
Programmer’s Guide
Sun™ ONE Identity Server

Version 6.0

December 2002
816-6687-10

Copyright © 2002 Sun Microsystems, Inc. All rights reserved.

Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries.

Federal Acquisitions: Commercial Software -- Government Users Subject to Standard License Terms and Conditions. The product
described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of the
product or this document may be reproduced in any form by any means without prior written authorization of the Sun
Microsystems, Inc. and its licensers, if any.

THIS DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Some preexisting portions Copyright (c) 1999 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:

"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)."

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally
appear.

4. The names "" and "Apache Software Foundation" must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

--

Copyright © 2002 Sun Microsystems, Inc. Tous droits réservés.

Sun, Sun Microsystems, le Sun logo, et iPlanet sont des marques dposes ou des marques dposes registre de Sun Microsystems, Inc.
aux Etats-Unis et d'autres pays.

Le produit dé crit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la
distribution et la décompilation.

Aucune partie de ce produit ni de ce document ne peut être reproduite sous quelque forme ou par quelque moyen que ce soit sans
l'autorisation écrite préalable de Sun Microsystems, Inc., le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE "EN L'ÉTAT", ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRÉSENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À
UN BUT PARTICULIER OU DE NON CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

3

Contents

About This Guide . 11
About Identity Server 6.0 . 11
What You Are Expected to Know . 11
Identity Server Documentation Set . 12
Documentation Conventions Used in This Guide . 13

Typographic Conventions . 13
Terminology . 13

Related Information . 14
Documentation Comments . 15

Chapter 1 Introduction . 17
Identity Server Overview . 17

Data Management Components . 17
Application Management Services . 19
Managing Access . 20

Extending Identity Server . 21
Service Definition With XML . 21
Identity Server Console Customization . 22
Java Packages . 22

Identity Server File System . 24

Chapter 2 The Identity Server Console . 27
Overview . 27

Console Interface . 28
Architecture . 28

Customizing The Console . 29
Default Console Directory . 30
Creating Custom Organization Files . 30
Precompiling JSP Files . 32

Customizing The User Profile View . 32

4 Identity Server Programmer’s Guide • December 2002

Miscellaneous Customizations . 33
Changing Default Attribute Display . 33
Localizing The Console . 34
Customizing Background Colors . 34
Labelling The Module Tab . 35
Displaying Container Objects . 35

Console Sample . 36

Chapter 3 Authentication Service . 37
Overview . 37

Accessing The Authentication Service . 38
Authenticating The Request . 39
Miscellaneous Features . 41

The Authentication User Interface . 42
Customizing The Authentication Interface . 43
JSP Templates . 45
Authentication Module Configuration Files . 47

Default Authentication Modules . 47
Core Authentication Service . 47
Proprietary Authentication Modules . 47
Assigning The Authentication Method . 48

Custom Authentication Modules . 54
Creating A New Authentication Module . 55
Configuring Localization Properties . 56
Configuring Module Credential Requirements . 57
Modifying amAuth.xml . 61

Application Authentication . 61
Authentication API For Java Applications . 62
Authenticating Non-Java Applications . 63
The remote-auth.dtd Structure . 63

Authentication SPI . 71
URL Parameters . 71
C Programs and Authentication . 73

Authentication Request / Response Flow . 74
Authentication Samples . 77

Remote Client API . 77
Login Module . 77

Chapter 4 Single Sign-On . 79
Overview . 79

Contacting A Policy Agent . 80
Creating A Session Token . 80

5

Providing User Credentials . 80
Cookies and Session Tokens . 81
Cross-Domain Support For SSO . 81

Enabling Cross-Domain Single Sign-On . 82
Configuring For Cross-Domain SSO . 83

SSO API . 85
Non-Web-Based Applications . 85
API Overview . 86
Sample API Code . 90

Sample SSO Java Files . 94
SSO Servlet Sample . 94
Remote SSO Sample . 95
Command Line SSO Sample . 95

Chapter 5 Identity Management . 97
Overview . 97

Abstract Objects . 98
Object Templates . 99

Structure of ums.xml . 100
Modifying ums.xml . 101

Identity Server SDK . 102
SDK Interfaces . 103
The SDK And Cache . 106
Installing the SDK Remotely . 107

amEntrySpecific.xml . 107
amEntrySpecific.xml Schema . 107

Management Sample Functions . 109
Create, Delete Or Modify Users . 109
Create Organization . 109
Retrieve Templates . 110
Create Users With Modified LDAP Schema . 111

Chapter 6 Service Management . 113
Overview . 113

XML Service Files . 114
Document Type Definition Structure Files . 114
Service Management SDK . 115

Service Definition . 115
Defining A Service . 115
Creating A Service File . 117
Extending The Directory Server Schema . 120
Importing the XML Service File . 122

6 Identity Server Programmer’s Guide • December 2002

Configuring Localization Properties . 123
Updating Files For Abstract Objects . 124
Registering The Service . 124

DTD Files . 125
The sms.dtd Structure . 126
The amAdmin.dtd Structure . 135

XML Files . 150
Default XML Service Files . 150
Batch Processing XML Files . 153
Customizing User Pages . 156

Service Management SDK . 156

Chapter 7 Policy Service . 159
What Is Policy? . 159

Policy Service . 160
Architecture . 161
Policy Types . 162
Subjects . 163

Policy Definition Type Document . 164
Policy Element . 164
Rule Element . 164
ServiceName Element . 165
ResourceName Element . 165
AttributeValuePair Element . 165
Subjects Element . 166
Subject Element . 166
Referrals Element . 166
Referral Element . 166
Conditions Element . 167
Condition Element . 167

Java SDK For Policy . 167
Policy Evaluation Java APIs . 168
Policy Management Java APIs . 169
Policy Plugin Java APIs . 170

C Library For Policy . 171
C APIs for Policy Evaluation . 172
am_properties_t . 185
Information And Utility APIs . 192
am . 194
am_policy . 196
Specialization Methods . 201
Initialization Variables . 203
Specialization Methods For Web Agents . 205

7

Initialization Variables . 218

Chapter 8 Using The SAML Service . 219
Overview . 219

Assertion Types . 221
Profile Types . 222
SAML SOAP Receiver . 224
Accessing The SAML Service . 226

amSAML.xml . 226
SAML SDK . 227

com.sun.identity.saml . 227
com.sun.identity.saml.assertion . 228
com.sun.identity.saml.common . 228
com.sun.identity.saml.plugins . 229
com.sun.identity.saml.protocol . 229
com.sun.identity.saml.xmlsig . 231

SAML Service Samples . 231

Chapter 9 Federation Management . 233
Overview . 233

The Liberty Alliance Project . 234
Liberty Specification Concepts . 235

Federation Management Process . 236
Federation Management Protocols . 238

Federation Management API . 240
Customizing The Module . 241
Federation Management Samples . 242

Chapter 10 Logging Service . 245
Overview . 245

Logging Architecture . 246
Logging Service XML File . 247
Log Security . 247

Log Message Formats . 247
Flat File Format . 247
Relational Database Format . 248

Logging API . 249
Logger Class . 249
LogRecord Class . 249
Logging Exceptions . 250
Sample Logging Code . 251

Logging SPI . 251

8 Identity Server Programmer’s Guide • December 2002

Plugin Log Verifier . 251
Plugin Authorization Mechanism . 252

Log Files . 252
SSO-related Logs . 252
Console-related Logs . 253
Authentication-related Logs . 253
Federation-related Logs . 253

Debug Files . 253
Secure Logging . 254

Chapter 11 Client Detection . 255
Overview . 255
Client Data . 256
Client Detection API . 257

Client Detection Module Interface . 258

Chapter 12 Identity Server Utilities . 263
Backup And Restore . 263

Backup Script . 264
Restore Script . 267

Utility API . 268
API Summary . 268

Appendix A AMConfig.properties File . 271
Overview . 271
Deployment Directives . 272

Identity Server Directives . 272
Directory Server . 273

Configuration Directives . 274
Debug Service . 274
Stats Service . 275
SAML . 276
Miscellaneous Services . 276

Read-Only Directives . 279
Base Directory . 280
Shared Secret . 280
Deployment Descriptors . 280
Session Properties . 280
Cross Domain Single Sign-On Support . 281
SecureRandom Properties . 282
SocketFactory properties . 282
Encryption . 282

9

Remote Installation . 283
IP Address Checking . 283
Remote Policy API Directives . 283
FQDN Map . 285

Appendix B Directory Server Concepts . 287
Overview . 287
Roles . 288

Managed Roles . 288
How Identity Server Uses Roles . 290

Access Control Instructions (ACIs) . 292
Defining ACIs . 293
Format of Predefined ACIs . 293

Class Of Service . 296
CoS Definition Entry . 297
CoS Template Entry . 297
Conflicts and CoS . 298

Application Schema . 298

Index . 299

10 Identity Server Programmer’s Guide • December 2002

11

About This Guide

The Sun™ ONE Identity Server Programmer’s Guide offers information on how to
deploy and customize the Sun ONE Identity Server. This preface contains the
following sections:

• About Identity Server 6.0

• What You Are Expected to Know

• Identity Server Documentation Set

• Documentation Conventions Used in This Guide

• Related Information

About Identity Server 6.0
Sun ONE Identity Server, prior to the 6.0 release, was known as iPlanet Directory
Server Access Management Edition (DSAME). The product was renamed shortly
before the launch of version 5.1. Identity Server is designed to help organizations
manage identities and enforce secure access to their network services and
web-based resources. It contains a number of services towards this end as well as
the Sun ONE Directory Server as a data store. For the latest information about new
features and enhancements in this release of Identity Server, please see the online
release notes at http://wwws.sun.com/software/ or the Sun ONE Identity Server
Product Brief.

What You Are Expected to Know
This Programmer’s Guide is intended for use by IT administrators and custom
software developers who manage identities and access to their web resources using
Sun ONE servers and software. It is recommended that administrators understand
directory server technologies, including Lightweight Directory Access Protocol

Identity Server Documentation Set

12 Identity Server Programmer’s Guide • December 2002

(LDAP), and have some experience with Java™, Java Server Pages, Hyper Text
Markup Language (HTML) and eXtensible Markup Language (XML). Particularly,
they should also be familiar with Sun ONE Directory Server and the
documentation provided with that product.

Identity Server Documentation Set
The Identity Server documentation set contains the following titles:

• Product Brief provides an overview of the Identity Server application and its
features and functions.

• Installation and Configuration Guide provides details on how to install and
deploy the Identity Server on Solaris™, Linux and Windows® 2000 systems.

• Administration Guide describes how to use the Identity Server console as well as
manage user and service data via the command line.

• Programmer’s Guide (this guide) documents how to customize an Identity
Server system specific to your organization. It also includes instructions on
how to augment the application with new services using the public APIs.

• Policy Agent Guide documents how to install and configure an Identity Server
policy agent on a remote server. It also includes troubleshooting and
information specific to each agent.

• Getting Started Guide documents how to use various features of the Identity
Server product to set up a simple organization with identities, policies and
roles.

• The Release Notes file gathers an assortment of last-minute information,
including a description of what is new in this release, known problems and
limitations, installation notes, and how to report problems.

NOTE Be sure to check the Identity Server documentation web site at
http://docs.sun.com/db/prod/s1idsrv#hic for updates to the
release notes and for revisions to the documentation. Updated books will
be marked with a revision date.

Documentation Conventions Used in This Guide

About This Guide 13

Documentation Conventions Used in This Guide
In the Identity Server documentation, certain typographic conventions and
terminology are used. These conventions are described in the following sections.

Typographic Conventions
This book uses the following typographic conventions:

• Italic type is used within text for book titles, new terminology, and emphasis.

• Monospace font is used for sample code and code listings, APIs and
programming language elements (such as function names and class names). It
is also used for filenames, pathnames, directory names, HTML tags, URLs, and
any text that must be typed on the screen.

• <sample text> is used to represent a variable placeholder. When this
convention is used in a directory path or URL, the text and surrounding carats
should be replaced with deployment-specific information. For example, the
following command uses <filename> as a variable placeholder for an
argument to the gunzip command:

gunzip -d <filename>.tar.gz

Terminology
Below is a list of general terms used in the Identity Server documentation set:

• <identity_server_root> is a variable placeholder for the path to the home
directory where Sun ONE Identity Server is installed.

• <directory_server_root> is a variable placeholder for the path to the home
directory where Sun ONE Directory Server is installed.

NOTE Notes, Cautions and Tips highlight important conditions or limitations. Be
sure to read this information.

Related Information

14 Identity Server Programmer’s Guide • December 2002

Related Information
In addition to the documentation provided with Identity Server, there are several
other sets of documentation that might be helpful. This section lists these and
additional sources of information.

Sun ONE Directory Server Documentation
iPlanet Directory Server 5.1 documentation can be found at
http://docs.sun.com/db/coll/S1_ipDirectoryServer_51.

Sun ONE Web Server Documentation
iPlanet/Sun ONE Web Server documentation can be found at
http://docs.sun.com/db/coll/S1_ipwebsrvree60_en.

Sun ONE Certificate Server Documentation
iPlanet Certificate Server documentation can be found at
http://docs.sun.com/db/coll/S1_s1CertificateServer_47.

iPlanet Proxy Server Documentation
iPlanet Proxy Server documentation can be found at
http://docs.sun.com/db/coll/S1_ipwebproxysrvr36.

Other iPlanet Product Documentation
Documentation for all other iPlanet and Netscape servers and technologies can be
found at http://docs.sun.com/db/prod/sunone.

Download Center
Links to download any of Sun’s Sun ONE/iPlanet software are at
http://wwws.sun.com/software/download/.

Sun ONE Technical Support
Technical Support can be contacted through
http://www.sun.com/service/support/software/iplanet/index.html.

Professional Services Information
Professional Service can be contacted through
http://www.sun.com/service/sunps/iplanet/.

Sun Enterprise Services for Solaris Patches And Support
Solaris patches and support can be obtained through
http://www.sun.com/service/

Documentation Comments

About This Guide 15

Developer Information
Information on Identity Server, LDAP, the Sun ONE Directory Server, and
associated technologies can also be found at
http://developer.iplanet.com/tech/directory/

Documentation Comments
Sun Microsystems and the documentation writers of Identity Server are interested
in improving the documentation and welcome any comments and suggestions.
Please email these comments to docfeedback@sun.com.

Documentation Comments

16 Identity Server Programmer’s Guide • December 2002

17

Chapter 1

Introduction

The Sun™ One Identity Server Programmer’s Guide describes the programmatic and
back-end aspects of Identity Server. It includes instructions on how to augment the
application with new services using the eXtensible Markup Language (XML) files
for configuration, the public Java™ APIs for integration and the Java Server Pages
(JSP) for customization. This guide also includes instructions on how to customize
an Identity Server application for use by a specific organization. This introductory
chapter contains the following sections:

• Identity Server Overview

• Extending Identity Server

• Identity Server File System

Identity Server Overview
An identity is a Lightweight Directory Access Protocol (LDAP) representation of a
user or an object. The Sun ONE Identity Server integrates identity management
with the capability to create and enforce authentication processes and access
policies. These capabilities enable organizations to deploy a comprehensive system
that helps to secure and protect their enterprise assets as well as deliver their
web-based applications. Towards this end, Identity Server contains components
and application management utilities or services.

Data Management Components
Identity Server provides the following components to simplify the administration
of identities and the management of data:

Identity Server Overview

18 Identity Server Programmer’s Guide • December 2002

• Service Management—provides a solution for customizing and registering
application management parameters. Configuration parameters or attributes
are grouped into services which can then be managed using the Identity Server.
The solution includes an Document Type Definition (DTD) that defines the
structure for creating an XML service file as well as Java interfaces that are
used to integrate and manage the service.

• Identity Management—provides a solution for managing identities. It includes
Java interfaces for creating, modifying and removing identity-related objects
(users, roles, groups, people containers, organizations, organizational units
and sub-organizations) as well as an XML template that defines an object’s
LDAP attributes.

• Policy Management—provides a solution for defining and retrieving access
privileges to an enterprise’s secure resources. It includes Java interfaces that
applications can use to obtain an identity’s policy settings. The applications
then use these settings to evaluate policy decisions when a user requests action
on a secure resource.

• Federation Management—provides a solution for defining authentication
domains, service providers and identity providers in order to give users the
functionality of federation. This module integrates the Liberty Alliance
Project’s Version 1.0 specifications.

• Session Management—provides a solution for viewing user session
information and managing same. It keeps track of various session times as well
as allowing the administrator to terminate a session.

• Sun ONE Directory Server—provides the storage facility in an Identity Server
deployment. It holds all configured identity data as well as access policies. The
majority of the data is stored in the Directory Server using LDAP; certain of it is
stored as XML.

• Sun ONE Web Server—provides the container in which the Identity Server is
run. Because Identity Server uses Java and JSP technologies, the Web Server is
needed to implement the Servlet API.

Identity Server Overview

Chapter 1 Introduction 19

Application Management Services
When Identity Server is installed, a number of application management utilities or
services are installed. A service is a grouping of an application’s configuration
parameters (also called attributes). The attributes can be randomly grouped
together for easy management or specifically grouped together for one purpose.
Additional information on services can be found in Chapter 6, “Service
Management” and the Sun ONE Identity Server Administration Guide. The current
installed services are:

• Administration—provides properties for the configuration of the Identity
Server application and attributes for the customization of the application
specific to each organization.

• Authentication—provides an interface for gathering user credentials and
issuing single sign-on (SSO) session tokens that integrates HTML, XML and
http/https. It contains an SDK for writing plug-ins for different
authentication servers. It also contains a SSO SDK for integrating token
validation and authentication credential storage into the plug-in.

• Client Detection—provides an interface and configurable properties for
detecting the client type of the browser attempting to access Identity Server.

• Logging—provides Java interfaces for audit trail and logging ability. Both
file-based logs and logs stored in a relational database are supported. On
Solaris, Identity Server uses var/opt/SUNWam as the default directory for logs
and debug files. On Windows® 2000, <identity_server_root> is the default.

• Naming—provides configurable attributes that allow client browsers to find
the correct URL for all services in a deployment that is running more than one
Identity Server. This ensures that the URL returned for the service is the one for
the host that the user session was created on.

• Platform—provides configurable attributes for the entire Identity Server
deployment.

• Policy Configuration—provides properties for the configuration of the Identity
Server application and attributes to configure the Policy Service specific to each
organization.

• Security Assertion Markup Language (SAML)—provides an interface
integrating SAML, Simple Object Access Protocol (SOAP) and https for
sending and receiving security information. This service encrypts data passed
between different security entities. APIs are provided to this end.

• Session—provides attributes to configure the session properties inherited by
all identities for each organization.

Identity Server Overview

20 Identity Server Programmer’s Guide • December 2002

• User—provides attributes to configure the user properties inherited by all
identities for each organization.

• Security Service—provides a certificate authority service for users and
components. For users, it issues and revokes certificates. For components, it
issues user certificates for agents or server certificates for Sun ONE servers.

In addition to its configured services, Identity Server provides a graphical user
interface that allows the application user to manage identity objects, services and
policy information via a web browser. This Identity Server console is built using
the Sun ONE Application Framework and can be called by all users, from top level
administrator to end users. (A policy defines the specific access privileges for each
user.) The console can be customized for each configured organization by
modifying and integrating a set of JSP and related files. For data backup and
restoration, schema management and metadata integration, Identity Server offers
command-line executables. Information on both of these topics can be found in
Chapter 2, “The Identity Server Console.”

Managing Access
Identity Server can manage access to its protected resources in either of two ways:
an administrator can authenticate and access Identity Server via a web browser or,
a Java application can access Identity Server directly, requesting user
authentication information through the use of Identity Server APIs.

Web Access
When a user requests access to a secure application or page using a web browser,
they must first be authenticated. The request is directed to the Authentication
Service which determines the type of authentication process to initiate based on the
method associated with the requestor’s profile. For instance, if the user’s profile is
associated with LDAP authentication, the Authentication Service would send an
HTML form to their web browser asking for an LDAP user name and password.
(More complex types of authentication might include requesting information for
multiple authentication types.) Having obtained the user's credentials, the
Authentication Service calls the respective provider to perform the authentication.
(The provider in the LDAP example would be the Directory Server.) Once verified,
the service calls the SSO API to generate a Single Sign-On (SSO) token which holds
the user's identity and then generate a token ID, a random string associated with
the SSO token. This complete token is sent back to the requesting browser in the
form of a cookie. The authentication component then directs the user to the
requested secure application or page. Additional information on the
Authentication Service can be found in Chapter 3, “Authentication Service.”

Extending Identity Server

Chapter 1 Introduction 21

Application Access
Java applications can access Identity Server directly, requesting user configuration
information using the Identity Server APIs. For example, a mail service might store
its users’ mailbox size information in Identity Server and the Identity Server SDK
can be used to retrieve this information. To process this request, the system
running the application must have the Identity Server SDK installed. There must
also be at least one instance of the Sun ONE Web Server running the Identity
Server. Additional information on the Identity Server SDK can be found in Chapter
5, “Identity Management.”

Extending Identity Server
One of the architectural goals of Identity Server is to provide an extensible
interface. This extensible interface is defined by the following functions:

1. Custom services can be defined for the deployment using XML.

2. Console templates can be modified and/or customized for each organization
using Java Server Pages (JSP).

3. Default services can be implemented using a set of Java APIs.

Service Definition With XML
As mentioned in the “Identity Server Overview,” on page 17, Identity Server
contains a number of application management utilities or services. A service is a
grouping of configuration parameters defined under one name. These attributes can
be randomly grouped together for easy management or specifically grouped
together for one purpose. (Identity Server ships with a number of internal services
of the latter type. More information on these internal services can be found in the
Sun ONE Identity Server Administration Guide.) All Identity Server services are

NOTE Web access might also include an additional security measure to evaluate a
user’s access privileges; this includes web agents. For more information, see
the Sun ONE Identity Server Policy Agent documentation.

NOTE Some services can also be accessed by C applications. Please see Chapter 3,
“Authentication Service” and Chapter 7, “Policy Service” for further
information on this functionality.

Extending Identity Server

22 Identity Server Programmer’s Guide • December 2002

written using the XML. Administrators or service developers can modify the
internal XML service files or configure the custom XML service files based on their
need. More information on services and how they are integrated into the Identity
Server deployment can be found in Chapter 6, “Service Management.”

Identity Server Console Customization
The Identity Server console is used for managing and monitoring identities,
services and protected resources throughout the Identity Server deployment. It’s
framework uses XML files, JSP templates and Cascading Style Sheets (CSS) to
control the look and feel of the screens that a user accesses. These files can be
duplicated and modified to make changes to the design for each registered
organization; for instance, an organization’s logo can be added in place of the Sun
logo. The entire template can also be replaced with an organization’s custom
HTML page. Additional information on customizing the Identity Server console
can be found in Chapter 2, “The Identity Server Console.”

Java Packages
The Identity Server packages provide public interfaces to implement the behavior
of Identity Server’s default or customized services. The packages are:

Identity Server SDK
Identity Server provides the framework to create and manage users, roles, groups,
people containers, organizations, organization units, and sub-organizations. It also
includes the functionality to create and modify service templates. This API is the
core of the identity, service and policy management modules and provides Java
classes that can be used to customize them. The API package name is
com.iplanet.am.sdk.

Service Management SDK
The Identity Server provides Java APIs for service management. These interfaces
can be used by developers to register services and applications, and manage their
configuration data. The API package name is com.sun.identity.sm.

NOTE Identity Server services manage attribute values that are stored in Sun ONE
Directory Server. They do not implement the behavior of the attributes or
dynamically generate code to interpret them. It is up to an external
application to interpret or utilize these values.

Extending Identity Server

Chapter 1 Introduction 23

Utility API
This API provides a number of Java classes that can be used to manage system
resources. This includes, among others, thread management and debug data
formatting. The API package name is com.iplanet.am.util.

Logging API
The Logging service records, among other things, access approvals, access denials
and user activity. The Logging API can be used to enable other Java applications to
call it. The API package names begin with com.sun.identity.log.

Client Detection API
Identity Server can detect the type of client that is attempting to access its resources
and respond with the appropriately formatted pages based on its type. The API
package used for this purpose is com.iplanet.services.cdm.

SSO API
Identity Server provides Java interfaces for validating and managing the single
sign-on (SSO) tokens, and for maintaining the user’s authentication credentials. All
applications wishing to participate in the SSO solution can use this API. The API
package name is com.iplanet.sso.

Java SDK For Policy
The Policy API can be used to evaluate and manage Identity Server policies as well
as provide additional functionality for the Policy Service. The API package names
begin with com.sun.identity.policy.

SAML SDK
Identity Server uses the SAML API to exchange acts of authentication,
authorization decisions and attribute information. The API package names begin
with com.sun.identity.saml.

Federation Management API
Identity Server uses the Federation Management API to add functionality based on
the Liberty Alliance Project specifications. The API package name is
com.sun.liberty.

Identity Server File System

24 Identity Server Programmer’s Guide • December 2002

Identity Server File System
Identity Server installs its packages and files in a directory named SUNWam. The file
system layout for a Solaris installation is as follows:

<identity_server_root>/SUNWam/

• bin/ contains Identity Server executables such as amserver and
amadmin in addition to LDAP command line applications.

• capi/ contains the C API for integrating C applications with the
Identity Server.

• config/ contains Identity Server configuration files as well as the
XML files which define Identity Server services.

• docs/ contains Identity Server documentation.

• dtd/ contains the defining XML DTDs used by Identity Server
applications and services.

• java/ contains the Java Development Kit.

• ldaplib/ contains files needed to run the ldapmodify application.

• ldif contains the Identity Server LDAP schema.

• lib/ contains Identity Server jar files as well as platform specific C
libraries.

• locale/ contains the internationalization resource files.

• migration/ contains tools for Sun ONE Directory Server data
migration from earlier versions to version 5.1.

• public_html/ contains pre-authentication HTML files used by
Identity Server. This directory is also configured as the root of the Sun
ONE Web Server therefore, copying the docs directory into it will
allow accessibility to the product documentation through a web
browser on a non-Solaris machine.

NOTE The complete set of Javadocs can be accessed from any web browser by
copying the <identity_server_root>/SUNWam/docs/ directory into
<identity_server_root>/SUNWam/public_html/ and using
http://<Identity Server_host.domain>:<port>/
docs/index.html

Identity Server File System

Chapter 1 Introduction 25

• samples/ contains sample Java programs on how to use the Identity
Server APIs.

• servers/ contains the files and documentation for the deployed Sun
ONE Web Server.

• web-apps/ contains the WAR-based deployments and their associated
files: Services (authentication, policy management, identity
management, SSO, service management, etc.) and Applications
(Identity Server console).

Identity Server File System

26 Identity Server Programmer’s Guide • December 2002

27

Chapter 2

The Identity Server Console

The Identity Server console is a web interface for managing and monitoring
identities, services and resources throughout the Identity Server deployment. It is
built with Sun™ One Application Framework, a Java™ 2 Enterprise Edition (J2EE)
web application framework used to help developers build functional web
applications. XML files, Java Server Pages (JSP) and Cascading Style Sheets (CSS)
are used to define the look of the web pages. This chapter explains the console, its
pluggable architecture and how to customize it. It contains the following sections:

• Overview

• Customizing The Console

• Customizing The User Profile View

• Miscellaneous Customizations

• Console Sample

Overview
The Identity Server console is a browser-based interface for creating, managing
and monitoring identities, web services and enforcement policies throughout an
Identity Server deployment. It allows administrators with different levels of access
restrictions to, among other things, create organizations, add (or remove) users to
(or from) those organizations, and establish enforcement policies that protect and
limit access to the organization’s resources. Towards this end, the console ships
with four modules: Identity Management (including user and policy
management), Service Configuration, Current Sessions and Federation
Management. Customization of these modules and the Identity Server console can
be achieved, in varying degrees, by modifying the JSP and XML files of the
graphical user interface (GUI) as well as extending the JATO ViewBeans.

Overview

28 Identity Server Programmer’s Guide • December 2002

Console Interface
The console is divided into three frames as pictured in Figure 2-1: Header,
Navigation and Data. The Header frame displays branding information as well as
the Full Name of the currently logged-in user. (The Full Name refers to the value of
the cn attribute in the user’s LDAP profile.) The Common Name, which may or
may not be the same as the user ID, also links to the user’s profile. The Header
frame also contains a set of tabs to allow the user to switch between the
management modules, hyperlinks to the Identity Server Help, a Search function for
searching the directory information tree (DIT) and a Logout link. Actions
performed in the Header frame affect the other two frames. The Navigation frame
displays the object hierarchy of the module chosen. The Data frame displays the
attributes of the object selected from the hierarchy in the Navigation frame.

Plug-In Modules
An external application may also be plugged-in to the Identity Server console as a
module, gaining complete control of the Navigation and Data frames for its specific
functionality. In this case, a tab with the name of the custom application needs to
be added to the Header frame. An XML definition of the module name, class, and
i18n filename is used to track registered views, and route request traffic to them.
The application developer would create the JSPs for both left and right frames, and
all view beans, and models associated with them.

Architecture
When the Identity Server console receives an http(s) request from a web browser, it
first determines whether the requestor has been authenticated. If there is no valid
single sign-on (SSO) token, the request is redirected to the Authentication Service.
When the user has successfully authenticated to the Identity Server, the
Authentication Service redirects the original request back to the console. The
console will be dynamically built for the authenticated user based on the access
assigned to them.

NOTE The client web browser must support JavaScript, v. 1.2 and Cascading Style
Sheets.

Customizing The Console

Chapter 2 The Identity Server Console 29

Figure 2-1 The Identity Server Console

Customizing The Console
The Identity Server console uses JSP, CSS and XML files to define the look and feel
of the HTML pages used to generate its frames. An administrator can customize
the console by changing the tags in these files accordingly. All of these files can be
found in the <identity_server_root>/SUNWam/web-apps/applications/
console directory. The files in this directory provide a default interface. To
customize the console for a specific organization, this console directory could be
copied and renamed to reflect the name of the organization (or any value). It would
be placed at the same directory level as the default and the files within it would
then be modified as needed. For example, the customized console files for the
organization dc=example, dc=com could be found in the
<identity_server_root>/SUNWam/web-apps/applications/example directory.
(The console can also be modified by simply replacing the default images in
<identity_server_root>/SUNWam/web-apps/applications/console/images,
with new, similarly named images.)

Customizing The Console

30 Identity Server Programmer’s Guide • December 2002

Default Console Directory
The look and feel of the console is defined by both CSS and JSP. These files are
contained in the default console directory, located in <identity_server_root>/
SUNWam/web-apps/applications/. When copied and renamed for a specific
organization, the files can be modified to reflect the organization’s standards.
Following is the default structure of the directory:

• auth contains JSPs for the Authentication Service.

• base contains JSPs that are not service-specific.

• css contains adminstyle.css which defines styles for the console.

• dss contains JSPs related to the Security Service.

• federation contains JSPs related to the Federation Management module.

• html contains miscellaneous HTML files.

• images contains images referenced by the JSP.

• js contains JavaScript files.

• policy contains JSPs related to the Policy Service.

• service contains JSPs related to the Service Management module.

• session contains JSPs related to the Session Management module.

• user contains JSPs related to identity management. This includes views for
creating and displaying objects.

Creating Custom Organization Files
To customize the Identity Server console for a specific organization, the default
console directory should first be copied and renamed (ideally to reflect the name of
the organization). The copy is placed on the same level as the default directory and
the files modified as needed.

1. Change to the directory where the default templates are stored.

cd <identity_server_root>/SUNWam/web-apps/applications

CAUTION JSP are HTML files that include references to tag library descriptor files
(.tld) and Java classes which, when generated, form a web page. New tags
can not be introduced into the JSP although tags can be removed.

Customizing The Console

Chapter 2 The Identity Server Console 31

2. Create a new directory at that level.

The directory name could be the name of the organization.

3. Copy all the properties and JSP files from the console directory into the new
directory.

In the <identity_server_root>/SUNWam/web-apps/applications directory
there is already a console folder that contains the properties and JSP files that
should be copied into the organization’s new directory. Ensure that any image
files are also copied into this directory.

4. Customize the files in the new directory.

Modify any of the files in the new directory to reflect the organization.

5. Modify the AMBase.jsp file.

This file can be found in <identity_server_root>/SUNWam/web-apps/
applications/console/base. The line String console = "../console";
needs to be changed to String console = "../<new_directory_name>";.
The String consoleImages tag also needs to be changed to reflect a new
image directory, if applicable. The contents of the file are copied in Code
Example 2-1.

6. Modify the JSP Directory Name attribute in the particular organization’s
Administration Service.

This attribute will point the Authentication Service to the directory which
contains the organization’s customized console interface.

Code Example 2-1 The AMBase.jsp File

<!--
 Copyright © 2002 Sun Microsystems, Inc. All rights reserved.
 Use is subject to license terms.
-->

<% String console = "../console";
 String consoleUrl = console + "/";
 String consoleImages = consoleUrl + "images";
%>

Customizing The User Profile View

32 Identity Server Programmer’s Guide • December 2002

Precompiling JSP Files
The JSP files used for the console interface need to be compiled. By default, the files
are compiled automatically when the first user accesses the console. Because of
this, the first user must wait before they are directed to the interface. The system
administrator can precompile the JSPs by running the following command:

<identity_server_root>/SUNWam/servers/bin/https/bin/jspc -webapp
<identity_server_root>/SUNWam/web-apps/applications

Customizing The User Profile View
The Identity Server console creates a default User profile view based on
information defined in amUser.xml. (Attributes defined as User attributes in
specific XML service files can also be displayed.) A customized User profile view
with functionality more appropriate to the organization’s environment can be
defined by creating a new ViewBean and/or a new JSP.

To illustrate, an organization might want User profile attributes to be formatted
differently than the default vertical listing provided. Another customization option
would be to break up complex attributes into smaller ones. (Currently, the server
names are listed as <protocol>://<Identity Server_host.domain>:<port>.
Instead, the display can be customized with three fields:

<protocol_chooser_field>://<server_text_field>:<port_text_field>.

For a third option, JavaScript can be added to the ViewBean to dynamically update
attribute values based on other defined input. The custom JSP should be placed in
the <identity_server_root>/SUNWam/web-apps/applications/console/user
directory and the ViewBean placed in the classpath
com.iplanet.am.console.user. The value of the attribute User Profile Display
Class in the Administration Service (iplanet-am-admin-console-user-
profile-class in the amAdminConsole.xml service file) would then be changed to
the name of the newly created ViewBean. The default value of this attribute is
com.iplanet.am.console.user.UMUserProfileViewBean.

NOTE A ViewBean is a JavaBean written specifically for rendering display. In
Identity Server, each identity has its own Profile ViewBean. For example,
the user profile has the UMUserProfileViewBean.

Miscellaneous Customizations

Chapter 2 The Identity Server Console 33

Miscellaneous Customizations
Included in this section are instructions for several customizations that can be
configured for the Identity Server console.

Changing Default Attribute Display
The console auto-generates pages based on the definition of a service’s attributes in
an XML service definition file. As documented in “The sms.dtd Structure,” on
page 126, each service attribute is defined with XML attributes type and syntax.
Type specifies the kind of value the attribute will take; syntax defines the format of
the value. These syntax can be changed to alter the console display. Table 2-1 is a
listing of the different values that can be used with these XML attributes.

Table 2-1 Attribute Display Elements

Type Syntax UI Element

Single boolean checkbox

radio button

string text field

link

button

password text field

paragraph scrolling text field

list string value list choices

value list choices

single_choice string pull-down menu choices

radio button choices

multiple_choice string choice list

Miscellaneous Customizations

34 Identity Server Programmer’s Guide • December 2002

For example, an attribute of the single_choice type displays its values as a drop
down list which allows only one value to be selected. This list can also be presented
as a set of radio buttons which allows only one value to be selected. Code
Example 2-2 specifies the uitype for the attribute named test-attribute as radio
button choices. Deleting uitype from the attribute schema and the default
torpedoing menu is displayed.

Localizing The Console
All textual resource strings used in the console can be found in the
<identity_server_root>/SUNWam/locale/amAdminModuleMsgs.properties
file. The default language is English (en_US). Modifying this file with messages in a
foreign language will localize the console.

Customizing Background Colors
All background colors are configurable using the Identity Server style sheet
adminstyle.css located in the <identity_server_root>/SUNWam/web-apps/
applications/console/css directory. For instance, to change the background
color for the navigation frame, modify the BODY.navFrame tag. It takes either a text
value for standard colors (blue, green, red, yellow, etc.) or a hexadecimal value
(#ff0000, #aadd22, etc.). Replacing the default with another value will change the
background color of the navigation frame after the console is closed and reopened.
Code Example 2-3 illustrates this concept.

Code Example 2-2 uitype XML Attribute Sample

 <AttributeSchema name="test-attribute"
 type="single_choice"
 syntax="string"
 any="display"
 uitype="radio"
 i18nKey="d105">
 <ChoiceValues>
 <ChoiceValue i18nKey="u200">Daily</ChoiceValue>
 <ChoiceValue i18nKey="u201">Weekly</ChoiceValue>
 <ChoiceValue i18nKey="u202">Monthly</ChoiceValue>
 </ChoiceValues>
 <DefaultValues>
 <Value>Active</Value>
 </DefaultValues>
 </AttributeSchema>

Miscellaneous Customizations

Chapter 2 The Identity Server Console 35

Labelling The Module Tab
The attribute View Menu Entries in the Administration Service (iplanet-am-
admin-console-view-menu in the amAdminConsole.xml service file) points to the
ViewBeans that carry the label information used on the four module tabs plugged
into the Identity Server console. The label information itself is found in the console
properties file amAdminModuleMsgs.properties, located in
<identity_server_root>/SUNWam/locale/. To modify the label for each tab,
find the key and value pair in amAdminModuleMsgs.properties, change the value
and restart the Identity Server. The labels are identified in this file as:

Displaying Container Objects
To get container objects to display in the Identity Server console, the following
attributes need to be enabled in the Administration Service.

• Show People Containers

• Display Containers In Menu

• Show Group Containers

Display Containers In Menu must be enabled in order for the console to show
either people containers or group containers.

Code Example 2-3 BODY.navFrame Portion of adminstyle.css

BODY.navFrame {
 color: black;
 background: #ffffff;
 }

Code Example 2-4 Module Tab Key And Value Pairs

module101_identity=Identity Management
module102_service=Service Configuration
module103_session=Current Sessions
module104_federation=Federation Management

Console Sample

36 Identity Server Programmer’s Guide • December 2002

Console Sample
Sample files have been included to help understand how the Identity Server
console can be customized. They help to explain the Java™ 2 Enterprise Edition
(J2EE) web application framework used. In addition, Java classes are extended
from the console APIs and new JSP files are created. Existing XML and properties
files are also used. These files are located in <identity_server_root>/SUNWam/
samples/console. Open the README file in this directory for instructions on how to
run the sample.

37

Chapter 3

Authentication Service

The Authentication Service is the point of entry for Sun™ One Identity Server. A
user must pass an authentication process before being allowed access to the
console or any resource that is secured using the Identity Server. As well, an
application or service must pass the authentication process before it can be
considered a trusted source by Identity Server. This chapter explains the process,
its pluggable architecture, and the authentication APIs. It contains the following
sections:

• Overview

• The Authentication User Interface

• Default Authentication Modules

• Custom Authentication Modules

• Application Authentication

• Authentication SPI

• URL Parameters

• C Programs and Authentication

• Authentication Samples

Overview
Identity Server provides secure access to web-based (and non-web-based)
applications and the data that they store. Gaining access to either of these resources
requires that the user or application be given permission by the Authentication
Service. When the requestor tries to access a protected resource, it is directed to
submit credentials to one (or more) of several authentication modules; for instance,

Overview

38 Identity Server Programmer’s Guide • December 2002

the LDAP module generally requires authentication with the user’s Directory
Server ID and password while the SafeWord™ module requires authentication to
the ACE/Server. The Authentication Service then acts as an authority, granting or
denying access upon completion of the required process. If access is granted, a
session token is created and assigned to the requestor who is then, by default,
directed to the Identity Server console. When the console finds and validates the
token, the appropriate page is displayed based on the identity’s request and their
parent organization. If there is no valid session token, the console denies access.

Accessing The Authentication Service
There are a number of ways to authenticate to the Identity Server in order to allow
access to protected resources. Java™ applications can use the authentication API
while C applications can open a connection using a web browser. End users also
access the Authentication Service using a web browser. In addition, there is a
remote-auth.dtd that defines the XML structure used to format the XML request
messages.

Authentication For Java Applications
External Java applications can authenticate to the Identity Server or any of its
protected resources (including the Sun ONE Directory Server data store) using the
Authentication API for Java. This API provides interfaces to initiate the
authentication process and communicate authentication credentials to the
Authentication Service. The API is defined in a Java package called
com.sun.identity.authentication. Developers incorporate the classes and
methods from this package into their Java applications to allow communication
with the Authentication Service. The application’s Java request is first converted to
an XML message format and passed to the Identity Server over http or https.
(XML messages are structured according to the remote-auth.dtd which is
discussed further in “The remote-auth.dtd Structure,” on page 63.) The XML
message is then converted back into Java which is able to be interpreted by the
Authentication Service. These API are discussed further in “Authentication API
For Java Applications,” on page 62.

NOTE Upon successful authentication, the requestor is directed to the Identity
Server console unless they have initially requested an external protected
resource, have a goto parameter in their URL or have an authentication
method which contains values for redirect URLs based on success or failure.

Overview

Chapter 3 Authentication Service 39

Authentication For C Applications
Identity Server includes the resources for C applications to authenticate to the
Identity Server. They must first open a connection to the Identity Server using the
URL, http://<Identity Server_host.domain>/
<service_deploy_uri>/authservice. Then the application sends a request in
XML message format and passes it to the Identity Server over http or https. The
XML message is then processed by the Authentication Service. After passing the
authentication process, a validated session token will be sent to the C application.
XML messages are structured according to the remote-auth.dtd which is
discussed further in “The remote-auth.dtd Structure,” on page 63.

Authentication For Users Using A Web Browser
A user with a web browser can authenticate to Identity Server using the
authentication user interface. The URI for this web-based interface is
http://<Identity Server_host.domain>/<service_deploy_uri>/UI/Login.
Once authenticated, the user gains access to the Identity Server console and based
on their privileges:

• Administrators can access the identity administration portion of the console in
order to manage authentication data.

• End users can modify authentication data in their own user profiles.

Authenticating The Request
The authentication framework has the job of validating the authentication request.
The framework integrates the standard Java Authentication and Authorization
Service (JAAS) API with proprietary APIs that support Identity Server-specific
features. Identity Server adds features on top of the JAAS framework including
account locking, web-based UI, and an XML over HTTP interface that allows
authentication APIs to work on a remote machine. Because of this architecture, any
custom JAAS authentication modules will also work within the Authentication
Service.

NOTE This guide is not intended to document the JAAS framework. For more
information on these APIs, see the Java Authentication And Authorization
Service Developer’s Guide at http://java.sun.com/security/
jaas/doc/api.html. Additional information can be found at
http://java.sun.com/products/jaas/.

Overview

40 Identity Server Programmer’s Guide • December 2002

Requesting Authentication
The authentication framework starts the authentication process by reading a Java
request. When a request is received, the framework creates a session for the
requestor and begins the authentication process by calling the Authentication
Service Provider Interface (SPI) to allow interaction between the requestor and the
login module for credential gathering. The SPI references the authentication
module configuration file to determine the login requirements for the specific
authentication module. (More information on the authentication module
configuration file can be found in “The Auth_Module_Properties.dtd Structure,”
on page 57.)

Using The Authentication SPI
Identity Server provides the Authentication SPI to invoke a specific authentication
module. The SPI is defined in the com.sun.identity.authentication.spi
package. All configured modules, custom and default, can extend the
AMLoginModule and implement the process, init and getPrincipal methods.
These methods access Identity Server objects for post-processing of user profiles,
service templates, and attributes. More information on the Authentication SPI can
be found in “Authentication SPI,” on page 71.

Client Detection
Within the framework, the first step in authenticating a user is to identify the client
type making the HTTP request. The Authentication Service uses the URL
information to retrieve the browser type’s characteristics. Based on these
characteristics, the correct authentication pages are sent back to the client browser;
for example, HTML pages. Once the user is validated, the client type is added to
the session token where it can be retrieved by other services. More information on
client detection can be found in Chapter 11, “Client Detection.”

NOTE The Authentication API are also able to invoke authentication modules
written using the pure JAAS API.

NOTE Although Identity Server has the capability to support multiple clients
(including wireless), currently it only defines client data for HTML clients.

Overview

Chapter 3 Authentication Service 41

Miscellaneous Features
The Authentication Service includes a number of new features. Account locking
and Fully Qualified Domain Name (FQDN) Mapping are explained below.

Account Locking
Account locking prohibits the user from authenticating after a fixed number of
consecutive unsuccessful login attempts. Identity Server allows two additional
login attempts after the user is warned about an impending lockout. The locking
can be initiated by changing the status of an attribute in LDAP or by memory
locking which occurs when the time-out duration is greater then 0. Email
notifications are sent to administrators regarding any account lockouts. (Account
locking activities are also logged.) For more information on the account locking
attributes, see the Sun ONE Identity Server Administration Guide.

FQDN Mapping
FQDN Mapping enables the Authentication Service to take corrective action in the
case where a user may have typed in an incorrect URL (such as specifying a partial
host name or using an IP address to access protected resources). FQDN Mapping is
enabled by modifying the com.sun.identity.server.fqdnMap attribute in the
AMConfig.properties file. The format for specifying this property is:

com.sun.identity.server.fqdnMap[<invalid-name>]=<valid-name>

The value <invalid-name> would be a possible invalid FQDN host name that may
be typed by the user, and <valid-name> would be the actual host name to which
the filter will redirect the user. Any number of mappings can be specified in
AMConfig.properties (as illustrated in Code Example 3-1) as long as they
conform to the stated requirements.

:

NOTE Only modules that throw an Invalid Password Exception can leverage the
Account Locking feature.

Code Example 3-1 FQDN Mapping Attribute In AMConfig.properties

com.sun.identity.server.fqdnMap[isserver]=isserver.mydomain.com
com.sun.identity.server.fqdnMap[isserver.mydomain]=isserver.mydo
main.com
com.sun.identity.server.fqdnMap[<IP
address>]=isserver.mydomain.com

The Authentication User Interface

42 Identity Server Programmer’s Guide • December 2002

Possible Uses For FQDN Mapping
This property can be used for creating a mapping for more than one host name
which may be the case if applications hosted on this server are accessible by more
than one host name. This property can also be used to configure Identity Server to
not take corrective action for certain URLs. For example, if no redirect is required
for users who access applications by using an IP address, this feature can be
implemented by specifying a map entry such as
com.sun.identity.server.fqdnMap[<IP>]=<IP>.

The Authentication User Interface
The Authentication Service has a separate user interface from the Identity Server
console. It provides the web-based interface for all authentication modules
installed in the Identity Server deployment. The interface provides a dynamic and
customizable means for gathering user credentials for authentication by presenting
the web-based login requirement pages to a user requesting access. Figure 3-1 is a
screenshot of the default user interface for LDAP authentication.

Figure 3-1 Default LDAP Authentication User Interface

NOTE If more than one mapping is defined, ensure that there are no overlapping
values in the invalid FQDN name.Failing to do so may result in the
application becoming inaccessible.

The Authentication User Interface

Chapter 3 Authentication Service 43

Like the Identity Server console, the Authentication Service interface is built with
J2EE Assisted Take-Off (JATO), a Java 2 Enterprise Edition (J2EE) application
framework used to help developers build functional web applications. It uses the
Authentication API to authenticate users to their specified authentication module.
(This component can be deployed on non-Identity Server machines.)

The Authentication Service interface uses Java Server Pages (JSP) and XML files to
convey graphical-based user information such as login, logout and time-out
information as well as error messages. The JSP templates define the layout of the
pages and are located in <identity_server_root>/SUNWam/web-apps/
services/config/auth/default. The XML templates are the authentication
module configuration files, discussed in “Configuring Module Credential
Requirements,” on page 57. They are also located in <identity_server_root>/
SUNWam/web-apps/services/config/auth/default. Both of these types of files
can be modified to customize the user experience at the following levels:

• Organization

• Locale

• Sub-organization

• Service or Application

• Client type

Customizing The Authentication Interface
The JSP templates and module configuration properties files can be modified to
reflect an organization’s branding or to add organization-specific functionality. For
example, if there are three organizations in the Identity Server deployment—org1,
org2, org3—and org1 has customized templates, these templates will be located in
<identity_server_root>/SUNWam/web-apps/services/config/auth/org1.
Any organization that does not have its own directory of modified templates will
continue to use the default set of files located in <identity_server_root>/
SUNWam/web-apps/services/config/auth/default. In the example, both
directories contain a full set of templates. Org1 would use the set in the org1
directory while org2 and org3 would use the set in the default directory.

Creating A Directory
1. Go to the directory where the JSP templates are stored.

cd <identity_server_root>/SUNWam/web-apps/services/config/auth/

The Authentication User Interface

44 Identity Server Programmer’s Guide • December 2002

2. Create a directory using the appropriate path based on the level of
customization.

The directory name should match the name that appears in the Identity Server
console. Table 3-1 lists the different path names for each level based on its
customization of either a default or configured organization.

3. Copy all the module configuration properties files and JSP templates into the
new directory.

All of the files in the <identity_server_root>/SUNWam/web-apps/
services/config/auth/ directory need to be copied into the new directory.

4. Customize the files in the new organization directory.

Make sure that any image files (for example, JPEG or GIF files for logos) are
copied into <identity_server_root>/SUNWam/web-apps/services/
login_images. Any HTML specific tags can be modified to other desired
HTML tags or any other client type specific tags.

Table 3-1 Directory Locations Based On Customization Level

Level Default Organization Location Configured Organization Location

Organization <identity_server_root>/S
UNWam/web-apps/services/
config/auth/default

<identity_server_root>/S
UNWam/web-apps/services/
config/auth/org1

Sub-organization <identity_server_root>/S
UNWam/web-apps/services/
config/auth/default/sub-
org1

<identity_server_root>/S
UNWam/web-apps/services/
config/auth/org1/sub-org
1

Locale <identity_server_root>/S
UNWam/web-apps/services/
config/auth/default_loca
le

<identity_server_root>/S
UNWam/web-apps/services/
config/auth/org1_locale

Service or
Application

<identity_server_root>/S
UNWam/web-apps/services/
config/auth/default/serv
ice1

<identity_server_root>/S
UNWam/web-apps/services/
config/auth/org1/service
1

Client Type
(HTML, WML,
etc.)

<identity_server_root>/S
UNWam/web-apps/services/
config/auth/default/clie
nttype1

<identity_server_root>/S
UNWam/web-apps/services/
config/auth/org1/clientt
ype1

The Authentication User Interface

Chapter 3 Authentication Service 45

JSP Templates
The following JSP templates can be found in <identity_server_root>/SUNWam/
web-apps/services/config/auth/default. Strong HTML skills as well as an
understanding of web servers can help in the modification of these files.

NOTE All JSP background colors, page layouts, and fonts are configurable
using the style sheets located in <identity_server_root>/
web-apps/services/css.

Table 3-2 List of Customizable JSP Templates

GUI Template Purpose

auth_error_template.jsp Informs the user when an internal authentication error
has occurred.

authException.jsp Informs the user that an error has occurred during
authentication.

account_expired.jsp Informs the user that their account has expired and
should contact the system administrator.

configuration.jsp Informs the user that there has been a configuration
error.

disclaimer.jsp This is a sample, customizable disclaimer page used in
the Self-registration authentication module.

Exception.jsp Informs the user that an error has occurred.

invalid_domain.jsp Informs the user that there is no such domain.

invalidPCookieUserid.jsp Informs the user that a persistent cookie user name does
not exist in the persistent cookie domain.

invalidPassword.jsp Informs the user that the password entered does not
contain enough characters.

Login.jsp This is a Login/Password template.

login_denied.jsp Informs the user that no profile has been found in this
domain.

login_failed_template.jsp Informs the user that authentication has failed.

Logout.jsp Informs the user that they have logged out.

maxSessions.jsp Informs the user that the maximum sessions have been
reached.

The Authentication User Interface

46 Identity Server Programmer’s Guide • December 2002

membership.jsp A login page for the Self-registration module.

Message.jsp A generic message template for a general error not
defined in one of the other error message pages.

missingReqField.jsp Informs the user that a required field has not been
completed.

module_denied.jsp Informs the user that the chosen authentication module
has been denied.

module_template.jsp A customizable module page.

noConfig.jsp Informs the user that no configuration has been
defined/found for them.

noConfirmation.jsp Informs the user that the password confirmation field
has not been entered.

noPassword.jsp Informs the user that no password has been entered.

noUserName.jsp Informs the user that no user name has been entered. It
links back to the login page.

noUserProfile.jsp Informs the user that no profile has been found. It gives
them the option to try again or select New User and links
back to the login page.

org_inactive.jsp Informs the user that the organization they are
attempting to authenticate to is no longer active.

passwordMismatch.jsp This page is called when the password and confirming
password do not match.

profileException.jsp Informs the user that an error has occurred while storing
the user profile.

Redirect.jsp This page carries a link to a page that has been moved.

register.jsp A user self-registration page.

session_timeout.jsp Informs the user that their current login session has
timed out.

userDenied.jsp Informs the user that they do not possess the necessary
role (for role-based authentication.)

userExists.jsp This page is called if a new user is registering with a user
name that already exists.

userPasswordSame.jsp Called if a new user is registering with a user name field
and password field have the same value.

Table 3-2 List of Customizable JSP Templates (Continued)

GUI Template Purpose

Default Authentication Modules

Chapter 3 Authentication Service 47

Authentication Module Configuration Files
The authentication module configuration XML files are based on the
Auth_Module_Properties.dtd and the syntax of this DTD should be followed
when customizing these files. Modifying elements in these XML files will
automatically and dynamically customize the authentication interface. More
information on modifying this type of file can be found in “Configuring Module
Credential Requirements,” on page 57.”

Default Authentication Modules
Identity Server is installed with a set of default authentication modules that can be
used to communicate with proprietary technologies. These modules are explained
below.

Core Authentication Service
The Core authentication service is the configuration base for all other proprietary
authentication modules. It must be registered to an organization before any user
can log in using one of the default authentication modules. It allows the Identity
Server administrator to define default values for the Core authentication
parameters. These values can then be picked up if no overriding value is set in the
specific authentication module chosen. The default values for the Core service are
defined in the amAuth.xml file and stored in the Directory Server after installation.

Proprietary Authentication Modules
Identity Server provides authentication modules able to communicate with
proprietary technologies. The authentication modules currently included are:

user_inactive.jsp Informs the user that they are not active.

wrongPassword.jsp Informs the user that the password entered is invalid.

Table 3-2 List of Customizable JSP Templates (Continued)

GUI Template Purpose

Default Authentication Modules

48 Identity Server Programmer’s Guide • December 2002

• Anonymous—This module allows a user to log in without specifying a user
name and/or password. Additionally, an Anonymous user can be created. Log
in as Anonymous is then possible without a password. Anonymous
connections are generally customized by the Identity Server administrator to
have limited access to the server.

• Certificate—This module allows a user to log in through a personal digital
certificate (PDC) that could optionally use the Online Certificate Status
Protocol (OCSP) to determine the state of a certificate. Sun ONE Certificate
Server (CS) can be installed as a validation authority. For more information on
CS, see the documentation set located at
http://docs.sun.com/db?p=coll/S1_s1CertificateServer_47.

• LDAP—This module allows for authentication using LDAP bind, an operation
which associates a user ID password with a particular LDAP entry.

• Membership—This module allows a new user to register themselves for
authentication with a login and password as well as other fields such as first
name, last name, etc.

• NT—This module allows for authentication using a Windows NT server.

• RADIUS—This module allows for authentication using an external Remote
Authentication Dial-In User Service (RADIUS) server.

• SafeWord—This module allows for authentication using Secure Computing’s
servers and tokens.

• Unix—This Solaris only module allows for authentication using a user’s UNIX
identification and password.

The default authentication module used after installation is LDAP.

Assigning The Authentication Method
An authentication module can be assigned as the method to authenticate identities
that belong to any of the following objects:

• organization

• role

• service

• user

• module

Default Authentication Modules

Chapter 3 Authentication Service 49

Once a module is defined as the authentication method for one of these objects, it
can than be configured with URLs to redirect the identity on either a successful
authentication or a failed authentication. When more than one URL is set, Identity
Server has a defined hierarchy to pick the proper redirection URL.

Authentication By Organization
The authentication method for an organization is set by registering the Core
Authentication service to the organization and configuring the Organization
Authentication Configuration attribute. The authentication service(s) defined must
also be registered to the organization.

Successful Organization-based Authentication Redirection URLs
Identity Server bases a successful organization-based authentication redirection
determination by checking for a redirection URL in the following places:

1. A URL set by the module.

2. A URL set by a goto URL parameter.

3. A URL set for clientType in iplanet-am-user-success-url in user’s
amUser.xml service file.

4. A URL set for clientType in iplanet-am-auth-login-success-url in the
user’s role.

5. A URL set for clientType in iplanet-am-auth-login-success-url in the
organization.

6. A URL set for clientType in iplanet-am-auth-login-success-url as the
global default.

7. iplanet-am-user-success-url set at user entry

8. iplanet-am-auth-login-success-url set at user's role entry

9. iplanet-am-auth-login-success-url set at the org entry

NOTE For more information on how to define the authentication module using the
Identity Server console, see the Sun ONE Identity Server Administration
Guide.

NOTE Authentication by organization is the default definition. It can also be
accessed by providing the “org” parameter in the authentication URL. More
information on this function can be found in “URL Parameters,” on page 71.

Default Authentication Modules

50 Identity Server Programmer’s Guide • December 2002

10. iplanet-am-auth-login-success-url as the global default if not set in org

Failed Organization-based Authentication Redirection URLs
Identity Server bases a failed organization-based authentication redirection
determination by checking for a URL in the following order:

1. A URL set by the module.

2. A URL set by a gotoOnFail parameter.

3. A URL set for clientType in iplanet-am-user-failure-url set at the user
entry.

4. A URL set for clientType in iplanet-am-auth-login-failure-url set at
the user’s role entry.

5. A URL set for clientType in iplanet-am-auth-login-failure-url set at
the organization entry.

6. iplanet-am-auth-login-failure-url as the global default if it is not set in
the organization.

7. iplanet-am-user-failure-url set at the user entry.

8. iplanet-am-auth-login-failure-url set at the user’s role entry.

9. iplanet-am-auth-login-failure-url set at the organization entry.

10. iplanet-am-auth-login-failure-url as the global default if it is not set in
the organization.

Authentication By Role
The authentication method for a role is set by registering the Core Authentication
service to the role and configuring the Organization Authentication Configuration
attribute. The authentication service(s) defined must also be registered to the
organization in which the role exists.

Successful Role-based Authentication Redirection URLs
Identity Server bases a successful role-based authentication redirection
determination by checking for a URL in the following order:

NOTE Authentication by role is accessed by providing the “role” parameter in the
authentication URL. More information on this function can be found in
“URL Parameters,” on page 71.

Default Authentication Modules

Chapter 3 Authentication Service 51

1. A URL set by the module.

2. A URL set by the goto parameter.

3. A URL matching clientType in iplanet-am-user-success-url set in the
user entry.

4. A URL matching clientType in iplanet-am-auth-login-success-url set at
the role to which the user authenticates.

5. A URL matching clientType in iplanet-am-auth-login-success-url set at
the user’s role.

6. A URL matching clientType in iplanet-am-auth-login-success-url set at
the organization.

7. A URL matching clientType in iplanet-am-auth-login-success-url as
the global default.

8. iplanet-am-user-success-url set in the user entry.

9. iplanet-am-auth-login-success-url set at the role to which the user
authenticates.

10. iplanet-am-auth-login-success-url set at the user’s role.

11. iplanet-am-auth-login-success-url set at the organization.

12. iplanet-am-auth-login-success-url from the global default.

Failed Role-based Authentication Redirection URLs
Identity Server bases a failed role-based authentication redirection determination
by checking for a URL in the following order:

1. A URL set by the module.

2. A URL set by the gotoOnFail parameter.

3. A URL matching clientType in iplanet-am-user-failure-url set in the
user entry.

4. A URL matching clientType in iplanet-am-auth-login-failure-url set at
the role to which the user authenticates.

5. A URL matching clientType in iplanet-am-auth-login-failure-url set at
the user’s role.

6. A URL matching clientType in iplanet-am-auth-login-failure-url set at
the organization.

Default Authentication Modules

52 Identity Server Programmer’s Guide • December 2002

7. A URL matching clientType in iplanet-am-auth-login-failure-url as
the global default.

8. iplanet-am-user-failure-url set in the user entry.

9. iplanet-am-auth-login-failure-url set at the role to which the user
authenticates.

10. iplanet-am-auth-login-failure-url set at the user’s role.

11. iplanet-am-auth-login-failure-url set at the organization.

12. iplanet-am-auth-login-failure-url from the global default.

Authentication By Service
The authentication method for a service is set by registering the Core
Authentication service and configuring the Organization Authentication
Configuration attribute. The authentication service(s) defined must also be
registered to the organization in which the role exists.

Successful Service-based Authentication Redirection URLs
Identity Server bases a successful service-based authentication redirection
determination by checking for a URL in the following order:

1. A URL set by the module.

2. A URL set by the goto parameter.

3. A URL matching clientType in iplanet-am-user-success-url set in the
user entry.

4. A URL matching clientType in iplanet-am-auth-login-success-url set at
the service entry.

5. A URL matching clientType in iplanet-am-auth-login-success-url set at
the user’s role.

6. A URL matching clientType in iplanet-am-auth-login-success-url set at
the organization.

7. A URL matching clientType in iplanet-am-auth-login-success-url set at
the global default.

NOTE Authentication by service is accessed by providing the “service” parameter
in the authentication URL. More information on this function can be found
in “URL Parameters,” on page 71.

Default Authentication Modules

Chapter 3 Authentication Service 53

8. iplanet-am-user-success-url set at the user entry.

9. iplanet-am-auth-login-success-url set at the service entry.

10. iplanet-am-auth-login-success-url set at user’s role entry.

11. iplanet-am-auth-login-success-url set at the organization entry.

12. iplanet-am-auth-login-success-url as the global default if not set in the
organization.

Failed Service-based Authentication Redirection URLs
Identity Server bases a failed role-based authentication redirection

1. A URL set by the module.

2. A URL set by the gotoOnFail parameter.

3. A URL matching clientType in iplanet-am-user-failure-url set at the
user entry.

4. A URL matching clientType in iplanet-am-auth-login-failure-url set at
the service entry.

5. A URL matching clientType in iplanet-am-auth-login-failure-url set at
the user’s role entry.

6. A URL matching clientType in iplanet-am-auth-login-failure-url set at
the organization entry.

7. A URL matching clientType in iplanet-am-auth-login-failure-url as
the global default if not set in the organization.

8. iplanet-am-user-failure-url set at the user entry.

9. iplanet-am-auth-login-failure-url set at the service entry.

10. iplanet-am-auth-login-failure-url set at user’s role entry.

11. iplanet-am-auth-login-failure-url set at the organization entry.

12. iplanet-am-auth-login-failure-url as the global default if not set in the
organization.

Custom Authentication Modules

54 Identity Server Programmer’s Guide • December 2002

Authentication By User
The authentication method for a user is set by registering the Core Authentication
service to the user and configuring the Organization Authentication Configuration
attribute. The authentication service(s) defined must also be registered to the
organization in which the role exists. More information on how this is done can be
found in the Sun ONE Identity Server Administration Guide.

Authentication By Authentication Level
The authentication method for a particular authentication level is set by the
administrator. More information on how this is done can be found in the Sun ONE
Identity Server Administration Guide.

Authentication By Module
The authentication method for a module is set by registering the Core
Authentication service to the module and configuring the Organization
Authentication Configuration attribute. More information on how this is done can
be found in the Sun ONE Identity Server Administration Guide.

Custom Authentication Modules
The Authentication Service framework allows an organization to plug-in custom
authentication modules. The following section discusses the steps necessary to
create a custom authentication module.

NOTE Authentication by user is accessed by providing the “user” parameter in the
authentication URL. More information on this function can be found in
“URL Parameters,” on page 71.

NOTE Authentication by authentication level is accessed by providing the
“authLevel” parameter in the authentication URL. More information on this
function can be found in “URL Parameters,” on page 71.

NOTE To write a custom authentication module, knowledge of the JAAS API is
necessary, especially for defining the module’s configuration properties.

Custom Authentication Modules

Chapter 3 Authentication Service 55

Creating A New Authentication Module
1. Create an XML service file for the new authentication module.

The XML service file is written, and imported, into Identity Server in order to
manage the authentication module’s parameters using the Identity Server
console. The name of the XML service file follows the format
amAuth<modulename>.xml (for example, amAuthSafeWord.xml or
amAuthLDAP.xml) and it is located in <identity_server_root>/SUNWam/
config/xml. Information on writing this XML service file, based on the
sms.dtd, can be found in Chapter 6, “Service Management.”

2. Create a localization properties file for the new module.

The localization properties file defines language-specific screen text for the
attribute names of the module. It is located in the directory
<identity_server_root>/SUNWam/locale/. More information on this file
and how to configure it can be found in “Configuring Localization Properties,”
on page 56.

3. Create an authentication module configuration file.

An authentication module configuration file specifies the credentials required
from an identity (either user, service, or application) in order to authenticate to
a specific authentication module. It is located in <identity_server_root>/
SUNWam/web-apps/services/config/auth/default. The required
credentials might include, but are certainly not limited to, user name and
password. Information on how to create the file, based on the syntax of the
Auth_Module_Properties.dtd, can be found in “Configuring Module
Credential Requirements,” on page 57.

4. Modify the amAuth.xml file.

The amAuth.xml defines the “parent” Core Authentication service. It is located
in <identity_server_root>/SUNWam/config/xml. This file must be modified
in order for the Authentication Service to recognize any custom authentication
module. Information on amAuth.xml modifications can be found in
“Modifying amAuth.xml,” on page 61. Information on modifying XML service
files in general can be found in Chapter 6, “Service Management.”

5. Import the custom module’s XML service file into the Authentication Service
using the amadmin command line tool.

The syntax of the amadmin command line tool and instructions on how to use it
can be found in the Sun ONE Identity Server Administration Guide.

Custom Authentication Modules

56 Identity Server Programmer’s Guide • December 2002

Configuring Localization Properties
A localization properties file specifies the localized screen text and messages that
an administrator or user will see when directed to an Authentication Service’s
attribute configuration page. Each authentication module has a corresponding
localization properties file. The name of the file follows the format
amAuth<modulename>.properties; for example, amAuthLDAP.properties. The
default character set is ISO-8859-1 (English). Each authentication module has its
own localization properties file, located in <identity_server_root>/
SUNWam/locale/. This directory contains a sub-directory for each locale. The
default English directory is en_US. For reference, Code Example 3-2 is a portion of
the file amAuthLDAP.properties. (The file is in the <identity_server_root>/
SUNWam/locale/en_US directory.) Following are the concepts behind the
configuration of this file.

• The data following the equal (=) sign in each key/value pair (displayed in
English here) would be translated to a specific language as necessary and
copied into the corresponding locale directory. In Code Example 3-2, the
alphanumeric keys (a1, a2, etc.) map to fields defined by the i18nKey attribute
in the amAuthLDAP.xml service configuration file.

• The alphanumeric keys determine the order in which the fields are displayed
in the Identity Server console. The keys are taken in the order of their ASCII
characters (a1 is followed by a10, followed by a2, followed by b1). For example,
if an attribute needs to be displayed at the top of the service attribute page, the
alphanumeric key should have a value of a1. The second attribute could then
have a value of either a10, a2 or b1, and so forth.

NOTE Identity Server contains a sample exercise for creating a custom
authentication module. For more information, see the “Login
Module,” on page 77.

Code Example 3-2 Portion of amAuthLDAP.properties

...
PInvalid=Current Password Entered Is Invalid
PasswdSame=Password should not be same
PasswdMinChars=Password should be at least 8 characters
a1=Primary LDAP Server and Port
a2=Secondary LDAP Server and Port
a3=DN to Start User Search
a4=DN for Root User bind
a5=Password for Root User Bind

Custom Authentication Modules

Chapter 3 Authentication Service 57

Configuring Module Credential Requirements
The authentication module configuration file specifies each authentication
module’s credential requirements by defining the screens that a user might see
when directed to authenticate. Modifying elements in this XML file will
automatically and dynamically customize the authentication interface. The name of
this file follows the format <modulename>.xml; for example, SafeWord.xml or
LDAP.xml. Each authentication module has its own configuration file, located in
<identity_server_root>/SUNWam/web-apps/services/config/auth/default.

If there is more than one organization in the Identity Server deployment, each
organization has its own authentication directory named
<identity_server_root>/SUNWam/web-apps/services/config/auth/
org_name. If an organization has more than one locale, the files are stored
separately, in directories appended with a locale, as in <identity_server_root>/
SUNWam/web-apps/services/config/auth/org_name_locale. Additionally,
with service authentication, there might be an authentication directory
corresponding to the service under the LDAP organization tree.

The Auth_Module_Properties.dtd Structure
The Auth_Module_Properties.dtd defines the structure for the XML-based
authentication module configuration files. It provides definitions to initiate,
construct and send the required authentication interface to the authentication
framework. The DTD is located in <identity_server_root>/SUNWam/dtd. An
explanation of the elements defined by the Auth_Module_Properties.dtd
follows. Each element includes required and/or optional XML attributes.

a6=User Naming Attribute
a7=User Entry Search Attribute
...

NOTE Customization of the authentication screens are only supported at the
organization, sub-organization and service levels. In a search for the correct
module configuration properties files, Identity Server first searches the
org_name_locale directory, followed by the org_name, the
default_locale and the default directories.

Code Example 3-2 Portion of amAuthLDAP.properties (Continued)

...
PInvalid=Current Password Entered Is Invalid

Custom Authentication Modules

58 Identity Server Programmer’s Guide • December 2002

ModuleProperties Element
ModuleProperties is the root element of the authentication module configuration file.
It must contain at least one Callbacks sub-element. The required XML attributes of
ModuleProperties are moduleName which takes a value equal to the name of the
module and version which takes a value equal to the version number of the
authentication module configuration file itself. Code Example 3-3 below is the
LDAP.xml file that defines the screens for the LDAP authentication module. Note
the ModuleProperties element on the first line of code.

Code Example 3-3 LDAP.xml

...
<ModuleProperties moduleName="LDAP" version="1.0" >
 <Callbacks length="2" order="1" timeout="120"
 header="LDAP Authentication" >
 <NameCallback>
 <Prompt> User Name: </Prompt>
 </NameCallback>
 <PasswordCallback echoPassword="false" >
 <Prompt> Password: </Prompt>
 </PasswordCallback>
 </Callbacks>
 <Callbacks length="4" order="2" timeout="120"
 header="Change Password" >
 <PasswordCallback echoPassword="false" >
 <Prompt>#REPLACE#
 Old Password </Prompt>
 </PasswordCallback>
 <PasswordCallback echoPassword="false" >
 <Prompt> New Password </Prompt>
 </PasswordCallback>
 <PasswordCallback echoPassword="false" >
 <Prompt> Confirm Password </Prompt>
 </PasswordCallback>
 <ConfirmationCallback>
 <OptionValues>
 <OptionValue>
 <Value> Submit </Value>
 </OptionValue>
 <OptionValue>
 <Value> Cancel </Value>
 </OptionValue>
 </OptionValues>
 </ConfirmationCallback>
 </Callbacks>
 <Callbacks length="0" order="3" timeout="120"
 header="Your password has expired."
 error="true" >
 </Callbacks>
</ModuleProperties>

Custom Authentication Modules

Chapter 3 Authentication Service 59

Callbacks Element
The Callbacks element is used to request the information a module needs to gather
from the client requesting authentication. Each Callbacks element signifies a
separate screen that can be called during the authentication process. It can contain
one or more of four sub-elements: NameCallback, PasswordCallback, ChoiceCallback or
ConfirmationCallback. The required XML attributes of Callbacks are length which
takes a value equal to the number of callback requests for the defined element and
order which takes a value equal to the number this particular callback is in the
sequence of callbacks. The order attribute value starts with the number ‘1’. The
optional XML attributes are timeout, template, image, header and error.

• timeout—takes a value equal to the amount of time in seconds before the
request for information times out. It ensures that the user responds in a timely
manner. If greater than the timeout value, a timeout page will be sent.

• template—defines the file used as a display template for this screen.

• image—defines a custom background image to be displayed on this screen.

• header—defines text information that can be displayed in the browser
window for this screen.

• error—takes a true or false value which defines whether the error message
generated by the authentication module will be used.

Code Example 3-3 on page 58 defines three screen’s callback elements that can be
called by the LDAP Authentication module. The first asks the requestor for a name
and password. The second screen allows the requestor to change their password.
The final screen sends a message to reset the password.

NameCallback Element
The NameCallback element is used to request data that is entered by the user, for
example, a user identification. It can contain one sub-element: Prompt. The optional
XML attributes are isRequired and attribute. isRequired takes a value of true
or false and defines whether the element is required information. (A value of true
displays an asterisk next to the attribute’s name in the GUI.) attribute takes a
character value of the corresponding LDAP attribute of this value.

PasswordCallback Element
The PasswordCallback element is used to request password data that is entered by
the user. It can contain one sub-element: Prompt. The XML attributes are
echoPassword, isRequired and attribute. echoPassword is required and takes a
value of true or false and defines whether the password should be displayed on the

Custom Authentication Modules

60 Identity Server Programmer’s Guide • December 2002

screen or not. isRequired is optional and takes a value of true or false and
defines whether the element is required information. (A value of true displays an
asterisk next to the attribute’s name in the GUI.) attribute is also optional and
takes a character value of the corresponding LDAP attribute of this value.

ChoiceCallback Element
The ChoiceCallback element is used when the application user must choose from
multiple values. It can contain two sub-elements: Prompt or ChoiceValues. The XML
attributes are multipleSelectionsAllowed, isRequired and attribute.
multipleSelectionsAllowed is a required attribute and takes a value of true or
false. It defines whether the user can choose a number of values or only one from
the available choices. isRequired is optional and takes a value of true or false.
(A value of true displays an asterisk next to the attribute’s name in the GUI.)
attribute is also optional and takes a character value of the corresponding LDAP
attribute of this value.

ConfirmationCallback Element
The ConfirmationCallback element is used to send ‘button’ information, such as
button text which needs to be rendered on the module’s screen, as well as receive
the button information, such as which button is clicked by the user. It can contain
one sub-element: OptionValues. There are no XML attributes.

Prompt Element
The Prompt element is used to set the prompt that will display on the browser
screen to request the information. It has no sub-elements or XML attributes.

ChoiceValues and ChoiceValue Element
The ChoiceValues element provides a list of values from which the user can select. It
must contain at least one sub-element of the type ChoiceValue which defines one
choice. ChoiceValue must contain the sub-element Value. ChoiceValues has no XML
attributes but ChoiceValue can contain the XML attribute isDefault. isDefault
specifies if the defined value has to be selected by default when displayed; it takes
a value of true or false.

OptionValues and OptionValue Element
The OptionValues element provides a list of text information for buttons that need
to be rendered on the login screen. It must contain at least one sub-element of the
type OptionValue which defines one button text value. OptionValue must contain
the sub-element Value. OptionValues has no XML attributes but OptionValue can
contain the XML attribute isDefault. isDefault specifies if the defined value has
to be selected by default when displayed; it takes a value of true or false.

Application Authentication

Chapter 3 Authentication Service 61

Value Element
The Value element is used by the client to return a value provided by the requestor
back to the Identity Server. It has no sub-elements or XML attributes.

Modifying amAuth.xml
The amAuth.xml defines the “parent” authentication service named Core.
Following are the attributes in this file that need to be extended in order for the
Authentication Service to recognize a new authentication module. amAuth.xml is
located in <identity_server_root>/SUNWam/config/xml.

• iplanet-am-auth-authenticators—specifies the Java classes of the
authentication services available to an organization within the Identity Server
deployment. By default, this includes the Anonymous, Certification, LDAP,
Membership, RADIUS, SafeWord, and Unix modules. To define a new
authentication module, this field takes a value equal to a text string that
specifies the full class name (including package) of the new module.

• iplanet-am-auth-allowed-modules—lists the authentication modules
available to the specific organization. An administrator can choose the
authentication method for their organization. The default authentication
method is LDAP.

After modifying amAuth.xml, the command line tool amadmin is used to remove
the old Core service file and load the modified one.

1. amadmin --runasdn <admin_dn> --password <password>

--deleteService iPlanetAMAuthService

2. amadmin --runasdn <admin_dn> --password <password> --schema

amAuth.xml

More information on the command line tool can be found in the Sun ONE
Identity Server Administration Guide.

Application Authentication
Java™ applications use the authentication API to access, and authenticate to, the
Authentication Service while C applications use a web browser. Both types of
applications use the remote-auth.dtd to format the structure of the XML request
messages used to transfer the authentication information.

Application Authentication

62 Identity Server Programmer’s Guide • December 2002

Authentication API For Java Applications
External Java applications use the Authentication Java API to initiate the
authentication process and communicate with the required authentication module.
These Authentication Java API are organized in a package called
com.sun.identity.authentication and can be executed locally or remotely to
communicate locally with the Authentication Service. Communication between the
API and the framework occurs by sending XML messages over HTTP(s).

The AuthContext class is defined for each request desiring to authenticate to the
Identity Server. Since Identity Server can handle multiple organizations, the
AuthContext class must be initialized, at least, with the name of the organization
to which the requestor is authenticating. Typical code would instantiate this class
to begin the login process. The caller would then use the getRequirements method
to ask for the requestor’s credentials. The credentials are then submitted to the class
using submitRequirements. If more information is required, the above process
continues until all the required information has been supplied. The getStatus
method is then called to check if the user has been successfully authenticated. If
successful, the caller can then get the Subject and SSOToken for the user; if not, the
caller obtains a LoginException. Identity Server is shipped with a sample that
uses this class; for more information, see the section “Remote Client API,” on
page 77.

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <identity_server_root>/SUNWam/docs/
directory into the <identity_server_root>/SUNWam/public_html
directory and pointing the browser to
http://<server_name.domain_name>:<port>/docs/index.html.

NOTE The Authentication API are also able to invoke authentication modules
written using the pure JAAS API.

Application Authentication

Chapter 3 Authentication Service 63

Authenticating Non-Java Applications
Non-Java applications can also authenticate to the Identity Server. Using the URL
http://<host.domain:port>/<service_deploy_uri>/authservice, the
application opens a connection and then exchanges XML messages with the
Identity Server. The XML messages are structured according to the
remote-auth.dtd. Information on this document can be found in “The
remote-auth.dtd Structure,” on page 63. An example of the messages used by C
applications can be found in “C Programs and Authentication,” on page 73.

The remote-auth.dtd Structure
Authentication requests and responses are sent to and received by the
Authentication Java API or non-Java applications using an XML structure. The
structure of these messages is defined in the remote-auth.dtd. The
remote-auth.dtd defines the structure for the XML-based messages sent to, and
received by, the Identity Server console. It provides definitions to initiate the
collection of credentials and perform authentication. It is located in the
<identity_server_root>/SUNWam/dtd directory. An explanation of the elements
defined by the remote-auth.dtd follows. Each element has required and/or
optional XML attributes.

AuthContext Element
AuthContext is the root element of the XML-based message. It must contain a
Request or Response sub-element. The required XML attributes of AuthContext are
version which takes a value equal to the version number.

Request Element
The Request element is used by the client to initialize and pass user credentials to
the Authentication Service. It may contain one or more of the following
sub-elements: NewAuthContext, QueryInformation, Login, SubmitRequirements, Logout
or Abort. The required XML attribute of Request is authIdentifier which takes a
value equal to a unique random number set by the Authentication Service and
used to keep track of the authentication session.

Application Authentication

64 Identity Server Programmer’s Guide • December 2002

NewAuthContext Element
The NewAuthContext element is initiates the authentication process by initializing
the Authentication Service and creating a session token for each request. It contains
no sub-elements. The required XML attribute of NewAuthContext is orgName which
takes a value equal to the name of the organization or sub-organization for which
the process is defined.

QueryInformation Element
The QueryInformation element is used by the remote client to get information about
the authentication modules supported by the Identity Server or the organization. It
contains no sub-elements. The required XML attribute of QueryInformation is
requestedInformation which takes a value equal to the authentication module
plug-ins configured for an organization or sub-organization.

Login Element
The Login element is used to initialize the authentication session. It will have an
Empty sub-element, or can have an IndexTypeNamePair. The IndexTypeNamePair
element can be used to specify the defined authentication type and value. It has no
required XML attributes.

SubmitRequirements Element
The SubmitRequirements element is used by the remote client to submit the
identity’s authentication credentials to the Identity Server. It has a Callbacks
sub-element and no required XML attributes.

Logout Element
The Logout element is used by the remote client to indicate that user wants to
logout. It has an Empty sub-element and no required XML attributes.

Abort Element
The Abort element is used by the remote client to indicate that the user wants to
end the login process. It has an Empty sub-element and no XML attributes.

Application Authentication

Chapter 3 Authentication Service 65

Response Element
The Response element is used by the Authentication Service to ask the remote client
to gather user credentials or to inform the remote client on the success or failure of
the login as well as any errors that might have occurred. It may contain one or
more of the following sub-elements: QueryResult, GetRequirements, LoginStatus or
Exception. Table 3-3 shows the Request sub-elements and the possible Responses
for each.

The required XML attribute of Response is authIdentifier which takes a value
equal to a unique random number set by the Authentication Service and used to
keep track of the authentication session.

QueryResult Element
The QueryResult element is used by Identity Server to send query information
requested by the remote client. It must contain a Value sub-element. The required
XML attribute of QueryResult is requestedInformation which takes a value equal
to the authentication module plug-ins configured for an organization or
sub-organization.

GetRequirements Element
The GetRequirements element is used by the Identity Server to request
authentication credentials from the client. It has a Callbacks sub-element and no
required XML attributes.

Table 3-3 Request Sub-Elements And Possible Responses

Request Possible Responses

NewAuthContext LoginStatus or Exception

QueryInformation QueryResult or Exception

Login GetRequirements, LoginStatus or Exception

SubmitRequirements GetRequirements, LoginStatus or Exception

Logout LoginStatus or Exception

Abort LoginStatus or Exception

Application Authentication

66 Identity Server Programmer’s Guide • December 2002

LoginStatus Element
The LoginStatus element is used by the Identity Server to indicate the status of the
authentication process. It will have an Empty sub-element if a Subject or Exception
sub-element is not defined. The XML attributes are status, ssoToken, successURL
or failureURL; the latter three are optional. If the LoginStatus is successful, the
sub-element Subject will be returned with the authenticated user names. The
attribute ssoToken will have the session token status set to inprogress when a
new AuthContext is created, to success when a login has been successful, to
failed when a login has not been successful and completed when the user logs
out. The successURL attribute represents the URL that the identity will be
redirected to upon successful authentication and failureURL represents the URL
that the identity will be redirected to upon failed authentication.

Exception Element
The Exception element is used by the Identity Server to inform the client about an
exception that occurred during the login process. It has an Empty sub-element and
four optional XML attributes: message which takes a value equal to that of the
exception message, tokenId which takes a value equal to that of the user ID of the
failed authentication, errorCode which takes a value equal to that of the error
message code and templateName which takes a value equal to the name of the JSP
template which will be used for this particular exception.

IndexTypeNamePair Element
The IndexTypeNamePair element identifies the defined authentication method that
will be used to validate the client. It has the IndexName sub-element. The required
XML attribute is IndexType which takes a value equal to that of the generic level at
which the authentication method has been defined: authLevel, role, user,
moduleInstance and service.

IndexName Element
The IndexName element identifies the specific name of the value specified by the
IndexType attribute in the IndexTypeNamePair element. The authentication method
can be defined at the organization level, the role level, the user level, the
authentication level or the service/application level. The IndexType attribute
defines this level; the IndexName element takes a value equal to that of the specific
name of the level at which the authentication method has been defined. It has no
sub-elements and no XML attributes.

Application Authentication

Chapter 3 Authentication Service 67

Subject Element
The Subject element identifies a collection of one or more identities. It has no
sub-elements and no XML attributes.

Callbacks Element
The Callbacks element is used to request and transfer user credentials between the
remote client and Identity Server. Identity Server constructs callback objects for
information gathering. The client program collects the credentials by prompting
the user and returns the callback objects with the required data. The Callbacks
element may contain one or more of the following sub-elements: NameCallback,
PasswordCallback, ChoiceCallback, ConfirmationCallback, TextInputCallback,
TextOutputCallback, LanguageCallback, PagePropertiesCallback and CustomCallback.
The required XML attribute is length which takes a value equal to that of a token.

NameCallback Element
The NameCallback element is used to obtain the name of the user (or service) that is
requesting authentication. It may contain one or more of the following
sub-elements: Prompt or Value. It has no required XML attributes.

PasswordCallback Element
The PasswordCallback element is used to obtain the password of the user (or service)
that is requesting authentication. It may contain one or more of the following
sub-elements: Prompt or Value. The required XML attribute is echoPassword which
takes a value of true or false. The default value of false indicates that there will be
no password confirmation.

ChoiceCallback Element
The ChoiceCallback element is used when the user must choose from a selection of
values. It may contain one or more of the following sub-elements: Prompt,
ChoiceValue or SelectedValues. The required XML attribute is
multipleSelectionsAllowed which takes a value of true or false. The default
value of false indicates that the user can not choose more than one from the
selection.

Application Authentication

68 Identity Server Programmer’s Guide • December 2002

ConfirmationCallback Element
The ConfirmationCallback element is used by the Identity Server to request a
confirmation from the user. It may contain one or more of the following
sub-elements: Prompt, OptionValues, SelectedValue, and DefaultOptionValue. The
required XML attributes are messageType (which defines the type of message,
either information, warning or the default, error), and optionType which specifies
the type of confirmation (ok_cancel, yes_no_cancel, unspecified or the default,
yes_no).

TextInputCallback Element
The TextInputCallback element is used to get text information from the user. It may
contain one or more of the following sub-elements: Prompt or Value. There are no
required XML attributes.

TextOutputCallback Element
The TextOutputCallback element is used when the user must choose from a selection
of values. It may contain the sub-element Value. The required XML attribute is
messageType which defines the type of message, either information, warning or
the default, error.

LanguageCallback Element
The LanguageCallback element is used by the Identity Server to obtain the user’s
locale information. It must contain the Locale sub-element. There are no required
XML attributes.

PagePropertiesCallback Element
The PagePropertiesCallback element contains all GUI-related information. It may
contain any of the following sub-elements: ModuleName, HeaderValue, ImageName,
PageTimeOutValue, or TemplateName. The required XML attribute is isErrorState
which takes a value of true or false. The default value is false which indicates that
this page is not an error page.

ModuleName Element
The ModuleName element is takes a value equal to the name of the authentication
module. It contains no sub-elements and no XML attributes.

HeaderValue Element
The HeaderValue element is takes a value equal to the header that will be displayed.
It contains no sub-elements and no XML attributes.

Application Authentication

Chapter 3 Authentication Service 69

ImageName Element
The ImageName element is takes a value equal to the name of the image to be
displayed. It contains no sub-elements and no XML attributes.

PageTimeOutValue Element
The PageTimeOutValue element is the page time-out value in seconds. It contains no
sub-elements and no XML attributes.

TemplateName Element
The TemplateName element is takes a value equal to the name of the template to be
rendered. It contains no sub-elements and no XML attributes.

CustomCallback Element
The CustomCallback element is used to define user-defined Callbacks. It may
contain the AttributeValuePair sub-element. The required XML attribute is the
className which takes a value equal to that of the Callback name.

AttributeValuePair Element
The AttributeValuePair element contains the attribute and values for a Callback. It
must contain the Attribute sub-element and it can contain the Value sub-element.
There are no required XML attributes.

Attribute Element
The Attribute element defines the Callback parameter. It contains no sub-elements.
The required XML attribute is name which takes a value equal to the name of the
Callback parameter.

Prompt Element
The Prompt element is used by Identity Server to request the remote client to
display the prompt. It contains no sub-elements and there are no required XML
attributes.

Locale Element
The Locale element contains the value of the locale that will be used for
authentication. It contains no sub-elements. The optional XML attributes are
language (which represents the language code), country (which represents the
country code) and variant (which represents the variant code).

Application Authentication

70 Identity Server Programmer’s Guide • December 2002

ChoiceValues Element
The ChoiceValues element provides a list of choices. It must contain at least one the
ChoiceValue sub-element. There are no required XML attributes.

ChoiceValue Element
The ChoiceValues element provides a single choice. It must contain at least one
Value sub-element. The required XML attribute is isDefault which takes a value
of yes or no. The default value of no specifies if the value has to be selected by
default when displayed.

SelectedValues Element
The SelectedValues element provides a list of values selected by the user. It must
contain at least one Value sub-element. There are no required XML attributes.

SelectedValue Element
The SelectedValue element provides a value selected by the user. It must contain at
least one Value sub-element. There are no required XML attributes.

OptionValue Element
The SelectedValues element provides a single user-defined option value. It must
contain at least one Value sub-element. There are no required XML attributes.

DefaultOptionValue Element
The DefaultOptionValue element is the default option value. The default value
depends on whether user-defined values or predefined values are used in the
callback. If user-defined values are used, the default value will be an index in the
OptionValues element; if predefined, it will be one of the predefined option
values.It must contain at least one Value sub-element. There are no required XML
attributes.

Value Element
The Value element is used by the remote client to return a value, provided by the
user (or service), back to the Identity Server. It must contain at least one Value
sub-element. There are no required XML attributes.

Authentication SPI

Chapter 3 Authentication Service 71

Authentication SPI
The Authentication SPI implements the JAAS LoginModule API, and provides
methods to access the Authentication Service and module configuration properties
files. The SPI are organized in the com.iplanet.authentication.spi package
and contain the abstract class, AMLoginModule, which must be sub-classed with the
name of an authentication module. The class must also implement the init(),
process() and getPrincipal() methods in order to communicate with the
module configuration properties files. The callbacks are then dynamically
generated based on this file. Other methods that can be defined include the
setLoginFailureURL and setLoginSuccessURL which set the URLs to send the
user to based on a failed or successful authentication, respectively. More
information on the SPI can be found in the Javadocs located at
<identity_server_root>/SUNWam/docs.

URL Parameters
A URL parameter is a name/value pair appended to the end of a URL. The
parameter starts with a question mark (?) and takes the form name=value. If more
than one URL parameter exists, each parameter is separated by an ampersand (&).
URL parameters pass information from the browser to the Identity Server. The
following parameters, when appended to an authentication URL and typed in a
web browser’s Location bar, will redirect the user to the appropriate resource after
authentication.

• goto—Adding a goto=<auth_success_URL> query parameter tells the
Authentication Service to send the user to the noted URL when successful
authentication has been completed. An example goto URL might be
http://<host.domain:port>/<service_deploy_uri>/UI/Login?goto=htt

p://www.sun.com. A goto=<logout_URL> query parameter can also be used to
tell the Authentication Service to send the user to the noted URL when they
have logged out. An example goto URL might be
http://<host.domain:port>/<service_deploy_uri>/UI/Login?goto=htt

p://www.sun.com/logout.html.

• gotoOnFail—Adding a gotoOnFail=<auth_fail_URL> query parameter tells
the Authentication Service to send the user to the URL noted if user
authentication has failed. An example gotoOnFail URL might be
http://<host.domain:port>/<service_deploy_uri>/UI/Login?gotoOnFa

il=http://www.sun.com/auth_fail.html.

URL Parameters

72 Identity Server Programmer’s Guide • December 2002

• org—The Authentication Service needs to know the requesting user’s
organization when the user first accesses the Identity Server. From this
information the correct login page, based on the organization and the locale
setting in the particular organization will be displayed. Adding an
org=<org_name> query parameter tells the Authentication Service the user’s
organization. An example org URL might be http://<host.domain:port>/
<service_deploy_uri>/UI/Login?org=iplanet.

• user—Authentication can be defined at the user level. For example, one user’s
profile can be configured to authenticate using the Certification module while
another might be configured to authenticate using the LDAP module. Adding
a user=<user_name> query parameter tells the Authentication Service to send
the user to their configured authentication process. An example user might be
http://<host.domain:port>/<service_deploy_uri>/UI/Login?user=tes

t.

• role—Authentication can be configured on a per-role basis. Adding a
role=<role_name> query parameter tells the Authentication Service to send
the user to the authentication process configured for that role. An example
role URL might be http://<host.domain:port>/<service_deploy_uri>/
UI/Login?role=manager.

• module—A specific authentication module can be requested by adding a
module=<auth_module_name> query parameter. An example module URL
might be http://<host.domain:port>/<service_deploy_uri>/UI/
Login?module=unix.

• service—Different authentication schemes can be configured for different
services using the Authentication Configuration Service. For example, an
online paycheck application might require authentication using a more secure
Certification module while an organization’s employee directory application
might require LDAP authentication only. An authentication scheme can be
configured, and named, for each of these services. The
service=<auth_scheme_name> query parameter tells the Authentication
Service that this user desires to use the <auth_scheme_name> authentication
configuration. An example service URL might be
http://<host.domain:port>/<service_deploy_uri>/UI/

Login?service=sv1.

NOTE The Authentication Configuration Service is used to define a scheme for
service-based authentication. More information on this service can be found
in the Identity Server Administration Guide.

C Programs and Authentication

Chapter 3 Authentication Service 73

• arg=newsession—The Authentication Service will destroy an existing session
token and perform a new login in one request with the use of the
arg=newsession query parameter. This option is typically used in the
Anonymous Authentication module. The user first authenticates with an
anonymous session, and then hits the register or login link. An example
arg=newsession URL might be http://<host.domain:port>/
<service_deploy_uri>/UI/Login?arg=newsession.

• authlevel—Each authentication module is defined with a fixed integer
authentication level. Adding an authlevel=<value> query parameter tells the
Authentication Service to call a module with, at the least, the configured
authentication level. An example authlevel URL might be
http://<host.domain:port>/<service_deploy_uri>/UI/Login?authleve

l=1.

• domain—This parameter allows a user to login to the specified domain. An
example domain URL might be http://<host.domain:port>/
<service_deploy_uri>/UI/Login?domain=sun.com.

• iPSPCookie—This parameter allows a user to login with a persistent cookie. A
persistent cookie is one that continues to exist after the browser window is
closed. In order to use this parameter, the organization to which the user is
logging in must have Persistent Cookies enabled in their Core service. An
example iPSPCookie URL might be http://<host.domain:port>/
<service_deploy_uri>/UI/Login?org=example&iPSPCookie=yes. Once the
user authenticates and the browser is closed, the user can login with a new
browser session and will be directed to console without having to
reauthenticate. This will work until the Persistent Cookie Max Time specified
in the Core Service elapses.

• Login.Token1 (<username>) , Login.Token2 (<password>)—This
parameter allows a user to login without having to access the authentication
interface.

• Login.Token0—This parameter allows a user to login anonymously.

C Programs and Authentication
Following is an example of how customers create XML messages to call the
Authentication Service from a C program.

C Programs and Authentication

74 Identity Server Programmer’s Guide • December 2002

Authentication Request / Response Flow
1. Create an AuthContext for the organization name to login to. The successful

response for this is the authIdentifier which is the sessionID for this request.
Code Example 3-4 illustrates what the Request XML message would look like.

Code Example 3-5 illustrates what the Response XML message (which returns the
unique session ID for the request) would look like.

2. Start the authentication process using the Login Element. Code Example 3-6
illustrates this message.

Code Example 3-4 Request XML Message For C Applications

 "P0ST /amserver/authservice HTTP/1.0
 Accept text/xml
 Content-Length: <len>
 Content-Type: text/xml;charset=UTF-8

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<RequestSet vers="1.0" svcid="auth" reqid="1">
<Request><![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0"><Request authIdentifier="0">
<NewAuthContext orgName="/"></NewAuthContext>
</Request></AuthContext>]]></Request>
</RequestSet>

Code Example 3-5 Response XML Message From C Applications

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ResponseSet vers="1.0" svcid="auth" reqid="1">
 <Response><![CDATA[<?xml version="1.0"
encoding="ISO-8859-1"?>
 <AuthContext version="1.0">
 <Response authIdentifier="<sessionid>">
 <LoginStatus
status="in_progress"></LoginStatus>
 </Response>
 </AuthContext>]]>
 </Response>
 </ResponseSet>

C Programs and Authentication

Chapter 3 Authentication Service 75

The Response to this Request will be the credentials required for the
organization’s configured authentication method. (Passing the credentials is
done using JAAS Callbacks.) Assuming that the default authentication module
is LDAP, Code Example 3-7 illustrates the Response.

Code Example 3-6 XML Message To Start Authentication Process

 "P0ST /amserver/authservice HTTP/1.0
 Accept text/xml
 Content-Length: <len>
 Content-Type: text/xml;charset=UTF-8

 <xml version="1.0" encoding="UTF-8" standalone="yes"
 <RequestSet vers="1.0" svcid="auth" reqid="1">
 <Request><!CDATA[<?xml version="1.0" encoding="UTF-8"?>"
 <AuthContext version="1.0"><Request
authIdentifier="<sessionid>"><Login/></Request>
</AuthContext>]]></Request>
 </RequestSet>

Code Example 3-7 XML Response To Authentication Process Request

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ResponseSet vers="1.0" svcid="auth" reqid="1">
 <Response><![CDATA[<?xml version="1.0"
encoding="ISO-8859-1"?>
 <AuthContext version="1.0">
 <Response authIdentifier="<sessionId>">
 <Callbacks length="3">
 <PagePropertiesCallback isErrorState="false">
 <ModuleName>LDAP</ModuleName>
 <HeaderValue>This server uses LDAP
Authentication
 </HeaderValue>
 <ImageName>null</ImageName>
 <PageTimeOut>120</PagerValue>
 <TemplateName>null</TemplateName>
 </PagePropertiesCallback>
 <NameCallback><Prompt> User Name:
</Prompt></NameCallback>
 <PasswordCallback echoPassword="false">
 <Prompt> Password:</Prompt>
 </PasswordCallback>
 </Callbacks>
 </Response>
 </AuthContext>]]>

C Programs and Authentication

76 Identity Server Programmer’s Guide • December 2002

3. Send the required credentials back to the Identity Server. Code Example 3-8
illustrates this XML message. Code Example 3-8 illustrates the XML message
that contains the authentication credentials.

The Response for the above might be callbacks if the module requires more
information or the LoginStatus. Assuming that there are no more callbacks, the
XML Response is illustrated by Code Example 3-9.

 </Response>
 </ResponseSet>

Code Example 3-8 XML Request With Authentication Credentials

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <RequestSet vers="1.0" svcid="auth" reqid="1">
 <Request><![CDATA[<?xml version="1.0"
encoding="ISO-8859-1"?>
 <AuthContext version="1.0">
 <Request authIdentifier="<sessionId>">
 <SubmitRequirements>
 <Callbacks length="2">
 <NameCallback><Prompt> User Name: </Prompt>
 <Value> <value> </Value>
 </NameCallback>
 <PasswordCallback echoPassword="false">
 <Prompt> Password:</Prompt>
 <Value> <password> </Value>
 </PasswordCallback>
 </Callbacks>
 </SubmitRequirements>
 </Request>
 </AuthContext>]]></Request>
 </RequestSet>

Code Example 3-9 XML Response To Authentication Credentials

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ResponseSet vers="1.0" svcid="auth" reqid="1">
 <Response><![CDATA[<?xml version="1.0"
encoding="ISO-8859-1"?>
 <AuthContext version="1.0">
 <Response authIdentifier="<sessionid>">

Code Example 3-7 XML Response To Authentication Process Request

Authentication Samples

Chapter 3 Authentication Service 77

Authentication Samples
Authentication Service samples have been provided and can be found in the
directory <identity_server_root>/SUNWam/samples/authentication. They
include:

• Remote Client API

• Login Module

Remote Client API
This sample program demonstrates how to integrate the Remote Client API for
authenticating users with the Identity Server. It uses LDAP authentication
although it can be modified to use other existing or customized authentication
modules. The instruction file is the readme.html file found in the
<identity_server_root>/SUNWam/samples/authentication/LDAP directory.

Login Module
This sample demonstrates the steps needed to integrate a custom login module into
the Identity Server. All the files needed to compile, deploy and run the sample
authentication module that is shipped with Identity Server can be found in the
<identity_server_root>/SUNWam/samples/authentication/providers
directory. The instruction file is the Readme.html file in the same directory.

 <LoginStatus status="success"
ssotoken="sessionid" successurl="http://www.yahoo.com">
 </LoginStatus>
 </Response>
 </AuthContext>]]></Response>
 </ResponseSet>

Code Example 3-9 XML Response To Authentication Credentials

Authentication Samples

78 Identity Server Programmer’s Guide • December 2002

79

Chapter 4

Single Sign-On

The Sun™ One Identity Server provides a single sign-on (SSO) solution that
enables a user to authenticate once to access multiple resources. In other words,
successive attempts by a user to access protected resources will not require them to
provide authentication credentials for each attempt. This chapter explains the
solution, how it works and the SSO APIs. It contains the following sections:

• Overview

• Cookies and Session Tokens

• Cross-Domain Support For SSO

• SSO API

• Sample SSO Java Files

Overview
Identity Server uses access control instructions (ACIs) to define administrative
privileges that will protect an organization’s proprietary data and web resources
from unauthorized persons. A user wanting to access these protected resources
must first pass validating credentials through the Authentication Service. A
successful authentication gives the user authorization to access the protected
resources, based on their assigned policies, roles or other such instructions. If a
user wants to access several resources protected by Identity Server, the Session (or
SSO) Service provides proof of authorization so there is no need to re-authenticate.
As different domains generally have common users who need to generate access to
their services in a single user session, Identity Server has also added a
cross-domain functionality to the Session Service.

Overview

80 Identity Server Programmer’s Guide • October 2002

Contacting A Policy Agent
When a user attempts to access a protected resource via a web browser, a policy
agent installed on the server that hosts the resource intercepts the request. The
policy agent then inspects the request to see if a user session identifier, or token,
exists. If none exists, the request is passed to the Identity Server where it first
contacts the Session Service to create a session token and then the Authentication
Service which pushes a login page to verify the user.

Creating A Session Token
Before a user’s credentials can be authenticated, a session token is generated by the
Session Service. Each token contains a randomly-generated Identity Server session
identifier which ultimately represents the authenticated user. Once created, the
Authentication Service inserts the token into a cookie and assigns it to the client
browser. At the same time the token is assigned, a login page is returned to the user
based upon their organization’s method of authentication (LDAP, RADIUS, Unix,
etc.).

Providing User Credentials
The user, having received the correct login page as well as a session token, fills in
the appropriate authorization information based on the login page returned. After
the user enters their credentials, the data is sent to the authentication provider
(LDAP server, RADIUS server, etc.) for verification. Once the provider has
successfully verified the credentials, the user is authenticated. The user’s specific
session information is retrieved from the token and the session state is set to valid.
The user can now be redirected to the resource they were attempting to access.

NOTE Policy agents police the web server or application server on which the
protected resource lives and enforce user policy. They are available for
installation separately from the Identity Server. Additional information can
be found in the Sun ONE Identity Server Policy Agent Guide.

NOTE The session token, at this point, is in an invalid state and will remain in one
until the user has completed authentication.

Cookies and Session Tokens

Chapter 4 Single Sign-On 81

Cookies and Session Tokens
A cookie is an information packet generated by a web server and passed to a web
browser. It maintains information about the user’s habits with regards to the web
server it is generated by. It does not imply that the user is authenticated. Cookies
are domain-specific; for example, a cookie generated by domainone.com cannot be
used in domaintwo.com. In an Identity Server implementation, the cookie is
generated by the Session Service and set by the Authentication Service. In addition,
Identity Server cookies are session cookies that are stored in memory only.

A session token is generated by the Session Service and inserted into a cookie. It is
generated using a secure random number generator and contains Identity
Server-specific session information. Before a protected resource is accessed, the
user is validated by the Authentication Service and a SSO token is created.

Cross-Domain Support For SSO
Identity Server supports cross-domain SSO. A user authenticated to Identity Server
in one domain can access resources protected by a web agent in another domain.
For example, in one scenario, the Identity Server instance for DomainA is the
authentication provider. A user authenticates to Identity Server in DomainA and,
after authentication, the token is set for DomainA. ServerB is protected by a web
agent talking to an Identity Server in DomainB.

The Identity Server in DomainB recognizes the DomainA server as its
authentication provider. If UserA accesses a resource on ServerB after
authenticating to DomainA, the policy agent at DomainB checks for a SSO token
and finds that there is no token authorizing access to DomainB. In a cross-domain
SSO scenario, the agent will redirect the user to the URL of the cross-domain
component running with the Identity Server instance in DomainB. This component
redirects the request to the cross-domain component in DomainA since the Identity
Server in DomainA is the authentication provider. This request contains the SSO
token set by Identity Server in DomainA in the cookie header. The cross-domain
component at DomainA will send a response back to the component in DomainB
with access authorization if their configured policy permits it. The DomainB
component validates the SSO token from DomainA and creates an SSO token for
the user in DomainB. This process sets a cookie for the user in DomainB.

NOTE It is not obligatory to have an installed instance of Identity Server in both
domains to use the cross-domain feature.

Cross-Domain Support For SSO

82 Identity Server Programmer’s Guide • October 2002

If a user accesses a resource directly at DomainB without authenticating at
DomainA, the user is redirected to authentication at DomainA. If the
authentication is successful, the SSO token is sent to DomainB from DomainA. The
ServerB validates the SSO token with DomainA, creates it for DomainB and
redirects the user to the original requested resource.

Enabling Cross-Domain Single Sign-On
To enable cross-domain SSO, the administrator needs to install two different
components: the Cross Domain Controller and the CDSSO Component. The Cross
Domain Controller component comes bundled, and is installed, with Identity
Server. The CDSSO Component needs to be installed separately onto all
participating DNS domain servers.

Cross Domain Controller
The Cross Domain Controller (CDC) is associated with the Identity Server that is
protecting a specific domain. It redirects a request to either the Authentication
Service or to the SSO Component. When a HTTP request comes into the CDC and
no SSO token information is found, the request is redirected to the Authentication
Service. If a SSO token is found for another domain, the request is redirected to the
SSO Component with the appropriate session information appended to the query
string.

CDSSO Component
The CDSSO Component is deployed in each Identity Server-protected domain.
When a user attempts to access a resource, the request is intercepted by the policy
agent as discussed in “Contacting A Policy Agent,” on page 80. If no SSO token is
found, the request is redirected to the CDSSO Component in the domain where the

NOTE Identity Server uses a combination of URL parameters and cookies to
implement cross-domain SSO. If a cookie is set in DomainA, the cookie
value is carried over to DomainB using parameters, and a new cookie will
be set with the same cookie name and value, but a different cookie domain.

NOTE The administrator can choose not to enable the cross-domain feature; in this
case, the CDSSO component would function within a single domain.

Cross-Domain Support For SSO

Chapter 4 Single Sign-On 83

resource exists. The CDSSO Component searches the query string again for the
SSO token. As no token is found, the request is redirected to the Cross Domain
Controller associated with the Identity Server that protects the resource. From this
point, the authentication process will be followed.

Configuring For Cross-Domain SSO
The SSO components need to be enabled in order to allow the cross-domain SSO
function to work. Assuming a single Identity Server instance:

1. Install Identity Server in a primary DNS domain.

This will install the complete Identity Server application as well as the CDC
component. The default CDC service URL, after installation, is
http(s)://Identity_Server_host:port/amserver/cdcservlet.

2. Run the installer again on a machine in all participating DNS domains and
choose the Cross-Domain Support option.

All machines in participating DNS domains need to have an instance of the
CDSSO component installed. After running this option, a CDSSO directory is
created in <identity_server_root>/SUNWam/web-apps. The default CDSSO
Component service URL is http(s)://<CDSSO_domain_host>:<port>/
uri/cdsso.

3. Edit the com.iplanet.services.cdsso.cookiedomain property in the
cdsso.properties file found in the <identity_server_root>/SUNWam/
web-apps/cdsso/WEB-INF/classes directory.

The com.iplanet.services.cdsso.cookiedomain property must be set to
the domain name which hosts the CDSSO component installed in Step 2. Code
Example 4-1 is copied from the file itself.

NOTE If a SSO token is found by the policy agent when the request is made, the
CDSSO Component would not receive the request as the agent would
validate the token as described in Chapter 3, “Authentication Service.”

NOTE Install the CDSSO Component on any web server with host services (in all
participating DNS domains) that need to be protected.

Cross-Domain Support For SSO

84 Identity Server Programmer’s Guide • October 2002

4. The following three properties, specific to the policy agent, need to be edited in
each policy agent’s AMAgent.properties file if the agent was not originally
installed with CDSSO enabled.

❍ Change the value of com.iplanet.am.policy.agents.ccdsso-enabled
to enable cross-domain SSO. Code Example 4-2 illustrates this property.

❍ Modify the SSO redirect URL. Code Example 4-3 illustrates this property.

Code Example 4-1 Portion of CDSSO.properties file

...
/*
* The following keys will be used for Cross Domain SSO support.
* The user if needs cross domain sso support should change
*"com.iplanet.services.cdsso.CDCURL" property to point to the
* cdcservlet running with the Identity Server instance
* "com.iplanet.services.cdsso.cookiedomain" property should
* specify a comma separated list of domains for which the cdsso
* servlet will set a SSOToken.
* Ex:com.iplanet.services.cdsso.cookiedomain=.sales.com,
.eng.com,.marketing.com
*/

com.iplanet.services.cdsso.CDCURL=http://example.domain_name.com
:8080/amserver/cdcservlet
com.iplanet.services.cdsso.cookiedomain=.sales.com
/*
...

Code Example 4-2 Portion of AMAgent.properties file

...
#Cross-Domain Single Sign On URL
#Is CDSSO enabled
com.sun.am.policy.agents.ccdsso-enabled=true
...

Code Example 4-3 Second portion of AMAgent.properties file

...
/*This is the URL the user will be redirected to after successful
*login in a CDSSO Scenario.
com.sun.am.policy.agents.cdsso-component.url=http://<cdsso_host>
:<cdsso_port>/<uri>/cdsso
...

SSO API

Chapter 4 Single Sign-On 85

❍ Add the SSO service URL to the not enforced list. Code Example 4-3
illustrates this property.

Code Example 4-4 Third portion of AMAgent.properties file

This instance of Identity Server and all its participating DNS domains are now
cross-domain SSO enabled.

SSO API
The SSO solution provides Java API to allow external applications to participate in
the SSO functionality. All Identity Server services (except for Authentication) need
a valid SSO token to process a HTTP request. External applications wishing to use
the SSO functionality must use the SSO token to validate the user’s identity. With
the SSO API, an external application can get the token and, in turn, the identity of a
user and related authentication information. Once a user is authenticated, this
information is used to determine whether or not to provide access to the requested
resource based on the validated user’s policy. The SSO API can also be used to
create or destroy a SSO token, to check the token’s validity or to listen for token
events. (An event might be a token timing out because the user has reached the
token’s maximum time limit.)

Non-Web-Based Applications
Identity Server provides the SSO component primarily for web-based applications,
although it can be extended to any non-web-based applications with limitations.
With non-web-based applications, their are two possible ways to use the API.

...
/*If cross domain sso support is enabled notenforcelist should be
*edited to add cdsso servlet URL in it
com.sun.am.policy.agents.notenforcedList=*/amcdsso/*
...

NOTE The cross-domain SSO solution assumes a single Identity Server instance;
therefore all user and policy information needs to be centralized in that
instance. Multiple Identity Server instances are allowed only if they are all
in the same domain.

SSO API

86 Identity Server Programmer’s Guide • October 2002

1. The application has to obtain the Identity Server cookie value and pass it into
the SSO client methods to get to the SSO token. The method used for this
process is application-specific.

2. Command line applications, such as amadmin, can be used. In this case, SSO
tokens can be created to access the Directory Server directly. There is no
session created, making the Identity Server access valid only within that
process or VM.

API Overview
The primary purpose of the SSO API is to allow any service or application to make
use of the SSO functionality. They are provided for the implementation of a SSO
solution in external applications. Using these APIs, the identity of the user and
related authentication information can be called. The application then uses this
information to determine whether to provide user access to a protected resource.
The SSO client applications get the information from the SSO token. For example,
assume a user authenticates to http://www.DomainA.com/Store successfully and
later tries to access http://www.DomainB.com/UpdateInfo. Rather than having
the application authenticate the user again, it can use the API to determine if the
user is already authenticated. If the methods indicate that the user is valid and has
already been authenticated, access to this page can be given without the user
authenticating again. Otherwise, the user is prompted to authenticate again.

Each time a user attempts to access a protected application, the application needs
to verify their validity. Generally, the SSO component generates a SSO token for a
user once the user is authenticated. After generation, the token is carried with the
user as the user moves around the web. When the user attempts to access an
application or service that is SSO-enabled, this token is used for user validation.
Specifically, an instance of the SSOTokenManager class is created to allow access to
the createSSOToken, destroyToken and isValidToken methods. An instance of
the SSOToken class is then called; it contains the session information. Between the
two, an application can determine if the user is authenticated. Another way to use
the API is to invoke the SSOTokenListener interface which notifies the application
when a token has become invalid in order for the application to terminate its access.

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <identity_server_root>/SUNWam/docs/
directory into the <identity_server_root>/SUNWam/public_html
directory and pointing the browser to
http://<server_name.domain_name>:<port>/docs/index.html.

SSO API

Chapter 4 Single Sign-On 87

SSOTokenManager Class
The SSOTokenManager class must be implemented to create one instance per token.
It contains the three methods needed to create, get, validate and destroy SSO
tokens. The createSSOToken() method is called to create a session token. It
contains methods for doing this using the command line or through the internet.
The destroyToken() method is called to delete a token when its session has
ended. The isValidToken() and validateToken() methods can be called to
verify the authenticity of a token. isValidToken() returns true or false depending
on whether the token is valid or invalid, respectively. validateToken() throws an
exception only when the token is invalid; nothing happens if the token is valid.

Sample SSOTokenManager Code
The SSOTokenManager class can be used in the following way to determine if a user
is authenticated:

NOTE SSOTokenManager is a final class and a singleton. SSOToken and
SSOTokenID are Java interfaces. Additionally, SSOTokenListener and
SSOTokenEvent are provided to support notification when SSO tokens are
invalidated.

Code Example 4-5 Sample SSOTokenManager Code

try {
 /* create the sso token from http request */
 SSOTokenManager manager = SSOTokenManager.getInstance();

 /* The request here is the HttpServletRequest. */
 SSOToken token = manager.createSSOToken(request);

 /* use isValid to method to check if the token is valid or not
 * this method returns true for valid token, false otherwise*/
 if (token.isValid()) {

 /* user is valid, this information may be enough for some
* applications to grant access to the requested resource.
* A valid user represents a user who is already authenticated,
* by some means. If access can be given based on this
* further check on user information is not necessary.
 */

 /* let us get some user information */
 String host = token.getHostName();
 java.security.Principal principal = token.getPrincipal();
 String authType = token.getAuthType();
 int level = token.getAuthLevel();

SSO API

88 Identity Server Programmer’s Guide • October 2002

SSO Implementations
The SSOTokenManager maintains a configuration database of valid
implementations for SSOProvider, SSOToken and SSOTokenID. A request to
SSOTokenManager gets delegated to the SSOProvider. Hence, the SSOProvider
performs the bulk of the function of SSOTokenManager. The SSOToken is the SSO
token that contains the crucial information about the token, and SSOTokenID is a
string representation of SSO token. Although SSOTokenManager could support
multiple and disparate providers, the only valid SSO provider is SSOProvider.

Additional Classes
The following classes can be used to implement customized SSO functionality in an
application that does not use the default SSOProvider provided.

SSOToken
The SSOToken class represents a “single sign-on” token and contains information
like the user validation, the authentication method, the host name of the client
browser that sent the request, and session information (maximum session time,
maximum session idle time, session idle time, etc.). Code Example 4-5 on page 87
also makes use of the SSOToken interface.

SSOTokenEvent
The SSOTokenEvent class represents a token event. An event is, for instance, when
a token becomes invalid due to idle time-out or hitting a time limit maximum. A
token is granted when a change in the state of the token, like those mentioned,
occurs. An application must come to know of events in order to terminate access to
the application for a user whose token has become invalid. The SSOTokenListener
class would need to be implemented by applications to receive SSO token events.

Sample SSOTokenEvent Code. The SSOTokenEvent class can be used in the
following way to get SSO Token events:

 } else {
 /* token is not valid, redirect the user login page */
 }
...

Code Example 4-5 Sample SSOTokenManager Code

try {

SSO API

Chapter 4 Single Sign-On 89

SSOTokenID
The SSOTokenID class is used to identify the SSOToken object. Additionally, the
SSOTokenID string contains a random number, the SSO server host, and server
port. The random string in the SSOTokenID is unique on a given server. In the case
of services written using a servlet container, the SSOTokenID can be communicated
from one servlet to another either:

• as a cookie in a HTTP header; or

• as an implementation of the SSOTokenListener interface by the applications to
receive the SSO token events.

SSOTokenListener
The SSOTokenListener interface provides a mechanism for applications that need
notification when an SSO token expires. (It could expire if it reached its maximum
session time, or idle time, or an administrator might have terminated the session.)
Applications wishing to be notified must invoke the addSSOTokenListener
method using the SSOToken interface; this method implements the
SSOTokenListener interface. A callback object will be invoked when the SSO
token expires. Using the SSOTokenEvent (provided through the callback),
applications can determine the time, and the cause of the SSO token expiration.

Code Example 4-6 Sample SSOTokenEvent Code

public class AppTokenListener implements SSOTokenListener {
 public void ssoTokenChanged(SSOTokenEvent event) {
 try {
 SSOToken token = event.getToken();
 int type = event.getType();
 long time = event.getTime();
 SSOTokenID id = token.getTokenID();
 System.out.println("Token id: " + id.toString() + "is
not valid anymore");
 /* redirect user to login */

 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
}
...
SSOTokenListener myListener = new AppTokenListener();
token.addSSOTokenListener(myListener);

SSO API

90 Identity Server Programmer’s Guide • October 2002

Sample API Code
Following are examples of code that illustrate various operations that can be
performed by the SSO API.

User Authentication Sample Code
This code can be used to determine if a user is authenticated. (Additionally, the API
can be used to perform a query on a token for information such as host name, IP
address, or idle time).

NOTE Once an application registers for SSO token events using
addSSOTokenListener, any SSO token event will invoke the
ssoTokenChanged method. The application can take suitable action in this
method.

Code Example 4-7 Code Sample To Determine If User Is Authenticated

try {
 ServletOutputStream out = response.getOutputStream();

 /* create the sso token from http request */
 SSOTokenManager manager =
SSOTokenManager.getInstance();
 SSOToken token = manager.createSSOToken(request);

 /* use isValid method to check if the token is valid
 * this method returns true for valid token, false non
 */
 if (manager.isValidToken(token)) {
 /* let us get all the values from the token */

 String host = token.getHostName();
 java.security.Principal principal =
token.getPrincipal();
 String authType = token.getAuthType();
 int level = token.getAuthLevel();
 InetAddress ipAddress = token.getIPAddress();
 long maxTime = token.getMaxSessionTime();
 long idleTime = token.getIdleTime();
 long maxIdleTime = token.getMaxIdleTime();
 out.println("SSOToken host name: " + host);
 out.println("SSOToken Principal name: " +
principal.getName());
 out.println("Authentication type used: " +
authType);
 out.println("IPAddress of the host: " +
 ipAddress.getHostAddress());

SSO API

Chapter 4 Single Sign-On 91

In some cases, it might be more efficient and convenient to use
SSOTokenManager.validateToken(token) than
SSOTokenManager.isValidToken(token).
SSOTokenManager.validToken(token) throws an exception when the token is
invalid, thus terminating the method execution right away.

 }
 /* try to validate the token again, with another method
 * if token is invalid, this method throws exception
 */
 manager.validateToken(token);

 /* get the SSOTokenID associated with the token */
 SSOTokenID tokenId = token.getTokenID();

 String id = tokenId.toString();

 /* print the string representation of the token */

 out.println("The token id is " + id);

 /* set properties in the token. We can get the values
 * of set properties later
 */
 token.setProperty("Company", "Sun Microsystems");
 token.setProperty("Country", "USA");
 String name = token.getProperty("Company");
 String country = token.getProperty("Country");

 out.println("Property: Company is - " + name);
 out.println("Property: Country is - " + country);

 out.println("SSO Token Validation test Succeeded");
 /* add a listener to the SSOToken. Whenever a token
 * event arrives, ssoTokenChanged method of the
 * listener will get called.
 */
 SSOTokenListener myListener = new
SampleTokenListener();

 token.addSSOTokenListener(myListener);
 out.flush();
 } catch (Exception e) {
 System.out.println("Exception Message: " +
e.getMessage());
 e.printStackTrace();
 }
 }
}

Code Example 4-7 Code Sample To Determine If User Is Authenticated (Continued)

SSO API

92 Identity Server Programmer’s Guide • October 2002

Get Token Sample Code
This sample code can be used to get the SSO token if the SSOtokenID string is
passed to the application.

Code Example 4-8 Code Sample To Get Token from Token ID

try {
 /* create the sso token from SSO Token Id string */
 SSOTokenManager manager=SSOTokenManager.getInstance();
 SSOToken token = manager.createSSOToken(tokenString);
 * let us get the SSOTokenID associated with the token
*/
 SSOTokenID id = token.getTokenID();

 String tokenId = id.toString();

 /* print the string representation of the token */

 System.out.println("The token ID is " + tokenId);

 /* set properties in the token. We can get the values
 * of set properties later */

 token.setProperty("Company", "Sun Microsystems");
 token.setProperty("Country", "USA");
 String name = token.getProperty("Company");
 String country = token.getProperty("Country");

 System.out.println("Property: Company is - " + name);
 System.out.println("Property: Country is - " +
country);

 System.out.println("SSO Token Validation test
Succeeded");
 /* add a listener to the SSOToken. Whenever a token
 * event arrives, ssoTokenChanged method of the
 * listener will get called.
 */
 SSOTokenListener myListener = new
SampleTokenListener();

 token.addSSOTokenListener(myListener);
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 SSOTokenManager manager=SSOTokenManager.getInstance();
 SSOToken token = manager.createSSOToken(tokenString);
 }
}

SSO API

Chapter 4 Single Sign-On 93

Listen For Event Code Sample
Applications can listen for SSO token events. It is possible that while a user is using
an application, an SSO token may become invalid because, for example:

• the user's access times out because of the maximum time limit; or,

• the user fails to log out of an application and the idle time-out expires.

The application must be informed of these events to follow-up on the invalid token
by terminating the user’s access. The following two sample codes can be used to
get token events.

where SampleTokenListener is a class defined as:

Code Example 4-9 Code Sample To Register For SSOToken Events

SSOTokenListener myListener = new SampleTokenListener();
token.addSSOTokenListener(myListener);

Code Example 4-10 Code Sample Defining SampleTokenListener Class

public class SampleTokenListener implements SSOTokenListener {

 public void ssoTokenChanged(SSOTokenEvent event) {
 try {
 SSOToken token = event.getToken();
 int type = event.getType();
 long time = event.getTime();

 SSOTokenID id = token.getTokenID();

 System.out.println("Token id is: " + id.toString());

 if (SSOTokenManager.getInstance().isValidToken(token))
{
 System.out.println("Token is Valid");
 } else {
 System.out.println("Token is Invalid");
 }

 switch(type) {
 case SSOTokenEvent.SSO_TOKEN_IDLE_TIMEOUT:
 System.out.println("Token Idle Timeout event");
 break;
 case SSOTokenEvent.SSO_TOKEN_MAX_TIMEOUT:
 System.out.println("Token Max Timeout event");
 break;

Sample SSO Java Files

94 Identity Server Programmer’s Guide • October 2002

After the application registers for SSO token events using addSSOTokenListener,
any SSO token events will invoke the ssoTokenChanged() method. The
application can take a suitable action in this method.

Sample SSO Java Files
Identity Server provides three groups of sample Java files. With these samples, a
developer can create an SSO token in several ways:

1. An SSO token can be created for an application that runs on the Identity Server
server.

2. An SSO token can be created for an application that runs on a server other than
the Identity Server server.

3. An SSO token can be created by a session ID string can be passed through the
command line.

The files are in the <identity_server_root>/SUNWam/samples/sso directory.

SSO Servlet Sample
This sample can be used to create a token for an application that resides on the
same server as the Identity Server application. The files used for this sample are:

• Readme.html

• SampleTokenListener.java

• SSOTokenSampleServlet.java

 case SSOTokenEvent.SSO_TOKEN_DESTROY:
 System.out.println("Token Destroyed event");
 break;
 default:
 System.out.println("Unknown Token event");
 }
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
}

Code Example 4-10 Code Sample Defining SampleTokenListener Class (Continued)

Sample SSO Java Files

Chapter 4 Single Sign-On 95

The instructions in Readme.html can be followed to run this code.

Remote SSO Sample
This sample can be used to create a token for an application that resides on a
different server from the one on which the Identity Server application lives. The
files used for this sample are:

• remote.html

• SSOTokenFromRemoteServlet.java

• SSOTokenSampleServlet.java

The instructions in remote.html can be followed to run this code.

Command Line SSO Sample
This sample illustrates how to validate a user from the command line using a
session ID string. The files used for this sample are:

• ssocli.txt

• CommandLineSSO.java

• SSOTokenSample.java

The instructions in ssocli.txt can be followed to run this code.

Sample SSO Java Files

96 Identity Server Programmer’s Guide • October 2002

97

Chapter 5

Identity Management

The Identity Management module of SunTM ONE Identity Server contains an XML
template file and application programming interfaces (APIs) that provide
functionality to, among other operations, create, delete and manage identity entries
in the Sun ONE Directory Server used for data storage. This chapter offers
information on the public APIs. It contains the following sections:

• Overview

• Object Templates

• Identity Server SDK

• amEntrySpecific.xml

• Management Sample Functions

Overview
The Identity Management module of Identity Server allows for the management of
identity-related objects stored in the Directory Server. Towards this end, it
provides interfaces for creating and managing identity-related objects in the
Directory Server. The management functions that can be performed include the
creation and deletion of specific objects as well as the ability to get, add, modify, or
remove the attributes of these objects. The interfaces include a set of templates,
defined in the ums.xml file, that contain LDAP configuration information for
identity-related objects and a Java Software Development Kit (SDK) to embed the
management functions into applications or services.

Overview

98 Identity Server Programmer’s Guide • October 2002

Abstract Objects
Identity Server represents the objects it manages abstractly; in other words, an
organization in Identity Server does not necessarily map to an LDAP organization
in the Directory Server. The default abstract objects are:

• organization

• organizational unit

• people container

• static group

• filtered group

• assignable dynamic group

• group container

Marker Object Classes
Abstract objects are identified in the Directory Server by object classes that are
referred to as marker and defined in an Identity Server schema. The marker object
classes are then used in LDAP object entries. For example, the Directory Server
may use organizational units for their first level structure; by adding the Identity
Server organization marker object class, iplanet-am-managed-org, to the LDAP
entries of these organizational units, Identity Server can manage them as
organizations. It is the use of marker object classes that allows Identity Server to
manage most directory structures, regardless of the LDAP object classes and
naming attributes deployed. The marker object classes are:

• iplanet-am-managed-filtered-group

• iplanet-am-managed-assignable-group

• iplanet-am-managed-static-group

• iplanet-am-managed-org

• iplanet-am-managed-org-unit

• iplanet-am-managed-people-container

• iplanet-am-managed-group-container

NOTE For more information, see “amEntrySpecific.xml Schema,” on page 107.

Object Templates

Chapter 5 Identity Management 99

Object Templates
The ums.xml provides a set of parameters, known as Templates, that contain LDAP
configuration information for all identity-related objects. Identity Server uses these
templates to define the configuration of the Directory Server entries that store the
Identity Server entry information created by the Identity Server SDK. The file can
be found in the <identity_server_root>/SUNWam/config/ums directory and is
based on the sms.dtd. The templates provide LDAP structure for:

• Users

• Groups

• Organizations

• Roles

• Organization Units

• Group Containers

• People Containers

The templates are used by the Identity Server SDK for the creation of
identity-related objects in the Directory Server, as well as the dynamic generation
of the object’s roles and the construction of object searches. (These templates can be
modified by administrators to alter the behavior of the Java interfaces.) Using these
templates and the LDIF schema, parameters are configured for all identity-related
objects.

When Identity Server is installed, the ums.xml file is stored in the Directory Server
as the DAI service. (DAI is a service in the Identity Server whose configuration is
not made available through the console.) The Identity Server SDK gets the
configuration information from this node when it is being asked to create an
identity-related object, generate a role or perform a search. Any attribute specified
in the ums.xml can be set for a created object.

NOTE The marker object classes are defined in the Identity Server-specific LDAP
schema ds_remote_schema.ldif which can be found in
<identity_server_root>/SUNWam/ldif. It is loaded into the
Directory Server when Identity Server is installed.

Object Templates

100 Identity Server Programmer’s Guide • October 2002

Structure of ums.xml
The ums.xml defines three types of templates: Structure, Creation and Search.
Structure templates define the Directory Server DIT attributes for the object.
Creation templates define an LDAP template for the object being created. Search
templates define guidelines for performing searches using LDAP.

Structure Templates
Structure templates define the form an Identity Server object will take in the
Directory Server DIT. This conforms to where the object is located within the DIT;
the objects are strictly LDAP entries. There are six attributes that need to be defined
for each subschema.

• class—This attribute represents the name of the Java class that will implement
the object. This attribute is fixed and should never be modified.

• name—This attribute defines the entry type of the object. For example, an
organization object has o=org as its name.

• childNode—This attribute specifies the child nodes that will be created in
tandem with the object.

• template—This attribute specifies the Creation template used to create this
object.

• filter—This attribute specifies a filter that will be used to identify the object.

• priority—This attribute is defined as 0.

Creation Templates
Every identity object that Identity Server creates has a corresponding creation
template which defines the LDAP schema for the object. It specifies which object
classes and attributes are mandatory or optional and which default values, if any,
should be set. This conforms to the actual LDAP entry in the Directory Server.
There are six attributes that need to be defined for each subschema.

CAUTION Because ums.xml defines templates for directory entries created by the
SDK, if it is modified and reloaded, there will be inconsistencies between
the entries created prior and the newer ones to be created. Therefore,
modifications to this file are not recommended unless Identity Server is
being installed as a brand new entity.

Object Templates

Chapter 5 Identity Management 101

• name—This attribute defines the name of the object the template will create. It
is also the name of the template itself.

• javaclass—This attribute defines the name of the Java class used to
instantiate the object.

• required—This attribute defines the required LDAP attributes for the object.

• optional—This attribute defines the optional LDAP attributes for the object.

• validated—This attribute is reserved for future use.

• namingattribute—This attribute specifies the LDAP entry type.

Search Templates
Search templates are used to define how searches for Identity Server objects are
performed in the Directory Server. This template defines a default search filter and
the attributes returned in a search. For example, a search filter is constructed which
defines and specifies which attributes and values are to be retrieved from the
Directory Server.

• name—This attribute defines the name of the search template.

• searchfilter—This attribute defines the LDAP search filter.

• attrs—This attribute specifies the LDAP attributes that need to be returned.

Modifying ums.xml
Any new LDAP attributes or object classes must be added to the ums.xml file in
order for them to be recognized by the Identity Server. In most cases, the attributes
that service developers might want to add may already exist in the inetorgperson
and the inetuser object classes. If, for example, a custom mail service is being
added with, specifically, an employee_id attribute, the ums.xml file does not need
to be modified because this attribute already exists in the inetorgperson object
class. Generally, as in the example, the ums.xml file does not need to be modified.
The only circumstances where this file would need to be modified are:

• if DSAME is being installed against a legacy DIT.

• if new object classes are being added to users or organizations.

• if service developers want to change the default organizations or roles.

• if service developers need to change an entry’s naming attribute.

Identity Server SDK

102 Identity Server Programmer’s Guide • October 2002

Additional information on when and how to modify the ums.xml file is covered in
the section on installing against a legacy DIT in the Sun ONE Identity Server
Installation and Configuration Guide.

Adding Custom Object Classes
If a service developer wanted to add new or customized object classes to the
Directory Server for Identity Server’s use, they would need to modify the templates
in the ums.xml file. Then, to manage them from the Identity Server console, these
new object classes and attributes have to be modelled as an XML service file and
imported into Identity Server using the procedures described in Chapter 6,
“Service Management.”

Identity Server SDK
The Identity Server SDK contains APIs for identity management. These interfaces
can be used by developers to integrate management functions into external
applications or services that will be managed by the Identity Server. The APIs
function to create or delete identity-related objects as well as get, modify, add or
delete the object’s attributes. The com.iplanet.am.sdk package contains all the
interfaces and classes necessary to perform these operations in the Directory
Server.

CAUTION It is highly recommended that the ums.xml configuration file is duplicated
before any modifications are made.

NOTE umsExisting.xml contains objectclasses and user object class tags which
will be replaced after installation and is used when installing Identity Server
with an existing directory server information tree.

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <identity_server_root>/SUNWam/docs/
directory into the <identity_server_root>/SUNWam/public_html
directory and pointing the browser to
http://<server_name.domain_name>:<port>/docs/index.html.

Identity Server SDK

Chapter 5 Identity Management 103

SDK Interfaces
Below are brief explanations of the Identity Server SDK interfaces.

AMConstants
AMConstants is the base interface for all identity-related objects. It is used to define
the scope of a search of the Directory Server. It can search for a specific object, a
particular level of the DIT or an attribute.

AMObject
AMObject provides basic methods to manage identity-related objects. Since this is a
generic class, it does not have any Templates (defined in “Object Templates,” on
page 99) associated with it.

AMOrganization
The AMOrganization interface provides the methods used to manage
organizations. Associated with this interface are the following ums.xml Templates
that define its behavior at runtime. The name of the structural template used by
this class is Organization; the name of the creation template used is
BasicOrganization, and the name of the search template is BasicOrganizationSearch.

AMOrganizationalUnit
The AMOrganizationalUnit interface provides the methods used to manage
organizational units. Associated with this object are the following ums.xml
Templates that define its behavior at runtime. The name of the structural template
used by this class is OrganizationalUnit; the name of the creation template used is
BasicOrganizationalUnit, and the name of the search template is
BasicOrganizationalUnitSearch.

AMPeopleContainer
The AMPeopleContainer interface provides the methods used to manage people
containers. Associated with this object are the following ums.xml Templates that
define its behavior at runtime. The name of the structural template used by this
class is PeopleContainer; the name of the creation template used is
BasicPeopleContainer, and the search template is BasicPeopleContainerSearch.

Identity Server SDK

104 Identity Server Programmer’s Guide • October 2002

AMGroupContainer
The AMGroupContainer interface provides the methods used to manage group
containers. Associated with this object are the following ums.xml Templates that
define its behavior at runtime. The name of the structural template used by this
class is GroupContainer; the name of the creation template used is
BasicGroupContainer, and the search template is BasicGroupContainerSearch.

AMGroup
The AMGroup interface provides the methods used to manage groups. This is the
basic class for all derived groups, such as static groups, dynamic groups and
assignable dynamic groups. No default templates are defined for this class.

AMStaticGroup
The AMStaticGroup interface provides the methods used to manage static groups.
This class extends the base AMGroup interface. The name of the creation template
used with this class is BasicGroup; and the search template used is BasicGroupSearch.
It does not have a pre-defined structural template.

AMDynamicGroup
The AMDynamicGroup interface provides the methods used to manage dynamic
groups. This class extends the base AMGroup interface. Associated with this object
are the following ums.xml Templates that define its behavior at runtime. The
creation template used is named BasicDynamicGroup; and the search template used
is named as BasicDynamicGroupSearch. It does not have a pre-defined structural
template.

AMAssignableDynamicGroup
The AMAssignableDynamicGroup interface provides the methods used to manage
assignable dynamic groups. This class extends the base AMGroup interface.
Associated with this object are the following ums.xml Templates that define its
behavior at runtime. The creation template used is named
BasicAssignableDynamicGroup; and the search template used is named
BasicAssignableDynamicGroupSearch. It does not have a pre-defined structural
template.

Identity Server SDK

Chapter 5 Identity Management 105

AMRole
The AMRole interface provides the methods used to manage roles. Associated with
this object are the following ums.xml Templates that define its behavior at runtime.
The creation template used is named BasicManagedRole; and the search template
used is named BasicManagedRoleSearch. It does not have a pre-defined structural
template.

AMUser
The AMUser interface provides the methods used to manage users. Associated with
this object are the following ums.xml Templates that define its behavior at runtime.
The creation template used is named BasicUser; and the search template used is
named BasicUserSearch. It does not have a pre-defined structural template.

AMTemplate
The AMTemplate interface represents a service template associated with a
AMObject. Identity Server distinguishes between virtual and entry attributes. Per
Sun ONE Directory Server terminology, a virtual attribute is an attribute not
physically stored in an LDAP entry but still returned with it as a result of a LDAP
search. Virtual attributes are analogous to inherited attributes. Entry attributes are
non-inherited attributes.

For AMOrganization, AMOrganizationalUnit and AMRole, virtual attributes can
be grouped in a Template on a per-service basis; there may be one service Template
for each service for any given AMObject. Such templates determine the service
attributes inherited by the users within the scope of this object. There are three
types of templates: POLICY_TEMPLATE, DYNAMIC_TEMPLATE and
ORGANIZATION_TEMPLATE. POLICY_TEMPLATE and DYNAMIC_TEMPLATE are
implemented using CoS Templates; ORGANIZATION_TEMPLATE does not have
virtual attributes.

Template Priority
When any object inherits more than one template for the same service (by virtue of
being in the scope of two or more objects with service templates), the conflict is
resolved through template priorities. In this priority scheme, zero is the highest
possible priority with the lower priorities extending towards infinity. Templates
with higher priorities will be favored over and to the exclusion of templates with
lower priorities. Templates which do not have an explicitly assigned priority are

NOTE More information on virtual attributes can be found in “Virtual Attribute,”
on page 289 of Appendix B, “Directory Server Concepts.”

Identity Server SDK

106 Identity Server Programmer’s Guide • October 2002

considered to have the lowest priority possible, or no priority. In the case where
two or more templates are being considered for inheritance of an attribute value,
and they have the same (or no) priority, the result is undefined, but does not
exclude the possibility that an arbitrarily chosen value will be returned.

AMStoreConnection
The AMStoreConnection class represents a connection to the Identity Server data
store; the Identity Server data store is the Directory Server. This class controls and
manages access to the Directory Server by providing methods to create, remove
and get different types of identity-related objects. A SSOToken is required in order
to instantiate a AMStoreConnection object.

The SDK And Cache
Caching in the Identity Server SDK is used for storing all AMObject attributes (i.e.,
attributes of identity-related objects) that are retrieved from the Directory Server.
The cache does not hold AMObject directly, only its attributes. All attributes
retrieved from the Directory Server using the interface methods
AMObject.getAttributes(), AMObject.getAttribute(String name) or
AMObject.getAttributes(setAttributeNames) will be cached.

Cache Properties
The following cache properties can be configured by accessing the
AMConfig.properties file. They are:

• com.iplanet.services.stats.state—Depending on whether this property
is set to file or console, the cache statistics will be printed to either a
amSDKStats file or the Identity Server console.

• com.iplanet.services.stats.directory—The value of this property is the
directory in which the amSDKStats file is created.

• com.iplanet.am.statsInterval—The interval at which cache statistics are
printed can be specified as the value of this property. It indicates the number of
seconds after which the stats will be printed. For example, a value of 3600
would cause the cache statistics to be printed after 3600 seconds. This will be
used only if com.iplanet.services.stats.state is set to file or console.

Table 5-1 is explains the information that is recorded in the statistics files.

amEntrySpecific.xml

Chapter 5 Identity Management 107

Installing the SDK Remotely
It is possible for an external application to perform management functions on the
Identity Server data store (Directory Server) without installing the full Identity
Server application at the external location. By installing the SUNWamsdk package
using the pkgadd utility and answering NO to the first question, “Install the remote
client only”, the full SDK will be installed. Answering YES, the Identity Server SDK
can be installed on a non-Identity Server machine.

amEntrySpecific.xml
The purpose of the amEntrySpecific.xml service file is to define the attributes
that will display on the Create, Properties and Search pages specific to each of the
Identity Server abstract objects. Each Identity Server abstract object can have its own
schema definition in the amEntrySpecific.xml file which is based on the sms.dtd
as described in Chapter 6, “Service Management.”

amEntrySpecific.xml Schema
Each abstract object can have a schema defined in the amEntrySpecific.xml file.
The schema defines what attributes will be displayed on the function pages used to
manage abstract type objects:

• Create—The Create page is displayed when the administrator clicks New.

Table 5-1 Recorded Cache Properties

Information Name What is recorded

Interval Number of get requests during the specified interval

Hits during interval Number of hits during the specified interval

Hit ratio for this interval Hit ratio for the specified interval

Total number of requests Overall number of get requests since a server re-start

Total number of Hits Overall number of hits since a server re-start

Overall Hit ratio Overall hit ratio since a server re-start

amEntrySpecific.xml

108 Identity Server Programmer’s Guide • October 2002

• Properties—The Properties Page is displayed when the Properties icon (an
arrow in a box) next to an abstract type object is clicked.

• Search—The Search link is in the top left frame of the Identity Server console.

If a service developer wants to customize these Identity Server function pages for
any of the abstract objects, they would need to modify the amEntrySpecific.xml.
For example, to display an attribute on the group page, the new attribute needs to
be added to the amEntrySpecific.xml file. Any abstract object with customized
attributes in the Directory Server would need to have those attributes reflected in
the amEntrySpecific.xml file also. (Most often, a service developer would only be
customizing the organization pages.) Code Example 5-1 is the organization
attribute subschema that defines the display of an organization’s Organization
Status and its choice values.

If the type attribute is not specified in amEntrySpecific.xml, the defaults will be
used. A default setting means that only the name of the entry will display on the
object function pages in the Identity Server console.

All the attributes listed in the schema definitions in the amEntrySpecific.xml file
are displayed when the abstract type object pages are displayed. If the attribute is
not listed in a schema definition in the amEntrySpecific.xml file, the Identity
Server console will not display the attribute. For additional information on the
Identity Server abstract objects and marker object classes, see the Sun ONE Identity
Server Installation and Configuration Guide.

Code Example 5-1 Organization Subschema of amEntrySpecific.xml

...
<SubSchema name="Organization">
 <AttributeSchema name="inetdomainstatus"
 type="single_choice"
 syntax="string"
 any="optional|filter"
 i18nKey="o2">
 <ChoiceValues>
 <ChoiceValue>Active</ChoiceValue>
 <ChoiceValue>Inactive</ChoiceValue>
 </ChoiceValues>
 </AttributeSchema>
 </SubSchema>
...

NOTE The User service is not configured in the amEntrySpecific.xml file but
in its own amUser.xml file.

Management Sample Functions

Chapter 5 Identity Management 109

Management Sample Functions
Following are several samples that illustrate identity management functions using
the Identity Server.

Create, Delete Or Modify Users
Users can be created, deleted or modified can be accomplished using the SDK.
There is an interface that can be called for any SDK user creation, deletion, or
modification. The property com.iplanet.am.sdk.userEntryProcessingImpl
should be set to the implementation in AMConfig.properties.

Create Organization
The following code sample creates a new organization with one user by opening a
connection to the Directory Server with AMStoreConnection. A new top
organization (newtoporg.com) is then created with its own attributes. User John
Smith is also created as a member of the new organization.

Code Example 5-2

public interface AMUserEntryProcessed {

/**
 * Method which gets invoked whenever a user is created
 * @param token the SSOToken
 * @param userDN the DN of the user being added
 * @param attributes a map consisting of attribute names and
 * a set of values for each of them
 */
 public void processUserAdd(SSOToken token, String userDN,
 Map attributes);
}

Code Example 5-3 Create New Organization And One User

...
 // instantiate a store connector from SSO Token
 AMStoreConnection amsc = new AMStoreConnection(ssoToken);
 // create a new top level organization without non-default
attributes
 AMOrganization org =
amsc.createTopOrganization("newtoporg.com", new HashMap());

Management Sample Functions

110 Identity Server Programmer’s Guide • October 2002

Retrieve Templates
The following code sample retrieves a service’s dynamic templates by opening a
connection to the Directory Server with AMStoreConnection. It retrieves a service’s
dynamic template by defining the DN of the top organization (toporg.com) as well
as the string attribute of the specific service to be retrieved.

 // set attribute for the newly created organization
 org.setStringAttribute("description", "organization
description");
 // save new attribute to the organization object
 org.store();

 // create new user "john" with "cn", "sn" attribute
 // Map to hold all users to be created, key is the string
value for user naming attribute,
 // value is a Map which contains all the initial values for
the user
 Map usersMap = new HashMap();
 // Map to hold attributes for the user
 Map attrsMap = new HashMap();
 // set cn = John Smith
 Set values = new HashSet();
 values.add("John Smith");
 attrsMap.put("cn", values);
 // set sn = Smith
 values = new HashSet();
 values.add("Smith");
 attrsMap.put("sn", values);
 // set put user john in the usersMap with "cn" & "sn"
specified above
 usersMap.put("john", attrsMap);
 // create user john in the organization
 Set users = org.createUsers(usersMap);
...

Code Example 5-4 Retrieve Service’s Dynamic Template

...
 // instantiate a store connector from SSO Token
 AMStoreConnection amsc = new AMStoreConnection(ssoToken);
 // retrieve top level organization by DN
 AMOrganization org =
amsc.getOrganization("o=toporg.com,o=isp");
 // retrieve Dynamic type AMTemplate for
iPlanetAMSessionService

Code Example 5-3 Create New Organization And One User (Continued)

Management Sample Functions

Chapter 5 Identity Management 111

Create Users With Modified LDAP Schema
There might be a need to modify the Directory Server schema in order to create
users with non-default object classes. Here are the steps to create users with
extended object classes:

1. Modify Directory Schema with the new set of attributes and object classes.

For more information on this function, see the Sun ONE Directory Server
documentation.

2. Write a new XML service file which contains the definitions for the new object
classes and attributes.

When writing this file, the object classes should be defined under the Global
element and the attributes should be defined under the User element. More
information can be found in Chapter 6, “Service Management.”

3. Write a new module configuration properties file.

This file contains the key-value pairs for the internationalization keys used in
the file created in Step 2. More information can be found in “Configuring
Module Credential Requirements,” on page 57 of Chapter 3, “Authentication
Service.”

4. Load the two files using the amadmin command line interface.

More information on this tool can be found in the Sun ONE Identity Server
Administration Guide.

5. Restart the Directory Server and Identity Server.

6. Register the new service to the desired organization using the Console.

For getting more details about registering a new service, refer to the Sun ONE
Identity Server Administration Guide.

 AMTemplate template =
org.getTemplate("iPlanetAMSessionService",
AMTemplate.DYNAMIC_TEMPLATE);
 // retrieve attributes
 String maxSessionTime =
template.getStringAttribute("iplanet-am-session-max-session-time
");
 ...

Code Example 5-4 Retrieve Service’s Dynamic Template (Continued)

Management Sample Functions

112 Identity Server Programmer’s Guide • October 2002

7. Select the new service to create a user with the additional object classes.

When creating new user there is an option to select the newly configured
service.

NOTE Instead of creating a new XML service file, amUser.xml can be modified.
In this case, un-register the old amUser service, modify the file and
re-register the modified service. Key-value pairs still need to be included in
the amUser.properties file for newly defined internationalization keys.
ums.xml does not need to be modified for this option.

113

Chapter 6

Service Management

Sun™ One Identity Server uses eXtensible Markup Language (XML) files and
Java™ interfaces for the integration and management of services into the Identity
Server configuration. This chapter provides information on the structure of the
XML files and the service management application programming interfaces (API).
It contains the following sections:

• Overview

• Service Definition

• DTD Files

• XML Files

• Service Management SDK

Overview
A service is a group of attributes, defined in an XML file, that are managed together
by the Identity Server console. The attributes can be the configuration parameters of a
software module or they might just be related information with no connection to a
software configuration. As an example of the first scenario, after creating a payroll
module, a developer defines an XML service file that might include attributes to
define an employee name, an hourly pay rate and a tax percentage. This file is
imported into the Sun ONE Directory Server so the attributes and their values can
be stored. When the service is registered to an organization, the attributes can be
managed using the Identity Server console.

Overview

114 Identity Server Programmer’s Guide • December 2002

Identity Server provides the mechanisms for administrators to define, integrate
and manage groups of attributes as an Identity Server service. Preparing a service
for management involves creating an XML service file, configuring an LDAP Data
Interchange Format (LDIF) file with any new object classes and importing both, the
XML service file and the new LDIF schema, into the Directory Server.
Administrators can then register the service to identity objects using the Identity
Server console. Once registered, the attributes can be managed and customized.

XML Service Files
XML service files enable Identity Server to manage attributes that are stored in
Directory Server. Identity Server does not implement any behavior or dynamically
generate any code to interpret the attributes; it can only set or get the attribute
values. Out-of-the-box, Identity Server loads a number of services to manage the
attributes of its own features. For example, the Logging attributes are displayed
and managed in the Identity Server console, while code implementations within
the Identity Server use these configured attributes to record the operations of the
application. All XML service files are located in <identity_server_root>/
SUNWam/config/xml. For more specific information on XML service files, see
“XML Files,” on page 150.

Document Type Definition Structure Files
The format of an XML file in Identity Server is based on a structure defined in a
DTD file. In general, a DTD file defines the elements and qualifying attributes
needed to write a well-formed and valid XML document. Identity Server exposes
the DTD files that are used to define the structure for different types of XML files.
The DTDs are located in <identity_server_root>/SUNWam/dtd. Additional
information on them can be found in “DTD Files,” on page 125.

NOTE Throughout this chapter, the term attribute is used for two concepts. An
Identity Server or service attribute refers to the configuration parameters of
a defined service. An XML attribute refers to the parameters that qualify an
XML element in the XML files.

NOTE Any application with LDAP attributes can have this data managed using
the Identity Server console by configuring a custom XML service file and
loading it into the Directory Server. For more information, see “Service
Definition,” on page 115.

Service Definition

Chapter 6 Service Management 115

Service Management SDK
Identity Server also provides a service management SDK that provides application
developers with interfaces to register and un-register services as well as manage
their schema and configuration information. These interfaces are bundled in a
package called com.sun.identity.sm. More information on the SDK can be found
in “Service Management SDK,” on page 156.

Service Definition
To define a service for registration and management with the Identity Server the
service developer must create an XML service file as well as configure an LDIF file
with any object classes. Both, the XML service file and the new LDIF schema, must
them be imported into the Directory Server. Once imported, the service can be
registered by an administrator and its attributes managed and customized. The
following sections describe the procedures to define and register a service.

Defining A Service
The following procedures must be completed in order to define a service and use
the Identity Server to integrate and manage it.

1. Create an XML service file for the component.

This XML file must conform to the sms.dtd. A simple way to create a new
XML service file would be to copy and modify an existing one. More
information on creating an XML service file can be found in “Creating A
Service File,” on page 117. The DTD syntax can be found in “The sms.dtd
Structure,” on page 126.

NOTE Knowledge of XML is necessary to understand DTD elements and how they
are integrated into Identity Server. When creating an XML file, it might be
helpful to print out the relevant DTD and a corresponding sample XML file.

Service Definition

116 Identity Server Programmer’s Guide • December 2002

2. Extend the LDAP schema in the Directory Server using ldapmodify, if
necessary.

Loading an LDIF file into the Directory Server will add any new or modified
object classes and attributes to the DIT. This step is only necessary when
defining dynamic, policy and user attributes. (Global and organization
attributes are stored in the Directory Server as XML, not LDAP.) Instructions
on extending the LDAP schema can be found in “Extending The Directory
Server Schema,” on page 120. See the Sun ONE Directory Server
documentation for additional information.

3. Import the XML service file into Directory Server using amadmin using the
--schema or -S option.

Information on importing an XML service file can be found in “Importing the
XML Service File,” on page 122.

4. Configure a localization properties file and copy it into the
<identity_server_root>/SUNWam/locale directory.

The localization properties file must be created with accurate i18nKey fields
that map to names defined in the XML service file. If no localization properties
file exists, Identity Server will display the actual attribute names. More
information on the localization properties file can be found in “Configuring
Localization Properties,” on page 123.

5. Update the amEntrySpecific.xml or amUser.xml files, if necessary.

The amEntrySpecific.xml file defines the attributes that will display on the
Create, Properties and Search pages specific to each of the Identity Server
abstract objects. The amUser.xml file can be modified to add User attributes to
the User Service. (Alternately, User attributes can be defined in the actual XML
service file in which case, amUser.xml would not need to be modified.)
Information on updating amEntrySpecific.xml can be found in Chapter 5,
“Identity Management.” Information on modifying amUser.xml can be found
in “Modifying A Default XML Service File,” on page 151.

6. Register the service.

After importing the service into Directory Server, it can be registered and the
attributes managed through the Identity Server console. Information on how
this can be done is in the Sun ONE Identity Server Administration Guide.
Information on how to register using the command line can be found in
“Registering The Service,” on page 124.

Service Definition

Chapter 6 Service Management 117

Creating A Service File
The information in this section corresponds to Step 1, creating an XML service file.
The XML service file defines the attributes of an Identity Server service. It must
follow the structure defined in the sms.dtd which enforces the service developer to
combine attributes into one of five groups, allowing the developer to differentiate
between those attributes applicable to, for example, a service instance or a user.

Service File Naming Conventions
When creating a new XML service file, there are some naming conventions that
must be followed.

• The name of a service (other than an authentication module service) as defined
in the XML service file can be any string as long as it is unique.

• The name of an authentication module service as defined in the XML service
file must be in the form iPlanetAMAuthmodule_nameService.)

• Any defined authentication level attribute must be configured as
iplanet-am-auth-module_name-auth-level.

Service Attributes
The sms.dtd requires the service developer to define attributes into one of five
groups. These groups differentiate between those attributes applicable to, for
example, the Identity Server deployment, a service or a user.

Global Attributes
Global attributes are defined for the entire Identity Server installation and are
common to all data trees, service instances and integrated applications within the
configuration. Global attributes can not be applied to users, roles or organizations
as their purpose is to configure the Identity Server itself. Server names, port
numbers, service plug-ins, cache size, and maximum number of threads are
examples of global attributes that are configured with one value. For example,
when Identity Server performs logging functions, the log files are written into a
directory. The location of this directory is defined as a global attribute in the
Logging Service and all Identity Server logs, independent of their purpose, are
written to it. Identity Server administrators can modify these default values using
the Identity Server console. Global attributes are stored in the Directory Server as
an XML blob within an attribute of an LDAP object. Therefore, the LDAP schema
does not need to be extended to add a new global attribute.

Service Definition

118 Identity Server Programmer’s Guide • December 2002

Organization Attributes
Organization attributes are defined and assigned at the organization level.
Attributes for an Authentication Service are a good example. When the
Authentication Service is registered, attributes are configured depending on the
organization to which it is registered. The LDAP Server and the DN To Start User
Search would be defined at the organization level as this information would be
different depending on the address of an organization’s LDAP server and the
structure of their DIT, respectively. Organization attributes are stored as an XML
blob within an attribute of an LDAP object. Therefore, the LDAP schema does not
need to be extended to add a new global attribute.

Dynamic Attributes
Dynamic attributes are inheritable attributes that work at the role and organization
levels as well as the sub-organization and organizational unit levels. Services are
assigned to organizations; roles have access to any service assigned to its parent
organization. The dynamic attributes are then inherited by users that possess the
role or belong to the organization. Because the attributes are assigned to roles or
organizations instead of set in a user entry, they are virtual attributes inherited by
users using the concept of Class of Service (CoS). When these attributes change, the
administrator only has to change them once, in the role or organization, instead of
a multitude of times in each user entry.

An example of a dynamic attribute might be the address of a common mail server.
Typically, an entire building might have one mail server so each user would have a
mail server attribute in their entry. If the mail server changed, every mail server
attribute would have to be updated. If the attribute was in a role that each user in

NOTE If a service has only global attributes, it can not be registered to an
organization nor can a service template be created.

NOTE Organization attributes are not inherited by sub-organizations. Only
dynamic and policy attributes can be inherited. For additional information,
see “Attribute Inheritance,” on page 120.

NOTE Dynamic attributes are modeled using class of service (CoS) and roles, both
features of the Sun ONE Directory Server. For information on these features,
see Appendix B, “Directory Server Concepts” or refer to the Sun ONE
Directory Server documentation.

Service Definition

Chapter 6 Service Management 119

the building possessed, only the attribute in the role would need to be updated.
Another example might be the organization’s address. Dynamic attributes are
stored within the Directory Server as LDAP objects, making it feasible to use
traditional LDAP tools to manage them. A Directory Server LDAP schema needs to
be defined for these attributes.

Policy Attributes
Policy attributes are a special type of dynamic attribute. The main difference is that
policy attributes provide a way to control resource access by defining a user’s
permissions. These defined permission attributes are then used to create named
policy. For example, allowURLList is a named policy that defines a list of URLs a
user is allowed to access; *.red.iplanet.com, *.eng.sun.com are the permitted URLs
defined as policy attributes. Named policies are assigned to roles or organizations;
once assigned, the policy attribute is available in the user entry as an LDAP
attribute, making it feasible to use traditional LDAP tools to manage them. (Named
policies are not stored within the Directory Server as LDAP objects.) A Directory
Server LDAP schema needs to be defined for these attributes.

User Attributes
User attributes belong specifically to a single user. User attributes are not inherited
from the role, organization, or sub-organization levels. They are typically different
for each user, and any changes to them would affect only the particular user.
Examples of user attributes could be an office telephone number, a password or an
employee ID. The values of these attributes would be set in the user entry and not
in a role or organization. User attributes can be a part of any service but, for
convenience, Identity Server has grouped a number of the most widely-used
attributes into a service defined by the amUser.xml service file. User attributes are
stored within the Directory Server as LDAP objects, making it feasible to use
traditional LDAP tools to manage them. A Directory Server LDAP schema needs to
be defined for these attributes.

NOTE Currently, Identity Server has only two services that use policy attributes:
URL Policy Agent and URL Domain Access.

NOTE When defining user attributes in an XML service file other than
amUser.xml, the service must be explicitly assigned to the user in order to
display them on the User’s Profile page. In addition, the User Profile
Display Option in the Administration Service) must be set to Combined.
For more information, see the Sun ONE Identity Server Administration Guide.

Service Definition

120 Identity Server Programmer’s Guide • December 2002

Attribute Inheritance
After creating and loading an XML service file, an administrator can assign the
service’s organization, dynamic and policy attributes by registering it to an identity
object and creating a service template. (Any number of services can be assigned to
these objects.) Then when a user possesses a role or belongs to an organization
which possesses a service, the user inherits the dynamic and policy attributes or the
organization, dynamic and policy attributes, respectively. Inheritance only occurs,
though, if the service possessed is also explicitly assigned to the user. A user can
inherit attributes from multiple roles or parent organizations.

ContainerDefaultTemplateRole Attribute
Dynamic and policy attributes are used in an XML service file if an administrator
wants to define a service in which all identity objects, with the specified service
assigned to them, would inherit those attributes. After uploading the XML service
file and assigning the service to an organization or role, all users in the sub-trees,
with the specified service assigned to them, will inherit the dynamic and policy
attributes. To accomplish this, Identity Server uses classic CoS (as described in
Appendix B, “Directory Server Concepts”) and role templates.
ContainerDefaultTemplateRole is a default filtered role configured for each
organization. The filter is objectClass=iplanet-am-managed-person. Since
every identity object in Identity Server carries this attribute, every identity in the
organization possesses this role. Identity Server then creates a separate CoS
template for each registered service which points to the service’s default attributes.
Any identity who has the role will then get all the dynamic and policy attributes.

Extending The Directory Server Schema
The information in this section corresponds to Step 2, extending the LDAP schema
in the Directory Server. When configuring an XML service file for Identity Server, it
might also be necessary to modify the Directory Server schema. First, any
customized dynamic, policy or user attributes defined in an Identity Server service
that are not already defined in the Directory Server schema need to be associated
with an LDAP object class. Then the attribute(s) and object class(es) need to be
added to the LDAP schema using ldapmodify and an LDIF file as input; thus, the
Directory Server can store the data.

NOTE Attributes defined as User have no inheritance; they are set and modified in
each User entry. For example, if 70 attributes are defined as User and an
organization has two million users, each attribute is stored two million
times.

Service Definition

Chapter 6 Service Management 121

1. Create an LDIF file to define any new or modified LDAP object classes and
attributes.

2. Change to the Identity Server bin directory.

cd <identity_server_root>/SUNWam/bin

3. Run ldapmodify using the LDIF file as input. The syntax is ldapmodify -D
<userid_of_DSmanager> -w <password> -f <path_to_LDIF_file>

By default, <userid_of_DSmanager> is cn=Directory Manager. If the LDIF
was created correctly, the result of this command would be to modify the entry
cn=schema.

4. Run ldapsearch to ensure that the schema has been created. The syntax is
ldapsearch -b ”cn=schema ”-s base -D <userid_of_DSmanager> -w

<password> ”(objectclass=*)” | grep -i “servicename”

If the LDIF was created correctly, the result of this command would be a listing
of the object classes as illustrated in Code Example 6-1 below.

NOTE The order in which the LDAP schema is extended or the XML service file is
loaded into Directory Server is not important.

NOTE After extending the schema using ldapmodify, it is not necessary to restart
the Directory Server but, as ldapmodify is server-specific, the schema
needs to be extended on all configured servers. Information on how this is
done can be found in the Sun ONE Directory Server documentation.

Code Example 6-1 Sample LDIF Listing For Mail Service

objectClasses: (1.2.NEW
 NAME 'iplanet-am-sample-mail-service'
 DESC 'iPlanet SampleMail Service' SUP top AUXILIARY
 MAY (iplanet-am-sample-mail-service-status $
 iplanet-am-sample-mail-root-folder $
 iplanet-am-sample-mail-sentmessages-folder $
 iplanet-am-sample-mail-indent-prefix $
 iplanet-am-sample-mail-initial-headers $
 iplanet-am-sample-mail-inactivity-interval $
 iplanet-am-sample-mail-auto-load $
 iplanet-am-sample-mail-headers-perpage $
 iplanet-am-sample-mail-quota $
 iplanet-am-sample-mail-max-attach-len $
 iplanet-am-sample-mail-can-save-address-book-on-server)
 X-ORIGIN ’user defined’)

Service Definition

122 Identity Server Programmer’s Guide • December 2002

Adding Object Classes To Existing Users
If a new service is created and the service’s users already exist, the object classes
need to be added to the user entries. In order to do this, Identity Server provides
migration scripts for performing batch updates to user entries in the DIT. No LDIF
file need be created when using them. These scripts are described in the Sun ONE
Identity Server Installation and Configuration Guide. Alternatively, registered services
can be added to the user by selecting the service from their Properties page.

Verifying The Directory Server Modification
To verify that the Directory Server has been populated correctly, an administrator
can use ldapsearch or the following:

1. Change to the Directory Server install directory:

cd /<directory_server_root>/slapd-<directory_server_hostname>

2. Export the Directory Server contents into an LDIF file using

db2ldif -s <orgnamingattribute=top_level_org_name>

This command results in the name of a LDIF schema file stored under
<directory_server_root>/slapd-slapd-<directory_server_hostname>/

ldif which can be viewed to ensure that the new object classes have been
created.

Importing the XML Service File
The information in this section corresponds to Step 3, importing an XML service
file into the Identity Server.

attributeTypes: (11.24.1.996.1
 NAME ’iplanet-am-sample-mail-service-status’
 DESC ’iPlanet SampleMailService Attribute’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 X-ORIGIN ’user defined’)

NOTE To modify user entries using ldapmodify, an LDIF file needs to be created.
For information, see the Sun ONE Directory Server documentation. (It is not
recommended to use ldapmodify to create entries for Identity Server.)

Code Example 6-1 Sample LDIF Listing For Mail Service

Service Definition

Chapter 6 Service Management 123

1. Change to the Identity Server install directory:

cd <identity_server_root>/SUNWam/bin

2. Run following command line application: ./amadmin --runasdn
<DN_of_directory_server_administrator> --password

<password_directory_server_administrator> --verbose --schema

<xml_service_file_path.>

More information on the amadmin command line tool can be found in the Sun
ONE Identity Server Administration Guide.

Configuring Localization Properties
The information in this section corresponds to Step 4, configuring a localization
properties file. A localization properties file specifies the locale-specific screen text
and messages that an administrator or user will see when directed to a service’s
attribute configuration page. The files are located in the
<identity_server_root>/SUNWam/locale/ directory. Code Example 6-2 is the
localization properties file for Identity Server’s sample mail service.

NOTE If changing an existing service, the original XML service file needs to be
deleted before importing the modified XML service file.

Code Example 6-2 Sample Mail Service Localization Properties File

...
iplanet-am-sample-mail-service-description=Sample Mail Service
Profile
a1=Mail Status
a2=Root Folder
a3=Sent Messages Folder
a4=Reply Prefix
a5=Initial Headers to Load
a6=Check New Mail Interval (minutes)
a7=Automatic Message Load at Disconnect
a8=Headers Per Page
p1=Mail Quota
p2=Auto-download Maximum Attachment Length
p3=Save Address Book on Server

Service Definition

124 Identity Server Programmer’s Guide • December 2002

The localization properties files consist of a series of key/value pairs. The value of
each pair will be displayed on the service’s Properties page in the Identity Server
console. The keys (a1, a2, etc.) map to the i18nKey attribute fields defined for a
service in the XML service file. The keys also determine the order in which the
fields are displayed on screen, taken in alphabetical and then numerical order (a1,
a2 is followed by b1, b2 and so forth). Note that the keys are strings, so a10 comes
before a2.

Identifying The Localization Properties File
Identity Server needs to be able to locate the localization properties file so it is
located in the default <identity_server_root>/SUNWam/locale directory. If the
file is kept in another directory, the jvm.classpath= entry in the jvm12.conf file
needs to be modified to include the new directory path name.

Updating Files For Abstract Objects
For information corresponding to Step 5, updating the amEntrySpecific.xml, see
Chapter 5, “Identity Management.” For information corresponding to Step 5,
updating the amUser.xml, see “XML Files,” on page 150.

Registering The Service
The information in this section corresponds to Step 6, registering a new service to
an identity object. The preferred way to register a service is to use the Identity
Server console. Information on how this is done can be found in the Sun ONE
Identity Server Administration Guide. Alternately, services can be registered using
the amadmin command line executable.

1. Change to the Identity Server install directory:

cd <identity_server_root>/SUNWam/bin

NOTE If modifying a localization properties file, Identity Server needs to be
restarted. If importing a localization properties file, Identity Server does not
need to be restarted.

NOTE If the jvm12.conf file is modified, the Identity Server server needs to be
restarted.

DTD Files

Chapter 6 Service Management 125

2. Run following command line application ./amadmin --runasdn
<DN_of_identity_server_administrator> --password

<password_identity_server_administrator> --schema

<xml_service_file_path.>

More information on the amadmin command line tool can be found in the Sun
ONE Identity Server Administration Guide.

DTD Files
Identity Server contains DTD files which are used to define the structure for XML
files used within the Identity Server configuration. The DTDs are located in
<identity_server_root>/SUNWam/dtd and include:

• sms.dtd—which defines the structure for XML service files. Information on
this document can be found in “The sms.dtd Structure,” on page 126.

• amAdmin.dtd—which defines the structure for XML files used to perform
batch LDAP operations on the directory tree using the command line tool
amAdmin. Information on this document can be found in “The amAdmin.dtd
Structure,” on page 135.

• policy.dtd—defines the structure for XML files used to define policies for
servers and services. Information on this document can be found in Chapter 7,
“Policy Service.”

• Auth_Module_Properties.dtd—defines the structure for XML files used by
each authentication module to specify the properties for the Authentication
Service interface. Information on this document can be found in Chapter 3,
“Authentication Service.”

• server-config.dtd—defines the structure for serverconfig.xml which
details ID, host and port information for all server and user types. Information
on this document can be found in “The amAdmin.dtd Structure,” on page 135.

CAUTION None of these DTD files should be modified in any way. They contain rules
and definitions that control how certain operations are performed and any
alterations might hinder these operations.

DTD Files

126 Identity Server Programmer’s Guide • December 2002

The sms.dtd Structure
The sms.dtd defines the data structure for all XML service files. It is located in the
<identity_server_root>/SUNWam/dtd directory. The sms.dtd enforces the
developer to define each attributes as one of five schema types which are then
stored and managed differently. For instance, some of the attributes are applicable
to an entire Identity Server installation (such as a port number or server name),
while others are applicable only to individual users (such as a password). The
attribute types are:

• Global

• Organization

• Dynamic

• User

• Policy

An explanation of the elements defined by the sms.dtd follows. Each element
includes a number of XML attributes which are also explained. Identity Server
currently supports only about 20% of the elements contained in sms.dtd; this
section discusses only those elements.

ServicesConfiguration Element
ServicesConfiguration is the root element of the XML service file. It’s immediate
sub-element is Service. Code Example 6-3 on page 126 illustrates the
ServicesConfiguration element as defined in a file named sampleMailService.xml.

NOTE Customized attribute names in XML service files should be written in lower
case as Identity Server converts all attribute names to lower case when
reading from the Directory Server.

Code Example 6-3 ServicesConfiguration and Service Element

...
<ServicesConfiguration>
<Service name=”sampleMailService” version=”1.0”>
<Schema...>
...

DTD Files

Chapter 6 Service Management 127

Service Element
The Service element defines the schema for a given service. Multiple services can be
defined in a single XML file with this element, but it is recommended that only one
be defined per XML service file. Currently, Identity Server supports the
sub-element Schema which, in turn, defines Identity Server attributes as either
Global, Organization, Dynamic, User or Policy. The required XML service attributes
for the Service element are the name of the service, such as iPlanetAMLoggingService,
and the version number of the XML service file itself. Code Example 6-3 on page
126 also illustrates the Service element and its attributes.

Schema Element
The Schema element is the parent of the elements that define the service’s specific
Identity Server attributes (global, organization, dynamic, user or policy) and their
default values. The sub-elements can be Global, Organization, Dynamic, User or
Policy. The required XML attributes of the Schema element include
serviceHierarchy which defines where the service will be displayed in the
Identity Server console, i18nFileName which defines the name of the localization
properties file, and i18nKey which defines the attribute in the localization
properties file from which this particular defined value will be taken.

serviceHierarchy Attribute
When adding a service, this attribute must be defined in order to display the
service in the Identity Server console. When a new service is registered, it is
dynamically displayed based on this value. The value is a "/" separated string.
Code Example 6-4 on page 127 illustrates the serviceHierarchy attribute as
defined in the file named sampleMailService.xml. The name sampleMailService is
used to find the localization properties file which defines what will be displayed
below the Other Configuration header in the Identity Server console.

NOTE The Schema element is required in all XML service files.

Code Example 6-4 i18nFileName, i18nKey and serviceHierarchy Attributes

...
<Schema
 serviceHierarchy="/other.configuration/sampleMailService"
 i18nFileName="sampleMailService"
 i18nKey="iplanet-am-sample-mail-service-description">
...

DTD Files

128 Identity Server Programmer’s Guide • December 2002

i18nFileName And i18nKey Attributes
These two XML attributes both refer to the localization properties files. The
i18nFileName attribute takes a value equal to the name of the localization
properties file for the defined service (minus the .properties file extension). The
i18nKey is a text string that maps to a property value defined in the localization
properties file (specified, as discussed, in the i18nFileName attribute.) For
example, Code Example 6-4 on page 127 defines the name of the properties file as
sampleMailservice and the text-based value of the i18nKey maps to its final
value as defined in sampleMailservice.properties. The final value is the name
of the service as it will be displayed in the Identity Server console; in this case,
Sample Mail Service Profile is the name defined in
sampleMailservice.properties. More information on the localization properties
file can be found in Chapter 3, “Authentication Service.”

Schema Sub-Elements
The next five elements are sub-elements of Schema; they are the declarations of the
service’s Identity Server attributes. When defining a service, each attribute must be
defined as one of these types: Global, Organization, Dynamic, Policy and User.
Any configuration (all or none) of these elements can be used depending on the
service. Each Identity Server attribute defined within these elements is itself
defined by the sub-element AttributeSchema.

Global Element
The Global element defines Identity Server attributes that are modifiable on a
platform-wide basis and applicable to all instances of the service in which they are
defined. They can define information such as port number, cache size, or number
of threads, but Global elements also define a service’s LDAP object classes. For
additional information, see “Service File Naming Conventions,” on page 117.

serviceObjectClasses Attribute. The serviceObjectClasses attribute is a global
attribute in each XML service file that contains dynamic or policy attributes. This
optional attribute is used by the SDK to set the object class for the service in the
user entries. When an organization registers a service with the
serviceObjectClasses attribute defined, the service’s dynamic or policy
attributes, if any exist, are automatically assigned to any user object which has been
assigned the service.

CAUTION If the serviceObjectClasses attribute is not specified and the service
has defined dynamic or policy attributes, an object class violation is called
when an administrator tries to create a user under that organization.

DTD Files

Chapter 6 Service Management 129

Multiple values can be defined for the serviceObjectClasses attribute. For example, if
a service is created with two attributes each from three different object classes, the
serviceObjectClasses attribute would need to list all three object classes as
DefaultValues. Code Example 6-5 illustrates a serviceObjectClasses attribute
with two defined object classes.

Organization Element
The Organization element defines Identity Server attributes that are modifiable per
organization or sub-organization. For example, a web hosting environment using
Identity Server would have different configuration data defined for each
organization it hosts. A service developer would define different values for each
organization attribute per organization. These attributes are only accessible using
the Identity Server SDK. For additional information, see “Organization Attributes,”
on page 118.

Dynamic Element
The Dynamic element defines Identity Server attributes that can be inherited by all
user objects. Examples of Dynamic elements would be user-specific session
attributes, a building number, or a company mailing address. Dynamic attributes
always use the Directory Server features, CoS (Class Of Service) and Roles. For
additional information, see “Dynamic Attributes,” on page 118.

User Element
The User element defines Identity Server attributes that exist physically in the user
entry. User attributes are not inherited by roles or organizations. Examples include
password and employee identification number. They are applied to a specific user
only. For additional information, see “User Attributes,” on page 119.

Code Example 6-5 serviceObjectClass Defined As Global Element

...
<Global>
 <AttributeSchema name="serviceObjectClasses"
 type="list"
 syntax="string"
 i18nKey="">
 <DefaultValues>
 <Value>iplanet-am-sample-mail-service</Value>
 <Value>iplanet-am-other-sample-service</Value>
 </DefaultValues>
 </AttributeSchema>
 </Global>
 ...

DTD Files

130 Identity Server Programmer’s Guide • December 2002

Policy Element
The Policy element defines Identity Server attributes intended to provide
privileges. This is the only attribute element that uses the ActionSchema element to
define its parameters as opposed to the AttributeSchema element. Generally,
privileges are get, post, and put; examples include
canChangeSalaryInformation and canForwardEmailAddress. See Code
Example 6-7 on page 133 for an example of a Policy schema definition from the
sampleMailService.xml file. For additional information, see “Policy Attributes,”
on page 119.

SubSchema Element
The SubSchema element can specify multiple sub-schemas of global information for
different defined applications. For example, logging for a calendar application
could be separated from logging for a mail service application. The required XML
attributes of the SubSchema element include name which defines the name of the
sub-schema, inheritance which defines whether this schema can be inherited by
one or more nodes on the DIT and maintainPriority which defines whether
priority is to be honored among its peer elements.

AttributeSchema Element
The AttributeSchema element is a sub-element of the five schema elements
discussed in “Schema Sub-Elements,” on page 128 as well as the SubSchema
element described in “SubSchema Element,” on page 130. It defines the structure of
each attribute. The sub-elements that qualify the AttributeSchema can include
IsOptional?, IsServiceIdentifier?, IsResourceNameAllowed?,
IsStatusAttribute?, ChoiceValues?, BooleanValues?, DefaultValues?, or
Condition. The XML attributes that define each portion of the attribute value are
name, type, uitype, syntax, cosQualifier, rangeStart, rangeEnd, minValue,
maxValue, validator, any, and %i18nIndex. Code Example 6-6 on page 130
illustrates the AttributeSchema element, its attributes and their corresponding
values. Note that this example attribute is a Dynamic attribute.

NOTE The SubSchema element is used only in the amEntrySpecific.xml file.
It should not be used in any external XML service files.

Code Example 6-6 AttributeSchema Element With Attributes

...
<Dynamic>
 <AttributeSchema name="iplanet-am-sample-mail-service-status"
 type="single_choice"

DTD Files

Chapter 6 Service Management 131

name Attribute
This required XML attribute defines the LDAP name for the attribute. Any string
format can be used but attribute names must be in lower-case. Code Example 6-6
on page 130 defines it with a value of
iplanet-am-sample-mail-service-status.

type Attribute
This attribute specifies the kind of value the attribute will take. The default value
for type is list but it can be defined as one of the following:

• single specifies that the user can define one value.

• list specifies that the user can define a list of values.

• single_choice specifies that the user can chose a single value from a list of
options.

• multiple_choice specifies that the user can chose multiple values from a list
of options.

ChoiceValues Sub-Element. If the type attribute is specified as either
single_choice or multiple_choice, the ChoiceValues sub-element must also be
defined in the AttributeSchema element. Depending on the type specified, the
administrator or user would choose either one or more values from the choices
defined. The possible choices are defined in the ChoiceValue element. Code
Example 6-6 on page 130 defines the attribute type as single_choice so the
ChoiceValues attribute defines the list of options as Active, Inactive and
Deleted.

 syntax="string"
 i18nKey="a1">
 <ChoiceValues>
 <ChoiceValue>Active</ChoiceValue>
 <ChoiceValue>Inactive</ChoiceValue>
 <ChoiceValue>Deleted</ChoiceValue>
 </ChoiceValues>
 <DefaultValues>
 <Value>Active</Value>
 </DefaultValues>
 </AttributeSchema>
...

Code Example 6-6 AttributeSchema Element With Attributes (Continued)

DTD Files

132 Identity Server Programmer’s Guide • December 2002

syntax Attribute
The syntax attribute defines the format of the value. The default value for syntax is
string but, it can be defined as one of the following:

• boolean specifies that the value is either true or false.

• string specifies that the value can be any string.

• password specifies that user must enter a password, which will be encrypted.

• dn specifies that the value is a LDAP Distinguish Name.

• email specifies that the value is an email address.

• url specifies that the value is a URL address.

• numeric specifies that the value is a number.

• percent specifies that the value is a .

• number specifies that the value is a number.

• decimal_number specifies that the value is a number with a decimal point.

• number_range specifies that the value is a range of numbers.

• decimal_range specifies that the value is a range of numbers that might
include a decimal figure.

DefaultValues Sub-Element. Defining any of these syntax values also necessitates
defining a value for the DefaultValue sub-element. A default value will then be
displayed in the Identity Server console; this default value can be changed for each
organization when creating a new template for the service. For example, all
instances of the LDAP Authentication Service use the port attribute so a default
value of 389 could be defined in the XML service file. Once registered, this value
can be modified for each organization using the Identity Server console. (The
default value is also used by integrated applications when a service template has
not been registered to an organization.) In the Code Example 6-7 on page 133, for
example, the Save Address Book On Server field will display a default value of false.
The user has the option to change the value to true, if desired. (The default value
for password would be an encrypted password, generally the same as the one used
for Identity Server.)

DTD Files

Chapter 6 Service Management 133

cosQualifier Attribute
This attribute defines how Identity Server will resolve conflicting cosQualifier
attributes assigned to the same user object. This value will appear as a qualifier to
the cosAttribute in the LDAP entry of the CoS definition. It can be defined as:

• default indicates that if there are two conflicting cosQualifier attributes
assigned to the same user object, the one with the lowest priority number (0)
takes precedence. (The priority level is set in the cosPriority attribute when a
new CoS template entry is created for an organization or role. For more
information, see “Conflicts and CoS,” on page 298 of Chapter , “.”)

• override indicates that the CoS template value overrides any value already
present in the user entry; that is, CoS takes precedence over the user entry
value.

• merge-schemes indicates that if there are two CoS templates assigned to the
same user, then they are merged so that the values are combined and the user
gets an aggregation of the CoS templates.

If this attribute is not defined, the default behavior is for the user entry value to
override the CoS value in the organization or role. The default value is default.
(The operational value is reserved for future use.)

Code Example 6-7 sms.dtd: ActionSchema Element With Boolean Syntax

...
<AttributeSchema
name="iplanet-am-sample-mail-can-save-address-book-on-server"
 type="single"
 syntax="boolean"
 i18nKey="p3">
 <DefaultValues>
 <Value>false</Value>
 </DefaultValues>
 </ActionSchema>
...

NOTE The URL Policy Agent service uses merge-schemes to obtain aggregated
values for the Allow and Deny attributes. For example, if the Employee Role
allows access to */employee.html and the HR Role allows access to
*/hr.html, a user possessing both of these roles is allowed access to both.

DTD Files

134 Identity Server Programmer’s Guide • December 2002

any Attribute
The any attribute specifies whether the attribute for which it is defined will display
in the Identity Server console. It has six possible values that can be multiply
defined using the “|” (pipe) construct:

• display specifies that the attribute will display on the user profile page. The
attribute is read/write for administrators and regular users.

• adminDisplay specifies that the attribute will display on the user profile page.
It will not appear on an end user page; the attribute is read/write for
administrators only.

• userReadOnly specifies that the attribute is read/write for administrators but
is read only for regular users. It is displayed on the user profile pages as a
non-editable label for regular users.

• required specifies that a value for the attribute is required in order for the
object to be created. The attribute will display on the Create page with an
asterisk.

• optional specifies that a value for the attribute is not required in order for the
object to be created.

• filter specifies that the attribute will display on the Search page.

The required or optional keywords and the filter and display keyword can
be specified with a pipe symbol separating the options (any=required|display or
any=optional|display|filter). If the any attribute is set to display, the
qualified attribute will display in Identity Server console when the properties for
the Create page are displayed. If the any attribute is set to required, an asterisk
will display in that attribute’s field, thus the administrator or user is required to
enter a value for the object to be created in Identity Server console. If the any
attribute is set to optional, it will display on the Create page, but users are not
required to enter a value in order for the object to be created. If the any attribute is
set to filter, the qualified attribute will display as a criteria attribute when Search
is clicked from the User page.

%i18nIndex Attribute (i18nKey)
The i18nKey attribute, as defined in “i18nFileName And i18nKey Attributes,” on
page 128, is referenced as an entity in the sms.dtd.

NOTE If the i18nKey value is blank (that is, “ “), the Identity Server console will
not display the attribute.

DTD Files

Chapter 6 Service Management 135

The amAdmin.dtd Structure
The amAdmin.dtd defines the data structure for all XML files which will be used to
perform batch LDAP operations on the DIT using amAdmin. It is located in the
<identity_server_root>/SUNWam/dtd directory. The command line operations
include reads and gets on the attributes as well as creations and deletions of user
objects (roles, organizations, users, people containers, and groups). The following
sections discuss the elements and attributes of the amAdmin.dtd as well as the
sample XML templates installed with Identity Server that use this structure. These
samples can be found in <identity_server_root>/SUNWam/samples/
admin/cli/bulk-ops and will be used to illustrate these sections.

Requests Element
The Requests element is the root element of the batch processing XML file. It must
contain at least one child element which defines the Identity Server identity objects
(Organization, Container, People Container, Role and Group) onto which the
actual requests are performed. To enable batch processing, the root element can
take more than one set of requests. The Requests element must contain at least one
of the following sub-elements:

• OrganizationRequests

• ContainerRequests

• PeopleContainerRequests

• RoleRequests

• GroupRequests

• SchemaRequests

• ServiceConfigurationRequests

Based on the defined request, the corresponding Identity Server API will be called
to perform the operation.

OrganizationRequests Element
The OrganizationRequests element consists of all requests that can be performed on
Organization objects. The required XML attribute for this element is the LDAP
Distinguished Name (DN) of the organization on which all of the sub-element
requests will be performed. This element can have one or more sub-elements
which perform their operations on the defined instance of the Organization object.

DTD Files

136 Identity Server Programmer’s Guide • December 2002

(Different OrganizationRequests elements can be defined in one document to modify
more than one Organization DN.) Code Example 6-8 on page 140 defines a myriad
of objects to be created from the top level organization, o=isp. The sub-elements of
OrganizationRequests are:

• CreateSubOrganization

• CreatePeopleContainer

• CreateRole

• CreateGroup

• CreatePolicy

• AssignPolicy

• UnAssignPolicy

• CreateServiceTemplate

• ModifySubOrganization

• ModifyServiceTemplate

• DeleteServiceTemplate

• ModifyPeopleContainer

• ModifyRole

• ModifyGroup

• ModifyPolicy

• GetSubOrganizations

• GetPeopleContainers

• GetRoles

• GetGroups

• GetUsers

• RegisterServices

• UnregisterServices

• GetRegisteredServiceNames

• GetNumberOfServices

• DeleteRoles

DTD Files

Chapter 6 Service Management 137

• DeleteGroups

• DeletePolicy

• DeletePeopleContainers

• DeleteSubOrganizations

ContainerRequests Element
The ContainerRequests element consists of all requests that can be performed on
Container objects. The required XML attribute for this element is the DN of the
container on which the sub-element requests will be performed. This element can
have one or more sub-elements which perform their operations on the same
instance of the container. (Different ContainerRequests elements can be defined in
one document to modify more than one Container DN.) Code Example 6-8 on page
140 illustrates how this element can be modeled. The sub-elements of
ContainerRequests are:

• CreateSubContainer

• CreatePeopleContainer

• CreateRole

• CreateGroup

• CreatePolicy

• AssignPolicy

• UnAssignPolicy

• CreateServiceTemplate

• ModifyServiceTemplate

• ModifySubContainer

• ModifyPeopleContainer

• ModifyRole

• GetSubContainers

• GetPeopleContainers

• GetRoles

• GetGroups

• GetUsers

DTD Files

138 Identity Server Programmer’s Guide • December 2002

• RegisterServices

• UnregisterServices

• GetRegisteredServiceNames

• GetNumberOfServices

• DeleteRoles

• DeleteGroups

• DeletePolicy

• DeletePeopleContainers

• DeleteSubContainers

PeopleContainerRequests Element
The PeopleContainerRequests element consists of all requests that can be performed
on People Container objects. The required XML attribute for this element is the DN
of the container on which the sub-element requests will be performed. This
element can have one or more sub-elements which perform their operations on the
same instance of the people container. (Different PeopleContainerRequests elements
can be defined in one document to modify more than one People Container DN.)
Code Example 6-8 on page 140 illustrates how this element can be modeled. The
sub-elements of PeopleContainerRequests are:

• CreateSubPeopleContainer

• ModifyPeopleContainer

• CreateUser

• ModifyUser

• GetNumberOfUsers

• GetUsers

• GetSubPeopleContainers

• DeleteUsers

• DeleteSubPeopleContainers

DTD Files

Chapter 6 Service Management 139

RoleRequests Element
The RoleRequests element consists of all requests that can be performed on roles.
The required XML attribute for this element is the DN of the role on which the
sub-element requests will be performed. This element can have one or more
sub-elements which perform their operations on the same instance of the role.
(Different RoleRequests elements can be defined in one document to modify more
than one Role DN.) Code Example 6-8 on page 140 illustrates how this element can
be modeled. The sub-elements of RoleRequests are:

• CreateServiceTemplate

• ModifyServiceTemplate

• AssignPolicy

• UnAssignPolicy

• GetNumberOfUsers

• GetUsers

• AddUsers

GroupRequests Element
The GroupRequests element consists of all requests that can be performed on group
objects. The required XML attribute for this element is the DN of the group on which
the sub-element requests will be performed. This element can have one or more
sub-elements which perform their operations on the same instance of the group.
(Different GroupRequests elements can be defined in one document to modify more
than one Group DN.) Code Example 6-8 on page 140 illustrates how this element
can be modeled. The sub-elements of GroupRequests are:

• CreateSubGroup

• GetSubGroups

• GetNumberOfUsers

• GetUsers

• AddUsers

• DeleteSubGroups

DTD Files

140 Identity Server Programmer’s Guide • December 2002

AttributeValuePair Element
The AttributeValuePair element can be a sub-element of many of the following
batch processing requests. It can have two sub-elements, neither of which can
themselves have sub-elements. The Attribute sub-element must be empty while the
Value sub-element takes a default value to display in the Identity Server console.
The Attribute sub-element takes a required XML attribute called name. The value of
name is the attribute name which is equal to one string without spaces; no
sub-elements are allowed. Code Example 6-13 on page 144 illustrates how an
attribute/value pair would be added to a sub-organization.

Create<Object> Elements
The CreateSubOrganization, CreateUser, CreateGroup, CreateSubContainer,
CreatePeopleContainer, CreateSubGroup, CreateSubPeopleContainer and CreateRole
elements create a sub-organization, user, group, sub-container, people container,
sub-group, sub-people container and role, respectively. The object is created in the
DN that is defined in the second-level <Object>Requests element under which the
Create<Object> element is defined. AttributeValuePair may be defined as a
sub-element (or not). The required XML attribute for each element is createDN; it
takes the DN of the object to be created. Code Example 6-8 on page 140 illustrates an
example of some of these elements.

Code Example 6-8 Portion of Batch Processing File createRequests.xml

...
<Requests>
<OrganizationRequests DN="dc=example,dc=com">

 <CreateSubOrganization
createDN="o=suborg,dc=example,dc=com"/>
 <CreatePeopleContainer
createDN="ou=People,dc=example,dc=com"/>
 <CreateRole createDN="cn=ManagerRole,dc=example,dc=com"/>
 <CreateRole createDN="cn=EmployeeRole,dc=example,dc=com"/>
 <CreateGroup
createDN="ou=ContractorsGroup,dc=example,dc=com"/>
 <CreateGroup createDN="ou=EmployeesGroup,dc=example,dc=com"/>

</Requests>
...

DTD Files

Chapter 6 Service Management 141

CreatePolicy Element
The CreatePolicy element creates one or more policy attributes. The Policy
sub-element defines the named policy. The required XML attribute is createDN
which takes the DN of the organization where the policy will be created. This and
the following nested elements are all illustrated in Code Example 6-9 on page 141.

Policy Element. The Policy sub-element defines the permissions or rules of the
policy. It can take one or more of the Rule sub-elements. The required XML
attribute is name which specifies the name of the policy. The serviceName attribute,
which identifies the service to which the named policy applies, is an optional XML
attribute.

Rule Element. The Rule sub-element defines a specific permission of the policy.
Rule can take three sub-elements. The required XML attribute is name which
defines a name for the rule. The three sub-elements are:

• ServiceName Element

The ServiceName sub-element defines the service for which a rule has been
created. There are no sub-elements; the ServiceName element itself must be
empty. The required XML attribute is name which takes a string value.

• ResourceName Element

The ResourceName sub-element defines the domain for which this permission is
being defined. There are no sub-elements; the ResourceName element itself must
be empty. The required XML attribute is name which takes a string value.

• AttributeValuePair Element

The AttributeValuePair sub-element defines the action names and
corresponding action values of the rule. For additional information, see
“Delete<Object> Elements,” on page 142.

Code Example 6-9 Portion of Batch Processing File createPolicyOrg.xml

...
<Requests>
<OrganizationRequests DN="o=isp">

<CreatePolicy createDN="o=example.com,o=isp">
 <Policy name="urlpolicy" serviceName="iPlanetAMWebAgentService">
 <Rule name="Manager Rule">
 <ServiceName name="iPlanetAMWebAgentService"/>
 <ResourceName name="*.example.com"/>
 <AttributeValuePair>
 <Attribute name="permission"/>
 <Value>iplanet-am-web-agent-access-allow-list</Value>
 </AttributeValuePair>

DTD Files

142 Identity Server Programmer’s Guide • December 2002

CreateServiceTemplate Element
The CreateServiceTemplate element creates a service template for the organization
defined in the second-level Requests element. There are no sub-elements; the
CreateServiceTemplate element itself must be empty. The required XML attribute is
serviceName which takes a string value. Code Example 6-10 on page 142 illustrates
a service template being created for sun.com.

Delete<Object> Elements
The DeleteSubOrganizations, DeleteUsers, DeleteGroups, DeleteSubContainers,
DeletePeopleContainers, DeleteSubGroups, DeleteSubPeopleContainers, and DeleteRoles
elements delete a sub-organization, user, group, sub-container, people container,
sub-group, sub-people container and role, respectively. The object is deleted from
the DN that is defined in the second-level <Object>Requests element under which
the Delete<Object> element is defined. DeleteSubOrganizations, DeleteUsers,
DeleteGroups, DeleteSubContainers, DeletePeopleContainers, DeleteSubGroups,
DeleteSubPeopleContainers and DeleteRoles take a sub-element DN; only six of the

 </Rule>
 <Rule name="engManager Rule">
 <ServiceName name="iPlanetAMWebAgentService"/>
 <ResourceName name="*.example.com"/>
 <AttributeValuePair>
 <Attribute name="permission"/>
 <Value>iplanet-am-web-agent-access-allow-list</Value>
 </AttributeValuePair>
 </Rule>
 </Policy>
 </CreatePolicy>
</OrganizationRequests>
</Requests>
...

Code Example 6-10 Portion of Batch Processing File createServiceTemplates.xml

...
<Requests>
<OrganizationRequests DN="o=example.com,o=isp">

 <CreateServiceTemplate serviceName="sampleMailService"/>

</OrganizationRequests>
</Requests>
...

Code Example 6-9 Portion of Batch Processing File createPolicyOrg.xml

DTD Files

Chapter 6 Service Management 143

listed elements have the XML attribute deleteRecursively. (DeleteUsers and
DeleteRoles do not have this option; they have no qualifying XML attribute.) If
deleteRecursively is set to false, accidental deletion of all sub-trees can be avoided; it’s
default value is false. The DN sub-element takes a character value equal to the DN of
the object to be deleted. Code Example 6-11 on page 143 illustrates an example of
some of these elements.

DeletePolicy Element
The DeletePolicy element takes the sub-element PolicyName. The PolicyName
element has no sub-elements; it must be empty. It has a required XML attribute
name which takes a character value equal to the name of the policy. The DeletePolicy
element itself takes a required XML attribute: deleteDN. It takes a value equal to
the DN of the policy to be deleted.

Code Example 6-11 Portion of Batch Processing File deleteOrgRequests.xml

...
<Requests>
<OrganizationRequests DN="o=isp">

 <DeleteRoles>
 <DN>cn=ManagerRole,o=example.com,o=isp</DN>
 <DN>cn=EmployeeRole,o=example.com,o=isp</DN>
 </DeleteRoles>

 <DeleteGroups deleteRecursively="true">
 <DN>cn=EmployeesGroup,o=example.com,o=isp</DN>
 <DN>cn=ContractorsGroup,o=example.com,o=isp</DN>
 </DeleteGroups>

 <DeletePeopleContainers deleteRecursively="true">
 <DN>ou=People1,o=example.com,o=isp</DN>
 </DeletePeopleContainers>

 <DeleteSubOrganizations deleteRecursively="true">
 <DN>o=example.com,o=isp</DN>
 </DeleteSubOrganizations>

</OrganizationRequests>
</Requests>
...

DTD Files

144 Identity Server Programmer’s Guide • December 2002

DeleteServiceTemplate Element
The DeleteServiceTemplate element deletes the specified service template. There are
no sub-elements; the DeleteServiceTemplate element itself must be empty. The
required XML attributes are serviceName which takes a string value and
schemaType which defines the attribute group (Global, Organization, Dynamic,
User or Policy). Code Example 6-12 on page 144 illustrates how this element is
formatted.

Modify<Object> Elements
The ModifyPeopleContainer, ModifySubContainer, ModifySubOrganization and
ModifyRole, ModifyGroup elements change the specified object. AttributeValuePair
can be defined as a sub-element of the first four listed elements. (The ModifyGroup
element can have no sub-elements; it must be empty.) The required XML attribute
is modifyDN which takes the DN of the object to be modified. Code Example 6-13 on
page 144 illustrates how these elements can be modeled.

Code Example 6-12 Portion of Batch Processing File deleteServiceTemplates.xml

...
<Requests>
<OrganizationRequests DN="o=example.com,o=isp">
 <DeleteServiceTemplate
serviceName="iPlanetAMAuthLDAPService"
 schemaType="organization">

 </DeleteServiceTemplate>
</OrganizationRequests>
</Requests>

Code Example 6-13 Portion of Batch Processing File modifyRequests1.xml

<Requests>
<OrganizationRequests DN="o=isp">

 <ModifySubOrganization modifyDN="o=sun.com,o=isp">
 <AttributeValuePair>
 <Attribute name="Description"/>
 <Value>DSAME Modify</Value>
 </AttributeValuePair>
 </ModifySubOrganization>

 <ModifyPeopleContainer modifyDN="ou=People,o=example.com">
 <AttributeValuePair>
 <Attribute name="Description"/>
 <Value>DSAME Modify</Value>

DTD Files

Chapter 6 Service Management 145

ModifyServiceTemplate Element
The ModifyServiceTemplate element changes a specified service template.
AttributeValuePair must be defined as a sub-element of ModifyServiceTemplate to
change the values. The required XML attribute is serviceName which takes a string
value and schemaType. Code Example 6-14 on page 145 illustrates this element.

Get<Object> Elements
The GetSubOrganizations, GetUsers, GetGroups, GetSubContainers,
GetPeopleContainers and GetRoles elements get the specified object. A DN may be
defined as a sub-element (or not). If none is specified, ALL of the specified objects
at all levels within the organization defined in the second-level Requests element
will be returned. The required XML attribute for all but GetGroups and GetRoles is
DNsOnly and takes a true or false value. The required XML attribute of GetGroups

 </AttributeValuePair>
 </ModifyPeopleContainer>

 <ModifyRole modifyDN="cn=ManagerRole,o=example.com">
 <AttributeValuePair>
 <Attribute name="iplanet-am-role-description"/>
 <Value>DSAME Modify</Value>
 </AttributeValuePair>
 </ModifyRole>

</OrganizationRequests>
</Requests>

Code Example 6-14 Portion of Batch Processing File modifyServiceTemplates.xml

...
<Requests>
<OrganizationRequests DN="o=example.com,o=isp">

 <ModifyServiceTemplate serviceName="sampleMailService">
 <AttributeValuePair>
 <Attribute
name="iplanet-am-sample-mail-sentmessages-folder"/>
 <Value>Hello Mail Sent</Value>
 </AttributeValuePair>
 </ModifyServiceTemplate>
</OrganizationRequests>
</Requests>

Code Example 6-13 Portion of Batch Processing File modifyRequests1.xml

DTD Files

146 Identity Server Programmer’s Guide • December 2002

and GetRoles is level which takes a value of either ONE_LEVEL or SUB_TREE.
ONE_LEVEL will retrieve just the groups at that node level; SUB-TREE gets groups at
the node level and all those underneath it. Code Example 6-15 on page 146
illustrates how these elements can be modeled.

DNs Only Attribute
For all objects using the DNsOnly attribute, the Get elements work as stated below:

• If the element has the required XML attribute DNsOnly set to true and no
sub-element DN is specified, only the DNs of the objects asked for will be
returned.

• If the element has the required XML attribute DNsOnly set to false and no
sub-element DN is specified, the entire object (a DN with attribute/value pairs)
will be returned.

• If sub-element DNs are specified, the entire object will always be returned
whether the required XML attribute DNsOnly is set to true or false.

Code Example 6-15 Portion of Batch Processing File getRequests.xml

...
<Requests>

<OrganizationRequests DN="o=isp">

<GetSubOrganizations DNsOnly="false">
 <DN>o=example1.com,o=isp</DN>
 <DN>o=example2.com,o=isp</DN>
</GetSubOrganizations>

<GetPeopleContainers DNsOnly="false">
 <DN>ou=People,o=example1.com,o=isp</DN>
 <DN>ou=People,o=example2.com,o=isp</DN>
</GetPeopleContainers>

<GetRoles level="SUB_TREE"/>

<GetGroups level="SUB_TREE"/>

<GetUsers DNsOnly="false">
 <DN>cn=puser,ou=People,o=example1.com,o=isp</DN>
</GetUsers>

</OrganizationRequests>
...

DTD Files

Chapter 6 Service Management 147

GetService Elements
The GetRegisteredServiceNames and GetNumberOfServices elements retrieve
registered services and total number of registered services, respectively. The
organization from which this information is retrieved is specified in the
OrganizationRequests element. All three elements have no sub-elements or
attributes; the elements themselves must be empty. Code Example 6-16 on page
147 illustrates how the GetRegisteredServiceNames element is modeled.

ActionServices Elements
The RegisterServices and UnregisterServices elements perform the requested action
on the service defined in the OrganizationRequests element. All elements take a
sub-element Service_Name but have no XML attribute. The Service_Name element
takes a character value equal to the name of the service. One or more Service_Name
sub-elements can be specified.

Service Action Caveats
• The XML service file for the service must be loaded using the command line

interface amadmin before a service can be acted upon.

• If no Service_Name element is specified or, in the case of UnregisterServices, the
service was not previously registered, the request is ignored.

• If no Service_Name element is specified, the request will be ignored.

Code Example 6-17 on page 147 illustrates how these elements can be modeled.

Code Example 6-16 Batch Processing File getRegisteredServiceNames.xml

...
<Requests>

<OrganizationRequests DN="o=example.com,o=isp">
 <GetRegisteredServiceNames/>
</OrganizationRequests>

</Requests>

Code Example 6-17 Portion of Batch Processing File registerRequests.xml

...
<Requests>
<OrganizationRequests DN="o=example.com,o=isp">

 <RegisterServices>
 <Service_Name>sampleMailService</Service_Name>
 </RegisterServices>

DTD Files

148 Identity Server Programmer’s Guide • December 2002

AssignPolicy and UnAssignPolicy Elements
The AssignPolicy and UnAssignPolicy elements take the sub-element PolicyName.
The PolicyName element has no sub-elements; it must be empty. It has a required
XML attribute name which takes a character value equal to the name of the policy.
The required XML attribute of AssignPolicy and UnAssignPolicy is policyDN which
takes a value equal to the DN of the policy to be acted upon.

SchemaRequests Element
The SchemaRequests element consists of all requests that can be performed on the
default values of the DSAME schema. It has two required XML attributes:
serviceName and SchemaType. serviceName takes a value equal to the name of the
service where the schema lives and SchemaType defines the attribute group (Global,
Organization, Dynamic, User or Policy). This element can have zero or more
sub-elements. The sub-elements of SchemaRequests are:

• RemoveDefaultValues Element

• ModifyDefaultValues Element

• AddDefaultValues Element

• GetServiceDefaultValues

RemoveDefaultValues Element
The RemoveDefaultValues element removes the default values from the schema
specified in the parent SchemaRequests element. It takes a sub-element of Attribute
which specifies the name of the attribute to be removed. The Attribute sub-element
itself must be empty; it takes no sub-element. There is no required XML attribute.

</OrganizationRequests>
</Requests>

Code Example 6-18 Portion of Batch Processing File removeschemaRequests.xml

...
<Requests>
<SchemaRequests serviceName="iPlanetAMUserService"

 SchemaType="dynamic">
<RemoveDefaultValues>
 <Attribute name="preferredlanguage"/>

Code Example 6-17 Portion of Batch Processing File registerRequests.xml

...
<Requests>

DTD Files

Chapter 6 Service Management 149

AddDefaultValues and ModifyDefaultValues Elements
The AddDefaultValues and ModifyDefaultValues elements add or change the default
values from the specified schema, respectively. They take a sub-element of
AttributeValuePair which specifies the name of the attribute and the new default
value; one or more attribute/value pairs can be defined. Code Example 6-19 on
page 149 illustrates how this element can be modeled.

GetServiceDefaultValues Element
The GetServiceDefaultValues element retrieves the default values from the schema
specified in the parent SchemaRequests element. There are no sub-elements; the
GetServiceDefaultValues element itself must be empty. There is also no required
XML attribute.

ServiceConfigurationRequests Element
The ServiceConfigurationRequests element is reserved for future use.

</RemoveDefaultValues>
</SchemaRequests>
</Requests>

Code Example 6-19 Portion of Batch Processing File addschemaRequests.xml

...
<Requests>
<SchemaRequests serviceName="iPlanetAMUserService"

 SchemaType="dynamic">
<AddDefaultValues>

 <AttributeValuePair>
 <Attribute name="iplanet-am-user-auth-modules"/>
 <Value>Cert</Value>
 </AttributeValuePair>

</AddDefaultValues>
</SchemaRequests>
</Requests>

Code Example 6-18 Portion of Batch Processing File removeschemaRequests.xml

...
<Requests>

XML Files

150 Identity Server Programmer’s Guide • December 2002

XML Files
Identity Server uses XML files to manage service attributes as well as perform
service operations on service attributes. It does not implement any behavior or
dynamically generate any code to interpret the attributes; it can only set or get
attribute values. In addition to XML files that define service attributes, Identity
Server also includes XML templates that can be used for batch processing. This
section contains information on these types of XML files.

Default XML Service Files
Identity Server installs services that manage the attributes of its internal software
components. The Identity Server console manages the attributes for these services;
in addition, Identity Server provides code implementations to use them. These
default XML service files are based on the sms.dtd and are located in
<identity_server_root>/SUNWam/config/xml. They include:

• amAdminConsole.xml—Defines attributes for the Administration service.

• amAuth.xml—Defines attributes for the Core Authentication service.

• amAuthAnonymous.xml—Defines attributes for the Anonymous Authentication
service.

• amAuthCert.xml—Defines attributes for the Certificate-based Authentication
service.

• amAuthLDAP.xml—Defines attributes for the LDAP Authentication service.

• amAuthRadius.xml—Defines attributes for the Radius Authentication service.

• amAuthSafeWord.xml—Defines attributes for the SafeWord Authentication
service.

• amAuthSecurID.xml—Defines attributes for the SecurID Authentication
service.

• amAuthUnix.xml—Defines attributes for the Unix Authentication service.

• amClientDetection.xml—Defines attributes for the Client Detection service.

• amDomainURLAccess.xml—Defines attributes for the URL Access Policy
service.

• amDSS.xml—Defines attributes for the Certificate Security service.

XML Files

Chapter 6 Service Management 151

• amEntrySpecific.xml—Defines attributes for the displaying attributes on the
Create, Properties and Search pages for a custom service.

• amLogging.xml—Defines attributes for the Logging service.

• amMembership.xml—Defines attributes for the Membership Authentication
service.

• amNaming.xml—Defines attributes for the Naming service.

• amPlatform.xml—Defines attributes for the Platform service.

• amPolicy.xml—Defines attributes for the Policy service.

• amSAML.xml—Defines attributes for the SAML service.

• amSession.xml—Defines attributes for the Session service.

• amUser.xml—Defines attributes for the User service.

• amWebAgent.xml—Defines attributes for the web agents.

Modifying A Default XML Service File
Administrators can display and manage any attribute in the Identity Server console
using XML service files. The new attribute(s) would need to be added to an existing
XML service file. Alternately, they can be grouped into a new service by creating a
new XML service file although the simplest way to add an attribute is just to extend
an existing XML service file. For example, an administrator wants to manage the
nsaccountlock attribute which will give users the option of locking the account it
defines. To manage it through Identity Server, nsaccountlock must be described
in a service. One option would be to add it to the amUser.xml service,
iPlanetAMUserService. This is the service that, by default, includes many
common attributes from the inetOrgPerson and inetUser object classes.
Following is an example of how to add the nsaccountlock attribute to the
amUser.xml service file.

1. Add the following code to the SubSchema name=User element in
<identity_server_root>/SUNWam/config/xml/amUser.xml.

Code Example 6-20 nsaccountlock Example Attribute

...
<AttributeSchema name="nsaccountlock"
type="single_choice"
syntax="string"
any="filter"
isChangeableByUser="yes"
i18nKey="u13">
<ChoiceValues>

XML Files

152 Identity Server Programmer’s Guide • December 2002

2. Update the <identity_server_root>/SUNWam/locale/en_US/
amUser.properties file with the new i18nKey tag u13 including the text to be
used for display.

3. Remove the service
ou=iPlanetAMUserService,ou=services,dc=sun,dc=com using the
command line tool amadmin.

For information on the amadmin command line syntax, see Sun ONE Identity
Server Administration Guide.

4. Reload the user service, amUser.xml, using the command line tool amadmin.

For information on the amadmin command line syntax, see Sun ONE Identity
Server Administration Guide.

 <Value>true</Value>
 <Value>false</Value>
</ChoiceValues>
<DefaultValues>
 <Value>false</Value>
</DefaultValues>
</AttributeSchema>
...

Code Example 6-21 User Account Locked Example i18nKey

...
u13=User Account Locked
...

NOTE When modifying a default XML service file, be sure to also modify the
Directory Server by extending the LDAP schema, if necessary. For more
information, see “Service Definition,” on page 115.

Code Example 6-20 nsaccountlock Example Attribute (Continued)

...

XML Files

Chapter 6 Service Management 153

Batch Processing XML Files
The --data or -t option of amadmin is used to perform batch processing using the
command line. Batch processing XML templates have been installed and can be
used to help an administrator to:

• Create, delete and read roles, users, organizations, groups, people containers
and services.

• Get roles, people containers, and users.

• Get the number of users for groups, people containers, and roles.

• Import, register and un-register services.

• Get registered service names or the total number of registered services for an
existing organization.

• Execute requests in multiple XML files.

The preferred way to perform most of these functions singularly is to use the
Identity Server console. The batch processing templates have been provided for
ease of use with bulk updates although they can also be used for single
configuration updates. This section provides an overview of the batch processing
templates which can be modified to perform batch updates on user objects (groups,
users, roles, people containers, etc.) in the Directory Server.

Batch Processing XML Templates
All of the batch processing XML files perform operations on the DIT; they create,
delete, or get attribute information on user objects. The batch processing XML
templates provided with Identity Server include:

• ContCreateServiceTemplate.xml—Creates a service template for a specific
container object.

• ContModifyRequests1.xml—Adds new attributes for a sub-container object.

• ContModifyRequests2.xml—Adds new attributes for a people container
object.

• ContModifyRequests3.xml—Adds new attributes for a sub-container object.

NOTE Only XML files can be used as input for the amadmin tool. If an
administrator wants to populate the DIT with user objects, or perform batch
reads (gets) or deletes on the DIT, then the necessary XML input files, based
on the amadmin.dtd or sms.dtd, must be written.

XML Files

154 Identity Server Programmer’s Guide • December 2002

• ContModifyRequests4.xml—Adds new attributes to a role object.

• ContassignPolicyRequests.xml—Assigns policy to a specific container
object.

• ContunassignPolicyRequests.xml—Removes an assigned policy from a
specific container object.

• PCModifyRequests1.xml—Adds new attributes to a people container object.

• PCModifyUserRequests.xml—Adds new attributes to users in a people
container object.

• RoleCreateServiceTemplates.xml—Creates a service template for a role
object.

• RoleassignPolicyRequests.xml—Assigns policy to a role object.

• RolemodifyServiceTemplates.xml—Adds new attributes to a service
template for a specific role object.

• RoleunassignPolicyRequests.xml—Removes policy from a specific role
object.

• addChoiceValuesRequest.xml—Adds a selection of values the user can chose
from to an existing service attribute.

• addschemaRequests.xml—Adds a default value to an existing service
attribute.

• addserviceConfigurationRequests.xml—This is reserved for future use.

• createPolicyOrg.xml—Creates policy for an organization object.

• createRequests.xml—Creates a multitude of objects in the DS.

• createServiceTemplates.xml—Creates a service template for an
organization object.

• deleteGroupRequests.xml—Deletes all objects under a specific group
container.

• deleteOrgRequests.xml—Deletes a multitude of objects under a specific
organization.

• deletePCRequests.xml—Deletes a multitude of objects under a specific
people container.

• deleteServiceTemplates.xml—Deletes a service template under a specific
organization.

XML Files

Chapter 6 Service Management 155

• deleteserviceConfigurationRequests.xml—This is reserved for future
use.

• getNumOfServices.xml—Passes a listing of an organization’s total number of
registered services.

• getRegisteredServices.xml—Passes a listing of an organization’s registered
services.

• getRequests.xml—Passes information about a multitude of objects in a
specific organization.

• modifyRequests1.xml—Adds new attributes to a number of objects in a
specific organization.

• modifyRequests2.xml—Adds new attributes to a people container object in a
specific organization.

• modifyRequests3.xml—Adds new attributes to a role object in a specific
organization.

• modifyServiceTemplates.xml—Modifies existing attributes in a service
registered to a specific organization.

• modifyschemaRequests.xml—Adds new attributes to a number of objects in a
specific organization.

• registerRequests.xml—Registers a service to an existing organization. (This
service must have been previously imported.)

• removeChoiceValueRequests.xml—Removes the values a user can choose
from in an existing attribute in a specific service.

• removeschemaRequests.xml—Removes the default value of an existing
attribute in a specific service.

• unassignPolicyRequests.xml—Removes an assigned policy from a specific
organization.

• unregisterRequests.xml—Unregisters a service from an existing
organization. (This service must have been previously imported and
registered.)

These XML templates follow the structure defined by the amAdmin.dtd. They are
located in <identity_server_root>/SUNWam/samples/admin/cli/bulk-ops.

Service Management SDK

156 Identity Server Programmer’s Guide • December 2002

Modifying A Batch Processing XML Template
Any of the templates discussed above can be modified to best suit the desired
operation. Choose the file that performs the request, modify the elements and
attributes according to the service and use the amadmin executable to upload the
changes to the Directory Server.

Customizing User Pages
The User profile page and what attributes it displays will vary, depending on what
the service developer defines. By default, every attribute in the amUser.xml file
that has an i18nKey attribute specified and the any attribute set to display
(any=display) will display in the Identity Server console. Alternately, if an
attribute is specified to be of type User in another XML service file, the Identity
Server console will also display it if the service is assigned to the user. Thus, User
display pages in the Identity Server console can be modified to add new attributes
in either of two ways:

• The User attribute schema definition in the specific XML service file can be
modified.

• A new User schema attribute definition can be added to the User service (the
amUser.xml service file).

For information on modifying XML service files, see “Modifying A Default XML
Service File,” on page 151.

Service Management SDK
The Identity Server provides a Java API for service management. These interfaces
can be used by developers to register services and applications, and manage their
configuration data.

NOTE Be aware that creations of roles, groups, and organizations is a
time-intensive operation.

NOTE Any service can describe an attribute that is for a user only. The
amUser.xml file is just the default placeholder for user attributes that are
not tied to a particular service.

Service Management SDK

Chapter 6 Service Management 157

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <identity_server_root>/SUNWam/docs/
directory into the <identity_server_root>/SUNWam/public_html
directory and pointing the browser to
http://<server_name.domain_name>:<port>/docs/index.html.

Service Management SDK

158 Identity Server Programmer’s Guide • December 2002

159

Chapter 7

Policy Service

The Sun™ One Identity Server includes a Policy Service that allows for the
configuration and support of conditional policies for authorization and access
control. It allows administrators to configure and administer these policies for
applications, resources, and identities managed within the Identity Server
deployment. This chapter explains the Policy Service and its architecture. It
contains the following sections:

• What Is Policy?

• Policy Definition Type Document

• Java SDK For Policy

• C Library For Policy

What Is Policy?
A policy defines access control rules for an Identity Server deployment. These rules
allow an administrator to assign security levels based on an organization’s needs,
and the conditions created within the policy, by assigning them to identities,
groups or roles. This policy, when possessed by an object, defines which resources
the object is able to access. A single policy can define either binary or non-binary
decisions. A binary decision is yes/no, true/false or allow/deny; most policies are of
this type. A binary decision might answer such questions as “Can user Mark
execute the changeSalary method in the PayCheck class?” or “Can user Sally have
access to the PayCheck application at all?” A non-binary decision represents the
value of an attribute; for example, a mail service might include a mailboxQuota
attribute with a maximum storage value set for each user. In general, a policy is
configured to define what an object can do to which resource and under what
conditions.

What Is Policy?

160 Identity Server Programmer’s Guide • December 2002

Policy Service
The Identity Server Policy Service provides for creation, administration and
assignment of conditional policies. It allows administrators to define, modify,
grant, revoke and delete policies for resources within the Identity Server
deployment as well as query the Sun ONE Directory Server for stored policies.

Typically, a policy service includes a policy data store, a policy enforcer or policy
agent and a library of interfaces that allows for the creation, administration and
evaluation of policy. The components that are accessed when using the Identity
Server Policy Service include:

• Directory Server—is the data store which delivers an identity’s authentication,
and policy information. Additional information on this product and its
functionality can be found in the Sun ONE Directory Server documentation.

• Identity Server—implements the Policy Service by providing policy
administration and evaluation APIs. It also provides policy evaluation APIs
written in C. Other Identity Server services accessed include authentication,
session, logging and SSO.

• Policy Agent—is a Policy Enforcement Point (PEP) that protects an enterprise’s
resources on the remote web server on which the agent is installed. Policy
agents are provided under separate cover from the Identity Server. The most
current version of the Sun ONE Identity Server Policy Agent Pack can be
downloaded from the iPlanet Developers Download Center located at
http://wwws.sun.com/software/download/developer/. They are installed
on proprietary web servers, remote from the Identity Server deployment web
server(s). For example, an agent on a Human Resources web server would
prevent personnel without the proper policies from viewing confidential salary
information and other sensitive data. In order to make this example work, an
Identity Server administrator must set up the policies that allow or deny users
access to the remote web server’s content.

NOTE Installing and administrating the policy agents is not in the scope of this
documentation. Information on the currently available agents can be found
in the Sun ONE Identity Server Policy Agent Pack 1.1 Installation Guide at
http://docs.sun.com/?p=/coll/S1_s1IdServPolicyAgentPack
_11.

What Is Policy?

Chapter 7 Policy Service 161

Architecture
The Identity Server Policy Service allows for the protection of all types of
applications and resources. Currently, though, only URL policy agents that protect
an organization’s web resources are available. Figure 7-1 illustrates the architecture
of the Policy Service. As shown, custom agents or applications can be written to
protect other types of resources including services or other applications.

Figure 7-1 Identity Server Policy Service Architecture

The architectural flow for protected web resources begins when a web browser
requests a URL that resides on a protected web server; the web server’s URL policy
agent intercepts the request and checks for existing authentication credentials (an
SSO token). If none exists or the existing authentication level or conditions are
insufficient, the request is redirected to the Authentication Service. Once the user
session is created or upgraded with a successful authentication, Identity Server
responds to the browser request with a redirect to the original resource. The agent
now finds a sufficient SSO token and issues a request to the Naming Service. (The
Naming Service defines URLs for remote web servers to use for access to Identity
Server’s internal services.) The Naming Service returns locators for the Policy

What Is Policy?

162 Identity Server Programmer’s Guide • December 2002

Service which will check the user’s policy, and for the Session Service which will
begin the user’s session upon authentication. Based on the aggregate of all policies
assigned to the user, the individual is either allowed or denied access to the
protected resource.

Policy Types
There are two types of policy that can be configured using Identity Server: a normal
policy or a referral policy. A normal policy consists of rules, subjects and conditions.
A referral policy consists of rules and referrals to organizations. These policy types
are discussed below followed by the section “Policy Definition Type Document,”
on page 164 which expands on the terms.

Normal Policy
In Identity Server, a policy that defines access permissions is referred to as a normal
policy. A normal policy consists of rules, subjects and conditions. A rule consists of a
resource, and one or more sets of an action and a value. A resource defines the object
that is being protected; an action is the name of an operation that can be performed
on the resource and a value defines the permission.

A subject defines who the policy affects. A condition defines the situations in
which a policy is applicable; for instance, a 7 am to 10 am condition in a policy
means that the policy is applicable only from 7 am to 10 am.

Referral Policy
A referral policy is used for policy delegation. If there is a top-level organization
with a sub-organization in the Identity Server tree, there must be a referral policy
configured at the top-level organization that points to the sub-organization, in
effect, allowing the sub-organization to create normal policies. A referral policy
controls this delegation for both policy creation and evaluation. It consists of one or
more rules and one or more referrals. A rule defines the resource whose policy

NOTE It is acceptable to define an action without resources.

NOTE The terms referral, rule, resource, subject, condition, action and value
correspond to the elements Referral, Rule, ResourceName, Subject, Condition,
Attribute and Value in the policy.dtd. They are explained further in
“Policy Definition Type Document,” on page 164.

What Is Policy?

Chapter 7 Policy Service 163

creation or evaluation is being referred, while the referral defines the organization
to which the policy creation or evaluation is being referred. For example, in the
creation of policies for the sub-organization, the referral policy is configured at the
top-level organization which states that the sub-organization can define policies for
the resource who’s URL is defined in the rule of the referral policy. Thus, the
top-level organization is delegating policy creation and evaluation for the defined
URL resource to the sub-level organization.

There are two types of referral bundled with Identity Server: peer organization and
sub-organization. They delegate to an organization on the same level and an
organization on a sub-level, respectively. For example, consider a deployment
whose root level organization is dc=isp,dc=com with sub-organizations
dc=sunone,dc=isp,dc=com and dc=suntwo,dc=isp,dc=com. In order to define or
evaluate policies at dc=sunone,dc=isp,dc=com or dc=suntwo,dc=isp,dc=com,
two referral policies must first be created that point from dc=isp,dc=com to
dc=sunone,dc=isp,dc=com and dc=suntwo,dc=isp,dc=com, respectively. Each
referral policy contains the resource (or resource prefix) being managed. If
dc=sunone,dc=isp,dc=com manages http://www.sunone.com/, the referral
policy at dc=isp,dc=com contains http://www.sunone.com/ in its rule and refers
to policies created at the dc=sunone,dc=isp,dc=com organization. Only after
creating root level referral policies can policies at the sub-organization be created.

Subjects
Policies are not explicitly assigned to identities rather, we assign subjects to policies.
A subject is the identity object to which the policy is assigned and applied. The
default subjects are:

• Identity Server Roles

• LDAP Groups

• LDAP Roles

• LDAP Users

• Organization

NOTE The referred-to organization can define or evaluate policies only for those
resources (or sub-resources of those resources) that have been referred to it.
This restriction, however, does not apply to the root organization.
Therefore, an administrator must define management policies at the root
level organization only.

Policy Definition Type Document

164 Identity Server Programmer’s Guide • December 2002

Policy Definition Type Document
Policy in Identity Server is most often configured using the Identity Server console.
Information on how this is done can be found in the Sun ONE Identity Server
Administration Guide. There is, however, a command line interface that can also be
used for this purpose. (Information on how to use the amadmin interface can be
found in Sun ONE Identity Server Administration Guide.) The policy.dtd defines
the structure on which all policy XML files processed using the amadmin command
line must be based. This section describes this structure.

Policy Element
Policy is the root element that defines the policy rule as an entity. It may contain
one or more of the following sub-elements: Rule, Conditions, Subjects, or Referrals.
The XML service attributes for the Policy element are the name of the policy, a
description, a version number, and whether the policy type is referral or not.

Rule Element
The Rule element defines the specifics of the policy rule. It defines the type of
service or application for which a policy has been created as well as the name of the
resource and the actions which are performed on the resource. It may contain one
or more of the following elements: ServiceName, ResourceName, or
AttributeValuePair. The XML service attribute for the Rule element is the name of
the rule.

NOTE When tagging a policy as referral, any Subjects and Conditions are ignored
during policy evaluation. Conversely, when tagging a policy as normal, any
Referrals are ignored during policy evaluation.

NOTE It is acceptable to have a defined policy that does not include a
ResourceName.

Policy Definition Type Document

Chapter 7 Policy Service 165

ServiceName Element
The ServiceName element defines the name of the service that the policy applies to.
This element represents the service type. It contains no other elements. The value is
exactly as that defined in the service’s XML file (which is based on the sms.dtd).
The XML service attribute for the ServiceName element is the name of the service.
Examples of a ServiceName might be Calendar Service, Mail Service or PayCheck
application.

ResourceName Element
The ResourceName element defines the object that will be acted upon. The policy
has been specifically configured to protect this object. It contains no other elements.
The XML service attribute for the ResourceName element is the name of the object.
Examples of a ResourceName might be http://www.sunone.com:8080/images on a
web server or ldap://sunone.com:389/dc=iplanet,dc=com on a directory
server. A more specific resource might be
salary://uid=jsmith,ou=people,dc=iplanet,dc=com where the object being
acted upon is the salary information of John Smith.

AttributeValuePair Element
The AttributeValuePair element defines an action and its values. It is used as a
sub-element to Subject Element, Referral Element and Condition Element. It contains
both the Attribute and Value elements and no XML service attributes.

Attribute Element
The Attribute element defines the name of the action. An action is an operation or
event that is performed on a resource. POST or GET are actions performed on web
server resources, READ or SEARCH are actions performed on directory server
resources and purchaseOptions or canUpdateCatalog might be actions
performed on a catalog service. The Attribute element must be paired with a Value
element as described in the following section. The Attribute element itself contains
no other elements. The XML service attribute for the Attribute element is the name
of the action.

NOTE Currently, Identity Server 6.0 provides only web agents.

Policy Definition Type Document

166 Identity Server Programmer’s Guide • December 2002

Value Element
The Value element defines the action itself. Allow/deny or yes/no are actions.
Other action values can be either boolean, numeric, or strings. The value is defined
in the service’s XML file (based on the sms.dtd).The Value element contains no
other elements and it contains no XML service attributes.

Subjects Element
The Subjects is the root element that defines a collection of Subject elements. The
Subjects element contains one or more Subject elements and the name and
description XML service attributes for each one. (The includeType attribute is not
supported in this release.)

Subject Element
The Subject element identifies a collection of identities to whom the policy applies.
For example, the action canUpdateCatalog for a catalog service might only be
implemented by identities who possess the Marketing role. The Subject element
contains the AttributeValuePair element and the name and type XML service
attributes.

Referrals Element
The Referrals element defines a collection of referral elements. The Referrals element
contains one or more Referral elements. The XML service attributes are the name
and the description of the referral grouping.

Referral Element
The Referral element defines another identity to which the policy evaluation is
delegated. The Referral element contains the AttributeValuePair element. The XML
service attributes are the name of the referral and type.

Java SDK For Policy

Chapter 7 Policy Service 167

Conditions Element
The Conditions element defines a collection of conditions, i.e. a group of restrictions
on the defined policy. The Conditions element contains the one or more Condition
elements. The XML service attributes are the name and description of the
restriction grouping.

Condition Element
The Condition element defines a condition which specifies when a policy will be
effective. For example, authentication level and time span might restrict a subject’s
access. The Condition element contains the AttributeValuePair element. It’s XML
service attributes are the condition name and type.

Java SDK For Policy
The crux of the Policy Service is the Policy SDK. It exposes the following Java API
packages:

• com.sun.identity.policy provides the APIs that applications and services
use to determine privileges. It is used by the Administration Console and/or
the command line interface to manage, administer and evaluate policies.

• com.sun.identity.policy.interfaces provides the APIs that
administrators use to manage policies and add plug-ins.

• com.sun.identity.policy.client provides the APIs that agents on a remote
server use to evaluate policy.

Identity Server also has a C API library to allow C developers to integrate their
applications with the Policy Service. In the following sections, a sampling of classes
and the methods included with these API are discussed.

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <identity_server_root>/SUNWam/docs/
directory into the <identity_server_root>/SUNWam/public_html
directory and pointing the browser to
http://<server_name.domain_name>:<port>/docs/index.html.

Java SDK For Policy

168 Identity Server Programmer’s Guide • December 2002

Policy Evaluation Java APIs
The following APIs are used by Java developers to allow for the evaluation of
policy privileges in their applications. This functionality is provided by the class
com.sun.identity.policy.client.PolicyEvaluator, which provides support
for both boolean and non-boolean type policies. A PolicyEvaluator must be
created by calling the constructor with a service name. Public methods of this class
include:

• isAllowed—evaluates the policy associated with the given resource and
returns a boolean value indicating whether the policy evaluation resulted in an
allow or deny.

❍ Returns a boolean value of:

• true if access is allowed.

• false if access is denied.

❍ Arguments:

• com.iplanet.sso.SSOToken: The SSO Token associated with the
principal for which the policy will be evaluated.

• java.lang.String resourceName: A string representing the
requested resource.

• java.lang.String actionName: The action for which the policy will
be evaluated. In a typical web application scenario, the action could be
GET or POST.

• java.util.Map envParameters: A map containing environment
parameters that may be needed to successfully evaluate the associated
policies.

❍ Exceptions: throws com.iplanet.sso.SSOException if the given SSO
token is not valid or has expired.

• getPolicyDecision—evaluates the policy and ascertains privileges for
non-boolean decisions. It returns a decision that gives a user permission to
perform a specific action on a specific resource. This method can also check
permissions for multiple actions.

❍ Returns com.sun.identity.policy.PolicyDecision.

❍ Arguments:

• com.iplanet.sso.SSOToken: The SSO token associated with the
principal for which the policy will be evaluated.

Java SDK For Policy

Chapter 7 Policy Service 169

• java.lang.String resourceName: A string representing the
requested resource.

• java.util.Set actionName: A collection of actions for which the
policy will be evaluated.

• java.util.Map envParameters: A map containing environment
parameters that may be needed to successfully evaluate the associated
policies.

❍ Exceptions: throws com.iplanet.sso.SSOException if the given SSO
token is not valid or expired.

Policy Management Java APIs
The following APIs are used by systems administrators to allow for the
management of policies in the Identity Server. The interfaces for this functionality
are found in the com.sun.identity.policy package.

PolicyManager
com.sun.identity.policy.PolicyManager is the top level administrator class
for policy management, providing methods that allow an administrator to create,
modify or delete an organization’s policies. The PolicyManager can be obtained
from a specified organization or by checking a currently authenticated user’s
SSOToken for access privileges to the Directory Server. Some of this class’ more
widely used methods include:

• getPolicyNames—retrieves all named policies created for the organization for
which the policy manager was instantiated. This method can also take a
pattern (filter) as an argument.

• getPolicy—retrieves a policy when given the policy’s name.

• addPolicy—adds a policy to the specified organization. If a policy with the
same name already exists, it will be overwritten.

• removePolicy—removes a policy from the specified organization.

Java SDK For Policy

170 Identity Server Programmer’s Guide • December 2002

Policy
com.sun.identity.policy.Policy represents a policy definition with all its
intended parts (rules, subjects, referrals or conditions). The policy object is saved in
the data store only when the store method is called or if the addPolicy or
replacePolicy methods from the PolicyManager class are invoked. This class
contains methods to add, remove, replace or get any of the parts of a policy
definition.

PolicyEvent
com.sun.identity.policy.PolicyEvent represents a happening in a policy that
could potentially change the current access status. For example, PolicyEvent
would be created and passed if a policy has been removed due to a timeout. This
class works with the PolicyListener class in the
com.sun.identity.policy.interface package.

Policy Plugin Java APIs
The following APIs are used by service developers and policy administrators who
need to provide additional policy features as well as support for legacy policies.
The package for these classes is com.sun.identity.policy.interfaces. The
interfaces include:

ResourceName—provides methods to determine the hierarchy of the resource
names for a determined service type. For example, these methods can check to see
if two resources names are the same or if one is a sub-resource of the other.

Subject—defines methods that can determine if an authenticated user (possessing
an SSOToken) is a member of the given subject.

Referral—defines methods used to delegate the policy definition or evaluation of
a selected resource (and its sub-resources) to another organization or policy server.

Condition—provides methods used to constrain a policy; for example, time of day
or IP address. This interface allows the pluggable implementation of the
conditions.

PolicyListener—defines an interface that allows the Policy Service to send and
receive notifications when a policy is added, removed or changed.

C Library For Policy

Chapter 7 Policy Service 171

C Library For Policy
Identity Server also provides a library of policy evaluation APIs for C applications
to enable their integration into the Policy Service. The C library provides a
comprehensive set of interfaces that query policy results for an authenticated user
for a given action on a given resource. The result of the policy evaluation is called
an action value and may not always be binary (allow/deny or yes/no); action
values can also be non-boolean. For example, John Smith has a mailbox quota of
100MB. 100 is the value defined by a policy on a policy server. As policy evaluation
results in string values only, the policy evaluation returned is 100 numeric not
100MB. It is up to the application developer to define metrics for the values
obtained appropriately.

As the first step of policy implementation, the API abstracts how a resource is
represented by mandating that any resource be represented in a string format. For
example, on a web server, resources may be represented as URLs. The policy
evaluation engine cares only about the relative relevance of one resource to other.
There are five relative relevances defined between two resources, namely: exact
match, no match, subordinate match, superior match or exact pattern match. Having
represented the resources in string format, the service developer must provide
interfaces that establish the relevant relationship between resources.

The service developer must also provide a method to extract the root of the given
resource. For example, in a URL, the protocol://server_name:port/ portion
represents the root. The three functions (has_patterns, get_resource_root and
compare_urls) are specializations of resource representations. The set of
characteristics needed to define a resource is called a resource trait. Resource traits
are taken as a parameter during service initialization in the
am_resource_traits_t structure. Using the resource traits, the Policy Service
constructs a resource graph for policy evaluation. In a web server policy sense, the
relation between all the resources in the system spans out like a tree with the
protocol://server_name:port/ being the root of the tree.

NOTE Exact pattern match is a special case where resources may be represented
collectively as patterns. The information is abstracted from the Policy
Service and the comparison operation must take a boolean parameter to
trigger a pattern matched comparison. During the caching of policy
information, the policy engine does not care about patterns, whereas during
policy evaluation, the comparisons are pattern sensitive.

NOTE The policy management system is generic and makes no assumptions about
any particular policy definition requirement.

C Library For Policy

172 Identity Server Programmer’s Guide • December 2002

C APIs for Policy Evaluation
Two opaque data structures are defined: am_map_t and am_properties_t.
am_map_t provides a key to multiple value mapping and am_properties_t
provides a key to single value mapping. am_properties_t provides the additional
functionality of loading a configuration file and getting values of specific data
types. These are simple data structures that are only used for information exchange
to and from the policy evaluation interfaces.

am_map_t
This data structure is an associative container with a key of type const char * and
having multiple values of type const char *.

am_map_create(am_map_t *map_ptr)

Syntax
#include <am_map.h>

am_status_t am_map_create(am_map_t *map_ptr);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_SUCCESS if the map structure was successfully created and assigned to
map_ptr.

• AM_NO_MEMORY if there was an internal memory operation error.

• AM_INVALID_ARGUMENT if the pointer address of map_ptr was invalid.

Description
This function creates an instance of am_map_t structure and returns the pointer to
the structure to the caller.

Memory Concerns
You should free the allocated structure by calling am_map_destroy.

map_ptr Pointer to the am_map_t structure. This is an out parameter.

C Library For Policy

Chapter 7 Policy Service 173

am_map_copy(am_map_t source_map, am_map_t *map_ptr)

Syntax
#include <am_map.h>

am_status_t am_map_copy(am_map_t source_map, am_map_t *map_ptr);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_SUCCESS if the copy operation was successfully performed.

• AM_NO_MEMORY if there was an internal memory operation error.

• AM_INVALID_ARGUMENT if the address of map_ptr or source_map is invalid.

Description
This function creates an instance of am_map_t structure, copies all the elements in
source_map into the newly created structure and assigns it to map_ptr. It does not
alter the contents of source_map.

Memory Concerns
The caller must make sure not to pass a map_ptr which as a valid am_map_t
structure, otherwise the reference will be lost. The must destroy map_ptr after
usage by calling am_map_destroy.

am_map_destroy(am_map_t *map_ptr)

Syntax
#include <am_map.h>

am_status_t am_map_destroy(am_map_t *map_ptr);

Parameters
This function takes the following parameters:

map_ptr After successful execution of this function, this pointer will be
assigned a new instance of am_map_t structure and all the
entries in source_map will be copied into this structure.

map_ptr The map structure to be destroyed.

C Library For Policy

174 Identity Server Programmer’s Guide • December 2002

Returns
This function returns one of the following values:

• AM_SUCCESS if the destroy operation was successfully performed.

• AM_NO_MEMORY if there was an internal memory operation error.

• AM_INVALID_ARGUMENT if the address of map_ptr or source_map is invalid.

Description
This function destroys an instance of am_map_t structure which is pointed by
map_ptr.

Memory Concerns
Care must be taken that map_ptr was not freed before by calling am_map_destroy
or by erroneously calling the system void free (void *) function.

am_map_clear(am_map_t map)

Syntax
#include <am_map.h>

am_status_t am_map_clear(am_map_t map);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_SUCCESS if the destroy operation was successfully performed.

• AM_INVALID_ARGUMENT if the map argument is NULL.

Description
This function takes in a valid am_map_t structure and clears all the elements in it.
After successful completion of this function am_map_size on this structure will
return 0.

Memory Concerns
None.

map The map structure in which all the keys and their values be
removed.

C Library For Policy

Chapter 7 Policy Service 175

am_map_size(const am_map_t map)

Syntax
#include <am_map.h>

size_t am_map_size(const am_map_t map);

Parameters
This function takes the following parameters:

Returns

This function returns one of the following values:

• 0 or a positive number The number of key value pairs currently in the map.

• <0 if the map argument is NULL.

Description
This function takes in a valid am_map_t structure and returns its size.

Memory Concerns
None.

am_map_get_entries(am_map_t map, am_map_entry_iter_t
*entry_iter_ptr)

Syntax
#include <am_map.h>

am_status_t am_map_get_entries(am_map_t map, am_map_entry_iter_t
*entry_iter_ptr);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

map The map whose size to be returned.

map The map for which iterator needs to be extracted.

entry_iter_ptr The iterator pointer that must be assigned with the iterator of
the map structure. This is an output parameter.

C Library For Policy

176 Identity Server Programmer’s Guide • December 2002

• AM_SUCCESS if the iterator was successfully assigned.

• AM_NO_MEMORY if there was an internal memory operation error.

• AM_INVALID_ARGUMENT if the address of map_ptr or source_map is invalid.

• AM_NOT_FOUND if the specified map contains no keys.

Description
This function extracts an iterator pointer that could be used to iterate over the key
value pairs stored in this table.

Memory Concerns
The iterator pointer passed in must not have non destroyed iterators assigned to
them. The caller, in future must call am_map_entry_iter_destroy to destroy the
iterator instance.

am_map_insert(am_map_t map, const char *key, const char *value,
int replace)

Syntax
#include <am_map.h>

am_status_t am_map_insert(am_map_t map, const char *key, const char
*value, int replace);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation is successful.

• AM_INVALID_ARGUMENT if the map, key or value argument, is NULL.

• AM_NO_MEMORY if there was an internal memory operation error.

map The map to which the key-value pair must be added.

key The key for the entry.

value The value for the entry.

replace Boolean to indicate whether to replace an existing value for
the key or not.

C Library For Policy

Chapter 7 Policy Service 177

Description
This function inserts a key-value pair into a map.

Memory Concerns
None.

am_map_erase(am_map_t map, const char *key)

Syntax
#include <am_map.h>

am_status_t am_map_erase(am_map_t map, const char *key);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation is successful.

• AM_INVALID_ARGUMENT if the map or key argument, is NULL.

• AM_NOT_FOUND if the specified key is not in the map.

Description
This function removes a key-value pair from a map.

Memory Concerns
None.

am_map_find(am_map_t map, const char *key,
am_map_value_iter_t *value_iter_ptr)

Syntax
#include <am_map.h>

am_status_t am_map_find(am_map_t map, const char *key,
am_map_value_iter_t *value_iter_ptr);

map The map to which the key-value pair must be added.

key The key for the entry.

C Library For Policy

178 Identity Server Programmer’s Guide • December 2002

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation is successful.

• AM_INVALID_ARGUMENT if the map or key argument, is NULL.

• AM_NOT_FOUND if the specified key is not in the map.

• AM_NO_MEMORY if there was an internal memory operation error.

Description
This function takes a key and returns an iterator that iterates over the values
associated with the key.

Memory Concerns
At the end of usage of value_iter_ptr, the caller must call
am_map_value_iter_destroy with the iterators pointer.

am_map_find_first_value(am_map_t map, const char *key)

Syntax
#include <am_map.h>

const char *am_map_find_first_value(am_map_t map, const char *key);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

map The map to which the key-value pair must be added.

key The key for the entry.

value_iter_ptr The iterator to which value iterator has to be assigned.

map The map to which the key-value pair must be added.

key The key for the entry.

C Library For Policy

Chapter 7 Policy Service 179

• value if the operation is successful, returns the first associated value of this key
in the map. The order of insertion does not guarantee the value returned.

• NULL if there is key is not present in the map.

Description
This function takes a key and returns the first value associated with the key.

Memory Concerns
Caller must not modify or free the return value.

am_map_entry_iter_destroy(am_map_entry_iter_t entry_iter)

Syntax
#include <am_map.h>

void am_map_entry_iter_destroy(am_map_entry_iter_t entry_iter);

Parameters
This function takes the following parameters:

Returns
None.

Description
This function destroys the am_map_entry_iterator_t passed to it.

Memory Concerns
Caller must be sure that this function is not called multiple times on the same
am_map_entry_iter_t.

am_map_entry_iter_get_first_value(am_map_entry_iter_t entry_iter)

Syntax
#include <am_map.h>

const char * am_map_entry_iter_get_first_value(am_map_entry_iter_t
entry_iter);

Parameters
This function takes the following parameters:

entry_iter The iterator that must be destroyed.

C Library For Policy

180 Identity Server Programmer’s Guide • December 2002

Returns
This function returns one of the following values:

• value if the operation is successful, returns the first associated value of this
iterator. The order of insertion into the map does not guarantee the value
returned.

• NULL if there iterator is NULL.

Description
This function destroys the am_map_entry_iterator_t passed to it.

Memory Concerns
Caller must be sure that this function is not called multiple times on the same
am_map_entry_iter_t.

am_map_entry_iter_get_key(am_map_entry_iter_t entry_iter)

Syntax
#include <am_map.h>

const char * am_map_entry_iter_get_key(am_map_entry_iter_t
entry_iter);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• key if the operation is successful, returns the key associated with the iterator.

• NULL if there iterator is NULL.

Description
This function returns the key of this key-value pair entry iterator.

Memory Concerns
Caller must not modify or free the return value.

entry_iter The iterator for which the first value is to be returned.

entry_iter The iterator for which the key needs to be returned.

C Library For Policy

Chapter 7 Policy Service 181

am_map_entry_iter_get_values(am_map_entry_iter_t entry_iter,
am_map_value_iter_t *value_iter_ptr)

Syntax
#include <am_map.h>

am_status_t am_map_entry_iter_get_values(am_map_entry_iter_t
entry_iter, am_map_value_iter_t *value_iter_ptr);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation is successful.

• AM_INVALID_ARGUMENT if the entry_iter_ptr or value_iter_ptr argument,
is NULL.

• AM_NOT_FOUND if the specified iterator is NULL or does not reference a valid
entry.

• AM_NO_MEMORY if there was an internal memory operation error.

Description
This function returns an am_map_value_iter_t that enumerates over the values
associated with am_map_entry_iter_t.

Memory Concerns
After the use of value_iter_t the caller must call am_map_value_iter_destroy.

am_map_entry_iter_is_entry_valid(am_map_entry_iter_t entry_iter)

Syntax
#include <am_map.h>

int am_map_entry_iter_is_entry_valid(am_map_entry_iter_t
entry_iter);

entry_iter The iterator that must be destroyed.

value_iter_t The iterator that goes over the values associated with the
key-value pair entry iterator.

C Library For Policy

182 Identity Server Programmer’s Guide • December 2002

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• !0 if the specified entry_iter is valid.

• 0 if entry_iter is NULL or does not reference a valid entry.

Description
This function returns if the entry_iter passed in is valid.

Memory Concerns
None.

am_map_entry_iter_entry_iter_next(am_map_entry_iter_t entry_iter)

Syntax
#include <am_map.h>

int am_map_entry_iter_iter_next(am_map_entry_iter_t entry_iter);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• !0 if the advancing operation was successful.

• 0 if entry_iter is NULL or does not reference a valid entry.

Description
Advances the specified iterator to the next entry in the map specified when the
iterator was created.

Memory Concerns
None.

entry_iter The iterator that must be destroyed.

entry_iter The iterator entry pointer to be advanced.

C Library For Policy

Chapter 7 Policy Service 183

am_map_value_iter_destroy(am_map_value_iter_t iter)

Syntax
#include <am_map.h>

void

am_map_value_iter_destroy(am_map_value_iter_t value_iter);

Parameters
This function takes the following parameters:

Returns
None.

Description
This function destroys a previously created am_map_value_iter_t structure.

Memory Concerns
Caller must make sure that previously destroyed instance of
am_map_value_iter_t is not attempted to be destroyed again.

am_map_value_iter_get(am_map_value_iter_t value_iter)

Syntax
#include <am_map.h>

const char *

am_map_value_iter_get(am_map_value_iter_t value_iter);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• The value if the operation is successful.

• NULL if value_iter is NULL or does not reference a valid entry.

value_iter The value iterator to be destroyed.

value_iter The value iterator.

C Library For Policy

184 Identity Server Programmer’s Guide • December 2002

Description
Returns the value referenced by the value iterator.

Memory Concerns
None.

am_map_value_iter_is_value_valid(am_map_value_iter_t value_iter)

Syntax
#include <am_map.h>

int

am_map_value_iter_is_value_valid(am_map_value_iter_t value_iter);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• !0 if the value_iter is a valid reference.

• 0 if value_iter is NULL or does not reference a valid entry.

Description
Returns the validity of the value_iter iterator.

Memory Concerns
None.

am_map_value_iter_is_value_next(am_map_value_iter_t value_iter)

Syntax
#include <am_map.h>

int

am_map_value_iter_next(am_map_value_iter_t value_iter);

Parameters
This function takes the following parameters:

value_iter The value iterator to be examined

C Library For Policy

Chapter 7 Policy Service 185

Returns
This function returns one of the following values:

• !0 if the advance operation is performed successfully.

• 0 if value_iter is NULL or does not reference a valid entry.

Description
Returns the validity of the value_iter iterator.

Memory Concerns
None.

am_properties_t
This data structure is an associative container with a key of type const char * and
having single value of type const char *. It also provides convenience methods to
load and store property files (like the Java property file) and get methods to return
specific data types. This structure enables the user of the policy evaluation library
to bring in the required configuration from any configuration source.

am_properties_create(am_properties_t *properties_ptr)

Syntax
#include <am_properties.h>

am_status_t

am_properties_create(am_properties_t *properties_ptr);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation was successful.

• AM_NO_MEMORY if there was an internal memory operation error.

value_iter The value iterator to be advanced.

properties_ptr The pointer to the am_properties_t.

C Library For Policy

186 Identity Server Programmer’s Guide • December 2002

• AM_INVALID_ARGUMENT if properties_ptr argument is NULL.

Description
Creates an instance of am_properties_t and assigns it to properties_ptr.

Memory Concerns
After the usage of the instance the caller must call am_properties_destroy to
clean up the allocated memory.

am_properties_copy(am_properties_t source_ptr, am_properties_t
*properties_ptr)

Syntax
#include <am_properties.h>

am_status_t

am_properties_create(am_properties_t source_ptr, am_properties_t
*properties_ptr);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation was successful.

• AM_NO_MEMORY if there was an internal memory operation error.

• AM_INVALID_ARGUMENT if source_ptr or properties_ptr argument is NULL.

Description
Creates an instance of am_properties_t and assigns it to properties_ptr. The
function copies all the elements in the source_ptr to properties_ptr. The
source_ptr is not affected during this operation.

source_ptr The am_properties_t instance whose data must be copied.

properties_ptr The pointer to the am_properties_t to which the cloned
instance must be assigned.

C Library For Policy

Chapter 7 Policy Service 187

Memory Concerns
After the usage of the instance properties_ptr the caller must call
am_properties_destroy to clean up the allocated memory. The removal of any
item in either structures do not affect the other.

am_properties_destroy(am_properties_t properties)

Syntax
#include <am_properties.h>

am_status_t

am_properties_destroy(am_properties_t properties);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation was successful.

• AM_INVALID_ARGUMENT if properties argument is NULL.

Description
Destroys an instance of am_properties_t.

Memory Concerns
Caller must make sure not to pass the same instance of am_properties_t to be
destroyed more than once. After calling this function it is advised that the caller
initializes properties to NULL.

am_properties_load(am_properties_t properties, const char
*file_name)

Syntax
#include <am_properties.h>

am_status_t

am_properties_load(am_properties_t properties, const char
*file_name);

properties The am_properties_t instance to be destroyed.

C Library For Policy

188 Identity Server Programmer’s Guide • December 2002

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation was successful.

• AM_NSPR_ERROR if an internal NSPR system operation failed.

• AM_NO_MEMORY if there was an internal memory operation error.

• AM_INVALID_ARGUMENT if properties argument is NULL.

Description
Loads property information from a specified file, an instance of am_properties_t.

Memory Concerns
None.

am_properties_store(am_properties_t properties, const char
*file_name)

Syntax
#include <am_properties.h>

am_status_t

am_properties_store(am_properties_t properties, const char
*file_name);

Parameters
This function takes the following parameters:

properties The am_properties_t instance to which the key-value
pairs needs to be loaded into.

file_name The name of the file from which the properties need to be
loaded.

properties The am_properties_t instance to which the key-value
pairs needs to be saved.

file_name The name of the file from which the properties need to be
written to.

C Library For Policy

Chapter 7 Policy Service 189

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation was successful.

• AM_NSPR_ERROR if an internal NSPR system operation failed.

• AM_INVALID_ARGUMENT if properties or file_name argument is NULL or
file_name points to an empty string.

Description
Stores all the key-value pairs in this object into the file.

Memory Concerns
None.

am_properties_log(am_properties_t properties, am_log_module_id_t
module, am_log_level_t level)

Syntax
#include <am_properties.h>

void

am_properties_log(am_properties_t properties, am_log_module_id_t
module, am_log_level_t level);

Parameters
This function takes the following parameters:

Returns
None.

Description
Sets the logging module to the property instance. All operations will be logged to
the given log module using the level specified.

properties The am_properties_t instance to which the key-value pair
needs to be saved.

module Logging module use to log this property operations.

level Logging level to use for the log messages. The levels of
logging is defined in am_log section.

C Library For Policy

190 Identity Server Programmer’s Guide • December 2002

Memory Concerns
None.

am_properties_is_set(am_properties_t properties, const char *key)

Syntax
#include <am_properties.h>

int

am_properties_is_set(am_properties_t properties, const char *key);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• !0 if the key is present.

• 0 if the key is not present or the properties argument is NULL.

Description
This function checks if the key is present is the properties instance.

Memory Concerns
None.

am_properties_get(am_properties_t properties, const char *key,
const char **value_ptr)

Syntax
#include <am_properties.h>

am_status_t

am_properties_get(am_properties_t properties, const char *key, const
char **value_ptr);

Parameters
This function takes the following parameters:

properties The am_properties_t instance whose contents need to be
examined.

key The key whose presence will be checked.

C Library For Policy

Chapter 7 Policy Service 191

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation is successful.

• AM_INVALID_ARGUMENT if the properties, key or value_ptr argument is key is
NULL.

• AM_NOT_FOUND if there was no occurrence of the key in this am_properties_t
instance.

• AM_NO_MEMORY if there was an internal memory operation error.

Description
This function checks if the key is present is the properties instance and returns its
value.

Memory Concerns
Caller must not modify the value_ptr structure or free the memory.

am_properties_get_with_default(am_properties_t properties, const
char *key, const char *default_value, const char **value_ptr)

Syntax
#include <am_properties.h>

am_status_t

am_properties_get(am_properties_t properties, const char *key, const
char *default_value, const char **value_ptr);

Parameters
This function takes the following parameters:

properties The am_properties_t instance from which the keys value
needs to be extracted.

key The key whose value will be returned.

value_ptr The value pointer to which the value will be assigned to. This
is an output parameter.

properties The am_properties_t instance from which the keys value
needs to be extracted.

key The key whose value will be returned.

C Library For Policy

192 Identity Server Programmer’s Guide • December 2002

Returns
Return values may be ignored.

Description
This function checks if the key is present is the properties instance. If the key is not
present, the function returns the default value passed in. Otherwise it returns the
value of the key.

Memory Concerns
Caller must not modify the value_ptr structure or free the memory.

Information And Utility APIs
Following are the policy data structures and operations.

am_policy_result_t

Syntax
#include <am_policy.h>

typedef struct am_policy_result {

const char *remote _user;

const char *remote_IP;

am_map_t advice_map;

am_map_t attr_response_map;

} am_policy_result_t;

Parameters
This structure has the following components:

default_value The value to be returned in case of any error condition.

value_ptr The value pointer to which the value will be assigned to. This
is an output parameter.

remoteUser After policy evaluation, this variable is assigned the name of
the remote user.

advice_map On the server side some policies may have resulted in
advices. For detailed discussion on advices, please refer to the
policy service documentation.

C Library For Policy

Chapter 7 Policy Service 193

Description
This structure unifies various components of policy evaluation, namely: name of
the user try to perform an action on the resource, the advices as recommended by
individual policies during evaluation and attribute responses providing specific
values as set in policy definition or user attributes as requested during service
initialization. The property com.iplanet.am.policy.am.headerAttributes
specifies what all attributes in the users entry needs to be returned along with
policy evaluation results.

Memory Concerns
Caller to am_policy_evaluate must call am_policy_result_destroy after using
the results.

am_resource_traits_t

Syntax
typedef struct am_resource_traits {

am_resource_match_t (*cmpFuncPtr)(const char *policyResName,

const char *resourceName,

am_bool_t usePatterns);

am_bool_t (*hasPatterns)(const char *resourceName);

am_bool_t (*getResourceRoot)(const char *resourceName,

char *rootResourceName,

size_t buflength);

} am_resource_traits_t;

Parameters
This structure has the following components:

attr_response_map After evaluation of policies, each policy may define pairs of
keys and values. These values may provide more information
about the user or about the policy evaluation itself. Apart
from this, library may be requested to obtain user attributes.
This is a configuration parameter set during service
initialization in the service configuration properties structure.

C Library For Policy

194 Identity Server Programmer’s Guide • December 2002

Description
This structure is an input parameter to am_policy_init function. This structure
contains all the resource traits interfaces that are required during policy
information maintenance and evaluation.

Memory Concerns
None.

am
The am methods are one-time library initialization and cleanup methods. These
functions may be called once and only once for the entire life of the shared object.

am_init(am_policy_t policy)

Syntax
#include <am.h>

am_status_t

am_init(am_properties_t library_init_config);

Parameters
This function takes the following parameters:

cmpFuncPtr The compare function takes two resource strings and a
boolean value. The boolean value controls whether the
compare function must use patterns defined in the resource
name or not.

hasPatterns The is function takes a resource name, examines it and returns
true if it has patterns or not. Since the service writer can
decide the implementation of pattern representations and so
the symbols used as patterns, this function is a resource trait.

getResourceRoot This function takes a given resource and finds a root resource
name for that resource. The length is the size of the
rootResourceName buffer. The minimum required length of
the rootResourceName buffer is governed by the
representation of the resource name and so up to the
discretion of the service writer.

C Library For Policy

Chapter 7 Policy Service 195

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation is successful.

• AM_INVALID_ARGUMENT if any argument is NULL or invalid.

• AM_NSPR_ERROR if there is an error while performing an NSPR operation.

• AM_NO_MEMORY if there was an internal memory operation error.

• AM_FAILURE if there was any unexpected error during initialization.

Description
This function initializes the shared object. This function must be called only once
and must be the first function to be called in the library.

Memory Concerns
Caller must call ascertain that this function is not called more than once and its
cleanup counterpart am_cleanup is called once and is the last function to be called
in the library.

am_init(am_policy_t policy)

Syntax
#include <am.h>

am_status_t

am_cleanup(void);

Parameters
None.

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation is successful.

• AM_INVALID_ARGUMENT if any argument is NULL or invalid.

• AM_NSPR_ERROR if there is an error while performing an NSPR operation.

• AM_NO_MEMORY if there was an internal memory operation error.

library_init_config This structure contains configuration information required to
initialize the shared object.

C Library For Policy

196 Identity Server Programmer’s Guide • December 2002

• AM_FAILURE if there was any unexpected error during initialization.

Description
This function cleans up all the memory and resources allocated by the shared
object. This function must be called only once and must be the last function to be
called in the library.

Memory Concerns
None.

am_policy
The am_policy methods are service specific methods. These methods may be used
only after am_init has been invoked successfully and may not used after
am_cleanup has been performed.

am_policy_init(const char *service_name, const char
*instance_name, am_resource_traits_t rsrcTraits, am_properties_t
service_config_properties, am_policy_t *policy_handle_ptr)

Syntax
#include <am_policy.h>

am_status_t

am_policy_init(const char *service_name, const char *instance_name,
am_resource_traits_t rsrcTraits, am_properties_t
service_config_properties, am_policy_t *policy_handle_ptr);

Parameters
This function takes the following parameters:

service_name The name of the service about to be created.

instance_name The instance name of the new service. Currently this
parameter is unused.

rsrcTraits The resource traits structure that contains the pointers to the
actual implementations of the resource name operations.

service_config_pro
perties

The am_properties_t instance that has the initialization
values required during the initialization of the service.

C Library For Policy

Chapter 7 Policy Service 197

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation is successful.

• AM_INVALID_ARGUMENT if any argument is NULL or invalid.

• AM_NSPR_ERROR if there is an error while performing an NSPR operation.

• AM_NO_MEMORY if there was an internal memory operation error.

• AM_FAILURE if there was any unexpected error during initialization.

Description
This function initializes a policy service instance.

Memory Concerns
Caller must call am_policy_destroy structure or free the memory.

am_policy_destroy(am_policy_t policy)

Syntax
#include <am_policy.h>

void

am_policy_destroy(am_policy_t policy);

Parameters
This function takes the following parameters:

Returns
None.

Description
This function destroys a policy service instance.

policy_handle_ptr The pointer to the am_policy_t that will be initialized a
policy_handle after successful completion of service
creation.

policy The policy service which needs to be destroyed.

C Library For Policy

198 Identity Server Programmer’s Guide • December 2002

Memory Concerns
Caller must call make sure the same service instance not be destroyed more than
once.

am_policy_evaluate(am_policy_t policy_handle, const char
*sso_token, const char *resource_name, const char *action_name,
const am_map_t env_parameter_map, am_map_t
policy_response_map_ptr, am_policy_result_t *policy_result)

Syntax
#include <am_policy.h>

am_status_t

am_policy_evaluate(am_policy_t policy_handle, const char *sso_token,
const char *resource_name, const char *action_name, const am_map_t
env_parameter_map, am_map_t *policy_response_map_ptr,
am_policy_result_t *policy_result);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation is successful.

• AM_INVALID_ARGUMENT if any argument is NULL or invalid.

• AM_NSPR_ERROR if there is an error while performing an NSPR operation.

policy_handle The policy service which needs to be destroyed.

sso_token The single sign-on token of the user who must be evaluated
for accessing the resource and perform a given action.

resource_name The string form of the resource that the user wants to perform
the action on.

action_name The action the user wants to perform on the action.

env_parameter_map The environment parameters like IP address the user is
accessing the resource from.

policy_response_ma
p_ptr

The response structure that will be populated after evaluation
of the policies.

policy_result Pointer to am_policy_result_t structure that will be populated
during policy evaluation.

C Library For Policy

Chapter 7 Policy Service 199

• AM_NO_MEMORY if there was an internal memory operation error.

• AM_FAILURE if there was any unexpected error during initialization.

Description
This function destroys a policy service instance.

Memory Concerns
After using the results the caller must call am_policy_result_destroy on the
policy_result to cleanup the memory allocated by the evaluation operation.
am_map_destroy must also be called on response and env_parameter_map after
their respective usage scope.

am_policy_is_notification_enabled(am_policy_t policy_handle)

Syntax
#include <am_policy.h>

am_bool_t

am_policy_is_notification_handled(am_policy_t policy_handle);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_TRUE if notification is enabled for this service.

• AM_FALSE if notification is not enabled for this service.

Description
This function checks and returns the state of notification. This configuration is read
by the service during initialization from the service configuration properties.

Memory Concerns
None.

policy_handle The policy service instance whose configuration needs to be
examined.

C Library For Policy

200 Identity Server Programmer’s Guide • December 2002

am_policy_notify(am_policy_t policy_handle, const char
*notification_data, size_t notification_data_len)

Syntax
#include <am_policy.h>

am_status_t

am_policy_notify(am_policy_t policy_handle, const char
*notification_data, size_t notification_data_len);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_SUCCESS if the operation is successful.

• AM_INVALID_ARGUMENT if any argument is NULL or invalid.

• AM_NSPR_ERROR if there is an error while performing an NSPR operation.

• AM_NO_MEMORY if there was an internal memory operation error.

• AM_FAILURE if there was any unexpected error during initialization.

Description
When the configuration com.iplanet.am.policy.am.notificationEnabled is
set to true, the library registers with the server to receive notification in case of any
change of information (session or policy) on the server. The notification is sent to
the URL again, set in the service configuration properties as a value of
com.iplanet.am.policy.am.notificationURL during initialization.

Memory Concerns
None.

policy_handle The policy service instance whose configuration needs to be
examined.

notification_data The notification data that was received by the caller.

notification_data_
len

Notification data length.

C Library For Policy

Chapter 7 Policy Service 201

Specialization Methods
These functions are resource traits implementations for URLs. These are provided
for the sake of convenience and as reference implementations of resource names.

am_policy_compare_urls(const char *policyResourceName, const
char *resourceName, am_bool_t usePatterns)

Syntax
#include <am_policy.h>

void

am_policy_compare_urls(const char *policyResourceName, const char
*resourceName, am_bool_t usePatterns);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• EXACT_MATCH if policyResourceName and resourceName match verbatim.

• SUB_RESOURCE_MATCH if resourceName is a subordinate resource of
policyResourceName.

• SUPER_RESOURCE_MATCH if policyResourceName is a subordinate resource of
resourceName.

• NO_MATCH if policyResourceName and resourceName do not match.

• EXACT_PATTERN_MATCH This value will be returned only if usePatterns
argument is AM_TRUE and if policyResourceName has patterns which matches
resourceName string.

policyResourceName The resource name as defined in the policy. This is the only
parameter that can have patterns it them.

resourceName The name of the resource accessed by the user.

usePatterns The patterns in the policyResourceName if present must
be used if this parameter is set to AM_TRUE otherwise used as
normal characters.

C Library For Policy

202 Identity Server Programmer’s Guide • December 2002

Description
This function compares two given URLs. The policyResourceName is the URL
defined in the policy definition. The policy definition can contain patterns. In the
reference implementation, the comparison mechanism does only wildcard match,
that is, it supports only * in a policyResourceName as a pattern. A service writer
may replace this function with another implementation that supports complete
regular expressions. But, the service writer must also take care to change the
hasPatterns function to behave appropriately.

Memory Concerns
None.

am_policy_get_url_resource_root(const char *resourceName, char
*resourceRoot, size_t length)

Syntax
#include <am_policy.h>

am_bool_t

am_policy_get_url_resource_root(const char *resourceName, char
*resourceRoot, size_t length);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_TRUE if the operation was successful.

• AM_FALSE if resourceName is not a valid URL or either of the parameters were
NULL or if the buffer was not enough to copy the resourceRoot.

Description
This function is takes a URL and extracts a root of the URL. For example,
http://www.sun.com/index.html will return http://www.sun.com/ and
http://www.sun.com:8080/index.html will return
http://www.sun.com:8080/.

resourceName The resource name for which the root resource must be
extracted.

resourceRoot The pointer where the resource root will be copied to.

length The length of the resourceRoot buffer.

C Library For Policy

Chapter 7 Policy Service 203

Memory Concerns
In an implementation for a different resource other than URLs, the service writer
implementing this function must make accurate judgement about the minimum
size of resourceRoot.

am_policy_get_url_resource_has_patterns(const char
*resourceName)

Syntax
#include <am_policy.h>

am_bool_t

am_policy_get_url_resource_has_patterns(const char *resourceName);

Parameters
This function takes the following parameters:

Returns
This function returns one of the following values:

• AM_TRUE if the resource name has patterns.

• AM_FALSE if resourceName is not a valid URL or the parameter is NULL or if it
does not have patterns.

Description
This function takes a URL and returns a boolean value reflecting its pattern
content. For example, http://www.sun.com/index.html will return AM_FALSE
and http://www.sun.com/*.html will return AM_TRUE. http://www.sun.com/*
will return AM_TRUE.

Memory Concerns
None.

Initialization Variables
Following are explanations of the initialization variables:

com.iplanet.am.policy.am.cookieNameThe name of the cookie set by the
authentication server after session creation.

resourceName The resource name to be examined for patterns.

C Library For Policy

204 Identity Server Programmer’s Guide • December 2002

com.iplanet.am.policy.am.namingURLThe URLs where the naming service is
installed. Each URL must be separated with a space. If the current naming server
does not respond, the next one is attempted and so on, in a round-robin fashion.

com.iplanet.am.policy.am.loginURLThe URLs where the login service is installed.
Each URL must be separated with a space. If the current login server does not
respond, the next one is attempted and so on, in a round-robin fashion.

com.iplanet.am.policy.am.logFileThe full path of the local log file name.

com.iplanet.am.policy.am.serverLogFileThe name of the log file in the server side.

com.iplanet.am.policy.am.logLevelsThe level of logging to be performed to the
local log file.

com.iplanet.am.policy.am.usernameThe name of user as whom the client library
will login to the policy server.

com.iplanet.am.policy.am.passwordThe password of user using which the client
library will log on as the given user.

com.iplanet.am.policy.am.sslCertDirSSL directory where the certificate database
is located.

com.iplanet.am.policy.am.trustServerCertsThis boolean value if true indicates
that library must trust server certificate.

com.iplanet.am.policy.am.notificationEnabledSetting this variables to true
indicates that the policy library must register for session and policy notifications to
be delivered to the notificationURL.

com.iplanet.am.policy.am.agenturiprefixThe agenturiprefix is the URI under
which the agent components are installed.

com.iplanet.am.policy.am.notificationURLThe notification URL to which the
notifications must be sent. While using this library and having the notification
enabled, the host program must listen as the notification URL and pass the
received data to am_policy_notify function.

com.iplanet.am.policy.am.fetchHeadersThis is a boolean parameter when set to
true, the policy evaluation request also requests for the users attribute values.

com.iplanet.am.policy.am.headerAttributesThe attributes whose values will be
requested for during policy evaluation, if fetchHeaders parameters is set to true.
This attribute has a syntax [<ldap attribute name>|<local attribute
name>]*. The local attribute name and its values will be returned in the
attr_response_map in policy_result.

C Library For Policy

Chapter 7 Policy Service 205

Specialization Methods For Web Agents

am_web_init(const char *config_file)

Syntax:
#include <am_web.h>

am_status_t am_web_init(const char *config_file);

Parameters:
This function takes the following parameters:

Returns:
This function returns one of the following values:

• AM_SUCCESS if the initialization was successful.

• AM_INVALID_ARGUMENT if any argument is NULL or invalid.

• AM_NSPR_ERROR if there is an error while performing an NSPR

operation.

• AM_NO_MEMORY if there was an internal memory operation error.

• AM_FAILURE if the initialization failed due to unexpected error

condition.

Description:
This function initializes the shared object. This function must be called only once
and must be the first function to be called in the library.

Memory Concerns:
Caller must ascertain that this function is not called more than once and its cleanup
counterpart am_web_cleanup is the last function to be called in the library.

am_web_cleanup()

Syntax:
#include <am_web.h>

am_status_t am_web_cleanup();

config_file A string representing the complete path to the config file used
by the agent.

C Library For Policy

206 Identity Server Programmer’s Guide • December 2002

Parameters:
None.

Returns:
This function returns one of the following values:

• AM_SUCCESS if the operation was successful.

• AM_INVALID_ARGUMENT if any argument is NULL or invalid.

• AM_NSPR_ERROR if there is an error while performing an NSPR operation.

• AM_NO_MEMORY if there was an internal memory operation error.

• AM_FAILURE if the initialization failed due to unexpected error condition.

Description:
This function releases all the resources allocated by the library. This function must
be called only once and must be the last function to be called in the library.

Memory Concerns:
Caller must ascertain that this function is not called more than once and its
initialization counterpart am_web_init has been called before its invocation.

am_web_is_access_allowed(const char *sso_token, const char *url,
const char *action_name, const char *client_ip, const am_map_t
env_parameter_map, am_policy_result_t *result);

Syntax:
#include <am_web.h>

am_status_t

am_web_is_access_allowed(const char *sso_token, const char
*url,const char *action_name,const char *client_ip, const am_map_t
env_parameter_map, am_policy_result_t *result);

Parameters:
This function takes the following parameters:

sso_token The sso_token from the Identity Server cookie. This
parameter may be NULL if there is no cookie present.

url The URL whose accessibility is being determined. This
parameter may not be NULL.

C Library For Policy

Chapter 7 Policy Service 207

Returns:
This function returns one of the following values:

• AM_SUCCESS if the evaluation was performed successfully and access is to be
allowed to the specified resource.

• AM_NO_MEMORY if the evaluation was not successfully completed due to
insufficient memory being available.

• AM_INVALID_ARGUMENT if any of the url, action_name, env_parameter_map, or
result parameters is NULL or if client IP validation is enabled and the client_ip
parameter is NULL.

• AM_INVALID_SESSION if the specified sso_token does not refer to a currently
valid session.

• AM_ACCESS_DENIED if the policy information indicates that the user does not
have permission to access the specified resource or any error is detected other
than the ones listed above.

Description:
This function evaluates the access control policies for a specified web-resource and
action. The web-resource is identified as the URL that the user is trying to access
and the action is the associated HTTP call made by the user agent such as GET or
POST.

Memory Concerns:
The caller must free the memory associated with all the arguments passed into this
function when they are no longer in use or applicable.

action_name The action (GET, POST, etc.) being performed on the specified
URL. This parameter may not be NULL.

client_ip The IP address of the client attempting to access the specified
URL. If client IP validation is turned on, then this parameter
may not be NULL.

env_parameter_map A map containing additional information about the user
attempting to access the specified URL. This parameter may
not be NULL.

result A data structure to store the result of this operation as passed
back to the caller.

C Library For Policy

208 Identity Server Programmer’s Guide • December 2002

am_web_is_notification(const char *request_url)

Syntax:
#include <am_web.h>

am_bool_t

am_web_is_notification(const char *request_url);

Parameters:
This function takes the following parameters:

Returns:
This function returns one of the following values:

• AM_TRUE if the associated request is Identity Server notification.

• AM_FALSE if the associated request is a regular request.

Description:
This function determines if the request is an Identity Server notification message
intended for the policy SDK.

Memory Concerns:
None.

am_web_handle_notification(const char *data, size_t data_length);

Syntax:
#include <am_web.h>

void

am_web_handle_notification(const char *data, size_t data_length);

Parameters:
This function takes the following parameters:

request_url The URL of the web resource associated with this request.

data A buffer containing data as obtained from the request.

data_length The length of the data contained in the buffer.

C Library For Policy

Chapter 7 Policy Service 209

Returns:
None

Description:
This function processes the notification data as sent by the Identity Server and
updates the state of the Policy SDK accordingly. Any errors that may occur during
the processing of the given data are logged in the appropriate log files.

Memory Concerns:
None.

am_web_get_redirect_url(am_status_t status, const am_map_t
advice_map, const char *goto_url, am_bool_t *allocated_ptr);

Syntax:
#include <am_web.h>

char *am_web_get_redirect_url(am_status_t status, const am_map_t
advice_map, const char *goto_url, am_bool_t *allocated_ptr);

Parameters:
This function takes the following parameters:

Returns:
A URL that may be used to redirect the user accordingly. This URL may be either
the login URL or the access denied URL.

status The return value obtained from the call to function
am_web_is_access_allowed().

advice_map The advice map contained in the policy result as obtained
from the call to function am_web_is_access_allowed().

goto_url The return URL to be used by the Identity Server to redirect
the user after successful authentication.

allocated_ptr A flag that indicates if any memory was allocated during the
course of this operation which should the be deallocated by
the caller accordingly.

C Library For Policy

210 Identity Server Programmer’s Guide • December 2002

Description:
This function returns a string representing the URL for redirection that is
appropriate to the provided status code and advice map returned by the Policy
SDK. This may either redirect the user to the login URL or the access denied URL.
If the redirection is to the login URL then the URL will include any existing
information specified in the URL from the configuration file, like org value etc.,
followed by the specified goto parameter value, which will be used by Identity
Server after the user has successfully authenticated.

Memory Concerns:
If the value returned in allocated_ptr parameter is AM_TRUE, then the caller is
responsible for calling am_web_free_memory() function when done with the
returned string. Using another free function may cause corruption of memory and
result in fatal runtime errors. If allocated_ptr is NULL, then the function will
always return a pointer to the access denied URL, which is not allocated.

am_web_do_result_attr_map_set(am_policy_result_t *result,
am_status_t (*setFunc)(char *, char *, void **), void **args);

Syntax:
#include <am_web.h>

am_status_t

am_web_do_result_attr_map_set(am_policy_result_t *result,
am_status_t (*setFunc)(char *, char *, void **), void **args);

Parameters:
This function takes the following parameters:

Return:
This function returns one of the following values:

• AM_SUCCESS if the operation was successful.

• AM_FAILURE if the operation failed due to unexpected error conditions.

result The result obtained from the call to function
am_web_is_access_allowed().

setFunc A function pointer for the call back function to be used when
iterating over various values of the result.

args The optional arguments to be passed to the call back function
during its invocation.

C Library For Policy

Chapter 7 Policy Service 211

• AM_NO_MEMORY if the operation failed due to lack of available memory required
for the processing.

Description:
This function process attr_response_map of am_policy_result_t and performs
the appropriate set action that caller pass in.

Memory Concerns:
None.

am_web_free_memory(void *memory)

Syntax:
#include <am_web.h>

void am_web_free_memory(void *memory);

Parameters:
This function takes the following parameter:

Return:
None.

Description:
This function releases previously allocated memory by any of the am_web_*
functions.

Memory Concerns:
This function must be called in order to free any memory allocated by the
am_web_* functions. Using other routines to free such memory may result in
memory corruption and lead to fatal runtime error conditions.

am_web_get_cookie_name()

Syntax:
#include <am_web.h>

const char *am_web_get_cookie_name()

memory A pointer to the previously allocated memory that should be
released by this function.

C Library For Policy

212 Identity Server Programmer’s Guide • December 2002

Parameters:
None.

Return:
This function returns the name of the Identity Server cookie.

Description:
This function returns the Identity Server cookie name as used by the Policy SDK.
The value of this depends upon the value stored in the configuration file that was
used to initialize the library.

Memory Concerns:
None

am_web_get_notification_url()

Syntax:
#include <am_web.h>

const char *am_web_get_notification_url()

Parameters:
None.

Return:
This function returns the notification URL used by the Agent.

Description:
This function returns the URL used by the Agent to receive Identity Server
notifications. The value of this depends upon the value stored in the configuration
file that was used to initialize the library.

Memory Concerns:
None

am_web_is_debug_on()

Syntax:
#include <am_web.h>

am_bool_t am_web_is_debug_on();

Parameters:
None.

C Library For Policy

Chapter 7 Policy Service 213

Return:
This function returns one of the following values:

• AM_TRUE if debugging is turned on.

• AM_FALSE if debugging is turned off.

Description:
This function returns a flag which indicates if debugging has been enabled or
disabled. When enabled, the Agent can use various convenience functions in order
to log debug messages to the appropriate log files.

Memory Concerns:
None.

am_web_is_max_debug_on()

Syntax:
#include <am_web.h>

am_bool_t am_web_is_max_debug_on();

Parameters:
None.

Return:
This function returns one of the following values:

• AM_TRUE if debugging is turned on and is at the maximum level.

• AM_FALSE if debugging is either off or turned on to a level other than its
maximum level.

Description:
This function returns a flag which indicates if debugging has been set at its
maximum level. The caller can use this function to determine if it is appropriate to
emit very verbose information to the debug logs.

Memory Concerns:
None.

am_web_log_always(const char *fmt, ...)

Syntax:
#include <am_web.h>

C Library For Policy

214 Identity Server Programmer’s Guide • December 2002

void am_web_log_always(const char *fmt, ...);

Parameters:
This function takes the following parameters:

Return:
None.

Description:
This function allows logging of information regardless of the level at which the
library has been configured through the specified values in the configuration file. It
takes a printf style format string and argument list which is used to generate a
formatted message that is then logged into the appropriate log file.

Memory Concerns:
None.

am_web_log_auth(am_web_access_t accessType, const char *fmt,
...)

Syntax:
#include <am_web.h>

am_bool_t am_web_log_auth(am_web_access_t accessType, const char
*fmt, ...);

Parameters:
This function takes the following parameters:

Return:
This function returns one of the following values:

• AM_TRUE if the operation was successful

fmt A printf style format string along with associated variable list
to be used to emit a formatted message.

accesstype An enumeration that indicates the type of access that is being
logged. This value could be either LOG_DENY or
LOG_ALLOW or LOG_BOTH or LOG_NONE.

fmt A printf style format string along with associated variable list
to be used to emit a formatted message.

C Library For Policy

Chapter 7 Policy Service 215

• AM_FALSE if the operation failed due to unexpected error conditions.

Description:
This function is used to log information to the remote Identity Server's log service.
Depending upon the value specified in the configuration file, requests associated
with certain accesstype values may or may not get logged by this function.

Memory Concerns:
None.

am_web_log_error(const char *fmt, ...)

Syntax:
#include <am_web.h>

void am_web_log_error(const char *fmt, ...);

Parameters:
This function takes the following parameters:

Return:
None.

Description:
This function formats and logs the given message as an error in the associated log
file. This message will be logged if the associated logging level is greater than or
equal to the error logging level.

Memory Concerns:
None.

am_web_log_warning(const char *fmt, ...)

Syntax:
#include <am_web.h>

void am_web_log_warning(const char *fmt, ...);

Parameters:
This function takes the following parameters:

fmt A printf style format string along with associated variable list
to be used to emit a formatted message.

C Library For Policy

216 Identity Server Programmer’s Guide • December 2002

Return:
None.

Description:
This function formats and logs the given message as a warning in the associated
log file. This message will be logged if the associated logging level is greater than
or equal to the warning logging level.

Memory Concerns:
None.

am_web_log_info(const char *fmt, ...)

Syntax:
#include <am_web.h>

void am_web_log_info(const char *fmt, ...);

Parameters:
This function takes the following parameters:

Return:
None.

Description:
This function formats and logs the given message as an informational message in
the associated log file. This message will be logged if the associated logging level is
greater than or equal to the informational logging level.

Memory Concerns:
None.

am_web_log_debug(const char *fmt, ...)

Syntax:
#include <am_web.h>

fmt A printf style format string along with associated variable list
to be used to emit a formatted message.

fmt A printf style format string along with associated variable list
to be used to emit a formatted message.

C Library For Policy

Chapter 7 Policy Service 217

void am_web_log_debug(const char *fmt, ...);

Parameters:
This function takes the following parameters:

Return:
None.

Description:
This function formats and logs the given message as a debug message in the
associated log file. This message will be logged if the associated logging level is
greater than or equal to the debug logging level.

Memory Concerns:
None.

am_web_log_max_debug(const char *fmt, ...)

Syntax:
#include <am_web.h>

void am_web_log_max_debug(const char *fmt, ...);

Parameters:
This function takes the following parameters:

Return:
None.

Description:
This function formats and logs the given message as a debug message in the
associated log file. This message will be logged if the associated logging level is
greater than or equal to the maximum debug logging level.

Memory Concerns:
None.

fmt A printf style format string along with associated variable list
to be used to emit a formatted message.

fmt A printf style format string along with associated variable list
to be used to emit a formatted message.

C Library For Policy

218 Identity Server Programmer’s Guide • December 2002

Initialization Variables
The following table lists the initialization variables for the policy C APIs.

Table 7-1 Initialization Variables for C APIs

Initialization Variables Explanation

com.sun.am.policy.agents
.accessDeniedURL

The URL of the access denied page. If no value is
specified, the agent will return an HTTP status of 403
(Forbidden).

com.sun.am.policy.agents
.unauthenticatedUser

The user id to be used when the user is not
authenticated and is trying to access a resource from
the global allow list.

com.sun.am.policy.agents
.anonRemoteUserEnabled

Enable or disable the processing of REMOTE_USER
variable for anonymous users.

com.sun.am.policy.agents
.instanceName

The unique identifier for this agent instance. This
property is currently not used.

com.sun.am.policy.agents
.notenforcedList

A list of URLs for which no authentication is
required. The entries in this list can contain wild
cards to represent zero or more characters and use a
space as a separator between various entries.

com.sun.am.policy.agents
.cdsso-enabled

A flag that indicates if cross-domain single sign on is
enabled or disabled.

com.sun.am.policy.agents
.cdsso-server.loginURL

A login URL to be used for authenticating users when
the cross-domain single sign on is enabled.

com.sun.am.policy.agents
.logAccessType

Server's remote logging service. Possible values are
LOG_NONE, LOG_DENY, LOG_ALLOW, and
LOG_BOTH.

com.sun.am.policy.agents
.client_ip_validation_en
able

A flag that indicates if client IP address validation is
enabled or disabled. When enabled, the agent checks
to ensure that the IP address associated with a given
request is the same as the IP address to which the
associated session cookie was issued by Identity
Server's session service.

219

Chapter 8

Using The SAML Service

Sun™ One Identity Server uses the Security Assertion Markup Language (SAML)
for exchanging security information. SAML defines an eXtensible Markup
Language (XML) framework to achieve inter-operability across different vendor
platforms that provide this type of information. This chapter explains SAML and
defines how it is used within the Identity Server. It contains the following sections:

• Overview

• amSAML.xml

• SAML SDK

• SAML Service Samples

Overview
SAML is an open-standard protocol that uses an XML framework to exchange
security information between an authority and a trusted partner site. The security
information concerns itself with authentication status, access authorization
decisions and subject attributes.The Organization for the Advancement of
Structured Information Standards (OASIS) drives the development of the SAML
specifications.

SAML security information is expressed in the form of an assertion about a subject.
A subject is an entity in a particular domain, either human or computer, with which
the security information concerns itself. (A person identified by an email address is
a subject as might be a printer.) An assertion is a package of verified security

NOTE The latest SAML information and specifications can be found at
http://www.oasis-open.org/committees/security/.

Overview

220 Identity Server Programmer’s Guide • December 2002

information that supplies one or more statements concerning a subject’s
authentication status, attributes or access authorization decisions. Assertions are
issued by a SAML authority. (An authority is a platform or application that has
been integrated with the SAML SDK, allowing it to relay security information.) The
assertions are received by partner sites defined within the authority as trusted.
SAML authorities use different sources to configure the assertion information
including external data stores or assertions that have already been received and
verified. Figure 8-1 illustrates how the SAML Service interacts with the other
Identity Server components. (The blocks filled with solid color are components of
the SAML Service.)

Figure 8-1 SAML Architecture

The SAML Service allows the Identity Server to work with external applications in
the following ways:

• Users can authenticate against Identity Server and access trusted partner sites
without having to re-authenticate. This is referred to as Single Sign-On.

• Identity Server acts as a policy decision point (PDP), allowing external
applications to access user authorization information for the purpose of
granting or denying access to their resources.

• Identity Server acts as both an attribute authority (allowing trusted partner
sites to query a subject’s attributes) and an authentication authority (allowing
trusted partner sites to query a subject’s authentication information.)

Overview

Chapter 8 Using The SAML Service 221

• Two parties in different security domains can validate each other for the
purpose of performing business transactions.

Assertion Types
SAML assertions are represented as XML constructs based on a schema located at
http://www.oasis-open.org/committees/security/docs/cs-sstc-schema-a

ssertion-01.xsd. The SAML specification provides for several types of assertions
that are also defined in the SAML Service:

• An authentication assertion declares that the specified subject has been
authenticated by a particular means at a particular time. In Identity Server, the
Authentication Service is the authentication authority. Code Example 8-1
illustrates an authentication assertion.

• An attribute assertion declares that the specified subject is associated with the
specified attribute. In Identity Server, the Identity Management module is the
attribute authority.

NOTE The SAML service also allows Identity Server to take advantage of the
open-source protocols being developed by the Liberty Alliance Project.
More information on these specifications can be found at
www.projectliberty.org and in Chapter 9, “Federation Management.”

Code Example 8-1 Sample Authentication Assertion

<?xml version="1.0" encoding="UTF-8" ?>
<saml:Assertion
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
MajorVersion="1"
MinorVersion="0" AssertionID="random-182726"
Issuer="sunserver.example.com"
IssueInstant="2001-11-05T17:23:00-02:00">
 <saml:AuthenticationStatement
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2001-11-05T17:22:00-02:00">
 <saml:Subject>
 <saml:NameIdentifier NameQualifier="sun.com">John
Doe</saml:NameIdentifier>
 </saml:Subject>
 </saml:AuthenticationStatement>
</saml:Assertion>

Overview

222 Identity Server Programmer’s Guide • December 2002

• An authorization decision assertion declares that the specified subject’s request
for access to a specified resource has been granted or denied. In Identity Server,
the Policy Service is the authorization authority.

One assertion may contain many different statements made by the authority.

Profile Types
A set of rules describing how to embed and extract SAML assertions is called a
profile. The profile describes how the assertions can be combined with other objects
by an authority, transported from the authority to a trusted partner site and,
subsequently, processed at the latter. Currently, Identity Server supports two
profiles that use HTTP: the Web Artifact Profile and the Web POST profile. These
profiles are used in the case of single sign-on when an authenticated user attempts
to access resources from a trusted partner site. Both profiles can also be the receiver
when accepting user single sign-on from a trusted partner site.

Web Artifact Profile
The Web Artifact Profile defines interaction between three parties: a user equipped
with a web browser, an authority site, and an trusted partner site. When an
authenticated user attempts to access a trusted partner site (usually by clicking a
link), they are redirected to a transfer service in the authority site. In Identity
Server, the transfer service is the SAML Aware Servlet. The base of the transfer
URL is http(s)://<server:port>/<server_deploy_uri>/SAMLAwareServlet;
it is appended with the user’s TARGET location (?TARGET=URL_of_destination).
The SAML Aware Servlet then provides the following functions as part of the Web
Artifact Profile:

1. It compares its list of Trusted Partner Sites against the user’s TARGET location.

Only targets configured in the Trusted Partner Sites attribute of the SAML
Service can access the SAML Service. More information on this attribute can be
found in the Sun ONE Identity Server Administration Guide.

2. It looks for and validates the SSO Token in the inbound request.

Without a valid SSO Token, the Identity Server will not create an assertion.

NOTE The profile methods can be initiated through a web browser or the SAML
API. More information on this API can be found in “com.sun.identity.saml,”
on page 227.

Overview

Chapter 8 Using The SAML Service 223

3. It creates an artifact and a corresponding assertion.

An artifact is carried as part of the URL and points to an assertion and its
source; it is not, and does not contain, the security information itself. The need
to send an artifact rather than the assertion itself is dictated by the restrictions
on URL size imposed by many web browsers.

4. It opens a connection to the Artifact Receiver URL and redirects the user to the
TARGET location (trusted partner site) with a query string containing the
artifact.

The Artifact Receiver URL is based on mapping configurations defined in the
SAML Service. More information on this can be found in the Sun ONE Identity
Server Administration Guide. Upon arriving at the TARGET location, the artifact
is extracted and returned to the authority site in a query requesting the
assertion to which the artifact points.

5. It accepts an artifact query from the trusted partner site and responds by
sending the correct assertion.

The assertion is processed and the user is either granted or denied access to the
trusted partner site. If access is granted an SSO token is generated, a cookie is
set to the browser and the user is redirected to the TARGET location.

Web POST Profile
The Web POST Profile allows security information to be supplied to a trusted
partner site without the use of an artifact. It consists of two interactions: the first
between a user with a web browser and the Identity Server, and the second
between the same user and a trusted partner site.

When an authenticated user attempts to access a trusted partner site using a web
browser (usually by clicking a link), they are redirected to a transfer service in the
authority site. In Identity Server, the transfer service is the SAML Post Profile
Servlet. The base of the transfer URL is http(s)://<server:port>/
<server_deploy_uri>/SAMLPOSTProfileServlet; it is appended with the user’s
TARGET location (?TARGET=URL_of_destination). The SAML POST Profile
Servlet is what provides functions for the two Web POST Profile interactions. In the
first interaction between the user and Identity Server:

1. It obtains the TARGET location from the request and retrieves the trusted
partner site URL from the SAML Service.

Again, only targets configured in the Trusted Partner Sites attribute of the
SAML Service can access the SAML Service. More information on this attribute
can be found in the Sun ONE Identity Server Administration Guide.

Overview

224 Identity Server Programmer’s Guide • December 2002

2. It generates an assertion using the AssertionManager class of the SAML SDK.

3. It forms, signs and Base64 encodes a SAMLResponse containing the assertion.

4. It generates an HTML form, containing both the SAMLResponse and the
TARGET as parameters, and posts the form as an HTTP response back to the
user’s browser.

In the second interaction between the user and the trusted partner site:

1. It obtains the TARGET and SAMLResponse from the request.

2. It Base64 decodes the SAMLResponse.

3. It verifies the signature on the SAMLResponse and obtains and verifies the
SAML response itself.

It also verifies the assertion inside the SAMLResponse and enforces single-sign
on policy.

4. It obtains or creates an SSOToken and redirects the authenticated user to the
TARGET location.

An advantage of the Web POST profile is that, because it does not use SOAP, it
easily moves through a firewall and/or proxy server. The Web POST profile
function is provided by either of two means: an HTTP request using the
SAMLPOSTProfileServlet, or an SAMLClient API call to a Java application.

SAML SOAP Receiver
Assertions are exchanged between Identity Server and inquiring parties using the
request and response XML-based protocol defined in the SAML specification.
These SAML assertions are then integrated into a standard communication
protocol for transport purposes; Identity Server uses SOAP (Simple Object Access
Protocol), a message communications specification integrating XML and HTTPS.
SOAP binding defines how SAML request and response message exchanges are
integrated into SOAP exchanges. The SAML SOAP Receiver is a servlet that

NOTE According to the SAML specifications, the trusted partner site MUST ensure
a single-use policy for SSO assertions communicated by the Web POST
Profile. Thus, SAMLPOSTProfileServlet maintains a store of SSO
assertion IDs and the time they expire. When an assertion is received, the
servlet first checks for an entry in the map. If one exists, the servlet returns
an error. If not, the assertion ID and expiration time is saved to the map. The
POSTCleanUpThread removes expired assertion IDs periodically.

Overview

Chapter 8 Using The SAML Service 225

processes the message. It receives a SOAP message, extracts the SAML request and
responds with another SOAP message containing the requested information. The
SAML SOAP Receiver is the producer of SAML assertions. It responds to queries
for authentication, attributes or authorization decisions as well as those that
include an assertion identifier or artifact by returning assertions.

SOAP Messages
SOAP messages consist of three parts: an envelope, header data and a message
body. (The SAML request/response elements are enclosed in the message body.)
A client, acting as a SAML requestor, transmits a <Request> element within the
body of a SOAP message to an entity acting as a SAML Receiver. In answer, the
SAML Receiver MUST return either a <Response> element within the body of
another SOAP message or a SOAP fault code (or error message).

A SAML Request may contain queries for any of the following: authentication
status, authorization decisions, attribute information and one or more assertion
identifiers or artifacts. A SAML Response is sent back to the requesting party for
every Request received.

Protecting The SOAP Receiver
The Identity Server administrator has the option of protecting the SAML SOAP
Receiver using authentication. There are five types:

• NOAUTH

• BASICAUTH

• SSL

• SSLWITHBASICAUTH

NOTE The access URL for the SAML SOAP Receiver is http(s)://
<server:port>/<server_deploy_uri>/SAMLSOAPReceiver.

NOTE The SAML requestor and the SAML Receiver MUST NOT include more
than one SAML request or response per SOAP message or any additional
XML elements in the SOAP body.

NOTE The SAML SDK and the Java API for XML Messaging (JAXM) are used to
construct SOAP messages and send them to the SOAP Receiver.

amSAML.xml

226 Identity Server Programmer’s Guide • December 2002

This option is configured in the Trusted Partner Sites attribute of the SAML Service
in the form:

SourceID=sourceidofsite|SOAPUrl=urlofsite|AuthType=chosen_auth_opti
on|User=userid

The default authentication type is NOAUTH. If SSL authentication is to be
specified, it is configured in the SOAPUrl field with the https URL prefix. More
information on the Trusted Partner Sites and other SAML Service attributes can be
found in the Identity Server Administration Guide.

Accessing The SAML Service
The SAML Service can be accessed using a web browser or the SAML SDK. An end
user would authenticate to the Identity Server through a web browser and, when
authorized, access URLs from trusted partner sites. Developers, on the other hand,
would integrate the APIs into their applications to enable them to exchange
security information with the Identity Server. For example, a Java application can
use the SAML API to accomplish single sign-on. After obtaining an SSO token from
the Identity Server, the application can call the doWebPOST() method of the
SAMLClient class which contacts the Identity Server and can redirect the
application to the destination site.

amSAML.xml
amSAML.xml is the XML service file that defines the attributes for the SAML Service.
All of the attributes in the SAML Service can be managed through either the
Identity Server console or the XML service file except two. These attributes can
only be managed through amSAML.xml using the amadmin command line interface.

• iplanet-am-saml-cleanup-interval is used to specify how often the
internal thread is run in order to cleanup expired assertions from the internal
data store. The default is 180 seconds.

• iplanet-am-saml-assertion-max-number is used to specify the maximum
number of assertions the server can hold at one time. No new assertion will be
created if the maximum number is reached. The default value is 0 which means
there is no limit.

SAML SDK

Chapter 8 Using The SAML Service 227

To change the values of these attributes, the amSAML.xml service file needs to be
modified and then reloaded using amadmin. Information on how to use amadmin
can be found in Chapter 6, “Service Management.” Information on the additional
SAML Service attributes can be found in the Sun ONE Identity Server
Administration Guide.

SAML SDK
Identity Server contains a SAML SDK made up of APIs and lower level packages.
Administrators can use these packages to integrate the SAML functionality and
XML messages into their applications and services. The SDK supports all types of
assertions and operates with the Identity Server authorities to process external
SAML requests and generate SAML responses. The packages include:

• com.sun.identity.saml

• com.sun.identity.saml.assertion

• com.sun.identity.saml.common

• com.sun.identity.saml.plugins

• com.sun.identity.saml.protocol

• com.sun.identity.saml.xmlsig

com.sun.identity.saml
This package contains the AssertionManager and SAMLClient classes. The
AssertionManager provides interfaces and methods to create and get assertions,
authentication assertions and assertion artifacts; it is the connection between the
SAML specification and the Identity Server. Some of the methods included are:

• createAssertion—creates an assertion with an authentication statement
based on an Identity Server SSO Token ID.

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <identity_server_root>/SUNWam/docs/
directory into the <identity_server_root>/SUNWam/public_html
directory and pointing the browser to
http://<server_name.domain_name>:<port>/docs/index.html.

SAML SDK

228 Identity Server Programmer’s Guide • December 2002

• createAssertionArtifact—creates an artifact that references an assertion
based on an Identity Server SSO Token ID

• getAssertion—returns an assertion based on the given parameter (given
artifact, assertion ID or query).

The SAMLClient, on the other hand, provides methods to execute either the Web
Artifact or Web POST profile from within an application as opposed to a web
browser.

com.sun.identity.saml.assertion
This package contains the classes needed to stand for, transform, and integrate, an
XML assertion into the application. For example, Code Example 8-2 illustrates how
to use the Attribute class and getAttributeValue method to get the value of an
attribute. From an Assertion, call the getStatement() method to retrieve a set of
statements. If a statement is an AttributeStatement, call the getAttribute()
method to get a list of attributes. From there, call getAttributeValue() to retrieve
the AttributeValue.

com.sun.identity.saml.common
This class defines a number of XML attributes (and some utility methods) common
to all SAML elements. It also contains all SAML-related exceptions.

Code Example 8-2 Sample Code To Get An Attribute Value

// get statement in the assertion
Set set = assertion.getStatement();
//assume there is one AttributeStatement
//should check null& instanceof
AttributeStatement statement = (AttributeStatement)
set.iterator().next();
List attributes = statement.getAttribute();
// assume there is at least one Attribute
Attribute attribute = (Attribute) attributes.get(0);
List values = attribute.getAttributeValue();

SAML SDK

Chapter 8 Using The SAML Service 229

com.sun.identity.saml.plugins
Identity Server provides four SPIs, three of them with default implementations.
The implementations of these SPIs can be altered, or brand new ones written, based
on the specifications of a particular customized service. These can then be used to
integrate the SAML service into the custom service. Currently, the APIs include the
AccountMapper, ActionMapper, AttributeMapper and SiteAttributeMapper.

• AccountMapper is used to map Identity Server accounts from external partner
sites to Identity Server for SSO purposes. A default account mapper
implementation is provided. If a site-specific account mapper is not supplied,
this default mapper is used.

• AttributeMapper is used in the AttributeQuery case. When a site receives an
AttributeQuery, this mapper is called to obtain the SSOToken or an Assertion
containing AuthenticationStatement from the query. It is also used to convert
the attribute in the query to an attribute the site understands. A default
attribute mapper is provided.

• ActionMapper is used to get SSO information and to map partner actions to
Identity Server authorization decisions. A default action mapper
implementation is provided. If a site-specific action mapper is not supplied,
this default mapper is used.

• SiteAttributeMapper is also used for SSO. The default functionality of
Identity Server is that when no mapper is specified and an assertion is created,
either through web artifact or POST profile, it only contains
AuthenticationStatement(s). If a site wants to include
AttributeStatement(s), it can use this SPI to obtain the attributes. It creates
AttributeStatement(s) from those attributes, and puts them inside the
assertion.

com.sun.identity.saml.protocol
This package contains classes that parse the request and response XML messages
used to exchange assertions and their authentication, attribute or authorization
information.

NOTE The default behavior is that no attribute statements are returned unless
specified in the plug-in.

SAML SDK

230 Identity Server Programmer’s Guide • December 2002

AuthenticationQuery
The AuthenticationQuery class represents an authentication query. An
application sends a SAML request with an AuthenticationQuery inside. The
Subject of the AuthenticationQuery must contain a SubjectConfirmation element.
In this element, ConfirmationMethod needs to be set to urn:com:sun:identity,
and SubjectConfirmationData needs to be set to the SSOToken id of the Subject. If
the Subject contains a NameIdentifier, then the info in the NameIdentifier should
be the same as the one in the SSOToken.

AttributeQuery
The AttributeQuery class represents a query concerning an identity’s attributes.
An application sends a SAML request with an AttributeQuery inside. The
application develops an AttributeMapper to obtain either a SSOToken ID or an
Assertion containing an AuthenticationStatement from the query and the mapper
is then used to retrieve the attributes for the Subject. If no AttributeMapper for the
querying site is found, then the DefaultAttributeMapper will be used. To use the
DefaultAttributeMapper, the application should put either the SSOToken ID or
an assertion containing an AuthenticationStatement in the
SubjectConfirmationData element of the Subject in the query. If an SSOToken ID is
used, then the ConfirmationMethod must be set to urn:com:sun:identity:. If an
assertion is used, then this assertion should be issued by the Identity Server
instance processing the query or a server that is trusted by the Identity Server
instance processing the query.

For a query using the DefaultAttributeMapper, any matching attributes found in
the Identity Management module will be returned. If no AttributeDesignator is
specified in the AttributeQuery, all attributes from the services defined under the
userServiceNameList in amSAML.properties will be returned.
userServiceNameList’s value is user service names separated by a comma.

AuthorizationDecisionQuery
The AuthorizationDecisionQuery class represents a query concerning an
identity’s authority to access protected resources. An application sends a SAML
request with an AuthorizationDecisionQuery inside. The application develops
an ActionMapper to obtain an SSOToken ID. The mapper is then used to retrieve
the authentication decisions for the actions defined in the query.

NOTE In DefaultAttributeMapper, it is possible to query a subject's attributes
using another subject's SSOToken as long as the SSOToken has the privilege
of retrieving those attributes.

SAML Service Samples

Chapter 8 Using The SAML Service 231

If no ActionMapper for the querying site is found in the configuration, a
DefaultActionMapper will be used. To use the DefaultActionMapper, the
application should put the SSOToken ID in the SubjectConfirmationData element
of the Subject in the query. If SSOToken ID is used, then the ConfirmationMethod
must be set to urn:com:sun:identity:. If a NameIdentifier is present, then the
info in the SSOToken must be the same as the one in the NameIdentifier.

The application may also pass in the authentication information through the
Evidence element in the query. The Evidence could be an AssertionIDReference or
an assertion containing an AuthenticationStatement issued by the Identity Server
instance processing the query, or an assertion issued by a server that is trusted by
the Identity Server instance processing the query. The Subject in the
AuthenticationStatement as the evidence should be the same as the one in the
query.

com.sun.identity.saml.xmlsig
All SAML assertions, requests and responses may be signed using this signature
API. This package contains the classes needed to sign and verify.

SAML Service Samples
There are several samples that can be accessed from the Identity Server installation.
These samples illustrate how the SAML service can be used in different ways. They
include:

• A sample that serves as the basis for using the SAML client API. This sample is
located in <identity_server_root>/SUNWam/samples/SAML/client.

NOTE The DefaultActionMapper handles actions in action namespace
urn:oasis:names:tc:SAML:1.0:ghpp only. The
iPlanetAMWebAgentService is used to serve the policy decisions for
this action namespace.

NOTE Policy conditions can be passed in through AttributeStatements of
Assertion(s) inside the Evidence of the query. If the value of an attribute
contains TEXT node only, then the condition is set as
attributeName=attributeValueString; otherwise, the condition is
set as attributename=attributeValueElement.

SAML Service Samples

232 Identity Server Programmer’s Guide • December 2002

• A sample that illustrates how to form a Query, and write an AttributeMapper
as well as how to send and process a SOAP message using the SAML SDK.
This sample is located in
<identity_server_root>/SUNWam/samples/SAML/query.

• A sample application for achieving SSO using the Web Artifact profile or the
Web POST profile. This sample is located in
<identity_server_root>/SUNWam/samples/SAML/sso.

• A sample that illustrates how to use the XMLSIG API. It is located in
<identity_server_root>/SUNWam/samples/SAML/xmlsig.

233

Chapter 9

Federation Management

Sun™ One Identity Server 6.0 contains a Federation Management module which
implements the open standards for federated network identity being developed by
the Liberty Alliance Project. This chapter explains the Liberty Alliance Project and
the concept of federated network identity as well as describing how it is integrated
within the Identity Server. It contains the following sections:

• Overview

• Federation Management Process

• Federation Management API

• Customizing The Module

• Federation Management Samples

Overview
On the Internet, one person might have a multitude of accounts set up to access
various business, community and personal service providers; for example, the
person might have used different names, user IDs, passwords or preferences to set
up accounts for a news portal, a bank, a retailer, and an email provider. A local
identity refers to the set of attributes that an individual might have with each
service provider. These attributes serve to uniquely identify the individual with
that provider and may include a name, phone number, social security number,
address, credit records, bank balances or bill payment information.

Because the Internet is fast becoming the prime vehicle for business, community
and personal interactions, it has become necessary to fashion a system for online
users to aggregate their local identities, enabling them to have one network identity.
This system is identity federation. Identity federation allows a user to associate,

Overview

234 Identity Server Programmer’s Guide • December 2002

connect or bind multiple Internet service providers’ local identities. A network
identity allows users to login at one service provider’s site and then go to an
affiliated site without having to re-authenticate or re-establish their identity. The
Liberty Alliance Project was implemented to make identity federation a reality.

The Liberty Alliance Project
The goal of the Liberty Alliance Project is to enable individuals and organizations
to more easily conduct transactions while protecting the individual’s identity. To
accomplish this, the Alliance has established specifications for identity federation
that enables:

• Opt-in account linking where users can choose to federate different internet
service provider accounts.

• Simplified single sign-on where a user can log in and authenticate with one
provider’s federated account and navigate to another account without having
to log in again.

• Authentication context where organizations with linked accounts
communicate the type and level of authentication that should be used when
the user logs in.

• Global log-out where a user logs out of the site to which they initially logged in
and is automatically logged out of all sites that maintain a live session.

• A client feature which can be implemented in fixed and wireless devices to
facilitate use of the Liberty specifications.

These capabilities can be achieved when commercial or non-commercial
organizations join together into a ‘circle of trust’ based on Liberty-enabled
technology and operational agreements. This ‘circle of trust’ is referred to as an
authentication domain. The authentication domain includes service providers (who
offer web-based services to users), identity providers (service providers who also
offer federated authentication), and the users themselves. Once an authentication
domain is established, users can federate any or all identities they might have with
the service providers that have joined this domain, enabling them to make use of
the federated authentication capabilities.

Overview

Chapter 9 Federation Management 235

Liberty Specification Concepts
The Federation Management module built into the Identity Server is designed to be
compatible with the Liberty Alliance Project’s Version 1.0 specifications. A number
of concepts are derived from these specifications. They include:

Service Provider
Service providers are commercial or not-for-profit organizations that offer
web-based services. This broad category can include internet portals, retailers,
transportation providers, financial institutions, entertainment companies, and
governmental agencies.

Identity Provider
Identity providers are service providers that specialize in providing authentication
services. In the Liberty context, authentication done by an identity provider is
honored by all service providers with whom it is affiliated.

Authentication Domain
An Authentication Domain is a group of affiliated service providers consisting of
one or more identity providers. The group is also referred to as a ‘circle of trust’.
Once established, single sign-on is enabled within the authentication domain.

Trusted Provider
A Trusted Provider is one of a group of service and identity providers, affiliated
together based on the Liberty architecture and operational agreements, with whom
users can transact and communicate in a secure environment.

Account Federation (Identity Federation)
Account federation occurs when a user unites accounts that were initially set up
with distinct service and identity providers. Users retain their individual accounts
with each provider in the Authentication Domain while, simultaneously,
establishing a link that allows the exchange of user information between them.

Federated Identity
A federated identity refers to the amalgamation of a user’s distinct service
provider’s account attributes (personal data, online configurations, buying habits
and history, shopping preferences, etc.). The information is still administered by
the user, yet it is securely shared with the organizations of their choosing.

Federation Management Process

236 Identity Server Programmer’s Guide • December 2002

Federation Termination (Defederation)
Users have the ability to terminate federations. Federation termination results in
the cancellation of affiliations established between the user’s identity provider
account and federated service provider accounts.

Single Sign-on
Single sign-on (SSO) is established when a user with a federated identity
authenticates to an identity provider and is then able to access affiliated service
providers without having to authenticate again.

Single Logout
When a user logs out from an identity provider or a service provider, they will
effectively be logged out from all service providers or identity providers in that
authentication domain.

Common Domain
When authenticated, an identity provider writes a cookie stating the user’s
preferred identity provider (itself). However, due to the constraints in cookie
standards, there is no way for an identity provider in one DNS domain to write a
cookie that a service provider in another DNS domain can read. To work around
this situation, the Liberty specification advocates the use of a Common Domain
(also known as third level domain).

Name Identifier
Identity federation maps a user’s account information across a number of service
and identity provider organizations. The user’s identity is exchanged between the
identity and service providers as a name identifier, and is stored in the Directory
Server data store.

Federation Management Process
Out of the box, Identity Server has two options for user or application
authentication. The first is the Identity Server Authentication Service and the
second is the Liberty-enabled Federation Management Service. In an Identity
Server scenario when a user or application tries to access a resource protected by
the Identity Server, the user is redirected to the Authentication Service via a Login
page for access authorization. When the user provides credentials, the
authentication module verifies them and either allows or denies access.

Federation Management Process

Chapter 9 Federation Management 237

In a scenario where the Identity Server is Liberty-enabled and a user or application
attempts to access a protected resource, the user is redirected to a Pre-Login page
which invokes the Federation Management Service’s Pre-Login servlet. This servlet
searches for either a valid Identity Server single sign-on token or a valid Federation
Cookie (which indicates that a user has federated his account using this Identity
Server provider). If an SSO token is found, the user’s Federation information is
retrieved, and the user is authenticated; a Federation Cookie is also set and the user
is returned to the target resource.

If a Federation Cookie is found, the user is directed to the Federation Single
Sign-On Service which provides an Authentication Assertion allowing the user
access to the target resource. If neither of these items is found, the user is redirected
to the Identity Server Authentication Service where, upon successful
authentication, they are directed to the Post-Login page which invokes the
Post-Login servlet. This servlet processes the user’s Identity Server authentication
and initiates the Federation Management Single Sign-On Service which, once
again, provides an Authentication Assertion to allow the user access to the target
resource. Figure 9-1 on page 238 illustrates this flow.

NOTE More information on the Authentication Service can be found in Chapter 3,
“Authentication Service.”

NOTE The federation cookie is different from the Identity Server cookie discussed
in “Cookies and Session Tokens,” on page 81. By default, the federation
cookie is a persistent cookie and there is currently no option to disable this.

Federation Management Process

238 Identity Server Programmer’s Guide • December 2002

Figure 9-1 Liberty-enabled Identity Server Authentication Process Flow

Federation Management Protocols
In order to enable the federation process, the Liberty Alliance Project’s Phase I
Specifications define the following protocols that are implemented by the Identity
Server:

Federation Management Process

Chapter 9 Federation Management 239

Single Sign-on and Federation Protocol
This is the protocol used to federate a user’s identity for a service provider with
their identity for an identity provider, thus enabling single sign-on. It also specifies
the means by which a service provider obtains an Authentication Assertion from
an identity provider to provide single sign-on to the user. There are two types
which either the identity or service provider can implement:

• SOAP - based Single Sign On and Federation Protocol relies on a SOAP call
from the service provider to the identity provider.

• Form POST - based Single Sign On and Federation Protocol relies on a form
POST to communicate between the service provider and the identity provider.

Federation Termination Notification Protocol
This is the protocol used to notify providers when a user’s existing federated
identity is terminated. The termination can be initiated at either the identity or
service provider. The provider will notify all other providers in the Authentication
Domain when a user defederates their identity. There are two types of notification
which either the identity or service provider can implement:

• SOAP - based Federation Termination Notification Protocol relies on a SOAP
call from the service provider to the identity provider.

• Form POST - based Federation Termination Notification Protocol relies on a
form POST to communicate between the service provider and the identity
provider.

Name Registration Protocol
At the time of federating a user account, the identity provider generates a name
identifier that serves as the term the identity provider and the service provider use
in referring to the user when communicating. This is the IDP Provided
NameIdentifier. Subsequent to federation, however, the service provider may
register a different name identifier with the identity provider. This is the SP
Provided NameIdentifier. The identity provider must use the SP Provided
NameIdentifier when communicating with the service provider about the user until
after federation when they will both use the IDP Provided NameIdentifier.

Single Log-Out Protocol
This is the protocol used to synchronize the session log-out functionality across all
sessions that were authenticated and opened by a particular identity provider.
There are two types which either the identity or service provider can implement:

Federation Management API

240 Identity Server Programmer’s Guide • December 2002

• SOAP-based Single Log-Out Protocol relies on asynchronous SOAP messaging
between service providers and identity providers.

• Form POST-based Single Log-Out Protocol relies on a form POST to
communicate between service providers and identity providers.

IDP Introduction Protocol
In federation networks having more than one identity provider, the service
providers need a way to determine which identity provider(s) is the user’s
preferred identity provider. The Liberty specification defines a protocol which
relies on a cookie written in a domain that is common between identity providers
and service providers. This predetermined domain is the common domain and the
cookie containing the preferred identity provider is known as the common domain
cookie. The service provider can read this cookie value to identify a user’s preferred
identity provider and get authentication assertions from that identity provider.
Both identity providers and service providers implement this protocol.

Federation Management API
The LibertyManager class forms the basis of the Federation Management APIs.
This interface is instantiated by web applications that want to access the Federation
Management module. It contains the methods needed by the module JSPs for
account federation, session termination, log in, log out and other actions. These
methods include:

• getSPList()—which returns a list of all trusted service providers.

• getSPList(String hostedProviderID)—which returns a list of all trusted
service providers for the specified hosted provider.

• getIDPList()—which returns a list of all trusted identity providers.

• getIDPList(String hostedProviderID)—which returns a list of all trusted
identity providers for the specified hosted provider.

• getSPFederationStatus(String user, String provider)—which
retrieves the federations status of a user with a service provider. This method
assumes that the user is already federated with the provider.

• getIDPFederationStatus(String user, String provider)—which
retrieves the federation status of a user with an identity provider. This method
assumes that the user is already federated with the provider.

Customizing The Module

Chapter 9 Federation Management 241

• getFederatedProviders(String userName)—which returns a specific user’s
federated providers.

• getProvidersToFederate(String providerID, String

userName)—which returns the list of all trusted identity providers to which
the specified user is not already federated.

• getListOfCOTs(String providerID)—which returns a list of authentication
domains for the given provider.

Customizing The Module
The Federation Management module uses JSP files to define the look and feel of its
pages. An administrator can customize the JSPs by changing the tags accordingly.
The JSPs can be found in the <identity_server_root>/SUNWam/web-apps/
services/config/federation/default/ directory and include:

• CommonLogin.jsp—displays links to the login pages of the trusted identity
providers as well as the local login link. It is displayed when the user is not
locally logged in or not logged in at the identity provider site. The list of
trusted identity providers is obtained by the getIDPList(hostedProviderID)
method.

• Error.jsp—displays an error page when one has occurred.

• Federate.jsp—is displayed when the user clicks the Federate link in the
index.jsp. It displays a drop-down menu that lists all providers with which
the user is not yet federated. This list is constructed from the
getProvidersToFederate(userName, providerID) method which returns
all active providers to which the user is not yet federated.

• FederationDone.jsp—displays the status of federation (success or cancelled).
It checks this status using the isFederationCancelled(request) method.

• Footer.jsp—displays a branded footer.

• Header.jsp—displays a branded header.

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <identity_server_root>/SUNWam/docs/
directory into the <identity_server_root>/SUNWam/public_html
directory and pointing the browser to
http://<server_name.domain_name>:<port>/docs/index.html.

Federation Management Samples

242 Identity Server Programmer’s Guide • December 2002

• ListOfCOTs.jsp—displays multiple authentication domains (or circles of
trust) when the service provider belongs to more than one. When a user is
authenticated by an identity provider and the provider belongs to more than
one authentication domain, they will be shown the ListOfCOTs.jsp to select
one domain as the preferred domain. In the case that the provider belongs to
only one domain, then this page will not display as, by default, the one domain
is the preferred domain. The list of authentication domains is obtained by
using the getListOfCOTs(providerID) method.

• LogoutDone.jsp—displays the status of the local logout.

• Termination.jsp—is displayed when the user clicks the defederate link. It
shows a drop-down menu of all providers to which the user has already
federated; from this list, the user can choose to defederate. The list is
constructed using the getFederatedProviders(userName) method which
returns all active providers to which the user is already federated.

• TerminationDone.jsp—displays the status of federation termination (success
or cancelled). It checks this status using the
isTerminationCancelled(request) method.

The files in this directory provide a default GUI for the module. To customize it for
a specific organization, this default directory can be copied and renamed to reflect
the name of the organization (or any value). It would then be placed at the same
level as the default directory and the files within this directory could then be
modified as needed.

Federation Management Samples
There are a number of samples included with the Identity Server that demonstrate
the different protocols used in the Federation Management module. They are
located in the <identity_server_root>/SUNWam/samples/liberty/ directory.
Instructions on how to implement the samples can be found in the README file.

• Sample 1 illustrates a scenario with one Service Provider and one Identity
Provider configured on two separate Identity Server installations. Two server
machines are required.

• Sample 2 illustrates a scenario with one Service Provider whose resources are
deployed on a Sun ONE Web Server protected by an Identity Server Policy
Agent and one Identity Provider. At least two server machines are required for
this sample also.

Federation Management Samples

Chapter 9 Federation Management 243

• Sample 3 illustrates a multiple hosted providers scenario with two Service
Providers and two Identity Providers. This sample scenario requires only one
server machine and one Identity Server installation. Four hosted providers
(two Service Providers and two Identity Providers) are created on the same
Identity Server Installation.

Federation Management Samples

244 Identity Server Programmer’s Guide • December 2002

245

Chapter 10

Logging Service

The Sun™ One Identity Server provides a Logging Service to record information
such as user activity, traffic patterns, and authorization violations. In addition,
Identity Server includes a Logging API to allow external applications to take
advantage of the Logging Service. This chapter explains the service and the API. It
contains the following sections:

• Overview

• Log Message Formats

• Logging API

• Logging SPI

• Debug Files

• Secure Logging

Overview
The Logging Service enables all Identity Server services to record information that
might be useful to the administrator in one centralized location. The recorded
information may include access denials and approvals, authorization violations
and code exceptions. This information allows administrators to analyze user
activity, Identity Server traffic patterns and authorization violations. As with all
Identity Server services, the Logging Service uses a global configuration file,
named amLogging.xml, to define its attributes (such as maximum log size and log
location), or whether the log information is written to a flat file or a relational
database.

NOTE The directory location for all logs is /var/opt/SUNWam.

Overview

246 Identity Server Programmer’s Guide • December 2002

Logging Architecture
External Java applications use the Logging API to access the Logging Service.
These interfaces may reside on a remote server or on the same server as the
Logging Service. If the APIs live remotely, the PLL Communication Component, an
XML over HTTP interface, is used to send the logging request to the Logging
Service.

An application accesses the Logging Service by calling the Logging API. Upon
receiving a request, the Logging Service loads the configuration data stored in the
Directory Server using the Identity Server SDK. Any exception message will be
logged, based on these configuration values. On any error, a LoginException is
thrown. Figure 10-1 illustrates the architecture of the Logging Service.

Figure 10-1 Logging Service Architecture

NOTE The logging architecture extends the Java™ 1.4 Logging API specifications.

Log Message Formats

Chapter 10 Logging Service 247

Logging Service XML File
The Logging Service holds the attributes and values for the logging function. These
attributes and values are defined in the amLogging.xml service file located in
<identity_server_root>/SUNWam/config/xml. The values defined in
amLogging.xml are applied across the Identity Server deployment and are
inherited by every configured organization. More information on the Logging
Service and its attributes can be found in the Sun ONE Identity Server Administration
Guide.

Log Security
An optional logging feature adds additional security to the log files in terms of tamper
detection. No special coding is required to leverage this feature. Please refer to the Sun ONE
Identity Server Administration Guide for steps to turn on and configure this secure logging
feature.

Log Message Formats
Identity Server supports logging messages stored in both, a text file and a relational
database. The following sections explain the data storage formats used in these
formats.

Flat File Format
The default flat file format is the W3C Extended Log Format (ELF). In leveraging
this format, the Logging Service records time, Data, HostName, LoginID,
LogLevel, Domain and IPAddr fields in each log record.

• time is the date (yyyy/mm/dd) and time (hh:mm:ss) at which the log message
was recorded.

• Data is the description of the user activity, errors or other useful information
which the application wants to log.

• HostName is the hostname from which the operation was performed.

• LoginID is the ID of the user attempting to access the application.

• LogLevel corresponds to the JDK1.4 l LogLevel of the log record.

• Domain is the Identity Server domain to which the user belongs.

Log Message Formats

248 Identity Server Programmer’s Guide • December 2002

• IPAddr is the IP address from which the operation was performed.

Code Example 10-1 illustrates a log record formatted for a flat file.

Relational Database Format
For applications using a relational database to log messages, the message is stored
in a database table. Identity Server uses Java Database Connectivity (JDBC) to
access data from Java programs in an Oracle® environment. The database schema
is as follows:

Code Example 10-1 Flat File Formatted Log Record Sample

#Version: 1.0
#Fields: time Data HostName LoginID LogLevel Domain IPAddr
"13-11-2002 18:34:50" "Login Success
UserId->uid=amAdmin,ou=People,dc=example,dc=com
UserDomain->dc=sun,dc=com service->adminconsoleservice"
testmachine.example.com "cn=user,ou=Users,dc=example,dc=com" INFO
dc=example,dc=com testmachine.example.com/134.135.134.135

Table 10-1 Relational Database Log Format

Column Name Data Type Description

TIME VARCHAR2(30) Date of the log in the format yyyy/mm/dd
hh:mm:ss.

DATA VARCHAR2(1024) The log message itself.

HOSTNAME VARCHAR2(300) Host name of machine from which the logged
operation was performed.

LOGINID VARCHAR2(300) Login ID of the user who performed the logged
operation.

LOGLEVEL VARCHAR2(300) JDK 1.4 log level of the log record.

DOMAIN VARCHAR2(300) Identity Server domain of the user.

IPADDR VARCHAR2(300) IP Address of the machine from which the
logged operation was performed.

Logging API

Chapter 10 Logging Service 249

Logging API
The Logging API provides log management tools for all Identity Server services as
well as providing a set of Java classes for external applications to create, retrieve,
submit, or delete log information. These API extend the JDK 1.4 API. The main
classes are Logger and LogRecord. They are contained in the package
com.sun.identity.log.

Logger Class
This Logger class provides the methods for applications to use in creating log files
and writing log information to them.

• The getLogger() method returns a logger object and simultaneously creates a
log in the designated logging location.

• The log() method records a single piece of log information or a LogRecord. It
allows an application to submit a logging message to a predetermined log.

LogRecord Class
The LogRecord class provides the means to represent the information that needs to
be logged. Each instance represents a single piece of log information or LogRecord
that comes from the application.

NOTE There is a limitation in the log name length for Oracle JDBC logging: the
length of the log name cannot exceed 30 characters. Oracle does not support
longer names.

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <identity_server_root>/SUNWam/docs/
directory into the <identity_server_root>/SUNWam/public_html
directory and pointing the browser to
http://<server_name.domain_name>:<port>/docs/index.html.

Logging API

250 Identity Server Programmer’s Guide • December 2002

Logging Exceptions
There are a number of exceptions that can be thrown using the Logging APIs. The
generic LogException is probably the most common. It signals an error condition
while logging a message. Other exceptions include:

• ConnectionException—This exception is thrown when the connection to the
database fails.

• DriverLoadException—This exception is thrown when the JDBC driver load
fails.

• InvalidLogNameException—This exception is thrown when the log name is
invalid.

• LogAlreadyExistException—This exception is thrown when the log already
exists.

• LogCreateException—This exception is thrown when log creation fails.

• LogDeleteException—This exception is thrown when the log deletion fails.

• LogException—A LogException is thrown when applications are denied log
access because they don’t have the privileges or a valid session.

• LogFatalException—This exception is thrown when a fatal error occurs.

• LogHandlerException—A LogException is thrown when a log handler error
is encountered.

• LogInactiveException—A LogException is thrown when the log is in
inactive status. (Inactive/active status is not currently supported.)

• LogInvalidSessionException—This exception is thrown when an
application accesses a log which does not exist.

• LogNotFoundException—This exception is thrown when an application
accesses a log which does not exist.

• LogPrivDeniedException—A LogException is thrown when the access
privilege is denied.

• LogProfileException—A LogException is thrown when access privilege is
denied.

• LogReadExceedsMaxException—A LogException is thrown when the log size
exceeds the maximum size defined in the Logging service.

• LogReadException—A LogException is thrown when an error is encountered
in retrieving the log information.

Logging SPI

Chapter 10 Logging Service 251

• LogTypeException—This exception is thrown when a log type error occurs.

• LogWriteException—This exception is thrown when the log record
submission fails.

• NullLocationException—This exception is thrown when the location is null.

Sample Logging Code
Code Example 10-2 provides sample code to illustrate uses for the Identity Server
logging classes.

Logging SPI
The Logging Service framework allows a customer to plug in a class which can
decide whether a LogRecord should be retained or discarded based on the
authorization of the owner of the SSOToken to perform predefined log operations.
For using this facility, the customer must define a logging policy using the policy
framework and use it from his plugin to take the decision whether the owner of the
SSOToken has permissions to perform the requested logging operation.

Plugin Log Verifier
If secure logging is enabled, the log files are verified periodically to detect any
attempt of tampering. The customers can customize the action taken if a tampering
is detected, by following the steps below.

1. Implement the com.sun.identity.log.spi.IVerifierOutput interface,
programming it for the desired functionality.

Code Example 10-2 Logging API Samples

Logger logger = Logger.getLogger("SampleLogFile");
// Creates the file or table in the LogLocation specified in the
amLogging.xml and returns the Logger object.

LogRecord lr = new LogRecord(Level.INFO, "SampleData", ssoToken);
// Creates the LogRecord filling details from ssoToken.

logger.log(lr,ssoToken);
// Writes the info into the backend file, db or remote server.

Log Files

252 Identity Server Programmer’s Guide • December 2002

2. Add the implementing class in the classpath of Identity Server.

3. Modify the property iplanet-am-logging-verifier-action-class in the
<identity_server_root>/SUNWam/config/xml/amLogging.xml file with the
name of the new class.

Plugin Authorization Mechanism
The logging framework allows the customer to plugin a class which decides
whether a LogRecord should be logged or discarded based on the authorization of
the owner of the SSOToken to perform predefined log operations. For using this
facility, the customer must define his logging policy using the policy framework
and use it from his plugin to take the decision whether the owner of the SSOToken
has permissions to perform the requested logging operation.

1. Implement the com.sun.identity.log.spi.IAuthorizer interface programming it
for the desired functionality.

2. Add the implementing class in the classpath of Identity Server.

3. Modify the property iplanet-am-logging-authz-class in the
<identity_server_root>/SUNWam/config/xml/amLogging.xml file with the
name of the new class.

Log Files
By default, Identity Server currently records events in four logs. These files should
be monitored by the administrator on a regular basis. The directory for the log files
can be found in var/opt/SUNWam.

SSO-related Logs
The Logging Service logs the following events for the SSO component:

• Login

• Logout

NOTE The policy agents are responsible for logging exceptions related to resource
access or denial; in other words, policy-related issues. For more information
on this function, see the Sun ONE Identity Server Policy Agent Guide.

Debug Files

Chapter 10 Logging Service 253

• Session Idle TimeOut

• Session Max TimeOut

• Failed To Login

• Session Reactivation

• Session Destroy

The log file is called amSSO and is stored in the var/opt/SUNWam/logs directory.

Console-related Logs
The Identity Server console logs record the creation, deletion and modification of
identity-related objects, policies and services including, among others,
organizations, organizational units, users, roles, policies and groups. It also records
modifications of user attributes including passwords and the addition or removal
of users to or from roles and groups. The log is named amConsole and is stored in
the var/opt/SUNWam/logs directory.

Authentication-related Logs
The Logging component logs user logins and logouts. The log is named
amAuthentication and is stored in the var/opt/SUNWam/logs directory.

Federation-related Logs
The Federation component logs federation-related events including, but not
limited to, the creation of an Authentication Domain and the creation of a Hosted
Provider. The log is named amFederation and is stored in the
var/opt/SUNWam/logs directory.

Debug Files
Debug files are stored in var/opt/SUNWam/debug. This location, along with the
level of the debug information, is configurable in the AMConfig.properties file,
located in the <identity_server_root>/SUNWam/lib/ directory. The debug files
may be monitored in the event of, for example, a product crash. The administrator
can try to understand the reason for an error situation from these files.

Secure Logging

254 Identity Server Programmer’s Guide • December 2002

Secure Logging
Secure Logging enables the detection of unauthorized changes or tampering with
the security logs. The Identity Server administrator can enable secure logging by
following this procedure:

1. Create a web server certificate with the name Logger and install it in the Sun
ONE Web Server running the Identity Server.

Refer to the Sun ONE Web Server documentation for instructions on this
detailed procedure.

2. Select the Logging Service under the Service Configuration module, turn on
Secure Logging and click Save.

3. Create a file in the <identity_server_root>/SUNWam/config directory
named .wtpass which contains the Web Server administrator password.

Ensure that read permission is given only to the user running the Web Server
process. The administrator can configure the log sign interval and log
verification interval from the Identity Server console.

4. Restart the Web Server after making these changes.

255

Chapter 11

Client Detection

The Sun™ One Identity Server may be accessed using multiple clients types,
whether HTML-based, WML-based or other protocols. In order for this function to
work, Identity Server must be able to identify the client type. The client detection
API is used for this purpose. This chapter offers information on the API, and how it
can be used to recognize the client type. It contains the following sections:

• Overview

• Client Data

• Client Detection API

Overview
Identity Server has the capability to process requests from multiple client type
browsers. The client detection API can be used to determine the protocol used by
the requesting client browser and retrieve the correctly formatted pages for the
particular client type.

Since any browser type requesting access to the Identity Server must first be
successfully authenticated, client detection is accomplished within the
Authentication Service. When a client’s HTTP request is passed to the Identity
Server, it is directed to the Authentication Service. Within this framework, the first
step in user validation is to identify the browser type using information stored in
the HTTP string request. The Authentication Service then uses this information to
retrieve the browser type’s characteristics. The characteristics are configured and

NOTE Currently, Identity Server only defines client data for supported HTML
client browsers including Internet Explorer and Netscape Communicator.

Client Data

256 Identity Server Programmer’s Guide • December 2002

stored in the amClientDetection.xml file and are referred to as the client data.
Based on this client data, correctly formatted authentication pages are sent back to
the client browser (for example, HTML or WML pages). Once the user is validated,
the client type is added to the session token (as the key clientType) where it can
be retrieved and used by other Identity Server services.

Client Data
In order to recognize client types, Identity Server stores their identifying
characteristics in its Directory Server data store. This client data identifies the
features of all of the particular deployment’s supported client browsers. Client data
for supported client types are defined in the amClientDetection.xml file. The
attribute in which it is defined is iplanet-am-client-detection-client-types.
The different aspects of the client data are separated by a pipe (“|”) as follows:

clientType=<value>|userAgent=<value>|contentType=<value>|cookieSupp
ort=<value>|fileIdentifier=<value>|filePath=<value>|charset=<value>.

The fields defined are:

• clientType—an arbitrary string which uniquely identifies the client. The
default is genericHTML.

• UserAgent—a search filter used to compare/match the user-agent defined in
the HTTP header. The default is Mozilla/4.0.

• contentType—defines the content type of the HTTP request. The default is
text/html.

• cookieSupport—defines whether cookies are supported by the client browser.
The default is true.

• fileIdentifier—is not used at this time.

• filePath—is used to locate the client type files (templates and JSP files). The
default is html.

NOTE The client detection mechanism is disabled by default which assumes the
client to be of the genericHTML type. All client data associated with
genericHTML, as explained in “Client Data,” on page 256, will be used.

Client Detection API

Chapter 11 Client Detection 257

• charset—defines the character encoding used by Identity Server to send a
response to the browser. The default value is UTF-8. The character set can be
configured for any given locale by adding charset_locale=codeset where
the code set name is based on the Internet Assigned Numbers Authority
(IANA) standard.

Client Detection API
By default, Identity Server only includes client detection functionality for browsers
that use HTML. But, it is packaged with an API for writing proprietary client
detectors that can retrieve any client data. The client detection API are in a package
called com.iplanet.services.cdm. This package provides the interfaces and
classes to detect any client browser types. The procedure would include defining
the client type characteristics for the new module (as stated in “,” on page 256) as
well as implementing the client detection API within the external application.
Identity Server services can be accessed by multiple client browser types. For
example, a client accessing Identity Server may be a HTML client type or a WML
client type. As any client browser requesting access to an Identity Server service
must be successfully authenticated, client detection is accomplished as part of the
Authentication Service. This service identifies the client type from it’s incoming
HTTPRequest for access, using the getClientType method in the
ClientDetectionInterface interface. Upon successful authentication, the client
type is then added to the user’s session token where other applications can find it
and use the client detection API to retrieve it.

NOTE In order to enable client detection for the Identity Server deployment, the
iplanet-am-auth-client-detection-enabled attribute, also
defined in the amClientDetection.xml file, must be set to true.

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <identity_server_root>/SUNWam/docs/
directory into the <identity_server_root>/SUNWam/public_html
directory and pointing the browser to
http://<server_name.domain_name>:<port>/docs/index.html.

Client Detection API

258 Identity Server Programmer’s Guide • December 2002

Client Detection Module Interface
Client detection capability is provided by the ClientDetectionInterface
interface. It contains a getClientType method which is called by the
Authentication Service when a new login request is received. The Authentication
Service executes the retrieval of the value of the
iplanet-am-auth-client-detection-class attribute to determine the name of
the implementing class of the ClientDetectionInterface. The service then
passes the HttpRequest to the getClientType method which does the actual client
detection and returns the clientType as a string. The default implementation will
assume the client type to be the defined default type. An error condition will be
handled by the ClientDetectionException class. Code Example 11-1 below is an
example implementation of the ClientDetectionInterface.

Code Example 11-1 Implementation of the ClientDetectionInterface

/**
 * $Id: ClientDetectionDefaultImpl.java,v 1.2 2002/05/09 01:27:40
denz Exp $
 * Copyright 2001 Sun Microsystems, Inc. Some preexisting
 * portions Copyright 2001 Netscape Communications Corp.
 * All rights reserved. Use of this product is subject to
 * license terms. Federal Acquisitions: Commercial Software --
 * Government Users Subject to Standard License Terms and
 * Conditions.
 *
 * Sun, Sun Microsystems, the Sun logo, and iPlanet are
 * trademarks or registered trademarks of Sun Microsystems, Inc.
 * in the United States and other countries. Netscape and the
 * Netscape N logo are registered trademarks of Netscape
 * Communications Corporation in the U.S. and other countries.
 * Other Netscape logos, product names, and service names are
 * also trademarks of Netscape Communications Corporation,
 * which may be registered in other countries.
 */

package com.iplanet.services.cdm;

/* iPlanet-PUBLIC-CLASS */

import javax.servlet.http.HttpServletRequest;
import java.util.HashMap;
import com.iplanet.am.util.*;

/**
 * The <code>ClientDetectionInterface</code> interface needs to
 * be implemented by services and applications serving multiple
 * clients, to determine the client from which the request has
 * originated. This interface detects the clientType from the
client request.
 */

Client Detection API

Chapter 11 Client Detection 259

public class ClientDetectionDefaultImpl implements
ClientDetectionInterface
{
 /** Detects the client type based on the request object
 * @param retuest Http Servlet Request
 * @return a String representing the client type
 * @exception ClientDetectionException when there is an error
 * retrieving client data
 */

 /* For caching purpose, HashMap is used */
 private static HashMap agentTable = new HashMap (10);
 private static Debug debug =
Debug.getInstance("amClientDetection");

 public String getClientType(HttpServletRequest request)
 throws ClientDetectionException {

 String lstr = request.getHeader("User-Agent");
 if (debug.messageEnabled()) {
 debug.message("DefaultImpl Agent = "+lstr);
 }

 String result;

 /* Check if it is in the cache */

 result = (String)agentTable.get(lstr);
 if (result != null && result.length() != 0) {
 return result;
 }
 result = "genericHTML"; // Set the default value

 /* Known formats if User-Agents are
 Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0) ==>
MSIE
 Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0) ==>
MSIE
 Mozilla/4.76 [en] (X11; U; SunOS 5.8 sun4u) ==>
NSCP_UNIX
 Mozilla/5.0 (X11; U; Linux i686; en-US; rv:0.9.2.1)
Gecko/20010901 ==> NSCP_UNIX
 Mozilla/4.79 [en] (Windows NT 5.0; U) ==> NSCP_WIN32
 Mozilla/4.78 [ja/[Vine,RedHat]] (X11; U; Linux 2.4.7-10
i686) ==> NSCP6
 Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0) ==>
MSIE6
 Mozilla/4.78 [en] (WinNT; U) ==> NSCP_WIN32

 */

 char[] str = lstr.toCharArray();

Code Example 11-1 Implementation of the ClientDetectionInterface

Client Detection API

260 Identity Server Programmer’s Guide • December 2002

 String tokens ;

 /* Skip leading space */
 int idx = 0;
 int st;
 try {
 /* Skip the preceding white spaces */
 while (Character.isWhitespace(str[idx])) {
 idx++;
 }
 st = idx;
 /* Get the first token */
 while (!Character.isWhitespace(str[idx])) {
 idx++;
 }
 String agent = new String (str,st,idx);

 /* Look for compatibilty */
 while ((str[idx]!='(')) {
 idx++;
 }

 st = idx+1;
 while ((str[idx]!=')')) {
 idx++;
 }
 tokens = new String(str,st,idx-st);
 if (tokens.indexOf ("MSIE")!= -1) {
 if (tokens.indexOf ("6.0")!= -1)
 return "MSIE6";
 else
 result= "MSIE";
 } else if(agent.indexOf("Mozilla/4")!= -1) {
 if ((tokens.indexOf ("X11;") != -1) &&
(tokens.indexOf ("U;")!= -1))
 result= "NSCP_UNIX";
 if (tokens.indexOf ("Windows") != -1 ||
tokens.indexOf("WinNT") != -1)
 result= "NSCP_WIN32";
 } else if ((agent.indexOf ("Mozilla/5") != -1))
 result="NSCP6";
 } catch (IndexOutOfBoundsException ex) {
 // Unable to parse the User-Agent or unknown Agent.
Fall back to
 // Generic HTML
 if (debug.messageEnabled()) {
 debug.message("DefaultImpl AgentException in parsing
= "+ex);
 }
 }

 if (debug.messageEnabled()) {
 debug.message("DefaultImpl result = "+result);
 }

Code Example 11-1 Implementation of the ClientDetectionInterface

Client Detection API

Chapter 11 Client Detection 261

 synchronized (agentTable) {
 agentTable.put (lstr, result);
 }
 return result;
 }
}

Code Example 11-1 Implementation of the ClientDetectionInterface

Client Detection API

262 Identity Server Programmer’s Guide • December 2002

263

Chapter 12

Identity Server Utilities

The Sun ONE Identity Server provides scripts to backup and restore data as well as
application programming interfaces (API) that are used by the server itself or by
external applications. This chapter explains the scripts and the API. It contains the
following sections:

• Backup And Restore

• Utility API

Backup And Restore
The Backup and Restore function of Identity Server allows businesses to keep their
data safe by backing it to up and recovering it following an unexpected loss.
Backed-up information includes all configuration, customization and identity data
that has been modified or added since the initial installation of the Identity Server.
Log and debug files are also backed up. (Identity Server will not backup anything
that remains unchanged from the installation state.)

The Restore function re-configures a freshly installed Identity Server to a former
state, reflected by the data that was last backed up. It restores all the configuration,
customization and identity data that was last backed up as well as the log and
debug files. Both the Backup and Restore functions are initiated through the use of
scripts provided with Identity Server.

NOTE The backup and restore functions are performed on the Identity Server data
stored in the Directory Server.

Backup And Restore

264 Identity Server Programmer’s Guide • December 2002

Backup Script
Following is the script used for backing up data. The utility is named am2bak and
can be found in the <identity_server_root>/SUNWam/bin directory. am2bak
takes command-line parameters and creates a backup.inf file containing
information pertinent to the backup. A tar file is then created consisting of all the
data.

Usage
The script is:

• ./am2bak [-v | --verbose] [-k | --backup <backup-name>] [-l

| --location <location>] [[-c | --config] | [-b | --debug] | [-g

| --log] | [-t | --cert] | [-d | --ds] | [-a | --all]]*

• ./am2bak -h | --help

• ./am2bak -n | --version

The options are defined as:

• -v | --verbose — runs the script in verbose mode.

• -k | --backup <backup-name> — defines the name of the backup file. The
default filename is ambak.

• -l | --location <location> — defines the location of the backup file. The
default is <identity_server_root>/backup.

• -c | --config — confines the backup to only configuration files. This also
includes the service configuration data (updated service schema files and the
service configurations for various organizations).

• -b | --debug — confines the backup to only debug files.

• -g | --log — confines the backup to only log files.

• -t | --cert — confines the backup to only the certification database.

• -d | --ds — confines the backup to the Directory Server.

• -a | --all — defines a complete backup of the Identity Server. This is the
default option.

• --help — accesses the script’s help feature.

• --version — prints the version of the backup script being used to the screen.

Backup And Restore

Chapter 12 Identity Server Utilities 265

Backup Procedure
1. Login as root.

The user running this script must have root access.

2. Run the script ensuring that the correct path is used, if necessary.

The script will backup the following Solaris™ Operating Environment files:

❍ Configuration and Customization Files:

• <identity_server_root>/SUNWam/config/

• <identity_server_root>/SUNWam/locale/

• <identity_server_root>/SUNWam/servers/httpacl

• <identity_server_root>/SUNWam/lib/*.properties (Java
property files)

• <identity_server_root>/SUNWam/bin/amserver.<instance-name>

• <identity_server_root>/SUNWam/servers/https-<all_instances>

• <identity_server_root>/SUNWam/servers/web-apps-<all_instance
s>

• <identity_server_root>/SUNWam/web-apps/services/WEB-INF/conf

ig

• <identity_server_root>/SUNWam/web-apps/services/config

• <identity_server_root>/SUNWam/web-apps/applications/WEB-INF/

classes

• <identity_server_root>/SUNWam/web-apps/applications/console

• /etc/rc3.d/K55amserver.<all_instances>

• /etc/rc3.d/S55amserver.<all_instances>

• <directory_server_root>/slapd-<host>/config/schema/

• <directory_server_root>/slapd-<host>/config/slapd-collations

.conf

• <directory_server_root>/slapd-<host>/config/dse.ldif

❍ Log And Debug Files:

• var/opt/SUNWam/logs (Identity Server log files)

• var/opt/SUNWam/install (Identity Server installation log files)

Backup And Restore

266 Identity Server Programmer’s Guide • December 2002

• var/opt/SUNWam/debug (Identity Server debug files)

❍ Certificates:

• <identity_server_root>/SUNWam/servers/alias

• <directory_server_root>/alias

The script will also backup the following Microsoft® Windows 2000 operating
system files:

❍ Configuration and Customization Files:

• <identity_server_root>/web-apps/services/WEB-INF/config/*

• <identity_server_root>/locale/*

• <identity_server_root>/web-apps/applications/WEB-INF/classes

/*.properties (java property files)

• <identity_server_root>/servers/https-<host>/config/jvm12.con

f

• <identity_server_root>/servers/https-<host>/config/magnus.co

nf

• <identity_server_root>/servers/https-<host>/config/obj.conf

• <directory_server_root>/slapd-<host>/config/schema/*.ldif

• <directory_server_root>/slapd-<host>/config/slapd-collations

.conf

• <directory_server_root>/slapd-<host>/config/dse.ldif

❍ Log And Debug Files:

• var/opt/logs (Identity Server log files)

• var/opt/debug (Identity Server debug files)

❍ Certificates:

• <identity_server_root>/servers/alias

• <identity_server_root>/alias

Backup And Restore

Chapter 12 Identity Server Utilities 267

Restore Script
Following is the script used for restoring backed-up data to a freshly reinstalled
Identity Server. The utility is named bak2am and can be found in the
<identity_server_root>/SUNWam/bin directory. bak2am takes the backup file
name as a command-line parameters, reads the backup.inf file, untars the data file
and performs the restoration accordingly.

Usage
The script is:

• ./bak2am [-v | --verbose] -z | --gzip <tar.gz-file> or -t |

--tar <tar-file>

• ./bak2am -h | --help

• ./bak2am -n | --version

The options are defined as:

• -v | --verbose — runs the script in verbose mode.

• -z | --gzip <tar.gz file-name> — defines the location of a gzipped data
backup tar file. A full path name must be used if the file is not located in the
default <identity_server_root>/backup directory.

• -t | --tar <tar-file> — defines the location of a data backup tar file. A
full path name must be used if the file is not located in the default
<identity_server_root>/backup directory.

• --help — accesses the script’s help feature.

• --version — prints the version of the backup script being used to the screen.

Restore Procedure
1. Login as root.

The user running this script must have root access.

2. Untar the input tar file.

This was generated when the backup script was run.

NOTE The Restore script will stop the Identity Server if it is running when the
script is activated.

Utility API

268 Identity Server Programmer’s Guide • December 2002

Utility API
The utilities package is called com.iplanet.am.util. It contains utility programs
that can be used by external applications accessing Identity Server. The API
include:

• StatsListener

• AdminUtils

• Debug

• Locale

• Stats

• SystemProperties

• ThreadPool

API Summary
Following is a summary of the utility API and their functions.

AMPasswordUtil
The AMPasswordUtil interface can be used to encrypt and decrypt passwords.

AdminUtils
This class contains the methods used to retrieve TopLevelAdmin information. The
information comes from the server configuration file (serverconfig.xml).

NOTE The Identity Server Javadocs can be accessed from any browser by
copying the complete <identity_server_root>/SUNWam/docs/
directory into the <identity_server_root>/SUNWam/public_html
directory and pointing the browser to
http://<server_name.domain_name>:<port>/docs/index.html.

Utility API

Chapter 12 Identity Server Utilities 269

Debug
Debug allows an interface to file debug and exception information in a uniform
format. It supports different levels of filing debug information (in the ascending
order): OFF, ERROR, WARNING, MESSAGE and ON. A given debug level is enabled if it is
set to at least that level. For example, if the debug state is ERROR, only errors will be
filed. If the debug state is WARNING, only errors and warnings will be filed. If the
debug state is MESSAGE, everything will be filed. MESSAGE and ON are the same level
except MESSAGE writes to a file, whereas ON writes to System.out.

Locale
This class is a utility that provides the functionality for applications and services to
internationalize their messages.

SystemProperties
This class provides functionality that allows single-point-of-access to all related
system properties. First, the class tries to find AMConfig.class, and then a file,
AMConfig.properties, in the CLASSPATH accessible to this code. The class takes
precedence over the flat file. If multiple servers are running, each may have their
own configuration file. The naming convention for such scenarios is
AMConfig_serverName.

ThreadPool
ThreadPool is a generic thread pool that manages and recycles threads instead of
creating them when a task needs to be run on a different thread. Thread pooling
saves the virtual machine the work of creating brand new threads for every
short-lived task. In addition, it minimizes the overhead associated with getting a
thread started and cleaning it up after it dies. By creating a pool of threads, a single
thread from the pool can be reused any number of times for different tasks. This
reduces response time because a thread is already constructed and started and is
simply waiting for its next task.

NOTE Debugging is an intensive operation and may hurt performance when
abused. Java evaluates the arguments to message() and warning() even
when debugging is turned off. It is recommended that the debug state be
checked before invoking any message() or warning() methods to avoid
unnecessary argument evaluation and to maximize application
performance.

Utility API

270 Identity Server Programmer’s Guide • December 2002

Another characteristic of this thread pool is that it is fixed in size at the time of
construction. All the threads are started, and then each goes into a wait state until a
task is assigned to it. If all the threads in the pool are currently assigned a task, the
pool is empty and new requests (tasks) will have to wait before being scheduled to
run. This is a way to put an upper bound on the amount of resources any pool can
use up. In the future, this class may be enhanced to provide support growing the
size of the pool at runtime to facilitate dynamic tuning.

271

Appendix A

AMConfig.properties File

AMConfig.properties is the resource configuration file for the Sun™ One Identity
Server. It provides instructions for the Identity Server set up. This chapter explains
the elements of the AMConfig.properties. It contains the following sections:

• Overview

• Deployment Directives

• Configuration Directives

• Read-Only Directives

Overview
Identity Server is configured by placing directives in plain text configuration files.
The main configuration file is AMConfig.properties. AMConfig.properties is
located in <identity_server_root>/SUNWam/lib. Changes to this configuration
files are only recognized when Identity Server is started or restarted.

Identity Server configuration files contain one directive per line and each directive
has a corresponding value. Directives and their values are case-sensitive.
Indentation of the directives is consistent throughout the file. Lines which begin
with the characters “/*” are considered comments, and are ignored by the
application. Comments are completed with a last line that contains the closing
characters “*/”.

NOTE The Identity Server must be restarted for any change in
AMConfig.properties to take effect.

Deployment Directives

272 Identity Server Programmer’s Guide • December 2002

Deployment Directives
There are a number of deployment-specific attributes configured in
AMConfig.properties. These are defined in this section.

Identity Server Directives
The following section describe the directives that define the Identity Server.

Installation
The following directives are Identity Server-specific. They are defined during
installation.

• com.iplanet.am.server.host=sunbox1.red.iplanet.com

The value of this directive is the DNS domain name of the machine on which
the Identity Server is located.

• com.iplanet.am.server.port=58080

The value of this directive is the port number of the Identity Server.

• com.iplanet.am.console.protocol=http

The value of this directive is the protocol used to communicate with the
Identity Server.

• com.iplanet.am.jdk.path=/export/SUNWam/java

The value of this directive is the path to the JDK used by the Identity Server.

• com.sun.identity.authentication.super.user=uid=amAdmin,ou=People,dc=madis
onparc,dc=com

This directive identifies the super user for the Sun ONE Identity Server
deployment. This user is amadmin by default but may be any user in the
Directory Server. The value of the directive is the full DN of the user. This user
must always login using LDAP authentication as they will always be
authenticated against the Directory Server.

Console
The following directives are specific to the Identity Server console.

• com.iplanet.am.console.host=sunbox1.red.iplanet.com

Deployment Directives

Appendix A AMConfig.properties File 273

The value of this directive is the DNS domain name of the machine on which
the Identity Server console is located.

• com.iplanet.am.console.port=58080

The value of this directive is the port number of the Identity Server console.

Cookies
The following directives are specific to Identity Server cookies.

• com.iplanet.am.cookie.name=iPlanetDirectoryPro

The value of this key is the name of the cookie.

• com.iplanet.am.pcookie.name=DProPCookie

The value of this key is the name of the persistent cookie if that function is
enabled.

Miscellaneous Directives
The following directives define miscellaneous values necessary for the Identity
Server.

• com.iplanet.am.daemons=unix

• com.iplanet.am.locale=en_US

• com.iplanet.am.logstatus=ACTIVE

• com.iplanet.am.version=6.0

Directory Server
The following directives are Directory Server-specific.

Installation
This information is defined during installation for the Directory Server to which
the Identity Server points.

• com.iplanet.am.directory.host=sunbox1.red.iplanet.com

The value of this directive is the DNS domain name of the machine on which
the Directory Server is located.

• com.iplanet.am.directory.port=389

Configuration Directives

274 Identity Server Programmer’s Guide • December 2002

The value of this directive is the port number of the Directory Server.

• com.iplanet.am.server.protocol=http

The value of this directive is the protocol used to communicate with the
Directory Server.

Directory Server Tree
The values of these directives is the top-level organization defined during the
installation process.

• com.iplanet.am.defaultOrg=dc=madisonparc,dc=com

• com.iplanet.am.rootsuffix=dc=madisonparc,dc=com

• com.iplanet.am.domaincomponent=dc=madisonparc,dc=com

Configuration Directives
There are a number of services configured in AMConfig.properties that can not
be configured using the Identity Server console. These back-end services are
defined in this section.

Debug Service
The following directives are used to configure the Debug Service, which logs
developer information in the case of application errors. (The Logging Service
writes logs to be monitored by the application administrator.)

• com.iplanet.services.debug.level=error

The possible values for this directive are: off | error | warning | message.
They indicate the amount of information that would be recorded in the debug
files.

• com.iplanet.services.debug.directory=/var/opt/SUNWam/debug

The value of this directive specifies the output directory for the debug files.
This directory should be writable by the server process.

NOTE In defining values for the Debug Service, remember that trailing spaces are
significant. On a Windows® system, use forward slashes “/” to separate
directories. Spaces in the file name are also allowed on a Windows system.

Configuration Directives

Appendix A AMConfig.properties File 275

Stats Service
The following keys are used to configure the Stats Service for recording service
statistics. Currently, this service is used by the Identity Server SDK and the Session
Service. Code Example 12-1 is a portion of the stats file which also illustrates the
information that is recorded. The file is named amSDKStats by default.

• com.iplanet.am.stats.interval=3600

The statistics interval should be at least 5 seconds to avoid CPU saturation.
Identity Server will assume that any value less than that is 5 seconds.

• com.iplanet.services.stats.state=off

Possible values for this directive are: off | file | console. file will write
to a file named amSDKStats under the specified directory and console will
write into Web Server log files.

• com.iplanet.services.stats.directory=/var/opt/SUNWam/debug

This directive specifies the output directory for the statistics files, the debug
directory by default.

Code Example 12-1 Portion of amSDKStats File

11/26/2002 01:46:18:592 PM PST: Thread[Thread-10,5,main]
SDK Cache Statistics

Interval: 214
Hits during interval: 38
Hit ratio for this interval: 0.17757009345794392
Total number of requests: 214
Total number of Hits: 38
Overall Hit ratio: 0.17757009345794392
Total Cache Size: 72

NOTE In defining values for the Stats Service, remember that trailing spaces are
significant. On a Windows® system, use forward slashes “/” to separate
directories. Spaces in the file name are also allowed on a Windows system.

Configuration Directives

276 Identity Server Programmer’s Guide • December 2002

SAML
These directives identify the SAML XML signature keystore file, the keystore
password file and the key password file, respectively.

• com.sun.identity.saml.xmlsig.keystore=/export/SUNWam/lib/keystore.jks

• com.sun.identity.saml.xmlsig.storepass=/export/SUNWam/config/.storepass

• com.sun.identity.saml.xmlsig.keypass=/export/SUNWam/config/.keypass

• com.sun.identity.saml.xmlsig.certalias=test

The value of this key is the name of the certificate alias.

Miscellaneous Services
The following directives define the URIs for the Profile, Naming and Notification
services.

• com.iplanet.am.profile.host=sunbox1.red.iplanet.com

• com.iplanet.am.profile.port=58080

• com.iplanet.am.naming.url=http://sunbox1.red.iplanet.com:58080/amserver/na
mingservice

• com.iplanet.am.notification.url=
http://sunbox1.red.iplanet.com:58080/amserver/notificationservice

SDK Caching
Each SDK cache entry stores a set of attributes and values for a user. Because the
size of each object is dependent upon the number of attributes it has, modifying
this property will affect the performance of Identity Server.

• com.iplanet.am.sdk.cache.maxSize=10000

This directive is used to configure SDK caching; it specifies the size of the cache
when caching is enabled. The value of this directive refers to the number of
objects cached and should be an integer greater than 0; if not, the default 10000
will be used.

• com.iplanet.am.session.maxSessions=5000

This directive is used to specify maximum number of concurrent sessions.
Logging in would give a Maximum Sessions error if the maximum concurrent
sessions exceeds the defined number.

Configuration Directives

Appendix A AMConfig.properties File 277

Simple Mail Transfer Protocol (SMTP)
The following directives can be set to any valid SMTP server and port.

• com.iplanet.am.smtphost=localhost

• com.sun.identity.sm.smptpport=25

Identity Object Processing
This directive has a value equal to the implementation class of a module used for
processing user creates, deletes, and modifies.

• com.iplanet.am.sdk.userEntryProcessingImpl=

SSL
This directive enables Secure Socket Layers (SSL).

• com.iplanet.am.directory.ssl.enabled=false

Certificate Database
These directives are used by the command line utilities, the SDK and the LDAP
and Certificate-based authentication modules when initiating SSL connections to
the Directory Server. It is also used when opening https connections from within
the servlet container in the Sun ONE Web Server.

• com.iplanet.am.admin.cli.certdb.dir=/export/SUNWam/servers/alias

The value of this key is the name of the path to the certificate database.

• com.iplanet.am.admin.cli.certdb.prefix=https-sunbox1.red.iplanet.com-sunbox1-

The value of this key is the certificate database prefix.

• com.iplanet.am.admin.cli.certdb.passfile=/export/SUNWam/config/.wtpass

The value of this key is the name of the file that contains the password for the
certificate database.

OCSP Configuration
These directives define configurations for the OCSP (Online Certificate Server
Protocol). If set, the CA cert must be presented in the Web Server’s cert database. If
the OCSP URL is set, the OCSP responder nickname must be set also or they both
will be ignored. If not set, the OCSP responder URL presented in the user’s
certificate will be used for OCSP validation. If the OCSP responder URL is not
presented in user’s cert, then no OCSP validation will be performed.

Configuration Directives

278 Identity Server Programmer’s Guide • December 2002

• com.sun.identity.authentication.ocsp.responder.url=

This directive defines the OCSP responder URL for this instance of Identity
Server (for example, http://ocsp.example.com/ocsp).

• com.sun.identity.authentication.ocsp.responder.nickname=

This directive defines the OCSP responder nickname, the Certificate Authority
cert nickname for the responder defined above (for example, Certificate
Manager - example).

Replication
These two properties are not required to support replication but they may be
helpful in limiting errors due to latency. Enabling them may have a negative
impact on performance but, if replication has significant latency, the retries may be
enough to prevent Entry Not Found errors. For example, let’s assume an Identity
Server console is pointing to a read-only consumer configured to refer writes to a
master. If a new organization is created, all write requests are referred to the master
and then replicated back to the consumer. If Identity Server reads the organization
back before it has been replicated to the consumer, it will get an Entry Not Found
error.

• com.iplanet.am.replica.num.retries=0

This key specifies the number of times to retry. When an Entry Not Found
error is returned to the SDK, it will retry n times where n is the value of this
directive.

• com.iplanet.am.replica.delay.between.retries=1000

This key specifies the delay time (in milliseconds) between the retries defined
above.

NOTE It is not recommended to run the Identity Server console against a read-only
consumer. The exception to this rule is when operating against user entries
whose creations and modifications do not have the same latency problems
as the SDK has special behavior to prevent such problems for these entries.

Read-Only Directives

Appendix A AMConfig.properties File 279

Event Connection And LDAP Connection
These two sets of SDK properties are implemented when load balancers are used
between the Identity SDK and the Directory Server. When the SDK performs an
operation which fails, it will retry the operation as long as the exception is one
defined in the ldap.error.codes property. These properties are necessary for
failover configuration when the failover is done via a load balancer and not
through the Identity SDK. They are also important since not all load balancers
return the same error codes.

Event Connection
• com.iplanet.am.event.connection.num.retries=3

This directive specifies the number of time to retry an event connection.

• com.iplanet.am.event.connection.delay.between.retries=3000

This directive specifies the delay time (in milliseconds) between retries.

• com.iplanet.am.event.connection.ldap.error.codes.retries=80,81,91

This directive specifies the LDAPException errors for which the retries will
occur. The value is any valid LDAP error code.

LDAP Connection
The following keys are used to configure LDAP connection for add, delete modify,
read and search.

• com.iplanet.am.ldap.connection.num.retries=3

This directive specifies the number of times to retry a LDAP connection.

• com.iplanet.am.ldap.connection.delay.between.retries=1000

The directive specifies the delay time (in milliseconds) between retries.

• com.iplanet.am.ldap.connection.ldap.error.codes.retries=80,81,91

This directive specifies the LDAPException error codes for which the retries
will occur.

Read-Only Directives
The following properties are read-only and should not be modified. Any changes
to these directives may render the Identity Server unusable.

Read-Only Directives

280 Identity Server Programmer’s Guide • December 2002

Base Directory
The following directives identify the base directory as defined during the
installation process.

• com.iplanet.am.installdir=/export/SUNWam

• com.iplanet.am.install.basedir=/export/SUNWam/web-apps/services/WEB-IN
F

Shared Secret
The following directive is the shared secret for the Authentication module.

• com.iplanet.am.service.secret=AQIC5wM2LY4SfczLlj6134qMTx0nkE5XiFMg

Deployment Descriptors
The following directives are used to identify the deployment descriptors (URIs) for
Identity Server services and agents.

• com.iplanet.am.services.deploymentDescriptor=/amserver

• com.iplanet.am.console.deploymentDescriptor=/amconsole

• com.iplanet.am.policy.agents.url.deploymentDescriptor=AGENT_DEPLOY_URI

Session Properties
The following directives are configurations for the Session Service.

• com.iplanet.am.session.failover.enabled=false

This directive is used to enable or disable the session failover feature.

• com.iplanet.am.naming.failover.url=

This directive can be used by any remote SDK application that wants failover
in, for example, session validation or getting the service URLs.

NOTE Session failover is an unsupported option in Identity Server 6.0.

Read-Only Directives

Appendix A AMConfig.properties File 281

• com.iplanet.am.session.httpSession.enabled=true

This directive is used to enable or disable the use of a httpSession.

• com.iplanet.am.session.invalidsessionmaxtime=3

This directive is used to keep the invalid session in the session table for this
period. The value is in minutes (for example, 3 minutes).

• com.iplanet.am.session.client.polling.enable=false

• com.iplanet.am.session.client.polling.period=180

The two above directives are used to enable session client side notification. The
default polling period is 180 seconds.

• The following is used in the Unix authentication module.

unixHelper.port=58946

• The following key is used to check whether the Sun ONE Identity Server is
running on the Application Server or not. This key is modified only by the
installer so do not change it.

com.iplanet.am.iASConfig=false

Cross Domain Single Sign-On Support
The following directives are used for Cross Domain SSO support.

• com.iplanet.services.cdsso.CDCURL=http://sunbox1.red.iplanet.com:58080/am
server/cdcservlet

This directive points to the cdcservlet running with the instance of Identity
Server.

• com.iplanet.services.cdsso.cookiedomain=

This directive specifies a comma separated list of domains for which the cdsso
servlet will set a SSOToken (for example: .sun.com,.example.com).

• com.iplanet.services.cdc.authLoginUrl=http://sunbox1.red.iplanet.com:58080/a
mserver/UI/Login

NOTE This value should always be greater than the time-out value in your
authentication module properties file.

Read-Only Directives

282 Identity Server Programmer’s Guide • December 2002

The value of this directive is the URL with which a user can login.

SecureRandom Properties
This directive specifies the factory class name for SecureRandomFactory.

• com.iplanet.security.SecureRandomFactoryImpl=com.iplanet.am.util.JSSSecureR
andomFactoryImpl

The available implementation classes are:

a. com.iplanet.am.util.JSSSecureRandomFactoryImpl (uses JSS)

b. com.iplanet.am.util.SecureRandomFactoryImpl (pure Java)

SocketFactory properties
This directive specifies the factory class name for LDAPSocketFactory.

• com.iplanet.security.SSLSocketFactoryImpl=com.iplanet.services.ldap.JSSSocket
Factory

Available classes are:

a. com.iplanet.services.ldap.JSSSocketFactory (uses JSS)

b. netscape.ldap.factory.JSSESocketFactory (pure Java)

Encryption
This directive specifies the encrypting class implementation.

• com.iplanet.security.encryptor=com.iplanet.services.util.JSSEncryption

Available classes are:

a. com.iplanet.services.util.JCEEncryption

b. com.iplanet.services.util.JSSEncryption.

Read-Only Directives

Appendix A AMConfig.properties File 283

Remote Installation
This directive defines whether the console is installed on a remote machine or a
local machine. It is used by the Authentication Service and the Identity Server
console.

• com.iplanet.am.console.remote=false

IP Address Checking
This directive specifies whether the IP address of the client will be checked in
SSOToken creations and validations.

• com.iplanet.am.clientIPCheckEnabled=false

Remote Policy API Directives
The properties listed below are defined for the Remote Policy API.

Username
This directive specifies the username for the Application authentication module.

• com.sun.identity.agents.app.username=UrlAccessAgent

Log File Name
This directive specifies the name of the log file to use for logging remote policy
messages. The directory where this file is located is determined by Logging Service
settings.

• com.sun.identity.agents.server.log.file.name=amRemotePolicyLog

Resource Result Cache Size
This directive specifies the size of the cache created on the server where the policy
agent resides.

• com.sun.identity.agents.cache.size=1000

Polling Interval
The polling interval is the duration of time for refreshing the cache.

Read-Only Directives

284 Identity Server Programmer’s Guide • December 2002

• com.sun.identity.agents.polling.interval=3

Resource Name Comparison
This directive indicates whether to use wildcard for resource name comparison.

• com.sun.identity.agents.use.wildcard=true

Returned Policy Attributes
This directive defines the policy attributes to be returned by policy evaluator. The
specification is of the format a[,...] where a is the attribute in the data store that will
be fetched.

• com.sun.identity.agents.header.attributes=cn,ou,o,mail,employeenumber,c

Resource Comparator Class Name
• com.sun.identity.agents.resource.comparator.class=com.sun.identity.policy.plugi

ns.PrefixResourceName

Resource Name's Wildcard
• com.sun.identity.agents.resource.wildcard=*

Resource Name's Delimiter
• com.sun.identity.agents.resource.delimiter=/

Case Sensitivity
This is to indicator whether case sensitivity is turned on or off during policy
evaluation. The default value is false or off.

• com.sun.identity.agents.resource.caseSensitive=false

Policy Action True Value
This value is ignored if the application does not access the method
PolicyEvaluator.isAllowed.

• com.sun.identity.agents.true.value=allow

• com.sun.identity.federation.fedCookieName=fedCookie

Read-Only Directives

Appendix A AMConfig.properties File 285

Federation Signing
This directive defines whether federation requests and responses will be signed
before sending and whether federation requests and responses that are received
will be verified for signature validity. The default is false; requests and responses
that are sent and received will not be verified for signature.

• com.sun.identity.federation.services.signingOn=false

FQDN Map
The FQDN Map is a simple map that enables Identity Server Authentication
service to take corrective action in the case where the users may have typed in an
incorrect URL such as by specifying partial hostname or using an IP address to
access protected resources.

Valid Values
Valid values must comply with the syntax of this property which represent invalid
FQDN values mapped to their corresponding valid counterparts. The format for
specifying this property is as follows:

com.sun.identity.server.fqdnMap[<invalid-name>]=<valid-name>

where <invalid-name> is a possible invalid FQDN host name that may be used by
the user, and the <valid-name> is the FQDN host name the filter will redirect the
user to.

This directive can be used for creating a mapping for more than one hostname.
This may be the case when the applications hosted on a server are accessible by
more than one hostname. It may also be used to configure Identity Server to NOT
take corrective action for certain hostname URLs. For example, if no corrective
action (such as a redirect) is desired for users who access application resources
using a raw IP address, the map entry would look like:

com.sun.identity.server.fqdnMap[<IP>]=<IP>

Any number of such properties may be specified as long as they are valid and
conform to the above stated requirements.

CAUTION Ensure that there are no invalid or overlapping values for the same invalid
FQDN name. Failing to do so may lead to the application becoming
inaccessible.

Read-Only Directives

286 Identity Server Programmer’s Guide • December 2002

Examples of FQDN mapping might be:

• com.sun.identity.server.fqdnMap[isserver]=isserver.mydomain.com

• com.sun.identity.server.fqdnMap[isserver.mydomain]=isserver.mydomain.com

• com.sun.identity.server.fqdnMap[<IP address>]=isserver.mydomain.com

• com.sun.identity.server.fqdnMap[<invalid-name>]=<valid-name>

287

Appendix B

Directory Server Concepts

Sun™ One Identity Server uses Sun ONE Directory Server to store its data. Certain
features of the LDAP-based Directory Server are also used by Identity Server to
help manage the data. This chapter contains information on these Directory Server
features and how they are used. It contains the following sections:

• Overview

• Roles

• Access Control Instructions (ACIs)

• Class Of Service

Overview
Because Identity Server needs an underlying directory server to function, it has
been built to work with Sun ONE Directory Server. They are complementary in
architecture and design data. Use of the directory, though, may not be exclusive to
Identity Server and therefore, needs to be treated as a completely separate
deployment. For more information on Directory Server deployment, see the Sun
ONE Directory Server documentation.

This appendix explains three Directory Server functions that are used by the
Identity Server. Roles are an identity grouping mechanism, access control instructions
define a type of permission and class of service are an attribute grouping
mechanism. They are more fully defined below. For more specific information on
these features, see the Sun ONE Directory Server documentation.

Roles

288 Identity Server Programmer’s Guide • December 2002

Roles
Roles are a Directory Server entry mechanism similar to the concept of a group. A
group has members; a role has members. A role’s members are LDAP entries that
are said to possess the role. The criteria of the role itself is defined as an LDAP entry
with attributes, identified by the Distinguished Name (DN) attribute of the entry.
Directory Server has a number of different types of roles but Identity Server can
only manage one of them: the managed role.

Users can possess one or more roles. For example, a contractor role which has
attributes from the Session Service and the URL Policy Agent Service might be
created. Thus, when new contractors start, the administrator can assign them this
role rather than setting separate attributes in the contractor entry. If the contractor
were then to become a full-time employee, the administrator would just re-assign
the user a different role.

Managed Roles
With a managed role, membership is defined in each member entry and not in the
role definition entry. An attribute which designates membership is placed in each
LDAP entry that possesses the role. This is in sharp contrast to a traditional static
group which centrally lists the members in the group object entry itself.

An administrator assigns the role to a member entry by adding the nsRoleDN
attribute to it. The value of nsRoleDN is the DN of the role definition entry. The
following apply to managed roles:

• Multiple managed roles can be created for each organization or
sub-organization.

• A managed role can be enabled with any number of services.

NOTE The other Directory Server role types can still be used in a directory
deployment; they just can not be managed by Identity Server.

NOTE By inverting the membership mechanism, the role will scale better than a
static group. In addition, the referential integrity of the role is simplified,
and the roles of an entry can be easily determined.

Roles

Appendix B Directory Server Concepts 289

• Any user that possesses a role with a service will inherit the service attributes
from that role.

Definition Entry
A role’s definition entry is a LDAP entry in which the role’s characteristic attributes
are defined. These attributes are passed onto the member entry. Below is a sample
LDAP entry that represents the definition entry of a manager role.

The nsManagedRoleDefinition object class inherits from the LDAPsubentry,
nsRoleDefinition and nsSimpleRoleDefinition object classes.

Member Entry
A role’s member entry is a LDAP entry to which the role is applied. An LDAP
entry that contains the attribute nsRoleDN and its value DN indicates that the entry
has the characteristics defined in the value DN entry. In Code Example 12-3 below,
the DN identifies Code Example 12-2 above as the role definition entry:
cn=managerrole,dc=siroe,dc=com.

Virtual Attribute
When a member entry that contains the nsRoleDN attribute is returned by a
Directory Server search, nsRoleDN will be be duplicated as the nsRole attribute in
the same entry. nsRole will carry a value of any managed, filtered or nested roles
assigned to the user (such as ContainerDefaultTemplateRole). Code
Example 12-3 on page 290 includes this virtual attribute when returned by
Directory Server only.

NOTE All Identity Server roles can only be configured directly under organization
or sub-organization entries.

Code Example 12-2 LDAP Definition Entry

dn: cn=managerrole,dc=siroe,dc=com
 objectclass: top
 objectclass: LDAPsubentry
 objectclass: nsRoleDefinition
 objectclass: nsSimpleRoleDefinition
 objectclass: nsManagedRoleDefinition
 cn: managerrole
 description: manager role within company

Roles

290 Identity Server Programmer’s Guide • December 2002

How Identity Server Uses Roles
Identity Server uses roles to apply access control instructions. When first installed,
the Identity Server configures access control instructions (ACIs) that define
administrator permissions. These ACIs are then designated in roles (such as
Organization Admin Role and Organization Help Desk Admin Role) which,
when assigned to a user, define the user’s access permissions. For a list of roles
created for each Identity Server object configured, see “Access Control Instructions
(ACIs),” on page 292.

Role Creation
When a role is created, it contains the auxiliary LDAP object class
iplanet-am-managed-role. This object class, in turn, contains the following
allowed attributes:

• iplanet-am-role-managed-container-dn contains the DN of the
identity-related object that the role was created to manage.

• iplanet-am-role-type contains a value used by the Identity Server console
for display purposes. After authentication, the console gets the user’s roles and
checks this attribute for the correct page to display based on which of the
following three values it has:

❍ 1 for top-level administrator only.

❍ 2 for all other administrators.

❍ 3 for user.

Code Example 12-3 LDAP Member Entry

dn: uid=managerperson,ou=people,dc=siroe,dc=com
 objectclass: top
 objectclass: person
 objectclass: inetorgperson
 uid: managerperson
 gn: manager
 sn: person
 nsRoleDN: cn=managerrole,ou=people,dc=siroe,dc=com
 nsRole: cn=managerrole,ou=people,dc=siroe,dc=com
 nsRole:
cn=containerdefaulttemplaterole,ou=people,dc=siroe,dc=com
 description: manager person within company

Roles

Appendix B Directory Server Concepts 291

If the user has no administrator roles, the User profile page will display. If the
user has an administrator role, the console will start the user at the top-most
administrator page based on which value is present.

Role Location
All roles in an organization are viewed from the organization’s top-level. For
example, if an administrator wants to add a user to the administrator role for a
people container, the administrator would go to the organization above the people
container, look for the role based on the people container’s name, and add the user
to the role.

Displaying The Correct Login Start Page
The attribute iplanet-am-user-admin-start-dn can be defined for a role or a
user; it would override the iplanet-am-role-type attribute by defining an
alternate display page URL. Upon a user’s successful authentication:

1. Identity Server checks the iplanet-am-user-admin-start-dn for the user.

This attribute is contained in the User service. If it is set, the user is started at
this point. If not, Identity Server goes to step 2.

NOTE When Identity Server attempts to process two templates that are set to the
same priority level, Directory Server arbitrarily picks one of the templates to
return. For more information, see the Sun ONE Directory Server
documentation.

NOTE Alternately, an administrator might go to the user profile and add the role
to the user.

NOTE The value of iplanet-am-user-admin-start-dn can override the
administrator’s start page. For example, if a group administrator has read
access to the top-level organization, the default starting page of the top-level
organization, taken from iplanet-am-role-type, can be overridden by
defining iplanet-am-user-admin-start-dn to display the group’s
start page.

Access Control Instructions (ACIs)

292 Identity Server Programmer’s Guide • December 2002

2. Identity Server checks the user for the value of iplanet-am-role-type.

If the attribute defines an administrator-type role, the value of
iplanet-am-role-managed-container-dn is retrieved and the highest point
in the directory tree is displayed as a starting point. For more information on
the iplanet-am-role-type attribute, see “Role Creation,” on page 290.

Access Control Instructions (ACIs)
Access control in Identity Server is implemented using Directory Server roles.
Users inherit access permissions based on their role membership and parent
organization. Identity Server installs pre-configured administrator roles that define
access permissions for administrators; these roles are dynamically created when a
group, organization, container or people container object is configured. They are:

• Organization Admin

• Organization Help Desk Admin

• Group Admin

• Container Admin

• Container Help Desk Admin

• People Container Admin.

These default roles, when possessed by a user entry, apply a set of default access
control instructions (ACIs) that define read and write access to the entries in the
object for which the roles were created. For example, when an organization is
created, the Identity Server SDK creates an Organization Admin role and an
Organization Help Desk Admin role. The permissions are read and write access
to all organization entries and read access to all organization entries, respectively.

NOTE If the attribute has no value, a search from Identity Server root is performed
for all container-type objects; the highest object in the directory tree that
corresponds to the iplanet-am-role-type value is where the user
starts. Although rare, this step is memory-intensive in very large directory
trees with many container entries.

NOTE This section refers to ACIs as they are applied to administrative roles only.
There are other ACIs which are created and used in Identity Server but do
not apply to this topic or to roles.

Access Control Instructions (ACIs)

Appendix B Directory Server Concepts 293

Defining ACIs
ACIs are defined in the Identity Server console administration XML service file,
amAdminConsole.xml. This file contains two global attributes that define ACIs for
use in Identity Server: iplanet-am-admin-console-role-default-acis and
iplanet-am-admin-console-dynamic-aci-list.

iplanet-am-admin-console-role-default-acis
This global attribute defines which Access Permissions are displayed in the Create
Role screen of the Identity Server console. By default, Organization Admin,
Organization Help Desk Admin and No Permissions are displayed. If other
default permissions are desired, they must be added to this attribute.

iplanet-am-admin-console-dynamic-aci-list
This global attribute is where all of the defined administrator-type ACIs are stored.
For information on how ACIs are structured, see “Format of Predefined ACIs,” on
page 293.

Format of Predefined ACIs
ACIs defined using Identity Server for use in administrator-type roles follow a
different format than those defined using the Directory Server. The format of the
predefined Identity Server ACI is permissionName | ACI Description |
DN:ACI ## DN:ACI ## DN:ACI where:

• permissionName—The name of the permission which generally includes the
object being controlled and the type of access. For example, Organization
Admin is an administrator that controls access to an organization object.

NOTE The Identity Server SDK gets the ACIs from the attribute
iplanet-am-admin-console-dynamic-aci-list (defined in the
amAdminConsole.xml service file) and sets them in the roles after they
have been created.

NOTE Because ACIs are stored in the role, changing the default permissions in
iplanet-am-admin-console-dynamic-aci-list after a role has
been created will not affect it. Only roles created after the modification has
been made will be affected.

Access Control Instructions (ACIs)

294 Identity Server Programmer’s Guide • December 2002

• ACI Description—A text description of the access these ACIs allow.

• DN:ACI—There can be any number of DN:ACI pairs separated by the ##
symbols. The SDK will get and set each pair in the entry named by DN. This
format also supports tags which can be dynamically substituted when the role
is created. Without these tags, the DN and ACI would be hard-coded to
specific organizations in the directory tree which would make them unusable
as defaults. For example, if there is a default set of ACIs for every
Organization Admin, the organization name should not be hard-coded in this
role. The supported tags are ROLENAME, ORGANIZATION, GROUPNAME, and
PCNAME. These tags are substituted with the DN of the entry when the
corresponding entry type is created. See the “Default ACIs,” on page 294 for
examples of ACI formats. Additionally, more complete ACI information can be
found in the Sun ONE Directory Server documentation.

Default ACIs
Following are the default ACIs installed by Identity Server. They are copied from a
Identity Server configuration whose top-level organization is configured as o=isp.

• Top Level Admin|Access to all entries|o=isp:aci:

(target="ldap:///o=isp")(targetattr="*")(version 3.0; acl "Proxy

user rights"; allow (all) roledn = "ldap:///ROLENAME";)

• Organization Admin|Read and Write access to all organization

entries|o=isp:aci:(target="ldap:///($dn),o=isp")(targetfilter=(!

(|(nsroledn=cn=Top Level Admin Role,o=isp)(nsroledn=cn=Top Level

Help Desk Admin Role,o=isp))))(targetattr = "*")(version 3.0; acl

"Organization Admin Role access allow"; allow (all) roledn =

"ldap:///cn=Organization Admin Role,[$dn],o=isp";)##o=isp:aci:

(target="ldap:///cn=Organization Admin

Role,($dn),o=isp")(targetattr="*")(version 3.0; acl

"Organization Admin Role access deny"; deny

(write,add,delete,compare,proxy) roledn =

"ldap:///cn=Organization Admin Role,($dn),o=isp";)

• Organization Help Desk Admin|Read access to all organization

entries|ORGANIZATION:aci:(target="ldap:///ORGANIZATION")(targetf

ilter=(!(|(nsroledn=cn=Top Level Admin

Role,o=isp)(nsroledn=cn=Top Level Help Desk Admin

Role,o=isp)(nsroledn=cn=Organization Admin

NOTE If there are duplicate ACIs within the default permissions, the SDK will
print a debug message.

Access Control Instructions (ACIs)

Appendix B Directory Server Concepts 295

Role,ORGANIZATION))))(targetattr = "*") (version 3.0; acl

"Organization Help Desk Admin Role access allow"; allow

(read,search) roledn = "ldap:///ROLENAME";)##ORGANIZATION:aci:

(target="ldap:///ORGANIZATION")(targetfilter=(!(|(nsroledn=cn=To

p Level Admin Role,o=isp)(nsroledn=cn=Organization Admin

Role,ORGANIZATION))))(targetattr = "userPassword") (version 3.0;

acl "Organization Help Desk Admin Role access allow"; allow

(write)roledn = "ldap:///ROLENAME";)

• Container Admin|Read and Write access to all organizational unit

entries|o=isp:aci:(target="ldap:///($dn),o=isp")(targetfilter=(!

(|(nsroledn=cn=Top Level Admin Role,o=isp)(nsroledn=cn=Top Level

Help Desk Admin Role,o=isp))))(targetattr = "*")(version 3.0; acl

"Container Admin Role access allow"; allow (all) roledn =

"ldap:///cn=Container Admin Role,[$dn],o=isp";)o=isp:aci:

(target="ldap:///cn=Container Admin

Role,($dn),o=isp")(targetattr="*")(version 3.0; acl "Container

Admin Role access deny"; deny (write,add,delete,compare,proxy)

roledn = "ldap:///cn=Container Admin Role,($dn),o=isp";)

• Container Help Desk Admin|Read access to all organizational unit

entries|ORGANIZATION:aci:(target="ldap:///ORGANIZATION")(targetf

ilter=(!(|(nsroledn=cn=Top Level Admin

Role,o=isp)(nsroledn=cn=Top Level Help Desk Admin

Role,o=isp)(nsroledn=cn=Container Admin

Role,ORGANIZATION))))(targetattr = "*") (version 3.0; acl

"Container Help Desk Admin Role access allow"; allow

(read,search) roledn = "ldap:///ROLENAME";)##ORGANIZATION:aci:

(target="ldap:///ORGANIZATION")(targetfilter=(!(|(nsroledn=cn=To

p Level Admin Role,o=isp)(nsroledn=cn=Container Admin

Role,ORGANIZATION))))(targetattr = "userPassword") (version 3.0;

acl "Container Help Desk Admin Role access allow"; allow (write)

roledn = "ldap:///ROLENAME";)

• Group Admin|Read and Write access to all group

members|ORGANIZATION:aci:(target="ldap:///GROUPNAME")(targetattr

= "*") (version 3.0; acl "Group and people container admin role";

allow (all) roledn = "ldap:///ROLENAME";)##ORGANIZATION:aci:

(target="ldap:///ORGANIZATION")(targetfilter=(!(|(!FILTER)(|(nsr

oledn=cn=Top Level Admin Role,o=isp)(nsroledn=cn=Top Level Help

Desk Admin Role,o=isp)(nsroledn=cn=Organization Admin

Role,ORGANIZATION)(nsroledn=cn=Container Admin

Role,ORGANIZATION)))))(targetattr !=

"iplanet-am-web-agent-access-allow-list ||

Class Of Service

296 Identity Server Programmer’s Guide • December 2002

iplanet-am-web-agent-access-not-enforced-list ||

iplanet-am-domain-url-access-allow ||

iplanet-am-web-agent-access-deny-list")(version 3.0;acl "Group

admin's right to the members"; allow (read,write,search) roledn =

"ldap:///ROLENAME";)

• People Container Admin|Read and Write access to all

users|ORGANIZATION:aci:(target="ldap:///PCNAME")(targetfilter=(!

(|(nsroledn=cn=Top Level Admin Role,o=isp)(nsroledn=cn=Top Level

Help Desk Admin Role,o=isp)(nsroledn=cn=Organization Admin

Role,ORGANIZATION)(nsroledn=cn=Container Admin

Role,ORGANIZATION))))(targetattr !=

"iplanet-am-web-agent-access-allow-list ||

iplanet-am-web-agent-access-not-enforced-list ||

iplanet-am-domain-url-access-allow ||

iplanet-am-web-agent-access-deny-list") (version 3.0; acl

"People container admin role"; allow (all) roledn =

"ldap:///ROLENAME";)

Class Of Service
Both dynamic and policy attributes use class of service (CoS), a feature of the
Directory Server that allows attributes to be created and managed in a single
central location, and dynamically added to user entries as the user entry is called.
Attribute values are not stored within the entry itself; they are generated by CoS as
the entry is sent to the client browser. Dynamic and policy attributes using CoS
consist of the following two LDAP entries:

• CoS Definition Entry—This entry identifies the type of CoS being used (Classic
CoS). It contains all the information, except the attribute values, needed to
generate an entry defined with CoS. The scope of the CoS is the entire sub-tree
below the parent of the CoS definition entry.

• Template Entry—This entry contains a list of the attribute values that are
generated when the target entry is displayed. Changes to the attribute values
in the Template Entry are automatically applied to all entries within the scope
of the CoS.

NOTE Identity Server generates a Top Level Admin and Top Level Help
Desk Admin during installation. These roles can not be dynamically
generated for any other identity-type objects but the top-level organization.

Class Of Service

Appendix B Directory Server Concepts 297

The CoS Definition entry and the Template entry interact to provide attribute
information to their target entries; any entry within the scope of the CoS. Only
those services which have dynamic or policy attributes use the Directory Server
CoS feature; no other services do.

CoS Definition Entry
CoS definition entries are stored as LDAP subentries under the organization level
but can be located anywhere in the DIT. They contain the attributes specific to the
type of CoS being defined. These attributes name the virtual CoS attribute, the
template DN and, if necessary, the specifier attribute in target entries. By default,
the CoS mechanism will not override the value of an existing attribute with the
same name as the CoS attribute. The CoS definition entry takes the
cosSuperDefinition object class and also inherits from the following object class
that specifies the type of CoS:

cosClassicDefinition
The cosClassicDefinition object class determines the attribute and value that
will appear with an entry by taking the base DN of the template entry from the
cosTemplateDN attribute in the definition entry and combining it with the target
entry specifier as defined with the cosSpecifier attribute, also in the definition
entry. The value of the cosSpecifier attribute is another LDAP attribute which is
found in the target entry; the value of the attribute found in the target entry is
appended to the value of cosTemplateDN and the combination is the DN of the
template entry. Template DNs for classic CoS must therefore have the following
structure cn=specifierValue,baseDN.

CoS Template Entry
CoS Template entries are an instance of the cosTemplate object class. The CoS
Template entry contains the value or values of the virtual attributes that will be
generated by the CoS mechanism and displayed as an attribute of the target entry.
The template entries are stored under the definition entries.

NOTE For additional information on the CoS feature, see the Sun ONE Directory
Server documentation.

NOTE When possible, definition and template entries should be located at the
same level for easier management.

Application Schema

298 Identity Server Programmer’s Guide • December 2002

Conflicts and CoS
There is the possibility that more than one CoS can be assigned to a role or
organization, thus creating conflict. When this happens, Identity Server will
display either the attribute value based on a pre-determined template priority level
or the aggregate of all attribute values defined in the cosPriority attribute. For
example, an administrator could create and load multiple services, register them to
an organization, create separate roles within the organization and assign multiple
roles to a particular user. When Identity Server retrieves this user entry, it sees the
CoS object classes, and adds the virtual attributes. If there are any priority conflicts,
it will look at the cosPriority attribute for a priority level and return the
information with the lowest priority number (which is the highest priority level).
For more information on CoS priorities, see “cosQualifier Attribute,” on page 133
of Chapter 6, “Service Management” or the Sun ONE Directory Server
documentation.

Application Schema
If a customer is using an existing application and wants to manage its attributes
using the Identity Server console, a LDAP schema is probably defined and has
been loaded into the Directory Server. If Directory Server does not already have the
existing application’s attributes and object classes loaded, then it needs to be
updated using the Directory Server console or the ldapmodify command line
interface. The schema update needs to be completed before loading the
application’s created XML service file. Other options for adding or modifying
Directory Server schema can be found in the Sun ONE Directory Server
documentation or in the Sun ONE Identity Server Installation and Configuration
Guide.

NOTE Conflict resolution is decided by the Directory Server before the entry is
returned to Identity Server. Identity Server allows only the definition of the
priority level and CoS type.

299

Index

A
abstract objects 98

update 124
access

SAML service 226
access control instructions (ACIs) 292

default 294
defined 293
format 293

account federation 235
account locking

and authentication service 41
ACIs 292

default 294
defined 293
format 293

amAdmin.dtd 135
AMagent.properties 84
AMConfig.properties 271

configuration directives 274
deployment directives 272
overview 271
read-only directives 279

amEntrySpecific.xml 107
amLogging.xml 247
amSAML.xml 226
anonymous authentication module 48
API

authentication
java 62

client detection

java 257
federation management

java 240
identity management SDK 102

caching 106
remote installation 107

logging service
java 249
sample code 251

policy SDK 167
C applications 171
policy evaluation API 168
policy management API 169
policy plugin API 170

SAML service SDK 227
service management SDK 156
SSO

java 85
non-web-based applications 85
overview 86
sample 90

utility
java 268

architecture
console 28
logging service 246
policy service 161

assertion types
and SAML 221

assign
authentication methods 48

by authentication level 54
by module 54

300 Identity Server Programmer’s Guide • October 2002

by organization 49
by role 50
by service 52
by user 54

attribute inheritance 120
attributes

and service files 117
authentication

C applications 63
examples 73

remote-auth.dtd 63
authentication domain 235
authentication level authentication 54
authentication methods

assign 48
assign by authentication level 54
assign by module 54
assign by organization 49
assign by role 50
assign by service 52
assign by user 54

authentication modules
anonymous 48
certificate 48
core 47
create 55
credential requirements 57

and Auth_Module_Properties.dtd 57
custom 54
LDAP 48
membership 48
modify amAuth.xml 61
NT 48
proprietary 47
RADIUS 48
SafeWord 48
Unix 48

authentication service 37
and C applications 63

examples 73
API

java 62
authentication methods

assign 48
assign by authentication level 54
assign by module 54

assign by organization 49
assign by role 50
assign by service 52
assign by user 54

authentication modules
anonymous 48
Auth_Module_Properties.dtd 57
certificate 48
core 47
create 55
credential requirements 57
custom 54
LDAP 48
membership 48
modify amAuth.xml 61
NT 48
proprietary 47
RADIUS 48
SafeWord 48
Unix 48

FQDN mapping 41
localization properties

configure 56
overview 37

accessing 38
account locking 41
authenticating 39
client detection 40

remote-auth.dtd 63
samples

login module 77
remote client API 77

SPI
java 71

URL parameters 71
user interface 42

customization 43
JSP templates 45

authentication user interface
customization 43
JSP templates 45

authentication-related logs 253

Index 301

B
background colors customization 34
backup and restore 263

backup script 264
restore script 267

backup script 264

C
C applications

and policy 171
authentication 63

examples 73
CDSSO component 82
certificate authentication module 48
Certificate Server

documentation 14
class of service 296

and dynamic attributes 118
conflicts 298
definition entry 297
template entry 297

client data
in client detection 256

client detection 255
and authentication service 40
API

java 257
client data 256
overview 255

common domain 236
configuration directives

in AMConfig.properties 274
configure

localization properties 56
console

and authentication user interface 42
architecture 28
customization 29

background colors 34
creating custom GUI 30
default console directory 30

display container objects 35
localization 34
plug-in modules 35
precompile JSP 32
user profile view 32

graphical user interface 28
overview 27
plug-in modules 28
sample 36

console-related logs 253
container objects

displaying 35
ContainerDefaultTemplateRole 120
cookies

and session tokens 81
core authentication module 47
CoS 296

conflicts 298
definition entry 297
template entry 297

create
custom authentication modules 55
custom GUI 30

cross domain controller 82
cross-domain

82, 84
cross-domain SSO 81

configure 83
enable 82

custom authentication modules 54
amAuth.xml

modify 61
create 55
credential requirements 57

and Auth_Module_Properties.dtd 57
customization

authentication and JSP templates 45
authentication user interface 43
background colors 34
console 29
creating custom GUI 30
default console directory 30
display container objects 35
federation management module 241
localizing console 34
plug-in modules 35

302 Identity Server Programmer’s Guide • October 2002

precompile JSP 32
user profile view 32

D
debug files 253
default console directory 30
deployment directives

in AMConfig.properties 272
developer information 15
Directory Server 287

ACIs 292
default 294
defined 293
format 293

class of service 296
conflicts 298
definition entry 297
template entry 297

documentation 14
extend schema 120
overview 287
roles 288

Identity Server and 290
managed roles 288

schema 298
documentation

Certificate Server 14
Directory Server 14
overview 12
Proxy Server 14
related iPlanet products 14
terminology 13
Web Server 14

downloads
Sun ONE software 14

DTD files 125
policy.dtd 164

dynamic attributes
and service files 118

F
federated identity 235
federation management 233

API
java 240

Liberty Alliance Project 234
Liberty concepts

account federation 235
authentication domain 235
common domain 236
defined 235
federated identity 235
federation termination 236
identity provider 235
name identifier 236
service provider 235
single logout 236
single sign-on 236
trusted provider 235

module
customization 241

overview 233
process 236
protocols 238

federation termination motification 239
IDP introduction 240
name registration 239
single log-out 239
single sign-on and federation 239

samples 242
federation termination 236
federation termination notification protocol 239
federation-related logs 253
FQDN mapping

and authentication service 41

G
global attributes

and service files 117
graphical user interface. See also console

Index 303

I
identity management 97

amEntrySpecific.xml 107
object templates 99, 101

creation template 100
structure template 100
ums.xml 100

overview 97
abstract objects 98
marker object classes 98

samples
SDK 109

SDK 102
caching 106
remote installation 107

ums.xml
modify 101

identity provider 235
Identity Server

file system 24
overview 17

application management services 19
data management components 17
extending 21
Java packages 22
managing access 20

related product information 14
Identity Server Console. See console
IDP introduction protocol 240
inheritance

attributes 120

J
java

API
authentication 62
client detection 257
federation management 240
logging service 249
SSO 85
SSO sample 90
utility 268

identity management SDK 102
caching 106
remote installation 107

policy SDK 167
policy evaluation API 168
policy management API 169
policy plugin API 170

SAML service SDK 227
service management SDK 156
SPI

authentication 71
logging service 251

Java packages 22

L
LDAP authentication module 48
LDAP schema 298
Liberty Alliance Project 234
Liberty concepts

account federation 235
authentication domain 235
common domain 236
defined 235
federated identity 235
federation termination 236
identity provider 235
name identifier 236
service provider 235
single logout 236
single sign-on 236
trusted provider 235

localization
console 34

localization properties
configure 56, 123

log message formats 247
log security 247
log types

authentication-related logs 253
console-related logs 253
debug files 253
federation-related logs 253
SSO-related logs 252

304 Identity Server Programmer’s Guide • October 2002

logging
amLogging.xml 247

logging service 245
API

java 249
sample code 251

architecture 246
log message formats 247
log security 247
log types

authentication-related logs 253
console-related logs 253
debug files 253
federation-related logs 253
SSO-related logs 252

overview 245
secure logging 254
SPI 251

M
managed roles 288
marker object classes 98
membership authentication module 48
module authentication 54

N
name identifier 236
name registration protocol 239
normal policy 162
NT authentication module 48

O
object templates 99

ums.xml 100
organization attributes

and service files 118

organization authentication 49
overview

AMConfig.properties 271
API

SSO 86
application management services 19
authentication service 37

accessing 38
account locking 41
authenticating 39
client detection 40
user interface 42

client detection 255
console 27
cross-domain SSO 81
data management components 17
Directory Server 287
extending Identity Server 21
federation management 233
identity management 97

abstract objects 98
marker object classes 98

Identity Server 17
file system 24

Java packages 22
logging service 245
managing access 20
policy service 159
SAML service 219
service files 114

DTD files 114
service management 113
SSO 79

policy agents 80
session tokens 80
user credentials 80

P
plug-in module customization 35
plug-in modules 28
policy

and subjects 163
SDK 167

Index 305

C applications 171
policy evaluation API 168
policy management API 169
policy plugin API 170

types 162
normal 162
referral 162

policy attributes
and service files 119

policy evaluation API 168
policy management API 169
policy plugin API 170
policy service 159

architecture 161
defined 160
overview 159
policy

and subjects 163
policy types 162

normal 162
referral 162

policy.dtd 164
policy.dtd 164
precompile JSP 32
process

federation management 236
Professional Services 14
profile types

and SAML 222
web artifact profile 222
web POST profile 223

proprietary authentication modules 47
protocols

federation management 238
federation termination notification 239
IDP introduction 240
name registration 239
single log-out 239
single sign-on and federation 239

Proxy Server
documentation 14

R
RADIUS authentication module 48
read-only directives

in AMConfig.properties 279
referral policy 162
remote-auth.dtd 63
restore and backup 263
restore script 267
role authentication 50
roles 288

Identity Server
roles and 290

Identity Server and 290
managed roles 288

S
SafeWord authentication module 48
SAML service 219

access to 226
amSAML.xml 226
assertion types 221
overview 219
profile types 222

web artifact profile 222
web POST profile 223

SAML SOAP receiver 224
SOAP messages 225

samples 231
SDK 227

SAML SOAP receiver 224
SOAP messages 225

samples
authentication

login module 77
remote client API 77

console 36
federation management 242
identity management SDK 109
logging service

code 251
SAML 231
SSO 94

306 Identity Server Programmer’s Guide • October 2002

command line SSO 95
remote SSO 95
SSO servlet 94

search template 101
secure logging 254
service attributes

inheritance 120
virtual attributes 118

service authentication 52
service definition 115

amAdmin.dtd 135
Directory Server

extend schema 120
DTD files 125
localization properties 123
service registration 124
sms.dtd 126

service file
import 122

service files
attribute inheritance 120
attributes 117

dynamic 118
global 117
organization 118
policy 119
user 119

batch processing
batch processing service files 153

ContainerDefaultTemplateRole 120
create 117
modify 151
naming conventions 117
overview 114

DTD files 114
ums.xml 99, 100
user pages

customize 156
service management 113

overview 113
SDK 156
service definition 115
service files

create 117
naming conventions 117

service provider 235

service registration 124
services

overview
authentication 37
federation management 233
SSO 79

session service see SSO
session tokens

and cookies 81
single logout 236
single log-out protocol 239
single sign-on 236
single sign-on and federation protocol 239
single sign-on See SSO
sms.dtd 126
SOAP messages 225
Solaris

patches 14
support 14

SPI
authentication

java 71
logging service 251

SSO 79
API

java 85
non-web-based applications 85
overview 86
sample 90

cookies and session tokens 81
cross-domain

AMagent.properties 84
CDSSO component 82
configure 83
cross domain controller 82
enable 82

cross-domain support 81
overview 79

policy agents 80
session tokens 80
user credentials 80

samples 94
command line SSO 95
remote SSO 95
SSO servlet 94

Index 307

SSO-related logs 252
subjects

policy 163
Sun ONE

support 14
support

Professional Services 14
Solaris 14
Sun ONE 14

T
trusted provider 235

U
ums.xml

creation template 100
modify 101
object templates 99
search template 101
structure template 100

Unix authentication module 48
URL parameters 71

authentication 71
user attributes

and service files 119
user authentication 54
user pages

customize 156
user profile view

customization 32
utilities 263

backup and restore 263
backup script 264
restore script 267

utility
API

java 268

V
virtual attributes

and dynamic attributes 118

W
web artifact profile 222
web POST profile 223
Web Server

documentation 14

X
XML

abstract objects
update 124

amEntrySpecific.xml 107
amSAML.xml 226
Directory Server

schema 120
service definition

amAdmin.dtd 135
DTD files 125
localization properties 123
service registration 124
sms.dtd 126

service file
import 122

service files
amLogging.xml 247
attribute inheritance 120
attributes 117, 118, 119
batch processing 153
ContainerDefaultTemplateRole 120
create 117
DTD files 114
modify 151
naming conventions 117
overview 114
user pages 156

ums.xml 99, 100

308 Identity Server Programmer’s Guide • October 2002

creation template 100
modify 101
search template 101
structure template 100

virtual attributes 118

	Programmer’s Guide
	About This Guide
	About Identity Server 6.0
	What You Are Expected to Know
	Identity Server Documentation Set
	Documentation Conventions Used in This Guide
	Typographic Conventions
	Terminology

	Related Information
	Documentation Comments

	Introduction
	Identity Server Overview
	Data Management Components
	Application Management Services
	Managing Access

	Extending Identity Server
	Service Definition With XML
	Identity Server Console Customization
	Java Packages

	Identity Server File System

	The Identity Server Console
	Overview
	Console Interface
	Architecture

	Customizing The Console
	Default Console Directory
	Creating Custom Organization Files
	Precompiling JSP Files

	Customizing The User Profile View
	Miscellaneous Customizations
	Changing Default Attribute Display
	Localizing The Console
	Customizing Background Colors
	Labelling The Module Tab
	Displaying Container Objects

	Console Sample

	Authentication Service
	Overview
	Accessing The Authentication Service
	Authenticating The Request
	Miscellaneous Features

	The Authentication User Interface
	Customizing The Authentication Interface
	JSP Templates
	Authentication Module Configuration Files

	Default Authentication Modules
	Core Authentication Service
	Proprietary Authentication Modules
	Assigning The Authentication Method

	Custom Authentication Modules
	Creating A New Authentication Module
	Configuring Localization Properties
	Configuring Module Credential Requirements
	Modifying amAuth.xml

	Application Authentication
	Authentication API For Java Applications
	Authenticating Non-Java Applications
	The remote-auth.dtd Structure

	Authentication SPI
	URL Parameters
	C Programs and Authentication
	Authentication Request / Response Flow

	Authentication Samples
	Remote Client API
	Login Module

	Single Sign-On
	Overview
	Contacting A Policy Agent
	Creating A Session Token
	Providing User Credentials

	Cookies and Session Tokens
	Cross-Domain Support For SSO
	Enabling Cross-Domain Single Sign-On
	Configuring For Cross-Domain SSO

	SSO API
	Non-Web-Based Applications
	API Overview
	Sample API Code

	Sample SSO Java Files
	SSO Servlet Sample
	Remote SSO Sample
	Command Line SSO Sample

	Identity Management
	Overview
	Abstract Objects

	Object Templates
	Structure of ums.xml
	Modifying ums.xml

	Identity Server SDK
	SDK Interfaces
	The SDK And Cache
	Installing the SDK Remotely

	amEntrySpecific.xml
	amEntrySpecific.xml Schema

	Management Sample Functions
	Create, Delete Or Modify Users
	Create Organization
	Retrieve Templates
	Create Users With Modified LDAP Schema

	Service Management
	Overview
	XML Service Files
	Document Type Definition Structure Files
	Service Management SDK

	Service Definition
	Defining A Service
	Creating A Service File
	Extending The Directory Server Schema
	Importing the XML Service File
	Configuring Localization Properties
	Updating Files For Abstract Objects
	Registering The Service

	DTD Files
	The sms.dtd Structure
	The amAdmin.dtd Structure

	XML Files
	Default XML Service Files
	Batch Processing XML Files
	Customizing User Pages

	Service Management SDK

	Policy Service
	What Is Policy?
	Policy Service
	Architecture
	Policy Types
	Subjects

	Policy Definition Type Document
	Policy Element
	Rule Element
	ServiceName Element
	ResourceName Element
	AttributeValuePair Element
	Subjects Element
	Subject Element
	Referrals Element
	Referral Element
	Conditions Element
	Condition Element

	Java SDK For Policy
	Policy Evaluation Java APIs
	Policy Management Java APIs
	Policy Plugin Java APIs

	C Library For Policy
	C APIs for Policy Evaluation
	am_properties_t
	Information And Utility APIs
	am
	am_policy
	Specialization Methods
	Initialization Variables
	Specialization Methods For Web Agents
	Initialization Variables

	Using The SAML Service
	Overview
	Assertion Types
	Profile Types
	SAML SOAP Receiver
	Accessing The SAML Service

	amSAML.xml
	SAML SDK
	com.sun.identity.saml
	com.sun.identity.saml.assertion
	com.sun.identity.saml.common
	com.sun.identity.saml.plugins
	com.sun.identity.saml.protocol
	com.sun.identity.saml.xmlsig

	SAML Service Samples

	Federation Management
	Overview
	The Liberty Alliance Project
	Liberty Specification Concepts

	Federation Management Process
	Federation Management Protocols

	Federation Management API
	Customizing The Module
	Federation Management Samples

	Logging Service
	Overview
	Logging Architecture
	Logging Service XML File
	Log Security

	Log Message Formats
	Flat File Format
	Relational Database Format

	Logging API
	Logger Class
	LogRecord Class
	Logging Exceptions
	Sample Logging Code

	Logging SPI
	Plugin Log Verifier
	Plugin Authorization Mechanism

	Log Files
	SSO-related Logs
	Console-related Logs
	Authentication-related Logs
	Federation-related Logs

	Debug Files
	Secure Logging

	Client Detection
	Overview
	Client Data
	Client Detection API
	Client Detection Module Interface

	Identity Server Utilities
	Backup And Restore
	Backup Script
	Restore Script

	Utility API
	API Summary

	AMConfig.properties File
	Overview
	Deployment Directives
	Identity Server Directives
	Directory Server

	Configuration Directives
	Debug Service
	Stats Service
	SAML
	Miscellaneous Services

	Read-Only Directives
	Base Directory
	Shared Secret
	Deployment Descriptors
	Session Properties
	Cross Domain Single Sign-On Support
	SecureRandom Properties
	SocketFactory properties
	Encryption
	Remote Installation
	IP Address Checking
	Remote Policy API Directives
	FQDN Map

	Directory Server Concepts
	Overview
	Roles
	Managed Roles
	How Identity Server Uses Roles

	Access Control Instructions (ACIs)
	Defining ACIs
	Format of Predefined ACIs

	Class Of Service
	CoS Definition Entry
	CoS Template Entry
	Conflicts and CoS

	Application Schema

	Index

