An example of the messages used by C
applications can be found in “C Programs and Authentication,” on page 73.

The remote-auth.dtd Structure

Authentication requests and responses are sent to and received by the
Authentication Java API or non-Java applications using an XML structure. The
structure of these messages is defined in the r enot e- aut h. dt d. The

r enot e- aut h. dt d defines the structure for the XML-based messages sent to, and
received by, the Identity Server console. It provides definitions to initiate the
collection of credentials and perform authentication. It is located in the

<i dentity_server_root> SUN\Wan dt d directory. An explanation of the elements
defined by the r enot e- aut h. dt d follows. Each element has required and/or
optional XML attributes.

AuthContext Element

AuthContext is the root element of the XML-based message. It must contain a
Request or Response sub-element. The required XML attributes of AuthContext are
ver si on which takes a value equal to the version number.

Request Element

The Request element is used by the client to initialize and pass user credentials to
the Authentication Service. It may contain one or more of the following
sub-elements: NewAuthContext, Querylnformation, Login, SubmitRequirements, Logout
or Abort. The required XML attribute of Request is aut hl denti fi er which takes a
value equal to a unique random number set by the Authentication Service and
used to keep track of the authentication session.

Chapter 3  Authentication Service 63



Application Authentication

64

NewAuthContext Element

The NewAuthContext element is initiates the authentication process by initializing
the Authentication Service and creating a session token for each request. It contains
no sub-elements. The required XML attribute of NewAuthContext is or gNarme which
takes a value equal to the name of the organization or sub-organization for which
the process is defined.

Querylnformation Element

The QueryInformation element is used by the remote client to get information about
the authentication modules supported by the Identity Server or the organization. It
contains no sub-elements. The required XML attribute of Querylnformation is

r equest edl nf or mat i on which takes a value equal to the authentication module
plug-ins configured for an organization or sub-organization.

Login Element

The Login element is used to initialize the authentication session. It will have an
Empty sub-element, or can have an IndexTypeNamePair. The IndexTypeNamePair
element can be used to specify the defined authentication type and value. It has no
required XML attributes.

SubmitRequirements Element

The SubmitRequirements element is used by the remote client to submit the
identity’s authentication credentials to the Identity Server. It has a Callbacks
sub-element and no required XML attributes.

Logout Element

The Logout element is used by the remote client to indicate that user wants to
logout. It has an Empty sub-element and no required XML attributes.

Abort Element

The Abort element is used by the remote client to indicate that the user wants to
end the login process. It has an Empty sub-element and no XML attributes.

Identity Server Programmer’s Guide ¢ December 2002



Application Authentication

Response Element

The Response element is used by the Authentication Service to ask the remote client
to gather user credentials or to inform the remote client on the success or failure of
the login as well as any errors that might have occurred. It may contain one or
more of the following sub-elements: QueryResult, GetRequirements, LoginStatus or
Exception. Table 3-3 shows the Request sub-elements and the possible Responses
for each.

Table 3-3  Request Sub-Elements And Possible Responses

Request Possible Responses

NewAuthContext LoginStatus or Exception
QuerylInformation QueryResult or Exception

Login GetRequirements, LoginStatus or Exception
SubmitRequirements GetRequirements, LoginStatus or Exception
Logout LoginStatus or Exception

Abort LoginStatus or Exception

The required XML attribute of Response is aut hl dent i fi er which takes a value
equal to a unique random number set by the Authentication Service and used to
keep track of the authentication session.

QueryResult Element

The QueryResult element is used by Identity Server to send query information
requested by the remote client. It must contain a Value sub-element. The required
XML attribute of QueryResult is r equest edl nf or mat i on which takes a value equal
to the authentication module plug-ins configured for an organization or
sub-organization.

GetRequirements Element

The GetRequirements element is used by the Identity Server to request
authentication credentials from the client. It has a Callbacks sub-element and no
required XML attributes.

Chapter 3  Authentication Service 65



Application Authentication

66

LoginStatus Element

The LoginStatus element is used by the Identity Server to indicate the status of the
authentication process. It will have an Empty sub-element if a Subject or Exception
sub-element is not defined. The XML attributes are st at us, ssoToken, successURL
or f ai | ur eURL; the latter three are optional. If the LoginStatus is successful, the
sub-element Subject will be returned with the authenticated user names. The
attribute ssoToken will have the session token status set to i npr ogr ess when a
new AuthContext is created, to success when a login has been successful, to

f ai | ed when a login has not been successful and conpl et ed when the user logs
out. The successURL attribute represents the URL that the identity will be
redirected to upon successful authentication and f ai | ur eURL represents the URL
that the identity will be redirected to upon failed authentication.

Exception Element

The Exception element is used by the Identity Server to inform the client about an
exception that occurred during the login process. It has an Empty sub-element and
four optional XML attributes: nessage which takes a value equal to that of the
exception message, t okenl d which takes a value equal to that of the user ID of the
failed authentication, er r or Code which takes a value equal to that of the error
message code and t enpl at eNane which takes a value equal to the name of the JSP
template which will be used for this particular exception.

IndexTypeNamePair Element

The IndexTypeNamePair element identifies the defined authentication method that
will be used to validate the client. It has the IndexName sub-element. The required
XML attribute is | ndex Type which takes a value equal to that of the generic level at
which the authentication method has been defined: aut hLevel , rol e, user,

modul el nst ance and ser vi ce.

IndexName Element

The IndexName element identifies the specific name of the value specified by the

I ndexType attribute in the IndexTypeNamePair element. The authentication method
can be defined at the organization level, the role level, the user level, the
authentication level or the service/application level. The | ndexType attribute
defines this level; the | ndexNanme element takes a value equal to that of the specific
name of the level at which the authentication method has been defined. It has no
sub-elements and no XML attributes.

Identity Server Programmer’s Guide ¢ December 2002



Application Authentication

Subject Element

The Subject element identifies a collection of one or more identities. It has no
sub-elements and no XML attributes.

Callbacks Element

The Callbacks element is used to request and transfer user credentials between the
remote client and Identity Server. Identity Server constructs callback objects for
information gathering. The client program collects the credentials by prompting
the user and returns the callback objects with the required data. The Callbacks
element may contain one or more of the following sub-elements: NameCallback,
PasswordCallback, ChoiceCallback, ConfirmationCallback, TextInputCallback,
TextOutputCallback, LanguageCallback, PagePropertiesCallback and CustomCallback.
The required XML attribute is | engt h which takes a value equal to that of a token.

NamecCallback Element

The NameCallback element is used to obtain the name of the user (or service) that is
requesting authentication. It may contain one or more of the following
sub-elements: Prompt or Value. It has no required XML attributes.

PasswordCallback Element

The PasswordCallback element is used to obtain the password of the user (or service)
that is requesting authentication. It may contain one or more of the following
sub-elements: Prompt or Value. The required XML attribute is echoPasswor d which
takes a value of true or false. The default value of false indicates that there will be
no password confirmation.

ChoiceCallback Element

The ChoiceCallback element is used when the user must choose from a selection of
values. It may contain one or more of the following sub-elements: Prompt,
ChoiceValue or SelectedValues. The required XML attribute is

mul ti pl eSel ecti onsAl | owed which takes a value of true or false. The default
value of false indicates that the user can not choose more than one from the
selection.

Chapter 3  Authentication Service 67



Application Authentication

68

ConfirmationCallback Element

The ConfirmationCallback element is used by the Identity Server to request a
confirmation from the user. It may contain one or more of the following
sub-elements: Prompt, OptionValues, SelectedValue, and DefaultOptionValue. The
required XML attributes are nessageType (which defines the type of message,
either information, warning or the default, error), and opt i onType which specifies
the type of confirmation (ok_cancel ,yes_no_cancel , unspeci fi ed or the default,
yes_no).

TextInputCallback Element

The TextlnputCallback element is used to get text information from the user. It may
contain one or more of the following sub-elements: Prompt or Value. There are no
required XML attributes.

TextOutputCallback Element

The TextOutputCallback element is used when the user must choose from a selection
of values. It may contain the sub-element Value. The required XML attribute is
messageType which defines the type of message, either information, warning or
the default, error.

LanguageCallback Element

The LanguageCallback element is used by the Identity Server to obtain the user’s
locale information. It must contain the Locale sub-element. There are no required
XML attributes.

PagePropertiesCallback Element

The PagePropertiesCallback element contains all GUI-related information. It may
contain any of the following sub-elements: ModuleName, HeaderValue, ImageName,
PageTimeOutValue, or TemplateName. The required XML attribute isi sError St at e
which takes a value of true or false. The default value is false which indicates that
this page is not an error page.

ModuleName Element

The ModuleName element is takes a value equal to the name of the authentication
module. It contains no sub-elements and no XML attributes.

HeaderValue Element

The HeaderValue element is takes a value equal to the header that will be displayed.
It contains no sub-elements and no XML attributes.

Identity Server Programmer’s Guide ¢ December 2002



Application Authentication

ImageName Element

The ImageName element is takes a value equal to the name of the image to be
displayed. It contains no sub-elements and no XML attributes.

PageTimeOutValue Element

The PageTimeOutValue element is the page time-out value in seconds. It contains no
sub-elements and no XML attributes.

TemplateName Element

The TemplateName element is takes a value equal to the name of the template to be
rendered. It contains no sub-elements and no XML attributes.

CustomCallback Element

The CustomCallback element is used to define user-defined Callbacks. It may
contain the AttributeValuePair sub-element. The required XML attribute is the
cl assNane which takes a value equal to that of the Callback name.

AttributeValuePair Element

The AttributeValuePair element contains the attribute and values for a Callback. It
must contain the Attribute sub-element and it can contain the Value sub-element.
There are no required XML attributes.

Attribute Element

The Attribute element defines the Callback parameter. It contains no sub-elements.
The required XML attribute is name which takes a value equal to the name of the
Callback parameter.

Prompt Element

The Prompt element is used by Identity Server to request the remote client to
display the prompt. It contains no sub-elements and there are no required XML
attributes.

Locale Element

The Locale element contains the value of the locale that will be used for
authentication. It contains no sub-elements. The optional XML attributes are

| anguage (which represents the language code), count ry (which represents the
country code) and vari ant (which represents the variant code).

Chapter 3  Authentication Service 69



Application Authentication

70

ChoiceValues Element

The ChoiceValues element provides a list of choices. It must contain at least one the
ChoiceValue sub-element. There are no required XML attributes.

ChoiceValue Element

The ChoiceValues element provides a single choice. It must contain at least one
Value sub-element. The required XML attribute isi sDef aul t which takes a value
of yes or no. The default value of no specifies if the value has to be selected by
default when displayed.

SelectedValues Element

The SelectedValues element provides a list of values selected by the user. It must
contain at least one Value sub-element. There are no required XML attributes.

SelectedValue Element

The SelectedValue element provides a value selected by the user. It must contain at
least one Value sub-element. There are no required XML attributes.

OptionValue Element

The SelectedValues element provides a single user-defined option value. It must
contain at least one Value sub-element. There are no required XML attributes.

DefaultOptionValue Element

The DefaultOptionValue element is the default option value. The default value
depends on whether user-defined values or predefined values are used in the
callback. If user-defined values are used, the default value will be an index in the
OptionValues element; if predefined, it will be one of the predefined option
values.It must contain at least one Value sub-element. There are no required XML
attributes.

Value Element

The Value element is used by the remote client to return a value, provided by the
user (or service), back to the Identity Server. It must contain at least one Value
sub-element. There are no required XML attributes.

Identity Server Programmer’s Guide ¢ December 2002



Authentication SPI

Authentication SPI

The Authentication SPI implements the JAAS LoginModule API, and provides
methods to access the Authentication Service and module configuration properties
files. The SPI are organized in the com i pl anet . aut henti cati on. spi package
and contain the abstract class, AMLogi nMbdul e, which must be sub-classed with the
name of an authentication module. The class must also implement thei ni t (),
process() and get Pri nci pal () methods in order to communicate with the
module configuration properties files. The callbacks are then dynamically
generated based on this file. Other methods that can be defined include the

set Logi nFai | ur eURL and set Logi nSuccessURL which set the URLs to send the
user to based on a failed or successful authentication, respectively. More
information on the SPI can be found in the Javadocs located at
<identity_server_root>/ SUNVan! docs

URL Parameters

A URL parameter is a name/value pair appended to the end of a URL. The
parameter starts with a question mark (?) and takes the form name=val ue. If more
than one URL parameter exists, each parameter is separated by an ampersand (&).
URL parameters pass information from the browser to the Identity Server. The
following parameters, when appended to an authentication URL and typed in a
web browser’s Location bar, will redirect the user to the appropriate resource after
authentication.

= got o—Adding a got o=<aut h_success_URL> query parameter tells the
Authentication Service to send the user to the noted URL when successful
authentication has been completed. An example got o URL might be
http://<host. domai n: port >/ <servi ce_depl oy_uri >/ U/ Logi n?got o=htt
p: // wawv. sun. com A got o=<I| ogout _URL> query parameter can also be used to
tell the Authentication Service to send the user to the noted URL when they
have logged out. An example got o URL might be
http://<host. domai n: port >/ <servi ce_depl oy_uri >/ U/ Logi n?got o=htt
p://wmv. sun. com | ogout . htm .

= got oOnFai | —Adding a got oOnFai | =<aut h_f ai | _URL> query parameter tells
the Authentication Service to send the user to the URL noted if user
authentication has failed. An example got oOnFai | URL might be
http://<host. domai n: port >/ <servi ce_depl oy_uri >/ U/ Logi n?got oOnFa
il=http://ww. sun.comauth_fail.htmn.

Chapter 3  Authentication Service 71



URL Parameters

or g—The Authentication Service needs to know the requesting user’s
organization when the user first accesses the Identity Server. From this
information the correct login page, based on the organization and the locale
setting in the particular organization will be displayed. Adding an

or g=<or g_nane> query parameter tells the Authentication Service the user’s
organization. An example or g URL might be htt p: / / <host . domai n: port >/
<servi ce_depl oy_uri >/ U/ Logi n?org=i pl anet.

user —Authentication can be defined at the user level. For example, one user’s
profile can be configured to authenticate using the Certification module while
another might be configured to authenticate using the LDAP module. Adding
auser =<user _nane> query parameter tells the Authentication Service to send
the user to their configured authentication process. An example user might be
http://<host. domai n: port >/ <servi ce_depl oy_uri >/ U/ Logi n?user =tes
t.

r ol e—Authentication can be configured on a per-role basis. Adding a

r ol e=<r ol e_nane> query parameter tells the Authentication Service to send
the user to the authentication process configured for that role. An example
rol e URL might be ht t p: / / <host . domai n: port >/ <servi ce_depl oy_uri >/
Ul / Logi n?r ol e=nanager.

modul e—A specific authentication module can be requested by adding a
modul e=<aut h_nodul e_name> query parameter. An example nodul e URL
might be ht t p: / / <host . donai n: port >/ <servi ce_depl oy_uri >/ U/
Logi n?rmodul e=uni x.

ser vi ce—Different authentication schemes can be configured for different
services using the Authentication Configuration Service. For example, an
online paycheck application might require authentication using a more secure
Certification module while an organization’s employee directory application
might require LDAP authentication only. An authentication scheme can be
configured, and named, for each of these services. The

servi ce=<aut h_scheme_nane> query parameter tells the Authentication
Service that this user desires to use the <aut h_scheme_nane> authentication
configuration. An example ser vi ce URL might be

http://<host. domai n: port >/ <servi ce_depl oy_uri>/ U/

Logi n?servi ce=sv1.

NOTE The Authentication Configuration Service is used to define a scheme for

service-based authentication. More information on this service can be found
in the Identity Server Administration Guide.

72 Identity Server Programmer’s Guide « December 2002



C Programs and Authentication

= arg=newsessi on—The Authentication Service will destroy an existing session
token and perform a new login in one request with the use of the
ar g=newsessi on query parameter. This option is typically used in the
Anonymous Authentication module. The user first authenticates with an
anonymous session, and then hits the register or login link. An example
ar g=newsessi on URL might be htt p: / / <host . domai n: port >/
<servi ce_depl oy_uri >/ U/ Logi n?ar g=newsessi on.

= aut hl evel —Each authentication module is defined with a fixed integer
authentication level. Adding an aut hl evel =<val ue> query parameter tells the
Authentication Service to call a module with, at the least, the configured
authentication level. An example aut hl evel URL might be
http://<host. domai n: port >/ <servi ce_depl oy_uri >/ U/ Logi n?aut hl eve
I =1.

= domai n—This parameter allows a user to login to the specified domain. An
example domai n URL might be ht t p: // <host . domai n: port >/
<servi ce_depl oy_uri >/ U/ Logi n?donmai h=sun. com

= i PSPCooki e—This parameter allows a user to login with a persistent cookie. A
persistent cookie is one that continues to exist after the browser window is
closed. In order to use this parameter, the organization to which the user is
logging in must have Persistent Cookies enabled in their Core service. An
example i PSPCooki e URL might be htt p: // <host . domai n: port >/
<servi ce_depl oy_uri >/ U/ Logi n?or g=exanpl e& PSPCooki e=yes. Once the
user authenticates and the browser is closed, the user can login with a new
browser session and will be directed to console without having to
reauthenticate. This will work until the Persistent Cookie Max Time specified
in the Core Service elapses.

e Login. Tokenl (<username>) , Login. Token2 (<password>)—This
parameter allows a user to login without having to access the authentication
interface.

= Logi n. Token0—This parameter allows a user to login anonymously.

C Programs and Authentication

Following is an example of how customers create XML messages to call the
Authentication Service from a C program.

Chapter 3  Authentication Service 73



C Programs and Authentication

Authentication Request / Response Flow

1. Create an AuthContext for the organization name to login to. The successful
response for this is the authldentifier which is the sessionID for this request.
Code Example 3-4 illustrates what the Request XML message would look like.

Code Example 3-4 Request XML Message For C Applications

"POST /anserver/aut hservice HTTP/ 1.0
Accept text/xmn
Cont ent - Lengt h: <l en>
Cont ent - Type: text/xm ; charset =UTF-8

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<Request Set vers="1.0" svcid="auth" reqi d="1">

<Request ><! [ CDATA[ <?xm versi on="1. 0" encodi ng="UTF-8"?>
<Aut hCont ext versi on="1. 0"><Request authldentifier="0">
<NewAut hCont ext or gNanme="/"></ NewAut hCont ext >

</ Request ></ Aut hCont ext >] ] ></ Request >

</ Request Set >

Code Example 3-5 illustrates what the Response XML message (which returns the
unique session ID for the request) would look like.

Code Example 3-5 Response XML Message From C Applications

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<ResponseSet vers="1.0" svcid="auth" reqi d="1">
<Response><! [ CDATA[ <?xm versi on="1. 0"
encodi ng="1 SO 8859- 1" ?>
<Aut hCont ext version="1.0">
<Response aut hl dentifier="<sessi oni d>">
<Logi nSt at us
status="i n_progress"></Logi nSt at us>
</ Response>
</ Aut hCont ext >] ] >
</ Response>
</ ResponseSet >

2. Start the authentication process using the Login Element. Code Example 3-6
illustrates this message.

74  Identity Server Programmer’s Guide « December 2002



C Programs and Authentication

Code Example 3-6 XML Message To Start Authentication Process

"POST /amserver/aut hservice HTTP/ 1.0
Accept text/xm
Cont ent - Lengt h: <l en>
Cont ent - Type: text/xm ;charset =UTF-8

<xm version="1.0" encodi ng="UTF-8" standal one="yes"
<Request Set vers="1.0" svcid="auth" reqid="1">
<Request ><! CDATA[ <?xm versi on="1. 0" encodi ng="UTF- 8" ?>"
<Aut hCont ext versi on="1. 0" ><Request
aut hl denti fi er ="<sessi oni d>"><Logi n/ ></ Request >
</ Aut hCont ext >] ] ></ Request >
</ Request Set >

The Response to this Request will be the credentials required for the
organization’s configured authentication method. (Passing the credentials is
done using JAAS Callbacks.) Assuming that the default authentication module
is LDAP, Code Example 3-7 illustrates the Response.

Code Example 3-7 XML Response To Authentication Process Request

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<ResponseSet vers="1.0" svcid="auth" reqi d="1">
<Response><! [ CDATA[ <?xm versi on="1. 0"
encodi ng="1 SO 8859- 1" ?>
<Aut hCont ext version="1.0">
<Response aut hl dentifier="<sessionl d>">
<Cal | backs | ength="3">
<PagePropertiesCal | back i sErrorState="fal se">
<Modul eNanme>LDAP</ Modul eNare>
<Header Val ue>Thi s server uses LDAP
Aut henti cati on
</ Header Val ue>
<l mageNanme>nul | </ | rageNane>
<PageTi meCut >120</ Pager Val ue>
<Tenpl at eNanme>nul | </ Tenpl at eNane>
</ PagePr operti esCal | back>
<NameCal | back><Pr onpt > User Nane:
</ Pr onpt ></ NaneCal | back>
<Passwor dCal | back echoPassword="f al se">
<Pr onpt > Passwor d: </ Pr onpt >
</ Passwor dCal | back>
</ Cal | backs>
</ Response>
</ Aut hCont ext >] ] >

Chapter 3  Authentication Service 75



C Programs and Authentication

76

Code Example 3-7 XML Response To Authentication Process Request

</ Response>
</ ResponseSet >

Send the required credentials back to the Identity Server. Code Example 3-8
illustrates this XML message. Code Example 3-8 illustrates the XML message
that contains the authentication credentials.

Code Example 3-8 XML Request With Authentication Credentials

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<Request Set vers="1.0" svcid="auth" reqid="1">
<Request ><! [ CDATA[ <?xm versi on="1. 0"

encodi ng="1 SO 8859- 1" ?>
<Aut hCont ext version="1.0">
<Request aut hldentifier="<sessionld>">
<Submi t Requi r ement s>
<Cal | backs | engt h="2">
<NameCal | back><Prompt > User Nane: </Pronpt>
<Val ue> <val ue> </ Val ue>
</ NaneCal | back>
<Passwor dCal | back echoPassword="f al se">
<Pr onpt > Passwor d: </ Pr onpt >
<Val ue> <passwor d> </ Val ue>
</ Passwor dCal | back>
</ Cal | backs>
</ Submi t Requi r enent s>
</ Request >
</ Aut hCont ext >] ] ></ Request >
</ Request Set >

The Response for the above might be callbacks if the module requires more
information or the LoginStatus. Assuming that there are no more callbacks, the
XML Response is illustrated by Code Example 3-9.

Code Example 3-9 XML Response To Authentication Credentials

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<ResponseSet vers="1.0" svcid="auth" reqi d="1">
<Response><! [ CDATA[ <?xml versi on="1.0"
encodi ng="1 SO 8859- 1" ?>
<Aut hCont ext versi on="1.0">
<Response aut hl dentifi er="<sessioni d>">

Identity Server Programmer’s Guide ¢ December 2002




Authentication Samples

Code Example 3-9 XML Response To Authentication Credentials

<Logi nSt at us st at us="success"

ssot oken="sessi oni d" successur| ="http://ww. yahoo. com' >
</ Logi nSt at us>
</ Response>
</ Aut hCont ext >] ] ></ Response>
</ ResponseSet >

Authentication Samples

Authentication Service samples have been provided and can be found in the
directory <i dentity_server _root > SUN\Vanm sanpl es/ aut hent i cati on. They
include:

< Remote Client API
= Login Module

Remote Client API

This sample program demonstrates how to integrate the Remote Client API for
authenticating users with the Identity Server. It uses LDAP authentication
although it can be modified to use other existing or customized authentication
modules. The instruction file is the r eadne. ht m file found in the

<i dentity_server_root >/ SUN\WAM sanpl es/ aut hent i cat i on/ LDAP directory.

Login Module

This sample demonstrates the steps needed to integrate a custom login module into
the Identity Server. All the files needed to compile, deploy and run the sample
authentication module that is shipped with Identity Server can be found in the
<identity_server_root> SUN\Vam sanpl es/ aut henti cati on/ provi ders
directory. The instruction file is the Readme. ht i file in the same directory.

Chapter 3  Authentication Service 77



Authentication Samples

78 Identity Server Programmer’s Guide « December 2002



Chapter 4

Single Sign-On

The Sun™ One Identity Server provides a single sign-on (SSO) solution that
enables a user to authenticate once to access multiple resources. In other words,
successive attempts by a user to access protected resources will not require them to
provide authentication credentials for each attempt. This chapter explains the
solution, how it works and the SSO APIs. It contains the following sections:

= Overview

= Cookies and Session Tokens

= Cross-Domain Support For SSO
e SSO API

= Sample SSO Java Files

Overview

Identity Server uses access control instructions (ACIs) to define administrative
privileges that will protect an organization’s proprietary data and web resources
from unauthorized persons. A user wanting to access these protected resources
must first pass validating credentials through the Authentication Service. A
successful authentication gives the user authorization to access the protected
resources, based on their assigned policies, roles or other such instructions. If a
user wants to access several resources protected by Identity Server, the Session (or
SSO) Service provides proof of authorization so there is no need to re-authenticate.
As different domains generally have common users who need to generate access to
their services in a single user session, Identity Server has also added a
cross-domain functionality to the Session Service.

79



Overview

Contacting A Policy Agent

When a user attempts to access a protected resource via a web browser, a policy
agent installed on the server that hosts the resource intercepts the request. The
policy agent then inspects the request to see if a user session identifier, or token,
exists. If none exists, the request is passed to the Identity Server where it first
contacts the Session Service to create a session token and then the Authentication
Service which pushes a login page to verify the user.

NOTE Policy agents police the web server or application server on which the
protected resource lives and enforce user policy. They are available for
installation separately from the Identity Server. Additional information can
be found in the Sun ONE Identity Server Policy Agent Guide.

Creating A Session Token

Before a user’s credentials can be authenticated, a session token is generated by the
Session Service. Each token contains a randomly-generated Identity Server session
identifier which ultimately represents the authenticated user. Once created, the
Authentication Service inserts the token into a cookie and assigns it to the client
browser. At the same time the token is assigned, a login page is returned to the user
based upon their organization’s method of authentication (LDAP, RADIUS, Unix,
etc.).

NOTE The session token, at this point, is in an invalid state and will remain in one
until the user has completed authentication.

Providing User Credentials

The user, having received the correct login page as well as a session token, fills in
the appropriate authorization information based on the login page returned. After
the user enters their credentials, the data is sent to the authentication provider
(LDAP server, RADIUS server, etc.) for verification. Once the provider has
successfully verified the credentials, the user is authenticated. The user’s specific
session information is retrieved from the token and the session state is set to valid.
The user can now be redirected to the resource they were attempting to access.

80 Identity Server Programmer’s Guide « October 2002



Cookies and Session Tokens

Cookies and Session Tokens

A cookie is an information packet generated by a web server and passed to a web
browser. It maintains information about the user’s habits with regards to the web
server it is generated by. It does not imply that the user is authenticated. Cookies
are domain-specific; for example, a cookie generated by domai none. comcannot be
used in domai nt wo. com In an Identity Server implementation, the cookie is
generated by the Session Service and set by the Authentication Service. In addition,
Identity Server cookies are session cookies that are stored in memory only.

A session token is generated by the Session Service and inserted into a cookie. It is
generated using a secure random number generator and contains Identity
Server-specific session information. Before a protected resource is accessed, the
user is validated by the Authentication Service and a SSO token is created.

Cross-Domain Support For SSO

Identity Server supports cross-domain SSO. A user authenticated to Identity Server
in one domain can access resources protected by a web agent in another domain.
For example, in one scenario, the lIdentity Server instance for DomainA is the
authentication provider. A user authenticates to Identity Server in DomainA and,
after authentication, the token is set for DomainA. ServerB is protected by a web
agent talking to an Identity Server in DomainB.

NOTE It is not obligatory to have an installed instance of Identity Server in both
domains to use the cross-domain feature.

The Identity Server in DomainB recognizes the DomainA server as its
authentication provider. If UserA accesses a resource on ServerB after
authenticating to DomainA, the policy agent at DomainB checks for a SSO token
and finds that there is no token authorizing access to DomainB. In a cross-domain
SSO scenario, the agent will redirect the user to the URL of the cross-domain
component running with the Identity Server instance in DomainB. This component
redirects the request to the cross-domain component in DomainA since the ldentity
Server in DomainA is the authentication provider. This request contains the SSO
token set by ldentity Server in DomainA in the cookie header. The cross-domain
component at DomainA will send a response back to the component in DomainB
with access authorization if their configured policy permits it. The DomainB
component validates the SSO token from DomainA and creates an SSO token for
the user in DomainB. This process sets a cookie for the user in DomainB.

Chapter 4  Single Sign-On 81



Cross-Domain Support For SSO

82

If a user accesses a resource directly at DomainB without authenticating at
DomainA, the user is redirected to authentication at DomainA. If the
authentication is successful, the SSO token is sent to DomainB from DomainA. The
ServerB validates the SSO token with DomainA, creates it for DomainB and
redirects the user to the original requested resource.

NOTE Identity Server uses a combination of URL parameters and cookies to
implement cross-domain SSO. If a cookie is set in DomainA, the cookie
value is carried over to DomainB using parameters, and a new cookie will
be set with the same cookie name and value, but a different cookie domain.

Enabling Cross-Domain Single Sign-On

To enable cross-domain SSO, the administrator needs to install two different
components: the Cross Domain Controller and the CDSSO Component. The Cross
Domain Controller component comes bundled, and is installed, with Identity
Server. The CDSSO Component needs to be installed separately onto all
participating DNS domain servers.

NOTE The administrator can choose not to enable the cross-domain feature; in this
case, the CDSSO component would function within a single domain.

Cross Domain Controller

The Cross Domain Controller (CDC) is associated with the Identity Server that is
protecting a specific domain. It redirects a request to either the Authentication
Service or to the SSO Component. When a HTTP request comes into the CDC and
no SSO token information is found, the request is redirected to the Authentication
Service. If a SSO token is found for another domain, the request is redirected to the
SSO Component with the appropriate session information appended to the query
string.

CDSSO Component

The CDSSO Component is deployed in each Identity Server-protected domain.
When a user attempts to access a resource, the request is intercepted by the policy
agent as discussed in “Contacting A Policy Agent,” on page 80. If no SSO token is
found, the request is redirected to the CDSSO Component in the domain where the

Identity Server Programmer’s Guide ¢ October 2002



Cross-Domain Support For SSO

resource exists. The CDSSO Component searches the query string again for the
SSO token. As no token is found, the request is redirected to the Cross Domain
Controller associated with the Identity Server that protects the resource. From this
point, the authentication process will be followed.

NOTE If a SSO token is found by the policy agent when the request is made, the
CDSSO Component would not receive the request as the agent would
validate the token as described in Chapter 3, “Authentication Service.”

Configuring For Cross-Domain SSO

The SSO components need to be enabled in order to allow the cross-domain SSO
function to work. Assuming a single Identity Server instance:

1. Install Identity Server in a primary DNS domain.

This will install the complete Identity Server application as well as the CDC
component. The default CDC service URL, after installation, is
http(s)://ldentity_Server_host: port/amserver/cdcservl et.

2. Run the installer again on a machine in all participating DNS domains and
choose the Cross-Domain Support option.

All machines in participating DNS domains need to have an instance of the
CDSSO component installed. After running this option, a CDSSO directory is
created in <i dentity_server _root >/ SUN\Van web- apps. The default CDSSO
Component service URL ishtt p(s)://<CDSSO domai n_host >: <port >/
uri/cdsso.

NOTE Install the CDSSO Component on any web server with host services (in all
participating DNS domains) that need to be protected.

3. Editthecomi pl anet . servi ces. cdsso. cooki edomai n property in the
cdsso. properti es file found in the <i dentity_server_root >/ SUNVam
web- apps/ cdsso/ WEB- | NF/ ¢l asses directory.

The com i pl anet . servi ces. cdsso. cooki edomai n property must be set to
the domain name which hosts the CDSSO component installed in Step 2. Code
Example 4-1 is copied from the file itself.

Chapter 4  Single Sign-On 83



Cross-Domain Support For SSO

Code Example 4-1 Portion of CDSSO. properti es file

/*

* The followi ng keys will be used for Cross Domain SSO support.
* The user if needs cross donmmin sso support should change
*"com i pl anet. servi ces. cdsso. CDCURL" property to point to the

* cdcservlet running with the Identity Server instance

"com i pl anet . servi ces. cdsso. cooki edomai n" property shoul d
specify a comma separated |list of domains for which the cdsso
servliet will set a SSOToken.

Ex: com i pl anet. servi ces. cdsso. cooki edomai n=. sal es. com
.eng.com . narketing.com

*/

* ok * *

com i pl anet. servi ces. cdsso. CDCURL=ht t p: / / exanpl e. domai n_nane. com

: 8080/ anserver/ cdcservl et
comi pl anet. servi ces. cdsso. cooki edonai n=. sal es. com
/*

4. The following three properties, specific to the policy agent, need to be edited in
each policy agent’s AMAgent . properti es file if the agent was not originally
installed with CDSSO enabled.

o Change the value of com i pl anet . am pol i cy. agent s. ccdsso- enabl ed
to enable cross-domain SSO. Code Example 4-2 illustrates this property.

Code Example 4-2 Portion of AMAgent . properti es file

#Cr 0ss- Donmai n Si ngle Sign On URL
#| s CDSSO enabl ed
com sun. am pol i cy. agents. ccdsso- enabl ed=true

o Modify the SSO redirect URL. Code Example 4-3 illustrates this property.

Code Example 4-3 Second portion of AMAgent . properti es file

/*This is the URL the user will be redirected to after successful
*login in a CDSSO Scenari o.
com sun. am pol i cy. agent s. cdsso- conponent . url =http:// <cdsso_host >

: <cdsso_port >/ <uri >/ cdsso

84  Identity Server Programmer’s Guide « October 2002



SSO API

o Add the SSO service URL to the not enforced list. Code Example 4-3
illustrates this property.

Code Example 4-4 Third portion of AMAgent . properti es file

/*I1f cross domain sso support is enabl ed notenforcelist should be

*edited to add cdsso servlet URL in it
com sun. am pol i cy. agent s. not enf or cedLi st =*/ antdsso/ *

This instance of Identity Server and all its participating DNS domains are now
cross-domain SSO enabled.

NOTE The cross-domain SSO solution assumes a single Identity Server instance;
therefore all user and policy information needs to be centralized in that
instance. Multiple Identity Server instances are allowed only if they are all
in the same domain.

SSO API

The SSO solution provides Java API to allow external applications to participate in
the SSO functionality. All Identity Server services (except for Authentication) need
a valid SSO token to process a HTTP request. External applications wishing to use
the SSO functionality must use the SSO token to validate the user’s identity. With
the SSO API, an external application can get the token and, in turn, the identity of a
user and related authentication information. Once a user is authenticated, this
information is used to determine whether or not to provide access to the requested
resource based on the validated user’s policy. The SSO API can also be used to
create or destroy a SSO token, to check the token’s validity or to listen for token
events. (An event might be a token timing out because the user has reached the
token’s maximum time limit.)

Non-Web-Based Applications

Identity Server provides the SSO component primarily for web-based applications,
although it can be extended to any non-web-based applications with limitations.
With non-web-based applications, their are two possible ways to use the API.

Chapter 4  Single Sign-On 85



SSO API

1. The application has to obtain the Identity Server cookie value and pass it into
the SSO client methods to get to the SSO token. The method used for this
process is application-specific.

2. Command line applications, such as amadni n, can be used. In this case, SSO
tokens can be created to access the Directory Server directly. There is no
session created, making the Identity Server access valid only within that
process or VM.

API Overview

The primary purpose of the SSO API is to allow any service or application to make
use of the SSO functionality. They are provided for the implementation of a SSO
solution in external applications. Using these APIs, the identity of the user and
related authentication information can be called. The application then uses this
information to determine whether to provide user access to a protected resource.
The SSO client applications get the information from the SSO token. For example,
assume a user authenticates to ht t p: / / www. Don®mi nA. cont St or e successfully and
later tries to access ht t p: / / www. Donmi nB. conmi Updat el nf 0. Rather than having
the application authenticate the user again, it can use the API to determine if the
user is already authenticated. If the methods indicate that the user is valid and has
already been authenticated, access to this page can be given without the user
authenticating again. Otherwise, the user is prompted to authenticate again.

Each time a user attempts to access a protected application, the application needs
to verify their validity. Generally, the SSO component generates a SSO token for a
user once the user is authenticated. After generation, the token is carried with the
user as the user moves around the web. When the user attempts to access an
application or service that is SSO-enabled, this token is used for user validation.
Specifically, an instance of the SSOTokenManager class is created to allow access to
the cr eat eSSOToken, dest r oyToken and i sVal i dToken methods. An instance of
the SSOToken class is then called; it contains the session information. Between the
two, an application can determine if the user is authenticated. Another way to use
the API is to invoke the SSOTokenLi st ener interface which notifies the application
when a token has become invalid in order for the application to terminate its access.

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <i dentity_server_r oot >/ SUN\Vam docs/
directory into the <i dentity_server _r oot >/ SU\Vanm publ i c_ht ni
directory and pointing the browser to
http://<server _nane. domai n_name>: <port >/ docs/i ndex. htmi .

86 Identity Server Programmer’s Guide ¢ October 2002



SSO API

SSOTokenManager Class

The SSOTokenManager class must be implemented to create one instance per token.
It contains the three methods needed to create, get, validate and destroy SSO
tokens. The cr eat eSSOToken() method is called to create a session token. It
contains methods for doing this using the command line or through the internet.
The dest r oyToken() method is called to delete a token when its session has
ended. Thei sVal i dToken() and val i dat eToken() methods can be called to
verify the authenticity of a token. i sval i dToken() returns true or false depending
on whether the token is valid or invalid, respectively. val i dat eToken() throws an
exception only when the token is invalid; nothing happens if the token is valid.

NOTE SSOrokenManager is a final class and a singleton. SSOToken and
SSOTokenl Dare Java interfaces. Additionally, SSOTokenLi st ener and
SSOTokenEvent are provided to support notification when SSO tokens are
invalidated.

Sample SSOTokenManager Code

The SSCOTokenManager class can be used in the following way to determine if a user
is authenticated:

Code Example 4-5 Sample SSOTokenManager Code

try {
/* create the sso token fromhttp request */

SSOTokenManager manager = SSOTokenManager. get | nstance();

/* The request here is the HtpServl et Request. */
SSOToken token = manager. cr eat eSSOToken(request);

/* use isValid to nethod to check if the token is valid or not
* this method returns true for valid token, fal se otherw se*/
if (token.isValid()) {

/* user is valid, this information may be enough for sone
applications to grant access to the requested resource.
A valid user represents a user who is already authenticated,
by some neans. |f access can be given based on this
further check on user information is not necessary.

*

/

%k ok ok

/* let us get sonme user information */

String host = token. get Host Nane();
java.security. Principal principal = token.getPrincipal();
String authType = token. get Aut hType();

int |level = token. getAuthLevel ();

Chapter 4  Single Sign-On 87



SSO API

Code Example 4-5 Sample SSOTokenManager Code

try {
} else {
/* token is not valid, redirect the user |ogin page */
}

SSO Implementations

The SSOTokenManager maintains a configuration database of valid
implementations for SSOPr ovi der , SSOToken and SSOTokenl D. A request to
SSOTokenManager gets delegated to the SSOPr ovi der . Hence, the SSOPr ovi der
performs the bulk of the function of SSOTokenManager . The SSOToken is the SSO
token that contains the crucial information about the token, and SSOTokenl Dis a
string representation of SSO token. Although SSOTokenManager could support
multiple and disparate providers, the only valid SSO provider is SSOPr ovi der .

Additional Classes

The following classes can be used to implement customized SSO functionality in an
application that does not use the default SSOPr ovi der provided.

SSOToken

The SSOToken class represents a “single sign-on” token and contains information
like the user validation, the authentication method, the host name of the client
browser that sent the request, and session information (maximum session time,
maximum session idle time, session idle time, etc.). Code Example 4-5 on page 87
also makes use of the SSOToken interface.

SSOTokenEvent

The SSOTokenEvent class represents a token event. An event is, for instance, when
a token becomes invalid due to idle time-out or hitting a time limit maximum. A
token is granted when a change in the state of the token, like those mentioned,
occurs. An application must come to know of events in order to terminate access to
the application for a user whose token has become invalid. The SSOTokenLi st ener
class would need to be implemented by applications to receive SSO token events.

Sample SSOTokenEvent Code. The SSOTokenEvent class can be used in the
following way to get SSO Token events:

88 Identity Server Programmer’s Guide ¢ October 2002



SSO API

Code Example 4-6 Sample SSOTokenEvent Code

public class AppTokenLi stener inplenents SSOTokenLi stener {
public void ssoTokenChanged( SSOTokenEvent event) {
try {

SSOToken token = event. get Token();
int type = event. get Type();
long tine = event.getTinme();

SSOTokenl D i d = token. get Tokenl D() ;

Systemout.println("Token id: " +id.toString() + "is

not valid anynore");
/* redirect user to login */
} caib'h”(.Exception e) {
System out . printl n(e.get Message());

}
}

SSOTokenLi st ener nmyLi stener = new AppTokenLi stener();
t oken. addSSOTokenLi st ener ( nyLi st ener) ;

SSOTokenlID

The SSOTokenl Dclass is used to identify the SSOToken object. Additionally, the
SSOTokenl D string contains a random number, the SSO server host, and server
port. The random string in the SSOTokenl Dis unique on a given server. In the case
of services written using a servlet container, the SSOTokenl D can be communicated
from one servlet to another either:

e asacookieinaHTTP header; or

= asanimplementation of the SSOTokenLi st ener interface by the applications to
receive the SSO token events.

SSOTokenListener

The SSOTokenLi st ener interface provides a mechanism for applications that need
notification when an SSO token expires. (It could expire if it reached its maximum
session time, or idle time, or an administrator might have terminated the session.)
Applications wishing to be notified must invoke the addSSOTokenLi st ener
method using the SSOToken interface; this method implements the

SSOTokenLi st ener interface. A callback object will be invoked when the SSO
token expires. Using the SSOTokenEvent (provided through the callback),
applications can determine the time, and the cause of the SSO token expiration.

Chapter 4  Single Sign-On 89



SSO API

NOTE Once an application registers for SSO token events using
addSSOTokenlLi st ener, any SSO token event will invoke the
ssoTokenChanged method. The application can take suitable action in this
method.

Sample API Code

Following are examples of code that illustrate various operations that can be
performed by the SSO API.

User Authentication Sample Code

This code can be used to determine if a user is authenticated. (Additionally, the API
can be used to perform a query on a token for information such as host name, IP
address, or idle time).

Code Example 4-7 Code Sample To Determine If User Is Authenticated

try {
Ser vl et Qut put St ream out = response. get Qut put Streamn() ;

/* create the sso token fromhttp request */
SSOTokenManager manager =

SSOTokenManager . get | nst ance() ;
SSOToken token = manager. cr eat eSSOToken(request);

/* use isValid nethod to check if the token is valid
* this method returns true for valid token, fal se non
*/
i f (manager.isValidToken(token)) {

/* let us get all the values fromthe token */

String host = token. getHost Name();
java.security.Principal principal =

t oken. get Pri nci pal ();
String authType = token. get Aut hType();
int |evel = token.getAuthLevel ();
| net Addr ess i pAddress = t oken. get| PAddress();
| ong mexTi ne = token. get MaxSessi onTi ne();
long idleTime = token.getldl eTime();
| ong mexl dl eTi ne = token. get Max! dl eTi me() ;

out. println("SSOTroken host name: " + host);

out. println("SSOroken Principal nane: " +
princi pal . get Nane());

out.println("Authentication type used: " +
aut hType) ;

out.println("lPAddress of the host: " +

i pAddr ess. get Host Address());

90 Identity Server Programmer’s Guide * October 2002



SSO API

Code Example 4-7 Code Sample To Determine If User Is Authenticated (Continued)

}
/* try to validate the token again, wth another nethod
* if token is invalid, this method throws exception
*/
manager . val i dat eToken(t oken);

/* get the SSOTokenl D associated with the token */
SSOTokenl D tokenl d = t oken. get Tokenl D() ;

String id = tokenld.toString();
/* print the string representation of the token */
out.println("The token id is " + id);

/* set properties in the token. W can get the val ues
* of set properties |ater
*
/
t oken. set Property(" Conpany”, "Sun M crosystens");
t oken. set Property(" Country", "USA");
String name = token. get Property("Conpany");
String country = token. getProperty("Country");

out.println("Property: Conpany is - " + nane);
out.println("Property: Country is - " + country);

out. println("SSO Token Validation test Succeeded");
/* add a listener to the SSOToken. Wenever a token
* event arrives, ssoTokenChanged mnethod of the
* |istener will get called.
*/
SSOTokenLi st ener nyLi stener = new
Sanpl eTokenLi st ener () ;

t oken. addSSOTokenLi st ener (nyLi st ener);

out.flush();
} catch (Exception e) {
System out . println("Excepti on Message: " +

e. get Message());
e.printStackTrace();

In some cases, it might be more efficient and convenient to use
SSOTokenManager . val i dat eToken(t oken) than

SSOTokenManager . i sVal i dToken(t oken) .

SSOTokenManager . val i dToken(t oken) throws an exception when the token is
invalid, thus terminating the method execution right away.

Chapter 4  Single Sign-On 91



SSO API

Get Token Sample Code

This sample code can be used to get the SSO token if the SSO okenl Dstring is
passed to the application.

Code Example 4-8 Code Sample To Get Token from Token ID

try {
/* create the sso token from SSO Token Id string */

SSOTokenManager nanager =SSOTokenManager . get | nstance();
SSOToken t oken = manager . cr eat eSSOToken(t okenStri ng);
* | et us get the SSOTokenl D associated with the token
*/
SSOTokenl D i d = token. get Tokenl D() ;

String tokenld = id.toString();
/* print the string representation of the token */
Systemout.println("The token IDis " + tokenld);

/* set properties in the token. W can get the val ues
* of set properties later */

t oken. set Property(" Conpany”, "Sun M crosystens");
t oken. set Property("Country", "USA");

String name = token. get Property("Conmpany");
String country = token.getProperty("Country");

Systemout.println("Property: Conmpany is - " + nane);
Systemout.println("Property: Country is - " +
country);

System out. println("SSO Token Validation test
Succeeded");
/* add a listener to the SSOToken. Wenever a token
* event arrives, ssoTokenChanged method of the
:/I istener will get called.
SSOTokenLi st ener nyLi stener = new
Sanpl eTokenLi st ener () ;

t oken. addSSOTokenLi st ener (nyLi st ener);
} catch (Exception e) {
System out. println(e.get Message());
e.printStackTrace();
SSOTokenManager nanager =SSOTokenManager . get | nstance();
SSOToken token = manager. cr eat eSSOToken(t okenStri ng);

92  Identity Server Programmer’s Guide * October 2002




SSO API

Listen For Event Code Sample

Applications can listen for SSO token events. It is possible that while a user is using
an application, an SSO token may become invalid because, for example:

= the user's access times out because of the maximum time limit; or,
= the user fails to log out of an application and the idle time-out expires.

The application must be informed of these events to follow-up on the invalid token
by terminating the user’s access. The following two sample codes can be used to
get token events.

Code Example 4-9 Code Sample To Register For SSOToken Events

SSOTokenlLi st ener nyLi stener = new Sanpl eTokenLi stener();
t oken. addSSOTokenLi st ener (nyLi st ener);

where Sanpl eTokenLi st ener is a class defined as:

Code Example 4-10  Code Sample Defining Sanpl eTokenLi st ener Class

public class Sanpl eTokenLi stener inplenments SSOTokenLi stener {

public void ssoTokenChanged( SSOTokenEvent event) {
try {
SSOToken token = event. get Token();
int type = event.get Type();
long tine = event.getTinme();

SSOTokenl D i d = token. get Tokenl D() ;
Systemout.println("Token id is: " + id.toString());
i f (SSOTokenManager. getl nstance().isVali dToken(token))

Systemout. println("Token is Valid");
} else {
Systemout. println("Token is Invalid");

switch(type)

case SSOTokenEvent. SSO TOKEN | DLE_TI MEQUT:
System out. println("Token Idle Tinmeout event");
br eak;

case SSOTokenEvent. SSO TOKEN _MAX_TI MEQOUT:
Systemout. println("Token Max Ti meout event");
br eak;

Chapter 4  Single Sign-On 93



Sample SSO Java Files

Sample

Code Example 4-10 Code Sample Defining Sanpl eTokenLi st ener Class (Continued)

case SSOTokenEvent. SSO TOKEN DESTROY:
Systemout. println("Token Destroyed event");
br eak;

defaul t:
System out . println("Unknown Token event");

}
} catch (Exception e)
System out. println(e.get Message());

After the application registers for SSO token events using addSSOTokenLi st ener,
any SSO token events will invoke the ssoTokenChanged() method. The
application can take a suitable action in this method.

SSO Java Files

Identity Server provides three groups of sample Java files. With these samples, a
developer can create an SSO token in several ways:

1. AnSSO token can be created for an application that runs on the Identity Server
server.

2. An SSO token can be created for an application that runs on a server other than
the Identity Server server.

3. An SSO token can be created by a session ID string can be passed through the
command line.

The files are in the <i denti ty_server_r oot >/ SUN\Vani sanpl es/ sso directory.

SSO Servlet Sample

This sample can be used to create a token for an application that resides on the
same server as the Identity Server application. The files used for this sample are:

e Readne. htni
e Sanpl eTokenLi stener. java

e SSOrokenSanpl eServl et.java

94  Identity Server Programmer’s Guide * October 2002



Sample SSO Java Files

The instructions in Readne. ht M can be followed to run this code.

Remote SSO Sample

This sample can be used to create a token for an application that resides on a
different server from the one on which the Identity Server application lives. The
files used for this sample are:

* renote. htni
e SSOTokenFronRenpt eServl et. j ava
e SSOTokenSanpl eServl et.java

The instructions in r enot e. ht i can be followed to run this code.

Command Line SSO Sample

This sample illustrates how to validate a user from the command line using a
session ID string. The files used for this sample are:

= ssocli.txt
* CommandLi neSSQO. j ava
e SSOTokenSanpl e. j ava

The instructions in ssocl i . t xt can be followed to run this code.

Chapter 4  Single Sign-On 95



Sample SSO Java Files

96  Identity Server Programmer’s Guide « October 2002



Chapter 5

ldentity Management

The Identity Management module of Sun™ ONE Identity Server contains an XML
template file and application programming interfaces (APIs) that provide
functionality to, among other operations, create, delete and manage identity entries
in the Sun ONE Directory Server used for data storage. This chapter offers
information on the public APIs. It contains the following sections:

e Overview

= Object Templates

= Identity Server SDK
< amEntrySpecific.xml

< Management Sample Functions

Overview

The Identity Management module of Identity Server allows for the management of
identity-related objects stored in the Directory Server. Towards this end, it
provides interfaces for creating and managing identity-related objects in the
Directory Server. The management functions that can be performed include the
creation and deletion of specific objects as well as the ability to get, add, modify, or
remove the attributes of these objects. The interfaces include a set of templates,
defined in the unms. xmi file, that contain LDAP configuration information for
identity-related objects and a Java Software Development Kit (SDK) to embed the
management functions into applications or services.

97



Overview

Abstract Objects

Identity Server represents the objects it manages abstractly; in other words, an
organization in Identity Server does not necessarily map to an LDAP organization
in the Directory Server. The default abstract objects are:

e organization

= organizational unit

= people container

= static group

= filtered group

= assignable dynamic group

= group container

NOTE For more information, see “amEntrySpecific.xml Schema,” on page 107.

Marker Object Classes

Abstract objects are identified in the Directory Server by object classes that are
referred to as marker and defined in an Identity Server schema. The marker object
classes are then used in LDAP object entries. For example, the Directory Server
may use organizational units for their first level structure; by adding the Identity
Server organization marker object class, i pl anet - am managed- or g, to the LDAP
entries of these organizational units, Identity Server can manage them as
organizations. It is the use of marker object classes that allows Identity Server to
manage most directory structures, regardless of the LDAP object classes and
naming attributes deployed. The marker object classes are:

e iplanet-am nanaged-filtered-group

e i pl anet - am nanaged- assi gnabl e- gr oup
e iplanet-am nmanaged-static-group

= iplanet-am nanaged-org

= iplanet-am nanaged- org-unit

= ipl anet - am nanaged- peopl e- cont ai ner

< i pl anet - am nanaged- gr oup- cont ai ner

98 Identity Server Programmer’s Guide * October 2002



Object Templates

NOTE The marker object classes are defined in the Identity Server-specific LDAP
schemads_r enot e_schena. | di f which can be found in
<identity_server_root>/ SUNWaNI | di f. Itisloaded into the
Directory Server when Identity Server is installed.

Object Templates

The uns. xnl provides a set of parameters, known as Templates, that contain LDAP
configuration information for all identity-related objects. Identity Server uses these
templates to define the configuration of the Directory Server entries that store the
Identity Server entry information created by the Identity Server SDK. The file can
be found in the <i dentity_server_root >/ SUN\an confi g/ uns directory and is
based on the sns. dt d. The templates provide LDAP structure for:

e Users

< Groups

= Organizations

< Roles

= Organization Units
< Group Containers
= People Containers

The templates are used by the Identity Server SDK for the creation of
identity-related objects in the Directory Server, as well as the dynamic generation
of the object’s roles and the construction of object searches. (These templates can be
modified by administrators to alter the behavior of the Java interfaces.) Using these
templates and the LDIF schema, parameters are configured for all identity-related
objects.

When Identity Server is installed, the uns. xni file is stored in the Directory Server
as the DAI service. (DA is a service in the Identity Server whose configuration is
not made available through the console.) The Identity Server SDK gets the
configuration information from this node when it is being asked to create an
identity-related object, generate a role or perform a search. Any attribute specified
in the ums. xm can be set for a created object.

Chapter 5 Identity Management 99



Object Templates

CAUTION Because uns. xm defines templates for directory entries created by the
SDK, if it is modified and reloaded, there will be inconsistencies between
the entries created prior and the newer ones to be created. Therefore,
modifications to this file are not recommended unless Identity Server is
being installed as a brand new entity.

Structure of ums.xml

The unms. xm defines three types of templates: Structure, Creation and Search.
Structure templates define the Directory Server DIT attributes for the object.
Creation templates define an LDAP template for the object being created. Search
templates define guidelines for performing searches using LDAP.

Structure Templates

Structure templates define the form an Identity Server object will take in the
Directory Server DIT. This conforms to where the object is located within the DIT;
the objects are strictly LDAP entries. There are six attributes that need to be defined
for each subschema.

= cl ass—This attribute represents the name of the Java class that will implement
the object. This attribute is fixed and should never be modified.

= nanme—This attribute defines the entry type of the object. For example, an
organization object has o=org as its name.

< chi | dNode—This attribute specifies the child nodes that will be created in
tandem with the object.

= tenpl at e—This attribute specifies the Creation template used to create this
object.

< filter—This attribute specifies a filter that will be used to identify the object.

e priority—This attribute is defined as 0.

Creation Templates

Every identity object that Identity Server creates has a corresponding creation
template which defines the LDAP schema for the object. It specifies which object
classes and attributes are mandatory or optional and which default values, if any,
should be set. This conforms to the actual LDAP entry in the Directory Server.
There are six attributes that need to be defined for each subschema.

100 Identity Server Programmer’s Guide « October 2002



Object Templates

< name—This attribute defines the name of the object the template will create. It
is also the name of the template itself.

« javacl ass—This attribute defines the name of the Java class used to
instantiate the object.

= requi red—This attribute defines the required LDAP attributes for the object.
= optional —This attribute defines the optional LDAP attributes for the object.
= val i dat ed—This attribute is reserved for future use.

= nani ngattri but e—This attribute specifies the LDAP entry type.

Search Templates

Search templates are used to define how searches for Identity Server objects are
performed in the Directory Server. This template defines a default search filter and
the attributes returned in a search. For example, a search filter is constructed which
defines and specifies which attributes and values are to be retrieved from the
Directory Server.

= nanme—This attribute defines the name of the search template.
= searchfilter—This attribute defines the LDAP search filter.

= attrs—This attribute specifies the LDAP attributes that need to be returned.

Modifying ums.xml

Any new LDAP attributes or object classes must be added to the uns. xni file in
order for them to be recognized by the Identity Server. In most cases, the attributes
that service developers might want to add may already exist in the i net or gper son
and the i net user object classes. If, for example, a custom mail service is being
added with, specifically, an enpl oyee_i d attribute, the uns. xnl file does not need
to be modified because this attribute already exists in the i net or gper son object
class. Generally, as in the example, the uns. xni file does not need to be modified.
The only circumstances where this file would need to be modified are:

< if DSAME is being installed against a legacy DIT.
= if new object classes are being added to users or organizations.
= if service developers want to change the default organizations or roles.

= if service developers need to change an entry’s naming attribute.

Chapter 5 Identity Management 101



Identity Server SDK

Additional information on when and how to modify the uns. xm file is covered in
the section on installing against a legacy DIT in the Sun ONE Identity Server
Installation and Configuration Guide.

CAUTION Itis highly recommended that the uns. xml configuration file is duplicated
before any modifications are made.

Adding Custom Object Classes

If a service developer wanted to add new or customized object classes to the
Directory Server for Identity Server’s use, they would need to modify the templates
in the ums. xm file. Then, to manage them from the Identity Server console, these
new object classes and attributes have to be modelled as an XML service file and
imported into Identity Server using the procedures described in Chapter 6,
“Service Management.”

NOTE unmsExi sti ng. xnl contains objectclasses and user object class tags which
will be replaced after installation and is used when installing Identity Server
with an existing directory server information tree.

|ldentity Server SDK

The Identity Server SDK contains APIs for identity management. These interfaces
can be used by developers to integrate management functions into external
applications or services that will be managed by the Identity Server. The APIs
function to create or delete identity-related objects as well as get, modify, add or
delete the object’s attributes. The com i pl anet . am sdk package contains all the
interfaces and classes necessary to perform these operations in the Directory
Server.

NOTE The ldentity Server Javadocs can be accessed from any browser by
copying the complete <i dentity_server_r oot >/ SUN\VAm docs/
directory into the <i dentity_server _r oot >/ SUN\VWA publ i c_ht mi
directory and pointing the browser to
http://<server_nane. domai n_nane>: <port >/ docs/i ndex. htm .

102  Identity Server Programmer’s Guide ¢ October 2002



Identity Server SDK

SDK Interfaces

Below are brief explanations of the Identity Server SDK interfaces.

AMConstants

AMConst ant s is the base interface for all identity-related objects. It is used to define
the scope of a search of the Directory Server. It can search for a specific object, a
particular level of the DIT or an attribute.

AMODbiject

AMObj ect provides basic methods to manage identity-related objects. Since thisis a
generic class, it does not have any Templates (defined in “Object Templates,” on
page 99) associated with it.

AMOrganization

The AMX gani zat i on interface provides the methods used to manage
organizations. Associated with this interface are the following uns. xm Templates
that define its behavior at runtime. The name of the structural template used by
this class is Organization; the name of the creation template used is
BasicOrganization, and the name of the search template is BasicOrganizationSearch.

AMOrganizationalUnit

The AMOr gani zat i onal Uni t interface provides the methods used to manage
organizational units. Associated with this object are the following uns. xm
Templates that define its behavior at runtime. The name of the structural template
used by this class is OrganizationalUnit; the name of the creation template used is
BasicOrganizationalUnit, and the name of the search template is
BasicOrganizationalUnitSearch.

AMPeopleContainer

The AMPeopl eCont ai ner interface provides the methods used to manage people
containers. Associated with this object are the following uns. xm Templates that
define its behavior at runtime. The name of the structural template used by this
class is PeopleContainer; the name of the creation template used is
BasicPeopleContainer, and the search template is BasicPeopleContainerSearch.

Chapter 5 Identity Management 103



Identity Server SDK

AMGroupContainer

The AME oupCont ai ner interface provides the methods used to manage group
containers. Associated with this object are the following uns. xm Templates that
define its behavior at runtime. The name of the structural template used by this
class is GroupContainer; the name of the creation template used is
BasicGroupContainer, and the search template is BasicGroupContainerSearch.

AMGroup

The AMZ oup interface provides the methods used to manage groups. This is the
basic class for all derived groups, such as static groups, dynamic groups and
assignable dynamic groups. No default templates are defined for this class.

AMStaticGroup

The AVBt at i cG oup interface provides the methods used to manage static groups.
This class extends the base AMG oup interface. The name of the creation template
used with this class is BasicGroup; and the search template used is BasicGroupSearch.
It does not have a pre-defined structural template.

AMDynamicGroup

The AMDynani cG oup interface provides the methods used to manage dynamic
groups. This class extends the base AM&a oup interface. Associated with this object
are the following uns. xm Templates that define its behavior at runtime. The
creation template used is named BasicDynamicGroup; and the search template used
is named as BasicDynamicGroupSearch. It does not have a pre-defined structural
template.

AMAssignableDynamicGroup

The AMAssi gnabl eDynani cGr oup interface provides the methods used to manage
assignable dynamic groups. This class extends the base AMa oup interface.
Associated with this object are the following uns. xnl Templates that define its
behavior at runtime. The creation template used is named
BasicAssignableDynamicGroup; and the search template used is named
BasicAssignableDynamicGroupSearch. It does not have a pre-defined structural
template.

104  Identity Server Programmer’s Guide ¢ October 2002



Identity Server SDK

AMRole

The AMRol e interface provides the methods used to manage roles. Associated with
this object are the following uns. xm Templates that define its behavior at runtime.
The creation template used is named BasicManagedRole; and the search template
used is named BasicManagedRoleSearch. It does not have a pre-defined structural
template.

AMUser

The AMUser interface provides the methods used to manage users. Associated with
this object are the following uns. xm Templates that define its behavior at runtime.
The creation template used is named BasicUser; and the search template used is
named BasicUserSearch. It does not have a pre-defined structural template.

AMTemplate

The AMTenpl at e interface represents a service template associated with a

AMObj ect . Identity Server distinguishes between virtual and entry attributes. Per
Sun ONE Directory Server terminology, a virtual attribute is an attribute not
physically stored in an LDAP entry but still returned with it as a result of a LDAP
search. Virtual attributes are analogous to inherited attributes. Entry attributes are
non-inherited attributes.

NOTE More information on virtual attributes can be found in “Virtual Attribute,”
on page 289 of Appendix B, “Directory Server Concepts.”

For AMOr gani zat i on, AMOr gani zat i onal Unit and AMRol e, virtual attributes can
be grouped in a Template on a per-service basis; there may be one service Template
for each service for any given AMj ect . Such templates determine the service
attributes inherited by the users within the scope of this object. There are three
types of templates: POLI CY_TEMPLATE, DYNAM C_TEMPLATE and

ORGANI ZATI ON_TEMPLATE. POLI CY_TEMPLATE and DYNAM C_TEMPLATE are
implemented using CoS Templates; ORGANI ZATI ON_TEMPLATE does not have
virtual attributes.

Template Priority

When any object inherits more than one template for the same service (by virtue of
being in the scope of two or more objects with service templates), the conflict is
resolved through template priorities. In this priority scheme, zero is the highest
possible priority with the lower priorities extending towards infinity. Templates
with higher priorities will be favored over and to the exclusion of templates with
lower priorities. Templates which do not have an explicitly assigned priority are

Chapter 5 Identity Management 105



Identity Server SDK

considered to have the lowest priority possible, or no priority. In the case where
two or more templates are being considered for inheritance of an attribute value,
and they have the same (or no) priority, the result is undefined, but does not
exclude the possibility that an arbitrarily chosen value will be returned.

AMStoreConnection

The AMSt or eConnect i on class represents a connection to the Identity Server data
store; the Identity Server data store is the Directory Server. This class controls and
manages access to the Directory Server by providing methods to create, remove
and get different types of identity-related objects. A SSOToken is required in order
to instantiate a AMSt or eConnect i on object.

The SDK And Cache

Caching in the Identity Server SDK is used for storing all AMObj ect attributes (i.e.,
attributes of identity-related objects) that are retrieved from the Directory Server.
The cache does not hold AMbj ect directly, only its attributes. All attributes
retrieved from the Directory Server using the interface methods

AMDbj ect. get Attri butes(), AMXj ect.getAttribute(String name) or

AMObj ect . get Attri but es(set Attri but eNanes) will be cached.

Cache Properties

The following cache properties can be configured by accessing the
AMConf i g. properti es file. They are:

e comiplanet. services. st ats. st at e—Depending on whether this property
issettofil eorconsol e, the cache statistics will be printed to either a
anSDKSt at s file or the Identity Server console.

e comiplanet.services. stats. directory—The value of this property is the
directory in which the anSDKSt at s file is created.

e comiplanet.am st at sl nt er val —The interval at which cache statistics are
printed can be specified as the value of this property. It indicates the number of
seconds after which the stats will be printed. For example, a value of 3600
would cause the cache statistics to be printed after 3600 seconds. This will be
used only if com i pl anet . servi ces. stats.stateissettofil e or consol e.

Table 5-1 is explains the information that is recorded in the statistics files.

106 Identity Server Programmer’s Guide « October 2002



amEntrySpecific.xml

Table 5-1  Recorded Cache Properties

Information Name What is recorded
Interval Number of get requests during the specified interval
Hits during interval Number of hits during the specified interval

Hit ratio for this interval  Hit ratio for the specified interval
Total number of requests  Overall number of get requests since a server re-start
Total number of Hits Overall number of hits since a server re-start

Overall Hit ratio Overall hit ratio since a server re-start

Installing the SDK Remotely

It is possible for an external application to perform management functions on the
Identity Server data store (Directory Server) without installing the full Identity
Server application at the external location. By installing the SUN\vansdk package
using the pkgadd utility and answering NO to the first question, “Install the remote
client only”, the full SDK will be installed. Answering YES, the Identity Server SDK
can be installed on a non-Identity Server machine.

amEntrySpecific.xml

The purpose of the anEnt rySpeci fi c. xnl service file is to define the attributes
that will display on the Create, Properties and Search pages specific to each of the
Identity Server abstract objects. Each Identity Server abstract object can have its own
schema definition in the anEnt r ySpeci fi c. xn file which is based on the sns. dt d
as described in Chapter 6, “Service Management.”

amEntrySpecific.xml Schema

Each abstract object can have a schema defined in the anEnt r ySpeci fi c. xm file.
The schema defines what attributes will be displayed on the function pages used to
manage abstract type objects:

= Create—The Create page is displayed when the administrator clicks New.

Chapter 5 Identity Management 107



amEntrySpecific.xml

= Properties—The Properties Page is displayed when the Properties icon (an
arrow in a box) next to an abstract type object is clicked.

= Search—The Search link is in the top left frame of the Identity Server console.

If a service developer wants to customize these ldentity Server function pages for
any of the abstract objects, they would need to modify the anEnt rySpeci fic. xm .
For example, to display an attribute on the group page, the new attribute needs to
be added to the anEnt rySpeci fi c. xnl file. Any abstract object with customized
attributes in the Directory Server would need to have those attributes reflected in
the anEnt rySpeci fi c. xml file also. (Most often, a service developer would only be
customizing the organization pages.) Code Example 5-1 is the organization
attribute subschema that defines the display of an organization’s Organization
Status and its choice values.

Code Example 5-1 Organization Subschema of antnt r ySpeci fi c. xm

<SubSchema nanme="0Organi zati on">
<Attri but eSchema nane="i net domai nst at us”
type="si ngl e_choi ce"
synt ax="string"
any="optional |filter"
i 18nKey="02">
<Choi ceVal ues>
<Choi ceVal ue>Act i ve</ Choi ceVal ue>
<Choi ceVal ue>l nacti ve</ Choi ceVal ue>
</ Choi ceVal ues>
</ Attribut eSchema>
</ SubSchenma>

If the t ype attribute is not specified in anEnt r ySpeci fi c. xm , the defaults will be
used. A default setting means that only the name of the entry will display on the
object function pages in the Identity Server console.

All the attributes listed in the schema definitions in the anEnt r ySpeci fi c. xnl file
are displayed when the abstract type object pages are displayed. If the attribute is
not listed in a schema definition in the anEnt r ySpeci fi c. xm file, the Identity
Server console will not display the attribute. For additional information on the
Identity Server abstract objects and marker object classes, see the Sun ONE ldentity
Server Installation and Configuration Guide.

NOTE The User service is not configured in the amEnt r ySpeci fi c. xm file but
initsown anlJser. xm file.

108 Identity Server Programmer’s Guide ¢ October 2002



Management Sample Functions

Management Sample Functions

Following are several samples that illustrate identity management functions using
the ldentity Server.

Create, Delete Or Modify Users

Users can be created, deleted or modified can be accomplished using the SDK.
There is an interface that can be called for any SDK user creation, deletion, or
modification. The property com i pl anet . am sdk. user Ent r yPr ocessi ngl npl
should be set to the implementation in AMConf i g. properti es.

Code Example 5-2

public interface AMJser EntryProcessed {
/**
* Met hod which gets invoked whenever a user is created
* @aramtoken the SSOToken
* @aram userDN the DN of the user being added
* @aramattributes a map consisting of attribute nanes and
* a set of values for each of them
*/
public void processUser Add( SSOToken token, String user DN,
Map attributes);
}

Create Organization

The following code sample creates a new organization with one user by opening a
connection to the Directory Server with AMSt or eConnect i on. A hew top
organization (newt opor g. com) is then created with its own attributes. User John
Smith is also created as a member of the new organization.

Code Example 5-3 Create New Organization And One User

/1 instantiate a store connector from SSO Token
AMSt or eConnection amsc = new AMSt or eConnecti on(ssoToken);
/1l create a new top |level organization wi thout non-default
attributes
AMOr gani zation org =
ansc. cr eat eTopOrgani zati on( " newt oporg. cont', new HashMap());

Chapter 5 Identity Management 109



Management Sample Functions

110

Code Example 5-3 Create New Organization And One User (Continued)

// set attribute for the newy created organization

org.setStringAttribute("description", "organization
description");

/! save new attribute to the organi zati on obj ect

org.store();

/1l create new user "john" with "cn", "sn" attribute
/1 Map to hold all users to be created, key is the string

val ue for user namng attribute,
/1 value is a Map which contains all the initial values for

the user
Map usershMap = new HashMap();
/1 Map to hold attributes for the user
Map attrsMap = new HashMap();
/1 set cn = John Snmith
Set val ues = new HashSet ();
val ues. add("John Smith");
attrsMap. put("cn", val ues);
/l set sn = Smith
val ues = new HashSet ();
val ues. add("Snith");
attrshMap. put("sn", val ues);
/1 set put user john in the usersivap with

speci fi ed above
user sMap. put ("j ohn", attrsMap);
/1 create user john in the organization
Set users = org. createUsers(usersMap);

cn" & "sn"

Retrieve Templates

The following code sample retrieves a service’s dynamic templates by opening a
connection to the Directory Server with AMSt or eConnect i on. It retrieves a service’s
dynamic template by defining the DN of the top organization (t opor g. con) as well
as the string attribute of the specific service to be retrieved.

Code Example 5-4 Retrieve Service’s Dynamic Template

/1 instantiate a store connector from SSO Token
AMSt or eConnection amsc = new AMSt or eConnecti on(ssoToken);
/1 retrieve top |l evel organization by DN
AMOr gani zation org =
ansc. get Organi zati on(" o=t opor g. com o=i sp");
/1 retrieve Dynam c type AMrenpl ate for
i Pl anet AMSessi onServi ce

Identity Server Programmer’s Guide ¢ October 2002



Management Sample Functions

Code Example 5-4 Retrieve Service’s Dynamic Template (Continued)

AMrenpl ate tenplate =
org. get Tenpl at e("i Pl anet AMSessi onServi ce",

AMTenpl at e. DYNAM C_TEMPLATE) ;
// retrieve attributes
String nmaxSessionTine =

tenplate.getStringAttribute("ipl anet-am sessi on- max-session-tinme

)

Create Users With Modified LDAP Schema

There might be a need to modify the Directory Server schema in order to create
users with non-default object classes. Here are the steps to create users with
extended object classes:

1. Modify Directory Schema with the new set of attributes and object classes.

For more information on this function, see the Sun ONE Directory Server
documentation.

2. Write a new XML service file which contains the definitions for the new object
classes and attributes.

When writing this file, the object classes should be defined under the Global
element and the attributes should be defined under the User element. More
information can be found in Chapter 6, “Service Management.”

3. Write a new module configuration properties file.

This file contains the key-value pairs for the internationalization keys used in
the file created in Step 2. More information can be found in “Configuring
Module Credential Requirements,” on page 57 of Chapter 3, “Authentication
Service.”

4. Load the two files using the amadmin command line interface.

More information on this tool can be found in the Sun ONE Identity Server
Administration Guide.

5. Restart the Directory Server and Identity Server.
6. Register the new service to the desired organization using the Console.

For getting more details about registering a new service, refer to the Sun ONE
Identity Server Administration Guide.

Chapter 5 Identity Management 111



Management Sample Functions

7. Select the new service to create a user with the additional object classes.

When creating new user there is an option to select the newly configured
service.

NOTE Instead of creating a new XML service file, amJser . xm can be modified.
In this case, un-register the old amUser service, modify the file and
re-register the modified service. Key-value pairs still need to be included in
the anlJser . properti es file for newly defined internationalization keys.
uns. xm does not need to be modified for this option.

112  Identity Server Programmer’s Guide « October 2002



Chapter 6

Service Management

Sun™ One ldentity Server uses eXtensible Markup Language (XML) files and
Java™ interfaces for the integration and management of services into the lIdentity
Server configuration. This chapter provides information on the structure of the
XML files and the service management application programming interfaces (API).
It contains the following sections:

= Overview
= Service Definition
= DTD Files
= XML Files

= Service Management SDK

Overview

A service is a group of attributes, defined in an XML file, that are managed together
by the Identity Server console. The attributes can be the configuration parameters of a
software module or they might just be related information with no connection to a
software configuration. As an example of the first scenario, after creating a payroll
module, a developer defines an XML service file that might include attributes to
define an employee name, an hourly pay rate and a tax percentage. This file is
imported into the Sun ONE Directory Server so the attributes and their values can
be stored. When the service is registered to an organization, the attributes can be
managed using the Identity Server console.

113



Overview

Identity Server provides the mechanisms for administrators to define, integrate
and manage groups of attributes as an Identity Server service. Preparing a service
for management involves creating an XML service file, configuring an LDAP Data
Interchange Format (LDIF) file with any new object classes and importing both, the
XML service file and the new LDIF schema, into the Directory Server.
Administrators can then register the service to identity objects using the Identity
Server console. Once registered, the attributes can be managed and customized.

NOTE Throughout this chapter, the term attribute is used for two concepts. An
Identity Server or service attribute refers to the configuration parameters of
a defined service. An XML attribute refers to the parameters that qualify an
XML element in the XML files.

XML Service Files

XML service files enable Identity Server to manage attributes that are stored in
Directory Server. Identity Server does not implement any behavior or dynamically
generate any code to interpret the attributes; it can only set or get the attribute
values. Out-of-the-box, Identity Server loads a number of services to manage the
attributes of its own features. For example, the Logging attributes are displayed
and managed in the Identity Server console, while code implementations within
the Identity Server use these configured attributes to record the operations of the
application. All XML service files are located in <i dentity_server_root >/
SUNVam confi g/ xnl . For more specific information on XML service files, see
“XML Files,” on page 150.

NOTE Any application with LDAP attributes can have this data managed using
the Identity Server console by configuring a custom XML service file and
loading it into the Directory Server. For more information, see “Service
Definition,” on page 115.

Document Type Definition Structure Files

The format of an XML file in Identity Server is based on a structure defined in a
DTD file. In general, a DTD file defines the elements and qualifying attributes
needed to write a well-formed and valid XML document. Identity Server exposes
the DTD files that are used to define the structure for different types of XML files.
The DTDs are located in <i dentity_server _root >/ SUN\Van dt d. Additional
information on them can be found in “DTD Files,” on page 125.

114  Identity Server Programmer’s Guide ¢ December 2002



Service

Service Definition

NOTE Knowledge of XML is necessary to understand DTD elements and how they
are integrated into Identity Server. When creating an XML file, it might be
helpful to print out the relevant DTD and a corresponding sample XML file.

Service Management SDK

Identity Server also provides a service management SDK that provides application
developers with interfaces to register and un-register services as well as manage
their schema and configuration information. These interfaces are bundled in a
package called com sun. i denti ty. sm More information on the SDK can be found
in “Service Management SDK,” on page 156.

Definition

To define a service for registration and management with the Identity Server the
service developer must create an XML service file as well as configure an LDIF file
with any object classes. Both, the XML service file and the new LDIF schema, must
them be imported into the Directory Server. Once imported, the service can be
registered by an administrator and its attributes managed and customized. The
following sections describe the procedures to define and register a service.

Defining A Service

The following procedures must be completed in order to define a service and use
the Identity Server to integrate and manage it.

1. Create an XML service file for the component.

This XML file must conform to the sns. dt d. A simple way to create a new
XML service file would be to copy and modify an existing one. More
information on creating an XML service file can be found in “Creating A
Service File,” on page 117. The DTD syntax can be found in “The sms.dtd
Structure,” on page 126.

Chapter 6  Service Management 115



Service Definition

Extend the LDAP schema in the Directory Server using | dapnodi fy, if
necessary.

Loading an LDIF file into the Directory Server will add any new or modified
object classes and attributes to the DIT. This step is only necessary when
defining dynamic, policy and user attributes. (Global and organization
attributes are stored in the Directory Server as XML, not LDAP.) Instructions
on extending the LDAP schema can be found in “Extending The Directory
Server Schema,” on page 120. See the Sun ONE Directory Server
documentation for additional information.

Import the XML service file into Directory Server using anadni n using the
- - schema or - S option.

Information on importing an XML service file can be found in “Importing the
XML Service File,” on page 122.

Configure a localization properties file and copy it into the
<i dentity_server_root> SUN\WanT | ocal e directory.

The localization properties file must be created with accurate i 18nKey fields
that map to names defined in the XML service file. If no localization properties
file exists, Identity Server will display the actual attribute names. More
information on the localization properties file can be found in “Configuring
Localization Properties,” on page 123.

Update the anEnt rySpeci fi c. xnl oramser. xm files, if necessary.

The anEnt rySpeci fi c. xm file defines the attributes that will display on the
Create, Properties and Search pages specific to each of the Identity Server
abstract objects. The amUser . xm file can be modified to add User attributes to
the User Service. (Alternately, User attributes can be defined in the actual XML
service file in which case, anJser . xm would not need to be modified.)
Information on updating antnt r ySpeci fi c. xm can be found in Chapter 5,
“ldentity Management.” Information on modifying amJser . xnl can be found
in “Modifying A Default XML Service File,” on page 151.

Register the service.

After importing the service into Directory Server, it can be registered and the
attributes managed through the Identity Server console. Information on how
this can be done is in the Sun ONE Identity Server Administration Guide.
Information on how to register using the command line can be found in
“Registering The Service,” on page 124.

116  Identity Server Programmer’s Guide ¢ December 2002



Service Definition

Creating A Service File

The information in this section corresponds to Step 1, creating an XML service file.
The XML service file defines the attributes of an Identity Server service. It must
follow the structure defined in the sns. dt d which enforces the service developer to
combine attributes into one of five groups, allowing the developer to differentiate
between those attributes applicable to, for example, a service instance or a user.

Service File Naming Conventions

When creating a new XML service file, there are some naming conventions that
must be followed.

= The name of a service (other than an authentication module service) as defined
in the XML service file can be any string as long as it is unique.

< The name of an authentication module service as defined in the XML service
file must be in the form i Pl anet AMAut hmodule_nameService.)

= Any defined authentication level attribute must be configured as
i pl anet - am aut h- module_name- aut h- | evel .

Service Attributes

The sns. dt d requires the service developer to define attributes into one of five
groups. These groups differentiate between those attributes applicable to, for
example, the Identity Server deployment, a service or a user.

Global Attributes

Global attributes are defined for the entire Identity Server installation and are
common to all data trees, service instances and integrated applications within the
configuration. Global attributes can not be applied to users, roles or organizations
as their purpose is to configure the Identity Server itself. Server names, port
numbers, service plug-ins, cache size, and maximum number of threads are
examples of global attributes that are configured with one value. For example,
when Identity Server performs logging functions, the log files are written into a
directory. The location of this directory is defined as a global attribute in the
Logging Service and all Identity Server logs, independent of their purpose, are
written to it. Identity Server administrators can modify these default values using
the Identity Server console. Global attributes are stored in the Directory Server as
an XML blob within an attribute of an LDAP object. Therefore, the LDAP schema
does not need to be extended to add a new global attribute.

Chapter 6 Service Management 117



Service Definition

NOTE If a service has only global attributes, it can not be registered to an
organization nor can a service template be created.

Organization Attributes

Organization attributes are defined and assigned at the organization level.
Attributes for an Authentication Service are a good example. When the
Authentication Service is registered, attributes are configured depending on the
organization to which it is registered. The LDAP Server andthe DN To Start User
Sear ch would be defined at the organization level as this information would be
different depending on the address of an organization’s LDAP server and the
structure of their DIT, respectively. Organization attributes are stored as an XML
blob within an attribute of an LDAP object. Therefore, the LDAP schema does not
need to be extended to add a new global attribute.

NOTE Organization attributes are not inherited by sub-organizations. Only
dynamic and policy attributes can be inherited. For additional information,
see “Attribute Inheritance,” on page 120.

Dynamic Attributes

Dynamic attributes are inheritable attributes that work at the role and organization
levels as well as the sub-organization and organizational unit levels. Services are
assigned to organizations; roles have access to any service assigned to its parent
organization. The dynamic attributes are then inherited by users that possess the
role or belong to the organization. Because the attributes are assigned to roles or
organizations instead of set in a user entry, they are virtual attributes inherited by
users using the concept of Class of Service (CoS). When these attributes change, the
administrator only has to change them once, in the role or organization, instead of
a multitude of times in each user entry.

NOTE Dynamic attributes are modeled using class of service (CoS) and roles, both
features of the Sun ONE Directory Server. For information on these features,
see Appendix B, “Directory Server Concepts” or refer to the Sun ONE
Directory Server documentation.

An example of a dynamic attribute might be the address of a common mail server.
Typically, an entire building might have one mail server so each user would have a
mail server attribute in their entry. If the mail server changed, every mail server
attribute would have to be updated. If the attribute was in a role that each user in

118 Identity Server Programmer’s Guide ¢ December 2002



Service Definition

the building possessed, only the attribute in the role would need to be updated.
Another example might be the organization’s address. Dynamic attributes are
stored within the Directory Server as LDAP objects, making it feasible to use
traditional LDAP tools to manage them. A Directory Server LDAP schema needs to
be defined for these attributes.

Policy Attributes

Policy attributes are a special type of dynamic attribute. The main difference is that
policy attributes provide a way to control resource access by defining a user’s
permissions. These defined permission attributes are then used to create named
policy. For example, allowURLList is a named policy that defines a list of URLs a
user is allowed to access; *.red.iplanet.com, *.eng.sun.com are the permitted URLs
defined as policy attributes. Named policies are assigned to roles or organizations;
once assigned, the policy attribute is available in the user entry as an LDAP
attribute, making it feasible to use traditional LDAP tools to manage them. (Named
policies are not stored within the Directory Server as LDAP objects.) A Directory
Server LDAP schema needs to be defined for these attributes.

NOTE Currently, Identity Server has only two services that use policy attributes:
URL Policy Agent and URL Domain Access.

User Attributes

User attributes belong specifically to a single user. User attributes are not inherited
from the role, organization, or sub-organization levels. They are typically different
for each user, and any changes to them would affect only the particular user.
Examples of user attributes could be an office telephone number, a password or an
employee ID. The values of these attributes would be set in the user entry and not
in a role or organization. User attributes can be a part of any service but, for
convenience, ldentity Server has grouped a number of the most widely-used
attributes into a service defined by the amJser . xm service file. User attributes are
stored within the Directory Server as LDAP objects, making it feasible to use
traditional LDAP tools to manage them. A Directory Server LDAP schema needs to
be defined for these attributes.

NOTE When defining user attributes in an XML service file other than
amJser . xnl , the service must be explicitly assigned to the user in order to
display them on the User’s Profile page. In addition, the User Profile
Display Option in the Administration Service) must be set to Conbi ned.
For more information, see the Sun ONE Identity Server Administration Guide.

Chapter 6 Service Management 119



Service Definition

Attribute Inheritance

After creating and loading an XML service file, an administrator can assign the
service’s organization, dynamic and policy attributes by registering it to an identity
object and creating a service template. (Any number of services can be assigned to
these objects.) Then when a user possesses a role or belongs to an organization
which possesses a service, the user inherits the dynamic and policy attributes or the
organization, dynamic and policy attributes, respectively. Inheritance only occurs,
though, if the service possessed is also explicitly assigned to the user. A user can
inherit attributes from multiple roles or parent organizations.

NOTE Attributes defined as User have no inheritance; they are set and modified in
each User entry. For example, if 70 attributes are defined as User and an
organization has two million users, each attribute is stored two million
times.

ContainerDefaultTemplateRole Attribute

Dynamic and policy attributes are used in an XML service file if an administrator
wants to define a service in which all identity objects, with the specified service
assigned to them, would inherit those attributes. After uploading the XML service
file and assigning the service to an organization or role, all users in the sub-trees,
with the specified service assigned to them, will inherit the dynamic and policy
attributes. To accomplish this, Identity Server uses classic CoS (as described in
Appendix B, “Directory Server Concepts”) and role templates.

Cont ai ner Def aul t Tenpl at eRol e is a default filtered role configured for each
organization. The filter is obj ect Ol ass=i pl anet - am nmanaged- per son. Since
every identity object in Identity Server carries this attribute, every identity in the
organization possesses this role. Identity Server then creates a separate CoS
template for each registered service which points to the service’s default attributes.
Any identity who has the role will then get all the dynamic and policy attributes.

Extending The Directory Server Schema

The information in this section corresponds to Step 2, extending the LDAP schema
in the Directory Server. When configuring an XML service file for Identity Server, it
might also be necessary to modify the Directory Server schema. First, any
customized dynamic, policy or user attributes defined in an Identity Server service
that are not already defined in the Directory Server schema need to be associated
with an LDAP object class. Then the attribute(s) and object class(es) need to be
added to the LDAP schema using | daprodi f y and an LDIF file as input; thus, the
Directory Server can store the data.

120 Identity Server Programmer’s Guide ¢ December 2002



Service Definition

NOTE The order in which the LDAP schema is extended or the XML service file is

loaded into Directory Server is not important.

Create an LDIF file to define any new or modified LDAP object classes and
attributes.

Change to the Identity Server bi n directory.
cd <identity_server_root>/ SUNWAnT bi n

Run | dapnodi fy using the LDIF file as input. The syntax is| dapnodi fy -D
<useri d_of _DSmanager> -w <password> -f <path_to LDIF file>

By default, <useri d_of _DSmanager > is cn=Di rect ory Manager . If the LDIF
was created correctly, the result of this command would be to modify the entry
cn=schena.

NOTE After extending the schema using | dapnodi fy, it is not necessary to restart

the Directory Server but, as | dapnodi f y is server-specific, the schema
needs to be extended on all configured servers. Information on how this is
done can be found in the Sun ONE Directory Server documentation.

Run | dapsear ch to ensure that the schema has been created. The syntax is
| dapsearch -b "cn=schema "-s base -D <useri d_of _DSmanager> -w
<password> " (objectclass=*)" | grep -i “servicenange”

If the LDIF was created correctly, the result of this command would be a listing
of the object classes as illustrated in Code Example 6-1 below.

Code Example 6-1 Sample LDIF Listing For Mail Service

objectC asses: ( 1.2. NEW

NAME ' i pl anet - am sanpl e- mai | - servi ce'

DESC 'i Pl anet Sanpl eMail Service' SUP top AUXI LI ARY
MAY ( i pl anet-am sanpl e-mail -service-status $

i pl anet-am sanpl e-nail-root-fol der $

i pl anet - am sanpl e- mai | - sent nessages-f ol der $

i pl anet -am sanpl e-mail -i ndent-prefix $

pl anet -am sanpl e-mai | -initi al - headers $

pl anet -am sanpl e-nai | -i nactivity-interval $

pl anet - am sanpl e-mai | -auto-1 oad $

pl anet - am sanpl e- nai | - header s- per page $

pl anet - am sanpl e-mai | -quota $

pl anet - am sanpl e-nai | - max-attach-len $

pl anet - am sanpl e- mai | - can- save- addr ess- book- on-server )
X-ORI A N "user defined )

Chapter 6 Service Management 121



Service Definition

Code Example 6-1 Sample LDIF Listing For Mail Service

attributeTypes: ( 11.24.1.996.1
NAME ' i pl anet - am sanpl e- mai | - servi ce-st at us’
DESC 'i Pl anet Sanpl eMai | Service Attribute’
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 15
X-ORIG N ’"user defined )

Adding Object Classes To Existing Users

If a new service is created and the service’s users already exist, the object classes
need to be added to the user entries. In order to do this, Identity Server provides
migration scripts for performing batch updates to user entries in the DIT. No LDIF
file need be created when using them. These scripts are described in the Sun ONE
Identity Server Installation and Configuration Guide. Alternatively, registered services
can be added to the user by selecting the service from their Properties page.

NOTE To modify user entries using | dapnodi fy, an LDIF file needs to be created.
For information, see the Sun ONE Directory Server documentation. (It is not
recommended to use | dapnodi f y to create entries for Identity Server.)

Verifying The Directory Server Modification

To verify that the Directory Server has been populated correctly, an administrator
can use | dapsear ch or the following:

1. Change to the Directory Server install directory:

cd /<directory_server_root>/sl apd-<directory_server_host nane>
2. Export the Directory Server contents into an LDIF file using

db2l di f -s <orgnamingattribute=top_| evel _org_name>

This command results in the name of a LDIF schema file stored under
<directory_server_root>/sl apd- sl apd-<di rectory_server_host name>/
I di f which can be viewed to ensure that the new object classes have been
created.

Importing the XML Service File

The information in this section corresponds to Step 3, importing an XML service
file into the Identity Server.

122  Identity Server Programmer’s Guide ¢ December 2002



Service Definition

1. Change to the Identity Server install directory:
cd <identity_server_root>/ SUNWAnT bi n

2. Run following command line application: . / amadni n - -runasdn
<DN_of _directory_server_adm nistrator> --password
<password_directory_server_adm ni strator> --verbose --schena
<xm _service_file_path>

More information on the amadmin command line tool can be found in the Sun
ONE Identity Server Administration Guide.

NOTE If changing an existing service, the original XML service file needs to be
deleted before importing the modified XML service file.

Configuring Localization Properties

The information in this section corresponds to Step 4, configuring a localization
properties file. A localization properties file specifies the locale-specific screen text
and messages that an administrator or user will see when directed to a service’s
attribute configuration page. The files are located in the

<i dentity_server_root> SUNWan | ocal e/ directory. Code Example 6-2 is the
localization properties file for Identity Server’s sample mail service.

Code Example 6-2 Sample Mail Service Localization Properties File

i pl anet -am sanpl e-mai | - servi ce-descri pti on=Sanpl e Mail Service
Profile

al=Mai| Status

a2=Root Fol der

a3=Sent Messages Fol der

ad=Reply Prefix

ab5=Initial Headers to Load

a6=Check New Mail Interval (ninutes)

a7=Aut omati ¢ Message Load at Di sconnect
a8=Headers Per Page

pl=Mai | Quota

p2=Aut o- downl oad Maxi mum Attachnment Length
p3=Save Address Book on Server

Chapter 6  Service Management 123



Service Definition

The localization properties files consist of a series of key/value pairs. The value of
each pair will be displayed on the service’s Properties page in the Identity Server
console. The keys (a1, a2, etc.) map to the i 18nKey attribute fields defined for a
service in the XML service file. The keys also determine the order in which the
fields are displayed on screen, taken in alphabetical and then numerical order (a1,
a2 is followed by b1, b2 and so forth). Note that the keys are strings, so a10 comes
before a2.

NOTE If modifying a localization properties file, Identity Server needs to be
restarted. If importing a localization properties file, Identity Server does not
need to be restarted.

Identifying The Localization Properties File

Identity Server needs to be able to locate the localization properties file so it is
located in the default <i dentity_server_root >/ SUN\Vani | ocal e directory. If the
file is kept in another directory, the j vm cl asspat h=entry in the j vniL2. conf file
needs to be modified to include the new directory path name.

NOTE If thej vnl2. conf file is modified, the Identity Server server needs to be
restarted.

Updating Files For Abstract Objects

For information corresponding to Step 5, updating the anEnt r ySpeci fi c. xnl , see
Chapter 5, “Identity Management.” For information corresponding to Step 5,
updating the amser . xni , see “XML Files,” on page 150.

Registering The Service

The information in this section corresponds to Step 6, registering a new service to
an identity object. The preferred way to register a service is to use the Identity
Server console. Information on how this is done can be found in the Sun ONE
Identity Server Administration Guide. Alternately, services can be registered using
the amadni n command line executable.

1. Change to the Identity Server install directory:
cd <identity_server_root >/ SUN\VANT bi n

124  Identity Server Programmer’s Guide ¢ December 2002



DTD Files

DTD Files

Run following command line application . / amadni n - -runasdn
<DN_of _identity_server_adninistrator> --password
<password_identity_server_adm nistrator> --schena

<xm _service_file_path.>

More information on the amadmin command line tool can be found in the Sun
ONE Identity Server Administration Guide.

Identity Server contains DTD files which are used to define the structure for XML
files used within the Identity Server configuration. The DTDs are located in
<identity_server _root>/ SUN\an dt d and include:

sns. dt d—which defines the structure for XML service files. Information on
this document can be found in “The sms.dtd Structure,” on page 126.

amAdni n. dt d—which defines the structure for XML files used to perform
batch LDAP operations on the directory tree using the command line tool
amAdm n. Information on this document can be found in “The amAdmin.dtd
Structure,” on page 135.

pol i cy. dt d—defines the structure for XML files used to define policies for
servers and services. Information on this document can be found in Chapter 7,
“Policy Service.”

Aut h_Mbdul e_Properti es. dt d—defines the structure for XML files used by
each authentication module to specify the properties for the Authentication
Service interface. Information on this document can be found in Chapter 3,
“Authentication Service.”

server - confi g. dt d—defines the structure for ser ver confi g. xml which
details ID, host and port information for all server and user types. Information
on this document can be found in “The amAdmin.dtd Structure,” on page 135.

CAUTION None of these DTD files should be modified in any way. They contain rules

and definitions that control how certain operations are performed and any
alterations might hinder these operations.

Chapter 6  Service Management 125



DTD Files

The sms.dtd Structure

The sns. dt d defines the data structure for all XML service files. It is located in the
<i dentity_server_root > SUNWan dt d directory. The sns. dt d enforces the
developer to define each attributes as one of five schema types which are then
stored and managed differently. For instance, some of the attributes are applicable
to an entire Identity Server installation (such as a port number or server name),
while others are applicable only to individual users (such as a password). The
attribute types are:

e Global

« Organization

< Dynamic
e User
= Policy

An explanation of the elements defined by the sns. dt d follows. Each element
includes a number of XML attributes which are also explained. Identity Server
currently supports only about 20% of the elements contained in sns. dt d; this
section discusses only those elements.

NOTE Customized attribute names in XML service files should be written in lower
case as ldentity Server converts all attribute names to lower case when
reading from the Directory Server.

ServicesConfiguration Element

ServicesConfiguration is the root element of the XML service file. It's immediate
sub-element is Service. Code Example 6-3 on page 126 illustrates the
ServicesConfiguration element as defined in a file named sanpl eMai | Servi ce. xm .

Code Example 6-3 ServicesConfiguration and Service Element

<Ser vi cesConfi guration> ) )
<Servi ce name="sanpl eMai |l Servi ce” version="1.0">
<Schema. .. >

126  Identity Server Programmer’s Guide ¢ December 2002



DTD Files

Service Element

The Service element defines the schema for a given service. Multiple services can be
defined in a single XML file with this element, but it is recommended that only one
be defined per XML service file. Currently, Identity Server supports the
sub-element Schema which, in turn, defines Identity Server attributes as either
Global, Organization, Dynamic, User or Policy. The required XML service attributes
for the Service element are the name of the service, such as iPlanetAMLoggingService,
and the version number of the XML service file itself. Code Example 6-3 on page
126 also illustrates the Service element and its attributes.

Schema Element

The Schema element is the parent of the elements that define the service’s specific
Identity Server attributes (global, organization, dynamic, user or policy) and their
default values. The sub-elements can be Global, Organization, Dynamic, User or
Policy. The required XML attributes of the Schema element include

servi ceHi er ar chy which defines where the service will be displayed in the
Identity Server console, i 18nFi | eNanme which defines the name of the localization
properties file, and i 18nKey which defines the attribute in the localization
properties file from which this particular defined value will be taken.

NOTE The Schema element is required in all XML service files.

serviceHierarchy Attribute

When adding a service, this attribute must be defined in order to display the
service in the Identity Server console. When a new service is registered, it is
dynamically displayed based on this value. The value is a "/" separated string.
Code Example 6-4 on page 127 illustrates the ser vi ceHi er ar chy attribute as
defined in the file named sanpl eMai | Servi ce. xm . The name sampleMailService is
used to find the localization properties file which defines what will be displayed
below the Other Configuration header in the Identity Server console.

Code Example 6-4 i 18nFi | eNane, i 18nKey and ser vi ceHi er ar chy Attributes

<Schenma
servi ceHi erarchy="/ ot her. confi gurati on/ sanpl eMai | Service"
i 18nFi | eNane="sanpl eMai | Servi ce"
i 18nKey="i pl anet - am sanpl e- i | - servi ce-description">

Chapter 6  Service Management 127



DTD Files

i18nFileName And i18nKey Attributes

These two XML attributes both refer to the localization properties files. The

i 18nFi | eNane attribute takes a value equal to the name of the localization
properties file for the defined service (minus the . properti es file extension). The
i 18nKey is a text string that maps to a property value defined in the localization
properties file (specified, as discussed, in the i 18nFi | eNane attribute.) For
example, Code Example 6-4 on page 127 defines the name of the properties file as
sanpl eMai | servi ce and the text-based value of the i 18nKey maps to its final
value as defined in sanpl eMai | servi ce. properti es. The final value is the name
of the service as it will be displayed in the Identity Server console; in this case,
Sample Mail Service Profile is the name defined in

sanpl eMai | servi ce. properti es. More information on the localization properties
file can be found in Chapter 3, “Authentication Service.”

Schema Sub-Elements

The next five elements are sub-elements of Schema; they are the declarations of the
service’s Identity Server attributes. When defining a service, each attribute must be
defined as one of these types: Global, Organization, Dynamic, Policy and User.
Any configuration (all or none) of these elements can be used depending on the
service. Each Identity Server attribute defined within these elements is itself
defined by the sub-element AttributeSchema.

Global Element

The Global element defines Identity Server attributes that are modifiable on a
platform-wide basis and applicable to all instances of the service in which they are
defined. They can define information such as port number, cache size, or number
of threads, but Global elements also define a service’s LDAP object classes. For
additional information, see “Service File Naming Conventions,” on page 117.

serviceObjectClasses Attribute. The servi ceObj ect d asses attribute is a global
attribute in each XML service file that contains dynamic or policy attributes. This
optional attribute is used by the SDK to set the object class for the service in the
user entries. When an organization registers a service with the

servi ceQbj ect d asses attribute defined, the service’s dynamic or policy
attributes, if any exist, are automatically assigned to any user object which has been
assigned the service.

CAUTION Ifthe servi ceObj ect O asses attribute is not specified and the service
has defined dynamic or policy attributes, an object class violation is called
when an administrator tries to create a user under that organization.

128  Identity Server Programmer’s Guide ¢ December 2002



DTD Files

Multiple values can be defined for the serviceObjectClasses attribute. For example, if
a service is created with two attributes each from three different object classes, the
servi ceQbj ect d asses attribute would need to list all three object classes as

Def aul t Val ues. Code Example 6-5 illustrates a ser vi ceCbj ect O asses attribute

with two defined object classes.

Code Example 6-5 servi cehj ect C ass Defined As Global Element

<d obal >
<AttributeSchema name="servi ceCbj ect O asses"
type="list"
synt ax="string"
i 18nKey="">
<Def aul t Val ues>
<Val ue>i pl anet - am sanpl e- mai | - servi ce</ Val ue>
<Val ue>i pl anet - am ot her - sanpl e- servi ce</ Val ue>
</ Def aul t Val ues>
</ AttributeSchema>
</ d obal >

Organization Element

The Organization element defines Identity Server attributes that are modifiable per
organization or sub-organization. For example, a web hosting environment using
Identity Server would have different configuration data defined for each
organization it hosts. A service developer would define different values for each
organization attribute per organization. These attributes are only accessible using
the Identity Server SDK. For additional information, see “Organization Attributes,”
on page 118.

Dynamic Element

The Dynamic element defines Identity Server attributes that can be inherited by all
user objects. Examples of Dynamic elements would be user-specific session
attributes, a building number, or a company mailing address. Dynamic attributes
always use the Directory Server features, CoS (Class Of Service) and Roles. For
additional information, see “Dynamic Attributes,” on page 118.

User Element

The User element defines Identity Server attributes that exist physically in the user
entry. User attributes are not inherited by roles or organizations. Examples include
password and employee identification number. They are applied to a specific user
only. For additional information, see “User Attributes,” on page 119.

Chapter 6  Service Management 129



DTD Files

Policy Element

The Policy element defines Identity Server attributes intended to provide
privileges. This is the only attribute element that uses the Act i onSchena element to
define its parameters as opposed to the At t ri but eSchena element. Generally,
privileges are get , post, and put ; examples include

canChangeSal aryl nf or mat i on and canFor war dEnai | Addr ess. See Code
Example 6-7 on page 133 for an example of a Policy schema definition from the
sanpl eMai | Servi ce. xm file. For additional information, see “Policy Attributes,”
on page 1109.

SubSchema Element

The SubSchema element can specify multiple sub-schemas of global information for
different defined applications. For example, logging for a calendar application
could be separated from logging for a mail service application. The required XML
attributes of the SubSchema element include narme which defines the name of the
sub-schema, i nher i t ance which defines whether this schema can be inherited by
one or more nodes on the DIT and mai nt ai nPri ori ty which defines whether
priority is to be honored among its peer elements.

NOTE The SubSchena element is used only in the anEnt r ySpeci fi c. xm file.
It should not be used in any external XML service files.

AttributeSchema Element

The AttributeSchema element is a sub-element of the five schema elements
discussed in “Schema Sub-Elements,” on page 128 as well as the SubSchema
element described in “SubSchema Element,” on page 130. It defines the structure of
each attribute. The sub-elements that qualify the AttributeSchema can include

| sOptional ?,1sServiceldentifier?,|sResourceNaneAl | owed?,

| sSt at usAttri but e?, Choi ceVal ues?, Bool eanVal ues?, Def aul t Val ues?, or
Condi ti on. The XML attributes that define each portion of the attribute value are
nane, t ype, ui type, syntax, cosQual i fi er,rangeStart,rangeEnd, m nVal ue,
maxVal ue, val i dat or, any, and % 18nl ndex. Code Example 6-6 on page 130
illustrates the AttributeSchema element, its attributes and their corresponding
values. Note that this example attribute is a Dynamic attribute.

Code Example 6-6 At t ri but eSchena Element With Attributes

'<b;/nam' c>
<AttributeSchema nanme="i pl anet - am sanpl e- mai | - servi ce- st at us”
t ype="si ngl e_choi ce"

130 Identity Server Programmer’s Guide ¢ December 2002



DTD Files

Code Example 6-6 At t ri but eSchema Element With Attributes (Continued)

syntax="string"

i 18nKey="al" >

<Choi ceVal ues>
<Choi ceVal ue>Act i ve</ Choi ceVal ue>
<Choi ceVal ue>l nacti ve</ Choi ceVal ue>
<Choi ceVal ue>Del et ed</ Choi ceVal ue>

</ Choi ceVal ues>

<Def aul t Val ues>
<Val ue>Act i ve</ Val ue>

</ Def aul t Val ues>

</ Attribut eSchema>

name Attribute

This required XML attribute defines the LDAP name for the attribute. Any string
format can be used but attribute names must be in lower-case. Code Example 6-6
on page 130 defines it with a value of

i pl anet - am sanpl e- mai | - servi ce- st at us.

type Attribute

This attribute specifies the kind of value the attribute will take. The default value
for type is | i st but it can be defined as one of the following:

= single specifies that the user can define one value.
= i st specifies that the user can define a list of values.

« single_choice specifies that the user can chose a single value from a list of
options.

e nultiple_choice specifies that the user can chose multiple values from a list
of options.

ChoiceValues Sub-Element. If the t ype attribute is specified as either

si ngl e_choi ceormul tiple_choi ce, the ChoiceValues sub-element must also be
defined in the AttributeSchema element. Depending on the type specified, the
administrator or user would choose either one or more values from the choices
defined. The possible choices are defined in the ChoiceValue element. Code
Example 6-6 on page 130 defines the attribute type as si ngl e_choi ce so the

Choi ceVal ues attribute defines the list of options as Act i ve, | nacti ve and

Del et ed.

Chapter 6 Service Management 131



DTD Files

syntax Attribute

The synt ax attribute defines the format of the value. The default value for syntax is
st ri ng but, it can be defined as one of the following:

= bool ean specifies that the value is either true or false.

= string specifies that the value can be any string.

= passwor d specifies that user must enter a password, which will be encrypted.
= dn specifies that the value is a LDAP Distinguish Name.

< emi | specifies that the value is an email address.

= url specifies that the value is a URL address.

= nuneri c specifies that the value is a number.

= percent specifies that the valueis a.

= nunber specifies that the value is a number.

= deci mal _nunber specifies that the value is a number with a decimal point.
= nunber _r ange specifies that the value is a range of numbers.

« deci mal _r ange specifies that the value is a range of numbers that might
include a decimal figure.

DefaultVValues Sub-Element. Defining any of these syntax values also necessitates
defining a value for the DefaultValue sub-element. A default value will then be
displayed in the Identity Server console; this default value can be changed for each
organization when creating a new template for the service. For example, all
instances of the LDAP Authentication Service use the port attribute so a default
value of 389 could be defined in the XML service file. Once registered, this value
can be modified for each organization using the Identity Server console. (The
default value is also used by integrated applications when a service template has
not been registered to an organization.) In the Code Example 6-7 on page 133, for
example, the Save Address Book On Server field will display a default value of f al se.
The user has the option to change the value to t r ue, if desired. (The default value
for passwor d would be an encrypted password, generally the same as the one used
for ldentity Server.)

132  Identity Server Programmer’s Guide ¢ December 2002



DTD Files

Code Example 6-7 sns. dt d: Act i onSchena Element With Boolean Syntax

<Attri but eSchema
nane="i pl anet - am sanpl e- mai | - can- save- addr ess- book- on- server"

t ype="si ngl e"
synt ax="bool ean”
i 18nKey="p3" >
<Def aul t Val ues>
<Val ue>f al se</ Val ue>
</ Def aul t Val ues>
</ Acti onSchema>

cosQualifier Attribute

This attribute defines how ldentity Server will resolve conflicting cosQual i fi er
attributes assigned to the same user object. This value will appear as a qualifier to
the cosAttri but e in the LDAP entry of the CoS definition. It can be defined as:

def aul t indicates that if there are two conflicting cosQual i fi er attributes
assigned to the same user object, the one with the lowest priority number (0)
takes precedence. (The priority level is set in the cosPri ori t y attribute when a
new CoS template entry is created for an organization or role. For more
information, see “Conflicts and CoS,” on page 298 of Chapter , “.”)

over ri de indicates that the CoS template value overrides any value already
present in the user entry; that is, CoS takes precedence over the user entry
value.

mer ge- schenes indicates that if there are two CoS templates assigned to the
same user, then they are merged so that the values are combined and the user
gets an aggregation of the CoS templates.

NOTE The URL Policy Agent service uses ner ge- schenes to obtain aggregated

values for the Allow and Deny attributes. For example, if the Employee Role
allows access to */ enpl oyee. ht M and the HR Role allows access to
*/ hr. htm , auser possessing both of these roles is allowed access to both.

If this attribute is not defined, the default behavior is for the user entry value to
override the CoS value in the organization or role. The default value is def aul t .
(The oper at i onal value is reserved for future use.)

Chapter 6 Service Management 133



DTD Files

any Attribute

The any attribute specifies whether the attribute for which it is defined will display
in the Identity Server console. It has six possible values that can be multiply
defined using the “|” (pipe) construct:

= di spl ay specifies that the attribute will display on the user profile page. The
attribute is read/write for administrators and regular users.

= adnmi nDi spl ay specifies that the attribute will display on the user profile page.
It will not appear on an end user page; the attribute is read/write for
administrators only.

= user ReadOnl y specifies that the attribute is read/write for administrators but
is read only for regular users. It is displayed on the user profile pages as a
non-editable label for regular users.

= required specifies that a value for the attribute is required in order for the
object to be created. The attribute will display on the Create page with an
asterisk.

= optional specifies that a value for the attribute is not required in order for the
object to be created.

< filter specifies that the attribute will display on the Search page.

The required oropti onal keywordsandthefilter and di spl ay keyword can
be specified with a pipe symbol separating the options (any=r equi r ed| di spl ay or
any=optional | di spl ay| filter).Ifthe any attribute is set to di spl ay, the
qualified attribute will display in Identity Server console when the properties for
the Create page are displayed. If the any attribute is set to r equi r ed, an asterisk
will display in that attribute’s field, thus the administrator or user is required to
enter a value for the object to be created in Identity Server console. If the any
attribute is set to opt i onal , it will display on the Create page, but users are not
required to enter a value in order for the object to be created. If the any attribute is
settofilter,the qualified attribute will display as a criteria attribute when Search
is clicked from the User page.

%i18nindex Attribute (i18nKey)

The i 18nKey attribute, as defined in “il8nFileName And i18nKey Attributes,” on
page 128, is referenced as an entity in the sns. dt d.

NOTE If the i 18nKey value is blank (that is, “ *“), the Identity Server console will
not display the attribute.

134  Identity Server Programmer’s Guide ¢ December 2002



DTD Files

The amAdmin.dtd Structure

The amAdni n. dt d defines the data structure for all XML files which will be used to
perform batch LDAP operations on the DIT using amAdni n. It is located in the

<i dentity_server_root > SUNWAan dt d directory. The command line operations
include reads and gets on the attributes as well as creations and deletions of user
objects (roles, organizations, users, people containers, and groups). The following
sections discuss the elements and attributes of the amAdni n. dt d as well as the
sample XML templates installed with Identity Server that use this structure. These
samples can be found in <i dentity_server _r oot >/ SU\Wam sanpl es/

admi n/ cl i / bul k- ops and will be used to illustrate these sections.

Requests Element

The Requests element is the root element of the batch processing XML file. It must
contain at least one child element which defines the Identity Server identity objects
(Organization, Container, People Container, Role and Group) onto which the
actual requests are performed. To enable batch processing, the root element can
take more than one set of requests. The Requests element must contain at least one
of the following sub-elements;

e (O gani zati onRequest s

e Contai ner Requests

= Peopl eCont ai ner Request s

= Rol eRequests

* G oupRequests

e SchemaRequests

e ServiceConfigurati onRequests

Based on the defined request, the corresponding Identity Server API will be called
to perform the operation.

OrganizationRequests Element

The OrganizationRequests element consists of all requests that can be performed on
Organization objects. The required XML attribute for this element is the LDAP
Distinguished Name (DN) of the organization on which all of the sub-element
requests will be performed. This element can have one or more sub-elements
which perform their operations on the defined instance of the Organization object.

Chapter 6 Service Management 135



DTD Files

(Different OrganizationRequests elements can be defined in one document to modify
more than one Organization DN.) Code Example 6-8 on page 140 defines a myriad
of objects to be created from the top level organization, o=i sp. The sub-elements of
OrganizationRequests are:

* CreateSubOrganization
e CreatePeopl eCont ai ner
e COreateRole

e CreateGoup

e CreatePolicy

= AssignPolicy

= UnAssi gnPol i cy

e CreateServiceTenpl ate
e Mdi fySubOrgani zati on
e MdifyServiceTenpl ate
e DeleteServiceTenpl ate
= Modi f yPeopl eCont ai ner
= MdifyRole

e MdifyGoup

e MdifyPolicy

e Get SubOrgani zations

e Get Peopl eCont ai ners

e CetRoles

* Cet G oups

® CetUsers

e RegisterServices

e UnregisterServices

e Get Regi st eredServi ceNanes
* Get Nunber Of Servi ces

e Del eteRol es

136  Identity Server Programmer’s Guide ¢ December 2002



ContainerRequests Element
The ContainerRequests element consists of all requests that can be performed on

Del et eGr oups

Del et ePol i cy

Del et ePeopl eCont ai ners

Del et eSubOr gani zat i ons

DTD Files

Container objects. The required XML attribute for this element is the DN of the
container on which the sub-element requests will be performed. This element can
have one or more sub-elements which perform their operations on the same

instance of the container. (Different ContainerRequests elements can be defined in

one document to modify more than one Container DN.) Code Example 6-8 on page
140 illustrates how this element can be modeled. The sub-elements of
ContainerRequests are:

Cr eat eSubCont ai ner

Cr eat ePeopl eCont ai ner
CreateRol e

Creat eG oup

CreatePol i cy

Assi gnPol i cy

UnAssi gnPol i cy

Creat eServi ceTenpl ate
Modi fyServi ceTenpl at e
Modi f ySubCont ai ner
Modi f yPeopl eCont ai ner
Modi f yRol e

Get SubCont ai ners

Get Peopl eCont ai ners
Get Rol es

Cet G oups

Cet User s

Chapter 6

Service Management

137



DTD Files

e RegisterServices

= UnregisterServices

® CGet Regi st eredServi ceNanes
e Get Nunber Of Servi ces

* Del eteRol es

e Del eteGoups

e DeletePolicy

= Del et ePeopl eCont ai ners

e Del et eSubCont ai ners

PeopleContainerRequests Element

The PeopleContainerRequests element consists of all requests that can be performed
on People Container objects. The required XML attribute for this element is the DN
of the container on which the sub-element requests will be performed. This
element can have one or more sub-elements which perform their operations on the
same instance of the people container. (Different PeopleContainerRequests elements
can be defined in one document to modify more than one People Container DN.)
Code Example 6-8 on page 140 illustrates how this element can be modeled. The
sub-elements of PeopleContainerRequests are:

e Creat eSubPeopl eCont ai ner
= Modi f yPeopl eCont ai ner

* CreateUser

= MdifyUser

® Cet Nunber Of User s

* GetUsers

e Get SubPeopl eCont ai ners
* Del eteUsers

e Del et eSubPeopl eCont ai ners

138 Identity Server Programmer’s Guide ¢ December 2002



DTD Files

RoleRequests Element

The RoleRequests element consists of all requests that can be performed on roles.
The required XML attribute for this element is the DN of the role on which the
sub-element requests will be performed. This element can have one or more
sub-elements which perform their operations on the same instance of the role.
(Different RoleRequests elements can be defined in one document to modify more
than one Role DN.) Code Example 6-8 on page 140 illustrates how this element can
be modeled. The sub-elements of RoleRequests are:

e CreateServiceTenpl ate
* MdifyServiceTenpl ate
= AssignPolicy

* UnAssi gnPol i cy

® Cet Nunber Of User s

* GetUsers

e AddUsers

GroupRequests Element

The GroupRequests element consists of all requests that can be performed on group
objects. The required XML attribute for this element is the DN of the group on which
the sub-element requests will be performed. This element can have one or more
sub-elements which perform their operations on the same instance of the group.
(Different GroupRequests elements can be defined in one document to modify more
than one Group DN.) Code Example 6-8 on page 140 illustrates how this element
can be modeled. The sub-elements of GroupRequests are:

e CreateSubG oup

* Get SubGroups

® Cet Nunber Of User s
* CetUsers

« AddUsers

e Del et eSubGr oups

Chapter 6  Service Management 139



DTD Files

AttributeValuePair Element

The AttributeValuePair element can be a sub-element of many of the following
batch processing requests. It can have two sub-elements, neither of which can
themselves have sub-elements. The Attribute sub-element must be empty while the
Value sub-element takes a default value to display in the Identity Server console.
The Attribute sub-element takes a required XML attribute called nane. The value of
nane is the attribute name which is equal to one string without spaces; no
sub-elements are allowed. Code Example 6-13 on page 144 illustrates how an
attribute/value pair would be added to a sub-organization.

Create<Object> Elements

The CreateSubOrganization, CreateUser, CreateGroup, CreateSubContainer,
CreatePeopleContainer, CreateSubGroup, CreateSubPeopleContainer and CreateRole
elements create a sub-organization, user, group, sub-container, people container,
sub-group, sub-people container and role, respectively. The object is created in the
DN that is defined in the second-level <Object>Requests element under which the
Create<Object> element is defined. AttributeValuePair may be defined as a
sub-element (or not). The required XML attribute for each element is cr eat eDN; it
takes the DN of the object to be created. Code Example 6-8 on page 140 illustrates an
example of some of these elements.

Code Example 6-8 Portion of Batch Processing File cr eat eRequest s. xmi

'<i?équest s>
<Organi zat i onRequest s DN="dc=exanpl e, dc=coni >

<Cr eat eSubOr gani zati on
cr eat eDN="o=subor g, dc=exanpl e, dc=coni'/ >
<Cr eat ePeopl eCont ai ner
cr eat eDN="ou=Peopl e, dc=exanpl e, dc=cont'/ >
<Cr eat eRol e creat eDN="cn=Manager Rol e, dc=exanpl e, dc=coni'/ >
<Cr eat eRol e creat eDN="cn=Enpl oyeeRol e, dc=exanpl e, dc=coni'/ >
<Creat eG oup
cr eat eDN="ou=Cont r act or sG oup, dc=exanpl e, dc=coni'/ >
<Creat eGroup creat eDN="ou=Enpl oyeesG oup, dc=exanpl e, dc=cont'/ >

</ Request s>

140  Identity Server Programmer’s Guide ¢ December 2002




DTD Files

CreatePolicy Element

The CreatePolicy element creates one or more policy attributes. The Policy
sub-element defines the named policy. The required XML attribute is cr eat eDN
which takes the DN of the organization where the policy will be created. This and
the following nested elements are all illustrated in Code Example 6-9 on page 141.

Policy Element. The Policy sub-element defines the permissions or rules of the
policy. It can take one or more of the Rule sub-elements. The required XML
attribute is name which specifies the name of the policy. The ser vi ceNane attribute,
which identifies the service to which the named policy applies, is an optional XML
attribute.

Rule Element. The Rule sub-element defines a specific permission of the policy.
Rule can take three sub-elements. The required XML attribute is nanme which
defines a name for the rule. The three sub-elements are:

e ServiceName Element

The ServiceName sub-element defines the service for which a rule has been
created. There are no sub-elements; the ServiceName element itself must be
empty. The required XML attribute is name which takes a string value.

e ResourceName Element

The ResourceName sub-element defines the domain for which this permission is
being defined. There are no sub-elements; the ResourceName element itself must
be empty. The required XML attribute is name which takes a string value.

= AttributeValuePair Element

The AttributeValuePair sub-element defines the action names and
corresponding action values of the rule. For additional information, see
“Delete<Object> Elements,” on page 142.

Code Example 6-9 Portion of Batch Processing File cr eat ePol i cyOr g. xni

'<i?équest s>
<Organi zat i onRequests DN="o=i sp" >

<Creat ePol i cy creat eDN="o=exanpl e. com o=i sp">
<Pol i cy nane="url policy" serviceName="i Pl anet AMM¢bAgent Servi ce" >
<Rul e nane="Manager Rul e">
<Servi ceName nanme="i Pl anet AMAébAgent Servi ce"/ >
<Resour ceNanme nane="*.exanpl e. coni'/>
<Attri buteVval uePai r>
<Attribute nane="pernission"/>

<Val ue>i pl anet - am web- agent - access-al | ow| i st </ Val ue>

</ AttributeVal uePair>

Chapter 6 Service Management 141



DTD Files

Code Example 6-9 Portion of Batch Processing File cr eat ePol i cyOr g. xml

</ Rul e>
<Rul e nane="engManager Rul e">
<Servi ceName nanme="i Pl anet AWAebAgent Servi ce"/ >
<Resour ceNanme nane="*.exanpl e. coni'/>
<Attri buteVal uePai r>
<Attribute nane="pernission"/>
<Val ue>i pl anet - am web- agent - access-al | ow| i st </ Val ue>
</ AttributeVal uePair>
</ Rul e>
</ Pol i cy>
</ CreatePol i cy>
</ Organi zat i onRequest s>
</ Request s>

CreateServiceTemplate Element

The CreateServiceTemplate element creates a service template for the organization
defined in the second-level Requests element. There are no sub-elements; the
CreateServiceTemplate element itself must be empty. The required XML attribute is
ser vi ceName which takes a string value. Code Example 6-10 on page 142 illustrates
a service template being created for sun. com

Code Example 6-10  Portion of Batch Processing File cr eat eSer vi ceTenpl at es. xnl

'<i?équest s>
<Organi zat i onRequests DN="o=exanpl e. com o=i sp">

<Cr eat eServi ceTenpl at e servi ceNane="sanpl eMui | Service"/>

</ Organi zat i onRequest s>
</ Request s>

Delete<Object> Elements

The DeleteSubOrganizations, DeleteUsers, DeleteGroups, DeleteSubContainers,
DeletePeopleContainers, DeleteSubGroups, DeleteSubPeopleContainers, and DeleteRoles
elements delete a sub-organization, user, group, sub-container, people container,
sub-group, sub-people container and role, respectively. The object is deleted from
the DN that is defined in the second-level <Object>Requests element under which
the Delete<Object> element is defined. DeleteSubOrganizations, DeleteUsers,
DeleteGroups, DeleteSubContainers, DeletePeopleContainers, DeleteSubGroups,
DeleteSubPeopleContainers and DeleteRoles take a sub-element DN; only six of the

142  Identity Server Programmer’s Guide ¢ December 2002



DTD Files

listed elements have the XML attribute deleteRecursively. (DeleteUsers and
DeleteRoles do not have this option; they have no qualifying XML attribute.) If
deleteRecursively is set to false, accidental deletion of all sub-trees can be avoided; it’s
default value is false. The DNsub-element takes a character value equal to the DN of
the object to be deleted. Code Example 6-11 on page 143 illustrates an example of
some of these elements.

Code Example 6-11  Portion of Batch Processing File deleteOrgRequests. xni

<Request s>
<Organi zat i onRequest s DN="o=i sp" >

<Del et eRol es>
<DN>cn=Manager Rol e, o=exanpl e. com o=i sp</ DN\N>
<DN>cn=Enpl oyeeRol e, o=exanpl e. com o=i sp</ DN>
</ Del et eRol es>

<Del et eGroups del et eRecursi vel y="true">
<DN>cn=Enpl oyeesG oup, o=exanpl e. com o=i sp</ DN>
<DN>cn=Cont r act or sGr oup, o=exanpl e. com o=I sp</ DN>
</ Del et eGr oups>

<Del et ePeopl eCont ai ners del et eRecur si vel y="true">
<DN>ou=Peopl el, o=exanpl e. com o=i sp</ DN\>
</ Del et ePeopl eCont ai ner s>

<Del et eSubOr gani zati ons del et eRecur si vel y="true">
<DN>o=exanpl e. com o=i sp</ DN\N>
</ Del et eSubCr gani zat i ons>

</ Organi zat i onRequest s>
</ Request s>

DeletePolicy Element

The DeletePolicy element takes the sub-element PolicyName. The PolicyName
element has no sub-elements; it must be empty. It has a required XML attribute
name which takes a character value equal to the name of the policy. The DeletePolicy
element itself takes a required XML attribute: del et eDN. It takes a value equal to
the DN of the policy to be deleted.

Chapter 6  Service Management 143



DTD Files

DeleteServiceTemplate Element

The DeleteServiceTemplate element deletes the specified service template. There are
no sub-elements; the DeleteServiceTemplate element itself must be empty. The
required XML attributes are ser vi ceNane which takes a string value and
schemaType which defines the attribute group (Global, Organization, Dynamic,
User or Policy). Code Example 6-12 on page 144 illustrates how this element is
formatted.

Code Example 6-12  Portion of Batch Processing File del et eSer vi ceTenpl at es. xni

'<'Réquest s>
<Organi zat i onRequest s DN="o=exanpl e. com o=i sp">
<Del et eServi ceTenpl at e
servi ceName="i Pl anet AMAut hLDAPSer vi ce"
schemaType="or gani zati on" >

</ Del et eServi ceTenpl at e>
</ Organi zat i onRequest s>
</ Request s>

Modify<Object> Elements

The ModifyPeopleContainer, ModifySubContainer, ModifySubOrganization and
ModifyRole, ModifyGroup elements change the specified object. AttributeValuePair
can be defined as a sub-element of the first four listed elements. (The ModifyGroup
element can have no sub-elements; it must be empty.) The required XML attribute
is modi f yDNwhich takes the DN of the object to be modified. Code Example 6-13 on
page 144 illustrates how these elements can be modeled.

Code Example 6-13  Portion of Batch Processing File nodi f yRequest s1. xni

<Request s>
<Organi zat i onRequest s DN="o=i sp" >

<Modi f ySubOr gani zati on nodi f yDN="0=sun. com o=i sp" >
<AttributeVal uePair>
<Attribute nane="Description"/>
<Val ue>DSAME Modi fy</ Val ue>
</ AttributeVal uePair>
</ Modi f ySubOr gani zat i on>

<Modi f yPeopl eCont ai ner nodi f yDN="ou=Peopl e, o=exanpl e. cont >
<Attri buteVal uePai r >
<Attribute nane="Description"/>
<Val ue>DSAME Modi fy</ Val ue>

144  Identity Server Programmer’s Guide ¢ December 2002



DTD Files

Code Example 6-13  Portion of Batch Processing File nodi f yRequest s1. xmi

</ AttributeVal uePair>
</ Modi f yPeopl eCont ai ner >

<Mbodi f yRol e nodi f yDN=" cn=Manager Rol e, o=exanpl e. coni >
<Attri buteVal uePai r>
<Attribute nane="ipl anet-amrol e-description"/>
<Val ue>DSAME Modi fy</ Val ue>
</ Attri buteVal uePair >
</ Modi f yRol e>

</ Organi zat i onRequest s>
</ Request s>

ModifyServiceTemplate Element

The ModifyServiceTemplate element changes a specified service template.
AttributeValuePair must be defined as a sub-element of ModifyServiceTemplate to
change the values. The required XML attribute is ser vi ceNarme which takes a string
value and schemaType. Code Example 6-14 on page 145 illustrates this element.

Code Example 6-14  Portion of Batch Processing File modi f ySer vi ceTenpl at es. xnl

'<i?équest s>
<Organi zat i onRequest s DN="o=exanpl e. com o=i sp">

<Modi f ySer vi ceTenpl at e servi ceNane="sanpl eMai | Servi ce">
<Attri but eVal uePair >
<Attribute
nane="i pl anet - am sanpl e- mai | - sent nessages-fol der"/>
<Val ue>Hell o Mai | Sent </ Val ue>
</ AttributeVal uePair>
</ Modi fyServi ceTenpl at e>
</ Organi zat i onRequest s>
</ Request s>

Get<Object> Elements

The GetSubOrganizations, GetUsers, GetGroups, GetSubContainers,
GetPeopleContainers and GetRoles elements get the specified object. A DN may be
defined as a sub-element (or not). If none is specified, ALL of the specified objects
at all levels within the organization defined in the second-level Requests element
will be returned. The required XML attribute for all but GetGroups and GetRoles is
DNsOnl y and takes at r ue or f al se value. The required XML attribute of GetGroups

Chapter 6  Service Management 145



DTD Files

and GetRoles is | evel which takes a value of either ONE_LEVEL or SUB_TREE.
ONE_LEVEL will retrieve just the groups at that node level; SUB- TREE gets groups at
the node level and all those underneath it. Code Example 6-15 on page 146
illustrates how these elements can be modeled.

DNs Only Attribute
For all objects using the DNsOnl y attribute, the Get elements work as stated below:

= [fthe element has the required XML attribute DNsOnl y set to true and no
sub-element DN is specified, only the DNs of the objects asked for will be
returned.

= [fthe element has the required XML attribute DNsOnl y set to false and no
sub-element DN is specified, the entire object (a DN with attribute/value pairs)
will be returned.

= Ifsub-element DNs are specified, the entire object will always be returned
whether the required XML attribute DNsOnl y is set to true or false.

Code Example 6-15  Portion of Batch Processing File get Request s. xni

<Request s>
<Organi zat i onRequests DN="o=i sp" >

<CGet SubOr gani zati ons DNsOnl y="f al se">
<DN>o=exanpl el. com o=i sp</ DN>
<DN>o=exanpl e2. com o=i sp</ DN\>

</ Get SubOr gani zat i ons>

<Cet Peopl eCont ai ners DNsOnl y="f al se" >
<DN>ou=Peopl e, o=exanpl el. com o=i sp</ DN\N>
<DN>ou=Peopl e, o=exanpl e2. com o=i sp</ DN>
</ Get Peopl eCont ai ner s>

<CGet Rol es | evel ="SUB_TREE"/ >
<CGet G oups | evel ="SUB_TREE"/ >
<CGet Users DNsOnl y="fal se">

<DN>cn=puser, ou=Peopl e, o=exanpl el. com o=i sp</ DN>
</ Cet User s>

</ Organi zat i onRequest s>

146  Identity Server Programmer’s Guide ¢ December 2002



DTD Files

GetService Elements

The GetRegisteredServiceNames and GetNumberOfServices elements retrieve
registered services and total number of registered services, respectively. The
organization from which this information is retrieved is specified in the
OrganizationRequests element. All three elements have no sub-elements or
attributes; the elements themselves must be empty. Code Example 6-16 on page
147 illustrates how the GetRegisteredServiceNames element is modeled.

Code Example 6-16  Batch Processing File get Regi st er edSer vi ceNanes. xmi

<Request s>

<Organi zat i onRequest s DN="o=exanpl e. com o=i sp">
<Cet Regi st eredSer vi ceNanes/ >
</ Organi zat i onRequest s>

</ Request s>

ActionServices Elements

The RegisterServices and UnregisterServices elements perform the requested action
on the service defined in the OrganizationRequests element. All elements take a
sub-element Service_Name but have no XML attribute. The Service_Name element
takes a character value equal to the name of the service. One or more Service_Name
sub-elements can be specified.

Service Action Caveats

= The XML service file for the service must be loaded using the command line
interface amadni n before a service can be acted upon.

= If no Service_Name element is specified or, in the case of UnregisterServices, the
service was not previously registered, the request is ignored.

= If no Service_Name element is specified, the request will be ignored.

Code Example 6-17 on page 147 illustrates how these elements can be modeled.

Code Example 6-17  Portion of Batch Processing File r egi st er Request s. xni

<Request s>
<Organi zat i onRequest s DN="o=exanpl e. com o=i sp">
<Regi st er Servi ces>

<Servi ce_Nane>sanpl eMai | Servi ce</ Servi ce_Nane>
</ Regi st er Servi ces>

Chapter 6 Service Management 147



DTD Files

Code Example 6-17  Portion of Batch Processing File r egi st er Request s. xmi

'<i?équest s>

</ Organi zat i onRequest s>
</ Request s>

AssignPolicy and UnAssignPolicy Elements

The AssignPolicy and UnAssignPolicy elements take the sub-element PolicyName.
The PolicyName element has no sub-elements; it must be empty. It has a required
XML attribute name which takes a character value equal to the name of the policy.
The required XML attribute of AssignPolicy and UnAssignPolicy is pol i cyDNwhich
takes a value equal to the DN of the policy to be acted upon.

SchemaRequests Element

The SchemaRequests element consists of all requests that can be performed on the
default values of the DSAME schema. It has two required XML attributes:
serviceName and SchemaType. serviceName takes a value equal to the name of the
service where the schema lives and SchemaType defines the attribute group (Global,
Organization, Dynamic, User or Policy). This element can have zero or more
sub-elements. The sub-elements of SchemaRequests are:

= RenoveDef aul t Val ues El ement
e Modi fyDefaul t Val ues El enent
= AddDef aul t Val ues El enent
e Cet Servi ceDef aul t Val ues

RemoveDefaultValues Element

The RemoveDefaultValues element removes the default values from the schema
specified in the parent SchemaRequests element. It takes a sub-element of Attribute
which specifies the name of the attribute to be removed. The Attribute sub-element
itself must be empty; it takes no sub-element. There is no required XML attribute.

Code Example 6-18  Portion of Batch Processing File r enoveschemaRequest s. xni

<Request s>
<SchemaRequest s servi ceNane="i Pl anet AMJser Ser vi ce"
SchemaType="dynami c" >
<RenoveDef aul t Val ues>
<Attribute nane="preferredl anguage"/ >

148  Identity Server Programmer’s Guide ¢ December 2002



DTD Files

Code Example 6-18  Portion of Batch Processing File r enoveschemaRequest s. xni

<Request s>

</ RenoveDef aul t Val ues>
</ SchemaRequest s>

</ Request s>

AddDefaultValues and ModifyDefaultValues Elements

The AddDefaultValues and ModifyDefaultValues elements add or change the default
values from the specified schema, respectively. They take a sub-element of
AttributeValuePair which specifies the name of the attribute and the new default
value; one or more attribute/value pairs can be defined. Code Example 6-19 on
page 149 illustrates how this element can be modeled.

Code Example 6-19  Portion of Batch Processing File addschemaRequests. xmi

<Request s>

<SchemaRequest s servi ceName="i Pl anet AMJser Ser vi ce"
SchemaType="dynam c" >

<AddDef aul t Val ues>

<Attri buteVal uePair>
<Attribute nane="ipl anet - am user - aut h- rodul es"/ >
<Val ue>Cert </ Val ue>
</ AttributeVal uePair>

</ AddDef aul t Val ues>
</ SchemaRequest s>
</ Request s>

GetServiceDefaultValues Element

The GetServiceDefaultValues element retrieves the default values from the schema
specified in the parent SchemaRequests element. There are no sub-elements; the
GetServiceDefaultValues element itself must be empty. There is also no required
XML attribute.

ServiceConfigurationRequests Element
The ServiceConfigurationRequests element is reserved for future use.

Chapter 6  Service Management 149



XML Files

XML Files

Identity Server uses XML files to manage service attributes as well as perform
service operations on service attributes. It does not implement any behavior or
dynamically generate any code to interpret the attributes; it can only set or get
attribute values. In addition to XML files that define service attributes, Identity
Server also includes XML templates that can be used for batch processing. This
section contains information on these types of XML files.

Default XML Service Files

Identity Server installs services that manage the attributes of its internal software
components. The Identity Server console manages the attributes for these services;
in addition, Identity Server provides code implementations to use them. These
default XML service files are based on the sns. dt d and are located in

<i dentity_server_root> SUNWam confi g/ xnl . They include:

e amAdni nConsol e. xm —Defines attributes for the Administration service.
e amAut h. xm —Defines attributes for the Core Authentication service.

= amAut hAnonynous. xm —Defines attributes for the Anonymous Authentication
service.

e amAut hCert . xml —Defines attributes for the Certificate-based Authentication
service.

= amAut hLDAP. xml —Defines attributes for the LDAP Authentication service.
e amAut hRadi us. xnl —Defines attributes for the Radius Authentication service.

e amAut hSaf ewr d. xml —Defines attributes for the SafeWord Authentication
service.

e amAut hSecur | D. xm —Defines attributes for the SecurlD Authentication
service.

= amAut huni x. xm —Defines attributes for the Unix Authentication service.
e anCd i ent Det ecti on. xm —Defines attributes for the Client Detection service.

= anmDomai nURLAccess. xml —Defines attributes for the URL Access Policy
service.

= anDSS. xml —Defines attributes for the Certificate Security service.

150 Identity Server Programmer’s Guide ¢ December 2002



XML Files

= anEntrySpeci fic. xm —Defines attributes for the displaying attributes on the
Create, Properties and Search pages for a custom service.

= amnloggi ng. xml —Defines attributes for the Logging service.

= amvenber shi p. xm —Defines attributes for the Membership Authentication
service.

« amNani ng. xm —Defines attributes for the Naming service.

= anPl at f or m xml —Defines attributes for the Platform service.
= anPol i cy. xm —Defines attributes for the Policy service.

= anSAM.. xm —Defines attributes for the SAML service.

« anBessi on. xml —Defines attributes for the Session service.

= amser. xm —Defines attributes for the User service.

= amAebAgent . xm —Defines attributes for the web agents.

Modifying A Default XML Service File

Administrators can display and manage any attribute in the Identity Server console
using XML service files. The new attribute(s) would need to be added to an existing
XML service file. Alternately, they can be grouped into a new service by creating a
new XML service file although the simplest way to add an attribute is just to extend
an existing XML service file. For example, an administrator wants to manage the
nsaccount | ock attribute which will give users the option of locking the account it
defines. To manage it through Identity Server, nsaccount | ock must be described
in a service. One option would be to add it to the amJser . xm service,

i Pl anet AMUser Ser vi ce. This is the service that, by default, includes many
common attributes from the i net Or gPer son and i net User object classes.
Following is an example of how to add the nsaccount | ock attribute to the
amJser. xm service file.

1. Add the following code to the SubSchema nane=User elementin
<identity_server_root>/ SUNVam confi g/ xm / amJser . xmi .

Code Example 6-20 nsaccount | ock Example Attribute

<AttributeSchema name="nsaccount| ock"
type="si ngl e_choi ce"

synt ax="string"

any="filter"

i sChangeabl eByUser ="yes"

i 18nKey="ul3">

<Choi ceVal ues>

Chapter 6  Service Management 151




XML Files

Code Example 6-20 nsaccount | ock Example Attribute (Continued)

<Val ue>t r ue</ vVal ue>
<Val ue>f al se</ Val ue>
</ Choi ceVal ues>
<Def aul t Val ues>
<Val ue>f al se</ Val ue>
</ Def aul t Val ues>
</ Attribut eSchema>

2. Update the <i dentity_server _root>/ SUNVant | ocal e/ en_US/
amUser . properties file with the newi 18nKey tag ul3 including the text to be
used for display.

Code Example 6-21  User Account Locked Example i18nKey

hiézUser Account Locked

3. Remove the service
ou=i Pl anet AMJser Ser vi ce, ou=ser vi ces, dc=sun, dc=comusing the
command line tool amadmni n.

For information on the amadni n command line syntax, see Sun ONE ldentity
Server Administration Guide.

4. Reload the user service, anUser . xnl , using the command line tool amadni n.

For information on the amadnmi n command line syntax, see Sun ONE ldentity
Server Administration Guide.

NOTE When modifying a default XML service file, be sure to also modify the
Directory Server by extending the LDAP schema, if necessary. For more
information, see “Service Definition,” on page 115.

152  Identity Server Programmer’s Guide ¢ December 2002



XML Files

Batch Processing XML Files

The - - dat a or -t option of amadni n is used to perform batch processing using the
command line. Batch processing XML templates have been installed and can be
used to help an administrator to:

= Create, delete and read roles, users, organizations, groups, people containers
and services.

= Getroles, people containers, and users.
= Get the number of users for groups, people containers, and roles.
= Import, register and un-register services.

= Get registered service names or the total number of registered services for an
existing organization.

= Execute requests in multiple XML files.

The preferred way to perform most of these functions singularly is to use the
Identity Server console. The batch processing templates have been provided for
ease of use with bulk updates although they can also be used for single
configuration updates. This section provides an overview of the batch processing
templates which can be modified to perform batch updates on user objects (groups,
users, roles, people containers, etc.) in the Directory Server.

NOTE Only XML files can be used as input for the amadni n tool. If an
administrator wants to populate the DIT with user objects, or perform batch
reads (gets) or deletes on the DIT, then the necessary XML input files, based
on the amadmi n. dt d or sis. dt d, must be written.

Batch Processing XML Templates

All of the batch processing XML files perform operations on the DIT; they create,
delete, or get attribute information on user objects. The batch processing XML
templates provided with Identity Server include:

e Cont O eateServi ceTenpl at e. xml —Creates a service template for a specific
container object.

= Cont Modi f yRequest s1. xm —Adds new attributes for a sub-container object.

= Cont Modi f yRequest s2. xm —Adds new attributes for a people container
object.

= Cont Modi f yRequest s3. xm —Adds new attributes for a sub-container object.

Chapter 6 Service Management 153



XML Files

Cont Modi f yRequest s4. xm —Adds new attributes to a role object.

Cont assi gnPol i cyRequest s. xnl —Assigns policy to a specific container
object.

Cont unassi gnPol i cyRequest s. xm —Removes an assigned policy from a
specific container object.

PCMbdi f yRequest s1. xml —Adds new attributes to a people container object.

PCModi f yUser Request s. xml —Adds new attributes to users in a people
container object.

Rol eCr eat eSer vi ceTenpl at es. xm —Creates a service template for a role
object.

Rol eassi gnPol i cyRequest s. xml —Assigns policy to a role object.

Rol enodi f ySer vi ceTenpl at es. xml —Adds new attributes to a service
template for a specific role object.

Rol eunassi gnPol i cyRequest s. xm —Removes policy from a specific role
object.

addChoi ceVal uesRequest . xml —Adds a selection of values the user can chose
from to an existing service attribute.

addschemaRequest s. xnl —Adds a default value to an existing service
attribute.

addser vi ceConfi gur ati onRequest s. xm —This is reserved for future use.
creat ePol i cyOr g. xm —Creates policy for an organization object.
cr eat eRequest s. xml —Creates a multitude of objects in the DS.

creat eSer vi ceTenpl at es. xml —Creates a service template for an
organization object.

del et eGr oupRequest s. xm —Deletes all objects under a specific group
container.

del et eOr gRequest s. xnl —Deletes a multitude of objects under a specific
organization.

del et ePCRequest s. xm —Deletes a multitude of objects under a specific
people container.

del et eSer vi ceTenpl at es. xm —Deletes a service template under a specific
organization.

154  Identity Server Programmer’s Guide ¢ December 2002



XML Files

e del eteserviceConfigurationRequests. xm —This is reserved for future
use.

= get NunF Ser vi ces. xml —Passes a listing of an organization’s total number of
registered services.

= get Regi st eredSer vi ces. xml —Passes a listing of an organization’s registered
services.

= get Request s. xm —Passes information about a multitude of objects in a
specific organization.

< nodi fyRequest s1. xm —Adds new attributes to a number of objects in a
specific organization.

< nodi fyRequest s2. xm —Adds new attributes to a people container object in a
specific organization.

< nodi fyRequest s3. xm —Adds new attributes to a role object in a specific
organization.

= nodi fyServi ceTenpl at es. xm —Modifies existing attributes in a service
registered to a specific organization.

< nodi fyschemaRequest s. xnl —Adds new attributes to a number of objects in a
specific organization.

= regi sterRequests. xnl —Registers a service to an existing organization. (This
service must have been previously imported.)

= renoveChoi ceVal ueRequest s. xm —Removes the values a user can choose
from in an existing attribute in a specific service.

< renopveschenaRequest s. xnl —Removes the default value of an existing
attribute in a specific service.

= unassi gnPol i cyRequest s. xm —Removes an assigned policy from a specific
organization.

= unregi st er Request s. xm —Unregisters a service from an existing
organization. (This service must have been previously imported and
registered.)

These XML templates follow the structure defined by the amAdni n. dt d. They are
located in <i dentity_server _root >/ SUN\WAN sanpl es/ admi n/ cl i / bul k- ops.

Chapter 6 Service Management 155



Service Management SDK

Service

Modifying A Batch Processing XML Template

Any of the templates discussed above can be modified to best suit the desired
operation. Choose the file that performs the request, modify the elements and
attributes according to the service and use the amadni n executable to upload the
changes to the Directory Server.

NOTE Be aware that creations of roles, groups, and organizations is a
time-intensive operation.

Customizing User Pages

The User profile page and what attributes it displays will vary, depending on what
the service developer defines. By default, every attribute in the anser . xm file
that has an i 18nKey attribute specified and the any attribute set to display

(any=di spl ay) will display in the Identity Server console. Alternately, if an
attribute is specified to be of type User in another XML service file, the Identity
Server console will also display it if the service is assigned to the user. Thus, User
display pages in the Identity Server console can be modified to add new attributes
in either of two ways:

= The User attribute schema definition in the specific XML service file can be
modified.

= A new User schema attribute definition can be added to the User service (the
amUser . xnl service file).

For information on modifying XML service files, see “Modifying A Default XML
Service File,” on page 151.

NOTE Any service can describe an attribute that is for a user only. The
amser . xm file is just the default placeholder for user attributes that are
not tied to a particular service.

Management SDK

The ldentity Server provides a Java API for service management. These interfaces
can be used by developers to register services and applications, and manage their
configuration data.

156  Identity Server Programmer’s Guide ¢ December 2002



Service Management SDK

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <i dentity_server_r oot >/ SUN\Vam docs/
directory intothe <i dentity_server _root >/ SU\Vanm publ i c_ht ni
directory and pointing the browser to
http://<server _nane. domai n_name>: <port >/ docs/i ndex. htmi .

Chapter 6 Service Management 157



Service Management SDK

158 Identity Server Programmer’s Guide ¢ December 2002



Chapter 7

Policy Service

The Sun™ One Identity Server includes a Policy Service that allows for the
configuration and support of conditional policies for authorization and access
control. It allows administrators to configure and administer these policies for
applications, resources, and identities managed within the Identity Server
deployment. This chapter explains the Policy Service and its architecture. It
contains the following sections:

< What Is Policy?

= Policy Definition Type Document
= Java SDK For Policy

e C Library For Policy

What Is Policy?

A policy defines access control rules for an Identity Server deployment. These rules
allow an administrator to assign security levels based on an organization’s needs,
and the conditions created within the policy, by assigning them to identities,
groups or roles. This policy, when possessed by an object, defines which resources
the object is able to access. A single policy can define either binary or non-binary
decisions. A binary decision is yes/no, true/false or allow/deny; most policies are of
this type. A binary decision might answer such questions as “Can user Mark
execute the changeSal ar y method in the PayCheck class?” or “Can user Sally have
access to the PayCheck application at all?”” A non-binary decision represents the
value of an attribute; for example, a mail service might include a mai | boxQuot a
attribute with a maximum storage value set for each user. In general, a policy is
configured to define what an object can do to which resource and under what
conditions.

159



What Is Policy?

Policy Service

The Identity Server Policy Service provides for creation, administration and
assignment of conditional policies. It allows administrators to define, modify,
grant, revoke and delete policies for resources within the Identity Server
deployment as well as query the Sun ONE Directory Server for stored policies.

Typically, a policy service includes a policy data store, a policy enforcer or policy
agent and a library of interfaces that allows for the creation, administration and
evaluation of policy. The components that are accessed when using the Identity
Server Policy Service include:

Directory Server—is the data store which delivers an identity’s authentication,
and policy information. Additional information on this product and its
functionality can be found in the Sun ONE Directory Server documentation.

Identity Server—implements the Policy Service by providing policy
administration and evaluation APIs. It also provides policy evaluation APls
written in C. Other Identity Server services accessed include authentication,
session, logging and SSO.

Policy Agent—is a Policy Enforcement Point (PEP) that protects an enterprise’s
resources on the remote web server on which the agent is installed. Policy
agents are provided under separate cover from the Identity Server. The most
current version of the Sun ONE Identity Server Policy Agent Pack can be
downloaded from the iPlanet Developers Download Center located at
http://wws. sun. com sof t war e/ downl oad/ devel oper /. They are installed
on proprietary web servers, remote from the Identity Server deployment web
server(s). For example, an agent on a Human Resources web server would
prevent personnel without the proper policies from viewing confidential salary
information and other sensitive data. In order to make this example work, an
Identity Server administrator must set up the policies that allow or deny users
access to the remote web server’s content.

NOTE Installing and administrating the policy agents is not in the scope of this

documentation. Information on the currently available agents can be found
in the Sun ONE Identity Server Policy Agent Pack 1.1 Installation Guide at
http://docs. sun. conf ?p=/col | / S1_s1l dSer vPol i cyAgent Pack
_11.

160 Identity Server Programmer’s Guide ¢ December 2002



What Is Policy?

Architecture

The Identity Server Policy Service allows for the protection of all types of
applications and resources. Currently, though, only URL policy agents that protect
an organization’s web resources are available. Figure 7-1 illustrates the architecture
of the Policy Service. As shown, custom agents or applications can be written to
protect other types of resources including services or other applications.

Figure 7-1 Identity Server Policy Service Architecture

Pafiey Fuliey Fuliiy
Auabjeel Refdiiml Ul Lierii
Flmgin &M Fruptm 511 FMuytn %P

The architectural flow for protected web resources begins when a web browser
requests a URL that resides on a protected web server; the web server’s URL policy
agent intercepts the request and checks for existing authentication credentials (an
SSO token). If none exists or the existing authentication level or conditions are
insufficient, the request is redirected to the Authentication Service. Once the user
session is created or upgraded with a successful authentication, Identity Server
responds to the browser request with a redirect to the original resource. The agent
now finds a sufficient SSO token and issues a request to the Naming Service. (The
Naming Service defines URLs for remote web servers to use for access to ldentity
Server’s internal services.) The Naming Service returns locators for the Policy

Chapter 7  Policy Service 161



What Is Policy?

Service which will check the user’s policy, and for the Session Service which will
begin the user’s session upon authentication. Based on the aggregate of all policies
assigned to the user, the individual is either allowed or denied access to the
protected resource.

Policy Types

There are two types of policy that can be configured using Identity Server: a normal
policy or a referral policy. A normal policy consists of rules, subjects and conditions.
A referral policy consists of rules and referrals to organizations. These policy types
are discussed below followed by the section “Policy Definition Type Document,”
on page 164 which expands on the terms.

Normal Policy

In Identity Server, a policy that defines access permissions is referred to as a normal
policy. A normal policy consists of rules, subjects and conditions. A rule consists of a
resource, and one or more sets of an action and a value. A resource defines the object
that is being protected; an action is the name of an operation that can be performed
on the resource and a value defines the permission.

NOTE It is acceptable to define an action without resources.

A subject defines who the policy affects. A condition defines the situations in
which a policy is applicable; for instance, a 7 am to 10 am condition in a policy
means that the policy is applicable only from 7 am to 10 am.

NOTE The terms referral, rule, resource, subject, condition, action and value
correspond to the elements Referral, Rule, ResourceName, Subject, Condition,
Attribute and Value in the pol i cy. dt d. They are explained further in
“Policy Definition Type Document,” on page 164.

Referral Policy

A referral policy is used for policy delegation. If there is a top-level organization
with a sub-organization in the Identity Server tree, there must be a referral policy
configured at the top-level organization that points to the sub-organization, in
effect, allowing the sub-organization to create normal policies. A referral policy
controls this delegation for both policy creation and evaluation. It consists of one or
more rules and one or more referrals. A rule defines the resource whose policy

162  Identity Server Programmer’s Guide ¢ December 2002



What Is Policy?

creation or evaluation is being referred, while the referral defines the organization
to which the policy creation or evaluation is being referred. For example, in the
creation of policies for the sub-organization, the referral policy is configured at the
top-level organization which states that the sub-organization can define policies for
the resource who’s URL is defined in the rule of the referral policy. Thus, the
top-level organization is delegating policy creation and evaluation for the defined
URL resource to the sub-level organization.

NOTE The referred-to organization can define or evaluate policies only for those
resources (or sub-resources of those resources) that have been referred to it.
This restriction, however, does not apply to the root organization.
Therefore, an administrator must define management policies at the root
level organization only.

There are two types of referral bundled with Identity Server: peer organization and
sub-organization. They delegate to an organization on the same level and an
organization on a sub-level, respectively. For example, consider a deployment
whose root level organization is dc=i sp, dc=com wi t h sub-organizations
dc=sunone, dc=i sp, dc=comand dc=sunt wo, dc=i sp, dc=com In order to define or
evaluate policies at dc=sunone, dc=i sp, dc=comor dc=sunt wo, dc=i sp, dc=com
two referral policies must first be created that point from dc=i sp, dc=comto
dc=sunone, dc=i sp, dc=comand dc=sunt wo, dc=i sp, dc=com respectively. Each
referral policy contains the resource (or resource prefix) being managed. If
dc=sunone, dc=i sp, dc=commanages ht t p: / / ww. sunone. cont , the referral
policy at dc=i sp, dc=comcontains ht t p: / / ww. sunone. con in its rule and refers
to policies created at the dc=sunone, dc=i sp, dc=comorganization. Only after
creating root level referral policies can policies at the sub-organization be created.

Subjects

Policies are not explicitly assigned to identities rather, we assign subjects to policies.
A subiject is the identity object to which the policy is assigned and applied. The
default subjects are:

< Identity Server Roles
< LDAP Groups

= LDAP Roles

= LDAP Users

« Organization

Chapter 7  Policy Service 163



Policy Definition Type Document

Policy Definition Type Document

164

Policy in Identity Server is most often configured using the Identity Server console.
Information on how this is done can be found in the Sun ONE Identity Server
Administration Guide. There is, however, a command line interface that can also be
used for this purpose. (Information on how to use the amadni n interface can be
found in Sun ONE Identity Server Administration Guide.) The pol i cy. dt d defines
the structure on which all policy XML files processed using the amadni n command
line must be based. This section describes this structure.

Policy Element

Policy is the root element that defines the policy rule as an entity. It may contain
one or more of the following sub-elements: Rule, Conditions, Subjects, or Referrals.
The XML service attributes for the Policy element are the name of the policy, a
description, a version number, and whether the policy type is referral or not.

NOTE When tagging a policy as referral, any Subjects and Conditions are ignored
during policy evaluation. Conversely, when tagging a policy as normal, any
Referrals are ignored during policy evaluation.

Rule Element

The Rule element defines the specifics of the policy rule. It defines the type of
service or application for which a policy has been created as well as the name of the
resource and the actions which are performed on the resource. It may contain one
or more of the following elements: ServiceName, ResourceName, or
AttributeValuePair. The XML service attribute for the Rule element is the name of
the rule.

NOTE It is acceptable to have a defined policy that does not include a
ResourceName.

Identity Server Programmer’s Guide ¢ December 2002



Policy Definition Type Document

ServiceName Element

The ServiceName element defines the name of the service that the policy applies to.
This element represents the service type. It contains no other elements. The value is
exactly as that defined in the service’s XML file (which is based on the sns. dt d) .
The XML service attribute for the ServiceName element is the name of the service.
Examples of a ServiceName might be Calendar Service, Mail Service or PayCheck
application.

ResourceName Element

The ResourceName element defines the object that will be acted upon. The policy
has been specifically configured to protect this object. It contains no other elements.
The XML service attribute for the ResourceName element is the name of the object.
Examples of a ResourceName might be ht t p: / / www. sunone. com 8080/ i mages ona
web server or | dap: // sunone. com 389/ dc=i pl anet, dc=comon a directory
server. A more specific resource might be

sal ary: //ui d=j sm t h, ou=peopl e, dc=i pl anet, dc=comwhere the object being
acted upon is the salary information of John Smith.

NOTE Currently, Identity Server 6.0 provides only web agents.

AttributeValuePair Element

The AttributeValuePair element defines an action and its values. It is used as a
sub-element to Subject Element, Referral Element and Condition Element. It contains
both the Attribute and Value elements and no XML service attributes.

Attribute Element

The Attribute element defines the name of the action. An action is an operation or
event that is performed on a resource. POST or GET are actions performed on web
server resources, READ or SEARCH are actions performed on directory server
resources and pur chaseOpt i ons or canUpdat eCat al og might be actions
performed on a catalog service. The Attribute element must be paired with a Value
element as described in the following section. The Attribute element itself contains
no other elements. The XML service attribute for the Attribute element is the name
of the action.

Chapter 7  Policy Service 165



Policy Definition Type Document

166

Value Element

The Value element defines the action itself. Allow/deny or yes/no are actions.
Other action values can be either boolean, numeric, or strings. The value is defined
in the service’s XML file (based on the sns. dt d) .The Value element contains no
other elements and it contains no XML service attributes.

Subjects Element

The Subjects is the root element that defines a collection of Subject elements. The
Subjects element contains one or more Subject elements and the name and
description XML service attributes for each one. (The includeType attribute is not
supported in this release.)

Subject Element

The Subject element identifies a collection of identities to whom the policy applies.
For example, the action canUpdat eCat al og for a catalog service might only be
implemented by identities who possess the Marketing role. The Subject element
contains the AttributeValuePair element and the name and type XML service
attributes.

Referrals Element

The Referrals element defines a collection of referral elements. The Referrals element
contains one or more Referral elements. The XML service attributes are the name
and the description of the referral grouping.

Referral Element

The Referral element defines another identity to which the policy evaluation is
delegated. The Referral element contains the AttributeValuePair element. The XML
service attributes are the name of the referral and type.

Identity Server Programmer’s Guide ¢ December 2002



Java SDK For Policy

Conditions Element

The Conditions element defines a collection of conditions, i.e. a group of restrictions
on the defined policy. The Conditions element contains the one or more Condition
elements. The XML service attributes are the name and description of the
restriction grouping.

Condition Element

The Condition element defines a condition which specifies when a policy will be
effective. For example, authentication level and time span might restrict a subject’s
access. The Condition element contains the AttributeValuePair element. I1t's XML
service attributes are the condition name and type.

Java SDK For Policy

The crux of the Policy Service is the Policy SDK. It exposes the following Java API
packages:

e comsun.identity. policy providesthe APIs that applications and services
use to determine privileges. It is used by the Administration Console and/or
the command line interface to manage, administer and evaluate policies.

e comsun.identity.policy.interfaces providesthe APIs that
administrators use to manage policies and add plug-ins.

e comsun.identity.policy.client providesthe APIsthat agents on aremote
server use to evaluate policy.

Identity Server also has a C API library to allow C developers to integrate their
applications with the Policy Service. In the following sections, a sampling of classes
and the methods included with these API are discussed.

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <i dentity_server_r oot >/ SUN\Vam docs/
directory intothe <i dentity_server _root >/ SU\Vanm publ i c_ht ni
directory and pointing the browser to
http://<server _nane. domai n_name>: <port >/ docs/i ndex. htmi .

Chapter 7  Policy Service 167



Java SDK For Policy

Policy Evaluation Java APIs

The following APIs are used by Java developers to allow for the evaluation of
policy privileges in their applications. This functionality is provided by the class
com sun. i dentity.policy.client.PolicyEval uator, which provides support
for both boolean and non-boolean type policies. A Pol i cyEval uat or must be
created by calling the constructor with a service name. Public methods of this class
include:

= isAll oned—evaluates the policy associated with the given resource and
returns a boolean value indicating whether the policy evaluation resulted in an
allow or deny.

o Returns a boolean value of;
« true if access is allowed.
« false if access is denied.
o Arguments:

« comipl anet. sso. SSOToken: The SSO Token associated with the
principal for which the policy will be evaluated.

« java.lang. String resourceNane: A string representing the
requested resource.

« java.lang. String actionName: The action for which the policy will
be evaluated. In a typical web application scenario, the action could be
GET or POST.

« java.util.Map envParaneters: A map containing environment
parameters that may be needed to successfully evaluate the associated
policies.

o Exceptions: throws com i pl anet . sso. SSOExcept i on if the given SSO
token is not valid or has expired.

= get Pol i cyDeci si on—evaluates the policy and ascertains privileges for
non-boolean decisions. It returns a decision that gives a user permission to
perform a specific action on a specific resource. This method can also check
permissions for multiple actions.

o Returnscom sun.identity. policy.PolicyDecision.
o Arguments:

« comipl anet. sso. SSOToken: The SSO token associated with the
principal for which the policy will be evaluated.

168 Identity Server Programmer’s Guide ¢ December 2002



Java SDK For Policy

« java.lang. String resourceNane: A string representing the
requested resource.

« java.util.Set actionName: A collection of actions for which the
policy will be evaluated.

e« java.util.Mp envParaneters: A map containing environment
parameters that may be needed to successfully evaluate the associated
policies.

o Exceptions: throws com i pl anet . sso. SSOExcept i on if the given SSO
token is not valid or expired.

Policy Management Java APIs

The following APIs are used by systems administrators to allow for the
management of policies in the Identity Server. The interfaces for this functionality
are found in the com sun. i dentity. pol i cy package.

PolicyManager

com sun. i dentity.policy.PolicyMnager isthe top level administrator class
for policy management, providing methods that allow an administrator to create,
modify or delete an organization’s policies. The PolicyManager can be obtained
from a specified organization or by checking a currently authenticated user’s
SSOToken for access privileges to the Directory Server. Some of this class’ more
widely used methods include:

= get Pol i cyNames—retrieves all named policies created for the organization for
which the policy manager was instantiated. This method can also take a
pattern (filter) as an argument.

= get Pol i cy—retrieves a policy when given the policy’s name.

= addPol i cy—adds a policy to the specified organization. If a policy with the
same name already exists, it will be overwritten.

= renovePol i cy—removes a policy from the specified organization.

Chapter 7  Policy Service 169



Java SDK For Policy

Policy

com sun. i dentity. policy. Policy represents a policy definition with all its
intended parts (rules, subjects, referrals or conditions). The policy object is saved in
the data store only when the st or e method is called or if the addPol i cy or

repl acePol i cy methods from the Pol i cyManager class are invoked. This class
contains methods to add, remove, replace or get any of the parts of a policy
definition.

PolicyEvent

com sun. i dentity. policy.PolicyEvent representsa happening in a policy that
could potentially change the current access status. For example, Pol i cyEvent
would be created and passed if a policy has been removed due to a timeout. This
class works with the Pol i cyLi st ener class in the

com sun.identity.policy.interface package.

Policy Plugin Java APIs

The following APIs are used by service developers and policy administrators who
need to provide additional policy features as well as support for legacy policies.
The package for these classes is com sun. i dentity. policy.interfaces. The
interfaces include:

Resour ceNane—provides methods to determine the hierarchy of the resource
names for a determined service type. For example, these methods can check to see
if two resources names are the same or if one is a sub-resource of the other.

Subj ect —defines methods that can determine if an authenticated user (possessing
an SSOToken) is a member of the given subject.

Ref er r al —defines methods used to delegate the policy definition or evaluation of
a selected resource (and its sub-resources) to another organization or policy server.

Condi t i on—provides methods used to constrain a policy; for example, time of day
or IP address. This interface allows the pluggable implementation of the
conditions.

Pol i cyLi st ener —defines an interface that allows the Policy Service to send and
receive notifications when a policy is added, removed or changed.

170  Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

C Library For Policy

Identity Server also provides a library of policy evaluation APIs for C applications
to enable their integration into the Policy Service. The C library provides a
comprehensive set of interfaces that query policy results for an authenticated user
for a given action on a given resource. The result of the policy evaluation is called
an action value and may not always be binary (allow/deny or yes/no); action
values can also be non-boolean. For example, John Smith has a mailbox quota of
100MB. 100 is the value defined by a policy on a policy server. As policy evaluation
results in string values only, the policy evaluation returned is 100 numeric not
100MB. It is up to the application developer to define metrics for the values
obtained appropriately.

As the first step of policy implementation, the API abstracts how a resource is
represented by mandating that any resource be represented in a string format. For
example, on a web server, resources may be represented as URLSs. The policy
evaluation engine cares only about the relative relevance of one resource to other.
There are five relative relevances defined between two resources, namely: exact
match, no match, subordinate match, superior match or exact pattern match. Having
represented the resources in string format, the service developer must provide
interfaces that establish the relevant relationship between resources.

NOTE Exact pattern match is a special case where resources may be represented
collectively as patterns. The information is abstracted from the Policy
Service and the comparison operation must take a boolean parameter to
trigger a pattern matched comparison. During the caching of policy
information, the policy engine does not care about patterns, whereas during
policy evaluation, the comparisons are pattern sensitive.

The service developer must also provide a method to extract the root of the given
resource. For example, in a URL, the prot ocol : // server _nane: port/ portion
represents the root. The three functions (has_pat t er ns, get _resource_r oot and
conpar e_ur | s) are specializations of resource representations. The set of
characteristics needed to define a resource is called a resource trait. Resource traits
are taken as a parameter during service initialization in the

am resource_traits_t structure. Using the resource traits, the Policy Service
constructs a resource graph for policy evaluation. In a web server policy sense, the
relation between all the resources in the system spans out like a tree with the
protocol ://server_name: port/ being the root of the tree.

NOTE The policy management system is generic and makes no assumptions about
any particular policy definition requirement.

Chapter 7  Policy Service 171



C Library For Policy

C APIs for Policy Evaluation

Two opaque data structures are defined: am map_t and am properties_t.

am map_t provides a key to multiple value mapping and am properties_t
provides a key to single value mapping. am properti es_t provides the additional
functionality of loading a configuration file and getting values of specific data
types. These are simple data structures that are only used for information exchange
to and from the policy evaluation interfaces.

am_map_t

This data structure is an associative container with a key of type const char * and
having multiple values of type const char *.

am_map_create(am_map_t *map_ptr)

Syntax
#i ncl ude <am nmap. h>

am status_t am map_create( ammap_t *map_ptr);

Parameters
This function takes the following parameters:

map_ptr Pointer to the am _nmap_t structure. This is an out parameter.
Returns

This function returns one of the following values:

= AM SUCCESS if the map structure was successfully created and assigned to
map_ptr.

< AM NO MEMORY if there was an internal memory operation error.
e AM | NVALI D_ARGUMENT if the pointer address of map_pt r was invalid.
Description

This function creates an instance of am map_t structure and returns the pointer to
the structure to the caller.

Memory Concerns
You should free the allocated structure by calling am map_dest r oy.

172 Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

am_map_copy(am_map_t source_map, am_map_t *map_ptr)
Syntax

#i ncl ude <am nmap. h>

am status_t am map_copy(am map_t source_map, am.map_t *map_ptr);

Parameters
This function takes the following parameters:

map_ptr After successful execution of this function, this pointer will be
assigned a new instance of am _nap_t structure and all the
entries in sour ce_map will be copied into this structure.

Returns

This function returns one of the following values:

= AM SUCCESS if the copy operation was successfully performed.
< AM NO MEMORY if there was an internal memory operation error.

e AM I NVALI D_ARGUVENT if the address of map_pt r or sour ce_map is invalid.

Description

This function creates an instance of am map_t structure, copies all the elements in
sour ce_nap into the newly created structure and assigns it to map_pt r. It does not
alter the contents of sour ce_map.

Memory Concerns

The caller must make sure not to pass a map_pt r which as a valid am map_t
structure, otherwise the reference will be lost. The must destroy map_pt r after
usage by calling am map_dest r oy.

am_map_destroy(am_map_t *map_ptr)

Syntax
#i ncl ude <am map. h>

am status_t am nmap_destroy(am map_t *map_ptr);

Parameters
This function takes the following parameters:

nmap_ptr The map structure to be destroyed.

Chapter 7  Policy Service 173



C Library For Policy

Returns
This function returns one of the following values:

= AM SUCCESS if the destroy operation was successfully performed.

< AM NO MEMORY if there was an internal memory operation error.

e AM I NVALI D_ARGUVENT if the address of map_pt r or sour ce_nap is invalid.
Description

This function destroys an instance of am map_t structure which is pointed by
nmap_ptr.

Memory Concerns
Care must be taken that map_pt r was not freed before by calling am nap_destr oy
or by erroneously calling the system void free (void *) function.

am_map_clear(am_map_t map)

Syntax
#i ncl ude <am nmap. h>
am status_t am map_cl ear(am nap_t map);

Parameters
This function takes the following parameters:

map The map structure in which all the keys and their values be
removed.

Returns

This function returns one of the following values:

= AM SUCCESS if the destroy operation was successfully performed.
e AM | NVALI D_ARGUMENT if the map argument is NULL.

Description

This function takes in a valid am map_t structure and clears all the elements init.
After successful completion of this function am map_si ze on this structure will
return 0.

Memory Concerns
None.

174  Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

am_map_size(const am_map_t map)

Syntax
#i ncl ude <am nmap. h>

size_t am map_size(const am map_t nap);

Parameters
This function takes the following parameters:

map The map whose size to be returned.

Returns
This function returns one of the following values:
= 0 ora positive number The number of key value pairs currently in the map.

e <0 if the map argument is NULL.

Description
This function takes in a valid am map_t structure and returns its size.

Memory Concerns
None.

am_map_get_entries(am_map_t map, am_map_entry_iter_t
*entry_iter_ptr)

Syntax
#i ncl ude <am map. h>
am status_t am nmap_get_entries(ammap_t map, amnmap_entry iter _t

*entry_ iter_ptr);

Parameters
This function takes the following parameters:

map The map for which iterator needs to be extracted.
entry_iter_ptr The iterator pointer that must be assigned with the iterator of

the map structure. This is an output parameter.

Returns
This function returns one of the following values:

Chapter 7  Policy Service 175



C Library For Policy

= AM SUCCESS if the iterator was successfully assigned.
< AM NO MEMORY if there was an internal memory operation error.
e AM I NVALI D_ARGUVENT if the address of map_pt r or sour ce_nap is invalid.

< AM NOT_FOUND if the specified map contains no keys.

Description
This function extracts an iterator pointer that could be used to iterate over the key
value pairs stored in this table.

Memory Concerns

The iterator pointer passed in must not have non destroyed iterators assigned to
them. The caller, in future must call am map_entry_i t er _dest r oy to destroy the
iterator instance.

am_map_insert(am_map_t map, const char *key, const char *value,
int replace)

Syntax
#i ncl ude <am nmap. h>
am status_t am map_i nsert(am nmap_t map, const char *key, const char

*val ue, int replace);

Parameters
This function takes the following parameters:

nap The map to which the key-value pair must be added.

key The key for the entry.

val ue The value for the entry.

repl ace Boolean to indicate whether to replace an existing value for

the key or not.

Returns
This function returns one of the following values:

= AM SUCCESS if the operation is successful.
< AM | NVALI D_ARGUMENT if the map, key or value argument, is NULL.

< AM NO MEMORY if there was an internal memory operation error.

176  Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

Description
This function inserts a key-value pair into a map.

Memory Concerns
None.

am_map_erase(am_map_t map, const char *key)

Syntax
#i ncl ude <am map. h>
am status_t am nmap_erase(am nap_t map, const char *key);

Parameters
This function takes the following parameters:

map The map to which the key-value pair must be added.
key The key for the entry.
Returns

This function returns one of the following values:
= AM SUCCESS if the operation is successful.
e AM | NVALI D_ARGUMENT if the map or key argument, is NULL.

= AM NOT_FOUND if the specified key is not in the map.

Description
This function removes a key-value pair from a map.

Memory Concerns
None.

am_map_find(am_map_t map, const char *key,
am_map_value_iter_t *value_iter_ptr)

Syntax
#i ncl ude <am map. h>

am status_t am nmap_find(am map_t map, const char *key,
am map_value_iter_t *value_iter_ptr);

Chapter 7  Policy Service 177



C Library For Policy

Parameters
This function takes the following parameters:

map The map to which the key-value pair must be added.
key The key for the entry.

value_iter _ptr The iterator to which value iterator has to be assigned.
Returns

This function returns one of the following values:

= AM SUCCESS if the operation is successful.

e AM | NVALI D_ARGUMENT if the map or key argument, is NULL.
< AM NOT_FOUND if the specified key is not in the map.

< AM NO MEMORY if there was an internal memory operation error.

Description
This function takes a key and returns an iterator that iterates over the values
associated with the key.

Memory Concerns
At the end of usage of val ue_i t er _ptr, the caller must call
am rmap_val ue_i t er _dest r oy with the iterators pointer.

am_map_find_first_value(am_map_t map, const char *key)

Syntax
#i ncl ude <am map. h>
const char *am map_find_first_value(amnmap_t nmap, const char *key);

Parameters
This function takes the following parameters:

map The map to which the key-value pair must be added.
key The key for the entry.
Returns

This function returns one of the following values:

178  Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

= value if the operation is successful, returns the first associated value of this key
in the map. The order of insertion does not guarantee the value returned.

< NULL if there is key is not present in the map.

Description
This function takes a key and returns the first value associated with the key.

Memory Concerns
Caller must not modify or free the return value.

am_map_entry_iter_destroy(am_map_entry_iter_t entry_iter)

Syntax
#i ncl ude <am map. h>
void ammap_entry_iter_destroy(ammap_entry_ iter_t entry_iter);

Parameters
This function takes the following parameters:

entry_iter The iterator that must be destroyed.

Returns
None.

Description
This function destroys the am map_entry_i terat or _t passed to it.

Memory Concerns
Caller must be sure that this function is not called multiple times on the same
am map_entry_iter_t.

am_map_entry_iter_get_first_value(am_map_entry_iter_t entry_iter)

Syntax

#i ncl ude <am map. h>

const char * amnmap_entry_iter_get first_value(amnap_entry_ iter_t
entry_iter);

Parameters
This function takes the following parameters:

Chapter 7  Policy Service 179



C Library For Policy

entry_iter The iterator for which the first value is to be returned.

Returns
This function returns one of the following values:

= value if the operation is successful, returns the first associated value of this
iterator. The order of insertion into the map does not guarantee the value
returned.

e NULL if there iterator is NULL.

Description
This function destroys the am map_entry_iterator_t passed to it.

Memory Concerns
Caller must be sure that this function is not called multiple times on the same
am map_entry_iter_t.

am_map_entry_iter_get_key(am_map_entry_iter_t entry_iter)

Syntax
#i ncl ude <am map. h>

const char * ammap_entry_iter_get_key(ammap_entry_iter _t
entry_iter);

Parameters
This function takes the following parameters:

entry_iter The iterator for which the key needs to be returned.

Returns
This function returns one of the following values:

= key if the operation is successful, returns the key associated with the iterator.

e NULL if there iterator is NULL.

Description
This function returns the key of this key-value pair entry iterator.

Memory Concerns
Caller must not modify or free the return value.

180 Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

am_map_entry_iter_get values(am_map_entry_iter_t entry_iter,
am_map_value_iter_t *value_iter_ptr)

Syntax
#i ncl ude <am nmap. h>
am status_t am map_entry_iter_get_val ues(am map_entry_iter _t

entry iter, amnmap_value_iter_t *value_iter_ptr);

Parameters
This function takes the following parameters:

entry_iter The iterator that must be destroyed.

val ue_iter_t The iterator that goes over the values associated with the
key-value pair entry iterator.

Returns
This function returns one of the following values:

= AM SUCCESS if the operation is successful.

e AM I NVALI D ARGUMENT iftheentry_iter_ptr orval ue_i ter_ptr argument,
is NULL.

< AM NOT_FOUND if the specified iterator is NULL or does not reference a valid
entry.

< AM NO MEMORY if there was an internal memory operation error.

Description
This function returns an am map_val ue_i t er _t that enumerates over the values
associated with am map_entry iter _t.

Memory Concerns
After the use of val ue_i t er _t the caller must call am map_val ue_iter _destroy.

am_map_entry_iter_is_entry valid(am_map_entry_iter_t entry_iter)

Syntax
#i ncl ude <am nmap. h>

int ammap_entry iter_is_entry valid(ammp_entry_ iter_t
entry_iter);

Chapter 7  Policy Service 181



C Library For Policy

Parameters
This function takes the following parameters:

entry_iter The iterator that must be destroyed.

Returns
This function returns one of the following values:

= 10 if the specified entry_i ter is valid.

e QOifentry_iter is NULL or does not reference a valid entry.

Description
This function returns if the entry_i t er passed in is valid.

Memory Concerns
None.

am_map_entry_iter_entry_iter_next(am_map_entry_iter_t entry_iter)

Syntax
#i ncl ude <am map. h>

int amnmap_entry_ iter_iter_next(ammp_entry iter_t entry_iter);
Parameters
This function takes the following parameters:

entry_iter The iterator entry pointer to be advanced.

Returns
This function returns one of the following values:

< 10 if the advancing operation was successful.

< QOifentry_iter is NULL or does not reference a valid entry.

Description
Advances the specified iterator to the next entry in the map specified when the
iterator was created.

Memory Concerns
None.

182  Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

am_map_value_iter_destroy(am_map_value_iter_t iter)

Syntax
#i ncl ude <am nmap. h>

void

am map_val ue_iter_destroy(am map_value_iter_t value_iter);

Parameters
This function takes the following parameters:

val ue_iter The value iterator to be destroyed.

Returns
None.

Description
This function destroys a previously created am map_val ue_i t er _t structure.

Memory Concerns
Caller must make sure that previously destroyed instance of
am map_val ue_i t er _t is not attempted to be destroyed again.

am_map_value_iter_get(am_map_value_iter_t value_iter)

Syntax
#i ncl ude <am map. h>

const char *

am map_val ue_iter_get(amnmap_value_iter_t value_iter);

Parameters
This function takes the following parameters:

val ue_iter The value iterator.

Returns
This function returns one of the following values:

= The value if the operation is successful.

e NULL ifval ue_i ter is NULL or does not reference a valid entry.

Chapter 7  Policy Service 183



C Library For Policy

Description
Returns the value referenced by the value iterator.

Memory Concerns
None.

am_map_value_iter_is_value_valid(am_map_value_iter_t value_iter)

Syntax
#i ncl ude <am map. h>

i nt
am map_val ue_iter _is_value_valid(ammp_value_iter_t value_iter);

Parameters
This function takes the following parameters:

val ue_iter The value iterator to be examined

Returns
This function returns one of the following values:

« 10 if the value_iter is a valid reference.

= 0Qif value_iter is NULL or does not reference a valid entry.

Description
Returns the validity of the value_iter iterator.

Memory Concerns
None.

am_map_value_iter_is_value_next(am_map_value_iter_t value_iter)

Syntax

#i ncl ude <am map. h>

i nt

am map_val ue_iter_next (am map_value_iter_t value_iter);

Parameters
This function takes the following parameters:

184  Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

val ue_i ter The value iterator to be advanced.

Returns
This function returns one of the following values:

« 10 if the advance operation is performed successfully.

= Qifvalue_iter is NULL or does not reference a valid entry.

Description
Returns the validity of the val ue_i t er iterator.

Memory Concerns
None.

am_properties t

This data structure is an associative container with a key of type const char * and
having single value of type const char *. It also provides convenience methods to
load and store property files (like the Java property file) and get methods to return
specific data types. This structure enables the user of the policy evaluation library
to bring in the required configuration from any configuration source.

am_properties_create(am_properties_t *properties_ptr)

Syntax
#i ncl ude <am properties. h>

am status_t

am properties_create(am properties_t *properties_ptr);

Parameters
This function takes the following parameters:

properties_ptr The pointer to the am properties_t.

Returns
This function returns one of the following values:

= AM SUCCESS if the operation was successful.

< AM NO MEMORY if there was an internal memory operation error.

Chapter 7  Policy Service 185



C Library For Policy

e AM | NVALI D_ARGUMENT if properties_ptr argument is NULL.

Description
Creates an instance of am properties_t and assigns it to properties_ptr.

Memory Concerns
After the usage of the instance the caller must call am properti es_destroy to
clean up the allocated memory.

am_properties_copy(am_properties_t source_ptr, am_properties_t
*properties_ptr)

Syntax

#i ncl ude <am properties. h>

am status_t

am properties_create(amproperties_t source_ptr, amproperties_t

*properties_ptr);

Parameters
This function takes the following parameters:

source_ptr The am properties_t instance whose data must be copied.

properties_ptr The pointer to the am properti es_t to which the cloned
instance must be assigned.

Returns
This function returns one of the following values:

= AM SUCCESS if the operation was successful.
< AM NO MEMORY if there was an internal memory operation error.

e AM | NVALI D ARGUMENT if source_ptr or properties_ptr argumentis NULL.
Description
Creates an instance of am properties_t and assigns it to properties_ptr. The

function copies all the elements in the source_ptr to properties_ptr. The
sour ce_ptr is not affected during this operation.

186  Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

Memory Concerns

After the usage of the instance properti es_ptr the caller must call

am properties_destroy to clean up the allocated memory. The removal of any
item in either structures do not affect the other.

am_properties_destroy(am_properties_t properties)
Syntax

#i ncl ude <am properties. h>

am status_t

am properties_destroy(amproperties_t properties);

Parameters
This function takes the following parameters:

properties The am properti es_t instance to be destroyed.

Returns
This function returns one of the following values:

= AM SUCCESS if the operation was successful.

e AM | NVALI D_ARGUMENT if properties argument is NULL.

Description
Destroys an instance of am properties_t.

Memory Concerns

Caller must make sure not to pass the same instance of am properties_t to be
destroyed more than once. After calling this function it is advised that the caller
initializes properties to NULL.

am_properties_load(am_properties_t properties, const char
*file_name)

Syntax
#i ncl ude <am properties. h>
am status_t

am properties_|l oad(am properties_t properties, const char
*file_nane);

Chapter 7  Policy Service 187



C Library For Policy

Parameters
This function takes the following parameters:

properties The am properti es_t instance to which the key-value
pairs needs to be loaded into.

file_nanme The name of the file from which the properties need to be
loaded.

Returns

This function returns one of the following values:

= AM SUCCESS if the operation was successful.

= AM NSPR_ERRCRIf an internal NSPR system operation failed.

< AM NO MEMORY if there was an internal memory operation error.

e AM | NVALI D_ARGUMENT if properties argument is NULL.

Description
Loads property information from a specified file, an instance of am properties_t.

Memory Concerns
None.

am_properties_store(am_properties_t properties, const char
*file_name)

Syntax

#i ncl ude <am properties. h>

am status_t

am properties_store(amproperties_t properties, const char

*file_nane);

Parameters
This function takes the following parameters:

properties The am properti es_t instance to which the key-value
pairs needs to be saved.

file_name The name of the file from which the properties need to be
written to.

188 Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

Returns
This function returns one of the following values:

= AM SUCCESS if the operation was successful.
= AM NSPR_ERRCRIf an internal NSPR system operation failed.
e AM | NVALI D_ARGUMENT if properties orfil e_name argumentis NULL or

fi | e_nane points to an empty string.

Description
Stores all the key-value pairs in this object into the file.

Memory Concerns
None.

am_properties_log(am_properties_t properties, am_log_module_id_t
module, am_log_level t level)

Syntax

#i ncl ude <am properties. h>

voi d

am properties_l og(amproperties_t properties, amlog_nodule_id_t

nodul e, am|log_level t level);

Parameters
This function takes the following parameters:

properties The am properti es_t instance to which the key-value pair
needs to be saved.

nodul e Logging module use to log this property operations.

| evel Logging level to use for the log messages. The levels of

logging is defined in am_log section.

Returns
None.

Description

Sets the logging module to the property instance. All operations will be logged to
the given log module using the level specified.

Chapter 7  Policy Service 189



C Library For Policy

Memory Concerns
None.

am_properties_is_set(am_properties_t properties, const char *key)
Syntax

#i ncl ude <am properties. h>

i nt

am properties_is_set(amproperties_t properties, const char *key);

Parameters
This function takes the following parameters:

properties The am properti es_t instance whose contents need to be
examined.

key The key whose presence will be checked.

Returns

This function returns one of the following values:
« 10 if the key is present.
« 0if the key is not present or the properties argument is NULL.

Description
This function checks if the key is present is the properties instance.

Memory Concerns
None.

am_properties_get(am_properties_t properties, const char *key,
const char **value_ptr)

Syntax

#i ncl ude <am properties. h>

am status_t

am properties_get(amproperties_t properties, const char *key, const

char **val ue_ptr);

Parameters
This function takes the following parameters:

190 Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

properties The am properti es_t instance from which the keys value
needs to be extracted.

key The key whose value will be returned.

val ue_ptr The value pointer to which the value will be assigned to. This

is an output parameter.

Returns
This function returns one of the following values:

= AM SUCCESS if the operation is successful.

< AM | NVALI D_ARGUMENT if the properties, key or val ue_pt r argument is key is
NULL.

= AM NOT_FOUND if there was no occurrence of the key in this am properties_t
instance.

< AM NO MEMORY if there was an internal memory operation error.

Description

This function checks if the key is present is the properties instance and returns its
value.

Memory Concerns
Caller must not modify the value_ptr structure or free the memory.

am_properties_get_with_default(am_properties_t properties, const
char *key, const char *default_value, const char **value_ptr)

Syntax

#i ncl ude <am properties. h>

am status_t

am properties_get(amproperties_t properties, const char *key, const

char *default_val ue, const char **val ue_ptr);

Parameters
This function takes the following parameters:

properties The am_properties_t instance from which the keys value

needs to be extracted.

key The key whose value will be returned.

Chapter 7  Policy Service 191



C Library For Policy

def aul t _val ue The value to be returned in case of any error condition.
val ue_ptr The value pointer to which the value will be assigned to. This
is an output parameter.

Returns
Return values may be ignored.

Description

This function checks if the key is present is the properties instance. If the key is not
present, the function returns the default value passed in. Otherwise it returns the
value of the key.

Memory Concerns
Caller must not modify the val ue_ptr structure or free the memory.

Information And Utility APIs

Following are the policy data structures and operations.

am_policy_result_t

Syntax

#i ncl ude <am policy. h>

typedef struct ampolicy_result {
const char *renote _user;
const char *renote_| P;
am map_t advi ce_map;
am mep_t attr_response_nap;

} ampolicy result _t;

Parameters
This structure has the following components:

r enmot eUser After policy evaluation, this variable is assigned the name of
the remote user.

advi ce_map On the server side some policies may have resulted in
advices. For detailed discussion on advices, please refer to the
policy service documentation.

192 Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

attr_response_nap After evaluation of policies, each policy may define pairs of
keys and values. These values may provide more information
about the user or about the policy evaluation itself. Apart
from this, library may be requested to obtain user attributes.
This is a configuration parameter set during service
initialization in the service configuration properties structure.

Description

This structure unifies various components of policy evaluation, namely: name of
the user try to perform an action on the resource, the advices as recommended by
individual policies during evaluation and attribute responses providing specific
values as set in policy definition or user attributes as requested during service
initialization. The property com i pl anet. am pol i cy. am header Attri but es
specifies what all attributes in the users entry needs to be returned along with
policy evaluation results.

Memory Concerns
Caller to am pol i cy_eval uat e must call am pol i cy_resul t _dest r oy after using
the results.

am_resource_traits_t
Syntax
typedef struct amresource_traits {
amresource_match_t (*cnpFuncPtr) (const char *policyResNang,
const char *resour ceNane,
am bool _t usePatterns);
am bool _t (*hasPatterns)(const char *resourceNane);
am bool _t (*get ResourceRoot) (const char *resourceNane,
char *root Resour ceNane,
size_t buflength);
} amresource_traits_t;

Parameters
This structure has the following components:

Chapter 7  Policy Service 193



C Library For Policy

194

cnmpFuncPtr The compare function takes two resource strings and a
boolean value. The boolean value controls whether the
compare function must use patterns defined in the resource
name or not.

hasPat t er ns The is function takes a resource name, examines it and returns
true if it has patterns or not. Since the service writer can
decide the implementation of pattern representations and so
the symbols used as patterns, this function is a resource trait.

get Resour ceRoot This function takes a given resource and finds a root resource
name for that resource. The length is the size of the
rootResourceName buffer. The minimum required length of
the rootResourceName buffer is governed by the
representation of the resource name and so up to the
discretion of the service writer.

Description

This structure is an input parameter to am_policy_init function. This structure
contains all the resource traits interfaces that are required during policy
information maintenance and evaluation.

Memory Concerns
None.

am

The am methods are one-time library initialization and cleanup methods. These
functions may be called once and only once for the entire life of the shared object.
am_init(am_policy_t policy)

Syntax

#i ncl ude <am h>

am status_t

aminit(amproperties_t library_init_config);

Parameters
This function takes the following parameters:

Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

library_init_config Thisstructure contains configuration information required to
initialize the shared object.

Returns
This function returns one of the following values:

= AM SUCCESS if the operation is successful.

e AM | NVALI D_ARGUMENT if any argument is NULL or invalid.

= AM NSPR_ERRCRIf there is an error while performing an NSPR operation.
< AM NO MEMORY if there was an internal memory operation error.

= AM FAI LURE if there was any unexpected error during initialization.

Description
This function initializes the shared object. This function must be called only once
and must be the first function to be called in the library.

Memory Concerns

Caller must call ascertain that this function is not called more than once and its
cleanup counterpart am cl eanup is called once and is the last function to be called
in the library.

am_init(am_policy _t policy)

Syntax
#i ncl ude <am h>

am status_t

am cl eanup(voi d);

Parameters
None.

Returns
This function returns one of the following values:

= AM SUCCESS if the operation is successful.
e AM | NVALI D_ARGUMENT if any argument is NULL or invalid.
= AM NSPR_ERRCRIf there is an error while performing an NSPR operation.

< AM NO MEMORY if there was an internal memory operation error.

Chapter 7  Policy Service 195



C Library For Policy

= AM FAI LURE if there was any unexpected error during initialization.

Description

This function cleans up all the memory and resources allocated by the shared
object. This function must be called only once and must be the last function to be
called in the library.

Memory Concerns
None.

am_policy

The am pol i cy methods are service specific methods. These methods may be used
only after am i ni t has been invoked successfully and may not used after
am cl eanup has been performed.

am_policy_init(const char *service_name, const char
*instance_name, am_resource_traits_t rsrcTraits, am_properties_t
service_config_properties, am_policy_t *policy _handle_ptr)

Syntax
#i ncl ude <am policy. h>
am status_t

ampolicy_init(const char *service_name, const char *instance_nane,
amresource_traits_t rsrcTraits, amproperties_t
service_config_properties, ampolicy_t *policy_handle_ptr);

Parameters
This function takes the following parameters:

servi ce_namne The name of the service about to be created.

i nst ance_nane The instance name of the new service. Currently this
parameter is unused.

rsrcTraits The resource traits structure that contains the pointers to the
actual implementations of the resource name operations.

service_config_pro Theam properties_t instance that has the initialization
perties values required during the initialization of the service.

196 Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

pol i cy_handl e_ptr The pointer to the am pol i cy_t that will be initialized a
pol i cy_handl e after successful completion of service
creation.

Returns

This function returns one of the following values:

= AM SUCCESS if the operation is successful.

e AM | NVALI D_ARGUMENT if any argument is NULL or invalid.

= AM NSPR_ERRCRif there is an error while performing an NSPR operation.
< AM NO MEMORY if there was an internal memory operation error.

= AM FAI LURE if there was any unexpected error during initialization.

Description
This function initializes a policy service instance.

Memory Concerns
Caller must call am pol i cy_dest r oy structure or free the memory.

am_policy_destroy(am_policy _t policy)

Syntax
#i ncl ude <am policy. h>

voi d

am pol i cy_destroy(am policy_t policy);

Parameters
This function takes the following parameters:

pol i cy The policy service which needs to be destroyed.

Returns
None.

Description
This function destroys a policy service instance.

Chapter 7  Policy Service

197



C Library For Policy

Memory Concerns
Caller must call make sure the same service instance not be destroyed more than
once.

am_policy_evaluate(am_policy_t policy handle, const char
*sso_token, const char *resource_name, const char *action_name,
const am_map_t env_parameter_map, am_map_t
policy_response_map_ptr, am_policy_result_t *policy_result)

Syntax
#i ncl ude <am policy. h>
am status_t

am pol i cy_eval uate(ampolicy_t policy_handl e, const char *sso_t oken,
const char *resource_nane, const char *action_nane, const am nmap_t
env_par aneter _map, amnmap_t *policy_response_nap_ptr,

ampolicy_ result_t *policy result);

Parameters
This function takes the following parameters:

pol i cy_handl e The policy service which needs to be destroyed.

sso_t oken The single sign-on token of the user who must be evaluated
for accessing the resource and perform a given action.

resour ce_nane The string form of the resource that the user wants to perform
the action on.

action_nane The action the user wants to perform on the action.

env_par anet er _nap The environment parameters like IP address the user is
accessing the resource from.

pol i cy_response_ma  Theresponse structure that will be populated after evaluation
p_ptr of the policies.

policy result Pointer to am_policy_result_t structure that will be populated
during policy evaluation.

Returns
This function returns one of the following values:

= AM SUCCESS if the operation is successful.
e AM | NVALI D_ARGUMENT if any argument is NULL or invalid.

= AM NSPR_ERRCRIf there is an error while performing an NSPR operation.

198 Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

< AM NO MEMORY if there was an internal memory operation error.
= AM FAI LURE if there was any unexpected error during initialization.

Description
This function destroys a policy service instance.

Memory Concerns

After using the results the caller must call am pol i cy_resul t _dest roy on the
policy_result tocleanup the memory allocated by the evaluation operation.
am map_dest r oy must also be called on response and env_par aret er _nap after
their respective usage scope.

am_policy_is_notification_enabled(am_policy_t policy_handle)

Syntax

#i ncl ude <am policy. h>

am bool _t

ampolicy_is_notification_handl ed(ampolicy_t policy_handle);

Parameters
This function takes the following parameters:

pol i cy_handl e The policy service instance whose configuration needs to be
examined.

Returns
This function returns one of the following values:

= AM TRUE if notification is enabled for this service.

< AM FALSE if notification is not enabled for this service.

Description

This function checks and returns the state of notification. This configuration is read
by the service during initialization from the service configuration properties.

Memory Concerns
None.

Chapter 7  Policy Service 199



C Library For Policy

am_policy _notify(am_policy_t policy_handle, const char
*notification_data, size_t notification_data_len)

Syntax

#i ncl ude <am policy. h>

am status_t

am policy_notify(ampolicy_ t policy_handle, const char

*notification_data, size_t notification_data_len);

Parameters
This function takes the following parameters:

pol i cy_handl e The policy service instance whose configuration needs to be
examined.

notification_data The notification data that was received by the caller.

notification_data_  Notification data length.
I en

Returns
This function returns one of the following values:

= AM SUCCESS if the operation is successful.

e AM | NVALI D_ARGUMENT if any argument is NULL or invalid.

= AM NSPR_ERRCRIf there is an error while performing an NSPR operation.
< AM NO MEMORY if there was an internal memory operation error.

= AM FAI LURE if there was any unexpected error during initialization.

Description

When the configuration com i pl anet. am pol i cy. am noti fi cati onEnabl ed is
set to true, the library registers with the server to receive notification in case of any
change of information (session or policy) on the server. The notification is sent to
the URL again, set in the service configuration properties as a value of

com i pl anet. am pol i cy. am noti fi cati onURL during initialization.

Memory Concerns
None.

200 Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

Specialization Methods

These functions are resource traits implementations for URLs. These are provided
for the sake of convenience and as reference implementations of resource names.

am_policy _compare_urls(const char *policyResourceName, const
char *resourceName, am_bool_t usePatterns)

Syntax

#i ncl ude <am policy. h>

voi d

am pol i cy_conpare_url s(const char *policyResourceName, const char

*resour ceNanme, am bool _t usePatterns);

Parameters
This function takes the following parameters:

pol i cyResourceName  The resource name as defined in the policy. This is the only
parameter that can have patterns it them.

resour ceNane The name of the resource accessed by the user.

usePatterns The patterns in the pol i cyResour ceNane if present must
be used if this parameter is set to AM_TRUE otherwise used as
normal characters.

Returns
This function returns one of the following values:

e EXACT_MATCHIf pol i cyResour ceNane and r esour ceName match verbatim.

e SUB_RESOURCE_MATCHifr esour ceNane is a subordinate resource of
pol i cyResour ceNane.

e SUPER RESOURCE MATCHIf pol i cyResour ceName is a subordinate resource of
resour ceNane.

e NO MATCHIf pol i cyResour ceNane and r esour ceNane do not match.

= EXACT_PATTERN_NMATCH This value will be returned only if usePatterns
argument is AM TRUE and if pol i cyResour ceNane has patterns which matches
r esour ceNane string.

Chapter 7  Policy Service 201



C Library For Policy

Description

This function compares two given URLs. The pol i cyResour ceNane is the URL
defined in the policy definition. The policy definition can contain patterns. In the
reference implementation, the comparison mechanism does only wildcard match,
that is, it supports only * in a pol i cyResour ceNane as a pattern. A service writer
may replace this function with another implementation that supports complete
regular expressions. But, the service writer must also take care to change the
hasPat t er ns function to behave appropriately.

Memory Concerns
None.

am_policy_get_url_resource_root(const char *resourceName, char
*resourceRoot, size_t length)

Syntax

#i ncl ude <am policy. h>

am bool _t

am pol i cy_get _url _resource_root(const char *resourceNane, char

*resourceRoot, size_t length);

Parameters
This function takes the following parameters:

resour ceNane The resource name for which the root resource must be
extracted.

r esour ceRoot The pointer where the resource root will be copied to.

| engt h The length of the r esour ceRoot buffer.

Returns

This function returns one of the following values:
< AM TRUE if the operation was successful.

e AM FALSE if r esour ceNane is not a valid URL or either of the parameters were
NULL or if the buffer was not enough to copy the r esour ceRoot .

Description

This function is takes a URL and extracts a root of the URL. For example,
htt p: //www. sun. conm i ndex. ht Ml will return ht t p: // www. sun. cond and
htt p: // www. sun. com 8080/ i ndex. ht m will return

http://ww. sun. com 8080/ .

202 Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

Memory Concerns

In an implementation for a different resource other than URLSs, the service writer
implementing this function must make accurate judgement about the minimum
size of r esour ceRoot .

am_policy get_url_resource_has_patterns(const char
*resourceName)

Syntax
#i ncl ude <am policy. h>

am bool _t

am pol icy_get _url _resource_has_patterns(const char *resourceNane);

Parameters
This function takes the following parameters:

resour ceNane The resource name to be examined for patterns.

Returns
This function returns one of the following values:

< AM TRUE if the resource name has patterns.

e AM FALSEif r esour ceNane is not a valid URL or the parameter is NULL or if it
does not have patterns.

Description

This function takes a URL and returns a boolean value reflecting its pattern
content. For example, ht t p: // www. sun. conml i ndex. ht ml will return AM_FALSE
and htt p: //ww. sun. com *. ht M will return AM TRUE. ht t p: / / www. sun. con *
will return AM TRUE.

Memory Concerns
None.

Initialization Variables

Following are explanations of the initialization variables:

com.iplanet.am.policy.am.cookieNameThe name of the cookie set by the
authentication server after session creation.

Chapter 7  Policy Service 203



C Library For Policy

com.iplanet.am.policy.am.namingURLThe URLs where the naming service is
installed. Each URL must be separated with a space. If the current naming server
does not respond, the next one is attempted and so on, in a round-robin fashion.

com.iplanet.am.policy.am.loginURLThe URLs where the login service is installed.
Each URL must be separated with a space. If the current login server does not
respond, the next one is attempted and so on, in a round-robin fashion.

com.iplanet.am.policy.am.logFileThe full path of the local log file name.
com.iplanet.am.policy.am.serverLogFileThe name of the log file in the server side.

com.iplanet.am.policy.am.logLevelsThe level of logging to be performed to the
local log file.

com.iplanet.am.policy.am.usernameThe name of user as whom the client library
will login to the policy server.

com.iplanet.am.policy.am.passwordThe password of user using which the client
library will log on as the given user.

com.iplanet.am.policy.am.sslCertDirSSL directory where the certificate database
is located.

com.iplanet.am.policy.am.trustServerCertsThis boolean value if true indicates
that library must trust server certificate.

com.iplanet.am.policy.am.notificationEnabledSetting this variables to true
indicates that the policy library must register for session and policy notifications to
be delivered to the notificationURL.

com.iplanet.am.policy.am.agenturiprefixThe agenturiprefix is the URI under
which the agent components are installed.

com.iplanet.am.policy.am.notificationURLThe notification URL to which the
notifications must be sent. While using this library and having the notification
enabled, the host program must listen as the notification URL and pass the
received data to am pol i cy_not i fy function.

com.iplanet.am.policy.am.fetchHeadersThis is a boolean parameter when set to
true, the policy evaluation request also requests for the users attribute values.

com.iplanet.am.policy.am.headerAttributesThe attributes whose values will be
requested for during policy evaluation, if f et chHeader s parameters is set to true.
This attribute has a syntax [ <I dap attribute name>| <l ocal attribute
name>] *. The local attribute name and its values will be returned in the
attr_response_nap in policy_result.

204  Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

Specialization Methods For Web Agents

am_web_init(const char *config_file)

Syntax:
#i ncl ude <am web. h>

am status_t amweb_init(const char *config file);

Parameters:
This function takes the following parameters:

config_ file A string representing the complete path to the config file used
by the agent.

Returns:
This function returns one of the following values:

e AMSUCCESS if the initialization was successful.
e AMINVALI D ARGUMENT if any argument is NULL or invalid.

e AMNSPR ERROR if there is an error while perform ng an NSPR
operati on.

e« AM NO MEMORY if there was an internal nmenory operation error.

e AMFAILURE if the initialization failed due to unexpected error
condi ti on.

Description:
This function initializes the shared object. This function must be called only once
and must be the first function to be called in the library.

Memory Concerns:
Caller must ascertain that this function is not called more than once and its cleanup
counterpart am_web_cleanup is the last function to be called in the library.

am_web_cleanup()

Syntax:
#i ncl ude <am web. h>

am status_t am web_cl eanup();

Chapter 7  Policy Service 205



C Library For Policy

Parameters:
None.

Returns:
This function returns one of the following values:

= AM SUCCESS if the operation was successful.

e AM | NVALI D_ARGUMENT if any argument is NULL or invalid.

= AM NSPR_ERRCRIf there is an error while performing an NSPR operation.
< AM NO MEMORY if there was an internal memory operation error.

= AM FAI LURE if the initialization failed due to unexpected error condition.

Description:
This function releases all the resources allocated by the library. This function must
be called only once and must be the last function to be called in the library.

Memory Concerns:
Caller must ascertain that this function is not called more than once and its
initialization counterpart am_web_init has been called before its invocation.

am_web_is_access_allowed(const char *sso_token, const char *url,
const char *action_name, const char *client_ip, const am_map_t
env_parameter_map, am_policy_result_t *result);

Syntax:
#i ncl ude <am web. h>
am status_t

am web_i s_access_al | oned(const char *sso_t oken, const char
*url,const char *action_nane, const char *client_ip, const am nap_t
env_paraneter_map, ampolicy_result_t *result);

Parameters:
This function takes the following parameters:

sso_t oken The sso_token from the Identity Server cookie. This
parameter may be NULL if there is no cookie present.

url The URL whose accessibility is being determined. This
parameter may not be NULL.

206 Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

action_nane The action (GET, POST, etc.) being performed on the specified
URL. This parameter may not be NULL.

client_ip The IP address of the client attempting to access the specified
URL. If client IP validation is turned on, then this parameter
may not be NULL.

env_par anmet er _nmap A map containing additional information about the user
attempting to access the specified URL. This parameter may
not be NULL.

result A data structure to store the result of this operation as passed
back to the caller.

Returns:
This function returns one of the following values:

= AM SUCCESS if the evaluation was performed successfully and access is to be
allowed to the specified resource.

< AM NO MEMORY if the evaluation was not successfully completed due to
insufficient memory being available.

< AM | NVALI D_ARGUMENT if any of the url, action_name, env_parameter_map, or
result parameters is NULL or if client IP validation is enabled and the client_ip
parameter is NULL.

e AM I NVALI D_SESSI ON if the specified sso_token does not refer to a currently
valid session.

= AM ACCESS_DEN EDif the policy information indicates that the user does not
have permission to access the specified resource or any error is detected other
than the ones listed above.

Description:

This function evaluates the access control policies for a specified web-resource and
action. The web-resource is identified as the URL that the user is trying to access
and the action is the associated HTTP call made by the user agent such as GET or
POST.

Memory Concerns:

The caller must free the memory associated with all the arguments passed into this
function when they are no longer in use or applicable.

Chapter 7  Policy Service 207



C Library For Policy

am_web_is_natification(const char *request_url)

Syntax:
#i ncl ude <am web. h>

am bool _t

amweb_is_notification(const char *request_url);

Parameters:
This function takes the following parameters:

request _url The URL of the web resource associated with this request.

Returns:
This function returns one of the following values:

= AM TRUE if the associated request is Identity Server notification.

= AM FALSE if the associated request is a regular request.

Description:
This function determines if the request is an Identity Server notification message
intended for the policy SDK.

Memory Concerns:
None.

am_web_handle_notification(const char *data, size_t data_length);

Syntax:

#i ncl ude <am web. h>

voi d

am web_handl e_notification(const char *data, size_t data_l ength);

Parameters:
This function takes the following parameters:

dat a A buffer containing data as obtained from the request.

data_length The length of the data contained in the buffer.

208 Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

Returns:
None

Description:

This function processes the notification data as sent by the Identity Server and
updates the state of the Policy SDK accordingly. Any errors that may occur during
the processing of the given data are logged in the appropriate log files.

Memory Concerns:
None.

am_web_get_redirect_url(am_status_t status, const am_map _t
advice_map, const char *goto_url, am_bool_t *allocated_ptr);

Syntax:
#i ncl ude <am web. h>

char *amweb_get _redirect _url (amstatus_t status, const am nmap_t
advi ce_map, const char *goto_url, ambool _t *allocated_ptr);

Parameters:
This function takes the following parameters:

st at us The return value obtained from the call to function
am_web_is_access_allowed().

advice_map The advice map contained in the policy result as obtained
from the call to function am_web_is_access_allowed().

goto_url The return URL to be used by the Identity Server to redirect
the user after successful authentication.

allocated_ptr A flag that indicates if any memory was allocated during the
course of this operation which should the be deallocated by
the caller accordingly.

Returns:
A URL that may be used to redirect the user accordingly. This URL may be either
the login URL or the access denied URL.

Chapter 7  Policy Service 209



C Library For Policy

Description:

This function returns a string representing the URL for redirection that is
appropriate to the provided status code and advice map returned by the Policy
SDK. This may either redirect the user to the login URL or the access denied URL.
If the redirection is to the login URL then the URL will include any existing
information specified in the URL from the configuration file, like org value etc.,
followed by the specified goto parameter value, which will be used by Identity
Server after the user has successfully authenticated.

Memory Concerns:

If the value returned in allocated_ptr parameter is AM_TRUE, then the caller is
responsible for calling am_web_free_memory() function when done with the
returned string. Using another free function may cause corruption of memory and
result in fatal runtime errors. If allocated_ptr is NULL, then the function will
always return a pointer to the access denied URL, which is not allocated.

am_web_do_result_attr_map_set(am_policy_result_t *result,
am_status_t (*setFunc)(char *, char *, void **), void **args);

Syntax:

#i ncl ude <am web. h>

am status_t

am web_do_result_attr_map_set(ampolicy_result_t *result,

am status_t (*setFunc)(char *, char *, void **), void **args);

Parameters:
This function takes the following parameters:

result The result obtained from the call to function
am_web_is_access_allowed().

set Func A function pointer for the call back function to be used when
iterating over various values of the result.

args The optional arguments to be passed to the call back function
during its invocation.

Return:
This function returns one of the following values:

= AM SUCCESS if the operation was successful.

= AM FAI LURE if the operation failed due to unexpected error conditions.

210 Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

= AM NO MEMORY if the operation failed due to lack of available memory required
for the processing.

Description:
This function process at t r _r esponse_map of am pol i cy_resul t _t and performs
the appropriate set action that caller pass in.

Memory Concerns:
None.

am_web_free_memory(void *memory)
Syntax:

#i ncl ude <am web. h>

voi d amweb_free_menory(void *nenory);

Parameters:
This function takes the following parameter:

nenory A pointer to the previously allocated memory that should be
released by this function.

Return:
None.

Description:
This function releases previously allocated memory by any of the am_web_*
functions.

Memory Concerns:

This function must be called in order to free any memory allocated by the
am_web_* functions. Using other routines to free such memory may result in
memory corruption and lead to fatal runtime error conditions.

am_web_get_cookie_name()

Syntax:
#i ncl ude <am web. h>

const char *am web_get _cooki e_nane()

Chapter 7  Policy Service 211



C Library For Policy

Parameters:
None.

Return:
This function returns the name of the Identity Server cookie.

Description:

This function returns the Identity Server cookie name as used by the Policy SDK.
The value of this depends upon the value stored in the configuration file that was
used to initialize the library.

Memory Concerns:
None

am_web_get_notification_url()

Syntax:

#i ncl ude <am web. h>

const char *am web_get _notification_url()

Parameters:
None.

Return:
This function returns the notification URL used by the Agent.

Description:

This function returns the URL used by the Agent to receive ldentity Server
notifications. The value of this depends upon the value stored in the configuration
file that was used to initialize the library.

Memory Concerns:
None

am_web is_debug_on()

Syntax:
#i ncl ude <am web. h>
am bool _t amweb_is_debug_on();

Parameters:
None.

212  Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

Return:
This function returns one of the following values:

< AM_TRUE if debugging is turned on.
< AM_FALSE if debugging is turned off.

Description:
This function returns a flag which indicates if debugging has been enabled or

disabled. When enabled, the Agent can use various convenience functions in order
to log debug messages to the appropriate log files.

Memory Concerns:
None.

am_web_is_max_debug_on()

Syntax:
#i ncl ude <am web. h>
am bool _t am web_i s_nmax_debug_on();

Parameters:
None.

Return:
This function returns one of the following values:

< AM_TRUE if debugging is turned on and is at the maximum level.

< AM_FALSE if debugging is either off or turned on to a level other than its
maximum level.

Description:

This function returns a flag which indicates if debugging has been set at its
maximum level. The caller can use this function to determine if it is appropriate to
emit very verbose information to the debug logs.

Memory Concerns:
None.

am_web_log_always(const char *fmt, ...)

Syntax:
#i ncl ude <am web. h>

Chapter 7  Policy Service 213



C Library For Policy

void am web_| og_al ways(const char *fnt, ...);

Parameters:
This function takes the following parameters:

fnt A printf style format string along with associated variable list
to be used to emit a formatted message.

Return:
None.

Description:

This function allows logging of information regardless of the level at which the
library has been configured through the specified values in the configuration file. It
takes a printf style format string and argument list which is used to generate a
formatted message that is then logged into the appropriate log file.

Memory Concerns:
None.

am_web _log auth(am_web_access_t accessType, const char *fmt,

Syntax:
#i ncl ude <am web. h>

am bool _t am web_| og_aut h(am web_access_t accessType, const char
*fot, ...);

Parameters:
This function takes the following parameters:

accesstype An enumeration that indicates the type of access that is being
logged. This value could be either LOG_DENY or
LOG_ALLOW or LOG_BOTH or LOG_NONE.

fnt A printf style format string along with associated variable list
to be used to emit a formatted message.

Return:
This function returns one of the following values:

< AM_TRUE if the operation was successful

214  Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

< AM_FALSE if the operation failed due to unexpected error conditions.

Description:

This function is used to log information to the remote Identity Server's log service.
Depending upon the value specified in the configuration file, requests associated
with certain accesstype values may or may not get logged by this function.

Memory Concerns:
None.

am_web _log_error(const char *fmt, ...)

Syntax:

#i ncl ude <am web. h>

void amweb_|og_error(const char *fnt, ...);
Parameters:

This function takes the following parameters:

fnt A printf style format string along with associated variable list
to be used to emit a formatted message.

Return:
None.

Description:

This function formats and logs the given message as an error in the associated log
file. This message will be logged if the associated logging level is greater than or
equal to the error logging level.

Memory Concerns:
None.

am_web_log_warning(const char *fmt, ...)

Syntax:

#i ncl ude <am web. h>

voi d am web_I| og_war ni ng(const char *fnt, ...);
Parameters:

This function takes the following parameters:

Chapter 7  Policy Service 215



C Library For Policy

fnt A printf style format string along with associated variable list
to be used to emit a formatted message.

Return:
None.

Description:

This function formats and logs the given message as a warning in the associated
log file. This message will be logged if the associated logging level is greater than
or equal to the warning logging level.

Memory Concerns:
None.

am_web_log_info(const char *fmt, ...)

Syntax:

#i ncl ude <am web. h>

voi d amweb_| og_i nfo(const char *fnt, ...);
Parameters:

This function takes the following parameters:

fnt A printf style format string along with associated variable list
to be used to emit a formatted message.

Return:
None.

Description:

This function formats and logs the given message as an informational message in
the associated log file. This message will be logged if the associated logging level is
greater than or equal to the informational logging level.

Memory Concerns:
None.

am_web _log debug(const char *fmt, ...)

Syntax:
#i ncl ude <am web. h>

216  Identity Server Programmer’s Guide ¢ December 2002



C Library For Policy

voi d am web_I| og_debug(const char *fnmt, ...);

Parameters:
This function takes the following parameters:

fnt A printf style format string along with associated variable list
to be used to emit a formatted message.

Return:
None.

Description:

This function formats and logs the given message as a debug message in the
associated log file. This message will be logged if the associated logging level is
greater than or equal to the debug logging level.

Memory Concerns:
None.

am_web log _max_debug(const char *fmt, ...)

Syntax:

#i ncl ude <am web. h>

voi d am web_| og_nax_debug(const char *fnt, ...);
Parameters:

This function takes the following parameters:

fnt A printf style format string along with associated variable list
to be used to emit a formatted message.

Return:
None.

Description:

This function formats and logs the given message as a debug message in the
associated log file. This message will be logged if the associated logging level is
greater than or equal to the maximum debug logging level.

Memory Concerns:
None.

Chapter 7  Policy Service 217



C Library For Policy

Initialization Variables

The following table lists the initialization variables for the policy C APIs.

Table 7-1

Initialization Variables for C APls

Initialization Variables

Explanation

com sun. am pol i cy. agent s
. accessDeni edURL

com sun. am policy. agents
. unaut hent i cat edUser

com sun. am pol i cy. agents
. anonRenot eUser Enabl ed

com sun. am pol i cy. agent s
. i nstanceName

com sun. am policy. agents
. not enf or cedLi st

com sun. am pol i cy. agent s
. cdsso-enabl ed

com sun. am policy. agents
. cdsso-server. | ogi nURL

com sun. am pol i cy. agents
.1 ogAccessType

com sun. am policy. agents
.client_ip_validation_en
abl e

The URL of the access denied page. If no value is
specified, the agent will return an HTTP status of 403
(Forbidden).

The user id to be used when the user is not
authenticated and is trying to access a resource from
the global allowv list.

Enable or disable the processing of REMOTE_USER
variable for anonymous users.

The unique identifier for this agent instance. This
property is currently not used.

A list of URLs for which no authentication is
required. The entries in this list can contain wild
cards to represent zero or more characters and use a
space as a separator between various entries.

A flag that indicates if cross-domain single sign on is
enabled or disabled.

A login URL to be used for authenticating users when
the cross-domain single sign on is enabled.

Server's remote logging service. Possible values are
LOG_NONE, LOG_DENY, LOG_ALLOW, and
LOG_BOTH.

A flag that indicates if client IP address validation is
enabled or disabled. When enabled, the agent checks
to ensure that the IP address associated with a given
request is the same as the IP address to which the
associated session cookie was issued by Identity
Server's session service.

218 Identity Server Programmer’s Guide ¢ December 2002



Chapter 8

Using The SAML Service

Sun™ One ldentity Server uses the Security Assertion Markup Language (SAML)
for exchanging security information. SAML defines an eXtensible Markup
Language (XML) framework to achieve inter-operability across different vendor
platforms that provide this type of information. This chapter explains SAML and
defines how it is used within the Identity Server. It contains the following sections:

= Overview

e amSAML.xml

= SAML SDK

< SAML Service Samples

Overview

SAML is an open-standard protocol that uses an XML framework to exchange
security information between an authority and a trusted partner site. The security
information concerns itself with authentication status, access authorization
decisions and subject attributes.The Organization for the Advancement of
Structured Information Standards (OASIS) drives the development of the SAML
specifications.

NOTE The latest SAML information and specifications can be found at
http://ww. oasi s- open. org/ commi ttees/security/.

SAML security information is expressed in the form of an assertion about a subject.
A subject is an entity in a particular domain, either human or computer, with which
the security information concerns itself. (A person identified by an email address is
a subject as might be a printer.) An assertion is a package of verified security

219



Overview

information that supplies one or more statements concerning a subject’s
authentication status, attributes or access authorization decisions. Assertions are
issued by a SAML authority. (An authority is a platform or application that has
been integrated with the SAML SDK, allowing it to relay security information.) The
assertions are received by partner sites defined within the authority as trusted.
SAML authorities use different sources to configure the assertion information
including external data stores or assertions that have already been received and
verified. Figure 8-1 illustrates how the SAML Service interacts with the other
Identity Server components. (The blocks filled with solid color are components of
the SAML Service.)

Figure 8-1 SAML Architecture

The SAML Service allows the Identity Server to work with external applications in
the following ways:

= Users can authenticate against Identity Server and access trusted partner sites
without having to re-authenticate. This is referred to as Single Sign-On.

= ldentity Server acts as a policy decision point (PDP), allowing external
applications to access user authorization information for the purpose of
granting or denying access to their resources.

= Identity Server acts as both an attribute authority (allowing trusted partner
sites to query a subject’s attributes) and an authentication authority (allowing
trusted partner sites to query a subject’s authentication information.)

220 Identity Server Programmer’s Guide * December 2002



Overview

= Two parties in different security domains can validate each other for the
purpose of performing business transactions.

NOTE The SAML service also allows Identity Server to take advantage of the
open-source protocols being developed by the Liberty Alliance Project.
More information on these specifications can be found at
www. proj ectli berty. organdin Chapter 9, “Federation Management.”

Assertion Types

SAML assertions are represented as XML constructs based on a schema located at
http://ww. oasi s- open. org/ commi ttees/security/docs/cs-sstc-schena-a
ssertion-01. xsd. The SAML specification provides for several types of assertions
that are also defined in the SAML Service:

= An authentication assertion declares that the specified subject has been
authenticated by a particular means at a particular time. In Identity Server, the
Authentication Service is the authentication authority. Code Example 8-1
illustrates an authentication assertion.

Code Example 8-1 Sample Authentication Assertion

<?xm version="1.0" encodi ng="UTF-8" ?>
<saml : Assertion
xm ns: sam ="urn: oasi s: nanes:tc: SAM_: 1. 0: asserti on"
Maj or Ver si on="1"
M nor Ver si on="0" Assertionl D="random 182726"
| ssuer ="sunserver. exanpl e. cont
| ssuel nst ant =" 2001- 11- 05T17: 23: 00- 02: 00" >
<saml : Aut henti cati onSt at enent
Aut henti cati onMet hod="ur n: oasi s: nanes: tc: SAM.: 1. 0: am passwor d"
Aut henti cati onl nstant ="2001-11-05T17: 22: 00- 02: 00" >
<sam : Subj ect >
<sam : Nanel denti fier NanmeQualifier="sun.conf>John
Doe</ sanl : Nanel denti fi er>
</ sam : Subj ect >
</ samnl : Aut henti cati onSt at enent >
</ sanl : Assertion>

= Anattribute assertion declares that the specified subject is associated with the
specified attribute. In Identity Server, the Identity Management module is the
attribute authority.

Chapter 8 Using The SAML Service 221



Overview

= An authorization decision assertion declares that the specified subject’s request
for access to a specified resource has been granted or denied. In Identity Server,
the Policy Service is the authorization authority.

One assertion may contain many different statements made by the authority.

Profile Types

A set of rules describing how to embed and extract SAML assertions is called a
profile. The profile describes how the assertions can be combined with other objects
by an authority, transported from the authority to a trusted partner site and,
subsequently, processed at the latter. Currently, Identity Server supports two
profiles that use HTTP: the Web Artifact Profile and the Web POST profile. These
profiles are used in the case of single sign-on when an authenticated user attempts
to access resources from a trusted partner site. Both profiles can also be the receiver
when accepting user single sign-on from a trusted partner site.

NOTE The profile methods can be initiated through a web browser or the SAML
API. More information on this API can be found in “com.sun.identity.saml,”
on page 227.

Web Artifact Profile

The Web Artifact Profile defines interaction between three parties: a user equipped
with a web browser, an authority site, and an trusted partner site. When an
authenticated user attempts to access a trusted partner site (usually by clicking a
link), they are redirected to a transfer service in the authority site. In Identity
Server, the transfer service is the SAML Aware Servlet. The base of the transfer
URL ishttp(s)://<server:port>/ <server_depl oy_uri >/ SAM_LAwar eSer vl et ;
it is appended with the user’s TARGET location (?TARGET=URL_of _dest i nati on).
The SAML Aware Servlet then provides the following functions as part of the Web
Atrtifact Profile:

1. Itcompares its list of Trusted Partner Sites against the user’s TARGET location.

Only targets configured in the Trusted Partner Sites attribute of the SAML
Service can access the SAML Service. More information on this attribute can be
found in the Sun ONE Identity Server Administration Guide.

2. Itlooks for and validates the SSO Token in the inbound request.

Without a valid SSO Token, the Identity Server will not create an assertion.

222  Identity Server Programmer’s Guide ¢ December 2002



Overview

3. Itcreates an artifact and a corresponding assertion.

An artifact is carried as part of the URL and points to an assertion and its
source; it is not, and does not contain, the security information itself. The need
to send an artifact rather than the assertion itself is dictated by the restrictions
on URL size imposed by many web browsers.

4. It opens a connection to the Artifact Receiver URL and redirects the user to the
TARGET location (trusted partner site) with a query string containing the
artifact.

The Artifact Receiver URL is based on mapping configurations defined in the
SAML Service. More information on this can be found in the Sun ONE Identity
Server Administration Guide. Upon arriving at the TARGET location, the artifact
is extracted and returned to the authority site in a query requesting the
assertion to which the artifact points.

5. It accepts an artifact query from the trusted partner site and responds by
sending the correct assertion.

The assertion is processed and the user is either granted or denied access to the
trusted partner site. If access is granted an SSO token is generated, a cookie is
set to the browser and the user is redirected to the TARGET location.

Web POST Profile

The Web POST Profile allows security information to be supplied to a trusted
partner site without the use of an artifact. It consists of two interactions: the first
between a user with a web browser and the Identity Server, and the second
between the same user and a trusted partner site.

When an authenticated user attempts to access a trusted partner site using a web
browser (usually by clicking a link), they are redirected to a transfer service in the
authority site. In ldentity Server, the transfer service is the SAML Post Profile
Servlet. The base of the transfer URL ishttp(s)://<server: port >/

<server _depl oy_uri >/ SAMLPOSTPr of i | eSer vl et ; it is appended with the user’s
TARGET location (? TARGET=URL_of _dest i nati on) . The SAML POST Profile
Servlet is what provides functions for the two Web POST Profile interactions. In the
first interaction between the user and Identity Server:

1. It obtains the TARGET location from the request and retrieves the trusted
partner site URL from the SAML Service.

Again, only targets configured in the Trusted Partner Sites attribute of the
SAML Service can access the SAML Service. More information on this attribute
can be found in the Sun ONE Identity Server Administration Guide.

Chapter 8 Using The SAML Service 223



Overview

2. It generates an assertion using the Asser ti onManager class of the SAML SDK.

3. It forms, signs and Base64 encodes a SAM_Response containing the assertion.

4. It generates an HTML form, containing both the SAM_Response and the

TARGET as parameters, and posts the form as an HTTP response back to the
user’s browser.

In the second interaction between the user and the trusted partner site:
1. It obtains the TARGET and SAMLResponse from the request.
2. It Base64 decodes the SAMLResponse.

3. It verifies the signature on the SAM_Response and obtains and verifies the
SAML response itself.

It also verifies the assertion inside the SAM_Response and enforces single-sign
on policy.

4. |t obtains or creates an SSOToken and redirects the authenticated user to the
TARGET location.

An advantage of the Web POST profile is that, because it does not use SOAP, it
easily moves through a firewall and/or proxy server. The Web POST profile
function is provided by either of two means: an HTTP request using the
SAMLPCSTPr of i | eSer vl et, or an SAMLCl i ent API call to a Java application.

NOTE According to the SAML specifications, the trusted partner site MUST ensure
a single-use policy for SSO assertions communicated by the Web POST
Profile. Thus, SAMLPCSTPr of i | eSer vl et maintains a store of SSO
assertion IDs and the time they expire. When an assertion is received, the
servlet first checks for an entry in the map. If one exists, the servlet returns
an error. If not, the assertion ID and expiration time is saved to the map. The
POSTC eanUpThr ead removes expired assertion IDs periodically.

SAML SOAP Receiver

Assertions are exchanged between Identity Server and inquiring parties using the
request and r esponse XML-based protocol defined in the SAML specification.
These SAML assertions are then integrated into a standard communication
protocol for transport purposes; Identity Server uses SOAP (Simple Object Access
Protocol), a message communications specification integrating XML and HTTPS.
SOAP hinding defines how SAML r equest and r esponse message exchanges are
integrated into SOAP exchanges. The SAML SOAP Receiver is a servlet that

224 Identity Server Programmer’s Guide ¢ December 2002



Overview

processes the message. It receives a SOAP message, extracts the SAML request and
responds with another SOAP message containing the requested information. The
SAML SOAP Receiver is the producer of SAML assertions. It responds to queries
for authentication, attributes or authorization decisions as well as those that
include an assertion identifier or artifact by returning assertions.

NOTE The access URL for the SAML SOAP Receiverishttp(s)://
<server: port>/ <server _depl oy_uri >/ SAMLSOAPRecei ver.

SOAP Messages

SOAP messages consist of three parts: an envelope, header data and a message
body. (The SAML r equest /r esponse elements are enclosed in the message body.)
A client, acting as a SAML requestor, transmits a <Request > element within the
body of a SOAP message to an entity acting as a SAML Receiver. In answer, the
SAML Receiver MUST return either a <Response> element within the body of
another SOAP message or a SOAP fault code (or error message).

NOTE The SAML requestor and the SAML Receiver MUST NOT include more
than one SAML request or response per SOAP message or any additional
XML elements in the SOAP body.

A SAML Request may contain queries for any of the following: authentication
status, authorization decisions, attribute information and one or more assertion
identifiers or artifacts. A SAML Response is sent back to the requesting party for
every Request received.

NOTE The SAML SDK and the Java API for XML Messaging (JAXM) are used to
construct SOAP messages and send them to the SOAP Receiver.

Protecting The SOAP Receiver

The ldentity Server administrator has the option of protecting the SAML SOAP
Receiver using authentication. There are five types:

= NOAUTH
= BASICAUTH
- SSL

= SSLWITHBASICAUTH

Chapter 8 Using The SAML Service 225



amSAML.xml

This option is configured in the Trusted Partner Sites attribute of the SAML Service
in the form:

Sour cel D=sour cei dof si t e] SOAPUr | =ur| of si t e| Aut hType=chosen_aut h_opti
on| User =userid

The default authentication type is NOAUTH. If SSL authentication is to be
specified, it is configured in the SOAPUr | field with the ht t ps URL prefix. More
information on the Trusted Partner Sites and other SAML Service attributes can be
found in the Identity Server Administration Guide.

Accessing The SAML Service

The SAML Service can be accessed using a web browser or the SAML SDK. An end
user would authenticate to the Identity Server through a web browser and, when
authorized, access URLs from trusted partner sites. Developers, on the other hand,
would integrate the APIs into their applications to enable them to exchange
security information with the Identity Server. For example, a Java application can
use the SAML API to accomplish single sign-on. After obtaining an SSO token from
the Identity Server, the application can call the doWebPGOST() method of the

SAM_d i ent class which contacts the Identity Server and can redirect the
application to the destination site.

amSAML.xml

anSAML. xmi is the XML service file that defines the attributes for the SAML Service.
All of the attributes in the SAML Service can be managed through either the
Identity Server console or the XML service file except two. These attributes can
only be managed through anSAM.. xn using the amadni n command line interface.

e iplanet-amsan -cl eanup-int erval is used to specify how often the
internal thread is run in order to cleanup expired assertions from the internal
data store. The default is 180 seconds.

e iplanet-amsamn -assertion- max- nunber is used to specify the maximum
number of assertions the server can hold at one time. No new assertion will be
created if the maximum number is reached. The default value is 0 which means
there is no limit.

226  Identity Server Programmer’s Guide ¢ December 2002



SAML SDK

To change the values of these attributes, the anSAM.. xnl service file needs to be
modified and then reloaded using amadni n. Information on how to use amadmin
can be found in Chapter 6, “Service Management.” Information on the additional
SAML Service attributes can be found in the Sun ONE Identity Server
Administration Guide.

SAML SDK

Identity Server contains a SAML SDK made up of APIs and lower level packages.
Administrators can use these packages to integrate the SAML functionality and
XML messages into their applications and services. The SDK supports all types of
assertions and operates with the Identity Server authorities to process external
SAML requests and generate SAML responses. The packages include:

e comsun.identity.san

e comsun.identity.sanl.assertion
e comsun.identity.sanl.conmmon

e comsun.identity.sam . plugins

e comsun.identity.sam . protocol

e comsun.identity.sanm .xnlsig

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <i dentity_server_r oot >/ SUN\VAm docs/
directory into the <i dentity_server _r oot >/ SUN\VWAM publ i c_ht i
directory and pointing the browser to
http://<server_nane. domai n_namne>: <port >/ docs/i ndex. htm .

com.sun.identity.saml

This package contains the Asserti onManager and SAMLO i ent classes. The
Asserti onManager provides interfaces and methods to create and get assertions,
authentication assertions and assertion artifacts; it is the connection between the
SAML specification and the Identity Server. Some of the methods included are;

e createAssertion—creates an assertion with an authentication statement
based on an Identity Server SSO Token ID.

Chapter 8 Using The SAML Service 227



SAML SDK

e createAssertionArtifact—creates an artifact that references an assertion
based on an Identity Server SSO Token ID

= get Asserti on—returns an assertion based on the given parameter (given
artifact, assertion ID or query).

The SAMLA i ent , on the other hand, provides methods to execute either the Web
Artifact or Web POST profile from within an application as opposed to a web
browser.

com.sun.identity.saml.assertion

This package contains the classes needed to stand for, transform, and integrate, an
XML assertion into the application. For example, Code Example 8-2 illustrates how
to use the Attribute class and get At t ri but eval ue method to get the value of an
attribute. From an Assertion, call the get St at enent () method to retrieve a set of
statements. If a statement is an AttributeStatement, call the get At t ri but e()
method to get a list of attributes. From there, call get At t ri but eval ue() to retrieve
the AttributeValue.

Code Example 8-2 Sample Code To Get An Attribute Value

/1 get statement in the assertion

Set set = assertion.getStatenent();

/lassume there is one AttributeStatenent

/I shoul d check null & i nst anceof

AttributeStatement statenent = (AttributeStatenent)
set.iterator().next();

List attributes = statement.getAttribute();

/] assume there is at |east one Attribute

Attribute attribute = (Attribute) attributes.get(0);
Li st values = attribute. getAttributeVal ue();

com.sun.identity.saml.common

This class defines a number of XML attributes (and some utility methods) common
to all SAML elements. It also contains all SAML-related exceptions.

228 Identity Server Programmer’s Guide ¢ December 2002



SAML SDK

com.sun.identity.saml.plugins

Identity Server provides four SPIs, three of them with default implementations.
The implementations of these SPIs can be altered, or brand new ones written, based
on the specifications of a particular customized service. These can then be used to
integrate the SAML service into the custom service. Currently, the APIs include the
Account Mapper, Acti onMapper, Attri but eMapper and Sit eAttri but eMapper.

= Account Mapper is used to map Identity Server accounts from external partner
sites to ldentity Server for SSO purposes. A default account mapper
implementation is provided. If a site-specific account mapper is not supplied,
this default mapper is used.

e AttributeMpper isusedintheAttri but eQuery case. When a site receives an
Attribut eQuery, this mapper is called to obtain the SSOToken or an Assertion
containing AuthenticationStatement from the query. It is also used to convert
the attribute in the query to an attribute the site understands. A default
attribute mapper is provided.

= ActionMapper is used to get SSO information and to map partner actions to
Identity Server authorization decisions. A default action mapper
implementation is provided. If a site-specific action mapper is not supplied,
this default mapper is used.

e SiteAttributeMapper isalso used for SSO. The default functionality of
Identity Server is that when no mapper is specified and an assertion is created,
either through web artifact or POST profile, it only contains
Aut hent i cati onSt at enent (s) . If a site wants to include
AttributeStatenent(s), itcan use this SPI to obtain the attributes. It creates
AttributeStatement (s) from those attributes, and puts them inside the
assertion.

NOTE The default behavior is that no attribute statements are returned unless
specified in the plug-in.

com.sun.identity.saml.protocol

This package contains classes that parse the request and response XML messages
used to exchange assertions and their authentication, attribute or authorization
information.

Chapter 8 Using The SAML Service 229



SAML SDK

AuthenticationQuery

The Aut henti cat i onQuery class represents an authentication query. An
application sends a SAML request with an Aut henti cati onQuery inside. The
Subject of the Aut hent i cat i onQuer y must contain a SubjectConfirmation element.
In this element, ConfirmationMethod needs to be set to ur n: com sun: i dentity,
and SubjectConfirmationData needs to be set to the SSOToken id of the Subject. If
the Subject contains a Nameldentifier, then the info in the Nameldentifier should
be the same as the one in the SSOToken.

AttributeQuery

The At t ri but eQuery class represents a query concerning an identity’s attributes.
An application sends a SAML request with an At t ri but eQuery inside. The
application develops an At t ri but eMapper to obtain either a SSOToken ID or an
Assertion containing an AuthenticationStatement from the query and the mapper
is then used to retrieve the attributes for the Subject. If no At t ri but eMapper for the
querying site is found, then the Def aul t At t ri but eMapper will be used. To use the
Def aul t At t ri but eMapper , the application should put either the SSOToken ID or
an assertion containing an AuthenticationStatement in the
SubjectConfirmationData element of the Subject in the query. If an SSOToken ID is
used, then the ConfirmationMethod must be set to urn: com sun: i dentity:.Ifan
assertion is used, then this assertion should be issued by the Identity Server
instance processing the query or a server that is trusted by the Identity Server
instance processing the query.

NOTE InDef aul t At t ri but eMapper , it is possible to query a subject's attributes
using another subject's SSOToken as long as the SSOToken has the privilege
of retrieving those attributes.

For a query using the Def aul t At t ri but eMapper, any matching attributes found in
the Identity Management module will be returned. If no AttributeDesignator is
specified in the AttributeQuery, all attributes from the services defined under the
user Ser vi ceNaneLi st in anBAM.. pr operti es will be returned.

user Ser vi ceNaneLi st ’s value is user service names separated by a comma.

AuthorizationDecisionQuery

The Aut hori zat i onDeci si onQuery class represents a query concerning an
identity’s authority to access protected resources. An application sends a SAML
request with an Aut hori zat i onDeci si onQuery inside. The application develops
an Act i onMapper to obtain an SSOToken ID. The mapper is then used to retrieve
the authentication decisions for the actions defined in the query.

230 Identity Server Programmer’s Guide ¢ December 2002



SAML Service Samples

If no Acti onMapper for the querying site is found in the configuration, a

Def aul t Act i onMapper will be used. To use the Def aul t Act i onMapper , the
application should put the SSOToken ID in the SubjectConfirmationData element
of the Subject in the query. If SSOToken ID is used, then the ConfirmationMethod
must be set to urn: com sun: i dentity: . If a Nameldentifier is present, then the
info in the SSOToken must be the same as the one in the Nameldentifier.

NOTE The Def aul t Act i onMapper handles actions in action namespace
urn:oasi s: nanmes: tc: SAM.: 1. 0: ghpp only. The
i Pl anet AMAebAgent Ser vi ce is used to serve the policy decisions for
this action namespace.

The application may also pass in the authentication information through the
Evidence element in the query. The Evidence could be an AssertionlDReference or
an assertion containing an AuthenticationStatement issued by the Identity Server
instance processing the query, or an assertion issued by a server that is trusted by
the Identity Server instance processing the query. The Subject in the
AuthenticationStatement as the evidence should be the same as the one in the

query.

NOTE Policy conditions can be passed in through AttributeStatements of
Assertion(s) inside the Evidence of the query. If the value of an attribute
contains TEXT node only, then the condition is set as
attri but eName=at t ri but eVal ueSt ri ng; otherwise, the condition is
setasattri but enane=attri but eVal uekl enment.

com.sun.identity.saml.xmlsig

All SAML assertions, requests and responses may be signed using this signature
API. This package contains the classes needed to sign and verify.

SAML Service Samples

There are several samples that can be accessed from the Identity Server installation.
These samples illustrate how the SAML service can be used in different ways. They
include:

= Asample that serves as the basis for using the SAML client API. This sample is
located in <i dentity_server _root>/ SUN\An sanpl es/ SAM./ cl i ent .

Chapter 8 Using The SAML Service 231



SAML Service Samples

= Asample that illustrates how to form a Query, and write an AttributeMapper
as well as how to send and process a SOAP message using the SAML SDK.
This sample is located in
<identity_server_root>/ SUN\Vam sanpl es/ SAM./ query.

= Asample application for achieving SSO using the Web Artifact profile or the
Web POST profile. This sample is located in
<identity_server_root > SUN\Wani sanpl es/ SAM_/ sso.

= Asample that illustrates how to use the XMLSIG API. It is located in
<identity_server_root>/ SUN\Vani sanpl es/ SAM./ xm si g.

232  Identity Server Programmer’s Guide ¢ December 2002



Chapter 9

Federation Management

Sun™ One ldentity Server 6.0 contains a Federation Management module which
implements the open standards for federated network identity being developed by
the Liberty Alliance Project. This chapter explains the Liberty Alliance Project and
the concept of federated network identity as well as describing how it is integrated
within the Identity Server. It contains the following sections:

= Overview

= Federation Management Process
« Federation Management API

= Customizing The Module

= Federation Management Samples

Overview

On the Internet, one person might have a multitude of accounts set up to access
various business, community and personal service providers; for example, the
person might have used different names, user I1Ds, passwords or preferences to set
up accounts for a news portal, a bank, a retailer, and an email provider. A local
identity refers to the set of attributes that an individual might have with each
service provider. These attributes serve to uniquely identify the individual with
that provider and may include a name, phone number, social security number,
address, credit records, bank balances or bill payment information.

Because the Internet is fast becoming the prime vehicle for business, community
and personal interactions, it has become necessary to fashion a system for online
users to aggregate their local identities, enabling them to have one network identity.
This system is identity federation. Identity federation allows a user to associate,

233



Overview

connect or bind multiple Internet service providers’ local identities. A network
identity allows users to login at one service provider’s site and then go to an
affiliated site without having to re-authenticate or re-establish their identity. The
Liberty Alliance Project was implemented to make identity federation a reality.

The Liberty Alliance Project

The goal of the Liberty Alliance Project is to enable individuals and organizations
to more easily conduct transactions while protecting the individual’s identity. To
accomplish this, the Alliance has established specifications for identity federation
that enables:

= Opt-in account linking where users can choose to federate different internet
service provider accounts.

= Simplified single sign-on where a user can log in and authenticate with one
provider’s federated account and navigate to another account without having
to log in again.

= Authentication context where organizations with linked accounts
communicate the type and level of authentication that should be used when
the user logs in.

= Global log-out where a user logs out of the site to which they initially logged in
and is automatically logged out of all sites that maintain a live session.

= Aclient feature which can be implemented in fixed and wireless devices to
facilitate use of the Liberty specifications.

These capabilities can be achieved when commercial or non-commercial
organizations join together into a ‘circle of trust’ based on Liberty-enabled
technology and operational agreements. This ‘circle of trust’ is referred to as an
authentication domain. The authentication domain includes service providers (who
offer web-based services to users), identity providers (service providers who also
offer federated authentication), and the users themselves. Once an authentication
domain is established, users can federate any or all identities they might have with
the service providers that have joined this domain, enabling them to make use of
the federated authentication capabilities.

234 Identity Server Programmer’s Guide ¢ December 2002



Overview

Liberty Specification Concepts

The Federation Management module built into the Identity Server is designed to be
compatible with the Liberty Alliance Project’s Version 1.0 specifications. A number
of concepts are derived from these specifications. They include:

Service Provider

Service providers are commercial or not-for-profit organizations that offer
web-based services. This broad category can include internet portals, retailers,
transportation providers, financial institutions, entertainment companies, and
governmental agencies.

Identity Provider

Identity providers are service providers that specialize in providing authentication
services. In the Liberty context, authentication done by an identity provider is
honored by all service providers with whom it is affiliated.

Authentication Domain

An Authentication Domain is a group of affiliated service providers consisting of
one or more identity providers. The group is also referred to as a ‘circle of trust’.
Once established, single sign-on is enabled within the authentication domain.

Trusted Provider

A Trusted Provider is one of a group of service and identity providers, affiliated
together based on the Liberty architecture and operational agreements, with whom
users can transact and communicate in a secure environment.

Account Federation (Identity Federation)

Account federation occurs when a user unites accounts that were initially set up
with distinct service and identity providers. Users retain their individual accounts
with each provider in the Authentication Domain while, simultaneously,
establishing a link that allows the exchange of user information between them.

Federated Identity

A federated identity refers to the amalgamation of a user’s distinct service
provider’s account attributes (personal data, online configurations, buying habits
and history, shopping preferences, etc.). The information is still administered by
the user, yet it is securely shared with the organizations of their choosing.

Chapter 9 Federation Management 235



Federation Management Process

Federation Termination (Defederation)

Users have the ability to terminate federations. Federation termination results in
the cancellation of affiliations established between the user’s identity provider
account and federated service provider accounts.

Single Sign-on
Single sign-on (SSO) is established when a user with a federated identity

authenticates to an identity provider and is then able to access affiliated service
providers without having to authenticate again.

Single Logout

When a user logs out from an identity provider or a service provider, they will
effectively be logged out from all service providers or identity providers in that
authentication domain.

Common Domain

When authenticated, an identity provider writes a cookie stating the user’s
preferred identity provider (itself). However, due to the constraints in cookie
standards, there is no way for an identity provider in one DNS domain to write a
cookie that a service provider in another DNS domain can read. To work around
this situation, the Liberty specification advocates the use of a Common Domain
(also known as third level domain).

Name ldentifier

Identity federation maps a user’s account information across a number of service
and identity provider organizations. The user’s identity is exchanged between the
identity and service providers as a name identifier, and is stored in the Directory
Server data store.

Federation Management Process

236

Out of the box, Identity Server has two options for user or application
authentication. The first is the Identity Server Authentication Service and the
second is the Liberty-enabled Federation Management Service. In an Identity
Server scenario when a user or application tries to access a resource protected by
the Identity Server, the user is redirected to the Authentication Service via a Login
page for access authorization. When the user provides credentials, the
authentication module verifies them and either allows or denies access.

Identity Server Programmer’s Guide ¢ December 2002



Federation Management Process

NOTE More information on the Authentication Service can be found in Chapter 3,
“Authentication Service.”

In a scenario where the Identity Server is Liberty-enabled and a user or application
attempts to access a protected resource, the user is redirected to a Pre-Login page
which invokes the Federation Management Service’s Pre-Login servlet. This servlet
searches for either a valid Identity Server single sign-on token or a valid Federation
Cookie (which indicates that a user has federated his account using this Identity
Server provider). If an SSO token is found, the user’s Federation information is
retrieved, and the user is authenticated; a Federation Cookie is also set and the user
is returned to the target resource.

NOTE The federation cookie is different from the Identity Server cookie discussed
in “Cookies and Session Tokens,” on page 81. By default, the federation
cookie is a persistent cookie and there is currently no option to disable this.

If a Federation Cookie is found, the user is directed to the Federation Single
Sign-On Service which provides an Authentication Assertion allowing the user
access to the target resource. If neither of these items is found, the user is redirected
to the Identity Server Authentication Service where, upon successful
authentication, they are directed to the Post-Login page which invokes the
Post-Login servlet. This servlet processes the user’s Identity Server authentication
and initiates the Federation Management Single Sign-On Service which, once
again, provides an Authentication Assertion to allow the user access to the target
resource. Figure 9-1 on page 238 illustrates this flow.

Chapter 9  Federation Management 237



Federation Management Process

Liberty-enabled Identity Server Authentication Process Flow

Figure 9-1
L=}
T
Beonr Prooisl Pae
¥
AI‘.:-\ b -] -
S,
g
[
PR H=-» Priroaio:
=rm
(”’Elrr:‘: : e el pagr with
G -\.‘___-" Frabezsie ke
yhi ] T
| il b
. i |L|
il |
9 - l_.-'
&N I
o o rdabrw mr
Al o, P - ARl -
_'l_ i .l..\. .-.__-"-
rmd wZm
vt s (D0
Mo i ¥ m
is
|
e 1
-
| s [0 Liat
|
A | LTS TR o S
FECERATION
L A
| bl P s it
E errTr=TreTTE=T— |
=
FOSTLOGH |  yemms e Toke wd o s
IEET
1 -

Federation Management Protocols

In order to enable the federation process, the Liberty Alliance Project’s Phase |
Specifications define the following protocols that are implemented by the Identity

Server:

238 Identity Server Programmer’s Guide ¢ December 2002



Federation Management Process

Single Sign-on and Federation Protocol

This is the protocol used to federate a user’s identity for a service provider with
their identity for an identity provider, thus enabling single sign-on. It also specifies
the means by which a service provider obtains an Authentication Assertion from
an identity provider to provide single sign-on to the user. There are two types
which either the identity or service provider can implement:

= SOAP - based Single Sign On and Federation Protocol relies on a SOAP call
from the service provider to the identity provider.

e Form POST - based Single Sign On and Federation Protocol relies on a form
POST to communicate between the service provider and the identity provider.

Federation Termination Notification Protocol

This is the protocol used to notify providers when a user’s existing federated
identity is terminated. The termination can be initiated at either the identity or
service provider. The provider will notify all other providers in the Authentication
Domain when a user defederates their identity. There are two types of notification
which either the identity or service provider can implement:

e SOAP - based Federation Termination Notification Protocol relies on a SOAP
call from the service provider to the identity provider.

e Form POST - based Federation Termination Notification Protocol relies on a
form POST to communicate between the service provider and the identity
provider.

Name Registration Protocol

At the time of federating a user account, the identity provider generates a hame
identifier that serves as the term the identity provider and the service provider use
in referring to the user when communicating. This is the IDP Provided
Nameldentifier. Subsequent to federation, however, the service provider may
register a different name identifier with the identity provider. This is the SP
Provided Nameldentifier. The identity provider must use the SP Provided
Nameldentifier when communicating with the service provider about the user until
after federation when they will both use the IDP Provided Nameldentifier.

Single Log-Out Protocol

This is the protocol used to synchronize the session log-out functionality across all
sessions that were authenticated and opened by a particular identity provider.
There are two types which either the identity or service provider can implement:

Chapter 9 Federation Management 239



Federation Management API|

= SOAP-based Single Log-Out Protocol relies on asynchronous SOAP messaging
between service providers and identity providers.

< Form POST-based Single Log-Out Protocol relies on a form POST to
communicate between service providers and identity providers.

IDP Introduction Protocol

In federation networks having more than one identity provider, the service
providers need a way to determine which identity provider(s) is the user’s
preferred identity provider. The Liberty specification defines a protocol which
relies on a cookie written in a domain that is common between identity providers
and service providers. This predetermined domain is the common domain and the
cookie containing the preferred identity provider is known as the common domain
cookie. The service provider can read this cookie value to identify a user’s preferred
identity provider and get authentication assertions from that identity provider.
Both identity providers and service providers implement this protocol.

Federation Management API

240

The LibertyManager class forms the basis of the Federation Management APlIs.
This interface is instantiated by web applications that want to access the Federation
Management module. It contains the methods needed by the module JSPs for
account federation, session termination, log in, log out and other actions. These
methods include:

= get SPLi st () —which returns a list of all trusted service providers.

e getSPList(String hostedProviderl D)—which returns a list of all trusted
service providers for the specified hosted provider.

= get | DPLi st () —which returns a list of all trusted identity providers.

e getlDPList(String hostedProvi derl D)—which returns a list of all trusted
identity providers for the specified hosted provider.

e get SPFederationStatus(String user, String provider)—which
retrieves the federations status of a user with a service provider. This method
assumes that the user is already federated with the provider.

e getlDPFederationStatus(String user, String provider)—which
retrieves the federation status of a user with an identity provider. This method
assumes that the user is already federated with the provider.

Identity Server Programmer’s Guide ¢ December 2002



Customizing The Module

get Feder at edPr ovi der s( St ri ng user Name) —which returns a specific user’s
federated providers.

get Provi dersToFederate(String providerlD, String
user Nane) —which returns the list of all trusted identity providers to which
the specified user is not already federated.

get Li st OF COTs( String provi der D)—which returns a list of authentication
domains for the given provider.

NOTE The Identity Server Javadocs can be accessed from any browser by

copying the complete <i dentity_server_r oot >/ SUN\VAm docs/
directory into the <i dentity_server _r oot >/ SUN\VWAM publ i c_ht ni
directory and pointing the browser to

http://<server_nane. domai n_namne>: <port >/ docs/i ndex. htm .

Customizing The Module

The Federation Management module uses JSP files to define the look and feel of its
pages. An administrator can customize the JSPs by changing the tags accordingly.
The JSPs can be found in the <i dentity_server _r oot >/ SUN\Van web- apps/

servi ces/ confi g/ federation/defaul t/ directory and include:

CommonLogi n. j sp—displays links to the login pages of the trusted identity
providers as well as the local login link. It is displayed when the user is not
locally logged in or not logged in at the identity provider site. The list of
trusted identity providers is obtained by the get | DPLi st ( host edPr ovi der | D)
method.

Error.j sp—displays an error page when one has occurred.

Feder at e. j sp—is displayed when the user clicks the Federate link in the

i ndex. j sp. It displays a drop-down menu that lists all providers with which
the user is not yet federated. This list is constructed from the

get Provi der sToFeder at e(user Nane, provi der| D) method which returns
all active providers to which the user is not yet federated.

Feder at i onDone. j sp—displays the status of federation (success or cancelled).
It checks this status using the i sFeder ati onCancel | ed(request) method.

Foot er . j sp—displays a branded footer.

Header . j sp—displays a branded header.

Chapter 9 Federation Management 241



Federation Management Samples

e ListO COrs. j sp—displays multiple authentication domains (or circles of
trust) when the service provider belongs to more than one. When a user is
authenticated by an identity provider and the provider belongs to more than
one authentication domain, they will be shown the Li st Of COTs. j sp to select
one domain as the preferred domain. In the case that the provider belongs to
only one domain, then this page will not display as, by default, the one domain
is the preferred domain. The list of authentication domains is obtained by
using the get Li st Of COTs( pr ovi der | D) method.

= Logout Done. j sp—displays the status of the local logout.

= Ternination.jsp—is displayed when the user clicks the defederate link. It
shows a drop-down menu of all providers to which the user has already
federated; from this list, the user can choose to defederate. The list is
constructed using the get Feder at edPr ovi der s(user Name) method which
returns all active providers to which the user is already federated.

= Tern nationDone. j sp—displays the status of federation termination (success
or cancelled). It checks this status using the
i sTerm nati onCancel | ed(request) method.

The files in this directory provide a default GUI for the module. To customize it for
a specific organization, this def aul t directory can be copied and renamed to reflect
the name of the organization (or any value). It would then be placed at the same
level as the def aul t directory and the files within this directory could then be
modified as needed.

Federation Management Samples

242

There are a number of samples included with the Identity Server that demonstrate
the different protocols used in the Federation Management module. They are
located in the <i denti ty_server _r oot >/ SUN\Vani sanpl es/ | i berty/ directory.
Instructions on how to implement the samples can be found in the READVE file.

= Sample 1 illustrates a scenario with one Service Provider and one ldentity
Provider configured on two separate Identity Server installations. Two server
machines are required.

= Sample 2 illustrates a scenario with one Service Provider whose resources are
deployed on a Sun ONE Web Server protected by an Identity Server Policy
Agent and one Identity Provider. At least two server machines are required for
this sample also.

Identity Server Programmer’s Guide ¢ December 2002



Federation Management Samples

Sample 3 illustrates a multiple hosted providers scenario with two Service
Providers and two ldentity Providers. This sample scenario requires only one
server machine and one Identity Server installation. Four hosted providers

(two Service Providers and two Identity Providers) are created on the same
Identity Server Installation.

Chapter 9 Federation Management 243



Federation Management Samples

244 |dentity Server Programmer’s Guide ¢ December 2002



Chapter 10

Logging Service

The Sun™ One Identity Server provides a Logging Service to record information
such as user activity, traffic patterns, and authorization violations. In addition,
Identity Server includes a Logging API to allow external applications to take
advantage of the Logging Service. This chapter explains the service and the API. It
contains the following sections:

= Overview

= Log Message Formats
< Logging API

< Logging SPI

= Debug Files

= Secure Logging

Overview

The Logging Service enables all Identity Server services to record information that
might be useful to the administrator in one centralized location. The recorded
information may include access denials and approvals, authorization violations
and code exceptions. This information allows administrators to analyze user
activity, ldentity Server traffic patterns and authorization violations. As with all
Identity Server services, the Logging Service uses a global configuration file,
named anmLoggi ng. xn , to define its attributes (such as maximum log size and log
location), or whether the log information is written to a flat file or a relational
database.

NOTE The directory location for all logs is / var / opt / SUNVAm

245



Overview

Logging Architecture

External Java applications use the Logging API to access the Logging Service.
These interfaces may reside on a remote server or on the same server as the
Logging Service. If the APIs live remotely, the PLL Communication Component, an
XML over HTTP interface, is used to send the logging request to the Logging
Service.

NOTE The logging architecture extends the Java™ 1.4 Logging API specifications.

An application accesses the Logging Service by calling the Logging API. Upon
receiving a request, the Logging Service loads the configuration data stored in the
Directory Server using the Identity Server SDK. Any exception message will be
logged, based on these configuration values. On any error, a Logi nExcepti on is
thrown. Figure 10-1 illustrates the architecture of the Logging Service.

Figure 10-1  Logging Service Architecture

246 Identity Server Programmer’s Guide * December 2002



Log Message Formats

Logging Service XML File

The Logging Service holds the attributes and values for the logging function. These
attributes and values are defined in the anLoggi ng. xm service file located in
<identity_server _root > SUN\Wan confi g/ xnl . The values defined in

amLoggi ng. xnl are applied across the Identity Server deployment and are
inherited by every configured organization. More information on the Logging
Service and its attributes can be found in the Sun ONE Identity Server Administration
Guide.

Log Security

An optional logging feature adds additional security to the log files in terms of tamper
detection. No special coding is required to leverage this feature. Please refer to the Sun ONE
Identity Server Administration Guide for steps to turn on and configure this secure logging
feature.

Log Message Formats

Identity Server supports logging messages stored in both, a text file and a relational
database. The following sections explain the data storage formats used in these
formats.

Flat File Format

The default flat file format is the W3C Extended Log Format (ELF). In leveraging
this format, the Logging Service records time, Data, HostName, LoginID,
LogLevel, Domain and IPAddr fields in each log record.

= tineisthedate (yyyy/mm/dd) and time (hh:mm:ss) at which the log message
was recorded.

= Dat a is the description of the user activity, errors or other useful information
which the application wants to log.

= Host Nane is the hostname from which the operation was performed.
= Logi nl Dis the ID of the user attempting to access the application.
e LoglLevel corresponds to the JDK1.4 | LoglLevel of the log record.

= Domai n is the Identity Server domain to which the user belongs.

Chapter 10 Logging Service 247



Log Message Formats

248

= | PAddr is the IP address from which the operation was performed.

Code Example 10-1 illustrates a log record formatted for a flat file.

Code Example 10-1

Flat File Formatted Log Record Sample

#Ver si on:
#Fi el ds:

dc=exanpl e, dc=com

1.0
time Data Host Nane Logi nl D LogLevel Donai n | PAddr
"13-11-2002 18:34:50" "Login Success

User | d- >ui d=amAdmi n, ou=Peopl e, dc=exanpl e, dc=com

User Domai n- >dc=sun, dc=com ser vi ce- >adm nconsol eservi ce"

t est machi ne. exanpl e. com"cn=user, ou=User s, dc=exanpl e, dc=com' | NFO
t est machi ne. exanpl e. com 134. 135. 134. 135

Relational Database Format

For applications using a relational database to log messages, the message is stored
in a database table. Identity Server uses Java Database Connectivity (JDBC) to
access data from Java programs in an Oracle® environment. The database schema

is as follows:

Table 10-1 Relational Database Log Format

Column Name Data Type Description

TI ME VARCHAR2(30) Date of the log in the format yyyy/ mm dd
hh: nm ss.

DATA VARCHAR2(1024) The log message itself.

HOSTNAMVE VARCHAR2(300) Host name of machine from which the logged
operation was performed.

LOG NI D VARCHAR2(300) Login ID of the user who performed the logged
operation.

LOGLEVEL VARCHAR2(300) JDK 1.4 log level of the log record.

DOVAI N VARCHAR2(300) Identity Server domain of the user.

| PADDR VARCHAR2(300) IP Address of the machine from which the

logged operation was performed.

Identity Server Programmer’s Guide ¢ December 2002




Logging API

NOTE There is a limitation in the log name length for Oracle JDBC logging: the
length of the log name cannot exceed 30 characters. Oracle does not support
longer names.

Logging API

The Logging API provides log management tools for all Identity Server services as
well as providing a set of Java classes for external applications to create, retrieve,
submit, or delete log information. These API extend the JDK 1.4 API. The main
classes are Logger and LogRecor d. They are contained in the package
comsun.identity.l og.

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <i dentity_server_r oot >/ SUN\Vam docs/
directory into the <i dentity_server _root >/ SU\Vam publ i c_ht ni
directory and pointing the browser to
http://<server _nane. domai n_name>: <port >/ docs/i ndex. htmi .

Logger Class

This Logger class provides the methods for applications to use in creating log files
and writing log information to them.

= The get Logger () method returns a logger object and simultaneously creates a
log in the designated logging location.

< Thel og() method records a single piece of log information or a LogRecord. It
allows an application to submit a logging message to a predetermined log.

LogRecord Class

The LogRecord class provides the means to represent the information that needs to
be logged. Each instance represents a single piece of log information or LogRecord
that comes from the application.

Chapter 10 Logging Service 249



Logging API

250

Logging Exceptions

There are a number of exceptions that can be thrown using the Logging APIs. The
generic LogExcept i on is probably the most common. It signals an error condition
while logging a message. Other exceptions include:

Connect i onExcept i on—This exception is thrown when the connection to the
database fails.

Dri ver LoadExcept i on—This exception is thrown when the JDBC driver load
fails.

I nval i dLogNaneExcept i on—This exception is thrown when the log name is
invalid.

LogAl r eadyExi st Except i on—This exception is thrown when the log already
exists.

LogCr eat eExcept i on—This exception is thrown when log creation fails.
LogDel et eExcept i on—This exception is thrown when the log deletion fails.

LogExcepti on—A LogExcept i on is thrown when applications are denied log
access because they don’t have the privileges or a valid session.

LogFat al Except i on—This exception is thrown when a fatal error occurs.

LogHandl er Except i on—A LogExcept i on is thrown when a log handler error
is encountered.

Logl nact i veExcepti on—A LogExcept i on is thrown when the log is in
inactive status. (Inactive/active status is not currently supported.)

Logl nval i dSessi onExcept i on—This exception is thrown when an
application accesses a log which does not exist.

LogNot FoundExcept i on—This exception is thrown when an application
accesses a log which does not exist.

LogPri vDeni edExcept i on—A LogExcept i on is thrown when the access
privilege is denied.

LogProfi | eExcepti on—A LogExcept i on is thrown when access privilege is
denied.

LogReadExceedsMaxExcept i on—A LogExcepti on is thrown when the log size
exceeds the maximum size defined in the Logging service.

LogReadExcept i on—A LogExcept i on is thrown when an error is encountered
in retrieving the log information.

Identity Server Programmer’s Guide ¢ December 2002



Logging SPI

= LogTypeExcepti on—This exception is thrown when a log type error occurs.

e LogWi t eExcepti on—This exception is thrown when the log record
submission fails.

< Nul | Locati onExcepti on—This exception is thrown when the location is null.

Sample Logging Code

Code Example 10-2 provides sample code to illustrate uses for the Identity Server
logging classes.

Code Example 10-2  Logging APl Samples

Logger | ogger = Logger. getLogger (" Sanpl eLogFile");
/] Creates the file or table in the LogLocation specified in the

anioggi ng. xm and returns the Logger object.

LogRecord | r = new LogRecord(Level .| NFO " Sanpl eData", ssoToken);
/1 Creates the LogRecord filling details from ssoToken.

ogger.log(lr, ssoToken);
/

|
// Wites the info into the backend file, db or renpte server.

Logging SPI

The Logging Service framework allows a customer to plug in a class which can
decide whether a LogRecord should be retained or discarded based on the
authorization of the owner of the SSOToken to perform predefined log operations.
For using this facility, the customer must define a logging policy using the policy
framework and use it from his plugin to take the decision whether the owner of the
SSOToken has permissions to perform the requested logging operation.

Plugin Log Verifier

If secure logging is enabled, the log files are verified periodically to detect any
attempt of tampering. The customers can customize the action taken if a tampering
is detected, by following the steps below.

1. Implement the com.sun.identity.log.spi.lVerifierOutput interface,
programming it for the desired functionality.

Chapter 10 Logging Service 251



Log Files

2. Add the implementing class in the classpath of Identity Server.

3.  Modify the property iplanet-am-logging-verifier-action-class in the
<identity_server_root >/ SUN\Wani confi g/ xml / anLoggi ng. xm file with the
name of the new class.

Plugin Authorization Mechanism

The logging framework allows the customer to plugin a class which decides
whether a LogRecord should be logged or discarded based on the authorization of
the owner of the SSOToken to perform predefined log operations. For using this
facility, the customer must define his logging policy using the policy framework
and use it from his plugin to take the decision whether the owner of the SSOToken
has permissions to perform the requested logging operation.

1. Implement the com.sun.identity.log.spi.lAuthorizer interface programming it
for the desired functionality.

2. Add the implementing class in the classpath of Identity Server.

3. Modify the property iplanet-am-logging-authz-class in the
<identity_server_root >/ SUN\Vani confi g/ xml / anLoggi ng. xm file with the
name of the new class.

Log Files

By default, Identity Server currently records events in four logs. These files should
be monitored by the administrator on a regular basis. The directory for the log files
can be found in var/ opt / SUNVam

NOTE The policy agents are responsible for logging exceptions related to resource
access or denial; in other words, policy-related issues. For more information
on this function, see the Sun ONE Identity Server Policy Agent Guide.

SSO-related Logs

The Logging Service logs the following events for the SSO component:
e Login

< Logout

252  Identity Server Programmer’s Guide ¢ December 2002



Debug Files

= Session Idle TineCut
* Session Max Ti meQut
e Failed To Login

= Session Reactivation
e Session Destroy

The log file is called an8SOand is stored in the var / opt / SUN\VanT | ogs directory.

Console-related Logs

The ldentity Server console logs record the creation, deletion and modification of
identity-related objects, policies and services including, among others,
organizations, organizational units, users, roles, policies and groups. It also records
modifications of user attributes including passwords and the addition or removal
of users to or from roles and groups. The log is named amConsole and is stored in
the var/ opt / SUN\Van | ogs directory.

Authentication-related Logs

The Logging component logs user logins and logouts. The log is named
amAut hent i cat i on and is stored in the var / opt / SUN\Van | ogs directory.

Federation-related Logs

The Federation component logs federation-related events including, but not
limited to, the creation of an Authentication Domain and the creation of a Hosted
Provider. The log is named anfeder at i on and is stored in the

var/ opt / SUNVant | ogs directory.

Debug Files

Debug files are stored in var / opt / SU\anm debug. This location, along with the
level of the debug information, is configurable in the AMConf i g. properti es file,
located in the <i dentity_server_root >/ SUNVan | i b/ directory. The debug files
may be monitored in the event of, for example, a product crash. The administrator
can try to understand the reason for an error situation from these files.

Chapter 10 Logging Service 253



Secure Logging

Secure Logging

Secure Logging enables the detection of unauthorized changes or tampering with
the security logs. The Identity Server administrator can enable secure logging by
following this procedure:

1.

Create a web server certificate with the name Logger and install it in the Sun
ONE Web Server running the Identity Server.

Refer to the Sun ONE Web Server documentation for instructions on this
detailed procedure.

Select the Logging Service under the Service Configuration module, turn on
Secure Logging and click Save.

Create a file in the <i dent i ty_server _r oot >/ SUNWanT conf i g directory
named .w pass which contains the Web Server administrator password.

Ensure that read permission is given only to the user running the Web Server
process. The administrator can configure the log sign interval and log
verification interval from the ldentity Server console.

Restart the Web Server after making these changes.

254 Identity Server Programmer’s Guide ¢ December 2002



Chapter 11

Client Detection

The Sun™ One Identity Server may be accessed using multiple clients types,
whether HTML-based, WML -based or other protocols. In order for this function to
work, ldentity Server must be able to identify the client type. The client detection
APl is used for this purpose. This chapter offers information on the API, and how it
can be used to recognize the client type. It contains the following sections:

e QOverview
e Client Data
« Client Detection API

Overview

Identity Server has the capability to process requests from multiple client type
browsers. The client detection API can be used to determine the protocol used by
the requesting client browser and retrieve the correctly formatted pages for the
particular client type.

NOTE Currently, Identity Server only defines client data for supported HTML
client browsers including Internet Explorer and Netscape Communicator.

Since any browser type requesting access to the Identity Server must first be
successfully authenticated, client detection is accomplished within the
Authentication Service. When a client’s HTTP request is passed to the Identity
Server, it is directed to the Authentication Service. Within this framework, the first
step in user validation is to identify the browser type using information stored in
the HTTP string request. The Authentication Service then uses this information to
retrieve the browser type’s characteristics. The characteristics are configured and

255



Client Data

stored in the and i ent Det ect i on. xnl file and are referred to as the client data.
Based on this client data, correctly formatted authentication pages are sent back to
the client browser (for example, HTML or WML pages). Once the user is validated,
the client type is added to the session token (as the key cl i ent Type) where it can
be retrieved and used by other Identity Server services.

NOTE The client detection mechanism is disabled by default which assumes the
client to be of the gener i cHTM. type. All client data associated with
gener i cHTM., as explained in “Client Data,” on page 256, will be used.

Client Data

In order to recognize client types, Identity Server stores their identifying
characteristics in its Directory Server data store. This client data identifies the
features of all of the particular deployment’s supported client browsers. Client data
for supported client types are defined in the anCl i ent Det ecti on. xm file. The
attribute in which it is defined isi pl anet - am cl i ent - det ecti on-cl i ent -t ypes.
The different aspects of the client data are separated by a pipe (“]”) as follows:

cl i ent Type=<val ue>| user Agent =<val ue>| cont ent Type=<val ue>| cooki eSupp
ort=<val ue>|fileldentifier=<val ue>|fil ePat h=<val ue>| char set =<val ue>.

The fields defined are:

= client Type—an arbitrary string which uniquely identifies the client. The
default is generi cHTM..

= User Agent —a search filter used to compare/match the user-agent defined in
the HTTP header. The default is Mozi | | a/ 4. 0.

= cont ent Type—defines the content type of the HTTP request. The default is
text/htm .

= cooki eSupport —defines whether cookies are supported by the client browser.
The defaultistr ue.

e fileldentifier—isnotused at this time.

= fil ePat h—is used to locate the client type files (templates and JSP files). The
defaultishtm .

256  Identity Server Programmer’s Guide ¢ December 2002



Client Detection API

= char set —defines the character encoding used by Identity Server to send a
response to the browser. The default value is UTF- 8. The character set can be
configured for any given locale by adding char set _| ocal e=codeset where
the code set name is based on the Internet Assigned Numbers Authority
(IANA) standard.

NOTE In order to enable client detection for the Identity Server deployment, the
i pl anet -am aut h-cl i ent - det ect i on- enabl ed attribute, also
defined in the anCl i ent Det ecti on. xm file, mustbe settotr ue.

Client Detection API

By default, Identity Server only includes client detection functionality for browsers
that use HTML. But, it is packaged with an API for writing proprietary client
detectors that can retrieve any client data. The client detection APl are in a package
called com i pl anet . servi ces. cdm This package provides the interfaces and
classes to detect any client browser types. The procedure would include defining
the client type characteristics for the new module (as stated in “,” on page 256) as
well as implementing the client detection API within the external application.
Identity Server services can be accessed by multiple client browser types. For
example, a client accessing Identity Server may be a HTML client type or a WML
client type. As any client browser requesting access to an Identity Server service
must be successfully authenticated, client detection is accomplished as part of the
Authentication Service. This service identifies the client type from it’s incoming
HTTPRequest for access, using the get C i ent Type method in the
ClientDetectionlnterface interface. Upon successful authentication, the client
type is then added to the user’s session token where other applications can find it
and use the client detection API to retrieve it.

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <i dentity_server_r oot >/ SUN\Vam docs/
directory into the <i dentity_server _root >/ SU\Vam publ i c_ht ni
directory and pointing the browser to
http://<server _nane. domai n_name>: <port >/ docs/i ndex. htmi .

Chapter 11  Client Detection 257



Client Detection API

Client Detection Module Interface

Client detection capability is provided by the O i ent Det ecti onl nt er f ace
interface. It contains a get d i ent Type method which is called by the
Authentication Service when a new login request is received. The Authentication
Service executes the retrieval of the value of the

i pl anet - am aut h-cl i ent - det ect i on- cl ass attribute to determine the name of
the implementing class of the O i ent Det ect i onl nt er f ace. The service then
passes the Ht t pRequest to the get d i ent Type method which does the actual client
detection and returns the cl i ent Type as a string. The default implementation will
assume the client type to be the defined def aul t type. An error condition will be
handled by the d i ent Det ect i onExcept i on class. Code Example 11-1 below is an
example implementation of the O i ent Det ecti onl nt er f ace.

Code Example 11-1  Implementation of the Cl i ent Det ecti onl nterf ace

/**
* $ld: dientDetectionDefaultlnpl.java,v 1.2 2002/05/09 01: 27: 40

denz Exp $

* Copyright 2001 Sun M crosystemnms, Inc. Some preexisting

* portions Copyright 2001 Netscape Comuni cations Corp.

Al rights reserved. Use of this product is subject to
license terns. Federal Acquisitions: Comercial Software --
Governnent Users Subject to Standard License Termnms and
Condi ti ons.

Sun, Sun M crosystens, the Sun |ogo, and i Pl anet are
trademarks or registered trademarks of Sun M crosystens, Inc.
in the United States and other countries. Netscape and the
Net scape N | ogo are registered tradenarks of Netscape

Communi cations Corporation in the U S. and other countries.
O her Netscape | ogos, product nanes, and service nanes are
al so trademarks of Netscape Conmuni cati ons Corporation,

whi ch may be registered in other countries.

/

E R I R I R T R R R L

package comi pl anet. services. cdm
/* i Pl anet - PUBLI C- CLASS */

i mport javax.servlet.http. HtpServl et Request;
i mport java.util.HashMap;
import comiplanet.amutil.*;

/**
* The <code>CientDetectionlnterface</code> interface needs to
* be inplenented by services and applications serving nultiple
* clients, to determine the client fromwhich the request has
* originated. This interface detects the clientType fromthe
client request.
*/

258 Identity Server Programmer’s Guide ¢ December 2002



Client Detection API

Code Example 11-1  Implementation of the Cl i ent Det ecti onl nterf ace

public class dientDetectionDefaul tlnpl inplenents
ClientDetectionlnterface

/** Detects the client type based on the request object
* @aramretuest Htp Servlet Request
* @eturn a String representing the client type
* @xception CientDetecti onException when there is an error
* retrieving client data
*/

/* For caching purpose, HashMap is used */

private static HashMap agent Tabl e = new HashMap (10);
private static Debug debug =

Debug. get | nst ance("antCl i ent Det ecti on");

public String getdientType(HttpServl et Request request)
throws dientDetectionException {

String Istr = request. get Header ("User-Agent");
i f (debug. nessageEnabl ed() )

debug. nessage("Defaul t 1 mpl Agent = "+l str);
String result;

/* Check if it is in the cache */

result = (String)agentTable.get(lstr);
)

if (result !'=null &% result.length() !'=0) {
return result;
result = "genericHITM."; // Set the default val ue

/* Known formats if User-Agents are
Mozillal4.0 (conpatible; MSIE 5.5; Wndows NT 5.0) ==>

MBI E

Mozillal/4.0 (conpatible; MSIE 5.5; Wndows NT 4.0) ==>
MBI E

Mozillal4.76 [en] (X11; U, SunCS 5.8 sun4u) ==>
NSCP_UNI X

Mozillal/5.0 (X11; U, Linux i686; en-US; rv:0.9.2.1)

Gecko/ 20010901 ==> NSCP_UNI X
Mozillal4.79 [en] (Wndows NT 5.0; U ==> NSCP_W N32
Mozillal4.78 [jal[Vine, RedHat]] (X11; U; Linux 2.4.7-10
i 686) ==> NSCP6
Mozillal/ 4.0 (conpatible; MSIE 6.0; Wndows NT 5.0) ==>
MBI E6

Mozillal4.78 [en] (WnNNT; U) ==> NSCP_W N32
*/

char[] str = Istr.toCharArray();

Chapter 11  Client Detection 259



Client Detection API

Code Example 11-1  Implementation of the Cl i ent Det ecti onl nterf ace

String tokens ;

/* Skip | eading space */
int idx = 0;
int st;
try {
/* Skip the preceding white spaces */
while (Character.isWitespace(str[idx])) {
i dx++;

st = idx;

/* Get the first token */

while (! Character.isWitespace(str[idx])) {
i dx++;

String agent = new String (str,st,idx);

/* Look for conpatibilty */
while ((strlidx]!="(")) {

i dx++;

}

st = idx+1;

while ((str[idx]!'=")")) {
i dx++;

tokens = new String(str,st,idx-st);
if (tokens.indexOh ("MSIE")!= -
if (tokens.indexO™E ("6.0")!= -1)
return "Ml E6";
el se
result= "MsIE";
} else if(agent.indexOf("Mzilla/4")!=-1) {
if ( (tokens.indexOr ("X11;") !'=-1) &&
(tokens.indexOr ("U;")!=-1))
resul t= "NSCP_UN X";

if (tokens.indexOr ("Wndows") !'= -1 ||
tokens. i ndexOF ("W nNT") 1= -1)
resul t= "NSCP_W N32";
} else if ( (agent.indexOf ("Mzilla/5") = -1) )

resul t ="NSCP6";
} catch (1 ndexCQut Of BoundsException ex) {
/1 Unable to parse the User-Agent or unknown Agent.
Fall back to
/1l Generic HTM
i f (debug. nessageEnabl ed() ) {
| mpl e

debug. message( " Defaul t |1 npl Agent Exception in parsing
= "+ex);
}
i f (debug. nessageEnabl ed() ) {
debug. nessage("Defaultlnpl result = "+result);
}

260 Identity Server Programmer’s Guide ¢ December 2002



Client Detection API

Code Example 11-1  Implementation of the Cl i ent Det ecti onl nterf ace

synchroni zed (agent Tabl e)
agent Tabl e. put (Istr,

return result;

result);

Chapter

11

Client Detection

261




Client Detection API

262  Identity Server Programmer’s Guide ¢ December 2002



Backup

Chapter 12

ldentity Server Utilities

The Sun ONE Identity Server provides scripts to backup and restore data as well as
application programming interfaces (API) that are used by the server itself or by
external applications. This chapter explains the scripts and the API. It contains the
following sections:

= Backup And Restore
- Utility API

And Restore

The Backup and Restore function of Identity Server allows businesses to keep their
data safe by backing it to up and recovering it following an unexpected loss.
Backed-up information includes all configuration, customization and identity data
that has been modified or added since the initial installation of the Identity Server.
Log and debug files are also backed up. (Identity Server will not backup anything
that remains unchanged from the installation state.)

The Restore function re-configures a freshly installed Identity Server to a former
state, reflected by the data that was last backed up. It restores all the configuration,
customization and identity data that was last backed up as well as the log and
debug files. Both the Backup and Restore functions are initiated through the use of
scripts provided with Identity Server.

NOTE The backup and restore functions are performed on the Identity Server data
stored in the Directory Server.

263



Backup And Restore

Backup Script

Following is the script used for backing up data. The utility is named anfbak and
can be found in the <i denti ty_server _r oot >/ SUN\WAnT bi n directory. anPbak
takes command-line parameters and creates a backup. i nf file containing
information pertinent to the backup. A tar file is then created consisting of all the
data.

Usage

The script is:

e ./ankbak [ -v | --verbose ] [ -k | --backup <backup-name>] [ -I
| --location <location>] [[-c | --config] | [-b ]| --debug] | [-9
| --log] | [-t | --cert] | [-d | --ds] | [-a | --all]]*

e ./ankbak -h | --help

e _/ankbak -n | --version

The options are defined as:
e -v | --verbose —runs the scriptin verbose mode.

e -k | --backup <backup-name> — defines the name of the backup file. The
default filename is anbak.

e -l | --location <location> — defines the location of the backup file. The
defaultis <i dentity_server _root >/ backup.

e -c | --config — confines the backup to only configuration files. This also
includes the service configuration data (updated service schema files and the
service configurations for various organizations).

e -b | --debug — confines the backup to only debug files.

e -g | --1og — confines the backup to only log files.

e -t | --cert — confines the backup to only the certification database.

e -d | --ds — confines the backup to the Directory Server.

e -a | --all —defines acomplete backup of the Identity Server. This is the
default option.

e --hel p — accesses the script’s help feature.

= --versi on — prints the version of the backup script being used to the screen.

264  Identity Server Programmer’s Guide ¢ December 2002



Backup And Restore

Backup Procedure
Login as root.

1.

The user running this script must have root access.

Run the script ensuring that the correct path is used, if necessary.

The script will backup the following Solaris™ Operating Environment files:

o Configuration and Customization Files:

<identity_server_root>/ SUN\Wani confi g/
<identity_server_root>/ SUN\Wani | ocal e/
<identity_server_root>/ SUN\Vani server s/ htt pacl

<identity_server_root> SUN\WanT | i b/*. properties (Java
property files)

<identity_server_root >/ SUNWAM bi n/ anmser ver . <i nst ance- name>

<identity_server_root>/ SU\Wam servers/ https-<all _instances>
<i dentity_server _root >/ SUN\WAN ser ver s/ web- apps-<al | _i nstance
S>

<i dentity_server_root >/ SUN\WAN web- apps/ servi ces/ WEB- | NF/ conf
ig
<identity_server_root> SUN\Vanm web- apps/ servi ces/config

<identity_server_root >/ SUN\WANM web- apps/ appl i cati ons/ V\EB- | NF/
cl asses

<identity_server_root > SU\Wam web- apps/ appl i cati ons/ consol e
/etc/rc3.d/ K55anserver. <al | _i nstances>

/etc/rc3.d/ S55anserver. <al | _i nstances>

<di rectory_server_root >/ sl apd- <host >/ confi g/ schema/

<di rectory_server _root >/ sl apd- <host >/ confi g/ sl apd-col | ati ons
. conf

<di rectory_server _root>/sl apd- <host >/ confi g/ dse. |l dif

o Log And Debug Files:

var/ opt / SUNvant | ogs (ldentity Server log files)

var/ opt/ SUNVant i nst al | (Identity Server installation log files)

Chapter 12 Identity Server Utilities 265



Backup And Restore

« var/opt/ SUN\Van debug (Identity Server debug files)
o Certificates:

e <identity_server_root> SUNam servers/ali as

« <directory_server_root>/alias

The script will also backup the following Microsoft® Windows 2000 operating
system files:

o Configuration and Customization Files:
e <identity_server_root>/ web-apps/services/ WEB-| NF/ confi g/ *
* <identity_server_root>/|ocal e/*

e <identity_server_root>/ web-apps/applications/ WEB-I N/ cl asses
/*. properties (java property files)

e <identity_server_root>/servers/https-<host>/config/jvnl2.con
f

e <identity_server_root>/servers/ https-<host >/ confi g/ nagnus. co
nf

e <identity_server_root>/servers/https-<host>/config/obj.conf
e <directory_server_root>/sl apd-<host >/ confi g/ schema/*.|dif

e« <directory_server_root >/ sl apd- <host >/ confi g/ sl apd-col | ati ons
. conf

e <directory_server_root>/sl apd-<host>/config/dse.ldif

o Log And Debug Files:

« var/opt/logs (ldentity Server log files)

« var/opt/debug (Identity Server debug files)
o Certificates:

e <identity_server_root>/servers/alias

e <identity_server_root>/alias

266 Identity Server Programmer’s Guide ¢ December 2002



Backup And Restore

Restore Script

Following is the script used for restoring backed-up data to a freshly reinstalled
Identity Server. The utility is named bak2amand can be found in the

<i dentity_server_root >/ SU\Wam bi n directory. bak2amtakes the backup file
name as a command-line parameters, reads the backup. i nf file, untars the data file
and performs the restoration accordingly.

NOTE The Restore script will stop the Identity Server if it is running when the
script is activated.

Usage
The script is:

e ./bak2am|[ -v | --verbose ] -z | --gzip <tar.gz-file> or -t |
--tar <tar-file>

e ./bak2am-h | --help

e ./bak2am-n | --version

The options are defined as:

e -v | --verbose — runs the scriptin verbose mode.

e -z | --gzip <tar.gz file-name> — defines the location of a gzipped data
backup tar file. A full path name must be used if the file is not located in the
default <i denti ty_server _root >/ backup directory.

e -t | --tar <tar-file> — defines the location of a data backup tar file. A
full path name must be used if the file is not located in the default
<i dentity_server_root >/ backup directory.

e --hel p — accesses the script’s help feature.

= --versi on — prints the version of the backup script being used to the screen.

Restore Procedure
1. Login as root.

The user running this script must have root access.
2. Untar the input tar file.

This was generated when the backup script was run.

Chapter 12 Identity Server Utilities 267



Utility API

Utility AP

The utilities package is called com i pl anet . am uti | . It contains utility programs
that can be used by external applications accessing Identity Server. The API
include:

e StatsListener

e AdmnUtils

e Debug
e Locale
e Stats

e SystenProperties

e ThreadPool

NOTE The ldentity Server Javadocs can be accessed from any browser by
copying the complete <i dentity_server_r oot >/ SUN\Vam docs/
directory into the <i dentity_server _r oot >/ SUN\VWaA publ i c_ht ni
directory and pointing the browser to
http://<server_nane. domai n_namne>: <port >/ docs/i ndex. htm .

APl Summary

Following is a summary of the utility APl and their functions.

AMPasswordUtil

The AMPasswor dUt i | interface can be used to encrypt and decrypt passwords.

AdminUtils

This class contains the methods used to retrieve TopLevelAdmin information. The
information comes from the server configuration file (ser ver confi g. xn ).

268 Identity Server Programmer’s Guide ¢ December 2002



Utility API

Debug

Debug allows an interface to file debug and exception information in a uniform
format. It supports different levels of filing debug information (in the ascending
order): OFF, ERROR, WARNI NG MESSAGE and ON. A given debug level is enabled if it is
set to at least that level. For example, if the debug state is ERROR, only errors will be
filed. If the debug state is WARNI NG, only errors and warnings will be filed. If the
debug state is MESSAGE, everything will be filed. MESSAGE and ONare the same level
except MESSAGE writes to a file, whereas ON writes to Syst em out .

NOTE Debugging is an intensive operation and may hurt performance when
abused. Java evaluates the arguments to mnessage() and war ni ng() even
when debugging is turned off. It is recommended that the debug state be
checked before invoking any nessage() or war ni ng() methods to avoid
unnecessary argument evaluation and to maximize application
performance.

Locale

This class is a utility that provides the functionality for applications and services to
internationalize their messages.

SystemProperties

This class provides functionality that allows single-point-of-access to all related
system properties. First, the class tries to find AMConf i g. cl ass, and then a file,
AMConf i g. properti es, in the CLASSPATH accessible to this code. The class takes
precedence over the flat file. If multiple servers are running, each may have their
own configuration file. The naming convention for such scenarios is

AMConfi g_ser ver Nane.

ThreadPool

ThreadPool is a generic thread pool that manages and recycles threads instead of
creating them when a task needs to be run on a different thread. Thread pooling
saves the virtual machine the work of creating brand new threads for every
short-lived task. In addition, it minimizes the overhead associated with getting a
thread started and cleaning it up after it dies. By creating a pool of threads, a single
thread from the pool can be reused any number of times for different tasks. This
reduces response time because a thread is already constructed and started and is
simply waiting for its next task.

Chapter 12 Identity Server Utilities 269



Utility API

Another characteristic of this thread pool is that it is fixed in size at the time of
construction. All the threads are started, and then each goes into a wait state until a
task is assigned to it. If all the threads in the pool are currently assigned a task, the
pool is empty and new requests (tasks) will have to wait before being scheduled to
run. This is a way to put an upper bound on the amount of resources any pool can
use up. In the future, this class may be enhanced to provide support growing the
size of the pool at runtime to facilitate dynamic tuning.

270 Identity Server Programmer’s Guide ¢ December 2002



Appendix A

AMConfig.properties File

AMConf i g. properti es is the resource configuration file for the Sun™ One Identity
Server. It provides instructions for the Identity Server set up. This chapter explains
the elements of the AMConf i g. properti es. It contains the following sections:

e Overview
= Deployment Directives
= Configuration Directives

< Read-Only Directives

Overview

Identity Server is configured by placing directives in plain text configuration files.
The main configuration file is AMConf i g. properti es. AMConfi g. properti es is
located in <i denti ty_server _root >/ SUN\VMant | i b. Changes to this configuration
files are only recognized when Identity Server is started or restarted.

Identity Server configuration files contain one directive per line and each directive
has a corresponding value. Directives and their values are case-sensitive.
Indentation of the directives is consistent throughout the file. Lines which begin
with the characters “/*” are considered comments, and are ignored by the
application. Comments are completed with a last line that contains the closing
characters “*/”.

NOTE The ldentity Server must be restarted for any change in
AMConfi g. properti es to take effect.

271



Deployment Directives

Deployment Directives

There are a number of deployment-specific attributes configured in
AMConf i g. properti es. These are defined in this section.

272

|dentity Server Directives

The following section describe the directives that define the Identity Server.

Installation

The following directives are Identity Server-specific. They are defined during
installation.

com.iplanet.am.server.host=sunboxl.red.iplanet.com

The value of this directive is the DNS domain name of the machine on which
the Identity Server is located.

com.iplanet.am.server.port=58080
The value of this directive is the port number of the Identity Server.
com.iplanet.am.console.protocol=http

The value of this directive is the protocol used to communicate with the
Identity Server.

com.iplanet.am.jdk.path=/export/SUNWam/java
The value of this directive is the path to the JDK used by the Identity Server.

com.sun.identity.authentication.super.user=uid=amAdmin,ou=People,dc=madis
onparc,dc=com

This directive identifies the super user for the Sun ONE Identity Server
deployment. This user is amadmin by default but may be any user in the
Directory Server. The value of the directive is the full DN of the user. This user
must always login using LDAP authentication as they will always be
authenticated against the Directory Server.

Console
The following directives are specific to the Identity Server console.

com.iplanet.am.console.host=sunbox1.red.iplanet.com

Identity Server Programmer’s Guide ¢ December 2002



Deployment Directives

The value of this directive is the DNS domain name of the machine on which
the Identity Server console is located.

= com.iplanet.am.console.port=58080

The value of this directive is the port number of the Identity Server console.

Cookies
The following directives are specific to Identity Server cookies.

= com.iplanet.am.cookie.name=iPlanetDirectoryPro
The value of this key is the name of the cookie.
= com.iplanet.am.pcookie.name=DProPCookie

The value of this key is the name of the persistent cookie if that function is
enabled.

Miscellaneous Directives

The following directives define miscellaneous values necessary for the Identity
Server.

= com.iplanet.am.daemons=unix
< com.iplanet.am.locale=en_US
= com.iplanet.am.logstatus=ACTIVE

= com.iplanet.am.version=6.0

Directory Server

The following directives are Directory Server-specific.

Installation

This information is defined during installation for the Directory Server to which
the Identity Server points.

= com.iplanet.am.directory.host=sunbox1.red.iplanet.com

The value of this directive is the DNS domain name of the machine on which
the Directory Server is located.

= com.iplanet.am.directory.port=389

Appendix A AMConfig.properties File 273



Configuration Directives

The value of this directive is the port number of the Directory Server.
= com.iplanet.am.server.protocol=http

The value of this directive is the protocol used to communicate with the
Directory Server.

Directory Server Tree

The values of these directives is the top-level organization defined during the
installation process.

= com.iplanet.am.defaultOrg=dc=madisonparc,dc=com
= com.iplanet.am.rootsuffix=dc=madisonparc,dc=com

= com.iplanet.am.domaincomponent=dc=madisonparc,dc=com

Configuration Directives

There are a number of services configured in AMConf i g. pr oper ti es that can not
be configured using the Identity Server console. These back-end services are
defined in this section.

Debug Service

The following directives are used to configure the Debug Service, which logs
developer information in the case of application errors. (The Logging Service
writes logs to be monitored by the application administrator.)

= com.iplanet.services.debug.level=error

The possible values for this directive are: off | error | warning | message.
They indicate the amount of information that would be recorded in the debug
files.

= com.iplanet.services.debug.directory=/var/opt/SUNWam/debug

The value of this directive specifies the output directory for the debug files.
This directory should be writable by the server process.

NOTE In defining values for the Debug Service, remember that trailing spaces are
significant. On a Windows® system, use forward slashes “/” to separate
directories. Spaces in the file name are also allowed on a Windows system.

274 Identity Server Programmer’s Guide ¢ December 2002



Configuration Directives

Stats Service

The following keys are used to configure the Stats Service for recording service
statistics. Currently, this service is used by the Identity Server SDK and the Session
Service. Code Example 12-1 is a portion of the stats file which also illustrates the
information that is recorded. The file is named anBSDKSt at s by default.

Code Example 12-1  Portion of amSDKStats File

11/ 26/ 2002 01: 46: 18: 592 PM PST: Thr ead[ Thr ead- 10, 5, mai n]
SDK Cache Statistics

Interval: 214

Hts during interval: 38

Hit ratio for this interval: 0.17757009345794392

Total nunber of requests: 214

Total nunber of Hits: 38

Overall Hit ratio: 0.17757009345794392

Total Cache Size: 72

com.iplanet.am.stats.interval=3600

The statistics interval should be at least 5 seconds to avoid CPU saturation.
Identity Server will assume that any value less than that is 5 seconds.

com.iplanet.services.stats.state=off

Possible values for this directive are: off | file | console.file will write
to a file named anSDKSt at s under the specified directory and consol e will
write into Web Server log files.

com.iplanet.services.stats.directory=/var/opt/SUNWam/debug

This directive specifies the output directory for the statistics files, the debug
directory by default.

NOTE In defining values for the Stats Service, remember that trailing spaces are
significant. On a Windows® system, use forward slashes “/” to separate
directories. Spaces in the file name are also allowed on a Windows system.

Appendix A AMConfig.properties File 275



Configuration Directives

276

SAML

These directives identify the SAML XML signature keystore file, the keystore
password file and the key password file, respectively.

com.sun.identity.saml.xmlsig.keystore=/export/SUNWam/lib/keystore.jks
com.sun.identity.saml.xmlsig.storepass=/export/SUNWam/config/.storepass
com.sun.identity.saml.xmlsig.keypass=/export/SUNWam/config/ .keypass
com.sun.identity.saml.xmlsig.certalias=test

The value of this key is the name of the certificate alias.

Miscellaneous Services

The following directives define the URIs for the Profile, Naming and Notification
services.

com.iplanet.am.profile.host=sunboxl.red.iplanet.com
com.iplanet.am.profile.port=58080

com.iplanet.am.naming.url=http://sunboxl.red.iplanet.com:58080/amserver/na
mingservice

com.iplanet.am.notification.url=
http://sunbox1.red.iplanet.com:58080/amserver/notificationservice

SDK Caching

Each SDK cache entry stores a set of attributes and values for a user. Because the
size of each object is dependent upon the number of attributes it has, modifying
this property will affect the performance of Identity Server.

com.iplanet.am.sdk.cache.maxSize=10000

This directive is used to configure SDK caching; it specifies the size of the cache
when caching is enabled. The value of this directive refers to the number of
objects cached and should be an integer greater than 0; if not, the default 10000
will be used.

com.iplanet.am.session.maxSessions=5000

This directive is used to specify maximum number of concurrent sessions.
Logging in would give a Maximum Sessions error if the maximum concurrent
sessions exceeds the defined number.

Identity Server Programmer’s Guide ¢ December 2002



Configuration Directives

Simple Mail Transfer Protocol (SMTP)
The following directives can be set to any valid SMTP server and port.

< com.iplanet.am.smtphost=Ilocalhost

= com.sun.identity.sm.smptpport=25

Identity Object Processing

This directive has a value equal to the implementation class of a module used for
processing user creates, deletes, and modifies.

= com.iplanet.am.sdk.userEntryProcessinglmpl=

SSL

This directive enables Secure Socket Layers (SSL).

< com.iplanet.am.directory.ssl.enabled=false

Certificate Database

These directives are used by the command line utilities, the SDK and the LDAP
and Certificate-based authentication modules when initiating SSL connections to
the Directory Server. It is also used when opening https connections from within
the servlet container in the Sun ONE Web Server.

= com.iplanet.am.admin.cli.certdb.dir=/export/SUNWam/servers/alias
The value of this key is the name of the path to the certificate database.

= com.iplanet.am.admin.cli.certdb.prefix=https-sunbox1.red.iplanet.com-sunbox1-
The value of this key is the certificate database prefix.

= com.iplanet.am.admin.cli.certdb.passfile=/export/SUNWam/config/.wtpass

The value of this key is the name of the file that contains the password for the
certificate database.

OCSP Configuration

These directives define configurations for the OCSP (Online Certificate Server
Protocol). If set, the CA cert must be presented in the Web Server’s cert database. If
the OCSP URL is set, the OCSP responder nickname must be set also or they both
will be ignored. If not set, the OCSP responder URL presented in the user’s
certificate will be used for OCSP validation. If the OCSP responder URL is not
presented in user’s cert, then no OCSP validation will be performed.

Appendix A AMConfig.properties File 277



Configuration Directives

= com.sun.identity.authentication.ocsp.responder.url=

This directive defines the OCSP responder URL for this instance of Identity
Server (for example, http://ocsp.example.com/ocsp).

= com.sun.identity.authentication.ocsp.responder.nickname=

This directive defines the OCSP responder nickname, the Certificate Authority
cert nickname for the responder defined above (for example, Certificate
Manager - example).

Replication

These two properties are not required to support replication but they may be
helpful in limiting errors due to latency. Enabling them may have a negative
impact on performance but, if replication has significant latency, the retries may be
enough to prevent Entry Not Found errors. For example, let’s assume an Identity
Server console is pointing to a read-only consumer configured to refer writes to a
master. If a new organization is created, all write requests are referred to the master
and then replicated back to the consumer. If Identity Server reads the organization
back before it has been replicated to the consumer, it will get an Entry Not Found
error.

NOTE Itis not recommended to run the Identity Server console against a read-only
consumer. The exception to this rule is when operating against user entries
whose creations and modifications do not have the same latency problems
as the SDK has special behavior to prevent such problems for these entries.

< com.iplanet.am.replica.num.retries=0

This key specifies the number of times to retry. When an Entry Not Found
error is returned to the SDK, it will retry n times where n is the value of this
directive.

= com.iplanet.am.replica.delay.between.retries=1000

This key specifies the delay time (in milliseconds) between the retries defined
above.

278 Identity Server Programmer’s Guide ¢ December 2002



Read-Only Directives

Event Connection And LDAP Connection

These two sets of SDK properties are implemented when load balancers are used
between the Identity SDK and the Directory Server. When the SDK performs an
operation which fails, it will retry the operation as long as the exception is one
defined in the Idap.error.codes property. These properties are necessary for
failover configuration when the failover is done via a load balancer and not
through the Identity SDK. They are also important since not all load balancers
return the same error codes.

Event Connection
= com.iplanet.am.event.connection.num.retries=3

This directive specifies the number of time to retry an event connection.
= com.iplanet.am.event.connection.delay.between.retries=3000

This directive specifies the delay time (in milliseconds) between retries.
= com.iplanet.am.event.connection.ldap.error.codes.retries=80,81,91

This directive specifies the LDAPException errors for which the retries will
occur. The value is any valid LDAP error code.

LDAP Connection

The following keys are used to configure LDAP connection for add, delete modify,
read and search.

= com.iplanet.am.ldap.connection.num.retries=3

This directive specifies the number of times to retry a LDAP connection.
= com.iplanet.am.ldap.connection.delay.between.retries=1000

The directive specifies the delay time (in milliseconds) between retries.
= com.iplanet.am.ldap.connection.ldap.error.codes.retries=80,81,91

This directive specifies the LDAPException error codes for which the retries
will occur.

Read-Only Directives

The following properties are read-only and should not be modified. Any changes
to these directives may render the Identity Server unusable.

Appendix A AMConfig.properties File 279



Read-Only Directives

Base Directory

The following directives identify the base directory as defined during the
installation process.

= com.iplanet.am.installdir=/export/SUNWam

= com.iplanet.am.install.basedir=/export/SUNWam/web-apps/services/WEB-IN
F

Shared Secret

The following directive is the shared secret for the Authentication module.

= com.iplanet.am.service.secret=AQIC5wM2LY4SfczL1j6134gMTxOnkE5XiFMg

Deployment Descriptors

The following directives are used to identify the deployment descriptors (URIs) for
Identity Server services and agents.

= com.iplanet.am.services.deploymentDescriptor=/amserver
= com.iplanet.am.console.deploymentDescriptor=/amconsole

= com.iplanet.am.policy.agents.url.deploymentDescriptor=AGENT_DEPLOY_URI

Session Properties
The following directives are configurations for the Session Service.
= com.iplanet.am.session.failover.enabled=false

This directive is used to enable or disable the session failover feature.

NOTE Session failover is an unsupported option in Identity Server 6.0.

= com.iplanet.am.naming.failover.url=

This directive can be used by any remote SDK application that wants failover
in, for example, session validation or getting the service URLS.

280 Identity Server Programmer’s Guide ¢ December 2002



Read-Only Directives

com.iplanet.am.session.httpSession.enabled=true
This directive is used to enable or disable the use of a httpSession.
com.iplanet.am.session.invalidsessionmaxtime=3

This directive is used to keep the invalid session in the session table for this
period. The value is in minutes (for example, 3 minutes).

NOTE This value should always be greater than the time-out value in your

authentication module properties file.

com.iplanet.am.session.client.polling.enable=false
com.iplanet.am.session.client.polling.period=180

The two above directives are used to enable session client side notification. The
default polling period is 180 seconds.

The following is used in the Unix authentication module.
unixHelper.port=58946

The following key is used to check whether the Sun ONE Identity Server is
running on the Application Server or not. This key is modified only by the
installer so do not change it.

com.iplanet.am.iASConfig=false

Cross Domain Single Sign-On Support

The following directives are used for Cross Domain SSO support.

com.iplanet.services.cdsso.CDCURL=http://sunboxl.red.iplanet.com:58080/am
server/cdcservlet

This directive points to the cdcservlet running with the instance of Identity
Server.

com.iplanet.services.cdsso.cookiedomain=

This directive specifies a comma separated list of domains for which the cdsso
servlet will set a SSOToken (for example: .sun.com,.example.com).

com.iplanet.services.cdc.authLoginUrl=http://sunboxl.red.iplanet.com:58080/a
mserver/Ul/Login

Appendix A AMConfig.properties File 281



Read-Only Directives

The value of this directive is the URL with which a user can login.

SecureRandom Properties

This directive specifies the factory class name for SecureRandomFactory.

= com.iplanet.security.SecureRandomFactorylmpl=com.iplanet.am.util.JSSSecureR
andomFactorylmpl

The available implementation classes are:
a. com.iplanet.am.util.JSSSecureRandomFactorylmpl (uses JSS)

b. com.iplanet.am.util.SecureRandomFactorylmpl (pure Java)

SocketFactory properties

This directive specifies the factory class name for LDAPSocketFactory.

= com.iplanet.security.SSLSocketFactorylmpl=com.iplanet.services.ldap.JSSSocket
Factory

Available classes are:
a. com.iplanet.services.ldap.JSSSocketFactory (uses JSS)

b. netscape.ldap.factory.JSSESocketFactory (pure Java)

Encryption

This directive specifies the encrypting class implementation.

= com.iplanet.security.encryptor=com.iplanet.services.util.JSSEncryption
Available classes are:
a. com.iplanet.services.util.JCEEncryption

b. com.iplanet.services.util.JSSEncryption.

282 Identity Server Programmer’s Guide ¢ December 2002



Read-Only Directives

Remote Installation

This directive defines whether the console is installed on a remote machine or a
local machine. It is used by the Authentication Service and the ldentity Server
console.

< com.iplanet.am.console.remote=false

IP Address Checking

This directive specifies whether the IP address of the client will be checked in
SSOToken creations and validations.

= com.iplanet.am.clientlPCheckEnabled=false

Remote Policy API Directives

The properties listed below are defined for the Remote Policy API.

Username
This directive specifies the username for the Application authentication module.

= com.sun.identity.agents.app.username=UrlAccessAgent

Log File Name

This directive specifies the name of the log file to use for logging remote policy
messages. The directory where this file is located is determined by Logging Service
settings.

= com.sun.identity.agents.server.log.file.name=amRemotePolicylLog

Resource Result Cache Size

This directive specifies the size of the cache created on the server where the policy
agent resides.

= com.sun.identity.agents.cache.size=1000

Polling Interval
The polling interval is the duration of time for refreshing the cache.

Appendix A AMConfig.properties File 283



Read-Only Directives

= com.sun.identity.agents.polling.interval=3

Resource Name Comparison
This directive indicates whether to use wildcard for resource name comparison.

= com.sun.identity.agents.use.wildcard=true

Returned Policy Attributes

This directive defines the policy attributes to be returned by policy evaluator. The
specification is of the format a[,...] where a is the attribute in the data store that will
be fetched.

= com.sun.identity.agents.header.attributes=cn,ou,0,mail,employeenumber,c

Resource Comparator Class Name

= com.sun.identity.agents.resource.comparator.class=com.sun.identity.policy.plugi
ns.PrefixResourceName

Resource Name's Wildcard
= com.sun.identity.agents.resource.wildcard=*

Resource Name's Delimiter
= com.sun.identity.agents.resource.delimiter=/

Case Sensitivity

This is to indicator whether case sensitivity is turned on or off during policy
evaluation. The default value is false or off.

= com.sun.identity.agents.resource.caseSensitive=false

Policy Action True Value

This value is ignored if the application does not access the method
Pol i cyEval uat or. i sAl | owed.

= com.sun.identity.agents.true.value=allow

= com.sun.identity.federation.fedCookieName=fedCookie

284  Identity Server Programmer’s Guide ¢ December 2002



Read-Only Directives

Federation Signing

This directive defines whether federation requests and responses will be signed
before sending and whether federation requests and responses that are received
will be verified for signature validity. The default is false; requests and responses
that are sent and received will not be verified for signature.

= com.sun.identity.federation.services.signingOn=false

FQDN Map

The FQDN Map is a simple map that enables Identity Server Authentication
service to take corrective action in the case where the users may have typed in an
incorrect URL such as by specifying partial hostname or using an IP address to
access protected resources.

Valid Values

Valid values must comply with the syntax of this property which represent invalid
FQDN values mapped to their corresponding valid counterparts. The format for
specifying this property is as follows:

com sun. i dentity.server.fqgdnMap][ <i nval i d- nanme>] =<val i d- nane>

where <invalid-name> is a possible invalid FQDN host name that may be used by
the user, and the <valid-name> is the FQDN host name the filter will redirect the
user to.

CAUTION Ensure that there are no invalid or overlapping values for the same invalid
FQDN name. Failing to do so may lead to the application becoming
inaccessible.

This directive can be used for creating a mapping for more than one hostname.
This may be the case when the applications hosted on a server are accessible by
more than one hostname. It may also be used to configure Identity Server to NOT
take corrective action for certain hostname URLs. For example, if no corrective
action (such as a redirect) is desired for users who access application resources
using a raw IP address, the map entry would look like:

com.sun.identity.server.fgdnMap[<IP>]=<IP>

Any number of such properties may be specified as long as they are valid and
conform to the above stated requirements.

Appendix A AMConfig.properties File 285



Read-Only Directives

Examples of FQDN mapping might be:

= com.sun.identity.server.fgdnMap[isserver]=isserver.mydomain.com

com.sun.identity.server.fqgdnMapl[isserver.mydomain]=isserver.mydomain.com

com.sun.identity.server.fgdnMap[<IP address>]=isserver.mydomain.com

com.sun.identity.server.fgdnMap[<invalid-name>]=<valid-name>

286 Identity Server Programmer’s Guide ¢ December 2002



Appendix B

Directory Server Concepts

Sun™ One Identity Server uses Sun ONE Directory Server to store its data. Certain
features of the LDAP-based Directory Server are also used by Identity Server to
help manage the data. This chapter contains information on these Directory Server
features and how they are used. It contains the following sections:

e Overview
= Roles
= Access Control Instructions (AClIs)

e Class Of Service

Overview

Because Identity Server needs an underlying directory server to function, it has
been built to work with Sun ONE Directory Server. They are complementary in
architecture and design data. Use of the directory, though, may not be exclusive to
Identity Server and therefore, needs to be treated as a completely separate
deployment. For more information on Directory Server deployment, see the Sun
ONE Directory Server documentation.

This appendix explains three Directory Server functions that are used by the
Identity Server. Roles are an identity grouping mechanism, access control instructions
define a type of permission and class of service are an attribute grouping
mechanism. They are more fully defined below. For more specific information on
these features, see the Sun ONE Directory Server documentation.

287



Roles

Roles

Roles are a Directory Server entry mechanism similar to the concept of a group. A
group has members; a role has members. A role’s members are LDAP entries that
are said to possess the role. The criteria of the role itself is defined as an LDAP entry
with attributes, identified by the Distinguished Name (DN) attribute of the entry.
Directory Server has a number of different types of roles but Identity Server can
only manage one of them: the managed role.

NOTE The other Directory Server role types can still be used in a directory
deployment; they just can not be managed by Identity Server.

Users can possess one or more roles. For example, a contractor role which has
attributes from the Session Service and the URL Policy Agent Service might be
created. Thus, when new contractors start, the administrator can assign them this
role rather than setting separate attributes in the contractor entry. If the contractor
were then to become a full-time employee, the administrator would just re-assign
the user a different role.

Managed Roles

With a managed role, membership is defined in each member entry and not in the
role definition entry. An attribute which designates membership is placed in each
LDAP entry that possesses the role. This is in sharp contrast to a traditional static

group which centrally lists the members in the group object entry itself.

NOTE By inverting the membership mechanism, the role will scale better than a
static group. In addition, the referential integrity of the role is simplified,
and the roles of an entry can be easily determined.

An administrator assigns the role to a member entry by adding the nsRol eDN
attribute to it. The value of nsRol eDN is the DN of the role definition entry. The
following apply to managed roles:

= Multiple managed roles can be created for each organization or
sub-organization.

= A managed role can be enabled with any number of services.

288 Identity Server Programmer’s Guide ¢ December 2002



Roles

= Any user that possesses a role with a service will inherit the service attributes
from that role.

NOTE All Identity Server roles can only be configured directly under organization
or sub-organization entries.

Definition Entry

A role’s definition entry is a LDAP entry in which the role’s characteristic attributes
are defined. These attributes are passed onto the member entry. Below is a sample
LDAP entry that represents the definition entry of a manager role.

Code Example 12-2  LDAP Definition Entry

dn: cn=nanagerrol e, dc=si roe, dc=com
obj ectcl ass: top
obj ectcl ass: LDAPsubentry
obj ectcl ass: nsRol eDefinition
obj ectcl ass: nsSi npl eRol eDefinition
obj ectcl ass: nsManagedRol eDefinition
cn: managerrol e
description: nmanager role w thin conpany

The nsManagedRol eDef i ni ti on object class inherits from the LDAPsubent ry,
nsRol eDef i ni ti on and nsSi npl eRol eDef i ni ti on object classes.

Member Entry

A role’s member entry is a LDAP entry to which the role is applied. An LDAP
entry that contains the attribute nsRol eDNand its value DN indicates that the entry
has the characteristics defined in the value DN entry. In Code Example 12-3 below,
the DN identifies Code Example 12-2 above as the role definition entry;
cn=managerrol e, dc=si roe, dc=com

Virtual Attribute

When a member entry that contains the nsRol eDN attribute is returned by a
Directory Server search, nsRol eDNwill be be duplicated as the nsRol e attribute in
the same entry. nsRol e will carry a value of any managed, filtered or nested roles
assigned to the user (such as Cont ai ner Def aul t Tenpl at eRol e). Code

Example 12-3 on page 290 includes this virtual attribute when returned by
Directory Server only.

Appendix B Directory Server Concepts 289



Roles

290

Code Example 12-3  LDAP Member Entry

dn: ui d=manager per son, ou=peopl e, dc=si r oe, dc=com
obj ectcl ass: top
obj ectcl ass: person
obj ectcl ass: | netorgperson
ui d: manager per son
gn: nmanager
sn: person
nsRol eDN: cn=managerr ol e, ou=peopl e, dc=si r oe, dc=com
nsRol e: cn=nanagerr ol e, ou=peopl e, dc=si r oe, dc=com
nsRol e:
cn=cont ai nerdef aul tt enpl at er ol e, ou=peopl e, dc=si r oe, dc=com
descri ption: nmanager person within conpany

How Identity Server Uses Roles

Identity Server uses roles to apply access control instructions. When first installed,
the Identity Server configures access control instructions (ACls) that define
administrator permissions. These ACls are then designated in roles (such as
Organi zati on Adnin Rol e and Organi zati on Hel p Desk Adni n Rol e) which,
when assigned to a user, define the user’s access permissions. For a list of roles
created for each Identity Server object configured, see “Access Control Instructions
(ACIs),” on page 292.

Role Creation

When a role is created, it contains the auxiliary LDAP object class
i pl anet - am managed- r ol e. This object class, in turn, contains the following
allowed attributes:

e iplanet-amrol e- managed- cont ai ner - dn contains the DN of the
identity-related object that the role was created to manage.

e iplanet-amrol e-type contains a value used by the Identity Server console
for display purposes. After authentication, the console gets the user’s roles and
checks this attribute for the correct page to display based on which of the
following three values it has:

o 1 for top-level administrator only.
o 2 for all other administrators.

o 3foruser.

Identity Server Programmer’s Guide ¢ December 2002



Roles

If the user has no administrator roles, the User profile page will display. If the
user has an administrator role, the console will start the user at the top-most
administrator page based on which value is present.

NOTE When Identity Server attempts to process two templates that are set to the
same priority level, Directory Server arbitrarily picks one of the templates to
return. For more information, see the Sun ONE Directory Server
documentation.

Role Location

All roles in an organization are viewed from the organization’s top-level. For
example, if an administrator wants to add a user to the administrator role for a
people container, the administrator would go to the organization above the people
container, look for the role based on the people container’s name, and add the user
to the role.

NOTE Alternately, an administrator might go to the user profile and add the role
to the user.

Displaying The Correct Login Start Page

The attribute i pl anet - am user - adni n- st art - dn can be defined for arole or a
user; it would override the i pl anet - am r ol e- t ype attribute by defining an
alternate display page URL. Upon a user’s successful authentication:

1. Identity Server checks the i pl anet - am user - adni n- st art - dn for the user.

This attribute is contained in the User service. If it is set, the user is started at
this point. If not, Identity Server goes to step 2.

NOTE The value of i pl anet - am user - adm n- st art - dn can override the
administrator’s start page. For example, if a group administrator has read
access to the top-level organization, the default starting page of the top-level
organization, taken from i pl anet - am r ol e-t ype, can be overridden by
defining i pl anet - am user - adm n- st art - dn to display the group’s
start page.

Appendix B Directory Server Concepts 291



Access Control Instructions (ACls)

2. Identity Server checks the user for the value of i pl anet - am r ol e-t ype.

If the attribute defines an administrator-type role, the value of

i pl anet - am r ol e- managed- cont ai ner - dn is retrieved and the highest point
in the directory tree is displayed as a starting point. For more information on
thei pl anet-amrol e-type attribute, see “Role Creation,” on page 290.

NOTE If the attribute has no value, a search from Identity Server root is performed
for all container-type objects; the highest object in the directory tree that
corresponds to the i pl anet - am r ol e-t ype value is where the user
starts. Although rare, this step is memory-intensive in very large directory
trees with many container entries.

Access Control Instructions (ACIs)

292

Access control in Identity Server is implemented using Directory Server roles.
Users inherit access permissions based on their role membership and parent
organization. Identity Server installs pre-configured administrator roles that define
access permissions for administrators; these roles are dynamically created when a
group, organization, container or people container object is configured. They are:

e Oganization Adnin

e (Oganization Hel p Desk Admin
e Goup Adnin

= Container Admn

e Container Help Desk Admin

e Peopl e Container Adnin.

NOTE This section refers to AClIs as they are applied to administrative roles only.
There are other ACIs which are created and used in Identity Server but do
not apply to this topic or to roles.

These default roles, when possessed by a user entry, apply a set of default access
control instructions (ACIs) that define read and write access to the entries in the
object for which the roles were created. For example, when an organization is
created, the Identity Server SDK creates an Or gani zati on Adni n role and an

Or gani zati on Hel p Desk Admi n role. The permissions are read and write access
to all organization entries and read access to all organization entries, respectively.

Identity Server Programmer’s Guide ¢ December 2002



Access Control Instructions (ACls)

NOTE The Identity Server SDK gets the AClIs from the attribute
i pl anet -am admi n- consol e-dynani c-aci -1 i st (defined in the
amAdm nConsol e. xm service file) and sets them in the roles after they
have been created.

Defining ACls

ACIs are defined in the Identity Server console administration XML service file,
amAdni nConsol e. xni . This file contains two global attributes that define ACls for
use in Identity Server: i pl anet - am admni n- consol e-r ol e-def aul t - aci s and

i pl anet - am adm n- consol e-dynam c-aci -1i st.

iplanet-am-admin-console-role-default-acis

This global attribute defines which Access Permissions are displayed in the Create
Role screen of the Identity Server console. By default, Or gani zati on Admi n,
Organi zati on Hel p Desk Admi nand No Perni ssions are displayed. If other
default permissions are desired, they must be added to this attribute.

iplanet-am-admin-console-dynamic-aci-list

This global attribute is where all of the defined administrator-type ACIs are stored.
For information on how ACIs are structured, see “Format of Predefined ACIs,” on
page 293.

NOTE Because ACls are stored in the role, changing the default permissions in
i pl anet - am adni n- consol e-dynani c-aci -1 i st after arole has
been created will not affect it. Only roles created after the modification has
been made will be affected.

Format of Predefined ACls

ACIs defined using Identity Server for use in administrator-type roles follow a
different format than those defined using the Directory Server. The format of the
predefined Identity Server ACI is per mi ssi onName | ACl Description |

DN: ACl ## DN: ACl ## DN. ACl where:

= pernm ssi onName—The name of the permission which generally includes the
object being controlled and the type of access. For example, Or gani zat i on
Adni n is an administrator that controls access to an organization object.

Appendix B Directory Server Concepts 293



Access Control Instructions (ACls)

294

e ACl Descri pti on—A text description of the access these ACls allow.

= DN ACl —There can be any number of DN: ACI pairs separated by the ##
symbols. The SDK will get and set each pair in the entry named by DN. This
format also supports tags which can be dynamically substituted when the role
is created. Without these tags, the DN and ACI would be hard-coded to
specific organizations in the directory tree which would make them unusable
as defaults. For example, if there is a default set of ACls for every
Or gani zat i on Admi n, the organization name should not be hard-coded in this
role. The supported tags are ROLENAME, ORGANI ZATI ON, GROUPNAME, and
PCNAME. These tags are substituted with the DN of the entry when the
corresponding entry type is created. See the “Default AClIs,” on page 294 for
examples of ACI formats. Additionally, more complete ACI information can be
found in the Sun ONE Directory Server documentation.

NOTE If there are duplicate ACls within the default permissions, the SDK will
print a debug message.

Default ACls

Following are the default ACls installed by Identity Server. They are copied from a
Identity Server configuration whose top-level organization is configured as o=i sp.

e Top Level Adm n|Access to all entries|o=isp:aci:
(target="ldap:///o=isp")(targetattr="*")(version 3.0; acl "Proxy
user rights"; allow (all) roledn = "ldap:///ROLENAME";)

e (Oganization Adnin| Read and Wite access to all organization
entries|o=isp:aci:(target="Idap:///($dn), o=isp")(targetfilter=(!
(| (nsrol edn=cn=Top Level Admi n Rol e, o=i sp) (nsrol edn=cn=Top Level
Hel p Desk Adm n Rol e,o0=isp))))(targetattr = "*")(version 3.0; acl
"Organi zation Admin Role access allow'; allow (all) roledn =
"l dap:///cn=0rgani zati on Adnmin Rol e, [$dn], o=i sp";) ##0=i sp: aci :
(target="1dap:///cn=0Crgani zati on Adm n
Rol e, ($dn), o=i sp") (targetattr="*")(version 3.0; acl
"Organi zation Admin Rol e access deny"; deny
(write, add, del et e, conpar e, proxy) rol edn =
"l dap:///cn=0Crgani zati on Admi n Rol e, ($dn), o=i sp";)

e (Oganization Hel p Desk Admi n| Read access to all organization
entries| ORGANI ZATI ON: aci : (target="1dap:/// ORGANI ZATI ON') (target f
ilter=(!(](nsrol edn=cn=Top Level Admn
Rol e, o=i sp) (nsrol edn=cn=Top Level Help Desk Adm n
Rol e, o=i sp) (nsrol edn=cn=0r gani zati on Adnin

Identity Server Programmer’s Guide ¢ December 2002



Access Control Instructions (ACls)

Rol e, ORGANI ZATION)))) (targetattr = "*") (version 3.0; acl

"Organi zation Hel p Desk Admin Role access allow'; allow

(read, search) roledn = "l dap:///ROLENAME"; ) ##ORGANI ZATI ON: aci :
(target="1dap:/// ORGANI ZATI ON"') (targetfilter=(!(]| (nsrol edn=cn=To
p Level Adnmin Rol e, o=isp)(nsrol edn=cn=0rgani zati on Adnin

Rol e, ORGANI ZATION)))) (targetattr = "userPassword") (version 3.0;
acl "Organi zation Hel p Desk Adm n Role access allow'; allow
(wite)roledn = "l dap:/// ROLENAME";)

Cont ai ner Admi n| Read and Wite access to all organizational unit
entries|o=isp:aci:(target="Idap:///($dn), o=isp")(targetfilter=(!
(| (nsrol edn=cn=Top Level Adm n Rol e, o=i sp) (nsrol edn=cn=Top Level
Hel p Desk Adm n Rol e,o0=isp))))(targetattr = "*")(version 3.0; acl
"Cont ai ner Adnmin Role access allow'; allow (all) roledn =

"1 dap:///cn=Cont ai ner Admi n Rol e, [$dn], o=i sp";)o=i sp:aci:
(target="1dap:///cn=Cont ai ner Adnin

Rol e, ($dn), o=isp")(targetattr="*")(version 3.0; acl "Container
Admi n Rol e access deny"; deny (wite, add, del et e, conpar e, pr oxy)
rol edn = "ldap:///cn=Cont ai ner Adm n Rol e, ($dn), o=i sp";)

Cont ai ner Hel p Desk Adm n| Read access to all organizational unit
entries| ORGANI ZATI ON: aci : (target="1dap:/// ORGANI ZATI ON') (tar get f
ilter=(!(](nsrol edn=cn=Top Level Admn

Rol e, o=i sp) (nsrol edn=cn=Top Level Help Desk Adm n

Rol e, o=i sp) (nsrol edn=cn=Cont ai ner Adnin

Rol e, ORGANI ZATION)))) (targetattr = "*") (version 3.0; acl

"Cont ai ner Hel p Desk Admin Role access allow'; allow

(read, search) roledn = "l dap:///ROLENAME"; ) ##ORGANI ZATI ON: aci :
(target="1dap:/// ORGANI ZATI ON") (targetfilter=(!(] (nsrol edn=cn=To
p Level Adnmin Rol e, o=i sp)(nsrol edn=cn=Cont ai ner Admi n

Rol e, ORGANI ZATION))))(targetattr = "userPassword") (version 3.0;
acl "Container Help Desk Admin Rol e access allow'; allow (wite)
rol edn = "l dap:/// ROLENAME";)

G oup Admi n| Read and Wite access to all group

nmenber s| ORGANI ZATI ON: aci : (target="1dap:/// GROUPNAVE") (targetattr
="*") (version 3.0; acl "G oup and peopl e contai ner adm n role";
allow (all) roledn = "I dap:///ROLENAVE"; ) ##ORGANI ZATI ON: aci :
(target="1dap:/// ORGANI ZATI ON") (targetfilter=(! (| (! FILTER) (| (nsr
ol edn=cn=Top Level Adm n Rol e, 0=i sp) (nsrol edn=cn=Top Level Help
Desk Adm n Rol e, 0=i sp) (nsrol edn=cn=0r gani zati on Admin

Rol e, ORGANI ZATI ON) ( nsr ol edn=cn=Cont ai ner Admi n

Rol e, ORGANI ZATION)))) ) (targetattr !=

"i pl anet - am web- agent - access-al |l owlist ||

Appendix B Directory Server Concepts 295



Class Of Service

i pl anet - am web- agent - access-not-enforced-1ist ||

i pl anet - am domai n-url -access-al l ow | |

i pl anet - am web- agent - access-deny-list")(version 3.0;acl "G oup
admn's right to the nenbers"; allow (read,wite,search) roledn =
"1 dap:/// ROLENAME" ;)

Peopl e Contai ner Admi n| Read and Wite access to all

user s| ORGANI ZATI ON: aci : (target="1dap:///PCNAVE") (targetfilter=(!
(| (nsrol edn=cn=Top Level Adm n Rol e, o=i sp) (nsrol edn=cn=Top Level
Hel p Desk Admi n Rol e, o=i sp) (nsrol edn=cn=0r gani zati on Adm n

Rol e, ORGANI ZATI ON) ( nsr ol edn=cn=Cont ai ner Adni n

Rol e, ORGANI ZATION))) ) (targetattr !=

"i pl anet - am web- agent - access-al |l owlist ||

i pl anet - am web- agent - access-not-enforced-1ist ||

i pl anet - am domai n-url -access-al |l ow | |

i pl anet - am web- agent - access-deny-list") (version 3.0; acl

"Peopl e container adnmin role"; allow (all) roledn =

"1 dap: /// ROLENAME" ;)

NOTE Identity Server generates a Top Level Adminand Top Level Help

Desk Adm n during installation. These roles can not be dynamically
generated for any other identity-type objects but the top-level organization.

Class Of Service

Both dynamic and policy attributes use class of service (CoS), a feature of the
Directory Server that allows attributes to be created and managed in a single
central location, and dynamically added to user entries as the user entry is called.
Attribute values are not stored within the entry itself; they are generated by CoS as
the entry is sent to the client browser. Dynamic and policy attributes using CoS
consist of the following two LDAP entries:

CoS Definition Entry—This entry identifies the type of CoS being used (Classic
CoS). It contains all the information, except the attribute values, needed to
generate an entry defined with CoS. The scope of the CoS is the entire sub-tree
below the parent of the CoS definition entry.

Template Entry—This entry contains a list of the attribute values that are
generated when the target entry is displayed. Changes to the attribute values
in the Template Entry are automatically applied to all entries within the scope
of the CoS.

296 Identity Server Programmer’s Guide ¢ December 2002



Class Of Service

The CoS Definition entry and the Template entry interact to provide attribute
information to their target entries; any entry within the scope of the CoS. Only
those services which have dynamic or policy attributes use the Directory Server
CosS feature; no other services do.

NOTE For additional information on the CoS feature, see the Sun ONE Directory
Server documentation.

CoS Definition Entry

CoS definition entries are stored as LDAP subentries under the organization level
but can be located anywhere in the DIT. They contain the attributes specific to the
type of CoS being defined. These attributes name the virtual CoS attribute, the
template DN and, if necessary, the specifier attribute in target entries. By default,
the CoS mechanism will not override the value of an existing attribute with the
same name as the CoS attribute. The CoS definition entry takes the

cosSuper Def i ni ti on object class and also inherits from the following object class
that specifies the type of CoS:

cosClassicDefinition

The cosd assi cDefi ni ti on object class determines the attribute and value that
will appear with an entry by taking the base DN of the template entry from the
cosTenpl at eDN attribute in the definition entry and combining it with the target
entry specifier as defined with the cosSpeci fi er attribute, also in the definition
entry. The value of the cosSpeci fi er attribute is another LDAP attribute which is
found in the target entry; the value of the attribute found in the target entry is
appended to the value of cosTenpl at eDN and the combination is the DN of the
template entry. Template DNs for classic CoS must therefore have the following
structure cn=speci fi er Val ue, baseDN.

CoS Template Entry

CoS Template entries are an instance of the cosTenpl at e object class. The CoS
Template entry contains the value or values of the virtual attributes that will be
generated by the CoS mechanism and displayed as an attribute of the target entry.
The template entries are stored under the definition entries.

NOTE When possible, definition and template entries should be located at the
same level for easier management.

Appendix B Directory Server Concepts 297



Application Schema

Conflicts and CoS

There is the possibility that more than one CoS can be assigned to a role or
organization, thus creating conflict. When this happens, Identity Server will
display either the attribute value based on a pre-determined template priority level
or the aggregate of all attribute values defined in the cosPri ori t y attribute. For
example, an administrator could create and load multiple services, register them to
an organization, create separate roles within the organization and assign multiple
roles to a particular user. When Identity Server retrieves this user entry, it sees the
CoS object classes, and adds the virtual attributes. If there are any priority conflicts,
it will look at the cosPri ori ty attribute for a priority level and return the
information with the lowest priority number (which is the highest priority level).
For more information on CoS priorities, see “cosQualifier Attribute,” on page 133
of Chapter 6, “Service Management” or the Sun ONE Directory Server
documentation.

NOTE Conflict resolution is decided by the Directory Server before the entry is
returned to Identity Server. Identity Server allows only the definition of the
priority level and CoS type.

Application Schema

If a customer is using an existing application and wants to manage its attributes
using the Identity Server console, a LDAP schema is probably defined and has
been loaded into the Directory Server. If Directory Server does not already have the
existing application’s attributes and object classes loaded, then it needs to be
updated using the Directory Server console or the | dapnodi f y command line
interface. The schema update needs to be completed before loading the
application’s created XML service file. Other options for adding or modifying
Directory Server schema can be found in the Sun ONE Directory Server
documentation or in the Sun ONE Identity Server Installation and Configuration
Guide.

298 Identity Server Programmer’s Guide ¢ December 2002



A

abstract objects 98
update 124
access
SAML service 226
access control instructions (ACIs) 292
default 294
defined 293
format 293
account federation 235
account locking
and authentication service 41
ACls 292
default 294
defined 293
format 293
amAdmin.dtd 135
AMagent.properties 84
AMConfig.properties 271
configuration directives 274
deployment directives 272
overview 271
read-only directives 279
amEntrySpecific.xml 107
amLogging.xml 247
amSAML.xml 226
anonymous authentication module 48
API
authentication
java 62
client detection

Index

java 257
federation management
java 240
identity management SDK 102
caching 106
remote installation 107
logging service
java 249
sample code 251
policy SDK 167
C applications 171
policy evaluation APl 168
policy management API 169
policy plugin APl 170
SAML service SDK 227
service management SDK 156
SSO
java 85
non-web-based applications 85
overview 86
sample 90
utility
java 268
architecture
console 28
logging service 246
policy service 161
assertion types
and SAML 221
assign
authentication methods 48
by authentication level 54
by module 54

299



by organization 49
by role 50
by service 52
by user 54
attribute inheritance 120
attributes
and service files 117
authentication
C applications 63
examples 73
remote-auth.dtd 63
authentication domain 235
authentication level authentication 54
authentication methods
assign 48
assign by authentication level 54
assign by module 54
assign by organization 49
assign by role 50
assign by service 52
assign by user 54
authentication modules
anonymous 48
certificate 48
core 47
create 55
credential requirements 57

and Auth_Module_Properties.dtd 57

custom 54
LDAP 48
membership 48
modify amAuth.xml 61
NT 48
proprietary 47
RADIUS 48
SafeWord 48
Unix 48
authentication service 37
and C applications 63
examples 73
API
java 62
authentication methods
assign 48
assign by authentication level 54
assign by module 54

300 Identity Server Programmer’s Guide ¢ October 2002

assign by organization 49
assign by role 50
assign by service 52
assign by user 54
authentication modules
anonymous 48
Auth_Module_Properties.dtd 57
certificate 48
core 47
create 55
credential requirements 57
custom 54
LDAP 48
membership 48
modify amAuth.xml 61
NT 48
proprietary 47
RADIUS 48
SafeWord 48
Unix 48
FQDN mapping 41
localization properties
configure 56
overview 37
accessing 38
account locking 41
authenticating 39
client detection 40
remote-auth.dtd 63
samples
login module 77
remote client API 77
SPI
java 71
URL parameters 71
user interface 42
customization 43
JSP templates 45
authentication user interface
customization 43
JSP templates 45

authentication-related logs 253



B

background colors customization 34
backup and restore 263

backup script 264

restore script 267
backup script 264

C

C applications
and policy 171
authentication 63
examples 73
CDSSO component 82
certificate authentication module 48
Certificate Server
documentation 14
class of service 296
and dynamic attributes 118
conflicts 298
definition entry 297
template entry 297
client data
in client detection 256
client detection 255
and authentication service 40
API
java 257
client data 256
overview 255
common domain 236
configuration directives
in AMConfig.properties 274
configure
localization properties 56
console
and authentication user interface 42
architecture 28
customization 29
background colors 34
creating custom GUI 30
default console directory 30

display container objects 35
localization 34
plug-in modules 35
precompile JSP 32
user profile view 32
graphical user interface 28
overview 27
plug-in modules 28
sample 36
console-related logs 253
container objects
displaying 35
ContainerDefaultTemplateRole 120
cookies
and session tokens 81
core authentication module 47
CoS 296
conflicts 298
definition entry 297
template entry 297
create
custom authentication modules 55
custom GUI 30
cross domain controller 82
cross-domain
82, 84
cross-domain SSO 81
configure 83
enable 82
custom authentication modules 54
amAuth.xml
modify 61
create 55
credential requirements 57
and Auth_Module_Properties.dtd 57
customization
authentication and JSP templates 45
authentication user interface 43
background colors 34
console 29
creating custom GUI 30
default console directory 30
display container objects 35
federation management module 241
localizing console 34
plug-in modules 35

Index

301



precompile JSP 32 F

user profile view 32
federated identity 235

federation management 233
API

D

debug files 253
default console directory 30
deployment directives
in AMConfig.properties 272
developer information 15
Directory Server 287
ACls 292
default 294
defined 293
format 293
class of service 296
conflicts 298
definition entry 297
template entry 297
documentation 14
extend schema 120
overview 287
roles 288
Identity Server and 290
managed roles 288
schema 298
documentation
Certificate Server 14
Directory Server 14
overview 12
Proxy Server 14
related iPlanet products 14
terminology 13
Web Server 14
downloads
Sun ONE software 14
DTD files 125
policy.dtd 164
dynamic attributes
and service files 118

302 Identity Server Programmer’s Guide ¢ October 2002

java 240
Liberty Alliance Project 234
Liberty concepts
account federation 235
authentication domain 235
common domain 236
defined 235
federated identity 235
federation termination 236
identity provider 235
name identifier 236
service provider 235
single logout 236
single sign-on 236
trusted provider 235
module
customization 241
overview 233
process 236
protocols 238

federation termination motification 239

IDP introduction 240
name registration 239
single log-out 239

single sign-on and federation 239

samples 242

federation termination 236

federation termination notification protocol 239

federation-related logs 253
FQDN mapping

G

and authentication service 41

global attributes

graphical user interface. See also console

and service files 117



identity management 97
amEntrySpecific.xml 107
object templates 99, 101
creation template 100
structure template 100
ums.xml 100
overview 97
abstract objects 98
marker object classes 98
samples
SDK 109
SDK 102
caching 106
remote installation 107
ums.xml
modify 101
identity provider 235
Identity Server
file system 24
overview 17
application management services 19
data management components 17
extending 21
Java packages 22
managing access 20
related product information 14
Identity Server Console. See console
IDP introduction protocol 240
inheritance
attributes 120

java
API

authentication 62
client detection 257
federation management 240
logging service 249
SSO 85
SSO sample 90
utility 268

identity management SDK 102

caching 106

remote installation 107
policy SDK 167

policy evaluation APl 168

policy management API 169

policy plugin APl 170
SAML service SDK 227
service management SDK 156
SPI

authentication 71

logging service 251

Java packages 22

L

LDAP authentication module 48

LDAP schema 298

Liberty Alliance Project 234

Liberty concepts
account federation 235
authentication domain 235
common domain 236
defined 235
federated identity 235
federation termination 236
identity provider 235
name identifier 236
service provider 235
single logout 236
single sign-on 236
trusted provider 235

localization
console 34

localization properties
configure 56, 123

log message formats 247

log security 247

log types
authentication-related logs 253
console-related logs 253
debug files 253
federation-related logs 253
SSO-related logs 252

Index

303



logging
amLogging.xml 247
logging service 245
API
java 249
sample code 251
architecture 246
log message formats 247
log security 247
log types
authentication-related logs 253
console-related logs 253
debug files 253
federation-related logs 253
SSO-related logs 252
overview 245
secure logging 254
SPI 251

M

managed roles 288

marker object classes 98

membership authentication module 48
module authentication 54

N

name identifier 236

name registration protocol 239
normal policy 162

NT authentication module 48

O

object templates 99
ums.xml 100

organization attributes
and service files 118

304 Identity Server Programmer’s Guide ¢ October 2002

organization authentication 49

overview
AMConfig.properties 271
API
SSO 86
application management services 19
authentication service 37
accessing 38
account locking 41
authenticating 39
client detection 40
user interface 42
client detection 255
console 27
cross-domain SSO 81
data management components 17
Directory Server 287
extending Identity Server 21
federation management 233
identity management 97
abstract objects 98
marker object classes 98
Identity Server 17
file system 24
Java packages 22
logging service 245
managing access 20
policy service 159
SAML service 219
service files 114
DTD files 114
service management 113
SSO 79
policy agents 80
session tokens 80
user credentials 80

P

plug-in module customization 35
plug-in modules 28
policy

and subjects 163

SDK 167



C applications 171
policy evaluation APl 168
policy management API 169
policy plugin APl 170
types 162
normal 162
referral 162
policy attributes
and service files 119
policy evaluation APl 168
policy management APl 169
policy plugin APl 170
policy service 159
architecture 161
defined 160
overview 159
policy
and subjects 163
policy types 162
normal 162
referral 162
policy.dtd 164
policy.dtd 164
precompile JSP 32
process
federation management 236
Professional Services 14
profile types
and SAML 222
web artifact profile 222
web POST profile 223
proprietary authentication modules 47
protocols
federation management 238
federation termination notification 239
IDP introduction 240
name registration 239
single log-out 239
single sign-on and federation 239
Proxy Server
documentation 14

R

RADIUS authentication module 48
read-only directives

in AMConfig.properties 279
referral policy 162
remote-auth.dtd 63
restore and backup 263
restore script 267
role authentication 50
roles 288

Identity Server

roles and 290
Identity Server and 290
managed roles 288

S

SafeWord authentication module 48
SAML service 219
access to 226
amSAML.xml 226
assertion types 221
overview 219
profile types 222
web artifact profile 222
web POST profile 223
SAML SOAP receiver 224
SOAP messages 225
samples 231
SDK 227
SAML SOAP receiver 224
SOAP messages 225
samples
authentication
login module 77
remote client APl 77
console 36
federation management 242
identity management SDK 109
logging service
code 251
SAML 231
SSO 94

Index

305



command line SSO 95
remote SSO 95
SSO servlet 94
search template 101
secure logging 254
service attributes
inheritance 120
virtual attributes 118
service authentication 52
service definition 115
amAdmin.dtd 135
Directory Server
extend schema 120
DTD files 125
localization properties 123
service registration 124
sms.dtd 126
service file
import 122
service files
attribute inheritance 120
attributes 117
dynamic 118
global 117
organization 118
policy 119
user 119
batch processing
batch processing service files 153
ContainerDefaultTemplateRole 120
create 117
modify 151
naming conventions 117
overview 114
DTD files 114
ums.xml 99, 100
user pages
customize 156
service management 113
overview 113
SDK 156
service definition 115
service files
create 117
naming conventions 117
service provider 235

306 Identity Server Programmer’s Guide ¢ October 2002

service registration 124
services
overview
authentication 37
federation management 233
SSO 79

session service see SSO

session tokens
and cookies 81

single logout 236
single log-out protocol 239
single sign-on 236

single sign-on and federation protocol 239

single sign-on See SSO
sms.dtd 126
SOAP messages 225
Solaris
patches 14
support 14
SPI
authentication
java 71
logging service 251
SSO 79
API
java 85
non-web-based applications 85
overview 86
sample 90
cookies and session tokens 81
cross-domain
AMagent.properties 84
CDSSO component 82
configure 83
cross domain controller 82
enable 82
cross-domain support 81
overview 79
policy agents 80
session tokens 80
user credentials 80
samples 94
command line SSO 95
remote SSO 95
SSO servlet 94



SSO-related logs 252
subjects
policy 163
Sun ONE
support 14
support
Professional Services 14
Solaris 14
Sun ONE 14

T

trusted provider 235

U

ums.xml
creation template 100
modify 101
object templates 99
search template 101
structure template 100
Unix authentication module 48
URL parameters 71
authentication 71
user attributes
and service files 119
user authentication 54
user pages
customize 156
user profile view
customization 32
utilities 263
backup and restore 263
backup script 264
restore script 267
utility
API
java 268

\Y

virtual attributes
and dynamic attributes 118

wW

web artifact profile 222

web POST profile 223

Web Server
documentation 14

X

XML

abstract objects
update 124

amEntrySpecific.xml 107

amSAML.xml 226

Directory Server
schema 120

service definition
amAdmin.dtd 135
DTD files 125
localization properties 123
service registration 124
sms.dtd 126

service file
import 122

service files
amLogging.xml 247
attribute inheritance 120
attributes 117, 118, 119
batch processing 153
ContainerDefaultTemplateRole 120
create 117
DTD files 114
modify 151
naming conventions 117
overview 114
user pages 156

ums.xml 99, 100

Index

307



creation template 100

modify 101

search template 101

structure template 100
virtual attributes 118

308 Identity Server Programmer’s Guide ¢ October 2002



	Programmer’s Guide
	About This Guide
	About Identity Server 6.0
	What You Are Expected to Know
	Identity Server Documentation Set
	Documentation Conventions Used in This Guide
	Typographic Conventions
	Terminology

	Related Information
	Documentation Comments

	Introduction
	Identity Server Overview
	Data Management Components
	Application Management Services
	Managing Access

	Extending Identity Server
	Service Definition With XML
	Identity Server Console Customization
	Java Packages

	Identity Server File System

	The Identity Server Console
	Overview
	Console Interface
	Architecture

	Customizing The Console
	Default Console Directory
	Creating Custom Organization Files
	Precompiling JSP Files

	Customizing The User Profile View
	Miscellaneous Customizations
	Changing Default Attribute Display
	Localizing The Console
	Customizing Background Colors
	Labelling The Module Tab
	Displaying Container Objects

	Console Sample

	Authentication Service
	Overview
	Accessing The Authentication Service
	Authenticating The Request
	Miscellaneous Features

	The Authentication User Interface
	Customizing The Authentication Interface
	JSP Templates
	Authentication Module Configuration Files

	Default Authentication Modules
	Core Authentication Service
	Proprietary Authentication Modules
	Assigning The Authentication Method

	Custom Authentication Modules
	Creating A New Authentication Module
	Configuring Localization Properties
	Configuring Module Credential Requirements
	Modifying amAuth.xml

	Application Authentication
	Authentication API For Java Applications
	Authenticating Non-Java Applications
	The remote-auth.dtd Structure

	Authentication SPI
	URL Parameters
	C Programs and Authentication
	Authentication Request / Response Flow

	Authentication Samples
	Remote Client API
	Login Module


	Single Sign-On
	Overview
	Contacting A Policy Agent
	Creating A Session Token
	Providing User Credentials

	Cookies and Session Tokens
	Cross-Domain Support For SSO
	Enabling Cross-Domain Single Sign-On
	Configuring For Cross-Domain SSO

	SSO API
	Non-Web-Based Applications
	API Overview
	Sample API Code

	Sample SSO Java Files
	SSO Servlet Sample
	Remote SSO Sample
	Command Line SSO Sample


	Identity Management
	Overview
	Abstract Objects

	Object Templates
	Structure of ums.xml
	Modifying ums.xml

	Identity Server SDK
	SDK Interfaces
	The SDK And Cache
	Installing the SDK Remotely

	amEntrySpecific.xml
	amEntrySpecific.xml Schema

	Management Sample Functions
	Create, Delete Or Modify Users
	Create Organization
	Retrieve Templates
	Create Users With Modified LDAP Schema


	Service Management
	Overview
	XML Service Files
	Document Type Definition Structure Files
	Service Management SDK

	Service Definition
	Defining A Service
	Creating A Service File
	Extending The Directory Server Schema
	Importing the XML Service File
	Configuring Localization Properties
	Updating Files For Abstract Objects
	Registering The Service

	DTD Files
	The sms.dtd Structure
	The amAdmin.dtd Structure

	XML Files
	Default XML Service Files
	Batch Processing XML Files
	Customizing User Pages

	Service Management SDK

	Policy Service
	What Is Policy?
	Policy Service
	Architecture
	Policy Types
	Subjects

	Policy Definition Type Document
	Policy Element
	Rule Element
	ServiceName Element
	ResourceName Element
	AttributeValuePair Element
	Subjects Element
	Subject Element
	Referrals Element
	Referral Element
	Conditions Element
	Condition Element

	Java SDK For Policy
	Policy Evaluation Java APIs
	Policy Management Java APIs
	Policy Plugin Java APIs

	C Library For Policy
	C APIs for Policy Evaluation
	am_properties_t
	Information And Utility APIs
	am
	am_policy
	Specialization Methods
	Initialization Variables
	Specialization Methods For Web Agents
	Initialization Variables


	Using The SAML Service
	Overview
	Assertion Types
	Profile Types
	SAML SOAP Receiver
	Accessing The SAML Service

	amSAML.xml
	SAML SDK
	com.sun.identity.saml
	com.sun.identity.saml.assertion
	com.sun.identity.saml.common
	com.sun.identity.saml.plugins
	com.sun.identity.saml.protocol
	com.sun.identity.saml.xmlsig

	SAML Service Samples

	Federation Management
	Overview
	The Liberty Alliance Project
	Liberty Specification Concepts

	Federation Management Process
	Federation Management Protocols

	Federation Management API
	Customizing The Module
	Federation Management Samples

	Logging Service
	Overview
	Logging Architecture
	Logging Service XML File
	Log Security

	Log Message Formats
	Flat File Format
	Relational Database Format

	Logging API
	Logger Class
	LogRecord Class
	Logging Exceptions
	Sample Logging Code

	Logging SPI
	Plugin Log Verifier
	Plugin Authorization Mechanism

	Log Files
	SSO-related Logs
	Console-related Logs
	Authentication-related Logs
	Federation-related Logs

	Debug Files
	Secure Logging

	Client Detection
	Overview
	Client Data
	Client Detection API
	Client Detection Module Interface


	Identity Server Utilities
	Backup And Restore
	Backup Script
	Restore Script

	Utility API
	API Summary


	AMConfig.properties File
	Overview
	Deployment Directives
	Identity Server Directives
	Directory Server

	Configuration Directives
	Debug Service
	Stats Service
	SAML
	Miscellaneous Services

	Read-Only Directives
	Base Directory
	Shared Secret
	Deployment Descriptors
	Session Properties
	Cross Domain Single Sign-On Support
	SecureRandom Properties
	SocketFactory properties
	Encryption
	Remote Installation
	IP Address Checking
	Remote Policy API Directives
	FQDN Map


	Directory Server Concepts
	Overview
	Roles
	Managed Roles
	How Identity Server Uses Roles

	Access Control Instructions (ACIs)
	Defining ACIs
	Format of Predefined ACIs

	Class Of Service
	CoS Definition Entry
	CoS Template Entry
	Conflicts and CoS

	Application Schema

	Index

