
Sun Java System Message Queue
4.1 Release Notes

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–7753–10
September 2007

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

070919@18741

Contents

1 Sun Java System Message Queue 4.1 Release Notes ..5
Release Notes Revision History ..6
About Message Queue 4.1 ...6

What's New in The 4.1 Release ..7
Hardware and Software Requirements ... 16

About Message Queue 4.0 .. 16
What’s New in the 4.0 Release ... 16
Hardware and Software Requirements ... 31

Bugs Fixed in This Release .. 31
Important Information ... 33

Installation Notes ... 33
Compatibility Issues .. 33
Documentation Updates for Message Queue 4.1 ... 34

Known Issues and Limitations ... 35
Installation Issues ... 35
Deprecated Password Option ... 40
General Issues ... 41
Administration/Configuration Issues ... 41
Broker Issues ... 42
Broker Clusters ... 42
JMX Issues ... 44
Support for SOAP .. 44

Redistributable Files .. 45
Accessibility Features for People With Disabilities ... 45
How to Report Problems and Provide Feedback ... 45

Sun Java System Software Forum ... 46
Java Technology Forum .. 46

Sun Welcomes Your Comments ... 46

3

Additional Sun Resources .. 46

Contents

Sun Java System Message Queue 4.1 Release Notes • September 20074

Sun Java System Message Queue 4.1 Release
Notes

Version 4.1

Part Number 819-7753

These release notes contain important information available at the time of release of Sun JavaTM

System Message Queue 4.1. New features and enhancements, known issues and limitations, and
other information are addressed here. Read this document before you begin using Message
Queue. These release notes also contain information about the 4.0 release of Message Queue;
see “About Message Queue 4.0” on page 16 for information about features introduced in that
release.

The most up-to-date version of these release notes can be found at the Sun Java System Message
Queue documentation web site. Check the web site prior to installing and setting up your
software and then periodically thereafter to view the most up-to-date release notes and product
documentation.

These release notes contain the following sections:

■ “Release Notes Revision History” on page 6
■ “About Message Queue 4.1 ” on page 6
■ “About Message Queue 4.0” on page 16
■ “Bugs Fixed in This Release” on page 31
■ “Important Information” on page 33
■ “Known Issues and Limitations” on page 35
■ “Redistributable Files” on page 45
■ “Accessibility Features for People With Disabilities” on page 45
■ “How to Report Problems and Provide Feedback” on page 45
■ “Sun Welcomes Your Comments” on page 46
■ “Additional Sun Resources” on page 46

Third-party URLs are referenced in this document and provide additional, related information.

1C H A P T E R 1

5

Sun is not responsible for the availability of third-party Web sites mentioned in this document.
Sun does not endorse and is not responsible or liable for any content, advertising, products, or
other materials that are available on or through such sites or resources. Sun will not be
responsible or liable for any actual or alleged damage or loss caused by or in connection with the
use of or reliance on any such content, goods, or services that are available on or through such
sites or resources.

Release Notes Revision History
The following table lists the dates for all 4.x releases of the Message Queue product and
describes the main changes associated with each release.

TABLE 1–1 Revision History

Date Description of Changes

May 2006 Initial release of this document for version 4.0 of
Message Queue.

January 2007 Initial release of this document for Beta version 4.1
of Message Queue. Adds description of JAAS
support.

April 2007 Second release of this document for Beta version 4.1
of Message Queue. Adds high availability feature.

September 2007 Third release of this document for customer ship.
Adds description of support for Java Enterprise
System Monitoring Framework, fixed C ports, bug
fixes, and other features.

About Message Queue 4.1
Sun Java System Message Queue is a full-featured message service that provides reliable,
asynchronous messaging conformant to the Java Messaging Specification (JMS) 1.1. In
addition, Message Queue provides features that go beyond the JMS specification to meet the
needs of large-scale enterprise deployments.

Version 4.1 of Message Queue adds support for high availability, for the Java Authentication
and Authorization Service (JAAS), for the use of fixed C ports, and for Java Enterprise System
Monitoring Framework. It also adds minor enhancements, and bug fixes. This section includes
the following information.

■ “What's New in The 4.1 Release” on page 7
■ “Hardware and Software Requirements” on page 16

Release Notes Revision History

Sun Java System Message Queue 4.1 Release Notes • September 20076

For information about features introduced in Message Queue 4.0, see “About Message Queue
4.0” on page 16.

What's New in The 4.1 Release
Message Queue 4.1 introduces high availability (data and service availability) broker clusters,
JAAS support, and various other minor features. This section describes these features and
provides further references for your use.

■ “High Availability” on page 7
■ “JAAS Support” on page 8
■ “Persistent Store Format Change” on page 13
■ “Broker Configuration” on page 14
■ “JES Monitoring Framework Support” on page 14
■ “Transaction Management” on page 15
■ “Fixed Ports for C Client Connections” on page 15

High Availability
Message Queue 4.1 introduces high availability clusters, which provide data availability as well
as service availability. If a client loses its connection to a high availability broker, it is
automatically reconnected to another broker in a cluster. The broker that provides the new
connection takes over the failed broker's persistent data and state, and continues to provide
uninterrupted service to the failed broker's clients. You can run high availability brokers over a
secure connection.

High availability brokers require the use of a highly available database (HADB). If you do not
have such a database or if data availability is not important to you, you can continue to use
conventional clusters, which offer automatic reconnection and service availability.

Configuring high availability brokers is simple: you specify the following kinds of broker
properties for each broker in the cluster.

■ Cluster membership properties, which specify that the broker is part of a high availability
cluster, the id of the cluster, and the id of the broker.

■ Highly available database (HADB) properties, which specify the model for persistent
messages (JDBC), the name of the HADB vendor, and vendor-specific configuration
properties for the database.

■ Failure detection and takeover properties, which specify how broker failure should be
detected and handled.

To use this feature, you must do the following:

1. Install a highly available database.
2. Install the JDBC driver's .jar file.

About Message Queue 4.1

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 7

3. Create the database schema for the highly available persistent store.
4. Set those properties that are related to high availability for each broker in the cluster.
5. Start each broker in the cluster.

For a conceptual discussion of high availability and how it compares to conventional clusters,
see Chapter 4, “Broker Clusters,” in Sun Java System Message Queue 4.1 Technical Overview. For
procedural and reference information about high availability, see Chapter 8, “Broker Clusters,”
in Sun Java System Message Queue 4.1 Administration Guide and “Cluster Configuration
Properties” in Sun Java System Message Queue 4.1 Administration Guide.

If you were using an HADB database with Message Queue version 4.0 and want to use a high
availability cluster, you can use the dbmgr utility to upgrade to a shared HADB store. See
“Broker Clusters” on page 42 for more information.

JAAS Support
In addition to the file-based and LDAP-based built-in authentication mechanisms, Message
Queue also supports the Java Authentication and Authorization Service (JAAS), which allows
you to plug a variety of services into the broker to authenticate Message Queue clients. This
section describes the information that the broker makes available to a JAAS-compliant
authentication service, and it explains how you configure the broker to use such a service.

It is beyond the scope of this document to describe the JAAS API. Please consult the following
sources if you need to know more.

■ For complete information about the JAAS API, please see the Java Authentication and
Authorization Service (JAAS) Reference Guide.
http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/JAASRefGuide.html

■ For information about writing a LoginModule, please see the Java Authentication and
Authorization Service (JAAS) LoginModule Developer's Guide.
http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/JAASLMDevGuide.html

The JAAS API is a core API in J2SE and therefore it is an integral part of Message Queue's
runtime environment. JAAS defines an abstraction layer between an application and an
authentication mechanism, allowing the desired mechanism to be plugged in with no change to
application code. In the case of the Message Queue service, the abstraction layer lies between the
broker (application) and an authentication provider. By setting a few broker properties, it is
possible to plug in any JAAS-compliant authentication service and to upgrade this service with
no disruption or change to broker code.

You can use JMX clients to manage the broker if you are using JAAS-based authentication, but
you must manually set up JAAS support (by setting JAAS-related broker properties) before you
start the broker. You cannot use the JMX API to change those properties.

About Message Queue 4.1

Sun Java System Message Queue 4.1 Release Notes • September 20078

http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/JAASRefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/JAASLMDevGuide.html

Elements of JAAS

Figure 1–1 shows the basic elements of JAAS: a JAAS client, a JAAS-compliant authentication
service, and a JAAS configuration file.

■ The JAAS client is an application that wants to perform authentication using a
JAAS-compliant authentication service. It communicates with this service using a
LoginModule and it is responsible for providing a callback handler that the LoginModule
can call to obtain the user name, password, and other relevant information.

■ The JAAS-compliant Authentication Service consists of one or more LoginModule and of
logic that performs the needed authentication. The LoginModule may include the
authentication logic, or it may use a private protocol or API to communicate with a module
that provides that logic.

■ The JAAS configuration file is a text file that the JAAS client uses to locate the
LoginModule(s) needed to communicate with the JAAS-compliant service.

The next section explains how the Message Queue service uses these elements to provide
JAAS-compliant authentication.

JAAS and Message Queue

The next figure shows how JAAS is used by the Message Queue broker. It shows a more complex
implementation of the JAAS model shown in the previous figure.

JAAS Client

LoginContext
CallbackHandler

JAAS
Configuration
File

External Security
Infrastructure

LoginModule

Authentication
Logic

Authentication
Service

FIGURE 1–1 JAAS Elements

About Message Queue 4.1

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 9

As was shown in the simpler case, the authentication service layer is separate from the broker.
The authentication service consists of one or more login modules (LoginModule) and of
additional authentication modules if needed. The login modules run in the same Java virtual
machine as the broker. The Message Queue broker is represented to the login module as a
LogInContext and it communicates with the login module by means of a CallBackHandler
that is part of the broker runtime code.

The authentication service also supplies a JAAS configuration file that contains entries to the
login modules. The configuration file specifies the order in which the modules are to be used
and some conditions for their use. When the broker starts up, JAAS locates the configuration
file by the Java system property java.security.auth.login.config or the Java security
properties file. It then selects an entry in the JAAS configuration file, according to the value of
the broker property imq.user_repository.jaas.name. That entry specifies which login
modules will be used for authentication. As the figure shows, it is possible for the broker to use
more than one login module. (The relation between the configuration file, the login module,
and the broker is shown in Figure 1–3.)

The fact that the broker uses a JAAS plug-in authentication service remains completely
transparent to the Message Queue client. The client continues to connect to the broker as it did
before, passing a user name and password. In turn, the broker uses a callback handler to pass
this information to the authentication service, and the service uses that information to

LDAP
Server RDBMS Local

File System

Message Queue
Broker

LoginContext
CallbackHandler

(JAAS Client)

LoginModule1
LoginModule2

Authentication
Logic

(Authentication
Logic)

LoginModule3
(Authentication

Logic)

Message
Queue
Client

VM

FIGURE 1–2 How Message Queue Uses JAAS

About Message Queue 4.1

Sun Java System Message Queue 4.1 Release Notes • September 200710

authenticate the user and return the results. If authentication succeeds, the broker grants the
connection; if it fails, the client runtime returns a JMS security exception that the client must
handle.

After the Message Queue client is authenticated, if there is further authorization to be done, the
broker proceeds as it would normally; it consults the access control file to determine whether
the authenticated client is authorized to perform the actions it undertakes: accessing a
destination, consuming a message, browsing a queue, and so on.

Setting up JAAS-Compliant Authentication

Setting up JAAS-compliant authentication involves setting broker and system properties to
select this type of authentication, to specify the location of the configuration file, and to specify
the entries to the login modules that are going to be used.

This section illustrates how the JAAS client, the login modules, and the JAAS configuration file
are related and then describes the process required to set up JAAS-compliant authentication.
The next figure shows the relation between the configuration file, the login module, and the
broker.

As shown in the figure, the JAAS configuration file, MyJAASCFile.config contains references to
several login modules, grouped in an entry point. The broker locates the configuration file by
consulting the Java system property java.security.auth.login.config or by consulting the

Broker

LoginModule1.java

MyEntry1{
com.some.module.MyLoginModule1 required
debug=true
com.some.module.MyLoginModule2 optional
debug=true }

MyJAASCFile.config

Entry point into the configuration
file is specified with the broker property

imq.user_repository.jaas.name=MyEntry1

In lib/ext directory,
LoginModule classes
are dynamically loaded
by the broker

Location of the configuration
file is specified with the Java
system property
java.security.auth.login.config
or in the Java security
properties file

Authentication service
communicates with Broker
using CallbackHandler

CallbackHandler

FIGURE 1–3 Setting Up JAAS Support

About Message Queue 4.1

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 11

Java Security properties file. The login modules to be used are determined by consulting the
broker property imq.user_repository.jaas.name, which specifies the desired entry in the
configuration file. The classes for those modules are found in the lib/ext directory.

To set up JAAS support for Message Queue, you must complete the following steps. (In a
development environment all these steps might be done by the developer. In a production
environment, the administrator would take over some of these tasks.)

1. Create one or more login module classes that implement the authentication service. The
JAAS callback types that the broker supports are listed below.

javax.security.auth.callback.LanguageCallback

The broker uses this callback to pass the authentication service the locale in which the
broker is running This value can be used for localization.

javax.security.auth.callback.NameCallback

The broker uses this callback to pass to the authentication service the user name specified
by the Message Queue client when the connection was requested.

javax.security.auth.callback.TextInputCallback

The broker uses this callback to specify the value of imq.authentication.type to the
authentication service when the TextInputCallback.getPrompt() is
imq.authentication.type. Right now, the only possible value for this field is basic.
This indicates Base-64 password encoding.

javax.security.auth.callback.PasswordCallback

The broker uses this callback to pass to the authentication service the password specified
by the Message Queue client when the connection was requested.

javax.security.auth.callback.TextOutputCallback

The broker uses this callback to provide logging services to the authentication service by
logging the text output to the broker's log file. The callback's MessageType ERROR,
INFORMATION, WARNING are mapped to the broker log levels ERROR, INFO, and WARNING

respectively.
2. Create a JAAS configuration file with entries that reference the login module classes and

specify the location of this file to the Message Queue administrator. (The file can be located
remotely, and its location can be specified with a url.)

3. Note the name of the entry (that references the login implementation classes) in the JAAS
configuration file.

4. Archive the classes that implement the login modules to a jar file, and place the jar file in the
Message Queue lib/ext directory.

5. Configure the broker properties that relate to JAAS support. These are described in
Table 1–2.

6. Set the following system property to specify the location of the JAAS configuration file.
java.security.auth.login.config=JAAS_Config_File_Location

About Message Queue 4.1

Sun Java System Message Queue 4.1 Release Notes • September 200712

For example, you can specify the configuration file when you start the broker.

imqbrokerd -Djava.security.auth.login.config=JAAS_Config_File_Location

There are other ways to specify the location of the JAAS configuration file. For additional
information, please see

http://java.sun.com/

j2se/1.5.0/docs/guide/security/jaas/tutorials/LoginConfigFile.html

The following table lists the broker properties needed to set up JAAS support.

TABLE 1–2 Broker Properties for JAAS Support

Property Description

imq.authentication.type Set to basic to indicate Base-64 password encoding.
This is the only permissible value for JAAS
authentication.

imq.authentication.basic.user_repository Set to jaas to specify JAAS authentication.

imq.accesscontrol.type Set to file.

imq.user_repository.jaas.name Set to the name of the desired entry (in the JAAS
configuration file) that references the login modules
you want to use as the authentication mechanism.
This is the name you noted in Step 3.

imq.user_repository.jaas.userPrincipalClass This property, used by Message Queue access control,
specifies the java.security.Principal
implementation class in the login module(s) that the
broker uses to extract the Principal name to represent
the user entity in the Message Queue access control
file. If, it is not specified, the user name passed from
the Message Queue client when a connection was
requested is used instead.

imq.user_repository.jaas.groupPrincipalClass This property, used by Message Queue access control,
specifies the java.security.Principal
implementation class in the login module(s) that the
broker uses to extract the Principal name to represent
the group entity in the Message Queue access control
file. If, it is not specified, the group rules, if any, in the
Message Queue access control file are ignored.

Persistent Store Format Change
Version 4.1 of Message Queue changes the JDBC store to support high availability. For this
reason the JDBC store version is increased to 410. JDBC store versions 350, 370, and 400 are
automatically migrated to the 410 version format.

About Message Queue 4.1

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 13

http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/tutorials/LoginConfigFile.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/tutorials/LoginConfigFile.html

Please note that the file-based persistent store version remains 370 because no changes were
made to it.

Broker Configuration
The property IMQ_DEFAULT_EXT_JARS has been added to the imqenv.conf file. You can set this
property to specify the path names of external .jar files to be included in CLASSPATH when the
broker starts up. If you use this property to specify the location of external .jar files, you will no
longer need to copy these files to the lib/ext directory. External jars can refer to JDBC drivers
or to JAAS login modules. The following sample command, specifies the location of jdbc
drivers.

IMQ_DEFAULT_EXT_JARS=/opt/SUNWhadb4/lib/hadbjdbc4.jar:/opt/SUNWjavadb/derby.jar

JES Monitoring Framework Support
Message Queue supports the Sun Java Enterprise System (JES) Monitoring Framework, which
allows Java Enterprise System components to be monitored using a common graphical
interface. This interface is implemented by a web-based console called the Sun Java System
Monitoring Console. If you are running Message Queue along with other JES components, you
might find it more convenient to use a single interface to manage all these components.

The JES monitoring framework defines a common data model (CMM) to be used by all JES
component products. This model enables a centralized and uniform view of all JES
components. Message Queue exposes the following objects to the JES monitoring framework:
■ the installed product
■ the broker instance name
■ the broker port mapper
■ each connection service
■ each physical destination
■ the persistent store
■ the user repository

Each one of these objects is mapped to a CMM object whose attributes can be monitored using
the JES monitoring console. At runtime, administrators can use the console to view
performance statistics, create rules to monitor automatically, and acknowledge alarms. For
detailed information about the mapping of Message Queue objects to CMM objects, see the Sun
Java Enterprise System Monitoring Guide.

To enable JES monitoring, you must do the following

1. Install and configure all the components in your deployment (Message Queue and other
components) according to instructions given in the Sun Java Enterprise System Installation
Guide.

2. Enable and configure the Monitoring Framework for all of your monitored components, as
described in the Sun Java Enterprise System Monitoring Guide.

About Message Queue 4.1

Sun Java System Message Queue 4.1 Release Notes • September 200714

3. Install the Monitoring Console on a separate host, start the master agent, and then start the
web server, as described in the Sun Java Enterprise System Monitoring Guide.

Using the JES Monitoring Framework will not impact broker performance because all the work
of gathering metrics is done by the monitoring framework, which pulls data from the broker's
existing monitoring data infrastructure.

Transaction Management
Previously, only transactions in a PREPARED state were allowed to be rolled back
administratively. That is, if a session that was part of a distributed transaction did not terminate
gracefully, the transaction remained in a state that could not be cleaned up by the broker
administrator. In Message Queue 4.1, you can use the imqcmd utility to clean up (roll back)
transactions that are in the following states: STARTED, FAILED, INCOMPLETE, COMPLETE,
PREPARED.

To help you determine whether a particular transaction can be rolled back (especially when it is
not in a PREPARED state), the imqcmd utility provides additional data as part of the imqcmd
query txn output: it provides the connection id for the connection that started the transaction
and specifies the time when the transaction was created. Using this information, the
administrator can decide whether the transaction needs to be rolled back. In general, the
administrator should avoid rolling back a transaction prematurely.

Fixed Ports for C Client Connections
C clients can use the MQ_SERVICE_PORT_PROPERTY connection property to specify a fixed port to
connect to. This can be useful if you're trying to get through a firewall or if you need to bypass
the broker's port mapper service (which assigns ports dynamically).

Remember that you need to configure the JMS service port on the broker side as well. For
example, if you want to connect your client via ssljms to port 1756, you would do the
following.

■ On the client side: Set the MQ_SERVICE_PORT_PROPERTY to 1756 and set the
MQ_CONNECTION_TYPE_PROPERTY to SSL.

■ On the broker side: Set the imq.serviceNameType.protocol.port property to 1756 as
follows.

imq.ssljms.ssl.port=1756

Note – The MQ_SERVICE_PORT_PROPERTY connection property was introduced with version 3.7
Update 2 of Message Queue.

About Message Queue 4.1

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 15

Hardware and Software Requirements
For hardware and software requirements for Version 4.1, please consult the Sun Java System
Message Queue 4.1 Installation Guide.

About Message Queue 4.0
Message Queue 4.0 is a release limited to supporting Application Server 9 PE. It is a minor
release that includes a few new features, minor enhancements, and bug fixes. This section
includes the following information.

■ “What’s New in the 4.0 Release” on page 16
■ “Hardware and Software Requirements” on page 31

What’s New in the 4.0 Release
Message Queue 4.0 includes the following new features:

■ “Interface Changes to the C API and C Client Runtime” on page 16
■ “Interface Changes to the Java API and the Java Client Runtime” on page 17
■ “Displaying Information About the Persistent Store” on page 17
■ “Persistent Store Format Changes” on page 17
■ “Broker Administration” on page 18
■ “JDBC Persistence Support” on page 19
■ “SSL Support” on page 19
■ “JMX Support” on page 19
■ “Client Runtime Logging” on page 24
■ “Connection Event Notification” on page 28

These are described in the following subsections.

Caution – One of the more minor but potentially disruptive changes introduced with version 4.0
is the deprecation of the command-line option to specify a password. Henceforth, you must
store all passwords in a file as described in “Deprecated Password Option” on page 40.

Interface Changes to the C API and C Client Runtime
Version 4.0 of Message Queue adds two new properties which will be set on all messages that
have been placed on the dead message queue.

■ JMS_SUN_DMQ_PRODUCING_BROKER indicates the broker where the message was produced.
■ JMS_SUN_DMQ_DEAD_BROKER indicates the broker who marked the message dead.

About Message Queue 4.0

Sun Java System Message Queue 4.1 Release Notes • September 200716

Interface Changes to the Java API and the Java Client Runtime
Version 4.0 of Message Queue adds two new properties which will be set on all messages that
have been placed on the dead message queue.

■ JMS_SUN_DMQ_PRODUCING_BROKER indicates the broker where the message was produced.
■ JMS_SUN_DMQ_DEAD_BROKER indicates the broker who marked the message dead.

Displaying Information About the Persistent Store
The query subcommand was added to the imqdbmgr command. Use this subcommand to
display information about the persistent store, including the store version, the database user,
and whether the database tables have been created.

The following is an example of the information displayed by the command.

imqdbmgr query

[04/Oct/2005:15:30:20 PDT] Using plugged-in persistent store:

version=400

brokerid=Mozart1756

database connection url=jdbc:oracle:thin:@Xhome:1521:mqdb

database user=scott

Running in standalone mode.

Database tables have already been created.

Persistent Store Format Changes
Version 3.7 UR1 of Message Queue introduced two changes to the persistent store format to
improve performance. One change is to the file store, the other is to the JDBC store.

■ Format of Transaction Data Persisted in File Store

The format of transaction state information stored in the Message Queue file-based
persistent store was changed to reduce disk I/O and to improve the performance of JMS
transactions.

■ Oracle JDBC Store

In previous versions of Message Queue, the store schema for Oracle used the LONG RAW data
type to store message data. In Oracle 8, Oracle introduced the BLOB data types and
deprecated the LONG RAW type. Message Queue 3.7 UR1 switched to the BLOB data type to
improve performance and supportability.

Because these changes impact store compatibility, the store version for both the file store and
the JDBC store was changed from 350 to 370 in version 3.7 UR1 of Message Queue.

About Message Queue 4.0

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 17

Version 4.0 of Message Queue introduced changes to the JDBC store for optimization and to
support future enhancements. For this reason the JDBC store version was increased to 400.
Note that in Version 4.0, the file-based persistent store version remains 370 because no changes
were made to it.

Message Queue 4.0 supports automatic conversion of the persistent store to the newest versions
of the file-based and JDBC persistent stores. The first time imqbrokerd starts, if the utility
detects an older store it will migrate the store to the new format, leaving the old store behind.
■ File-based store versions 200 and 350 will be migrated to the 370 version format.
■ JDBC store versions 350 and 370 will be migrated to the 400 version format. (If you need to

upgrade a 200 store, you will need to step through an intermediate 3.5 or 3. 6 release.)

If you should need to roll back this upgrade, you can uninstall Message Queue 4.0 and then
reinstall the version you were previously running. Since the older copy of the store is left intact,
the broker can run with the older copy of the store.

Broker Administration
The Command utility (imqcmd) has added a subcommand and several options that allow
administrators to quiesce the broker, to shutdown the broker after a specified interval, to
destroy a connection, or to set java system properties (for example, connection related
properties.)
■ Quiescing the broker moves it into a quiet state, which allows messages to be drained before

the broker is shut down or restarted. No new connections can be created to a broker that is
being quiesced. To quiesce the broker, enter a command like the following.
imqcmd quiesce bkr -b Wolfgang:1756

■ To shut down the broker after a specified interval, enter a command like the following. (The
time interval specifies the number of seconds to wait before the broker is shut down.)
imqcmd shutdown bkr -b Hastings:1066 -time 90

If you specify a time interval, the broker will log a message indicating when shutdown will
occur. For example,
Shutting down the broker in 29 seconds (29996 milliseconds)

While the broker is waiting to shut down, its behavior is affected in the following ways.
■ Administrative jms connections will continue to be accepted.
■ No new jms connections will be accepted.
■ Existing jms connections will continue to work.
■ The broker will not be able to take over for any other broker in a high availability cluster.
■ The imqcmd utility will not block, it will send the request to shut down to the broker and

return right away.
■ To destroy a connection, enter a command like the following.

About Message Queue 4.0

Sun Java System Message Queue 4.1 Release Notes • September 200718

imqcmd destroy cxn -n 2691475382197166336

Use the command imqcmd list cxn or imqcmd query cxn to obtain the connection ID.
■ To set a system property using imqcmd, use the new –D option. This is useful for setting or

overriding JMS connection factory properties or connection-related java system properties.
For example:

imqcmd list svc -secure -DimqSSLIsHostTrusted=true

imqcmd list svc -secure -Djavax.net.ssl.trustStore=/tmp/mytruststore

-Djavax.net.ssl.trustStorePassword=mytrustword

For complete information about the syntax of the imqcmd command, see Chapter 13,
“Command Line Reference,” in Sun Java System Message Queue 4.1 Administration Guide.

JDBC Persistence Support
Apache Derby Version 10.1.1 is now supported as a JDBC-compliant persistent store provider.

SSL Support
Starting with release 4.0, the default value for the client connection factory property
imqSSLIsHostTrusted is false. If your application depends on the prior default value of
true, you need to reconfigure and to set the property explicitly to true.

You might choose to trust the host when the broker is configured to use self-signed certificates.
In this case, in addition to specifying that the connection should use an SSL-based connection
service (using the imqConnectionType property), you should set the imqSSLIsHostTrusted
property to true.

For example, to run client applications securely when the broker uses self-signed certificates,
use a command like the following.

java -DimqConnectionType=TLS

-DimqSSLIsHostTrusted=true <ClientAppName>

To run the administration tool imqcmd securely when the broker uses self-signed certificates,
use a command like the following.

imqcmd list svc -secure -DimqSSLIsHostTrusted=true

JMX Support
A new API has been added for configuring and monitoring Message Queue brokers in
conformance with the Java Management Extensions (JMX) specification. Using this API, you
can configure and monitor broker functions programmatically from within a Message Queue
client application. In earlier versions of Message Queue, these functions were accessible only
from the command line or the Administration Console.

About Message Queue 4.0

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 19

The API consists of a set of JMX Managed Beans (MBeans) for managing the following Message
Queue–related resources:

■ Message brokers
■ Connection services
■ Connections
■ Destinations
■ Message producers
■ Message consumers
■ Transactions
■ Broker clusters
■ Logging
■ The Java Virtual Machine (JVM)

These MBeans provide attributes and operations for synchronously polling and manipulating
the state of the underlying resources, as well as notifications that allow a client application to
listen for and respond asynchronously to state changes as they occur. Using the JMX API, client
applications can perform configuration and monitoring tasks like the following:

■ Set a broker's port number
■ Set a broker's maximum message size
■ Pause a connection service
■ Set the maximum number of threads for a connection service
■ Get the current number of connections on a service
■ Destroy a connection
■ Create a destination
■ Destroy a destination
■ Enable or disable auto-creation of destinations
■ Purge all messages from a destination
■ Get the cumulative number of messages received by a destination since the broker was

started
■ Get the current state (running or paused) of a queue
■ Get the current number of message producers for a topic
■ Purge all messages from a durable subscriber
■ Get the current JVM heap size

For an introduction to the JMX API and for complete reference information, see the Sun Java
System Message Queue 4.1 Developer’s Guide for JMX Clients.

About Message Queue 4.0

Sun Java System Message Queue 4.1 Release Notes • September 200720

Broker Support: JMX-Related Properties

Several new broker properties have been added to support the JMX API (see Table 1–3). None
of these properties can be set from the command line with the Message Queue Command utility
(imqcmd). Instead, they can either be set with the -D option of the Broker utility (imqbrokerd) or
edited by hand in the broker's instance configuration file (config.properties). In addition,
some of these properties (imq.jmx.rmiregistry.start, imq.jmx.rmiregistry.use,
imq.jmx.rmiregistry.port) can be set with the new Broker utility options described in
Table 1–4. The table lists each option, specifies its type, and describes its use.

TABLE 1–3 New Broker Properties for JMX Support

Property Type Description

imq.jmx.rmiregistry.start Boolean Specifies whether to start RMI registry at broker startup.

If true, the broker will start an RMI registry at the port
specified by imq.jmx.rmiregistry.port and use it to
store the RMI stub for JMX connectors. Note that the value
of imq.jmx.rmiregistry.use is ignored in this case.

Default value: false

imq.jmx.rmiregistry.use Boolean Specifies whether to use an external RMI registry.

Applies only if imq.jmx.rmiregistry.start is false.

If true, the broker will use an external RMI registry at the
port specified by imq.jmx.rmiregistry.port to store the
RMI stub for JMX connectors. The external RMI registry
must already be running at broker startup.

Default value: false

imq.jmx.rmiregistry.port Integer Port number of RMI registry

Applies only if imq.jmx.rmiregistry.start or
imq.jmx.rmiregistry.use is true. JMX connectors can
then be configured to use the RMI registry by including
this port number in the URL path of their JMX service
URLs.

Default value: 1099

imq.jmx.connector.list String Names of preconfigured JMX connectors, separated by
commas

Default value: jmxrmi,ssljmxrmi

imq.jmx.connector.activelist String Names of JMX connectors to be activated at broker startup,
separated by commas

Default value: jmxrmi

About Message Queue 4.0

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 21

TABLE 1–3 New Broker Properties for JMX Support (Continued)
Property Type Description

imq.jmx.connector.connectorName.urlpath String urlPath component of JMX service URL for connector
connectorName

Useful in cases where the JMX service URL path must be
set explicitly (such as when a shared external RMI registry
is used).

Default value: If an RMI registry is used to store the RMI
stub for JMX connectors (that is, if
imq.jmx.registry.start or imq.jmx.registry.use is
true)

/jndi/rmi://brokerHost:rmiPort
/brokerHost/brokerPort/connectorName

If an RMI registry is not used (the default case,
imq.jmx.registry.start and
imq.jmx.registry.use both false):

/stub/rmiStub

where rmiStub is an encoded and serialized representation
of the RMI stub itself

imq.jmx.connector.connectorName.useSSL Boolean Specifies whether to use a Secure Socket Layer (SSL) for
connector connectorName.

Default value: false

imq.jmx.connector.connectorName.brokerHostTrusted Boolean Specifies whether to trust any certificate presented by
broker for connector connectorName.

Applies only when
imq.jmx.connector.connectorName.useSSL is true.

If false, the Message Queue client runtime will validate all
certificates presented to it. Validation will fail if the signer
of the certificate is not in the client's trust store.

If true, validation of certificates is skipped. This can be
useful, for instance, during software testing when a
self-signed certificate is used.

Default value: false

The imq.jmx.connector.list property defines a set of named JMX connectors to be created at
broker startup; imq.jmx.connector.activelist specifies which of these are to be activated.
Each named connector then has its own set of properties:

About Message Queue 4.0

Sun Java System Message Queue 4.1 Release Notes • September 200722

imq.jmx.connector.connectorName.urlpath
imq.jmx.connector.connectorName.useSSL
imq.jmx.connector.connectorName.brokerHostTrusted

By default, two JMX connectors are created, named jmxrmi and ssljmxrmi; the first is
configured not to use SSL encryption (imq.jmx.connector.jmxrmi.useSSL = false, the
second to use it (imq.jmx.connector.ssljmxrmi.useSSL = true). By default, only the jmxrmi
connector is activated at broker startup; see “SSL Support for JMX Clients” on page 23 for
information on how to activate the ssljmxrmi connector for secure communications.

For convenience, new options (Table 1–4) are also added to the command-line Broker utility
(imqbrokerd) to control the usage, startup, and port for the RMI registry. The use and effects of
these options are the same as those of the equivalent broker properties, as described in
Table 1–3. The table lists each option, specifies its equivalent broker property, and describes its
use.

TABLE 1–4 New Broker Utility Options for JMX Support

Option Equivalent Broker Property Description

-startRmiRegistry imq.jmx.rmiregistry.start Specifies whether to start RMI registry at
broker startup.

-useRmiRegistry imq.jmx.rmiregistry.use Specifies whether to use external RMI
registry.

-rmiRegistryPort imq.jmx.rmiregistry.port The port number of RMI registry

A new subcommand (Table 1–5) is added to the command-line Command utility (imqcmd) for
listing the JMX service URLs of JMX connectors created and started at broker startup. This
information is needed by JMX clients that do not use the Message Queue convenience class
AdminConnectionFactory to obtain their JMX connectors, and can also be used for managing
or monitoring Message Queue via a generic JMX browser such as the Java Monitoring and
Management Console (jconsole).

TABLE 1–5 New Command Utility Subcommand

Subcommand Description

list jmx List JMX service URLs of JMX connectors

SSL Support for JMX Clients

As mentioned above, a Message Queue message broker is configured by default for insecure
communication using the preconfigured JMX connector jmxrmi. Applications wishing to use
the Secure Socket Layer (SSL) for secure communication must activate the alternate, secure
JMX connector, ssljmxrmi. This requires the following steps:

About Message Queue 4.0

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 23

1. Obtain and install a signed certificate in the same way as for the ssljms, ssladmin, or
cluster connection service, as described in the Message Queue Administration Guide.

2. Install the root certification authority certificate in the trust store if necessary.

3. Add the ssljmxrmi connector to the list of JMX connectors to be activated at broker startup:

imq.jmx.connector.activelist=jmxrmi,ssljmxrmi

4. Start the broker with the Message Queue Broker utility (imqbrokerd), either passing it the
key-store password in a password file or typing it from the command line when prompted.

5. By default, the ssljmxrmi connector (or any other SSL-based connector) is configured to
validate all broker SSL certificates presented to it. To avoid this validation (for instance,
when using self-signed certificates during software testing), set the broker property
imq.jmx.connector.ssljmxrmi.brokerHostTrusted to true.

On the client side, the administrator connection factory (AdminConnectionFactory) must be
configured with a URL specifying ssljmxrmi as the preferred connector:

AdminConnectionFactory acf = new AdminConnectionFactory();

acf.setProperty(AdminConnectionConfiguration.imqAddress, "mq://myhost:7676/ssljmxrmi");

If needed, use the system properties javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword to point the JMX client to the trust store.

Client Runtime Logging
This section describes Message Queue 4.0 support for client runtime logging of connection and
session-related events.

JDK 1.4 (and above) includes the java.util.logging library. This library implements a
standard logger interface that can be used for application-specific logging.

The Message Queue client runtime uses the Java Logging API to implement its logging
functions. You can use all the J2SE 1.4 logging facilities to configure logging activities. For
example, an application can use the following Java logging facilities to configure how the
Message Queue client runtime outputs its logging information:

■ Logging Handlers
■ Logging Filters
■ Logging Formatters
■ Logging Level

For more information about the Java Logging API, please see the Java Logging Overview at
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html

About Message Queue 4.0

Sun Java System Message Queue 4.1 Release Notes • September 200724

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html

Logging Name Spaces, Levels, and Activities

The Message Queue provider defines a set of logging name spaces associated with logging levels
and logging activities that allow Message Queue clients to log connection and session events
when a logging configuration is appropriately set.

The root logging name space for the Message Queue client runtime is defined as javax.jms. All
loggers in the Message Queue client runtime use this name as the parent name space.

The logging levels used for the Message Queue client runtime are the same as those defined in
the java.util.logging.Level class. This class defines seven standard log levels and two
additional settings that you can use to turn logging on and off.

OFF Turns off logging.

SEVERE Highest priority, highest value. Application-defined.

WARNING Application-defined.

INFO Application-defined.

CONFIG Application-defined

FINE Application-defined.

FINER Application-defined.

FINEST Lowest priority, lowest value. Application-defined.

ALL Enables logging of all messages.

In general, exceptions and errors that occur in the Message Queue client runtime are logged by
the logger with the javax.jms name space.

■ Exceptions thrown from the JVM and caught by the client runtime, such as IOException,
are logged by the logger with the logging name space javax.jms at level WARNING.

■ JMS exceptions thrown from the client runtime, such as IllegalStateException, are
logged by the logger with the logging name space javax.jms at level FINER.

■ Errors thrown from the JVM and caught by the client runtime, such as OutOfMemoryError,
are logged by the logger with the logging name space javax.jms at level SEVERE.

The following tables list the events that can be logged and the log level that must be set to log
events for JMS connections and for sessions.

The following table describes log levels and events for connections.

About Message Queue 4.0

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 25

TABLE 1–6 Log Levels and Events for javax.jms.connection Name Space

Log Level Events

FINE Connection created

FINE Connection started

FINE Connection closed

FINE Connection broken

FINE Connection reconnected

FINER Miscellaneous connection activities such as setClientID

FINEST Messages, acknowledgments, Message Queue action and control messages
(like committing a transaction)

For sessions, the following information is recorded in the log record.

■ Each log record for a message delivered to a consumer includes ConnectionID, SessionID,
and ConsumerID.

■ Each log record for a message sent by a producer includes ConnectionID, SessionID,
ProducerID, and destination name.

The table below describes log levels and events for sessions.

TABLE 1–7 Log Levels and Events for javax.jms.sessionName Space

Log Level Event

FINE Session created

FINE Session closed

FINE Producer created

FINE Consumer created

FINE Destination created

FINER Miscellaneous session activities such as committing a session.

FINEST Messages produced and consumed. (Message properties and bodies are not
logged in the log records.)

By default, the output log level is inherited from the JRE in which the application is running.
Check the JRE_DIRECTORY/lib/logging.properties file to determine what that level is.

About Message Queue 4.0

Sun Java System Message Queue 4.1 Release Notes • September 200726

You can configure logging programmatically or by using configuration files, and you can
control the scope within which logging takes place. The following sections describe these
possibilities.

Using the JRE Logging Configuration File

The following example shows how you set logging name spaces and levels in the
JRE_DIRECTORY/lib/logging.properties file, which is used to set the log level for the Java
runtime environment. All applications using this JRE will have the same logging configuration.
The sample configuration below sets the logging level to INFO for the javax.jms.connection
name space and specifies that output be written to java.util.logging.ConsoleHandler.

#logging.properties file.

"handlers" specifies a comma separated list of log Handler

classes. These handlers will be installed during VM startup.

Note that these classes must be on the system classpath.

By default we only configure a ConsoleHandler, which will only

show messages at the INFO and above levels.

handlers= java.util.logging.ConsoleHandler

Default global logging level.

This specifies which kinds of events are logged across

all loggers. For any given facility this global level

can be overriden by a facility-specific level.

Note that the ConsoleHandler also has a separate level

setting to limit messages printed to the console.

.level= INFO

Limit the messages that are printed on the console to INFO and above.

java.util.logging.ConsoleHandler.level = INFO

java.util.logging.ConsoleHandler.formatter =

java.util.logging.SimpleFormatter

The logger with javax.jms.connection name space will write

Level.INFO messages to its output handler(s). In this configuration

the ouput handler is set to java.util.logging.ConsoleHandler.

javax.jms.connection.level = INFO

Using a Logging Configuration File for a Specific Application

You can also define a logging configuration file from the java command line that you use to run
an application. The application will use the configuration defined in the specified logging file. In

About Message Queue 4.0

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 27

the following example, configFile uses the same format as defined in the
JRE_DIRECTORY/lib/logging.properties file.

java -Djava.util.logging.config.file=configFile MQApplication

Setting the Logging Configuration Programmatically

The following code uses the java.util.logging API to log connection events by changing the
javax.jms.connection name space log level to FINE. You can include such code in your
application to set logging configuration programmatically.

import java.util.logging.*;

//construct a file handler and output to the mq.log file

//in the system’s temp directory.

Handler fh = new FileHandler("%t/mq.log");
fh.setLevel (Level.FINE);

//Get Logger for "javax.jms.connection" domain.

Logger logger = Logger.getLogger("javax.jms.connection");
logger.addHandler (fh);

//javax.jms.connection logger would log activities

//with level FINE and above.

logger.setLevel (Level.FINE);

Connection Event Notification
Connection event notifications allow a Message Queue client to listen for closure and
reconnection events and to take appropriate action based on the notification type and the
connection state. For example, when a failover occurs and the client is reconnected to another
broker, an application might want to clean up its transaction state and proceed with a new
transaction.

If the Message Queue provider detects a serious problem with a connection, it calls the
connection object's registered exception listener. It calls the listener's onException method, and
passes it a JMSException argument describing the problem. The Message Queue provider also
offers an event notification API that allows the client runtime to inform the application about
connection state changes. The notification API is defined by the following elements:

■ The com.sun.messaging.jms.notification package, which defines the event listener and
the notification event objects .

■ The com.sun.messaging.jms.Connection interface, which defines extensions to the
javax.jms.Connection interface.

About Message Queue 4.0

Sun Java System Message Queue 4.1 Release Notes • September 200728

The following sections describe the events that can trigger notification and explain how you can
create an event listener.

Connection Events

The following table lists and describes the events that can be returned by the event listener.

Note that the JMS exception listener is not called when a connection event occurs. The
exception listener is only called if the client runtime has exhausted its reconnection attempts.
The client runtime always calls the event listener before the exception listener.

TABLE 1–8 Notification Events

Event Type Meaning

ConnectionClosingEvent The Message Queue client runtime generates this
event when it receives a notification from the broker
that a connection is about to be closed due to a
shutdown requested by the administrator.

ConnectionClosedEvent The Message Queue client runtime generates this
event when a connection is closed due to a broker
error or when it is closed due to a shutdown or restart
requested by the administrator.

When an event listener receives a
ConnectionClosedEvent, the application can use the
getEventCode() method of the received event to get
an event code that specifies the cause for closure.

ConnectionReconnectedEvent The Message Queue client runtime has reconnected to
a broker. This could be the same broker to which the
client was previously connected or a different broker.

An application can use the getBrokerAddress
method of the received event to get the address of the
broker to which it has been reconnected.

ConnectionReconnectFailedEvent The Message Queue client runtime has failed to
reconnect to a broker. Each time a reconnect attempt
fails, the runtime generates a new event and delivers it
to the event listener.

The JMS exception listener is not called when a
connection event occurs. It is only called if the client
runtime has exhausted its reconnection attempts. The
client runtime always calls the event listener before the
exception listener.

About Message Queue 4.0

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 29

Creating an Event Listener

The following code example illustrates how you set a connection event listener. Whenever a
connection event occurs, the event listener's onEvent method will be invoked by the client
runtime.

//create an MQ connection factory.

com.sun.messaging.ConnectionFactory factory =

new com.sun.messaging.ConnectionFactory();

//create an MQ connection.

com.sun.messaging.jms.Connection connection =

(com.sun.messaging.jms.Connection)factory.createConnection();

//construct an MQ event listener. The listener implements

//com.sun.messaging.jms.notification.EventListener interface.

com.sun.messaging.jms.notification.EventListener eListener =

new ApplicationEventListener();

//set event listener to the MQ connection.

connection.setEventListener (eListener);

Event Listener Examples

In this example, an application chooses to have its event listener log the connection event to the
application's logging system:

public class ApplicationEventListener implements

com.sun.messaging.jms.notification.EventListener {

public void onEvent (com.sun.messaging.jms.notification.Event connEvent) {

log (connEvent);

}

private void log (com.sun.messaging.jms.notification.Event connEvent) {

String eventCode = connEvent.getEventCode();

String eventMessage = connEvent.getEventMessage();

//write event information to the output stream.

}

}

About Message Queue 4.0

Sun Java System Message Queue 4.1 Release Notes • September 200730

Hardware and Software Requirements
For hardware and software requirements for Version 4.0, please consult the Release Notes for
the Sun Java System Application Server Platform Edition 9.

Bugs Fixed in This Release
The following table shows bugs that were fixed in the 4.1 version of Message Queue.

TABLE 1–9 Bugs Fixed in Message Queue 4.1

Bug Description

6381703 Transacted remote messages can be committed twice if the broker originating the message
restarts.

6388049 Cannot clean up an uncompleted distributed transaction.

6401169 The commit and rollback options for imqcmd do not prompt for confirmation.

6473052 Default for autocreated queues should be round robin. (MaxNumberConsumers = -1).

6474990 Broker log shows ConcurrentModificationException for imqcmd list dst command.

6487413 Memory leak when limit behavior is REMOVE_OLDEST or REMOVE_LOWER_PRIORITY.

6488340 Broker spins, and client waits for reply to acknowledge.

6502744 Broker does not honor the dead message queue's default limit of 1000 messages.

6517341 Client runtime needs to improve reconnect logic when the client is connected to a high
availability cluster by allowing the client to reconnect no matter what the value of the
imqReconnectEnabled property is.

6528736 Windows automatic startup service (imqbrokersvc) crashes during startup.

6561494 Messages are delivered to the wrong consumer when both share a session.

6567439 Produced messages in a PREPARED transaction are delivered out of order if they are committed
after broker restarts.

The following table describes the bugs fixed in Message Queue 4.0.

TABLE 1–10 Bugs Fixed in Message Queue 4.0

Bug Number Description

4986481 In Message Queue 3.5, calling Session.recover could hang in auto-reconnect mode.

Bugs Fixed in This Release

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 31

TABLE 1–10 Bugs Fixed in Message Queue 4.0 (Continued)
Bug Number Description

4987325 Redelivered flag was set to false for redelivered messages after calling Session.recover.

6157073 Change new connection message to include the number of connections on the service in
addition to the total number of connections.

6193884 Message Queue outputs garbage message to syslog in locales that use non-ASCII
characters for messages.

6196233 Message selection using JMSMessageID doesn't work.

6251450 ConcurrentModificationException on connectList during cluster shutdown.

6252763 java.nio.BufferOverflowException in java.nio.HeapByteBuffer.putLong/Int.

6260076 First message published after startup is slow with Oracle storage.

6260814 Selector processing on JMSXUserID always evaluates to false.

6264003 The queue browser shows messages that are part of transactions that have not been
committed.

6271876 Connection Flow Control does not work properly when closing a consumer with
unconsumed messages.

6279833 Message Queue should not allow two brokers to use the same jdbc tables.

6293053 Master broker does not start up correctly if the system's IP address is changed, unless the
store is cleared (using —reset store.)

6294767 Message Queue broker needs to set SO_REUSEADDR on the network sockets it opens.

6304949 Unable to set ClientID property for TopicConnectionFactory.

6307056 The txn log is a performance bottleneck.

6320138 Message Queue C API lacks ability to determine the name of a queue from a reply-to
header.

6320325 The broker sometimes picks up JDK 1.4 before JDK 1.5 on Solaris even if both versions are
installed.

6321117 Multibroker cluster initialization throws java.lang.NullPointerException.

6330053 The jms client throws java.lang.NoClassDefFoundError when committing a
transaction from the subscriber.

6340250 Support MESSAGE type in C-API.

6351293 Add Support for Apache Derby database.

Bugs Fixed in This Release

Sun Java System Message Queue 4.1 Release Notes • September 200732

Important Information
This section contains the latest information that is not contained in the core product
documentation. This section covers the following topics:

■ “Installation Notes” on page 33
■ “Compatibility Issues” on page 33
■ “Documentation Updates for Message Queue 4.1” on page 34

Installation Notes
Refer to the Sun Java System Message Queue 4.1 Installation Guidefor information about
pre-installation instructions, upgrade procedures, and all other information relevant to
installing Message Queue, Platform Edition on the Solaris, Linux, and Windows platforms.

Refer to the Sun Java Enterprise System Installation Guide for information about
pre-installation instructions and all other information relevant to installing Message Queue,
Enterprise Edition on the Solaris, Linux, and HPUX platforms.

Refer to the Sun Java Enterprise System Upgrade and Migration Guide for information about
upgrade and migration instructions relevant to upgrading to Message Queue Enterprise Edition
on the Solaris, Linux, HPUX, and Windows platforms.

Compatibility Issues
This section covers compatibility issues in Message Queue 4.1.

Interface Stability
Sun Java System Message Queue uses many interfaces that may change over time. Appendix B,
“Stability of Message Queue Interfaces,” in Sun Java System Message Queue 4.1 Administration
Guide classifies the interfaces according to their stability. The more stable an interface, the less
likely it is to change in subsequent versions of the product.

Issues Related to the Next Major Release of Message Queue
The next major release of Message Queue may introduce changes that make your clients
incompatible with that release. This information is provided now to allow you to prepare for
these changes.

■ The locations of individual files installed as part of Sun Java System Message Queue might
change. This could break existing applications that depend on the current location of certain
Message Queue files.

■ 3.5 and earlier brokers may no longer be able to operate in a cluster with newer brokers.

Important Information

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 33

■ In future releases, Message Queue clients may not be able to use JDK versions that are earlier
than 1.5.

Documentation Updates for Message Queue 4.1
Other than this Release Notes document, Message Queue 4.1 includes only one new document:
Sun Java System Message Queue 4.1 Developer’s Guide for JMX Clients. This document was
introduced with the 4.0 release of Message Queue. In the 4.1 version, conceptual information
has been added that introduces the JMX model.

The Message Queue documentation that was published for Message Queue 3.6 SP3, 2005Q4, is
up to date with respect to the needs of Application Server 9 PE clients. This documentation set is
available at the following location.

http://docs.sun.com/app/docs/coll/1307.1

Installation and Upgrade Information
The Sun Java System Message Queue 4.1 Installation Guide was updated to reflect
platform-specific information. This document now contains installation and upgrade
information relevant to Message Queue 4.1.

Administration Guide
The Administration Guide was updated to provide information about high availability clusters,
JAAS support, and JMX support.

Developer's Guide for Java Clients
TheDeveloper’s Guide for Java Clients was updated to reflect the addition of client runtime
logging support and of connection event notifications.

Developer’s Guide for C Clients
TheDeveloper’s Guide for C Clients was updated to reflect the addition of the
MQGetDestinationName function, of the MQ_Message message type, and of fixed ports.

Important Information

Sun Java System Message Queue 4.1 Release Notes • September 200734

http://docs.sun.com/app/docs/coll/1307.1

Known Issues and Limitations
This section contains a list of the known issues with Message Queue 4.1. The following product
areas are covered:

■ “Installation Issues” on page 35
■ “Deprecated Password Option” on page 40
■ “General Issues” on page 41
■ “Administration/Configuration Issues” on page 41
■ “Broker Issues” on page 42
■ “Broker Clusters” on page 42
■ “JMX Issues” on page 44
■ “Support for SOAP” on page 44

For a list of current bugs, their status, and workarounds, Java Developer ConnectionTM

members should see the Bug Parade page on the Java Developer Connection web site. Please
check that page before you report a new bug. Although all Message Queue bugs are not listed,
the page is a good starting place if you want to know whether a problem has been reported.

http://bugs.sun.com/bugdatabase/index.jsp

Note – Java Developer Connection membership is free but requires registration. Details on how
to become a Java Developer Connection member are provided on Sun’s “For Developers” web
page.

To report a new bug or submit a feature request, send mail to imq-feedback@sun.com.

Installation Issues
This section describes issues related to the installation of Message Queue version 4.1.

Product Registry and JES
Version 4.1 of Message Queue is installed by a new installer, which also installs and upgrades
the shared components that Message Queue needs; for example, JDK, NSS libraries, JavaHelp,
and so on. This installer and the Java Enterprise System (JES) installer do not share the same
product registry. If a version of Message Queue that was installed with JES is removed and
upgraded to Message Queue 4.1 by the Message Queue installer, the JES product registry may be
in an inconsistent state. As a result, when the JES uninstaller is run, it may inadvertently remove
Message Queue 4.1 and the shared components upon which it depends, which it did not install.

The best way to upgrade software that was installed by the JES installer is as follows.

1. Use the JES uninstaller to remove Message Queue and its shared components.

Known Issues and Limitations

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 35

http://bugs.sun.com/bugdatabase/index.jsp

2. Use the Message Queue installer to install Message Queue 4.1.

Selecting the Appropriate JRE
The Message Queue 4. 1 Installer JDK Selection Screen allows you to select existing JDK/JRE's
on the system for use by Message Queue. Unfortunately, the list shown also includes the JRE
used to run the installer application. This JRE is part of the installer bundle and is not really
installed on the system. (Bug 6585911)

The JRE used by the installer is recognizable by its path, which should be within the unzipped
installer directory and should include the subdirectory mq4_1–installer. For example:

some_directory/mq4_1–installer/usr/jdk/instances/jdk1.5.0/jre

Do not select this JRE for use by Message Queue. Instead, select another JDK on the system. If
one does not exist, take the action appropriate for your platform.

■ Solaris or Linux: Select “Install and use the default JDK”.
■ Windows: Download and install a JDK before running the Message Queue 4.1 installer.

Installing on Windows
When installing Message Queue on Windows, please note the following limitations.

■ The installer does not add entries for Message Queue to the Start>Programs menu (Bug
6567258). To start the administration console use the command line as shown in “Starting
the Administration Console” in Sun Java System Message Queue 4.1 Administration Guide.

■ The installer does not add the IMQ_HOME\mq\bin directory to the PATH environment
variable.(Bug 6567197). Users need either to add this entry to their PATH environment
variable or provide a full path name when invoking Message Queue utilities
(IMQ_HOME\mq\bin\command).

■ The installer does not add entries to the Windows registry to indicate that Message Queue is
installed.

■ When run in silent mode, the installer returns right away. The installation does happen; but
the user has no way of knowing when the silent installation is actually done. (Bug 6586560)

■ Text mode (installer –t) is not supported on Windows. Running the installer in text
mode on Windows causes an error message to be displayed. This message is displayed in
English even when the installer is run in non-English locales. (Bug 6594142)

■ The string “Install Home” displayed on the Installer Install Home screen is shown in English
even when the installer is run in non-English locales. (Bug 6592491)

Installing on Solaris
The error message and “incomplete” summary status misleads user trying to install using the
installer-n command. The command actually succeeds. (Bug 6594351)

Known Issues and Limitations

Sun Java System Message Queue 4.1 Release Notes • September 200736

Installing on Linux
The following issues affect installation on the Linux Platform

■ On the JDK Selection panel, the scroll list displays only one item. This makes it difficult to
select other JDK's in the list. (Bug 6584735)

■ If the JDK is current and the user selects “Install default JDK” on the JDK Selection Screen,
the installer still tries to install it and reports that it cannot install the package. Installation
completes successfully despite this issue. (Bug 6581310)

■ When the installer is run in dry run mode (installer –n), the Summary Screen shows
some error messages and also displays an install status of “Incomplete”. This is incorrect and
misleading; a dry run does not install anything on the system; it only creates the answer file
that can be subsequently used to install.(Bug 6594351)

■ If older versions of Message Queue localization RPM's exist on your system, installation of
Message Queue 4.1 localization RPM's (which happens when you select the “Install Message
Queue multilingual packages” checkbox on the Multilingual Packages screen) will fail.
Installation fails because of conflicts with Il8 packages from a previous 3.7 UR1 installation.
(Bug 6594381)

Workaround Manually remove the localization RPM's using the rpm –e command before
running the 4.1 Installer. To determine which RPM's are relevant here, see “Message Queue
Packages (RPMs)” in Sun Java System Message Queue 4.1 Installation Guide.

Installing on All Platforms
These issues affect installation on all platforms.

■ When the Installer is in the process of installing Message Queue 4.1 and the Progress screen
is displayed, the Cancel button is active. Selecting the Cancel button at this time results in
incomplete or broken installs. (Bug 6595578)

■ The Installer Summary Screen contains a number of links that when clicked will launch a log
or summary page viewer. If you dismiss this viewer window using the window close button
“X” instead of the button labelled “close', you will not be able to bring this viewer window
back up. (Bug 6587138)

Workaround Use the button labeled Close to close the window.
■ When a system has older versions of Message Queue and NSS/NSPR, the Installer's Upgrade

only lists Message Queue needing upgrade; it does not mention that NSS/NSPR need to be
upgraded. This only an issue with the Update screen as all the relevant software will be
upgraded as part of the installation process (as indicated by The ReadyToInstall screen
which shows the correct information). (Bug 6580696)

Workaround None needed as the NSS/NSPR files are installed if they are not current, and
the older versions are unistalled.

Known Issues and Limitations

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 37

■ When the Installer or Uninstaller is run in text mode (installer –t), the Summary screen
shows the directory containing the log/summary files but does not list the names of these
files. (Bug 6581592)

■ Specifying the name of a file that does not exist, produces inconsistent and unclear error
messages. (Bug 6587127)

Version Information
The installer displays Message Queue version information in an opaque form. (Bug 6586507)

On the Solaris platform, refer to the table below to determine the version being installed.

TABLE 1–11 Version Formats

Version as Displayed by the
Installer Message Queue Release

4.1.0.0 4.1

3.7.0.1 3.7 UR1

3.7.0.2 3.7 UR2

3.7.0.3 3.7 UR3

3.6.0.0 3.6

3.6.0.1 3.6 SP1

3.6.0.2 3.6 SP2

3.6.0.3 3.6 SP3

3.6.0.4 3.6 SP4

Note – For Patch releases to 3.6 SP4 (for example, 3.6 SP4 Patch 1), the releases string displayed
by the installer stays the same. You need to run the command imqbrokerd –version to
determine the exact version.

On the Linux platform, it is not possible to provide a simple format translation. The version
number displayed by the installer on Linux is in the following form.

<majorReleaseNumber>.<minorReleaseNumber>-<someNumber>

For example, 3.7–22. This tells us that it is one of the 3.7 releases, but not which specific one. To
determine that, run the command imqbrokerd —version.

Known Issues and Limitations

Sun Java System Message Queue 4.1 Release Notes • September 200738

Localization Issues
The following issues relate to localization problems.

■ When the installer is run in text mode (installer –t), in a non-English locale, multi-byte
characters show up as garbage.(Bug 6586923)

■ The Installer Summary screen allows the user to view a Summary report. Unfortunately, this
report (an HTML page) shows garbage when the installer is run in multibyte locales. (Bug
6587112)

Workaround Edit the HTML file to correct the charset specified in it. The HTML file should
contain something like the following.

meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8

Replace “UTF-8” with locale_name.UTF-8. For example, ja_JA.UTF-8 or ko.UTF-8 on
Solaris; ja_JA.utf8 or ko_KO.utf8 on linux.

■ On the Installer Progress screen, the progress bar shows strange characters. The tooltip is
hard coded in non-English locales. (Bug 6591632)

■ Text mode (installer –t) is not supported on Windows. Running the installer in text
mode on Windows will cause an error message to be displayed. This message is not localized
when the installer is run in non-English locales. (Bug 6594142)

■ The License screen of the installer displays English license text no matter which locale the
Installer is run in.(Bug 6592399)

Workaround To access localized license files, look for at the LICENSE_MULTILANGUAGE.pdf
file.

■ Installer usage help text is not localized. (Bug 6592493)
■ The string “None” that is seen on the Installer summary HTML page is hard coded in

English. (Bug 6593089)
■ The copyright page is not localized for locales other than France. (Bug 6590992)
■ When the installer is run in a German locale, the Welcome screen does not show the

complete text that is seen in other locales. (Bug 6592666)
■ The string “Install Home” seen on the Installer Install Home screen is not localized. It

appears in English even when the installer is run in non-English locales. (Bug 6592491)
■ When the installer is run in text mode (installer –t), the English response choices “Yes”

and “No” are used no matter what locale the installer is run in. (Bug 6593230)
■ The tooltip for the browse button on the Installer JDK Selection screen is hard coded in

English. (Bug 6593085)

Known Issues and Limitations

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 39

Deprecated Password Option
In previous versions of Message Queue, you could use the —p or —password option to specify a
password interactively for the following commands: imqcmd, imqbrokerd, and imdbmgr.
Beginning with version 4.0, these options have been deprecated. You must furnish passwords as
follows.

1. Set the password property to the desired value in a file used to store only passwords.

Use the following syntax to specify passwords in the password file.

PasswordPropertyName=MyPassword

2. Pass the name of the password file using the —passfile option.

A password file can contain one or more of the passwords listed below.

■ A keystore password used to open the SSL keystore. Use the imq.keystore.password
property to specify this password.

■ An LDAP repository password used to connect securely with an LDAP directory if the
connection is not anonymous. Use the imq.user_repository.ldap.password property to
specify this password.

■ A JDBC database password used to connect to a JDBC-compliant database. Use the
imq.persist.jdbc.vendorName.password property to specify this password. The
vendorName component of the property name is a variable that specifies the database
vendor. Choices include hadb, derby, pointbase, oracle, or mysql.

■ A password to the imqcmd command (to perform broker administration tasks). Use the
imq.imqcmd.password property to specify this password.

In the following example, the password to the JDBC database is set to abracadabra.

imq.persist.jdbc.mysql.password=abracadabra

You can configure the broker to use the password file you create in one of the following ways.

■ Set the following properties in the broker's config.properties file.

imq.passfile.enabled=true

imq.passfile.dirpath=MyFileDirectory
imq.passfile.name=MyPassfileName

■ Use the —passfile option of the imqbrokerd command.

imqbrokerd —passfile MyPassfileName

Known Issues and Limitations

Sun Java System Message Queue 4.1 Release Notes • September 200740

General Issues
This section covers general issues in Message Queue 4.1. Some of these were introduced with
previous Message Queue versions.

■ When a JMS client using the HTTP transport terminates abruptly (for example, using
Ctrl-C) the broker takes approximately one minute before releasing the client connection
and all the associated resources.
If another instance of the client is started within the one minute period and if it tries to use
the same ClientID, durable subscription, or queue, it might receive a “Client ID is already in
use” exception. This is not a real problem; it is just the side effect of the termination process
described above. If the client is started after a delay of approximately one minute, everything
should work fine.

■ SOAP clients. Previously the SAAJ 1.2 implementation jar used to refer to mail.jar and
mail.jar did not need to be in CLASSPATH. In SAAJ 1.3 this reference was removed; thus,
Message Queue clients must put mail.jar explicitly in CLASSPATH.

Administration/Configuration Issues
The following issues pertain to administration and configuration of Message Queue

■ The imqadmin and imqobjmgr utilities throw an error when the CLASSPATH contains double
quotes on Windows machines (Bug ID 5060769).
Workaround You can ignore this error message; the broker correctly handles notifying
consumers of any error. This error does not affect the reliability of the system.

■ The -javahome option in all Solaris and Windows scripts does not work if the value
provided contains a space (Bug ID 4683029).
The javahome option is used by Message Queue commands and utilities to specify an
alternate Java 2 compatible runtime to use. However, the path name to the alternate Java
runtime must not contain spaces. The following are examples of paths that include spaces.
Windows: C:/jdk 1.4

Solaris: /work/java 1.4

Workaround Install the Java runtime at a location or path that does not contain spaces.
■ The imqQueueBrowserMaxMessagesPerRetrieve attribute specifies the maximum number

of messages that the client runtime retrieves at one time when browsing the contents of a
queue. Note that the client application will always get all the messages on the queue. Thus,
the imqQueueBrowserMaxMessagesPerRetrieve attribute affects how the queued messages
are chunked, to be delivered to the client runtime (fewer large chunks, or more smaller
chunks), but it does not affect the total messages browsed. Changing the value of this
attribute might impact performance, but it will not result in the client application getting
more or less data (Bug ID 6387631).

Known Issues and Limitations

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 41

Broker Issues
The following issues affect the Message Queue broker.

■ There has been some confusion about how to configure the broker for round-robin delivery.
The solution is simple and configurable.
1. Set the destination attribute maxNumActiveConsumers to -1. This turns on round-robin

delivery.
2. Set the destination attribute consumerFlowLimit to 1. This specifies the number of

messages delivered to a single consumer before delivery progresses to the next
consumer. For different chunking, set this attribute to the desired value. By default, one
hundred messages are delivered to each consumer.

■ Broker becomes inaccessible when persistent store opens too many destinations. (Bug ID
4953354).
Workaround This condition is caused by the broker reaching the system open-file
descriptor limit. On Solaris and Linux use the ulimit command to increase the file
descriptor limit.

■ Consumers are orphaned when a destination is destroyed (Bug ID 5060787).
Active consumers are orphaned when a destination is destroyed. Once the consumers have
been orphaned, they will no longer receive messages (even if the destination is recreated).
Workaround There is no workaround for this problem.

Broker Clusters
The following issues affect clustered brokers.

■ Only fully-connected broker clusters are supported in this release. This means that every
broker in a cluster must communicate directly with every other broker in the cluster. If you
are connecting brokers using the imqbrokerd -cluster command line argument, be
careful to ensure that all brokers in the cluster are included.

■ A broker using HADB cannot handle messages larger than 10 MB. (Bug 6531734)
■ If a client is connected to a high availability broker, the client runtime will attempt to

reconnect until it succeeds (no matter what the imqAddressListIterations value is set to
be.)

■ A client connected to a broker that is part of a cluster cannot currently use QueueBrowser to
browse queues that are located on remote brokers in that cluster. The client can only browse
the contents of queues that are located on the broker to which it is directly connected. The
client may still send messages to any queue or consume messages from any queue on any
broker in the cluster; the limitation only affects browsing.

Known Issues and Limitations

Sun Java System Message Queue 4.1 Release Notes • September 200742

■ In a conventional cluster, if you want to cluster a 4.1 broker with a 3.x broker, you must set
the property imq.autocreate.queue.maxNumActiveConsumers=1 for the 4.1 broker.
Otherwise, the brokers will not be able to establish a cluster connection.

■ When converting to a high-availability cluster, you can use the Message Queue Manager
utility (imqdbmgr) to convert an existing standalone HADB persistent data store to a shared
HADB store. The command is as follows.

imqdbmgr upgrade hastore

You can use this utility in the following cases.
■ Moving from a 4.0 standalone HADB store to a 4.1 shared HADB store. In this case, the

broker will automatically upgrade the store. You can then run the imqdbmgr command
to convert the upgraded data store for shared use.

■ Moving from a standalone 4.1 HADB store to a shared HADB store. In this case, you just
need to run the imqdbmgr command shown above to convert the data store for shared
use.

Because this command only supports conversion of HADB stores, it is not possible to use it
to convert file-based stores or other JDBC-stores to a shared HADB store. If you were
previously running a 3.x version of Message Queue, you must create an HADB store and
then manually migrate your data to that store in order to use the high availability feature.

■ The conversion to an HADB store using the command imqdbmgr upgrade hastore can fail
with the message “too many locks are set” if the store holds more than 10,000 message. (Bug
ID 6588856)).

(Workaround) Use the following command to increase the number of locks.

hadbm set NumberOfLocks=<desiredNumber>

For additional information see “HADB Problems” in Sun Java System Application Server 9.1
Enterprise Edition Troubleshooting Guide.

■ If more than 500 remote messages are committed in one transaction, the broker might
return the error “HADB-E-12815: Table memory space exhausted.” (Bug ID 6550483)

For additional information, see “HADB Problems” in Sun Java System Application Server 9.1
Enterprise Edition Troubleshooting Guide.

■ In a broker cluster, a broker will queue messages to a remote connection that has not been
started (Bug ID 4951010).

Workaround The messages will be received by the consumer once the connection is started.
The messages will be redelivered to another consumer if the consumer’s connection is
closed.

■ When consuming more than one message from a remote broker in one transaction, it is
possible that the following error message will be logged to the broker. The message is benign
and can be ignored:

Known Issues and Limitations

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 43

[26/Jul/2007:13:18:27 PDT] WARNING [B2117]:

Message acknowledgement failed from

mq://129.145.130.95:7677/?instName=a&brokerSessionUID=3209681167602264320:

ackStatus = NOT_FOUND(404)\

Reason = Update remote transaction state to COMMITED(6):

transaction 3534784765719091968 not found, the transaction

may have already been committed.

AckType = MSG_CONSUMED

MessageBrokerSession = 3209681167602264320

TransactionID = 3534784765719091968

SysMessageID = 8-129.145.130.95(95:fd:93:91:ec:a0)-33220-1185481094690

ConsumerUID = 3534784765719133952\par

[26/Jul/2007:13:18:27 PDT] WARNING Notify commit transaction

[8-129.145.130.95(95:fd:93:91:ec:a0)-33220-1185481094690,

[consumer:3534784765719133952, type=NONE]]

TUID=3534784765719091968 got response:

com.sun.messaging.jmq.jmsserver.util.BrokerException:

Update remote transaction state to COMMITED(6):

transaction 3534784765719091968 not found, the transaction may have already

been committed.:

com.sun.messaging.jmq.jmsserver.util.BrokerException: Update remote transaction

state to COMMITED(6): transaction 3534784765719091968 not found, the transaction

may have already been committed.r

This message gets logged when notifying the commit to the message home broker for later
messages in the transaction when the imq.txn.reapLimit property is low compared to the
number of remote messages in one transaction. (Bug 6585449)

Workaround To avoid this message increase the value of the imq.txn.reapLimit property.

JMX Issues
On the Windows platform, the getTransactionInfo method of the Transaction Manager
Monitor MBean returns transaction information that has incorrect transaction creation time
(Bug ID 6393359).

Workaround Use the getTransactionInfoByID method of the Transaction Manager Monitor
MBean instead.

Support for SOAP
You need to be aware of two issues related to SOAP support

■ Beginning with the release of version 4.0 of Message Queue, support for SOAP administered
objects is discontinued.

Known Issues and Limitations

Sun Java System Message Queue 4.1 Release Notes • September 200744

■ SOAP development depends upon several files: SUNWjaf, SUNWjmail, SUNWxsrt, and
SUNWjaxp. In version 4.1 of Message Queue, these files are available to you only if you are
running Message Queue with JDK version 1.6.0 or later.

Redistributable Files
Sun Java System Message Queue 4.1 contains the following set of files which you may use and
freely distribute in binary form:

fscontext.jar

imq.jar

imqjmx.jar

imqxm.jar

jaas.jar

jms.jar

libmqcrt.so (HPUX)
libmqcrt.so (UNIX)
mqcrt1.dll (Windows)

In addition, you can also redistribute the LICENSE and COPYRIGHT files.

Accessibility Features for People With Disabilities
To obtain accessibility features that have been released since the publishing of this media,
consult Section 508 product assessments (available from Sun upon request) to determine which
versions are best suited for deploying accessible solutions. Updated versions of applications can
be found at http://sun.com/software/javaenterprisesystem/get.html.

For information on Sun’s commitment to accessibility, visit http://sun.com/access.

How to Report Problems and Provide Feedback
If you have problems with Sun Java System Message Queue, contact Sun customer support
using one of the following mechanisms:
■ Sun Software Support services online at http://www.sun.com/service/sunone/software.

This site has links to the Knowledge Base, Online Support Center, and ProductTracker, as
well as to maintenance programs and support contact numbers.

■ The telephone dispatch number associated with your maintenance contract.

So that we can best assist you in resolving problems, please have the following information
available when you contact support:
■ Description of the problem, including the situation where the problem occurs and its

impact on your operation.
■ Machine type, operating system version, and product version, including any patches and

other software that might be affecting the problem.

How to Report Problems and Provide Feedback

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 45

http://sun.com/software/javaenterprisesystem/get.html
http://sun.com/access
http://www.sun.com/service/sunone/software

■ Detailed steps on the methods you have used to reproduce the problem.
■ Any error logs or core dumps.

Sun Java System Software Forum
There is a Sun Java System Message Queue forum available at the following location:

http://swforum.sun.com/jive/forum.jspa?forumID=24

We welcome your participation.

Java Technology Forum
There is a JMS forum in the Java Technology Forums that might be of interest.

http://forum.java.sun.com

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions.

To share your comments, go to http://docs.sun.com and click Send Comments. In the online
form, provide the document title and part number. The part number is a seven-digit or
nine-digit number that can be found on the title page of the book or at the top of the document.
For example, the title of this book is Sun Java System Message Queue 4.1 Release Notes, and the
part number is 819-7753.

Additional Sun Resources
Useful Sun Java System information can be found at the following Internet locations:

■ Documentation
http://docs.sun.com/prod/java.sys

■ Professional Services
http://www.sun.com/service/sunps/sunone

■ Software Products and Service
http://www.sun.com/software

■ Software Support Services

Sun Welcomes Your Comments

Sun Java System Message Queue 4.1 Release Notes • September 200746

http://swforum.sun.com/jive/forum.jspa?forumID=24
http://forum.java.sun.com
http://docs.sun.com
http://docs.sun.com/prod/java.sys
http://www.sun.com/service/sunps/sunone
http://www.sun.com/software

http://www.sun.com/service/sunone/software

■ Support and Knowledge Base
http://www.sun.com/service/support/software

■ Sun Support and Training Services
http://training.sun.com

■ Consulting and Professional Services
http://www.sun.com/service/sunps/sunone

■ Developer Information
http://developers.sun.com

■ Sun Developer Support Services
http://www.sun.com/developers/support

■ Software Training
http://www.sun.com/software/training

Additional Sun Resources

Chapter 1 • Sun Java System Message Queue 4.1 Release Notes 47

http://www.sun.com/service/sunone/software
http://www.sun.com/service/support/software
http://training.sun.com
http://www.sun.com/service/sunps/sunone
http://developers.sun.com
http://www.sun.com/developers/support
http://www.sun.com/software/training

48

	Sun Java System Message Queue 4.1 Release Notes
	Sun Java System Message Queue 4.1 Release Notes
	Release Notes Revision History
	About Message Queue 4.1
	What's New in The 4.1 Release
	High Availability
	JAAS Support
	Elements of JAAS
	JAAS and Message Queue
	Setting up JAAS-Compliant Authentication

	Persistent Store Format Change
	Broker Configuration
	JES Monitoring Framework Support
	Transaction Management
	Fixed Ports for C Client Connections

	Hardware and Software Requirements

	About Message Queue 4.0
	What’s New in the 4.0 Release
	Interface Changes to the C API and C Client Runtime
	Interface Changes to the Java API and the Java Client Runtime
	Displaying Information About the Persistent Store
	Persistent Store Format Changes
	Broker Administration
	JDBC Persistence Support
	SSL Support
	JMX Support
	Broker Support: JMX-Related Properties
	SSL Support for JMX Clients

	Client Runtime Logging
	Logging Name Spaces, Levels, and Activities
	Using the JRE Logging Configuration File
	Using a Logging Configuration File for a Specific Application
	Setting the Logging Configuration Programmatically

	Connection Event Notification
	Connection Events
	Creating an Event Listener
	Event Listener Examples

	Hardware and Software Requirements

	Bugs Fixed in This Release
	Important Information
	Installation Notes
	Compatibility Issues
	Interface Stability
	Issues Related to the Next Major Release of Message Queue

	Documentation Updates for Message Queue 4.1
	Installation and Upgrade Information
	Administration Guide
	Developer's Guide for Java Clients
	Developer’s Guide for C Clients

	Known Issues and Limitations
	Installation Issues
	Product Registry and JES
	Selecting the Appropriate JRE
	Installing on Windows
	Installing on Solaris
	Installing on Linux
	Installing on All Platforms
	Version Information
	Localization Issues

	Deprecated Password Option
	General Issues
	Administration/Configuration Issues
	Broker Issues
	Broker Clusters
	JMX Issues
	Support for SOAP

	Redistributable Files
	Accessibility Features for People With Disabilities
	How to Report Problems and Provide Feedback
	Sun Java System Software Forum
	Java Technology Forum

	Sun Welcomes Your Comments
	Additional Sun Resources

