
Sun Java System Message Queue
4.1 Developer's Guide for JMX
Clients

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–7758

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et
de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque déposée aux Etats-Unis et
dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de Sun
Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L'ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU
LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S'APPLIQUERAIT PAS, DANS LA MESURE OU
IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

070903@18135

Contents

Preface ...11

1 Introduction to JMX Programming for Message Queue Clients .. 19
JMX Architecture .. 19
Message Queue MBeans ... 20

Resource MBeans ... 20
Manager MBeans ... 21
Object Names ... 22

2 Using the JMX API ..27
Interface Packages ... 27
Utility Classes ... 28
Connecting to the MBean Server ... 29

Obtaining a JMX Connector from an Administration Connection Factory 30
Obtaining a JMX Connector Without Using an Administration Connection Factory 31
JMX Service URLs .. 32

Using MBeans .. 33
Accessing MBean Attributes ... 33
Invoking MBean Operations .. 38
Receiving MBean Notifications .. 44

3 Message Queue MBean Reference ...47
Message Brokers .. 47

Broker Configuration .. 47
Broker Monitor .. 51

Connection Services .. 53
Service Configuration .. 53

3

Service Monitor .. 55
Service Manager Configuration ... 58
Service Manager Monitor ... 59

Connections ... 61
Connection Configuration ... 61
Connection Monitor .. 62
Connection Manager Configuration ... 63
Connection Manager Monitor ... 64

Destinations ... 66
Destination Configuration ... 66
Destination Monitor .. 70
Destination Manager Configuration ... 75
Destination Manager Monitor ... 78

Message Producers .. 80
Producer Manager Configuration ... 80
Producer Manager Monitor .. 81

Message Consumers .. 83
Consumer Manager Configuration ... 84
Consumer Manager Monitor ... 85

Transactions ... 88
Transaction Manager Configuration ... 88
Transaction Manager Monitor ... 89

Broker Clusters .. 92
Cluster Configuration ... 92
Cluster Monitor .. 95

Logging ... 100
Log Configuration ... 100
Log Monitor .. 101

Java Virtual Machine ... 103
JVM Monitor .. 103

A Alphabetical Reference ..105

Index ... 117

Contents

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •4

Tables

TABLE 1–1 Object Name Properties .. 23
TABLE 1–2 Message Queue MBean Types ... 23
TABLE 1–3 Message Queue MBean Subtypes .. 24
TABLE 1–4 Destination Types ... 24
TABLE 1–5 Connection Service Names .. 24
TABLE 1–6 Example Object Names ... 25
TABLE 1–7 Utility Constants and Methods for Object Names .. 26
TABLE 2–1 JMX.jarFile Locations .. 27
TABLE 2–2 Message Queue JMX Utility Classes .. 28
TABLE 3–1 Broker Configuration Attributes ... 48
TABLE 3–2 Broker Configuration Operations ... 49
TABLE 3–3 Broker Configuration Notification .. 51
TABLE 3–4 Broker Monitor Attributes ... 51
TABLE 3–5 Broker Monitor Notifications .. 52
TABLE 3–6 Data Retrieval Methods for Broker Monitor Notifications 52
TABLE 3–7 Connection Service Names for Service Configuration MBeans 53
TABLE 3–8 Service Configuration Attributes ... 54
TABLE 3–9 Service Configuration Operations ... 54
TABLE 3–10 Service Configuration Notification ... 55
TABLE 3–11 Connection Service Names for Service Monitor MBeans 55
TABLE 3–12 Service Monitor Attributes ... 56
TABLE 3–13 Connection Service State Values ... 57
TABLE 3–14 Service Monitor Operations ... 57
TABLE 3–15 Service Monitor Notifications .. 57
TABLE 3–16 Data Retrieval Method for Service Monitor Notifications 58
TABLE 3–17 Service Manager Configuration Attributes .. 58
TABLE 3–18 Service Manager Configuration Operations .. 59
TABLE 3–19 Service Manager Monitor Attributes .. 59

5

TABLE 3–20 Service Manager Monitor Operation .. 60
TABLE 3–21 Service Manager Monitor Notifications ... 60
TABLE 3–22 Data Retrieval Method for Service Manager Monitor Notifications 61
TABLE 3–23 Connection Configuration Attribute .. 62
TABLE 3–24 Connection Monitor Attributes .. 62
TABLE 3–25 Connection Monitor Operations .. 63
TABLE 3–26 Connection Manager Configuration Attribute ... 64
TABLE 3–27 Connection Manager Configuration Operations .. 64
TABLE 3–28 Connection Manager Monitor Attributes .. 65
TABLE 3–29 Connection Manager Monitor Operation .. 65
TABLE 3–30 Connection Manager Monitor Notifications ... 65
TABLE 3–31 Data Retrieval Methods for Connection Manager Monitor Notifications 65
TABLE 3–32 Destination Configuration Attributes .. 67
TABLE 3–33 Destination Configuration Type Values ... 68
TABLE 3–34 Destination Limit Behaviors .. 68
TABLE 3–35 Destination Configuration Operations .. 69
TABLE 3–36 Destination Pause Types ... 69
TABLE 3–37 Destination Configuration Notification ... 70
TABLE 3–38 Destination Monitor Attributes ... 70
TABLE 3–39 Destination Monitor Type Values ... 73
TABLE 3–40 Destination State Values ... 73
TABLE 3–41 Destination Monitor Operations ... 74
TABLE 3–42 Destination Monitor Notifications .. 74
TABLE 3–43 Data Retrieval Methods for Destination Monitor Notifications 75
TABLE 3–44 Destination Manager Configuration Attributes .. 75
TABLE 3–45 Destination Manager Configuration Operations .. 77
TABLE 3–46 Destination Manager Configuration Type Values .. 78
TABLE 3–47 Destination Manager Pause Types .. 78
TABLE 3–48 Destination Manager Configuration Notification .. 78
TABLE 3–49 Destination Manager Monitor Attributes .. 79
TABLE 3–50 Destination Manager Monitor Operation .. 79
TABLE 3–51 Destination Manager Monitor Notifications ... 79
TABLE 3–52 Data Retrieval Methods for Destination Manager Monitor Notifications 80
TABLE 3–53 Producer Manager Configuration Attribute .. 81
TABLE 3–54 Producer Manager Configuration Operation .. 81
TABLE 3–55 Producer Manager Monitor Attribute .. 82

Tables

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •6

TABLE 3–56 Producer Manager Monitor Operations ... 82
TABLE 3–57 Lookup Keys for Message Producer Information .. 83
TABLE 3–58 Message Producer Destination Types ... 83
TABLE 3–59 Consumer Manager Configuration Attribute .. 84
TABLE 3–60 Consumer Manager Configuration Operations .. 84
TABLE 3–61 Consumer Manager Monitor Attribute .. 85
TABLE 3–62 Consumer Manager Monitor Operations .. 85
TABLE 3–63 Lookup Keys for Message Consumer Information ... 86
TABLE 3–64 Message Consumer Destination Types ... 87
TABLE 3–65 Acknowledgment Modes .. 87
TABLE 3–66 Transaction Manager Configuration Attribute ... 88
TABLE 3–67 Transaction Manager Configuration Operations ... 89
TABLE 3–68 Transaction Manager Monitor Attributes .. 89
TABLE 3–69 Transaction Manager Monitor Operations .. 90
TABLE 3–70 Lookup Keys for Transaction Information .. 90
TABLE 3–71 Transaction State Values .. 91
TABLE 3–72 Transaction Manager Monitor Notifications ... 92
TABLE 3–73 Data Retrieval Method for Transaction Manager Monitor Notifications 92
TABLE 3–74 Cluster Configuration Attributes .. 93
TABLE 3–75 Cluster Configuration Operations .. 94
TABLE 3–76 Lookup Keys for Cluster Configuration Information ... 95
TABLE 3–77 Cluster Configuration Notification ... 95
TABLE 3–78 Cluster Monitor Attributes ... 96
TABLE 3–79 Cluster Monitor Operations .. 97
TABLE 3–80 Lookup Keys for Cluster Monitor Information ... 98
TABLE 3–81 Broker State Values ... 98
TABLE 3–82 Cluster Monitor Notifications ... 99
TABLE 3–83 Data Retrieval Methods for Cluster Monitor Notifications 100
TABLE 3–84 Log Configuration Attributes .. 101
TABLE 3–85 Log Configuration Logging Levels .. 101
TABLE 3–86 Log Configuration Notification ... 101
TABLE 3–87 Log Monitor Notifications .. 102
TABLE 3–88 Data Retrieval Methods for Log Monitor Notifications 102
TABLE 3–89 JVM Monitor Attributes ... 103
TABLE A–1 Alphabetical List of MBean Attributes .. 105
TABLE A–2 Alphabetical List of MBean Operations ... 110

Tables

7

TABLE A–3 Alphabetical List of MBean Notifications .. 113

Tables

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •8

Examples

EXAMPLE 2–1 Obtaining a JMX Connector from an Administration Connection Factory 30
EXAMPLE 2–2 Configuring an Administration Connection Factory ... 31
EXAMPLE 2–3 Obtaining a JMX Connector Without Using an Administration Connection

Factory .. 31
EXAMPLE 2–4 Getting an Attribute Value ... 33
EXAMPLE 2–5 Getting Multiple Attribute Values ... 34
EXAMPLE 2–6 Setting an Attribute Value .. 35
EXAMPLE 2–7 Setting Multiple Attribute Values .. 37
EXAMPLE 2–8 Invoking an Operation ... 38
EXAMPLE 2–9 Invoking an Operation with Parameters .. 39
EXAMPLE 2–10 Combining Operations and Attributes ... 41
EXAMPLE 2–11 Using a Composite Data Object .. 42
EXAMPLE 2–12 Notification Listener ... 45
EXAMPLE 2–13 Registering a Notification Listener .. 45

9

10

Preface

This Message Queue Developer’s Guide for JMX Clients describes the application programming
interface provided in Sun Java System Message Queue 4.1 for programmatically configuring
and monitoring Message Queue resources in conformance with the Java Management
Extensions (JMX). As in earlier versions of Message Queue, these functions are also available to
system administrators by way of the Message Queue Administration Console and command
line utilities, as described in the Message Queue Administration Guide. As of release 4.1, the API
described here makes the same administrative functionality available programmatically from
within a running client application.

Message Queue 4.1 also includes several new broker properties and command-line options to
support the new JMX API. These features are described in the Message Queue Release Notes for
release 4.1, and will eventually be incorporated into the Message Queue Administration Guide.

Who Should Use This Book
This guide is intended for Java application developers wishing to use the Message Queue JMX
API to perform Message Queue administrative tasks programmatically from within a client
application.

Before You Read This Book
This guide assumes that you are already familiar with general Message Queue concepts,
administrative operations, and Java client programming, as described in the following manuals:

■ Message Queue Technical Overview
■ Message Queue Administration Guide
■ Message Queue Developer’s Guide for Java Clients

You should also be familiar with the general principles of the Java Management Extensions, as
described in the following publications:

■ Java Management Extensions Instrumentation and Agent Specification
■ Java Management Extensions (JMX) Remote API Specification

Together, these two publications are referred to hereafter as the JMX Specification.

11

How This Book Is Organized
This guide consists of the following chapters:

■ Chapter 1, “Introduction to JMX Programming for Message Queue Clients” introduces the
basic concepts and principles of the Message Queue JMX interface.

■ Chapter 2, “Using the JMX API” provides code examples showing how to use the JMX
application programming interface from within your Message Queue clilent applications.

■ Chapter 3, “Message Queue MBean Reference” provides detailed information on the
attributes, operations, and notifications provided by Message Queue managed beans
(MBeans).

■ Appendix A, “Alphabetical Reference” lists the MBean attributes, operations, and
notifications alphabetically, with references back to their descriptions in the body of the
manual.

Related Documentation
In addition to this guide, Sun provides the additional documentation resources described in the
following subsections.

Message Queue Documentation Set
The Message Queue documentation set comprises the documents shown in Table P–1, in the
order in which you would normally use them.

TABLE P–1 Message Queue Documentation Set

Document Audience Description

Message Queue Installation Guide Developers and
administrators

Explains how to install Message Queue software
on Solaris, Linux, and Windows platforms

Message Queue Release Notes Developers and
administrators

Includes descriptions of new features,
limitations, and known bugs, as well as
technical notes

Message Queue Technical Overview Developers and
administrators

Introduces basic Message Queue concepts,
features, and components

Message Queue Administration Guide Administrators (also
recommended for
developers)

Provides background and information needed
to perform administrative tasks using Message
Queue administration tools

Preface

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •12

TABLE P–1 Message Queue Documentation Set (Continued)
Document Audience Description

Message Queue Developer’s Guide for
Java Clients

Developers Provides information on developing Java client
programs using the Message Queue
implementation of the Java Message Service
(JMS) and SOAP/JAXM specifications

Message Queue Developer’s Guide for
C Clients

Developers Provides information on developing C and C++
client programs using Message Queue's C
application programming interface (C API)

Message Queue Developer’s Guide for
JMX Clients

Developers Provides information on developing Java client
programs using the Message Queue
implementation of the Java Management
Extensions (JMX) API

Java Management Extensions (JMX) Documentation
The Message Queue JMX API conforms to the Java Management Extensions (JMX) standard,
described in the Java Management Extensions Instrumentation and Agent Specification and the
Java Management Extensions (JMX) Remote API Specification. These documents can be
downloaded from the URLs

http://jcp.org/aboutJava/communityprocess/final/jsr003

and

http://jcp.org/aboutJava/communityprocess/final/jsr160

respectively.

For a general conceptual introduction to JMX principles and architecture, see the Java
Management Extensions (JMX) Technology Overview at

http://java.sun.com/j2se/1.5.0/docs/guide/jmx/overview/JMXoverviewTOC.html

and the Java Management Extensions (JMX) Technology Tutorial at

http://java.sun.com/j2se/1.5.0/docs/guide/jmx/tutorial/tutorialTOC.html

JavaDoc
Message Queue API documentation in JavaDoc format is included in your Message Queue
installation at the locations shown in Table P–2, depending on your platform. This
documentation can be viewed in any HTML browser. It includes standard JMS API
documentation as well as Message Queue–specific APIs for Message Queue administered
objects, which are of value to developers of messaging applications.

Preface

13

http://jcp.org/aboutJava/communityprocess/final/jsr003
http://jcp.org/aboutJava/communityprocess/final/jsr160
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/overview/JMXoverviewTOC.html
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/tutorial/tutorialTOC.html

TABLE P–2 JavaDoc Locations

Platform Location

Solaris /usr/share/javadoc/imq/index.html

Linux /opt/sun/mq/javadoc/index.html

Windows IMQ_HOME\javadoc\index.html

where IMQ_HOME is the Message Queue base directory set by the Message
Queue Installer (C:\Program Files\Sun\MessageQueue4 by default)

Example Client Applications
Example client applications providing sample Java application code using JMX are included in
your Message Queue installation at the locations shown in Table P–3, depending on your
platform.

TABLE P–3 JMX Code Example Locations

Platform Location

Solaris /usr/demo/imq/jmx

Linux /opt/sun/mq/examples/jmx

Windows IMQ_HOME\demo\jmx

where IMQ_HOME is the Message Queue base directory set by the Message
Queue installer (C:\Program Files\Sun\MessageQueue4 by default)

Typographic Conventions
Table P–4 shows the typographic conventions used inMessage Queue documentation.

TABLE P–4 Typographic Conventions

Typeface Meaning Example

AaBbCc123 Names of commands, files, and directories, and
onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, as contrasted with onscreen
computer output

machine_name% su

Password:

Preface

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •14

TABLE P–4 Typographic Conventions (Continued)
Typeface Meaning Example

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and emphasized words Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note – Some emphasized items
appear online in boldface.

Symbol Conventions
Table P–5 shows symbol conventions used inMessage Queue documentation.

TABLE P–5 Symbol Conventions

Symbol Description Example Meaning

[] Encloses optional
arguments and command
options

ls [-l] The -l option is optional.

{ | } Encloses a set of choices
for a required command
option

-d {y|n} The -d option requires that you use either
the y argument or the n argument.

${ } Indicates a variable
reference

${com.sun.javaRoot} References the value of the variable
com.sun.javaRoot.

- Joins simultaneous
multiple keystrokes

Ctrl-A Hold down the Control key while
pressing the A key.

+ Joins consecutive
multiple keystrokes

Ctrl+A+N Press the Control key, release it, and then
press the subsequent keys.

→ Indicates hierarchical
menu selection in a
graphical user interface

File → New → Templates From the File menu, choose New; from
the New submenu, choose Templates.

Preface

15

Directory Variable Conventions
Message Queue makes use of three directory variables; how they are set varies from platform to
platform. Table P–6 describes these variables and how they are used on the Solaris, Linux, and
Windows platforms.

Note – The information in Table P–6 applies only to the standalone installation of Message
Queue. When Message Queue is installed and run as part of an Application Server installation,
the values of the directory variables are set differently: IMQ_HOME is set to
appServer_install_dir/imq (where appServer_install_dir is the Application Server installation
directory), and IMQ_VARHOME is set to appServer_domainName_dir/imq (where
appServer_domainName_dir is the domain directory for the domain starting the Message
Queue broker).

TABLE P–6 Directory Variable Conventions

Variable Description

IMQ_HOME The Message Queue base directory (root installation directory):
■ Unused on Solaris and Linux; there is no Message Queue base

directory.

■ On Windows, set by the Message Queue Installer to the directory in
which you unzip the Message Queue bundle.

IMQ_VARHOME The directory in which Message Queue temporary or dynamically
created configuration and data files are stored; can be set as an
environment variable to point to any directory.
■ On Solaris, defaults to /var/imq.
■ On Linux, defaults to /var/opt/sun/mq.
■ On Windows, defaults to IMQ_HOME\var.

IMQ_JAVAHOME The location of the Java runtime environment (JRE) required by
Message Queue executables:
■ On Solaris and Linux, set by default to the location of the latest JRE,

but can optionally be set to point to another, preferred JRE instead.

■ On Windows, set to the location of an existing JRE if a supported
version is found on the system. If a supported version is not found,
one will be installed.

Note – In this manual, these directory variables are shown without platform-specific
environment variable notation or syntax (such as $IMQ_HOME on UNIX). Pathnames generally
use UNIX directory separator notation (/).

Preface

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •16

Shell Prompts in Command Examples
Table P–7 shows the default UNIX® system prompt and superuser prompt for the C shell,
Bourne shell, Korn shell, and Windows operating system.

TABLE P–7 Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Windows C:\

Documentation, Support, and Training
The Sun Web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.com Web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun Web sites in your search such as java.sun.com, www.sun.com, and
developers.sun.com), use sun.com in place of docs.sun.com in the search field.

Preface

17

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com
http://java.sun.com
http://www.sun.com
http://developers.sun.com

Third-Party Web Site References
Third-party URLs referenced in this document provide additional, related information.

Note – Sun is not responsible for the availability of third-party Web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is always interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to the Sun documentation Web site at

http://docs.sun.com

and click Send Comments. In the resulting online form, provide the document title and part
number along with your comment. (The part number is a 7-digit or 9-digit number that can be
found on the book’s title page or in the document's URL. For example, the part number of this
book is 819-7758.)

Preface

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •18

http://docs.sun.com

Introduction to JMX Programming for Message
Queue Clients

While Sun Java System Message Queue’s Administration Console and command line
administration utilities allow an administrator to interactively configure and monitor Message
Queue resources (such as message brokers, connections, and destinations), these tools are not
accessible from within a running client application. To provide programmatic access to such
administrative functions, Message Queue also incorporates an application programming
interface based on the Java Management Extensions (JMX). Client applications can use this API
to perform the same configuration and monitoring operations programmatically that are
available interactively through the Administration Console and command line utilities.

You can use Message Queue’s JMX API in your client applications for a variety of purposes:

■ To optimize performance by monitoring the usage of message brokers and other Message
Queue resources and reconfiguring their parameters based on the results

■ To automate regular maintenance tasks, rolling upgrades, and so forth
■ To write your own utility applications to replace or enhance standard Message Queue tools

such as the Broker utility (imqbrokerd) and Command utility (imqcmd)

In addition, since JMX is the Java standard for building management applications and is widely
used for managing J2EE infrastructure, you can use it to incorporate your Message Queue client
as part of a larger J2EE deployment using a standard management framework throughout.

JMX Architecture
The JMX Specification defines an architecture for the instrumentation and programmatic
management of distributed resources. This architecture is based on the notion of a managed
bean, or MBean: a Java object, similar to a JavaBean, representing a resource to be managed.
Message Queue MBeans may be associated with individual resources such as message brokers
or destinations, or with whole categories of resources, such as the set of all destinations on a
broker. There are separate configuration MBeans and monitor MBeans for setting a resource’s
configuration properties and monitoring its runtime state.

1C H A P T E R 1

19

Each MBean is identified by an object name, an instance of the JMX class ObjectName
conforming to the syntax and conventions defined in the JMX Specification. Object names for
Message Queue MBeans are either defined as static constants or returned by static methods in
the Message Queue utility class MQObjectName; see “Object Names” on page 22 for further
information.

An MBean provides access to its underlying resource through a management interface
consisting of the following:
■ Attributes holding data values representing static or dynamic properties of the resource
■ Operations that can be invoked to perform actions on the resource
■ Notifications informing the client application of state changes or other significant events

affecting the resource

Client applications obtain MBeans through an MBean server, which serves as a container and
registry for MBeans. Each Message Queue broker process contains an MBean server, accessed
by means of a JMX connector. The JMX connector is used to obtain an MBean server connection,
which in turn provides access to individual MBeans on the server. Configuring or monitoring a
Message Queue resource with JMX requires the following steps:

1. Obtain a JMX connector.
2. Get an MBean server connection from the JMX connector.
3. Construct an object name identifying the particular MBean you wish to operate on.
4. Pass the object name to the appropriate methods of the MBean server connection to access

the MBean’s attributes, operations, and notifications.
5. Close the MBean server connection.

See Chapter 2, “Using the JMX API” for code examples illustrating the technique for various
MBean operations.

Message Queue MBeans
Message Queue's JMX functionality is exposed through MBeans associated with various
Message Queue resources. These MBeans are of two kinds: resource MBeans and manager
MBeans. The attributes, operations, and notifications available for each type of MBean are
described in detail in Chapter 3, “Message Queue MBean Reference.”

Resource MBeans
Resource MBeans are associated with individual Message Queue resources of the following
types:

■ Message brokers

Message Queue MBeans

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •20

■ Connection services
■ Connections
■ Destinations
■ Broker clusters
■ Logging
■ The Java Virtual Machine (JVM)

Configuration and monitoring functions are implemented by separate MBeans. Each managed
resource is associated with a configuration MBean for setting the resource's configuration and a
monitor MBean for gathering (typically transient) information about its runtime state. For
instance, there is a destination configuration MBean for configuring a destination and a
destination monitor MBean for obtaining runtime information about it. In general, each
instance of a managed resource has its own pair of MBeans: thus there is a separate destination
configuration MBean and destination monitor MBean for each individual destination. (In the
case of the Java Virtual Machine, there is only a JVM monitor MBean with no corresponding
configuration MBean.)

Configuration MBeans are used to perform such tasks as the following:
■ Set a broker's port number
■ Set a broker's maximum message size
■ Pause a connection service
■ Set the maximum number of threads for a connection service
■ Purge all messages from a destination
■ Set the level of logging information to be written to an output channel

Monitor MBeans are used to obtain runtime information such as the following:
■ The current number of connections on a service
■ The cumulative number of messages received by a destination since the broker was started
■ The current state (running or paused) of a queue destination
■ The current number of message producers for a topic destination
■ The host name and port number of a cluster's master broker
■ The current JVM heap size

Manager MBeans
In addition to the resource MBeans associated with individual resources, there are also manager
MBeans for managing some whole categories of resources. These manager MBeans also come
in pairs—one for configuration and one for monitoring—for the following resource categories:
■ Connection services
■ Connections
■ Destinations

Message Queue MBeans

Chapter 1 • Introduction to JMX Programming for Message Queue Clients 21

■ Message producers
■ Message consumers
■ Transactions

Unlike individual resource MBeans, a broker has only one pair of manager MBeans for each
whole category of resources: for instance, a single destination manager configuration MBean
and a single destination manager monitor MBean. For some categories (connection services,
connections, destinations), the manager MBeans exist in addition to the ones for individual
resources, and are used to manage the collection of resource MBeans within the category or to
perform global tasks that are beyond the scope of individual resource MBeans. Thus, for
instance, there is a connection manager configuration MBean and a connection manager
monitor MBean in addition to the connection configuration and connection monitor MBeans
associated with individual connections. Manager MBeans of this type are used to perform tasks
such as the following:

■ Get the object names of the service monitor MBeans for all available connection services
■ Get the total number of current connections
■ Destroy a connection
■ Create or destroy a destination
■ Enable or disable auto-creation of destinations
■ Pause message delivery for all destinations

In other cases (message producers, message consumers, transactions), there are no MBeans
associated with individual resources and all of the resources in the category are managed
through the manager MBeans themselves. The manager MBeans for these categories can be
used for such tasks as the following:

■ Get the destination name associated with a message producer
■ Purge all messages from a durable subscriber
■ Commit or roll back a transaction

Object Names
Each individual MBean is designated by an object name belonging to the JMX class ObjectName,
which encapsulates a string identifying the MBean. For Message Queue MBeans, the
encapsulated name string has the following syntax:

com.sun.messaging.jms.server:property=value[,property=value]*

Table 1–1 shows the possible properties.

Message Queue MBeans

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •22

TABLE 1–1 Object Name Properties

Property Description Values

type MBean type See Table 1–2.

subtype MBean subtype See Table 1–3.

desttype Destination type

Applies only to MBeans of the
following types:
■ Destination configuration
■ Destination monitor

See Table 1–4.

name Resource name

Applies only to MBeans of the
following types:
■ Service configuration
■ Service monitor
■ Destination configuration
■ Destination monitor

For service configuration and service monitor MBeans, see Table 1–5.

For destination configuration and destination monitor MBeans, the
destination name.

Examples:
myTopic

temporary_destination://queue/129.145.180.99/63008/1

id Resource identifier

Applies only to MBeans of the
following types:
■ Connection configuration
■ Connection monitor

Example:
7853717387765338368

Table 1–2 shows the possible values for the object name's type property.

TABLE 1–2 Message Queue MBean Types

Value Description

Broker Broker resource MBean

Service Connection service resource MBean

ServiceManager Connection service manager MBean

Connection Connection resource MBean

ConnectionManager Connection manager MBean

Destination Destination resource MBean

DestinationManager Destination manager MBean

ProducerManager Message producer manager MBean

Message Queue MBeans

Chapter 1 • Introduction to JMX Programming for Message Queue Clients 23

TABLE 1–2 Message Queue MBean Types (Continued)
Value Description

ConsumerManager Message consumer manager MBean

TransactionManager Transaction manager MBean

Cluster Broker cluster resource MBean

Log Logging resource MBean

JVM JVM resource MBean

Table 1–3 shows the possible values for the object name's subtype property.

TABLE 1–3 Message Queue MBean Subtypes

Value Description

Config Configuration MBean

Monitor Monitor MBean

For destination configuration and destination monitor MBeans, the object name's desttype
property specifies whether the destination is a point-to-point queue or a publish/subscribe
topic. Table 1–4 shows the possible values, which are defined for convenience as static constants
in the utility class DestinationType.

TABLE 1–4 Destination Types

Value Utility Constant Meaning

q DestinationType.QUEUE Queue (point-to-point) destination

t DestinationType.TOPIC Topic (publish/subscribe) destination

For service configuration and service monitor MBeans, the object name's name property
identifies the connection service with which the MBean is associated. Table 1–5 shows the
possible values.

TABLE 1–5 Connection Service Names

Service Name Service Type Protocol Type

jms Normal TCP

ssljms Normal TLS (SSL-based security)

httpjms Normal HTTP

Message Queue MBeans

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •24

TABLE 1–5 Connection Service Names (Continued)
Service Name Service Type Protocol Type

httpsjms Normal HTTPS (SSL-based security)

admin Admin TCP

ssladmin Admin TLS (SSL-based security)

Table 1–6 shows some example object names.

TABLE 1–6 Example Object Names

MBean type Object Name

Broker
configuration

com.sun.messaging.jms.server:type=Broker,subtype=Config

Service manager
monitor

com.sun.messaging.jms.server:type=ServiceManager,subtype=Monitor

Connection
configuration

com.sun.messaging.jms.server:type=Connection,subtype=Config,id=7853717387765338368

Destination
monitor

com.sun.messaging.jms.server:type=Destination,subtype=Monitor,desttype=t,name="MyQueue"

The object names for each type of Message Queue MBean are given in the relevant sections of
Chapter 3, “Message Queue MBean Reference.” All such names are either defined as static
constants or returned by static methods in the utility class MQObjectName (see Table 1–7). For
instance, the constant

MQObjectName.BROKER_CONFIG_MBEAN_NAME

is defined as a string representing the object name for a broker configuration MBean, and the
method call

MQObjectName.createDestinationMonitor(DestinationType.TOPIC, "MyQueue");

returns the destination monitor MBean object name shown in Table 1–6. Note that, whereas
methods such as createDestinationMonitor return an actual object name (that is, an object of
class ObjectName) that can be assigned directly to a variable of that type

ObjectName destMonitorName

= MQObjectName.createDestinationMonitor(DestinationType.TOPIC, "Dest");

constants like BROKER_CONFIG_MBEAN_NAME instead represent an ordinary string (class String)
that must then be converted into the corresponding object name itself:

ObjectName brokerConfigName

= new ObjectName(MQObjectName.BROKER_CONFIG_MBEAN_NAME);

Message Queue MBeans

Chapter 1 • Introduction to JMX Programming for Message Queue Clients 25

TABLE 1–7 Utility Constants and Methods for Object Names

MBean Type Utility Constant or Method

Broker configuration MQObjectName.BROKER_CONFIG_MBEAN_NAME

Broker monitor MQObjectName.BROKER_MONITOR_MBEAN_NAME

Service configuration MQObjectName.createServiceConfig

Service monitor MQObjectName.createServiceMonitor

Service manager configuration MQObjectName.SERVICE_MANAGER_CONFIG_MBEAN_NAME

Service manager monitor MQObjectName.SERVICE_MANAGER_MONITOR_MBEAN_NAME

Connection configuration MQObjectName.createConnectionConfig

Connection monitor MQObjectName.createConnectionMonitor

Connection manager configuration MQObjectName.CONNECTION_MANAGER_CONFIG_MBEAN_NAME

Connection manager monitor MQObjectName.CONNECTION_MANAGER_MONITOR_MBEAN_NAME

Destination configuration MQObjectName.createDestinationConfig

Destination monitor MQObjectName.createDestinationMonitor

Destination manager configuration MQObjectName.DESTINATION_MANAGER_CONFIG_MBEAN_NAME

Destination manager monitor
MQObjectName.DESTINATION_MANAGER_MONITOR_MBEAN_NAME

Producer manager configuration
MQObjectName.PRODUCER_MANAGER_CONFIG_MBEAN_NAME

Producer manager monitor
MQObjectName.PRODUCER_MANAGER_MONITOR_MBEAN_NAME

Consumer manager configuration MQObjectName.CONSUMER_MANAGER_CONFIG_MBEAN_NAME

Consumer manager monitor MQObjectName.CONSUMER_MANAGER_MONITOR_MBEAN_NAME

Transaction manager configuration MQObjectName.TRANSACTION_MANAGER_CONFIG_MBEAN_NAME

Transaction manager monitor MQObjectName.TRANSACTION_MANAGER_MONITOR_MBEAN_NAME

Cluster configuration MQObjectName.CLUSTER_CONFIG_MBEAN_NAME

Cluster monitor MQObjectName.CLUSTER_MONITOR_MBEAN_NAME

Log configuration MQObjectName.LOG_CONFIG_MBEAN_NAME

Log monitor MQObjectName.LOG_MONITOR_MBEAN_NAME

JVM monitor MQObjectName.JVM_MONITOR_MBEAN_NAME

Message Queue MBeans

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •26

Using the JMX API

This chapter provides code examples showing how to use the JMX application programming
interface to connect to a message broker’s MBean server, obtain MBeans for Message Queue
resources, and access their attributes, operations, and notifications.

Interface Packages
The Message Queue 4.1 installation includes two Java packages related to the JMX interface:

■ com.sun.messaging contains the class AdminConnectionFactory (discussed in
“Connecting to the MBean Server” on page 29), along with a utility class
AdminConnectionConfiguration defining static constants for use in configuring it.

■ com.sun.messaging.jms.management.server contains a collection of utility classes (listed
in “Utility Classes” on page 28) defining useful static constants and methods used in the
JMX interface.

These packages are contained in a Java archive file, imqjmx.jar, included in your Message
Queue installation at the locations shown in Table 2–1, depending on your platform.

TABLE 2–1 JMX.jarFile Locations

Platform File Location

Solaris /usr/share/lib/imqjmx.jar

Linux /opt/sun/mq/share/lib/imqjmx.jar

Solaris C:\sun\lib\imqjmx.jar

To do application development for the Message Queue JMX API, you must include this .jar
file in your CLASSPATH environment variable.

2C H A P T E R 2

27

Note – Message Queue’s JMX interface requires version 1.5 of the Java Development Kit (JDK).
The functionality described here is not available under earlier versions of the JDK.

Utility Classes
The package com.sun.messaging.jms.management.server in the Message Queue JMX
interface contains a collection of utility classes defining useful static constants and methods for
use with Message Queue MBeans. Table 2–2 lists these utility classes; see the relevant sections of
Chapter 3, “Message Queue MBean Reference” and the Message Queue JMX JavaDoc
documentation for further details.

TABLE 2–2 Message Queue JMX Utility Classes

Class Description

MQObjectName Constants and methods for Message Queue MBean object names

MQNotification Superclass for all Message Queue JMX notifications

BrokerAttributes Names of broker attributes

BrokerOperations Names of broker operations

BrokerNotification Constants and methods related to broker notifications

BrokerState Constants related to broker state

ServiceAttributes Names of connection service attributes

ServiceOperations Names of connection service operations

ServiceNotification Constants and methods related to connection service notifications

ServiceState Constants related to connection service state

ConnectionAttributes Names of connection attributes

ConnectionOperations Names of connection operations

ConnectionNotification Constants and methods related to connection notifications

DestinationAttributes Names of destination attributes

DestinationOperations Names of destination operations

DestinationNotification Constants and methods related to destination notifications

DestinationType Names of destination types

DestinationState Constants related to destination state

Utility Classes

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •28

TABLE 2–2 Message Queue JMX Utility Classes (Continued)
Class Description

DestinationLimitBehavior Names of destination limit behaviors

DestinationPauseType Constants related to destination pause type

ProducerAttributes Names of message producer attributes

ProducerOperations Names of message producer operations

ProducerInfo Field names in composite data object for message producers

ConsumerAttributes Names of message consumer attributes

ConsumerOperations Names of message consumer operations

ConsumerInfo Field names in composite data object for message consumers

TransactionAttributes Names of transaction attributes

TransactionOperations Names of transaction operations

TransactionNotification Constants and methods related to transaction notifications

TransactionInfo Field names in composite data object for transactions

TransactionState Constants related to transaction state

ClusterAttributes Names of broker cluster attributes

ClusterOperations Names of broker cluster operations

ClusterNotification Constants and methods related to broker cluster notifications

BrokerClusterInfo Field names in composite data object for broker clusters

LogAttributes Names of logging attributes

LogNotification Constants and methods related to logging notifications

LogLevel Names of logging levels

JVMAttributes Names of Java Virtual Machine (JVM) attributes

Connecting to the MBean Server
As defined in the JMX Specification, client applications obtain MBeans through an MBean
server, accessed by means of a JMX connector. Message Queue message brokers use the standard
JMX-compliant MBean server and JMX connector provided with the Java Development Kit
(JDK) 1.5, which use remote method invocation (RMI) as the infrastructure for communicating
between client and server. Once you have a JMX connector, you can use it to obtain an MBean
server connection with which to access the attributes, operations, and notifications of individual
MBeans.

Connecting to the MBean Server

Chapter 2 • Using the JMX API 29

For convenience, Message Queue provides an administration connection factory (class
AdminConnectionFactory), similar in spirit to the familiar Message Queue connection factory,
for creating JMX connectors with a minimum of effort. It is also possible to dispense with this
convenience class and obtain a JMX connector using standard JMX classes instead. The
following sections illustrate these two techniques. While Message Queue client applications are
free to use either method, the first is simpler and is recommended.

Obtaining a JMX Connector from an Administration
Connection Factory
The Message Queue convenience class AdminConnectionFactory (defined in package
com.sun.messaging) encapsulates a predefined set of configuration properties and hides the
details involved in creating a JMX connector. Example 2–1 shows the most straightforward use,
creating a connector at the default port 7676 on host localhost, with the user name and
password both set to the default value of admin. After creating the connector, its
getMBeanServerConnection method is called to obtain a server connection for interacting with
Message Queue MBeans.

EXAMPLE 2–1 Obtaining a JMX Connector from an Administration Connection Factory

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;

// Create administration connection factory for default host and port (localhost:7676)

AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector using default user name (admin) and password (admin)

JMXConnector jmxc = acf.createConnection();

// Get MBean server connection

MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

Example 2–2 shows how to reconfigure an administration connection factory's properties to
nondefault values. Instead of using the default broker address (localhost:7676), the code
shown here uses the connection factory's setProperty method to reconfigure it to connect to a
broker at port 9898 on host otherhost. (The names of the connection factory's configuration
properties are defined as static constants in the Message Queue utility class
AdminConnectionConfiguration, defined in package com.sun.messaging.) The arguments to
the factory's createConnection method are then used to supply a user name and password
other than the defaults.

Connecting to the MBean Server

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •30

EXAMPLE 2–2 Configuring an Administration Connection Factory

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;

// Create administration connection factory

AdminConnectionFactory acf = new AdminConnectionFactory();

// Configure for specific broker address

acf.setProperty(AdminConnectionConfiguration.imqAddress, "otherhost:9898");

// Get JMX connector, supplying user name and password

JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

// Get MBean server connection

MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

Obtaining a JMX Connector Without Using an
Administration Connection Factory
The generic (non–Message Queue) way of obtaining a JMX connector, as described in the JMX
Specification, is by invoking the static connect method of the standard JMX class
JMXConnectorFactory (see Example 2–3). Client applications may choose to use this method
instead of an administration connection factory in order to avoid dependency on Message
Queue–specific classes.

EXAMPLE 2–3 Obtaining a JMX Connector Without Using an Administration Connection Factory

import java.util.HashMap;

import javax.management.remote.*;

// Provide credentials required by server for user authentication

HashMap environment = new HashMap();

String[] credentials = new String[] {"AliBaba", "sesame"};

environment.put (JMXConnector.CREDENTIALS, credentials);

// Create JMXServiceURL of JMX Connector (must be known in advance)

JMXServiceURL url

= new JMXServiceURL("service:jmx:rmi:///jndi/rmi://localhost:9999/server");

// Get JMX connector

JMXConnector jmxc = JMXConnectorFactory.connect(url, environment);

// Get MBean server connection

Connecting to the MBean Server

Chapter 2 • Using the JMX API 31

EXAMPLE 2–3 Obtaining a JMX Connector Without Using an Administration Connection Factory
(Continued)

MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

The JMXConnectorFactory.connect method accepts two parameters:
■ A JMX service URL identifying the JMX connector server from which to obtain a connector
■ An optional environment parameter specifying attributes of the connections to be made

The service URL is a string whose syntax is described in the next section; the environment
parameter is a hash map mapping attribute names to their corresponding values. In particular,
the CREDENTIALS attribute specifies the authentication credentials (user name and password) to
be used in establishing a connection. The hash-map key for this attribute is defined as a static
constant, CREDENTIALS, in the JMXConnector interface; the corresponding value is a 2–element
string array containing the user name at index 0 and the password at index 1.

JMX Service URLs
For Message Queue applications (which always use the RMI protocol for JMX connections), the
JMX service URL has the following syntax:

service:jmx:rmi://[host[:port]][urlPath]

Although host and port may be included, they are ignored by the RMI protocol. If urlPath is
specified, it gives the Java Naming and Directory Interface (JNDI) location of an RMI stub
(typically a location within an RMI registry) in the form

/jndi/jndiName

For example, the URL

service:jmx:rmi://myhost/jndi/rmi://myhost:1099/myhost/myjmxconnector

specifies an RMI stub at the location

rmi://myhost:1099/myhost/myjmxconnector

which is an RMI registry running at location myhost/myjmxconnector on port 1099 of host
myhost.

Alternatively, if urlPath is omitted from the service URL, the JMX connector server will
generate a client URL containing the actual RMI stub embedded within it in encoded and
serialized form. For example, the service URL

service:jmx:rmi://localhost

Connecting to the MBean Server

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •32

will generate a client URL of the form

service:jmx:rmi://localhost/stub/rmiStub

where rmiStub is an encoded and serialized representation of the RMI stub itself.

Using MBeans
Once you have obtained an MBean server connection, you can use it to communicate with
Message Queue (and other) MBeans and to access their attributes, operations, and
notifications. The following sections describe how this is done.

Accessing MBean Attributes
The MBean server connection's getAttribute method accepts the object name of an MBean
along with a string representing the name of one of its attributes, and returns the value of the
designated attribute. Example 2–4 shows an example, obtaining and printing the value of a
destination's MaxNumProducers attribute from its configuration MBean (described in
“Destination Configuration” on page 66).

EXAMPLE 2–4 Getting an Attribute Value

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;

import com.sun.messaging.jms.management.server.*;

public class GetAttrValue

{

public static void main (String[] args)

{

try

{ // Create administration connection factory

AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector, supplying user name and password

JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

// Get MBean server connection

MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name

ObjectName destConfigName

Using MBeans

Chapter 2 • Using the JMX API 33

EXAMPLE 2–4 Getting an Attribute Value (Continued)

= MQObjectName.createDestinationConfig(DestinationType.QUEUE, "MyQueue");

// Get and print attribute value

Integer attrValue

= (Integer)mbsc.getAttribute(destConfigName, DestinationAttributes.MAX_NUM_PRODUCERS);

System.out.println("Maximum number of producers: " + attrValue);

// Close JMX connector

jmxc.close();

}

catch (Exception e)

{ System.out.println("Exception occurred: " + e.toString());

e.printStackTrace();

}

}

}

There is also an MBeanServerConnection method named getAttributes, which accepts an
MBean object name and an array of attribute name strings, and returns a result of class
AttributeList. This is an array of Attribute objects, each of which provides methods
(getName and getValue) for retrieving the name and value of one of the requested attributes.
Example 2–5 shows a modified version of Example 2–4 that uses getAttributes to retrieve the
values of a destination's MaxNumProducers and maxNumActiveConsumers attributes from its
configuration MBean (see “Destination Configuration” on page 66).

EXAMPLE 2–5 Getting Multiple Attribute Values

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;

import com.sun.messaging.jms.management.server.*;

public class GetAttrValues

{

public static void main (String[] args)

{

try

{ // Create administration connection factory

AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector, supplying user name and password

JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

Using MBeans

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •34

EXAMPLE 2–5 Getting Multiple Attribute Values (Continued)

// Get MBean server connection

MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name

ObjectName destConfigName

= MQObjectName.createDestinationConfig(DestinationType.QUEUE, "MyQueue");

// Create array of attribute names

String attrNames[] =

{ DestinationAttributes.MAX_NUM_PRODUCERS,

DestinationAttributes.MAX_NUM_ACTIVE_CONSUMERS

};

// Get attributes

AttributeList attrList = mbsc.getAttributes(destConfigName, attrNames);

// Extract and print attribute values

Object attrValue;

attrValue = attrList.get(0).getValue();

System.out.println("Maximum number of producers: " + attrValue.toString());

attrValue = attrList.get(1).getValue();

System.out.println("Maximum number of active consumers: " + attrValue.toString());

// Close JMX connector

jmxc.close();

}

catch (Exception e)

{ System.out.println("Exception occurred: " + e.toString());

e.printStackTrace();

}

}

}

To set the value of an attribute, use the MBeanServerConnection method setAttribute. This
takes an MBean object name and an Attribute object specifying the name and value of the
attribute to be set. Example 2–6 uses this method to set a destination's MaxNumProducers
attribute to 25.

EXAMPLE 2–6 Setting an Attribute Value

import javax.management.*;

import javax.management.remote.*;

Using MBeans

Chapter 2 • Using the JMX API 35

EXAMPLE 2–6 Setting an Attribute Value (Continued)

import com.sun.messaging.AdminConnectionFactory;

import com.sun.messaging.jms.management.server.*;

public class SetAttrValue

{

public static void main (String[] args)

{

try

{ // Create administration connection factory

AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector, supplying user name and password

JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

// Get MBean server connection

MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name

ObjectName destConfigName

= MQObjectName.createDestinationConfig(DestinationType.QUEUE, "MyQueue");

// Create attribute object

Attribute attr = new Attribute(DestinationAttributes.MAX_NUM_PRODUCERS, 25);

// Set attribute value

mbsc.setAttribute(destConfigName, attr);

// Close JMX connector

jmxc.close();

}

catch (Exception e)

{ System.out.println("Exception occurred: " + e.toString());

e.printStackTrace();

}

}

}

Just as for getting attribute values, there is an MBeanServerConnection method named
setAttributes for setting the values of multiple attributes at once. You supply an MBean
object name and an attribute list giving the names and values of the attributes to be set.
Example 2–7 illustrates the use of this method to set a destination's MaxNumProducers and
MaxNumActiveConsumers attributes to 25 and 50, respectively.

Using MBeans

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •36

EXAMPLE 2–7 Setting Multiple Attribute Values

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;

import com.sun.messaging.jms.management.server.*;

public class SetAttrValues

{

public static void main (String[] args)

{

try

{ // Create administration connection factory

AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector, supplying user name and password

JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

// Get MBean server connection

MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name

ObjectName destConfigName

= MQObjectName.createDestinationConfig(DestinationType.QUEUE, "MyQueue");

// Create and populate attribute list

AttributeList attrList = new AttributeList();

Attribute attr;

attr = new Attribute(DestinationAttributes.MAX_NUM_PRODUCERS, 25);

attrList.add(attr);

attr = new Attribute(DestinationAttributes.MAX_NUM_ACTIVE_CONSUMERS, 50);

attrList.add(attr);

// Set attribute values

mbsc.setAttributes(destConfigName, attrList);

// Close JMX connector

jmxc.close();

}

catch (Exception e)

{ System.out.println("Exception occurred: " + e.toString());

e.printStackTrace();

}

Using MBeans

Chapter 2 • Using the JMX API 37

EXAMPLE 2–7 Setting Multiple Attribute Values (Continued)

}

}

Invoking MBean Operations
To invoke an MBean operation, use the MBeanServerConnection method invoke. The first two
parameters to this method are an MBean object name and a string specifying the name of the
operation to be invoked. (The two remaining parameters are used for supplying parameters to
the invoked operation, and are discussed in the next example.) The method returns an object
that is the operation's return value (if any). Example 2–8 shows the use of this method to pause
the jms connection service by invoking the pause operation of its service configuration MBean
(see “Service Configuration” on page 53).

EXAMPLE 2–8 Invoking an Operation

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;

import com.sun.messaging.jms.management.server.*;

public class InvokeOp

{

public static void main (String[] args)

{

try

{ // Create administration connection factory

AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector, supplying user name and password

JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

// Get MBean server connection

MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name

ObjectName serviceConfigName = MQObjectName.createServiceConfig("jms");

// Invoke operation

mbsc.invoke(serviceConfigName, ServiceOperations.PAUSE, null, null);

// Close JMX connector

jmxc.close();

}

Using MBeans

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •38

EXAMPLE 2–8 Invoking an Operation (Continued)

catch (Exception e)

{ System.out.println("Exception occurred: " + e.toString());

e.printStackTrace();

}

}

}

When the operation being invoked requires parameters, you supply them in an array as the
third parameter to the MBeanServerConnection.invoke method. The method's fourth
parameter is a signature array giving the class or interface names of the invoked operation's
parameters. Example 2–9 shows an illustration, invoking the destination manager
configuration MBean's create operation to create a new queue destination named MyQueue

with the same attributes that were set in Example 2–7. The create operation (see “Destination
Manager Configuration” on page 75) takes three parameters: the type (QUEUE or TOPIC) and
name of the new destination and an attribute list specifying any initial attribute values to be set.
The example shows how to set up a parameter array (opParams) containing these values, along
with a signature array (opSig) giving their classes, and pass them to the invoke method.

EXAMPLE 2–9 Invoking an Operation with Parameters

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;

import com.sun.messaging.jms.management.server.*;

public class InvokeOpWithParams

{

public static void main (String[] args)

{

try

{ // Create administration connection factory

AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector, supplying user name and password

JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

// Get MBean server connection

MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name

ObjectName destMgrConfigName

= new ObjectName(MQObjectName.DESTINATION_MANAGER_CONFIG_MBEAN_NAME);

Using MBeans

Chapter 2 • Using the JMX API 39

EXAMPLE 2–9 Invoking an Operation with Parameters (Continued)

// Create and populate attribute list

AttributeList attrList = new AttributeList();

Attribute attr;

attr = new Attribute(DestinationAttributes.MAX_NUM_PRODUCERS, 25);

attrList.add(attr);

attr = new Attribute(DestinationAttributes.MAX_NUM_ACTIVE_CONSUMERS, 50);

attrList.add(attr);

// Create operation’s parameter and signature arrays

Object opParams[] = { DestinationType.QUEUE,

"MyQueue",

attrList

};

String opSig[] = { String.class.getName(),

String.class.getName(),

attrList.getClass().getName()

};

// Invoke operation

mbsc.invoke(destMgrConfigName, DestinationOperations.CREATE, opParams, opSig);

// Close JMX connector

jmxc.close();

}

catch (Exception e)

{ System.out.println("Exception occurred: " + e.toString());

e.printStackTrace();

}

}

}

Example 2–10 shows a more elaborate example combining the use of MBean operations and
attributes. The destination manager monitor MBean operation getDestinations (see
“Destination Manager Monitor” on page 78) returns an array of object names of the
destination monitor MBeans for all current destinations. The example then iterates through the
array, printing the name, destination type (QUEUE or TOPIC), and current state (such as RUNNING
or PAUSED) for each destination.

Using MBeans

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •40

EXAMPLE 2–10 Combining Operations and Attributes

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;

import com.sun.messaging.jms.management.server.*;

public class OpsAndAttrs

{

public static void main (String[] args)

{

try

{ // Create administration connection factory

AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector, supplying user name and password

JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

// Get MBean server connection

MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name for destination manager monitor MBean

ObjectName destMgrMonitorName

= new ObjectName(MQObjectName.DESTINATION_MANAGER_MONITOR_MBEAN_NAME);

// Get destination object names

ObjectName destNames[] = mbsc.invoke(destMgrMonitorName,

DestinationOperations.GET_DESTINATIONS,

null,

null);

// Step through array of object names, printing information for each destination

System.out.println("Listing destinations: ");

ObjectName eachDestName;

Object attrValue;

for (int i = 0; i < destNames.length; ++i)

{ eachDestName = destNames[i];

attrValue = mbsc.getAttribute(eachDestName, DestinationAttributes.NAME);

System.out.println("\tName: " + attrValue);

attrValue = mbsc.getAttribute(eachDestName, DestinationAttributes.TYPE);

System.out.println("\tTypeYPE: " + attrValue);

Using MBeans

Chapter 2 • Using the JMX API 41

EXAMPLE 2–10 Combining Operations and Attributes (Continued)

attrValue = mbsc.getAttribute(eachDestName, DestinationAttributes.STATE_LABEL);

System.out.println("\tState: " + attrValue);

System.out.println("");

}

// Close JMX connector

jmxc.close();

}

catch (Exception e)

{ System.out.println("Exception occurred: " + e.toString());

e.printStackTrace();

}

}

}

Some of the Message Queue MBeans’ operations and attributes return a composite data object
(implementing the JMX CompositeData interface). This type of object consists of a collection of
data values accessed by means of associative lookup keys. The specific keys vary from one
MBean to another, and are described in the relevant sections of Chapter 3, “Message Queue
MBean Reference.” Example 2–11 shows an illustration, invoking the consumer manager
MBean's GetConsumerInfo operation (see “Consumer Manager Monitor” on page 85 to obtain
an array of composite data objects describing all current message consumers. It then steps
through the array, using the lookup keys listed in Table 3–63 to retrieve and print the
characteristics of each consumer.

EXAMPLE 2–11 Using a Composite Data Object

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;

import com.sun.messaging.jms.management.server.*;

public class CompData

{

public static void main (String[] args)

{

try

{ // Create administration connection factory

AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector, supplying user name and password

JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

Using MBeans

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •42

EXAMPLE 2–11 Using a Composite Data Object (Continued)

// Get MBean server connection

MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name

ObjectName consumerMgrMonitorName

= new ObjectName(MQObjectName.CONSUMER_MANAGER_MONITOR_MBEAN_NAME);

// Invoke operation

Object result

= mbsc.invoke(consumerMgrMonitorName, ConsumerOperations.GET_CONSUMER_INFO, null, null);

// Typecast result to an array of composite data objects

CompositeData cdArray[] = (CompositeData[])result;

// Step through array, printing information for each consumer

if (cdArray == null)

{ System.out.println("No message consumers found");

}

else

{ for (int i = 0; i < cdArray.length; ++i)

{ CompositeData cd = cdArray[i];

System.out.println("Consumer ID: "

+ cd.get(ConsumerInfo.CONSUMER_ID));

System.out.println("User: "

+ cd.get(ConsumerInfo.USER));

System.out.println("Host: "

+ cd.get(ConsumerInfo.HOST));

System.out.println("Connection service: "

+ cd.get(ConsumerInfo.SERVICE_NAME));

System.out.println("Acknowledgment mode: "

+ cd.get(ConsumerInfo.ACKNOWLEDGE_MODE_LABEL));

System.out.println("Destination name: "

+ cd.get(ConsumerInfo.DESTINATION_NAME));

System.out.println("Destination type: "

+ cd.get(ConsumerInfo.DESTINATION_TYPE));

}

}

}

catch (Exception e)

{ System.out.println("Exception occurred: " + e.toString());

e.printStackTrace();

}

Using MBeans

Chapter 2 • Using the JMX API 43

EXAMPLE 2–11 Using a Composite Data Object (Continued)

finally

{ if (jmxc != null)

{ try

{ jmxc.close();

}

catch (IOException ioe)

{ System.out.println("I/O exception occurred: " + ioe.toString());

ioe.printStackTrace();

}

}

}

}

}

Receiving MBean Notifications
To receive notifications from an MBean, you must register a notification listener with the
MBean server. This is an object implementing the JMX interface NotificationListener,
which consists of the single method handleNotification. In registering the listener with the
MBean server (using the MBeanServerConnection method addNotificationListener), you
supply the object name of the MBean from which you wish to receive notifications, along with a
notification filter specifying which types of notification you wish to receive. (You can also
provide an optional handback object to be passed to your listener whenever it is invoked, and
which you can use for any purpose convenient to your application.) The MBean server will then
call your listener's handleNotification method whenever the designated MBean broadcasts a
notification satisfying the filter you specified.

The notification listener's handleNotification method receives two parameters: a notification
object (belonging to the JMX class Notification) describing the notification being raised,
along with the handback object, if any, that you supplied when you registered the listener. The
notification object provides methods for retrieving various pieces of information about the
notification, such as its type, the MBean raising it, its time stamp, and an MBean-dependent
user data object and message string further describing the notification. The notifications raised
by Message Queue MBeans belong to Message Queue–specific subclasses of Notification,
such as BrokerNotification, ServiceNotification, and DestinationNotification, which
add further information retrieval methods specific to each particular type of notification; see the
relevant sections of Chapter 3, “Message Queue MBean Reference” for details.

Example 2–12 shows a notification listener for responding to Message Queue service
notifications, issued by a service manager monitor MBean. On receiving a notification
belonging to the Message Queue class ServiceNotification, the listener simply prints an
informational message containing the notification's type and the name of the connection
service affected.

Using MBeans

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •44

EXAMPLE 2–12 Notification Listener

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.jms.management.server.*;

public class ServiceNotificationListener implements NotificationListener

{

public void handleNotification (Notification notification,

Object handback)

{

if (notification instanceOf ServiceNotification)

{ ServiceNotification n = (ServiceNotification)notification;

}

else

{ System.err.println("Wrong type of notification for listener");

return;

}

System.out.println("\nReceived service notification: ");

System.out.println("\tNotification type: " + n.getType());

System.out.println("\tService name: " + n.getServiceName());

System.out.println("");

}

}

Example 2–13 shows how to register the notification listener from Example 2–12, using the
MBeanServerConnection method addNotificationListener. The notification filter is an
object of the standard JMX class NotificationFilterSupport; the calls to this object's
enableType method specify that the listener should be invoked whenever a connection service
is paused or resumed. The listener itself is an instance of class ServiceNotificationListener,
as defined in Example 2–12.

EXAMPLE 2–13 Registering a Notification Listener

import javax.management.*;

import javax.management.remote.*;

import com.sun.messaging.AdminConnectionFactory;

import com.sun.messaging.jms.management.server.*;

import java.io.IOException

public class NotificationService

{

public static void main (String[] args)

Using MBeans

Chapter 2 • Using the JMX API 45

EXAMPLE 2–13 Registering a Notification Listener (Continued)

{

try

{ // Create administration connection factory

AdminConnectionFactory acf = new AdminConnectionFactory();

// Get JMX connector, supplying user name and password

JMXConnector jmxc = acf.createConnection("AliBaba", "sesame");

// Get MBean server connection

MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

// Create object name for service manager monitor MBean

ObjectName svcMgrMonitorName

= new ObjectName(MQObjectName.SERVICE_MANAGER_MONITOR_MBEAN_NAME);

// Create notification filter

NotificationFilterSupport myFilter = new NotificationFilterSupport();

myFilter.enableType(ServiceNotification.SERVICE_PAUSE);

myFilter.enableType(ServiceNotification.SERVICE_RESUME);

// Create notification listener

ServiceNotificationListener myListener = new ServiceNotificationListener();

mbsc.addNotificationListener(svcMgrMonitorName, myListener, myFilter, null);

...

}

catch (Exception e)

{ System.out.println("Exception occurred: " + e.toString());

e.printStackTrace();

}

finally

{ if (jmxc != null)

{ try

{ jmxc.close();

}

catch (IOException ioe)

{ System.out.println("I/O exception occurred: " + ioe.toString());

ioe.printStackTrace();

}

}

}

}

}

Using MBeans

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •46

Message Queue MBean Reference

This chapter describes the JMX MBeans that allow you to configure and monitor a Message
Queue broker. It consists of the following sections:

■ “Message Brokers” on page 47
■ “Connection Services” on page 53
■ “Connections” on page 61
■ “Destinations” on page 66
■ “Message Producers” on page 80
■ “Message Consumers” on page 83
■ “Transactions” on page 88
■ “Broker Clusters” on page 92
■ “Logging” on page 100
■ “Java Virtual Machine” on page 103

Message Brokers
This section describes the MBeans used for managing message brokers:

■ The broker configuration MBean configures a message broker.
■ The broker monitor MBean monitors a message broker.

The following subsections describe each of these MBeans in detail.

Broker Configuration
The broker configuration MBean is used for configuring a message broker. There is one such
MBean for each broker.

3C H A P T E R 3

47

Object Name
The broker configuration MBean has the following object name:

com.sun.messaging.jms.server:type=Broker,subtype=Config

A string representing this object name is defined as a static constant
BROKER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attributes
The broker configuration MBean has the attributes shown in Table 3–1. The names of these
attributes are defined as static constants in the utility class BrokerAttributes.

TABLE 3–1 Broker Configuration Attributes

Name Type Settable? Description

BrokerID String No Broker identifier

Must be unique; no two running brokers may have the same broker
identifier.

For brokers using a JDBC-based persistent data store, this string is appended
to the names of all database tables to make them unique when more than one
broker instance is using the same database. Must be an alphanumeric string
of no more than n − 13 characters, where n is the maximum table name
length allowed by the database. If a database is not used as the persistent data
store, the value of this attribute is null.

Note – For high-availability brokers, database table names use the ClusterID
attribute (see Table 3–74) instead.

Version String No Broker version

InstanceName String No Broker instance name

Example:
imqbroker

Port Integer Yes Port number of Port Mapper

Operations
The broker configuration MBean supports the operations shown in Table 3–2. The names of
these operations are defined as static constants in the utility class BrokerOperations.

Message Brokers

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •48

TABLE 3–2 Broker Configuration Operations

Name Parameters Result Type Description

shutdown nofailover
(Boolean)

time (Long)

None Shut down broker

If nofailover is false or null, another broker will attempt to take over for this
broker when it shuts down; this applies only to brokers in a high-availability
(HA) cluster. If nofailover is true, no such takeover attempt will occur.

The time parameter specifies the interval, in seconds, before the broker
actually shuts down; for immediate shutdown, specify 0 or null.

shutdown None None Shut down broker immediately

If the broker is part of a high-availability (HA) cluster, another broker will
attempt to take over for it.

Equivalent to shutdown(Boolean.FALSE, new Long(0)).

restart None None Restart broker

quiesce None None Quiesce broker

The broker will refuse any new connections; existing connections will
continue to be served.

unquiesce None None Unquiesce broker

The broker will again accept new connections.

takeover
1 brokerID (String) None Initiate takeover from specified broker

The desired broker is designated by its broker identifier (brokerID).

resetMetrics None None Reset metrics

Resets to zero all metrics in monitor MBeans that track cumulative, peak, or
average counts. The following attributes are affected:

Service monitor
NumConnectionsOpened

NumConnectionsRejected

NumMsgsIn

NumMsgsOut

MsgBytesIn

MsgBytesOut

NumPktsIn

NumPktsOut

PktBytesIn

PktBytesOut

1 HA clusters only

Message Brokers

Chapter 3 • Message Queue MBean Reference 49

TABLE 3–2 Broker Configuration Operations (Continued)
Name Parameters Result Type Description

Service manager monitor
NumMsgsIn

NumMsgsOut

MsgBytesIn

MsgBytesOut

NumPktsIn

NumPktsOut

PktBytesIn

PktBytesOut

Connection manager monitor
NumConnectionsOpened

NumConnectionsRejected

Destination monitor
PeakNumConsumers

AvgNumConsumers

PeakNumActiveConsumers

AvgNumActiveConsumers

PeakNumBackupConsumers

AvgNumBackupConsumers

PeakNumMsgs

AvgNumMsgs

NumMsgsIn

NumMsgsOut

MsgBytesIn

MsgBytesOut

PeakMsgBytes

PeakTotalMsgBytes

AvgTotalMsgBytes

Transaction manager monitor
NumTransactionsCommitted

NumTransactionsRollback

Notification
The broker configuration MBean supports the notification shown in Table 3–3.

Message Brokers

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •50

TABLE 3–3 Broker Configuration Notification

Name Description

jmx.attribute.change Attribute value changed

Broker Monitor
The broker monitor MBean is used for monitoring a message broker. There is one such MBean
for each broker.

Object Name
The broker monitor MBean has the following object name:

com.sun.messaging.jms.server:type=Broker,subtype=Monitor

A string representing this object name is defined as a static constant
BROKER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Attributes
The broker monitor MBean has the attributes shown in Table 3–4. The names of these
attributes are defined as static constants in the utility class BrokerAttributes.

TABLE 3–4 Broker Monitor Attributes

Name Type Settable? Description

BrokerID String No Broker identifier

Must be unique; no two running brokers may have the same broker
identifier.

For brokers using a JDBC-based persistent data store, this string is appended
to the names of all database tables to make them unique when more than one
broker instance is using the same database. Must be an alphanumeric string
of no more than n − 13 characters, where n is the maximum table name
length allowed by the database. If a database is not used as the persistent data
store, the value of this attribute is null.

Note – For high-availability brokers, database table names use the ClusterID
attribute (see Table 3–78) instead.

Version String No Broker version

InstanceName String No Broker instance name

Port Integer No Port number of Port Mapper

Message Brokers

Chapter 3 • Message Queue MBean Reference 51

TABLE 3–4 Broker Monitor Attributes (Continued)
Name Type Settable? Description

Embedded Boolean No Is broker embedded (started from within another process)?

Notifications
The broker monitor MBean supports the notifications shown in Table 3–5. These notifications
are instances of the Message Queue JMX classes BrokerNotification and
ClusterNotification, and their names are defined as static constants in those classes.

TABLE 3–5 Broker Monitor Notifications

Name Utility Constant Description

mq.broker.shutdown.start BrokerNotification.BROKER_SHUTDOWN_START Broker has begun shutting
down

mq.broker.quiesce.start BrokerNotification.BROKER_QUIESCE_START Broker has begun quiescing

mq.broker.quiesce.complete BrokerNotification.BROKER_QUIESCE_COMPLETE Broker has finished quiescing

mq.broker.takeover.start
1

BrokerNotification.BROKER_TAKEOVER_START Broker has begun taking over
persistent data store from
another broker

mq.broker.takeover.complete
1

BrokerNotification.BROKER_TAKEOVER_COMPLETE Broker has finished taking over
persistent data store from
another broker

mq.broker.takeover.fail
1

BrokerNotification.BROKER_TAKEOVER_FAIL Attempted takeover has failed

mq.cluster.broker.join ClusterNotification.CLUSTER_BROKER_JOIN Broker has joined a cluster
1 HA clusters only

Table 3–6 shows the methods defined in class BrokerNotification for obtaining details about
a broker monitor notification. See Table 3–83 for the corresponding methods of class
ClusterNotification.

TABLE 3–6 Data Retrieval Methods for Broker Monitor Notifications

Method Result Type Description

getBrokerID String Broker identifier

getBrokerAddress String Broker address, in the form hostName:portNumber

Example:
host1:3000

Message Brokers

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •52

TABLE 3–6 Data Retrieval Methods for Broker Monitor Notifications (Continued)
Method Result Type Description

getFailedBrokerID
1

String Broker identifier of broker being taken over
1 HA clusters only

Connection Services
This section describes the MBeans used for managing connection services:

■ The service configuration MBean configures a connection service.
■ The service monitor MBean monitors a connection service.
■ The service manager configuration MBean manages service configuration MBeans.
■ The service manager monitor MBean manages service monitor MBeans.

The following subsections describe each of these MBeans in detail.

Service Configuration
The service configuration MBean is used for configuring a connection service. There is one such
MBean for each service.

Object Name
The service configuration MBean has an object name of the following form:

com.sun.messaging.jms.server:type=Service,subtype=Config,name=serviceName

where serviceName is the name of the connection service (see Table 3–7). The utility class
MQObjectName provides a static method, createServiceConfig, for constructing object names
of this form.

TABLE 3–7 Connection Service Names for Service Configuration MBeans

Service Name Service Type Protocol Type

jms Normal TCP

ssljms Normal TLS (SSL-based security)

httpjms Normal HTTP

httpsjms Normal HTTPS (SSL-based security)

admin Admin TCP

Connection Services

Chapter 3 • Message Queue MBean Reference 53

TABLE 3–7 Connection Service Names for Service Configuration MBeans (Continued)
Service Name Service Type Protocol Type

ssladmin Admin TLS (SSL-based security)

Attributes
The service configuration MBean has the attributes shown in Table 3–8. The names of these
attributes are defined as static constants in the utility class ServiceAttributes.

TABLE 3–8 Service Configuration Attributes

Name Type Settable? Description

Name String No Service name

See Table 3–7 for possible values.

Port Integer Yes Port number (jms, ssljms, admin, and ssladmin services only)

A value of 0 specifies that the port is to be dynamically allocated by the Port
Mapper; to learn the actual port currently used by the service, use the Port
attribute of the service monitor MBean.

MinThreads Integer Yes Minimum number of threads assigned to service

Must be greater than 0.

MaxThreads Integer Yes Maximum number of threads assigned to service

Must be greater than or equal to MinThreads.

ThreadPoolModel String No Threading model for thread pool management:
dedicated: Two dedicated threads per connection, one for incoming and
one for outgoing messages

shared: Connections processed by shared thread when sending or
receiving messages (jms and admin services only)

Operations
The service configuration MBean supports the operations shown in Table 3–9. The names of
these operations are defined as static constants in the utility class ServiceOperations.

TABLE 3–9 Service Configuration Operations

Name Parameters Result Type Description

pause None None Pause service (jms, ssljms, httpjms, and httpsjms services only)

resume None None Resume service (jms, ssljms, httpjms, and httpsjms services only)

Connection Services

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •54

Notification
The service configuration MBean supports the notification shown in Table 3–10.

TABLE 3–10 Service Configuration Notification

Name Description

jmx.attribute.change Attribute value changed

Service Monitor
The service monitor MBean is used for monitoring a connection service. There is one such
MBean for each service.

Object Name
The service monitor MBean has an object name of the following form:

com.sun.messaging.jms.server:type=Service,subtype=Monitor,name=serviceName

where serviceName is the name of the connection service (see Table 3–11). The utility class
MQObjectName provides a static method, createServiceMonitor, for constructing object
names of this form.

TABLE 3–11 Connection Service Names for Service Monitor MBeans

Service Name Service Type Protocol Type

jms Normal TCP

ssljms Normal TLS (SSL-based security)

httpjms Normal HTTP

httpsjms Normal HTTPS (SSL-based security)

admin Admin TCP

ssladmin Admin TLS (SSL-based security)

Attributes
The service monitor MBean has the attributes shown in Table 3–12. The names of these
attributes are defined as static constants in the utility class ServiceAttributes.

Connection Services

Chapter 3 • Message Queue MBean Reference 55

TABLE 3–12 Service Monitor Attributes

Name Type Settable? Description

Name String No Service name

See Table 3–11 for possible values.

Port Integer No Port number currently used by service

State Integer No Current state

See Table 3–13 for possible values.

StateLabel String No String representation of current state:

Useful for displaying the state in human-readable form, such as in the Java
Monitoring and Management Console (jconsole).

See Table 3–13 for possible values.

NumConnections Integer No Current number of connections

NumConnectionsOpened Long No Cumulative number of connections opened since broker started

NumConnectionsRejected Long No Cumulative number of connections rejected since broker started

NumActiveThreads Integer No Current number of threads actively handling connections

NumProducers Integer No Current number of message producers

NumConsumers Integer No Current number of message consumers

NumMsgsIn Long No Cumulative number of messages received since broker started

NumMsgsOut Long No Cumulative number of messages sent since broker started

MsgBytesIn Long No Cumulative size in bytes of messages received since broker started

MsgBytesOut Long No Cumulative size in bytes of messages sent since broker started

NumPktsIn Long No Cumulative number of packets received since broker started

NumPktsOut Long No Cumulative number of packets sent since broker started

PktBytesIn Long No Cumulative size in bytes of packets received since broker started

PktBytesOut Long No Cumulative size in bytes of packets sent since broker started

Table 3–13 shows the possible values for the State and StateLabel attributes. These values are
defined as static constants in the utility class ServiceState.

Connection Services

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •56

TABLE 3–13 Connection Service State Values

Value Utility Constant String Representation Meaning

0 ServiceState.RUNNING RUNNING Service running

1 ServiceState.PAUSED PAUSED Service paused

2 ServiceState.QUIESCED QUIESCED Service quiesced

−1 ServiceState.UNKNOWN UNKNOWN Service state unknown

Operations
The service monitor MBean supports the operations shown in Table 3–14. The names of these
operations are defined as static constants in the utility class ServiceOperations.

TABLE 3–14 Service Monitor Operations

Name Parameters Result Type Description

getConnections None ObjectName[] Object names of connection monitor MBeans for
all current connections

getProducerIDs None String[] Producer identifiers of all current message
producers

getConsumerIDs None String[]

Consumer identifiers of all current message
consumers

Notifications
The service monitor MBean supports the notifications shown in Table 3–15. These notifications
are instances of the Message Queue JMX classes ServiceNotification and
ConnectionNotification, and their names are defined as static constants in those classes.

TABLE 3–15 Service Monitor Notifications

Name Utility Constant Description

mq.service.pause ServiceNotification.SERVICE_PAUSE Service paused

mq.service.resume ServiceNotification.SERVICE_RESUME Service resumed

mq.connection.open ConnectionNotification.CONNECTION_OPEN Connection opened

mq.connection.reject ConnectionNotification.CONNECTION_REJECT Connection rejected

mq.connection.close ConnectionNotification.CONNECTION_CLOSE Connection closed

Connection Services

Chapter 3 • Message Queue MBean Reference 57

Table 3–16 shows the method defined in class ServiceNotification for obtaining details
about a service monitor notification. See Table 3–31 for the corresponding methods of class
ConnectionNotification.

TABLE 3–16 Data Retrieval Method for Service Monitor Notifications

Method Result Type Description

getServiceName String Service name

See Table 3–11 for possible values.

Service Manager Configuration
Each broker has a single service manager configuration MBean, used for managing all of the
broker's service configuration MBeans.

Object Name
The service manager configuration MBean has the following object name:

com.sun.messaging.jms.server:type=ServiceManager,subtype=Config

A string representing this object name is defined as a static constant
SERVICE_MANAGER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attributes
The service manager configuration MBean has the attributes shown in Table 3–17. The names
of these attributes are defined as static constants in the utility class ServiceAttributes.

TABLE 3–17 Service Manager Configuration Attributes

Name Type Settable? Description

MinThreads Integer No Total minimum number of threads for all active services

MaxThreads Integer No Total maximum number of threads for all active services

Operations
The service manager configuration MBean supports the operations shown in Table 3–18. The
names of these operations are defined as static constants in the utility class ServiceOperations.

Connection Services

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •58

TABLE 3–18 Service Manager Configuration Operations

Name Parameters Result Type Description

getServices None ObjectName[] Object names of service configuration MBeans for all services

pause None None Pause all services except admin and ssladmin

resume None None Resume all services

Service Manager Monitor
Each broker has a single service manager monitor MBean, used for managing all of the broker's
service monitor MBeans.

Object Name
The service manager monitor MBean has the following object name:

com.sun.messaging.jms.server:type=ServiceManager,subtype=Monitor

A string representing this object name is defined as a static constant
SERVICE_MANAGER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Attributes
The service manager monitor MBean has the attributes shown in Table 3–19. The names of
these attributes are defined as static constants in the utility class ServiceAttributes.

TABLE 3–19 Service Manager Monitor Attributes

Name Type Settable? Description

NumServices Integer No Number of connection services

NumActiveThreads Integer No Total current number of threads actively handling connections
for all services

NumMsgsIn Long No Total cumulative number of messages received by all services
since broker started

NumMsgsOut Long No Total cumulative number of messages sent by all services since
broker started

MsgBytesIn Long No Total cumulative size in bytes of messages received by all services
since broker started

MsgBytesOut Long No Total cumulative size in bytes of messages sent by all services
since broker started

Connection Services

Chapter 3 • Message Queue MBean Reference 59

TABLE 3–19 Service Manager Monitor Attributes (Continued)
Name Type Settable? Description

NumPktsIn Long No Total cumulative number of packets received by all services since
broker started

NumPktsOut Long No Total cumulative number of packets sent by all services since
broker started

PktBytesIn Long No Total cumulative size in bytes of packets received by all services
since broker started

PktBytesOut Long No Total cumulative size in bytes of packets sent by all services since
broker started

Operation
The service manager monitor MBean supports the operation shown in Table 3–20. The name of
this operation is defined as a static constant in the utility class ServiceOperations.

TABLE 3–20 Service Manager Monitor Operation

Name Parameters Result Type Description

getServices None ObjectName[] Object names of all service monitor MBeans

Notifications
The service manager monitor MBean supports the notifications shown in Table 3–21. These
notifications are instances of the Message Queue JMX class ServiceNotification, and their
names are defined as static constants in that class.

TABLE 3–21 Service Manager Monitor Notifications

Name Utility Constant Description

mq.service.pause ServiceNotification.SERVICE_PAUSE Service paused

mq.service.resume ServiceNotification.SERVICE_RESUME Service resumed

Table 3–22 shows the method defined in class ServiceNotification for obtaining details
about a service manager monitor notification.

Connection Services

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •60

TABLE 3–22 Data Retrieval Method for Service Manager Monitor Notifications

Method Result Type Description

getServiceName String Service name

See Table 3–11 for possible values.

Connections
This section describes the MBeans used for managing connections:

■ The connection configuration MBean configures a connection.
■ The connection monitor MBean monitors a connection.
■ The connection manager configuration MBean manages connection configuration MBeans.
■ The connection manager monitor MBean manages connection monitor MBeans.

The following subsections describe each of these MBeans in detail.

Connection Configuration
The connection configuration MBean is used for configuring a connection. There is one such
MBean for each connection.

Object Name
The connection configuration MBean has an object name of the following form:

com.sun.messaging.jms.server:type=Connection,subtype=Config,id=connectionID

where connectionID is the connection identifier. For example:

com.sun.messaging.jms.server:type=Connection,subtype=Config,

id=7853717387765338368

The utility class MQObjectName provides a static method, createConnectionConfig, for
constructing object names of this form.

Attribute
The connection configuration MBean has the attribute shown in Table 3–23. The name of this
attribute is defined as a static constant in the utility class ConnectionAttributes.

Connections

Chapter 3 • Message Queue MBean Reference 61

TABLE 3–23 Connection Configuration Attribute

Name Type Settable? Description

ConnectionID String No Connection identifier

Connection Monitor
The connection monitor MBean is used for monitoring a connection. There is one such MBean
for each connection.

Object Name
The connection monitor MBean has an object name of the following form:

com.sun.messaging.jms.server:type=Connection,subtype=Monitor,id=connectionID

where connectionID is the connection identifier. For example:

com.sun.messaging.jms.server:type=Connection,subtype=Monitor,

id=7853717387765338368

The utility class MQObjectName provides a static method, createConnectionMonitor, for
constructing object names of this form.

Attributes
The connection monitor MBean has the attributes shown in Table 3–24. The names of these
attributes are defined as static constants in the utility class ConnectionAttributes.

TABLE 3–24 Connection Monitor Attributes

Name Type Settable? Description

ConnectionID String No Connection identifier

Host String No Host from which connection was made

Port Integer No Port number

ServiceName String No Connection service name

User String No User name

ClientID String No Client identifier

ClientPlatform String No String describing client platform

Connections

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •62

TABLE 3–24 Connection Monitor Attributes (Continued)
Name Type Settable? Description

NumProducers Integer No Current number of associated message producers

NumConsumers Integer No Current number of associated message consumers

Operations
The connection monitor MBean supports the operations shown in Table 3–25. The names of
these operations are defined as static constants in the utility class ConnectionOperations.

TABLE 3–25 Connection Monitor Operations

Name Parameters Result Type Description

getService None ObjectName Object name of service monitor MBean for associated
connection service

getTemporaryDestinations None ObjectName[] Object names of destination monitor MBeans for all associated
temporary destinations

getProducerIDs None String[] Producer identifiers of all associated message producers

getConsumerIDs None String[] Consumer identifiers of all associated message consumers

Connection Manager Configuration
Each broker has a single connection manager configuration MBean, used for managing all of the
broker's connection configuration MBeans.

Object Name
The connection manager configuration MBean has the following object name:

com.sun.messaging.jms.server:type=ConnectionManager,subtype=Config

A string representing this object name is defined as a static constant
CONNECTION_MANAGER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attribute
The connection manager configuration MBean has the attribute shown in Table 3–26. The
name of this attribute is defined as a static constant in the utility class ConnectionAttributes.

Connections

Chapter 3 • Message Queue MBean Reference 63

TABLE 3–26 Connection Manager Configuration Attribute

Name Type Settable? Description

NumConnections Integer No Number of current connections

Operations
The connection manager configuration MBean supports the operations shown in Table 3–27.
The names of these operations are defined as static constants in the utility class
ConnectionOperations.

TABLE 3–27 Connection Manager Configuration Operations

Name Parameters Result Type Description

getConnections None ObjectName[] Object names of connection configuration MBeans
for all current connections

destroy connectionID (Long) None Destroy connection

The desired connection is designated by its
connection identifier (connectionID).

Connection Manager Monitor
Each broker has a single connection manager monitor MBean, used for managing all of the
broker's connection monitor MBeans.

Object Name
The connection manager monitor MBean has the following object name:

com.sun.messaging.jms.server:type=ConnectionManager,subtype=Monitor

A string representing this object name is defined as a static constant
CONNECTION_MANAGER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Attributes
The connection manager monitor MBean has the attributes shown in Table 3–28. The names of
these attributes are defined as static constants in the utility class ConnectionAttributes.

Connections

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •64

TABLE 3–28 Connection Manager Monitor Attributes

Name Type Settable? Description

NumConnections Integer No Current number of connections

NumConnectionsOpened Long No Cumulative number of connections opened since broker started

NumConnectionsRejected Long No Cumulative number of connections rejected since broker started

Operation
The connection manager monitor MBean supports the operation shown in Table 3–29. The
name of this operation is defined as a static constant in the utility class ConnectionOperations.

TABLE 3–29 Connection Manager Monitor Operation

Name Parameters Result Type Description

getConnections None ObjectName[] Object names of connection monitor MBeans for all current connections

Notifications
The connection manager monitor MBean supports the notifications shown in Table 3–30.
These notifications are instances of the Message Queue JMX class ConnectionNotification,
and their names are defined as static constants in that class.

TABLE 3–30 Connection Manager Monitor Notifications

Name Utility Constant Description

mq.connection.open ConnectionNotification.CONNECTION_OPEN Connection opened

mq.connection.reject ConnectionNotification.CONNECTION_REJECT Connection rejected

mq.connection.close ConnectionNotification.CONNECTION_CLOSE Connection closed

Table 3–31 shows the methods defined in class ConnectionNotification for obtaining details
about a connection manager monitor notification.

TABLE 3–31 Data Retrieval Methods for Connection Manager Monitor Notifications

Method Result Type Description

getConnectionID String Connection identifier

getRemoteHost String Host from which connection was made

getServiceName String Connection service name

Connections

Chapter 3 • Message Queue MBean Reference 65

TABLE 3–31 Data Retrieval Methods for Connection Manager Monitor Notifications (Continued)
Method Result Type Description

getUserName String User name

Destinations
This section describes the MBeans used for managing destinations:

■ The destination configuration MBean configures a destination.
■ The destination monitor MBean monitors a destination.
■ The destination manager configuration MBean manages destination configuration MBeans.
■ The destination manager monitor MBean manages destination monitor MBeans.

The following subsections describe each of these MBeans in detail.

Destination Configuration
The destination configuration MBean is used for configuring a destination. There is one such
MBean for each destination.

Object Name
The destination configuration MBean has an object name of the following form:

com.sun.messaging.jms.server:type=Destination,subtype=Config,

desttype=destinationType,name=destinationName

where destinationType is one of the destination types shown in Table 3–33 and
destinationName is the name of the destination. For example:

com.sun.messaging.jms.server:type=Destination,subtype=Config,desttype=t,

name="Dest"

The utility class MQObjectName provides a static method, createDestinationConfig, for
constructing object names of this form.

Attributes
The destination configuration MBean has the attributes shown in Table 3–32. The names of
these attributes are defined as static constants in the utility class DestinationAttributes.

Destinations

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •66

TABLE 3–32 Destination Configuration Attributes

Name Type Settable? Description

Name String No Destination name

Type String No Destination type

See Table 3–33 for possible values.

MaxNumMsgs Long Yes Maximum number of unconsumed messages

A value of −1 denotes an unlimited number of messages.

MaxBytesPerMsg Long Yes Maximum size, in bytes, of any single message

Rejection of a persistent message is reported to the producing
client with an exception; no notice is sent for nonpersistent
messages.

A value of −1 denotes an unlimited message size.

MaxTotalMsgBytes Long Yes Maximum total memory, in bytes, for unconsumed messages

LimitBehavior String Yes Broker behavior when memory-limit threshold reached

See Table 3–34 for possible values.

If the value is REMOVE_OLDEST or REMOVE_LOW_PRIORITY and the
UseDMQ attribute is true, excess messages are moved to the dead
message queue.

MaxNumProducers Integer Yes Maximum number of associated message producers

When this limit is reached, no new producers can be created. A
value of −1 denotes an unlimited number of producers.

MaxNumActiveConsumers
1

Integer Yes Maximum number of associated active message consumers in
load-balanced delivery

A value of −1 denotes an unlimited number of consumers.

MaxNumBackupConsumers
1

Integer Yes Maximum number of associated backup message consumers in
load-balanced delivery

A value of −1 denotes an unlimited number of consumers.

ConsumerFlowLimit Long Yes Maximum number of messages delivered to consumer in a
single batch

In load-balanced queue delivery, this is the initial number of
queued messages routed to active consumers before load
balancing begins. A destination consumer can override this
limit by specifying a lower value on a connection.

A value of −1 denotes an unlimited number of consumers.
1 Queue destinations only

Destinations

Chapter 3 • Message Queue MBean Reference 67

TABLE 3–32 Destination Configuration Attributes (Continued)
Name Type Settable? Description

LocalOnly Boolean No Local delivery only?

This property applies only to destinations in broker clusters,
and cannot be changed once the destination has been created. If
true, the destination is not replicated on other brokers and is
limited to delivering messages only to local consumers (those
connected to the broker on which the destination is created).

LocalDeliveryPreferred
1

Boolean Yes Local delivery preferred?

This property applies only to load-balanced delivery in broker
clusters. If true, messages will be delivered to remote
consumers only if there are no associated consumers on the
local broker. The destination must not be restricted to
local-only delivery (LocalOnly must be false).

UseDMQ Boolean Yes Send dead messages to dead message queue?

If false, dead messages will simply be discarded.
1 Queue destinations only

Table 3–33 shows the possible values for the Type attribute. These values are defined as static
constants in the utility class DestinationType.

TABLE 3–33 Destination Configuration Type Values

Value Utility Constant Meaning

q DestinationType.QUEUE Queue (point-to-point) destination

t DestinationType.TOPIC Topic (publish/subscribe) destination

Table 3–34 shows the possible values for the LimitBehavior attribute. These values are defined
as static constants in the utility class DestinationLimitBehavior.

TABLE 3–34 Destination Limit Behaviors

Value Utility Constant Meaning

FLOW_CONTROL DestinationLimitBehavior.FLOW_CONTROL Slow down producers

REMOVE_OLDEST DestinationLimitBehavior.REMOVE_OLDEST Throw out oldest messages

REMOVE_LOW_PRIORITY DestinationLimitBehavior.REMOVE_LOW_PRIORITY Throw out lowest-priority
messages according to age; no
notice to producing client

Destinations

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •68

TABLE 3–34 Destination Limit Behaviors (Continued)
Value Utility Constant Meaning

REJECT_NEWEST DestinationLimitBehavior.REJECT_NEWEST Reject newest messages; notify
producing client with an
exception only if message is
persistent

Operations
The destination configuration MBean supports the operations shown in Table 3–35. The names
of these operations are defined as static constants in the utility class DestinationOperations.

TABLE 3–35 Destination Configuration Operations

Name Parameters Result Type Description

pause pauseType (String) None Pause message delivery

See Table 3–36 for possible values of pauseType.

pause None None Pause all message delivery

Equivalent to
pause(DestinationPauseType.ALL).

resume None None Resume message delivery

purge None None Purge all messages

compact
1 None None Compact persistent data store

Note – Only a paused destination can be compacted.
1 File-based persistence only

Table 3–36 shows the possible values for the pause operation's pauseType parameter. These
values are defined as static constants in the utility class DestinationPauseType.

TABLE 3–36 Destination Pause Types

Value Utility Constant Meaning

PRODUCERS DestinationPauseType.PRODUCERS Pause delivery from associated message producers

CONSUMERS DestinationPauseType.CONSUMERS Pause delivery to associated message consumers

ALL DestinationPauseType.ALL Pause all message delivery

Notification
The destination configuration MBean supports the notification shown in Table 3–37.

Destinations

Chapter 3 • Message Queue MBean Reference 69

TABLE 3–37 Destination Configuration Notification

Name Description

jmx.attribute.change Attribute value changed

Destination Monitor
The destination monitor MBean is used for monitoring a destination. There is one such MBean
for each destination.

Object Name
The destination monitor MBean has an object name of the following form:

com.sun.messaging.jms.server:type=Destination,subtype=Monitor,

desttype=destinationType,name=destinationName

where destinationType is one of the destination types shown in Table 3–39 and
destinationName is the name of the destination. For example:

com.sun.messaging.jms.server:type=Destination,subtype=Monitor,desttype=t,

name="Dest"

The utility class MQObjectName provides a static method, createDestinationMonitor, for
constructing object names of this form.

Attributes
The destination monitor MBean has the attributes shown in Table 3–38. The names of these
attributes are defined as static constants in the utility class DestinationAttributes.

TABLE 3–38 Destination Monitor Attributes

Name Type Settable? Description

Name String No Destination name

Type String No Destination type

See Table 3–39 for possible values.

CreatedByAdmin

Boolean No Administrator-created destination?

Temporary

Boolean No Temporary destination?

Destinations

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •70

TABLE 3–38 Destination Monitor Attributes (Continued)
Name Type Settable? Description

ConnectionID
1

String No Connection identifier

State Integer No Current state

See Table 3–40 for possible values.

StateLabel String No String representation of current state:

Useful for displaying the state in human-readable form, such as
in the Java Monitoring and Management Console (jconsole).

See Table 3–40 for possible values.

NumProducers Integer No Current number of associated message producers

NumConsumers Integer No Current number of associated message consumers

For queue destinations, this attribute includes both active and
backup consumers. For topic destinations, it includes both
nondurable and (active and inactive) durable subscribers and is
equivalent to NumActiveConsumers.

PeakNumConsumers Integer No Peak number of associated message consumers since broker
started

For queue destinations, this attribute includes both active and
backup consumers. For topic destinations, it includes both
nondurable and (active and inactive) durable subscribers and is
equivalent to PeakNumActiveConsumers.

AvgNumConsumers Integer No Average number of associated message consumers since broker
started

For queue destinations, this attribute includes both active and
backup consumers. For topic destinations, it includes both
nondurable and (active and inactive) durable subscribers and is
equivalent to AvgNumActiveConsumers.

NumActiveConsumers Integer No Current number of associated active message consumers

For topic destinations, this attribute includes both nondurable
and (active and inactive) durable subscribers and is equivalent to
NumConsumers.

PeakNumActiveConsumers Integer No Peak number of associated active message consumers since
broker started

For topic destinations, this attribute includes both nondurable
and (active and inactive) durable subscribers and is equivalent to
PeakNumConsumers.

1 Temporary destinations only

Destinations

Chapter 3 • Message Queue MBean Reference 71

TABLE 3–38 Destination Monitor Attributes (Continued)
Name Type Settable? Description

AvgNumActiveConsumers Integer No Average number of associated active message consumers since
broker started

For topic destinations, this attribute includes both nondurable
and (active and inactive) durable subscribers and is equivalent to
AvgNumConsumers.

NumBackupConsumers
2

Integer No Current number of associated backup message consumers

PeakNumBackupConsumers
2

Integer No Peak number of associated backup message consumers since
broker started

AvgNumBackupConsumers
2

Integer No Average number of associated backup message consumers since
broker started

NumMsgs Long No Current number of messages stored in memory and persistent
store

Does not include messages held in transactions.

NumMsgsPendingAcks Long No Current number of messages being held in memory and
persistent store pending acknowledgment

NumMsgsHeldInTransaction Long No Current number of messages being held in memory and
persistent store in uncommitted transactions

PeakNumMsgs Long No Peak number of messages stored in memory and persistent store
since broker started

AvgNumMsgs Long No Average number of messages stored in memory and persistent
store since broker started

NumMsgsIn Long No Cumulative number of messages received since broker started

NumMsgsOut Long No Cumulative number of messages sent since broker started

MsgBytesIn Long No Cumulative size in bytes of messages received since broker
started

MsgBytesOut Long No Cumulative size in bytes of messages sent since broker started

PeakMsgBytes Long No Size in bytes of largest single message received since broker
started

TotalMsgBytes Long No Current total size in bytes of messages stored in memory and
persistent store

Does not include messages held in transactions.

TotalMsgBytesHeldInTransaction Long No Current total size in bytes of messages being held in memory and
persistent store in uncommitted transactions

2 Queue destinations only

Destinations

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •72

TABLE 3–38 Destination Monitor Attributes (Continued)
Name Type Settable? Description

PeakTotalMsgBytes Long No Peak total size in bytes of messages stored in memory and
persistent store since broker started

AvgTotalMsgBytes Long No Average total size in bytes of messages stored in memory and
persistent store since broker started

DiskReserved
3

Long No Amount of disk space, in bytes, reserved for destination

DiskUsed
3

Long No Amount of disk space, in bytes, currently in use by destination

DiskUtilizationRatio
3

Integer No Ratio of disk space currently in use to disk space reserved for
destination

3 File-based persistence only

Table 3–39 shows the possible values for the Type attribute. These values are defined as static
constants in the utility class DestinationType.

TABLE 3–39 Destination Monitor Type Values

Value Utility Constant Meaning

q DestinationType.QUEUE Queue (point-to-point) destination

t DestinationType.TOPIC Topic (publish/subscribe) destination

Table 3–40 shows the possible values for the State and StateLabel attributes. These values are
defined as static constants in the utility class DestinationState.

TABLE 3–40 Destination State Values

Value Utility Constant String Representation Meaning

0 DestinationState.RUNNING RUNNING Destination running

1 DestinationState.CONSUMERS_PAUSED CONSUMERS_PAUSED Message consumers paused

2 DestinationState.PRODUCERS_PAUSED PRODUCERS_PAUSED Message producers paused

3 DestinationState.PAUSED PAUSED Destination paused

−1 DestinationState.UNKNOWN UNKNOWN Destination state unknown

Operations
The destination monitor MBean supports the operations shown in Table 3–41. The names of
these operations are defined as static constants in the utility class DestinationOperations.

Destinations

Chapter 3 • Message Queue MBean Reference 73

TABLE 3–41 Destination Monitor Operations

Name Parameters Result Type Description

getConnection
1 None ObjectName Object name of connection monitor MBean for

connection

getProducerIDs None String[] Producer identifiers of all current associated
message producers

getConsumerIDs None String[] Consumer identifiers of all current associated
message consumers

For queue destinations, this operation returns both
active and backup consumers. For topic
destinations, it returns both nondurable and
(active and inactive) durable subscribers.

getActiveConsumerIDs None String[] Consumer identifiers of all current associated
active message consumers

For topic destinations, this operation returns both
nondurable and (active and inactive) durable
subscribers.

getBackupConsumerIDs
2 None String[] Consumer identifiers of all current associated

backup message consumers
1 Temporary destinations only
2 Queue destinations only

Notifications
The destination monitor MBean supports the notifications shown in Table 3–42. These
notifications are instances of the Message Queue JMX class DestinationNotification, and
their names are defined as static constants in that class.

TABLE 3–42 Destination Monitor Notifications

Name Utility Constant Description

mq.destination.pause DestinationNotification.DESTINATION_PAUSE Destination paused

mq.destination.resume DestinationNotification.DESTINATION_RESUME Destination resumed

mq.destination.compact DestinationNotification.DESTINATION_COMPACT Destination compacted

mq.destination.purge DestinationNotification.DESTINATION_PURGE Destination purged

Table 3–43 shows the methods defined in class DestinationNotification for obtaining details
about a destination monitor notification.

Destinations

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •74

TABLE 3–43 Data Retrieval Methods for Destination Monitor Notifications

Method Result Type Description

getDestinationName String Destination name

getDestinationType String Destination type

See Table 3–39 for possible values.

getCreatedByAdmin Boolean Administrator-created destination?

getPauseType String Pause type

See Table 3–36 for possible values.

Destination Manager Configuration
Each broker has a single destination manager configuration MBean, used for managing all of the
broker's destination configuration MBeans.

Object Name
The destination manager configuration MBean has the following object name:

com.sun.messaging.jms.server:type=DestinationManager,subtype=Config

A string representing this object name is defined as a static constant
DESTINATION_MANAGER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attributes
The destination manager configuration MBean has the attributes shown in Table 3–44. The
names of these attributes are defined as static constants in the utility class
DestinationAttributes.

TABLE 3–44 Destination Manager Configuration Attributes

Name Type Settable? Description

AutoCreateQueues Boolean Yes Allow auto-creation of queue destinations?

AutoCreateTopics Boolean Yes Allow auto-creation of topic destinations?

NumDestinations Integer No Current total number of destinations

MaxNumMsgs Long Yes Maximum total number of unconsumed messages

A value of −1 denotes an unlimited number of messages.

Destinations

Chapter 3 • Message Queue MBean Reference 75

TABLE 3–44 Destination Manager Configuration Attributes (Continued)
Name Type Settable? Description

MaxBytesPerMsg Long Yes Maximum size, in bytes, of any single message

A value of −1 denotes an unlimited message size.

MaxTotalMsgBytes Long Yes Maximum total memory, in bytes, for unconsumed
messages

A value of −1 denotes an unlimited number of bytes.

AutoCreateQueueMaxNumActiveConsumers
1

Integer Yes Maximum total number of active message consumers in
load-balanced delivery

A value of −1 denotes an unlimited number of consumers.

AutoCreateQueueMaxNumBackupConsumers
1

Integer Yes Maximum total number of backup message consumers in
load-balanced delivery

A value of −1 denotes an unlimited number of consumers.

DMQTruncateBody Boolean Yes Remove message body before storing in dead message
queue?

If true, only the message header and property data will be
saved.

LogDeadMsgs Boolean Yes Log information about dead messages?

If true, the following events will be logged:
■ A destination is full, having reached its maximum size

or message count.

■ The broker discards a message for a reason other than
an administrative command or delivery
acknowledgment.

■ The broker moves a message to the dead message
queue.

1 Auto-created queue destinations only

Operations
The destination manager configuration MBean supports the operations shown in Table 3–45.
The names of these operations are defined as static constants in the utility class
DestinationOperations.

Destinations

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •76

TABLE 3–45 Destination Manager Configuration Operations

Name Parameters Result Type Description

getDestinations None ObjectName[] Object names of destination configuration MBeans
for all current destinations

create destinationType (String)

destinationName
(String)

destinationAttributes
(AttributeList)

None Create destination with specified type, name, and
attributes

The destinationType and destinationName
parameters are required, but destinationAttributes
may be null.

See Table 3–46 for possible values of
destinationType.

The destinationAttributes list may include any of
the attributes listed in Table 3–32 except Name and
Type. The names of these attributes are defined as
static constants in the utility class
DestinationAttributes.

create destinationType (String)

destinationName
(String)

None Create destination with specified type and name

Equivalent to create(destinationType,
destinationName, null).

See Table 3–46 for possible values of
destinationType.

destroy destinationType (String)

destinationName
(String)

None Destroy destination

See Table 3–46 for possible values of
destinationType.

pause pauseType (String) None Pause message delivery for all destinations

See Table 3–47 for possible values of pauseType.

pause None None Pause all message delivery for all destinations

Equivalent to
pause(DestinationPauseType.ALL).

resume None None Resume message delivery for all destinations

compact
1 None None Compact all destinations

Note – Only paused destinations can be compacted.
1 File-based persistence only

Table 3–46 shows the possible values for the create and destroy operations' destinationType
parameters. These values are defined as static constants in the utility class DestinationType.

Destinations

Chapter 3 • Message Queue MBean Reference 77

TABLE 3–46 Destination Manager Configuration Type Values

Value Utility Constant Meaning

q DestinationType.QUEUE Queue (point-to-point) destination

t DestinationType.TOPIC Topic (publish/subscribe) destination

Table 3–47 shows the possible values for the pause operation's pauseType parameter. These
values are defined as static constants in the utility class DestinationPauseType.

TABLE 3–47 Destination Manager Pause Types

Value Utility Constant Meaning

PRODUCERS DestinationPauseType.PRODUCERS Pause delivery from associated message producers

CONSUMERS DestinationPauseType.CONSUMERS Pause delivery to associated message consumers

ALL DestinationPauseType.ALL Pause all delivery

Notification
The destination manager configuration MBean supports the notification shown in Table 3–48.

TABLE 3–48 Destination Manager Configuration Notification

Name Description

jmx.attribute.change Attribute value changed

Destination Manager Monitor
Each broker has a single destination manager monitor MBean, used for managing all of the
broker's destination monitor MBeans.

Object Name
The destination manager monitor MBean has the following object name:

com.sun.messaging.jms.server:type=DestinationManager,subtype=Monitor

A string representing this object name is defined as a static constant
DESTINATION_MANAGER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Attributes
The destination manager monitor MBean has the attributes shown in Table 3–49. The names of
these attributes are defined as static constants in the utility class DestinationAttributes.

Destinations

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •78

TABLE 3–49 Destination Manager Monitor Attributes

Name Type Settable? Description

NumDestinations Integer No Current total number of destinations

NumMsgs Long No Current total number of messages stored in memory and persistent store for
all destinations

Does not include messages held in transactions.

TotalMsgBytes Long No Current total size in bytes of messages stored in memory and persistent store
for all destinations

Does not include messages held in transactions.

NumMsgsInDMQ Long No Current number of messages stored in memory and persistent store for dead
message queue

TotalMsgBytesInDMQ Long No Current total size in bytes of messages stored in memory and persistent store
for dead message queue

Operation
The destination manager monitor MBean supports the operation shown in Table 3–50. The
name of this operation is defined as a static constant in the utility class
DestinationOperations.

TABLE 3–50 Destination Manager Monitor Operation

Name Parameters Result Type Description

getDestinations None ObjectName[] Object names of destination monitor MBeans for
all current destinations

Notifications
The destination manager monitor MBean supports the notifications shown in Table 3–51.
These notifications are instances of the Message Queue JMX class DestinationNotification,
and their names are defined as static constants in that class.

TABLE 3–51 Destination Manager Monitor Notifications

Name Utility Constant Description

mq.destination.create DestinationNotification.DESTINATION_CREATE Destination created

mq.destination.destroy DestinationNotification.DESTINATION_DESTROY Destination destroyed

mq.destination.pause DestinationNotification.DESTINATION_PAUSE Destination paused

Destinations

Chapter 3 • Message Queue MBean Reference 79

TABLE 3–51 Destination Manager Monitor Notifications (Continued)
Name Utility Constant Description

mq.destination.resume DestinationNotification.DESTINATION_RESUME Destination resumed

mq.destination.compact DestinationNotification.DESTINATION_COMPACT Destination compacted

mq.destination.purge DestinationNotification.DESTINATION_PURGE Destination purged

Table 3–52 shows the methods defined in class DestinationNotification for obtaining details
about a destination manager monitor notification.

TABLE 3–52 Data Retrieval Methods for Destination Manager Monitor Notifications

Method Result Type Description

getDestinationName String Destination name

getDestinationType String Destination type

See Table 3–46 for possible values.

getCreatedByAdmin Boolean Administrator-created destination?

getPauseType String Pause type

See Table 3–47 for possible values.

Message Producers
This section describes the MBeans used for managing message producers:

■ The producer manager configuration MBean configures message producers.
■ The producer manager monitor MBean monitors message producers.

The following subsections describe each of these MBeans in detail.

Note – Notice that there are no resource MBeans associated with individual message producers;
rather, all producers are managed through the broker's global producer manager configuration
and producer manager monitor MBeans.

Producer Manager Configuration
Each broker has a single producer manager configuration MBean, used for configuring all of the
broker's message producers.

Message Producers

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •80

Object Name
The producer manager configuration MBean has the following object name:

com.sun.messaging.jms.server:type=ProducerManager,subtype=Config

A string representing this object name is defined as a static constant
PRODUCER_MANAGER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attribute
The producer manager configuration MBean has the attribute shown in Table 3–53. The name
of this attribute is defined as a static constant in the utility class ProducerAttributes.

TABLE 3–53 Producer Manager Configuration Attribute

Name Type Settable? Description

NumProducers Integer No Current total number of message producers

Operation
The producer manager configuration MBean supports the operation shown in Table 3–54. The
name of this operation is defined as a static constant in the utility class ProducerOperations.

TABLE 3–54 Producer Manager Configuration Operation

Name Parameters Result Type Description

getProducerIDs None String[] Producer identifiers of all current message
producers

Producer Manager Monitor
Each broker has a single producer manager monitor MBean, used for monitoring all of the
broker's message producers.

Object Name
The producer manager monitor MBean has the following object name:

com.sun.messaging.jms.server:type=ProducerManager,subtype=Monitor

A string representing this object name is defined as a static constant
PRODUCER_MANAGER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Message Producers

Chapter 3 • Message Queue MBean Reference 81

Attribute
The producer manager monitor MBean has the attribute shown in Table 3–55. The name of this
attribute is defined as a static constant in the utility class ProducerAttributes.

TABLE 3–55 Producer Manager Monitor Attribute

Name Type Settable? Description

NumProducers Integer No Current total number of message producers

Operations
The producer manager monitor MBean supports the operations shown in Table 3–56. The
names of these operations are defined as static constants in the utility class
ProducerOperations.

TABLE 3–56 Producer Manager Monitor Operations

Name Parameters Result Type Description

getProducerIDs None String[] Producer identifiers of all current message
producers

getProducerInfoByID producerID (String) CompositeData Descriptive information about message producer

The desired producer is designated by its producer
identifier (producerID). The value returned is a
JMX CompositeData object describing the
producer; see Table 3–57 for lookup keys used with
this object.

getProducerInfo None CompositeData[] Descriptive information about all current message
producers

The value returned is an array of JMX
CompositeData objects describing the producers;
see Table 3–57 for lookup keys used with these
objects.

The getProducerInfoByID and getProducerInfo operations return objects implementing the
JMX interface CompositeData, which maps lookup keys to associated data values. The keys
shown in Table 3–57 are defined as static constants in the utility class ProducerInfo for use
with these objects.

Message Producers

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •82

TABLE 3–57 Lookup Keys for Message Producer Information

Name Value Type Description

ProducerID String Producer identifier

ServiceName String Name of associated connection service

ConnectionID

String Connection identifier of associated connection

Host String Connection's host name

User String Connection's user name

DestinationName String Name of associated destination

DestinationType String Type of associated destination

See Table 3–58 for possible values.

FlowPaused Boolean Message delivery paused?

NumMsgs Long Number of messages sent

Table 3–58 shows the possible values returned for the lookup key DestinationType. These
values are defined as static constants in the utility class DestinationType.

TABLE 3–58 Message Producer Destination Types

Value Utility Constant Meaning

q DestinationType.QUEUE Queue (point-to-point) destination

t DestinationType.TOPIC Topic (publish/subscribe) destination

Message Consumers
This section describes the MBeans used for managing message consumers:

■ The consumer manager configuration MBean configures message consumers.
■ The consumer manager monitor MBean monitors message consumers.

The following subsections describe each of these MBeans in detail.

Note – Notice that there are no resource MBeans associated with individual message consumers;
rather, all consumers are managed through the broker's global consumer manager
configuration and consumer manager monitor MBeans.

Message Consumers

Chapter 3 • Message Queue MBean Reference 83

Consumer Manager Configuration
Each broker has a single consumer manager configuration MBean, used for configuring all of the
broker's message consumers.

Object Name
The consumer manager configuration MBean has the following object name:

com.sun.messaging.jms.server:type=ConsumerManager,subtype=Config

A string representing this object name is defined as a static constant
CONSUMER_MANAGER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attribute
The consumer manager configuration MBean has the attribute shown in Table 3–59. The name
of this attribute is defined as a static constant in the utility class ConsumerAttributes.

TABLE 3–59 Consumer Manager Configuration Attribute

Name Type Settable? Description

NumConsumers Integer No Current total number of message consumers

Operations
The consumer manager configuration MBean supports the operations shown in Table 3–60.
The names of these operations are defined as static constants in the utility class
ConsumerOperations.

TABLE 3–60 Consumer Manager Configuration Operations

Name Parameters Result Type Description

getConsumerIDs None String[] Consumer identifiers of all current message
consumers

purge
1 consumerID (String) None Purge all messages

The desired subscriber is designated by its
consumer identifier (consumerID).

The subscriber itself is not destroyed.
1 Durable topic subscribers only

Message Consumers

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •84

Consumer Manager Monitor
Each broker has a single consumer manager monitor MBean, used for monitoring all of the
broker's message consumers.

Object Name
The consumer manager monitor MBean has the following object name:

com.sun.messaging.jms.server:type=ConsumerManager,subtype=Monitor

A string representing this object name is defined as a static constant
CONSUMER_MANAGER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Attribute
The consumer manager monitor MBean has the attribute shown in Table 3–61. The name of
this attribute is defined as a static constant in the utility class ConsumerAttributes.

TABLE 3–61 Consumer Manager Monitor Attribute

Name Type Settable? Description

NumConsumers Integer No Current total number of message consumers

Operations
The consumer manager monitor MBean supports the operations shown in Table 3–62. The
names of these operations are defined as static constants in the utility class
ConsumerOperations.

TABLE 3–62 Consumer Manager Monitor Operations

Name Parameters Result Type Description

getConsumerIDs None String[] Consumer identifiers of all current message
consumers

getConsumerInfoByID consumerID (String) CompositeData Descriptive information about message consumer

The desired consumer is designated by its
consumer identifier (consumerID). The value
returned is a JMX CompositeData object
describing the consumer; see Table 3–63 for
lookup keys used with this object.

Message Consumers

Chapter 3 • Message Queue MBean Reference 85

TABLE 3–62 Consumer Manager Monitor Operations (Continued)
Name Parameters Result Type Description

getConsumerInfo None CompositeData[] Descriptive information about all current message
consumers

The value returned is an array of JMX
CompositeData objects describing the consumers;
see Table 3–63 for lookup keys used with these
objects.

The getConsumerInfoByID and getConsumerInfo operations return objects implementing the
JMX interface CompositeData, which maps lookup keys to associated data values. The keys
shown in Table 3–63 are defined as static constants in the utility class ConsumerInfo for use
with these objects.

TABLE 3–63 Lookup Keys for Message Consumer Information

Name Value Type Description

ConsumerID String Consumer identifier

Selector String Message selector

ServiceName String Name of associated connection service

ConnectionID String Connection identifier of associated connection

Host String Connection's host name

User String Connection's user name

DestinationName String Name of associated destination

DestinationType String Type of associated destination

See Table 3–64 for possible values.

AcknowledgeMode Integer Acknowledgment mode of associated session

See Table 3–65 for possible values.

AcknowledgeModeLabel String String representation of acknowledgment mode

Useful for displaying the acknowledgment mode in
human-readable form, such as in the Java Monitoring and
Management Console (jconsole).

See Table 3–65 for possible values.

Durable Boolean Durable topic subscriber?

DurableName
1

String Subscription name
1 Durable topic subscribers only

Message Consumers

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •86

TABLE 3–63 Lookup Keys for Message Consumer Information (Continued)
Name Value Type Description

ClientID
1

String Client identifier

DurableActive
1

Boolean Subscriber active?

FlowPaused Boolean Message delivery paused?

NumMsgs Long Cumulative number of messages received

NumMsgsPendingAcks Long Current number of messages being held in memory and
persistent store pending acknowledgment

LastAckTime Long Time of last acknowledgment, in standard Java format
(milliseconds since January 1, 1970, 00:00:00 UTC)

1 Durable topic subscribers only

Table 3–64 shows the possible values returned for the lookup key DestinationType. These
values are defined as static constants in the utility class DestinationType.

TABLE 3–64 Message Consumer Destination Types

Value Utility Constant Meaning

q DestinationType.QUEUE Queue (point-to-point) destination

t DestinationType.TOPIC Topic (publish/subscribe) destination

Table 3–65 shows the possible values returned for the lookup keys AcknowledgeMode and
AcknowledgeModeLabel. Four of these values are defined as static constants in the standard JMS
interface javax.jms.Session; the fifth (NO_ACKNOWLEDGE) is defined in the extended Message
Queue version of the interface, com.sun.messaging.jms.Session.

TABLE 3–65 Acknowledgment Modes

Value Utility Constant String Representation Meaning

1 javax.jms.Session.AUTO_ACKNOWLEDGE AUTO_ACKNOWLEDGE Auto-acknowledge mode

2 javax.jms.Session.CLIENT_ACKNOWLEDGE CLIENT_ACKNOWLEDGE Client-acknowledge mode

3 javax.jms.Session.DUPS_OK_ACKNOWLEDGE DUPS_OK_ACKNOWLEDGE Dups-OK-acknowledge mode

32768 com.sun.messaging.jms.Session.NO_ACKNOWLEDGE NO_ACKNOWLEDGE No-acknowledge mode

0 javax.jms.Session.SESSION_TRANSACTED SESSION_TRANSACTED Session is transacted
(acknowledgment mode
ignored)

Message Consumers

Chapter 3 • Message Queue MBean Reference 87

Transactions
This section describes the MBeans used for managing transactions:

■ The transaction manager configuration MBean configures transactions.
■ The transaction manager monitor MBean monitors transactions.

The following subsections describe each of these MBeans in detail.

Note – Notice that there are no resource MBeans associated with individual transactions; rather,
all transactions are managed through the broker's global transaction manager configuration
and transaction manager monitor MBeans.

Transaction Manager Configuration
Each broker has a single transaction manager configuration MBean, used for configuring all of
the broker's transactions.

Object Name
The transaction manager configuration MBean has the following object name:

com.sun.messaging.jms.server:type=TransactionManager,subtype=Config

A string representing this object name is defined as a static constant
TRANSACTION_MANAGER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attribute
The transaction manager configuration MBean has the attribute shown in Table 3–66. The
name of this attribute is defined as a static constant in the utility class TransactionAttributes.

TABLE 3–66 Transaction Manager Configuration Attribute

Name Type Settable? Description

NumTransactions Integer No Current number of open transactions

Operations
The transaction manager configuration MBean supports the operations shown in Table 3–67.
The names of these operations are defined as static constants in the utility class
TransactionOperations.

Transactions

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •88

TABLE 3–67 Transaction Manager Configuration Operations

Name Parameters Result Type Description

getTransactionIDs None String[] Transaction identifiers of all current open
transactions

commit transactionID (String) None Commit transaction

The desired transaction is designated by its
transaction identifier (transactionID).

rollback transactionID (String) None Roll back transaction

The desired transaction is designated by its
transaction identifier (transactionID).

Transaction Manager Monitor
Each broker has a single transaction manager monitor MBean, used for monitoring all of the
broker's transactions.

Object Name
The transaction manager monitor MBean has the following object name:

com.sun.messaging.jms.server:type=TransactionManager,subtype=Monitor

A string representing this object name is defined as a static constant
TRANSACTION_MANAGER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Attributes
The transaction manager monitor MBean has the attributes shown in Table 3–68. The names of
these attributes are defined as static constants in the utility class TransactionAttributes.

TABLE 3–68 Transaction Manager Monitor Attributes

Name Type Settable? Description

NumTransactions Integer No Current number of open transactions

NumTransactionsCommitted Long No Cumulative number of transactions committed since broker
started

NumTransactionsRollback Long No Cumulative number of transactions rolled back since broker
started

Transactions

Chapter 3 • Message Queue MBean Reference 89

Operations
The transaction manager monitor MBean supports the operations shown in Table 3–69. The
names of these operations are defined as static constants in the utility class
TransactionOperations.

TABLE 3–69 Transaction Manager Monitor Operations

Name Parameters Result Type Description

getTransactionIDs None String[] Transaction identifiers of all current open
transactions

getTransactionInfoByID transactionID (String) CompositeData Descriptive information about transaction

The desired transaction is designated by its
transaction identifier (transactionID). The value
returned is a JMX CompositeData object
describing the transaction; see Table 3–70 for
lookup keys used with this object.

getTransactionInfo None CompositeData[] Descriptive information about all current open
transactions

The value returned is an array of JMX
CompositeData objects describing the transactions;
see Table 3–70 for lookup keys used with these
objects.

The getTransactionInfoByID and getTransactionInfo operations return objects
implementing the JMX interface CompositeData, which maps lookup keys to associated data
values. The keys shown in Table 3–70 are defined as static constants in the utility class
TransactionInfo for use with these objects.

TABLE 3–70 Lookup Keys for Transaction Information

Name Value Type Description

TransactionID String Transaction identifier

XID
1

String Distributed transaction identifier (XID)

User String User name

ClientID String Client identifier

ConnectionString String Connection string

CreationTime Long Time created, in standard Java format (milliseconds since January 1, 1970,
00:00:00 UTC)

1 Distributed transactions only

Transactions

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •90

TABLE 3–70 Lookup Keys for Transaction Information (Continued)
Name Value Type Description

State Integer Current state

See Table 3–71 for possible values.

StateLabel String String representation of current state

Useful for displaying the state in human-readable form, such as in the Java
Monitoring and Management Console (jconsole).

See Table 3–71 for possible values.

NumMsgs Long Number of messages

NumAcks Long Number of acknowledgments

Table 3–71 shows the possible values returned for the lookup keys State and StateLabel.
These values are defined as static constants in the utility class TransactionState.

TABLE 3–71 Transaction State Values

Value Utility Constant String Representation Meaning

0 TransactionState.CREATED CREATED Transaction created

1 TransactionState.STARTED STARTED Transaction started

2

TransactionState.FAILED

FAILED Transaction has failed

3 TransactionState.INCOMPLETE INCOMPLETE Transaction incomplete

4 TransactionState.COMPLETE COMPLETE Transaction complete

5 TransactionState.PREPARED PREPARED Transaction in prepared state1

6 TransactionState.COMMITTED COMMITTED Transaction committed

7 TransactionState.ROLLEDBACK ROLLEDBACK Transaction rolled back

8 TransactionState.TIMED_OUT TIMED_OUT Transaction has timed out

−1 TransactionState.UNKNOWN UNKNOWN Transaction state unknown
1 Distributed transactions only

Notifications
The transaction manager monitor MBean supports the notifications shown in Table 3–72.
These notifications are instances of the Message Queue JMX class TransactionNotification,
and their names are defined as static constants in that class.

Transactions

Chapter 3 • Message Queue MBean Reference 91

TABLE 3–72 Transaction Manager Monitor Notifications

Name Utility Constant Description

mq.transaction.prepare
1

TransactionNotification.TRANSACTION_PREPARE Transaction has entered prepared state

mq.transaction.commit TransactionNotification.TRANSACTION_COMMIT Transaction committed

mq.transaction.rollback TransactionNotification.TRANSACTION_ROLLBACK Transaction rolled back
1 Distributed transactions only

Table 3–73 shows the method defined in class TransactionNotification for obtaining details
about a transaction manager monitor notification.

TABLE 3–73 Data Retrieval Method for Transaction Manager Monitor Notifications

Method Result Type Description

getTransactionID String Transaction identifier

Broker Clusters
This section describes the MBeans used for managing broker clusters:

■ The cluster configuration MBean configures a broker's cluster-related properties.
■ The cluster monitor MBean monitors the brokers in a cluster.

The following subsections describe each of these MBeans in detail.

Cluster Configuration
The cluster configuration MBean is used for configuring a broker's cluster-related properties.
There is one such MBean for each broker.

Object Name
The cluster configuration MBean has the following object name:

com.sun.messaging.jms.server:type=Cluster,subtype=Config

A string representing this object name is defined as a static constant
CLUSTER_CONFIG_MBEAN_NAME in the utility class MQObjectName.

Attributes
The cluster configuration MBean has the attributes shown in Table 3–74. The names of these
attributes are defined as static constants in the utility class ClusterAttributes.

Broker Clusters

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •92

TABLE 3–74 Cluster Configuration Attributes

Name Type Settable? Description

HighlyAvailable Boolean No High-availability (HA) cluster?

ClusterID
1

String No Cluster identifier

Must be unique; no two running clusters may have the same
cluster identifier.

This identifier is appended to the names of all database tables in
the cluster’s shared persistent store. Must be an alphanumeric
string of no more than n − 13 characters, where n is the
maximum table name length allowed by the database.

Note – For brokers belonging to an HA cluster, this attribute is
used in database table names in place of the BrokerID (see
Table 3–1).

ConfigFileURL
2

String Yes URL of cluster configuration file

LocalBrokerInfo CompositeData No Descriptive information about local broker

The value returned is a JMX CompositeData object describing
the broker; see Table 3–76 for lookup keys used with this object.

MasterBrokerInfo
2

CompositeData No Descriptive information about master broker

The value returned is a JMX CompositeData object describing
the master broker; see Table 3–76 for lookup keys used with this
object.

1 HA clusters only
2 Conventional clusters only

Operations
The cluster configuration MBean supports the operations shown in Table 3–75. The names of
these operations are defined as static constants in the utility class ClusterOperations.

Broker Clusters

Chapter 3 • Message Queue MBean Reference 93

TABLE 3–75 Cluster Configuration Operations

Name Parameters Result Type Description

getBrokerAddresses None String[] Addresses of brokers in cluster

Each address specifies the host name and Port
Mapper port number of a broker in the cluster, in
the form hostName:portNumber.

Example:
host1:3000

For conventional clusters, the list includes all
brokers specified by the broker property
imq.cluster.brokerlist. For HA clusters, it
includes all active and inactive brokers in the cluster
table stored in the HA database.

getBrokerIDs
1 None String[]

Broker identifiers of brokers in cluster

The list includes all active and inactive brokers in
the cluster table stored in the HA database.

getBrokerInfoByAddress brokerAddress (String) CompositeData Descriptive information about broker

The desired broker is designated by its host name
and Port Mapper port number (brokerAddress), in
the form hostName:portNumber. The value
returned is a JMX CompositeData object describing
the broker; see Table 3–76 for lookup keys used
with this object.

getBrokerInfoByID
1 brokerID (String) CompositeData Descriptive information about broker

The desired broker is designated by its broker
identifier (brokerID). The value returned is a JMX
CompositeData object describing the broker; see
Table 3–76 for lookup keys used with this object.
For conventional clusters, the operation returns
null.

getBrokerInfo None CompositeData[] Descriptive information about all brokers in cluster

The value returned is an array of JMX
CompositeData objects describing the brokers; see
Table 3–76 for lookup keys used with these objects.

For conventional clusters, the array includes all
brokers specified by the broker property
imq.cluster.brokerlist. For HA clusters, it
includes all active and inactive brokers in the cluster
table stored in the HA database.

1 HA clusters only

Broker Clusters

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •94

TABLE 3–75 Cluster Configuration Operations (Continued)
Name Parameters Result Type Description

reload
2 None None Reload cluster configuration file

2 Conventional clusters only

The LocalBrokerInfo and MasterBrokerInfo attributes and the getBrokerInfoByAddress,
getBrokerInfoByID, and getBrokerInfo operations return objects implementing the JMX
interface CompositeData, which maps lookup keys to associated data values. The keys shown in
Table 3–76 are defined as static constants in the utility class BrokerClusterInfo for use with
these objects.

TABLE 3–76 Lookup Keys for Cluster Configuration Information

Key Value Type Description

Address String Broker address, in the form hostName:portNumber

Example:
host1:3000

ID
1

String Broker identifier
1 HA clusters only

Notification
The cluster configuration MBean supports the notification shown in Table 3–77.

TABLE 3–77 Cluster Configuration Notification

Name Description

jmx.attribute.change Attribute value changed

Cluster Monitor
The cluster monitor MBean is used for monitoring the brokers in a cluster. There is one such
MBean for each broker.

Object Name
The cluster monitor MBean has the following object name:

com.sun.messaging.jms.server:type=Cluster,subtype=Monitor

A string representing this object name is defined as a static constant
CLUSTER_MONITOR_MBEAN_NAME in the utility class MQObjectName.

Broker Clusters

Chapter 3 • Message Queue MBean Reference 95

Attributes
The cluster monitor MBean has the attributes shown in Table 3–78. The names of these
attributes are defined as static constants in the utility class ClusterAttributes.

TABLE 3–78 Cluster Monitor Attributes

Name Type Settable? Description

HighlyAvailable Boolean No High-availability (HA) cluster?

ClusterID
1

String No Cluster identifier

Must be unique; no two running clusters may have the same
cluster identifier.

This identifier is appended to the names of all database tables in
the cluster’s shared persistent store. Must be an alphanumeric
string of no more than n − 13 characters, where n is the
maximum table name length allowed by the database.

Note – For brokers belonging to an HA cluster, this attribute is
used in database table names in place of the BrokerID (see
Table 3–4).

ConfigFileURL
2

String Yes URL of cluster configuration file

LocalBrokerInfo CompositeData No Descriptive information about local broker

The value returned is a JMX CompositeData object describing
the broker; see Table 3–80 for lookup keys used with this object.

MasterBrokerInfo
2

CompositeData No Descriptive information about master broker

The value returned is a JMX CompositeData object describing
the master broker; see Table 3–80 for lookup keys used with this
object.

1 HA clusters only
2 Conventional clusters only

Operations
The cluster monitor MBean supports the operations shown in Table 3–79. The names of these
operations are defined as static constants in the utility class ClusterOperations.

Broker Clusters

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •96

TABLE 3–79 Cluster Monitor Operations

Name Parameters Result Type Description

getBrokerAddresses None String[] Addresses of brokers in cluster

Each address specifies the host name and Port
Mapper port number of a broker in the cluster, in
the form hostName:portNumber.

Example:
host1:3000

For conventional clusters, the list includes all
brokers specified by the broker property
imq.cluster.brokerlist. For HA clusters, it
includes all active and inactive brokers in the cluster
table stored in the HA database.

getBrokerIDs
1 None String[] Broker identifiers of brokers in cluster

The list includes all active and inactive brokers in
the cluster table stored in the HA database.

getBrokerInfoByAddress brokerAddress (String) CompositeData Descriptive information about broker

The desired broker is designated by its host name
and Port Mapper port number (brokerAddress), in
the form hostName:portNumber. The value
returned is a JMX CompositeData object describing
the broker; seeTable 3–80 for lookup keys used with
this object.

getBrokerInfoByID
1 brokerID (String) CompositeData Descriptive information about broker

The desired broker is designated by its broker
identifier (brokerID). The value returned is a JMX
CompositeData object describing the broker;
seeTable 3–80 for lookup keys used with this object.
For conventional clusters, the operation returns
null.

getBrokerInfo None CompositeData[] Descriptive information about all brokers in cluster

The value returned is an array of JMX
CompositeData objects describing the brokers; see
Table 3–80 for lookup keys used with these objects.

For conventional clusters, the array includes all
brokers specified by the broker property
imq.cluster.brokerlist. For HA clusters, it
includes all active and inactive brokers in the cluster
table stored in the HA database.

1 HA clusters only

Broker Clusters

Chapter 3 • Message Queue MBean Reference 97

The LocalBrokerInfo and MasterBrokerInfo attributes and the getBrokerInfoByAddress,
getBrokerInfoByID, and getBrokerInfo operations return objects implementing the JMX
interface CompositeData, which maps lookup keys to associated data values. The keys shown in
Table 3–80 are defined as static constants in the utility class BrokerClusterInfo for use with
these objects.

TABLE 3–80 Lookup Keys for Cluster Monitor Information

Key Value Type Description

Address String Broker address, in the form hostName:portNumber

Example:
host1:3000

ID
1

String Broker identifier

State Integer Current state of broker

See Table 3–81 for possible values.

StateLabel String String representation of current broker state

Useful for displaying the state in human-readable form, such as
in the Java Monitoring and Management Console (jconsole).

See Table 3–81 for possible values.

TakeoverBrokerID
1

String Broker identifier of broker that has taken over this broker's
persistent data store

NumMsgs
1

Long Current number of messages stored in memory and persistent
store

StatusTimestamp
1

Long Time of last status update, in standard Java format (milliseconds
since January 1, 1970, 00:00:00 UTC)

Used to determine whether a broker is running.

The interval at which a broker updates its status can be
configured with the broker property
imq.cluster.monitor.interval.

1 HA clusters only

Table 3–81 shows the possible values returned for the lookup keys State and StateLabel.
These values are defined as static constants in the utility class BrokerState.

TABLE 3–81 Broker State Values

Value Utility Constant String Representation Meaning

0 BrokerState.OPERATING OPERATING Broker is operating

Broker Clusters

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •98

TABLE 3–81 Broker State Values (Continued)
Value Utility Constant String Representation Meaning

1 BrokerState.TAKEOVER_STARTED TAKEOVER_STARTED Broker has begun taking over persistent data
store from another broker

2 BrokerState.TAKEOVER_COMPLETE TAKEOVER_COMPLETE Broker has finished taking over persistent
data store from another broker

3 BrokerState.TAKEOVER_FAILED TAKEOVER_FAILED Attempted takeover has failed

4 BrokerState.QUIESCE_STARTED QUIESCE_STARTED Broker has begun quiescing

5 BrokerState.QUIESCE_COMPLETE QUIESCE_COMPLETE Broker has finished quiescing

6 BrokerState.SHUTDOWN_STARTED SHUTDOWN_STARTED Broker has begun shutting down

7 BrokerState.BROKER_DOWN BROKER_DOWN Broker is down

−1 BrokerState.UNKNOWN UNKNOWN Broker state unknown

Notifications
The cluster monitor MBean supports the notifications shown in Table 3–82. These notifications
are instances of the Message Queue JMX classes ClusterNotification and
BrokerNotification, and their names are defined as static constants in those classes.

TABLE 3–82 Cluster Monitor Notifications

Name Utility Constant Description

mq.cluster.broker.join ClusterNotification.CLUSTER_BROKER_JOIN A broker has joined the cluster

mq.cluster.broker.down ClusterNotification.CLUSTER_BROKER_DOWN A broker in the cluster has shut down or
crashed

mq.broker.takeover.start
1

BrokerNotification.BROKER_TAKEOVER_START A broker has begun taking over persistent
data store from another broker

mq.broker.takeover.complete
1
BrokerNotification.BROKER_TAKEOVER_COMPLETE A broker has finished taking over persistent

data store from another broker

mq.broker.takeover.fail
1

BrokerNotification.BROKER_TAKEOVER_FAIL An attempted takeover has failed
1 HA clusters only

Table 3–83 shows the methods defined in class ClusterNotification for obtaining details
about a cluster monitor notification. See Table 3–6 for the corresponding methods of class
BrokerNotification.

Broker Clusters

Chapter 3 • Message Queue MBean Reference 99

TABLE 3–83 Data Retrieval Methods for Cluster Monitor Notifications

Method Result Type Description

isHighlyAvailable Boolean High-availability (HA) cluster?

getClusterID String Cluster identifier

getBrokerID String Broker identifier of affected broker

getBrokerAddress String Address of affected broker, in the form hostName:portNumber

Example:
host1:3000

isMasterBroker
1

Boolean Master broker affected?
1 Conventional clusters only

Logging
This section describes the MBeans used for logging Message Queue operations:

■ The log configuration MBean configures Message Queue logging.
■ The log monitor MBean monitors Message Queue logging.

The following subsections describe each of these MBeans in detail.

Log Configuration
Each broker has a single log configuration MBean, used for configuring Message Queue logging.

Object Name
The log configuration MBean has the following object name:

com.sun.messaging.jms.server:type=Log,subtype=Config

A string representing this object name is defined as a static constant LOG_CONFIG_MBEAN_NAME
in the utility class MQObjectName.

Attributes
The log configuration MBean has the attributes shown in Table 3–84. The names of these
attributes are defined as static constants in the utility class LogAttributes.

Logging

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •100

TABLE 3–84 Log Configuration Attributes

Name Type Settable? Description

Level String Yes Logging level

Specifies the categories of logging information that can be
written to an output channel. See Table 3–85 for possible values.

RolloverBytes Long Yes File length, in bytes, at which output rolls over to a new log file

A value of −1 denotes an unlimited number of bytes (no rollover
based on file length).

RolloverSecs Long Yes Age of file, in seconds, at which output rolls over to a new log file

A value of −1 denotes an unlimited number of seconds (no
rollover based on file age).

Table 3–85 shows the possible values for the Level attribute. Each level includes those above it
(for example, WARNING includes ERROR). These values are defined as static constants in the utility
class LogLevel.

TABLE 3–85 Log Configuration Logging Levels

Name Utility Constant Meaning

NONE LogLevel.NONE No logging

ERROR LogLevel.ERROR Log error messages

WARNING LogLevel.WARNING Log warning messages

INFO LogLevel.INFO Log informational messages

UNKNOWN LogLevel.UNKNOWN Logging level unknown

Notification
The log configuration MBean supports the notification shown in Table 3–86.

TABLE 3–86 Log Configuration Notification

Name Description

jmx.attribute.change Attribute value changed

Log Monitor
Each broker has a single log monitor MBean, used for monitoring Message Queue logging.

Logging

Chapter 3 • Message Queue MBean Reference 101

Object Name
The log monitor MBean has the following object name:

com.sun.messaging.jms.server:type=Log,subtype=Monitor

A string representing this object name is defined as a static constant LOG_MONITOR_MBEAN_NAME
in the utility class MQObjectName.

Notifications
The log monitor MBean supports the notifications shown in Table 3–87. These notifications are
instances of the Message Queue JMX class LogNotification, and their names are defined as
static utility constants in that class.

Note – A notification listener registered for a particular logging level will receive notifications
only for that level and not for those above or below it: for example, a listener registered for the
notification mq.log.level.WARNING will be notified only of WARNING messages and not ERROR or
INFO. To receive notifications for more than one logging level, the listener must be explicitly
registered for each level separately.

TABLE 3–87 Log Monitor Notifications

Name Utility Constant Description

mq.log.level.ERROR LogNotification.LOG_LEVEL_ERROR Error message logged

mq.log.level.WARNING LogNotification.LOG_LEVEL_WARNING Warning message logged

mq.log.level.INFO LogNotification.LOG_LEVEL_INFO Informational message logged

Table 3–88 shows the methods defined in class LogNotification for obtaining details about a
log monitor notification.

TABLE 3–88 Data Retrieval Methods for Log Monitor Notifications

Method Result Type Description

getLevel String Logging level of logged message

See Table 3–85 for possible values.

getMessage String Body of logged message

Logging

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •102

Java Virtual Machine
This section describes the MBean used for monitoring the Java Virtual Machine (JVM):

■ The JVM monitor MBean monitors the Java Virtual Machine.

The following subsection describes this MBean in detail.

JVM Monitor
Each broker has a single JVM monitor MBean, used for monitoring the Java Virtual Machine
(JVM).

Note – This MBean is useful only with the Java Development Kit (JDK) version 1.4 or lower. JDK
version 1.5 includes built-in MBeans that provide more detailed information on the state of the
JVM.

Object Name
The JVM monitor MBean has the following object name:

com.sun.messaging.jms.server:type=JVM,subtype=Monitor

A string representing this object name is defined as a static constant JVM_MONITOR_MBEAN_NAME
in the utility class MQObjectName.

Attributes
The JVM monitor MBean has the attributes shown in Table 3–89. The names of these attributes
are defined as static constants in the utility class JVMAttributes.

TABLE 3–89 JVM Monitor Attributes

Name Type Settable? Description

TotalMemory Long No Current total memory, in bytes

InitMemory Long No Initial heap size at JVM startup, in bytes

FreeMemory Long No Amount of memory currently available for use, in bytes

MaxMemory Long No Maximum allowable heap size, in bytes

Any memory allocation attempt that would exceed this limit
will cause an OutOfMemoryError exception to be thrown.

Java Virtual Machine

Chapter 3 • Message Queue MBean Reference 103

104

Alphabetical Reference

Table A–1 is an alphabetical list of Message Queue JMX MBean attributes, with cross-references
to the relevant tables in this manual.

TABLE A–1 Alphabetical List of MBean Attributes

Attribute MBean Reference

AutoCreateQueueMaxNumActiveConsumers Destination Manager Configuration Table 3–44

AutoCreateQueueMaxNumBackupConsumers Destination Manager Configuration Table 3–44

AutoCreateQueues Destination Manager Configuration Table 3–44

AutoCreateTopics Destination Manager Configuration Table 3–44

AvgNumActiveConsumers Destination Monitor Table 3–38

AvgNumBackupConsumers Destination Monitor Table 3–38

AvgNumConsumers Destination Monitor Table 3–38

AvgNumMsgs Destination Monitor Table 3–38

AvgTotalMsgBytes Destination Monitor Table 3–38

BrokerID Broker Configuration

Broker Monitor

Table 3–1

Table 3–4

ClientID Connection Monitor Table 3–24

ClientPlatform Connection Monitor Table 3–24

ClusterID Cluster Configuration

Cluster Monitor

Table 3–74

Table 3–78

AA P P E N D I X A

105

TABLE A–1 Alphabetical List of MBean Attributes (Continued)
Attribute MBean Reference

ConfigFileURL Cluster Configuration

Cluster Monitor

Table 3–74

Table 3–78

ConnectionID Connection Configuration

Connection Monitor

Destination Monitor

Table 3–23

Table 3–24

Table 3–38

ConsumerFlowLimit Destination Configuration Table 3–32

CreatedByAdmin Destination Monitor Table 3–38

DiskReserved Destination Monitor Table 3–38

DiskUsed Destination Monitor Table 3–38

DiskUtilizationRatio Destination Monitor Table 3–38

DMQTruncateBody Destination Manager Configuration Table 3–44

Embedded Broker Monitor Table 3–4

FreeMemory JVM Monitor Table 3–89

HighlyAvailable Cluster Configuration

Cluster Monitor

Table 3–74

Table 3–78

Host Connection Monitor Table 3–24

InitMemory JVM Monitor Table 3–89

InstanceName Broker Configuration

Broker Monitor

Table 3–1

Table 3–4

Level Log Configuration Table 3–84

LimitBehavior Destination Configuration Table 3–32

LocalBrokerInfo Cluster Configuration

Cluster Monitor

Table 3–74

Table 3–78

LocalDeliveryPreferred Destination Configuration Table 3–32

LocalOnly Destination Configuration Table 3–32

LogDeadMsgs Destination Manager Configuration Table 3–44

MasterBrokerInfo Cluster Configuration

Cluster Monitor

Table 3–74

Table 3–78

Alphabetical Reference

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •106

TABLE A–1 Alphabetical List of MBean Attributes (Continued)
Attribute MBean Reference

MaxBytesPerMsg Destination Configuration

Destination Manager Configuration

Table 3–32

Table 3–44

MaxMemory JVM Monitor Table 3–89

MaxNumActiveConsumers Destination Configuration Table 3–32

MaxNumBackupConsumers Destination Configuration Table 3–32

MaxNumMsgs Destination Configuration

Destination Manager Configuration

Table 3–32

Table 3–44

MaxNumProducers Destination Configuration Table 3–32

MaxThreads Service Configuration

Service Manager Configuration

Table 3–8

Table 3–17

MaxTotalMsgBytes Destination Configuration

Destination Manager Configuration

Table 3–32

Table 3–44

MinThreads Service Configuration

Service Manager Configuration

Table 3–8

Table 3–17

MsgBytesIn Destination Monitor

Service Manager Monitor

Service Monitor

Table 3–38

Table 3–19

Table 3–12

MsgBytesOut Destination Monitor

Service Manager Monitor

Service Monitor

Table 3–38

Table 3–19

Table 3–12

Name Destination Configuration

Destination Monitor

Service Configuration

Service Monitor

Table 3–32

Table 3–38

Table 3–8

Table 3–12

NumActiveConsumers Destination Monitor Table 3–38

NumActiveThreads Service Manager Monitor

Service Monitor

Table 3–19

Table 3–12

NumBackupConsumers Destination Monitor Table 3–38

Alphabetical Reference

Appendix A • Alphabetical Reference 107

TABLE A–1 Alphabetical List of MBean Attributes (Continued)
Attribute MBean Reference

NumConnections Connection Manager Configuration

Connection Manager Monitor

Service Monitor

Table 3–26

Table 3–28

Table 3–12

NumConnectionsOpened Connection Manager Monitor

Service Monitor

Table 3–28

Table 3–12

NumConnectionsRejected Connection Manager Monitor

Service Monitor

Table 3–28

Table 3–12

NumConsumers Connection Monitor

Consumer Manager Configuration

Consumer Manager Monitor

Destination Monitor

Service Monitor

Table 3–24

Table 3–59

Table 3–61

Table 3–38

Table 3–12

NumDestinations Destination Manager Configuration

Destination Manager Monitor

Table 3–44

Table 3–49

NumMsgs Destination Manager Monitor

Destination Monitor

Table 3–49

Table 3–38

NumMsgsHeldInTransaction Destination Monitor Table 3–38

NumMsgsIn Destination Monitor

Service Manager Monitor

Service Monitor

Table 3–38

Table 3–19

Table 3–12

NumMsgsInDMQ Destination Manager Monitor Table 3–49

NumMsgsOut Destination Monitor

Service Manager Monitor

Service Monitor

Table 3–38

Table 3–19

Table 3–12

NumMsgsPendingAcks Destination Monitor Table 3–38

NumPktsIn Service Manager Monitor

Service Monitor

Table 3–19

Table 3–12

NumPktsOut Service Manager Monitor

Service Monitor

Table 3–19

Table 3–12

Alphabetical Reference

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •108

TABLE A–1 Alphabetical List of MBean Attributes (Continued)
Attribute MBean Reference

NumProducers Connection Monitor

Destination Monitor

Producer Manager Configuration

Producer Manager Monitor

Service Monitor

Table 3–24

Table 3–38

Table 3–53

Table 3–55

Table 3–12

NumServices Service Manager Monitor Table 3–19

NumTransactions Transaction Manager Configuration

Transaction Manager Monitor

Table 3–66

Table 3–68

NumTransactionsCommitted Transaction Manager Monitor Table 3–68

NumTransactionsRollback Transaction Manager Monitor Table 3–68

PeakMsgBytes Destination Monitor Table 3–38

PeakNumActiveConsumers Destination Monitor Table 3–38

PeakNumBackupConsumers Destination Monitor Table 3–38

PeakNumConsumers Destination Monitor Table 3–38

PeakNumMsgs Destination Monitor Table 3–38

PeakTotalMsgBytes Destination Monitor Table 3–38

PktBytesIn Service Manager Monitor

Service Monitor

Table 3–19

Table 3–12

PktBytesOut Service Manager Monitor

Service Monitor

Table 3–19

Table 3–12

Port Broker Configuration

Broker Monitor

Connection Monitor

Service Configuration

Service Monitor

Table 3–1

Table 3–4

Table 3–24

Table 3–8

Table 3–12

RolloverBytes Log Configuration Table 3–84

RolloverSecs Log Configuration Table 3–84

ServiceName Connection Monitor Table 3–24

Alphabetical Reference

Appendix A • Alphabetical Reference 109

TABLE A–1 Alphabetical List of MBean Attributes (Continued)
Attribute MBean Reference

State Destination Monitor

Service Monitor

Table 3–38

Table 3–12

StateLabel Destination Monitor

Service Monitor

Table 3–38

Table 3–12

Temporary Destination Monitor Table 3–38

ThreadPoolModel Service Configuration Table 3–8

TotalMemory JVM Monitor Table 3–89

TotalMsgBytes Destination Manager Monitor

Destination Monitor

Table 3–49

Table 3–38

TotalMsgBytesHeldInTransaction Destination Monitor Table 3–38

TotalMsgBytesInDMQ Destination Manager Monitor Table 3–49

Type Destination Configuration

Destination Monitor

Table 3–32

Table 3–38

UseDMQ Destination Configuration Table 3–32

User Connection Monitor Table 3–24

Version Broker Configuration

Broker Monitor

Table 3–1

Table 3–4

Table A–2 is an alphabetical list of Message Queue JMX MBean operations, with
cross-references to the relevant tables in this manual.

TABLE A–2 Alphabetical List of MBean Operations

Operation MBean Reference

commit Transaction Manager Configuration Table 3–67

compact Destination Configuration

Destination Manager Configuration

Table 3–35

Table 3–45

create Destination Manager Configuration Table 3–45

destroy Connection Manager Configuration

Destination Manager Configuration

Table 3–27

Table 3–45

Alphabetical Reference

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •110

TABLE A–2 Alphabetical List of MBean Operations (Continued)
Operation MBean Reference

getActiveConsumerIDs Destination Monitor Table 3–41

getBackupConsumerIDs Destination Monitor Table 3–41

getBrokerAddresses Cluster Configuration

Cluster Monitor

Table 3–75

Table 3–79

getBrokerIDs Cluster Configuration

Cluster Monitor

Table 3–75

Table 3–79

getBrokerInfo Cluster Configuration

Cluster Monitor

Table 3–75

Table 3–79

getBrokerInfoByAddress Cluster Configuration

Cluster Monitor

Table 3–75

Table 3–79

getBrokerInfoByID Cluster Configuration

Cluster Monitor

Table 3–75

Table 3–79

getConnection Destination Monitor Table 3–41

getConnections Connection Manager Configuration

Connection Manager Monitor

Service Monitor

Table 3–27

Table 3–29

Table 3–14

getConsumerIDs Connection Monitor

Consumer Manager Configuration

Consumer Manager Monitor

Destination Monitor

Service Monitor

Table 3–25

Table 3–60

Table 3–62

Table 3–41

Table 3–14

getConsumerInfo Consumer Manager Monitor Table 3–62

getConsumerInfoByID Consumer Manager Monitor Table 3–62

getDestinations Destination Manager Configuration

Destination Manager Monitor

Table 3–45

Table 3–50

Alphabetical Reference

Appendix A • Alphabetical Reference 111

TABLE A–2 Alphabetical List of MBean Operations (Continued)
Operation MBean Reference

getProducerIDs Connection Monitor

Destination Monitor

Producer Manager Configuration

Producer Manager Monitor

Service Monitor

Table 3–25

Table 3–41

Table 3–54

Table 3–56

Table 3–14

getProducerInfo Producer Manager Monitor Table 3–56

getProducerInfoByID Producer Manager Monitor Table 3–56

getService Connection Monitor Table 3–25

getServices Service Manager Configuration

Service Manager Monitor

Table 3–18

Table 3–20

getTemporaryDestinations Connection Monitor Table 3–25

getTransactionIDs Transaction Manager Configuration

Transaction Manager Monitor

Table 3–67

Table 3–69

getTransactionInfo Transaction Manager Monitor Table 3–69

getTransactionInfoByID Transaction Manager Monitor Table 3–69

pause Destination Configuration

Destination Manager Configuration

Service Configuration

Service Manager Configuration

Table 3–35

Table 3–45

Table 3–9

Table 3–18

purge Consumer Manager Configuration

Destination Configuration

Table 3–60

Table 3–35

quiesce Broker Configuration Table 3–2

reload Cluster Configuration Table 3–75

resetMetrics Broker Configuration Table 3–2

restart Broker Configuration Table 3–2

Alphabetical Reference

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •112

TABLE A–2 Alphabetical List of MBean Operations (Continued)
Operation MBean Reference

resume Destination Configuration

Destination Manager Configuration

Service Configuration

Service Manager Configuration

Table 3–35

Table 3–45

Table 3–9

Table 3–18

rollback Transaction Manager Configuration Table 3–67

shutdown Broker Configuration Table 3–2

takeover Broker Configuration Table 3–2

unquiesce Broker Configuration Table 3–2

Table A–3 is an alphabetical list of Message Queue JMX MBean notifications, with
cross-references to the relevant tables in this manual.

TABLE A–3 Alphabetical List of MBean Notifications

Notification MBean Reference

jmx.attribute.change Broker Configuration

Cluster Configuration

Destination Configuration

Destination Manager Configuration

Log Configuration

Service Configuration

Table 3–3

Table 3–77

Table 3–37

Table 3–48

Table 3–86

Table 3–10

mq.broker.quiesce.complete Broker Monitor Table 3–5

mq.broker.quiesce.start Broker Monitor Table 3–5

mq.broker.shutdown.start Broker Monitor Table 3–5

mq.broker.takeover.complete Broker Monitor

Cluster Monitor

Table 3–5

Table 3–82

mq.broker.takeover.fail Broker Monitor

Cluster Monitor

Table 3–5

Table 3–82

mq.broker.takeover.start Broker Monitor

Cluster Monitor

Table 3–5

Table 3–82

Alphabetical Reference

Appendix A • Alphabetical Reference 113

TABLE A–3 Alphabetical List of MBean Notifications (Continued)
Notification MBean Reference

mq.cluster.broker.down Cluster Monitor Table 3–82

mq.cluster.broker.join Broker Monitor

Cluster Monitor

Table 3–5

Table 3–82

mq.connection.close Connection Manager Monitor

Service Monitor

Table 3–30

Table 3–15

mq.connection.open Connection Manager Monitor

Service Monitor

Table 3–30

Table 3–15

mq.connection.reject Connection Manager Monitor

Service Monitor

Table 3–30

Table 3–15

mq.destination.compact Destination Manager Monitor

Destination Monitor

Table 3–51

Table 3–42

mq.destination.create Destination Manager Monitor Table 3–51

mq.destination.destroy Destination Manager Monitor Table 3–51

mq.destination.pause Destination Manager Monitor

Destination Monitor

Table 3–51

Table 3–42

mq.destination.purge Destination Manager Monitor

Destination Monitor

Table 3–51

Table 3–42

mq.destination.resume Destination Manager Monitor

Destination Monitor

Table 3–51

Table 3–42

mq.log.level.ERROR Log Monitor Table 3–87

mq.log.level.INFO Log Monitor Table 3–87

mq.log.level.WARNING Log Monitor Table 3–87

mq.service.pause Service Manager Monitor

Service Monitor

Table 3–21

Table 3–15

mq.service.resume Service Manager Monitor

Service Monitor

Table 3–21

Table 3–15

mq.transaction.commit Transaction Manager Monitor Table 3–72

mq.transaction.prepare Transaction Manager Monitor Table 3–72

Alphabetical Reference

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •114

TABLE A–3 Alphabetical List of MBean Notifications (Continued)
Notification MBean Reference

mq.transaction.rollback Transaction Manager Monitor Table 3–72

Alphabetical Reference

Appendix A • Alphabetical Reference 115

116

Index

A
AcknowledgeMode lookup key

message consumer, 86, 87
AcknowledgeModeLabel lookup key

message consumer, 86, 87
acknowledgment modes, 86

table, 87-88
addNotificationListener method, interface

MBeanServerConnection, 44
Address lookup key

broker cluster, 95, 98
admin connection service name, 25
AdminConnectionConfiguration utility class, 27, 30
AdminConnectionFactory class, 27, 30
administration connection factory

configuring, 30
defined, 30
obtaining JMX connector from, 30-31
obtaining JMX connector without, 31-32

ALL utility constant
class DestinationPauseType, 69, 78

Attribute class, 34
attribute lists, defined, 34
AttributeList class, 34
attributes, MBean

accessing, 33-38
alphabetical list (table), 105-110
broker configuration MBean, 48
broker monitor MBean, 51-52
cluster configuration MBean, 92-93
cluster monitor MBean, 96
combining with operations, 40

attributes, MBean (Continued)
connection configuration MBean, 61-62
connection manager configuration MBean, 63-64
connection manager monitor MBean, 64-65
connection monitor MBean, 62-63
consumer manager configuration MBean, 84
consumer manager monitor MBean, 85
defined, 20
destination configuration MBean, 66-69
destination manager configuration MBean, 75-76
destination manager monitor MBean, 78-79
destination monitor MBean, 70-73
JVM monitor MBean, 103
log configuration MBean, 100-101
producer manager configuration MBean, 81
producer manager monitor MBean, 82
service configuration MBean, 54
service manager configuration MBean, 58
service manager monitor MBean, 59-60
service monitor MBean, 55-57
transaction manager configuration MBean, 88
transaction manager monitor MBean, 89-90

authentication credentials, 32
AUTO_ACKNOWLEDGE utility constant, interface

Session, 87
AutoCreateQueueMaxNumActiveConsumers attribute,

destination manager configuration MBean, 76
AutoCreateQueueMaxNumBackupConsumers attribute,

destination manager configuration MBean, 76
AutoCreateQueues attribute, destination manager

configuration MBean, 75

117

AutoCreateTopics attribute, destination manager
configuration MBean, 75

AvgNumActiveConsumers attribute
destination monitor MBean, 50, 72

AvgNumBackupConsumers attribute
destination monitor MBean, 50, 72

AvgNumConsumers attribute
destination monitor MBean, 50, 71

AvgNumMsgs attribute
destination monitor MBean, 50, 72

AvgTotalMsgBytes attribute
destination monitor MBean, 50, 73

B
Broker MBean type, 23
broker clusters, 92-100

cluster identifier, 93, 96, 100
composite data object, lookup keys for (table), 95
configuration MBean, 92-95
high-availability (HA), 49, 93, 94, 95, 96, 97, 98, 99,

100
monitor MBean, 95-100

BROKER_CONFIG_MBEAN_NAME utility constant
class MQObjectName, 26, 48

broker configuration MBean, 47-51
attributes, 48
notification, 50-51
object name, 48
operations, 48-50

BROKER_DOWN utility constant, class BrokerState, 99
broker monitor MBean, 51-53

attributes, 51-52
notification objects, 52
notifications, 52-53
object name, 51

BROKER_MONITOR_MBEAN_NAME utility constant
class MQObjectName, 26, 51

BROKER_QUIESCE_COMPLETE utility constant, class
BrokerNotification, 52

BROKER_QUIESCE_START utility constant, class
BrokerNotification, 52

BROKER_SHUTDOWN_START utility constant, class
BrokerNotification, 52

BROKER_TAKEOVER_COMPLETE utility constant
class BrokerNotification, 52, 99

BROKER_TAKEOVER_FAIL utility constant
class BrokerNotification, 52, 99

BROKER_TAKEOVER_START utility constant
class BrokerNotification, 52, 99

BrokerAttributes utility class, 28, 48, 51
BrokerClusterInfo utility class, 29, 95, 98
BrokerID attribute

broker configuration MBean, 48
broker monitor MBean, 51

BrokerNotification class, 28
BROKER_QUIESCE_COMPLETE constant, 52
BROKER_QUIESCE_START constant, 52
BROKER_SHUTDOWN_START constant, 52
BROKER_TAKEOVER_COMPLETE constant, 52, 99
BROKER_TAKEOVER_FAIL constant, 52, 99
BROKER_TAKEOVER_START constant, 52, 99
data retrieval methods, 52
utility constants, 52, 99

BrokerOperations utility class, 28, 48
brokers, See message brokers
BrokerState utility class, 28, 98

BROKER_DOWN constant, 99
OPERATING constant, 98
QUIESCE_COMPLETE constant, 99
QUIESCE_STARTED constant, 99
SHUTDOWN_STARTED constant, 99
TAKEOVER_COMPLETE constant, 99
TAKEOVER_FAILED constant, 99
TAKEOVER_STARTED constant, 99
UNKNOWN constant, 99

C
classes

AdminConnectionConfiguration, 27, 30
AdminConnectionFactory, 27, 30
Attribute, 34
AttributeList, 34
BrokerAttributes, 28, 48, 51
BrokerClusterInfo, 29, 95, 98
BrokerNotification, 28, 52, 99
BrokerOperations, 28, 48

Index

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •118

classes (Continued)
BrokerState, 28, 98
ClusterAttributes, 29, 92, 96
ClusterNotification, 29, 52, 99
ClusterOperations, 29, 93, 96
ConnectionAttributes, 28, 61, 62, 63, 64
ConnectionNotification, 28, 57, 65
ConnectionOperations, 28, 63, 64, 65
ConsumerAttributes, 29, 84, 85
ConsumerInfo, 29, 86
ConsumerOperations, 29, 84, 85
DestinationAttributes, 28, 66, 70, 75, 77, 78
DestinationLimitBehavior, 29, 68
DestinationNotification, 28, 74, 79, 80
DestinationOperations, 28, 69, 73, 76, 79
DestinationPauseType, 29, 69, 78
DestinationState, 28, 73
DestinationType, 24, 28, 68, 73, 77, 83, 87
JMXConnectorFactory, 31
JVMAttributes, 29, 103
LogAttributes, 29, 100
LogLevel, 29, 101
LogNotification, 29, 102
MQNotification, 28
MQObjectName, 20, 25, 28
Notification, 44
NotificationFilterSupport, 45
ObjectName, 20, 22
ProducerAttributes, 29, 81, 82
ProducerInfo, 29, 82
ProducerOperations, 29, 81, 82
ServiceAttributes, 28, 54, 55, 58, 59
ServiceNotification, 28, 57, 58, 60
ServiceOperations, 28, 54, 57, 58, 60
ServiceState, 28, 56
TransactionAttributes, 29, 88, 89
TransactionInfo, 29, 90
TransactionNotification, 29, 91, 92
TransactionOperations, 29, 88, 90
TransactionState, 29, 91
utility, 28-29

CLASSPATH environment variable, 27
CLIENT_ACKNOWLEDGE utility constant, interface

Session, 87

ClientID attribute, connection monitor MBean, 62
ClientID lookup key

message consumer, 87
transaction, 90

ClientPlatform attribute, connection monitor
MBean, 62

Cluster MBean type, 24
CLUSTER_BROKER_DOWN utility constant, class

ClusterNotification, 99
CLUSTER_BROKER_JOIN utility constant

class ClusterNotification, 52, 99
CLUSTER_CONFIG_MBEAN_NAME utility constant

class MQObjectName, 26, 92
cluster configuration MBean, 92-95

attributes, 92-93
notification, 95
object name, 92
operations, 93-95

cluster monitor MBean, 95-100
attributes, 96
notification objects, 99
notifications, 99-100
object name, 95
operations, 96-99

CLUSTER_MONITOR_MBEAN_NAME utility constant
class MQObjectName, 26, 95

ClusterAttributes utility class, 29, 92, 96
ClusterID attribute

cluster configuration MBean, 93
cluster monitor MBean, 96

ClusterNotification class, 29
CLUSTER_BROKER_DOWN constant, 99
CLUSTER_BROKER_JOIN constant, 52, 99
data retrieval methods, 99
utility constants, 52, 99

ClusterOperations utility class, 29, 93, 96
clusters, See broker clusters
com.sun.messaging package, 27, 30
com.sun.messaging.jms.management.server

package, 27, 28
commit operation, transaction manager configuration

MBean, 89
COMMITTED utility constant, class

TransactionState, 91

Index

119

compact operation
destination configuration MBean, 69
destination manager configuration MBean, 77

COMPLETE utility constant, class TransactionState, 91
composite data objects

See also lookup keys
for broker clusters, 94, 95, 97
defined, 42
for message brokers, 93, 96
for message consumers, 85, 86
for message producers, 82, 83
for transactions, 90

CompositeData interface, 42, 82, 85, 86, 90, 93, 94, 95,
96, 97, 98

Config MBean subtype, 24
ConfigFileURL attribute

cluster configuration MBean, 93
cluster monitor MBean, 96

configuration MBeans, 21
connect method

class JMXConnectorFactory, 31, 32
Connection MBean type, 23
CONNECTION_CLOSE utility constant

class ConnectionNotification, 57, 65
connection configuration MBean, 61-62

attribute, 61-62
object name, 61

CONNECTION_MANAGER_CONFIG_MBEAN_NAME utility
constant
class MQObjectName, 26, 63

connection manager configuration MBean, 63-64
attribute, 63-64
object name, 63
operations, 64

connection manager monitor MBean, 64-66
attributes, 64-65
notification objects, 65
notifications, 65-66
object name, 64
operation, 65

CONNECTION_MANAGER_MONITOR_MBEAN_NAME utility
constant
class MQObjectName, 26, 64

connection monitor MBean, 62-63

connection monitor MBean (Continued)
attributes, 62-63
object name, 62
operations, 63

CONNECTION_OPEN utility constant
class ConnectionNotification, 57, 65

CONNECTION_REJECT utility constant
class ConnectionNotification, 57, 65

connection services, 53-61
configuration MBean, 53-55
manager configuration MBean, 58-59
manager monitor MBean, 59-61
monitor MBean, 55-58
names (table), 24-25
state values (table), 57

ConnectionAttributes utility class, 28, 61, 62, 63, 64
ConnectionID attribute

connection configuration MBean, 62
connection monitor MBean, 62
destination monitor MBean, 71

ConnectionID lookup key
message consumer, 86
message producer, 83

ConnectionManager MBean type, 23
ConnectionNotification class, 28

CONNECTION_CLOSE constant, 57, 65
CONNECTION_OPEN constant, 57, 65
CONNECTION_REJECT constant, 57, 65
data retrieval methods, 65
utility constants, 57, 65

ConnectionOperations utility class, 28, 63, 64, 65
connections, 61-66

configuration MBean, 61-62
connection identifier, 61, 62, 64, 71, 83, 86
manager configuration MBean, 63-64
manager monitor MBean, 64-66
monitor MBean, 62-63

ConnectionString lookup key, transaction, 90
connectors, JMX, See JMX connectors
CONSUMER_MANAGER_CONFIG_MBEAN_NAME utility

constant
class MQObjectName, 26, 84

consumer manager configuration MBean, 84-85
attribute, 84

Index

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •120

consumer manager configuration MBean (Continued)
object name, 84
operations, 84-85

consumer manager monitor MBean, 85-88
attribute, 85
object name, 85
operations, 85-88

CONSUMER_MANAGER_MONITOR_MBEAN_NAME utility
constant
class MQObjectName, 26, 85

ConsumerAttributes utility class, 29, 84, 85
ConsumerFlowLimit attribute, destination

configuration MBean, 67
ConsumerID lookup key, message consumer, 86
ConsumerInfo utility class, 29, 86
ConsumerManager MBean type, 24
ConsumerOperations utility class, 29, 84, 85
consumers, See message consumers
CONSUMERS utility constant

class DestinationPauseType, 69, 78
CONSUMERS_PAUSED utility constant, class

DestinationState, 73
create operation

destination manager configuration MBean, 77
createConnection method, class

AdminConnectionFactory, 30
createConnectionConfig utility method

class MQObjectName, 26, 61
createConnectionMonitor utility method

class MQObjectName, 26, 62
CREATED utility constant, class TransactionState, 91
CreatedByAdmin attribute, destination monitor

MBean, 70
createDestinationConfig utility method

class MQObjectName, 26, 66
createDestinationMonitor utility method

class MQObjectName, 26, 70
createServiceConfig utility method

class MQObjectName, 26, 53
createServiceMonitor utility method

class MQObjectName, 26, 55
CreationTime lookup key, transaction, 90
CREDENTIALS attribute

(JMXConnectorFactory.connect environment), 32

D
dead message queue, 67, 68, 76, 79
Destination MBean type, 23
DESTINATION_COMPACT utility constant

class DestinationNotification, 74, 80
destination configuration MBean, 66-70

attributes, 66-69
notification, 69-70
object name, 66
operations, 69

DESTINATION_CREATE utility constant, class
DestinationNotification, 79

DESTINATION_DESTROY utility constant, class
DestinationNotification, 79

DESTINATION_MANAGER_CONFIG_MBEAN_NAME utility
constant
class MQObjectName, 26, 75

destination manager configuration MBean, 75-78
attributes, 75-76
notification, 78
object name, 75
operations, 76-78

destination manager monitor MBean, 78-80
attributes, 78-79
notification objects, 80
notifications, 79-80
object name, 78
operation, 79

DESTINATION_MANAGER_MONITOR_MBEAN_NAME utility
constant
class MQObjectName, 26, 78

destination monitor MBean, 70-75
attributes, 70-73
notification objects, 74
notifications, 74-75
object name, 70
operations, 73-74

DESTINATION_PAUSE utility constant
class DestinationNotification, 74, 79

DESTINATION_PURGE utility constant
class DestinationNotification, 74, 80

DESTINATION_RESUME utility constant
class DestinationNotification, 74, 80

destination types (table), 24

Index

121

DestinationAttributes utility class, 28, 66, 70, 75, 77,
78

DestinationLimitBehavior utility class, 29, 68
FLOW_CONTROL constant, 68
REJECT_NEWEST constant, 69
REMOVE_LOW_PRIORITY constant, 68
REMOVE_OLDEST constant, 68

DestinationManager MBean type, 23
DestinationName lookup key

message consumer, 86
message producer, 83

DestinationNotification class, 28
data retrieval methods, 74, 80
DESTINATION_COMPACT constant, 74, 80
DESTINATION_CREATE constant, 79
DESTINATION_DESTROY constant, 79
DESTINATION_PAUSE constant, 74, 79
DESTINATION_PURGE constant, 74, 80
DESTINATION_RESUME constant, 74, 80
utility constants, 74, 79

DestinationOperations utility class, 28, 69, 73, 76, 79
DestinationPauseType utility class, 29, 69, 78

ALL constant, 69, 78
CONSUMERS constant, 69, 78
PRODUCERS constant, 69, 78

destinations, 66-80
configuration MBean, 66-70
limit behavior (table), 68-69
manager configuration MBean, 75-78
manager monitor MBean, 78-80
monitor MBean, 70-75
pause types (table), 69
types (table), 24

DestinationState utility class, 28, 73
CONSUMERS_PAUSED constant, 73
PAUSED constant, 73
PRODUCERS_PAUSED constant, 73
RUNNING constant, 73
UNKNOWN constant, 73

DestinationType lookup key
message consumer, 86, 87
message producer, 83

DestinationType utility class, 24, 28, 68, 73, 77, 83, 87

destroy operation
connection manager configuration MBean, 64
destination manager configuration MBean, 77

desttype property (object name), 23
values (table), 24

directory variables
IMQ_HOME, 16
IMQ_JAVAHOME, 16
IMQ_VARHOME, 16

DiskReserved attribute, destination monitor
MBean, 73

DiskUsed attribute, destination monitor MBean, 73
DiskUtilizationRatio attribute, destination monitor

MBean, 73
distributed transaction identifier (XID), 90
DMQTruncateBody attribute, destination manager

configuration MBean, 76
DUPS_OK_ACKNOWLEDGE utility constant, interface

Session, 87
Durable lookup key, message consumer, 86
DurableActive lookup key, message consumer, 87
DurableName lookup key, message consumer, 86

E
Embedded attribute, broker monitor MBean, 52
enableType method, class

NotificationFilterSupport, 45
ERROR utility constant, class LogLevel, 101
example applications, 14

F
FAILED utility constant, class TransactionState, 91
FLOW_CONTROL utility constant, class

DestinationLimitBehavior, 68
FlowPaused lookup key

message consumer, 87
message producer, 83

FreeMemory attribute, JVM monitor MBean, 103

Index

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •122

G
getActiveConsumerIDs operation, destination monitor

MBean, 74
getAttribute method, interface

MBeanServerConnection, 33
getAttributes method, interface

MBeanServerConnection, 34
getBackupConsumerIDs operation, destination monitor

MBean, 74
getBrokerAddress method

class BrokerNotification, 52
class ClusterNotification, 100

getBrokerAddresses operation
cluster configuration MBean, 94
cluster monitor MBean, 97

getBrokerID method
class BrokerNotification, 52
class ClusterNotification, 100

getBrokerIDs operation
cluster configuration MBean, 94
cluster monitor MBean, 97

getBrokerInfo operation
cluster configuration MBean, 94, 95
cluster monitor MBean, 97, 98

getBrokerInfoByAddress operation
cluster configuration MBean, 94, 95
cluster monitor MBean, 97, 98

getBrokerInfoByID operation
cluster configuration MBean, 94, 95
cluster monitor MBean, 97, 98

getClusterID method, class
ClusterNotification, 100

getConnection operation, destination monitor
MBean, 74

getConnectionID method, class
ConnectionNotification, 65

getConnections operation
connection manager configuration MBean, 64
connection manager monitor MBean, 65
service monitor MBean, 57

getConsumerIDs operation
connection monitor MBean, 63
consumer manager configuration MBean, 84
consumer manager monitor MBean, 85

getConsumerIDs operation (Continued)
destination monitor MBean, 74
service monitor MBean, 57

getConsumerInfo operation
consumer manager monitor MBean, 86

getConsumerInfoByID operation
consumer manager monitor MBean, 85, 86

getCreatedByAdmin method
class DestinationNotification, 75, 80

getDestinationName method
class DestinationNotification, 75, 80

getDestinations operation
destination manager configuration MBean, 77
destination manager monitor MBean, 79

getDestinationType method
class DestinationNotification, 75, 80

getFailedBrokerID method, class
BrokerNotification, 53

getLevel method, class LogNotification, 102
getMBeanServerConnection method, class

JMXConnector, 30
getMessage method, class LogNotification, 102
getName method, class Attribute, 34
getPauseType method

class DestinationNotification, 75, 80
getProducerIDs operation

connection monitor MBean, 63
destination monitor MBean, 74
producer manager configuration MBean, 81
producer manager monitor MBean, 82
service monitor MBean, 57

getProducerInfo operation
producer manager monitor MBean, 82

getProducerInfoByID operation
producer manager monitor MBean, 82

getRemoteHost method, class
ConnectionNotification, 65

getService operation, connection monitor MBean, 63
getServiceName method

class ConnectionNotification, 65
class ServiceNotification, 58, 61

getServices operation
service manager configuration MBean, 59
service manager monitor MBean, 60

Index

123

getTemporaryDestinations operation, connection
monitor MBean, 63

getTransactionID method, class
TransactionNotification, 92

getTransactionIDs operation
transaction manager configuration MBean, 89
transaction manager monitor MBean, 90

getTransactionInfo operation
transaction manager monitor MBean, 90

getTransactionInfoByID operation
transaction manager monitor MBean, 90

getUserName method, class
ConnectionNotification, 66

getValue method, class Attribute, 34

H
HA, See high-availability broker clusters
handback objects, 44
handleNotification method, interface

NotificationListener, 44
high-availability (HA) broker clusters

ClusterID attribute, cluster configuration
MBean, 93

ClusterID attribute, cluster monitor MBean, 96
getBrokerAddresses operation, cluster

configuration MBean, 94
getBrokerAddresses operation, cluster monitor

MBean, 97
getBrokerIDs operation, cluster configuration

MBean, 94
getBrokerIDs operation, cluster monitor

MBean, 97
getBrokerInfo operation, cluster configuration

MBean, 94
getBrokerInfo operation, cluster monitor

MBean, 97
HighlyAvailable attribute, cluster configuration

MBean, 93
HighlyAvailable attribute, cluster monitor

MBean, 96
ID lookup key, composite data object, 95, 98
isHighlyAvailable method, class

ClusterNotification, 100

high-availability (HA) broker clusters (Continued)
mq.broker.takeover.complete notification, cluster
monitor MBean, 99
mq.broker.takeover.fail notification, cluster

monitor MBean, 99
mq.broker.takeover.start notification, cluster

monitor MBean, 99
NumMsgs lookup key, composite data object, 98
shutdown operation, broker configuration

MBean, 49
StatusTimestamp lookup key, composite data

object, 98
TAKEOVER_COMPLETE state, 99
TAKEOVER_FAILED state, 99
TAKEOVER_STARTED state, 99
TakeoverBrokerID lookup key, composite data

object, 98
HighlyAvailable attribute

cluster configuration MBean, 93
cluster monitor MBean, 96

Host attribute, connection monitor MBean, 62
Host lookup key

message consumer, 86
message producer, 83

HTTP, See Hypertext Transfer Protocol
httpjms connection service name, 24
HTTPS, See Hypertext Transfer Protocol, Secure
httpsjms connection service name, 25
Hypertext Transfer Protocol (HTTP), 24
Hypertext Transfer Protocol, Secure (HTTPS), 25

I
ID lookup key

broker cluster, 95, 98
id property (object name), 23
IMQ_HOME directory variable, 16
IMQ_JAVAHOME directory variable, 16
IMQ_VARHOME directory variable, 16
imqjmx.jar file, 27
INCOMPLETE utility constant, class

TransactionState, 91
INFO utility constant, class LogLevel, 101
InitMemory attribute, JVM monitor MBean, 103

Index

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •124

InstanceName attribute
broker configuration MBean, 48
broker monitor MBean, 51

interfaces
CompositeData, 42, 82, 85, 86, 90, 93, 94, 95, 96, 97,

98
NotificationListener, 44
Session, 87

invoke method
interface MBeanServerConnection, 38, 39

isHighlyAvailable method, class
ClusterNotification, 100

isMasterBroker method, class
ClusterNotification, 100

J
Java Management Extensions (JMX) Specification, 11,

13
Java Management Extensions (JMX) Technology

Overview, 13
Java Management Extensions (JMX) Technology

Tutorial, 13
Java Monitoring and Management Console

(jconsole), 56, 71, 86, 91, 98
Java Naming and Directory Interface (JNDI), 32
JavaDoc documentation, 13-14
jconsole, See Java Monitoring and Management

Console
jms connection service name, 24
jmx.attribute.change notification

broker configuration MBean, 51
cluster configuration MBean, 95
destination configuration MBean, 70
destination manager configuration MBean, 78
log configuration MBean, 101
service configuration MBean, 55

JMX connectors
defined, 20
obtaining from administration connection

factory, 30-31
obtaining without administration connection

factory, 31-32

JMX service URLs
parameter to JMXConnectorFactory.connect

method, 32
syntax, 32-33

JMXConnectorFactory class, 31
JNDI, See Java Naming and Directory Interface
JVM, See Java Virtual Machine
JVM (Java Virtual Machine), 103

monitor MBean, 103
JVM MBean type, 24
JVM monitor MBean, 21, 103

attributes, 103
object name, 103

JVM_MONITOR_MBEAN_NAME utility constant
class MQObjectName, 26, 103

JVMAttributes utility class, 29, 103

L
LastAckTime lookup key, message consumer, 87
Level attribute

log configuration MBean, 101
limit behavior, destinations, 68-69
LimitBehavior attribute

destination configuration MBean, 67, 68
LocalBrokerInfo attribute

cluster configuration MBean, 93, 95
cluster monitor MBean, 96, 98

LocalDeliveryPreferred attribute, destination
configuration MBean, 68

LocalOnly attribute, destination configuration
MBean, 68

Log MBean type, 24
LOG_CONFIG_MBEAN_NAME utility constant

class MQObjectName, 26, 100
log configuration MBean, 100-101

attributes, 100-101
notification, 101
object name, 100

LOG_LEVEL_ERROR utility constant, class
LogNotification, 102

LOG_LEVEL_INFO utility constant, class
LogNotification, 102

Index

125

LOG_LEVEL_WARNING utility constant, class
LogNotification, 102

log monitor MBean, 101-102
notification objects, 102
notifications, 102
object name, 102

LOG_MONITOR_MBEAN_NAME utility constant
class MQObjectName, 26, 102

LogAttributes utility class, 29, 100
LogDeadMsgs attribute, destination manager

configuration MBean, 76
logging, 100-102

configuration MBean, 100-101
monitor MBean, 101-102

LogLevel utility class, 29, 101
ERROR constant, 101
INFO constant, 101
NONE constant, 101
UNKNOWN constant, 101
WARNING constant, 101

LogNotification class, 29
data retrieval methods, 102
LOG_LEVEL_ERROR constant, 102
LOG_LEVEL_INFO constant, 102
LOG_LEVEL_WARNING constant, 102
utility constants, 102

lookup keys
for broker clusters, 95
defined, 42
for message consumers, 86-87
for message producers, 83
for transactions, 90-91

M
managed beans, See MBeans
manager MBeans, 21-22
MasterBrokerInfo attribute

cluster configuration MBean, 93, 95
cluster monitor MBean, 96, 98

MaxBytesPerMsg attribute
destination configuration MBean, 67
destination manager configuration MBean, 76

MaxMemory attribute, JVM monitor MBean, 103

MaxNumActiveConsumers attribute, destination
configuration MBean, 67

MaxNumBackupConsumers attribute, destination
configuration MBean, 67

MaxNumMsgs attribute
destination configuration MBean, 67
destination manager configuration MBean, 75

MaxNumProducers attribute, destination configuration
MBean, 67

MaxThreads attribute
service configuration MBean, 54
service manager configuration MBean, 58

MaxTotalMsgBytes attribute
destination configuration MBean, 67
destination manager configuration MBean, 76

MBean server
connecting to, 29-33
connection, defined, 29
defined, 20

MBeans
attributes, accessing, 33-38
broker configuration, 47-51
broker monitor, 51-53
cluster configuration, 92-95
cluster monitor, 95-100
combining operations and attributes, 40
configuration, defined, 21
connection configuration, 61-62
connection manager configuration, 63-64
connection manager monitor, 64-66
connection monitor, 62-63
consumer manager configuration, 84-85
consumer manager monitor, 85-88
defined, 19
destination configuration, 66-70
destination manager configuration, 75-78
destination manager monitor, 78-80
destination monitor, 70-75
JVM monitor, 21, 103
log configuration, 100-101
log monitor, 101-102
manager, defined, 21-22
monitor, defined, 21
notifications, receiving, 44-46

Index

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •126

MBeans (Continued)
operations, invoking, 38-44
producer manager configuration, 80-81
producer manager monitor, 81-83
resource, defined, 20-21
server

See MBean server
service configuration, 53-55
service manager configuration, 58-59
service manager monitor, 59-61
service monitor, 55-58
subtypes (table), 24
transaction manager configuration, 88-89
transaction manager monitor, 89-92
types (table), 23-24
using, 33-46

message brokers, 47-53
broker identifier, 48, 49, 51, 52, 53, 94, 95, 97, 98,

100
configuration MBean, 47-51
monitor MBean, 51-53
state values (table), 98-99

message consumers, 83-88
acknowledgment mode, 86, 87-88
composite data object, lookup keys for

(table), 86-87
consumer identifier, 57, 63, 74, 84, 85, 86
manager configuration MBean, 84-85
manager monitor MBean, 85-88

message producers, 80-83
composite data object, lookup keys for (table), 83
manager configuration MBean, 80-81
manager monitor MBean, 81-83
producer identifier, 57, 63, 74, 81, 82, 83

message string (notifications), 44
methods

addNotificationListener (interface
MBeanServerConnection), 44

connect (class JMXConnectorFactory), 31
createConnection (class

AdminConnectionFactory), 30
createConnectionConfig (class

MQObjectName), 26, 61

methods (Continued)
createConnectionMonitor (class
MQObjectName), 26, 62
createDestinationConfig (class

MQObjectName), 26, 66
createDestinationMonitor (class

MQObjectName), 26, 70
createServiceConfig (class MQObjectName), 26, 53
createServiceMonitor (class MQObjectName), 26,

55
enableType (class

NotificationFilterSupport), 45
getAttribute (interface

MBeanServerConnection), 33
getAttributes (interface

MBeanServerConnection), 34
getBrokerAddress (class

BrokerNotification), 52
getBrokerAddress (class

ClusterNotification), 100
getBrokerID (class BrokerNotification), 52
getBrokerID (class ClusterNotification), 100
getClusterID (class ClusterNotification), 100
getConnectionID (class

ConnectionNotification), 65
getCreatedByAdmin (class

DestinationNotification), 75, 80
getDestinationName (class

DestinationNotification), 75, 80
getDestinationType (class

DestinationNotification), 75, 80
getFailedBrokerID (class

BrokerNotification), 53
getLevel (class LogNotification), 102
getMBeanServerConnection (class

JMXConnector), 30
getMessage (class LogNotification), 102
getName (class Attribute), 34
getPauseType (class

DestinationNotification), 75, 80
getRemoteHost (class

ConnectionNotification), 65
getServiceName (class

ConnectionNotification), 65

Index

127

methods (Continued)
getServiceName (class ServiceNotification), 58,
61
getTransactionID (class

TransactionNotification), 92
getUserName (class ConnectionNotification), 66
getValue (class Attribute), 34
handleNotification (interface

NotificationListener), 44
invoke (interface MBeanServerConnection), 38, 39
isHighlyAvailable (class

ClusterNotification), 100
isMasterBroker (class

ClusterNotification), 100
setAttribute (interface

MBeanServerConnection), 35
setAttributes (interface

MBeanServerConnection), 36
setProperty (class AdminConnectionFactory), 30

MinThreads attribute
service configuration MBean, 54
service manager configuration MBean, 58

Monitor MBean subtype, 24
monitor MBeans, 21
mq.broker.quiesce.complete notification, broker

monitor MBean, 52
mq.broker.quiesce.start notification, broker

monitor MBean, 52
mq.broker.shutdown.start notification, broker

monitor MBean, 52
mq.broker.takeover.complete notification

broker monitor MBean, 52
cluster monitor MBean, 99

mq.broker.takeover.fail notification
broker monitor MBean, 52
cluster monitor MBean, 99

mq.broker.takeover.start notification
broker monitor MBean, 52
cluster monitor MBean, 99

mq.cluster.broker.down notification, cluster monitor
MBean, 99

mq.cluster.broker.join notification
broker monitor MBean, 52
cluster monitor MBean, 99

mq.connection.close notification
connection manager monitor MBean, 65
service monitor MBean, 57

mq.connection.open notification
connection manager monitor MBean, 65
service monitor MBean, 57

mq.connection.reject notification
connection manager monitor MBean, 65
service monitor MBean, 57

mq.destination.compact notification
destination manager monitor MBean, 80
destination monitor MBean, 74

mq.destination.create notification, destination
manager monitor MBean, 79

mq.destination.destroy notification, destination
manager monitor MBean, 79

mq.destination.pause notification
destination manager monitor MBean, 79
destination monitor MBean, 74

mq.destination.purge notification
destination manager monitor MBean, 80
destination monitor MBean, 74

mq.destination.resume notification
destination manager monitor MBean, 80
destination monitor MBean, 74

mq.log.level.ERROR notification, log monitor
MBean, 102

mq.log.level.INFO notification, log monitor
MBean, 102

mq.log.level.WARNING notification, log monitor
MBean, 102

mq.service.pause notification
service manager monitor MBean, 60
service monitor MBean, 57

mq.service.resume notification
service manager monitor MBean, 60
service monitor MBean, 57

mq.transaction.commit notification, transaction
manager monitor MBean, 92

mq.transaction.prepare notification, transaction
manager monitor MBean, 92

mq.transaction.rollback notification, transaction
manager monitor MBean, 92

MQNotification class, 28

Index

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •128

MQObjectName utility class, 20, 25, 28
BROKER_CONFIG_MBEAN_NAME constant, 26, 48
BROKER_MONITOR_MBEAN_NAME constant, 26, 51
CLUSTER_CONFIG_MBEAN_NAME constant, 26, 92
CLUSTER_MONITOR_MBEAN_NAME constant, 26, 95
CONNECTION_MANAGER_CONFIG_MBEAN_NAME

constant, 26, 63
CONNECTION_MANAGER_MONITOR_MBEAN_NAME

constant, 26, 64
CONSUMER_MANAGER_CONFIG_MBEAN_NAME

constant, 26, 84
CONSUMER_MANAGER_MONITOR_MBEAN_NAME

constant, 26, 85
createConnectionConfig method, 26, 61
createConnectionMonitor method, 26, 62
createDestinationConfig method, 26, 66
createDestinationMonitor method, 26, 70
createServiceConfig method, 26, 53
createServiceMonitor method, 26, 55
DESTINATION_MANAGER_CONFIG_MBEAN_NAME

constant, 26, 75
DESTINATION_MANAGER_MONITOR_MBEAN_NAME

constant, 26, 78
JVM_MONITOR_MBEAN_NAME constant, 26, 103
LOG_CONFIG_MBEAN_NAME constant, 26, 100
LOG_MONITOR_MBEAN_NAME constant, 26, 102
PRODUCER_MANAGER_CONFIG_MBEAN_NAME

constant, 26, 81
PRODUCER_MANAGER_MONITOR_MBEAN_NAME

constant, 26, 81
SERVICE_MANAGER_CONFIG_MBEAN_NAME

constant, 26, 58
SERVICE_MANAGER_MONITOR_MBEAN_NAME

constant, 26, 59
TRANSACTION_MANAGER_CONFIG_MBEAN_NAME

constant, 26, 88
TRANSACTION_MANAGER_MONITOR_MBEAN_NAME

constant, 26, 89
MsgBytesIn attribute

destination monitor MBean, 50, 72
service manager monitor MBean, 50, 59
service monitor MBean, 49, 56

MsgBytesOut attribute
destination monitor MBean, 50, 72

MsgBytesOut attribute (Continued)
service manager monitor MBean, 50, 59
service monitor MBean, 49, 56

N
Name attribute

destination configuration MBean, 67, 77
destination monitor MBean, 70
service configuration MBean, 54
service monitor MBean, 56

name property (object name), 23
values (table), 24-25

NO_ACKNOWLEDGE utility constant, interface Session, 87
NONE utility constant, class LogLevel, 101
Notification class, 44
notification filters, 44
notification listeners

defined, 44
example, 45
for log notifications, 102
registering, 45-46

notification objects
for broker notifications, 52
for cluster notifications, 99
for connection notifications, 65
for connection service notifications, 60
defined, 44
for destination notifications, 74, 80
for log notifications, 102
for service notifications, 58
for transaction notifications, 92

NotificationFilterSupport class, 45
NotificationListener interface, 44
notifications, MBean

alphabetical list (table), 113-115
broker configuration MBean, 50-51
broker monitor MBean, 52-53
cluster configuration MBean, 95
cluster monitor MBean, 99-100
connection manager monitor MBean, 65-66
defined, 20
destination configuration MBean, 69-70
destination manager configuration MBean, 78

Index

129

notifications, MBean (Continued)
destination manager monitor MBean, 79-80
destination monitor MBean, 74-75
log configuration MBean, 101
log monitor MBean, 102
receiving, 44-46
service configuration MBean, 55
service manager monitor MBean, 60-61
service monitor MBean, 57-58
transaction manager monitor MBean, 91-92

NumAcks lookup key, transaction, 91
NumActiveConsumers attribute, destination monitor

MBean, 71
NumActiveThreads attribute

service manager monitor MBean, 59
service monitor MBean, 56

NumBackupConsumers attribute, destination monitor
MBean, 72

NumConnections attribute
connection manager configuration MBean, 64
connection manager monitor MBean, 65
service monitor MBean, 56

NumConnectionsOpened attribute
connection manager monitor MBean, 50, 65
service monitor MBean, 49, 56

NumConnectionsRejected attribute
connection manager monitor MBean, 50, 65
service monitor MBean, 49, 56

NumConsumers attribute
connection monitor MBean, 63
consumer manager configuration MBean, 84
consumer manager monitor MBean, 85
destination monitor MBean, 71
service monitor MBean, 56

NumDestinations attribute
destination manager configuration MBean, 75
destination manager monitor MBean, 79

NumMsgs attribute
destination manager monitor MBean, 79
destination monitor MBean, 72

NumMsgs lookup key
broker cluster, 98
message consumer, 87
message producer, 83

NumMsgs lookup key (Continued)
transaction, 91

NumMsgsHeldInTransaction attribute, destination
monitor MBean, 72

NumMsgsIn attribute
destination monitor MBean, 50, 72
service manager monitor MBean, 50, 59
service monitor MBean, 49, 56

NumMsgsInDMQ attribute, destination manager monitor
MBean, 79

NumMsgsOut attribute
destination monitor MBean, 50, 72
service manager monitor MBean, 50, 59
service monitor MBean, 49, 56

NumMsgsPendingAcks attribute, destination monitor
MBean, 72

NumMsgsPendingAcks lookup key, message
consumer, 87

NumPktsIn attribute
service manager monitor MBean, 50, 60
service monitor MBean, 49, 56

NumPktsOut attribute
service manager monitor MBean, 50, 60
service monitor MBean, 49, 56

NumProducers attribute
connection monitor MBean, 63
destination monitor MBean, 71
producer manager configuration MBean, 81
producer manager monitor MBean, 82
service monitor MBean, 56

NumServices attribute, service manager monitor
MBean, 59

NumTransactions attribute
transaction manager configuration MBean, 88
transaction manager monitor MBean, 89

NumTransactionsCommitted attribute
transaction manager monitor MBean, 50, 89

NumTransactionsRollback attribute
transaction manager monitor MBean, 50, 89

O
object names, 22-26

broker configuration MBean, 48

Index

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •130

object names (Continued)
broker monitor MBean, 51
cluster configuration MBean, 92
cluster monitor MBean, 95
connection configuration MBean, 61
connection manager configuration MBean, 63
connection manager monitor MBean, 64
connection monitor MBean, 62
consumer manager configuration MBean, 84
consumer manager monitor MBean, 85
defined, 20
destination configuration MBean, 66
destination manager configuration MBean, 75
destination manager monitor MBean, 78
destination monitor MBean, 70
desttype values (table), 24
examples, 25
JVM monitor MBean, 103
log configuration MBean, 100
log monitor MBean, 102
name values (table), 24-25
producer manager configuration MBean, 81
producer manager monitor MBean, 81
properties (table), 23
service configuration MBean, 53-54
service manager configuration MBean, 58
service manager monitor MBean, 59
service monitor MBean, 55
subtype values (table), 24
syntax, 22
transaction manager configuration MBean, 88
transaction manager monitor MBean, 89
type values (table), 23-24
utility constants and methods (table), 26

ObjectName class, 20, 22
OPERATING utility constant, class BrokerState, 98
operations, MBean

alphabetical list (table), 110-113
broker configuration MBean, 48-50
cluster configuration MBean, 93-95
cluster monitor MBean, 96-99
combining with attributes, 40
connection manager configuration MBean, 64
connection manager monitor MBean, 65

operations, MBean (Continued)
connection monitor MBean, 63
consumer manager configuration MBean, 84-85
consumer manager monitor MBean, 85-88
defined, 20
destination configuration MBean, 69
destination manager configuration MBean, 76-78
destination manager monitor MBean, 79
destination monitor MBean, 73-74
invoking, 38-44
producer manager configuration MBean, 81
producer manager monitor MBean, 82-83
service configuration MBean, 54-55
service manager configuration MBean, 58-59
service manager monitor MBean, 60
service monitor MBean, 57
transaction manager configuration MBean, 88-89
transaction manager monitor MBean, 90-91

P
packages

com.sun.messaging, 27, 30
com.sun.messaging.jms.management.server, 27,

28
pause operation

destination configuration MBean, 69
destination manager configuration MBean, 77, 78
service configuration MBean, 54
service manager configuration MBean, 59

pause types, destination, 69
PAUSED utility constant

class DestinationState, 73
class ServiceState, 57

PeakMsgBytes attribute
destination monitor MBean, 50, 72

PeakNumActiveConsumers attribute
destination monitor MBean, 50, 71

PeakNumBackupConsumers attribute
destination monitor MBean, 50, 72

PeakNumConsumers attribute
destination monitor MBean, 50, 71

PeakNumMsgs attribute
destination monitor MBean, 50, 72

Index

131

PeakTotalMsgBytes attribute
destination monitor MBean, 50, 73

PktBytesIn attribute
service manager monitor MBean, 50, 60
service monitor MBean, 49, 56

PktBytesOut attribute
service manager monitor MBean, 50, 60
service monitor MBean, 49, 56

Port attribute
broker configuration MBean, 48
broker monitor MBean, 51
connection monitor MBean, 62
service configuration MBean, 54
service monitor MBean, 54, 56

PREPARED utility constant, class TransactionState, 91
PRODUCER_MANAGER_CONFIG_MBEAN_NAME utility

constant
class MQObjectName, 26, 81

producer manager configuration MBean, 80-81
attribute, 81
object name, 81
operation, 81

producer manager monitor MBean, 81-83
attribute, 82
object name, 81
operations, 82-83

PRODUCER_MANAGER_MONITOR_MBEAN_NAME utility
constant
class MQObjectName, 26, 81

ProducerAttributes utility class, 29, 81, 82
ProducerID lookup key, message producer, 83
ProducerInfo utility class, 29, 82
ProducerManager MBean type, 23
ProducerOperations utility class, 29, 81, 82
producers, See message producers
PRODUCERS utility constant

class DestinationPauseType, 69, 78
PRODUCERS_PAUSED utility constant, class

DestinationState, 73
protocol types, 25
purge operation

consumer manager configuration MBean, 84
destination configuration MBean, 69

Q
q destination type, 24, 68, 73, 78, 83, 87
QUEUE utility constant

class DestinationType, 24, 68, 73, 78, 83, 87
quiesce operation, broker configuration MBean, 49
QUIESCE_COMPLETE utility constant, class

BrokerState, 99
QUIESCE_STARTED utility constant, class

BrokerState, 99
QUIESCED utility constant, class ServiceState, 57

R
REJECT_NEWEST utility constant, class

DestinationLimitBehavior, 69
reload operation, cluster configuration MBean, 95
remote method invocation (RMI), 29

JMX service URL syntax, 32
registry, 32
stub, 32

REMOVE_LOW_PRIORITY utility constant, class
DestinationLimitBehavior, 68

REMOVE_OLDEST utility constant, class
DestinationLimitBehavior, 68

resetMetrics operation, broker configuration
MBean, 49

resource MBeans, 20-21
restart operation, broker configuration MBean, 49
resume operation

destination configuration MBean, 69
destination manager configuration MBean, 77
service configuration MBean, 54
service manager configuration MBean, 59

RMI, See remote method invocation
rollback operation, transaction manager configuration

MBean, 89
ROLLEDBACK utility constant, class

TransactionState, 91
RolloverBytes attribute, log configuration

MBean, 101
RolloverSecs attribute, log configuration MBean, 101
RUNNING utility constant

class DestinationState, 73
class ServiceState, 57

Index

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •132

S
Secure Hypertext Transfer Protocol (HTTPS), 25
Secure Socket Layer (SSL), 24, 25
Selector lookup key, message consumer, 86
server, MBean, See MBean server
Service MBean type, 23
service configuration MBean, 53-55

attributes, 54
notification, 55
object name, 53-54
operations, 54-55

SERVICE_MANAGER_CONFIG_MBEAN_NAME utility constant
class MQObjectName, 26, 58

service manager configuration MBean, 58-59
attributes, 58
object name, 58
operations, 58-59

service manager monitor MBean, 59-61
attributes, 59-60
notification objects, 60
notifications, 60-61
object name, 59
operation, 60

SERVICE_MANAGER_MONITOR_MBEAN_NAME utility
constant
class MQObjectName, 26, 59

service monitor MBean, 55-58
attributes, 55-57
notification objects, 58
notifications, 57-58
object name, 55
operations, 57

SERVICE_PAUSE utility constant
class ServiceNotification, 57, 60

SERVICE_RESUME utility constant
class ServiceNotification, 57, 60

service URLs, JMX
parameter to JMXConnectorFactory.connect

method, 32
syntax, 32-33

ServiceAttributes utility class, 28, 54, 55, 58, 59
ServiceManager MBean type, 23
ServiceName attribute, connection monitor

MBean, 62

ServiceName lookup key
message consumer, 86
message producer, 83

ServiceNotification class, 28
data retrieval method, 58, 60
SERVICE_PAUSE constant, 57, 60
SERVICE_RESUME constant, 57, 60
utility constants, 57, 60

ServiceOperations utility class, 28, 54, 57, 58, 60
services, See connection services
ServiceState utility class, 28, 56

PAUSED constant, 57
QUIESCED constant, 57
RUNNING constant, 57
UNKNOWN constant, 57

Session interface, 87
AUTO_ACKNOWLEDGE constant, 87
CLIENT_ACKNOWLEDGE constant, 87
DUPS_OK_ACKNOWLEDGE constant, 87
NO_ACKNOWLEDGE constant, 87
SESSION_TRANSACTED constant, 87

SESSION_TRANSACTED utility constant, interface
Session, 87

setAttribute method, interface
MBeanServerConnection, 35

setAttributes method, interface
MBeanServerConnection, 36

setProperty method, class
AdminConnectionFactory, 30

shutdown operation
broker configuration MBean, 49

SHUTDOWN_STARTED utility constant, class
BrokerState, 99

SSL, See Secure Socket Layer
ssladmin connection service name, 25
ssljms connection service name, 24
STARTED utility constant, class TransactionState, 91
State attribute

destination monitor MBean, 71, 73
service monitor MBean, 56

State lookup key
broker cluster, 98
transaction, 91

Index

133

StateLabel attribute
destination monitor MBean, 71, 73
service monitor MBean, 56

StateLabel lookup key
broker cluster, 98
transaction, 91

StatusTimestamp lookup key, broker cluster, 98
subtype property (object name), 23

values (table), 24

T
t destination type, 24, 68, 73, 78, 83, 87
takeover operation, broker configuration MBean, 49
TAKEOVER_COMPLETE utility constant, class

BrokerState, 99
TAKEOVER_FAILED utility constant, class

BrokerState, 99
TAKEOVER_STARTED utility constant, class

BrokerState, 99
TakeoverBrokerID lookup key, broker cluster, 98
TCP, See Transmission Control Protocol
Temporary attribute, destination monitor MBean, 70
ThreadPoolModel attribute, service configuration

MBean, 54
TIMED_OUT utility constant, class

TransactionState, 91
TLS, See Transport Layer Security
TOPIC utility constant

class DestinationType, 24, 68, 73, 78, 83, 87
TotalMemory attribute, JVM monitor MBean, 103
TotalMsgBytes attribute

destination manager monitor MBean, 79
destination monitor MBean, 72

TotalMsgBytesHeldInTransaction attribute,
destination monitor MBean, 72

TotalMsgBytesInDMQ attribute, destination manager
monitor MBean, 79

TRANSACTION_COMMIT utility constant, class
TransactionNotification, 92

TRANSACTION_MANAGER_CONFIG_MBEAN_NAME utility
constant
class MQObjectName, 26, 88

transaction manager configuration MBean, 88-89

transaction manager configuration MBean (Continued)
attribute, 88
object name, 88
operations, 88-89

transaction manager monitor MBean, 89-92
attributes, 89-90
notification objects, 92
notifications, 91-92
object name, 89
operations, 90-91

TRANSACTION_MANAGER_MONITOR_MBEAN_NAME utility
constant
class MQObjectName, 26, 89

TRANSACTION_PREPARE utility constant, class
TransactionNotification, 92

TRANSACTION_ROLLBACK utility constant, class
TransactionNotification, 92

TransactionAttributes utility class, 29, 88, 89
TransactionID lookup key, transaction, 90
TransactionInfo utility class, 29, 90
TransactionManager MBean type, 24
TransactionNotification class, 29

data retrieval method, 92
TRANSACTION_COMMIT constant, 92
TRANSACTION_PREPARE constant, 92
TRANSACTION_ROLLBACK constant, 92
utility constants, 91

TransactionOperations utility class, 29, 88, 90
transactions, 88-92

composite data object, lookup keys for
(table), 90-91

distributed transaction identifier, 90
manager configuration MBean, 88-89
manager monitor MBean, 89-92
state values (table), 91
transaction identifier, 89, 90, 92

TransactionState utility class, 29, 91
COMMITTED constant, 91
COMPLETE constant, 91
CREATED constant, 91
FAILED constant, 91
INCOMPLETE constant, 91
PREPARED constant, 91
ROLLEDBACK constant, 91

Index

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •134

TransactionState utility class (Continued)
STARTED constant, 91
TIMED_OUT constant, 91
UNKNOWN constant, 91

Transmission Control Protocol (TCP), 24, 25
Transport Layer Security (TLS) protocol, 24, 25
Type attribute

destination configuration MBean, 67, 68, 77
destination monitor MBean, 70, 73

type property (object name), 23
values (table), 23-24

U
UNKNOWN utility constant

class BrokerState, 99
class DestinationState, 73
class LogLevel, 101
class ServiceState, 57
class TransactionState, 91

unquiesce operation, broker configuration MBean, 49
UseDMQ attribute

destination configuration MBean, 67, 68
User attribute, connection monitor MBean, 62
user data object (notifications), 44
User lookup key

message consumer, 86
message producer, 83
transaction, 90

utility classes, 28-29
AdminConnectionConfiguration, 27, 30
BrokerAttributes, 28, 48, 51
BrokerClusterInfo, 29, 95, 98
BrokerOperations, 28, 48
BrokerState, 28, 98
ClusterAttributes, 29, 92, 96
ClusterOperations, 29, 93, 96
ConnectionAttributes, 28, 61, 62, 63, 64
ConnectionOperations, 28, 63, 64, 65
ConsumerAttributes, 29, 84, 85
ConsumerInfo, 29, 86
ConsumerOperations, 29, 84, 85
DestinationAttributes, 28, 66, 70, 75, 77, 78
DestinationLimitBehavior, 29, 68

utility classes (Continued)
DestinationOperations, 28, 69, 73, 76, 79
DestinationPauseType, 29, 69, 78
DestinationState, 28, 73
DestinationType, 24, 28, 68, 73, 77, 83, 87
JVMAttributes, 29, 103
LogAttributes, 29, 100
LogLevel, 29, 101
MQObjectName, 20, 25, 28
ProducerAttributes, 29, 81, 82
ProducerInfo, 29, 82
ProducerOperations, 29, 81, 82
ServiceAttributes, 28, 54, 55, 58, 59
ServiceOperations, 28, 54, 57, 58, 60
ServiceState, 28, 56
TransactionAttributes, 29, 88, 89
TransactionInfo, 29, 90
TransactionOperations, 29, 88, 90
TransactionState, 29, 91

utility constants
ALL (class DestinationPauseType), 69, 78
AUTO_ACKNOWLEDGE (interface Session), 87
BROKER_CONFIG_MBEAN_NAME (class

MQObjectName), 26, 48
BROKER_DOWN (class BrokerState), 99
BROKER_MONITOR_MBEAN_NAME (class

MQObjectName), 26, 51
BROKER_QUIESCE_COMPLETE (class

BrokerNotification), 52
BROKER_QUIESCE_START (class

BrokerNotification), 52
BROKER_SHUTDOWN_START (class

BrokerNotification), 52
BROKER_TAKEOVER_COMPLETE (class

BrokerNotification), 52, 99
BROKER_TAKEOVER_FAIL (class

BrokerNotification), 52, 99
BROKER_TAKEOVER_START (class

BrokerNotification), 52, 99
CLIENT_ACKNOWLEDGE (interface Session), 87
CLUSTER_BROKER_DOWN (class

ClusterNotification), 99
CLUSTER_BROKER_JOIN (class

ClusterNotification), 52, 99

Index

135

utility constants (Continued)
CLUSTER_CONFIG_MBEAN_NAME (class
MQObjectName), 26, 92
CLUSTER_MONITOR_MBEAN_NAME (class

MQObjectName), 26, 95
COMMITTED (class TransactionState), 91
COMPLETE (class TransactionState), 91
CONNECTION_CLOSE (class

ConnectionNotification), 57, 65
CONNECTION_MANAGER_CONFIG_MBEAN_NAME (class

MQObjectName), 26, 63
CONNECTION_MANAGER_MONITOR_MBEAN_NAME (class

MQObjectName), 26, 64
CONNECTION_OPEN (class

ConnectionNotification), 57, 65
CONNECTION_REJECT (class

ConnectionNotification), 57, 65
CONSUMER_MANAGER_CONFIG_MBEAN_NAME (class

MQObjectName), 26, 84
CONSUMER_MANAGER_MONITOR_MBEAN_NAME (class

MQObjectName), 26, 85
CONSUMERS (class DestinationPauseType), 69, 78
CONSUMERS_PAUSED (class DestinationState), 73
CREATED (class TransactionState), 91
DESTINATION_COMPACT (class

DestinationNotification), 74, 80
DESTINATION_CREATE (class

DestinationNotification), 79
DESTINATION_DESTROY (class

DestinationNotification), 79
DESTINATION_MANAGER_CONFIG_MBEAN_NAME (class

MQObjectName), 26, 75
DESTINATION_MANAGER_MONITOR_MBEAN_NAME (class

MQObjectName), 26, 78
DESTINATION_PAUSE (class

DestinationNotification), 74, 79
DESTINATION_PURGE (class

DestinationNotification), 74, 80
DESTINATION_RESUME (class

DestinationNotification), 74, 80
DUPS_OK_ACKNOWLEDGE (interface Session), 87
ERROR (class LogLevel), 101
FAILED (class TransactionState), 91

utility constants (Continued)
FLOW_CONTROL (class
DestinationLimitBehavior), 68
INCOMPLETE (class TransactionState), 91
INFO (class LogLevel), 101
JVM_MONITOR_MBEAN_NAME (class

MQObjectName), 26, 103
LOG_CONFIG_MBEAN_NAME (class MQObjectName), 26,

100
LOG_LEVEL_ERROR (class LogNotification), 102
LOG_LEVEL_INFO (class LogNotification), 102
LOG_LEVEL_WARNING (class LogNotification), 102
LOG_MONITOR_MBEAN_NAME (class

MQObjectName), 26, 102
NO_ACKNOWLEDGE (interface Session), 87
NONE (class LogLevel), 101
OPERATING (class BrokerState), 98
PAUSED (class DestinationState), 73
PAUSED (class ServiceState), 57
PREPARED (class TransactionState), 91
PRODUCER_MANAGER_CONFIG_MBEAN_NAME (class

MQObjectName), 26, 81
PRODUCER_MANAGER_MONITOR_MBEAN_NAME (class

MQObjectName), 26, 81
PRODUCERS (class DestinationPauseType), 69, 78
PRODUCERS_PAUSED (class DestinationState), 73
QUEUE (class DestinationType), 24, 68, 73, 78, 83,

87
QUIESCE_COMPLETE (class BrokerState), 99
QUIESCE_STARTED (class BrokerState), 99
QUIESCED (class ServiceState), 57
REJECT_NEWEST (class

DestinationLimitBehavior), 69
REMOVE_LOW_PRIORITY (class

DestinationLimitBehavior), 68
REMOVE_OLDEST (class

DestinationLimitBehavior), 68
ROLLEDBACK (class TransactionState), 91
RUNNING (class DestinationState), 73
RUNNING (class ServiceState), 57
SERVICE_MANAGER_CONFIG_MBEAN_NAME (class

MQObjectName), 26, 58
SERVICE_MANAGER_MONITOR_MBEAN_NAME (class

MQObjectName), 26, 59

Index

Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients •136

utility constants (Continued)
SERVICE_PAUSE (class ServiceNotification), 57,
60
SERVICE_RESUME (class ServiceNotification), 57,

60
SESSION_TRANSACTED (interface Session), 87
SHUTDOWN_STARTED (class BrokerState), 99
STARTED (class TransactionState), 91
TAKEOVER_COMPLETE (class BrokerState), 99
TAKEOVER_FAILED (class BrokerState), 99
TAKEOVER_STARTED (class BrokerState), 99
TIMED_OUT (class TransactionState), 91
TOPIC (class DestinationType), 24, 68, 73, 78, 83,

87
TRANSACTION_COMMIT (class

TransactionNotification), 92
TRANSACTION_MANAGER_CONFIG_MBEAN_NAME (class

MQObjectName), 26, 88
TRANSACTION_MANAGER_MONITOR_MBEAN_NAME (class

MQObjectName), 26, 89
TRANSACTION_PREPARE (class

TransactionNotification), 92
TRANSACTION_ROLLBACK (class

TransactionNotification), 92
UNKNOWN (class BrokerState), 99
UNKNOWN (class DestinationState), 73
UNKNOWN (class LogLevel), 101
UNKNOWN (class ServiceState), 57
UNKNOWN (class TransactionState), 91
WARNING (class LogLevel), 101

utility methods
createConnectionConfig (class

MQObjectName), 26, 61
createConnectionMonitor (class

MQObjectName), 26, 62
createDestinationConfig (class

MQObjectName), 26, 66
createDestinationMonitor (class

MQObjectName), 26, 70
createServiceConfig (class MQObjectName), 26, 53
createServiceMonitor (class MQObjectName), 26,

55

V
Version attribute

broker configuration MBean, 48
broker monitor MBean, 51

W
WARNING utility constant, class LogLevel, 101

X
XID, See distributed transaction identifier
XID lookup key, transaction, 90

Index

137

138

	Sun Java System Message Queue 4.1 Developer's Guide for JMX Clients
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Documentation
	Message Queue Documentation Set
	Java Management Extensions (JMX) Documentation
	JavaDoc
	Example Client Applications

	Typographic Conventions
	Symbol Conventions
	Directory Variable Conventions
	Shell Prompts in Command Examples
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Introduction to JMX Programming for Message Queue Clients
	JMX Architecture
	Message Queue MBeans
	Resource MBeans
	Manager MBeans
	Object Names

	Using the JMX API
	Interface Packages
	Utility Classes
	Connecting to the MBean Server
	Obtaining a JMX Connector from an Administration Connection Factory
	Obtaining a JMX Connector Without Using an Administration Connection Factory
	JMX Service URLs

	Using MBeans
	Accessing MBean Attributes
	Invoking MBean Operations
	Receiving MBean Notifications

	Message Queue MBean Reference
	Message Brokers
	Broker Configuration
	Object Name
	Attributes
	Operations
	Notification

	Broker Monitor
	Object Name
	Attributes
	Notifications

	Connection Services
	Service Configuration
	Object Name
	Attributes
	Operations
	Notification

	Service Monitor
	Object Name
	Attributes
	Operations
	Notifications

	Service Manager Configuration
	Object Name
	Attributes
	Operations

	Service Manager Monitor
	Object Name
	Attributes
	Operation
	Notifications

	Connections
	Connection Configuration
	Object Name
	Attribute

	Connection Monitor
	Object Name
	Attributes
	Operations

	Connection Manager Configuration
	Object Name
	Attribute
	Operations

	Connection Manager Monitor
	Object Name
	Attributes
	Operation
	Notifications

	Destinations
	Destination Configuration
	Object Name
	Attributes
	Operations
	Notification

	Destination Monitor
	Object Name
	Attributes
	Operations
	Notifications

	Destination Manager Configuration
	Object Name
	Attributes
	Operations
	Notification

	Destination Manager Monitor
	Object Name
	Attributes
	Operation
	Notifications

	Message Producers
	Producer Manager Configuration
	Object Name
	Attribute
	Operation

	Producer Manager Monitor
	Object Name
	Attribute
	Operations

	Message Consumers
	Consumer Manager Configuration
	Object Name
	Attribute
	Operations

	Consumer Manager Monitor
	Object Name
	Attribute
	Operations

	Transactions
	Transaction Manager Configuration
	Object Name
	Attribute
	Operations

	Transaction Manager Monitor
	Object Name
	Attributes
	Operations
	Notifications

	Broker Clusters
	Cluster Configuration
	Object Name
	Attributes
	Operations
	Notification

	Cluster Monitor
	Object Name
	Attributes
	Operations
	Notifications

	Logging
	Log Configuration
	Object Name
	Attributes
	Notification

	Log Monitor
	Object Name
	Notifications

	Java Virtual Machine
	JVM Monitor
	Object Name
	Attributes

	Alphabetical Reference
	Index

