
Veritas File System

Administrator's Guide

Solaris

5.0

N18516F

Veritas File System Administrator's Guide

The software described in this book is furnished under a license agreement and may be used

only in accordance with the terms of the agreement.

Veritas File System 5.0

PN: N18516F

Legal Notice

Copyright © 2006 Symantec Corporation.

All rights reserved.

Federal acquisitions: Commercial Software - Government Users Subject to Standard License

Terms and Conditions.

Symantec, the Symantec Logo, and Storage Foundation are trademarks or registered

trademarks of Symantec Corporation or its affiliates in the U.S. and other countries. Other

names may be trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use,

copying, distribution, and decompilation/reverse engineering. No part of this document

may be reproduced in any form by any means without prior written authorization of

Symantec Corporation and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,

REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO

BE LEGALLY INVALID. SYMANTEC CORPORATION SHALL NOT BE LIABLE FOR INCIDENTAL

OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING PERFORMANCE,

OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS

DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be "commercial computer software"

and "commercial computer software documentation" as defined in FAR Sections 12.212 and

DFARS Section 227.7202.

Symantec Corporation 20330 Stevens Creek Blvd. Cupertino, CA 95014 USA

http://www.symantec.com

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Chapter 1 Introducing Veritas File System

About Veritas File System 11

Logging 12

Extents ... 12

File system disk layouts ... 12

Veritas File System features ... 12

Extent-based allocation 14

Extent attributes ... 16

Fast file system recovery 16

Extended mount options 17

Enhanced data integrity modes 18

Enhanced performance mode 19

Modes of temporary file systems 19

Improved synchronous writes ... 19

Support for large files ... 20

Access Control Lists ... 20

Storage Checkpoints ... 20

Online backup 20

Quotas ... 21

Support for databases ... 21

Cluster file systems 22

Cross-platform data sharing 22

File Change Log 23

Multi-volume support ... 23

Dynamic Storage Tiering 23

Veritas File System performance enhancements ... 23

About enhanced I/O performance 24

Using Veritas File System 25

Veritas Enterprise Administrator Graphical User Interface 25

Online system administration 26

Application program interface ... 27

Contents

Chapter 2 VxFS performance: creating, mounting, and tuning
File Systems

mkfs command options 29

Block size ... 29

Intent log size ... 30

Choosing mount command options 30

The log mode 31

The delaylog mode 32

The tmplog mode 32

The logiosize mode 33

The nodatainlog mode 33

The blkclear mode 33

The mincache mode 34

The convosync mode 35

The ioerror mode 36

The largefiles|nolargefiles option 37

The cio option 39

Combining mount command options 39

Using kernel tunables ... 40

Tuning inode table size ... 40

vx_maxlink 41

Veritas Volume Manager maximum I/O size ... 41

Monitoring free space 42

Monitoring fragmentation 42

Tuning I/O 44

Tuning VxFS I/O parameters ... 44

Tunable I/O parameters ... 45

File system tuning guidelines ... 52

Chapter 3 Extent attributes

About extent attributes ... 55

Reservation: preallocating space to a file ... 56

Fixed extent size ... 56

Other controls ... 57

Commands related to extent attributes ... 58

Failure to preserve extent attributes ... 59

Chapter 4 VxFS I/O Overview

About VxFS I/O 61

Buffered and Direct I/O 61

Direct I/O 62

Contents4

Unbuffered I/O 63

Data synchronous I/O 63

Cache advisories ... 64

Freezing and thawing a file system 64

Getting the I/O size ... 65

Chapter 5 Storage Checkpoints

About Storage Checkpoints ... 67

How Storage Checkpoints differ from snapshots ... 68

How a Storage Checkpoint works ... 69

Copy-on-write ... 71

Types of Storage Checkpoints ... 72

Data Storage Checkpoints ... 72

nodata Storage Checkpoints ... 73

Removable Storage Checkpoints ... 74

Non-mountable Storage Checkpoints ... 74

Storage Checkpoint administration 74

Creating a Storage Checkpoint ... 75

Removing a Storage Checkpoint ... 76

Accessing a Storage Checkpoint ... 77

Converting a data Storage Checkpoint to a nodata Storage

Checkpoint ... 78

Space management considerations 86

Restoring a file system from a Storage Checkpoint ... 87

Restoring a file from a Storage Checkpoint ... 87

Storage Checkpoint quotas ... 92

Chapter 6 Online backup using file system snapshots

About snapshot file systems 93

Snapshot file system backups 94

Creating a snapshot file system 95

Backup examples ... 95

Snapshot file system performance 96

Differences between snapshots and Storage Checkpoints 97

About snapshot file system disk structure ... 97

How a snapshot file system works 98

Chapter 7 Quotas

About quota limits ... 101

About quota files on Veritas File System 102

About quota commands 102

5Contents

About quota checking with Veritas File System 103

Using quotas ... 104

Turning on quotas ... 104

Turning on quotas at mount time 105

Editing user and group quotas ... 105

Modifying time limits ... 105

Viewing disk quotas and usage 106

Displaying blocks owned by users or groups 106

Turning off quotas ... 107

Chapter 8 File Change Log

About File Change Log 109

About the File Change Log file ... 110

File Change Log administrative interface ... 111

File Change Log programmatic interface ... 113

Reverse path name lookup 115

Chapter 9 Multi-volume file systems

About multi-volume support ... 118

About volume types ... 118

Features implemented using multi-volume support ... 118

Volume availability ... 119

About volume sets ... 120

Creating and managing volume sets ... 120

Creating multi-volume file systems 121

Example of creating a multi-volume file system 122

Converting a single volume file system to a multi-volume file

system 123

Removing a volume from a multi-volume file system 124

Forcibly removing a volume 124

Moving volume 0 125

About allocation policies ... 125

Assigning allocation policies ... 125

Querying allocation policies ... 126

Assigning pattern tables to directories ... 127

Assigning pattern tables to file systems 127

Allocating data ... 128

Volume encapsulation 129

Encapsulating a volume 129

Deencapsulating a volume 130

Reporting file extents ... 131

Examples of reporting file extents ... 131

Contents6

Load balancing 132

Defining and assigning a load balancing allocation policy 133

Rebalancing extents ... 133

Converting a multi-volume file system to a single volume file

system 134

Converting to a single volume file system 134

Chapter 10 Dynamic Storage Tiering

About Dynamic Storage Tiering 137

Placement classes ... 139

Tagging volumes as placement classes ... 140

Listing placement classes ... 140

Administering placement policies ... 140

Assigning a placement policy ... 141

Unassigning a placement policy ... 141

Analyzing the space impact of enforcing a placement policy 141

Querying which files will be affected by enforcing a placement

policy ... 142

Enforcing a placement policy ... 142

Validating a placement policy ... 143

File placement policy grammar 143

File placement policy rules ... 156

SELECT statement ... 156

CREATE statement ... 160

RELOCATE statement ... 162

DELETE statement ... 173

Calculating I/O temperature and access temperature ... 174

Multiple criteria in file placement policy rule statements 178

Multiple file selection criteria in SELECT statement clauses 178

Multiple placement classes in <ON> clauses of CREATE

statements and in <TO> clauses of RELOCATE statements

... 180

Multiple placement classes in <FROM> clauses of RELOCATE

and DELETE statements ... 181

Multiple conditions in <WHEN> clauses of RELOCATE and

DELETE statements ... 181

File placement policy rule and statement ordering 181

File placement policies and extending files ... 184

Chapter 11 Quick I/O for Databases

About Quick I/O 185

About Quick I/O functionality and performance 186

7Contents

About asynchronous I/O kernel support ... 186

About direct I/O support ... 186

About Kernel write locks avoidance 186

About double buffering avoidance 187

About using Veritas File System files as raw character devices 187

About the Quick I/O naming convention 187

About use restrictions ... 188

About creating a Quick I/O file using qiomkfile ... 188

Creating a Quick I/O file using qiomkfile ... 189

Accessing regular VxFS files through symbolic links ... 190

About absolute and relative path names 190

Preallocating files using the setext command 191

Using Quick I/O with Oracle databases ... 192

Using Quick I/O with Sybase databases ... 192

Enabling and disabling Quick I/O 193

About Cached Quick I/O for databases ... 194

Enabling Cached Quick I/O 194

About Quick I/O statistics ... 196

Increasing database performance using Quick I/O 197

Appendix A Quick Reference

Command summary 199

Online manual pages ... 202

Creating a VxFS file system 207

Example of creating a file system 208

Converting a file system to VxFS 209

Example of converting a file system 209

Mounting a file system 210

Mount options 210

Example of mounting a file system 211

Editing the vfstab file ... 212

Unmounting a file system 213

Example of unmounting a file system 213

Displaying information on mounted file systems 213

Example of displaying information on mounted file systems 214

Identifying file system types ... 214

Example of determining a file system's type 214

Resizing a file system 215

Extending a file system using fsadm 215

Shrinking a file system 216

Reorganizing a file system 217

Backing up and restoring a file system 218

Contents8

Creating and mounting a snapshot file system 218

Backing up a file system 219

Restoring a file system 220

Using quotas ... 220

Turning on quotas ... 220

Setting up user quotas ... 221

Viewing quotas ... 222

Turning off quotas ... 222

Appendix B Diagnostic messages

File system response to problems 225

Recovering a disabled file system 226

About kernel messages ... 226

About global message IDs 226

Kernel messages ... 227

About unique message identifiers ... 270

Unique message identifiers ... 270

Appendix C Disk layout

About disk layouts ... 275

About disk space allocation 276

VxFS Version 4 disk layout ... 277

VxFS Version 5 disk layout ... 279

VxFS Version 6 disk layout ... 280

VxFS Version 7 disk layout ... 281

Using UNIX Commands on File Systems Larger than One TB 281

Glossary

Index

9Contents

Contents10

Introducing Veritas File

System

This chapter includes the following topics:

■ About Veritas File System

■ Veritas File System features

■ Veritas File System performance enhancements

■ Using Veritas File System

About Veritas File System
A file system is simply a method for storing and organizing computer files and

the data they contain to make it easy to find and access them. More formally, a

file system is a set of abstract data types (such as metadata) that are implemented

for the storage, hierarchical organization, manipulation, navigation, access, and

retrieval of data.

Veritas File System (VxFS) was the first commercial journaling file system. With

journaling, metadata changes are first written to a log (or journal) then to disk.

Since changes do not need to be to be written in multiple places, throughput is

much faster as the metadata is written asynchronously.

VxFS is also an extent-based, intent logging file system. VxFS is designed for use

in operating environments that require high performance and availability and

deal with large amounts of data.

VxFS major components include:

■ Logging

■ Extents

1Chapter

■ File system disk layouts

Logging

A key aspect of any file system is how to recover if a system crash occurs. Earlier

methods required a time-consuming scan of the entire file system. A better solution

is the method logging (or journaling) the metadata of files.

VxFS logs new attribute information into a reserved area of the file system,

whenever file system changes occur. The file system writes the actual data to disk

only after the write of the metadata to the log is complete. If and when a system

crash occurs, the system recovery code analyzes the metadata log and try to clean

up only those files. Without logging, a file system check (fsck) must look at all of

the metadata.

Intent logging minimizes system downtime after abnormal shutdowns by logging

file system transactions. When the system is halted unexpectedly, this log can be

replayed and outstanding transactions completed. The check and repair time for

file systems can be reduced to a few seconds, regardless of the file system size.

By default, VxFS file systems log file transactions before they are committed to

disk, reducing time spent checking and repairing file systems after the system is

halted unexpectedly.

Extents

An extent is a contiguous area of storage in a computer file system, reserved for

a file. When starting to write to a file, a whole extent is allocated. When writing

to the file again, the data continues where the previous write left off. This reduces

or eliminates file fragmentation.

Since VxFS is an extent-based file system, addressing is done through extents

(which can consist of multiple blocks) rather than in single blocks segments.

Extents can therefore enhance file system throughput.

File system disk layouts

The disk layout is the way file system information is stored on disk. On VxFS,

several disk layout versions, numbered 1 through 7, were created to support

various new features and specific UNIX environments. Currently, only the Version

4, 5, 6, and 7 disk layouts can be created and mounted.

Veritas File System features
VxFS includes the following features:

Introducing Veritas File System
Veritas File System features

12

■ Extent-based allocation

Extents allow disk I/O to take place in units of multiple blocks if storage is

allocated in consecutive blocks.

■ Extent attributes

Extent attributes are the extent allocation policies associated with a file.

■ Fast file system recovery

VxFS provides fast recovery of a file system from system failure.

■ Extended mount options

The VxFS file system supports extended mount options to specify enhanced

data integrity modes, enhanced performance modes, temporary file system

modes, improved synchronous writes, and large file sizes.

■ Enhanced data integrity modes

VxFS avoids the problem of uninitialized data appearing in a file by waiting

until the data has been flushed to disk before updating the new file size to disk.

■ Enhanced performance mode

VxFS provides mount options to improve performance.

■ Modes of temporary file systems

VxFS supplies an option to allow users to achieve higher performance on

temporary file sytems by delaying the logging for most operations.

■ Improved synchronous writes

VxFS provides superior performance for synchronous write applications.

■ Large files and file systems support

VxFS supports files larger than two terabytes and large file systems up to 256

terabytes.

■ Access control lists (ACLs)

An Access Control List (ACL) stores a series of entries that identify specific

users or groups and their access privileges for a directory or file.

■ Storage Checkpoints

Backup and restore applications can leverage Storage Checkpoint, a disk- and

I/O-efficient copying technology for creating periodic frozen images of a file

system.

■ Online backup

VxFS provides online data backup using the snapshot feature.

■ Quotas

VxFS supports quotas, which allocate per-user and per-group quotas and limit

the use of two principal resources: files and data blocks.

13Introducing Veritas File System
Veritas File System features

■ Cluster File System

Clustered file systems are an extension of VxFS that support concurrent direct

media access from multiple systems.

■ Improved database performance

Databases can be created on the character devices to achieve the same

performance as databases created on raw disks.

■ Cross-platform data sharing

Cross-platform data sharing allows data to be serially shared among

heterogeneous systems where each system has direct access to the physical

devices that hold the data.

■ File Change Log

The VxFS File Change Log tracks changes to files and directories in a file

system.

■ Multi-volume support

The multi-volume support feature allows several volumes to be represented

by a single logical object.

■ Dynamic Storage Tiering

The Dynamic Storage Tiering (DST) option allows you to configure policies

that automatically relocate files from one volume to another, or relocate files

by running file relocation commands, which can improve performance for

applications that access specific types of files.

Note: VxFS supports all UFS file system features and facilities except for linking,

removing, or renaming “.” and “..” directory entries. These operations may

disrupt file system operations.

Extent-based allocation

Disk space is allocated in 512-byte sectors to form logical blocks. VxFS supports

logical block sizes of 1024, 2048, 4096, and 8192 bytes. The default block size

is 1K. For file systems up to 4 TB, the block size is 1K. 2K for file systems up to

8TB, 4K for file systems up to 16 TB, and 8K for file systems beyond this size.

An extent is defined as one or more adjacent blocks of data within the file system.

An extent is presented as an address-length pair, which identifies the starting

block address and the length of the extent (in file system or logical blocks). VxFS

allocates storage in groups of extents rather than a block at a time.

Extents allow disk I/O to take place in units of multiple blocks if storage is allocated

in consecutive blocks. For sequential I/O, multiple block operations are

Introducing Veritas File System
Veritas File System features

14

considerably faster than block-at-a-time operations; almost all disk drives accept

I/O operations of multiple blocks.

Extent allocation only slightly alters the interpretation of addressed blocks from

the inode structure compared to block based inodes. A VxFS inode references 10

direct extents, each of which are pairs of starting block addresses and lengths in

blocks.

The VxFS inode supports different types of extents, namely ext4 and typed. Inodes

with ext4 extents also point to two indirect address extents, which contain the

addresses of first and second extents:

Used for single indirection. Each entry in the extent indicates the

starting block number of an indirect data extent

first

Used for double indirection. Each entry in the extent indicates the

starting block number of a single indirect address extent.

second

Each indirect address extent is 8K long and contains 2048 entries. All indirect

data extents for a file must be the same size; this size is set when the first indirect

data extent is allocated and stored in the inode. Directory inodes always use an

8K indirect data extent size. By default, regular file inodes also use an 8K indirect

data extent size that can be altered with vxtunefs; these inodes allocate the

indirect data extents in clusters to simulate larger extents.

Typed extents

VxFS has an inode block map organization for indirect extents known as typed

extents. Each entry in the block map has a typed descriptor record containing a

type, offset, starting block, and number of blocks.

Indirect and data extents use this format to identify logical file offsets and physical

disk locations of any given extent.

The extent descriptor fields are defined as follows:

Identifies uniquely an extent descriptor record and defines the record's

length and format.

type

Represents the logical file offset in blocks for a given descriptor. Used

to optimize lookups and eliminate hole descriptor entries.

offset

Is the starting file system block of the extent.starting block

Is the number of contiguous blocks in the extent.number of blocks

Typed extents have the following characteristics:

15Introducing Veritas File System
Veritas File System features

■ Indirect address blocks are fully typed and may have variable lengths up to a

maximum and optimum size of 8K. On a fragmented file system, indirect

extents may be smaller than 8K depending on space availability. VxFS always

tries to obtain 8K indirect extents but resorts to smaller indirects if necessary.

■ Indirect data extents are variable in size to allow files to allocate large,

contiguous extents and take full advantage of optimized I/O in VxFS.

■ Holes in sparse files require no storage and are eliminated by typed records.

A hole is determined by adding the offset and length of a descriptor and

comparing the result with the offset of the next record.

■ While there are no limits on the levels of indirection, lower levels are expected

in this format since data extents have variable lengths.

■ This format uses a type indicator that determines its record format and content

and accommodates new requirements and functionality for future types.

The current typed format is used on regular files and directories only when

indirection is needed. Typed records are longer than the previous format and

require less direct entries in the inode. Newly created files start out using the old

format, which allows for ten direct extents in the inode. The inode's block map is

converted to the typed format when indirection is needed to offer the advantages

of both formats.

Extent attributes

VxFS allocates disk space to files in groups of one or more extents. VxFS also

allows applications to control some aspects of the extent allocation. Extent

attributes are the extent allocation policies associated with a file.

The setext and getext commands allow the administrator to set or view extent

attributes associated with a file, as well as to preallocate space for a file.

See the setext(1) and getext(1) manual pages.

The vxtunefs command allows the administrator to set or view the default indirect

data extent size.

See the vxtunefs(1M) manual page.

Fast file system recovery

Most file systems rely on full structural verification by the fsck utility as the only

means to recover from a system failure. For large disk configurations, this involves

a time-consuming process of checking the entire structure, verifying that the file

system is intact, and correcting any inconsistencies. VxFS provides fast recovery

with the VxFS intent log and VxFS intent log resizing features.

Introducing Veritas File System
Veritas File System features

16

VxFS intent log

VxFS reduces system failure recovery times by tracking file system activity in the

VxFS intent log. This feature records pending changes to the file system structure

in a circular intent log. The intent log recovery feature is not readily apparent to

users or a system administrator except during a system failure. During system

failure recovery, the VxFS fsck utility performs an intent log replay, which scans

the intent log and nullifies or completes file system operations that were active

when the system failed. The file system can then be mounted without completing

a full structural check of the entire file system. Replaying the intent log may not

completely recover the damaged file system structure if there was a disk hardware

failure; hardware problems may require a complete system check using the fsck

utility provided with VxFS.

See “The log option and data integrity” on page 18.

VxFS intent log resizing

The VxFS intent log is allocated when the file system is first created. The size of

the intent log is based on the size of the file system—the larger the file system,

the larger the intent log. The maximum default intent log size for disk layout

Versions 4 and 5 is 16 megabytes. The maximum default intent log size for disk

layout Version 6 and 7 is 64 megabytes.

With the Version 6 and 7 disk layouts, you can dynamically increase or decrease

the intent log size using the logsize option of the fsadm command. Increasing the

size of the intent log can improve system performance because it reduces the

number of times the log wraps around. However, increasing the intent log size

can lead to greater times required for a log replay if there is a system failure.

Note: Inappropriate sizing of the intent log can have a negative impact on system

performance.

See the mkfs_vxfs(1M) and the fsadm_vxfs(1M) manual pages.

Extended mount options

The VxFS file system supports the following extended mount options:

■ Enhanced data integrity modes

■ Enhanced performance modes

■ Temporary file system modes

■ Improved synchronous writes

17Introducing Veritas File System
Veritas File System features

■ Large file sizes

See the mount_vxfs(1M) manual page.

Enhanced data integrity modes

For most UNIX file systems, including VxFS, the default mode for writing to a file

is delayed, or buffered, meaning that the data to be written is copied to the file

system cache and later flushed to disk.

A delayed write provides much better performance than synchronously writing

the data to disk. However, in the event of a system failure, data written shortly

before the failure may be lost since it was not flushed to disk. In addition, if space

was allocated to the file as part of the write request, and the corresponding data

was not flushed to disk before the system failure occurred, uninitialized data can

appear in the file.

For the most common type of write, delayed extending writes (a delayed write

that increases the file size), VxFS avoids the problem of uninitialized data

appearing in the file by waiting until the data has been flushed to disk before

updating the new file size to disk. If a system failure occurs before the data has

been flushed to disk, the file size has not yet been updated to be uninitialized data,

thus no uninitialized data appears in the file. The unused blocks that were allocated

are reclaimed.

The blkclear option and data integrity

In environments where performance is more important than absolute data

integrity, the preceding situation is not of great concern. However, VxFS supports

environments that emphasize data integrity by providing the mount -o blkclear

option that ensures uninitialized data does not appear in a file.

The closesync option and data integrity

VxFS provides the mount -o mincache=closesync option, which is useful in

desktop environments with users who are likely to shut off the power on machines

without halting them first. In closesync mode, only files that are written during

the system crash or shutdown can lose data. Any changes to a file are flushed to

disk when the file is closed.

The log option and data integrity

File systems are typically asynchronous in that structural changes to the file

system are not immediately written to disk, which provides better performance.

Introducing Veritas File System
Veritas File System features

18

However, recent changes made to a system can be lost if a system failure occurs.

Specifically, attribute changes to files and recently created files may disappear.

The mount -o log intent logging option guarantees that all structural changes to

the file system are logged to disk before the system call returns to the application.

With this option, the rename(2) system call flushes the source file to disk to

guarantee the persistence of the file data before renaming it. The rename() call is

also guaranteed to be persistent when the system call returns. The changes to file

system data and metadata caused by the fsync(2) and fdatasync(2) system calls

are guaranteed to be persistent once the calls return.

Enhanced performance mode

VxFS has mount options that improve performance, such as delaylog.

The delaylog option and enhanced performance

The default VxFS logging mode, mount -o delaylog, increases performance by

delaying the logging of some structural changes. However, it does not provide the

equivalent data integrity as the previously described modes.however, because

recent changes may be lost during a system failure. This option provides at least

the same level of data accuracy that traditional UNIX file systems provide for

system failures, along with fast file system recovery.

Modes of temporary file systems

On most UNIX systems, temporary file system directories, such as /tmp and

/usr/tmp, often hold files that do not need to be retained when the system reboots.

The underlying file system does not need to maintain a high degree of structural

integrity for these temporary directories. VxFS provides a mount -o tmplog

option, which allows the user to achieve higher performance on temporary file

systems by delaying the logging of most operations.

Improved synchronous writes

VxFS provides superior performance for synchronous write applications. The

mount -o datainlog option greatly improves the performance of small

synchronous writes.

The mount -o convosync=dsync option improves the performance of applications

that require synchronous data writes but not synchronous inode time updates.

Warning: The use of the -o convosync=dsync option violates POSIX semantics.

19Introducing Veritas File System
Veritas File System features

Support for large files

With VxFS, you can create, mount, and manage file systems containing large files

(files larger than two terabytes).

Warning: Some applications and utilities may not work on large files.

Access Control Lists

An Access Control List (ACL) stores a series of entries that identify specific users

or groups and their access privileges for a directory or file. A file may have its

own ACL or may share an ACL with other files. ACLs have the advantage of

specifying detailed access permissions for multiple users and groups. ACLs are

supported on cluster file systems.

See the getfacl(1) and setfacl(1) manual pages.

Storage Checkpoints

To increase availability, recoverability, and performance, Veritas File System

offers on-disk and online backup and restore capabilities that facilitate frequent

and efficient backup strategies. Backup and restore applications can leverage a

Storage Checkpoint, a disk- and I/O-efficient copying technology for creating

periodic frozen images of a file system. Storage Checkpoints present a view of a

file system at a point in time, and subsequently identifies and maintains copies

of the original file system blocks. Instead of using a disk-based mirroring method,

Storage Checkpoints save disk space and significantly reduce I/O overhead by

using the free space pool available to a file system.

Storage Checkpoint functionality is separately licensed.

Online backup

VxFS provides online data backup using the snapshot feature. An image of a

mounted file system instantly becomes an exact read-only copy of the file system

at a specific point in time. The original file system is called the snapped file system,

the copy is called the snapshot.

When changes are made to the snapped file system, the old data is copied to the

snapshot. When the snapshot is read, data that has not changed is read from the

snapped file system, changed data is read from the snapshot.

Backups require one of the following methods:

■ Copying selected files from the snapshot file system (using find and cpio)

Introducing Veritas File System
Veritas File System features

20

■ Backing up the entire file system (using fscat)

■ Initiating a full or incremental backup (using vxdump)

See “About snapshot file systems” on page 93.

Quotas

VxFS supports quotas, which allocate per-user and per-group quotas and limit

the use of two principal resources: files and data blocks. You can assign quotas

for each of these resources. Each quota consists of two limits for each resource:

hard limit and soft limit.

The hard limit represents an absolute limit on data blocks or files. A user can

never exceed the hard limit under any circumstances.

The soft limit is lower than the hard limit and can be exceeded for a limited amount

of time. This allows users to exceed limits temporarily as long as they fall under

those limits before the allotted time expires.

See “About quota limits” on page 101.

Support for databases

Databases are usually created on file systems to simplify backup, copying, and

moving tasks and are slower compared to databases on raw disks.

Using Quick I/O for Databases feature with VxFS lets systems retain the benefits

of having a database on a file system without sacrificing performance. Quick I/O

creates regular, preallocated files to use as character devices. Databases can be

created on the character devices to achieve the same performance as databases

created on raw disks.

Treating regular VxFS files as raw devices has the following advantages for

databases:

■ Commercial database servers such as Oracle
Server can issue kernel supported

asynchronous I/O calls on these pseudo devices but not on regular files.
Server can issue kernel

supported asynchronous I/O calls on these pseudo devices but not on regular

files.

■ read() and write() system calls issued by the database server can avoid the

acquisition and release of read/write locks inside the kernel that take place

on regular files.

■ VxFS can avoid double buffering of data already buffered by the database

server. This ability frees up resources for other purposes and results in better

performance.

21Introducing Veritas File System
Veritas File System features

■ Since I/O to these devices bypasses the system buffer cache, VxFS saves on

the cost of copying data between user space and kernel space when data is

read from or written to a regular file. This process significantly reduces CPU

time per I/O transaction compared to that of buffered I/O.

Cluster file systems

Veritas Storage Foundation Cluster File System (SFCFS) allows clustered severs

to mount and use a file system simultaneously as if all applications using the file

system were running on the same server. The Veritas Volume Manager cluster

functionality (CVM) makes logical volumes and raw device applications accessile

through a cluster.

Beginning with SFCFS 5.0, SFCFS uses a symmetric architecture in which all nodes

in the cluster can simultaneously function as metadata severs. SFCFS still as some

remnants of the old master/slave or primary/secondary concept. The first server

to mount each cluster file system becomes its primary; all other nodes in the

cluster become secondaries. Applications access the user data in files directly

from the server on which they are running. Each SFCFS node has its own intent

log. File system operations, such as allocating or deleting files, can originate from

any node in the cluster.

Installing VxFS and enabling the cluster feature does not create a cluster file

system configuration. File system clustering requires other Veritas products to

enable communication services and provide storage resources. These products

are packaged with VxFS in the Storage Foundation Cluster File System to provide

a complete clustering environment.

See the Veritas Storage Foundation Cluster File System Administrator's Guide.

To be a cluster mount, a file system must be mounted using the mount –o cluster

option. File systems mounted without the –o cluster option are termed local

mounts.

CFS functionality is separately licensed.

Cross-platform data sharing

Cross-platform data sharing (CDS) allows data to be serially shared among

heterogeneous systems where each system has direct access to the physical devices

that hold the data. This feature can be used only in conjunction with Veritas

Volume Manager (VxVM).

See the Veritas Storage Foundation Cross-Platform Data Sharing Administrator's

Guide.

Introducing Veritas File System
Veritas File System features

22

File Change Log

The VxFS File Change Log (FCL) tracks changes to files and directories in a file

system. The File Change Log can be used by applications such as backup products,

webcrawlers, search and indexing engines, and replication software that typically

scan an entire file system searching for modifications since a previous scan. FCL

functionality is a separately licensed feature.

See “About the File Change Log file” on page 110.

Multi-volume support

The multi-volume support (MVS) feature allows several volumes to be represented

by a single logical object. All I/O to and from an underlying logical volume is

directed by way of volume sets. This feature can be used only in conjunction with

VxVM. MVS functionality is a separately licensed feature.

See “About multi-volume support” on page 118.

Dynamic Storage Tiering

The Dynamic Storage Tiering (DST) option is built on multi-volume support

technology. Using DST, you can map more than one volume to a single file system.

You can then configure policies that automatically relocate files from one volume

to another, or relocate files by running file relocation commands. Having multiple

volumes lets you determine where files are located, which can improve

performance for applications that access specific types of files. DST functionality

is a separately licensed feature and is available with the VRTSfppm package.

See “About Dynamic Storage Tiering” on page 137.

Veritas File System performance enhancements
Traditional file systems employ block-based allocation schemes that provide

adequate random access and latency for small files, but which limit throughput

for larger files. As a result, they are less than optimal for commercial

environments.

VxFS addresses this file system performance issue through an alternative

allocation method and increased user control over allocation, I/O, and caching

policies.

See “Using Veritas File System” on page 25.

VxFS provides the following performance enhancements:

■ Data synchronous I/O

23Introducing Veritas File System
Veritas File System performance enhancements

■ Direct I/O and discovered direct I/O

■ Enhanced I/O performance

■ Caching advisories

■ Enhanced directory features

■ Explicit file alignment, extent size, and preallocation controls

■ Tunable I/O parameters

■ Tunable indirect data extent size

■ Integration with VxVM™

■ Support for large directories

Note: VxFS reduces the file lookup time in directories with an extremely large

number of files.

About enhanced I/O performance

VxFS provides enhanced I/O performance by applying an aggressive I/O clustering

policy, integrating with VxVM, and allowing application specific parameters to

be set on a per-file system basis.

Enhanced I/O clustering

I/O clustering is a technique of grouping multiple I/O operations together for

improved performance. VxFS I/O policies provide more aggressive clustering

processes than other file systems and offer higher I/O throughput when using

large files. The resulting performance is comparable to that provided by raw disk.

VxVM integration

VxFS interfaces with VxVM to determine the I/O characteristics of the underlying

volume and perform I/O accordingly. VxFS also uses this information when using

mkfs to perform proper allocation unit alignments for efficient I/O operations

from the kernel. VxFS also uses this information when using mkfs to perform

proper allocation unit alignments for efficient I/O operations from the kernel.

As part of VxFS/VxVM integration, VxVM exports a set of I/O parameters to

achieve better I/O performance. This interface can enhance performance for

different volume configurations such as RAID-5, striped, and mirrored volumes.

Full stripe writes are important in a RAID-5 volume for strong I/O performance.

VxFS uses these parameters to issue appropriate I/O requests to VxVM.

Introducing Veritas File System
Veritas File System performance enhancements

24

Application-specific parameters

You can also set application specific parameters on a per-file system basis to

improve I/O performance.

■ Discovered Direct I/O

All sizes above this value would be performed as direct I/O.

■ Maximum Direct I/O Size

This value defines the maximum size of a single direct I/O.

See the vxtunefs(1M) and tunefstab(4) manual pages.

Using Veritas File System
There are three main methods to use, manage, modify, and tune VxFS:

■ See “Veritas Enterprise Administrator Graphical User Interface” on page 25.

■ See “Online system administration” on page 26.

■ See “Application program interface” on page 27.

Veritas Enterprise Administrator Graphical User Interface

Enterprise Administrator (VEA) is a GUI-based application using the Java™

technology that consists of a server and a client. The server runs on a UNIX system

that is running Volume Manager and VxFS. The client runs on any platform that

supports the Java Runtime Environment.

You can perform the following administrative functions on local or remote systems

using the GUI:

■ Create a file system on a volume

■ Create a file system on a volume set

■ Remove a file system from the file system table

■ Mount and unmounting a file system

■ Defragment a file system

■ Monitor file system capacity

■ Create a snapshot copy of a file system

■ Check a file system

■ View file system properties

■ Unmount a file system from a cluster node

25Introducing Veritas File System
Using Veritas File System

■ Remove resource information for a cluster file system

■ Maintain the File Change Log

■ Maintain Storage Checkpoints

■ Use multi-volume file systems

■ Set intent log options

See the Veritas Enterprise Administrator Getting Started manual.

See the VEA online help.

Online system administration

VxFS provides command line interface (CLI) operations that are described

throughout this guide and in manual pages.

VxFS allows you to run a number of administration tasks while the file system is

online. Two of the more important tasks include:

■ Deframentation

■ File system resizing

About defragmentation

Free resources are initially aligned and allocated to files in an order that provides

optimal performance. On an active file system, the original order of free resources

is lost over time as files are created, removed, and resized. The file system is

spread farther along the disk, leaving unused gaps or fragments between areas

that are in use. This process is known as fragmentation and leads to degraded

performance because the file system has fewer options when assigning a free

extent to a file (a group of contiguous data blocks).

VxFS provides the online administration utility fsadm to resolve the problem of

fragmentation.

The fsadm utility defragments a mounted file system by performing the following

actions:

■ Removing unused space from directories

■ Making all small files contiguous

■ Consolidating free blocks for file system use

This utility can run on demand and should be scheduled regularly as a cron job.

Introducing Veritas File System
Using Veritas File System

26

About file system resizing

A file system is assigned a specific size as soon as it is created; the file system may

become too small or too large as changes in file system usage take place over time.

VxFS is capable of increasing or decreasing the file system size while in use. Many

competing file systems can not do this. The VxFS utility fsadm can expand or

shrink a file system without unmounting the file system or interrupting user

productivity. However, to expand a file system, the underlying device on which

it is mounted must be expandable.

VxVM facilitates expansion using virtual disks that can be increased in size while

in use. The VxFS and VxVM packages complement each other to provide online

expansion capability. Use the vxresize command when resizing both the volume

and the file system. The vxresize command guarantees that the file system

shrinks or grows along with the volume. Do not use the vxassist and fsadm_vxfs

commands for this purpose.

See the vxresize(1M) manual page.

See the Veritas VolumeManager Administrator's Guide.

Application program interface

Veritas File System Developer's Kit (SDK) provides developers with the information

necessary to use the application programming interfaces (APIs) to modify and

tune various features and components of File System.

See the Veritas File System Programmer's Reference Guide.

VxFS conforms to the System V Interface Definition (SVID) requirements and

supports user access through the Network File System (NFS). Applications that

require performance features not available with other file systems can take

advantage of VxFS enhancements.

Expanded application facilities

VxFS provides API functions frequently associated with commercial applications

that make it possible to perform the following actions:

■ Preallocate space for a file

■ Specify a fixed extent size for a file

■ Bypass the system buffer cache for file I/O

■ Specify the expected access pattern for a file

Because these functions are provided using VxFS-specific ioctl system calls, most

existing UNIX system applications do not use them. The VxFS-specific cp, cpio,

27Introducing Veritas File System
Using Veritas File System

and mv utilities use the functions to preserve extent attributes and allocate space

more efficiently. The current attributes of a file can be listed using the getext or

VxFS-specific ls command. The functions can also improve performance for

custom applications. For portability reasons, these applications must check which

file system type they are using before using these functions.

Introducing Veritas File System
Using Veritas File System

28

VxFS performance:

creating, mounting, and

tuning File Systems

This chapter includes the following topics:

■ mkfs command options

■ Choosing mount command options

■ Using kernel tunables

■ Monitoring free space

■ Tuning I/O

mkfs command options
When you create a file system, you can select a number of characteristics.

■ See “Block size” on page 29.

■ See “Intent log size” on page 30.

Block size

The unit of allocation in VxFS is a block. Unlike some other UNIX file systems,

VxFS does not make use of block fragments for allocation because storage is

allocated in extents that consist of one or more blocks.

2Chapter

You specify the block size when creating a file system by using the mkfs –o bsize

option. The block size cannot be altered after the file system is created. The

smallest available block size for VxFS is 1K, which is also the default block size.

Choose a block size based on the type of application being run. For example, if

there are many small files, a 1K block size may save space. For large file systems,

with relatively few files, a larger block size is more appropriate. Larger block sizes

use less disk space in file system overhead, but consume more space for files that

are not a multiple of the block size. The easiest way to judge which block sizes

provide the greatest system efficiency is to try representative system loads against

various sizes and pick the fastest. For most applications, it is best to use the default

values.

For 64-bit kernels, which support 32 terabyte file systems, the block size

determines the maximum size of the file system you can create. File systems up

to 4 TB require a 1K block size. For four to eight terabyte file systems, the block

size is 2K, For file systems between 8 and 16 TB, block size is 4K, and for greater

than 16 TB, the block size is 8K. If you specify the file system size when creating

a file system, the block size defaults to these values.

Intent log size

You specify the intent log size when creating a file system by using the mkfs –o

logsize option. With the Version 6 or 7 disk layout, you can dynamically increase

or decrease the intent log size using the log option of the fsadm command. The

mkfs utility uses a default intent log size 64 megabytes for disk layout Version 6.

The default size is sufficient for most workloads. If the system is used as an NFS

server or for intensive synchronous write workloads, performance may be

improved using a larger log size.

With larger intent log sizes, recovery time is proportionately longer and the file

system may consume more system resources (such as memory) during normal

operation.

There are several system performance benchmark suites for which VxFS performs

better with larger log sizes. As with block sizes, the best way to pick the log size

is to try representative system loads against various sizes and pick the fastest.

Choosing mount command options
In addition to the standard mount mode (delaylog mode), VxFS provides the

following modes of operation:

■ log

■ delaylog

VxFS performance: creating, mounting, and tuning File Systems
Choosing mount command options

30

■ tmplog

■ logsize

■ nodatainlog

■ blkclear

■ minicache

■ convosync

■ ioerror

■ largefiles|nolorgefiles

■ cio

Caching behavior can be altered with the mincache option, and the behavior of

O_SYNC and D_SYNC writes can be altered with the convosync option.

See the fcntl(2) manual page.

The delaylog and tmplog modes can significantly improve performance. The

improvement over log mode is typically about 15 to 20 percent with delaylog; with

tmplog, the improvement is even higher. Performance improvement varies,

depending on the operations being performed and the workload. Read/write

intensive loads should show less improvement, while file system structure

intensive loads (such as mkdir, create, and rename) may show over 100 percent

improvement. The best way to select a mode is to test representative system loads

against the logging modes and compare the performance results.

Most of the modes can be used in combination. For example, a desktop machine

might use both the blkclear and mincache=closesync modes.

See the mount_vxfs(1M) manual page.

The log mode

In log mode, all system calls other than write(2), writev(2), and pwrite(2) are

guaranteed to be persistent after the system call returns to the application.

The rename(2) system call flushes the source file to disk to guarantee the

persistence of the file data before renaming it. In both the log and delaylog modes,

the rename is also guaranteed to be persistent when the system call returns. This

benefits shell scripts and programs that try to update a file atomically by writing

the new file contents to a temporary file and then renaming it on top of the target

file.

31VxFS performance: creating, mounting, and tuning File Systems
Choosing mount command options

The delaylog mode

The default logging mode is delaylog. In delaylog mode, the effects of most system

calls other than write(2), writev(2), and pwrite(2) are guaranteed to be persistent

approximately 15 to 20 seconds after the system call returns to the application.

Contrast this with the behavior of most other file systems in which most system

calls are not persistent until approximately 30 seconds or more after the call has

returned. Fast file system recovery works with this mode.

The rename(2) system call flushes the source file to disk to guarantee the

persistence of the file data before renaming it. In the log and delaylog modes, the

rename is also guaranteed to be persistent when the system call returns. This

benefits shell scripts and programs that try to update a file atomically by writing

the new file contents to a temporary file and then renaming it on top of the target

file.

The tmplog mode

In tmplog mode, the effects of system calls have persistence guarantees that are

similar to those in delaylog mode. In addition, enhanced flushing of delayed

extending writes is disabled, which results in better performance but increases

the chances of data being lost or uninitialized data appearing in a file that was

being actively written at the time of a system failure. This mode is only

recommended for temporary file systems. Fast file system recovery works with

this mode.

Note: The term “effects of system calls” refers to changes to file system data and

metadata caused by the system call, excluding changes to st_atime. See the stat(2)

manual page.

Persistence guarantees

In all logging modes, VxFS is fully POSIX compliant. The effects of the fsync(2)

and fdatasync(2) system calls are guaranteed to be persistent after the calls return.

The persistence guarantees for data or metadata modified by write(2), writev(2),

or pwrite(2) are not affected by the logging mount options. The effects of these

system calls are guaranteed to be persistent only if the O_SYNC, O_DSYNC,

VX_DSYNC, or VX_DIRECT flag, as modified by the convosync= mount option, has

been specified for the file descriptor.

The behavior of NFS servers on a VxFS file system is unaffected by the log and

tmplog mount options, but not delaylog. In all cases except for tmplog, VxFS

complies with the persistency requirements of the NFS v2 and NFS v3 standard.

Unless a UNIX application has been developed specifically for the VxFS file system

VxFS performance: creating, mounting, and tuning File Systems
Choosing mount command options

32

in log mode, it expects the persistence guarantees offered by most other file

systems and experiences improved robustness when used with a VxFS file system

mounted in delaylog mode. Applications that expect better persistence guarantees

than that offered by most other file systems can benefit from the log, mincache=,

andclosesyncmountoptions. However, most commercially available applications

work well with the default VxFS mount options, including the delaylog mode.

The logiosize mode

The logiosize=size option enhances the performance of storage devices that

employ a read-modify-write feature. If you specify logiosize when you mount a

file system, VxFS writes the intent log in the least size bytes or a multiple of size

bytes to obtain the maximum performance from such devices.

See mount_vxfs(1m) manual page.

The values for size can be 512, 1024, 2048, 4096, or 8192.

The nodatainlog mode

Use the nodatainlog mode on systems with disks that do not support bad block

revectoring. Usually, a VxFS file system uses the intent log for synchronous writes.

The inode update and the data are both logged in the transaction, so a synchronous

write only requires one disk write instead of two. When the synchronous write

returns to the application, the file system has told the application that the data

is already written. If a disk error causes the metadata update to fail, then the file

must be marked bad and the entire file is lost.

If a disk supports bad block revectoring, then a failure on the data update is

unlikely, so logging synchronous writes should be allowed. If the disk does not

support bad block revectoring, then a failure is more likely, so the nodatainlog

mode should be used.

A nodatainlog mode file system is approximately 50 percent slower than a standard

mode VxFS file system for synchronous writes. Other operations are not affected.

The blkclear mode

The blkclear mode is used in increased data security environments. The blkclear

mode guarantees that uninitialized storage never appears in files. The increased

integrity is provided by clearing extents on disk when they are allocated within

a file. This mode does not affect extending writes. A blkclear mode file system is

approximately 10 percent slower than a standard mode VxFS file system,

depending on the workload.

33VxFS performance: creating, mounting, and tuning File Systems
Choosing mount command options

The mincache mode

The mincache mode has the following suboptions:

■ mincache=closesync

■ mincache=direct

■ mincache=dsync

■ mincache=unbuffered

■ mincache=tmpcache

The mincache=closesync mode is useful in desktop environments where users

are likely to shut off the power on the machine without halting it first. In this

mode, any changes to the file are flushed to disk when the file is closed.

To improve performance, most file systems do not synchronously update data

and inode changes to disk. If the system crashes, files that have been updated

within the past minute are in danger of losing data. With the mincache=closesync

mode, if the system crashes or is switched off, only open files can lose data. A

mincache=closesync mode file system could be approximately 15 percent slower

than a standard mode VxFS file system, depending on the workload.

The following describes where to use the mincache modes:

■ The mincache=direct, mincache=unbuffered, and mincache=dsync modes are

used in environments where applications have reliability problems caused by

the kernel buffering of I/O and delayed flushing of non-synchronous I/O.

■ The mincache=direct and mincache=unbuffered modes guarantee that all

non-synchronous I/O requests to files are handled as if the VX_DIRECT or

VX_UNBUFFERED caching advisories had been specified.

■ The mincache=dsync mode guarantees that all non-synchronous I/O requests

to files are handled as if the VX_DSYNC caching advisory had been specified.

Refer to the vxfsio(7) manual page for explanations of VX_DIRECT,

VX_UNBUFFERED, and VX_DSYNC, as well as for the requirements for direct

I/O.

■ The mincache=direct, mincache=unbuffered, and mincache=dsync modes also

flush file data on close as mincache=closesync does.

Because the mincache=direct, mincache=unbuffered, and mincache=dsync modes

change non-synchronous I/O to synchronous I/O, throughput can substantially

degrade for small to medium size files with most applications. Since the

VX_DIRECT and VX_UNBUFFERED advisories do not allow any caching of data,

applications that normally benefit from caching for reads usually experience less

degradation with the mincache=dsync mode. mincache=direct and

mincache=unbuffered require significantly less CPU time than buffered I/O.

VxFS performance: creating, mounting, and tuning File Systems
Choosing mount command options

34

If performance is more important than data integrity, you can use the

mincache=tmpcache mode. The mincache=tmpcache mode disables special delayed

extending write handling, trading off less integrity for better performance. Unlike

the other mincache modes, tmpcache does not flush the file to disk the file is

closed. When the mincache=tmpcache option is used, bad data can appear in a

file that was being extended when a crash occurred.

The convosync mode

The convosync (convert osync) mode has the following suboptions:

■ convosync=closesync

Note: The convosync=closesync mode converts synchronous and data

synchronous writes to non-synchronous writes and flushes the changes to the

file to disk when the file is closed.

■ convosync=delay

■ convosync=direct

■ convosync=dsync

Note:The convosync=dsync option violates POSIX guarantees for synchronous

I/O.

■ convosync=unbuffered

The convosync=delay mode causes synchronous and data synchronous writes to

be delayed rather than to take effect immediately. No special action is performed

when closing a file. This option effectively cancels any data integrity guarantees

normally provided by opening a file with O_SYNC.

See the open(2), fcntl(2), and vxfsio(7) manual pages.

Warning:Be very careful when using the convosync=closesync or convosync=delay

mode because they actually change synchronous I/O into non-synchronous I/O.

Applications that use synchronous I/O for data reliability may fail if the system

crashes and synchronously written data is lost.

The convosync=dsync mode converts synchronous writes to data synchronous

writes.

35VxFS performance: creating, mounting, and tuning File Systems
Choosing mount command options

As with closesync, the direct, unbuffered, and dsync modes flush changes to the

file to disk when it is closed. These modes can be used to speed up applications

that use synchronous I/O. Many applications that are concerned with data integrity

specify the O_SYNC fcntl in order to write the file data synchronously. However,

this has the undesirable side effect of updating inode times and therefore slowing

down performance. The convosync=dsync, convosync=unbuffered, and

convosync=direct modes alleviate this problem by allowing applications to take

advantage of synchronous writes without modifying inode times as well.

Before using convosync=dsync, convosync=unbuffered, or convosync=direct,

make sure that all applications that use the file system do not require synchronous

inode time updates for O_SYNC writes.

The ioerror mode

This mode sets the policy for handling I/O errors on a mounted file system. I/O

errors can occur while reading or writing file data or metadata. The file system

can respond to these I/O errors either by halting or by gradually degrading. The

ioerror option provides five policies that determine how the file system responds

to the various errors. All policies limit data corruption, either by stopping the file

system or by marking a corrupted inode as bad.

The policies are the following:

■ disable

■ nodisable

■ wdisable

■ mwdisable

■ mdisable

The disable policy

If disable is selected, VxFS disables the file system after detecting any I/O error.

You must then unmount the file system and correct the condition causing the I/O

error. After the problem is repaired, run fsck and mount the file system again.

In most cases, replay fsck to repair the file system. A full fsck is required only

in cases of structural damage to the file system's metadata. Select disable in

environments where the underlying storage is redundant, such as RAID-5 or

mirrored disks.

VxFS performance: creating, mounting, and tuning File Systems
Choosing mount command options

36

The nodisable policy

If nodisable is selected, when VxFS detects an I/O error, it sets the appropriate

error flags to contain the error, but continues running. Note that the degraded

condition indicates possible data or metadata corruption, not the overall

performance of the file system.

For file data read and write errors, VxFS sets the VX_DATAIOERR flag in the

super-block. For metadata read errors, VxFS sets the VX_FULLFSCK flag in the

super-block. For metadata write errors, VxFS sets the VX_FULLFSCK and

VX_METAIOERR flags in the super-block and may mark associated metadata as

bad on disk. VxFS then prints the appropriate error messages to the console.

See “File system response to problems” on page 225.

You should stop the file system as soon as possible and repair the condition causing

the I/O error. After the problem is repaired, run fsck and mount the file system

again. Select nodisable if you want to implement the policy that most closely

resembles the error handling policy of the previous VxFS release.

The wdisable and mwdisable policies

If wdisable (write disable) or mwdisable (metadata-write disable) is selected, the

file system is disabled or degraded, depending on the type of error encountered.

Select wdisable or mwdisable for environments where read errors are more likely

to persist than write errors, such as when using non-redundant storage. mwdisable

is the default ioerror mount option for local mounts.

See the mount_vxfs(1M) manual page.

The mdisable policy

If mdisable (metadata disable) is selected, the file system is disabled if a metadata

read or write fails. However the file system continues to operate if the failure is

confined to data extents. mdisable is the default ioerror mount option for cluster

mounts.

The largefiles|nolargefiles option

The section includes the following topics :

■ See “Creating a file system with large files” on page 38.

■ See “Mounting a file system with large files” on page 38.

■ See “Managing a file system with large files” on page 38.

37VxFS performance: creating, mounting, and tuning File Systems
Choosing mount command options

VxFS supports files larger than two terabytes. Files larger than 32 terabytes can

be created only on 64-bit kernel operating systems and on a Veritas Volume

Manager volume.

Note: Applications and utilities such as backup may experience problems if they

are not aware of large files. In such a case, create your file system without large

file capability.

Creating a file system with large files

To create a file system with a file capability, type the following command:

mkfs -F vxfs -o largefiles special_device size

Specifying largefiles sets the largefiles flag. This lets the file system to hold files

that are two terabytes or larger. This is the default option.

To clear the flag and prevent large files from being created, type the following

command:

mkfs -F vxfs -o nolargefiles special_device size

The largefiles flag is persistent and stored on disk.

Mounting a file system with large files

If a mount succeeds and nolargefiles is specified, the file system cannot contain

or create any large files. If a mount succeeds and largefiles is specified, the file

system may contain and create large files.

The mount command fails if the specified largefiles|nolargefiles option does

not match the on-disk flag.

Because the mount command defaults to match the current setting of the on-disk

flag if specified without the largefiles or nolargefiles option, the best practice

is not to specify either option. After a file system is mounted, you can use the

fsadm utility to change the large files option.

Managing a file system with large files

Managing a file system with large files includes the following tasks:

■ Determining the current status of the large files flag

■ Switching capabilities on a mounted file system

■ Switching capabilities on an unmounted file system

VxFS performance: creating, mounting, and tuning File Systems
Choosing mount command options

38

To determine the current status of the largefiles flag, type either of the following

commands:

mkfs -F vxfs -m special_device

fsadm -F vxfs mount_point | special_device

To switch capabilities on a mounted file system, type the following command;

fsadm -F vxfs -o [no]largefiles mount_point

To switch capabilities on an unmounted file system, type the following command:

fsadm -F vxfs -o [no]largefiles special_device

You cannot change a file system to nolargefiles if it holds large files.

See the mount_vxfs(1M), fsadm_vxfs(1M), and mkfs_vxfs(1M) manual pages.

The cio option

The cio (Concurent I/O) option specifies the file system to be mounted for

concurrent readers and writers. Concurrent I/O is a licensed feature of VxFS. If

cio is specified, but the feature is not licensed, the mount command prints an

error message and terminates the operation without mounting the file system.

The cio option cannot be disabled through a remount. To disable the cio option,

the file system must be unmounted and mounted again without the cio option.

Combining mount command options

Although mount options can be combined arbitrarily, some combinations do not

make sense. The following examples provide some common and reasonable mount

option combinations.

To mount a desktop file system using options, type the following:

mount -F vxfs -o log,mincache=closesync /dev/dsk/c1t3d0s1 /mnt

This guarantees that when a file is closed, its data is synchronized to disk and

cannot be lost. Thus, after an application has exited and its files are closed, no

data is lost even if the system is immediately turned off.

To mount a temporary file system or to restore from backup, type the following:

mount -F vxfs -o tmplog,convosync=delay,mincache=tmpcache \

/dev/dsk/c1t3d0s1 /mnt

39VxFS performance: creating, mounting, and tuning File Systems
Choosing mount command options

This combination might be used for a temporary file system where performance

is more important than absolute data integrity. Any O_SYNC writes are performed

as delayed writes and delayed extending writes are not handled. This could result

in a file that contains corrupted data if the system crashes. Any file written 30

seconds or so before a crash may contain corrupted data or be missing if this

mount combination is in effect. However, such a file system does significantly

less disk writes than a log file system, and should have significantly better

performance, depending on the application.

To mount a file system for synchronous writes, type the following:

mount -F vxfs -o log,convosync=dsync /dev/dsk/c1t3d0s1 /mnt

This combination can be used to improve the performance of applications that

perform O_SYNC writes, but only require data synchronous write semantics.

Performance can be significantly improved if the file system is mounted using

convosync=dsync without any loss of data integrity.

Using kernel tunables
This section describes the following kernel tunable parameters in VxFS:

■ Tuning inode table size

■ vx_maxlink

■ Veritas Volume Manager maximum I/O size

Tuning inode table size

Tuning the internal inode table size includes the following tasks:

■ Increasing the internal inode table size

■ Changing the size of the directory name lookup cache

VxFS caches inodes in an inode table. The tunable for VxFS to determine the

number of entries in its inode table is vxfs_ninode.

VxFS uses the value of vxfs_ninode in /etc/system as the number of entries in

the VxFS inode table. By default, the file system uses a value of vxfs_ninode,

which is computed based on system memory size.

To increase the internal inode table size

1 Open the /etc/system file.

2 Update the following line in the /etc/system file:

VxFS performance: creating, mounting, and tuning File Systems
Using kernel tunables

40

set vxfs:vxfs_ninode = new_value

It may be necessary to tune the dnlc (directory name lookup cache) size to keep

the value within an acceptable range relative to vxfs_ninode. It must be within

80% of vxfs_ninode to avoid spurious ENFILE errors or excessive CPU

consumption, but must be more than 50% of vxfs_ninode to maintain good

performance. The variable ncsize determines the size of dnlc. The default value

of ncsize is based on the kernel variable maxusers. It is computed at system boot

time. This value can be changed by making an entry in the /etc/system file:

set ncsize = new_value

The new ncsize is effective after you reboot the system.

vx_maxlink

The VxFS vx_maxlink tunable determines the number of sub-directories that can

be created under a directory.

A VxFS file system obtains the value of vx_maxlink from the system configuration

file /etc/system. By default, vx_maxlink is 32K. To change the computed value

of vx_maxlink, you can add an entry to the system configuration file. For example:

set vxfs:vx_maxlink = 65534

sets vx_maxlink to the maximum number of sub-directories. Valid values are 1

to 65534 (FFFE hexadecimal). Changes to vx_maxlink take effect after rebooting.

Veritas Volume Manager maximum I/O size

When using VxFS with Veritas Volume Manager (VxVM), VxVM by default breaks

up I/O requests larger than 256K. When using striping, to optimize performance,

the file system issues I/O requests that are up to a full stripe in size. If the stripe

size is larger than 256K, those requests are broken up.

To avoid undesirable I/O breakup, you can increase the maximum I/O size by

changing the value of the vol_maxio parameter in the /etc/system file.

vol_maxio

The vol_maxio parameter controls the maximum size of logical I/O operations

that can be performed without breaking up a request. Logical I/O requests larger

than this value are broken up and performed synchronously. Physical I/Os are

broken up based on the capabilities of the disk device and are unaffected by

changes to the vol_maxio logical request limit.

41VxFS performance: creating, mounting, and tuning File Systems
Using kernel tunables

Raising the vol_maxio limit can cause problems if the size of an I/O requires more

memory or kernel mapping space than exists. The recommended maximum for

vol_maxio is 20% of the smaller of physical memory or kernel virtual memory.

It is not advisable to go over this limit. Within this limit, you can generally obtain

the best results by setting vol_maxio to the size of your largest stripe. This applies

to both RAID-0 striping and RAID-5 striping.

To increase the value of vol_maxio, add an entry to /etc/system (after the entry

forceload:drv/vxio) and reboot for the change to take effect. For example, the

following line sets the maximum I/O size to 16 MB:

set vxio:vol_maxio=32768

This parameter is in 512-byte sectors and is stored as a 16-bit number, so it cannot

be larger than 65535.

Monitoring free space
In general, VxFS works best if the percentage of free space in the file system does

not get below 10 percent. This is because file systems with 10 percent or more

free space have less fragmentation and better extent allocation. Regular use of

the df command to monitor free space is desirable.

See the df_vxfs(1M) manual page.

Full file systems may have an adverse effect on file system performance. Full file

systems should therefore have some files removed, or should be expanded.

See the fsadm_vxfs(1M) manual page.

Monitoring fragmentation

Fragmentation reduces performance and availability. Regular use of fsadm's

fragmentation reporting and reorganization facilities is therefore advisable.

The easiest way to ensure that fragmentation does not become a problem is to

schedule regular defragmentation runs using the cron command.

Defragmentation scheduling should range from weekly (for frequently used file

systems) to monthly (for infrequently used file systems). Extent fragmentation

should be monitored with fsadm command.

To determine the degree of fragmentation, use the following factors:

■ Percentage of free space in extents of less than 8 blocks in length

■ Percentage of free space in extents of less than 64 blocks in length

■ Percentage of free space in extents of length 64 blocks or greater

VxFS performance: creating, mounting, and tuning File Systems
Monitoring free space

42

An unfragmented file system has the following characteristics:

■ Less than 1 percent of free space in extents of less than 8 blocks in length

■ Less than 5 percent of free space in extents of less than 64 blocks in length

■ More than 5 percent of the total file system size available as free extents in

lengths of 64 or more blocks

A badly fragmented file system has one or more of the following characteristics:

■ Greater than 5 percent of free space in extents of less than 8 blocks in length

■ More than 50 percent of free space in extents of less than 64 blocks in length

■ Less than 5 percent of the total file system size available as free extents in

lengths of 64 or more blocks

The optimal period for scheduling of extent reorganization runs can be determined

by choosing a reasonable interval, scheduling fsadm runs at the initial interval,

and running the extent fragmentation report feature of fsadm before and after

the reorganization.

The “before” result is the degree of fragmentation prior to the reorganization. If

the degree of fragmentation is approaching the figures for bad fragmentation,

reduce the interval between fsadm runs. If the degree of fragmentation is low,

increase the interval between fsadm runs.

The “after” result is an indication of how well the reorganizer has performed. The

degree of fragmentation should be close to the characteristics of an unfragmented

file system. If not, it may be a good idea to resize the file system; full file systems

tend to fragment and are difficult to defragment. It is also possible that the

reorganization is not being performed at a time during which the file system in

question is relatively idle.

Directory reorganization is not nearly as critical as extent reorganization, but

regular directory reorganization improves performance. It is advisable to schedule

directory reorganization for file systems when the extent reorganization is

scheduled. The following is a sample script that is run periodically at 3:00 A.M.

from cron for a number of file systems:

outfile=/usr/spool/fsadm/out.‘/bin/date +'%m%d'‘

for i in /home /home2 /project /db

do

/bin/echo "Reorganizing $i"

/bin/timex fsadm -F vxfs -e -E -s $i

/bin/timex fsadm -F vxfs -s -d -D $i

done > $outfile 2>&1

43VxFS performance: creating, mounting, and tuning File Systems
Monitoring free space

Tuning I/O
The performance of a file system can be enhanced by a suitable choice of I/O sizes

and proper alignment of the I/O requests based on the requirements of the

underlying special device. VxFS provides tools to tune the file systems.

Note: The following tunables and the techniques work on a per file system basis.

Use them judiciously based on the underlying device properties and characteristics

of the applications that use the file system.

Tuning VxFS I/O parameters

VxFS provides a set of tunable I/O parameters that control some of its behavior.

These I/O parameters are useful to help the file system adjust to striped or RAID-5

volumes that could yield performance superior to a single disk. Typically, data

streaming applications that access large files see the largest benefit from tuning

the file system.

VxVM queries

VxVM receives the following queries during configuration:

■ The file system queries VxVM to determine the geometry of the underlying

volume and automatically sets the I/O parameters.

Note: When using file systems in multiple volume sets, VxFS sets the VxFS

tunables based on the geometry of the first component volume (volume 0) in

the volume set.

■ The mkfs command queries VxVM when the file system is created to

automatically align the file system to the volume geometry. If the default

alignment from mkfs is not acceptable, the -o align=n option can be used to

override alignment information obtained from VxVM.

■ The mount command queries VxVM when the file system is mounted and

downloads the I/O parameters.

If the default parameters are not acceptable or the file system is being used without

VxVM, then the /etc/vx/tunefstab file can be used to set values for I/O

parameters. Themount command reads the/etc/vx/tunefstab file and downloads

any parameters specified for a file system. The tunefstab file overrides any values

obtained from VxVM. While the file system is mounted, any I/O parameters can

VxFS performance: creating, mounting, and tuning File Systems
Tuning I/O

44

be changed using the vxtunefs command which can have tunables specified on

the command line or can read them from the /etc/vx/tunefstab file.

See the vxtunefs(1M) and tunefstab(4) manual pages.

The vxtunefs command can be used to print the current values of the I/O

parameters.

To print the values, type the following command:

vxtunefs -p mount_point

The following is an example tunefstab file:

/dev/vx/dsk/userdg/netbackup

read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4

/dev/vx/dsk/userdg/metasave

read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4

/dev/vx/dsk/userdg/solbuild

read_pref_io=64k,write_pref_io=64k,read_nstream=4,write_nstream=4

/dev/vx/dsk/userdg/solrelease

read_pref_io=64k,write_pref_io=64k,read_nstream=4,write_nstream=4

/dev/vx/dsk/userdg/solpatch

read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4

Tunable I/O parameters

Table 2-1 provides a list and description of these parameters.

Table 2-1 Tunable VxFS I/O parameters

DescriptionParameter

The preferred read request size. The file system uses this

in conjunction with the read_nstream value to determine

how much data to read ahead. The default value is 64K.

read_pref_io

The preferred write request size. The file system uses this

in conjunction with the write_nstream value to determine

how to do flush behind on writes. The default value is 64K.

write_pref_io

The number of parallel read requests of size read_pref_io

to have outstanding at one time. The file system uses the

product of read_nstream multiplied by read_pref_io to

determine its read ahead size. The default value for

read_nstream is 1.

read_nstream

45VxFS performance: creating, mounting, and tuning File Systems
Tuning I/O

Table 2-1 Tunable VxFS I/O parameters (continued)

DescriptionParameter

The number of parallel write requests of size write_pref_io

to have outstanding at one time. The file system uses the

product of write_nstream multiplied by write_pref_io to

determine when to do flush behind on writes. The default

value for write_nstream is 1.

write_nstream

On VxFS, files can have up to ten direct extents of variable

size stored in the inode. After these extents are used up,

the file must use indirect extents which are a fixed size

that is set when the file first uses indirect extents. These

indirect extents are 8K by default. The file system does

not use larger indirect extents because it must fail a write

and return ENOSPC if there are no extents available that

are the indirect extent size. For file systems containing

many large files, the 8K indirect extent size is too small.

The files that get into indirect extents use many smaller

extents instead of a few larger ones. By using this

parameter, the default indirect extent size can be

increased so large that files in indirects use fewer larger

extents. The tunable default_indir_size should be used

carefully. If it is set too large, then writes fail when they

are unable to allocate extents of the indirect extent size

to a file. In general, the fewer and the larger the files on

a file system, the larger the default_indir_size can be set.

This parameter should generally be set to some multiple

of the read_pref_io parameter. default_indir_size is not

applicable on Version 4 disk layouts.

default_indir_ size

Any file I/O requests larger than the

discovered_direct_iosz are handled as discovered direct

I/O. A discovered direct I/O is unbuffered similar to direct

I/O, but it does not require a synchronous commit of the

inode when the file is extended or blocks are allocated.

For larger I/O requests, the CPU time for copying the data

into the page cache and the cost of using memory to buffer

the I/O data becomes more expensive than the cost of

doing the disk I/O. For these I/O requests, using discovered

direct I/O is more efficient than regular I/O. The default

value of this parameter is 256K.

discovered_direct_iosz

VxFS performance: creating, mounting, and tuning File Systems
Tuning I/O

46

Table 2-1 Tunable VxFS I/O parameters (continued)

DescriptionParameter

Specifies the minimum amount of time, in seconds, that

the VxFS File Change Log (FCL) keeps records in the log.

When the oldest 8K block of FCL records have been kept

longer than the value of fcl_keeptime, they are purged

from the FCL and the extents nearest to the beginning of

the FCL file are freed. This process is referred to as

“punching a hole.” Holes are punched in the FCL file in

8K chunks.

If the fcl_maxalloc parameter is set, records are purged

from the FCL if the amount of space allocated to the FCL

exceeds fcl_maxalloc, even if the elapsed time the records

have been in the log is less than the value of fcl_keeptime.

If the file system runs out of space before fcl_keeptime is

reached, the FCL is deactivated.

Either or both of the fcl_keeptime or fcl_maxalloc

parameters must be set before the File Change Log can be

activated. fcl_keeptime does not apply to disk layout

Versions 1 through 5.

fcl_keeptime

Specifies the maximum amount of space that can be

allocated to the VxFS File Change Log (FCL). The FCL file

is a sparse file that grows as changes occur in the file

system. When the space allocated to the FCL file reaches

the fcl_maxalloc value, the oldest FCL records are purged

from the FCL and the extents nearest to the beginning of

the FCL file are freed. This process is referred to as

“punching a hole.” Holes are punched in the FCL file in

8K chunks. If the file system runs out of space before

fcl_maxalloc is reached, the FCL is deactivated.

Either or both of the fcl_maxalloc or fcl_keeptime

parameters must be set before the File Change Log can be

activated. fcl_maxalloc does not apply to disk lay out

Versions 1 through 5.

fcl_maxalloc

47VxFS performance: creating, mounting, and tuning File Systems
Tuning I/O

Table 2-1 Tunable VxFS I/O parameters (continued)

DescriptionParameter

Specifies the time, in seconds, that must elapse before the

VxFS File Change Log (FCL) records a data overwrite, data

extending write, or data truncate for a file. The ability to

limit the number of repetitive FCL records for continuous

writes to the same file is important for file system

performance and for applications processing the FCL.

fcl_winterval is best set to an interval less than the

shortest interval between reads of the FCL by any

application. This way all applications using the FCL can

be assured of finding at least one FCL record for any file

experiencing continuous data changes.

fcl_winterval is enforced for all files in the file system.

Each file maintains its own time stamps, and the elapsed

time between FCL records is per file. This elapsed time

can be overridden using the VxFS FCL sync public API.

See the vxfs_fcl_sync(3) manual page.

fcl_winterval does not apply to disk layout Versions 1

through 5.

fcl_winterval

For a file managed by a hierarchical storage management

(HSM) application, hsm_write_prealloc preallocates disk

blocks before data is migrated back into the file system.

An HSM application usually migrates the data back

through a series of writes to the file, each of which

allocates a few blocks. By setting hsm_write_prealloc

(hsm_write_prealloc=1), a sufficient number of disk blocks

are allocated on the first write to the empty file so that

no disk block allocation is required for subsequent writes.

This improves the write performance during migration.

The hsm_write_prealloc parameter is implemented outside

of the DMAPI specification, and its usage has limitations

depending on how the space within an HSM-controlled

file is managed. It is advisable to use hsm_write_prealloc

only when recommended by the HSM application

controlling the file system.

hsm_write_ prealloc

VxFS performance: creating, mounting, and tuning File Systems
Tuning I/O

48

Table 2-1 Tunable VxFS I/O parameters (continued)

DescriptionParameter

Changes the default initial extent size. VxFS determines,

based on the first write to a new file, the size of the first

extent to be allocated to the file. Normally the first extent

is the smallest power of 2 that is larger than the size of

the first write. If that power of 2 is less than 8K, the first

extent allocated is 8K. After the initial extent, the file

system increases the size of subsequent extents with each

allocation.

See max_seqio_extent_size).

Since most applications write to files using a buffer size

of 8K or less, the increasing extents start doubling from

a small initial extent. initial_extent_size can change the

default initial extent size to be larger, so the doubling

policy starts from a much larger initial size and the file

system does not allocate a set of small extents at the start

of file. Use this parameter only on file systems that have

a very large average file size. On these file systems it

results in fewer extents per file and less fragmentation.

initial_extent_size is measured in file system blocks.

initial_extent_size

Specifies the maximum number of inodes to place on an

inode aging list. Inode aging is used in conjunction with

file system Storage Checkpoints to allow quick restoration

of large, recently deleted files. The aging list is maintained

in first-in-first-out (fifo) order up to maximum number

of inodes specified by inode_aging_count. As newer inodes

are placed on the list, older inodes are removed to

complete their aging process. For best performance, it is

advisable to age only a limited number of larger files

before completion of the removal process. The default

maximum number of inodes to age is 2048.

inode_aging_count

Specifies the minimum size to qualify a deleted inode for

inode aging. Inode aging is used in conjunction with file

system Storage Checkpoints to allow quick restoration of

large, recently deleted files. For best performance, it is

advisable to age only a limited number of larger files

before completion of the removal process. Setting the size

too low can push larger file inodes out of the aging queue

to make room for newly removed smaller file inodes.

inode_aging_size

49VxFS performance: creating, mounting, and tuning File Systems
Tuning I/O

Table 2-1 Tunable VxFS I/O parameters (continued)

DescriptionParameter

The maximum size of a direct I/O request that are issued

by the file system. If a larger I/O request comes in, then

it is broken up into max_direct_iosz chunks. This

parameter defines how much memory an I/O request can

lock at once, so it should not be set to more than 20

percent of memory.

max_direct_iosz

Limits the maximum disk queue generated by a single file.

When the file system is flushing data for a file and the

number of pages being flushed exceeds max_diskq,

processes are blocked until the amount of data being

flushed decreases. Although this does not limit the actual

disk queue, it prevents flushing processes from making

the system unresponsive. The default value is 1 MB.

max_diskq

Increases or decreases the maximum size of an extent.

When the file system is following its default allocation

policy for sequential writes to a file, it allocates an initial

extent which is large enough for the first write to the file.

When additional extents are allocated, they are

progressively larger (the algorithm tries to double the size

of the file with each new extent) so each extent can hold

several writes worth of data. This is done to reduce the

total number of extents in anticipation of continued

sequential writes. When the file stops being written, any

unused space is freed for other files to use. Normally this

allocation stops increasing the size of extents at 2048

blocks which prevents one file from holding too much

unused space. max_seqio_extent_size is measured in file

system blocks.

max_seqio_extent_size

Enables or disables caching on Quick I/O files. The default

behavior is to disable caching. To enable caching, set

qio_cache_enable to 1. On systems with large memories,

the database cannot always use all of the memory as a

cache. By enabling file system caching as a second level

cache, performance may be improved. If the database is

performing sequential scans of tables, the scans may run

faster by enabling file system caching so the file system

performs aggressive read-ahead on the files.

qio_cache_enable

VxFS performance: creating, mounting, and tuning File Systems
Tuning I/O

50

Table 2-1 Tunable VxFS I/O parameters (continued)

DescriptionParameter

The default for all VxFS read operations is to perform

sequential read ahead. You can specify the read_ahead

cache advisory to implement the VxFS enhanced read

ahead functionality. This allows read aheads to detect

more elaborate patterns (such as increasing or decreasing

read offsets or multithreaded file accesses) in addition to

simple sequential reads. You can specify the following

values for read_ahead:

0—Disables read ahead functionality

1—Retains traditional sequential read ahead behavior

2—Enables enhanced read ahead for all reads

The default is 1—VxFS detects only sequential patterns.

read_ahead detects patterns on a per-thread basis, up to

a maximum determined by vx_era_nthreads parameter.

The default number of threads is 5, but you can change

the default value by setting the vx_era_nthreads

parameter in the /etc/system configuration file.

read_ahead

51VxFS performance: creating, mounting, and tuning File Systems
Tuning I/O

Table 2-1 Tunable VxFS I/O parameters (continued)

DescriptionParameter

The write_throttle parameter is useful in special situations

where a computer system has a combination of a large

amount of memory and slow storage devices. In this

configuration, sync operations (such as fsync()) may

take long enough to complete that a system appears to

hang. This behavior occurs because the file system is

creating dirty pages (in-memory updates) faster than they

can be asynchronously flushed to disk without slowing

system performance.

Lowering the value of write_throttle limits the number

of dirty pages per file that a file system generates before

flushing the pages to disk. After the number of dirty pages

for a file reaches the write_throttle threshold, the file

system starts flushing pages to disk even if free memory

is still available.

The default value of write_throttle is zero, which puts no

limit on the number of dirty pages per file. If non-zero,

VxFS limits the number of dirty pages per file to

write_throttle pages.

The default value typically generates a large number of

dirty pages, but maintains fast user writes. Depending on

the speed of the storage device, if you lower write_throttle,

user write performance may suffer, but the number of

dirty pages is limited, so sync operations completes much

faster.

Because lowering write_throttle may in some cases delay

write requests (for example, lowering write_throttle may

increase the file disk queue to the max_diskq value,

delaying user writes until the disk queue decreases), it is

advisable not to change the value of write_throttle unless

your system has a combination of large physical memory

and slow storage devices.

write_throttle

File system tuning guidelines

If the file system is being used with VxVM, it is advisable to let the VxFS I/O

parameters be set to default values based on the volume geometry.

VxFS performance: creating, mounting, and tuning File Systems
Tuning I/O

52

Note: VxFS does not query VxVM with multiple volume sets. To improve I/O

performance when using multiple volume sets, use the vxtunefs command.

If the file system is being used with a hardware disk array or volume manager

other than VxVM, try to align the parameters to match the geometry of the logical

disk. With striping or RAID-5, it is common to set read_pref_io to the stripe unit

size and read_nstream to the number of columns in the stripe. For striped arrays,

use the same values for write_pref_io and write_nstream, but for RAID-5 arrays,

set write_pref_io to the full stripe size and write_nstream to 1.

For an application to do efficient disk I/O, it should use the following formula to

issue read requests:

■ read requests = read_nstream x by read_pref_io

Generally, any multiple or factor of read_nstream multiplied by read_pref_io

should be a good size for performance. For writing, the same rule of thumb applies

to the write_pref_io and write_nstreamparameters. When tuning a file system,

the best thing to do is try out the tuning parameters under a real life workload.

If an application is doing sequential I/O to large files, it should try to issue requests

larger than the discovered_direct_iosz. This causes the I/O requests to be

performed as discovered direct I/O requests, which are unbuffered like direct I/O

but do not require synchronous inode updates when extending the file. If the file

is larger than can fit in the cache, using unbuffered I/O avoids removing useful

data out of the cache and lessens CPU overhead.

53VxFS performance: creating, mounting, and tuning File Systems
Tuning I/O

VxFS performance: creating, mounting, and tuning File Systems
Tuning I/O

54

Extent attributes

This chapter includes the following topics:

■ About extent attributes

■ Commands related to extent attributes

About extent attributes
Veritas File System (VxFS) allocates disk space to files in groups of one or more

adjacent blocks called extents. VxFS defines an application interface that allows

programs to control various aspects of the extent allocation for a given file. The

extent allocation policies associated with a file are referred to as extent attributes.

The VxFS getext and setext commands let you view or manipulate file extent

attributes. In addition, the vxdump, vxrestore, mv_vxfs, cp_vxfs, and cpio_vxfs

commands preserve extent attributes when a file is backed up, moved, copied, or

archived.

The two basic extent attributes associated with a file are its reservation and its

fixed extent size. You can preallocate space to the file by manipulating a file's

reservation, or override the default allocation policy of the file system by setting

a fixed extent size.

Other policies determine the way these attributes are expressed during the

allocation process.

You can specify the following attribute properties:

■ The space reserved for a file must be contiguous

■ No allocations are made for a file beyond the current reservation

■ An unused reservation is released when the file is closed

■ Space is allocated, but no reservation is assigned

3Chapter

■ The file size is changed to incorporate the allocated space immediately

Some of the extent attributes are persistent and become part of the on-disk

information about the file, while other attributes are temporary and are lost after

the file is closed or the system is rebooted. The persistent attributes are similar

to the file's permissions and are written in the inode for the file. When a file is

copied, moved, or archived, only the persistent attributes of the source file are

preserved in the new file.

See “Other controls” on page 57.

In general, the user will only set extent attributes for reservation. Many of the

attributes are designed for applications that are tuned to a particular pattern of

I/O or disk alignment.

See the mkfs_vxfs(1M) manual page.

See “About VxFS I/O” on page 61.

Reservation: preallocating space to a file

VxFS makes it possible to preallocate space to a file at the time of the request

rather than when data is written into the file. This space cannot be allocated to

other files in the file system. VxFS prevents any unexpected out-of-space condition

on the file system by ensuring that a file's required space will be associated with

the file before it is required.

A persistent reservation is not released when a file is truncated. The reservation

must be cleared or the file must be removed to free the reserved space.

Fixed extent size

The VxFS default allocation policy uses a variety of methods to determine how

to make an allocation to a file when a write requires additional space. The policy

attempts to balance the two goals of optimum I/O performance through large

allocations and minimal file system fragmentation through allocation from space

available in the file system that best fits the data.

Setting a fixed extent size overrides the default allocation policies for a file and

always serves as a persistent attribute. Be careful to choose an extent size

appropriate to the application when using fixed extents. An advantage of VxFS's

extent-based allocation policies is that they rarely use indirect blocks compared

to block based file systems; VxFS eliminates many instances of disk access that

stem from indirect references. However, a small extent size can eliminate this

advantage.

Files with large extents tend to be more contiguous and have better I/O

characteristics. However, the overall performance of the file system degrades

Extent attributes
About extent attributes

56

because the unused space fragments free space by breaking large extents into

smaller pieces. By erring on the side of minimizing fragmentation for the file

system, files may become so non-contiguous that their I/O characteristics would

degrade.

Fixed extent sizes are particularly appropriate in the following situations:

■ If a file is large and sparse and its write size is fixed, a fixed extent size that is

a multiple of the write size can minimize space wasted by blocks that do not

contain user data as a result of misalignment of write and extent sizes. The

default extent size for a sparse file is 8K.

■ If a file is large and contiguous, a large fixed extent size can minimize the

number of extents in the file.

Custom applications may also use fixed extent sizes for specific reasons, such as

the need to align extents to cylinder or striping boundaries on disk.

Other controls

The auxiliary controls on extent attributes determine the following conditions:

■ Whether allocations are aligned

■ Whether allocations are contiguous

■ Whether the file can be written beyond its reservation

■ Whether an unused reservation is released when the file is closed

■ Whether the reservation is a persistent attribute of the file

■ When the space reserved for a file will actually become part of the file

Alignment

Specific alignment restrictions coordinate a file's allocations with a particular

I/O pattern or disk alignment. Alignment can only be specified if a fixed extent

size has also been set. Setting alignment restrictions on allocations is best left to

well-designed applications.

See the mkfs_vxfs(1M) manual page.

See “About VxFS I/O” on page 61.

Contiguity

A reservation request can specify that its allocation remain contiguous (all one

extent). Maximum contiguity of a file optimizes its I/O characteristics.

57Extent attributes
About extent attributes

Note:Fixed extent sizes or alignment cause a file system to return an error message

reporting insufficient space if no suitably sized (or aligned) extent is available.

This can happen even if the file system has sufficient free space and the fixed

extent size is large.

Write operations beyond reservation

A reservation request can specify that no allocations can take place after a write

operation fills up the last available block in the reservation. This specification

can be used in a similar way to ulimit to prevent a file's uncontrolled growth.

Reservation trimming

A reservation request can specify that any unused reservation be released when

the file is closed. The file is not completely closed until all processes open against

the file have closed it.

Reservation persistence

A reservation request can ensure that the reservation does not become a persistent

attribute of the file. The unused reservation is discarded when the file is closed.

Including reservation in the file

A reservation request can make sure the size of the file is adjusted to include the

reservation. Normally, the space of the reservation is not included in the file until

an extending write operation requires it. A reservation that immediately changes

the file size can generate large temporary files. Unlike a ftruncate operation that

increases the size of a file, this type of reservation does not perform zeroing of

the blocks included in the file and limits this facility to users with appropriate

privileges. The data that appears in the file may have been previously contained

in another file. For users who do not have the appropriate privileges, there is a

variant request that prevents such users from viewing uninitialized data.

Commands related to extent attributes
The VxFS commands for manipulating extent attributes are setext and getext;

they allow the user to set up files with a given set of extent attributes or view any

attributes that are already associated with a file.

See the setext(1) and getext(1) manual pages.

Extent attributes
Commands related to extent attributes

58

The VxFS-specific commandsvxdump,vxrestore,mv_vxfs,cp_vxfs, andcpio_vxfs

preserve extent attributes when backing up, restoring, moving, or copying files.

Make sure to modify your PATH when using the VxFS versions of mv, cp, and cpio.

Most of these commands include a command line option (-e) for maintaining

extent attributes on files. This option specifies dealing with a VxFS file that has

extent attribute information including reserved space, a fixed extent size, and

extent alignment. The extent attribute information may be lost if the destination

file system does not support extent attributes, has a different block size than the

source file system, or lacks free extents appropriate to satisfy the extent attribute

requirements.

The -e option takes any of the following keywords as an argument:

Issues a warning message if extent attribute information cannot be

maintained (the default)

warn

Fails the copy if extent attribute information cannot be maintainedforce

Ignores extent attribute information entirelyignore

Failure to preserve extent attributes

Whenever a file is copied, moved, or archived using commands that preserve

extent attributes, there is nevertheless the possibility of losing the attributes.

Such a failure might occur for one of the following reasons:

■ The file system receiving a copied, moved, or restored file from an archive is

not a VxFS type. Since other file system types do not support the extent

attributes of the VxFS file system, the attributes of the source file are lost

during the migration.

■ The file system receiving a copied, moved, or restored file is a VxFS type but

does not have enough free space to satisfy the extent attributes. For example,

consider a 50K file and a reservation of 1 MB. If the target file system has 500K

free, it could easily hold the file but fail to satisfy the reservation.

■ The file system receiving a copied, moved, or restored file from an archive is

a VxFS type but the different block sizes of the source and target file system

make extent attributes impossible to maintain. For example, consider a source

file system of block size 1024, a target file system of block size 4096, and a file

that has a fixed extent size of 3 blocks (3072 bytes). This fixed extent size

adapts to the source file system but cannot translate onto the target file system.

The same source and target file systems in the preceding example with a file

carrying a fixed extent size of 4 could preserve the attribute; a 4 block (4096

59Extent attributes
Commands related to extent attributes

byte) extent on the source file system would translate into a 1 block extent on

the target.

On a system with mixed block sizes, a copy, move, or restoration operation

may or may not succeed in preserving attributes. It is recommended that the

same block size be used for all file systems on a given system.

Extent attributes
Commands related to extent attributes

60

VxFS I/O Overview

This chapter includes the following topics:

■ About VxFS I/O

■ Buffered and Direct I/O

■ Cache advisories

■ Freezing and thawing a file system

■ Getting the I/O size

About VxFS I/O
VxFS processes two basic types of file system I/O:

■ Sequential

■ Random or I/O that is not sequential

For sequential I/O, VxFS employs a read-ahead policy by default when the

application is reading data. For writing, it allocates contiguous blocks if possible.

In most cases, VxFS handles I/O that is sequential through buffered I/O. VxFS

handles random or nonsequential I/O using direct I/O without buffering.

VxFS provides a set of I/O cache advisories for use when accessing files.

See the Veritas File System Programmer's Reference Guide.

See the vxfsio(7) manual page.

Buffered and Direct I/O
VxFS responds with read-ahead for sequential read I/O. This results in buffered

I/O. The data is prefetched and retained in buffers for the application. The data

4Chapter

buffers are commonly referred to as VxFS buffer cache. This is the default VxFS

behavior.

On the other hand, direct I/O does not buffer the data when the I/O to the

underlying device is completed. This saves system resources like memory and

CPU usage. Direct I/O is possible only when alignment and sizing criteria are

satisfied.

See “Direct I/O requirements” on page 62.

All the supported platforms have a VxFS buffered cache. Each platform also has

either a page cache or its own buffer cache. These caches are commonly known

as the file system caches.

Direct I/O does not use these caches. The memory used for direct I/O is discarded

after the I/O is complete,

Direct I/O

Direct I/O is an unbuffered form of I/O. If the VX_DIRECT advisory is set, the user

is requesting direct data transfer between the disk and the user-supplied buffer

for reads and writes. This bypasses the kernel buffering of data, and reduces the

CPU overhead associated with I/O by eliminating the data copy between the kernel

buffer and the user's buffer. This also avoids taking up space in the buffer cache

that might be better used for something else. The direct I/O feature can provide

significant performance gains for some applications.

The direct I/O and VX_DIRECT advisories are maintained on a per-file-descriptor

basis.

Direct I/O requirements

For an I/O operation to be performed as direct I/O, it must meet certain alignment

criteria. The alignment constraints are usually determined by the disk driver, the

disk controller, and the system memory management hardware and software.

The requirements for direct I/O are as follows:

■ The starting file offset must be aligned to a 512-byte boundary.

■ The ending file offset must be aligned to a 512-byte boundary, or the length

must be a multiple of 512 bytes.

■ The memory buffer must start on an 8-byte boundary.

Direct I/O versus synchronous I/O

Because direct I/O maintains the same data integrity as synchronous I/O, it can

be used in many applications that currently use synchronous I/O. If a direct I/O

VxFS I/O Overview
Buffered and Direct I/O

62

request does not allocate storage or extend the file, the inode is not immediately

written.

Direct I/O CPU overhead

The CPU cost of direct I/O is about the same as a raw disk transfer. For sequential

I/O to very large files, using direct I/O with large transfer sizes can provide the

same speed as buffered I/O with much less CPU overhead.

If the file is being extended or storage is being allocated, direct I/O must write the

inode change before returning to the application. This eliminates some of the

performance advantages of direct I/O.

Discovered Direct I/O

Discovered Direct I/O is a file system tunable that is set using the vxtunefs

command. When the file system gets an I/O request larger than the

discovered_direct_iosz, it tries to use direct I/O on the request. For large I/O sizes,

Discovered Direct I/O can perform much better than buffered I/O.

Discovered Direct I/O behavior is similar to direct I/O and has the same alignment

constraints, except writes that allocate storage or extend the file size do not require

writing the inode changes before returning to the application.

See “Tuning I/O” on page 44..

Unbuffered I/O

If the VX_UNBUFFERED advisory is set, I/O behavior is the same as direct I/O

with the VX_DIRECT advisory set, so the alignment constraints that apply to

direct I/O also apply to unbuffered I/O. For unbuffered I/O, however, if the file is

being extended, or storage is being allocated to the file, inode changes are not

updated synchronously before the write returns to the user. The VX_UNBUFFERED

advisory is maintained on a per-file-descriptor basis.

Data synchronous I/O

If the VX_DSYNC advisory is set, the user is requesting data synchronous I/O. In

synchronous I/O, the data is written, and the inode is written with updated times

and, if necessary, an increased file size. In data synchronous I/O, the data is

transferred to disk synchronously before the write returns to the user. If the file

is not extended by the write, the times are updated in memory, and the call returns

to the user. If the file is extended by the operation, the inode is written before the

write returns.

63VxFS I/O Overview
Buffered and Direct I/O

The direct I/O and VX_DSYNC advisories are maintained on a per-file-descriptor

basis.

Data synchronous I/O vs. synchronous I/O

Like direct I/O, the data synchronous I/O feature can provide significant

application performance gains. Because data synchronous I/O maintains the same

data integrity as synchronous I/O, it can be used in many applications that

currently use synchronous I/O. If the data synchronous I/O does not allocate

storage or extend the file, the inode is not immediately written. The data

synchronous I/O does not have any alignment constraints, so applications that

find it difficult to meet the alignment constraints of direct I/O should use data

synchronous I/O.

If the file is being extended or storage is allocated, data synchronous I/O must

write the inode change before returning to the application. This case eliminates

the performance advantage of data synchronous I/O.

Cache advisories
VxFS allows an application to set cache advisories for use when accessing files.

VxFS cache advisories enable applications to help monitor the buffer cache and

provide information on how better to tune the buffer cache to improve performance

gain.

The basic function of the cache advisory is to let you know whether you could

have avoided a later re-read of block X if the buffer cache had been a little larger.

Conversely, the cache advisory can also let you know that you could safely reduce

the buffer cache size without putting block X into jeopardy.

These advisories are in memory only and do not persist across reboots. Some

advisories are currently maintained on a per-file, not a per-file-descriptor, basis.

Only one set of advisories can be in effect for all accesses to the file. If two

conflicting applications set different advisories, both must use the advisories that

were last set.

All advisories are set using the VX_SETCACHE ioctl command. The current set of

advisories can be obtained with the VX_GETCACHE ioctl command.

See the vxfsio(7) manual page.

Freezing and thawing a file system
Freezing a file system is a necessary step for obtaining a stable and consistent

image of the file system at the volume level. Consistent volume-level file system

VxFS I/O Overview
Cache advisories

64

images can be obtained and used with a file system snapshot tool. The freeze

operation flushes all buffers and pages in the file system cache that contain dirty

metadata and user data. The operation then suspends any new activity on the file

system until the file system is thawed.

The VX_FREEZE ioctl command is used to freeze a file system. Freezing a file

system temporarily blocks all I/O operations to a file system and then performs

a sync on the file system. When the VX_FREEZE ioctl is issued, all access to the

file system is blocked at the system call level. Current operations are completed

and the file system is synchronized to disk.

When the file system is frozen, any attempt to use the frozen file system, except

for a VX_THAW ioctl command, is blocked until a process executes the VX_THAW

ioctl command or the time-out on the freeze expires.

Getting the I/O size
VxFS provides the VX_GET_IOPARAMETERS ioctl to get the recommended I/O

sizes to use on a file system. This ioctl can be used by the application to make

decisions about the I/O sizes issued to VxFS for a file or file device.

See the vxtunefs(1M) and vxfsio(7) manual pages.

See “Tuning I/O” on page 44.

65VxFS I/O Overview
Getting the I/O size

VxFS I/O Overview
Getting the I/O size

66

Storage Checkpoints

This chapter includes the following topics:

■ About Storage Checkpoints

■ How a Storage Checkpoint works

■ Types of Storage Checkpoints

■ Storage Checkpoint administration

■ Space management considerations

■ Restoring a file system from a Storage Checkpoint

■ Storage Checkpoint quotas

About Storage Checkpoints
Veritas File System provides a Storage Checkpoint feature that quickly creates a

persistent image of a file system at an exact point in time. Storage Checkpoints

significantly reduce I/O overhead by identifying and maintaining only the file

system blocks that have changed since the last Storage Checkpoint or backup via

a copy-on-write technique.

See “Copy-on-write” on page 71.

Storage Checkpoints provide:

■ Persistence through reboots and crashes.

■ The ability for data to be immediately writeable by preserving the file system

metadata, the directory hierarchy, and user data.

Storage Checkpoints are actually data objects that are managed and controlled

by the file system. You can create, remove, and rename Storage Checkpoints

because they are data objects with associated names.

5Chapter

See “How a Storage Checkpoint works” on page 69.

Unlike a disk-based mirroring technology that requires a separate storage space,

Storage Checkpoints minimize the use of disk space by using a Storage Checkpoint

within the same free space available to the file system.

After you create a Storage Checkpoint of a mounted file system, you can also

continue to create, remove, and update files on the file system without affecting

the logical image of the Storage Checkpoint. A Storage Checkpoint preserves not

only the name space (directory hierarchy) of the file system, but also the user data

as it existed at the moment the file system image was captured.

You can use a Storage checkpoint in many ways. For example, you can use them

to:

■ Create a stable image of the file system that can be backed up to tape.

■ Provide a mounted, on-disk backup of the file system so that end users can

restore their own files in the event of accidental deletion. This is especially

useful in a home directory, engineering, or email environment.

■ Create a copy of an application's binaries before installing a patch to allow for

rollback in case of problems.

■ Create an on-disk backup of the file system in that can be used addition to a

traditional tape-based backup to provide faster backup and restore capabilities.

How Storage Checkpoints differ from snapshots

Storage Checkpoints differ from Veritas File System snapshots in the following

ways because they:

■ Allow write operations to the Storage Checkpoint itself.

■ Persist after a system reboot or failure.

■ Share the same pool of free space as the file system.

■ Maintain a relationship with other Storage Checkpoints by identifying changed

file blocks since the last Storage Checkpoint.

■ Have multiple, read-only Storage Checkpoints that reduce I/O operations and

required storage space because the most recent Storage Checkpoint is the only

one that accumulates updates from the primary file system.

Various backup and replication solutions can take advantage of Storage

Checkpoints. The ability of Storage Checkpoints to track the file system blocks

that have changed since the last Storage Checkpoint facilitates backup and

replication applications that only need to retrieve the changed data. Storage

Checkpoints significantly minimize data movement and may promote higher

Storage Checkpoints
About Storage Checkpoints

68

availability and data integrity by increasing the frequency of backup and

replication solutions.

Storage Checkpoints can be taken in environments with a large number of files,

such as file servers with millions of files, with little adverse impact on performance.

Because the file system does not remain frozen during Storage Checkpoint creation,

applications can access the file system even while the Storage Checkpoint is taken.

However, Storage Checkpoint creation may take several minutes to complete

depending on the number of files in the file system.

How a Storage Checkpoint works
The Storage Checkpoint facility freezes the mounted file system (known as the

primary fileset), initializes the Storage Checkpoint, and thaws the file system.

Specifically, the file system is first brought to a stable state where all of its data

is written to disk, and the freezing process momentarily blocks all I/O operations

to the file system. A Storage Checkpoint is then created without any actual data;

the Storage Checkpoint instead points to the block map of the primary fileset.

The thawing process that follows restarts I/O operations to the file system.

You can create a Storage Checkpoint on a single file system or a list of file systems.

A Storage Checkpoint of multiple file systems simultaneously freezes the file

systems, creates a Storage Checkpoint on all of the file systems, and thaws the

file systems. As a result, the Storage Checkpoints for multiple file systems have

the same creation timestamp. The Storage Checkpoint facility guarantees that

multiple file system Storage Checkpoints are created on all or none of the specified

file systems, unless there is a system crash while the operation is in progress.

Note: The calling application is responsible for cleaning up Storage Checkpoints

after a system crash.

A Storage Checkpoint of the primary fileset initially contains a pointer to the file

system block map rather than to any actual data. The block map points to the data

on the primary fileset.

Figure 5-1 shows the file system /database and its Storage Checkpoint.

The Storage Checkpoint is logically identical to the primary fileset when the

Storage Checkpoint is created, but it does not contain any actual data blocks.

69Storage Checkpoints
How a Storage Checkpoint works

Figure 5-1 Primary fileset and its Storage Checkpoint

Primary fileset Storage Checkpoint

emp.dbf jun.dbfemp.dbf

/database /database

jun.dbf

In Figure 5-2, a square represents each block of the file system. This figure shows

a Storage Checkpoint containing pointers to the primary fileset at the time the

Storage Checkpoint is taken, as in Figure 5-1.

Figure 5-2 Initializing a Storage Checkpoint

A

B

C

D

E

Primary fileset Storage Checkpoint

Storage Checkpoints
How a Storage Checkpoint works

70

The Storage Checkpoint presents the exact image of the file system by finding

the data from the primary fileset. As the primary fileset is updated, the original

data is copied to the Storage Checkpoint before the new data is written. When a

write operation changes a specific data block in the primary fileset, the old data

is first read and copied to the Storage Checkpoint before the primary fileset is

updated. Subsequent writes to the specified data block on the primary fileset do

not result in additional updates to the Storage Checkpoint because the old data

needs to be saved only once. As blocks in the primary fileset continue to change,

the Storage Checkpoint accumulates the original data blocks.

Copy-on-write

In Figure 5-3, the third block originally containing C is updated.

Before the block is updated with new data, the original data is copied to the Storage

Checkpoint. This is called the copy-on-write technique, which allows the Storage

Checkpoint to preserve the image of the primary fileset when the Storage

Checkpoint is taken.

Every update or write operation does not necessarily result in the process of

copying data to the Storage Checkpoint. In this example, subsequent updates to

this block, now containing C', are not copied to the Storage Checkpoint because

the original image of the block containing C is already saved.

71Storage Checkpoints
How a Storage Checkpoint works

Figure 5-3 Updates to the primary fileset

A

B

C’

D

E

C

Primary fileset Storage Checkpoint

Types of Storage Checkpoints
You can create the following types of Storage Checkpoints:

■ Data Storage Checkpoints

■ nodata Storage Checkpoints

■ Removable Storage Checkpoints

■ Non-mountable Storage Checkpoints

Data Storage Checkpoints

A data Storage Checkpoint is a complete image of the file system at the time the

Storage Checkpoint is created. This type of Storage Checkpoint contains the file

system metadata and file data blocks. You can mount, access, and write to a data

Storage Checkpoint just as you would to a file system. Data Storage Checkpoints

are useful for backup applications that require a consistent and stable image of

an active file system. Data Storage Checkpoints introduce some overhead to the

system and to the application performing the write operation. For best results,

Storage Checkpoints
Types of Storage Checkpoints

72

limit the life of data Storage Checkpoints to minimize the impact on system

resources.

See “Showing the difference between a data and a nodata Storage Checkpoint”

on page 79.

nodata Storage Checkpoints

A nodata Storage Checkpoint only contains file system metadata—no file data

blocks. As the original file system changes, the nodata Storage Checkpoint records

the location of every changed block. Nodata Storage Checkpoints use minimal

system resources and have little impact on the performance of the file system

because the data itself does not have to be copied.

In Figure 5-4, the first block originally containing A is updated.

The original data is not copied to the storage checkpoint, but the changed block

is marked in the Storage Checkpoint. The marker indicates which data has changed.

Figure 5-4 Updates to a nodata clone

A’

B

C

D

E

Storage CheckpointPrimary fileset

See “Showing the difference between a data and a nodata Storage Checkpoint”

on page 79.

73Storage Checkpoints
Types of Storage Checkpoints

Removable Storage Checkpoints

A removable Storage Checkpoint can “self-destruct” under certain conditions

when the file system runs out of space.

See “Space management considerations” on page 86.

After encountering certain out-of-space (ENOSPC) conditions, the kernel removes

Storage Checkpoints to free up space for the application to continue running on

the file system. In almost all situations, you should create Storage Checkpoints

with the removable attribute.

Non-mountable Storage Checkpoints

You can create Storage Checkpoints that cannot be mounted by using the

fsckptadm set nomount command.

See the fsckptadm(1M) manual page.

Use this type of Storage Checkpoint as a security feature which prevents other

applications from accessing the Storage Checkpoint and modifying it.

Storage Checkpoint administration
Storage Checkpoint administrative operations require the fsckptadm utility.

See the fsckptadm(1M) manual page.

You can use the fsckptadm utility to create and remove Storage Checkpoints,

change attributes, and ascertain statistical data. Every Storage Checkpoint has

an associated name, which allows you to manage Storage Checkpoints; this name

is limited to 127 characters and cannot contain a colon (:).

Storage Checkpoints require some space for metadata on the volume or set of

volumes specified by the file system allocation policy or Storage Checkpoint

allocation policy. The fsckptadm utility displays an error if the volume or set of

volumes does not have enough free space to contain the metadata. You can roughly

approximate the amount of space required by the metadata using a method that

depends on the disk layout version of the file system.

For disk layout Version 5 or prior, multiply the number of inodes (# of inodes) by

the inode size (inosize) in bytes, and add 1 or 2 megabytes to get the approximate

amount of space required. You can determine the number of inodes with the

fsckptadm utility, and the inode size with the mkfs command:

fsckptadm -v info '' /mnt0

UNNAMED:

Storage Checkpoints
Storage Checkpoint administration

74

ctime = Thu 3 Mar 2005 7:00:17 PM PST

mtime = Thu 3 Mar 2005 7:00:17 PM PST

flags = largefiles, mounted

of inodes = 23872

of blocks = 27867

.

.

.

of overlay bmaps = 0

mkfs -m /mnt0

mkfs -F vxfs -o \

bsize=1024,version=7,inosize=256,logsize=65536,\

largefiles /mnt0

In this example, the approximate amount of space required by the metadata is 7

or 8 megabytes (23,872 x 256 bytes, plus 1 or 2 megabytes).

For disk layout Version 6 or 7, multiply the number of inodes by 1 byte, and add

1 or 2 megabytes to get the approximate amount of space required. You can

determine the number of inodes with the fsckptadm utility as above. Using the

output from the example for disk layout Version 5, the approximate amount of

space required by the metadata is just over one or two megabytes (23,872 x 1 byte,

plus 1 or 2 megabytes).

Use the fsvoladm command to determine if the volume set has enough free space.

See the fsvoladm(1M) manual page.

fsvoladm list /mnt0

devid size used avail name

0 20971520 8497658 12473862 mnt1

1 20971520 6328993 14642527 mnt2

2 20971520 4458462 16513058 mnt3

Creating a Storage Checkpoint

The following example shows the creation of a nodata Storage Checkpoint named

thu_7pm on /mnt0 and lists all Storage Checkpoints of the /mnt0 file system:

fsckptadm -n create thu_7pm /mnt0

fsckptadm list /mnt0

/mnt0

thu_7pm:

ctime = Thu 3 Mar 2005 7:00:17 PM PST

mtime = Thu 3 Mar 2005 7:00:17 PM PST

flags = nodata, largefiles

75Storage Checkpoints
Storage Checkpoint administration

See “Space management considerations” on page 86.

The following example shows the creation of a removable Storage Checkpoint

named thu_8pm on /mnt0 and lists all Storage Checkpoints of the /mnt0 file system:

fsckptadm -r create thu_8pm /mnt0

fsckptadm list /mnt0

/mnt0

thu_8pm:

ctime = Thu 3 Mar 2005 8:00:19 PM PST

mtime = Thu 3 Mar 2005 8:00:19 PM PST

flags = largefiles, removable

thu_7pm:

ctime = Thu 3 Mar 2005 7:00:17 PM PST

mtime = Thu 3 Mar 2005 7:00:17 PM PST

flags = nodata, largefiles

Removing a Storage Checkpoint

You can delete a Storage Checkpoint by specifying the remove keyword of the

fsckptadm command. Specifically, you can use either the synchronous or

asynchronous method of removing a Storage Checkpoint; the asynchronous

method is the default method. The synchronous method entirely removes the

Storage Checkpoint and returns all of the blocks to the file system before

completing the fsckptadm operation. The asynchronous method simply marks

the Storage Checkpoint for removal and causes fsckptadm to return immediately.

At a later time, an independent kernel thread completes the removal operation

and releases the space used by the Storage Checkpoint.

In this example, /mnt0 is a mounted VxFS file system with a Version 4 disk layout.

This example shows the asynchronous removal of the Storage Checkpoint named

thu_8pm and synchronous removal of the Storage Checkpoint named thu_7pm.

This example also lists all the Storage Checkpoints remaining on the /mnt0 file

system after the specified Storage Checkpoint is removed:

fsckptadm remove thu_8pm /mnt0

fsckptadm list /mnt0

/mnt0

thu_7pm:

ctime = Thu 3 Mar 2005 7:00:17 PM PST

mtime = Thu 3 Mar 2005 7:00:17 PM PST

flags = nodata, largefiles

fsckptadm -s remove thu_7pm /mnt0

fsckptadm list /mnt0

/mnt0

Storage Checkpoints
Storage Checkpoint administration

76

Accessing a Storage Checkpoint

You can mount Storage Checkpoints using the mount command with the mount

option –o ckpt=ckpt_name.

See the mount_vxfs(1M) manual page.

Observe the following rules when mounting Storage Checkpoints:

■ Storage Checkpoints are mounted as read-only Storage Checkpoints by default.

If you need to write to a Storage Checkpoint, mount it using the -o rw option.

■ If a Storage Checkpoint is originally mounted as a read-only Storage

Checkpoint, you can remount it as a writable Storage Checkpoint using the -o

remount option.

■ To mount a Storage Checkpoint of a file system, first mount the file system

itself.

■ To unmount a file system, first unmount all of its Storage Checkpoints.

Warning: If you create a Storage Checkpoint for backup purposes, do not mount

it as a writable Storage Checkpoint. You will lose the point-in-time image if

you accidently write to the Storage Checkpoint.

A Storage Checkpoint is mounted on a special pseudo device. This pseudo device

does not exist in the system name space; the device is internally created by the

system and used while the Storage Checkpoint is mounted. The pseudo device is

removed after you unmount the Storage Checkpoint. A pseudo device name is

formed by appending the Storage Checkpoint name to the file system device name

using the colon character (:) as the separator.

For example, if a Storage Checkpoint named may_23 belongs to the file system

residing on the special device /dev/vx/dsk/fsvol/vol1, the Storage Checkpoint

pseudo device name is:

/dev/vx/dsk/fsvol/vol1:may_23

■ To mount the Storage Checkpoint namedmay_23 as a read-only (default) Storage

Checkpoint on directory /fsvol_may_23, type:

mount -F vxfs -o ckpt=may_23 /dev/vx/dsk/fsvol/vol1:may_23 \

/fsvol_may_23

Note: The vol1 file system must already be mounted before the Storage

Checkpoint can be mounted.

77Storage Checkpoints
Storage Checkpoint administration

■ To remount the Storage Checkpoint named may_23 as a writable Storage

Checkpoint, type:

mount -F vxfs -o ckpt=may_23,remount,rw \

/dev/vx/dsk/fsvol/vol1:may_23 /fsvol_may_23

■ To mount this Storage Checkpoint automatically when the system starts up,

put the following entries in the /etc/vfstab file:

#device to mount device to mount point FS fsck mount mount

fsck type pass at boot options

/dev/vx/dsk/fsvol/ /dev/vx/rdsk/ /fsvol vxfs 1 yes -

vol1 fsvol/vol1

/dev/vx/dsk/fsvol/ - /fsvol_ vxfs 0 yes ckpt=may_23

vol1:may_23 may_23

■ To mount a Storage Checkpoint of a cluster file system, you must also use the

–o cluster option:

mount -F vxfs -o cluster,ckpt=may_23 \

/dev/vx/dsk/fsvol/vol1:may_23 /fsvol_may_23

You can only mount a Storage Checkpoint cluster-wide if the file system that

the Storage Checkpoint belongs to is also mounted cluster-wide. Similarly,

you can only mount a Storage Checkpoint locally if the file system that the

Storage Checkpoint belongs to is mounted locally.

You can unmount Storage Checkpoints using the umount command.

See the umount_vxfs(1M) manual page.

Storage Checkpoints can be unmounted by the mount point or pseudo device

name:

umount /fsvol_may_23

umount /dev/vx/dsk/fsvol/vol1:may_23

Note:You do not need to run the fsckutility on Storage Checkpoint pseudo devices

because pseudo devices are part of the actual file system.

Converting a data Storage Checkpoint to a nodata Storage Checkpoint

A nodata Storage Checkpoint does not contain actual file data. Instead, this type

of Storage Checkpoint contains a collection of markers indicating the location of

all the changed blocks since the Storage Checkpoint was created.

Storage Checkpoints
Storage Checkpoint administration

78

See “Types of Storage Checkpoints” on page 72.

You can use either the synchronous or asynchronous method to convert a data

Storage Checkpoint to a nodata Storage Checkpoint; the asynchronous method

is the default method. In a synchronous conversion, fsckptadm waits for all files

to undergo the conversion process to “nodata” status before completing the

operation. In an asynchronous conversion, fsckptadm returns immediately and

marks the Storage Checkpoint as a nodata Storage Checkpoint even though the

Storage Checkpoint's data blocks are not immediately returned to the pool of free

blocks in the file system. The Storage Checkpoint deallocates all of its file data

blocks in the background and eventually returns them to the pool of free blocks

in the file system.

If all of the older Storage Checkpoints in a file system are nodata Storage

Checkpoints, use the synchronous method to convert a data Storage Checkpoint

to a nodata Storage Checkpoint. If an older data Storage Checkpoint exists in the

file system, use the asynchronous method to mark the Storage Checkpoint you

want to convert for a delayed conversion. In this case, the actual conversion will

continue to be delayed until the Storage Checkpoint becomes the oldest Storage

Checkpoint in the file system, or all of the older Storage Checkpoints have been

converted to nodata Storage Checkpoints.

Note: You cannot convert a nodata Storage Checkpoint to a data Storage

Checkpoint because a nodata Storage Checkpoint only keeps track of the location

of block changes and does not save the content of file data blocks.

Showing the difference between a data and a nodata Storage
Checkpoint

The following example shows the difference between data Storage Checkpoints

and nodata Storage Checkpoints.

Note: A nodata Storage Checkpoint does not contain actual file data.

See “Converting a data Storage Checkpoint to a nodata Storage Checkpoint”

on page 78.

79Storage Checkpoints
Storage Checkpoint administration

To show the difference between Storage Checkpoints

1 Create a file system and mount it on /mnt0, as in the following example:

mkfs -F vxfs /dev/vx/rdsk/dg1/test0

version 7 layout

134217728 sectors, 67108864 blocks of size 1024, log \

size 65536 blocks, largefiles supported

mkfs -F /dev/vx/rdsk/dg1/test0 /mnt0

2 Create a small file with a known content, as in the following example.

echo "hello, world" > /mnt0/file

3 Create a Storage Checkpoint and mount it on/mnt0@5_30pm, as in the following

example:

fsckptadm create ckpt@5_30pm /mnt0

mkdir /mnt0@5_30pm

mount -F vxfs -o ckpt=ckpt@5_30pm \

/dev/vx/dsk/dg1/test0:ckpt@5_30pm /mnt0@5_30pm

4 Examine the content of the original file and the Storage Checkpoint file:

cat /mnt0/file

hello, world

cat /mnt0@5_30pm/file

hello, world

5 Change the content of the original file:

echo "goodbye" > /mnt0/file

6 Examine the content of the original file and the Storage Checkpoint file. The

original file contains the latest data while the Storage Checkpoint file still

contains the data at the time of the Storage Checkpoint creation:

cat /mnt0/file

goodbye

cat /mnt0@5_30pm/file

hello, world

Storage Checkpoints
Storage Checkpoint administration

80

7 Unmount the Storage Checkpoint, convert the Storage Checkpoint to a nodata

Storage Checkpoint, and mount the Storage Checkpoint again.

umount /mnt0@5_30pm

fsckptadm -s set nodata ckpt@5_30pm /mnt0

mount -F vxfs -o ckpt=ckpt@5_30pm \

/dev/vx/dsk/dg1/test0:ckpt@5_30pm /mnt0@5_30pm

8 Examine the content of both files. The original file must contain the latest

data:

cat /mnt0/file

goodbye

You can traverse and read the directories of the nodata Storage Checkpoint;

however, the files contain no data, only markers to indicate which block of

the file has been changed since the Storage Checkpoint was created:

ls -l /mnt0@5_30pm/file

-rw-r--r-- 1 root other 13 Jul 13 17:13 \

mnt0@5_30pm/file

cat /mnt0@5_30pm/file

cat: /mnt0@5_30pm/file: I/O error

ls -l /mnt0@5_30pm/file

-rw-r--r-- 1 root other 13 Jul 13 17:13 \

cat /mnt0@5_30pm/file

cat: read error: No such file or directory

ls -l /mnt0@5_30pm/file

-rw-r--r-- 1 root other 13 Jul 13 17:13 \

cat /mnt0@5_30pm/file

cat: /mnt0@5_30pm/file: Input/output error

ls -l /mnt0@5_30pm/file

-rw-r--r-- 1 root other 13 Jul 13 17:13 \

cat /mnt0@5_30pm/file

cat: input error on /mnt0@5_30pm/file: I/O error

ls -l /mnt0@5_30pm/file

-rw-r--r-- 1 root other 13 Jul 13 17:13 \

cat /mnt0@5_30pm/file

cat: /mnt0@5_30pm/file: I/O error

81Storage Checkpoints
Storage Checkpoint administration

Converting multiple Storage Checkpoints

You can convert Storage Checkpoints to nodata Storage Checkpoints, when dealing

with older Storage Checkpoints on the same file system.

To convert multiple Storage Checkpoints

1 Create a file system and mount it on /mnt0:

mkfs -F vxfs /dev/vx/rdsk/dg1/test0

version 7 layout

13417728 sectors, 67108864 blocks of size 1024, log \

size 65536 blocks largefiles supported

mount -F vxfs /dev/vx/dsk/dg1/test0 /mnt0

2 Create four data Storage Checkpoints on this file system, note the order of

creation, and list them:

fsckptadm create oldest /mnt0

fsckptadm create older /mnt0

fsckptadm create old /mnt0

fsckptadm create latest /mnt0

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 11:56:55 2004

mtime = Mon 26 Jul 11:56:55 2004

flags = largefiles

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004

flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004

flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = largefiles

Storage Checkpoints
Storage Checkpoint administration

82

3 Try to convert synchronously the latest Storage Checkpoint to a nodata

Storage Checkpoint. The attempt will fail because the Storage Checkpoints

older than the latest Storage Checkpoint are data Storage Checkpoints,

namely the Storage Checkpoints old, older, and oldest:

fsckptadm -s set nodata latest /mnt0

UX:vxfs fsckptadm: ERROR: V-3-24632: Storage Checkpoint

set failed on latest. File exists (17)

4 You can instead convert the latest Storage Checkpoint to a nodata Storage

Checkpoint in a delayed or asynchronous manner.

fsckptadm set nodata latest /mnt0

5 List the Storage Checkpoints, as in the following example. You will see that

the latest Storage Checkpoint is marked for conversion in the future.

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 11:56:55 2004

mtime = Mon 26 Jul 11:56:55

flags = nodata, largefiles, delayed

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004

flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004

flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = largefiles

Creating a delayed nodata Storage Checkpoint

You can combine the three previous steps and create the latest Storage

Checkpoint as a nodata Storage Checkpoint. The creation process will detect the

presence of the older data Storage Checkpoints and create the latest Storage

Checkpoint as a delayed nodata Storage Checkpoint.

83Storage Checkpoints
Storage Checkpoint administration

To create a delayed nodata Storage Checkpoint

1 Remove the latest Storage Checkpoint.

fsckptadm remove latest /mnt0

fsckptadm list /mnt0

/mnt0

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004

flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004

flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = largefiles

2 Recreate the latest Storage Checkpoint as a nodata Storage Checkpoint.

fsckptadm -n create latest /mnt0

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 12:06:42 2004

mtime = Mon 26 Jul 12:06:42 2004

flags = nodata, largefiles, delayed

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004

flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004

flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = largefiles

Storage Checkpoints
Storage Checkpoint administration

84

3 Convert the oldest Storage Checkpoint to a nodata Storage Checkpoint

because no older Storage Checkpoints exist that contain data in the file system.

Note: This step can be done synchronously.

fsckptadm -s set nodata oldest /mnt0

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 12:06:42 2004

mtime = Mon 26 Jul 12:06:42 2004

flags = nodata, largefiles, delayed

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004

flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004

flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = nodata, largefiles

85Storage Checkpoints
Storage Checkpoint administration

4 Remove the older and old Storage Checkpoints.

fsckptadm remove older /mnt0

fsckptadm remove old /mnt0

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 12:06:42 2004

mtime = Mon 26 Jul 12:06:42 2004

flags = nodata, largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = nodata, largefiles

Note: After you remove the older and old Storage Checkpoints, the latest

Storage Checkpoint is automatically converted to a nodata Storage Checkpoint

because the only remaining older Storage Checkpoint (oldest) is already a

nodata Storage Checkpoint:

Space management considerations
Several operations, such as removing or overwriting a file, can fail when a file

system containing Storage Checkpoints runs out of space. If the system cannot

allocate sufficient space, the operation will fail.

Database applications usually preallocate storage for their files and may not

expect a write operation to fail. If a file system runs out of space, the kernel

automatically removes Storage Checkpoints and attempts to complete the write

operation after sufficient space becomes available. The kernel removes Storage

Checkpoints to prevent commands, such as rm. from failing under an out-of-space

(ENOSPC) condition.

See the rm(1m) manual page.

When the kernel automatically removes the Storage Checkpoints, it applies the

following policies:

■ Remove as few Storage Checkpoints as possible to complete the operation.

■ Never select a non-removable Storage Checkpoint.

■ Select a nodata Storage Checkpoint only when data Storage Checkpoints no

longer exist.

Storage Checkpoints
Space management considerations

86

■ Remove the oldest Storage Checkpoint first.

Restoring a file system from a Storage Checkpoint
Mountable data Storage Checkpoints on a consistent and undamaged file system

can be used by backup and restore applications to restore either individual files

or an entire file system. Restoration from Storage Checkpoints can also help

recover incorrectly modified files, but typically cannot recover from hardware

damage or other file system integrity problems.

Note: For hardware or other integrity problems, Storage Checkpoints must be

supplemented by backups from other media.

Files can be restored by copying the entire file from a mounted Storage Checkpoint

back to the primary fileset. To restore an entire file system, you can designate a

mountable data Storage Checkpoint as the primary fileset using the

fsckpt_restore command.

See the fsckpt_restore(1M) manual page.

When using the fsckpt_restore command to restore a file system from a Storage

Checkpoint, all changes made to that file system after that Storage Checkpoint's

creation date are permanently lost. The only Storage Checkpoints and data

preserved are those that were created at the same time, or before, the selected

Storage Checkpoint's creation. The file system cannot be mounted when

fsckpt_restore is invoked.

Note: Files can be restored very efficiently by applications using the

fsckpt_fbmap(3) library function to restore only modified portions of a files data.

Restoring a file from a Storage Checkpoint

The following example restores a file, MyFile.txt, which resides in your home

directory, from the Storage Checkpoint CKPT1 to the device /dev/vx/dsk/vol-01.

The mount point for the device is /home.

87Storage Checkpoints
Restoring a file system from a Storage Checkpoint

To restore a file from a Storage Checkpoint

1 Create the Storage Checkpoint CKPT1 of /home.

$ fckptadm create CKPT1 /home

2 Mount Storage CheckpointCKPT1on the directory/home/checkpoints/mar_4.

$ mount -F vxfs -o ckpt=CKPT1 /dev/vx/dsk/dg1/vol- \

01:CKPT1 /home/checkpoints/mar_4

3 Delete the file MyFile.txt from your home directory.

$ cd /home/users/me

$ rm MyFile.txt

4 Go to the /home/checkpoints/mar_4/users/me directory, which contains

the image of your home directory.

$ cd /home/checkpoints/mar_4/users/me

$ ls -l

-rw-r--r-- 1 me staff 14910 Mar 4 17:09 MyFile.txt

5 Copy the file MyFile.txt to your home directory.

$ cp MyFile.txt /home/users/me

$ cd /home/users/me

$ ls -l

-rw-r--r-- 1 me staff 14910 Mar 4 18:21 MyFile.txt

Restoring a file system from a Storage Checkpoint

The following example restores a file system from the Storage Checkpoint CKPT3.

The filesets listed before the restoration show an unnamed root fileset and six

Storage Checkpoints.

U

N

A

M

E

D

C

K

P

T

6

C

K

P

T

5

C

K

P

T

4

C

K

P

T

3

C

K

P

T

1

C

K

P

T

2

Storage Checkpoints
Restoring a file system from a Storage Checkpoint

88

To restore a file system from a Storage Checkpoint

1 Run the fsckpt_restore command:

fsckpt_restore -l /dev/vx/dsk/dg1/vol2

/dev/vx/dsk/dg1/vol2:

UNNAMED:

ctime = Thu 08 May 2004 06:28:26 PM PST

mtime = Thu 08 May 2004 06:28:26 PM PST

flags = largefiles, file system root

CKPT6:

ctime = Thu 08 May 2004 06:28:35 PM PST

mtime = Thu 08 May 2004 06:28:35 PM PST

flags = largefiles

CKPT5:

ctime = Thu 08 May 2004 06:28:34 PM PST

mtime = Thu 08 May 2004 06:28:34 PM PST

flags = largefiles, nomount

CKPT4:

ctime = Thu 08 May 2004 06:28:33 PM PST

mtime = Thu 08 May 2004 06:28:33 PM PST

flags = largefiles

CKPT3:

ctime = Thu 08 May 2004 06:28:36 PM PST

mtime = Thu 08 May 2004 06:28:36 PM PST

flags = largefiles

CKPT2:

ctime = Thu 08 May 2004 06:28:30 PM PST

mtime = Thu 08 May 2004 06:28:30 PM PST

flags = largefiles

CKPT1:

ctime = Thu 08 May 2004 06:28:29 PM PST

mtime = Thu 08 May 2004 06:28:29 PM PST

flags = nodata, largefiles

89Storage Checkpoints
Restoring a file system from a Storage Checkpoint

2 In this example, select the Storage Checkpoint CKPT3 as the new root fileset:

Select Storage Checkpoint for restore operation

or <Control/D> (EOF) to exit

or <Return> to list Storage Checkpoints: CKPT3

CKPT3:

ctime = Thu 08 May 2004 06:28:31 PM PST

mtime = Thu 08 May 2004 06:28:36 PM PST

flags = largefiles

UX:vxfs fsckpt_restore: WARNING: V-3-24640: Any file system

changes or Storage Checkpoints made after

Thu 08 May 2004 06:28:31 PM PST will be lost.

Storage Checkpoints
Restoring a file system from a Storage Checkpoint

90

3 Type y to restore the file system from CKPT3:

Restore the file system from Storage Checkpoint CKPT3 ?

(ynq) y

(Yes)

UX:vxfs fsckpt_restore: INFO: V-3-23760: File system

restored from CKPT3

If the filesets are listed at this point, it shows that the former UNNAMED root

fileset and CKPT6, CKPT5, and CKPT4 were removed, and that CKPT3 is now the

primary fileset. CKPT3 is now the fileset that will be mounted by default.

C

K

P

T

3

C

K

P

T

2

C

K

P

T

1

4 Run the fsckpt_restore command:

fsckpt_restore -l /dev/vx/dsk/dg1/vol2

/dev/vx/dsk/dg1/vol2:

CKPT3:

ctime = Thu 08 May 2004 06:28:31 PM PST

mtime = Thu 08 May 2004 06:28:36 PM PST

flags = largefiles, file system root

CKPT2:

ctime = Thu 08 May 2004 06:28:30 PM PST

mtime = Thu 08 May 2004 06:28:30 PM PST

flags = largefiles

CKPT1:

ctime = Thu 08 May 2004 06:28:29 PM PST

mtime = Thu 08 May 2004 06:28:29 PM PST

flags = nodata, largefiles

Select Storage Checkpoint for restore operation

or <Control/D> (EOF) to exit

or <Return> to list Storage Checkpoints:

91Storage Checkpoints
Restoring a file system from a Storage Checkpoint

Storage Checkpoint quotas
VxFS provides options to the fsckptadm command interface to administer Storage

Checkpoint quotas. Storage Checkpoint quotas set the following limits on the

number of blocks used by all Storage Checkpoints of a primary file set:

An absolute limit that cannot be exceeded. If a hard limit is exceeded,

all further allocations on any of the Storage Checkpoints fail, but

existing Storage Checkpoints are preserved.

hard limit

Must be lower than the hard limit. If a soft limit is exceeded, no new

Storage Checkpoints can be created. The number of blocks used must

return below the soft limit before more Storage Checkpoints can be

created. An alert and console message are generated.

soft limit

In case of a hard limit violation, various solutions are possible, enacted by

specifying or not specifying the -f option for the fsckptadm utility.

See the fsckptadm(1M) manual page.

Specifying or not specifying the -f option has the following effects:

■ If the -f option is not specified, one or many removable Storage Checkpoints

are deleted to make space for the operation to succeed. This is the default

solution.

■ If the -f option is specified, all further allocations on any of the Storage

Checkpoints fail, but existing Storage Checkpoints are preserved.

Note: Sometimes if a file is removed while it is opened by another process, the

removal process is deferred until the last close. Because the removal of a file

may trigger pushing data to a “downstream” Storage Checkpoint (that is, the

next older Storage Checkpoint), a fileset hard limit quota violation may occur.

In this scenario, the hard limit is relaxed to prevent an inode from being marked

bad. This is also true for some asynchronous inode operations.

Storage Checkpoints
Storage Checkpoint quotas

92

Online backup using file

system snapshots

This chapter includes the following topics:

■ About snapshot file systems

■ Snapshot file system backups

■ Creating a snapshot file system

■ Backup examples

■ Snapshot file system performance

■ Differences between snapshots and Storage Checkpoints

■ About snapshot file system disk structure

■ How a snapshot file system works

About snapshot file systems
A snapshot file system is an exact image of a VxFS file system, referred to as the

snapped file system, that provides a mechanism for making backups. The snapshot

is a consistent view of the file system “snapped” at the point in time the snapshot

is made. You can select files to back up from the snapshot using a standard utility

such as cpio or cp, or back up the entire file system image using the vxdump or

fscat utilities.

You use the mount command to create a snapshot file system; the mkfs command

is not required. A snapshot file system is always read-only. A snapshot file system

exists only as long as it and the snapped file system are mounted and ceases to

exist when unmounted. A snapped file system cannot be unmounted until all of

6Chapter

its snapshots are unmounted. Although it is possible to have multiple snapshots

of a file system made at different times, it is not possible to make a snapshot of a

snapshot.

Note: A snapshot file system ceases to exist when unmounted. If mounted again,

it is actually a fresh snapshot of the snapped file system. A snapshot file system

must be unmounted before its dependent snapped file system can be unmounted.

Neither the fuser command nor the mount command will indicate that a snapped

file system cannot be unmounted because a snapshot of it exists.

On cluster file systems, snapshots can be created on any node in the cluster, and

backup operations can be performed from that node. The snapshot of a cluster

file system is accessible only on the node where it is created, that is, the snapshot

file system itself cannot be cluster mounted.

See the Veritas Storage Foundation Cluster File System Administrator's Guide.

Snapshot file system backups
After a snapshot file system is created, the snapshot maintains a consistent backup

of data in the snapped file system.

Backup programs, such as cpio, that back up a standard file system tree can be

used without modification on a snapshot file system because the snapshot presents

the same data as the snapped file system. Backup programs, such as vxdump, that

access the disk structures of a file system require some modifications to handle

a snapshot file system.

VxFS utilities recognize snapshot file systems and modify their behavior so that

they operate the same way on snapshots as they do on standard file systems.

Other backup programs that typically read the raw disk image cannot work on

snapshots without altering the backup procedure.

These other backup programs can use the fscat command to obtain a raw image

of the entire file system that is identical to an image obtainable by running a dd

command on the disk device containing the snapped file system at the exact

moment the snapshot was created. The snapread ioctl takes arguments similar

to those of the read system call and returns the same results that are obtainable

by performing a read on the disk device containing the snapped file system at the

exact time the snapshot was created. In both cases, however, the snapshot file

system provides a consistent image of the snapped file system with all activity

complete—it is an instantaneous read of the entire file system. This is much

different than the results that would be obtained by a dd or read command on the

disk device of an active file system.

Online backup using file system snapshots
Snapshot file system backups

94

Creating a snapshot file system
You create a snapshot file system by using the -o snapof= option of the mount

command. The -o snapsize= option may also be required if the device you are

mounting does not identify the device size in its disk label, or if you want a size

smaller than the entire device.

You must make the snapshot file system large enough to hold any blocks on the

snapped file system that may be written to while the snapshot file system exists.

If a snapshot runs out of blocks to hold copied data, the snapshot is disabled and

further attempts to access the snapshot file system fail.

During periods of low activity (such as nights and weekends), a snapshot typically

requires about two to six percent of the blocks of the snapped file system. During

a period of high activity, the snapshot of a typical file system may require 15

percent of the blocks of the snapped file system. Most file systems do not turn

over 15 percent of data in a single day. These approximate percentages tend to

be lower for larger file systems and higher for smaller file systems. You can allocate

blocks to a snapshot based on characteristics such as file system usage and

duration of backups.

Warning: Any existing data on the device used for the snapshot is overwritten.

To create a snapshot file system

◆ Mount the file system with the -o snapof= option:

mount -F vxfs -o snapof=special,snapsize=snapshot_size \

snapshot_special snapshot_mount_point

Backup examples
In the following examples, the vxdump utility is used to ascertain whether

/dev/vx/dsk/fsvol/vol1 is a snapshot mounted as /backup/home and does the

appropriate work to get the snapshot data through the mount point.

These are typical examples of making a backup of a 300,000 block file system

named /home using a snapshot file system on /dev/vx/dsk/fsvol/vol1 with a

snapshot mount point of /backup/home.

95Online backup using file system snapshots
Creating a snapshot file system

To create a backup using a snapshop file system

1 To back up files changed within the last week using cpio:

mount -F vxfs -o snapof=/home,snapsize=100000 \

/dev/vx/dsk/fsvol/vol1 /backup/home

cd /backup

find home -ctime -7 -depth -print | cpio -oc > \

/dev/rmt/c0s0

umount /backup/home

2 To do a level 3 backup of /dev/vx/dsk/fsvol/vol1 and collect those files

that have changed in the current directory:

vxdump 3f - /dev/vx/dsk/fsvol/vol1 | vxrestore -xf -

3 To do a full backup of /home, which exists on disk /dev/vx/dsk/fsvol/vol1,

and use dd to control blocking of output onto tape device using vxdump:

mount -F vxfs -o snapof=/home,snapsize=100000 \

/dev/vx/dsk/fsvol/vol1 /backup/home

vxdump f - /dev/vx/dsk/fsvol/vol1 | dd bs=128k > \

/dev/rmt/c0s0

Snapshot file system performance
Snapshot file systems maximize the performance of the snapshot at the expense

of writes to the snapped file system. Reads from a snapshot file system typically

perform at nearly the throughput rates of reads from a standard VxFS file system.

The performance of reads from the snapped file system are generally not affected.

However, writes to the snapped file system, typically average two to three times

as long as without a snapshot. This is because the initial write to a data block

requires reading the old data, writing the data to the snapshot, and then writing

the new data to the snapped file system. If there are multiple snapshots of the

same snapped file system, writes are even slower. Only the initial write to a block

experiences this delay, so operations such as writes to the intent log or inode

updates proceed at normal speed after the initial write.

Reads from the snapshot file system are impacted if the snapped file system is

busy because the snapshot reads are slowed by the disk I/O associated with the

snapped file system.

The overall impact of the snapshot is dependent on the read to write ratio of an

application and the mixing of the I/O operations. For example, a database

Online backup using file system snapshots
Snapshot file system performance

96

application running an online transaction processing (OLTP) workload on a

snapped file system was measured at about 15 to 20 percent slower than a file

system that was not snapped.

Differences between snapshots and Storage
Checkpoints

While snapshots and Storage Checkpoints both create a point-in-time image of a

file system and only the changed data blocks are updated, there are significant

differences between the two technologies:

Table 6-1 Differences between snapshots and Storage Checkpoints

Storage CheckpointsSnapshots

Reside on the same device as the original file

system

Require a separate device for storage

Can be read-only or read-writeAre read-only

Are persistentAre transient

Can exist and be mounted on their ownCease to exist after being unmounted

Track changed blocks on each file in the file

system

Track changed blocks on the file system level

Storage Checkpoints also serve as the enabling technology for two other Veritas

features: Block-Level Incremental Backups and Storage Rollback, which are used

extensively for backing up databases.

See “About Storage Checkpoints” on page 67.

About snapshot file system disk structure
A snapshot file system consists of:

■ A super-block

■ A bitmap

■ A blockmap

■ Data blocks copied from the snapped file system

The following figure shows the disk structure of a snapshot file system.

97Online backup using file system snapshots
Differences between snapshots and Storage Checkpoints

Figure 6-1 The Snapshot Disk Structure

super-block

bitmap

blockmap

data block

The super-block is similar to the super-block of a standard VxFS file system, but

the magic number is different and many of the fields are not applicable.

The bitmap contains one bit for every block on the snapped file system. Initially,

all bitmap entries are zero. A set bit indicates that the appropriate block was

copied from the snapped file system to the snapshot. In this case, the appropriate

position in the blockmap references the copied block.

The blockmap contains one entry for each block on the snapped file system.

Initially, all entries are zero. When a block is copied from the snapped file system

to the snapshot, the appropriate entry in the blockmap is changed to contain the

block number on the snapshot file system that holds the data from the snapped

file system.

The data blocks are filled by data copied from the snapped file system, starting

from the beginning of the data block area.

How a snapshot file system works
A snapshot file system is created by mounting an empty disk slice as a snapshot

of a currently mounted file system. The bitmap, blockmap and super-block are

initialized and then the currently mounted file system is frozen. After the file

system to be snapped is frozen, the snapshot is enabled and mounted and the

snapped file system is thawed. The snapshot appears as an exact image of the

snapped file system at the time the snapshot was made.

See “Freezing and thawing a file system” on page 64.

Initially, the snapshot file system satisfies read requests by finding the data on

the snapped file system and returning it to the requesting process. When an inode

update or a write changes the data in block n of the snapped file system, the old

data is first read and copied to the snapshot before the snapped file system is

updated. The bitmap entry for block n is changed from 0 to 1, indicating that the

Online backup using file system snapshots
How a snapshot file system works

98

data for block n can be found on the snapshot file system. The blockmap entry

for block n is changed from 0 to the block number on the snapshot file system

containing the old data.

A subsequent read request for block n on the snapshot file system will be satisfied

by checking the bitmap entry for block n and reading the data from the indicated

block on the snapshot file system, instead of from block n on the snapped file

system. This technique is called copy-on-write. Subsequent writes to block n on

the snapped file system do not result in additional copies to the snapshot file

system, since the old data only needs to be saved once.

All updates to the snapped file system for inodes, directories, data in files, extent

maps, and so forth, are handled in this fashion so that the snapshot can present

a consistent view of all file system structures on the snapped file system for the

time when the snapshot was created. As data blocks are changed on the snapped

file system, the snapshot gradually fills with data copied from the snapped file

system.

The amount of disk space required for the snapshot depends on the rate of change

of the snapped file system and the amount of time the snapshot is maintained. In

the worst case, the snapped file system is completely full and every file is removed

and rewritten. The snapshot file system would need enough blocks to hold a copy

of every block on the snapped file system, plus additional blocks for the data

structures that make up the snapshot file system. This is approximately 101

percent of the size of the snapped file system. Normally, most file systems do not

undergo changes at this extreme rate. During periods of low activity, the snapshot

should only require two to six percent of the blocks of the snapped file system.

During periods of high activity, the snapshot might require 15 percent of the

blocks of the snapped file system. These percentages tend to be lower for larger

file systems and higher for smaller ones.

Warning: If a snapshot file system runs out of space for changed data blocks, it is

disabled and all further attempts to access it fails. This does not affect the snapped

file system.

99Online backup using file system snapshots
How a snapshot file system works

Online backup using file system snapshots
How a snapshot file system works

100

Quotas

This chapter includes the following topics:

■ About quota limits

■ About quota files on Veritas File System

■ About quota commands

■ About quota checking with Veritas File System

■ Using quotas

About quota limits
Veritas File System (VxFS) supports user and group quotas. The quota system

limits the use of two principal resources of a file system: files and data blocks. For

each of these resources, you can assign quotas to individual users and groups to

limit their usage.

You can set the following kinds of limits for each of the two resources:

An absolute limit that cannot be exceeded under any circumstances.hard limit

Must be lower than the hard limit, and can be exceeded, but only for

a limited time. The time limit can be configured on a per-file system

basis only. The VxFS default limit is seven days.

soft limit

Soft limits are typically used when a user must run an application that could

generate large temporary files. In this case, you can allow the user to exceed the

quota limit for a limited time. No allocations are allowed after the expiration of

the time limit. Use the vxedquota command to set limits.

See “Using quotas” on page 104.

7Chapter

Although file and data block limits can be set individually for each user and group,

the time limits apply to the file system as a whole. The quota limit information is

associated with user and group IDs and is stored in a user or group quota file.

See “About quota files on Veritas File System” on page 102.

The quota soft limit can be exceeded when VxFS preallocates space to a file.

See “About extent attributes” on page 55.

About quota files on Veritas File System
A quotas file (named quotas) must exist in the root directory of a file system for

any of the quota commands to work. For group quotas to work, there must be a

quotas.grp file. The files in the file system's mount point are referred to as the

external quotas file. VxFS also maintains an internal quotas file for its own use.

The quota administration commands read and write to the external quotas file to

obtain or change usage limits. VxFS uses the internal file to maintain counts of

data blocks and inodes used by each user. When quotas are turned on, the quota

limits are copied from the external quotas file into the internal quotas file. While

quotas are on, all the changes in the usage information and changes to quotas are

registered in the internal quotas file. When quotas are turned off, the contents

of the internal quotas file are copied into the external quotas file so that all data

between the two files is synchronized.

VxFS supports group quotas in addition to user quotas. Just as user quotas limit

file system resource (disk blocks and the number of inodes) usage on individual

users, group quotas specify and limit resource usage on a group basis. As with

user quotas, group quotas provide a soft and hard limit for file system resources.

If both user and group quotas are enabled, resource utilization is based on the

most restrictive of the two limits for a given user.

To distinguish between group and user quotas, VxFS quota commands use a -g

and -u option. The default is user quotas if neither option is specified. One

exception to this rule is when quotas are specified as a mount command option.

In this case, both user and group quotas are enabled. Support for group quotas

also requires a separate group quotas file. The VxFS group quota file is named

quotas.grp. The VxFS user quotas file is named quotas. This name was used to

distinguish it from the quotas.user file used by other file systems under Solaris.

About quota commands
In general, quota administration for VxFS is performed using commands similar

to UFS quota commands. On Solaris, the available quota commands are

Quotas
About quota files on Veritas File System

102

UFS-specific. That is, these commands work only on UFS file systems. For this

reason, VxFS supports a similar set of commands that work only for VxFS file

systems.

Note: Most of the quota commands in VxFS are similar to BSD quota commands.

However, the quotacheck command is an exception; VxFS does not support an

equivalent command.

See “About quota checking with Veritas File System” on page 103.

VxFS supports the following quota-related commands:

Edits quota limits for users and groups. The limit changes made by

vxedquota are reflected both in the internal quotas file and the external

quotas file.

vxedquota

Provides a summary of quotas and disk usage.vxrepquota

Provides file ownership and usage summaries.vxquot

Views quota limits and usage.vxquota

Turns quotas on for a mounted VxFS file system.vxquotaon

Turns quotas off for a mounted VxFS file system.vxquotaoff

Beside these commands, the VxFS mount command supports a special mount

option (-o quota), which can be used to turn on quotas at mount time.

For additional information on the quota commands, see the corresponding manual

pages.

Note: When VxFS file systems are exported via NFS, the VxFS quota commands

on the NFS client cannot query or edit quotas. You can use the VxFS quota

commands on the server to query or edit quotas.

About quota checking with Veritas File System
The standard practice with most quota implementations is to mount all file systems

and then run a quota check on each one. The quota check reads all the inodes on

disk and calculates the usage for each user and group. This can be time consuming,

and because the file system is mounted, the usage can change while quotacheck

is running.

103Quotas
About quota checking with Veritas File System

VxFS does not support a quotacheck command. With VxFS, quota checking is

performed automatically, if necessary, at the time quotas are turned on. A quota

check is necessary if the file system has changed with respect to the usage

information as recorded in the internal quotas file. This happens only if the file

system was written with quotas turned off, or if there was structural damage to

the file system that required a full file system check.

See the fsck_vxfs(1M) manual page.

A quota check generally reads information for each inode on disk and rebuilds

the internal quotas file. It is possible that while quotas were not on, quota limits

were changed by the system administrator. These changes are stored in the

external quotas file. As part of enabling quotas processing, quota limits are read

from the external quotas file into the internal quotas file.

Using quotas
The VxFS quota commands are used to manipulate quotas.

Turning on quotas

To use the quota functionality on a file system, quotas must be turned on. You

can turn quotas on at mount time or after a file system is mounted.

Note: Before turning on quotas, the root directory of the file system must contain

a file for user quotas named quotas, and a file for group quotas named quotas.grp

owned by root.

To turn on quotas

1 To turn on user and group quotas for a VxFS file system, enter:

vxquotaon /mount_point

2 To turn on only user quotas for a VxFS file system, enter:

vxquotaon -u /mount_point

3 To turn on only group quotas for a VxFS file system, enter:

vxquotaon -g /mount_point

Quotas
Using quotas

104

Turning on quotas at mount time

Quotas can be turned on with the mount command when you mount a file system.

To turn on quotas at mount time

1 To turn on user or group quotas for a file system at mount time, enter:

mount -F vxfs -o quota special /mount_point

2 To turn on only user quotas, enter:

mount -F vxfs -o usrquota special /mount_point

3 To turn on only group quotas, enter:

mount -F vxfs -o grpquota special /mount_point

Editing user and group quotas

You can set up user and group quotas using the vxedquota command. You must

have superuser privileges to edit quotas.

vxedquota creates a temporary file for the given user; this file contains on-disk

quotas for each mounted file system that has a quotas file. It is not necessary that

quotas be turned on for vxedquota to work. However, the quota limits are

applicable only after quotas are turned on for a given file system.

To edit quotas

1 Specify the -u option to edit the quotas of one or more users specified by

username:

vxedquota [-u] username

Editing the quotas of one or more users is the default behavior if the -u option

is not specified.

2 Specify the -g option to edit the quotas of one or more groups specified by

groupname:

vxedquota -g groupname

Modifying time limits

The soft and hard limits can be modified or assigned values. For any user or group,

usage can never exceed the hard limit after quotas are turned on.

105Quotas
Using quotas

Modified time limits apply to the entire file system and cannot be set selectively

for each user or group.

To modify time limits

1 Specify the -t option to modify time limits for any user:

vxedquota [-u] -t

2 Specify the -g and -t options to modify time limits for any group:

vxedquota -g -t

Viewing disk quotas and usage

Use the vxquota command to view a user's or group's disk quotas and usage on

VxFS file systems.

To display disk quotas and usage

1 To display a user's quotas and disk usage on all mounted VxFS file systems

where the quotas file exists, enter:

vxquota -v [-u] username

2 To display a group's quotas and disk usage on all mounted VxFS file systems

where the quotas.grp file exists, enter:

vxquota -v -g groupname

Displaying blocks owned by users or groups

Use the vxquot command to display the number of blocks owned by each user or

group in a file system.

To display the number of blocks owned by users or groups

1 To display the number of files and the space owned by each user, enter:

vxquot [-u] -f filesystem

2 To display the number of files and the space owned by each group, enter:

vxquot -g -f filesystem

Quotas
Using quotas

106

Turning off quotas

Use the vxquotaoff command to turn off quotas.

To turn off quotas

1 To turn off quotas for a mounted file system, enter:

vxquotaoff /mount_point

2 To turn off only user quotas for a VxFS file system, enter:

vxquotaoff -u /mount_point

3 To turn off only group quotas for a VxFS file system, enter:

vxquotaoff -g /mount_point

107Quotas
Using quotas

Quotas
Using quotas

108

File Change Log

This chapter includes the following topics:

■ About File Change Log

■ About the File Change Log file

■ File Change Log administrative interface

■ File Change Log programmatic interface

■ Reverse path name lookup

About File Change Log
The VxFS File Change Log (FCL) tracks changes to files and directories in a file

system. Applications that typically use the FCL are usually required to:

■ scan an entire file system or a subset

■ discover changes since the last scan

These applications may include: backup utilities, webcrawlers, search engines,

and replication programs.

Note: The FCL tracks when the data has changed and records the change type,

but does not track the actual data changes. It is the responsibility of the application

to examine the files to determine the changed data.

FCL functionality is a separately licensable feature.

See the Veritas Storage Foundation Release Notes .

8Chapter

About the File Change Log file
File Change Log records file system changes such as creates, links, unlinks,

renaming, data appended, data overwritten, data truncated, extended attribute

modifications, holes punched, and miscellaneous file property updates.

Note: FCL is supported only on disk layout Version 6 and later.

FCL stores changes in a sparse file in the file system namespace. The FCL file is

located in mount_point/lost+found/changelog. The FCL file behaves like a

regular file, but some operations are prohibited. The standard system calls open(2),

lseek(2), read(2) and close(2) can access the data in the FCL, while the write(2),

mmap(2) and rename(2) calls are not allowed.

Warning: Although some standard system calls are currently supported, the FCL

file might be pulled out of the namespace in future VxFS release and these system

calls may no longer work. It is recommended that all new applications be developed

using the programmatic interface.

The FCL log file contains both the information about the FCL, which is stored in

the FCL superblock, and the changes to files and directories in the file system,

which is stored as FCL records.

See “File Change Log programmatic interface” on page 113.

In 4.1, the structure of the File Change Log file was exposed through the

/opt/VRTS/include/sys/fs/fcl.h header file. In this release, the internal

structure of the FCL file is opaque. The recommended mechanism to access the

FCL is through the API described by the/opt/VRTSfssdk/5.0/include/vxfsutil.h

header file.

The /opt/VRTS/include/sys/fs/fcl.h header file is included in this release to

ensure that applications accessing the FCL with the 4.1 header file do not break.

New applications should use the new FCL API described in

/opt/VRTSfssdk/5.0/include/vxfsutil.h. Existing applications should also be

modified to use the new FCL API.

With the addition of new record types, the FCL version in this release has been

updated to 4. To provide backward compatibility for the existing applications,

this release supports multiple FCL versions. Users now have the flexibility of

specifying of specifying the FCL version for new FCLs. The default FCL version is

4.

See the fcladm(1M) man page.

File Change Log
About the File Change Log file

110

File Change Log administrative interface
The FCL can be set up and tuned through the fcladm and vxtunefs VxFS

administrative commands.

See the fcladm(1M) and vxtunefs(1M) manual pages.

The FCL keywords for fcladm are as follows:

Disables the recording of the audit, open, close, and statistical

events after it has been set.

clear

Creates a regular file image of the FCL file that can be downloaded

too an off-host processing system. This file has a different format

than the FCL file.

dump

Activates the FCL on a mounted file system. VxFS 5.0 supports

either FCL Versions 3 or 4. If no version is specified, the default

is Version 4. Use fcladm on to specify the version.

on

Prints the contents of the FCL file starting from the specified

offset.

print

Restores the FCL file from the regular file image of the FCL file

created by the dump keyword.

restore

Removes the FCL file. You must first deactivate the FCL with the

off keyword, before you can remove the FCL file.

rm

Enables the recording of events specified by the 'eventlist' option.

See the fcladm(1M) manual page.

set

Writes the current state of the FCL to the standard output.state

Brings the FCL to a stable state by flushing the associated data of

an FCL recording interval.

sync

The FCL tunable parameters for vxtunefs are as follows:

111File Change Log
File Change Log administrative interface

Specifies the duration in seconds that FCL records stay in the FCL

file before they can be purged. The first records to be purged are

the oldest ones, which are located at the beginning of the file.

Additionally, records at the beginning of the file can be purged if

allocation to the FCL file exceeds fcl_maxalloc bytes. The

default value is 0. If the fcl_maxalloc parameter is set, records

are purged from the FCL file if the amount of space allocated to

the FCL file exceeds fcl_maxalloc. This is true even if the

elapsed time the records have been in the log is less than the value

of fcl_keeptime.

fcl_keeptime

Specifies the maximum number of spaces in bytes to be allocated

to the FCL file. When the space allocated exceedsfcl_maxalloc,

a hole is punched at the beginning of the file. As a result, records

are purged and the first valid offset (fc_foff) is updated. In addition,

fcl_maxalloc may be violated if the oldest record has not

reached fcl_keeptime.

The minimum value of fcl_maxalloc is 4 MB. The default value

is fs_size/33.

fcl_maxalloc

Specifies the time in seconds that must elapse before the FCL

records an overwrite, extending write, or a truncate. This helps

to reduce the number of repetitive records in the FCL. The

fcl_winterval timeout is per inode. If an inode happens to go

out of cache and returns, its write interval is reset. As a result,

there could be more than one write record for that file in the same

write interval. The default value is 3600 seconds.

fcl_winterval

The time interval in seconds within which subsequent opens of a

file do not produce an additional FCL record. This helps to reduce

the number of repetitive records logged in the FCL file. If the

tracking of access information is also enabled, a subsequent file

open even within the fcl_ointerval may produce a record, if

it is opened by a different user. Similarly, if the inode is bumped

out of cache, this may also produce more than one record within

the same open interval.

The default value is 600 sec.

fcl_ointerval

Either or both fcl_maxalloc and fcl_keeptime must be set to activate the FCL

feature. The following are examples of using the fcladm command.

To activate FCL for a mounted file system, type the following:

fcladm on mount_point

To deactivate the FCL for a mounted file system, type the following:

File Change Log
File Change Log administrative interface

112

fcladm off mount_point

To remove the FCL file for a mounted file system, on which FCL must be turned

off, type the following:

fcladm rm mount_point

To obtain the current FCL state for a mounted file system, type the following:

fcladm state mount_point

To enable tracking of the file opens along with access information with each event

in the FCL, type the following:

fcladm set fileopen,accessinfo mount_point

To stop tracking file I/O statistics in the FCL, type the following:

fcladm clear filestats mount_point

Print the on-disk FCL super-block in text format to obtain information about the

FCL file by using offset 0. Because the FCL on-disk super-block occupies the first

block of the FCL file, the first and last valid offsets into the FCL file can be

determined by reading the FCL super-block and checking the fc_foff field. Enter:

fcladm print 0 mount_point

To print the contents of the FCL in text format, of which the offset used must be

32-byte aligned, enter:

fcladm print offset mount_point

File Change Log programmatic interface
VxFS provides an enhanced API to simplify reading and parsing the FCL file in

two ways:

The API simplifies user tasks by reducing additional code needed

to parse FCL file entries. In 4.1, to obtain event information such

as a remove or link, the user was required to write additional code

to get the name of the removed or linked file. In this release, the

API allows the user to directly read an assembled record. The API

also allows the user to specify a filter to indicate a subset of the

event records of interest.

Simplified reading

113File Change Log
File Change Log programmatic interface

Providing API access for the FCL feature allows backward

compatibility for applications. The API allows applications to

parse the FCL file independent of the FCL layout changes. Even if

the hidden disk layout of the FCL changes, the API automatically

translates the returned data to match the expected output record.

As a result, the user does not need to modify or recompile the

application due to changes in the on-disk FCL layout.

Backward

compatibility

See “Reverse path name lookup” on page 115.

The following sample code fragment reads the FCL superblock, checks that the

state of the FCL is VX_FCLS_ON, issues a call to vxfs_fcl_sync to obtain a finishing

offset to read to, determines the first valid offset in the FCL file, then reads the

entries in 8K chunks from this offset. The section process fcl entries is what an

application developer must supply to process the entries in the FCL file.

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/fcntl.h>

#include <errno.h>

#include <fcl.h>

#include <vxfsutil.h>

#define FCL_READSZ 8192

char* fclname = "/mnt/lost+found/changelog";

int read_fcl(fclname) char* fclname;

{

struct fcl_sb fclsb;

uint64_t off, lastoff;

size_t size;

char buf[FCL_READSZ], *bufp = buf;

int fd;

int err = 0;

if ((fd = open(fclname, O_RDONLY)) < 0) {

return ENOENT;

}

if ((off = lseek(fd, 0, SEEK_SET)) != 0) {

close(fd);

return EIO;

}

size = read(fd, &fclsb, sizeof (struct fcl_sb));

if (size < 0) {

close(fd);

File Change Log
File Change Log programmatic interface

114

return EIO;

}

if (fclsb.fc_state == VX_FCLS_OFF) {

close(fd);

return 0;

}

if (err = vxfs_fcl_sync(fclname, &lastoff)) {

close(fd);

return err;

}

if ((off = lseek(fd, off_t, uint64_t)) != uint64_t) {

close(fd);

return EIO;

}

while (off < lastoff) {

if ((size = read(fd, bufp, FCL_READSZ)) <= 0) {

close(fd);

return errno;

}

/* process fcl entries */

off += size;

}

close(fd);

return 0;

}

Reverse path name lookup
The reverse path name lookup feature obtains the full path name of a file or

directory from the inode number of that file or directory. The inode number is

provided as an argument to the vxlsino administrative command, or the

vxfs_inotopath_gen(3) application programming interface library function.

The reverse path name lookup feature can be useful for a variety of applications,

such as for clients of the VxFS File Change Log feature, in backup and restore

utilities, and for replication products. Typically, these applications store

information by inode numbers because a path name for a file or directory can be

very long, thus the need for an easy method of obtaining a path name.

An inode is a unique identification number for each file in a file system. An inode

contains the data and metadata associated with that file, but does not include the

file name to which the inode corresponds. It is therefore relatively difficult to

determine the name of a file from an inode number. The ncheck command provides

115File Change Log
Reverse path name lookup

a mechanism for obtaining a file name from an inode identifier by scanning each

directory in the file system, but this process can take a long period of time. The

VxFS reverse path name lookup feature obtains path names relatively quickly.

Note: Because symbolic links do not constitute a path to the file, the reverse path

name lookup feature cannot track symbolic links to files.

Because of the possibility of errors with processes renaming or unlinking and

creating new files, it is advisable to perform a lookup or open with the path name

and verify that the inode number matches the path names obtained.

See the vxlsino(1M), vxfs_inotopath_gen(3), and vxfs_inotopath(3) manual pages.

File Change Log
Reverse path name lookup

116

Multi-volume file systems

This chapter includes the following topics:

■ About multi-volume support

■ About volume types

■ Features implemented using multi-volume support

■ About volume sets

■ Creating multi-volume file systems

■ Converting a single volume file system to a multi-volume file system

■ Removing a volume from a multi-volume file system

■ About allocation policies

■ Assigning allocation policies

■ Querying allocation policies

■ Assigning pattern tables to directories

■ Assigning pattern tables to file systems

■ Allocating data

■ Volume encapsulation

■ Reporting file extents

■ Load balancing

■ Converting a multi-volume file system to a single volume file system

9Chapter

About multi-volume support
VxFS provides support for multi-volume file systems when used in conjunction

with the Veritas Volume Manager. Using multi-volume support (MVS), a single

file system can be created over multiple volumes, each volume having its own

properties. For example, it is possible to place metadata on mirrored storage while

placing file data on better-performing volume types such as RAID-1+0 (striped

and mirrored).

The MVS feature also allows file systems to reside on different classes of devices,

so that a file system can be supported from both inexpensive disks and from

expensive arrays. Using the MVS administrative interface, you can control which

data goes on which volume types.

Note: MVS is available only on file systems using disk layout Version 6 or later.

See “About disk layouts” on page 275.

About volume types
VxFS utilizes two types of volumes, one of which contains only data, referred to

as dataonly, and the other of which can contain metadata or data, referred to as

metadataok.

Data refers to direct extents, which contain user data, of regular files and named

data streams in a file system.

Metadata refers to all data allocated when the file system was created with the

mkfs command or allocated at a later time. Metadata includes extents allocated

to structural files, blocks reserved for the super block, the volume label, indirect

extents, extents belonging to the File Change Log file, the history log file, extended

attributes, directories, access control lists, and so on.

A volume availability flag is set to specify if a volume is dataonly or metadataok.

The volume availability flag can be set, cleared, and listed with the fsvoladm

command.

See the fsvoladm(1M) manual page.

Features implemented using multi-volume support
The following features can be implemented using multi-volume support:

■ Controlling where files are stored can be selected at multiple levels so that

specific files or file hierarchies can be assigned to different volumes. This

Multi-volume file systems
About multi-volume support

118

functionality is available in the Veritas File System Dynamic Storage Tiering

(DST) feature.

See “About Dynamic Storage Tiering” on page 137.

■ Placing the VxFS intent log on its own volume to minimize disk head movement

and thereby increase performance. This functionality can be used to migrate

from the Veritas QuickLog™ feature.

■ Separating Storage Checkpoints so that data allocated to a Storage Checkpoint

is isolated from the rest of the file system.

■ Separating metadata from file data.

■ Encapsulating volumes so that a volume appears in the file system as a file.

This is particularly useful for databases that are running on raw volumes.

■ Guaranteeing the availability of some volumes even when others are

unavailable.

To use the multi-volume file system features, Veritas Volume Manager must be

installed and the volume set feature must be accessible.

Volume availability

MVS guarantees the availability of some volumes even when others are unavailable.

This allows you to mount a multi-volume file system even if one or more

component dataonly volumes are missing.

The volumes are separated by whether metadata is allowed on the volume. An

I/O error on a dataonly volume does not affect access to any other volumes. All

VxFS operations that do not access the missing dataonly volume function normally,

including:

■ Mounting the multi-volume file system, regardless if the file system is read-only

or read/write.

■ Kernel operations.

■ Performing a fsck replay. Logged writes are converted to normal writes if the

corresponding volume is dataonly.

■ Performing a full fsck.

■ Using all other commands that do not access data on a missing volume.

Some operations that could fail if a dataonly volume is missing include:

■ Reading or writing file data if the file's data extents were allocated from the

missing dataonly volume.

■ Using the vxdump command.

119Multi-volume file systems
Features implemented using multi-volume support

Volume availability is supported only on a file system with disk layout Version 7

or later.

Note: Do not mount a multi-volume system with the ioerror=disable or

ioerror=wdisable mount options if the volumes have different availability

properties. Symantec recommends theioerror=mdisablemount option for cluster

mounts and ioerror=mwdisable for local mounts.

About volume sets
Veritas Volume Manager exports a data object called a volume set. Unlike the

traditional Volume Manager volume, which can be used for raw I/O access or to

contain a file system, a volume set is a container for multiple different volumes.

Each volume can have its own geometry.

The Volume Manager vxvset command is used to create and manage volume sets.

Volume sets cannot be empty. When the last entry is removed, the volume set

itself is removed.

Creating and managing volume sets

The following command examples show how to create and manage volume sets.

To create and manage volume sets

1 Create a new volume set from vol1:

vxassist make vol1 10m

vxvset make myvset vol1

2 Create two new volumes and add them to the volume set:

vxassist make vol2 50m

vxassist make vol3 50m

vxvset addvol myvset vol2

vxvset addvol myvset vol3

Multi-volume file systems
About volume sets

120

3 List the component volumes of the previously created volume set:

vxvset list myvset

VOLUME INDEX LENGTH STATE CONTEXT

vol1 0 20480 ACTIVE -

vol2 1 102400 ACTIVE -

vol3 2 102400 ACTIVE -

4 Use the ls command to see that when a volume set is created, the volumes

contained by the volume set are removed from the namespace and are instead

accessed through the volume set name:

ls -l /dev/vx/rdsk/rootdg/myvset

1 root root 108,70009 May 21 15:37 /dev/vx/rdsk/rootdg/myvset

5 Create a volume, add it to the volume set, and use the ls command to see that

when a volume is added to the volume set, it is no longer visible in the

namespace:

vxassist make vol4 50m

ls -l /dev/vx/rdsk/rootdg/vol4

crw-- 1 root root 108,70012 May 21 15:43

/dev/vx/rdsk/rootdg/vol4

vxvset addvol myvset vol4

ls -l /dev/vx/rdsk/rootdg/vol4

/dev/vx/rdsk/rootdg/vol4: No such file or directory

Creating multi-volume file systems
When a multi-volume file system is created, all volumes are dataonly, except

volume zero. The volume availability flag of volume zero cannot be set to dataonly.

As metadata cannot be allocated from dataonly volumes, enough metadata space

should be allocated using metadataok volumes. The "file system out of space"

error occurs if there is insufficient metadata space available, even if the df

command shows that there is free space in the file system. The fsvoladm command

can be used to see the free space in each volume and set the availability flag of

the volume.

With the exception of adding and deleting volumes, the file system commands

operate the same on volumes within a volume set.

121Multi-volume file systems
Creating multi-volume file systems

Example of creating a multi-volume file system

The following procedure is an example of creating a multi-volume file system.

To create a multi-volume file system

1 After a volume set is created, create a VxFS file system by specifying the

volume set name as an argument to mkfs:

mkfs -F vxfs /dev/vx/rdsk/rootdg/myvset

version 7 layout

327680 sectors, 163840 blocks of size 1024,

log size 1024 blocks largefiles supported

After the file system is created, VxFS allocates space from the different

volumes within the volume set.

2 List the component volumes of the volume set using of the fsvoladm

command:

mount -F vxfs /dev/vx/dsk/rootdg/myvset /mnt1

fsvoladm list /mnt1

devid size used avail name

0 10240 1280 8960 vol1

1 51200 16 51184 vol2

2 51200 16 51184 vol3

3 51200 16 51184 vol4

3 Add a new volume by adding the volume to the volume set, then adding the

volume to the file system:

vxassist make vol5 50m

vxvset addvol myvset vol5

fsvoladm add /mnt1 vol5 50m

fsvoladm list /mnt1

devid size used avail name

0 10240 1300 8940 vol1

1 51200 16 51184 vol2

2 51200 16 51184 vol3

3 51200 16 51184 vol4

4 51200 16 51184 vol5

Multi-volume file systems
Creating multi-volume file systems

122

4 List the volume availability flags using the fsvoladm command:

fsvoladm queryflags /mnt1

volname flags

vol1 metadataok

vol2 dataonly

vol3 dataonly

vol4 dataonly

vol5 dataonly

5 Increase the metadata space in the file system using the fsvoladm command:

fsvoladm clearflags dataonly /mnt1 vol2

fsvoladm queryflags /mnt1

volname flags

vol1 metadataok

vol2 metadataok

vol3 dataonly

vol4 dataonly

vol5 dataonly

Converting a single volume file system to a
multi-volume file system

The following procedure converts a traditional, single volume file system, /mnt1,

on a single volume vol1 in the diskgroup dg1 to a multi-volume file system.

To convert a single volume file system

1 Determine the version of the volume's diskgroup:

vxdg list dg1 | grep version: | awk '{ print $2 }'

105

2 If the version is less than 110, upgrade the diskgroup:

vxdg upgrade dg1

3 Determine the disk layout version of the file system:

vxupgrade /mnt1

Version 4

123Multi-volume file systems
Converting a single volume file system to a multi-volume file system

4 If the disk layout version is less than 6, upgrade to Version 7:

vxupgrade -n 7 /mnt1

5 Unmount the file system:

umount /mnt1

6 Convert the volume into a volume set:

vxvset -g dg1 make vset1 vol1

7 Edit the /etc/vfstab file to replace the volume device name, vol1, with the

volume set name, vset1.

8 Mount the file system:

mount -F vxfs /dev/vx/dsk/dg1/vset1 /mnt1

9 As necessary, create and add volumes to the volume set:

vxassist -g dg1 make vol2 256M

vxvset -g dg1 addvol vset1 vol2

10 As necessary, set the placement class tags on the volumes:

vxvoladm -g dg1 settag vol1 vxfs.placement_class.tier1

vxvoladm -g dg1 settag vol2 vxfs.placement_class.tier2

11 Add the volumes to the file system:

fsvoladm add /mnt1 vol1 256m

fsvoladm add /mnt1 vol2 256m

Removing a volume from a multi-volume file system
Use the fsvoladm remove command to remove a volume from a multi-volume file

system. The fsvoladm remove command fails if an allocation policy exists that

has only a target device.

Forcibly removing a volume

If you must forcibly remove a volume from a file system, such as if a volume is

permanently destroyed and you want to clean up the dangling pointers to the lost

Multi-volume file systems
Removing a volume from a multi-volume file system

124

volume, use the fsck -o zapvol=volname command. The zapvol option performs

a full file system check and zaps all inodes that refer to the specified volume. The

fsck command prints the inode numbers of all files that the command destroys;

the file names are not printed. The zapvol option only affects regular files if used

on a dataonly volume. However, it could destroy structural files if used on a

metadataok volume, which can make the file system unrecoverable. Therefore,

the zapvol option should be used with caution on metadataok volumes.

Moving volume 0

You can remove volume 0 from a volume in a multi-volume file system and move

volume 0 to another volume with the vxassist move command. The vxassist

command creates any necessary temporary mirrors and cleans up the mirrors at

the end of the operation.

To move volume 0

◆ Move volume 0:

vxassist move vol1 !mydg

About allocation policies
To make full use of multi-volume support features, VxFS provides support for

allocation policies that allow files or groups of files to be assigned to specified

volumes within the volume set.

A policy specifies a list of volumes and the order in which to attempt allocations.

A policy can be assigned to a file, a file system, or a Storage Checkpoint created

from a file system. When policies are assigned to objects in the file system, you

must specify how the policy maps to both metadata and file data. For example, if

a policy is assigned to a single file, the file system must know where to place both

the file data and metadata. If no policies are specified, the file system places data

randomly.

Assigning allocation policies
The following example shows how to assign allocation policies. The example

volume set contains two volumes from different classes of storage.

125Multi-volume file systems
About allocation policies

To assign allocation policies

1 List the volumes in the volume set:

vxvset -g rootdg list myvset

VOLUME INDEX LENGTH STATE CONTEXT

vol1 0 102400 ACTIVE -

vol2 1 102400 ACTIVE -

2 Create a file system on the myvset volume set and mount it:

mkfs -F vxfs /dev/vx/rdsk/rootdg/myvset

version 7 layout

204800 sectors, 102400 blocks of size 1024,

log size 1024 blocks

largefiles supported

mount -F vxfs /dev/vx/dsk/rootdg/myvset /mnt1

3 Define two allocation policies called datapolicy and metadatapolicy to refer

to the vol1 and vol2 volumes:

fsapadm define /mnt1 datapolicy vol1

fsapadm define /mnt1 metadatapolicy vol2

4 Assign the policies at the file system level. The data policy must be specified

before the metadata policy:

fsapadm assignfs /mnt1 datapolicy metadatapolicy

fsvoladm list /mnt1

devid size used avail name

0 51200 1250 49950 vol1

1 51200 16 51184 vol2

The assignment of the policies on a file system-wide basis ensures that any

metadata allocated is stored on the device with the policy metadatapolicy

(vol2) and all user data is be stored on vol1 with the associated datapolicy

policy.

Querying allocation policies
Querying an allocation policy displays the definition of the allocation policy.

The following example shows how to query allocation policies. The example volume

set contains two volumes from different classes of storage.

Multi-volume file systems
Querying allocation policies

126

To query allocation policies

◆ Query the allocation policy:

fsapadm query /mnt1 datapolicy

Assigning pattern tables to directories
A pattern table contains patterns against which a file's name and creating process'

UID and GID are matched as a file is created in a specified directory. The first

successful match is used to set the allocation policies of the file, taking precedence

over inheriting per-file allocation policies.

See the fsapadm(1M) manual page.

The following example shows how to assign pattern tables to a directory in a

volume set that contains two volumes from different classes of storage. The

pattern table matches all files created in the directory dir1with the .mp3 extension

for any user or group ID and assigns the mp3datadata policy and mp3metametadata

policy.

To assign pattern tables to directories

1 Define two allocation policies called mp3data and mp3meta to refer to the vol1

and vol2 volumes:

fsapadm define /mnt1 mp3data vol1

fsapadm define /mnt1 mp3meta vol2

2 Assign the pattern table:

fsapadm assignfilepat dir1 *.mp3///mp3data/mp3meta/

Assigning pattern tables to file systems
A pattern table contains patterns against which a file's name and creating process'

UID and GID are matched as a file is created in a directory. If the directory does

not have its own pattern table or an inheritable allocation policy, the file system's

pattern table takes effect. The first successful match is used to set the allocation

policies of the file.

See the fsapadm(1M) manual page.

127Multi-volume file systems
Assigning pattern tables to directories

The following example shows how to assign pattern tables to a file system in a

volume set that contains two volumes from different classes of storage. The

pattern table is contained within the pattern file mypatternfile.

To assign pattern tables to directories

1 Define two allocation policies called mydata and mymeta to refer to the vol1

and vol2 volumes:

fsapadm define /mnt1 mydata vol1

fsapadm define /mnt1 mymeta vol2

2 Assign the pattern table:

fsapadm assignfspat -F mypatternfile /mnt1

Allocating data
The following script creates a large number of files to demonstrate the benefit of

allocating data:

i=1

while [$i -lt 1000]

do

dd if=/dev/zero of=/mnt1/$i bs=65536 count=1

i=‘expr $i + 1‘

done

Before the script completes, vol1 runs out of space even though space is still

available on the vol2 volume:

fsvoladm list /mnt1

devid size used avail name

0 51200 51200 0 vol1

1 51200 221 50979 vol2

The solution is to assign an allocation policy that allocates user data from the

vol1 volume to vol2 if space runs out.

You must have system administrator privileges to create, remove, change policies,

or set file system or Storage Checkpoint level policies. Users can assign a

pre-existing policy to their files if the policy allows that.

Policies can be inherited for new files. A file will inherit the allocation policy of

the directory in which it resides if you run the fsapadm assignfile -f inherit

command on the directory.

Multi-volume file systems
Allocating data

128

Allocating data from vol1 to vol2

◆ Assign an allocation policy that allocates user data from vol1 to vol2 if space

runs out on vol1:

fsapadm define /mnt1 datapolicy vol1 vol2

Volume encapsulation
Multi-volume support enables the ability to encapsulate an existing raw volume

and make the volume contents appear as a file in the file system.

Encapsulating a volume involves the following actions:

■ Adding the volume to an existing volume set.

■ Adding the volume to the file system using fsvoladm

Encapsulating a volume

The following example illustrates how to encapsulate a volume.

To encapsulate a volume

1 List the volumes:

vxvset list myvset

VOLUME INDEX LENGTH STATE CONTEXT

vol1 0 102400 ACTIVE -

vol2 1 102400 ACTIVE -

The volume set has two volumes.

2 Create a third volume and copy the passwd file to the third volume:

vxassist make dbvol 100m

dd if=/etc/passwd of=/dev/vx/rdsk/rootdg/dbvol count=1

1+0 records in

1+0 records out

The third volume will be used to demonstrate how the volume can be accessed

as a file, as shown later.

129Multi-volume file systems
Volume encapsulation

3 Create a file system on the volume set:

mkfs -F vxfs /dev/vx/rdsk/rootdg/myvset

version 7 layout

204800 sectors, 102400 blocks of size 1024,

log size 1024 blocks

largefiles supported

4 Mount the volume set:

mount -F vxfs /dev/vx/dsk/rootdg/myvset /mnt1

5 Add the new volume to the volume set:

vxvset addvol myvset dbvol

6 Encapsulate dbvol:

fsvoladm encapsulate /mnt1/dbfile dbvol 100m

ls -l /mnt1/dbfile

-rw------- 1 root other 104857600 May 22 11:30 /mnt1/dbfile

7 Examine the contents of dbfile to see that it can be accessed as a file:

head -2 /mnt1/dbfile

root:x:0:1:Super-User:/:/sbin/sh

daemon:x:1:1::/:

The passwd file that was written to the raw volume is now visible in the new

file.

Note: If the encapsulated file is changed in any way, such as if the file is

extended, truncated, or moved with an allocation policy or resized volume,

or the volume is encapsulated with a bias, the file cannot be de-encapsulated.

Deencapsulating a volume

The following example illustrates how to deencapsulate a volume.

Multi-volume file systems
Volume encapsulation

130

To deencapsulate a volume

1 List the volumes:

vxvset list myvset

VOLUME INDEX LENGTH STATE CONTEXT

vol1 0 102400 ACTIVE -

vol2 1 102400 ACTIVE -

dbvol 2 102400 ACTIVE -

The volume set has three volumes.

2 Deencapsulate dbvol:

fsvoladm deencapsulate /mnt1/dbfile

Reporting file extents
MVS feature provides the capability for file-to-volume mapping and volume-to-file

mapping via the fsmap and fsvmap commands. The fsmap command reports the

volume name, logical offset, and size of data extents, or the volume name and size

of indirect extents associated with a file on a multi-volume file system. The fsvmap

command maps volumes to the files that have extents on those volumes.

See the fsmap(1M) and fsvmap(1M) manual pages.

The fsmap command requires open() permission for each file or directory specified.

Root permission is required to report the list of files with extents on a particular

volume.

Examples of reporting file extents

The following examples show typical uses of the fsmap and fsvmap commands.

Using the fsmap command

◆ Use the find command to descend directories recursively and run fsmap on

the list of files:

find . | fsmap -

Volume Extent Type File

vol2 Data ./file1

vol1 Data ./file2

131Multi-volume file systems
Reporting file extents

Using the fsvmap command

1 Report the extents of files on multiple volumes:

fsvmap /dev/vx/rdsk/fstest/testvset vol1 vol2

vol1 /.

vol1 /ns2

vol1 /ns3

vol1 /file1

vol2 /file1

vol2 /file2

2 Report the extents of files that have either data or metadata on a single volume

in all Storage Checkpoints, and indicate if the volume has file system metadata:

fsvmap -mvC /dev/vx/rdsk/fstest/testvset vol1

Meta Structural vol1 //volume has filesystem metadata//

Data UNNAMED vol1 /.

Data UNNAMED vol1 /ns2

Data UNNAMED vol1 /ns3

Data UNNAMED vol1 /file1

Meta UNNAMED vol1 /file1

Load balancing
An allocation policy with the balance allocation order can be defined and assigned

to files that must have their allocations distributed at random between a set of

specified volumes. Each extent associated with these files are limited to a maximum

size that is defined as the required chunk size in the allocation policy. The

distribution of the extents is mostly equal if none of the volumes are full or

disabled.

Load balancing allocation policies can be assigned to individual files or for all files

in the file system. Although intended for balancing data extents across volumes,

a load balancing policy can be assigned as a metadata policy if desired, without

any restrictions.

Multi-volume file systems
Load balancing

132

Note: If a file has both a fixed extent size set and an allocation policy for load

balancing, certain behavior can be expected. If the chunk size in the allocation

policy is greater than the fixed extent size, all extents for the file are limited by

the chunk size. For example, if the chunk size is 16 MB and the fixed extent size

is 3 MB, then the largest extent that satisfies both the conditions is 15 MB. If the

fixed extent size is larger than the chunk size, all extents are limited to the fixed

extent size. For example, if the chunk size is 2 MB and the fixed extent size is 3

MB, then all extents for the file are limited to 3 MB.

Defining and assigning a load balancing allocation policy

The following example defines a load balancing policy and assigns the policy to

the file, /mnt/file.db.

To define and assign the policy

1 Define the policy by specifying the -o balance and -c options:

fsapadm define -o balance -c 2m /mnt loadbal vol1 vol2 vol3 vol4

2 Assign the policy:

fsapadm assign /mnt/filedb loadbal meta

Rebalancing extents

Extents can be rebalanced by strictly enforcing the allocation policy. Rebalancing

is generally required when volumes are added or removed from the policy or when

the chunk size is modified. When volumes are removed from the volume set, any

extents on the volumes being removed are automatically relocated to other volumes

within the policy.

The following example redefines a policy that has four volumes by adding two

new volumes, removing an existing volume, and enforcing the policy for

rebalancing.

133Multi-volume file systems
Load balancing

To rebalance extents

1 Define the policy by specifying the -o balance and -c options:

fsapadm define -o balance -c 2m /mnt loadbal vol1 vol2 vol4 \

vol5 vol6

2 Assign the policy:

fsapadm enforcefile -f strict /mnt/filedb

Converting a multi-volume file system to a single
volume file system

Because data can be relocated among volumes in a multi-volume file system, you

can convert a multi-volume file system to a traditional, single volume file system

by moving all file system data onto a single volume. Such a conversion is useful

to users who would like to try using a multi-volume file system or Dynamic Storage

Tiering, but are not committed to using a multi-volume file system permanently.

See “About Dynamic Storage Tiering” on page 137.

There are three restrictions to this operation:

■ The single volume must be the first volume in the volume set

■ The first volume must have sufficient space to hold all of the data and file

system metadata

■ The volume cannot have any allocation policies that restrict the movement of

data

Converting to a single volume file system

The following procedure converts an existing multi-volume file system, /mnt1,

of the volume set vset1, to a single volume file system, /mnt1, on volume vol1 in

diskgroup dg1.

Note: Steps 5, 6, and 8 are optional, and can be performed if you prefer to remove

the wrapper of the volume set object.

Multi-volume file systems
Converting a multi-volume file system to a single volume file system

134

Converting to a single volume file system

1 Determine if the first volume in the volume set, which is identified as device

number 0, has the capacity to receive the data from the other volumes that

will be removed:

df /mnt1

/mnt1 (/dev/vx/dsk/dg1/vol1):16777216 blocks 3443528 files

2 If the first volume does not have sufficient capacity, grow the volume to a

sufficient size:

fsvoladm resize /mnt1 vol1 150g

3 Remove all existing allocation policies:

fsppadm unassign /mnt1

4 Remove all volumes except the first volume in the volume set:

fsvoladm remove /mnt1 vol2

vxvset -g dg1 rmvol vset1 vol2

fsvoladm remove /mnt1 vol3

vxvset -g dg1 rmvol vset1 vol3

Before removing a volume, the file system attempts to relocate the files on

that volume. Successful relocation requires space on another volume, and no

allocation policies can be enforced that pin files to that volume. The time for

the command to complete is proportional to the amount of data that must be

relocated.

5 Unmount the file system:

umount /mnt1

6 Remove the volume from the volume set:

vxvset -g dg1 rmvol vset1 vol1

7 Edit the /etc/vfstab file to replace the volume set name, vset1, with the

volume device name, vol1.

8 Mount the file system:

mount -F vxfs /dev/vx/dsk/dg1/vol1 /mnt1

135Multi-volume file systems
Converting a multi-volume file system to a single volume file system

Multi-volume file systems
Converting a multi-volume file system to a single volume file system

136

Dynamic Storage Tiering

This chapter includes the following topics:

■ About Dynamic Storage Tiering

■ Placement classes

■ Administering placement policies

■ File placement policy grammar

■ File placement policy rules

■ Calculating I/O temperature and access temperature

■ Multiple criteria in file placement policy rule statements

■ File placement policy rule and statement ordering

■ File placement policies and extending files

About Dynamic Storage Tiering
VxFS uses multi-tier online storage via the Dynamic Storage Tiering (DST) feature,

which functions on top of multi-volume file systems. Multi-volume file systems

are file systems that occupy two or more virtual volumes. The collection of volumes

is known as a volume set, and is made up of disks or disk array LUNs belonging

to a single Veritas Volume Manager (VxVM) disk group. A multi-volume file system

presents a single name space, making the existence of multiple volumes

transparent to users and applications. Each volume retains a separate identity

for administrative purposes, making it possible to control the locations to which

individual files are directed.

See “About multi-volume support” on page 118.

10Chapter

Note: Some of the commands have changed or removed between the 4.1 release

and the 5.0 release to make placement policy management more user-friendly.

The following are the commands that have been removed: fsrpadm, fsmove, and

fssweep. The output of the queryfile, queryfs, and list options of the fsapadm

command now print the allocation order by name instead of number.

DST allows administrators of multi-volume VxFS file systems to manage the

placement of files on individual volumes in a volume set by defining placement

policies that control both initial file location and the circumstances under which

existing files are relocated. These placement policies cause the files to which they

apply to be created and extended on specific subsets of a file system's volume set,

known as placement classes. The files are relocated to volumes in other placement

classes when they meet the specified naming, timing, access rate, and storage

capacity-related conditions.

You make a VxVM volume part of a placement class by associating a volume tag

with it. For file placement purposes, VxFS treats all of the volumes in a placement

class as equivalent, and balances space allocation across them. A volume may

have more than one tag associated with it. If a volume has multiple tags, the

volume belongs to multiple placement classes and is subject to allocation and

relocation policies that relate to any of the placement classes. Multiple tagging

should be used carefully.

See “Placement classes” on page 139.

VxFS imposes no capacity, performance, availability, or other constraints on

placement classes. Any volume may be added to any placement class, no matter

what type the volume has nor what types other volumes in the class have. However,

a good practice is to place volumes of similar I/O performance and availability in

the same placement class.

Note:Dynamic Storage Tiering is a licensed feature. You must purchase a separate

license key for DST to operate. See the Veritas Storage Foundation Release Notes.

The Using Dynamic Storage Tiering Symantec Yellow Book provides additional

information regarding the Dynamic Storage Tiering feature, including the value

of DST and best practices for using DST. You can downloadUsingDynamicStorage

Tiering from the following webpage:

http://www.symantec.com/enterprise/yellowbooks/index.jsp

Dynamic Storage Tiering
About Dynamic Storage Tiering

138

http://www.symantec.com/enterprise/yellowbooks/index.jsp

Placement classes
A placement class is a Dynamic Storage Tiering attribute of a given volume in a

volume set of a multi-volume file system. This attribute is a character string, and

is known as a volume tag. A volume may have different tags, one of which could

be the placment class. The placement class tag makes a volume distinguishable

by DST.

Volume tags are organized as hierarchical name spaces in which the levels of the

hierarchy are separated by periods. By convention, the uppermost level in the

volume tag hierarchy denotes the Storage Foundation component or application

that uses a tag, and the second level denotes the tag’s purpose. DST recognizes

volume tags of the form vxfs.placement_class.class_name. The prefix vxfs

identifies a tag as being associated with VxFS. placement_class identifies the

tag as a file placement class used by DST. class_name represents the name of the

file placement class to which the tagged volume belongs. For example, a volume

with the tag vxfs.placement_class.tier1 belongs to placement class tier1.

Administrators use the vxvoladm command to associate tags with volumes.

See the vxadm(1M) manual page.

VxFS policy rules specify file placement in terms of placement classes rather than

in terms of individual volumes. All volumes that belong to a particular placement

class are interchangeable with respect to file creation and relocation operations.

Specifying file placement in terms of placement classes rather than in terms of

specific volumes simplifies the administration of multi-tier storage in the following

ways:

■ Adding or removing volumes does not require a file placement policy change.

If a volume with a tag value of vxfs.placement_class.tier2 is added to a file

system’s volume set, all policies that refer to tier2 immediately apply to the

newly added volume with no administrative action. Similarly, volumes can be

evacuated, that is, have data removed from them, and be removed from a file

system without a policy change. The active policy continues to apply to the

file system’s remaining volumes.

■ File placement policies are not specific to individual file systems. A file

placement policy can be assigned to any file system whose volume set includes

volumes tagged with the tag values (placement classes) named in the policy.

This property makes it possible for data centers with large numbers of servers

to define standard placement policies and apply them uniformly to all servers

with a single administrative action.

139Dynamic Storage Tiering
Placement classes

Tagging volumes as placement classes

The following example tags the vsavola volume as placement class tier1, vsavolb

as placement class tier2, vsavolc as placement class tier3, and vsavold as

placement class tier4 using the vxadm command.

To tag volumes

◆ Tag the volumes as placement classes:

vxvoladm -g cfsdg settag vsavola vxfs.placement_class.tier1

vxvoladm -g cfsdg settag vsavolb vxfs.placement_class.tier2

vxvoladm -g cfsdg settag vsavolc vxfs.placement_class.tier3

vxvoladm -g cfsdg settag vsavold vxfs.placement_class.tier4

Listing placement classes

Placement classes are listed using the vxvoladm listtag command.

See the vxvoladm(1M) manual page.

The following example lists all volume tags, including placment classes, set on a

volume vsavola in the diskgroup cfsdg.

To list placement classes

◆ List the volume tags, including placement classes:

vxvoladm -g cfsdg listtag vsavola

Administering placement policies
A VxFS file placement policy document contains rules by which VxFS creates,

relocates, and deletes files, but the placement policy does not refer to specific file

systems or volumes. You can create a file system's active file placement policy by

assigning a placement policy document to the file system via thefsppadm command

or the GUI.

See the fsppadm(1M) manual page.

At most, one file placement policy can be assigned to a VxFS file system at any

time. A file system may have no file placement policy assigned to it, in which case

VxFS allocates space for new files according to its own internal algorithms.

In systems with Storage Foundation Management Server (SFMS) software installed,

file placement policy information is stored in the SFMS database. The SFMS

database contains both XML policy documents and lists of hosts and file systems

Dynamic Storage Tiering
Administering placement policies

140

for which each document is the current active policy. When a policy document is

updated, SFMS can assign the updated document to all file systems whose current

active policies are based on that document. By default, SFMS does not update file

system active policies that have been created or modified locally, that is by the

hosts that control the placement policies' file systems. If a SFMS administrator

forces assignment of a placement policy to a file system, the file system's active

placement policy is overwritten and any local changes that had been made to the

placement policy are lost.

Assigning a placement policy

The following example uses the fsppadm assign command to assign the file

placement policy represented in the XML policy document /tmp/policy1.xml for

the file system at mount point /mnt1.

To assign a placement policy

◆ Assign a placement policy to a file system:

fsppadm assign /mnt1 /tmp/policy1.xml

Unassigning a placement policy

The following example uses the fsppadm unassign command to unassign the

active file placement policy from the file system at mount point /mnt1.

To unassign a placement policy

◆ Unassign the placement policy from a file system:

fsppadm unassign /mnt1

Analyzing the space impact of enforcing a placement policy

The following example uses the fsppadm analyze command to analyze the impact

if the enforce operation was performed on the mount point /mnt1. The command

builds the I/O temperature database if necessary.

To analyze the space impact of enforcing a placement policy

◆ Analyze the impact:

fsppadm analyze -i /mnt1

141Dynamic Storage Tiering
Administering placement policies

Querying which files will be affected by enforcing a placement policy

The following example uses the fsppadm query command to generate a list of

files that will be affected by enforcing a placement policy. The command provides

details about where the files currently reside, to where the files will be relocated,

and which rule in the placement policy applies to the files.

To query which files will be affected by enforcing a placement policy

◆ Query the files:

fsppadm query /mnt1/dir1/dir2 /mnt2 /mnt1/dir3

Enforcing a placement policy

Enforcing a placement policy for a file system requires that the policy be assigned

to the file system. You must assign a placement policy before it can be enforced.

Enforce operations are logged in a hidden file, .__fsppadm_enforce.log, in the

lost+found directory of the mount point. This log file contains details such as

files' previous locations, the files' new locations, and the reasons for the files'

relocations. The enforce operation creates the .__fsppadm_enforce.log file if

the file does not exist. The enforce operation appends the file if the file already

exists. The .__fsppadm_enforce.log file can be backed up or removed as with a

normal file.

The following example uses the fsppadm enforce command to enforce the file

placement policy for the file system at mount point /mnt1, and includes the access

time, modification time, and file size of the specified paths in the report,

/tmp/report.

Dynamic Storage Tiering
Administering placement policies

142

To enforce a placement policy

◆ Enforce a placement policy to a file system:

fsppadm enforce -a -r /tmp/report /mnt1

Current Current Relocated Relocated

Class Volume Class Volume Rule File

tier3 dstvole tier3 dstvole a_to_z /mnt1/mds1/d1/file1

tier3 dstvole tier3 dstvole a_to_z /mnt1/mds1/d1/file2

tier3 dstvole tier3 dstvole a_to_z /mnt1/mds1/d1/d2/file3

tier3 dstvolf tier3 dstvolf a_to_z /mnt1/mds1/d1/d2/file4

.

.

.

Sweep path : /mnt1

Files moved : 42

KB moved : 1267

Tier Name Size (KB) Free Before (KB) Free After (KB)

tier4 524288 524256 524256

tier3 524288 522968 522968

tier2 524288 524256 524256

tier1 524288 502188 501227

Validating a placement policy

The following example uses the fsppadm validate command to validate the

placement policy policy.xml against all mounted file systems.

To validate a placement policy against all mounted file systems

◆ Validate the placement policy:

fsppadm validate /tmp/policy.xml

File placement policy grammar
VxFS allocates and relocates files within a multi-volume file system based on

properties in the file system metadata that pertains to the files. Placement

decisions may be based on file name, directory of residence, time of last access,

access frequency, file size, and ownership. An individual file system's criteria for

143Dynamic Storage Tiering
File placement policy grammar

allocating and relocating files are expressed in the file system's file placement

policy.

A VxFS file placement policy defines the desired placement of sets of files on the

volumes of a VxFS multi-volume file system. A file placement policy specifies the

placement classes of volumes on which files should be created, and where and

under what conditions the files should be relocated to volumes in alternate

placement classes or deleted. You can create file placement policy documents,

which are XML text files, using either an XML or text editor, or a VxFS graphical

interface wizard.

The following output shows the overall structure of a placement policy:

<?xml version="1.0"?>

<!DOCTYPE PLACEMENT_POLICY [

<!-- The placement policy document definition file -->

<!-- Specification for PLACEMENT_POLICY element.

It can contain the following:

1. 0 or 1 COMMENT element

2. 1 or more RULE elements

-->

<!ELEMENT PLACEMENT_POLICY (COMMENT?, RULE+)>

<!-- The attributes of PLACEMENT_POLICY element -->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST PLACEMENT_POLICY

Name CDATA #REQUIRED

Version (5.0) #REQUIRED

>

<!-- Specification for COMMENT element -->

<!ELEMENT COMMENT (#PCDATA)>

<!-- Specification for RULE element.

It can contain the following:

1. 0 or 1 COMMENT element

2. 1 or more SELECT elements

3. 0 or 1 CREATE element

4. 0 or more DELETE elements

5. 0 or more RELOCATE elements

The elements must appear in the above order, particularly,

DELETE elements, if any, must preceed RELOCATE elements, if any.

Dynamic Storage Tiering
File placement policy grammar

144

If any of the DELETE elements triggers an action, subsequent

elements (DELETE and/or RELOCATE elements, if any) will not be

processed.

-->

<!ELEMENT RULE (COMMENT?, SELECT+, CREATE?, DELETE*, RELOCATE*)>

<!-- The attributes of RULE element -->

<!-- The possible and accepted values for Flags are:

1. data

-->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST RULE

Name CDATA #REQUIRED

Flags (data) #REQUIRED

>

<!-- Specification for SELECT element. This describes selection criteria.

It can contain the following:

1. 0 or 1 COMMENT elements

2. 0 or more DIRECTORY elements

3. 0 or more PATTERN elements

4. 0 or more USER elements

5. 0 or more GROUP elements

The elements can appear in any order.

-->

<!ELEMENT SELECT (COMMENT?, DIRECTORY*, PATTERN*, USER*, GROUP*)>

<!-- The attributes of SELECT element -->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST SELECT

Name CDATA #IMPLIED

>

<!-- Specification for DIRECTORY element

The DIRECTORY element takes a path relative to the

mount point. So if the intention is to sweep from

/db/finance/data and /db is the mount point,

DIRECTORY element should contain finance/data

Only one value can be specified per element.

-->

<!ELEMENT DIRECTORY (#PCDATA)>

145Dynamic Storage Tiering
File placement policy grammar

<!-- The attributes of DIRECTORY element -->

<!-- The possible and accepted values for Flags are:

1. recursive

2. nonrecursive

If a given directory appears in more than one RULE,

all such DIRECTORY elements must all be recursive or

nonrecursive but can not be a combination. If no DIRECTORY

element is specified, all the files under the mount point

will be selected.

-->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST DIRECTORY

Flags (recursive|nonrecursive) #REQUIRED

>

<!-- Specification for PATTERN element

The PATTERN can be a full name of a file, i.e., can not contain

"/" characters. Or it can have a '*' character. The first '*'

character will be considered as wild character and any other

character, including a second '*' are treated as literals.

Only one value can be specified per element.

-->

<!ELEMENT PATTERN (#PCDATA)>

<!-- The attributes of PATTERN element -->

<!-- The possible and accepted values for Flags are

1. recursive

This is an optional attribute. It is meaningful only

if the PATTERN is a dirctory. Default is nonrecursive,

which will be case for file PATTERNs. If this attribute

is specified, the enclosing SELECTion criteria will

select all files in any component directory (for example

dir1, in /mnt/dir0/dir1 if PATTERN is dir1) that is

anywhere (below the DIRECTORY,

- if it is specified and has 'recursive flag or

- anywhere in file system, if DIRECTORY is not

specified),

provided the component directory matches the PATTERN

(here 'dir1' in the example). If PATTERN has wild

character '*' in it, wild char based matching is performed.

Dynamic Storage Tiering
File placement policy grammar

146

-->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST PATTERN

Flags (recursive | nonrecursive) "nonrecursive"

>

<!-- Specification for USER element

The USER is a name string of the unix domain user

Only one value can be specified per element.

-->

<!ELEMENT USER (#PCDATA)>

<!-- Specification for GROUP element

The GROUP is a name string of the unix domain group

Only one value can be specified per element.

-->

<!ELEMENT GROUP (#PCDATA)>

<!-- Specification for CREATE element. This describes creation criteria.

It can contain the following:

1. 0 or 1 COMMENT element

2. 1 ON element

The order of elements may be significant in future

-->

<!ELEMENT CREATE (COMMENT?, ON)>

<!-- The attributes of CREATE element -->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST CREATE

Name CDATA #IMPLIED

Flags CDATA #IMPLIED

>

<!-- Specification for ON element. This describes location criteria.

It can contain the following:

1. 0 or more DESTINATION elements

147Dynamic Storage Tiering
File placement policy grammar

Though zero DESTINATION elements is defined in grammar, current

implementation requires at least on DESTINATION.

-->

<!ELEMENT ON (DESTINATION*)>

<!-- The attributes of ON element -->

<!-- The possible and accepted values for Flags is:

1. any

If this attribute is set, there may or may not be any CLASS

elements in the DESTINATION elements under the ON element.

If any of the DESTINATION elements have CLASS element, such

CLASSes in the file system would be used first before other

placement class storage is used.

-->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST ON

Name CDATA #IMPLIED

Flags (any) #IMPLIED

>

<!-- Specification for DESTINATION element. This describes target location.

It can contain the following:

1. 0 or 1 CLASS element

2. 0 or 1 PERCENT element

3. 0 or 1 BALANCE_SIZE element

-->

<!ELEMENT DESTINATION (CLASS?, PERCENT?, BALANCE_SIZE?)>

<!-- The attributes of DESTINATION element -->

<!-- The possible and accepted values for Flags:

(THIS IS NOT IMPLEMENTED)

1. disallow

If this 'disallow' is set, there must not be any PERCENT or

BALANCE_SIZE elements in such DESTINATION element but there

must be a CLASS element. There must not be any RELOCATE and

DELETE statements in the enclosing RULE element either.

-->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST DESTINATION

Name CDATA #IMPLIED

Flags (disallow) #IMPLIED

Dynamic Storage Tiering
File placement policy grammar

148

>

<!-- Specification for CLASS element

The file system resides on a multi-component volume set.

Each volume in the volume set will be in what is called a

placement class. The placement classes are implemented as tags

on the volumes. These tags are organized into a hierarchy prefix.

The placement policy uses the vxfs.placement_class. prefix.

The CLASS element specifies the placement class of the

underlying storage, without the prefix. For example, if a

volume has a placement class of vxfs.placment_class.gold

then gold would be the value of CLASS element.

-->

<!ELEMENT CLASS (#PCDATA)>

<!-- Specification for PERCENT element

(THIS IS NOT IMPLEMENTED)

If the PERCENT element is in DESTINATION element, it determines

how much of its CLASS can be filled up with the files selected

by a given RULE.

If the PERCENT element is in SOURCE element, it determines

how much of its CLASS can be emptied when the files are relocated

our deleted from it.

-->

<!ELEMENT PERCENT (#PCDATA)>

<!-- Specification for BALANCE_SIZE element

Multiple volumes may have the same placement class and there can

be multiple DESTINATIONs (hence CLASSes) in a given ON (and TO)

element. If a BALANCE_SIZE is specified for a given CLASS,

the usage of volumes of that given placement class will be used

evenly by allocating BALANCE_SIZE amount of space for each

volume for each allocation.

-->

<!ELEMENT BALANCE_SIZE (#PCDATA)>

<!-- The attributes of BALANCE_SIZE element -->

<!-- The possible and accepted values for Units are:

1. bytes

149Dynamic Storage Tiering
File placement policy grammar

2. KB

3. MB

4. GB

-->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST BALANCE_SIZE

Units (bytes|KB|MB|GB) #REQUIRED

>

<!-- Specification for DELETE element. This describes deletion criteria.

It can contain the following:

1. 0 or 1 COMMENT element

2. 0 or 1 FROM element

3. 0 or 1 WHEN element

-->

<!ELEMENT DELETE (COMMENT?, FROM?, WHEN?)>

<!-- The attributes of DELETE element -->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST DELETE

Name CDATA #IMPLIED

Flags (none) #IMPLIED

>

<!-- Specification for RELOCATE element. This describes relocation criteria.

It can contain the following:

1. 0 or 1 COMMENT element

2. 0 or 1 FROM element

3. 1 TO element

4. 0 or 1 WHEN element

The order of TO elements is significant. Earlier CLASSes would be

used before the latter ones.

-->

<!ELEMENT RELOCATE (COMMENT?, FROM?, TO, WHEN?)>

<!-- The attributes of RELOCATE element -->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST RELOCATE

Name CDATA #IMPLIED

Flags (none) #IMPLIED

>

<!-- Specification for FROM element. This describes source criteria.

Dynamic Storage Tiering
File placement policy grammar

150

It can contain the following:

1. 1 or more SOURCE elements

-->

<!ELEMENT FROM (SOURCE+)>

<!-- The attributes of FROM element -->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST FROM

Name CDATA #IMPLIED

Flags (none) #IMPLIED

>

<!-- Specification for SOURCE element. This describes source location.

It can contain the following:

1. 1 CLASS element

2. 0 or 1 PERCENT element

-->

<!ELEMENT SOURCE (CLASS, PERCENT?)>

<!-- The attributes of SOURCE element -->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST SOURCE

Name CDATA #IMPLIED

Flags (none) #IMPLIED

>

<!-- Specification for TO element. This describes destination criteria.

It can contain the following:

1. 1 or more DESTINATION elements

-->

<!ELEMENT TO (DESTINATION+)>

<!-- The attributes of TO element -->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST TO

Name CDATA #IMPLIED

Flags (none) #IMPLIED

>

<!-- Specification for WHEN element. This describes relocation specifiers.

It can contain the following

1. 0 or 1 SIZE element

2. 0 or 1 ACCAGE element

151Dynamic Storage Tiering
File placement policy grammar

3. 0 or 1 MODAGE element

4. 0 or 1 IOTEMP element

5. 0 or 1 ACCESSTEMP element

The order of elements is significant.

-->

<!ELEMENT WHEN (SIZE?, ACCAGE?, MODAGE?, IOTEMP?, ACCESSTEMP?)>

<!-- The attributes of WHEN element -->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST WHEN

Name CDATA #IMPLIED

Flags (none) #IMPLIED

>

<!-- Specification for SIZE element

It can contain the following:

1. 0 or 1 MIN element

2. 0 or 1 MAX element

-->

<!ELEMENT SIZE (MIN?, MAX?)>

<!-- The attributes of SIZE element -->

<!-- The possible and accepted values for Prefer are:

(THIS IS NOT IMPLEMENTED)

1. low

2. high

The possible and accepted values for Units are:

1. bytes

2. KB

3. MB

4. GB

-->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST SIZE

Prefer (low|high) #IMPLIED

Units (bytes|KB|MB|GB) #REQUIRED

>

<!-- Specification for ACCAGE element

It can contain the following

Dynamic Storage Tiering
File placement policy grammar

152

1. 0 or 1 MIN element

2. 0 or 1 MAX element

-->

<!ELEMENT ACCAGE (MIN?, MAX?)>

<!-- The attributes of ACCAGE element -->

<!-- The possible and accepted values for Prefer are:

(THIS IS NOT IMPLEMENTED)

1. low

2. high

The possible and accepted values for Units are:

1. hours

2. days

-->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST ACCAGE

Prefer (low|high) #IMPLIED

Units (hours|days) #REQUIRED

>

<!-- Specification for MODAGE element

It can contain the following:

1. 0 or 1 MIN element

2. 0 or 1 MAX element

-->

<!ELEMENT MODAGE (MIN?, MAX?)>

<!-- The attributes of MODAGE element -->

<!-- The possible and accepted values for Prefer are:

(THIS IS NOT IMPLEMENTED)

1. low

2. high

The possible and accepted values for Units are:

1. hours

2. days

-->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST MODAGE

Prefer (low|high) #IMPLIED

Units (hours|days) #REQUIRED

153Dynamic Storage Tiering
File placement policy grammar

>

<!-- Specification for IOTEMP element

The value of IOTEMP represents bytes read (nrbytes),

bytes written (nwbytes) or bytes transferred, i.e.,

read and written (nrwbytes), divided by the size of the

file, over a specified PERIOD (in days).

It can contain the following:

1. 0 or 1 MIN element

2. 0 or 1 MAX element

3. 1 PERIOD element

-->

<!ELEMENT IOTEMP (MIN?, MAX?, PERIOD)>

<!-- The attributes of IOTEMP element -->

<!-- The possible and accepted values for Prefer are:

(THIS IS NOT IMPLEMENTED)

1. low

2. high

-->

<!-- The possible and accepted values for Type are:

1. nrbytes

2. nwbytes

3. nrwbytes

-->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST IOTEMP

Prefer (low|high) #IMPLIED

Type (nrbytes|nwbytes|nrwbytes) #REQUIRED

>

<!-- Specification for ACCESSTEMP element

The value of ACCESSTEMP represents times read (nrbytes),

times written (nwbytes) or times access i.e.,

read and written (nrws) over a specified PERIOD (in days).

It can contain the following:

1. 0 or 1 MIN element

2. 0 or 1 MAX element

3. 1 PERIOD element

Dynamic Storage Tiering
File placement policy grammar

154

-->

<!ELEMENT ACCESSTEMP (MIN?, MAX?, PERIOD)>

<!-- The attributes of ACCESSTEMP element -->

<!-- The possible and accepted values for Prefer are:

(THIS IS NOT IMPLEMENTED)

1. low

2. high

-->

<!-- The possible and accepted values for Type are:

1. nreads

2. nwrites

3. nrws

-->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST ACCESSTEMP

Prefer (low|high) #IMPLIED

Type (nreads|nwrites|nrws) #REQUIRED

>

<!-- Specification for MIN element -->

<!ELEMENT MIN (#PCDATA)>

<!-- The attributes of MIN element -->

<!-- The possible and accepted values for Flags are:

1. gt for greater than

2. eq for equal to

3. gteq for greater than or equal to

-->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST MIN

Flags (gt|eq|gteq) #REQUIRED

>

<!-- Specification for MAX element -->

<!ELEMENT MAX (#PCDATA)>

<!-- The attributes of MAX element -->

<!-- The possible and accepted values for Flags are:

1. lt for less than

2. lteq for less than or equal to

-->

<!-- XML requires all attributes must be enclosed in double quotes -->

155Dynamic Storage Tiering
File placement policy grammar

<!ATTLIST MAX

Flags (lt|lteq) #REQUIRED

>

<!-- Specification for PERIOD element -->

<!ELEMENT PERIOD (#PCDATA)>

<!-- The attributes of PERIOD element -->

<!-- XML requires all attributes must be enclosed in double quotes -->

<!ATTLIST PERIOD

Units (days) #REQUIRED

>

]>

File placement policy rules
A VxFS file placement policy consists of one or more rules. Each rule applies to

one or more files. The files to which a rule applies are designated in one or more

SELECT statements. A SELECT statement designates files according to one or

more of four properties: their names or naming patterns, the directories in which

they reside, their owners' user names, and their owners' group names.

A file may be designated by more than one rule. For example, if one rule designates

files in directory /dir, and another designates files owned by user1, a file in /dir

that is owned by user1 is designated by both rules. Only the rule that appears first

in the placement policy applies to the file; subsequent rules are ignored.

You can define placement policies that do not encompass the entire file system

name space. When a file that is not designated by any rule in its file system's

active placement policy is created, VxFS places the file according to its own internal

algorithms. To maintain full control over file placement, include a catchall rule

at the end of each placement policy document with a SELECT statement that

designates files by the naming pattern *. Such a rule designates all files that have

not been designated by the rules appearing earlier in the placement policy

document.

SELECT statement

The VxFS placement policy rule SELECT statement designates the collection of

files to which a rule applies.

The following XML snippet illustrates the general form of the SELECT statement:

Dynamic Storage Tiering
File placement policy rules

156

<SELECT>

<DIRECTORY Flags="directory_flag_value">...value...

</DIRECTORY>

<PATTERN Flags="pattern_flag_value">...value...</PATTERN>

<USER>...value...</USER>

<GROUP>...value...</GROUP>

</SELECT>

A SELECT statement may designate files by using the following selection criteria:

A full path name relative to the file system mount point. The

Flags=”directory_flag_value”XML attribute must have a value

of nonrecursive, denoting that only files in the specified directory

are designated, or a value of recursive, denoting that files in all

subdirectories of the specified directory are designated. The Flags
attribute is mandatory.

The <DIRECTORY> criterion is optional, and may be specified more

than once.

<DIRECTORY>

157Dynamic Storage Tiering
File placement policy rules

Either an exact file name or a pattern using a single wildcard character

(*). For example, the pattern “abc*” denotes all files whose names begin

with “abc”. The pattern “abc.*” denotes all files whose names are

exactly "abc" followed by a period and any extension. The pattern

“*abc” denotes all files whose names end in “abc”, even if the name is

all or part of an extension. The pattern “*.abc” denotes files of any

name whose name extension (following the period) is “abc”. The

pattern “ab*c” denotes all files whose names start with “ab” and end

with “c”. The first "*" character is treated as a wildcard, while any

subsequent "*" characters are treated as literal text. The pattern cannot

contain "/".

The wildcard character matches any character, including ".", "?", and

"[", unlike using the wildcard in a shell.

TheFlags=”pattern_flag_value”XML attribute is optional, and

if specified can only have a value of recursive. Specify

Flags="recursive" only if the pattern is a directory. If Flags is

not specified, the default attribute value is nonrecursive. If

Flags="recursive" is specified, the enclosing selection criteria

selects all files in any component directory that is anywhere below

the directory specified by <DIRECTORY> if the component directory

matches the pattern and either of the following is true:

■ <DIRECTORY> is specified and has the recursive flag.

■ <DIRECTORY> is not specified and the directory is anywhere in

the file system.

If the pattern contains the wildcard character (*), wildcard character

matching is performed.

The <PATTERN> criterion is optional, and may be specified more than

once. Only one value can be specified per <PATTERN> element.

<PATTERN>

User name of the file's owner. The user number cannot be specified

in place of the name.

The <USER> criterion is optional, and may be specified more than

once.

<USER>

Group name of the file's owner. The group number cannot be specified

in place of the group name.

The <GROUP> criterion is optional, and may be specified more than

once.

<GROUP>

One or more instances of any or all of the file selection criteria may be specified

within a single SELECT statement. If two or more selection criteria of different

types are specified in a single statement, a file must satisfy one criterion of each

type to be selected.

Dynamic Storage Tiering
File placement policy rules

158

In the following example, only files that reside in either the ora/db or the

crash/dump directory, and whose owner is either user1 or user2 are selected for

possible action:

<SELECT>

<DIRECTORY Flags="nonrecursive">ora/db</DIRECTORY>

<DIRECTORY Flags="nonrecursive">crash/dump</DIRECTORY>

<USER>user1</USER>

<USER>user2</USER>

</SELECT>

A rule may include multiple SELECT statements. If a file satisfies the selection

criteria of one of the SELECT statements, it is eligible for action.

In the following example, any files owned by either user1 or user2, no matter in

which directories they reside, as well as all files in the ora/db or crash/dump

directories, no matter which users own them, are eligible for action:

<SELECT>

<DIRECTORY Flags="nonrecursive">ora/db</DIRECTORY>

<DIRECTORY Flags="nonrecursive">crash/dump</DIRECTORY>

</SELECT>

<SELECT>

<USER>user1</USER>

<USER>user2</USER>

</SELECT>

When VxFS creates new files, VxFS applies active placement policy rules in the

order of appearance in the active placement policy's XML source file. The first

rule in which a SELECT statement designates the file to be created determines

the file's placement; no later rules apply. Similarly, VxFS scans the active policy

rules on behalf of each file when relocating files, stopping the rules scan when it

reaches the first rule containing a SELECT statement that designates the file. This

behavior holds true even if the applicable rule results in no action. Take for

example a policy rule that indicates that .dat files inactive for 30 days should be

relocated, and a later rule indicates that .dat files larger than 10 megabytes should

be relocated. A 20 megabyte .dat file that has been inactive for 10 days will not

be relocated because the earlier rule applied. The later rule is never scanned.

A placement policy rule's action statements apply to all files designated by any

of the rule's SELECT statements. If an existing file is not designated by a SELECT

statement in any rule of a file system's active placement policy, then DST does

not relocate or delete the file. If an application creates a file that is not designated

by a SELECT statement in a rule of the file system's active policy, then VxFS places

the file according to its own internal algorithms. If this behavior is inappropriate,

159Dynamic Storage Tiering
File placement policy rules

the last rule in the policy document on which the file system's active placement

policy is based should specify <PATTERN>*</PATTERN> as the only selection

criterion in its SELECT statement, and a CREATE statement naming the desired

placement class for files not selected by other rules.

CREATE statement

A CREATE statement in a file placement policy rule specifies one or more

placement classes of volumes on which VxFS should allocate space for new files

to which the rule applies at the time the files are created. You can specify only

placement classes, not individual volume names, in a CREATE statement.

A file placement policy rule may contain at most one CREATE statement. If a rule

does not contain a CREATE statement, VxFS places files designated by the rule's

SELECT statements according to its internal algorithms. However, rules without

CREATE statements can be used to relocate or delete existing files that the rules'

SELECT statements designate.

The following XML snippet illustrates the general form of the CREATE statement:

<CREATE>

<ON Flags="...flag_value...">

<DESTINATION>

<CLASS>...placement_class_name...</CLASS>

<BALANCE_SIZE Units="units_specifier">...chunk_size...

</BALANCE_SIZE>

</DESTINATION>

<DESTINATION>...additional placement class specifications...

</DESTINATION>

</ON>

</CREATE>

A CREATE statement includes a single <ON> clause, in which one or more

<DESTINATION> XML elements specify placement classes for initial file allocation

in order of decreasing preference. VxFS allocates space for new files to which a

rule applies on a volume in the first class specified, if available space permits. If

space cannot be allocated on any volume in the first class, VxFS allocates space

on a volume in the second class specified if available space permits, and so forth.

If space cannot be allocated on any volume in any of the placement classes

specified, file creation fails with an ENOSPC error, even if adequate space is

available elsewhere in the file system's volume set. This situation can be

circumvented by specifying a Flags attribute with a value of “any” in the <ON>

clause. If <ON Flags=”any”> is specified in a CREATE statement, VxFS first

attempts to allocate space for new files to which the rule applies on the specified

Dynamic Storage Tiering
File placement policy rules

160

placement classes. Failing that, VxFS resorts to its internal space allocation

algorithms, so file allocation does not fail unless there is no available space

any-where in the file system's volume set.

The Flags=”any” attribute differs from the catchall rule in that this attribute

applies only to files designated by the SELECT statement in the rule, which may

be less inclusive than the <PATTERN>*</PATTERN> file selection specification

of the catchall rule.

In addition to the placement class name specified in the <CLASS> sub-element,

a <DESTINATION> XML element may contain a <BALANCE_SIZE> sub-element.

Presence of a <BALANCE_SIZE> element indicates that space allocation should

be distributed across the volumes of the placement class in chunks of the indicated

size. For example, if a balance size of one megabyte is specified for a placement

class containing three volumes, VxFS allocates the first megabyte of space for a

new or extending file on the first (lowest indexed) volume in the class, the second

megabyte on the second volume, the third megabyte on the third volume, the

fourth megabyte on the first volume, and so forth. Using the Units attribute in

the <BALANCE_SIZE> XML tag, the balance size value may be specified in the

following units:

Bytesbytes

KilobytesKB

MegabytesMB

GigabytesGB

The <BALANCE_SIZE> element distributes the allocation of database files across

the volumes in a placement class. In principle, distributing the data in each file

across multiple volumes distributes the I/O load across the volumes as well.

The CREATE statement in the following example specifies that files to which the

rule applies should be created on the tier1 volume if space is available, and on one

of the tier2 volumes if not. If space allocation on tier1 and tier2 volumes is not

possible, file creation fails, even if space is available on tier3 volumes.

<CREATE>

<ON>

<DESTINATION>

<CLASS>tier1</CLASS>

</DESTINATION>

<DESTINATION>

<CLASS>tier2</CLASS>

<BALANCE_SIZE Units="MB">1</BALANCE_SIZE>

161Dynamic Storage Tiering
File placement policy rules

</DESTINATION>

</ON>

</CREATE>

The <BALANCE_SIZE> element with a value of one megabyte is specified for

allocations on tier2 volumes. For files allocated on tier2 volumes, the first megabyte

would be allocated on the first volume, the second on the second volume, and so

forth.

RELOCATE statement

The RELOCATE action statement of file placement policy rules specifies an action

that VxFS takes on designated files during periodic scans of the file system, and

the circumstances under which the actions should be taken. The fsppadm enforce

command is used to scan all or part of a file system for files that should be relocated

based on rules in the active placement policy at the time of the scan.

See the fsppadm(1M) manual page.

The fsppadm enforce scans file systems in path name order. For each file, VxFS

identifies the first applicable rule in the active placement policy, as determined

by the rules' SELECT statements. If the file resides on a volume specified in the

<FROM> clause of one of the rule's RELOCATE statements, and if the file meets

the criteria for relocation specified in the statement's <WHEN> clause, the file is

scheduled for relocation to a volume in the first placement class listed in the <TO>

clause that has space available for the file. The scan that results from issuing the

fsppadm enforce command runs to completion before any files are relocated.

The following XML snippet illustrates the general form of the RELOCATE

statement:

<RELOCATE>

<FROM>

<SOURCE>

<CLASS>...placement_class_name...</CLASS>

</SOURCE>

<SOURCE>...additional placement class specifications...

</SOURCE>

</FROM>

<TO>

<DESTINATION>

<CLASS>...placement_class_name...</CLASS>

<BALANCE_SIZE Units="units_specifier">

...chunk_size...

</BALANCE_SIZE>

Dynamic Storage Tiering
File placement policy rules

162

</DESTINATION>

<DESTINATION>

...additional placement class specifications...

</DESTINATION>

</TO>

<WHEN>...relocation conditions...</WHEN>

</RELOCATE>

A RELOCATE statement contains the following clauses:

An optional clause that contains a list of placement classes from whose

volumes designated files should be relocated if the files meet the

conditions specified in the <WHEN> clause. No priority is associated

with the ordering of placement classes listed in a <FROM> clause. If

a file to which the rule applies is located on a volume in any specified

placement class, the file is considered for relocation.

If a RELOCATE statement contains a <FROM> clause, VxFS only

considers files that reside on volumes in placement classes specified

in the clause for relocation. If no <FROM> clause is present, qualifying

files are relocated regardless of where the files reside.

<FROM>

163Dynamic Storage Tiering
File placement policy rules

Indicates the placement classes to which qualifying files should be

relocated. Unlike the source placement class list in a FROM clause,

placement classes in a <TO> clause are specified in priority order.

Files are relocated to volumes in the first specified placement class if

possible, to the second if not, and so forth.

The <TO> clause of the RELOCATE statement contains a list of

<DESTINATION> XML elements specifying placement classes to whose

volumes VxFS relocates qualifying files. Placement classes are

specified in priority order. VxFS relocates qualifying files to volumes

in the first placement class specified as long as space is available. A

<DESTINATION> element may contain an optional <BALANCE_SIZE>

modifier sub-element. The <BALANCE_SIZE> modifier indicates that

relocated files should be distributed across the volumes of the

destination placement class in chunks of the indicated size. For

example, if a balance size of one megabyte is specified for a placement

class containing three volumes, VxFS relocates the first megabyte the

file to the first (lowest indexed) volume in the class, the second

megabyte to the second volume, the third megabyte to the third

volume, the fourth megabyte to the first volume, and so forth. Using

the Units attribute in the <BALANCE_SIZE> XML tag, the chunk value

may be specified in the balance size value may be specified in bytes

(Units=”bytes”), kilobytes (Units=”KB”), megabytes (Units=”MB”), or

gigabytes (Units=”GB”).

The <BALANCE_SIZE> element distributes the allocation of database

files across the volumes in a placement class. In principle, distributing

the data in each file across multiple volumes distributes the I/O load

across the volumes as well.

<TO>

An optional clause that indicates the conditions under which files to

which the rule applies should be relocated. Files that have been

unaccessed or unmodified for a specified period, reached a certain

size, or reached a specific I/O temperature or access temperature level

may be relocated. If a RELOCATE statement does not contain a

<WHEN> clause, files to which the rule applies are relocated

unconditionally.

A <WHEN> clause may be included in a RELOCATE statement to

specify that files should be relocated only if any or all of four types of

criteria are met. Files can be specified for relocation if they satisfy

one or more criteria.

<WHEN>

The following are the criteria that can be specified for the <WHEN> clause:

This criterion is met when files are inactive for a designated period

or during a designated period relative to the time at which the

fsppadm enforce command was issued.

<ACCAGE>

Dynamic Storage Tiering
File placement policy rules

164

This criterion is met when files are unmodified for a designated

period or during a designated period relative to the time at which

the fsppadm enforce command was issued.

<MODAGE>

This criterion is met when files exceed or drop below a designated

size or fall within a designated size range.

<SIZE>

This criterion is met when files exceed or drop below a designated

I/O temperature, or fall with in a designated I/O temperature range.

A file's I/O temperature is a measure of the I/O activity against it

during the period designated by the <PERIOD> element prior to

the time at which the fsppadm enforce command was issued.

See “Calculating I/O temperature and access temperature”

on page 174.

<IOTEMP>

This criterion is met when files exceed or drop below a specified

average access temperature, or fall within a specified access

temperature range. A file's access temperature is similar to its I/O

temperature, except that access temperature is computed using

the number of I/O requests to the file, rather than the number of

bytes transferred.

<ACCESSTEMP>

The following XML snippet illustrates the general form of the <WHEN> clause in

a RELOCATE statement:

<WHEN>

<ACCAGE Units="...units_value...">

<MIN Flags="...comparison_operator...">

...min_access_age...</MIN>

<MAX Flags="...comparison_operator...">

...max_access_age...</MAX>

</ACCAGE>

<MODAGE Units="...units_value...">

<MIN Flags="...comparison_operator...">

...min_modification_age...</MIN>

<MAX Flags="...comparison_operator...">

...max_modification_age...</MAX>

</MODAGE>

<SIZE " Units="...units_value...">

<MIN Flags="...comparison_operator...">

...min_size...</MIN>

<MAX Flags="...comparison_operator...">

...max_size...</MAX>

</SIZE>

<IOTEMP Type="...read_write_preference...">

165Dynamic Storage Tiering
File placement policy rules

<MIN Flags="...comparison_operator...">

...min_I/O_temperature...</MIN>

<MAX Flags="...comparison_operator...">

...max_I/O_temperature...</MAX>

<PERIOD>...days_of_interest...</PERIOD>

</IOTEMP>

<ACCESSTEMP Type="...read_write_preference...">

<MIN Flags="...comparison_operator...">

...min_access_temperature...</MIN>

<MAX Flags="...comparison_operator...">

...max_access_temperature...</MAX>

<PERIOD>...days_of_interest...</PERIOD>

</ACCESSTEMP>

</WHEN>

The access age (<ACCAGE>) element refers to the amount of time since a file was

last accessed. VxFS computes access age by subtracting a file's time of last access,

atime, from the time when the fsppadm enforce command was issued. The <MIN>

and <MAX> XML elements in an <ACCAGE> clause, denote the minimum and

maximum access age thresholds for relocation, respectively. These elements are

optional, but at least one must be included. Using the Units XML attribute, the

<MIN> and <MAX> elements may be specified in the following units:

Hourshours

Days. A day is considered to be 24 hours prior to the time that the

fsppadm enforce command was issued.

days

Both the <MIN> and <MAX> elements require Flags attributes to direct their

operation.

For <MIN>, the following Flags attributes values may be specified:

The time of last access must be greater than the specified interval.gt

The time of last access must be equal to the specified interval.eq

The time of last access must be greater than or equal to the specified

interval.

gteq

For <MAX>, the following Flags attributes values may be specified.

The time of last access must be less than the specified interval.lt

Dynamic Storage Tiering
File placement policy rules

166

The time of last access must be less than or equal to the specified

interval.

lteq

Including a <MIN> element in a <WHEN> clause causes VxFS to relocate files to

which the rule applies that have been inactive for longer than the specified interval.

Such a rule would typically be used to relocate inactive files to less expensive

storage tiers. Conversely, including <MAX> causes files accessed within the

specified interval to be relocated. It would typically be used to move inactive files

against which activity had recommenced to higher performance or more reliable

storage. Including both <MIN> and <MAX> causes VxFS to relocate files whose

access age lies between the two.

The modification age relocation criterion, <MODAGE>, is similar to access age,

except that files' POSIX mtime values are used in computations. You would

typically specify the <MODAGE> criterion to cause relocation of recently modified

files to higher performance or more reliable storage tiers in anticipation that the

files would be accessed recurrently in the near future.

The file size relocation criterion, <SIZE>, causes files to be relocated if the files

are larger or smaller than the values specified in the <MIN> and <MAX> relocation

criteria, respectively, at the time that the fsppadm enforce command was issued.

Specifying both criteria causes VxFS to schedule relocation for files whose sizes

lie between the two. Using the Units attribute, threshold file sizes may be specified

in the following units:

Bytesbytes

KilobytesKB

MegabytesMB

GigabytesGB

Specifying the I/O temperature relocation criterion

The I/O temperature relocation criterion, <IOTEMP>, causes files to be relocated

if their I/O temperatures rise above or drop below specified values over a specified

period immediately prior to the time at which the fsppadm enforce command

was issued. A file's I/O temperature is a measure of the read, write, or total I/O

activity against it normalized to the file's size. Higher I/O temperatures indicate

higher levels of application activity; lower temperatures indicate lower levels.

VxFS computes a file's I/O temperature by dividing the number of bytes transferred

to or from it (read, written, or both) during the specified period by its size at the

time that the fsppadm enforce command was issued.

See “Calculating I/O temperature and access temperature” on page 174.

167Dynamic Storage Tiering
File placement policy rules

As with the other file relocation criteria, <IOTEMP> may be specified with a lower

threshold by using the <MIN> element, an upper threshold by using the <MAX>

element, or as a range by using both. However, I/O temperature is dimensionless

and therefore has no specification for units.

VxFS computes files' I/O temperatures over the period between the time when

the fsppadm enforce command was issued and the number of days in the past

specified in the <PERIOD> element, where a day is a 24 hour period. For example,

if the fsppadm enforce command was issued at 2 PM on Wednesday, and a

<PERIOD> value of 2 was specified, VxFS looks at file I/O activity for the period

between 2 PM on Monday and 2 PM on Wednesday. The number of days specified

in the <PERIOD> element should not exceed one or two weeks due to the disk

space used by the File Change Log (FCL) file.

See “About the File Change Log file” on page 110.

I/O temperature is a softer measure of I/O activity than access age. With access

age, a single access to a file resets the file's atime to the current time. In contrast,

a file's I/O temperature decreases gradually as time passes without the file being

accessed, and increases gradually as the file is accessed periodically. For example,

if a new 10 megabyte file is read completely five times on Monday and fsppadm

enforce runs at midnight, the file's two-day I/O temperature will be five and its

access age in days will be zero. If the file is read once on Tuesday, the file's access

age in days at midnight will be zero, and its two-day I/O temperature will have

dropped to three. If the file is read once on Wednesday, the file's access age at

midnight will still be zero, but its two-day I/O temperature will have dropped to

one, as the influence of Monday's I/O will have disappeared.

If the intention of a file placement policy is to keep files in place, such as on top-tier

storage devices, as long as the files are being accessed at all, then access age is

the more appropriate relocation criterion. However, if the intention is to relocate

files as the I/O load on them decreases, then I/O temperature is more appropriate.

The case for upward relocation is similar. If files that have been relocated to

lower-tier storage devices due to infrequent access experience renewed application

activity, then it may be appropriate to relocate those files to top-tier devices. A

policy rule that uses access age with a low <MAX> value, that is, the interval

between fsppadm enforce runs, as a relocation criterion will cause files to be

relocated that have been accessed even once during the interval. Conversely, a

policy that uses I/O temperature with a <MIN> value will only relocate files that

have experienced a sustained level of activity over the period of interest.

RELOCATE statement examples

The following example illustrates an unconditional relocation statement, which

is the simplest form of the RELOCATE policy rule statement:

Dynamic Storage Tiering
File placement policy rules

168

<RELOCATE>

<FROM>

<SOURCE>

<CLASS>tier1</CLASS>

</SOURCE>

</FROM>

<TO>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

</TO>

</RELOCATE>

The files designated by the rule's SELECT statement that reside on volumes in

placement class tier1 at the time the fsppadm enforce command executes would

be unconditionally relocated to volumes in placement class tier2 as long as space

permitted. This type of rule might be used, for example, with applications that

create and access new files but seldom access existing files once they have been

processed. A CREATE statement would specify creation on tier1 volumes, which

are presumably high performance or high availability, or both. Each instantiation

of fsppadm enforcewould relocate files created since the last run to tier2 volumes.

The following example illustrates a more comprehensive form of the RELOCATE

statement that uses access age as the criterion for relocating files from tier1

volumes to tier2 volumes. This rule is designed to maintain free space on tier1

volumes by relocating inactive files to tier2 volumes:

<RELOCATE>

<FROM>

<SOURCE>

<CLASS>tier1</CLASS>

</SOURCE>

</FROM>

<TO>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

</TO>

<WHEN>

<SIZE Units="MB">

<MIN Flags="gt">1</MIN>

<MAX Flags="lt">1000</MAX>

</SIZE>

<ACCAGE Units="days">

169Dynamic Storage Tiering
File placement policy rules

<MIN Flags="gt">30</MIN>

</ACCAGE>

</WHEN>

</RELOCATE>

Files designated by the rule's SELECT statement are relocated from tier1 volumes

to tier2 volumes if they are between 1 MB and 1000 MB in size and have not been

accessed for 30 days. VxFS relocates qualifying files in the order in which it

encounters them as it scans the file system's directory tree. VxFS stops scheduling

qualifying files for relocation when when it calculates that already-scheduled

relocations would result in tier2 volumes being fully occupied.

The following example illustrates a possible companion rule that relocates files

from tier2 volumes to tier1 ones based on their I/O temperatures. This rule might

be used to return files that had been relocated to tier2 volumes due to inactivity

to tier1 volumes when application activity against them increases. Using I/O

temperature rather than access age as the relocation criterion reduces the chance

of relocating files that are not actually being used frequently by applications. This

rule does not cause files to be relocated unless there is sustained activity against

them over the most recent two-day period.

<RELOCATE>

<FROM>

<SOURCE>

<CLASS>tier2</CLASS>

</SOURCE>

</FROM>

<TO>

<DESTINATION>

<CLASS>tier1</CLASS>

</DESTINATION>

</TO>

<WHEN>

<IOTEMP Type="nrbytes">

<MIN Flags="gt">5</MIN>

<PERIOD>2</PERIOD>

</IOTEMP>

</WHEN>

</RELOCATE>

This rule relocates files that reside on tier2 volumes to tier1 volumes if their I/O

temperatures are above 5 for the two day period immediately preceding the issuing

of the fsppadm enforce command. VxFS relocates qualifying files in the order in

which it encounters them during its file system directory tree scan. When tier1

volumes are fully occupied, VxFS stops scheduling qualifying files for relocation.

Dynamic Storage Tiering
File placement policy rules

170

VxFS file placement policies are able to control file placement across any number

of placement classes. The following example illustrates a rule for relocating files

with low I/O temperatures from tier1 volumes to tier2 volumes, and to tier3

volumes when tier2 volumes are fully occupied:

<RELOCATE>

<FROM>

<SOURCE>

<CLASS>tier1</CLASS>

</SOURCE>

</FROM>

<TO>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

<DESTINATION>

<CLASS>tier3</CLASS>

</DESTINATION>

</TO>

<WHEN>

<IOTEMP Type="nrbytes">

<MAX Flags="lt">4</MAX>

<PERIOD>3</PERIOD>

</IOTEMP>

</WHEN>

</RELOCATE>

This rule relocates files whose 3-day I/O temperatures are less than 4 and which

reside on tier1 volumes. When VxFS calculates that already-relocated files would

result in tier2 volumes being fully occupied, VxFS relocates qualifying files to

tier3 volumes instead. VxFS relocates qualifying files as it encounters them in its

scan of the file system directory tree.

The <FROM> clause in the RELOCATE statement is optional. If the clause is not

present, VxFS evaluates files designated by the rule's SELECT statement for

relocation no matter which volumes they reside on when the fsppadm enforce

command is issued. The following example illustrates a fragment of a policy rule

that relocates files according to their sizes, no matter where they reside when the

fsppadm enforce command is issued:

<RELOCATE>

<TO>

<DESTINATION>

<CLASS>tier1</CLASS>

171Dynamic Storage Tiering
File placement policy rules

</DESTINATION>

</TO>

<WHEN>

<SIZE Units="MB">

<MAX Flags="lt">10</MAX>

</SIZE>

</WHEN>

</RELOCATE>

<RELOCATE>

<TO>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

</TO>

<WHEN>

<SIZE Units="MB">

<MIN Flags="gteq">10</MIN>

<MAX Flags="lt">100</MAX>

</SIZE>

</WHEN>

</RELOCATE>

<RELOCATE>

<TO>

<DESTINATION>

<CLASS>tier3</CLASS>

</DESTINATION>

</TO>

<WHEN>

<SIZE Units="MB">

<MIN Flags="gteq">100</MIN>

</SIZE>

</WHEN>

</RELOCATE>

This rule relocates files smaller than 10 megabytes to tier1 volumes, files between

10 and 100 megabytes to tier2 volumes, and files larger than 100 megabytes to

tier3 volumes. VxFS relocates all qualifying files that do not already reside on

volumes in their DESTINATION placement classes when the fsppadm enforce

command is issued.

Dynamic Storage Tiering
File placement policy rules

172

DELETE statement

The DELETE file placement policy rule statement is very similar to the RELOCATE

statement in both form and function, lacking only the <TO> clause. File placement

policy-based deletion may be thought of as relocation with a fixed destination.

Note: Use DELETE statements with caution.

The following XML snippet illustrates the general form of the DELETE statement:

<DELETE>

<FROM>

<SOURCE>

<CLASS>...placement_class_name...</CLASS>

</SOURCE>

<SOURCE>

...additional placement class specifications...

</SOURCE>

</FROM>

<WHEN>...relocation conditions...</WHEN>

</DELETE>

A DELETE statement contains the following clauses:

An optional clause that contains a list of placement classes from whose

volumes designated files should be deleted if the files meet the

conditions specified in the <WHEN> clause. No priority is associated

with the ordering of placement classes in a <FROM> clause. If a file

to which the rule applies is located on a volume in any specified

placement class, the file is deleted. If a DELETE statement does not

contain a <FROM> clause, VxFS deletes qualifying files no matter on

which of a file system's volumes the files reside.

<FROM>

An optional clause specifying the conditions under which files to which

the rule applies should be deleted. The form of the <WHEN> clause

in a DELETE statement is identical to that of the <WHEN> clause in

a RELOCATE statement. If a DELETE statement does not contain a

<WHEN> clause, files designated by the rule's SELECT statement, and

the <FROM> clause if it is present, are deleted unconditionally.

<WHEN>

DELETE statement examples

The following example illustrates the use of the DELETE statement:

173Dynamic Storage Tiering
File placement policy rules

<DELETE>

<FROM>

<SOURCE>

<CLASS>tier3</CLASS>

</SOURCE>

</FROM>

</DELETE>

<DELETE>

<FROM>

<SOURCE>

<CLASS>tier2</CLASS>

</SOURCE>

</FROM>

<WHEN>

<ACCAGE Units="days">

<MIN Flags="gt">120</MIN>

</ACCAGE>

</WHEN>

</DELETE>

The first DELETE statement unconditionally deletes files designated by the rule's

SELECT statement that reside on tier3 volumes when the fsppadm enforce

command is issued. The absence of a <WHEN> clause in the DELETE statement

indicates that deletion of designated files is unconditional.

The second DELETE statement deletes files to which the rule applies that reside

on tier2 volumes when the fsppadm enforce command is issued and that have not

been accessed for the past 120 days.

Calculating I/O temperature and access temperature
An important application of VxFS Dynamic Storage Tiering is automating the

relocation of inactive files to lower cost storage. If a file has not been accessed for

the period of time specified in the <ACCAGE> element, a scan of the file system

should schedule the file for relocation to a lower tier of storage. But, time since

last access is inadequate as the only criterion for activity-based relocation for the

following reasons:

■ Access age is a binary measure. The time since last access of a file is computed

by subtracting the time at which the fsppadm enforce command is issued

from the POSIX atime in the file's metadata. If a file is opened the day before

the fsppadm enforce command, its time since last access is one day, even

though it may have been inactive for the month preceding. If the intent of a

policy rule is to relocate inactive files to lower tier volumes, it will perform

Dynamic Storage Tiering
Calculating I/O temperature and access temperature

174

badly against files that happen to be accessed, however casually, within the

interval defined by the value of the <ACCAGE> pa-rameter.

■ Access age is a poor indicator of resumption of significant activity. Using

ACCAGE, the time since last access, as a criterion for relocating inactive files

to lower tier volumes may fail to schedule some relocations that should be

performed, but at least this method results in less relocat--ion activity than

necessary. Using ACCAGE as a criterion for relocating previously inactive files

that have become active is worse, because this method is likely to schedule

relocation activity that is not warranted. If a policy rule's intent is to cause

files that have experienced I/O activity in the recent past to be relocated to

higher performing, perhaps more failure tolerant storage, ACCAGE is too

coarse a filter. For example, in a rule specifying that files on tier2 volumes

that have been accessed within the last three days should be relocated to tier1

volumes, no distinction is made between a file that was browsed by a single

user and a file that actually was used intensively by applications.

DST implements the concept of I/O temperature and access temperature to

overcome these deficiencies. A file's I/O temperature is equal to the number of

bytes transferred to or from it over a specified period of time divided by the size

of the file. For example, if a file occupies one megabyte of storage at the time of

an fsppadm enforce operation and the data in the file has been completely read

or written 15 times within the last three days, VxFS calculates its 3-day average

I/O temperature to be 5 (15 MB of I/O ÷ 1 MB file size ÷ 3 days).

Similarly, a file's average access temperature is the number of read or write

requests made to it over a specified number of 24-hour periods divided by the

number of periods. Unlike I/O temperature, access temperature is unrelated to

file size. A large file to which 20 I/O requests are made over a 2-day period has

the same average access temperature as a small file accessed 20 times over a 2-day

period.

If a file system's active placement policy includes any <IOTEMP> or

<ACCESSTEMP> clauses, VxFS begins policy enforcement by using information

in the file system's FCL file to calculate average I/O activity against all files in the

file system during the longest <PERIOD> specified in the policy. Shorter specified

periods are ignored. VxFS uses these calculations to qualify files for I/O

temperature-based relocation and deletion.

See “About the File Change Log file” on page 110.

Note: If FCL is turned off, I/O temperature-based relocation will not be accurate.

When you invoke the fsppadm enforce command, the command displays a

warning if the FCL is turned off.

175Dynamic Storage Tiering
Calculating I/O temperature and access temperature

As its name implies, the File Change Log records information about changes made

to files in a VxFS file system. In addition to recording creations, deletions,

extensions, the FCL periodically captures the cumulative amount of I/O activity

(number of bytes read and written) on a file-by-file basis. File I/O activity is

recorded in the FCL each time a file is opened or closed, as well as at timed intervals

to capture information about files that remain open for long periods.

If a file system's active file placement policy contains <IOTEMP> clauses, execution

of the fsppadm enforce command begins with a scan of the FCL to extract I/O

activity information over the period of interest for the policy. The period of interest

is the interval between the time at which the fsppadm enforce command was

issued and that time minus the largest interval value specified in any <PERIOD>

element in the active policy.

For files with I/O activity during the largest interval, VxFS computes an

approximation of the amount of read, write, and total data transfer (the sum of

the two) activity by subtracting the I/O levels in the oldest FCL record that pertains

to the file from those in the newest. It then computes each file's I/O temperature

by dividing its I/O activity by its size at Tscan. Dividing by file size is an implicit

acknowledgement that relocating larger files consumes more I/O resources than

relocating smaller ones. Using this algorithm requires that larger files must have

more activity against them in order to reach a given I/O temperature, and thereby

justify the resource cost of relocation.

While this computation is an approximation in several ways, it represents an easy

to compute, and more importantly, unbiased estimate of relative recent I/O activity

upon which reasonable relocation decisions can be based.

File relocation and deletion decisions can be based on read, write, or total I/O

activity.

The following XML snippet illustrates the use of IOTEMP in a policy rule to specify

relocation of low activity files from tier1 volumes to tier2 volumes:

<RELOCATE>

<FROM>

<SOURCE>

<CLASS>tier1</CLASS>

</SOURCE>

</FROM>

<TO>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

</TO>

<WHEN>

Dynamic Storage Tiering
Calculating I/O temperature and access temperature

176

<IOTEMP Type="nrbytes">

<MAX Flags="lt">3</MAX>

<PERIOD Units="days">4</PERIOD>

</IOTEMP>

</WHEN>

</RELOCATE>

This snippet specifies that files to which the rule applies should be relocated from

tier1 volumes to tier2 volumes if their I/O temperatures fall below 3 over a period

of 4 days. The Type=”nrbytes” XML attribute specifies that total data transfer

activity, which is the the sum of bytes read and bytes written, should be used in

the computation. For example, a 50 megabyte file that experienced less than 150

megabytes of data transfer over the 4-day period immediately preceding the

fsppadm enforce scan would be a candidate for relocation. VxFS considers files

that experience no activity over the period of interest to have an I/O temperature

of zero. VxFS relocates qualifying files in the order in which it encounters the

files in its scan of the file system directory tree.

Using I/O temperature or access temperature rather than a binary indication of

activity, such as the POSIX atime or mtime, minimizes the chance of not relocating

files that were only accessed occasionally during the period of interest. A large

file that has had only a few bytes transferred to or from it would have a low I/O

temperature, and would therefore be a candidate for relocation to tier2 volumes,

even if the activity was very recent.

But, the greater value of I/O temperature or access temperature as a file relocation

criterion lies in upward relocation: detecting increasing levels of I/O activity

against files that had previously been relocated to lower tiers in a storage hierarchy

due to inactivity or low temperatures, and relocating them to higher tiers in the

storage hierarchy.

The following XML snippet illustrates relocating files from tier2 volumes to tier1

when the activity level against them increases.

<RELOCATE>

<FROM>

<SOURCE>

<CLASS>tier2</CLASS>

</SOURCE>

</FROM>

<TO>

<DESTINATION>

<CLASS>tier1</CLASS>

</DESTINATION>

</TO>

177Dynamic Storage Tiering
Calculating I/O temperature and access temperature

<WHEN>

<IOTEMP Type="nrbytes">

<MAX Flags="gt">5</MAX>

<PERIOD Units="days">2</PERIOD>

</IOTEMP>

</WHEN>

</RELOCATE>

The <RELOCATE> statement specifies that files on tier2 volumes whose I/O

temperature as calculated using the number of bytes read is above 5 over a 2-day

period are to be relocated to tier1 volumes. Bytes written to the file during the

period of interest are not part of this calculation.

Using I/O temperature rather than a binary indicator of activity as a criterion for

file relocation gives administrators a granular level of control over automated

file relocation that can be used to attune policies to application requirements. For

example, specifying a large value in the <PERIOD> element of an upward relocation

statement prevents files from being relocated unless I/O activity against them is

sustained. Alternatively, specifying a high temperature and a short period tends

to relocate files based on short-term intensity of I/O activity against them.

I/O temperature and access temperature utilize the sqlite3 database for building

a temporary table indexed on an inode. This temporary table is used to filter files

based on I/O temperature and access temperature. The temporary table is stored

in the database file .__fsppadm_fcliotemp.db, which resides in the lost+found

directory of the mount point.

Multiple criteria in file placement policy rule
statements

In certain cases, file placement policy rule statements may contain multiple clauses

that affect their behavior. In general, when a rule statement contains multiple

clauses of a given type, all clauses must be satisfied in order for the statement to

be effective. There are four cases of note in which multiple clauses may be used.

Multiple file selection criteria in SELECT statement clauses

Within a single SELECT statement, all the selection criteria clauses of a single

type are treated as a selection list. A file need only satisfy a single criterion of a

given type to be designated.

In the following example, files in any of the db/datafiles, db/indexes, and

db/logs directories, all relative to the file system mount point, would be selected:

Dynamic Storage Tiering
Multiple criteria in file placement policy rule statements

178

<SELECT>

<DIRECTORY Flags="nonrecursive">db/datafiles</DIRECTORY>

<DIRECTORY Flags="nonrecursive">db/indexes</DIRECTORY>

<DIRECTORY Flags="nonrecursive">db/logs</DIRECTORY>

</SELECT>

This example is in direct contrast to the treatment of selection criteria clauses of

different types. When a SELECT statement includes multiple types of file selection

criteria, a file must satisfy one criterion of each type in order for the rule's action

statements to apply.

In the following example, a file must reside in one of db/datafiles, db/indexes, or

db/logs and be owned by one of DBA_Manager, MFG_DBA, or HR_DBA to be

designated for possible action:

<SELECT>

<DIRECTORY Flags="nonrecursive">db/datafiles</DIRECTORY>

<DIRECTORY Flags="nonrecursive">db/indexes</DIRECTORY>

<DIRECTORY Flags="nonrecursive">db/logs</DIRECTORY>

<USER>DBA_Manager</USER>

<USER>MFG_DBA</USER>

<USER>HR_DBA</USER>

</SELECT>

If a rule includes multiple SELECT statements, a file need only satisfy one of them

to be selected for action. This property can be used to specify alternative conditions

for file selection.

In the following example, a file need only reside in one of db/datafiles,

db/indexes, or db/logs or be owned by one of DBA_Manager, MFG_DBA, or

HR_DBA to be designated for possible action:

<SELECT>

<DIRECTORY Flags="nonrecursive">db/datafiles</DIRECTORY>

<DIRECTORY Flags="nonrecursive">db/indexes</DIRECTORY>

<DIRECTORY Flags="nonrecursive">db/logs</DIRECTORY>

</SELECT>

<SELECT>

<USER>DBA_Manager</USER>

<USER>MFG_DBA</USER>

<USER>HR_DBA</USER>

</SELECT>

179Dynamic Storage Tiering
Multiple criteria in file placement policy rule statements

Multiple placement classes in <ON> clauses of CREATE statements
and in <TO> clauses of RELOCATE statements

Both the <ON> clause of the CREATE statement and the <TO> clause of the

RELOCATE statement can specify priority ordered lists of placement classes using

multiple <DESTINATION> XML elements. VxFS uses a volume in the first

placement class in a list for the designated purpose of file creation or relocation,

if possible. If no volume in the first listed class has sufficient free space or if the

file system's volume set does not contain any volumes with that placement class,

VxFS uses a volume in the second listed class if possible. If no volume in the second

listed class can be used, a volume in the third listed class is used if possible, and

so forth.

The following example illustrates of three placement classes specified in the <ON>

clause of a CREATE statement:

<CREATE>

<ON>

<DESTINATION>

<CLASS>tier1</CLASS>

</DESTINATION>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

<DESTINATION>

<CLASS>tier3</CLASS>

</DESTINATION>

</ON>

</CREATE>

In this statement, VxFS would allocate space for newly created files designated

by the rule's SELECT statement on tier1 volumes if space was available. If no tier1

volume had sufficient free space, VxFS would attempt to allocate space on a tier2

volume. If no tier2 volume had sufficient free space, VxFS would attempt allocation

on a tier3 volume. If sufficient space could not be allocated on a volume in any of

the three specified placement classes, allocation would fail with an ENOSPC error,

even if the file system's volume set included volumes in other placement classes

that did have sufficient space.

The <TO> clause in the RELOCATE statement behaves similarly. VxFS relocates

qualifying files to volumes in the first placement class specified if possible, to

volumes in the second specified class if not, and so forth. If none of the destination

criteria can be met, such as if all specified classes are fully occupied, qualifying

files are not relocated, but no error is signaled in this case.

Dynamic Storage Tiering
Multiple criteria in file placement policy rule statements

180

Multiple placement classes in <FROM> clauses of RELOCATE and
DELETE statements

The <FROM> clause in RELOCATE and DELETE statements can include multiple

source placement classes. However, unlike the <ON> and <TO> clauses, no order

or priority is implied in <FROM> clauses. If a qualifying file resides on a volume

in any of the placement classes specified in a <FROM> clause, it is relocated or

deleted regardless of the position of its placement class in the <FROM> clause

list of classes.

Multiple conditions in <WHEN> clauses of RELOCATE and DELETE
statements

The <WHEN> clause in RELOCATE and DELETE statements may include multiple

relocation criteria. Any or all of <ACCAGE>, <MODAGE>, <SIZE>, and <IOTEMP>

can be specified. When multiple conditions are specified, all must be satisfied in

order for a selected file to qualify for relocation or deletion.

In the following example, a selected file would have to be both inactive, that is,

not accessed, for more than 30 days and larger than 100 megabytes to be eligible

for relocation or deletion:

<WHEN>

<ACCAGE Units="days">

<MIN Flags="gt">30</MIN>

</ACCAGE>

<SIZE Units="MB">

<MIN Flags="gt">100</MIN>

</SIZE>

</WHEN>

You cannot write rules to relocate or delete a single designated set of files if the

files meet one of two or more relocation or deletion criteria.

File placement policy rule and statement ordering
You can use the Dynamic Storage Tiering graphical user interface (GUI) to create

any of four types of file placement policy documents. Alternatively, you can use

a text editor or XML editor to create XML policy documents directly. The GUI

places policy rule statements in the correct order to achieve the desired behavior.

If you use a text editor, it is your responsibility to order policy rules and the

statements in them so that the desired behavior results.

181Dynamic Storage Tiering
File placement policy rule and statement ordering

The rules that comprise a placement policy may occur in any order, but during

both file allocation and fsppadm enforce relocation scans, the first rule in which

a file is designated by a SELECT statement is the only rule against which that file

is evaluated. Thus, rules whose purpose is to supersede a generally applicable

behavior for a special class of files should precede the general rules in a file

placement policy document.

The following XML snippet illustrates faulty rule placement with potentially

unintended consequences:

<?xml version="1.0"?>

<!DOCTYPE FILE_PLACEMENT_POLICY SYSTEM "placement.dtd">

<FILE_PLACEMENT_POLICY Version="5.0">

<RULE Name="GeneralRule">

<SELECT>

<PATTERN>*</PATTERN>

</SELECT>

<CREATE>

<ON>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

</ON>

</CREATE>

...other statements...

</RULE>

<RULE Name="DatabaseRule">

<SELECT>

<PATTERN>*.db</PATTERN>

</SELECT>

<CREATE>

<ON>

<DESTINATION>

<CLASS>tier1</CLASS>

</DESTINATION>

</ON>

</CREATE>

...other statements...

</RULE>

</FILE_PLACEMENT_POLICY>

The GeneralRule rule specifies that all files created in the file system, designated

by <PATTERN>*</PATTERN>, should be created on tier2 volumes. The

DatabaseRule rule specifies that files whose names include an extension of .db

Dynamic Storage Tiering
File placement policy rule and statement ordering

182

should be created on tier1 volumes. The GeneralRule rule applies to any file created

in the file system, including those with a naming pattern of *.db, so the

DatabaseRule rule will never apply to any file. This fault can be remedied by

exchanging the order of the two rules. If the DatabaseRule rule occurs first in the

policy document, VxFS encounters it first when determining where to new place

files whose names follow the pattern *.db, and correctly allocates space for them

on tier1 volumes. For files to which the DatabaseRule rule does not apply, VxFS

continues scanning the policy and allocates space according to the specification

in the CREATE statement of the GeneralRule rule.

A similar consideration applies to statements within a placement policy rule. VxFS

processes these statements in order, and stops processing on behalf of a file when

it encounters a statement that pertains to the file. This can result in unintended

behavior.

The following XML snippet illustrates a RELOCATE statement and a DELETE

statement in a rule that is intended to relocate if the files have not been accessed

in 30 days, and delete the files if they have not been accessed in 90 days:

<RELOCATE>

<TO>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

</TO>

<WHEN>

<ACCAGE Units="days">

<MIN Flags="gt">30</MIN>

</ACCAGE>

</WHEN>

</RELOCATE>

<DELETE>

<WHEN>

<ACCAGE Units="days">

<MIN Flags="gt">90</MIN>

</ACCAGE>

</WHEN>

</DELETE>

As written with the RELOCATE statement preceding the DELETE statement, files

will never be deleted, because the <WHEN> clause in the RELOCATE statement

applies to all selected files that have not been accessed for at least 30 days. This

includes those that have not been accessed for 90 days. VxFS ceases to process a

file against a placement policy when it identifies a statement that applies to that

file, so the DELETE statement would never occur. This example illustrates the

183Dynamic Storage Tiering
File placement policy rule and statement ordering

general point that RELOCATE and DELETE statements that specify less inclusive

criteria should precede statements that specify more inclusive criteria in a file

placement policy document. The GUI automatically produce the correct statement

order for the policies it creates.

File placement policies and extending files
In a VxFS file system with an active file placement policy, the placement class on

whose volume a file resides is part of its metadata, and is attached when it is

created and updated when it is relocated. When an application extends a file, VxFS

allocates the incremental space on the volume occupied by the file if possible. If

not possible, VxFS allocates the space on another volume in the same placement

class. For example, if a file is created on a tier1 volume and later relocated to a

tier2 volume, extensions to the file that occur before the relocation have space

allocated on a tier1 volume, while those occurring after to the relocation have

their space allocated on tier2 volumes. When a file is relocated, all of its allocated

space, including the space acquired by extension, is relocated to tier2 volumes in

this case.

Dynamic Storage Tiering
File placement policies and extending files

184

Quick I/O for Databases

This chapter includes the following topics:

■ About Quick I/O

■ About Quick I/O functionality and performance

■ About using Veritas File System files as raw character devices

■ About creating a Quick I/O file using qiomkfile

■ Accessing regular VxFS files through symbolic links

■ Using Quick I/O with Oracle databases

■ Using Quick I/O with Sybase databases

■ Enabling and disabling Quick I/O

■ About Cached Quick I/O for databases

■ About Quick I/O statistics

■ Increasing database performance using Quick I/O

About Quick I/O
Quick I/O for Databases (referred to as Quick I/O) allows applications to access

preallocated VxFS files as raw character devices. This provides the administrative

benefits of running databases on file systems without the performance degradation

usually associated with databases created on file systems.

Quick I/O is part of the VRTSvxfs package, but is available for use only with other

Symantec products.

See the Veritas Storage Foundation Release Notes.

11Chapter

About Quick I/O functionality and performance
Many database administrators (DBAs) create databases on file systems because

file systems make common administrative tasks, such as moving, copying, and

backing up, much simpler. However, putting databases on file systems significantly

reduces database performance. By using Quick I/O, you can retain the advantages

of having databases on file systems without performance degradation.

Quick I/O uses a special naming convention to allow database applications to

access regular files as raw character devices.

Quick I/O provides higher database performance in the following ways:

■ Supporting kernel asynchronous I/O

■ Supporting direct I/O

■ Avoiding kernel write locks

■ Avoiding double buffering

About asynchronous I/O kernel support

Some operating systems provide kernel support for asynchronous I/O on raw

devices, but not on regular files. As a result, even if the database server is capable

of using asynchronous I/O, it cannot issue asynchronous I/O requests when the

database is built on a file system. Lack of asynchronous I/O significantly degrades

performance. Quick I/O allows the database server to take advantage of kernel

supported asynchronous I/O on file system files accessed via the Quick I/O

interface by providing a character device node that is treated by the OS as a raw

device.

About direct I/O support

I/O on files using read() and write() system calls typically results in data being

copied twice: once between user and kernel space, and later between kernel space

and disk. In contrast, I/O on raw devices is direct. That is, data is copied directly

between user space and disk, saving one level of copying. As with I/O on raw

devices, Quick I/O avoids the extra copying.

About Kernel write locks avoidance

When database I/O is performed via the write() system call, each system call

acquires and releases a write lock inside the kernel. This lock prevents

simultaneous write operations on the same file. Because database systems usually

implement their own locks for managing concurrent access to files, write locks

Quick I/O for Databases
About Quick I/O functionality and performance

186

unnecessarily serialize I/O operations. Quick I/O bypasses file system locking and

lets the database server control data access.

About double buffering avoidance

Most database servers implement their own buffer cache and do not need the

system buffer cache. Thus, the memory used by the system buffer cache is wasted

and results in data being cached twice: first in the database cache and then in the

system buffer cache. By using direct I/O, Quick I/O does not waste memory on

double buffering. This frees up memory that can then be used by the database

server buffer cache, leading to increased performance.

About using Veritas File System files as raw character
devices

When VxFS with Quick I/O is installed, files may be accessed by the following

ways:

■ The VxFS interface treats the file as a regular VxFS file

■ The Quick I/O interface treats the same file as if it were a raw character device,

having performance similar to a raw device

Quick I/O allows a database server to use the Quick I/O interface while a backup

server uses the VxFS interface.

About the Quick I/O naming convention

To treat a file as a raw character device, Quick I/O requires a file name extension

to create an alias for a regular VxFS file. Quick I/O recognizes the alias when you

add the following suffix to a file name:

::cdev:vxfs:

The cdev portion is an acronym for character device. Whenever an application

opens an existing VxFS file with the suffix ::cdev:vxfs, Quick I/O treats the file as

if it were a raw device. For example, if the file xxx is a regular VxFS file, then an

application can access xxx as a raw character device by opening it with the name:

xxx::cdev:vxfs:

187Quick I/O for Databases
About using Veritas File System files as raw character devices

Note: When Quick I/O is enabled, you cannot create a regular VxFS file with a

name that uses the ::cdev:vxfs: extension. If an application tries to create a

regular file named xxx::cdev:vxfs:, the create fails. If Quick I/O is not available,

it is possible to create a regular file with the ::cdev:vxfs: extension, but this could

cause problems if Quick I/O is later enabled. Symantec advises you to reserve the

extension only for Quick I/O files.

About use restrictions

There are restrictions to using regular VxFS files as Quick I/O files.

■ The name xxx::cdev:vxfs: is recognized as a special name by VxFS only

when the following conditions are met:

■ The qio module is loaded

■ Quick I/O has a valid license

■ The regular file xxx is physically present on the VxFS file system

■ There is no regular file named xxx::cdev:vxfs: on the system

■ If the file xxx is being used for memory mapped I/O, it cannot be accessed as

a Quick I/O file.

■ An I/O fails if the file xxx has a logical hole and the I/O is done to that hole on

xxx::cdev:vxfs:.

■ The size of the file cannot be extended by writes through the Quick I/O

interface.

About creating a Quick I/O file using qiomkfile
The best way to make regular files accessible to the Quick I/O interface and

preallocate space for them is to use the qiomkfile command. Unlike the VxFS

setext command, which requires superuser privileges, any user who has read/write

permissions can run qiomkfile to create the files. The qiomkfile command has

five options:

Creates a symbolic link with an absolute path name for a specified file. The

default is to create a symbolic link with a relative path name.

-a

(For Oracle database files to allow tablespace resizing.) Extends the file size

by the specified amount.

-e

(For Oracle database files.) Creates a file with additional space allocated for

the Oracle header.

-h

Quick I/O for Databases
About creating a Quick I/O file using qiomkfile

188

(For Oracle database files to allow tablespace resizing.) Increases the file to

the specified size.

-r

Preallocates space for a file.-s

You can specify file size in terms of bytes (the default), or in kilobytes, megabytes,

gigabytes, or sectors (512 bytes) by adding a k, K, m, M, g, G, s, or S suffix. If the

size of the file including the header is not a multiple of the file system block size,

it is rounded to a multiple of the file system block size before preallocation.

The qiomkfile command creates two files: a regular file with preallocated,

contiguous space; and a symbolic link pointing to the Quick I/O name extension.

Creating a Quick I/O file using qiomkfile

The following example shows how to create a Quick I/O file using the qiomkfile

command.

See the qiomkfile(1) manual page.

To create a Quick I/O file using qiomkfile

1 Create a 100 MB file named dbfile in /database:

$ qiomkfile -s 100m /database/dbfile

The first file created is a regular file named /database/.dbfile, which has

the real space allocated. The second file is a symbolic link named

/database/dbfile. This is a relative link to /database/.dbfile via the Quick

I/O interface. That is, to .dbfile::cdev:vxfs:. This allows .dbfile to be

accessed by any database or application as a raw character device.

■ If you specify the -a option with qiomkfile, an absolute path name is

used, such as the following:

/database/dbfile points to /database/.dbfile::cdev:vxfs:

See “About absolute and relative path names” on page 190.

2 Check the results:

$ ls -al

-rw-r--r-- 1 oracle dba 104857600 Oct 22 15:03 .dbfile

lrwxrwxrwx 1 oracle dba 19 Oct 22 15:03 dbfile -> .dbfile::cdev:vxfs:

or:

189Quick I/O for Databases
About creating a Quick I/O file using qiomkfile

$ ls -lL

crw-r----- 1 oracle dba 43,0 Oct 22 15:04 dbfile

-rw-r--r-- 1 oracle dba 10485760 Oct 22 15:04 .dbfile

■ If you specified the -a option with qiomkfile, the results are as follows:

$ ls -al

-rw-r--r-- 1 oracle dba 104857600 Oct 22 15:05 .dbfile

lrwxrwxrwx 1 oracle dba 31 Oct 22 15:05 dbfile ->

/database/.dbfile::cdev:vxfs:

Accessing regular VxFS files through symbolic links
One way to use Quick I/O is to create a symbolic link for each file in your database

and use the symbolic link to access the regular files as Quick I/O files. Any database

or application can then access the file as a raw character device.

See the Veritas Editions product documentation.

The following example creates a 100 MB Quick I/O file named dbfile on the VxFS

file system /database that can be accessed through a symbolic link.

To access a file through a symbolic link

1 Go to the /database file system:

$ cd /database

2 Create a 100 MB Quick I/O file named dbfile:

$ dd if=/dev/zero of=/database/.dbfile bs=128k count=800

The dd command preallocates the file space.

3 Create a symbolic link to dbfile:

$ ln -s .dbfile::cdev:vxfs: /database/dbfile

About absolute and relative path names

It is usually better to use relative path names instead of absolute path names when

creating symbolic links to access regular files as Quick I/O files. Using relative

path names prevents copies of the symbolic link from referring to the original

file. This is important if you are backing up or moving database files with a

command that preserves the symbolic link. However, some applications, such as

SAP, require absolute path names.

Quick I/O for Databases
Accessing regular VxFS files through symbolic links

190

If you create a symbolic link using a relative path name, both the symbolic link

and the file are under the same parent directory. If you want to relocate the file,

both the file and the symbolic link must be moved.

It is also possible to use the absolute path name when creating a symbolic link. If

the database file is relocated to another directory, you must change the symbolic

link to use the new absolute path. You can put all the symbolic links in a directory

separate from the data directories. For example, you can create a directory named

/database and put in all the symbolic links, with the symbolic links pointing to

absolute path names.

Preallocating files using the setext command

You can use the VxFS setext command to preallocate file space, but the setext

command requires superuser privileges. You may need to use the chown and chgrp

commands to change the owner and group permissions on the file after it is

created.

See the setext(1) manual page.

The following example shows how to use setext to create a 100 MB database file

for an Oracle database.

To preallocate files using setext

1 Go to the /database file system:

cd /database

2 Create the .dbfile file:

touch .dbfile

3 Reserve 100 MB for the .dbfile file using setext:

setext -r 102400 -f noreserve -f chgsize .dbfile

4 Create a symbolic link to .dbfile:

ln -s .dbfile::cdev:vxfs: dbfile

191Quick I/O for Databases
Accessing regular VxFS files through symbolic links

5 Change the owner of dbfile to oracle:

chown oracle dbfile

6 Change the group of dbfile to dba:

chgrp dba dbfile

Using Quick I/O with Oracle databases
The following example shows how a file can be used by an Oracle database to

create a tablespace. This command would be run by the Oracle DBA, typically user

ID oracle. Oracle requires additional space for one Oracle header size. In the

following example, although 100 MB was allocated to /database/dbfile, the

Oracle database can use only up to 100 MB minus the Oracle parameter

db_block_size.

To create a tablespace with an Oracle database

1 Create the file dbfile and preallocate 100 MB for the file:

$ qiomkfile -h headersize -s 100m /database/dbfile

2 Start the Oracle database:

$ sqlplus /nolog

3 Create the tablespace:

SQL> connect / as sysdba

SQL> create tablespace ts1 datafile '/database/dbfile' size 99M;

SQL> exit;

Using Quick I/O with Sybase databases
To create a new database device, preallocate space on the file system by using the

qiomkfile command, then use the Sybase buildmaster command for a master

device, or the Transact SQL disk init command for a database device. qiomkfile

creates two files: a regular file using preallocated, contiguous space, and a symbolic

link pointing to the ::cdev:vxfs: name extension.

The following example creates a 100 megabyte master device masterdev on the

file system /sybmaster.

Quick I/O for Databases
Using Quick I/O with Oracle databases

192

To create a new Sybase database device

1 Go to the /sybmaster file system:

$ cd /sybmaster

2 Create the masterdev file and preallocate 100 MB for the file:

$ qiomkfile -s 100m masterdev

You can use this master device while running the sybsetup program or

sybinit script.

3 To create the master device directly, enter:

$ buildmaster -d masterdev -s 51200

4 Add a new 500 megabyte database device datadev to the file system /sybdata

on your dataserver:

$ cd /sybdata

$ qiomkfile -s 500m datadev

...

5 Start the Sybase database:

$ isql -U sa -P sa_password -S dataserver_name

6 Set up the datadev database device:

1> disk init

2> name = "logical_name",

3> physname = "/sybdata/datadev",

4> vdevno = "device_number",

5> size = 256000

6> go

Enabling and disabling Quick I/O
If the Quick I/O feature is licensed and installed, Quick I/O is enabled by default

when a file system is mounted. The -o qio and -o noqio mount options enable

and disable, respectively, Quick I/O when a file system is mounted.

If Quick I/O is not installed or licensed, a file system mounts by default without

Quick I/O and no error message is displayed. However, if you specify the -o qio

193Quick I/O for Databases
Enabling and disabling Quick I/O

option, the mount command prints the following error message and terminates

without mounting the file system.

VxFDD: You don't have a license to run this program

vxfs mount: Quick I/O not available

To enable or disable Quick I/O

1 Specify the -o qio mount option to enable Quick I/O:

mount -F vxfs -o qio MyFS

2 Specify the -o noqio mount option to disable Quick I/O:

mount -F vxfs -o noqio MyFS

About Cached Quick I/O for databases
A 32-bit application (such as a 32-bit database) can use a maximum of only 4 GB

of memory because of the 32-bit address limitation. The Cached Quick I/O feature

improves database performance on machines with sufficient memory by also

using the file system cache to store data.

For read operations through the Quick I/O interface, data is cached in the system

page cache, so subsequent reads of the same data can access this cached copy and

avoid doing disk I/O. To maintain the correct data in its buffer for write operations,

Cached Quick I/O keeps the page cache in sync with the data written to disk.

With 64-bit applications, for which limited memory is not a critical problem, using

the file system cache still provides performance benefits by using the read-ahead

functionality. Because of the read-ahead functionality, sequential table scans will

benefit the most from using Cached Quick I/O by significantly reducing the query

response time.

Enabling Cached Quick I/O

Caching for Quick I/O files can be enabled online when the database is running

by using the vxtunefs utility and the qioadmin command.

See the vxtunefs(1M) and qioadmin(1) manual pages.

Note:Quick I/O must be enabled on the file system for Cached Quick I/O to operate.

Quick I/O for Databases
About Cached Quick I/O for databases

194

To enable caching

1 Set the qio_cache_enable parameter of vxtunefs to enable caching on a file

system.

2 Enable the Cached Quick I/O feature for specific files using the qioadmin

command.

Enabling Cached Quick I/O for file systems

Caching is initially disabled on a file system. You enable Cached Quick I/O for a

file system by setting the qio_cache_enable option of the vxtunefs command

after the file system is mounted.

Note: The vxtunefs command enables caching for all the Quick I/O files on the

file system.

The following example enables Cached Quick I/O for the file system /database01.

To enable Cached Quick I/O for a file system

1 Enable Cached Quick I/O:

vxtunefs -s -o qio_cache_enable=1 /database01

/database01 is a VxFS file system containing the Quick I/O files.

2 If desired, make this setting persistent across mounts by adding a file system

entry in the file /etc/vx/tunefstab:

/dev/vx/dsk/datadg/database01 qio_cache_enable=1

/dev/vx/dsk/datadg/database02 qio_cache_enable=1

See the tunefstab(4) manual page.

Manipulating Cached Quick I/O settings for individual files

A Quick I/O file's Cached Quick I/O settings are manipulated with the vxtunefs

utility and the qioadmin command.

See the vxtunefs(1M) and qioadmin(1) manual pages.

Note: The cache advisories operate only if Cached Quick I/O is enabled for the file

system. If the qio_cache_enable flag is zero, Cached Quick I/O is OFF for all the

files in that file system even if the individual file cache advisory for a file is ON.

195Quick I/O for Databases
About Cached Quick I/O for databases

To enable caching on a file

◆ Enable caching on a file:

$ qioadmin -S filename=on mount_point

To disable caching on a file

◆ Disable caching on a file:

$ qioadmin -S filename=off mount_point

To make the caching setting persistent across mounts

◆ Create a qiotab file, /etc/vx/qioadmin, to list files and their caching

advisories. Based on the following example, the file /database/sell.dbfwill

have caching turned on whenever the file system /database is mounted:

device=/dev/vx/dsk/datadg/database01

dates.dbf,off

names.dbf,off

sell.dbf,on

To check on the current cache advisory settings for a file

◆ Check the current cache advisory settings:

$ qioadmin -P filename mount_point

filename,OFF

To check the setting of the qio_cache_enable flag for a file system

◆ Check the setting of the qio_cache_enable flag:

$ vxtunefs -p /database01

qio_cache_enable = 1

Check the setting of the flagqio_cache_enableusing thevxtunefs command,

and the individual cache advisories for each file, to verify caching.

About Quick I/O statistics
Quick I/O provides the qiostat utility to collect database I/O statistics generated

over a period of time. qiostat reports statistics, such as the number of read and

write operations, the number of blocks read or written, and the average time spent

on read and write operations during an interval.

Quick I/O for Databases
About Quick I/O statistics

196

See the qiostat(1) manual page.

Increasing database performance using Quick I/O
Perform the following steps to increase database performance on a VxFS file

system using Quick I/O.

See the Veritas Editions product documentation.

See the qioadmin(1) and vxtunefs(1M) manual pages.

To increase database performance

1 Verify that the Quick I/O module is loaded.

modinfo | grep fdd

2 You can add the following line to the file /etc/system to load Quick I/O

whenever the system reboots.

forceload: drv/fdd

3 Create a regular VxFS file and preallocate it to the required size, or use the

qiomkfile command. The size of this preallocation depends on the size

requirement of the database server.

4 Create and access the database using the file name xxx::cdev:vxfs:.

197Quick I/O for Databases
Increasing database performance using Quick I/O

Quick I/O for Databases
Increasing database performance using Quick I/O

198

Quick Reference

This appendix includes the following topics:

■ Command summary

■ Online manual pages

■ Creating a VxFS file system

■ Converting a file system to VxFS

■ Mounting a file system

■ Unmounting a file system

■ Displaying information on mounted file systems

■ Identifying file system types

■ Resizing a file system

■ Backing up and restoring a file system

■ Using quotas

Command summary
Symbolic links to all VxFS command executables are installed in the/opt/VRTS/bin

directory. Add this directory to the end of your PATH environment variable to

access the commands.

Table A-1 describes the VxFS-specific commands.

AAppendix

Table A-1 VxFS commands

DescriptionCommand

CFS cluster configuration command. This functionality is available only with the Veritas Cluster

File System product.

cfscluster

Adds or deletes shared disk groups to or from a cluster configuration. This functionality is

available only with the Veritas Cluster File System product.

cfsdgadm

Adds, deletes, modifies, and sets policy on cluster mounted file systems. This functionality is

available only with the Veritas Cluster File System product.

cfsmntadm

Mounts or unmounts a cluster file system. This functionality is available only with the Veritas

Cluster File System product.

cfsmount,

cfsumount

Copies files and directories on VxFS file systems.cp

Reports the number of free disk blocks and inodes for a VxFS file system.df

Administers VxFS File Change Logs.fcladm

Lists file names and inode information for a VxFS file system.ff

Administers file I/O statisticsfiostat

Resizes or defragments a VxFS file system.fsadm

Administers VxFS allocation policies.fsapadm

Cats a VxFS file system.fscat

Performs online CDS operations.fscdsadm

Performs offline CDS migration tasks on VxFS file systems.fscdsconv

Performs various CDS operations.fscdstask

Checks and repairs a VxFS file system.fsck

Restores file systems from VxFS Storage Checkpoints.fsckpt_restore

Administers VxFS Storage Checkpoints.fsckptadm

Manages cluster-mounted VxFS file systems. This functionality is available only with the Veritas

Cluster File System product.

fsclustadm

Debugs VxFS file systems.fsdb

Encapsulates databases.fsdbencap

Displays VxFS file system extent information.fsmap

Quick Reference
Command summary

200

Table A-1 VxFS commands (continued)

DescriptionCommand

Administers VxFS placement policies.fsppadm

Returns the type of file system on a specified disk partition.fstyp

Maps volumes of VxFS file systems to files.fsvmap

Administers VxFS volumes.fsvoladm

Configures Group Lock Managers (GLM).

This functionality is available only with the Veritas Cluster File System product.

glmconfig

Lists files and directories on a VxFS file system.ls

Constructs a VxFS file system.mkfs

Mounts a VxFS file system.mount

Moves files and directories on a VxFS file system.mv

Generates path names from inode numbers for a VxFS file system.ncheck

Administers VxFS Quick I/O for Databases cache.qioadmin

Creates a VxFS Quick I/O device file. This functionality is available only with the Veritas Quick

I/O for Databases feature.

qiomkfile

Displays statistics for VxFS Quick I/O for Databases. This functionality is available only with

the Veritas Quick I/O for Databases feature.

qiostat

Sets extent attributes on a file in a VxFS file system.setext

Unmounts a VxFS file system.umount_vxfs

Incrementally dumps file systems.vxdump

Edits user quotas for a VxFS file system.vxedquota

Enables specific VxFS features.vxenablef

Converts an unmounted file system to VxFS or upgrades a VxFS disk layout version.vxfsconvert

Displays file system statistics.vxfsstat

Looks up VxFS reverse path names.vxlsino

Displays file system ownership summaries for a VxFS file system.vxquot

Displays user disk quotas and usage on a VxFS file system.vxquota

201Quick Reference
Command summary

Table A-1 VxFS commands (continued)

DescriptionCommand

Turns quotas on and off for a VxFS file system.vxquotaoff

vxquotaon

Summarizes quotas for a VxFS file system.vxrepquota

Restores a file system incrementally.vxrestore

Tunes a VxFS file system.vxtunefs

Upgrades the disk layout of a mounted VxFS file system.vxupgrade

Online manual pages
This release includes the following online manual pages as part of the VRTSvxfs

package. These are installed in the appropriate directories under /opt/VRTS/man

(add this to your MANPATH environment variable), but does not update the windex

database. To ensure that new VxFS manual pages display correctly, update the

windex database after installing VRTSvxfs.

See the catman(1M) manual page.

Table A-2 describes the VxFS-specific section 1 manual pages.

Table A-2 Section 1 manual pages

DescriptionSection 1

Copies files and directories on a VxFS file system.cp_vxfs

Copies files and directories on a VxFS file system.cpio_vxfs

Administers file I/O statistics.fiostat

Gets extent attributes for a VxFS file system.getext

Lists files and directories on a VxFS file system.ls_vxfs

Moves files and directories on a VxFS file system.mv_vxfs

Administers VxFS Quick I/O for Databases cache. This functionality is available only with the

Veritas Quick I/O for Databases feature.

qioadmin

Creates a VxFS Quick I/O device file. This functionality is available only with the Veritas Quick

I/O for Databases feature.

qiomkfile

Quick Reference
Online manual pages

202

Table A-2 Section 1 manual pages (continued)

DescriptionSection 1

Displays statistics for VxFS Quick I/O for Databases. This functionality is available only with

the Veritas Quick I/O for Databases feature.

qiostat

Sets extent attributes on a file in a VxFS file system.setext

Table A-3 describes the VxFS-specific section 1M manual pages.

Table A-3 Section 1M manual pages

DescriptionSection 1M

Configures CFS clusters. This functionality is available only with the Veritas Cluster File System

product.

cfscluster

Adds or deletes shared disk groups to/from a cluster configuration. This functionality is available

only with the Veritas Cluster File System product.

cfsdgadm

Adds, deletes, modifies, and sets policy on cluster mounted file systems. This functionality is

available only with the Veritas Cluster File System product.

cfsmntadm

Mounts or unmounts a cluster file system. This functionality is available only with the Veritas

Cluster File System product.

cfsmount,

cfsumount

Reports the number of free disk blocks and inodes for a VxFS file system.df_vxfs

Administers VxFS File Change Logs.fcladm

Lists file names and inode information for a VxFS file system.ff_vxfs

Resizes or reorganizes a VxFS file system.fsadm_vxfs

Administers VxFS allocation policies.fsapadm

Cats a VxFS file system.fscat_vxfs

Performs online CDS operations.fscdsadm

Performs offline CDS migration tasks on VxFS file systems.fscdsconv

Performs various CDS operations.fscdstask

Checks and repairs a VxFS file system.fsck_vxfs

Administers VxFS Storage Checkpoints.fsckptadm

Restores file systems from VxFS Storage Checkpoints.fsckpt_restore

203Quick Reference
Online manual pages

Table A-3 Section 1M manual pages (continued)

DescriptionSection 1M

Manages cluster-mounted VxFS file systems. This functionality is available only with the Veritas

Cluster File System product.

fsclustadm

Encapsulates databases.fsdbencap

Debugs VxFS file systems.fsdb_vxfs

Displays VxFS file system extent information.fsmap

Administers VxFS placement policies.fsppadm

Returns the type of file system on a specified disk partition.fstyp_vxfs

Maps volumes of VxFS file systems to files.fsvmap

Administers VxFS volumes.fsvoladm

Configures Group Lock Managers (GLM). This functionality is available only with the Veritas

Cluster File System product.

glmconfig

Constructs a VxFS file system.mkfs_vxfs

Mounts a VxFS file system.mount_vxfs

Generates path names from inode numbers for a VxFS file system.ncheck_vxfs

Summarizes ownership on a VxFS file system.quot

Checks VxFS file system quota consistency.quotacheck_vxfs

Unmounts a VxFS file system.umount_vxfs

Generates VxFS disk accounting data by user ID.vxdiskusg

Incrementally dumps file systems.vxdump

Edits user quotas for a VxFS file system.vxedquota

Enables specific VxFS features.vxenablef

Converts an unmounted file system to VxFS or upgrades a VxFS disk layout version.vxfsconvert

Displays file system statistics.vxfsstat

Looks up VxFS reverse path names.vxlsino

Displays file system ownership summaries for a VxFS file system.vxquot

Displays user disk quotas and usage on a VxFS file system.vxquota

Quick Reference
Online manual pages

204

Table A-3 Section 1M manual pages (continued)

DescriptionSection 1M

Turns quotas on and off for a VxFS file system.vxquotaoff

vxquotaon

Summarizes quotas for a VxFS file system.vxrepquota

Restores a file system incrementally.vxrestore

Tunes a VxFS file system.vxtunefs

Upgrades the disk layout of a mounted VxFS file system.vxupgrade

Table A-4 describes the VxFS-specific section 3 manual pages.

Table A-4 Section 3 manual pages

DescriptionSection 3

Allocates an fsap_info2 structure.vxfs_ap_alloc2

Assigns an allocation policy to file data and metadata in a Storage

Checkpoint.

vxfs_ap_assign_ckpt

Assigns an allocation policy for file data and metadata.vxfs_ap_assign_file

Assigns a pattern-based allocation policy for a directory.vxfs_ap_assign_file_pat

Assigns an allocation policy for all file data and metadata within a

specified file system.

vxfs_ap_assign_fs

Assigns an pattern-based allocation policy for a file system.vxfs_ap_assign_fs_pat

Defines a new allocation policy.vxfs_ap_define

Defines a new allocation policy.vxfs_ap_define2

Ensures that all blocks in a specified file match the file allocation policy.vxfs_ap_enforce_file

Reallocates blocks in a file to match allocation policies.vxfs_ap_enforce_file2

Returns information about all allocation policies.vxfs_ap_enumerate

Returns information about all allocation policies.vxfs_ap_enumerate2

Frees one or more fsap_info2 structures.vxf_ap_free2

Returns information about a specific allocation policy.vxfs_ap_query

Returns information about a specific allocation policy.vxfs_ap_query2

205Quick Reference
Online manual pages

Table A-4 Section 3 manual pages (continued)

DescriptionSection 3

Returns information about allocation policies for each Storage

Checkpoint.

vxfs_ap_query_ckpt

Returns information about allocation policies assigned to a specified

file.

vxfs_ap_query_file

Returns information about the pattern-based allocation policy assigned

to a directory.

vxfs_ap_query_file_pat

Retrieves allocation policies assigned to a specified file system.vxfs_ap_query_fs

Returns information about the pattern-based allocation policy assigned

to a file system.

vxfs_ap_query_fs_pat

Deletes a specified allocation policy.vxfs_ap_remove

Sets a synchronization point in the VxFS File Change Log.vxfs_fcl_sync

Returns file and sub-file I/O statistics.vxfs_fiostats_dump

Gets sub-file I/O statistics configuration values.vxfs_fiostats_getconfig

Turns on and off sub-file I/O statistics and resets statistics counters.vxfs_fiostats_set

Obtains VxFS inode field offsets.vxfs_get_ioffsets

Returns path names for a given inode number.vxfs_inotopath

Checks for the existence of named data streams.vxfs_nattr_check

vxfs_nattr_fcheck

Links to a named data stream.vxfs_nattr_link

Opens a named data stream.vxfs_nattr_open

Renames a named data stream.vxfs_nattr_rename

Removes a named data stream.vxfs_nattr_unlink

Sets access and modification times for named data streams.vxfs_nattr_utimes

Adds a volume to a multi-volume file system.vxfs_vol_add

Clears specified flags on volumes in a multi-volume file system.vxfs_vol_clearflags

De-encapsulates a volume from a multi-volume file system.vxfs_vol_deencapsulate

Encapsulates a volume within a multi-volume file system.vxfs_vol_encapsulate

Quick Reference
Online manual pages

206

Table A-4 Section 3 manual pages (continued)

DescriptionSection 3

Encapsulates a volume within a multi-volume file system.vxfs_vol_encapsulate_bias

Returns information about the volumes within a multi-volume file

system.

vxfs_vol_enumerate

Queries flags on volumes in a multi-volume file system.vxfs_vol_queryflags

Removes a volume from a multi-volume file system.vxfs_vol_remove

Resizes a specific volume within a multi-volume file system.vxfs_vol_resize

Sets specified flags on volumes in a multi-volume file system.vxfs_vol_setflags

Returns free space information about a component volume within a

multi-volume file system.

vxfs_vol_stat

Table A-5 describes the VxFS-specific section 4 manual pages.

Table A-5 Section 4 manual pages

DescriptionSection 4

Provides the format of a VxFS file system volume.fs_vxfs

Provides the format of a VxFS file system inode.inode_vxfs

Describes the VxFS file system tuning parameters table.tunefstab

Table A-6 describes the VxFS-specific section 7 manual pages.

Table A-6 Section 7 manual pages

DescriptionSection 7

Describes the VxFS file system control functions.vxfsio

Creating a VxFS file system
The mkfs command creates a VxFS file system by writing to a special character

device file. The special character device is a location or character device node of

a particular storage device. mkfs builds a file system with a root directory and a

lost+found directory.

207Quick Reference
Creating a VxFS file system

Before running mkfs, you must create the target device. Refer to your operating

system documentation for more information. If you are using a logical device

(such as a VxVM volume), see the VxVM documentation for instructions on device

initialization.

See the mkfs(1M), and mkfs_vxfs(1M) manual pages.

To create a file system

◆ Use the mkfs command to create a file system:

mkfs [-F vxfs] [-m] [generic_options] [-o specific_options] \

special [size]

Specifies the VxFS file system type.-F vxfs

Displays the command line that was used to create the file

system. The file system must already exist. This option

enables you to determine the parameters used to construct

the file system.

-m

Options common to most other file system types.generic_options

Options specific to VxFS.-o specific_options

Displays the geometry of the file system and does not write

to the device.

-o N

Allows users to create files larger than two gigabytes. The

default option is largefiles.

-o largefiles

Specifies the special device file location or character device

node of a particular storage device.

special

Specifies the number of 512-byte sectors in the file system.

If size is not specified, mkfs determines the size of the

special device.

size

Example of creating a file system

The following example creates a VxFS file system of 12288 sectors in size on a

VxVM volume.

Quick Reference
Creating a VxFS file system

208

To create a VxFS file system

1 Create the file system:

mkfs -F vxfs /dev/vx/rdsk/diskgroup/volume 12288

version 7 layout

12288 sectors, 6144 blocks of size 1024, log size 512 blocks

largefiles supported

2 Mount the newly created file system.

Converting a file system to VxFS
The vxfsconvert command can be used to convert a UFS file system to a VxFS

file system.

See the vxfsconvert(1M) manual page.

To convert a UFS file system to a VxFS file system

◆ Use the vxfsconvert command to convert a UFS file system to VxFS:

vxfsconvert [-l logsize] [-s size] [-efnNvyY] special

Estimates the amount of space required to complete the conversion.-e

Displays the list of supported file system types.-f

Specifies the size of the file system intent log.-l logsize

Assumes a no response to all questions asked by vxfsconvert.-n|N

Directs vxfsconvert to use free disk space past the current end of the

file system to store VxFS metadata.

-s size

Specifies verbose mode.-v

Assumes a yes response to all questions asked by vxfsconvert.-y|Y

Specifies the name of the character (raw) device that contains the file

system to convert.

special

Example of converting a file system

The following example converts a UFS file system to a VxFS file system with an

intent log size of 4096 blocks.

209Quick Reference
Converting a file system to VxFS

To convert a UFS file system to a VxFS file system

◆ Convert the file system:

vxfsconvert -l 4096 /dev/vx/rdsk/diskgroup/volume

Mounting a file system
You can mount a VxFS file system by using the mount command. When you enter

the mount command, the generic mount command parses the arguments and the

-F FSType option executes the mount command specific to that file system type.

The mount command first searches the /etc/fs/FSType directory, then the

/usr/lib/fs/FSType directory. If the -F option is not supplied, the command

searches the file /etc/vfstab for a file system and an FSType matching the special

file or mount point provided. If no file system type is specified, mount uses the

default file system.

To mount a file system

◆ Use the mount command to mount a file system:

mount [-F vxfs] [generic_options] [-r] [-o specific_options] \

special mount_point

File system type.vxfs

Options common to most other file system types.generic_options

Options specific to VxFS.specific_options

Mounts a Storage Checkpoint.-o ckpt=ckpt_name

Mounts a file system in shared mode. Available only with the VxFS

cluster file system feature.

-o cluster

A VxFS block special device.special

Directory on which to mount the file system.mount_point

Mounts the file system as read-only.-r

Mount options

The mount command has numerous options to tailor a file system for various

functions and environments.

Quick Reference
Mounting a file system

210

The following table lists some of the specific_options:

If security is important, use blkclear to ensure that deleted files

are completely erased before the space is reused.

Security feature

If you specify the largefiles option, you can create files larger than

two gigabytes on the file system. The default option is largefiles.

Support for large files

If you specify the cluster option, the file system is mounted in

shared mode. Cluster file systems depend on several other Veritas

products that must be correctly configured before a complete

clustering environment is enabled.

Support for cluster file

systems

The ckpt=checkpoint_name option mounts a Storage

Checkpoint of a mounted file system that was previously created

by the fsckptadm command.

Using Storage

Checkpoints

If you are using databases with VxFS and if you have installed a

license key for the Veritas Quick I/O for Databases feature, the

mount command enables Quick I/O by default (the same as

specifying the qio option). The noqio option disables Quick I/O. If

you do not have Quick I/O, mount ignores the qio option.

Alternatively, you can increase database performance using the

mount option convosync=direct, which utilizes direct I/O.

See “About Quick I/O” on page 185.

Using databases

If you are using cnews, use delaylog (or

tmplog),mincache=closesync because cnews does an fsync() on

each news file before marking it received. The fsync() is

performed synchronously as required, but other options are

delayed.

News file systems

For a temporary file system such as /tmp, where performance is

more important than data integrity, use

tmplog,mincache=tmpcache.

Temporary file

systems

See “Choosing mount command options” on page 30.

See the fsckptadm(1M), mount(1M), mount_vxfs(1M), and vfstab(4) manual pages.

Example of mounting a file system

The following example mounts the file system /dev/vx/dsk/fsvol/vol1 on the

/ext directory with read/write access and delayed logging.

211Quick Reference
Mounting a file system

To mount the file system

◆ Mount the file system:

mount -F vxfs -o delaylog /dev/vx/dsk/fsvol/vol1 /ext

Editing the vfstab file

You can edit the /etc/vfstab file to mount a file system automatically at boot

time.

You must specify the following:

■ The special block device name to mount

■ The special character device name used by fsck

■ The mount point

■ The mount options

■ The file system type (vxfs)

■ Which fsck pass looks at the file system

■ Whether to mount the file system at boot time

Each entry must be on a single line.

See the vfstab(4) manual page.

The following is a typical vfstab file with the new file system on the last line:

mount

options

mount at

boot

fsck

pass

FS typemount pointdevice to fsck# device # to mount #

—yes1ufs/usr/dev/rdsk/c1d0s2# /dev/dsk/c1d0s2

—no—proc/proc—/proc

—no—fd/dev/fd—fd

—yes—tmpfs/tmp—swap

—no1ufs//dev/rdsk/c0t3d0s0/dev/dsk/c0t3d0s0

—no—swap——/dev/dsk/c0t3d0s1

—yes1vxfs/ext/dev/vx/rdsk/fsvol/vol1/dev/vx/dsk/fsvol/vol1

Quick Reference
Mounting a file system

212

Unmounting a file system
Use the umount command to unmount a currently mounted file system.

See the umount_vxfs(1M) manual page.

To unmount a file system

◆ Use the umount command to unmount a file system:

umount [-F vxfs] [generic_options] [-o [force]] {special|mount_point}

Specify the file system to be unmounted as amount_pointorspecial.special

is the VxFS block special device on which the file system resides.

Example of unmounting a file system

The following are examples of unmounting file systems.

To unmount the file system /dev/vx/dsk/fsvol/vol1

◆ Unmount the file system:

umount /dev/vx/dsk/fsvol/vol1

To unmount all file systems not required by the system

◆ Unmount the file systems:

umount -a

This unmounts all file systems except /, /usr, /usr/kvm, /var, /proc, /dev/fd,

and /tmp.

Displaying information on mounted file systems
Use the mount command to display a list of currently mounted file systems.

See the mount(1M) and mount_vxfs(1M) manual pages.

To view the status of mounted file systems

◆ Use the mount command to view the status of mounted file systems:

mount -v

This shows the file system type and mount options for all mounted file systems.

The -v option specifies verbose mode.

213Quick Reference
Unmounting a file system

Example of displaying information on mounted file systems

The following example shows the result of invoking the mount command without

options.

To display information on mounted file systems

◆ Invoke the mount command without options:

mount

/ on /dev/root read/write/setuid on Thu May 26 16:58:24 2004

/proc on /proc read/write on Thu May 26 16:58:25 2004

/dev/fd on /dev/fd read/write on Thu May 26 16:58:26 2004

/tmp on /tmp read/write on Thu May 26 16:59:33 2004

/var/tmp on /var/tmp read/write on Thu May 26 16:59:34 2004

Identifying file system types
Use the fstyp command to determine the file system type for a specified file

system. This is useful when a file system was created elsewhere and you want to

know its type.

See the fstyp(1M) and fstyp_vxfs(1M) manual pages.

To determine a file system's type

◆ Use the fstyp command to determine a file system's type:

fstyp -v special

The character (raw) device.special

Specifies verbose mode.-v

Example of determining a file system's type

The following example uses the fstyp command to determine a the file system

type of the /dev/vx/dsk/fsvol/vol1 device.

Quick Reference
Identifying file system types

214

To determine the file system's type

◆ Use the fstyp command to determine the file system type of the device

/dev/vx/dsk/fsvol/vol1:

fstyp -v /dev/vx/dsk/fsvol/vol1

The output indicates that the file system type is vxfs, and displays file system

information similar to the following:

vxfs

magic a501fcf5 version 7 ctime Tue Jun 25 18:29:39 2003

logstart 17 logend 1040

bsize 1024 size 1048576 dsize 1047255 ninode 0 nau 8

defiextsize 64 ilbsize 0 immedlen 96 ndaddr 10

aufirst 1049 emap 2 imap 0 iextop 0 istart 0

bstart 34 femap 1051 fimap 0 fiextop 0 fistart 0 fbstart

Resizing a file system
You can extend or shrink mounted VxFS file systems using the fsadm command.

Use the extendfs command to extend the size of an unmounted file system. A

file system using the Version 4 disk layout can be up to two terabytes in size. A

file system using the Version 5 disk layout can be up to 32 terabytes in size. A file

system using the Version 6 or 7 disk layout can be up to 8 exabytes in size. The

size to which a Version 5, 6, or 7 disk layout file system can be increased depends

on the file system block size.

See “About disk layouts” on page 275.

See the format(1M) and fsadm_vxfs(1M) manual pages.

Extending a file system using fsadm

If a VxFS file system is not large enough, you can increase its size. The size of the

file system is specified in units of 512-byte blocks (or sectors).

Note: If a file system is full, busy, or too fragmented, the resize operation may

fail.

The device must have enough space to contain the larger file system.

See the format(1M) manual page.

See the Veritas VolumeManager Administrator's Guide.

215Quick Reference
Resizing a file system

To extend a VxFS file system

◆ Use the fsadm command to extend a VxFS file system:

/usr/lib/fs/vxfs/fsadm [-b newsize] [-r rawdev] \

mount_point

The size (in sectors) to which the file system will increase.newsize

The file system's mount point.mount_point

Specifies the path name of the raw device if there is no entry in

/etc/vfstab and fsadm cannot determine the raw device.

-r rawdev

Example of extending a file system

The following is an example of extending a file system with the fsadm command.

To extend a file system

◆ Extend the VxFS file system mounted on /ext to 22528 sectors:

/usr/lib/fs/vxfs/fsadm -b 22528 /ext

Shrinking a file system

You can decrease the size of the file system using fsadm, even while the file system

is mounted.

Note: In cases where data is allocated toward the end of the file system, shrinking

may not be possible. If a file system is full, busy, or too fragmented, the resize

operation may fail.

To decrease the size of a VxFS file system

◆ Use the fsadm command to decrease the size of a VxFS file system:

fsadm [-F vxfs] [-b newsize] [-r rawdev] mount_point

The file system type.vxfs

The size (in sectors) to which the file system will shrink.newsize

The file system's mount point.mount_point

Quick Reference
Resizing a file system

216

Specifies the path name of the raw device if there is no entry in

/etc/vfstab and fsadm cannot determine the raw device.

-r rawdev

Example of shrinking a file system

The following example shrinks a VxFS file system mounted at /ext to 20480

sectors.

To shrink a VxFS file system

◆ Shrink a VxFS file system mounted at /ext to 20480 sectors:

fsadm -F vxfs -b 20480 /ext

Warning: After this operation, there is unused space at the end of the device.

You can then resize the device, but be careful not to make the device smaller

than the new size of the file system.

Reorganizing a file system

You can reorganize or compact a fragmented file system using fsadm, even while

the file system is mounted. This may help shrink a file system that could not

previously be decreased.

Note: If a file system is full or busy, the reorg operation may fail.

To reorganize a VxFS file system

◆ Use the fsadm command to reorganize a VxFS file system:

fsadm [-F vxfs] [-e] [-d] [-E] [-D] [-r rawdev] mount_point

The file system type.vxfs

Reorders directory entries to put subdirectory entries first, then

all other entries in decreasing order of time of last access. Also

compacts directories to remove free space.

-d

Reports on directory fragmentation.-D

Minimizes file system fragmentation. Files are reorganized to

have the minimum number of extents.

-e

Reports on extent fragmentation.-E

217Quick Reference
Resizing a file system

The file system's mount point.mount_point

Specifies the path name of the raw device if there is no entry in

/etc/vfstab and fsadm cannot determine the raw device.

-r rawdev

Example of reorganizing a file system

The following example reorganizes the file system mounted at /ext.

To reorganize a VxFS file system

◆ Reorganize the VxFS file system mounted at /ext:

fsadm -F vxfs -EeDd /ext

Backing up and restoring a file system
To back up a VxFS file system, you first create a read-only snapshot file system,

then back up the snapshot. This procedure lets you keep the main file system on

line. The snapshot is a copy of the snapped file system that is frozen at the moment

the snapshot is created.

See “About snapshot file systems” on page 93.

See the mount(1M), mount_vxfs(1M), vxdump(1M), and vxrestore(1M) manual

pages.

Creating and mounting a snapshot file system

The first step in backing up a VxFS file system is to create and mount a snapshot

file system.

To create and mount a snapshot of a VxFS file system

◆ Use the mount command to create and mount a snapshot of a VxFS file system:

mount [-F vxfs] -o snapof=source,[snapsize=size] \

destination snap_mount_point

The special device name or mount point of the file system to

copy.

source

The name of the special device on which to create the snapshot.destination

The size of the snapshot file system in sectors.size

Quick Reference
Backing up and restoring a file system

218

Location where to mount the snapshot;snap_mount_pointmust

exist before you enter this command.

snap_mount_point

Example of creating and mounting a snapshot of a VxFS file
system

The following example creates a snapshot file system of the file system at /home

on /dev/vx/dsk/fsvol/vol1, and mounts it at /snapmount.

To create and mount a snapshot file system of a file system

◆ Create a snapshot file system of the file system at /home on

/dev/vx/dsk/fsvol/vol1 and mount it at /snapmount:

mount -F vxfs -o snapof=/home, \

snapsize=32768 /dev/vx/dsk/fsvol/vol1 /snapmount

You can now back up the file system.

Backing up a file system

After creating a snapshot file system, you can use vxdump to back it up.

To back up a VxFS snapshot file system

◆ Use the vxdump command to back up a VxFS snapshot file system:

vxdump [-c] [-f backupdev] snap_mount_point

Specifies using a cartridge tape device.-c

The device on which to back up the file system.backupdev

The snapshot file system's mount point.snap_mount_point

Example of backing up a file system

The following example backs up the VxFS snapshot file system mounted at

/snapmount to the tape drive with device name /dev/rmt/00m.

To back up a VxFS snapshot file system

◆ Back up the VxFS snapshot file system mounted at /snapmount to the tape

drive with device name /dev/rmt/00m:

vxdump -cf /dev/rmt/00m /snapmount

219Quick Reference
Backing up and restoring a file system

Restoring a file system

After backing up the file system, you can restore it using the vxrestore command.

First, create and mount an empty file system.

To restore a VxFS snapshot file system

◆ Use the vxrestore command to restore a VxFS snapshot file system:

vxrestore [-v] [-x] [filename]

Specifies verbose mode.-v

Extracts the named files from the tape.-x

The file or directory to restore. If filename is omitted, the root

directory, and thus the entire tape, is extracted.

filename

Example of restoring a file system

The following example restores a VxFS snapshot file system from the tape:

/dev/st1 into the mount point /restore

To restore a VxFS snapshot file system

◆ Restore a VxFS snapshot file system from the tape /dev/st1 into the mount

point /restore:

cd /restore

vxrestore -v -x -f /dev/st1

Using quotas
You can use quotas to allocate per-user quotas on VxFS file systems.

See “Using quotas” on page 104.

See the vxquota(1M), vxquotaon(1M), vxquotaoff(1M), and vxedquota(1M) manual

pages.

Turning on quotas

You can enable quotas at mount time or after a file system is mounted. The root

directory of the file system must contain a file named quotas that is owned by

root.

Quick Reference
Using quotas

220

To turn on quotas

1 Turn on quotas for a mounted file system:

vxquotaon mount_point

2 Mount a file system and turn on quotas at the same time:

mount -F vxfs -o quota special mount_point

If the root directory does not contain a quotas file, the mount command

succeeds, but quotas are not turned on.

Example of turning on quotas for a mounted file system

The following example creates a quoatas file and turns on quotas for a VxFS file

system mounted at /mnt.

To turn on quotas for a mounted file system

◆ Create a quotas file if it does not already exist and turn on quotas for a VxFS

file system mounted at /mnt:

touch /mnt/quotas

vxquotaon /mnt

Example of turning on quotas at mount time

The following example turns on quotas when the /dev/vx/dsk/fsvol/vol1 file

system is mounted.

To turn on quotas for a file system at mount time

◆ Turn on quotas at mount time by specifying the -o quota option:

mount -F vxfs -o quota /dev/vx/dsk/fsvol/vol1 /mnt

Setting up user quotas

You can set user quotas with the vxedquota command if you have superuser

privileges. User quotas can have a soft limit and hard limit. You can modify the

limits or assign them specific values. Users are allowed to exceed the soft limit,

but only for a specified time. Disk usage can never exceed the hard limit. The

default time limit for exceeding the soft limit is seven days on VxFS file systems.

221Quick Reference
Using quotas

vxedquota creates a temporary file for a specified user. This file contains on-disk

quotas for each mounted VxFS file system that has a quotas file. The temporary

file has one or more lines similar to the following:

fs /mnt blocks (soft = 0, hard = 0) inodes (soft=0, hard=0)

fs /mnt1 blocks (soft = 100, hard = 200) inodes (soft=10, hard=20)

Quotas do not need to be turned on for vxedquota to work. However, the quota

limits apply only after quotas are turned on for a given file system.

vxedquota has an option to modify time limits. Modified time limits apply to the

entire file system; you cannot set time limits for an individual user.

To set up user quotas

1 Invoke the quota editor:

vxedquota username

2 Modify the time limit:

vxedquota -t

Viewing quotas

The superuser or individual user can view disk quotas and usage on VxFS file

systems using the vxquota command. This command displays the user's quotas

and disk usage on all mounted VxFS file systems where the quotas file exists. You

will see all established quotas regardless of whether or not the quotas are actually

turned on.

To view quotas for a specific user

◆ Use the vxquota command to view quotas for a specific user:

vxquota -v username

Turning off quotas

You can turn off quotas for a mounted file system using the vxquotaoff command.

To turn off quotas for a file system

◆ Turn off quotas for a file system:

vxquotaoff mount_point

Quick Reference
Using quotas

222

Example of turning off quotas

The following example turns off quotas for a VxFS file system mounted at /mnt.

To turn off quotas

◆ Turn off quotas for a VxFS file system mounted at /mnt:

vxquotaoff /mnt

223Quick Reference
Using quotas

Quick Reference
Using quotas

224

Diagnostic messages

This appendix includes the following topics:

■ File system response to problems

■ About kernel messages

■ Kernel messages

■ About unique message identifiers

■ Unique message identifiers

File system response to problems
When the file system encounters problems, it responds in one of the following

ways:

Inodes can be marked bad if an inode update or a directory-block

update fails. In these types of failures, the file system does not

know what information is on the disk, and considers all the

information that it finds to be invalid. After an inode is marked

bad, the kernel still permits access to the file name, but any

attempt to access the data in the file or change the inode fails.

Marking an inode bad

If the file system detects an error while writing the intent log, it

disables transactions. After transactions are disabled, the files in

the file system can still be read or written, but no block or inode

frees or allocations, structural changes, directory entry changes,

or other changes to metadata are allowed.

Disabling transactions

BAppendix

If an error occurs that compromises the integrity of the file system,

VxFS disables itself. If the intent log fails or an inode-list error

occurs, the super-block is ordinarily updated (setting the

VX_FULLFSCK flag) so that the next fsck does a full structural

check. If this super-block update fails, any further changes to the

file system can cause inconsistencies that are undetectable by the

intent log replay. To avoid this situation, the file system disables

itself.

Disabling a file system

Recovering a disabled file system

When the file system is disabled, no data can be written to the disk. Although

some minor file system operations still work, most simply return EIO. The only

thing that can be done when the file system is disabled is to do a umount and run

a full fsck.

Although a log replay may produce a clean file system, do a full structural check

to be safe.

The file system usually becomes disabled because of disk errors. Disk failures that

disable a file system should be fixed as quickly as possible.

See the fsck_vxfs(1M) manual page.

To execute a full structural check

◆ Use the fsck command to execute a full structural check:

fsck -F vxfs -o full -y /dev/vx/rdsk/diskgroup/volume

Warning:Be careful when running this command. By specifying the –y option,

all fsck user prompts are answered with a “yes”, which can make irreversible

changes if it performs a full file system check.

About kernel messages
Kernel messages are diagnostic or error messages generated by the Veritas File

System (VxFS) kernel. Each message has a description and a suggestion on how

to handle or correct the underlying problem.

About global message IDs

When a VxFS kernel message displays on the system console, it is preceded by a

numerical ID shown in the msgcnt field. This ID number increases with each

Diagnostic messages
About kernel messages

226

instance of the message to guarantee that the sequence of events is known when

analyzing file system problems.

Each message is also written to an internal kernel buffer that you can view in the

file /var/adm/messages.

In some cases, additional data is written to the kernel buffer. For example, if an

inode is marked bad, the contents of the bad inode are written. When an error

message is displayed on the console, you can use the unique message ID to find

the message in /var/adm/messages and obtain the additional information.

Kernel messages
Some commonly encountered kernel messages are described on the following

table:

Table B-1 Kernel messages

Message and DefinitionMessageNumber

NOTICE: msgcnt x: mesg 001: V-2-1: vx_nospace - mount_point file

system full (n block extent)

■ Description

The file system is out of space.

Often, there is plenty of space and one runaway process used up

all the remaining free space. In other cases, the available free space

becomes fragmented and unusable for some files.

■ Action

Monitor the free space in the file system and prevent it from

becoming full. If a runaway process has used up all the space, stop

that process, find the files created by the process, and remove

them. If the file system is out of space, remove files, defragment,

or expand the file system.

To remove files, use the find command to locate the files that are

to be removed. To get the most space with the least amount of

work, remove large files or file trees that are no longer needed. To

defragment or expand the file system, use the fsadm command.

See the fsadm_vxfs(1M) manual page.

001

227Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 002: V-2-2: vx_snap_strategy -

mount_point file system write attempt to read-only file system

WARNING: msgcnt x: mesg 002: V-2-2: vx_snap_copyblk -

mount_point file system write attempt to read-only file system

■ Description

The kernel tried to write to a read-only file system. This is an

unlikely problem, but if it occurs, the file system is disabled.

■ Action

The file system was not written, so no action is required. Report

this as a bug to your customer support organization.

002

WARNING: msgcnt x: mesg 003: V-2-3: vx_mapbad - mount_point
file system free extent bitmap in au aun marked bad

WARNING: msgcnt x: mesg 004: V-2-4: vx_mapbad - mount_point
file system free inode bitmap in au aun marked bad

WARNING: msgcnt x: mesg 005: V-2-5: vx_mapbad - mount_point
file system inode extended operation bitmap in au aun marked bad

■ Description

If there is an I/O failure while writing a bitmap, the map is marked

bad. The kernel considers the maps to be invalid, so does not do

any more resource allocation from maps. This situation can cause

the file system to report out of space or out of inode error messages

even though df may report an adequate amount of free space.

This error may also occur due to bitmap inconsistencies. If a bitmap

fails a consistency check, or blocks are freed that are already free

in the bitmap, the file system has been corrupted. This may have

occurred because a user or process wrote directly to the device or

used fsdb to change the file system.

The VX_FULLFSCK flag is set. If the map that failed was a free

extent bitmap, and the VX_FULLFSCK flag cannot be set, then the

file system is disabled.

■ Action

Check the console log for I/O errors. If the problem is a disk failure,

replace the disk. If the problem is not related to an I/O failure, find

out how the disk became corrupted. If no user or process was

writing to the device, report the problem to your customer support

organization. Unmount the file system and use fsck to run a full

structural check.

003, 004, 005

Diagnostic messages
Kernel messages

228

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 006: V-2-6: vx_sumupd - mount_point
file system summary update in au aun failed

WARNING: msgcnt x: mesg 007: V-2-7: vx_sumupd - mount_point
file system summary update in inode au iaun failed

■ Description

An I/O error occurred while writing the allocation unit or inode

allocation unit bitmap summary to disk. This sets the

VX_FULLFSCK flag on the file system. If the VX_FULLFSCK flag

cannot be set, the file system is disabled.

■ Action

Check the console log for I/O errors. If the problem was caused by

a disk failure, replace the disk before the file system is mounted

for write access, and use fsck to run a full structural check.

006, 007

WARNING: msgcnt x: mesg 008: V-2-8: vx_direrr: function -

mount_point file system dir inode dir_inumber dev/block

device_ID/block dirent inode dirent_inumber error errno

WARNING: msgcnt x: mesg 009: V-2-9: vx_direrr: function -

mount_point file system dir inode dir_inumber dirent inode

dirent_inumber immediate directory error errno

■ Description

A directory operation failed in an unexpected manner. The mount

point, inode, and block number identify the failing directory. If the

inode is an immediate directory, the directory entries are stored

in the inode, so no block number is reported. If the error isENOENT
or ENOTDIR, an inconsistency was detected in the directory block.

This inconsistency could be a bad free count, a corrupted hash

chain, or any similar directory structure error. If the error is EIO
or ENXIO, an I/O failure occurred while reading or writing the disk

block.

The VX_FULLFSCK flag is set in the super-block so that fsck will

do a full structural check the next time it is run.

■ Action

Check the console log for I/O errors. If the problem was caused by

a disk failure, replace the disk before the file system is mounted

for write access. Unmount the file system and use fsck to run a

full structural check.

008, 009

229Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 010: V-2-10: vx_ialloc -mount_point file

system inode inumber not free

■ Description

When the kernel allocates an inode from the free inode bitmap, it

checks the mode and link count of the inode. If either is non-zero,

the free inode bitmap or the inode list is corrupted.

The VX_FULLFSCK flag is set in the super-block so that fsck will

do a full structural check the next time it is run.

■ Action

Unmount the file system and use fsck to run a full structural

check.

010

NOTICE: msgcnt x: mesg 011: V-2-11: vx_noinode -mount_point file

system out of inodes

■ Description

The file system is out of inodes.

■ Action

Monitor the free inodes in the file system. If the file system is

getting full, create more inodes either by removing files or by

expanding the file system.

See the fsadm_vxfs(1M) online manual page.

011

WARNING: msgcnt x: mesg 012: V-2-12: vx_iget - mount_point file

system invalid inode number inumber

■ Description

When the kernel tries to read an inode, it checks the inode number

against the valid range. If the inode number is out of range, the

data structure that referenced the inode number is incorrect and

must be fixed.

The VX_FULLFSCK flag is set in the super-block so that fsck will

do a full structural check the next time it is run.

■ Action

Unmount the file system and use fsck to run a full structural

check.

012

Diagnostic messages
Kernel messages

230

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 013: V-2-13: vx_iposition - mount_point
file system inode inumber invalid inode list extent

■ Description

For a Version 2 and above disk layout, the inode list is dynamically

allocated. When the kernel tries to read an inode, it must look up

the location of the inode in the inode list file. If the kernel finds a

bad extent, the inode cannot be accessed. All of the inode list

extents are validated when the file system is mounted, so if the

kernel finds a bad extent, the integrity of the inode list is

questionable. This is a very serious error.

TheVX_FULLFSCK flag is set in the super-block and the file system

is disabled.

■ Action

Unmount the file system and use fsck to run a full structural

check.

013

WARNING: msgcnt x: mesg 014: V-2-14: vx_iget - inode table overflow

■ Description

All the system in-memory inodes are busy and an attempt was

made to use a new inode.

■ Action

Look at the processes that are running and determine which

processes are using inodes. If it appears there are runaway

processes, they might be tying up the inodes. If the system load

appears normal, increase the vxfs_ninode parameter in the

kernel.

See “Using kernel tunables” on page 40.

014

231Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 015: V-2-15: vx_ibadinactive -

mount_point file system cannot mark inode inumber bad

WARNING: msgcnt x: mesg 015: V-2-15: vx_ilisterr - mount_point
file system cannot mark inode inumber bad

■ Description

An attempt to mark an inode bad on disk, and the super-block

update to set the VX_FULLFSCK flag, failed. This indicates that a

catastrophic disk error may have occurred since both an inode list

block and the super-block had I/O failures. The file system is

disabled to preserve file system integrity.

■ Action

Unmount the file system and use fsck to run a full structural

check. Check the console log for I/O errors. If the disk failed, replace

it before remounting the file system.

015

WARNING: msgcnt x: mesg 016: V-2-16: vx_ilisterr - mount_point
file system error reading inode inumber

■ Description

An I/O error occurred while reading the inode list. The

VX_FULLFSCK flag is set.

■ Action

Check the console log for I/O errors. If the problem was caused by

a disk failure, replace the disk before the file system is mounted

for write access. Unmount the file system and use fsck to run a

full structural check.

016

Diagnostic messages
Kernel messages

232

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

017

233Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_getblk -mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_iget - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_indadd -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_indtrunc -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_iremove -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_bmap -mount_point file

system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_bmap_indirect_ext4 -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_delbuf_flush -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_dio_iovec -mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_dirbread - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_dircreate - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_dirlook - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_doextop_iau -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_doextop_now -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_do_getpage -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_enter_ext4 -mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_exttrunc - mount_point
file system inode inumber marked bad in core

Diagnostic messages
Kernel messages

234

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 017: V-2-17: vx_get_alloc - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_ilisterr - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_indtrunc - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_iread - mount_point file

system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_iremove - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_iremove_attr -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_logwrite_flush -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_oltmount_iget -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_overlay_bmap -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_readnomap -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_reorg_trunc -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_stablestore -mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_tranitimes -mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_trunc -mount_point file

system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_write_alloc2 -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_write_default -

mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_zero_alloc -mount_point
file system inode inumber marked bad in core

017 (continued)

235Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

■ Description

When inode information is no longer dependable, the kernel marks

it bad in memory. This is followed by a message to mark it bad on

disk as well unless the mount command ioerror option is set to

disable, or there is subsequent I/O failure when updating the inode

on disk. No further operations can be performed on the inode.

The most common reason for marking an inode bad is a disk I/O

failure. If there is an I/O failure in the inode list, on a directory

block, or an indirect address extent, the integrity of the data in the

inode, or the data the kernel tried to write to the inode list, is

questionable. In these cases, the disk driver prints an error message

and one or more inodes are marked bad.

The kernel also marks an inode bad if it finds a bad extent address,

invalid inode fields, or corruption in directory data blocks during

a validation check. A validation check failure indicates the file

system has been corrupted. This usually occurs because a user or

process has written directly to the device or used fsdb to change

the file system.

The VX_FULLFSCK flag is set in the super-block so fsck will do a

full structural check the next time it is run.

■ Action

Check the console log for I/O errors. If the problem is a disk failure,

replace the disk. If the problem is not related to an I/O failure, find

out how the disk became corrupted. If no user or process is writing

to the device, report the problem to your customer support

organization. In either case, unmount the file system. The file

system can be remounted without a full fsck unless the

VX_FULLFSCK flag is set for the file system.

017 (continued)

Diagnostic messages
Kernel messages

236

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 019: V-2-19: vx_log_add - mount_point
file system log overflow

■ Description

Log ID overflow. When the log ID reaches VX_MAXLOGID
(approximately one billion by default), a flag is set so the file system

resets the log ID at the next opportunity. If the log ID has not been

reset, when the log ID reaches VX_DISLOGID (approximately

VX_MAXLOGID plus 500 million by default), the file system is

disabled. Since a log reset will occur at the next 60 second sync

interval, this should never happen.

■ Action

Unmount the file system and use fsck to run a full structural

check.

019

WARNING: msgcnt x: mesg 020: V-2-20: vx_logerr - mount_point
file system log error errno

■ Description

Intent log failed. The kernel will try to set the VX_FULLFSCK and

VX_LOGBAD flags in the super-block to prevent running a log

replay. If the super-block cannot be updated, the file system is

disabled.

■ Action

Unmount the file system and use fsck to run a full structural

check. Check the console log for I/O errors. If the disk failed, replace

it before remounting the file system.

020

237Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 021: V-2-21: vx_fs_init - mount_point
file system validation failure

■ Description

When a VxFS file system is mounted, the structure is read from

disk. If the file system is marked clean, the structure is correct and

the first block of the intent log is cleared.

If there is any I/O problem or the structure is inconsistent, the

kernel sets the VX_FULLFSCK flag and the mount fails.

If the error is not related to an I/O failure, this may have occurred

because a user or process has written directly to the device or used

fsdb to change the file system.

■ Action

Check the console log for I/O errors. If the problem is a disk failure,

replace the disk. If the problem is not related to an I/O failure, find

out how the disk became corrupted. If no user or process is writing

to the device, report the problem to your customer support

organization. In either case, unmount the file system and usefsck
to run a full structural check.

021

Diagnostic messages
Kernel messages

238

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 022: V-2-22: vx_mountroot - root file

system remount failed

■ Description

The remount of the root file system failed. The system will not be

usable if the root file system cannot be remounted for read/write

access.

When a root Veritas File System is first mounted, it is mounted

for read-only access. Afterfsck is run, the file system is remounted

for read/write access. The remount fails iffsck completed a resize

operation or modified a file that was opened before the fsck was

run. It also fails if an I/O error occurred during the remount.

Usually, the system halts or reboots automatically.

■ Action

Reboot the system. The system either remounts the root cleanly

or runs a full structuralfsck and remounts cleanly. If the remount

succeeds, no further action is necessary.

Check the console log for I/O errors. If the disk has failed, replace

it before the file system is mounted for write access.

If the system won't come up and a full structural fsck hasn't been

run, reboot the system on a backup root and manually run a full

structural fsck. If the problem persists after the full structural

fsck and there are no I/O errors, contact your customer support

organization.

022

WARNING: msgcnt x: mesg 023: V-2-23: vx_unmountroot - root file

system is busy and cannot be unmounted cleanly

■ Description

There were active files in the file system and they caused the

unmount to fail.

When the system is halted, the root file system is unmounted. This

happens occasionally when a process is hung and it cannot be killed

before unmounting the root.

■ Action

fsck will run when the system is rebooted. It should clean up the

file system. No other action is necessary.

If the problem occurs every time the system is halted, determine

the cause and contact your customer support organization.

023

239Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 024: V-2-24: vx_cutwait - mount_point
file system current usage table update error

■ Description

Update to the current usage table (CUT) failed.

For a Version 2 disk layout, the CUT contains a fileset version

number and total number of blocks used by each fileset.

TheVX_FULLFSCK flag is set in the super-block. If the super-block

cannot be written, the file system is disabled.

■ Action

Unmount the file system and use fsck to run a full structural

check.

024

WARNING: msgcnt x: mesg 025: V-2-25: vx_wsuper - mount_point
file system super-block update failed

■ Description

An I/O error occurred while writing the super-block during a resize

operation. The file system is disabled.

■ Action

Unmount the file system and use fsck to run a full structural

check. Check the console log for I/O errors. If the problem is a disk

failure, replace the disk before the file system is mounted for write

access.

025

WARNING: msgcnt x: mesg 026: V-2-26: vx_snap_copyblk -

mount_point primary file system read error

■ Description

Snapshot file system error.

When the primary file system is written, copies of the original data

must be written to the snapshot file system. If a read error occurs

on a primary file system during the copy, any snapshot file system

that doesn't already have a copy of the data is out of date and must

be disabled.

■ Action

An error message for the primary file system prints. Resolve the

error on the primary file system and rerun any backups or other

applications that were using the snapshot that failed when the

error occurred.

026

Diagnostic messages
Kernel messages

240

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 027: V-2-27: vx_snap_bpcopy -

mount_point snapshot file system write error

■ Description

A write to the snapshot file system failed.

As the primary file system is updated, copies of the original data

are read from the primary file system and written to the snapshot

file system. If one of these writes fails, the snapshot file system is

disabled.

■ Action

Check the console log for I/O errors. If the disk has failed, replace

it. Resolve the error on the disk and rerun any backups or other

applications that were using the snapshot that failed when the

error occurred.

027

WARNING: msgcnt x: mesg 028: V-2-28: vx_snap_alloc -mount_point
snapshot file system out of space

■ Description

The snapshot file system ran out of space to store changes.

During a snapshot backup, as the primary file system is modified,

the original data is copied to the snapshot file system. This error

can occur if the snapshot file system is left mounted by mistake,

if the snapshot file system was given too little disk space, or the

primary file system had an unexpected burst of activity. The

snapshot file system is disabled.

■ Action

Make sure the snapshot file system was given the correct amount

of space. If it was, determine the activity level on the primary file

system. If the primary file system was unusually busy, rerun the

backup. If the primary file system is no busier than normal, move

the backup to a time when the primary file system is relatively idle

or increase the amount of disk space allocated to the snapshot file

system.

Rerun any backups that failed when the error occurred.

028

241Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 029: V-2-29: vx_snap_getbp -

mount_point snapshot file system block map write error

WARNING: msgcnt x: mesg 030: V-2-30: vx_snap_getbp -

mount_point snapshot file system block map read error

■ Description

During a snapshot backup, each snapshot file system maintains a

block map on disk. The block map tells the snapshot file system

where data from the primary file system is stored in the snapshot

file system. If an I/O operation to the block map fails, the snapshot

file system is disabled.

■ Action

Check the console log for I/O errors. If the disk has failed, replace

it. Resolve the error on the disk and rerun any backups that failed

when the error occurred.

029, 030

WARNING: msgcnt x: mesg 031: V-2-31: vx_disable - mount_point
file system disabled

■ Description

File system disabled, preceded by a message that specifies the

reason. This usually indicates a serious disk problem.

■ Action

Unmount the file system and use fsck to run a full structural

check. If the problem is a disk failure, replace the disk before the

file system is mounted for write access.

031

WARNING: msgcnt x: mesg 032: V-2-32: vx_disable - mount_point
snapshot file system disabled

■ Description

Snapshot file system disabled, preceded by a message that specifies

the reason.

■ Action

Unmount the snapshot file system, correct the problem specified

by the message, and rerun any backups that failed due to the error.

032

Diagnostic messages
Kernel messages

242

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 033: V-2-33: vx_check_badblock -

mount_point file system had an I/O error, setting VX_FULLFSCK

■ Description

When the disk driver encounters an I/O error, it sets a flag in the

super-block structure. If the flag is set, the kernel will set the

VX_FULLFSCK flag as a precautionary measure. Since no other

error has set the VX_FULLFSCK flag, the failure probably occurred

on a data block.

■ Action

Unmount the file system and use fsck to run a full structural

check. Check the console log for I/O errors. If the problem is a disk

failure, replace the disk before the file system is mounted for write

access.

033

WARNING: msgcnt x: mesg 034: V-2-34: vx_resetlog - mount_point
file system cannot reset log

■ Description

The kernel encountered an error while resetting the log ID on the

file system. This happens only if the super-block update or log

write encountered a device failure. The file system is disabled to

preserve its integrity.

■ Action

Unmount the file system and use fsck to run a full structural

check. Check the console log for I/O errors. If the problem is a disk

failure, replace the disk before the file system is mounted for write

access.

034

WARNING: msgcnt x: mesg 035: V-2-35: vx_inactive - mount_point
file system inactive of locked inode inumber

■ Description

VOP_INACTIVE was called for an inode while the inode was being

used. This should never happen, but if it does, the file system is

disabled.

■ Action

Unmount the file system and use fsck to run a full structural

check. Report as a bug to your customer support organization.

035

243Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 036: V-2-36: vx_lctbad - mount_point
file system link count table lctnumber bad

■ Description

Update to the link count table (LCT) failed.

For a Version 2 and above disk layout, the LCT contains the link

count for all the structural inodes. The VX_FULLFSCK flag is set

in the super-block. If the super-block cannot be written, the file

system is disabled.

■ Action

Unmount the file system and use fsck to run a full structural

check.

036

WARNING: msgcnt x: mesg 037: V-2-37: vx_metaioerr - function -

volume_name file system meta data [read|write] error in dev/block

device_ID/block

■ Description

A read or a write error occurred while accessing file system

metadata. The full fsck flag on the file system was set. The

message specifies whether the disk I/O that failed was a read or a

write.

File system metadata includes inodes, directory blocks, and the

file system log. If the error was a write error, it is likely that some

data was lost. This message should be accompanied by another file

system message describing the particular file system metadata

affected, as well as a message from the disk driver containing

information about the disk I/O error.

■ Action

Resolve the condition causing the disk error. If the error was the

result of a temporary condition (such as accidentally turning off

a disk or a loose cable), correct the condition. Check for loose cables,

etc. Unmount the file system and use fsck to run a full structural

check (possibly with loss of data).

In case of an actual disk error, if it was a read error and the disk

driver remaps bad sectors on write, it may be fixed when fsck is

run since fsck is likely to rewrite the sector with the read error.

In other cases, you replace or reformat the disk drive and restore

the file system from backups. Consult the documentation specific

to your system for information on how to recover from disk errors.

The disk driver should have printed a message that may provide

more information.

037

Diagnostic messages
Kernel messages

244

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 038: V-2-38: vx_dataioerr -volume_name
file system file data [read|write] error in dev/block device_ID/block

■ Description

A read or a write error occurred while accessing file data. The

message specifies whether the disk I/O that failed was a read or a

write. File data includes data currently in files and free blocks. If

the message is printed because of a read or write error to a file,

another message that includes the inode number of the file will

print. The message may be printed as the result of a read or write

error to a free block, since some operations allocate an extent and

immediately perform I/O to it. If the I/O fails, the extent is freed

and the operation fails. The message is accompanied by a message

from the disk driver regarding the disk I/O error.

■ Action

Resolve the condition causing the disk error. If the error was the

result of a temporary condition (such as accidentally turning off

a disk or a loose cable), correct the condition. Check for loose cables,

etc. If any file data was lost, restore the files from backups.

Determine the file names from the inode number.

See the ncheck(1M) manual page.

If an actual disk error occurred, make a backup of the file system,

replace or reformat the disk drive, and restore the file system from

the backup. Consult the documentation specific to your system for

information on how to recover from disk errors. The disk driver

should have printed a message that may provide more information.

038

245Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 039: V-2-39: vx_writesuper - file system

super-block write error

■ Description

An attempt to write the file system super block failed due to a disk

I/O error. If the file system was being mounted at the time, the

mount will fail. If the file system was mounted at the time and the

full fsck flag was being set, the file system will probably be

disabled and Message 031 will also be printed. If the super-block

was being written as a result of a sync operation, no other action

is taken.

■ Action

Resolve the condition causing the disk error. If the error was the

result of a temporary condition (such as accidentally turning off

a disk or a loose cable), correct the condition. Check for loose cables,

etc. Unmount the file system and use fsck to run a full structural

check.

If an actual disk error occurred, make a backup of the file system,

replace or reformat the disk drive, and restore the file system from

backups. Consult the documentation specific to your system for

information on how to recover from disk errors. The disk driver

should have printed a message that may provide more information.

039

WARNING: msgcnt x: mesg 040: V-2-40: vx_dqbad - mount_point
file system user|group quota file update error for id id

■ Description

An update to the user quotas file failed for the user ID.

The quotas file keeps track of the total number of blocks and inodes

used by each user, and also contains soft and hard limits for each

user ID. The VX_FULLFSCK flag is set in the super-block. If the

super-block cannot be written, the file system is disabled.

■ Action

Unmount the file system and use fsck to run a full structural

check. Check the console log for I/O errors. If the disk has a

hardware failure, it should be repaired before the file system is

mounted for write access.

040

Diagnostic messages
Kernel messages

246

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 041: V-2-41: vx_dqget - mount_point
file system user|group quota file cannot read quota for id id

■ Description

A read of the user quotas file failed for the uid.

The quotas file keeps track of the total number of blocks and inodes

used by each user, and contains soft and hard limits for each user

ID. The VX_FULLFSCK flag is set in the super-block. If the

super-block cannot be written, the file system is disabled.

■ Action

Unmount the file system and use fsck to run a full structural

check. Check the console log for I/O errors. If the disk has a

hardware failure, it should be repaired before the file system is

mounted for write access.

041

WARNING: msgcnt x: mesg 042: V-2-42: vx_bsdquotaupdate -

mount_point file system user|group_id disk limit reached

■ Description

The hard limit on blocks was reached. Further attempts to allocate

blocks for files owned by the user will fail.

■ Action

Remove some files to free up space.

042

WARNING: msgcnt x: mesg 043: V-2-43: vx_bsdquotaupdate -

mount_point file system user|group_id disk quota exceeded too long

■ Description

The soft limit on blocks was exceeded continuously for longer than

the soft quota time limit. Further attempts to allocate blocks for

files will fail.

■ Action

Remove some files to free up space.

043

WARNING: msgcnt x: mesg 044: V-2-44: vx_bsdquotaupdate -

mount_point file system user|group_id disk quota exceeded

■ Description

The soft limit on blocks is exceeded. Users can exceed the soft limit

for a limited amount of time before allocations begin to fail. After

the soft quota time limit has expired, subsequent attempts to

allocate blocks for files fail.

■ Action

Remove some files to free up space.

044

247Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 045: V-2-45: vx_bsdiquotaupdate -

mount_point file system user|group_id inode limit reached

■ Description

The hard limit on inodes was exceeded. Further attempts to create

files owned by the user will fail.

■ Action

Remove some files to free inodes.

045

WARNING: msgcnt x: mesg 046: V-2-46: vx_bsdiquotaupdate -

mount_point file system user|group_id inode quota exceeded too

long

■ Description

The soft limit on inodes has been exceeded continuously for longer

than the soft quota time limit. Further attempts to create files

owned by the user will fail.

■ Action

Remove some files to free inodes.

046

WARNING: msgcnt x: mesg 047: V-2-47: vx_bsdiquotaupdate - warning:

mount_point file system user|group_id inode quota exceeded

■ Description

The soft limit on inodes was exceeded. The soft limit can be

exceeded for a certain amount of time before attempts to create

new files begin to fail. Once the time limit has expired, further

attempts to create files owned by the user will fail.

■ Action

Remove some files to free inodes.

047

Diagnostic messages
Kernel messages

248

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 048: V-2-48: vx_dqread - warning:

mount_point file system external user|group quota file read failed

WARNING: msgcnt x: mesg 049: V-2-49: vx_dqwrite - warning:

mount_point file system external user|group quota file write failed

■ Description

To maintain reliable usage counts, VxFS maintains the user quotas

file as a structural file in the structural fileset.

These files are updated as part of the transactions that allocate

and free blocks and inodes. For compatibility with the quota

administration utilities, VxFS also supports the standard user

visible quota files.

When quotas are turned off, synced, or new limits are added, VxFS

tries to update the external quota files. When quotas are enabled,

VxFS tries to read the quota limits from the external quotas file.

If these reads or writes fail, the external quotas file is out of date.

■ Action

Determine the reason for the failure on the external quotas file

and correct it. Recreate the quotas file.

048, 049

WARNING: msgcnt x: mesg 055: V-2-55: vx_force_unmount -

mount_point file system disabled by forced unmount

■ Description

blah

■ Action

blah

055

249Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 056: V-2-56: vx_mapbad - mount_point
file system extent allocation unit state bitmap numbernumbermarked

bad

■ Description

If there is an I/O failure while writing a bitmap, the map is marked

bad. The kernel considers the maps to be invalid, so does not do

any more resource allocation from maps. This situation can cause

the file system to report “out of space” or “out of inode” error

messages even though df may report an adequate amount of free

space.

This error may also occur due to bitmap inconsistencies. If a bitmap

fails a consistency check, or blocks are freed that are already free

in the bitmap, the file system has been corrupted. This may have

occurred because a user or process wrote directly to the device or

used fsdb to change the file system.

The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot be

set, the file system is disabled.

■ Action

Check the console log for I/O errors. If the problem is a disk failure,

replace the disk. If the problem is not related to an I/O failure, find

out how the disk became corrupted. If no user or process was

writing to the device, report the problem to your customer support

organization. Unmount the file system and use fsck to run a full

structural check.

056

WARNING: msgcnt x: mesg 057: V-2-57: vx_esum_bad -mount_point
file system extent allocation unit summary number number marked

bad

■ Description

An I/O error occurred reading or writing an extent allocation unit

summary.

The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot be

set, the file system is disabled.

■ Action

Check the console log for I/O errors. If the problem is a disk failure,

replace the disk. If the problem is not related to an I/O failure, find

out how the disk became corrupted. If no user or process was

writing to the device, report the problem to your customer support

organization. Unmount the file system and use fsck to run a full

structural check.

057

Diagnostic messages
Kernel messages

250

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 058: V-2-58: vx_isum_bad -mount_point
file system inode allocation unit summary number number marked

bad

■ Description

An I/O error occurred reading or writing an inode allocation unit

summary.

The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot be

set, the file system is disabled.

■ Action

Check the console log for I/O errors. If the problem is a disk failure,

replace the disk. If the problem is not related to an I/O failure, find

out how the disk became corrupted. If no user or process was

writing to the device, report the problem to your customer support

organization. Unmount the file system and use fsck to run a full

structural check.

058

WARNING: msgcnt x: mesg 059: V-2-59: vx_snap_getbitbp -

mount_point snapshot file system bitmap write error

■ Description

An I/O error occurred while writing to the snapshot file system

bitmap. There is no problem with the snapped file system, but the

snapshot file system is disabled.

■ Action

Check the console log for I/O errors. If the problem is a disk failure,

replace the disk. If the problem is not related to an I/O failure, find

out how the disk became corrupted. If no user or process was

writing to the device, report the problem to your customer support

organization. Restart the snapshot on an error free disk partition.

Rerun any backups that failed when the error occurred.

059

251Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 060: V-2-60: vx_snap_getbitbp -

mount_point snapshot file system bitmap read error

■ Description

An I/O error occurred while reading the snapshot file system

bitmap. There is no problem with snapped file system, but the

snapshot file system is disabled.

■ Action

Check the console log for I/O errors. If the problem is a disk failure,

replace the disk. If the problem is not related to an I/O failure, find

out how the disk became corrupted. If no user or process was

writing to the device, report the problem to your customer support

organization. Restart the snapshot on an error free disk partition.

Rerun any backups that failed when the error occurred.

060

WARNING: msgcnt x: mesg 061: V-2-61: vx_resize - mount_point
file system remount failed

■ Description

During a file system resize, the remount to the new size failed. The

VX_FULLFSCK flag is set and the file system is disabled.

■ Action

Unmount the file system and use fsck to run a full structural

check. After the check, the file system shows the new size.

061

NOTICE: msgcnt x: mesg 062: V-2-62: vx_attr_creatop - invalid

disposition returned by attribute driver

■ Description

A registered extended attribute intervention routine returned an

invalid return code to the VxFS driver during extended attribute

inheritance.

■ Action

Determine which vendor supplied the registered extended attribute

intervention routine and contact their customer support

organization.

062

Diagnostic messages
Kernel messages

252

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 063: V-2-63: vx_fset_markbad -

mount_point file system mount_point fileset (index number)

marked bad

■ Description

An error occurred while reading or writing a fileset structure.

VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot be set,

the file system is disabled.

■ Action

Unmount the file system and use fsck to run a full structural

check.

063

WARNING: msgcnt x: mesg 064: V-2-64: vx_ivalidate - mount_point
file system inode number version number exceeds fileset's

■ Description

During inode validation, a discrepancy was found between the

inode version number and the fileset version number. The inode

may be marked bad, or the fileset version number may be changed,

depending on the ratio of the mismatched version numbers.

VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot be set,

the file system is disabled.

■ Action

Check the console log for I/O errors. If the problem is a disk failure,

replace the disk. If the problem is not related to an I/O failure, find

out how the disk became corrupted. If no user or process is writing

to the device, report the problem to your customer support

organization. In either case, unmount the file system and usefsck
to run a full structural check.

064

NOTICE: msgcnt x: mesg 066: V-2-66: DMAPI mount event - buffer

■ Description

An HSM (Hierarchical Storage Management) agent responded to

a DMAPI mount event and returned a message in buffer.

■ Action

Consult the HSM product documentation for the appropriate

response to the message.

066

253Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 067: V-2-67: mount of device_path
requires HSM agent

■ Description

The file system mount failed because the file system was marked

as being under the management of an HSM agent, and no HSM

agent was found during the mount.

■ Action

Restart the HSM agent and try to mount the file system again.

067

WARNING: msgcnt x: mesg 068: V-2-68: ncsize parameter is greater

than 80% of the vxfs_ninode parameter; increasing the value of

vxfs:vxfs_ninode

■ Description

The value auto-tuned for thevxfs_ninodeparameter is less than

125% of the ncsize parameter.

■ Action

To prevent this message from occurring, set vxfs_ninode to at

least 125% of the value of ncsize. The best way to do this is to

adjust ncsize down, rather than adjusting vxfs_ninode up.

See “Using kernel tunables” on page 40.

068

WARNING: msgcnt x: mesg 069: V-2-69: memory usage specified by

the vxfs:vxfs_ninode and vxfs:vx_bc_bufhwm parameters exceeds

available memory; the system may hang under heavy load

■ Description

The value of the system tunable parameters—vxfs_ninode and

vx_bc_bufhwm—add up to a value that is more than 66% of the

kernel virtual address space or more than 50% of the physical

system memory. VxFS inodes require approximately one kilobyte

each, so both values can be treated as if they are in units of one

kilobyte.

■ Action

To avoid a system hang, reduce the value of one or both parameters

to less than 50% of physical memory or to 66% of kernel virtual

memory.

See “Using kernel tunables” on page 40.

069

Diagnostic messages
Kernel messages

254

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 070: V-2-70: checkpoint

checkpoint_name removed from file system mount_point

■ Description

The file system ran out of space while updating a Storage

Checkpoint. The Storage Checkpoint was removed to allow the

operation to complete.

■ Action

Increase the size of the file system. If the file system size cannot

be increased, remove files to create sufficient space for new Storage

Checkpoints. Monitor capacity of the file system closely to ensure

it does not run out of space.

See the fsadm_vxfs(1M) manual page.

070

NOTICE: msgcnt x: mesg 071: V-2-71: cleared data I/O error flag in

mount_point file system

■ Description

The user data I/O error flag was reset when the file system was

mounted. This message indicates that a read or write error occurred

while the file system was previously mounted.

See Message Number 038.

■ Action

Informational only, no action required.

071

WARNING: msgcnt x: vxfs: mesg 072: could not failover for

volume_name file system

■ Description

This message is specific to the cluster file system. The message

indicates a problem in a scenario where a node failure has occurred

in the cluster and the newly selected primary node encounters a

failure.

■ Action

Save the system logs and core dump of the node along with the

disk image (metasave) and contact your customer support

organization. The node can be rebooted to join the cluster.

072

255Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 075: V-2-75: replay fsck failed for

mount_point file system

■ Description

The log replay failed during a failover or while migrating the CFS

primary-ship to one of the secondary cluster nodes. The file system

was disabled.

■ Action

Unmount the file system from the cluster. Use fsck to run a full

structural check and mount the file system again.

075

NOTICE: msgcnt x: mesg 076: V-2-76: checkpoint asynchronous

operation on mount_point file system still in progress

■ Description

An EBUSY message was received while trying to unmount a file system.

The unmount failure was caused by a pending asynchronous fileset

operation, such as a fileset removal or fileset conversion to a nodata

Storage Checkpoint.

■ Action

The operation may take a considerable length of time. You can do

a forced unmount, or simply wait for the operation to complete so

file system can be unmounted cleanly.

See the umount_vxfs(1M) manual page.

076

WARNING: msgcnt x: mesg 077: V-2-77: vx_fshdchange -

mount_point file system number fileset, fileset header: checksum

failed

■ Description

Disk corruption was detected while changing fileset headers. This

can occur when writing a new inode allocation unit, preventing

the allocation of new inodes in the fileset.

■ Action

Unmount the file system and use fsck to run a full structural

check.

077

Diagnostic messages
Kernel messages

256

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 078: V-2-78: vx_ilealloc - mount_point
file system mount_point fileset (index number) ilist corrupt

■ Description

The inode list for the fileset was corrupted and the corruption was

detected while allocating new inodes. The failed system call returns

an ENOSPC error. Any subsequent inode allocations will fail unless

a sufficient number of files are removed.

■ Action

Unmount the file system and use fsck to run a full structural

check.

078

257Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

079

Diagnostic messages
Kernel messages

258

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_getblk -mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_iget - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_indadd -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_indtrunc -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_iremove -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_bmap -mount_point file

system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_bmap_indirect_ext4 -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_delbuf_flush -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_dio_iovec -mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_dirbread - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_dircreate - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_dirlook - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_doextop_iau -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_doextop_now -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_do_getpage -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_enter_ext4 -mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_exttrunc - mount_point
file system inode inumber marked bad on disk

259Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 017: V-2-79: vx_get_alloc - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_ilisterr - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_indtrunc - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_iread - mount_point file

system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_iremove - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_iremove_attr -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_logwrite_flush -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_oltmount_iget -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_overlay_bmap -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_readnomap -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_reorg_trunc -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_stablestore -mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_tranitimes -mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_trunc -mount_point file

system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_write_alloc2 -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_write_default -

mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_zero_alloc -mount_point
file system inode inumber marked bad on disk

079 (continued)

Diagnostic messages
Kernel messages

260

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

■ Description

When inode information is no longer dependable, the kernel marks

it bad on disk. The most common reason for marking an inode bad

is a disk I/O failure. If there is an I/O failure in the inode list, on a

directory block, or an indirect address extent, the integrity of the

data in the inode, or the data the kernel tried to write to the inode

list, is questionable. In these cases, the disk driver prints an error

message and one or more inodes are marked bad.

The kernel also marks an inode bad if it finds a bad extent address,

invalid inode fields, or corruption in directory data blocks during

a validation check. A validation check failure indicates the file

system has been corrupted. This usually occurs because a user or

process has written directly to the device or used fsdb to change

the file system.

The VX_FULLFSCK flag is set in the super-block so fsck will do a

full structural check the next time it is run.

■ Action

Check the console log for I/O errors. If the problem is a disk failure,

replace the disk. If the problem is not related to an I/O failure, find

out how the disk became corrupted. If no user or process is writing

to the device, report the problem to your customer support

organization. In either case, unmount the file system and usefsck
to run a full structural check.

079 (continued)

261Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 080: V-2-80: Disk layout versions older

than Version 4 will not be supported in the next release. It is advisable

to upgrade to the latest disk layout version now.

See the vxupgrade(1M) manual page.

See the Veritas Storage Foundation Release Notes.

■ Action

Use the vxupgrade command to upgrade file systems using older

disk layouts to Version 5, then 6, then 7. Consider the following

when planning disk layout upgrades:

■ Version 1 disk layout file systems can support more than 8 million

inodes, while Version 2 disk layout file systems have an 8 million

inode limit.

The Version 1 disk layout provides finer control of disk geometry

than subsequent disk layouts. This finer control is not relevant on

disks employing newer technologies, but can still be applicable on

older hardware. If you are using Version 1 disk layout file systems

on older hardware that needs fine control of disk geometry, a disk

layout upgrade may be problematic.

Images of Version 1 or Version 2 disk layout file systems created

by copy utilities, such as dd or volcopy, will become unusable

after a disk layout upgrade.

080

WARNING: msgcnt x: mesg 081: V-2-81: possible network partition

detected

■ Description

This message displays when CFS detects a possible network

partition and disables the file system locally, that is, on the node

where the message appears.

■ Action

There are one or more private network links for communication

between the nodes in a cluster. At least one link must be active to

maintain the integrity of the cluster. If all the links go down, after

the last network link is broken, the node can no longer

communicate with other nodes in the cluster.

Check the network connections. After verifying that the network

connections is operating correctly, unmount the disabled file

system and mount it again.

081

Diagnostic messages
Kernel messages

262

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 082: V-2-82: volume_name file system is

on shared volume. It may get damaged if cluster is in partitioned state.

■ Description

If a cluster node is in a partitioned state, and if the file system is

on a shared VxVM volume, this volume may become corrupted by

accidental access from another node in the cluster.

■ Action

These shared disks can also be seen by nodes in a different

partition, so they can inadvertently be corrupted. So the second

message 082 tells that the device mentioned is on shared volume

and damage can happen only if it is a real partition problem. Do

not use it on any other node until the file system is unmounted

from the mounted nodes.

082

WARNING: msgcnt x: mesg 083: V-2-83: mount_point file system

log is not compatible with the specified intent log I/O size

■ Description

Either the specified mount logiosize size is not compatible with

the file system layout, or the file system is corrupted.

■ Action

Mount the file system again without specifying the logiosize option,

or use a logiosize value compatible with the intent log specified

when the file system was created. If the error persists, unmount

the file system and use fsck to run a full structural check.

083

WARNING: msgcnt x: mesg 084: V-2-84: in volume_name quota on

failed during assumption. (stage stage_number)

■ Description

In a cluster file system, when the primary of the file system fails,

a secondary file system is chosen to assume the role of the primary.

The assuming node will be able to enforce quotas after becoming

the primary.

If the new primary is unable to enforce quotas this message will

be displayed.

■ Action

Issue the quotaon command from any of the nodes that have the

file system mounted.

084

263Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 085: V-2-85: Checkpoint quota - warning:

file_system file system fileset quota hard limit exceeded

■ Description

The system administrator sets the quotas for Storage Checkpoints

in the form of a soft limit and hard limit. This message displays

when the hard limit is exceeded.

■ Action

Delete Storage Checkpoints or increase the hard limit.

085

WARNING: msgcnt x: mesg 086: V-2-86: Checkpoint quota - warning:

file_system file system fileset quota soft limit exceeded

■ Description

The system administrator sets the quotas for Storage Checkpoints

in the form of a soft limit and hard limit. This message displays

when the soft limit is exceeded.

■ Action

Delete Storage Checkpoints or increase the soft limit. This is not

a mandatory action, but is recommended.

086

WARNING: msgcnt x: mesg 087: V-2-87: vx_dotdot_manipulate:

file_system file system inumber inode ddnumber dotdot inode

error

■ Description

When performing an operation that changes an inode entry, if the

inode is incorrect, this message will display.

■ Action

Run a full file system check using fsck to correct the errors.

087

WARNING: msgcnt x: mesg 088: V-2-88: quotaon on file_system
failed; limits exceed limit

■ Description

The external quota file, quotas, contains the quota values, which

range from 0 up to 2147483647. When quotas are turned on by the

quotaon command, this message displays when a user exceeds

the quota limit.

■ Action

Correct the quota values in the quotas file.

088

Diagnostic messages
Kernel messages

264

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 089: V-2-89: quotaon on file_system
invalid; disk usage for group/user id uid exceeds sectors sectors

■ Description

The supported quota limit is up to 2147483647 sectors. When

quotas are turned on by the quotaon command, this message

displays when a user exceeds the supported quota limit.

■ Action

Ask the user to delete files to lower the quota below the limit.

089

WARNING: msgcnt x: mesg 090: V-2-90: quota onfile_system failed;

soft limits greater than hard limits

■ Description

One or more users or groups has a soft limit set greater than the

hard limit, preventing the BSD quota from being turned on.

■ Action

Check the soft limit and hard limit for every user and group and

confirm that the soft limit is not set greater than the hard limit.

090

WARNING: msgcnt x: mesg 091: V-2-91: vx_fcl_truncate - failure to

punch hole at offset offset for bytes bytes in File Change Log file;

error error_number

■ Description

The vxfs kernel has experienced an error while trying to manage

the space consumed by the File Change Log file. Because the space

cannot be actively managed at this time, the FCL has been

deactivated and has been truncated to 1 file system block, which

contains the FCL superblock.

■ Action

Re-activate the FCL.

091

WARNING: msgcnt x: mesg 092: V-2-92: vx_mkfcltran - failure to map

offset offset in File Change Log file

■ Description

The vxfs kernel was unable to map actual storage to the next offset

in the File Change Log file. This is mostly likely caused by a problem

with allocating to the FCL file. Because no new FCL records can be

written to the FCL file, the FCL has been deactivated.

■ Action

Re-activate the FCL.

092

265Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 096: V-2-96: file_system file system

fullfsck flag set - function_name.

■ Description

The next time the file system is mounted, a full fsck must be

performed.

■ Action

No immediate action required. When the file system is unmounted,

run a full file system check using fsck before mounting it again.

096

WARNING: msgcnt x: mesg 097: V-2-97: VxFS failed to create new

thread (error_number,function_address:argument_address)

■ Description

VxFS failed to create a kernel thread due to resource constraints,

which is often a memory shortage.

■ Action

VxFS will retry the thread creation until it succeeds; no immediate

action is required. Kernel resources, such as kernel memory, might

be overcommitted. If so, reconfigure the system accordingly.

097

WARNING: msgcnt x: mesg 098: V-2-98: VxFS failed to initialize File

Change Log for fileset fileset (index number) of mount_point file

system

■ Description

VxFS mount failed to initialize FCL structures for the current fileset

mount. As a result, FCL could not be turned on. The FCL file will

have no logging records.

■ Action

Reactivate the FCL.

098

WARNING: msgcnt x: mesg 099: V-2-99: The specified value for

vx_ninode is less than the recommended minimum value of

min_value

■ Description

Auto-tuning or the value specified by the system administrator

resulted in a value lower than the recommended minimum for the

total number of inodes that can be present in the inode cache. VxFS

will ignore the newly tuned value and will keep the value specified

in the message (VX_MINNINODE).

■ Action

Informational only; no action required.

099

Diagnostic messages
Kernel messages

266

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 101: V-2-101: File Change Log on

mount_point for file setindex approaching max file size supported.

File Change Log will be reactivated when its size hits max file size

supported.

■ Description

The size of the FCL file is approching the maximum file size supported.

This size is platform specific. When the FCL file is reaches the

maximum file size, the FCL will be deactivated and reactivated. All

logging information gathered so far will be lost.

■ Action

Take any corrective action possible to restrict the loss due to the

FCL being deactivated and reactivated.

101

WARNING: msgcnt x: mesg 102: V-2-102: File Change Log of

mount_point for file set index has been reactivated.

■ Description

The size of FCL file reached the maximum supported file size and the

FCL has been reactivated. All records stored in the FCL file, starting

from the current fc_loff up to the maximum file size, have been

purged. New records will be recorded in the FCL file starting from

offset fs_bsize. The activation time in the FCL is reset to the time

of reactivation. The impact is equivalent to File Change Log being

deactivated and activated.

■ Action

Informational only; no action required.

102

WARNING: msgcnt x: mesg 103: V-2-103: File Change Log merge on

mount_point for file set index failed.

■ Description

The VxFS kernel has experienced an error while merging internal

per-node File Change Log files into the external File Change Log file.

Since the File Change Log cannot be maintained correctly without

this, the File Change Log has been deactivated.

■ Action

Re-activate the File Change Log.

103

267Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 104: V-2-104: File System mount_point
device volume_name disabled

■ Description

The volume manager detected that the specified volume has failed,

and the volume manager has disabled the volume. No further I/O

requests are sent to the disabled volume.

■ Action

The volume must be repaired.

104

WARNING: msgcnt x: mesg 105: V-2-105: File System mount_point
device volume_name re-enabled

■ Description

The volume manager detected that a previously disabled volume is

now operational, and the volume manager has re-enabled the volume.

■ Action

Informational only; no action required.

105

WARNING: msgcnt x: mesg 106: V-2-106: File System mount_point
device volume_name has BAD label

■ Description

A file system's label does not match the label that the multi-volume

support feature expects the file system to have. The file system's

volume is effectively disabled.

■ Action

If the label is bad because the volume does not match the assigned

label, use the vxvset command to fix the label. Otherwise, the

label might have been overwritten and the volume's contents may

be lost. Call technical support so that the issue can be investigated.

106

WARNING: msgcnt x: mesg 107: V-2-107: File System mount_point
device volume_name valid label found

■ Description

The label of a file system that had a bad label was somehow restored.

The underlying volume is functional.

■ Action

Informational only; no action required.

107

Diagnostic messages
Kernel messages

268

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 108: V-2-108: vx_dexh_error - error:

fileset fileset, directory inode number dir_inumber, bad hash

inode hash_inode, seg segment bno block_number

■ Description

The supplemental hash for a directory is corrupt.

■ Action

If the file system is mounted read/write, the hash for the directory

will be automatically removed and recreated. If the removal or

recreation fails, subsequent messages indicate the type of prolem.

If there are no further messages, the removal and recreation of

the hash succeeded.

108

WARNING: msgcnt x: mesg 109: V-2-109: failed to tune down

tuneable to value possibly due to object in use, could free up only

up to number_of_inodes

■ Description

The number of inodes in the inode table could not be reduced to the

decreased value of the tuneable. This may have occurred because

objects are in use, in which case the tuneable was not changed.

■ Action

To decrease the tuneable value and the number of inodes, specify

the -h option of the kctune command so that the new tuneable

value takes effect after a system reboot.

109

WARNING: msgcnt x: mesg 110: V-2-110: The specified value for

vx_bc_buffhwm is less than the recommended minimum value of

value.

■ Description

The vx_bc_buffhwm dynamic tuneable should not have its value set

below a minimum value.

■ Action

Set the value ofvx_bc_buffhwm to greater than the recommended

minimum.

110

269Diagnostic messages
Kernel messages

Table B-1 Kernel messages (continued)

Message and DefinitionMessageNumber

WARNING: msgcnt x: mesg 111: V-2-111: You have exceeded the

authorized usage (maximum maxfs unique mounted user-data file

systems) for this product and are out of compliance with your License

Agreement. Please email sales_mail@symantec.com or contact your

Symantec sales representative for information on how to obtain

additional licenses for this product.

■ Description

As per your Storage Foundation Basic license agreement, you are

allowed to have only a limited number of VxFS file systems, and you

have exceeded this number.

■ Action

Email sales_mail@symantec.com or contact your Symantec sales

representative for information on how to obtain additional licenses

for this product.

111

About unique message identifiers
VxFS generates diagnostic or error messages for issues not related to the kernel,

which are displayed along with a unique message identifier (UMI). Each message

has a description and a suggestion on how to handle or correct the underlying

problem. The UMI is used to identify the issue should you need to call Technical

Support for assistance.

Unique message identifiers
Some commonly encountered UMIs and the associated messages are described

on the following table:

Diagnostic messages
About unique message identifiers

270

Table B-2 Unique message identifiers and messages

Message and DefinitionMessageNumber

UX:vxfs command: ERROR: V-3-20002: message

■ Description

The command attempted to call stat() on a device path to ensure

that the path refers to a character device before opening the device,

but the stat() call failed. The error message will include the

platform-specific message for the particular error that was

encountered, such as "Access denied" or "No such file or directory".

■ Action

The corrective action depends on the particular error.

20002

UX:vxfs command: ERROR: V-3-20003: message

■ Description

The command attempted to open a disk device, but the open() call

failed. The error message includes the platform-specific message

for the particular error that was encountered, such as "Access

denied" or "No such file or directory".

■ Action

The corrective action depends on the particular error.

20003

UX:vxfs command: ERROR: V-3-20005: message

■ Description

The command attempted to read the superblock from a device, but

the read() call failed. The error message will include the

platform-specific message for the particular error that was

encountered, such as "Access denied" or "No such file or directory".

■ Action

The corrective action depends on the particular error.

20005

UX:vxfs command: ERROR: V-3-20012: message

■ Description

The command was invoked on a device that did not contain a valid

VxFS file system.

■ Action

Check that the path specified is what was intended.

20012

271Diagnostic messages
Unique message identifiers

Table B-2 Unique message identifiers and messages (continued)

Message and DefinitionMessageNumber

UX:vxfs command: ERROR: V-3-20076: message

■ Description

The command called stat() on a file, which is usually a file system

mount point, but the call failed.

■ Action

Check that the path specified is what was intended and that the

user has permission to access that path.

20076

UX:vxfs command: ERROR: V-3-21256: message

■ Description

The attempt to mount the file system failed because either the

request was to mount a particular Storage Checkpoint that does

not exist, or the file system is managed by an HSM and the HSM

is not running.

■ Action

In the first case, use the fsckptadm list command to see which

Storage Checkpoints exist and mount the appropriate Storage

Checkpoint. In the second case, make sure the HSM is running. If

the HSM is not running, start and mount the file system again.

21256

Diagnostic messages
Unique message identifiers

272

Table B-2 Unique message identifiers and messages (continued)

Message and DefinitionMessageNumber

UX:vxfs command: ERROR: V-3-21264: message

■ Description

The attempt to mount a VxFS file system has failed because either

the volume being mounted or the directory which is to be the mount

point is busy.

The reason that a VxVM volume could be busy is if the volume is

in a shared disk group and the volume is currently being accessed

by a VxFS command, such as fsck, on a node in the cluster.

One reason that the mount point could be busy is if a process has

the directory open or has the directory as its current directory.

Another reason that the mount point could be busy is if the

directory is NFS-exported.

■ Action

For a busy mount point, if a process has the directory open or has

the directory as its current directory, use the fuser command to

locate the processes and either get them to release their references

to the directory or kill the processes. Afterward, attempt to mount

the file system again.

If the directory is NFS-exported, unexport the directory, such as

by using unshare mntpt on the Solaris operating system.

Afterward, attempt to mount the file system again.

21264

UX:vxfs command: ERROR: V-3-21268: message

■ Description

This message is printed by two different commands:

fsckpt_restore and mount. In both cases, the kernel's attempt

to mount the file system failed because of I/O errors or corruption

of the VxFS metadata.

■ Action

Check the console log for I/O errors and fix any problems reported

there. Run a full fsck.

21268

273Diagnostic messages
Unique message identifiers

Table B-2 Unique message identifiers and messages (continued)

Message and DefinitionMessageNumber

UX:vxfs command: ERROR: V-3-21272: message

■ Description

The mount options specified contain mutually-exclusive options,

or in the case of a remount, the new mount options differed from

the existing mount options in a way that is not allowed to change

in a remount.

■ Action

Change the requested mount options so that they are all mutually

compatible and retry the mount.

21272

UX:vxfs command: ERROR: V-3-23729: message

■ Description

Cluster mounts require the vxfsckd daemon to be running, which

is controlled by VCS.

■ Action

Check the VCS status to see why this service is not running. After

starting the daemon via VCS, try the mount again.

23729

UX:vxfs command: ERROR: V-3-24996: message

■ Description

In some releases of VxFS, before the VxFS mount command

attempts to mount a file system, mount tries to read the VxFS

superblock to determine the disk layout version of the file system

being mounted so that mount can check if that disk layout version

is supported by the installed release of VxFS. If the attempt to read

the superblock fails for any reason, this message is displayed. This

message will usually be preceded by another error message that

gives more information as to why the superblock could not be read.

■ Action

The corrective action depends on the preceding error, if any.

24996

Diagnostic messages
Unique message identifiers

274

Disk layout

This appendix includes the following topics:

■ About disk layouts

■ About disk space allocation

■ VxFS Version 4 disk layout

■ VxFS Version 5 disk layout

■ VxFS Version 6 disk layout

■ VxFS Version 7 disk layout

■ Using UNIX Commands on File Systems Larger than One TB

About disk layouts
The disk layout is the way file system information is stored on disk. On VxFS,

seven different disk layout versions were created to take advantage of evolving

technological developments.

The disk layout versions used on VxFS are:

Not SupportedVersion 1 disk layout is the original VxFS disk layout

provided with pre-2.0 versions of VxFS.

Version 1

Not SupportedVersion 2 disk layout supports features such as filesets,

dynamic inode allocation, and enhanced security. The

Version 2 layout is available with and without quotas

support.

Version 2

CAppendix

Not SupportedVersion 3 disk layout encompasses all file system

structural information in files, rather than at fixed

locations on disk, allowing for greater scalability.

Version 3 supports files and file systems up to one

terabyte in size.

Version 3

SupportedVersion 4 disk layout encompasses all file system

structural information in files, rather than at fixed

locations on disk, allowing for greater scalability.

Version 4 supports files and file systems up to one

terabyte in size.

Version 4

SupportedVersion 5 enables the creation of file system sizes up

to 32 terabytes. Files can be a maximum of one terabyte.

File systems larger than 1TB must be created on a

Veritas Volume Manager volume.

Version 5

SupportedVersion 6 disk layout enables features such as

multi-volume support, cross-platform data sharing,

named data streams, and File Change Log.

Version 6

SupportedVersion 7 disk layout enables support for variable and

large size history log records, more than 2048 volumes,

large directory hash, and Dynamic Storage Tiering.

Version 7

Some of the disk layout versions were not supported on all UNIX operating systems.

Currently, only the Version 4, 5, 6, and 7 disk layouts can be created and mounted.

Version 1 and 2 file systems cannot be created nor mounted. Version 7 is the

default disk layout version.

The vxupgrade command is provided to upgrade an existing VxFS file system to

the Version 5, 6, or 7 layout while the file system remains online. You must upgrade

in steps from older to newer layouts.

See the vxupgrade(1M) manual page.

The vxfsconvert command is provided to upgrade Version 1 and 2 disk layouts

to the Version 5 disk layout while the file system is not mounted.

See the vxfsconvert(1M) manual page.

About disk space allocation
Disk space is allocated by the system in 512-byte sectors. An integral number of

sectors are grouped together to form a logical block. VxFS supports logical block

sizes of 1024, 2048, 4096, and 8192 bytes. The default block size for file systems

less than one terabyte is 1024 bytes. The block size may be specified as an

Disk layout
About disk space allocation

276

argument to the mkfs utility and may vary between VxFS file systems mounted

on the same system. VxFS allocates disk space to files in extents. An extent is a

set of contiguous blocks.

VxFS Version 4 disk layout
The Version 4 disk layout allows the file system to scale easily to accommodate

large files and large file systems.

The original disk layouts divided up the file system space into allocation units.

The first AU started part way into the file system which caused potential alignment

problems depending on where the first AU started. Each allocation unit also had

its own summary, bitmaps, and data blocks. Because this AU structural information

was stored at the start of each AU, this also limited the maximum size of an extent

that could be allocated. By replacing the allocation unit model of previous versions,

the need for alignment of allocation units and the restriction on extent sizes was

removed.

The VxFS Version 4 disk layout divides the entire file system space into fixed size

allocation units. The first allocation unit starts at block zero and all allocation

units are a fixed length of 32K blocks. An exception may be the last AU, which

occupies whatever space remains at the end of the file system. Because the first

AU starts at block zero instead of part way through the file system as in previous

versions, there is no longer a need for explicit AU alignment or padding to be

added when creating a file system.

The Version 4 file system also moves away from the model of storing AU structural

data at the start of an AU and puts all structural information in files. So expanding

the file system structures simply requires extending the appropriate structural

files. This removes the extent size restriction imposed by the previous layouts.

All Version 4 structural files reside in the structural fileset.

The structural files in the Version 4 disk layout are:

Contains the object location table (OLT). The OLT, which is referenced

from the super-block, is used to locate the other structural files.

object location

table file

Encapsulates the super-block and super-block replicas. Although the

location of the primary super-block is known, the label file can be used

to locate super-block copies if there is structural damage to the file

system.

label file

Records device information such as volume length and volume label,

and contains pointers to other structural files.

device file

277Disk layout
VxFS Version 4 disk layout

Holds information on a per-fileset basis. This may include the inode

of the fileset's inode list file, the maximum number of inodes allowed,

an indication of whether the file system supports large files, and the

inode number of the quotas file if the fileset supports quotas. When

a file system is created, there are two filesets—the structural fileset

defines the file system structure, the primary fileset contains user

data.

fileset header file

Both the primary fileset and the structural fileset have their own set

of inodes stored in an inode list file. Only the inodes in the primary

fileset are visible to users. When the number of inodes is increased,

the kernel increases the size of the inode list file.

inode list file

Holds the free inode map, extended operations map, and a summary

of inode resources.

inode allocation

unit file

Maps the block used by the file system intent log.log file

Indicates the allocation state of each AU by defining whether each

AU is free, allocated as a whole (no bitmaps allocated), or expanded,

in which case the bitmaps associated with each AU determine which

extents are allocated.

extent allocation

unit state file

Contains the AU summary for each allocation unit, which contains

the number of free extents of each size. The summary for an extent

is created only when an allocation unit is expanded for use.

extent allocation

unit summary file

Contains the free extent maps for each of the allocation units.free extent map

file

Contains quota information in records. Each record contains resources

allocated either per user or per group.

quotas files

The Version 4 disk layout supports Access Control Lists and Block-Level

Incremental (BLI) Backup. BLI Backup is a backup method that stores and retrieves

only the data blocks changed since the previous backup, not entire files. This

saves times, storage space, and computing resources required to backup large

databases.

Figure C-1 shows how the kernel and utilities build information about the structure

of the file system.

The super-block location is in a known location from which the OLT can be located.

From the OLT, the initial extents of the structural inode list can be located along

with the inode number of the fileset header file. The initial inode list extents

contain the inode for the fileset header file from which the extents associated

with the fileset header file are obtained.

Disk layout
VxFS Version 4 disk layout

278

As an example, when mounting the file system, the kernel needs to access the

primary fileset in order to access its inode list, inode allocation unit, quotas file

and so on. The required information is obtained by accessing the fileset header

file from which the kernel can locate the appropriate entry in the file and access

the required information.

Figure C-1 VxFS Version 4 disk layout

Fileset Header File

Initial Inode Extents

Inode List Inode

Fileset Header/

Initial Inode List

....

Object Location Table

....

File Inode Number

Extent Addresses

Inode Allocation

Unit Inode

Fileset Header
File Inode

Structural Fileset

Primary Fileset

Header

Inode List inum

Fileset Index

max_inodes

Features

....

Primary Fileset Header

....

Header

and Name

OLT

Extent

Addresses

OLT Replica

Super-block

VxFS Version 5 disk layout
VxFS disk layout Version 5 is similar to Version 4. Structural files in Version 5

are the same in Version 4. However, the Version 5 disk layout supports file systems

up to 32 terabytes. For a file system to take advantage of VxFS 32-terabyte support,

it must be created on a Veritas Volume Manager volume, and only on a 64-bit

kernel operating system. The maximum file system size on a 32-bit kernel is still

279Disk layout
VxFS Version 5 disk layout

one terabyte. Files cannot exceed two terabytes in size. For 64-bit kernels, the

maximum size of the file system you can create depends on the block size:

Maximum File System SizeBlock Size

4,294,967,039 sectors (≈ 4 TB)1024 bytes

8,589,934,078 sectors (≈ 8 TB)2048 bytes

17,179,868,156 sectors (≈ 16 TB)4096 bytes

34,359,736,312 sectors (≈ 32 TB)8192 bytes

If you specify the file system size when creating a file system, the block size

defaults to the appropriate value as shown above.

See the mkfs(1M) manual page.

The Version 5 disk layout also supports group quotas. Quota limits cannot exceed

one terabyte.

See “About quota files on Veritas File System” on page 102.

Some UNIX commands may not work correctly on file systems larger than one

terabyte.

See “Using UNIX Commands on File Systems Larger than One TB” on page 281.

VxFS Version 6 disk layout
VxFS disk layout Version 6 is similar to Version 5. Structural files in Version 6

are the same in Version 5. The Version 6 disk layout can theoretically support

files and file systems up to 8 exabytes (2
63

). The maximum file system size that

can be created is currently restricted to 2
35

blocks. For a file system to take

advantage of greater than 1 terabyte support, it must be created on a Veritas

Volume Manager volume. For 64-bit kernels, the maximum size of the file system

you can create depends on the block size:

Currently-Supported Maximum File System SizeBlock Size

68,719,472,624 sectors (≈ 32 TB)1024 bytes

137,438,945,248 sectors (≈ 64 TB)2048 bytes

274,877,890,496 sectors (≈ 128 TB)4096 bytes

549,755,780,992 sectors (≈ 256 TB)8192 bytes

Disk layout
VxFS Version 6 disk layout

280

The Version 6 disk layout also supports group quotas.

See “About quota files on Veritas File System” on page 102.

Some UNIX commands may not work correctly on file systems larger than one

terabyte.

See “Using UNIX Commands on File Systems Larger than One TB” on page 281.

VxFS Version 7 disk layout
VxFS disk layout Version 7 is similar to Version 6. The Version 7 disk layout can

theoretically support files and file systems up to 8 exabytes (2
63

). The maximum

file system size that can be created is currently restricted to 2
35

blocks. For a file

system to take advantage of greater than 1 terabyte support, it must be created

on a Veritas Volume Manager volume. For 64-bit kernels, the maximum size of

the file system you can create depends on the block size:

The Version 7 disk layout supports group quotas.

See “About quota files on Veritas File System” on page 102.

Some UNIX commands may not work correctly on file systems larger than one

terabyte.

See “Using UNIX Commands on File Systems Larger than One TB” on page 281.

Using UNIX Commands on File Systems Larger than
One TB

Some UNIX commands may not work correctly on file systems larger than one

terabyte.

The ustat command returns an EOVERFLOW error for VxFS files systems larger

than one terabyte because the variable used to store file system size overflows.

See the ustat(2) manual page.

System administration utilities such as backup may not operate correctly if they

are not large file aware (files larger than two gigabytes). Similarly, utilities that

operate at the file system level must be large file aware to operate correctly on

large file systems (file systems that are larger than one terabyte). Note also that

you can have a large file system without creating the file system with the mkfs

–o largefiles option.

See the lfcompile(5) manual page.

281Disk layout
VxFS Version 7 disk layout

Disk layout
Using UNIX Commands on File Systems Larger than One TB

282

access control list (ACL) The information that identifies specific users or groups and their access privileges

for a particular file or directory.

agent A process that manages predefined Veritas Cluster Server (VCS) resource types.

Agents bring resources online, take resources offline, and monitor resources to

report any state changes to VCS. When an agent is started, it obtains configuration

information from VCS and periodically monitors the resources and updates VCS

with the resource status.

allocation unit A group of consecutive blocks on a file system that contain resource summaries,

free resource maps, and data blocks. Allocation units also contain copies of the

super-block.

API Application Programming Interface.

asynchronous writes A delayed write in which the data is written to a page in the system’s page cache,

but is not written to disk before the write returns to the caller. This improves

performance, but carries the risk of data loss if the system crashes before the data

is flushed to disk.

atomic operation An operation that either succeeds completely or fails and leaves everything as it

was before the operation was started. If the operation succeeds, all aspects of the

operation take effect at once and the intermediate states of change are invisible.

If any aspect of the operation fails, then the operation aborts without leaving

partial changes.

Block-Level Incremental

Backup (BLI Backup)

A Symantec backup capability that does not store and retrieve entire files. Instead,

only the data blocks that have changed since the previous backup are backed up.

buffered I/O During a read or write operation, data usually goes through an intermediate kernel

buffer before being copied between the user buffer and disk. If the same data is

repeatedly read or written, this kernel buffer acts as a cache, which can improve

performance. See unbuffered I/O and direct I/O.

contiguous file A file in which data blocks are physically adjacent on the underlying media.

data block A block that contains the actual data belonging to files and directories.

data synchronous

writes

A form of synchronous I/O that writes the file data to disk before the write returns,

but only marks the inode for later update. If the file size changes, the inode will

be written before the write returns. In this mode, the file data is guaranteed to be

Glossary

on the disk before the write returns, but the inode modification times may be lost

if the system crashes.

defragmentation The process of reorganizing data on disk by making file data blocks physically

adjacent to reduce access times.

direct extent An extent that is referenced directly by an inode.

direct I/O An unbuffered form of I/O that bypasses the kernel’s buffering of data. With direct

I/O, the file system transfers data directly between the disk and the user-supplied

buffer. See buffered I/O and unbuffered I/O.

discovered direct I/O Discovered Direct I/O behavior is similar to direct I/O and has the same alignment

constraints, except writes that allocate storage or extend the file size do not require

writing the inode changes before returning to the application.

encapsulation A process that converts existing partitions on a specified disk to volumes. If any

partitions contain file systems, /etc/filesystems entries are modified so that the

file systems are mounted on volumes instead. Encapsulation is not applicable on

some systems.

extent A group of contiguous file system data blocks treated as a single unit. An extent

is defined by the address of the starting block and a length.

extent attribute A policy that determines how a file allocates extents.

external quotas file A quotas file (named quotas) must exist in the root directory of a file system for

quota-related commands to work. See quotas file and internal quotas file.

file system block The fundamental minimum size of allocation in a file system. This is equivalent

to the fragment size on some UNIX file systems.

fileset A collection of files within a file system.

fixed extent size An extent attribute used to override the default allocation policy of the file system

and set all allocations for a file to a specific fixed size.

fragmentation The on-going process on an active file system in which the file system is spread

further and further along the disk, leaving unused gaps or fragments between

areas that are in use. This leads to degraded performance because the file system

has fewer options when assigning a file to an extent.

GB Gigabyte (230 bytes or 1024 megabytes).

hard limit The hard limit is an absolute limit on system resources for individual users for

file and data block usage on a file system. See quota.

indirect address extent An extent that contains references to other extents, as opposed to file data itself.

A single indirect address extent references indirect data extents. A double indirect

address extent references single indirect address extents.

indirect data extent An extent that contains file data and is referenced via an indirect address extent.

Glossary284

inode A unique identifier for each file within a file system that contains the data and

metadata associated with that file.

inode allocation unit A group of consecutive blocks containing inode allocation information for a given

fileset. This information is in the form of a resource summary and a free inode

map.

intent logging A method of recording pending changes to the file system structure. These changes

are recorded in a circular intent log file.

internal quotas file VxFS maintains an internal quotas file for its internal usage. The internal quotas

file maintains counts of blocks and indices used by each user. See quotas and

external quotas file.

K Kilobyte (210 bytes or 1024 bytes).

large file A file larger than two one terabyte. VxFS supports files up to 8 exabytes in size.

large file system A file system larger than one terabytes. VxFS supports file systems up to 8 exabytes

in size.

latency For file systems, this typically refers to the amount of time it takes a given file

system operation to return to the user.

metadata Structural data describing the attributes of files on a disk.

MB Megabyte (220 bytes or 1024 kilobytes).

mirror A duplicate copy of a volume and the data therein (in the form of an ordered

collection of subdisks). Each mirror is one copy of the volume with which the

mirror is associated.

multi-volume file

system

A single file system that has been created over multiple volumes, with each volume

having its own properties.

MVS Multi-volume support.

object location table

(OLT)

The information needed to locate important file system structural elements. The

OLT is written to a fixed location on the underlying media (or disk).

object location table

replica

A copy of the OLT in case of data corruption. The OLT replica is written to a fixed

location on the underlying media (or disk).

page file A fixed-size block of virtual address space that can be mapped onto any of the

physical addresses available on a system.

preallocation A method of allowing an application to guarantee that a specified amount of space

is available for a file, even if the file system is otherwise out of space.

primary fileset The files that are visible and accessible to the user.

quotas Quota limits on system resources for individual users for file and data block usage

on a file system. See hard limit and soft limit.

285Glossary

quotas file The quotas commands read and write the external quotas file to get or change

usage limits. When quotas are turned on, the quota limits are copied from the

external quotas file to the internal quotas file. See quotas, internal quotas file,

and external quotas file.

reservation An extent attribute used to preallocate space for a file.

root disk group A special private disk group that always exists on the system. The root disk group

is named rootdg.

shared disk group A disk group in which the disks are shared by multiple hosts (also referred to as

a cluster-shareable disk group).

shared volume A volume that belongs to a shared disk group and is open on more than one node

at the same time.

snapshot file system An exact copy of a mounted file system at a specific point in time. Used to do

online backups.

snapped file system A file system whose exact image has been used to create a snapshot file system.

soft limit The soft limit is lower than a hard limit. The soft limit can be exceeded for a limited

time. There are separate time limits for files and blocks. See hard limit and quotas.

Storage Checkpoint A facility that provides a consistent and stable view of a file system or database

image and keeps track of modified data blocks since the last Storage Checkpoint.

structural fileset The files that define the structure of the file system. These files are not visible or

accessible to the user.

super-block A block containing critical information about the file system such as the file

system type, layout, and size. The VxFS super-block is always located 8192 bytes

from the beginning of the file system and is 8192 bytes long.

synchronous writes A form of synchronous I/O that writes the file data to disk, updates the inode

times, and writes the updated inode to disk. When the write returns to the caller,

both the data and the inode have been written to disk.

TB Terabyte (240 bytes or 1024 gigabytes).

transaction Updates to the file system structure that are grouped together to ensure they are

all completed.

throughput For file systems, this typically refers to the number of I/O operations in a given

unit of time.

unbuffered I/O I/O that bypasses the kernel cache to increase I/O performance. This is similar to

direct I/O, except when a file is extended; for direct I/O, the inode is written to

disk synchronously, for unbuffered I/O, the inode update is delayed. See buffered

I/O and direct I/O.

Glossary286

volume A virtual disk which represents an addressable range of disk blocks used by

applications such as file systems or databases.

volume set A container for multiple different volumes. Each volume can have its own

geometry.

vxfs The Veritas File System type. Used as a parameter in some commands.

VxFS Veritas File System.

VxVM Veritas Volume Manager.

287Glossary

Glossary288

A
access control lists 20

alias for Quick I/O files 187

allocation policies 56

default 56

extent 15

extent based 14

multi-volume support 125

B
bad block revectoring 33

blkclear 18

blkclear mount option 33

block based architecture 23

block size 14, 277

blockmap for a snapshot file system 98

buffered file systems 18

buffered I/O 63

C
cache advisories 64

Cached Quick I/O 194

Cached Quick I/O read-ahead 194

cio

Concurent I/O 39

closesync 18

cluster mount 22

commands

cron 27

fsadm 26

getext 58

mkfs 277

qiostat 196

setext 58

contiguous reservation 57

converting a data Storage Checkpoint to a nodata

Storage Checkpoint 78

convosync mount option 31, 35

copy-on-write technique 67, 71

cp_vxfs 59

cpio_vxfs 59

creating a multi-volume support file system 122

creating file systems with large files 38

creating files with mkfs 207, 209

creating Quick I/O files 188

cron 26, 42

cron sample script 43

D
data copy 62

data integrity 18

data Storage Checkpoints definition 72

data synchronous I/O 34, 63

data transfer 62

default

allocation policy 56

block sizes 14, 277

default_indir_size tunable parameter 46

defragmentation 26

extent 42

scheduling with cron 42

delaylog mount option 31–32

device file 277

direct data transfer 62

direct I/O 62

directory reorganization 43

disabled file system

snapshot 99

transactions 225

discovered direct I/O 63

discovered_direct_iosize tunable parameter 46

disk layout

Version 1 275

Version 2 275

Version 3 276

Version 4 276–277

Version 5 276, 279

Version 6 276

Version 7 276

disk space allocation 14, 277

displaying mounted file systems 213

Index

Dynamic Storage Tiering

multi-volume support 119

E
enabling Quick I/O 194

encapsulating volumes 119

enhanced data integrity modes 18

ENOENT 229

ENOSPC

86

ENOTDIR 229

expansion 27

extensions of Quick I/O files 187

extent 14, 55

attributes 55

description 277

indirect 15

reorganization 43

extent allocation 14–15

aligned 56

control 55

fixed size 55

unit state file 278

unit summary file 278

extent size

indirect 15

external quotas file 102

F
fc_foff 112

fcl_inode_aging_count tunable parameter

49

fcl_inode_aging_size tunable parameter 49

fcl_keeptime tunable parameter 47

fcl_maxalloc tunable parameter 47

fcl_winterval tunable parameter 48

file

device 277

extent allocation unit state 278

extent allocation unit summary 278

fileset header 278

free extent map 278

inode allocation unit 278

inode list 278

intent log 278

label 277

object location table 277

quotas 278

file (continued)

sparse 57

file change log 47

file system

block size 59

buffering 18

displaying mounted 213

increasing size 215

fileset

header file 278

primary 69

filesystems file 212

fixed extent size 55

fixed write size 57

fragmentation

monitoring 42–43

reorganization facilities 42

reporting 42

fragmented file system characteristics 43

free extent map file 278

free space monitoring 42

freeze 65

freezing and thawing, relation to Storage

Checkpoints 69

fsadm 26

how to reorganize a file system 217

how to resize a file system 215

reporting extent fragmentation 43

scheduling defragmentation using cron 43

fsadm_vxfs 39

fscat 94

fsck 78

fsckptadm

Storage Checkpoint administration 74

fstab file

editing 212

fstyp

how to determine the file system type 214

fsvoladm 122

G
get I/O parameter ioctl 65

getext 58

getfacl 20

global message IDs 226

H
how to access a Storage Checkpoint 77

Index290

how to create a backup file system 218

how to create a Storage Checkpoint 75

how to determine the file system type 214

how to display mounted file systems 213

how to edit the fstab file 212

how to edit the vfstab file 212

how to mount a Storage Checkpoint 77

how to remove a Storage Checkpoint 76

how to reorganize a file system 217

how to resize a file system 215

how to restore a file system 220

how to set up user quotas 221

how to turn off quotas 222

how to turn on quotas 221

how to unmount a Storage Checkpoint 78

how to view quotas 222

HSM agent error message 253–254

hsm_write_prealloc 48

I
I/O

direct 62

sequential 63

synchronous 63

I/O requests

asynchronous 34

synchronous 33

increasing file system size 215

indirect extent

address size 15

double 15

single 15

initial_extent_size tunable parameter 49

inode allocation unit file 278

inode list error 226

inode list file 278

inode table 40

internal 40

sizes 40

inodes, block based 15

intent log 16

file 278

multi-volume support 119

Intent Log Resizing 17

internal inode table 40

internal quotas file 102

ioctl interface 55

K
kernel asynchronous I/O 186

kernel tunable parameters 40

L
label file 277

large files 20, 37

creating file systems with 38

mounting file systems with 38

largefiles mount option 38

local mount 22

log failure 226

log mount option 30

logiosize mount option 33

M
max_direct_iosize tunable parameter 50

max_diskq tunable parameter 50

max_seqio_extent_size tunable parameter 50

maximum I/O size 41

metadata

multi-volume support 119

mincache mount option 31, 34

mkfs 277

creating files with 207, 209

creating large files 39

modes

enhanced data integrity 18

monitoring fragmentation 42

mount 18, 39

how to display mounted file systems 213

how to mount a file system 210

mounting a Storage Checkpoint 77

pseudo device 77

mount options 30

blkclear 33

choosing 30

combining 39

convosync 31, 35

delaylog 19, 31–32

extended 17

largefiles 38

log 18, 30

logiosize 33

mincache 31, 34

nodatainlog 31, 33

tmplog 32

291Index

mounted file system

displaying 213

mounting a file system 210

option combinations 39

with large files 38

mounting a Storage Checkpoint 78

mounting a Storage Checkpoint of a cluster file

system 78

msgcnt field 227

multi-volume support 118

creating a MVS file system 122

multiple block operations 15

mv_vxfs 59

N
name space

preserved by Storage Checkpoints 68

naming convention, Quick I/O 187

ncheck 116

nodata Storage Checkpoints 78

nodata Storage Checkpoints definition 73

nodatainlog mount option 31, 33

O
O_SYNC 31

object location table file 277

P
parameters

default 45

tunable 45

tuning 44

performance

overall 30

snapshot file systems 96

preallocating space for Quick I/O files 191

primary fileset relation to Storage Checkpoints 69

pseudo device 77

Q
qio module

loading on system reboot 197

qio_cache_enable tunable parameter 50, 195

qiomkfile 188

qiostat 196

Quick I/O 185

access Quick I/O files as raw devices 187

access regular UNIX files 190

Quick I/O (continued)

creating Quick I/O files 188

direct I/O 186

double buffering 187

extension 187

read/write locks 187

restrictions 188

special naming convention 187

Quick I/O files

access regular UNIX files 190

preallocating space 191

statistics 196

using relative and absolute path names 190

quota commands 103

quotacheck 103

quotas 101

exceeding the soft limit 102

hard limit 101

92

soft limit 101

quotas file 102, 278

quotas.grp file 102

R
read-ahead functionality in Cached Quick I/O 194

read-only Storage Checkpoints 77

read_ahead 51

read_nstream tunable parameter 45

read_pref_io tunable parameter 45

relative and absolute path names used with symbolic

links 190

removable Storage Checkpoints definition 74

reorganization

directory 43

extent 43

report extent fragmentation 42

reservation space 55

restrictions on Quick I/O 188

Reverse Path Name Lookup 115

S
sectors

forming logical blocks 277

sequential I/O 63

setext 58

setfacl 20

snapof 95

Index292

snapped file systems 20, 93

performance 96

unmounting 94

snapread 94

snapshot 218

how to create a backup file system 218

snapshot file system

on CFS 94

snapshot file systems 20, 93

blockmap 98

creating 95

data block area 98

disabled 99

errors 240

fscat 94

fuser 94

mounting 95

multiple 94

performance 96

read 94

super-block 98

snapsize 95

sparse file 57

statistics

generated for Quick I/O 196

storage

clearing 33

uninitialized 33

Storage Checkpoints

accessing 77

administration of 74

converting a data Storage Checkpoint to a nodata

Storage Checkpoint with multiple Storage

Checkpoints 82

creating 75

data Storage Checkpoints 72

definition of 67

difference between a data Storage Checkpoint

and a nodata Storage Checkpoint 79

freezing and thawing a file system 69

mounting 77

multi-volume support 119

nodata Storage Checkpoints 73, 78

operation failures

86

pseudo device 77

read-only Storage Checkpoints 77

removable Storage Checkpoints 74

removing 76

Storage Checkpoints (continued)

space management

86

synchronous vs. asynchronous conversion 79

types of 72

unmounting 78

using the fsck command 78

writable Storage Checkpoints 77

super-block 98

SVID requirement

VxFS conformance to 27

symbolic links

accessing Quick I/O files 190

synchronous I/O 63

system failure recovery 16

system performance

overall 30

T
temporary directories 19

thaw 65

tmplog mount option 32

transaction disabling 225

tunable I/O parameters 45

default_indir_size 46

discovered_direct_iosize 46

fcl_keeptime 47

fcl_maxalloc 47

fcl_winterval 48

initial_extent_size 49

inode_aging_count 49

inode_aging_size 49

max_direct_iosize 50

max_diskq 50

max_seqio_extent_size 50

qio_cache_enable 50, 195

read_nstream 45

read_pref_io 45

Volume Manager maximum I/O size 41

write_nstream 46

write_pref_io 45

write_throttle 52

tuning I/O parameters 44

typed extents 15

U
umount command 213

uninitialized storage, clearing 33

293Index

unmount 78, 226

a snapped file system 94

V
VEA 25

VERITAS Enterprise Administrator 25

Version 1 disk layout 275

Version 2 disk layout 275

Version 3 disk layout 276

Version 4 disk layout 276–277

Version 5 disk layout 276, 279

Version 6 disk layout 276

Version 7 disk layout 276

vfstab file

editing 212

virtual disks 27

vol_maxio tunable I/O parameter 41

volume sets 120

VOP_INACTIVE 243

VX_DSYNC 63

VX_FREEZE 65, 104

VX_FULLFSCK 226, 228–232, 236–238, 240, 243–

244, 246–247, 250–253, 261

VX_GETCACHE 64

VX_SETCACHE 64

VX_SNAPREAD 94

VX_THAW 65

VX_UNBUFFERED 63

vxdump 59

vxedquota

how to set up user quotas 221

VxFS

storage allocation 29

vxfs_inotopath 115

vxfs_ninode 40

vxfsu_fcl_sync 48

vxlsino 115

vxquota

how to view quotas 222

vxquotaoff

how to turn off quotas 222

vxquotaon 221

vxrestore 59, 220

vxtunefs

changing extent size 15

vxvset 120

W
writable Storage Checkpoints 77

write size 57

write_nstream tunable parameter 46

write_pref_io tunable parameter 45

write_throttle tunable parameter 52

Index294

	Veritas File System Administrator's Guide
	Contents
	1. Introducing Veritas File System
	About Veritas File System
	Logging
	Extents
	File system disk layouts

	Veritas File System features
	Extent-based allocation
	Extent attributes
	Fast file system recovery
	Extended mount options
	Enhanced data integrity modes
	Enhanced performance mode
	Modes of temporary file systems
	Improved synchronous writes
	Support for large files
	Access Control Lists
	Storage Checkpoints
	Online backup
	Quotas
	Support for databases
	Cluster file systems
	Cross-platform data sharing
	File Change Log
	Multi-volume support
	Dynamic Storage Tiering

	Veritas File System performance enhancements
	About enhanced I/O performance

	Using Veritas File System
	Veritas Enterprise Administrator Graphical User Interface
	Online system administration
	Application program interface

	2. VxFS performance: creating, mounting, and tuning File Systems
	mkfs command options
	Block size
	Intent log size

	Choosing mount command options
	The log mode
	The delaylog mode
	The tmplog mode
	The logiosize mode
	The nodatainlog mode
	The blkclear mode
	The mincache mode
	The convosync mode
	The ioerror mode
	The largefiles|nolargefiles option
	The cio option
	Combining mount command options

	Using kernel tunables
	Tuning inode table size
	vx_maxlink
	Veritas Volume Manager maximum I/O size

	Monitoring free space
	Monitoring fragmentation

	Tuning I/O
	Tuning VxFS I/O parameters
	Tunable I/O parameters
	File system tuning guidelines

	3. Extent attributes
	About extent attributes
	Reservation: preallocating space to a file
	Fixed extent size
	Other controls

	Commands related to extent attributes
	Failure to preserve extent attributes

	4. VxFS I/O Overview
	About VxFS I/O
	Buffered and Direct I/O
	Direct I/O
	Unbuffered I/O
	Data synchronous I/O

	Cache advisories
	Freezing and thawing a file system
	Getting the I/O size

	5. Storage Checkpoints
	About Storage Checkpoints
	How Storage Checkpoints differ from snapshots

	How a Storage Checkpoint works
	Copy-on-write

	Types of Storage Checkpoints
	Data Storage Checkpoints
	nodata Storage Checkpoints
	Removable Storage Checkpoints
	Non-mountable Storage Checkpoints

	Storage Checkpoint administration
	Creating a Storage Checkpoint
	Removing a Storage Checkpoint
	Accessing a Storage Checkpoint
	Converting a data Storage Checkpoint to a nodata Storage Checkpoint

	Space management considerations
	Restoring a file system from a Storage Checkpoint
	Restoring a file from a Storage Checkpoint

	Storage Checkpoint quotas

	6. Online backup using file system snapshots
	About snapshot file systems
	Snapshot file system backups
	Creating a snapshot file system
	Backup examples
	Snapshot file system performance
	Differences between snapshots and Storage Checkpoints
	About snapshot file system disk structure
	How a snapshot file system works

	7. Quotas
	About quota limits
	About quota files on Veritas File System
	About quota commands
	About quota checking with Veritas File System
	Using quotas
	Turning on quotas
	Turning on quotas at mount time
	Editing user and group quotas
	Modifying time limits
	Viewing disk quotas and usage
	Displaying blocks owned by users or groups
	Turning off quotas

	8. File Change Log
	About File Change Log
	About the File Change Log file
	File Change Log administrative interface
	File Change Log programmatic interface
	Reverse path name lookup

	9. Multi-volume file systems
	About multi-volume support
	About volume types
	Features implemented using multi-volume support
	Volume availability

	About volume sets
	Creating and managing volume sets

	Creating multi-volume file systems
	Example of creating a multi-volume file system

	Converting a single volume file system to a multi-volume file system
	Removing a volume from a multi-volume file system
	Forcibly removing a volume
	Moving volume 0

	About allocation policies
	Assigning allocation policies
	Querying allocation policies
	Assigning pattern tables to directories
	Assigning pattern tables to file systems
	Allocating data
	Volume encapsulation
	Encapsulating a volume
	Deencapsulating a volume

	Reporting file extents
	Examples of reporting file extents

	Load balancing
	Defining and assigning a load balancing allocation policy
	Rebalancing extents

	Converting a multi-volume file system to a single volume file system
	Converting to a single volume file system

	10. Dynamic Storage Tiering
	About Dynamic Storage Tiering
	Placement classes
	Tagging volumes as placement classes
	Listing placement classes

	Administering placement policies
	Assigning a placement policy
	Unassigning a placement policy
	Analyzing the space impact of enforcing a placement policy
	Querying which files will be affected by enforcing a placement policy
	Enforcing a placement policy
	Validating a placement policy

	File placement policy grammar
	File placement policy rules
	SELECT statement
	CREATE statement
	RELOCATE statement
	DELETE statement

	Calculating I/O temperature and access temperature
	Multiple criteria in file placement policy rule statements
	Multiple file selection criteria in SELECT statement clauses
	Multiple placement classes in <ON> clauses of CREATE statements and in <TO> clauses of RELOCATE statements
	Multiple placement classes in <FROM> clauses of RELOCATE and DELETE statements
	Multiple conditions in <WHEN> clauses of RELOCATE and DELETE statements

	File placement policy rule and statement ordering
	File placement policies and extending files

	11. Quick I/O for Databases
	About Quick I/O
	About Quick I/O functionality and performance
	About asynchronous I/O kernel support
	About direct I/O support
	About Kernel write locks avoidance
	About double buffering avoidance

	About using Veritas File System files as raw character devices
	About the Quick I/O naming convention
	About use restrictions

	About creating a Quick I/O file using qiomkfile
	Creating a Quick I/O file using qiomkfile

	Accessing regular VxFS files through symbolic links
	About absolute and relative path names
	Preallocating files using the setext command

	Using Quick I/O with Oracle databases
	Using Quick I/O with Sybase databases
	Enabling and disabling Quick I/O
	About Cached Quick I/O for databases
	Enabling Cached Quick I/O

	About Quick I/O statistics
	Increasing database performance using Quick I/O

	A. Quick Reference
	Command summary
	Online manual pages
	Creating a VxFS file system
	Example of creating a file system

	Converting a file system to VxFS
	Example of converting a file system

	Mounting a file system
	Mount options
	Example of mounting a file system
	Editing the vfstab file

	Unmounting a file system
	Example of unmounting a file system

	Displaying information on mounted file systems
	Example of displaying information on mounted file systems

	Identifying file system types
	Example of determining a file system's type

	Resizing a file system
	Extending a file system using fsadm
	Shrinking a file system
	Reorganizing a file system

	Backing up and restoring a file system
	Creating and mounting a snapshot file system
	Backing up a file system
	Restoring a file system

	Using quotas
	Turning on quotas
	Setting up user quotas
	Viewing quotas
	Turning off quotas

	B. Diagnostic messages
	File system response to problems
	Recovering a disabled file system

	About kernel messages
	About global message IDs

	Kernel messages
	About unique message identifiers
	Unique message identifiers

	C. Disk layout
	About disk layouts
	About disk space allocation
	VxFS Version 4 disk layout
	VxFS Version 5 disk layout
	VxFS Version 6 disk layout
	VxFS Version 7 disk layout
	Using UNIX Commands on File Systems Larger than One TB

	Glossary
	Index

