
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Programming Utilities Guide

A Sun Microsystems, Inc. Business

Please
Recycle

 1995 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This product and related documentation are protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and
NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a
registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN
LOOK is a registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. All
other product names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of the X Consortium.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xvii

1. Tracing Program Execution With the TNF Utilities 1

Defining Types of Users . 2

Using Existing Probe Points . 2

 Debugging a Program . 2

Inserting Probe Points in a Library . 2

Tracing Kernel Execution . 2

How TNF Works . 3

Inserting Probe Points . 4

Starting prex . 4

Running prex . 7

Reading the Trace File . 22

Kernel Tracing . 24

 Controlling Kernel Tracing (prex) . 25

 Extracting Kernel Trace Data (tnfxtract) 29

iv Programming Utilities Guide—November 1995

 Examining Kernel Trace Data (tnfdump) 30

 Available Kernel Probes (tnf_probes) 30

Thread Probes . 31

 Shell Script for Kernel Tracing . 35

Advanced Topics . 39

Inserting Probe Points . 39

Defining User Types for Probe Points 44

Performance Issues . 48

/proc . 48

dlopen() and dlclose() and History. 49

Signals . 49

Failure of Event-Writing Operations 49

Target Executing a fork() or exec() 49

2. lex –Lexical Analysis . 51

Generating a Lexical Analyzer Program. 52

Writing lex Source . 54

The Fundamentals of lex Rules . 54

 Advanced lex Features . 61

C++ Mangled Symbols . 72

Using lex and yacc Together. 73

Automaton . 77

Summary of Source Format . 77

3. yacc — A Compiler Compiler . 81

Basic Specifications . 84

Contents v

Actions . 87

Lexical Analysis . 91

Parser Operation . 93

Ambiguity and Conflicts. 99

Precedence . 104

Error Handling . 109

The yacc Environment. 112

Hints for Preparing Specifications . 114

Input Style . 114

Left Recursion . 114

C++ Mangled Symbols . 116

Lexical Tie-Ins . 116

Reserved Words . 117

Advanced Topics . 117

Simulating error and accept in Actions. 117

Accessing Values in Enclosing Rules. 118

Support for Arbitrary Value Types . 119

yacc Input Syntax. 121

Examples. 125

A Simple Example . 125

An Advanced Example . 130

4. make Utility . 143

Dependency Checking: make vs. Shell Scripts 144

Writing a Simple Makefile . 145

vi Programming Utilities Guide—November 1995

Basic Use of Implicit Rules . 147

Processing Dependencies . 148

Null Rules . 152

Special Targets . 152

Unknown Targets . 152

Duplicate Targets . 153

Reserved make Words. 153

Running Commands Silently . 154

Automatic Retrieval of SCCS Files . 155

Passing Parameters: Simple make Macros 157

.KEEP_STATE and Command Dependency Checking . . . 158

.KEEP_STATE and Hidden Dependencies 159

Displaying Information About a make Run 161

Using make to Compile Programs. 164

A Simple Makefile . 164

Using make’s Predefined Macros . 165

Using Implicit Rules to Simplify a Makefile: Suffix Rules . 166

When to Use Explicit Target Entries vs. Implicit Rules . . . 168

Implicit Rules and Dynamic Macros 168

Adding Suffix Rules . 171

Pattern-Matching Rules:An Alternative to Suffix Rules . . 173

Building Object Libraries . 180

Libraries, Members, and Symbols . 180

Library Members and Dependency Checking 181

Contents vii

Using make to Maintain Libraries and Programs 182

More about Macros . 182

Linking with System-Supplied Libraries 185

Compiling Programs for Debugging and Profiling 186

Compiling Debugging and Profiling Variants 188

Maintaining Separate Program and Library Variants 189

Maintaining a Directory of Header Files 194

Compiling and Linking with Your Own Libraries 194

Nested make Commands . 195

Passing Parameters to Nested make Commands 197

Compiling Other Source Files . 200

Maintaining Shell Scripts with make and SCCS 202

Running Tests with make . 203

Maintaining Software Projects . 206

Organizing a Project for Ease of Maintenance 207

Building the Entire Project . 209

Maintaining Directory Hierarchies with the Recursive
Makefiles . 211

Maintaining Recursive Targets . 212

Maintaining a Large Library as a Hierarchy of Subsidiaries 213

Reporting Hidden Dependencies to make 215

make Enhancements Summary . 216

Default Makefile . 216

The State File .make.state . 216

viii Programming Utilities Guide—November 1995

Hidden-Dependency Checking . 216

Command-Dependency Checking. 216

Automatic Retrieval of SCCS Files . 217

Pattern-Matching Rules . 217

Pattern-Replacement Macro References 218

New Options . 220

Support for C++ and Modula-2 . 220

Naming Scheme for Predefined Macros 220

New Special-Purpose Targets . 221

New Implicit lint Rule . 221

Macro Processing Changes . 221

Improved ar Library Support . 223

Target Groups. 224

Incompatibilities with Previous Versions 224

The -d Option . 224

Dynamic Macros . 224

Tilde Rules . 225

Target Names . 225

5. SCCS Source Code Control System . 227

The sccs Command . 228

The sccs create Command . 228

Basic sccs Subcommands . 229

Deltas and Versions . 229

sccs Subcommands . 231

Contents ix

Checking Files In and Out . 231

Incorporating Version-Dependent Information by Using ID
Keywords . 235

Making Inquiries . 236

Deleting Committed Changes . 240

Version Control for Binary Files. 243

Maintaining Source Directories . 244

Branches . 246

Using Branches . 250

Administering SCCS Files . 251

Interpreting Error Messages: sccs help 251

Altering History File Defaults: sccs admin 251

Validating the History File . 252

Restoring the History File . 253

Reference Tables . 254

6. m4 Macro Processor . 259

Overview. 259

m4 Macros. 261

Defining Macros. 261

Quoting . 262

Arguments . 264

Arithmetic Built-Ins. 267

File Inclusion . 268

Diversions. 268

x Programming Utilities Guide—November 1995

System Commands . 269

Conditional Testing . 269

String Manipulation . 270

Printing . 272

Summary of Built-In m4 Macros . 273

A. A System V make . 275

Basic Features . 276

Description Files and Substitutions. 281

Comments. 281

Continuation Lines . 281

Macro Definitions . 282

General Form . 282

Dependency Information . 282

Executable Commands . 283

Extensions of $*, $@, and $< . 284

Output Translations. 284

Recursive Makefiles. 285

Suffixes and Transformation Rules . 285

Implicit Rules . 286

Archive Libraries . 288

Source Code Control System (SCCS) Filenames 291

The Null Suffix . 292

Included Files . 293

SCCS Makefiles . 293

Contents xi

Dynamic-Dependency Parameters . 293

Command Usage . 294

The make Command . 294

Environment Variables . 296

Suggestions and Warnings . 297

Internal Rules . 298

Special Rules. 299

Index . 305

xii Programming Utilities Guide—November 1995

xiii

Figures

Figure 2-1 Creation and Use of a Lexical Analyzer with lex 54

Figure 2-2 Sample lex Source Recognizing Tokens 74

Figure 3-1 The yacc Input Syntax. 121

Figure 3-2 A yacc Application for a Desk Calculator 125

Figure 3-3 Advanced Example of a yacc Specification 132

Figure 4-1 Makefile Target Entry Format . 145

Figure 4-2 A Trivial Makefile . 145

Figure 4-3 Simple Makefile for Compiling C Sources: Everything Explicit 164

Figure 4-4 Makefile for Compiling C Sources Using Predefined Macros 166

Figure 4-5 Makefile for Compiling C Sources Using Suffix Rules 166

Figure 4-6 The Standard Suffixes List . 167

Figure 4-7 Makefile for a C Program with System-Supplied Libraries . . 185

Figure 4-8 Makefile for a C Program with Alternate Debugging and Profiling
Variants . 188

Figure 4-9 Makefile for a C Library with Alternate Variants 189

Figure 4-10 Sample Makefile for Separate Debugging and Profiling Program
Variants . 192

xiv Programming Utilities Guide—November 1995

Figure 4-11 Sample Makefile for Separate Debugging and Profiling Library
Variants . 193

Figure 4-12 Target Entry for a Nested make Command 196

Figure 4-13 Makefile for C Program with User-Supplied Libraries 196

Figure 4-14 Summary of Macro Assignment Order 200

Figure 5-1 Evolution of an SCCS File . 247

Figure 5-2 Tree Structure with Branch Deltas . 248

Figure 5-3 Extending the Branching Concept . 249

Figure A-1 Summary of Default Transformation Path 287

xv

Tables

Table 1-1 prex Command Line Options . 7

Table 1-2 Basic prex Commands . 8

Table 1-3 Predefined Attributes . 10

Table 1-4 Reserved Words. 12

Table 1-5 prex Commands. 13

Table 1-6 Tracing, Enabling, and Connecting Actions 15

Table 1-7 Thread Microstate Constants . 31

Table 1-8 Examples of User-Defined Attributes . 40

Table 1-9 Predefined Types. 42

Table 1-10 TNF Macro Definitions in cookie.c . 43

Table 2-1 lex Operators . 58

Table 2-2 Internal Array Sizes. 78

Table 2-3 lex Variables, Functions, and Macros . 79

Table 4-1 Reserved make Words . 153

Table 4-2 Standard Suffix Rules . 174

Table 4-3 Predefined and Dynamic Macros . 178

xvi Programming Utilities Guide—November 1995

Table 4-4 Summary of Macro Assignment Order 199

Table 5-1 SCCS ID Keywords . 254

Table 5-2 SCCS Utility Commands . 255

Table 5-3 Data Keywords for prs -d. 256

Table 6-1 Summary of Built-In m4 Macros . 273

xvii

Preface

The Programming Utilities Guide provides information for developers about
the special built-in programming tools available in the SunOS system.

Who Should Use This Book
This guide is intended for application programmers who are using the Solaris
2.x system.

Before You Read This Book
Readers of this guide are expected to understand the Solaris 2.x operating
system, programming, and networking.

How This Book Is Organized
This guide has several chapters, each discussing a unique topic. Each chapter
describes a tool that can aid you in programming. These include:

Tracing Program Execution With the TNF Utilities
The Trace Implementation Format lets you insert probe points into source
code to collect data for analysis.

lex–Lexical Analysis
Generates programs to be used in simple lexical analysis of text. It is a tool
that solves problems by recognizing different strings of characters.

xviii Programming Utilities Guide—November 1995

yacc — A Compiler Compiler
A tool for generating language parsers. It is a tool that imposes structure on
computer input and turns it into a C language function that examines the
input stream.

make Utility
Automatically maintains, updates, and regenerates related programs and
files.

SCCS Source Code Control System
SCCS allows you to control access to shared files and to keep a history of
changes made to a project.

m4 Macro Processor
A macro language processor. Creates library archives and adds or extracts
files.

A System V make
Describes a version of make(1) that is compatible with older versions of the
tool.

Other tools of interest, documented more completely in the SunOS Reference
Manual, are listed briefly here.

ar(1)
Creates and maintains portable libraries or archives

cpp(1)
The C language preprocessor

dis(1)
An object code disassembler for COFF

dump(1)
Dumps (displays) selected parts of an object file

lorder(1)
Finds an ordering relation for an object library or archive

mcs(1)
Lets you manipulate the comments section of an ELF object file

nm(1)
Prints a name list of an object file

Preface xix

size(1)
Displays the size of an object file

strip(1)
Removes symbols and relocation bits from an object file

tsort(1)
Performs a topological sort

unifdef(1)
Resolves and removes ifdef ’ed lines from C program source.

Related Books
• SunOS Reference Manual

What Typographic Changes and Symbols Mean
Command names, C code, UNIX code, system calls, header files, data
structures, declarations, short examples, file names, and path names are
printed in listing (constant width) font .

User input is in listing font when by itself, or bold listing font
when used in combination with computer output.

Items being emphasized, variable names, and parameters are printed in italics.

Caution – The caution sign is used to show possible harm or damage to a
system, an application, a process, a piece of hardware, etc.

Note – The note sign is used to emphasize points of interest, to present
parenthetical information, and to cite references to other documents and
commands.

Screens are used to simulate what a user will see on a
video display screen or to show program source code.

Data structure contents and formats are also shown in screens.

!

xx Programming Utilities Guide—November 1995

1

 Tracing Program Execution
With the TNF Utilities 1

This chapter explains how to use the Trace Normal Form (TNF) utilities to collect
data from your program.

The TNF utilities consist of a library and a group of programs that create,
manipulate, and read Trace Normal Form binary files. Use the TNF utilities to:

• Trace C or C++ program execution

• Debug your C or C++ programs

• Gather performance data on C or C++ programs

• Trace kernel activity under application workloads

These utilities are equally useful to both the novice programmer who is
tracking events in an executing program, and to the sophisticated programmer
who is tracking the interaction among multiple threads and the kernel in a
multithreaded program.

Read the first part of this chapter for an overview of the TNF utilities. Detailed
information follows the overview. Novice programmers are encouraged to stop
reading when they’ve learned enough to accomplish their tasks. Sophisticated
programmers will want to read the entire chapter.

Defining Types of Users page 2

How TNF Works page 3

Kernel Tracing page 24

Advanced Topics page 39

2 Programming Utilities Guide—November 1995

1

Defining Types of Users
Aside from the differences between novice and experienced programmers,
users can be defined by the way they use the TNF utilities.

Using Existing Probe Points

If you use the probe points that are shipped with your program or library,
concentrate your reading on the prex and tnfdump sections. You can skip the
instructions for inserting probes.

 Debugging a Program

If you are debugging a program, read as far into the chapter as is useful for
you. How much you read depends upon how complicated your tracing goals
are.

Inserting Probe Points in a Library

If you are inserting probe points in a library that will be shipped, all the
sections in this chapter will probably be helpful. Also, be sure to give your
customers information about your probe points.

Tracing Kernel Execution

A small number of TNF probes in the kernel record system calls, thread state
transitions, page faults, swapping, and I/O. For the most part, you use the
same procedures to trace the kernel as you use to trace a user-level process.

Tracing Program Execution With the TNF Utilities 3

1

How TNF Works
The TNF utilities consist of the libtnfprobe library and the prex(1) and
tnfdump(1) commands:

• libtnfprobe —A library that is linked to your program and generates
trace records to the binary TNF trace file.

• prex —A utility that manipulates the probe points and the kinds of data
they gather.

• tnfdump —A utility that converts the binary TNF trace file to an ASCII file.

You insert commands in your code at points (probe points) where you want to
collect data. You start running your executable object with prex , which lets
you manipulate the probe points. The information collected is written to a
trace file in a format called Trace Normal Form (TNF). tnfdump converts the
binary TNF trace file to an ASCII file.

You can insert probe points anywhere in C or C++ code, including .init
sections, .fini sections, multithreaded code, shared objects, and shared objects
opened by dlopen(3X) .

You can also connect functions called probe functions to these probe points.
Probe functions perform actions based on the information collected. (Currently,
the only available probe function is a debug function that writes output to
stderr .)

In a typical TNF session, you do the following:

1. Insert probe points in your programs. (Your source code might already have
probe points built into it.)

2. Start your program with prex (this automatically preloads libtnfprobe).
(Alternatively, you can link with libtnfprobe when you start your
program. If you do this, you can attach prex to the running program. See
“Attaching prex to a Running Process” on page 5.)

3. Manipulate the probe points through prex to gather the information that
you want from the program.

4. Convert the binary information trace file produced by the program to an
ASCII file with tnfdump . (See “Converting the Binary File to Readable
Format” on page 22.)

4 Programming Utilities Guide—November 1995

1

5. Examine the information in the ASCII file.

Inserting Probe Points

The details of inserting probe points are covered fully in “Advanced Topics” on
page 39.

“A Sample C Program” on page 16 shows the design and placement of some
probe points. “A Sample prex Session” on page 18 and “Reading the Trace
File” on page 22 show how probe points are manipulated and what
information they provide.

Starting prex

You can either load your program with prex or attach prex to an already
running process. The following two sections explain both procedures.

Starting Your Program With prex

When you start your program with prex , it preloads the libtnfprobe library
into the target program, so the program does not have to be explicitly linked
with libtnfprobe .

prex starts your program running and then stops the program before any user
code is executed. Execution is stopped even before the .init sections are
executed, so you can place probe points in the .init sections to trace
initialization code.

In the simplest case, with an executable named a.out that takes no arguments
and that contains probe points, the following command can be used:

(prex uses the $PATH environment variable to find the executable.)

To specify options, use:

$ prex a.out

prex [-o outfilename] [-s kbytes_size] [-l sharedobjs] cmd [cmdargs...]

Tracing Program Execution With the TNF Utilities 5

1

The -o, -s , and -l options are explained in “Command Line Options for prex”
on page 7.

Attaching prex to a Running Process

If the program named a.out is running and the ps(1) command shows that
a.out has a process ID (PID) of 2374, then the following command attaches
prex to a.out :

If you are attaching prex to your already-running program, libtnfprobe
must be linked to your program first. If you have not linked with
libtnfprobe , prex exits with the error message that libtnfprobe is not
linked to your program.

Linking With libtnfprobe

Linking with the library increases the size of your program by about 33
kilobytes (25 kilobytes shareable) and by the size of the trace file that is
allocated (controllable through a command line option to prex). If you are
never going to attach to a running program using prex , don’t link with
libtnfprobe .

But, for example, if a program is not easy to restart and is a long-running
program that you might someday want to gather information about, then do
link with libtnfprobe . A window server is a good example of this—not the
sort of program you want to stop and restart often—so you probably want to
link with libtnfprobe before you start it running.

You can link with libtnfprobe in one of two ways:

If you are compiling your program, include -ltnfprobe on the cc line (if
using -lthread , always put -ltnfprobe before -lthread).

$ prex -p 2374

$ cc -ltnfprobe -lthread -o cookie cookie.c

6 Programming Utilities Guide—November 1995

1

If your program is already compiled or you don’t want to build your
program with an explicit dependency on libtnfprobe , use the following
command:

See the Linker and Libraries Guide for an explanation of LD_PRELOAD.

Halting and Continuing prex

After you use prex to load the program, or attach prex to a running program,
use Control-c to stop your program and pass control to prex .

When you see the prex prompt, prex is running and your program is halted.

Enter prex commands to control the probe points. For example, you can list
probe points, turn on tracing, and debug your program.

To continue running your program, enter the continue command.

To stop your program and return to prex ,press Control-c.

Table 1-1 on page 7 lists the standard prex command line options.

$ LD_PRELOAD=libtnfprobe.so.1 executable_object_name

prex>

prex> continue

$ ^c
prex>

Tracing Program Execution With the TNF Utilities 7

1

Command Line Options for prex

Running prex

Once you have prex connected to your program, use prex commands to
change the parameters of the data to be collected. You can use the prex list
command to see all the probes in your program. As your program runs, each
time a probe point is executed, information is recorded in the trace file. You
look at the collected information with tnfdump , described in “Reading the
tnfdump File” on page 23.

You can attach and detach prex from your program repeatedly, creating
multiple sessions. For example, in your first session you could start the target
with prex , set up the probes, and type quit resume.

Table 1-1 prex Command Line Options

Option Definition

-o trace_file The trace file contains information gathered by the prex
command. The trace_file location is assumed to be relative to
the directory from which you started prex .

When no trace_file is specified, the default location is
$TMPDIR/trace- pid where pid is the process ID of your
program. If $TMPDIR is not set, /tmp is used.

When a program is traced, the trace file that is set at the start
(the default or the -o name) is used for the life of the program.

-l libraries The libraries argument contains the names of libraries to
preload for your programs. It follows the LD_PRELOAD (see
ld(1)) rules on how libraries should be specified and where
they are found. Enclose the space-separated list of library
names in double quotes.

When prex loads the program, the default library is
libtnfprobe.so.1 . You cannot use this option when
attaching prex to an already-running process.

-s size size is the size of the trace file in kilobytes (210 bytes). The
default size of a trace file is four megabytes. The minimum size
that can be specified is 128 kilobytes.

8 Programming Utilities Guide—November 1995

1

This will start prex , define the information you want to collect, quit prex , and
start collecting information by resuming execution of your program. The
commands to do this are shown in Table 1-2.

In a following session, you could attach prex to the same program,
reconfigure the probes, and again type continue . You can do this any number
of times.

Note – All traces are written to the trace file name specified in the first session
—this file name cannot be changed.

The Parts of the prex Command

The programmer who has inserted the probe points in the source code has
assigned various attributes and (optional) values to each probe point. For
example, each probe point has a “name” attribute whose value is the name the
programmer chose for it.

Look at Table 1-3 on page 10 for a list of the predefined attributes and the
meanings of their values. The prex command lets you select a group of probe
points by matching on their attributes or values. You can then trace or debug
the selected probe points.

Table 1-5 on page 13 lists the prex commands and their actions.

Table 1-2 Basic prex Commands

Command Result

% prex a.out Attach prex to your program and start prex.

prex> enable $all Enable all the probes.

prex> quit resume Quit prex and resume execution of program.

Tracing Program Execution With the TNF Utilities 9

1

In Code Example 1-1, the TNF_PROBE macro defines the probe point named
work_start . This probe point has two arguments whose values will be
logged—state and message . Each time the probe named work_start is
encountered, a time stamp and the values of the variables state and message
are logged to the trace file.

For more information on “Using the TNF_PROBE Macros“, including this
example, see page 39.

Table 1-3 on page 10 lists the predefined attributes.

Code Example 1-1 prex Attributes and Values

1 #include <tnf/probe.h>
2
3 int
4 work(int state, char *message)
5 {
6 TNF_PROBE_2(work_start, "work_module work"
7 "sunw%debug in function work",
8 tnf_long, int_input, state,
9 tnf_string, string_input, message);
10 ...
11 ...
12 }

10 Programming Utilities Guide—November 1995

1

Attributes
Attributes are characteristics by which you identify probe points in your code.
Table 1-3 lists the predefined attributes. You can add more attributes with the
TNF_PROBE macros. See “Using the TNF_PROBE Macros” on page 39.

Grammar for Matching Probes
Select probes based on their attributes and values. The selection specification is
called a selector_list. Each attribute or value can be described as one of the
following:

Table 1-3 Predefined Attributes

Attribute Characteristics
Value from
Code Example 1-1

enable A probe point performs the action that it is set up for only if
it is enabled. For example, even when the tracing state is set,
tracing occurs only if the probe point has been enabled.

OFF (default)

file The name of the file containing the probe point. work.c

funcs Shows the list of probe functions connected to this probe.
Currently, only the debug function is available.

<no value>
(default)

keys The groups to which the probe point belongs. If any key in a
probe point is enabled, then that probe point is enabled.

work_module
work

line The line number in the code on which the probe point
occurs.

10

name The name of the probe point. work_start

object The name of the shared object or executable that the probe is
in. Useful for selecting all the probes in a particular module.

work

slots The names of the probe point arguments (arg_name_n, see
page 41.)

int_input
string_input

trace When tracing for a probe point is on, a line is written to the
trace file each time the probe point is executed in your
program.

ON (default)

Tracing Program Execution With the TNF Utilities 11

1

• Identifier—a sequence of characters using letters, numbers, and the symbols
_\. and % (underscore, backslash, period, and percent). Identifiers cannot
begin with a number.

• Quoted string—a sequence of characters in single quotes, taken literally;
useful when the string being matched is a reserved word. See Table 1-4 on
page 12 for a list of reserved words.

• Regular expressions—a sequence of characters enclosed in slashes (//);
expanded for a match following the rules for ed(1) ; when slashes occur in
the regular expression, as in a path name, escape the slashes with
backslashes: /\/tmp\/ filename.

A selector_list consists of one or more selector=selector items. If the initial
selector= is not provided, it defaults to keys= . For example, the enable
command is specified as:

An example of this command is:

This enables all probe points with either the name attribute containing the
value first (a regular expression match), or the file attribute equal to the
value sampleZ.c (Note that the trace is a disjunction and not a conjunction.)

Use $set_name as a shorthand alias for a selector_list specification. In the
following example, the set_name is myprobes .

This does the same thing as the previous example. The set_name follows the
identifier naming rules. The $all default set selects all probes in the program.

enable selector_list

enable name=/first/ file=’sampleZ.c’

create $myprobes name=/first/ file=’sampleZ.c’
enable $myprobes

12 Programming Utilities Guide—November 1995

1

Reserved Words
Table 1-4 lists the reserved words. Enclose them in single quotes if you use
them to select attributes or values.

For example:

means enable all probes whose trace attribute has the value of ON. Both trace
and on are reserved words, so they both have to be enclosed in single
quotation marks.

Table 1-4 Reserved Words

add alloc buffer

clear connect continue

create dealloc delete

disable enable fcns

filter help history

kill ktrace list

off on pfilter

probes quit resume

sets source suspend

trace untrace values

enable ’trace’=’on’

Tracing Program Execution With the TNF Utilities 13

1

Table 1-5 prex Commands

Command Action

clear $ set_name
clear selector_list

Disconnect connected probe functions.

connect &debug $ set_name
connect &debug selector_list

Connect the debug function to the probe points. This does not enable the
probe points. Note that the debug function sends its output to stderr
and not to the trace file.

continue Resume execution of your program, leaving prex attached.

create $ set_name selector_list Create a set with probe points matching selector_list . Creates an
alias, $set_name, for the selector_list .

enable $ set_name
enable selector_list
disable $ set_name
disable selector_list

Control whether the probe points perform the action they are set up for.
Probe points are disabled by default; prex does not turn on tracing. The
cheapest way (in terms of execution time at the probe point) to stop a
probe point from tracing is to use the disable command.

The enable and disable commands are a master switch. If a probe
point is not enabled, even if the probe point is connected to the debug
function and trace is on, no information is sent to stderr or to the
trace file.

help List all available prex commands.

list attributes probes selector_list
list attributes probes $ set_name

List whether specified probe points are enabled or disabled, whether
they have tracing on or off, and what the connected probe function is.
Attributes are selectors as described in “Attributes” on page 10. For
example,
list name file probes $all

lists only name and file values for matching probe points, while the
command
list probes $all

lists all default attributes and their values (name, enable , trace , file ,
line , and funcs).

list fcns List the defined functions (currently, only &debug is defined).

14 Programming Utilities Guide—November 1995

1

list history List the control command history. The history of the commands used
with connect , clear , trace , untrace , enable , and disable are
executed whenever a new shared object is brought in to your program
through dlopen . See “dlopen() and dlclose() and History” on page 49.

list sets List the defined sets.

list values attributes List the unique values associated with the specified attributes. For
example, list values keys lists all the unique keys in the program.

source filename Source a file of prex commands. filename is a quoted string.

trace $ set_name
trace selector_list
untrace $set_name
untrace selector_list

Control the tracing action of the probe points. trace and untrace
determine whether a probe point generates a trace record when it is
executed. Neither trace nor untrace enables the probe points.

The default mode is that tracing is on.

The untrace command is useful when you are interested in getting
only debug output. If you are using this, your probe should be enabled
with tracing off and debug on.

Tracing disturbs your program less than the debug function does
because trace writes to an mmap’d file while debug writes to stderr .

quit Quit prex ; if your program is loaded with prex , it will be killed; if your
program was attached to prex , your program will be resumed.

quit kill Quit prex and kill your program.

quit resume Quit prex and resume execution of your program.

quit suspend Quit prex and leave your program suspended.

Table 1-5 prex Commands (Continued)

Command Action

Tracing Program Execution With the TNF Utilities 15

1

Tracing, Enabling, and Connecting

To trace at a probe point, the probe point must have trace on and it must be
enabled. To debug at a probe point, the probe point must be connected to the
debug function and must be enabled.

Table 1-6 shows which combinations of tracing, enabling, and connecting result
in which actions.

Controlling prex From a Script

Enter commands to prex either from the prex command line or from a file
containing prex commands.

When you start prex , it searches for a file named .prexrc first in $HOME/
and next in the directory from which you started prex . Commands are read
from all files that are found. Therefore it is possible to have a .prexrc file in
the current directory that overrides defaults that are set up by the .prexrc file
in the home directory.

After reading any .prexrc files that are found, input is expected from the
prex command line. To set up an experiment entirely using .prexrc files, the
last statement in it can be quit resume , which will quit prex but let your
program resume.

Table 1-6 Tracing, Enabling, and Connecting Actions

Enabled or
Disabled

Tracing State
(On/Off)

Debug State
(Connected/Cleared) Results In

Enabled On Connected Tracing and Debugging

Enabled On Cleared Tracing only

Enabled Off Connected Debugging only

Enabled Off Cleared nothing

Disabled On Connected nothing

Disabled On Cleared nothing

Disabled Off Connected nothing

Disabled Off Cleared nothing

16 Programming Utilities Guide—November 1995

1

Also, when prex is running you can use the source filename command to
specify a file from which prex reads commands. This file can have any name
you like.

As with commands entered from the prex command line, all commands in the
script should be in ASCII. The following rules apply:

• Terminate each command with the newline character.

• Continue a command onto the next line by ending the previous line with a
backslash (\) character.

• Separate tokens by white space (one or more spaces or tabs).

• Start comments with a hash mark (#).

While the command language is the same for prex commands entered from
the command line and for commands from a script, commands that return
output (such as list probes...) make little sense in a script because the
output goes to stdout .

A Sample C Program

This program, cookie.c , asks for a cookie. The response must be entered in
uppercase, or it is incorrect. You can also find the prime factor of a number. In
the process of doing these two things, you can see how the trace function
works.

To compile this program and get an executable called cookie , use

Five probe points are defined (and highlighted) in this program. They are
named start (line 17), inloop (line 33), factor_start (line 60),
found_a_factor (line 65), and factor_end (line 72). More information
about these probe points is gathered and explained in “A Sample prex Session”
on page 18.

$ cc -o cookie cookie.c

Tracing Program Execution With the TNF Utilities 17

1

Code Example 1-1 Code for cookie.c

1 #include <sys/types.h>
2 #include <stdio.h>
3 #include <string.h>
4 #include <tnf/probe.h>
5
6 #define MAX_RESPONSE_SIZE 256
7
8 static void find_factor(int n);
9
10 int
11 main(int argc, char **argv)
12 {
13 boolean_t shouldexit = B_FALSE;
14 int sum = 0, max_loop = 5;
15 int i;
16
17 TNF_PROBE_0(start, "cookie main", "sunw%debug starting main");
18
19 while (!shouldexit) {
20 char response[MAX_RESPONSE_SIZE];
21 int factor_input;
22
23 (void) printf("give me a COOKIE! ");
24 (void) scanf(“%s”, response);
25
26 if (!strcmp(response, "COOKIE")) {
27 (void) printf("thanks!\n");
28 shouldexit = B_TRUE;
29 }
30
31 else if (!strcmp(response, "loop")) {
32 for (i = 0; i < max_loop; i++) {
33 TNF_PROBE_2(inloop, "cookie main loop","sunw%debug in the loop",
34 tnf_long, loop_count, i,
35 tnf_long, total_iterations, sum);
36 sum++;
37 }
38 max_loop += 2 ;
39 }
40

18 Programming Utilities Guide—November 1995

1

A Sample prex Session

This sample of a prex session is designed to show the different capabilities of
prex . The data collected when cookie is run is shown in “Reading the tnfdump
File” on page 23.

41 else if (!strcmp(response, "factor")) {
42 (void) printf("number you want factored? ");
43 (void) scanf("%d", &factor_input);
44 find_factor(factor_input);
45 }
46
47 else {
48 (void) printf("not a %s, ", response);
49 }
50 }
51 return 0;
52
53 } /* end main */
54 static void
55 find_factor(int n)
56 {
57 int i;
58
59 (void) printf("\tfactors of %d = ", n);
60 TNF_PROBE_1(factor_start, "factor", "",
61 tnf_long, input_number, n);
62
63 for (i=2; i <= n; i++) {
64 while (n % i == 0) {
65 TNF_PROBE_2(found_a_factor, "cookie find_factor", "",
66 tnf_long, searching_for, n,
67 tnf_long, factor, i);
68 (void) printf("%d ", i);
69 n /= i;
70 }
71 }
72 TNF_PROBE_0(factor_end, "factor", "");
73 (void) printf("\n");
74 }

Code Example 1-1 Code for cookie.c

Tracing Program Execution With the TNF Utilities 19

1

% prex cookie /* prex is loading the executable cookie. */

Target process stopped

Type "continue" to resume the target, "help" for help ...

prex> list sets

$all ’keys’=/.*/ /* One set is defined—$all (which is all the probes). */

prex> list fcns

&debug tnf_probe_debug /* The debug function is the only one available. */

prex> list probes $all

name=inloop enable=off trace=on file=cookie.c line=35 funcs=<no value>

name=factor_end enable=off trace=on file=cookie.c line=72 funcs=<no value>

name=factor_start enable=off trace=on file=cookie.c line=61 funcs=<no value>

name=found_a_factor enable=off trace=on file=cookie.c line=67 funcs=<no value>

name=start enable=off trace=on file=cookie.c line=17 funcs=<no value>

prex> /* The line number shows the end of each of the five probes. */

prex> create $factor /factor/ /* Create a new set that matches any probe whose "keys" */

prex> /* attribute contains the string "factor". */

prex> list sets

$all ’keys’=/.*/

$factor ’keys’=/factor/ /* A new set named "factor" is created and now shows up in */

prex> /* the list of sets. */

prex> list probes $factor /* This line tells you which probes matched the set $factor.*/

name=factor_end enable=off trace=on file=cookie.c line=72 funcs=<no value>

name=factor_start enable=off trace=on file=cookie.c line=61 funcs=<no value>

name=found_a_factor enable=off trace=on file=cookie.c line=67 funcs=<no value>

prex> list probes $all /* Check to see if any probes are enabled. */

name=inloop enable=off trace=on file=cookie.c line=35 funcs=<no value>

name=factor_end enable=off trace=on file=cookie.c line=72 funcs=<no value>

name=factor_start enable=off trace=on file=cookie.c line=61 funcs=<no value>

name=found_a_factor enable=off trace=on file=cookie.c line=67 funcs=<no value>

name=start enable=off trace=on file=cookie.c line=17 funcs=<no value>

prex> /* None are enabled, but all have trace on. */

prex> enable $all /* Enable all the probes.*/

prex> list probes $all /* Check again to see if any probes are enabled. */

name=inloop enable=on trace=on file=cookie.c line=35 funcs=<no value>

name=factor_end enable=on trace=on file=cookie.c line=72 funcs=<no value>

name=factor_start enable=on trace=on file=cookie.c line=61 funcs=<no value>

20 Programming Utilities Guide—November 1995

1

name=found_a_factor enable=on trace=on file=cookie.c line=67 funcs=<no value>

name=start enable=on trace=on file=cookie.c line=17 funcs=<no value

prex> list values name /* Find out what the probe names are. */

name =

 factor_end

 factor_start

 found_a_factor

 inloop

 start

prex> list values /.*/ /* List all predefined attributes with their values. */

enable = /* Only unique attributes are listed.*/

 on

file =

 cookie.c

funcs =

keys =

 cookie

 factor

 find_factor

 loop

 main

line =

 17

 35

 61

 67

 72

name =

 factor_end

 factor_start

 found_a_factor

 inloop

 start

object =

 cookie

slots =

 factor

 input_number

Tracing Program Execution With the TNF Utilities 21

1

 loop_count

 searching_for

 total_iterations

sunw%debug = /* The user-defined macro, sunw%debug, is also listed. */

 in /* This macro is defined in line 17 of cookie.c. */

 loop

 main

 starting

 the

trace =

 on

prex> list values object

object =

 cookie

prex> connect &debug name=inloop

prex> list /.*/ probes $all /* List all the information about all the probes */

enable=on trace=on object=cookie funcs=<no value> name=inloop slots=loop_count total_iterations
keys=cookie main loop file=cookie.c line=35 sunw%debug=in the loop

enable=on trace=on object=cookie funcs=<no value> name=factor_end slots=<no value> keys=factor
file=cookie.c line=72

enable=on trace=on object=cookie funcs=<no value> name=factor_start slots=input_number
keys=factor file=cookie.c line=61

enable=on trace=on object=cookie funcs=<no value> name=found_a_factor slots=searching_for
factor keys=cookie find_factor file=cookie.c line=67

enable=on trace=on object=cookie funcs=<no value> name=start slots=<no value> keys=cookie main
file=cookie.c line=17 sunw%debug=starting main

prex> continue

give me a COOKIE! loop /* An example of loop counts*/

probe inloop; sunw%debug “in the loop”; loop_count=0; total_iterations=0;

probe inloop; sunw%debug “in the loop”; loop_count=1; total_iterations=1;

probe inloop; sunw%debug “in the loop”; loop_count=2; total_iterations=2;

probe inloop; sunw%debug “in the loop”; loop_count=3; total_iterations=3;

probe inloop; sunw%debug “in the loop”; loop_count=4; total_iterations=4;

give me a COOKIE! factor

number you want factored? 25

factors of 25 = 5 5

give me a COOKIE! factor

number you want factored? 43645729

factors of 43645729 = 43645729

22 Programming Utilities Guide—November 1995

1

give me a COOKIE! ^C Target process stopped

Type “continue” to resume the target, “help” for help...

prex> continue

give me a COOKIE! biscuit

not a biscuit, give me a COOKIE! cookie

not a cookie, give me a COOKIE! COOKIE

thanks!

prex: target process finished

Reading the Trace File

The binary trace file you create with prex contains information determined by
the prex commands you chose (see “Running prex” on page 7).

By default, this file is created in / $TMPDIR/trace- pid, where pid is the
process ID of the target program. If $TMPDIR is not set, the file is created in
/tmp/trace- pid. You can override these default locations with the -o option
to the prex command (see “Command Line Options for prex” on page 7 for a
full explanation).

When the trace file has been filled, newer events overwrite the older events.
The default size of a trace file is four megabytes. This can be changed with the
-s option for prex .

Once a program is tracing to a file, there is no way to clear the trace file or to
give it a different name for the lifetime of that program. If you disconnect from
the target and attach later with a different trace file name, the newer name is
ignored.

Converting the Binary File to Readable Format

To convert the binary trace file to an ASCII file, use the tnfdump(1) command
and the name of the binary trace file. Because tnfdump output goes to stdout
by default, you probably want to redirect it into a file.

The -r option to tnfdump provides detailed (raw) TNF output. Reading this
output requires an understanding of TNF that is beyond the scope of this
chapter.

$ tnfdump filename > newfile

Tracing Program Execution With the TNF Utilities 23

1

Reading the tnfdump File

The following table shows output from the prex cookie command
described in “A Sample prex Session” on page 18. The output of the
tnfdump file is very wide—open a very wide window to display it:

probe tnf_name: “start” tnf_string: “keys cookie main;file cookie.c;line 17;sunw%debug starting main”
probe tnf_name: “factor_start” tnf_string: “keys factor;file cookie.c;line 61;”
probe tnf_name: “found_a_factor” tnf_string: “keys cookie find_factor;file cookie.c;line 67;”
probe tnf_name: “factor_end” tnf_string: “keys factor;file cookie.c;line 72;”
---------------- ---------------- ----- ----- ---------- --- -------------------------

 Elapsed (ms) Delta (ms) PID LWPID TID CPU Probe Name Data / Description . . .
---------------- ---------------- ----- ----- ---------- --- -------------------------

 0.000000 0.000000 5354 1 0 - start
4551.625000 4551.625000 5354 1 0 - factor_start input_number: 25
4571.278000 19.653000 5354 1 0 - found_a_factor searching_for: 25 factor: 5
4571.543000 0.265000 5354 1 0 - found_a_factor searching_for: 5 factor: 5
4571.732000 0.189000 5354 1 0 - factor_end

 23151.434000 18579.702000 5354 1 0 - factor_start input_number: 101247
 23151.509000 0.075000 5354 1 0 - found_a_factor searching_for: 101247 factor: 3
 23228.090000 76.581000 5354 1 0 - found_a_factor searching_for: 33749 factor: 33749
 23228.250000 0.160000 5354 1 0 - factor_end
 89041.868000 65813.618000 5354 1 0 - factor_start input_number: -1690908149
 89041.920000 0.052000 5354 1 0 - factor_end
108271.852000 19229.932000 5354 1 0 - factor_start input_number: 43645729
208857.756000 100585.904000 5354 1 0 - found_a_factor searching_for: 43645729 factor:
43645729
208857.960000 0.204000 5354 1 0 - factor_end
334511.548000 125653.588000 5354 1 0 - factor_start input_number: 12
334511.618000 0.070000 5354 1 0 - found_a_factor searching_for: 12 factor: 2
334511.689000 0.071000 5354 1 0 - found_a_factor searching_for: 6 factor: 2
334511.750000 0.061000 5354 1 0 - found_a_factor searching_for: 3 factor: 3
334511.808000 0.058000 5354 1 0 - factor_end

Looking at the tnfdump display, you can see how long it takes to find a
factor by subtracting the factor_start time from the factor_end time.
Factoring 43645729 took 208857.960000 – 108271.852000, or 100586.11
milliseconds. Factoring 12 took 334511.808000 – 334511.548000, or .260000
milliseconds.

24 Programming Utilities Guide—November 1995

1

Note – Results are reported with nanosecond precision for all hardware platforms.
Accuracy, however, depends on the hardware platform used.

Kernel Tracing
Starting with the Solaris 2.5 release, the SunOS kernel has a small number of TNF
probes built into it. The probes record kernel events such as system calls, thread state
transitions, page faults, swapping, and I/O. You can use these probes to obtain
detailed traces of kernel activity under your application workloads. The probes have
negligible impact on the performance of the running kernel when the probes are
disabled.

The method for tracing the kernel is similar to tracing a user-level process, although
there are some differences. To understand the following discussion, you should have
read the sections “Running prex” on page 7 and “Reading the Trace File” on page 22.

You need super-user privileges to trace the kernel.

You use the prex utility to control kernel probes. The standard prex commands to list
and manipulate probes are available to you, along with commands to set up and
manage kernel tracing.

Kernel probes write trace records into a kernel trace buffer. You must copy the buffer
into a TNF file for post-processing; use the tnfxtract utility for this.

You use the tnfdump utility to examine a kernel trace file. This is exactly the same as
examining a user-level trace file.

The steps you typically follow to take a kernel trace are:

1. Become superuser (su).

2. Allocate a kernel trace buffer of the desired size (prex).

3. Select the probes you want to trace and enable (prex).

4. Turn kernel tracing on (prex).

5. Run your application.

6. Turn kernel tracing off (prex).

7. Extract the kernel trace buffer (tnfxtract).

Tracing Program Execution With the TNF Utilities 25

1

8. Disable all probes (prex).

9. Deallocate the kernel trace buffer (prex).

10. Examine the trace file (tnfdump).

A convenient way to follow these steps is to use two shell windows; run an
interactive prex session in one, and run your application and tnfxtract in
the other.

You might find it simpler to use the ktrace shell script shown in “Shell Script
for Kernel Tracing” on page 35.

 Controlling Kernel Tracing (prex)

Start prex on the kernel with the -k flag (make sure you are root). Once prex
successfully attaches to the kernel it will prompt you for commands.

Note – Only one prex session can be attached to the kernel at any given time.

Buffer Allocation

The first step in taking a kernel trace is to allocate a kernel trace buffer. The
trace buffer is circular, which means that newer data overwrites older data
once the buffer fills up.

The default size for the buffer is 384 kilobytes, but you can override this when
you allocate the buffer. When deciding on the buffer size, keep in mind that the
buffer occupies both physical memory and kernel virtual memory, so it will
impact the system you are tracing–the more RAM you have, the less the impact
of measurement on your experiment, and the bigger the buffer you can
allocate.

prex -k
prex>

26 Programming Utilities Guide—November 1995

1

Use the buffer command in prex to allocate the buffer. For example, you could
allocate a 512 kilobyte buffer as follows:

Note – The minimum buffer size is 128 kilobytes; prex allocates a buffer of this
size if you request anything smaller.

Selecting and Enabling Probes

Use the standard prex list command to list kernel probes and their attributes.
For example, to list the name and keys attributes of the probe named pagein :

To list the name and keys attributes of all probes in the io group:

prex> buffer # do we have a buffer?
No trace buffer allocated
prex> buffer alloc 512k # allocate 512KB buffer
Buffer of size 524288 bytes allocated
prex>

prex> list name=pagein keys
name=pagein keys=vm pageio io

prex> list name keys probes io
name=biodone keys=io blockio
name=physio_start keys=io rawio
name=pagein keys=vm pageio io
name=pageout keys=vm pageio io
name=physio_end keys=io rawio
name=strategy keys=io blockio
prex>

Tracing Program Execution With the TNF Utilities 27

1

The next step is to trace and enable the probes you need. For example, to select
all probes whose keys specify thread , vm and io , and prepare them for tracing:

Note – Unlike user-level probes, kernel probes are not automatically ‘traced’ (in
prex terminology) when prex attaches to the kernel. You must explicitly issue
the trace and enable commands as shown above.

At this point the relevant probes are ready for tracing, but kernel tracing has not
been globally enabled so no trace records are being written.

Process Filtering

If you want to simply trace all system activity (for example, on a busy server),
you can proceed to “Enabling and Disabling racing” on page 28. This is the most
common use of kernel tracing, and usually the most informative.

However, you also have the option of restricting trace data generation to selected
processes; this can reduce the amount of data you need to collect and analyze.

prex uses two abstractions to allow you to do process filtering.

The process filter set is a list of process identifiers (PIDs) for those processes that
you want enabled for tracing; no trace data will be written by (threads belonging
to) processes that are not in the filter set. The default filter set is empty.

The process filter mode is a global flag that selects whether process filtering is
enabled or disabled in the kernel. The default is that process filtering is disabled,
which means that all processes (and threads) write trace records. When it is
enabled, only (threads belonging to) the processes in the filter set write trace
records.

prex> trace thread vm io # attach trace function to probes
prex> enable thread vm io # enable probes
prex>

28 Programming Utilities Guide—November 1995

1

Use the prex pfilter command to control process filtering.

Note – System threads (such as interrupt threads) are treated as belonging to
process 0.

Enabling and Disabling racing

The final step in starting up tracing is to globally enable kernel tracing. Once
you do this, the probes you have enabled write records into the kernel trace
buffer as they are encountered.

To trace the kernel behavior of your application (perhaps with user-level
tracing enabled as well), start it running at this time.

When your application finishes, or when you decide you have enough trace
data to sample its behavior, globally disable kernel tracing.

The trace buffer is still present in the kernel. Copy it out into a TNF file using
tnfxtract . The procedure that you follow is explained in the subsection
“Extracting Kernel Trace Data (tnfxtract)” on page 29.

prex> pfilter # are we filtering?
Process filtering is off
Process filter set is empty.
prex> pfilter add 408 # add PID 408 to filter set
prex> pfilter
Process filtering is off
Process filter set is {408}
prex> pfilter on # enable process filter mode
prex>

prex> ktrace # check tracing status
Tracing is off
prex> ktrace on # enable kernel tracing
prex>

prex> ktrace off # disable kernel tracing
prex>

Tracing Program Execution With the TNF Utilities 29

1

Resetting Kernel Tracing

Once you have copied the trace buffer into a TNF file, reset kernel tracing by
disabling all probes and deallocating the buffer. This is important because it
brings the performance of the kernel back to where it was before you started
tracing.

Use the standard prex commands to disable and untrace all probes.

Finally, use the prex buffer command to deallocate the trace buffer.

Caution – Do not deallocate the trace buffer until you have copied it out into a
trace file. Otherwise, you will lose the trace data you collected for your
experiment.

You can now quit prex and examine the trace data that you have collected.

 Extracting Kernel Trace Data (tnfxtract)

Use the tnfxtract utility to make a copy (or snapshot) of the active kernel
trace buffer into an external TNF trace file. You typically run the utility after
tracing has been disabled, although you may also run it concurrently with
tracing. The utility ensures that it reads and writes only consistent TNF data.

prex> disable $all # disable all probes
prex> untrace $all # untrace all probes
prex>

prex> buffer dealloc # deallocate buffer
buffer deallocated
prex>

prex> quit
#

30 Programming Utilities Guide—November 1995

1

Specify a file name that tnfxtract will use to hold the extracted kernel trace
data. This file will be overwritten and truncated to the size of the kernel trace
buffer. For example, to extract it into a temporary file named ktrace.tnf :

You might find it convenient to change the permissions on the trace file so that
it is world-readable. This makes it easier for you to to run analysis tools over
the file when you are not superuser.

Note – You can also use tnfxtract on a kernel crash dump; see
tnfxtract(1) for details.

 Examining Kernel Trace Data (tnfdump)

Use tnfdump to get a time-ordered ASCII dump of a kernel trace file on
stdout (exactly as in user-level tracing). Because the trace output might be
very large, you will typically run it through a pager (such as more) or redirect
it to an output file.

Note – tnfdump accepts multiple TNF files as input; it produces a time-sorted
output of all event records in its input files, so you can use it to combine
multiple user-level trace files along with the kernel trace file.

 Available Kernel Probes (tnf_probes)

The SunOS kernel probes supply information approximately at the level of
statistics-based Solaris performance monitoring tools such as vmstat , iostat
and sar . However, they provide more detail – each probe records a

tnfxtract /tmp/ktrace.tnf
ls -l /tmp/ktrace.tnf
-rw------- 1 root other 524288 Aug 15 16:00 /tmp/ktrace.tnf
#

tnfdump /tmp/ktrace.tnf | more

Tracing Program Execution With the TNF Utilities 31

1

high-resolution timestamp, a thread (LWP, thread, and process identifiers), a
CPU, and individual probes identify the system resources (such as disks, files,
CPUs, and so on) associated with an event.

You can use kernel tracing, along with user-level tracing, to correlate the events
recorded by your application or library probes with the events recorded by the
kernel probes. Thus you can get a detailed view of how your code uses kernel
services, and how the demands your application places on system resources
interact with the demands placed by other clients.

The text below summarizes the SunOS kernel probes; see the tnf_probes(4)
manual page for detailed information on the event record fields.

Thread Probes

The thread_create probe traces kernel thread creation. It records the process
identifier, the kernel thread identifier, and the kernel address of the start
routine of the new thread.

The thread_exit probe records the termination of the current thread.

Probes that trace thread state transitions are called microstate probes. They
record a thread state and, optionally, a thread identifier. If a thread identifier is
provided, the state change applies to the indicated thread. Otherwise, it applies
to the writing thread.

Thread state values use the microstate constants defined in <sys/msacct.h> .
The states are recorded as shown in Table 1-7.

Table 1-7 Thread Microstate Constants

State Explanation

user Running in user mode

system Running in system mode

tfault Initial state for user text fault

dfault Initial state for user data fault

trap Initial state for other trap

user_lock Asleep waiting for user-mode lock

32 Programming Utilities Guide—November 1995

1

Note – The kernel does not trace transitions between the system and user
states that are implied by system calls. This is to reduce trace volume. You
need to enable the system call probes to get this information; for convenience,
they are automatically enabled for you when you enable probes with the
thread key.

System Call Probes

System call entry and exit probes identify the system operations explicitly
requested by user code.

The syscall_start probe marks the start of a system call, and records the
system call number. The probe does not capture system call arguments,
because this is fairly expensive. (Some of this information can be captured by
interposing on the C library entry points at the user level.) The
syscall_start probe also implicitly marks the current thread as entering the
system state.

The syscall_end probe marks the end of a system call, and records the two
return values of the call, as well as the errno value. The syscall_end probe
also implicitly marks the current thread as entering the user state.

Note – System call implementation at this level can change from release to
release. Do not rely on a consistent mapping of system calls to numbers.

VM Probes

The virtual memory subsystem (VM) probes provide information on page
faults, page I/O, the page daemon, and the swapper.

sleep Asleep for any other reason

wait_cpu Waiting for a CPU (runnable)

stopped Stopped (/proc , jobcontrol, lwp_stop)

Table 1-7 Thread Microstate Constants

State Explanation

Tracing Program Execution With the TNF Utilities 33

1

Page Faults
Page fault probes relate virtual addresses with fault types and with files
(vnodes).

The address_fault probe traces address-space faults; it records the faulting
virtual address, the type of fault, and the desired access protection.

The fault type and access type values use the constants defined in
<vm/seg_enum.h> . Fault types are invalid page (minor fault), protection
fault, or software requests to lock and unlock pages for physical I/O (softlock
and softunlock). Access types are read, write, execute and create.

The major_fault probe traces major page faults; it records the vnode and
offset (which together identify a file system page) from which the fault should
be resolved. This data can be correlated with the immediately preceding
address_fault event for the current thread to obtain the faulting virtual
address.

The anon_private probe traces copy-on-write faults.

The anon_zero probe traces zero-fill faults.

The page_unmap probe marks the dissociation between a physical page and a
file system page (for example, when a page is renamed or destroyed).

Page I/O
The pagein probe traces the initiation of a pagein request; it records the
vnode, offset, and size of the pagein.

The pageout probe traces the completion of a pageout request; it records the
number of pages paged out, the number of pages freed, and the number of
pages reclaimed after the pageout.

Page Daemon
Iterations of the page daemon (page stealer) are traced by two probes:
pageout_scan_start and pageout_scan_end . The probes report the
number of free pages needed before the scan, the number of pages examined
during the scan, and the free page counts before and after the scan. Potentially,
more pages will be freed when pageout requests queued by the scan are
completed.

34 Programming Utilities Guide—November 1995

1

Swapper
Three probes trace the activity of the swapper.

The swapout_process probe traces the swapping out of a process address
space; it records the process identifier and the total number of pages either
freed or queued for output.

The swapout_lwp probe traces the swapping out of an LWP’s stack pages; it
records the LWP’s identity and the number of pages queued for output.

The swapin_lwp probe traces the swapping in of an LWP’s stack pages; it
records the LWP’s identity and the number of stack pages brought in.

Local I/O Probes

The strategy probe traces the initiation of local block device I/O by the
kernel. It records the device number, logical block number, size, buffer pointer,
and buffer flags associated with the transfer. The flag values are the buffer
status flags as defined in <sys/buf.h> .

The biodone probe traces the completion of a buffered I/O transfer, that is,
calls to the kernel biodone(9f) routine. It records the device number, logical
block number, and buffer pointer associated with the transfer.

Physical (raw) I/O is traced by two probes in physio(9f) : physio_start
and physio_end . These probes record the device number, offset, size, and
direction of the I/O transfer.

Other Probes

The thread_queue probe traces thread scheduling; it records the thread
identifier of the scheduled thread, the CPU associated with the dispatch queue
on which it is placed, the thread’s dispatch priority, and the current number of
runnable threads on the dispatch queue.

Tracing Program Execution With the TNF Utilities 35

1

 Shell Script for Kernel Tracing

Code Example 1-1 ktrace Script

#!/bin/sh
#
ktrace
Reset and enable kernel tracing
Run command in background, if specified
Sleep for duration, if specified
Wait for command completion, timeout, or keyboard interrupt
(Note: keyboard interrupt kills command)
Disable kernel tracing
Extract kernel trace buffer
Reset kernel tracing, if specified
#

TMPDIR=${TMPDIR:-/tmp}

output_file=$TMPDIR/ktrace.tnf
buffer_size=512k
duration=
events=
command=
do_reset=y
child=
alarm=

usage message
usage() {

echo ““
echo $1
echo “

Usage: ktrace[-o <output_file>]# default /tmp/ktrace.tnf
[-s <buffer_size>]# default 512k
-e <events># kernel probes (keys) to enable
[-r] # don’t reset kernel tracing

default is to reset after command
<cmd> | -t <seconds>

Eg,
ktrace -e ‘thread vm io’ -t 10
ktrace -e ‘thread’ -s 256k myapp ...

“
exit 1

}

36 Programming Utilities Guide—November 1995

1

failure message
fail() {

while [$# -gt 0]
do
echo $1
shift
done
echo “ktrace failed”
exit 2

}

Reset kernel tracing
ktrace_reset() {

if [$1 = “y”]; then
echo “Resetting kernel tracing”
prex -k >/dev/null 2>&1 <<-EOF

ktrace off
untrace /.*/
disable /.*/
buffer dealloc
EOF

test $? -ne 0 && fail “Could not reset kernel tracing” \
“‘su root’ and retry”

fi
}

Enable kernel tracing
ktrace_on() {

echo “Enabling kernel tracing”
prex -k >/dev/null 2>&1 <<-EOF
buffer alloc $buffer_size
trace $events
enable $events
ktrace on
EOF
test $? -ne 0 && fail “Could not enable kernel tracing” \
“Check syntax of ‘-e’ argument” \
“Check buffer size is not too high”

}

Code Example 1-1 ktrace Script

Tracing Program Execution With the TNF Utilities 37

1

Disable kernel tracing
ktrace_off() {

prex -k >/dev/null 2>&1 <<-EOF
ktrace off
EOF
test $? -ne 0 && fail “Could not disable kernel tracing”
echo “Kernel tracing disabled”

}

Extract kernel trace buffer
ktrace_xtract() {

echo “Extracting kernel trace buffer”
tnfxtract $output_file || fail “Could not extract kernel trace

buffer”
ls -l $output_file

}

Run command, sleep for duration, or wait for command to complete
run_command() {

trap ‘interrupt’ 0 1 2 3 15
if [“$command”]; then
$command &
child=$!
echo “‘$command’ pid is $child”
fi

if [“$duration”]; then
sleep $duration &
alarm=$!
wait $alarm
XXX test -z “$child” || kill -15 $child
else
wait $child
fi
trap 0 1 2 3 15

}

Keyboard interrupt
interrupt() {

test -z “$alarm” || kill -15 $alarm
test -z “$child” || kill -15 $child

}

Code Example 1-1 ktrace Script

38 Programming Utilities Guide—November 1995

1

Parse options
while getopts o:s:t:e:r opt
do

case $opt in
 o)output_file=”$OPTARG”;;
 s)buffer_size=”$OPTARG”;;
 t)duration=”$OPTARG”;;
 e)events=”$OPTARG”;;
 r)do_reset=”n”;;
 \?)usage;;
esac

done

shift ‘expr $OPTIND - 1‘

Get command to run
test $# -gt 0 && command=”$*”

Check and normalize options
test -z “$events” && usage “No kernel events specified”
test -z “$command” && test -z “$duration” && \

usage “No command or time duration specified”

Perform experiment
ktrace_reset y# Reset kernel tracing
ktrace_on # Enable kernel tracing
run_command# Run command, wait, or sleep
ktrace_off # Disable kernel tracing
ktrace_xtract# Extract buffer
ktrace_reset $do_reset# Reset kernel tracing again
exit 0

Code Example 1-1 ktrace Script

Tracing Program Execution With the TNF Utilities 39

1

Advanced Topics

Inserting Probe Points

Insert probe points in your code to:

• Trace the values of variables in your program.

• Provide internal state information that is not available through the exported
interface. This is useful for debugging or for performance analysis.

For example, use probe points to show performance relevant information
hidden in C++ private classes, or to show operational data such as the collision
rate in a hash table. By placing a probe point in the hash table code, the probe
point can write to the trace file each time a collision is detected.

The interface for inserting probes is defined by the TNF_PROBE macros
TNF_PROBE_0 through TNF_PROBE_5. The numbers 0 through 5 are the
number of variables being traced by the macro.

With these macros, you can insert probe points anywhere in your code to get
the values of variables and to trace program execution. The libtnfprobe
library defines the standard scalar types (ints, longs, floats, and so on), but you
can define more complex structures with the TNF_DECLARE_RECORD and
TNF_DEFINE_RECORD macros. See “Defining User Types for Probe Points” on
page 44.

Using the TNF_PROBE Macros

In the simplest case, TNF_PROBE_0, you give no argument types.:

The variables are:

• name – the name of the probe, following all the syntax guidelines for
identifiers in ANSI C. The use of name declares it, so no separate declaration
is necessary. This is a block scope declaration, so it does not affect the name
space of the program.

TNF_PROBE_0 (name, keys, detail);

40 Programming Utilities Guide—November 1995

1

• keys – a list of groups the probe belongs to. The list is a string containing
space-separated keywords and cannot contain a semicolon, an equal sign, or
a single quotation mark.(;= ‘). When any of the groups are enabled, the
probe point is enabled. keys cannot be a variable–it must be an in-line
string.

• detail – provides a way for you to define your own attributes and values.
The detail string is made up of attribute-value pairs separated from each
other by semicolons, although the value is optional. The first word (up to a
space) is considered to be the attribute and the rest of the string (up to the
semicolon) is considered to be the value. Spaces around the semicolon
delimiter are allowed. Single quotation marks and the equal sign are not
allowed in the detail statement.

Prefix the attribute name with a vendor stock symbol followed by the %
character to avoid name collisions. In the following example, four attributes
are defined: sunw%debug, comX%exception , comY%func_entry , and
comY%color . Since prex tokenizes the value on spaces, multiword values can
be matched on any of the words, but not on the entire string.

Table 1-8 gives the values that will be matched on for the command shown
above:

sunw%debug entering function A; comX%exception no file; comY%func_entry; comY%color red blue

Table 1-8 Examples of User-Defined Attributes

Attribute Value Values prex matches on

sunw%debug entering function A entering or function or A

comX%exception no file no or file

comY%func_entry /.*/ (regular expression)

comY%color red blue red or blue

Tracing Program Execution With the TNF Utilities 41

1

libtnfprobe reserves all attribute names that are not prefixed by a vendor
symbol (it reserves all attributes that do not have the % character in them). The
code for cookie.c in “A Sample C Program” on page 16 contains the following
use of TNF_PROBE_0:

Note – Compiling with the preprocessor option -DNPROBE (see cc(1)), or
with the preprocessor control statement #define NPROBE ahead of the
#include <tnf/probe.h> statement, stops probe points as well as TNF
type extension code from being compiled into the program.

TNF_PROBE_1 Through TNF_PROBE_5

The numbers 1 through 5 in the argument names are used here to illustrate the
number of variables you give to the probe point. For example, the syntax for
TNF_PROBE_1 is:

and the syntax for TNF_PROBE_5 is:

The arguments are:

• arg_type_n—the type of the nth argument. n is a number from 1 through 5.
The predefined types are listed in Table 1-9. See “Defining User Types for
Probe Points” on page 44 for information about defining your own types.

TNF_PROBE_0(start, “cookie main”, “sunw%debug starting main”);

TNF_PROBE_1(name, keys, detail,
 arg_type_1, arg_name_1, arg_value_1);

TNF_PROBE_5(name, keys, detail,
 arg_type_1, arg_name_1, arg_value_1
 arg_type_2, arg_name_2, arg_value_2
 arg_type_3, arg_name_3, arg_value_3
 arg_type_4, arg_name_4, arg_value_4
 arg_type_5, arg_name_5, arg_value_5);

42 Programming Utilities Guide—November 1995

1

• arg_name_n—the name you give the nth argument. Follow the ANSI C rules
for identifiers, and do not use quotation marks around the argument name.
(Note that the slots attribute mentioned on page 10 contains a string
version of this name.)

• arg_value_n—the expression that is evaluated to a value that is included in
the trace file. A read access is done on any variables that are mentioned in
value_n. In a multithreaded program, place locks around the TNF_PROBE_n
macro if value_n contains data that should be read protected.

For example, the cookie.c program on page 16 uses TNF_PROBE_2 as
follows:

Table 1-9 Predefined Types

Type Associated C Type and Semantics

tnf_long int, long

tnf_ulong unsigned int, unsigned long

tnf_longlong long long (if implemented in compilation system)

tnf_ulonglong unsigned long long (if implemented in compilation system)

tnf_float float

tnf_double double

tnf_string char *

tnf_opaque void *

TNF_PROBE_2(inloop, "cookie main loop","sunw%debug in the loop",
tnf_long, loop_count, i,
tnf_long, total_iterations, sum);

Tracing Program Execution With the TNF Utilities 43

1

Table 1-10 explains some of the macro definitions in cookie.c .

Example—Timing Functions

In Code Example 1-1, probe points are placed at the entry and exit of a function
to see how much time is spent in the function. The probe at the function entry
also logs the arguments to the function.

Table 1-10 TNF Macro Definitions in cookie.c

TNF_PROBE_0(A probe with no argument types

start , The name of the probe

"cookie main ", The list of groups the probe belongs to– cookie
and main (the values of the keys attribute)

"sunw%debug starting main"); User-defined attribute=sunw%debug
value=starting main (used by debug probe
function)

TNF_PROBE_2(A probe with two variables

inloop , The name of the probe

"cookie main loop" , The keys - cookie, main , and loop

"sunw%debug in the loop", Values for the debug probe function

tnf_long, The type of the first variable

loop_count, The name of the first variable (value of the
slots attribute)

i, The first variable

tnf_long, The type of the second variable

total_iterations, The name of the second variable (value of the
slots attribute)

sum); The second variable

"");

44 Programming Utilities Guide—November 1995

1

When prex encounters a probe point at run time that is enabled for tracing, it
writes a record to the trace file. Each probe point logs the time when it was
encountered and also references a tag record containing information like the
file name, line number, name, keys, and detail of the probe point. These tag
records are written only once, and are never overwritten in the trace file.

The first probe point, work_args , also logs the value of the two arguments of
the probe point (state and message).

Defining User Types for Probe Points

To trace a structure in your program, define a new type with the
TNF_DECLARE_RECORD and TNF_DEFINE_RECORD_n macros. These are parts
of a compile time interface for extending the types sent in to probe points.

Code Example 1-1 Probe Points at Entry and Exit of Function

#include <tnf/probe.h>

int
work(int state, char *message)
{
 TNF_PROBE_2(work_start, “work_module work”
 “sunw%debug in function work”,
 tnf_long, int_input, state,
 tnf_string, string_input, message);
 ...
 TNF_PROBE_0(work_end, “work_module work”, ““);
}

TNF_DECLARE_RECORD(c_type, tnf_type);

Tracing Program Execution With the TNF Utilities 45

1

Create only one TNF_DECLARE_RECORD and one TNF_DEFINE_RECORD for
each new type you define. The TNF_DECLARE_RECORD should precede the
TNF_DEFINE_RECORD. It can be in a header file that multiple source files share
if those source files need to use the tnf_type being defined. The
TNF_DEFINE_RECORD should appear in only one of the source files.

The TNF_DEFINE_RECORD macro interface defines a function as well as several
data structures. Therefore, use this interface in a source file (.c file or .cc file) at
file scope and not inside a function.

Note – Do not put a semicolon after the TNF_DEFINE_RECORD statement; it
will generate a compiler warning.

The variables are:

• c_type – the template from which the new tnf_type is created. Not all the
elements of the C struct need be provided in the TNF type being defined.
c_type must be a C struct type.

TNF_DEFINE_RECORD_1(c_type, tnf_type,
 tnf_member_type_1, tnf_member_name_1)
TNF_DEFINE_RECORD_2(c_type, tnf_type,
 tnf_member_type_1, tnf_member_name_1,
 tnf_member_type_2, tnf_member_name_2)
TNF_DEFINE_RECORD_3(c_type, tnf_type,
 tnf_member_type_1, tnf_member_name_1,
 tnf_member_type_2, tnf_member_name_2,
 tnf_member_type_3, tnf_member_name_3)
TNF_DEFINE_RECORD_4(c_type, tnf_type,
 tnf_member_type_1, tnf_member_name_1,
 tnf_member_type_2, tnf_member_name_2,
 tnf_member_type_3, tnf_member_name_3,
 tnf_member_type_4, tnf_member_name_4)
TNF_DEFINE_RECORD_5(c_type, tnf_type,
 tnf_member_type_1, tnf_member_name_1,
 tnf_member_type_2, tnf_member_name_2,
 tnf_member_type_3, tnf_member_name_3,
 tnf_member_type_4, tnf_member_name_4,
 tnf_member_type_5, tnf_member_name_5)

46 Programming Utilities Guide—November 1995

1

• tnf_type – the name given to the newly created type. This interface uses the
name space prefixed by the tnf_type . So, if a new type called xxx_type is
defined by a library, then the library should not use xxx_type as a prefix in
any other symbols it defines.

The policy on managing the type name space is the same as that for
managing any other name space in a library: prefix any new TNF types by
the unique prefix that the rest of the symbols in the library use. This
prevents name space collisions when you link multiple libraries that define
new TNF types.

For example, if a library called libpalloc.so uses the prefix pal for all
symbols it defines, then it should also use the prefix pal for all new TNF
types being defined.

• tnf_member_type_n – the TNF type of the nth provided member of the C
structure.

• tnf_member_name_n – the name of the nth provided member of the C
structure.

Examples—Defining TNF Types

Code Example 1-2 shows how a new TNF type is defined and used in a probe.

Tracing Program Execution With the TNF Utilities 47

1

Code Example 1-2 is assumed to be part of a fictitious library called
libpalloc.so that uses the prefix pal for all its symbols.

It is possible to make a tnf_type definition recursive or mutually recursive,
such as in a structure that uses the next field to point to itself (a linked list).

 When such a structure is sent in to a TNF_PROBE, then the entire linked list is
logged to the trace file (until the next field is NULL). But, when the list is
circular, it results in an infinite loop. To break the recursion, either omit the
next field from the tnf_type , or define the type of the next member as
tnf_opaque.

Code Example 1-2 Defining a new TNF type

#include <tnf/probe.h>

typedef struct pal_header {
 long size;
 char * descriptor;
 struct pal_header *next;
} pal_header_t;

TNF_DECLARE_RECORD(pal_header_t, pal_tnf_header);
TNF_DEFINE_RECORD_2(pal_header_t, pal_tnf_header,
 tnf_long, size,
 tnf_string, descriptor)

/*
 * Note: name space prefixed by pal_tnf_header should not be used
* by this client any more.
 */

void
pal_free(pal_header_t *header_p)
{
 int state;

 TNF_PROBE_2(pal_free_start, “palloc pal_free”,
 “sunw%debug entering pal_free”,
 tnf_long, state_var, state,
 pal_tnf_header, header_var, header_p);
 . . .
}

48 Programming Utilities Guide—November 1995

1

Performance Issues

Don’t place probe points in sections of code that are traversed frequently, as in
a mutex lock that is used often.

Estimate about 30 words of working set memory (10 words data and 20 words
text) for each probe and about 200ns for each disabled probe on a
SPARCStation10. You can control the performance degradation of the
application by controlling the number and placement of probes.

If you are shipping a library with probe points, it is important to run
benchmarks to ensure that the performance is still at an acceptable level.
Reduce the number of probes or change their positions to increase
performance.

/proc

dbx , truss , and prex all use /proc to control the target process. /proc
allows only one client to control a target process safely. Because of this, you
cannot run programs like dbx and prex simultaneously on the same target
program. If you try to run prex on a target while dbx or truss is running on
the same target, prex displays the message “Cannot attach to target.”

You can, however, interleave prex and dbx execution by following these steps:

1. Start prex .

2. Set up the state of the probe points.

3. Give the command quit suspend .

4. Start dbx .

5. Attach to the suspended program.

The target will not execute any code between prex and dbx .

You can also suspend the target by sending it a SIGSTOP signal and then
typing “quit resume ” to prex . If you do this, you should also send a
SIGCONT signal after invoking dbx on the stopped process (or else dbx will
hang).

Tracing Program Execution With the TNF Utilities 49

1

dlopen() and dlclose() and History

Probes in shared objects that are brought in by a dlopen(3X) are
automatically set up according to the prex command history. When a shared
object is removed by a dlclose(3X) , prex refreshes its understanding of the
probes in the target program. This implies that there is more work to do for
dlopen and dlclose , so they will take slightly longer.

If you are not interested in this feature and don’t want dlopen and dlclose
to be perturbed, detach prex from the target.

Signals

prex does not interfere with signals that are delivered directly to the target
program. However, prex receives all terminal-generated signals (such as
Control-c (SIGINT) and Control-z (SIGSTOP)) and does not forward them to
the target program.

Use the kill(1) command from a shell to signal the target program.

Failure of Event-Writing Operations

A few failure points, like system call failures, are possible when writing events
to trace files. These failures result in a failure code being set in the target
process. The target process continues normally (but no trace records are
written).

Whenever a user types Control-c to prex to get to a prex prompt, prex
checks the failure code in the target and informs the user if there was a tracing
failure.

Target Executing a fork() or exec()

If your program does a fork() , any probes that the child encounters will be
logged to the same trace file. Events are annotated with a process ID, so it is
possible to determine which process a particular event came from.

A thread in a multithreaded program doing a fork while the other threads are
still running can cause a race conditon. For the trace file to stay uncorrupted,
make sure that the other threads are quiescent when doing a fork , or else use
fork1(2) .

50 Programming Utilities Guide—November 1995

1

If the target program itself (not any children it might fork) does an exec(2) ,
prex detaches from the target and exits. The user can reconnect prex with:

$ prex -p pid

51

lex –Lexical Analysis 2

With the lex(1) software tool you can solve problems from text processing,
code enciphering, compiler writing, and other areas. In text processing, you
might check the spelling of words for errors; in code enciphering, you might
translate certain patterns of characters into others; and in compiler writing,
you might determine what the tokens (smallest meaningful sequences of
characters) are in the program to be compiled.

The task common to all these problems is lexical analysis: recognizing different
strings of characters that satisfy certain characteristics. Hence the name lex .
You don’t have to use lex to handle problems of this kind. You could write
programs in a standard language like C to handle them, too. In fact, what lex
does is produce such C programs. (lex is therefore called a program
generator.)

What lex offers you is typically a faster, easier way to create programs that
perform these tasks. Its weakness is that it often produces C programs that are
longer than necessary for the task at hand and that execute more slowly than
they otherwise might. In many applications this is a minor consideration, and
the advantages of using lex considerably outweigh it.

52 Programming Utilities Guide—November 1995

2

lex can also be used to collect statistical data on features of an input text, such
as character count, word length, number of occurrences of a word, and so
forth. In the remaining sections of this chapter, you will see the following:

• Generating a lexical analyzer program

• Writing lex source

• Translating lex source

• Using lex with yacc

Internationalization

For information about using lex to develop applications in languages other
than English, see lex (1).

Generating a Lexical Analyzer Program
lex generates a C-language scanner from a source specification that you write.
This specification contains a list of rules indicating sequences of characters —
expressions — to be searched for in an input text, and the actions to take when
an expression is found. To see how to write a lex specification see the section
“Writing lex Source” on page 54.

The C source code for the lexical analyzer is generated when you enter

where lex.l is the file containing your lex specification. (The name lex.l is
conventionally the favorite, but you can use whatever name you want. Keep in
mind, though, that the .l suffix is a convention recognized by other system
tools, make in particular.) The source code is written to an output file called
lex.yy.c by default. That file contains the definition of a function called
yylex() that returns 1 whenever an expression you have specified is found in
the input text, 0 when end of file is encountered. Each call to yylex() parses
one token (assuming a return); when yylex() is called again, it picks up
where it left off.

Note that running lex on a specification that is spread across several files, as
in the following example, produces one lex.yy.c :

$ lex lex.l

$ lex lex1.l lex2.l lex3.l

lex–Lexical Analysis 53

2

Invoking lex with the –t option causes it to write its output to stdout rather
than lex.yy.c , so that it can be redirected:

Options to lex must appear between the command name and the filename
argument.

The lexical analyzer code stored in lex.yy.c (or the .c file to which it was
redirected) must be compiled to generate the executable object program, or
scanner, that performs the lexical analysis of an input text.

The lex library supplies a default main() that calls the function yylex() , so
you need not supply your own main() . The library is accessed by invoking
the –ll option to cc :

Alternatively, you might want to write your own driver. The following is
similar to the library version:

For more information about the function yywrap , see the Writing lex Source
section . Note that when your driver file is compiled with lex.yy.c , as in the
following example, its main() will call yylex() at run time exactly as if the
lex library had been loaded:

$ lex –t lex.l > lex.c

$ cc lex.yy.c –ll

extern int yylex();

int yywrap()
{

return(1);
}

main()
{

while (yylex())
;

}

$ cc lex.yy.c driver.c

54 Programming Utilities Guide—November 1995

2

The resulting executable file reads stdin and writes its output to stdout .
Figure 2-1 shows how lex works.

Figure 2-1 Creation and Use of a Lexical Analyzer with lex

Writing lex Source
lex source consists of at most three sections: definitions, rules, and user-
defined routines. The rules section is mandatory. Sections for definitions and
user routines are optional, but must appear in the indicated order if present:

The Fundamentals of lex Rules

The mandatory rules section opens with the delimiter %%. If a routines section
follows, another %% delimiter ends the rules section. The %% delimiters must be
entered at the beginning of a line, that is, without leading blanks. If there is no
second delimiter, the rules section is presumed to continue to the end of the
program.

definitions
%%
rules
%%
user routines

lex
source

lexical
analyzer

code
lex

C
compiler

input
text

lexical
analyzer
program

output:
tokens,

text,
etc.

lex–Lexical Analysis 55

2

Lines in the rules section that begin with white space and that appear before
the first rule are copied to the beginning of the function yylex() , immediately
after the first brace. You might use this feature to declare local variables for
yylex() .

Each rule specifies the pattern sought and the actions to take on finding it. The
pattern specification must be entered at the beginning of a line. The scanner
writes input that does not match a pattern directly to the output file. So the
simplest lexical analyzer program is just the beginning rules delimiter, %%. It
writes out the entire input to the output with no changes at all.

Regular Expressions

You specify the patterns you are interested in with a notation called a regular
expression. A regular expression is formed by stringing together characters
with or without operators. The simplest regular expressions are strings of text
characters with no operators at all:

These three regular expressions match any occurrences of those character
strings in an input text. To have the scanner remove every occurrence of
orange from the input text, you could specify the rule

Because you specified a null action on the right with the semicolon, the scanner
does nothing but print the original input text with every occurrence of this
regular expression removed, that is, without any occurrence of the string
orange at all.

Operators

Unlike orange above, most expressions cannot be specified so easily. The
expression itself might be too long, or, more commonly, the class of desired
expressions is too large; it might, in fact, be infinite.

apple
orange
pluto

orange ;

56 Programming Utilities Guide—November 1995

2

Using operators — summarized in Table 2-1 on page 58 — you can form
regular expressions for any expression of a certain class. The + operator, for
instance, means one or more occurrences of the preceding expression, the ?
means 0 or 1 occurrences of the preceding expression (which is equivalent to
saying that the preceding expression is optional), and the * means 0 or more
occurrences of the preceding expression. So m+ is a regular expression that
matches any string of ms:

and 7* is a regular expression that matches any string of zero or more 7s:

The empty third line matches because it has no 7s in it at all.

The | operator indicates alternation, so that ab|cd matches either ab or cd .
The operators {} specify repetition, so that a{1,5} looks for 1 to 5
occurrences of a, and A(B{1,4}) matches ABC, ABBC, ABBBC, and ABBBBC
(notice the use of parentheses, (), as grouping symbols).

Brackets, [] , indicate any one character from the string of characters specified
between the brackets. Thus, [dgka] matches a single d, g, k , or a.

Note that the characters between brackets must be adjacent, without spaces or
punctuation.

The ^ operator, when it appears as the first character after the left bracket,
indicates all characters in the standard set except those specified between the
brackets. (Note that | , {} , and ^ may serve other purposes as well.)

Ranges within a standard alphabetic or numeric order (A through Z, a through
z , 0 through 9) are specified with a hyphen. [a-z] , for instance, indicates any
lowercase letter.

This is a regular expression that matches any letter (whether upper or
lowercase), any digit, an asterisk, an ampersand, or a #.

mmm
m
mmmmm

77
77777

777

[A-Za-z0-9*&#]

lex–Lexical Analysis 57

2

Given the following input text, the lexical analyzer with the previous
specification in one of its rules will recognize * , &, r , and #, perform on each
recognition whatever action the rule specifies (we have not indicated an action
here), and print the rest of the text as it stands:

To include the hyphen character in the class, have it appear as the first or last
character in the brackets: [-A-Z] or [A-Z-] .

The operators become especially powerful in combination. For example, the
regular expression to recognize an identifier in many programming languages
is:

An identifier in these languages is defined to be a letter followed by zero or
more letters or digits, and that is just what the regular expression says. The
first pair of brackets matches any letter. The second, if it were not followed by
a * , would match any digit or letter.

The two pairs of brackets with their enclosed characters would then match any
letter followed by a digit or a letter. But with the * , the example matches any
letter followed by any number of letters or digits. In particular, it would
recognize the following as identifiers:

Note that it would not recognize the following as identifiers because
not_idenTIFIER has an embedded underscore; 5times starts with a digit,
not a letter; and $hello starts with a special character:

$$$$?? ????!!!*$$ $$$$$$&+====r~~# ((

[a-zA-Z][0-9a-zA-Z]*

e
not
idenTIFIER
pH
EngineNo99
R2D2

not_idenTIFIER
5times
$hello

58 Programming Utilities Guide—November 1995

2

A potential problem with operator characters is how to specify them as
characters to look for in a search pattern. The previous example, for instance,
will not recognize text with a * in it. lex solves the problem in one of two
ways: an operator character preceded by a backslash, or characters (except
backslash) enclosed in double quotation marks, are taken literally, that is, as
part of the text to be searched for.

To use the backslash method to recognize, say, a * followed by any number of
digits, you can use the pattern:

To recognize a \ itself, we need two backslashes: \\ . Similarly, "x*x"
matches x*x , and "y\"z" matches y"z . Other lex operators are noted as they
arise; see Table 1-1:

[1-9]

Table 2-1 lex Operators

Expression Description

\ x x, if x is a lex operator

" xy" xy, even if x or y is a lex operator (except \)

[xy] x or y

[x- z] x, y, or z

[^ x] any character but x

. any character but newline

^x x at the beginning of a line

<y>x x when lex is in start condition y

x$ x at the end of a line

x? optional x

x* 0, 1, 2, ... instances of x

x+ 1, 2, 3, ... instances of x

x{ m, n} m through n occurrences of x

lex–Lexical Analysis 59

2

Actions

Once the scanner recognizes a string matching the regular expression at the
start of a rule, it looks to the right of the rule for the action to be performed.
You supply the actions.

Kinds of actions include recording the token type found and its value, if any;
replacing one token with another; and counting the number of instances of a
token or token type. You write these actions as program fragments in C.

An action can consist of as many statements as are needed. You might want to
change the text in some way or print a message noting that the text has been
found. So, to recognize the expression Amelia Earhart and to note such
recognition, apply the rule

To replace lengthy medical terms in a text with their equivalent acronyms, a
rule such as the following would work:

To count the lines in a text, you recognize the ends of lines and increment a line
counter.

lex uses the standard C escape sequences, including \n for newline. So, to
count lines you might have the following syntax, where lineno , like other C
variables, is declared in the Definitions section.

xx| yy either xx or yy

x | the action on x is the action for the next rule

(x) x

x/ y x but only if followed by y

{ xx} the translation of xx from the definitions section

"Amelia Earhart" printf("found Amelia");

Electroencephalogram printf("EEG");

\n lineno++;

Table 2-1 lex Operators

Expression Description

60 Programming Utilities Guide—November 1995

2

Input is ignored when the C language null statement, a colon (;), is specified.
So the following rule causes blanks, tabs, and new-lines to be ignored:

Note that the alternation operator | can also be used to indicate that the action
for a rule is the action for the next rule. The previous example could have been
written with the same result:

The scanner stores text that matches an expression in a character array called
yytext[] . You can print or manipulate the contents of this array as you like.
In fact, lex provides a macro called ECHO that is equivalent to printf
("%s", yytext) .

When your action consists of a long C statement, or two or more C statements,
you might write it on several lines. To inform lex that the action is for one rule
only, enclose the C code in braces.

For example, to count the total number of all digit strings in an input text, print
the running total of the number of digit strings, and print out each one as soon
as it is found, your lex code might be:

This specification matches digit strings whether or not they are preceded by a
plus sign because the ? indicates that the preceding plus sign is optional. In
addition, it catches negative digit strings because that portion following the
minus sign matches the specification.

[\t\n] ;

" " |
\t |
\n ;

\+?[1-9]+ { digstrngcount++;
printf("%d",digstrngcount);
printf("%s", yytext); }

lex–Lexical Analysis 61

2

 Advanced lex Features

You can process input text riddled with complicated patterns by using a suite
of features provided bylex . These include rules that decide which
specification is relevant when more than one seems so at first; functions that
transform one matching pattern into another; and the use of definitions and
subroutines.

Here is an example that draws together several of the points already covered:

The first three rules recognize negative integers, positive integers, and negative
fractions between 0 and –1. The terminating + in each specification ensures that
one or more digits compose the number in question.

Each of the next three rules recognizes a specific pattern:

• The specification for railroad matches cases where one or more blanks
intervene between the two syllables of the word. In the cases of railroad
and crook , synonyms could have been printed rather than the messages.

• The rule recognizing a function increments a counter.

The last rule illustrates several points:
• The braces specify an action sequence that extends over several lines.
• The action uses the lex array yytext[] , which stores the recognized

character string.
• The specification uses the * to indicate that zero or more letters can follow

the G.

%%
–[0-9]+ printf("negative integer");
\+?[0-9]+ printf("positive integer");
–0.[0-9]+ printf("negative fraction, no whole number
part");
rail[\t]+road printf("railroad is one word");
crook printf("Here’s a crook");
function subprogcount++;
G[a-zA-Z]* { printf("may have a G word here:%s", yytext);

Gstringcount++; }

62 Programming Utilities Guide—November 1995

2

Some Special Features

Besides storing the matched input text in yytext[] , the scanner automatically
counts the number of characters in a match and stores it in the variable
yyleng . You can use this variable to refer to any specific character just placed
in the array yytext[] .

Remember that C language array indexes start with 0, so to print the third digit
(if there is one) in a just-recognized integer, you might enter

lex follows a number of high-level rules to resolve ambiguities that might
arise from the set of rules that you write. In the following lexical analyzer
example, the ‘‘reserved word’’ end could match the second rule as well as the
eighth, the one for identifiers:

lex follows the rule that, where there is a match with two or more rules in a
specification, the first rule is the one whose action is executed. Placing the rule
for end and the other reserved words before the rule for identifiers ensures
that the reserved words are recognized.

[1-9]+ {if (yyleng > 2)
printf("%c", yytext[2]); }

begin return(BEGIN);
end return(END);
while return(WHILE);
if return(IF);
package return(PACKAGE);
reverse return(REVERSE);
loop return(LOOP);
[a-zA-Z][a-zA-Z0-9]* { tokval = put_in_tabl();

return(IDENTIFIER); }
[0-9]+ { tokval = put_in_tabl();

return(INTEGER); }
\+ { tokval = PLUS;

return(ARITHOP); }
\– { tokval = MINUS;

return(ARITHOP); }
> { tokval = GREATER;

return(RELOP); }
>= { tokval = GREATEREQL;

return(RELOP); }

lex–Lexical Analysis 63

2

Another potential problem arises from cases where one pattern you are
searching for is the prefix of another. For instance, the last two rules in the
lexical analyzer example above are designed to recognize > and >=.

lex follows the rule that it matches the longest character string possible and
executes the rule for that string. If the text has the string >= at some point, the
scanner recognizes the >= and acts accordingly, instead of stopping at the >
and executing the > rule. This rule also distinguishes + from ++ in a C
program.

When the analyzer must read characters beyond the string you are seeking, use
trailing context. The classic example is the DO statement in FORTRAN. In the
following DO statement, the first 1 looks like the initial value of the index k
until the first comma is read:

Until then, this looks like the assignment statement:

Remember that FORTRAN ignores all blanks. Use the slash, / , to signify that
what follows is trailing context, something not to be stored in yytext[] ,
because the slash is not part of the pattern itself.

So the rule to recognize the FORTRAN DO statement could be:

While different versions of FORTRAN limit the identifier size, here the index
name, this rule simplifies the example by accepting an index name of any
length.

See the Start Conditions section for a discussion of a similar handling of prior
context.

lex uses the $ symbol as an operator to mark a special trailing context — the
end of a line. An example would be a rule to ignore all blanks and tabs at the
end of a line:

DO 50 k = 1 , 20, 1

DO50k = 1

DO/([]*[0-9]+[]*[a-zA-Z0-9]+=[a-zA-Z0-9]+,) {
printf("found DO");
}

[\t]+$;

64 Programming Utilities Guide—November 1995

2

The previous example could also be written as:

To match a pattern only when it starts a line or a file, use the ^ operator.
Suppose a text-formatting program requires that you not start a line with a
blank. You could check input to the program with the following rule:

Note the difference in meaning when the ^ operator appears inside the left
bracket.

lex Routines

Three macros allow you to perform special actions.
• input () reads another character
• unput () puts a character back to be read again a moment later
• output () writes a character on an output device

One way to ignore all characters between two special characters, such as
between a pair of double quotation marks, is to use input() like this:

After the first double quotation mark, the scanner reads all subsequent
characters, and does not look for a match, until it reads the second double
quotation mark. (See the further examples of input() and unput(c) usage in
the User Routines section.)

For special I/O needs that are not covered by these default macros, such as
writing to several files, use standard I/O routines in C to rewrite the macro
functions.

Note, however, that these routines must be modified consistently. In particular,
the character set used must be consistent in all routines, and a value of 0
returned by input() must mean end of file. The relationship between
input() and unput(c) must be maintained or the lex lookahead will not
work.

[\t]+/\n ;

^[] printf("error: remove leading blank");

\" while (input() != ’"’);

lex–Lexical Analysis 65

2

If you do provide your own input() , output(c) , or unput(c) , write a
#undef input and so on in your definitions section first:

Your new routines will replace the standard ones. See the Definitions section
for further details.

A lex library routine that you can redefine is yywrap() , which is called
whenever the scanner reaches the end of file. If yywrap() returns 1, the
scanner continues with normal wrapup on the end of input. To arrange for
more input to arrive from a new source, redefine yywrap() to return 0 when
more processing is required. The default yywrap() always returns 1.

Note that it is not possible to write a normal rule that recognizes end of file; the
only access to that condition is through yywrap() . Unless a private version of
input() is supplied, a file containing nulls cannot be handled because a value
of 0 returned by input() is taken to be end of file.

lex routines that let you handle sequences of characters to be processed in
more than one way include yymore() , yyless(n) , and REJECT. Recall that
the text that matches a given specification is stored in the array yytext[] . In
general, once the action is performed for the specification, the characters in
yytext[] are overwritten with succeeding characters in the input stream to
form the next match.

The function yymore() , by contrast, ensures that the succeeding characters
recognized are appended to those already in yytext[] . This lets you do
things sequentially, such as when one string of characters is significant and a
longer one that includes the first is significant as well.

#undef input
#undef output
 .
 .
 .
#define input() ... etc.
more declarations
 .
 .
 .

66 Programming Utilities Guide—November 1995

2

Consider a language that defines a string as a set of characters between double
quotation marks and specifies that to include a double quotation mark in a
string, it must be preceded by a backslash. The regular expression matching
that is somewhat confusing, so it might be preferable to write:

When faced with the string "abc\"def" , the scanner first matches the
characters "abc\ . Then the call to yymore() causes the next part of the string
"def to be tacked on the end. The double quotation mark terminating the
string is picked up in the code labeled ‘‘normal processing.’’

With the function yyless(n) you can specify the number of matched
characters on which an action is to be performed: only the first n characters of
the expression are retained in yytext[] . Subsequent processing resumes at
the nth + 1 character.

Suppose you are deciphering code, and working with only half the characters
in a sequence that ends with a certain one, say upper or lowercase Z. You could
write:

Finally, with the REJECT function, you can more easily process strings of
characters even when they overlap or contain one another as parts. REJECT
does this by immediately jumping to the next rule and its specification without
changing the contents of yytext[] . To count the number of occurrences both
of the regular expression snapdragon and of its subexpression dragon in an
input text, the following works:

\"[^"]* {
if (yytext[yyleng–2] == ’\\’)

yymore();
else

... normal processing
}

[a-yA-Y]+[Zz] { yyless(yyleng/2);
... process first half of string ... }

snapdragon {countflowers++; REJECT;}
dragon countmonsters++;

lex–Lexical Analysis 67

2

As an example of one pattern overlapping another, the following counts the
number of occurrences of the expressions comedian and diana , even where
the input text has sequences such as comediana.. :

Note that the actions here can be considerably more complicated than
incrementing a counter. In all cases, you declare the counters and other
necessary variables in the definitions section at the beginning of the lex
specification.

Definitions

The lex definitions section can contain any of several classes of items. The
most critical are external definitions, preprocessor statements like #include ,
and abbreviations. For legal lex source this section is optional, but in most
cases some of these items are necessary. Preprocessor statements and C source
code appear between a line of the form %{ and one of the form %}.

All lines between these delimiters — including those that begin with white
space — are copied to lex.yy.c immediately before the definition of
yylex() . (Lines in the definition section that are not enclosed by the
delimiters are copied to the same place provided they begin with white space.)

The definitions section is where you usually place C definitions of objects
accessed by actions in the rules section or by routines with external linkage.

For example, when using lex with yacc , which generates parsers that call a
lexical analyzer, include the file y.tab.h , which can contain #define s for
token names:

After the %} that ends your #include ’s and declarations, place your
abbreviations for regular expressions in the rules section. The abbreviation
appears on the left of the line and, separated by one or more spaces, its
definition or translation appears on the right.

comedian {comiccount++; REJECT;}
diana princesscount++;

%{
#include "y.tab.h"
extern int tokval;
int lineno;
%}

68 Programming Utilities Guide—November 1995

2

When you later use abbreviations in your rules, be sure to enclose them within
braces. Abbreviations avoid repetition in writing your specifications and make
them easier to read.

As an example, reconsider the lex source reviewed in the section Advanced
lex Features. Using definitions simplifies later reference to digits, letters, and
blanks.

This is especially true when the specifications appear several times:

Start Conditions

Start conditions provide greater sensitivity to prior context than is afforded by
the ^ operator alone. You might want to apply different rules to an expression
depending on a prior context that is more complex than the end of a line or the
start of a file.

In this situation you could set a flag to mark the change in context that is the
condition for the application of a rule, then write code to test the flag.
Alternatively, you could define for lex the different ‘‘start conditions’’ under
which it is to apply each rule.

Consider this problem:

• Copy the input to the output, except change the word magic to the word
first on every line that begins with the letter a

• Change magic to second on every line that begins with b

• Change magic to third on every line that begins with c . Here is how the
problem might be handled with a flag.

D [0-9]
L [a-zA-Z]
B [\t]+
%%
–{D}+ printf("negative integer");
\+?{D}+ printf("positive integer");
–0.{D}+ printf("negative fraction");
G{L}* printf("may have a G word here");
rail{B}road printf("railroad is one word");
crook printf("criminal");
. .
. .

lex–Lexical Analysis 69

2

Recall that ECHO is a lex macro equivalent to printf("%s", yytext) :

To handle the same problem with start conditions, each start condition must be
introduced to lex in the definitions section with a line, such as the following
one, where the conditions can be named in any order:

The word Start can be abbreviated to S or s . The conditions are referenced at
the head of a rule with <> brackets. So the following is a rule that is recognized
only when the scanner is in start condition name1:

To enter a start condition, execute the action following statement:

The above statement changes the start condition to name1. To resume the
normal state, use the following:

This resets the initial condition of the scanner.

int flag
%%
^a {flag = ’a’; ECHO;}
^b {flag = ’b’; ECHO;}
^c {flag = ’c’; ECHO;}
\n {flag = 0; ECHO;}
magic {
switch (flag)

{
case ’a’: printf("first"); break;
case ’b’: printf("second"); break;
case ’c’: printf("third"); break;
default: ECHO; break;

}
}

%Start name1 name2 ...

<name1>expression

BEGIN name1;

BEGIN 0;

70 Programming Utilities Guide—November 1995

2

A rule can be active in several start conditions. For example, the following is a
legal prefix:

Any rule not beginning with the <> prefix operators is always active.

The example can be written with start conditions as follows:

User Routines

You can use your lex routines in the same ways you use routines in other
programming languages. Action code used for several rules can be written
once and called when needed. As with definitions, this simplifies program
writing and reading.

The put_in_tabl() function, discussed in the Using lex and yacc Together
section, fits well in the user routines section of a lex specification.

<name1, name2, name3>

%Start AA BB CC
%%
^a {ECHO; BEGIN AA;}
^b {ECHO; BEGIN BB;}
^c {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}
<AA>magic printf("first");
<BB>magic printf("second");
<CC>magic printf("third");

lex–Lexical Analysis 71

2

Another reason to place a routine in this section is to highlight some code of
interest or to simplify the rules section, even if the code is to be used for one
rule only. As an example, consider the following routine to ignore comments in
a language like C where comments occur between /* and */ :

There are three points of interest in this example.

• First, the unput(c) macro puts back the last character that was read to
avoid missing the final / if the comment ends unusually with a **/ .

In this case, after the scanner reads a * it finds that the next character is not
the terminal / and it continues reading.

• Second, the expression yytext[yyleng–1] picks the last character read.

• Third, this routine assumes that the comments are not nested, as is the case
with the C language.

%{
static skipcmnts();
%}
%%
"/*" skipcmnts();
.
. /* rest of rules */
%%
static
skipcmnts()
{

for(;;)
{

while (input() != ’*’)
;

if (input() != ’/’)
unput(yytext[yyleng–1])

else return;
}

}

72 Programming Utilities Guide—November 1995

2

C++ Mangled Symbols
If the function name is a C++ mangled symbol, lex will print its demangled
format. All mangled C++ symbols are bracketed by [] following the
demangled symbol. For regular mangled C++ function names (including
member and non-member functions), the function prototype is used as its
demangled format.

For example,

_ct_13Iostream_initFv

is printed as:

Iostream_init::Iostream_init()

C++ static constructors and destructors are demangled and printed in the
following format:

static constructor function for

or

static destructor function for

For example,

_std_stream_in_c_Fv

is demangled as

static destructor function for _stream_in_c

For C++ virtual table symbols, its mangled name takes the following format:

vtbl class

vtbl root_class_derived_class

In the lex output, the demangled names for the virtual table symbols are
printed as

virtual table for class

virtual table for class derived_class derived from root_class

For example, the demangled format of

_vtbl_7fstream

is

virtual table for fstreamH

lex–Lexical Analysis 73

2

And the demangled format of

_vtbl_3ios_18ostream_withassign

is

virtual table for class ostream_withassign derived from ios

Some C++ symbols are pointers to the virtual tables; their mangled names take
the following format:

ptbl class_filename

ptbl root_class_derived_class_filename

In the lex output, the demangled names for these symbols are printed as:

pointer to virtual table for class in filename

pointer to virtual table for class derived class derived from
root_class in filename

For example, the demangled format of

_ptbl_3ios_stream_fstream_c

is

pointer to the virtual table for ios in _stream_fstream_c

and the demangled format of

_ptbl_3ios_11fstreambase_stream_fstream_c

is

_stream_fstream_c

pointer to the virtual table for class fstreambase derived
from ios in _stream_fstream_c

Using lex and yacc Together
If you work on a compiler project or develop a program to check the validity of
an input language, you might want to use the system tool yacc (Chapter 3,
“yacc — A Compiler Compiler). yacc generates parsers, programs that
analyze input to insure that it is syntactically correct.

lex and yacc often work well together for developing compilers.

74 Programming Utilities Guide—November 1995

2

As noted, a program uses the lex -generated scanner by repeatedly calling the
function yylex() . This name is convenient because a yacc -generated parser
calls its lexical analyzer with this name.

To use lex to create the lexical analyzer for a compiler, end each lex action
with the statement return token , where token is a defined term with an
integer value.

The integer value of the token returned indicates to the parser what the lexical
analyzer has found. The parser, called yyparse() by yacc , then resumes
control and makes another call to the lexical analyzer to get another token.

In a compiler, the different values of the token indicate what, if any, reserved
word of the language has been found or whether an identifier, constant,
arithmetic operator, or relational operator has been found. In the latter cases,
the analyzer must also specify the exact value of the token: what the identifier
is, whether the constant is, say, 9 or 888 , whether the operator is + or * , and
whether the relational operator is = or >.

Consider the following portion of lex source for a scanner that recognizes
tokens in a "C-like" language:

Figure 2-2 Sample lex Source Recognizing Tokens

begin return(BEGIN);
end return(END);
while return(WHILE);
if return(IF);
package return(PACKAGE);
reverse return(REVERSE);
loop return(LOOP);
[a-zA-Z][a-zA-Z0-9]* { tokval = put_in_tabl();

return(IDENTIFIER); }
[0-9]+ { tokval = put_in_tabl();

return(INTEGER); }
\+ { tokval = PLUS;

return(ARITHOP); }
\– { tokval = MINUS;

return(ARITHOP); }
> { tokval = GREATER;

return(RELOP); }
>= { tokval = GREATEREQL;

return(RELOP); }

lex–Lexical Analysis 75

2

The tokens returned, and the values assigned to tokval , are integers. Good
programming style suggests using informative terms such as BEGIN, END, and
WHILE, to signify the integers the parser understands, rather than using the
integers themselves.

You establish the association by using #define statements in your C parser
calling routine. For example:

Then, to change the integer for some token type, change the #define
statement in the parser rather than change every occurrence of the particular
integer.

To use yacc to generate your parser, insert the following statement in the
definitions section of your lex source:

The file y.tab.h , which is created when yacc is invoked with the –d option,
provides #define statements that associate token names such as BEGIN and
END with the integers of significance to the generated parser.

To indicate the reserved words in Figure 2-2, the returned integer values
suffice. For the other token types, the integer value is stored in the variable
tokval .

This variable is globally defined so that the parser and the lexical analyzer can
access it. yacc provides the variable yylval for the same purpose.

Note that Figure 2-2 shows two ways to assign a value to tokval .

• First, a function put_in_tabl() places the name and type of the identifier
or constant in a symbol table so that the compiler can refer to it.

More to the present point, put_in_tabl() assigns a type value to tokval
so that the parser can use the information immediately to determine the
syntactic correctness of the input text. The function put_in_tabl() is a
routine that the compiler writer might place in the user routines section of
the parser.

#define BEGIN 1
#define END 2

.
#define PLUS 7

.

#include "y.tab.h"

76 Programming Utilities Guide—November 1995

2

• Second, in the last few actions of the example, tokval is assigned a specific
integer indicating which arithmetic or relational operator the scanner
recognized.

If the variable PLUS, for instance, is associated with the integer 7 by means
of the #define statement above, then when a + is recognized, the action
assigns to tokval the value 7, which indicates the +.

The scanner indicates the general class of operator by the value it returns to
the parser (that is, the integer signified by ARITHOP or RELOP).

When using lex with yacc , either can be run first. The following command
generates a parser in the file y.tab.c :

As noted, the –d option creates the file y.tab.h , which contains the #define
statements that associate the yacc -assigned integer token values with the user-
defined token names. Now you can invoke lex with the following command:

You can then compile and link the output files with the command:

Note that the yacc library is loaded with the –ly option before the lex library
with the –ll option to insure that the supplied main() calls the yacc parser.

Also, to use yacc with CC, especially when routines like yyback() ,
yywrap() , and yylook() in .l files are to be extern C functions, the
command line must include the following.

$ yacc –d grammar.y

$ lex lex.l

$ cc lex.yy.c y.tab.c –ly –ll

$ CC -D__EXTERN_C__ ... filename

lex–Lexical Analysis 77

2

Automaton
Recognition of expressions in an input text is performed by a deterministic
finite automaton generated by lex . The –v option prints a small set of
statistics describing the finite automaton. (For a detailed account of finite
automata and their importance for lex , see the Aho, Sethi, and Ullman text,
Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986.)

lex uses a table to represent its finite automaton. The maximum number of
states that the finite automaton allows is set by default to 500. If your lex
source has many rules or the rules are very complex, you can enlarge the
default value by placing another entry in the definitions section of your lex
source:

This entry tells lex to make the table large enough to handle as many as 700
states. (The –v option indicates how large a number you should choose.)

To increase the maximum number of state transitions beyond 2000, the
designated parameter is a:

Finally, see lex (1) for a list of all the options available with the lex command.

Summary of Source Format
The general form of a lex source file is:

The definitions section contains any combination of:

• Definitions of abbreviations in the form:

name space translation

%n 700

%a 2800

definitions
%%
rules
%%
user routines

78 Programming Utilities Guide—November 1995

2

• Included code in the form:

• Start conditions in the form:

• Changes to internal array sizes in the form:

where nnn is a decimal integer representing an array size and x selects the
parameter.

Changes to internal array sizes could be represented as follows:

Lines in the rules section have the form:

expressionaction

where the action can be continued on succeeding lines by using braces to mark
it.

The lex operator characters are:

%{
C code
%}

Start name1 name2 ...

%x nnn

Table 2-2 Internal Array Sizes

p Positions

n States

e Tree nodes

a Transitions

k Packed character classes

o Output array size

" \ [] ^ - ? . * | () $ / {} <> +

lex–Lexical Analysis 79

2

Important lex variables, functions, and macros are:

Table 2-3 lex Variables, Functions, and Macros

yytext[] array of char

yyleng int

yylex() function

yywrap() function

yymore() function

yyless(n) function

REJECT macro

ECHO macro

input() macro

unput(c) macro

output(c) macro

80 Programming Utilities Guide—November 1995

2

81

yacc — A Compiler Compiler 3

yacc (yet another compiler compiler) provides a general tool for imposing
structure on the input to a computer program. Before using yacc , you prepare
a specification that includes:

• a set of rules to describe the elements of the input;

• code to be invoked when a rule is recognized;

• either a definition or declaration of a low-level scanner to examine the
input.

yacc then turns the specification into a C-language function that examines the
input stream. This function, called a parser, works by calling the low-level
scanner.

 The scanner, called a lexical analyzer, picks up items from the input stream.
The selected items are known as tokens. Tokens are compared to the input
construct rules, called grammar rules.

When one of the rules is recognized, the code you have supplied for the rule is
invoked. This code is called an action. Actions are fragments of C-language
code. They can return values and use values returned by other actions.

The heart of the yacc specification is the collection of grammar rules. Each
rule describes a construct and gives it a name. For example, one grammar rule
might be:

date: month_name day ’,’ year ;

82 Programming Utilities Guide—November 1995

3

where date , month_name , day , and year represent constructs of interest;
presumably, month_name , day , and year are defined in greater detail
elsewhere.

In the example, the comma is enclosed in single quotes. This means that the
comma is to appear literally in the input. The colon and semicolon are
punctuation in the rule and have no significance in evaluating the input. With
proper definitions, the input:

might be matched by the rule.

The lexical analyzer is an important part of the parsing function. This user-
supplied routine reads the input stream, recognizes the lower-level constructs,
and communicates these as tokens to the parser. The lexical analyzer
recognizes constructs of the input stream as terminal symbols; the parser
recognizes constructs as nonterminal symbols. To avoid confusion, refer to
terminal symbols as tokens.

There is considerable leeway in deciding whether to recognize constructs using
the lexical analyzer or grammar rules. For example, the rules:

might be used in the above example. While the lexical analyzer only needs to
recognize individual letters, such low-level rules tend to waste time and space
and may complicate the specification beyond the ability of yacc to deal with
it.

Usually, the lexical analyzer recognizes the month names and returns an
indication that a month_name is seen. In this case, month_name is a token and
the detailed rules are not needed.

Literal characters such as a comma must also be passed through the lexical
analyzer and are also considered tokens.

July 4, 1776

month_name : ’J’ ’a’ ’n’ ;
month_name : ’F’ ’e’ ’b’ ;
...
month_name : ’D’ ’e’ ’c’ ;

yacc — A Compiler Compiler 83

3

Specification files are very flexible. It is relatively easy to add to the previous
example the rule:

allowing:

as a synonym for:

on input. In most cases, this new rule could be slipped into a working system
with minimal effort and little danger of disrupting existing input.

The input being read may not conform to the specifications. With a left-to-right
scan, input errors are detected as early as is theoretically possible. Thus, not
only is the chance of reading and computing with bad input data substantially
reduced, but the bad data usually can be found quickly.

Error handling, provided as part of the input specifications, permits the reentry
of bad data or the continuation of the input process after skipping over the bad
data. In some cases, yacc fails to produce a parser when given a set of
specifications.

For example, the specifications may be self-contradictory, or they may require a
more powerful recognition mechanism than that available to yacc .

The former cases represent design errors; the latter cases often can be corrected
by making the lexical analyzer more powerful or by rewriting some of the
grammar rules.

While yacc cannot handle all possible specifications, its power compares
favorably with similar systems. Moreover, the constructs that are difficult for
yacc to handle are also frequently difficult for human beings to handle. Some
users have reported that the discipline of formulating valid yacc specifications
for their input revealed errors of conception or design early in program
development.

The remainder of this chapter describes the following subjects:

• basic process of preparing a yacc specification

• parser operation

date : month ’/’ day ’/’ year ;

7/4/1776

July 4, 1776

84 Programming Utilities Guide—November 1995

3

• handling ambiguities

• handling operator precedences in arithmetic expressions

• error detection and recovery

• the operating environment and special features of the parsers yacc
produces

• suggestions to improve the style and efficiency of the specifications

• advanced topics

In addition, there are two examples and a summary of the yacc input syntax.

Internationalization

To use yacc in the development of applications in languages other than
English, see yacc (1) for further information.

Basic Specifications
Names refer to either tokens or nonterminal symbols. yacc requires token
names to be declared as such. While the lexical analyzer may be included as
part of the specification file, it is perhaps more in keeping with modular design
to keep it as a separate file. Like the lexical analyzer, other subroutines may be
included as well.

Thus, every specification file theoretically consists of three sections: the
declarations, (grammar) rules, and subroutines. The sections are separated by
double percent signs (%%; the percent sign is generally used in yacc
specifications as an escape character).

When all sections are used, a full specification file looks like:

declarations
%%
rules
%%
subroutines

yacc — A Compiler Compiler 85

3

The declarations and subroutines sections are optional. The smallest legal yacc
specification might be:

Blanks, tabs, and newlines are ignored, but they may not appear in names or
multicharacter reserved symbols. Comments may appear wherever a name is
legal. They are enclosed in /* and */ , as in the C language.

The rules section is made up of one or more grammar rules. A grammar rule
has the form:

where A represents a nonterminal symbol, and BODY represents a sequence of
zero or more names and literals. The colon and the semicolon are yacc
punctuation.

Names may be of any length and may be made up of letters, periods,
underscores, and digits although a digit may not be the first character of a
name. Uppercase and lowercase letters are distinct. The names used in the
body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes. As in the C language,
the backslash is an escape character within literals. yacc recognizes all C
language escape sequences. For a number of technical reasons, the null
character should never be used in grammar rules.

If there are several grammar rules with the same left-hand side, the vertical bar
can be used to avoid rewriting the left-hand side. In addition, the semicolon at
the end of a rule is dropped before a vertical bar.

Thus the grammar rules:

%%
S:;

A: BODY ;

A : B C D ;
A : E F ;
A : G ;

86 Programming Utilities Guide—November 1995

3

can be given to yacc as:

by using the vertical bar. It is not necessary that all grammar rules with the
same left side appear together in the grammar rules section although it makes
the input more readable and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated by:

The blank space following the colon is understood by yacc to be a
nonterminal symbol named epsilon .

Names representing tokens must be declared. This is most simply done by
writing:

and so on in the declarations section. Every name not defined in the
declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, the start symbol has particular importance. By
default, the symbol is taken to be the left-hand side of the first grammar rule in
the rules section. It is possible and desirable to declare the start symbol
explicitly in the declarations section using the %start keyword:

The end of the input to the parser is signaled by a special token, called the end-
marker. The end-marker is represented by either a zero or a negative number.

If the tokens up to but not including the end-marker form a construct that
matches the start symbol, the parser function returns to its caller after the end-
marker is seen and accepts the input. If the end-marker is seen in any other
context, it is an error.

A : B C D
| E F
| G
;

epsilon : ;

$token name1 name2 name3

$start symbol

yacc — A Compiler Compiler 87

3

It is the job of the user-supplied lexical analyzer to return the end-marker
when appropriate. Usually the end-marker represents some reasonably
obvious I/O status, such as end of file or end of record.

Actions

With each grammar rule, you can associate actions to be performed when the
rule is recognized. Actions may return values and may obtain the values
returned by previous actions. Moreover, the lexical analyzer can return values
for tokens if desired.

An action is an arbitrary C-language statement and as such can do input and
output, call subroutines, and alter arrays and variables. An action is specified
by one or more statements enclosed in { and } . For example, the following two
examples are grammar rules with actions:

and

The $ symbol is used to facilitate communication between the actions and the
parser. The pseudo-variable $$ represents the value returned by the complete
action.

For example, the action:

returns the value of one; in fact, that’s all it does.

A : ’(’ B ’)’
{

hello(1, "abc");
}

XXX : YYY ZZZ
{

(void) printf("a message\n");
flag = 25;

}

{ $$ = 1; }

88 Programming Utilities Guide—November 1995

3

To obtain the values returned by previous actions and the lexical analyzer, the
action can use the pseudo-variables $1 , $2 , ... $n. These refer to the values
returned by components 1 through n of the right side of a rule, with the
components being numbered from left to right. If the rule is

then $2 has the value returned by C, and $3 the value returned by D. The
following rule provides a common example:

One would expect the value returned by this rule to be the value of the expr
within the parentheses. Since the first component of the action is the literal left
parenthesis, the desired logical result can be indicated by:

By default, the value of a rule is the value of the first element in it ($1). Thus,
grammar rules of the following form frequently need not have an explicit
action:

In previous examples, all the actions came at the end of rules. Sometimes, it is
desirable to get control before a rule is fully parsed. yacc permits an action to
be written in the middle of a rule as well as at the end.

A : B C D ;

expr : ’(’ expr ’)’ ;

expr : ’(’ expr ’)’
{

$$ = $2 ;
}

A : B ;

yacc — A Compiler Compiler 89

3

This action is assumed to return a value accessible through the usual $
mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule below the effect is to set x
to 1 and y to the value returned by C:

Actions that do not terminate a rule are handled by yacc by manufacturing a
new nonterminal symbol name and a new rule matching this name to the
empty string. The interior action is the action triggered by recognizing this
added rule.

yacc treats the above example as if it had been written

where $ACT is an empty action.

In many applications, output is not done directly by the actions. A data
structure, such as a parse tree, is constructed in memory and transformations
are applied to it before output is generated. Parse trees are particularly easy to
construct given routines to build and maintain the tree structure desired.

A : B
{

$$ = 1;
}
C

{
x = $2;
y = $3;

}
;

$ACT : /* empty */
{

$$ = 1;
}
;

A : B $ACT C
{

x = $2;
y = $3;

}
;

90 Programming Utilities Guide—November 1995

3

For example, suppose there is a C-function node written so that the call:

creates a node with label L and descendants n1 and n2 and returns the index
of the newly created node. Then a parse tree can be built by supplying actions
such as in the following specification:

You may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section enclosed in %{ and %}. These
declarations and definitions have global scope, so they are known to the action
statements and can be made known to the lexical analyzer. For example:

could be placed in the declarations section making variable accessible to all
of the actions. You should avoid names beginning with yy because the yacc
parser uses only such names. Note, too, that in the examples shown thus far
all the values are integers.

A discussion of values is found in the section Advanced Topics. Finally, note
that in the following case:

yacc will start copying after %{ and stop copying when it encounters the first
%}, the one in printf() . In contrast, it would copy %{ in printf() if it
encountered it there.

node(L, n1, n2)

expr : expr ’+’ expr
{
$$ = node(’+’, $1, $3);
}

%{ int variable = 0; %}

%{
int i;
printf("%}");

%}

yacc — A Compiler Compiler 91

3

Lexical Analysis

You must supply a lexical analyzer to read the input stream and communicate
tokens (with values, if desired) to the parser. The lexical analyzer is an integer-
valued function called yylex() . The function returns an integer, the token
number, representing the kind of token read. If a value is associated with that
token, it should be assigned to the external variable yylval .

The parser and the lexical analyzer must agree on these token numbers in
order for communication between them to take place. The numbers may be
chosen by yacc or the user. In either case, the #define mechanism of C
language is used to allow the lexical analyzer to return these numbers
symbolically.

For example, suppose that the token name DIGIT has been defined in the
declarations section of the yacc specification file. The relevant portion of the
lexical analyzer might look like the following to return the appropriate token:

int yylex()
{

extern int yylval;
int c;
...
c = getchar();
...
switch (c)
{

...
case ’0’:
case ’1’:
...
case ’9’:

yylval = c – ’0’;
return (DIGIT);

...
}
...

}

92 Programming Utilities Guide—November 1995

3

The intent is to return a token number of DIGIT and a value equal to the
numerical value of the digit. You put the lexical analyzer code in the
subroutines section and the declaration for DIGIT in the declarations section.
Alternatively, you can put the lexical analyzer code in a separately compiled
file, provided you

• invoke yacc with the –d option, which generates a file called y.tab.h that
contains #define statements for the tokens, and

• #include y.tab.h in the separately compiled lexical analyzer.

This mechanism leads to clear, easily modified lexical analyzers. The only
pitfall to avoid is the use of any token names in the grammar that are reserved
or significant in C language or the parser.

For example, the use of token names if or while will almost certainly cause
severe difficulties when the lexical analyzer is compiled. The token name
error is reserved for error handling and should not be used naively.

In the default situation, token numbers are chosen by yacc . The default token
number for a literal character is the numerical value of the character in the
local character set. Other names are assigned token numbers starting at 257.

If you prefer to assign the token numbers, the first appearance of the token
name or literal in the declarations section must be followed immediately by a
nonnegative integer. This integer is taken to be the token number of the name
or literal. Names and literals not defined this way are assigned default
definitions by yacc . The potential for duplication exists here. Care must be
taken to make sure that all token numbers are distinct.

For historical reasons, the end-marker must have token number 0 or negative.
You cannot redefine this token number. Thus, all lexical analyzers should be
prepared to return 0 or a negative number as a token upon reaching the end of
their input.

As noted in Chapter 2, lex–Lexical Analysis, lexical analyzers produced by lex
are designed to work in close harmony with yacc parsers. The specifications
for these lexical analyzers use regular expressions instead of grammar rules.
lex can be used to produce quite complicated lexical analyzers, but there
remain some languages that do not fit any theoretical framework and whose
lexical analyzers must be crafted by hand.

yacc — A Compiler Compiler 93

3

Parser Operation
Use yacc to turn the specification file into a C language procedure, which
parses the input according to the specification given. The algorithm used to go
from the specification to the parser is complex and will not be discussed here.
The parser itself, though, is relatively simple and understanding its usage will
make treatment of error recovery and ambiguities easier.

The parser produced by yacc consists of a finite state machine with a stack.
The parser is also capable of reading and remembering the next input token,
called the lookahead token. The current state is always the one on the top of
the stack. The states of the finite state machine are given small integer labels.
Initially, the machine is in state 0 (the stack contains only state 0) and no
lookahead token has been read.

The machine has only four actions available: shift , reduce , accept , and
error . A step of the parser is done as follows:

1. Based on its current state, the parser decides if it needs a look-ahead token
to choose the action to be taken. If it needs one and does not have one, it
calls yylex() to obtain the next token.

2. Using the current state and the lookahead token if needed, the parser
decides on its next action and carries it out. This may result in states being
pushed onto the stack or popped off of the stack and in the lookahead token
being processed or left alone.

The shift action is the most common action the parser takes. Whenever a
shift action is taken, there is always a lookahead token. For example, in state
56 there may be an action

that says, in state 56, if the lookahead token is IF , the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the top
of the stack). The lookahead token is cleared.

The reduce action keeps the stack from growing without bounds. reduce
actions are appropriate when the parser has seen the right-hand side of a
grammar rule and is prepared to announce that it has seen an instance of the
rule replacing the right-hand side by the left-hand side. It may be necessary to
consult the lookahead token to decide whether or not to reduce. In fact, the
default action (represented by .) is often a reduce action.

IF shift 34

94 Programming Utilities Guide—November 1995

3

reduce actions are associated with individual grammar rules. Grammar rules
are also given small integer numbers, and this leads to some confusion. The
following action refers to grammar rule 18:

However, the following action refers to state 34:

Suppose the following rule is being reduced:

The reduce action depends on the left-hand symbol (A in this case) and the
number of symbols on the right-hand side (three in this case). To reduce, first
pop off the top three states from the stack. (In general, the number of states
popped equals the number of symbols on the right side of the rule.)

In effect, these states were the ones put on the stack while recognizing x , y, and
z and no longer serve any useful purpose. After popping these states, a state is
uncovered, which was the state the parser was in before beginning to process
the rule.

Using this uncovered state and the symbol on the left side of the rule, perform
what is in effect a shift of A. A new state is obtained, pushed onto the stack,
and parsing continues. There are significant differences between the processing
of the left-hand symbol and an ordinary shift of a token, however, so this
action is called a goto action. In particular, the lookahead token is cleared by a
shift but is not affected by a goto . In any case, the uncovered state contains an
entry such as the following causing state 20 to be pushed onto the stack and
become the current state:

In effect, the reduce action turns back the clock in the parse, popping the
states off the stack to go back to the state where the right-hand side of the rule
was first seen. The parser then behaves as if it had seen the left side at that
time. If the right-hand side of the rule is empty, no states are popped off the
stacks. The uncovered state is in fact the current state.

. reduce 18

IF shift 34

A : x y z ;

A goto 20

yacc — A Compiler Compiler 95

3

The reduce action is also important in the treatment of user-supplied actions
and values. When a rule is reduced, the code supplied with the rule is executed
before the stack is adjusted. In addition to the stack holding the states, another
stack running in parallel with it holds the values returned from the lexical
analyzer and the actions.

When a shift takes place, the external variable yylval is copied onto the
value stack. After the return from the user code, the reduction is carried out.
When the goto action is done, the external variable yyval is copied onto the
value stack. The pseudo-variables $1 , $2 , and so on refer to the value stack.

The other two parser actions are conceptually much simpler. The accept
action indicates that the entire input has been seen and that it matches the
specification. This action appears only when the lookahead token is the end-
marker and indicates that the parser has successfully done its job.

The error action, on the other hand, represents a place where the parser can
no longer continue parsing according to the specification. The input tokens it
has seen (together with the lookahead token) cannot be followed by anything
that would result in a legal input. The parser reports an error and attempts to
recover the situation and resume parsing.

The error recovery (as opposed to the detection of error) is be discussed in the
Error Handling section.

Consider the following as a yacc specification:

When yacc is invoked with the –v (verbose) option, a file called y.output is
produced which describes the parser.

The y.output file corresponding to the above grammar (with some statistics
stripped off the end) follows.

$token DING DONG DELL
%%
rhyme : sound place

;
sound : DING DONG

;
place: DELL

;

state 0

96 Programming Utilities Guide—November 1995

3

$accept : _rhyme $end

DING shift 3

. error

rhyme goto 1

sound goto 2

state 1

$accept : rhyme_$end

$end accept

. error

state 2

rhyme : sound_place

DELL shift 5

. error

place goto 4

state 3

sound : DING_DONG

DONG shift 6

. error

yacc — A Compiler Compiler 97

3

The actions for each state are specified and there is a description of the parsing
rules being processed in each state. The _ character is used to indicate what
has been seen and what is yet to come in each rule. The following input can be
used to track the operations of the parser:

Initially, the current state is state 0.

The parser refers to the input to decide between the actions available in state 0,
so the first token, DING, is read and becomes the lookahead token. The action
in state 0 on DING is shift 3 , state 3 is pushed onto the stack, and the
lookahead token is cleared. State 3 becomes the current state. The next token,
DONG, is read and becomes the lookahead token.

state 4

rhyme : sound place_ (1)

. reduce 1

state 5

place : DELL_ (3)

. reduce 3

state 6

sound : DING DONG_ (2)

. reduce 2

DING DONG DELL

98 Programming Utilities Guide—November 1995

3

The action in state 3 on the token DONG is shift 6 , state 6 is pushed onto the
stack, and the lookahead is cleared. The stack now contains 0, 3, and 6. In state
6, without consulting the lookahead, the parser reduces by

which is rule 2. Two states, 6 and 3, are popped off the stack, uncovering state
0. Consulting the description of state 0 (looking for a goto on sound),

is obtained. State 2 is pushed onto the stack and becomes the current state.

In state 2, the next token, DELL, must be read. The action is shift 5 , so state
5 is pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead
token is cleared. In state 5, the only action is to reduce by rule 3. This has one
symbol on the right-hand side, so one state, 5, is popped off, and state 2 is
uncovered.

The goto in state 2 on place (the left side of rule 3) is state 4. Now, the stack
contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1. There are
two symbols on the right, so the top two states are popped off, uncovering
state 0 again.

• In state 0, there is a goto on rhyme causing the parser to enter state 1.

• In state 1, the input is read and the end-marker is obtained indicated by
$end in the y.output file. The action in state 1 (when the end-marker is
seen) successfully ends the parse.

sound : DING DONG

sound goto 2

yacc — A Compiler Compiler 99

3

Ambiguity and Conflicts
A set of grammar rules is ambiguous if some input string can be structured in
two or more different ways. For example, the following grammar rule is a
natural way of expressing the fact that one way of forming an arithmetic
expression is to put two other expressions together with a minus sign between
them:

Notice that this grammar rule does not completely specify the way that all
complex inputs should be structured. For example, if the input is the
following:

the rule allows this input to be structured as either:

or as:

The first is called left association, the second right association.

yacc detects such ambiguities when it is attempting to build the parser. Given
that the input is as follows, consider the problem that confronts the parser:

When the parser has read the second expr , the input seen is:

It matches the right side of the grammar rule above. The parser could reduce
the input by applying this rule. After applying the rule, the input is reduced to
expr (the left side of the rule). The parser would then read the final part of
the input (as represented below) and again reduce:

The effect of this is to take the left associative interpretation.

expr : expr ’–’ expr

expr – expr – expr

(expr – expr) – expr

expr – (expr – expr)

expr – expr – expr

expr – expr

– expr

100 Programming Utilities Guide—November 1995

3

Alternatively, if the parser sees the following:

it could defer the immediate application of the rule and continue reading the
input until the following is seen:

It could then apply the rule to the rightmost three symbols, reducing them to
expr , which results in the following being left:

Now the rule can be reduced once more. The effect is to take the right
associative interpretation. Thus, having read the following, the parser can do
one of two legal things, shift or reduce:

It has no way of deciding between them. This is called a shift -reduce
conflict. It may also happen that the parser has a choice of two legal
reductions. This is called a reduce -reduce conflict. Note that there are never
any shift -shift conflicts.

When there are shift -reduce or reduce -reduce conflicts, yacc still
produces a parser. It does this by selecting one of the valid steps wherever it
has a choice. A rule describing the choice to make in a given situation is called
a disambiguating rule.

yacc invokes two default disambiguating rules:

1. In a shift -reduce conflict, the default is to shift.

2. In a reduce -reduce conflict, the default is to reduce by the earlier
grammar rule (in the yacc specification).

Rule 1 implies that reductions are deferred in favor of shifts when there is a
choice. Rule 2 gives the user rather crude control over the behavior of the
parser in this situation, but reduce -reduce conflicts should be avoided when
possible.

expr – expr

expr – expr – expr

expr – expr

expr – expr

yacc — A Compiler Compiler 101

3

Conflicts may arise because of mistakes in input or logic or because the
grammar rules (while consistent) require a more complex parser than yacc can
construct. The use of actions within rules can also cause conflicts if the action
must be done before the parser can be sure which rule is being recognized.

In these cases, the application of disambiguating rules is inappropriate and
leads to an incorrect parser. For this reason, yacc always reports the number
of shift -reduce and reduce -reduce conflicts resolved by rules 1 and 2
above.

In general, whenever it is possible to apply disambiguating rules to produce a
correct parser, it is also possible to rewrite the grammar rules so that the same
inputs are read but there are no conflicts. For this reason, most previous parser
generators have considered conflicts to be fatal errors.

This rewriting is somewhat unnatural and produces slower parsers. Thus,
yacc will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider:

which is a fragment from a programming language involving an if -then -
else statement. In these rules, IF and ELSE are tokens, cond is a nonterminal
symbol describing conditional (logical) expressions, and stat is a nonterminal
symbol describing statements. The first rule will be called the simple if rule
and the second the if -else rule.

These two rules form an ambiguous construction because input of the form:

can be structured according to these rules in two ways:

stat : IF ’(’ cond ’)’ stat
| IF ’(’ cond ’)’ stat ELSE stat
;

IF (C1) IF (C2) S1 ELSE S2

IF (C1)
{

IF (C2)
S1

}
ELSE

S2

102 Programming Utilities Guide—November 1995

3

or:

where the second interpretation is the one given in most programming
languages having this construct; each ELSE is associated with the last
preceding un-ELSE’d IF . In this example, consider the situation where the
parser has seen the following and is looking at the ELSE:

It can immediately reduce by the simple if rule to get:

and then read the remaining input:

and reduce:

by the if -else rule. This leads to the first of the above groupings of the
input.

On the other hand, the ELSE may be shifted, S2 read, and then the right-hand
portion of:

can be reduced by the if -else rule to get:

which can be reduced by the simple if rule.

IF (C1)
{

IF (C2)
S1

ELSE
S2

}

IF (C1) IF (C2) S1

IF (C1) stat

ELSE S2

IF (C1) stat ELSE S2

IF (C1) IF (C2) S1 ELSE S2

IF (C1) stat

yacc — A Compiler Compiler 103

3

This leads to the second of the above groupings of the input, which is usually
the one desired.

Once again, the parser can do two valid things — there is a shift -reduce
conflict. The application of disambiguating rule 1 tells the parser to shift in
this case, which leads to the desired grouping.

This shift -reduce conflict arises only when there is a particular current
input symbol, ELSE, and particular inputs, such as:

have already been seen. In general, there may be many conflicts, and each one
will be associated with an input symbol and a set of previously read inputs.
The previously read inputs are characterized by the state of the parser.

The conflict messages of yacc are best understood by examining the –v
output. For example, the output corresponding to the above conflict state
might be:

where the first line describes the conflict — giving the state and the input
symbol. The ordinary state description gives the grammar rules active in the
state and the parser actions. Recall that the underscore marks the portion of
the grammar rules that has been seen.

Thus in the example, in state 23, the parser has seen input corresponding to:

and the two grammar rules shown are active at this time. The parser can do
two possible things. If the input symbol is ELSE, it is possible to shift into
state 45.

IF (C1) IF (C2) S1

23: shift-reduce conflict (shift 45, reduce 18) on ELSE

state 23
stat : IF (cond) stat_ (18)
stat : IF (cond) stat_ELSE stat

ELSE shift 45
. reduce 18

IF (cond) stat

104 Programming Utilities Guide—November 1995

3

State 45 will have, as part of its description, the line:

because the ELSE will have been shifted in this state. In state 23, the
alternative action (specified by .) is to be done if the input symbol is not
mentioned explicitly in the actions. In this case, if the input symbol is not
ELSE, the parser reduces to:

by grammar rule 18.

Once again, notice that the numbers following shift commands refer to other
states, while the numbers following reduce commands refer to grammar rule
numbers. In the y.output file, rule numbers are printed in parentheses after
those rules that can be reduced. In most states, there is a reduce action
possible, and reduce is the default command. If you encounter unexpected
shift -reduce conflicts, look at the –v output to decide whether the default
actions are appropriate.

Precedence
There is one common situation where the rules for resolving conflicts are not
sufficient. This is in the parsing of arithmetic expressions. Most of the
commonly used constructions for arithmetic expressions can be naturally
described by the notion of precedence levels for operators, with information
about left or right associativity. Ambiguous grammars with appropriate
disambiguating rules can be used to create parsers that are faster and easier to
write than parsers constructed from unambiguous grammars. The basic notion
is to write grammar rules of the form:

and:

for all binary and unary operators desired. This creates a very ambiguous
grammar with many parsing conflicts.

stat : IF (cond) stat ELSE_stat

stat : IF ’(’ cond ’)’ stat

expr : expr OP expr

expr : UNARY expr

yacc — A Compiler Compiler 105

3

You specify as disambiguating rules the precedence or binding strength of all
the operators and the associativity of the binary operators. This information is
sufficient to allow yacc to resolve the parsing conflicts in accordance with
these rules and construct a parser that realizes the desired precedences and
associativities.

The precedences and associativities are attached to tokens in the declarations
section. This is done by a series of lines beginning with the yacc keywords
%left , %right , or %nonassoc , followed by a list of tokens. All of the tokens
on the same line are assumed to have the same precedence level and
associativity; the lines are listed in order of increasing precedence or binding
strength. Thus:

describes the precedence and associativity of the four arithmetic operators. +
and – are left associative and have lower precedence than * and / , which are
also left associative. The keyword %right is used to describe right associative
operators. The keyword %nonassoc is used to describe operators, like the
operator .LT. in FORTRAN, that may not associate with themselves. That is,
because:

is illegal in FORTRAN, .LT. would be described with the keyword
%nonassoc in yacc .

As an example of the behavior of these declarations, the description

%left ’+’ ’–’
%left ’*’ ’/’

A .LT. B .LT. C

%right ’=’
%left ’+’ ’–’
%left ’*’ ’/’

%%

expr : expr ’=’ expr
| expr ’+’ expr
| expr ’–’ expr
| expr ’*’ expr
| expr ’/’ expr
| NAME
;

106 Programming Utilities Guide—November 1995

3

might be used to structure the input

as follows

in order to achieve the correct precedence of operators. When this mechanism
is used, unary operators must, in general, be given a precedence. Sometimes a
unary operator and a binary operator have the same symbolic representation
but different precedences. An example is unary and binary minus.

Unary minus may be given the same strength as multiplication, or even higher,
while binary minus has a lower strength than multiplication. The keyword
%prec changes the precedence level associated with a particular grammar rule.
%prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It
causes the precedence of the grammar rule to become that of the following
token name or literal. For example, the rules:

might be used to give unary minus the same precedence as multiplication.

A token declared by %left , %right , and %nonassoc need not, but may, be
declared by %token as well.

Precedences and associativities are used by yacc to resolve parsing conflicts.
They give rise to the following disambiguating rules:

1. Precedences and associativities are recorded for those tokens and literals
that have them.

a = b = c * d – e – f * g

a = (b = (((c * d) – e) – (f * g)))

%left ’+’ ’–’
%left ’*’ ’/’

%%

expr : expr ’+’ expr
| expr ’–’ expr
| expr ’*’ expr
| expr ’/’ expr
| ’–’ expr %prec ’*’
| NAME
;

yacc — A Compiler Compiler 107

3

2. A precedence and associativity is associated with each grammar rule. It is
the precedence and associativity of the final token or literal in the body of
the rule. If the %prec construction is used, it overrides this default value.
Some grammar rules may have no precedence and associativity associated
with them.

3. When there is a reduce -reduce or shift -reduce conflict, and either the
input symbol or the grammar rule has no precedence and associativity, then
the two default disambiguating rules given in the preceding section are
used, and the conflicts are reported.

4. If there is a shift -reduce conflict and both the grammar rule and the
input character have precedence and associativity associated with them,
then the conflict is resolved in favor of the action — shift or reduce —
associated with the higher precedence. If precedences are equal, then
associativity is used. Left associative implies reduce ; right associative
implies shift ; nonassociating implies error .

Conflicts resolved by precedence are not counted in the number of shift -
reduce and reduce -reduce conflicts reported by yacc . This means that
mistakes in the specification of precedences may disguise errors in the input
grammar. It is a good idea to be sparing with precedences and use them
strictly until some experience has been gained. The y.output file is useful in
deciding whether the parser is actually doing what was intended.

To illustrate further how you might use the precedence keywords to resolve a
shift -reduce conflict, look at an example similar to the one described in the
previous section. Consider the following C statement:

The problem for the parser is whether the else goes with the first or the
second if . C programmers will recognize that the else goes with the second
if , contrary to to what the misleading indentation suggests. The following
yacc grammar for an if -then -else construct abstracts the problem. That is,
the input iises will model these C statements.

if (flag) if (anotherflag) x = 1;
else x = 2;

108 Programming Utilities Guide—November 1995

3

When the specification is passed to yacc , however, we get the following
message:

The problem is that when yacc has read iis in trying to match iises , it has
two choices: recognize is as a statement (reduce) or read some more input
(shift) and eventually recognize ises as a statement.

%{
#include <stdio.h>
%}
%token SIMPLE IF ELSE
%%
S ; stmnt

;
stmnt : SIMPLE

| if_stmnt
;

if_stmnt : IF stmnt
{ printf("simple if\n");}

| IF stmnt ELSE stmnt
{ printf("if_then_else\n");}

;
%%
int
yylex() {

int c;
c=getchar();
if (c= =EOF) return 0;
else switch(c) {

case ’i’: return IF;
case ’s’: return SIMPLE;
case ’e’: return ELSE;
default: return c;

}
}

conflicts: 1 shift/reduce

yacc — A Compiler Compiler 109

3

One way to resolve the problem is to invent a new token REDUCE, whose sole
purpose is to give the correct precedence for the rules:

Since the precedence associated with the second form of if_stmnt is higher
now, yacc will try to match that rule first, and no conflict will be reported.

Actually, in this simple case, the new token is not needed:

would also work. Moreover, it is not really necessary to resolve the conflict in
this way, because, as we have seen, yacc will shift by default in a shift -
reduce conflict. Resolving conflicts is a good idea, though, in the sense that
you should not see diagnostic messages for correct specifications.

Error Handling
Error handling contains many semantic problems. When an error is found, for
example, it may be necessary to reclaim parse tree storage, delete or alter
symbol table entries, and, typically, set switches to avoid generating any
further output.

%{
#include <stdio.h>
%}
%token SIMPLE IF
%nonassoc REDUCE
%nonassoc ELSE
%%
S : stmnt ’\n’

;
stmnt : SIMPLE

| if_stmnt
;

if_stmnt : IF stmnt %prec REDUCE
{ printf("simple if");}

| IF stmnt ELSE stmnt
{ printf("if_then_else");}

;
%%

%nonassoc IF
%nonassoc ELSE

110 Programming Utilities Guide—November 1995

3

It is seldom acceptable to stop all processing when an error is found. It is more
useful to continue scanning the input to find further syntax errors. This leads
to the problem of getting the parser restarted after an error. A general class of
algorithms to do this involves discarding a number of tokens from the input
string and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides the token
name error . This name can be used in grammar rules. In effect, it suggests
where errors are expected and recovery might take place.

The parser pops its stack until it enters a state where the token error is legal.
It then behaves as if the token error were the current lookahead token and
performs the action encountered. The lookahead token is then reset to the
token that caused the error. If no special error rules have been specified, the
processing halts when an error is detected.

To prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and
shifted. If an error is detected when the parser is already in error state, no
message is given, and the input token is deleted.

As an example, a rule of the form:

means that on a syntax error the parser attempts to skip over the statement in
which the error is seen. More precisely, the parser scans ahead, looking for
three tokens that might legally follow a statement, and starts processing at the
first of these. If the beginnings of statements are not sufficiently distinctive, it
may make a false start in the middle of a statement and end up reporting a
second error where there is in fact no error.

Actions may be used with these special error rules. These actions might
attempt to reinitialize tables, reclaim symbol table space, and so forth.

Error rules such as the above are very general but difficult to control.

Rules such as the following are somewhat easier:

stat : error

stat : error ’;’

yacc — A Compiler Compiler 111

3

Here, when there is an error, the parser attempts to skip over the statement but
does so by skipping to the next semicolon. All tokens after the error and
before the next semicolon cannot be shifted and are discarded. When the
semicolon is seen, this rule will be reduced and any cleanup action associated
with it performed.

Another form of error rule arises in interactive applications where it may be
desirable to permit a line to be reentered after an error. The following
example:

is one way to do this. There is one potential difficulty with this approach. The
parser must correctly process three input tokens before it admits that it has
correctly resynchronized after the error. If the reentered line contains an error
in the first two tokens, the parser deletes the offending tokens and gives no
message. This is unacceptable.

For this reason, there is a mechanism that can force the parser to believe that
error recovery has been accomplished. The statement:

in an action resets the parser to its normal mode. The last example can be
rewritten as

input : error ’\n’
{

(void) printf("Reenter last line: ");
}
input

{
$$ = $4;

}
;

yyerrok ;

input : error ’\n’
{

yyerrok;
(void) printf("Reenter last line: ");

}
input

{
$$ = $4;

}
;

112 Programming Utilities Guide—November 1995

3

As previously mentioned, the token seen immediately after the error symbol
is the input token at which the error was discovered. Sometimes this is
inappropriate; for example, an error recovery action might take upon itself the
job of finding the correct place to resume input. In this case, the previous
lookahead token must be cleared. The statement:

in an action will have this effect. For example, suppose the action after error
were to call some sophisticated resynchronization routine (supplied by the
user) that attempted to advance the input to the beginning of the next valid
statement. After this routine is called, the next token returned by yylex() is
presumably the first token in a legal statement. The old illegal token must be
discarded and the error state reset. A rule similar to:

could perform this.

These mechanisms are admittedly crude but they do allow a simple, fairly
effective recovery of the parser from many errors. Moreover, the user can get
control to deal with the error actions required by other portions of the
program.

The yacc Environment
You create a yacc parser with the command:

where grammar.y is the file containing your yacc specification. (The .y
suffix is a convention recognized by other operating system commands. It is
not strictly necessary.) The output is a file of C-language subroutines called
y.tab.c . The function produced by yacc is called yyparse() , and is
integer-valued.

yyclearin ;

stat : error
{

resynch();
yyerrok ;
yyclearin;

}
;

$ yacc grammar.y

yacc — A Compiler Compiler 113

3

When it is called, it repeatedly calls yylex() , the lexical analyzer supplied by
the user (see Lexical Analysis), to obtain input tokens. Eventually, an error is
detected, yyparse() returns the value 1, and no error recovery is possible, or
the lexical analyzer returns the end-marker token and the parser accepts. In
this case, yyparse() returns the value 0.

You must provide a certain amount of environment for this parser in order to
obtain a working program. For example, as with every C-language program, a
routine called main() must be defined that eventually calls yyparse() . In
addition, a routine called yyerror() is needed to print a message when a
syntax error is detected.

These two routines must be supplied in one form or another by the user. To
ease the initial effort of using yacc , a library has been provided with default
versions of main() and yyerror() . The library is accessed by a –ly
argument to the cc command. The source codes:

and:

show the triviality of these default programs. The argument to yyerror() is
a string containing an error message, usually the string syntax error . The
average application wants to do better than this. Ordinarily, the program
should keep track of the input line number and print it along with the message
when a syntax error is detected. The external integer variable yychar contains
the lookahead token number at the time the error was detected (a feature
which gives better diagnostic)s. Since the main() routine is probably supplied
by the user (to read arguments, for instance), the yacc library is useful only in
small projects or in the earliest stages of larger ones.

main()
{

return (yyparse());
}

include <stdio.h>

yyerror(s)
char *s;
{

(void) fprintf(stderr, "%s\n", s);
}

114 Programming Utilities Guide—November 1995

3

The external integer variable yydebug is normally set to 0. If it is set to a
nonzero value, the parser will output a verbose description of its actions,
including a discussion of the input symbols read and what the parser actions
are.

Hints for Preparing Specifications
This part contains miscellaneous hints on preparing efficient, easy to change,
and clear specifications.

Input Style

It is difficult to provide rules with substantial actions and still have a readable
specification file. The following are a few style hints.

• Use all uppercase letters for token names and all lowercase letters for
nonterminal names. This is useful in debugging.

• Put grammar rules and actions on separate lines to make editing easier.

• Put all rules with the same left-hand side together. Put the left-hand side in
only once and let all following rules begin with a vertical bar.

• Put a semicolon only after the last rule with a given left-hand side and put
the semicolon on a separate line. This allows new rules to be easily added.

• Indent rule bodies by one tab stop and action bodies by two tab stops.

• Put complicated actions into subroutines defined in separate files.

Example 1 below is written following this style, as are the examples in this
section (where space permits). The central problem is to make the rules visible
through the maze of action code.

Left Recursion

The algorithm used by the yacc parser encourages so-called left recursive
grammar rules. Rules of the following form match this algorithm:

name : name rest_of_rule ;

yacc — A Compiler Compiler 115

3

Rules such as:

and:

frequently arise when writing specifications of sequences and lists. In each of
these cases, the first rule will be reduced for the first item only; and the second
rule will be reduced for the second and all succeeding items.

With right-recursive rules, such as:

the parser is a bit bigger; the items are seen and reduced from right to left.
More seriously, an internal stack in the parser is in danger of overflowing if an
extremely long sequence is read (although yacc can now process very large
stacks). Thus, you should use left recursion wherever reasonable.

It is worth considering if a sequence with zero elements has any meaning, and
if so, consider writing the sequence specification as:

using an empty rule. Once again, the first rule would always be reduced
exactly once before the first item was read, and then the second rule would be
reduced once for each item read. Permitting empty sequences often leads to
increased generality. However, conflicts might arise if yacc is asked to decide
which empty sequence it has seen when it hasn’t seen enough to know.

list : item
| list ’,’ item
;

seq : item
| seq item
;

seq : item
| item seq
;

seq : /* empty */
| seq item
;

116 Programming Utilities Guide—November 1995

3

C++ Mangled Symbols
The material for this section is an exact duplication of material found in the
C++ Mangled Symbols section of Chapter 2, lex–Lexical Analysis. Please
substitute yacc when they refer to lex .

Lexical Tie-Ins

Some lexical decisions depend on context. For example, the lexical analyzer
might delete blanks normally, but not within quoted strings, or names might
be entered into a symbol table in declarations but not in expressions. One way
of handling these situations is to create a global flag that is examined by the
lexical analyzer and set by actions. For example,

specifies a program consisting of zero or more declarations followed by zero or
more statements. The flag dflag is now 0 when reading statements and 1
when reading declarations, except for the first token in the first statement.

%{
int dflag;

%}
... other declarations ...
%%
prog : decls stats

;
decls : /* empty */

{
dflag = 1;

}
| decls declaration
;

stats : /* empty */
{

dflag = 0;
}
| stats statement
;

. . . other rules . . .

yacc — A Compiler Compiler 117

3

This token must be seen by the parser before it can tell that the declaration
section has ended and the statements have begun. In many cases, this single
token exception does not affect the lexical scan. This approach represents a
way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words

Some programming languages permit you to use words like if , which are
normally reserved as label or variable names, provided that such use does not
conflict with the legal use of these names in the programming language. This
is extremely hard to do in the framework of yacc .

It is difficult to pass information to the lexical analyzer telling it this instance of
if is a keyword and that instance is a variable. Using the information found in
the previous section, Lexical Tie-Ins might prove useful here.

Advanced Topics
This part discusses a number of advanced features of yacc .

Simulating error and accept in Actions

The parsing actions of error and accept can be simulated in an action by
use of macros YYACCEPT and YYERROR. The YYACCEPT macro causes
yyparse() to return the value 0; YYERROR causes the parser to behave as if
the current input symbol had been a syntax error; yyerror() is called, and
error recovery takes place.

These mechanisms can be used to simulate parsers with multiple end-markers
or context-sensitive syntax checking.

118 Programming Utilities Guide—November 1995

3

Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the current rule.
The mechanism is the same as ordinary actions, $ followed by a digit.

In this case, the digit may be 0 or negative. In the action following the word
CRONE, a check is made that the preceding token shifted was not YOUNG. Note,
however that this is only possible when a great deal is known about what
might precede the symbol noun in the input. Nevertheless, at times this
mechanism prevents a great deal of trouble, especially when a few
combinations are to be excluded from an otherwise regular structure.

sent : adj noun verb adj noun
{

look at the sentence ...
}
;

adj : THE
{

$$ = THE;
}
| YOUNG
{

$$ = YOUNG;
}
...
;

noun : DOG
{

$$ = DOG;
}
| CRONE
{

if ($0 = = YOUNG)
{

(void) printf("what?\n");
}
$$ = CRONE;

}
;

...

yacc — A Compiler Compiler 119

3

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers.
yacc can also support values of other types including structures. In addition,
yacc keeps track of the types and inserts appropriate union member names so
that the resulting parser is strictly type checked. The yacc value stack is
declared to be a union of the various types of values desired. You declare the
union and associate union member names with each token and nonterminal
symbol having a value. When the value is referenced through a $$ or $n
construction, yacc will automatically insert the appropriate union name so
that no unwanted conversions take place.

Three mechanisms provide for this typing. First, there is a way of defining the
union. This must be done by the user since other subroutines, notably the
lexical analyzer, must know about the union member names. Second, there is
a way of associating a union member name with tokens and nonterminals.
Finally, there is a mechanism for describing the type of those few values where
yacc cannot easily determine the type.

To declare the union, you include:

in the declaration section. This declares the yacc value stack and the external
variables yylval and yyval to have type equal to this union. If yacc was
invoked with the –d option, the union declaration is copied into the y.tab.h
file as YYSTYPE.

Once YYSTYPE is defined, the union member names must be associated with
the various terminal and nonterminal names. The construction:

is used to indicate a union member name. If this follows one of the keywords
%token , %left , %right , and %nonassoc , the union member name is
associated with the tokens listed.

%union
{

body of union
}

<name>

120 Programming Utilities Guide—November 1995

3

Thus, saying

causes any reference to values returned by these two tokens to be tagged with
the union member name optype . Another keyword, %type , is used to
associate union member names with nonterminals. You could use the rule

to associate the union member nodetype with the nonterminal symbols expr
and stat .

There remain a couple of cases where these mechanisms are insufficient. If
there is an action within a rule, the value returned by this action has no a priori
type. Similarly, reference to left context values (such as $0) leaves yacc with
no easy way of knowing the type. In this case, a type can be imposed on the
reference by inserting a union member name between < and > immediately
after the first $. The example below:

shows this usage. This syntax has little to recommend it, but the situation
arises rarely.

A sample specification is given in the An Advanced Example section. The
facilities in this subsection are not triggered until they are used. In particular,
the use of %type will turn on these mechanisms. When they are used, there is
a fairly strict level of checking.

For example, use of $n or $$ to refer to something with no defined type is
diagnosed. If these facilities are not triggered, the yacc value stack is used to
hold int s.

%left <optype> ’+’ ’–’

%type <nodetype> expr stat

rule : aaa
{

$<intval>$ = 3;
}
bbb

{
fun($<intval>2, $<other>0);

}
;

yacc — A Compiler Compiler 121

3

yacc Input Syntax

This section has a description of the yacc input syntax as a yacc specification.
Context dependencies and so forth are not considered. Although yacc accepts
an LALR(1) grammar, the yacc input specification language is specified as an
LR(2) grammar; thedifficulty arises when an identifier is seen in a rule
immediately following an action.

If this identifier is followed by a colon, it is the start of the next rule; otherwise,
it is a continuation of the current rule, which just happens to have an action
embedded in it. As implemented, the lexical analyzer looks ahead after seeing
an identifier and figures out whether the next token (skipping blanks,
newlines, comments, and so on) is a colon. If so, it returns the token
C_IDENTIFIER .

Otherwise, it returns IDENTIFIER . Literals (quoted strings) are also returned
as IDENTIFIER s but never as part of C_IDENTIFIER s.

Figure 3-1 The yacc Input Syntax

/* grammar for the input to yacc */

/* basic entries */

%token IDENTIFIER /* includes identifiers and literals */

%token C_IDENTIFIER /* identifier (but not literal) */

/* followed by a : */

%token NUMBER /* [0-9]+ */

/* reserved words: %type=>TYPE %left=>LEFT,etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /* the %% mark */

122 Programming Utilities Guide—November 1995

3

%token LCURL /* the %{ mark */

%token RCURL /* the %} mark */

/* ASCII character literals stand for themselves */

%token spec t

%%

spec : defs MARK rules tail

;

tail : MARK

{

In this action,read in the rest of the file

}

| /* empty: the second MARK is optional */

;

defs : /* empty */

| defs def

;

def : START IDENTIFIER

| UNION

{

Copy union definition to output

}

| LCURL

Figure 3-1 The yacc Input Syntax

yacc — A Compiler Compiler 123

3

{

Copy C code to output file

}

RCURL

| rword tag nlist

;

rword : TOKEN

| LEFT

| RIGHT

| NONASSOC

| TYPE

;

tag : /* empty: union tag is optional */

| ’<’ IDENTIFIER ’>’

;

nlist : nmno

| nlist nmno

| nlist ’,’ nmno

;

nmno : IDENTIFIER /* Note: literal illegal with % type */

| IDENTIFIER NUMBER /* Note: illegal with % type */

;

/* rule section */

Figure 3-1 The yacc Input Syntax

124 Programming Utilities Guide—November 1995

3

rules : C_IDENTIFIER rbody prec

| rules rule

;

rule : C_IDENTIFIER rbody prec

| ’|’ rbody prec

;

rbody : /* empty */

| rbody IDENTIFIER

| rbody act

;

act : ’{’

{

Copy action translate $$ etc.

}

’}’

;

prec : /* empty */

| PREC IDENTIFIER

| PREC IDENTIFIER act

| prec ’;’

;

Figure 3-1 The yacc Input Syntax

yacc — A Compiler Compiler 125

3

Examples

A Simple Example

Figure 3-2 shows the complete yacc applications for a small desk calculator.
The calculator has 26 registers labeled a through z and accepts arithmetic
expressions made up of the operators +, –, * , / , %, &, | , and the assignment
operators.

If an expression at the top level is an assignment, only the assignment is made;
otherwise, the expression is printed. As in the C language, an integer that
begins with 0 is assumed to be octal; otherwise, it is assumed to be decimal.

As an example of a yacc specification, the desk calculator shows how
precedence and ambiguities are used and demonstrates simple recovery. The
major oversimplifications are that the lexical analyzer is much simpler than for
most applications, and the output is produced immediately, line by line.

Note the way that decimal and octal integers are read by grammar rules. This
jobcan also be performed by the lexical analyzer.

Figure 3-2 A yacc Application for a Desk Calculator

%{

include <stdio.h>

include <ctype.h>

int regs[26];

int base;

%}

%start list

%token DIGIT LETTER

126 Programming Utilities Guide—November 1995

3

%left ’|’

%left ’&’

%left ’+’ ’–’

%left ’*’ ’/’ ’%’

%left UMINUS /* supplies precedence for unary minus */

%% /* beginning of rules section */

list : /* empty */

| list stat ’\n’

| list error ’\n’

{

yyerrok;

}

;

stat : expr

{

(void) printf("%d\n", $1);

}

| LETTER ’=’ expr

{

regs[$1] = $3;

}

;

Figure 3-2 A yacc Application for a Desk Calculator

yacc — A Compiler Compiler 127

3

expr : ’(’ expr ’)’

{

$$ = $2;

}

| expr ’+’ expr

{

$$ = $1 + $3;

}

| expr ’–’ expr

{

$$ = $1 – $3;

{

| expr ’*’ expr

{

$$ = $1 * $3;

}

| expr ’/’ expr

{

$$ = $1 / $3;

}

| exp ’%’ expr

{

$$ = $1 % $3;

}

Figure 3-2 A yacc Application for a Desk Calculator

128 Programming Utilities Guide—November 1995

3

| expr ’&’ expr

{

$$ = $1 & $3;

}

| expr ’|’ expr

{

$$ = $1 | $3;

}

| ’–’ expr %prec UMINUS

{

$$ = –$2;

}

| LETTER

{

$$ = reg[$1];

}

| number

;

number : DIGIT

{

$$ = $1; base = ($1= =0) ? 8 ; 10;

}

| number DIGIT

{

Figure 3-2 A yacc Application for a Desk Calculator

yacc — A Compiler Compiler 129

3

$$ = base * $1 + $2;

}

;

%% /* beginning of subroutines section */

int yylex() /* lexical analysis routine */

{ /* return LETTER for lowercase letter, */

/* yylval = 0 through 25 returns DIGIT */

/* for digit, yylval = 0 through 9 */

/* all other characters are returned immediately */

int c;

/*skip blanks*/

while ((c = getchar()) = = ’ ’)

;

/* c is now nonblank */

if (islower(c)) {

yylval = c – ’a’;

return (LETTER);

}

if (isdigit(c)) {

yylval = c – ’0’;

return (DIGIT);

Figure 3-2 A yacc Application for a Desk Calculator

130 Programming Utilities Guide—November 1995

3

An Advanced Example

This section gives an example of a grammar using some of the advanced
features. The desk calculator in Example 1 is modified to provide a desk
calculator that does floating point interval arithmetic. The calculator
understands floating point constants, and the arithmetic operations +, –, * , / ,
and unary –. It uses the registers a through z . Moreover, it understands
intervals written

where X is less than or equal to Y. There are 26 interval valued variables A
through Z that may also be used. The usage is similar to that in Example 1;
assignments return no value and print nothing while expressions print the
(floating or interval) value.

This example explores a number of features of yacc and C. Intervals are
represented by a structure consisting of the left and right endpoint values
stored as double s. This structure is given a type name, INTERVAL, by means
of typedef .

The yacc value stack can also contain floating point scalars and integers (used
to index into the arrays holding the variable values). Notice that the entire
strategy depends strongly on being able to assign structures and unions in C
language. In fact, many of the actions call functions that return structures as
well.

Note the use of YYERROR to handle error conditions — division by an interval
containing 0 and an interval presented in the wrong order. The error recovery
mechanism of yacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also
demonstrates a syntax to keep track of the type (for example, scalar or interval)
of intermediate expressions. Note that scalar-value can be automatically
promoted to an interval if the context demands an interval value. This causes

}

return (c);

}

(X,Y)

Figure 3-2 A yacc Application for a Desk Calculator

yacc — A Compiler Compiler 131

3

a large number of conflicts when the grammar is run through yacc : 18 shift -
reduce and 26 reduce -reduce . The problem can be seen by looking at the
two input lines:

and:

Notice that the 2.5 is to be used in an interval value expression in the second
example, but this fact is not known until the comma is read. By this time, 2.5
is finished, and the parser cannot go back and do something else. More
generally, it might be necessary to look ahead an arbitrary number of tokens to
decide whether to convert a scalar to an interval.

This problem is evaded by having two rules for each binary interval valued
operator — one when the left operand is a scalar and one when the left
operand is an interval. In the second case, the right operand must be an
interval, so the conversion will be applied automatically.

Despite this evasion, there are still many cases where the conversion may be
applied or not, leading to the above conflicts. They are resolved by listing the
rules that yield scalars first in the specification file; in this way, the conflict will
be resolved in the direction of keeping scalar-valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is instructive. If there were many kinds of
expression types instead of just two, the number of rules needed would
increase dramatically and the conflicts even more dramatically.

Thus, while this example is instructive, it is better practice in a more normal
programming language environment to keep the type information as part of
the value and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the
treatment of floating-point constants. The C-language library routine atof()
is used to do the actual conversion from a character string to a double-
precision value. If the lexical analyzer detects an error, it responds by
returning a token that is illegal in the grammar, provoking a syntax error in the
parser and thence error recovery. The following, Figure 3-3, is a yacc
Specification.

2.5 + (3.5 - 4.)

2.5 + (3.5, 4)

132 Programming Utilities Guide—November 1995

3

Figure 3-3 Advanced Example of a yacc Specification

%{

#include <stdio.h>

#include <ctype.h>

typedef struct interval {

double lo, hi;

} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg[26];

INTERVAL vreg[26];

%}

%start lines

%union {

int ival;

double dval;

INTERVAL vval;

yacc — A Compiler Compiler 133

3

}

%token <ival> DREG VREG /* indices into dreg, vreg arrays */

%token <dval> CONST /* floating point constant */

%type <dval> dexp /* expression */

%type <vval> vexp /* interval expression */

/* precedence information about the operators */

%left ’+’ ’/-’

%left ’*’ ’/’

%% /* beginning of rules section */

lines : /* empty */

| lines line

;

line : dexp ’\n’

{

(void)printf("%15.8f\n", $1);

}

| vexp ’\n’

{

(void)printf("(%15.8f, %15.8f)\n", $1.lo, $1.hi);

}

Figure 3-3 Advanced Example of a yacc Specification

134 Programming Utilities Guide—November 1995

3

| DREG ’=’ dexp ’\n’

{

dreg[$1] = $3;

}

| VREG ’=’ vexp ’\n’

{

vreg[$1] = $3;

}

| error ’\n’

{

yyerrok;

}

;

dexp : CONST

| DREG

{

$$ = dreg[$1];

}

| dexp ’+’ dexp

{

$$ = $1 + $3;

}

| dexp ’–’ dexp

{

$$ = $1 – $3;

Figure 3-3 Advanced Example of a yacc Specification

yacc — A Compiler Compiler 135

3

}

| dexp ’*’ dexp

{

$$ = $1 * $3;

}

| dexp ’/’ dexp

{

$$ = $1 / $3;

}

| ’–’ dexp

{

$$ = –$2;

}

| ’(’ dexp ’)’

{

$$ = $2;

}

;

vexp : dexp

{

$$.hi = $$.lo = $1;

}

| ’(’ dexp ’,’ dexp ’)’

{

$$.lo = $2;

Figure 3-3 Advanced Example of a yacc Specification

136 Programming Utilities Guide—November 1995

3

$$.hi = $4;

if($$.lo > $$.hi) {

(void) printf("interval out of order\n");

YYERROR;

}

}

| VREG

{

$$ = vreg[$1];

}

| vexp ’+’ vexp

{

$$.hi = $1.hi + $3.hi;

$$.lo = $1.lo + $3.lo;

}

| dexp ’+’ vexp

{

$$.hi = $1 + $3.hi;

$$.lo = $1 + $3.lo;

}

| vexp ’–’ vexp

{

$$.hi = $1.hi – $3.lo;

$$.lo = $1.lo – $3.hi;

}

Figure 3-3 Advanced Example of a yacc Specification

yacc — A Compiler Compiler 137

3

| dexp ’–’ vexp

{

$$.hi = $1 – $3.lo;

$$.lo = $1 – $3.hi;

}

| vexp ’*’ vexp

{

$$ = vmul($1.lo, $1.hi, $3);

}

| dexp ’*’ vexp

{

$$ = vmul($1, $1, $3);

}

| vexp ’/’ vexp

{

if (dcheck($3)) YYERROR;

$$ = vdiv($1.lo, $1.hi, $3);

}

| dexp ’/’ vexp

{

if (dcheck($3)) YYERROR;

$$ = vdiv($1, $1, $3);

}

| ’–’ vexp

{

Figure 3-3 Advanced Example of a yacc Specification

138 Programming Utilities Guide—November 1995

3

$$.hi = –$2.lo; $$.lo = –$2.hi;

}

| ’(’ vexp ’)’

{

$$ = $2;

}

;

%% /* beginning of subroutines section */

define BSZ 50 /* buffer size for floating point number */

/* lexical analysis */

int yylex()

{

register int c;

/* skip over blanks */

while ((c=getchar()) = = ’ ’)

;

if (isupper(c)) {

yylval.ival = c – ’A’;

return(VREG);

}

if (islower(c)) {

Figure 3-3 Advanced Example of a yacc Specification

yacc — A Compiler Compiler 139

3

yylval.ival = c – ’a’;

return(DREG);

}

/* digits, points, exponents */

if (isdigit(c) || c = = ’.’) {

char buf[BSZ + 1], *cp = buf;

int dot = 0, exp = 0;

for (;(cp – buf) < BSZ; ++cp, c = getchar()) {

*cp = c;

if (isdigit(c))

continue;

if (c = = ’.’) {

if (dot++ || exp)

return(’.’); /* will cause syntax error */

continue;

}

if (c = = ’e’) {

if (exp++)

return(’e’); /* will cause syntax error */

continue;

}

/* end of number */

Figure 3-3 Advanced Example of a yacc Specification

140 Programming Utilities Guide—November 1995

3

break;

}

*cp = ’\0’;

if (cp – buf >= BSZ)

(void)printf("constant too long -- truncated\n");

else

ungetc(c, stdin); /* push back last char read */

yylval.dval = atof(buf);

return(CONST);

}

return(c);

}

INTERVAL

hilo(a, b, c, d)

double a, b, c, d;

{

/* returns the smallest interval containing a, b, c, and d

used by vmul, vdiv routines */

INTERVAL v;

if (a > b){

Figure 3-3 Advanced Example of a yacc Specification

yacc — A Compiler Compiler 141

3

v.hi = a;

v.lo = b;

}

else{

v.hi = b;

v.lo = a;

}

if (c > d) {

if (c > v.hi)

v.hi = c;

if (d < v.lo)

v.lo = d;

}

else {

if (d > v.hi)

v.hi = d;

if (c < v.lo)

v.lo = c;

}

return(v);

}

Figure 3-3 Advanced Example of a yacc Specification

142 Programming Utilities Guide—November 1995

3

INTERVAL

vmul(a, b, v)

double a, b;

INTERVAL v;

{

return(hilo(a * v.hi, a * v.lo, b * v.hi, b * v.lo));

}

dcheck(v)

INTERVAL v;

{

if (v.hi >= 0. && v.lo <= 0.) {

(void) printf("divisor interval contains 0.\n");

return(1);

}

return(0);

}

INTERVAL

vdiv(a, b, v)

double a, b;

INTERVAL v;

{

return(hilo(a / v.hi, a / v.lo, b / v.hi, b / v.lo));

Figure 3-3 Advanced Example of a yacc Specification

143

make Utility 4

This chapter describes the make utility, which includes:

• Hidden dependency checking
• Command dependency checking
• Pattern-matching rules
• Automatic retrieval of SCCS files

This version of the make utility runs successfully with makefiles written for
previous versions of make. Makefiles that rely on enhancements may not be
compatible with other versions of this utility (see Appendix A, “System V
make” for more information on previous versions of make). Refer to “make
Enhancements Summary” on page 216 for a complete summary of
enhancements and compatibility issues.

make streamlines the process of generating and maintaining object files and
executable programs. It helps you to compile programs consistently and
eliminates unnecessary recompilation of modules that are unaffected by source
code changes.

make provides features that simplify compilations. You can also use it to
automate any complicated or repetitive task that is not interactive. You can use
make to update and maintain object libraries, to run test suites, and to install
files onto a filesystem or tape. In conjunction with SCCS, you can use make to
ensure that a large software project is built from the desired versions in an
entire hierarchy of source files.

144 Programming Utilities Guide—November 1995

4

make reads a file that you create, called a makefile, which contains information
about what files to build and how to build them. Once you write and test the
makefile, you can forget about the processing details; make takes care of them.

Dependency Checking: make vs. Shell Scripts
While it is possible to use a shell script to assure consistency in trivial cases,
scripts to build software projects are often inadequate. On the one hand, you
don’t want to wait for a simpleminded script to compile every single program
or object module when only one of them has changed. On the other hand,
having to edit the script for each iteration can defeat the goal of consistency.
Although it is possible to write a script of sufficient complexity to recompile
only those modules that require it, make does this job better.

make allows you to write a simple, structured listing of what to build and how
to build it. It uses the mechanism of dependency checking to compare each
module with the source or intermediate files it derives from. make only
rebuilds a module if one or more of these prerequisite files, called dependency
files, has changed since the module was last built.

To determine whether a derived file is out of date with respect to its sources,
make compares the modification time of the (existing) module with that of its
dependency file. If the module is missing, or if it is older than the dependency
file, make considers it to be out of date, and issues the commands necessary to
rebuild it. A module can be treated as out of date if the commands used to
build it have changed.

Because make does a complete dependency scan, changes to a source file are
consistently propagated through any number of intermediate files or
processing steps. This lets you specify a hierarchy of steps in a top to bottom
fashion.

You can think of a makefile as a recipe. make reads the recipe, decides which
steps need to be performed, and executes only those steps that are required to
produce the finished module. Each file to build, or step to perform, is called a
target. The makefile entry for a target contains its name, a list of targets on
which it depends, and a list of commands for building it.

The list of commands is called a rule. make treats dependencies as prerequisite
targets, and updates them (if necessary) before processing its current target.
The rule for a target need not always produce a file, but if it does, the file for

make Utility 145

4

which the target is named is referred to as the target file. Each file from which
a target is derived (for example, that the target depends on) is called a
dependency file.

 If the rule for a target produces no file by that name, make performs the rule
and considers the target to be up-to-date for the remainder of the run.

make assumes that only it will make changes to files being processed during
the current run. If a source file is changed by another process while make is
running, the files it produces may be in an inconsistent state.

Writing a Simple Makefile

The basic format for a makefile target entry is shown in the following figure:

Figure 4-1 Makefile Target Entry Format

In the first line, the list of target names is terminated by a colon. This, in turn,
is followed by the dependency list if there is one. If several targets are listed,
this indicates that each such target is to be built independently using the rule
supplied.

Subsequent lines that start with a TAB are taken as the command lines that
comprise the target rule. A common error is to use SPACE characters instead
of the leading TAB

Lines that start with a # are treated as comments up until the next (unescaped)
NEWLINE and do not terminate the target entry. The target entry is
terminated by the next non-empty line that begins with a character other than
TAB or #, or by the end of the file.

A trivial makefile might consist of just one target shown in the following
figure:

Figure 4-2 A Trivial Makefile

target . . . : [dependency . . .]
[command]
. . .

test:
ls test
touch test

146 Programming Utilities Guide—November 1995

4

When you run make with no arguments, it searches first for a file named
makefile , or if there is no file by that name, Makefile . If either of these files
is under SCCS control, make checks the makefile against its history file. If it is
out of date, make extracts the latest version.

If make finds a makefile, it begins the dependency check with the first target
entry in that file. Otherwise you must list the targets to build as arguments on
the command line. make displays each command it runs while building its
targets.

Because the file test was not present (and therefore out of date), make
performed the rule in its target entry. If you run make a second time, it issues
a message indicating that the target is now up to date and skips the rule:

Line breaks within a rule are significant in that each command line is
performed by a separate process or shell.

This means that a rule such as:

behaves differently than you might expect, as shown below.

$ make
ls test
test not found
touch test
$ ls test
test

$ make
‘test’ is up to date.

test:
cd /tmp
pwd

$ make test
cd /tmp
pwd
/usr/tutorial/waite/arcana/minor/pentangles

make invokes a Bourne
shell to process a
command line if that line
contains any shell
metacharacters, such as a
semicolon (;), redirection
symbols (<, >, >>, |),
substitution symbols (*, ?,
,[] $, =), or quotes, escapes
or comments (", ’, ‘, \, #,
etc.:), If a shell isn’t
required to parse the
command line, make
exec()’s the command
directly.

make Utility 147

4

You can use semicolons to specify a sequence of commands to perform in a
single shell invocation:

Or, you can continue the input line onto the next line in the makefile by
escaping the NEWLINE with a backslash (\). The escaped NEWLINE is
treated as white space by make.

The backslash must be the last character on the line. The semicolon is required
by the shell.

Basic Use of Implicit Rules

When no rule is given for a specified target, make attempts to use an implicit
rule to build it. When make finds a rule for the class of files the target belongs
to, it applies the rule listed in the implicit rule target entry.

In addition to any makefile(s) that you supply, make reads in the default
makefile, /usr/share/lib/make/make.rules , which contains the target
entries for a number of implicit rules, along with other information.1

There are two types of implicit rules. Suffix rules specify a set of commands for
building a file with one suffix from another file with the same base name but a
different suffix. Pattern-matching rules select a rule based on a target and
dependency that match respective wild-card patterns. The implicit rules
provided by default are suffix rules.

In some cases, the use of suffix rules can eliminate the need for writing a
makefile entirely. For instance, to build an object file named functions.o
from a single C source file named functions.c , you could use the command:

1. Implicit rules were hand-coded in earlier versions of make.

test:
cd /tmp ; pwd

test:
cd /tmp ; \
pwd

$ make functions.o
cc -c functions.c -o functions.o

148 Programming Utilities Guide—November 1995

4

This would work equally well for building the object file nonesuch.o from
the source file nonesuch.c .

To build an executable file named functions (with a null suffix) from
functions.c , you need only type the command:

The rule for building a .o file from a .c file is called the .c.o (pronounced
“dot-see-dot-oh”) suffix rule. The rule for building an executable program
from a .c file is called the .c rule. The complete set of default suffix rules is
listed in Table 4-2 on page 174.

Processing Dependencies

Once make begins, it processes targets as it encounters them in its depth-first
dependency scan. For example, with the following makefile :

$ make functions
cc -o functions functions.c

batch: a b
touch batch

b:
touch b

a:
touch a

c:
echo "you won’t see me"

make Utility 149

4

make starts with the target batch . Since batch has some dependencies that
haven’t been checked, namely a and b, make defers batch until after it has
checked them against any dependencies they might have.

Since a has no dependencies, make processes it; if the file is not present, make
performs the rule in its target entry.

Next, make works its way back up to the parent target batch . Since there is
still an unchecked dependency b, make descends to b and checks it.

b also has no dependencies, so make performs its rule:

$ make
touch a
...

...
touch b
...

batch

a b

batch

a b

150 Programming Utilities Guide—November 1995

4

Finally, now that all of the dependencies for batch have been checked and
built (if needed), make checks batch .

Since it rebuilt at least one of the dependencies for batch , make assumes that
batch is out of date and rebuilds it; if a or b had not been built in the current
make run, but were present in the directory and newer than batch , make’s
time stamp comparison would also result in batch being rebuilt:

Target entries that aren’t encountered in a dependency scan are not processed.
Although there is a target entry for c in the makefile, make does not encounter
it while performing the dependency scan for batch , so its rule is not
performed. You can select an alternate starting target like c by entering it as
an argument to the make command.

In the next example, the batch target produces no file. Instead, it is used as a
label to group a set of targets.

...
touch batch

batch: a b c
a: a1 a2

touch a
b:

touch b
c:

touch c
a1:

touch a1
a2:

touch a2

batch

make Utility 151

4

In this case, the targets are checked and processed, as shown in the following
diagram:

Essentially, make attempts to:

1. Check batch for dependencies and notes that there are three, and so defers
it.

2. Check a, the first dependency, and notes that it has two dependencies of its
own. Continuing in like fashion, make:

a. Checks a1 , and if necessary, rebuilds it.

b. Checks a2 , and if necessary, rebuilds it.

3. Determines whether to build a.

4. Checks b and rebuilds it if need be.

5. Checks and rebuilds c if needed.

6. After traversing its dependency tree, make checks and processes the
topmost target, batch . If batch contained a rule, make would perform
that rule. Since batch has no rule, make performs no action, but notes that
batch has been rebuilt; any targets depending on batch would also be
rebuilt.

batch

a b c

a1 a2

152 Programming Utilities Guide—November 1995

4

Null Rules

If a target entry contains no rule, make attempts to select an implicit rule to
build it. If make cannot find an appropriate implicit rule and there is no SCCS
history from which to retrieve it, make concludes that the target has no
corresponding file, and regards the missing rule as a null rule. With this
makefile:

make performs the rule for making haste , even if a file by that name is up to
date:

Special Targets

make has several built-in special targets that perform special functions. For
example, the .PRECIOUS special target directs make to preserve library files
when make is interrupted.

Special targets:

• begin with a period (.)
• have no dependencies
• can appear anywhere in a makefile

Table 4-1 on page 153 includes a list of special targets.

Unknown Targets

If a target is named either on the command line or in a dependency list, and it

• is not a file present in the working directory

• has no target or dependency entry

• does not belong to a class of files for which an implicit rule is defined

haste: FORCE
echo "haste makes waste"

FORCE:

$ touch haste
$ make haste
echo "haste makes waste"
haste makes waste

You can use a dependency
with a null rule to force the
target rule to be executed.
The conventional name for
such a dependency is
FORCE.

make Utility 153

4

• has no SCCS history file, and

• there is no rule specified for the .DEFAULT special target

make stops processing and issues an error message.1

Duplicate Targets

Targets may appear more than once in a makefile. For example,

is the same as

However, many people feel that it’s preferable to have a target appear only
once, for ease of reading.

Reserved make Words

The words in the following table are reserved by make:

1. However, if the -k option is in effect, make will continue with other targets that do not depend on the one
in which the error occurred.

$ make believe
make: Fatal error: Don’t know how to make target ‘believe’.

foo: dep_1
foo: dep_2
foo:

touch foo

foo: dep_1 dep_2
touch foo

Table 4-1 Reserved make Words

.BUILT_LAST_MAKE_RUN .DEFAULT .DERIVED_SRC

.DONE .IGNORE .INIT

.KEEP_STATE .MAKE_VERSION .NO_PARALLEL

.PRECIOUS .RECURSIVE .SCCS_GET

.SILENT .SUFFIXES .WAIT

154 Programming Utilities Guide—November 1995

4

Running Commands Silently

You can inhibit the display of a command line within a rule by inserting an @
as the first character on that line. For example, the following target:

produces:

If you want to inhibit the display of commands during a particular make run,
you can use the –s option. If you want to inhibit the display of all command
lines in every run, add the special target .SILENT to your makefile.

Special-function targets begin with a dot (.). Target names that begin with a
dot are never used as the starting target, unless specifically requested as an
argument on the command line. make normally issues an error message and
stops when a command returns a nonzero exit code. For example, if you have
the target:

FORCE HOST_ARCH HOST_MACH

KEEP_STATE MAKE MAKEFLAGS

MFLAGS TARGET_ARCH TARGET_MACH

VERSION_1.0 VIRTUAL_ROOT VPATH

quiet:
@echo you only see me once

$ make quiet
you only see me once

.SILENT:
quiet:

echo you only see me once

rmxyz:
rm xyz

Table 4-1 Reserved make Words

make Utility 155

4

and there is no file named xyz , make halts after rm returns its exit status.

To continue processing regardless of the command exit code, use a dash
character (-) as the first non-TAB character:

In this case you get a warning message indicating the exit code make received:

Although it is generally ill-advised to do so, you can have make ignore error
codes entirely with the -i option. You can also have make ignore exit codes
when processing a given makefile, by including the .IGNORE special target,
though this too should be avoided.

If you are processing a list of targets, and you want make to continue with the
next target on the list rather than stopping entirely after encountering a non-
zero return code, use the –k option.

Automatic Retrieval of SCCS Files

When source files are named in the dependency list, make treats them just like
any other target. Because the source file is presumed to be present in the
directory, there is no need to add an entry for it to the makefile.

$ ls xyz
xyz not found
$ make rmxyz
rm xyz
rm: xyz: No such file or directory
*** Error code 1
make: Fatal error: Command failed for target ‘rmxyz’

rmxyz:
-rm xyz

$ make rmxyz
rm xyz
rm: xyz: No such file or directory
*** Error code 1 (ignored)

If - and @ are the first two
such characters, both take
effect.

Unless you are testing a
makefile, it is usually a bad
idea to ignore non-zero
error codes on a global
basis.

156 Programming Utilities Guide—November 1995

4

When a target has no dependencies, but is present in the directory, make
assumes that file is up to date. If, however, a source file is under SCCS control,
make does some additional checking to assure that the source file is up to date.
If the file is missing, or if the history file is newer, make automatically issues
the following command to retrieve the most recent version:1

However, if the source file is writable by anyone, make does not retrieve a new
version.

make only checks the time stamp of the retrieved version against the time
stamp of the history file. It does not check to see if the version present in the
directory is the most recently checked-in version. So, if someone has done a
get by date (sccs get -c), make would not discover this fact, and you
might unwittingly build an older version of the program or object file. To be
absolutely sure that you are compiling the latest version, you can precede
make with an sccs get SCCS ‘ or an sccs clean command.

Suppressing SCCS Retrieval

The command for retrieving SCCS files is specified in the rule for the
.SCCS_GET special target in the default makefile. To suppress automatic
retrieval, simply add an entry for this target with an empty rule to your
makefile:

1. With other versions of make, automatic sccs retrieval was a feature only of certain implicit rules. Also,
unlike earlier versions, make only looks for history (s.)files in the sccs directory; history files in the current
working directory are ignored.

sccs get -s filename -Gfilename

$ ls SCCS/*
SCCS/s.functions.c
$ rm -f functions.c
$ make functions
sccs get -s functions.c -Gfunctions.c
cc -o functions functions.c

Suppress sccs retrieval.
.SCCS_GET:

make Utility 157

4

Passing Parameters: Simple make Macros

The make macro substitution comes in handy when you want to pass
parameters to command lines within a makefile. Suppose that you want to
compile an optimized version of the program program using cc ’s -O option.
You can lend this sort of flexibility to your makefile by adding a macro reference,
such as the following example, to the target for functions :

The macro reference acts as a placeholder for a value that you define, either in
the makefile itself, or as an argument to the make command. If you then
supply make with a definition for the CFLAGS macro, make replaces its
references with the value you have defined.

If a macro is undefined, make expands its references to an empty string.

You can also include macro definitions in the makefile itself. A typical use is to
set CFLAGS to -O , so that make produces optimized object code by default:

A macro definition supplied as a command line argument to make overrides
other definitions in the makefile.1 For instance, to compile functions for
debugging with dbx or dbxtool , you can define the value of CFLAGS to be
-g on the command line:

1. Conditionally defined macros are an exception to this. Refer to “Conditional Macro Definitions” on
page 187 for details.

functions: functions.c
cc $(CFLAGS) -o functions functions.c

$ rm functions
$ make functions "CFLAGS= -O"
cc -O -o functions functions.c

CFLAGS= -O
functions: functions.c

cc $(CFLAGS) -o functions functions.c

$ rm functions
$ make CFLAGS=-g
cc -g -o functions functions.c

There is a reference to the
CFLAGS macro in both the
.c and the .c.o implicit
rules.
The command-line
definition must be a single
argument, hence the
quotes in this example.

158 Programming Utilities Guide—November 1995

4

To compile a profiling variant for use with gprof , supply both -O and -pg in
the value for CFLAGS.

A macro reference must include parentheses when the name of the macro is
longer than one character. If the macro name is only one character, the
parentheses can be omitted. You can use curly braces, { and } , instead of
parentheses. For example, ‘$X’, ‘$(X) ’, and ‘${X} ’ are equivalent.

.KEEP_STATE and Command Dependency Checking

In addition to the normal dependency checking, you can use the special target
.KEEP_STATE to activate command dependency checking. When activated,
make not only checks each target file against its dependency files, it compares
each command line in the rule with those it ran the last time the target was
built. This information is stored in the .make.state file in the current
directory (see page 159).

With the makefile:

the following commands work as shown:

This ensures you that make compiles a program with the options you want,
even if a different variant is present and otherwise up to date.

The first make run with .KEEP_STATE in effect recompiles all targets in order
to gather and record the necessary information.

The KEEP_STATE variable, when imported from the environment, has the
same effect as the .KEEP_STATE target.

CFLAGS= -O
.KEEP_STATE:

functions: functions.c
cc -o functions functions.c

$ make
cc -O -o functions functions.c
$ make CFLAGS=-g
cc -g -o functions functions.c
$ make "CFLAGS= -O -pg"
cc -O -pg -o functions functions.c

make Utility 159

4

Suppressing or Forcing Command Dependency Checking for
Selected Lines

To suppress command dependency checking for a given command line, insert
a question mark as the first character after the TAB.

Command dependency checking is automatically suppressed for lines
containing the dynamic macro $? . This macro stands for the list of
dependencies that are newer than the current target, and can be expected to
differ between any two make runs.1

 To force make to perform command dependency checking on a line containing
this macro, prefix the command line with a ! character (following the TAB).

The State File

When .KEEP_STATE is in effect, make writes out a state file named
.make.state , in the current directory. This file lists all targets that have ever
been processed while .KEEP_STATE has been in effect, along with the rules to
build them, in makefile format. In order to assure that this state file is
maintained consistently, once you have added .KEEP_STATE to a makefile, it
is recommended that you leave it in effect.2

.KEEP_STATE and Hidden Dependencies

When a C source file contains #include directives for interpolating headers,
the target depends just as much on those headers as it does on the sources that
include them. Because such headers may not be listed explicitly as sources in
the compilation command line, they are called hidden dependencies. When
.KEEP_STATE is in effect, make receives a report from the various compilers
and compilation preprocessors indicating which hidden dependency files were
interpolated for each target.

1. See “Implicit Rules and Dynamic Macros” on page 168 for more information.

2. Since this target is ignored in earlier versions of make, it does not introduce any compatibility problems.
Other versions simply treat it as a superfluous target that no targets depend on, with an empty rule and no
dependencies of its own. Since it starts with a dot, it is not used as the starting target.

160 Programming Utilities Guide—November 1995

4

It adds this information to the dependency list in the state file. In subsequent
runs, these additional dependencies are processed just like regular
dependencies. This feature automatically maintains the hidden dependency
list for each target; it insures that the dependency list for each target is always
accurate and up to date. It also eliminates the need for the complicated
schemes found in some earlier makefiles to generate complete dependency
lists.

A slight inconvenience can arise the first time make processes a target with
hidden dependencies, because there is as yet no record of them in the state file.
If a header is missing, and make has no record of it, make won’t know that it
needs to retrieve it from SCCS before compiling the target.

Even though there is an SCCS history file, the current version won’t be
retrieved because it doesn’t yet appear in a dependency list or the state file.
When the C preprocessor attempts to interpolate the header, it won’t find it;
the compilation fails.

Supposing that a #include directive for interpolating the header hidden.h
is added to functions.c , and that the file hidden.h is somehow removed
before the subsequent make run. The results would be:

A simple workaround might be to make sure that the new header is extant
before you run make. Or, if the compilation should fail (and assuming the
header is under SCCS), you could manually retrieve it from SCCS:

In all future cases, should the header turn up missing, make will know to build
or retrieve it for you because it will be listed in the state file as a hidden
dependency.

$ rm -f hidden.h
$ make functions
cc -O -o functions functions.c
functions.c: 2: Can’t find include file hidden.h
make: Fatal error: Command failed for target ‘functions’

$ sccs get hidden.h
1.1
10 lines
$ make functions
cc -O -o functions functions.c

make Utility 161

4

Note that with hidden dependency checking, the $? macro includes the names
of hidden dependency files. This may cause unexpected behavior in existing
makefiles that rely on $? .

.INIT and Hidden Dependencies

The problem with both of these approaches is that the first make in the local
directory may fail due to a random condition in some other (include) directory.
This might entail forcing someone to monitor a (first) build. To avoid this, you
can use the .INIT target to retrieve known hidden dependencies files from
SCCS. .INIT is a special target that, along with its dependencies, is built at
the start of the make run. To be sure that hidden.h is present, you could add
the following line to your makefile

Displaying Information About a make Run

Running make with the -n option displays the commands make is to perform,
without executing them. This comes in handy when verifying that the macros
in a makefile are expanded as expected. With the following makefile:

make -n displays:

Note – There is an exception however. make executes any command line
containing a reference to the MAKE macro (i.e., $(MAKE) or ${MAKE}),
regardless of -n . It would be a very bad idea to include a line such as the
following in your makefile: $(MAKE) ; rm -f *

.INIT: hidden.h

CFLAGS= -O

.KEEP_STATE:

functions: main.o data.o
$(LINK.c) -o functions main.o data.o

$ make -n
cc -O -c main.c
cc -O -c data.c
cc -O -o functions main.o data.o

162 Programming Utilities Guide—November 1995

4

make has some other options that you can use to keep abreast of what it’s
doing and why:

–d
Displays the criteria by which make determines that a target is be out-of-
date. Unlike –n , it does process targets, as shown in the following example.
This options also displays the value imported from the environment (null by
default) for the MAKEFLAGS macro, which is described in detail in a later
section.

-dd
This option displays all dependencies make checks, including any hidden
dependencies, in vast detail.

–D
Displays the text of the makefile as it is read.

–DD
Displays the makefile and the default makefile, the state file, and hidden
dependency reports for the current make run.

–f makefile
make uses the named makefile (instead of makefile or Makefile).

-K makestatefile
If makestatefile is a directory, make will write the KEEP_STATE information
into a .make.state file in that directory. If makestatefile is a file, make will
write the KEEP_STATE information into the makestatefile.

$ make -d
MAKEFLAGS value:

Building main.o using suffix rule for .c.o because it is out
of date relative to main.c
cc -O -c main.c

Building functions because it is out of date relative to
main.o

Building data.o using suffix rule for .c.o because it is out
of date relative to data.c
cc -O -c data.c

Building functions because it is out of date relative to
data.o
cc -O -o functions main.o data.o

Setting an environment
variable named
MAKEFLAGS can lead to
complications, since make
adds its value to the list of
options. To prevent puzzling
surprises, avoid setting this
variable.

Several –f options indicate
the concatenation of the
named makefiles.

make Utility 163

4

–p
Displays the complete set of macro definitions and target entries.

–P
Displays the complete dependency tree for the default target or the specified
target.

An option that can be used to shortcut make processing is the –t option.
When run with –t , make does not perform the rule for building a target.
Instead it uses touch to alter the modification time for each target that it
encounters in the dependency scan. It also updates the state file to reflect what
it built. This often creates more problems than it supposedly solves, and it is
recommended that you exercise extreme caution if you do use it. Note that if
there is no file corresponding to a target entry, touch creates it.

The following is one example of how not to use make -t . Suppose you have
a target named clean that performed housekeeping in the directory by
removing target files produced by make:

If you give the nonsensical command:

you then have to remove the file clean before your housekeeping target can
work once again.

-q
Invokes the question mode, and returns a zero or non-zero status code,
depending on whether or not the target file is up-to-date.

-r
Suppresses reading in of the default makefile
/usr/share/lib/make/make.rules.

-S
Undoes the effect of the -K option by stopping processing when a non-zero
exit status is returned by a command.

clean:
rm functions main.o data.o

$ make -t clean
touch clean
$ make clean
‘clean’ is up to date.

Due to its potentially
troublesome side effects, it is
recommended that you not
use the -t (touch) option for
make.

clean is the conventional
name for a target that
removes derived files. It is
useful when you want to start
a build from scratch.

164 Programming Utilities Guide—November 1995

4

Using make to Compile Programs
In previous examples you have seen how to compile a simple C program from
a single source file, using both explicit target entries and implicit rules. Most C
programs, however, are compiled from several source files. Many include
library routines, either from one of the standard system libraries or from a
user-supplied library.

Although it may be easier to recompile and link a single-source program using
a single cc command, it is usually more convenient to compile programs with
multiple sources in stages—first, by compiling each source file into a separate
object (.o) file, and then by linking the object files to form an executable
(a.out) file. This method requires more disk space, but subsequent
(repetitive) recompilations need be performed only on those object files for
which the sources have changed, which saves time.

A Simple Makefile

The following makefile is not all that elegant, but it does the job.

Figure 4-3 Simple Makefile for Compiling C Sources: Everything Explicit

In this example, make produces the object files main.o and data.o , and the
executable file functions :

Simple makefile for compiling a program from
two C source files.

.KEEP_STATE:

functions: main.o data.o
cc -O -o functions main.o data.o

main.o: main.c
cc -O -c main.c

data.o: data.c
cc -O -c data.c

clean:
rm functions main.o data.o

$ make
cc -o functions main.o data.o
cc -O -c main.c
cc -O -c data.c

make Utility 165

4

Using make’s Predefined Macros

The next example performs exactly the same function, but demonstrates the
use of make’s predefined macros for the indicated compilation commands.
Using predefined macros eliminates the need to edit makefiles when the
underlying compilation environment changes. Macros also provide access to
the CFLAGS macro (and other FLAGS macros) for supplying compiler options
from the command line. Predefined macros are also used extensively within
make’s implicit rules. The predefined macros in the following makefile are
listed below.1 They are generally useful for compiling C programs.

COMPILE.c
The cc command line; composed of the values of CC, CFLAGS, and
CPPFLAGS, as follows, along with the –c option.

The root of the macro name, COMPILE, is a convention used to indicate that
the macro stands for a compilation command line (to generate an object, or
.o file). The .c suffix is a mnemonic device to indicate that the command
line applies to .c (C source) files.

LINK.c
The basic cc command line to link object files, such as COMPILE.c , but
without the -c option and with a reference to the LDFLAGS macro:

CC
The value cc . (You can redefine the value to be the path name of an
alternate C compiler.)

CFLAGS
Options for the cc command; none by default.

CPPFLAGS
Options for cpp ; none by default.

1. Predefined macros are used more extensively than in earlier versions of make. Not all of the predefined
macros shown here are available with earlier versions.

COMPILE.c=$(CC) $(CFLAGS) $(CPPFLAGS) -c

LINK.c=$(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS)

Macro names that end in the
string FLAGS pass options to a
related compiler-command
macro. It is good practice to use
these macros for consistency
and portability. It is also good
practice to note the desired
default values for them in the
makefile.

The complete list of all
predefined macros is shown in
Table 4-3 on page 178.

166 Programming Utilities Guide—November 1995

4

LDFLAGS
Options for the link editor, ld ; none by default.

Figure 4-4 Makefile for Compiling C Sources Using Predefined Macros

Using Implicit Rules to Simplify a Makefile: Suffix Rules

Since the command lines for compiling main.o and data.o from their .c files
are now functionally equivalent to the .c.o suffix rule, their target entries are
redundant; make performs the same compilation whether they appear in the
makefile or not. This next version of the makefile eliminates them, relying on
the .c.o rule to compile the individual object files.

Figure 4-5 Makefile for Compiling C Sources Using Suffix Rules

As make processes the dependencies main.o and data.o , it finds no target
entries for them. It checks for an appropriate implicit rule to apply. In this
case, make selects the .c.o rule for building a .o file from a dependency file
that has the same base name and a .c suffix.

Makefile for compiling two C sources
CFLAGS= -O
.KEEP_STATE:

functions: main.o data.o
$(LINK.c) -o functions main.o data.o

main.o: main.c
$(COMPILE.c) main.c

data.o: data.c
$(COMPILE.c) data.c

clean:
rm functions main.o data.o

Makefile for a program from two C sources
using suffix rules.
CFLAGS= -O

.KEEP_STATE:

functions: main.o data.o
$(LINK.c) -o functions main.o data.o

clean:
rm functions main.o data.o

A complete list of suffix rules
appears in Table 4-2 on page
174.

make Utility 167

4

First, make scans its suffixes list to see if the suffix for the target file appears.
In the case of main.o , .o appears in the list. Next, make checks for a suffix
rule to build it with, and a dependency file to build it from. The dependency
file has the same base name as the target, but a different suffix. In this case,
while checking the .c.o rule, make finds a dependency file named main.c , so
it uses that rule.

The suffixes list is a special-function target named .SUFFIXES . The various
suffixes are included in the definition for the SUFFIXES macro; the
dependency list for .SUFFIXES is given as a reference to this macro:

Figure 4-6 The Standard Suffixes List

The following example shows a makefile for compiling a whole set of
executable programs, each having just one source file. Each executable is to be
built from a source file that has the same basename, and the .c suffix
appended. For instance demo_1 is built from demo_1.c .

In this case, make does not find a suffix match for any of the targets (through
demo_5). So, it treats each as if it had a null suffix. It then searches for a suffix
rule and dependency file with a valid suffix. In the case of demo_2, it would
find a file named demo_2.c . Since there is a target entry for a .c rule, along
with a corresponding .c file, make uses that rule to build demo_2 from
demo_2.c .

To prevent ambiguity when a target with a null suffix has an explicit
dependency, make does not build it using a suffix rule. This makefile

SUFFIXES= .o .c .c~ .cc .cc~ .C .C~ .y .y~ .l .l~ .s .s~ .sh .sh~ .S .S~ .ln \
.h .h~ .f .f~ .F .F~ .mod .mod~ .sym .def .def~ .p .p~ .r .r~ \
.cps .cps~ .Y .Y~ .L .L~

.SUFFIXES: $(SUFFIXES)

Makefile for a set of C programs, one source
per program. The source file names have ".c"
appended.
CFLAGS= -O
.KEEP_STATE:

all: demo_1 demo_2 demo_3 demo_4 demo_5

program: zap
zap:

make uses the order of
appearance in the suffixes list to
determine which dependency
file and suffix rule to use. For
instance, if there were both
main.c and main.s files in the
directory, make would use the
.c.o rule, since .c is ahead of .s
in the list.

Like clean, all is a target name
used by convention. It builds
"all" the targets in its
dependency list. Normally, all is
the first target; make and make
all are usually equivalent.

168 Programming Utilities Guide—November 1995

4

produces no output:

When to Use Explicit Target Entries vs. Implicit Rules

Whenever you build a target from multiple dependency files, you must
provide make with an explicit target entry that contains a rule for doing so.
When building a target from a single dependency file, it is often convenient to
use an implicit rule.

As the previous examples show, make readily compiles a single source file into
a corresponding object file or executable. However, it has no built-in
knowledge about how to link a list of object files into an executable program.
Also, make only compiles those object files that it encounters in its dependency
scan. It needs a starting point—a target for which each object file in the list
(and ultimately, each source file) is a dependency.

So, for a target built from multiple dependency files, make needs an explicit
rule that provides a collating order, along with a dependency list that accounts
for its dependency files.

If each of those dependency files is built from just one source, you can rely on
implicit rules for them.

Implicit Rules and Dynamic Macros

make maintains a set of macros dynamically, on a target-by-target basis. These
macros are used quite extensively, especially in the definitions of implicit rules.
It is important to understand what they mean.

They are:

$@
The name of the current target.

$?
The list of dependencies newer than the target.

$ make program
$

Because they aren’t explicitly
defined in a makefile, the
convention is to document
dynamic macros with the $-sign
prefix attached (in other words,
by showing the macro
reference).

make Utility 169

4

$<
The name of the dependency file, as if selected by make for use with an
implicit rule.

$*
The base name of the current target (the target name stripped of its suffix).

$%
For libraries, the name of the member being processed. See “Building
Object Libraries” on page 180 for more information.

Implicit rules make use of these dynamic macros in order to supply the name
of a target or dependency file to a command line within the rule itself. For
instance, in the .c.o rule, shown in the next example.

$< is replaced by the name of the dependency file (in this case the .c file) for
the current target.

In the .c rule:

$@ is replaced with the name of the current target.

Because values for both the $< and $* macros depend upon the order of
suffixes in the suffixes list, you may get surprising results when you use them
in an explicit target entry. See “Suffix Replacement in Macro References” on
page 183 for a strictly deterministic method for deriving a file name from a
related file name.

Dynamic Macro Modifiers

Dynamic macros can be modified by including F and D in the reference. If the
target being processed is in the form of a pathname, $(@F) indicates the file
name part, while $(@D) indicates the directory part. If there are no /
characters in the target name, then $(@D) is assigned the dot character (.) as
its value. For example, with the target named /tmp/test , $(@D) has the
value /tmp ; $(@F) has the value test .

.c.o:
$(COMPILE.c) $< $(OUTPUT_OPTION)

.c:
$(LINK.c) $< -o $@

The macro OUTPUT_OPTION
has an empty value by default.
While similar to CFLAGS in
function, it is provided as a
separate macro intended for
passing an argument to the -o
compiler option to force
compiler output to a given file
name.

170 Programming Utilities Guide—November 1995

4

Dynamic Macros and the Dependency List: Delayed Macro
References

Dynamic macros are assigned while processing any and all targets. They can
be used within the target rule as is, or in the dependency list by prepending an
additional $ character to the reference. A reference beginning with $$ is called
a delayed reference to a macro. For instance, the entry:

could be used to derive x.o from x.o.BAK , and so forth for y.o and z.o .

Dependency List Read Twice

This technique works because make reads the dependency list twice, once as
part of its initial reading of the entire makefile, and again as it processes target
dependencies. In each pass through the list, it performs macro expansion.
Since the dynamic macros aren’t defined in the initial reading, unless
references to them are delayed until the second pass, they are expanded to null
strings.

The string $$ is a reference to the predefined macro ‘$’. This macro,
conveniently enough, has the value ‘$’; when make resolves it in the initial
reading, the string $$@ is resolved to $@. In dependency scan, when the
resulting $@ macro reference has a value dynamically assigned to it, make
resolves the reference to that value.

Note that make only evaluates the target-name portion of a target entry in the
first pass. A delayed macro reference as a target name will produce incorrect
results. The makefile:

produces the following results.

x.o y.o z.o: $$@.BAK
cp $@.BAK $@

NONE= none
all: $(NONE)

$$(NONE):
@: this target’s name isn’t ‘none’

$ make
make: Fatal error: Don’t know how to make target ‘none’

make Utility 171

4

Rules Evaluated Once

make evaluates the rule portion of a target entry only once per application of
that command, at the time that the rule is executed. Here again, a delayed
reference to a make macro will produce incorrect results.

No Transitive Closure for Suffix Rules

There is no transitive closure for suffix rules. If you had a suffix rule for
building, say, a .Y file from a .X file, and another for building a .Z file from a
.Y file, make would not combine their rules to build a .Z file from a .X file.
You must specify the intermediate steps as targets, although their entries may
have null rules:

In this example trans.Z will be built from trans.Y if it exists. Without the
appearance of trans.Y as a target entry, make might fail with a “don’t know
how to build” error, since there would be no dependency file to use. The target
entry for trans.Y guarantees that make will attempt to build it when it is out
of date or missing. Since no rule is supplied in the makefile, make will use the
appropriate implicit rule, which in this case would be the .X.Y rule. If
trans.X exists (or can be retrieved from SCCS), make rebuilds both trans.Y
and trans.Z as needed.

Adding Suffix Rules

Although make supplies you with a number of useful suffix rules, you can also
add new ones of your own. However, pattern-matching rules, which are
described in the next section, are to be preferred when adding new implicit
rules. Unless you need to write implicit rules that are compatible with earlier
versions of make, you can safely skip the remainder of this section, which
describes the traditional method of adding implicit rules to makefiles.

trans.Z:
trans.Y:

Pattern-matching rules, which
are described in “Pattern-
Matching Rules:An Alternative
to Suffix Rules” on page 173,
are often easier to use than
suffix rules. The procedure for
adding implicit rules is given
here for compatibility with
previous versions of make.

172 Programming Utilities Guide—November 1995

4

Adding a suffix rule is a two-step process. First, you must add the suffixes of
both target and dependency file to the suffixes list by providing them as
dependencies to the .SUFFIXES special target. Because dependency lists
accumulate, you can add suffixes to the list simply by adding another entry for
this target, for example:

Second, you must add a target entry for the suffix rule:

A makefile with these entries can be used to format document source files
containing ms macros (.ms files) into troff output files (.tr files):

Entries in the suffixes list are contained in the SUFFIXES macro. To insert
suffixes at the head of the list, first clear its value by supplying an entry for the
.SUFFIXES target that has no dependencies. This is an exception to the rule
that dependency lists accumulate. You can clear a previous definition for this
target by supplying a target entry with no dependencies and no rule like this:

You can then add another entry containing the new suffixes, followed by a
reference to the SUFFIXES macro, as shown below.

.SUFFIXES: .ms .tr

.ms.tr:
troff -t -ms $< > $@

$ make doc.tr
troff -t -ms doc.ms > doc.tr

.SUFFIXES:

.SUFFIXES:

.SUFFIXES: .ms .tr $(SUFFIXES)

make Utility 173

4

Pattern-Matching Rules:An Alternative to Suffix Rules

A pattern-matching rule is similar to an implicit rule in function. Pattern-
matching rules are easier to write, and more powerful, because you can specify
a relationship between a target and a dependency based on prefixes (including
path names) and suffixes, or both. A pattern-matching rule is a target entry of
the form:

where tp and ts are the optional prefix and suffix in the target name, dp and ds
are the (optional) prefix and suffix in the dependency name, and % is a wild
card that stands for a base name common to both.

If there is no rule for building a target, make searches for a pattern-matching
rule, before checking for a suffix rule. If make can use a pattern-matching rule,
it does so.

If the target entry for a pattern-matching rule contains no rule, make processes
the target file as if it had an explicit target entry with no rule; make therefore
searches for a suffix rule, attempts to retrieve a version of the target file from
SCCS, and finally, treats the target as having a null rule (flagging that target as
updated in the current run).

A pattern-matching rule for formatting a troff source file into a troff
output file looks like:

tp%ts: dp%ds
rule

%.tr: %.ms
troff -t -ms $< > $@

make checks for pattern-
matching rules ahead of suffix
rules. While this allows you to
override the standard implicit
rules, it is not recommended.

174 Programming Utilities Guide—November 1995

4

make’s Default Suffix Rules and Predefined Macros

The following tables show the standard set of suffix rules and predefined
macros supplied to make in the default makefile,
/usr/share/lib/make/make.rules .

Table 4-2 Standard Suffix Rules

Use Suffix Rule Name Command Line(s)

Assembly Files

.s.o $(COMPILE.s) –o $@ $<

.s $(COMPILE.s) –o $@ $<

.s.a

$(COMPILE.s) –o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.S.o $(COMPILE.S) –o $@ $<

.S.a

$(COMPILE.S) –o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

C Files
(.c Rules)

.c $(LINK.c) –o $@ $< $(LDLIBS)

.c.ln $(LINT.c) $(OUTPUT_OPTION) –i $<

.c.o $(COMPILE.c) $(OUTPUT_OPTION) $<

.c.a

$(COMPILE.c) –o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

C++ Files

.cc $(LINK.cc) -o $@ $< $(LDLIBS)

.cc.o $(COMPILE.cc) $(OUTPUT_OPTION) $<

.cc.a

$(COMPILE.cc) -o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

make Utility 175

4

C++ Files
(SVr4 style)

.C $(LINK.C) -o $@ $< $(LDFLAGS) $*.c

.C.o $(COMPILE.C) $<

.C.a

$(COMPILE.C) $<

$(AR) $(ARFLAGS) $@ $*.o

$(RM) -f $*.o

FORTRAN 77 Files

.cc.o $(LINK.f) –o $@ $< $(LDLIBS)

.cc.a

$(COMPILE.f) $(OUTPUT_OPTION) $<

$(COMPILE.f) –o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.F $(LINK.F) –o $@ $< $(LDLIBS)

.F.o $(COMPILE.F) $(OUTPUT_OPTION) $<

.F.a

$(COMPILE.F) –o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

Table 4-2 Standard Suffix Rules (Continued)

Use Suffix Rule Name Command Line(s)

176 Programming Utilities Guide—November 1995

4

lex Files

.l

$(RM) $*.c

$(LEX.l) $< > $*.c

$(LINK.c) –o $@ $*.c $(LDLIBS)

$(RM) $*.c

.l.c
$(RM) $@

$(LEX.l) $< > $@

.l.ln

$(RM) $*.c

$(LEX.l) $< > $*.c

$(LINT.c) –o $@ –i $*.c

$(RM) $*.c

.l.o

$(RM) $*.c

$(LEX.l) $< > $*.c

$(COMPILE.c) –o $@ $*.c

$(RM) $*.c

.L.C $(LEX) $(LFLAGS) $<

.L.o
$(LEX)(LFLAGS) $<

$(COMPILE.C) lex.yy.c

.L.o
rm -f lex.yy.c

mv lex.yy.o $@

Modula 2 Files

.mod $(COMPILE.mod) –o $@ –e $@ $<

.mod.o $(COMPILE.mod) –o $@ $<

.def.sym $(COMPILE.def) –o $@ $<

NeWS .cps.h $(CPS) $(CPSFLAGS) $*.cps

Pascal Files
.p $(LINK.p) –o $@ $< $(LDLIBS)

.p.o $(COMPILE.p) $(OUTPUT_OPTION) $<

Table 4-2 Standard Suffix Rules (Continued)

Use Suffix Rule Name Command Line(s)

make Utility 177

4

Ratfor Files

.r $(LINK.r) –o $@ $< $(LDLIBS)

.r.o $(COMPILE.r) $(OUTPUT_OPTION) $<

.r.a

$(COMPILE.r) –o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

Shell Scripts .sh

$(RM) $@

cat $< >$@

chmod +x $@

yacc Files
(.y.c Rules)

.y

$(YACC.y) $<

$(LINK.c) –o $@ y.tab.c $(LDLIBS)

$(RM) y.tab.c

.y.c
$(YACC.y) $<

mv y.tab.c $@

.y.ln

$(YACC.y) $<

$(LINT.c) –o $@ –i y.tab.c

$(RM) y.tab.c

.y.o

$(YACC.y) $<

$(COMPILE.c) –o $@ y.tab.c

$(RM) y.tab.c

yacc Files
(SVr4)

.Y.C
$(YACC) $(YFLAGS) $<

mv y.tab.c $@

.Y.o

$(YACC) $(YFLAGS) $<

$(COMPILE.c) y.tab.c

rm -f y.tab.c

mv y.tab.o $@

Table 4-2 Standard Suffix Rules (Continued)

Use Suffix Rule Name Command Line(s)

178 Programming Utilities Guide—November 1995

4

Table 4-3 Predefined and Dynamic Macros

Use Macro Default Value

Library
Archives

AR ar

ARFLAGS rv

Assembler
Commands

AS as

ASFLAGS

COMPILE.s $(AS) $(ASFLAGS)

COMPILE.S $(CC) $(ASFLAGS) $(CPPFLAGS) -target -c

C Compiler
Commands

CC cc

CFLAGS

CPPFLAGS

COMPILE.c $(CC) $(CFLAGS) $(CPPFLAGS) –c

LINK.c $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS)

C++ Compiler
Commands1

CCC CC

CCFLAGS

COMPILE.cc $(CCC) $(CCFLAGS) $(CPPFLAGS) –c

LINK.cc $(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS)

C++ SVr4
Compiler
Commands

(C++C) CC

(C++FLAGS) -O

COMPILE.C $(C++C) $(C++FLAGS) $(CPPFLAGS) –c

LINK.C $(C++C) $(C++FLAGS) $(CPPFLAGS) $(LDFLAGS) -target

FORTRAN 77
Compiler
Commands

FC in SVr4 f77

FFLAGS

COMPILE.f $(FC) $(FFLAGS) –c

LINK.f $(FC) $(FFLAGS) $(LDFLAGS)

COMPILE.F $(FC) $(FFLAGS) $(CPPFLAGS) –c

LINK.F $(FC) $(FFLAGS) $(CPPFLAGS) $(LDFLAGS)

make Utility 179

4

Link Editor
Command

LD ld

LDFLAGS

lex
Command

LEX lex

LFLAGS

LEX.l $(LEX) $(LFLAGS) –t

lint
Command

LINT lint

LINTFLAGS

LINT.c $(LINT) $(LINTFLAGS) $(CPPFLAGS)

Modula 2
Commands

M2C m2c

M2FLAGS

MODFLAGS

DEFFLAGS

COMPILE.def $(M2C) $(M2FLAGS) $(DEFFLAGS)

COMPILE.mod $(M2C) $(M2FLAGS) $(MODFLAGS)

NeWS
CPS cps

CPSFLAGS

Pascal
Compiler
Commands

PC pc

PFLAGS

COMPILE.p $(PC) $(PFLAGS) $(CPPFLAGS) –c

LINK.p $(PC) $(PFLAGS) $(CPPFLAGS) $(LDFLAGS)

Ratfor
Compilation
Commands

RFLAGS

COMPILE.r $(FC) $(FFLAGS) $(RFLAGS) –c

LINK.r $(FC) $(FFLAGS) $(RFLAGS) $(LDFLAGS)

rm
Command

RM rm -f

Table 4-3 Predefined and Dynamic Macros (Continued)

Use Macro Default Value

180 Programming Utilities Guide—November 1995

4

Building Object Libraries

Libraries, Members, and Symbols

An object library is a set of object files contained in an ar library archive.1

Various languages make use of object libraries to store compiled functions of
general utility, such as those in the C library.

ar reads in a set of one or more files to create a library. Each member contains
the text of one file, preceded by a header. The member header contains
information from the file directory entry, including the modification time. This
allows make to treat the library member as a separate entity for dependency
checking.

When you compile a program that uses functions from an object library
(specifying the proper library either by filename, or with the -l option to cc),
the link editor selects and links with the library member that contains a needed
symbol.

1. For backward compatibility, the C++ macros have alternate forms. For C++C , you can instead use CCC; instead of C++FLAGS, you can use CCFLAGS; for
COMPILE.C, you can use COMPILE.cc ; and LINK.cc can be substituted for LINK.C . Note that these alternate forms will disappear for future releases.

1. See ar(1) and lorder(1) in the SunOS Reference Manual for details about library archive files.

yacc
Command

YACC yacc

YFLAGS

YACC.y $(YACC) $(YFLAGS)

Suffixes
List

SUFFIXES
.o .c .c~ .cc .cc~ .C .C~ .y .y~ .l .l~ .s .s~ .sh .sh~ .S
.S~ .ln .h .h~ .f .f~ .F .F~ .mod .mod~ .sym .def .def~ .p
.p~ .r .r~ .cps .cps~ .Y .Y~ .L .L~

SCCS get
Command

.SCCS_GET sccs $(SCCSFLAGS) get $(SCCSGETFLAGS) $@ -G$@

SCCSGETFLAGS -s

Table 4-3 Predefined and Dynamic Macros (Continued)

Use Macro Default Value

make Utility 181

4

You can use ar to generate a symbol table for a library of object files.
ld requires this table in order to provide random access to symbols within the
library—to locate and link object files in which functions are defined. You can
also use lorder and tsort ahead of time to put members in calling order
within the library. (See ar(1) and lorder (1) for details.) For very large
libraries, it is a good idea to do both.

Library Members and Dependency Checking

make recognizes a target or dependency of the form:

lib.a(member . . .)

as a reference to a library member, or a space-separated list of members.1 In
this version of make, all members in a parenthesized list are processed. For
example, the following target entry indicates that the library named librpn.a
is built from members named stacks.o and fifos.o . The pattern-matching
rule indicates that each member depends on a corresponding object file, and
that object file is built from its corresponding source file using an implicit rule.

When used with library-member notation, the dynamic macro $? contains the
list of files that are newer than their corresponding members:

1. Earlier versions of make recognize this notation. However, only the first item in a parenthesized list of
members was processed.

librpn.a: librpn.a (stacks.o fifos.o)
ar rv $@ $?

 $@
librpn.a (%.o): %.o

@true

$ make
cc -c stacks.c
cc -c fifos.c
ar rv librpn.a stacks.o fifos.o
a - stacks.o
a - fifos.o

182 Programming Utilities Guide—November 1995

4

Libraries and the $%Dynamic Macro

The $% dynamic macro is provided specifically for use with libraries. When a
library member is the target, the member name is assigned to the $% macro.
For instance, given the target libx.a(demo.o) the value of $% would be
demo.o .

.PRECIOUS: Preserving Libraries Against Removal due to
Interrupts

Normally, if you interrupt make in the middle of a target, the target file is
removed. For individual files this is a good thing, otherwise incomplete files
with brand new modification times might be left in the directory. For libraries
that consist of several members, the story is different. It is often better to leave
the library intact, even if one of the members is still out-of-date. This is
especially true for large libraries, especially since a subsequent make run will
pick up where the previous one left off—by processing the object file or
member whose processing was interrupted.

.PRECIOUS is a special target that is used to indicate which files should be
preserved against removal on interrupts; make does not remove targets that
are listed as its dependencies. If you add the line:

to the makefile shown above, run make, and interrupt the processing of
librpn.a , the library is preserved.

Using make to Maintain Libraries and Programs
In previous sections you learned how make can help compile simple programs
and build simple libraries. This section describes some of make’s more
advanced features for maintaining complex programs and libraries.

More about Macros

Macro definitions can appear on any line in a makefile; they can be used to
abbreviate long target lists or expressions, or as shorthand to replace long
strings that would otherwise have to be repeated.

.PRECIOUS: librpn.a

make Utility 183

4

You can even use macros to derive lists of object files from a list of source files.
Macro names are allocated as the makefile is read in; the value a particular
macro reference takes depends upon the most recent value assigned.1 With the
exception of conditional and dynamic macros, make assigns values in the order
the definitions appear.

Embedded Macro References

Macro references can be embedded within other references.2

In which case they are expanded from innermost to outermost. With the
following definitions, make will supply the correct symbol definition for (for
example) a Sun-4 system.

Suffix Replacement in Macro References

make provides a mechanism for replacing suffixes of words that occur in the
value of the referred-to macro.3 A reference of the form:

$(macro:old-suffix=new-suffix)

is a suffix replacement macro reference. You can use a such a reference to
express the list of object files in terms of the list of sources:

1. Actually, macro evaluation is a bit more complicated than this. Refer to “Passing Parameters to Nested
make Commands” on page 197 for more information.

2. Not supported in previous versions of make.

3. Although conventional suffixes start with dots, a suffix may consist of any string of characters.

$(CPPFLAGS$(TARGET_ARCH))

CPPFLAGS-sun4 = -DSUN4
CPPFLAGS += $(CPPFLAGS-$(TARGET_ARCH))

OBJECTS= $(SOURCES:.c=.o)

The += assignment appends
the indicated string to any
previous value for the macro.

184 Programming Utilities Guide—November 1995

4

In this case, make replaces all occurrences of the .c suffix in words within the
value with the .o suffix. The substitution is not applied to words that do not
end in the suffix given. The following makefile:

illustrates this very simply:

Using lint with make

For easier debugging and maintenance of your C programs use the lint
tool. lint also checks for C constructs that are not considered portable across
machine architectures. It can be a real help in writing portable C programs.

lint , the C program verifier, is an important tool for forestalling the kinds of
bugs that are most difficult and tedious to track down. These include
uninitialized pointers, parameter-count mismatches in function calls, and non-
portable uses of C constructs. As with the clean target, lint is a target name
used by convention; it is usually a good practice to include it in makefiles that
build C programs. lint produces output files that have been preprocessed
through cpp and its own first (parsing) pass. These files characteristically end
in the .ln suffix1 and can also be derived from the list of sources through
suffix replacement:

A target entry for the lint target might appear as:

1. This may not be true for some versions of lint .

SOURCES= main.c data.c moon
OBJECTS= $(SOURCES:.c=.o)

all:
@echo $(OBJECTS)

$ make
main.o data.o moon

LINTFILES= $(SOURCES:.c=.ln)

lint: $(LINTFILES)
$(LINT.c) $(LINTFILES)

$(LINTFILES):
$(LINT.c) $@ -i

make Utility 185

4

There is an implicit rule for building each .ln file from its corresponding .c
file, so there is no need for target entries for the .ln files. As sources change,
the .ln files are updated whenever you run

make lint

Since the LINT.c predefined macro includes a reference to the LINTFLAGS
macro, it is a good idea to specify the lint options to use by default (none in
this case). Since lint entails the use of cpp , it is a good idea to use
CPPFLAGS, rather than CFLAGS for compilation preprocessing options (such as
-I). The LINT.c macro does not include a reference to CFLAGS.

Also, when you run make clean , you will want to get rid of any .ln files
produced by this target. It is a simple enough matter to add another such
macro reference to a clean target.

Linking with System-Supplied Libraries

The next example shows a makefile that compiles a program that uses the
curses and termlib library packages for screen-oriented cursor motion.

Figure 4-7 Makefile for a C Program with System-Supplied Libraries

Since the link editor resolves undefined symbols as they are encountered, it is
normally a good idea to place library references at the end of the list of files to
link.

Makefile for a C program with curses and termlib.

CFLAGS= -O

.KEEP_STATE:

functions: main.o data.o
$(LINK.c) -o $@ main.o data.o -lcurses -ltermlib

lint: main.ln data.ln
$(LINT.c) main.ln data.ln

main.ln data.ln:
$(LINT.c) $@ -i

clean:
rm -f functions main.o data.o main.ln data.ln

186 Programming Utilities Guide—November 1995

4

This makefile produces:

Compiling Programs for Debugging and Profiling

Compiling programs for debugging or profiling introduces a new twist to the
procedure and to the makefile. These variants are produced from the same
source code, but are built with different options to the C compiler. The cc
option to produce object code that is suitable for debugging is -g . The cc
options that produce code for profiling are -O and -pg .

Since the compilation procedure is the same otherwise, you could give make a
definition for CFLAGS on the command line. Since this definition overrides the
definition in the makefile, and .KEEP_STATE assures any command lines
affected by the change are performed, the following make command produces
the results as presented in this example:

Of course, you may not want to memorize these options or type a complicated
command like this, especially when you can put this information in the
makefile. What is needed is a way to tell make how to produce a debugging or
profiling variant, and some instructions in the makefile that tell it how. One
way to do this might be to add two new target entries, one named debug , and
the other named profile , with the proper compiler options hard-coded into
the command line.

A better way would be to add these targets, but rather than hard-coding their
rules, include instructions to alter the definition of CFLAGS depending upon
which target it starts with. Then, by making each one depend on the existing
target for functions , make could simply make use of its rule, along with the
specified options.

Instead of saying:

make "CFLAGS= -g"

$ make
cc -O -c main.c
cc -O -c data.c
cc -O -o functions main.o data.o -lcurses -ltermlib

$ make "CFLAGS= -O -pg"
cc -O -pg -c main.c
cc -O -pg -c data.c
cc -O -pg -o functions main.o data.o -lcurses -ltermlib

make Utility 187

4

to compile a variant for debugging, you could say:

make debug

The question is, how do you tell make that you want a macro defined one way
for one target (and its dependencies), and another way for a different target?

Conditional Macro Definitions

A conditional macro definition is a line of the form:

target-list := macro = value

which assigns the given value to the indicated macro while make is processing
the target named target-name and its dependencies. The following lines give
CFLAGS an appropriate value for processing each program variant.

Note that when you use a reference to a conditional macro in the dependency
list, that reference must be delayed (by prepending a second $). Otherwise,
make will expand the reference before the correct value has been assigned.
When it encounters a (possibly) incorrect reference of this sort, make issues a
warning.

debug := CFLAGS= -g
profile := CFLAGS= -pg -O

Each word in target-list may
contain one % pattern; make
must know which targets the
definition applies to, so you
can’t use a conditional macro
definition to alter a target name.

188 Programming Utilities Guide—November 1995

4

Compiling Debugging and Profiling Variants

The following makefile produces optimized, debugging, or profiling variants
of a C program, depending on which target you specify (the default is the
optimized variant). Command dependency checking guarantees that the
program and its object files will be recompiled whenever you switch between
variants.

Figure 4-8 Makefile for a C Program with Alternate Debugging and Profiling Variants

The first target entry specifies three targets, starting with all .

all traditionally appears as the first target in makefiles with alternate starting
targets (or those that process a list of targets). Its dependencies are “all”
targets that go into the final build, whatever that may be. In this case, the final
variant is optimized. The target entry also indicates that debug and profile
depend on functions (the value of $(PROGRAM)).

The next two lines contain conditional macro definitions for CFLAGS.

Next comes the target entry for functions . When functions is a
dependency for debug , it is compiled with the -g option.

Makefile for a C program with alternate
debugging and profiling variants.

CFLAGS= -O

.KEEP_STATE:

all debug profile: functions

debug := CFLAGS = -g
profile := CFLAGS = -pg -O

functions: main.o data.o
$(LINK.c) -o $@ main.o data.o -lcurses -ltermlib

lint: main.ln data.ln
$(LINT.c) main.ln data.ln

clean:
rm -f functions main.o data.o main.ln data.ln

Debugging and profiling
variants aren’t normally
considered part of a finished
program.

make Utility 189

4

The next example applies a similar technique to maintaining a C object library.

Figure 4-9 Makefile for a C Library with Alternate Variants

Maintaining Separate Program and Library Variants

The previous two examples are adequate when development, debugging, and
profiling are done in distinct phases. However, they suffer from the drawback
that all object files are recompiled whenever you switch between variants,
which can result in unnecessary delays. The next two examples illustrate how
all three variants can be maintained as separate entities.

To avoid the confusion that might result from having three variants of each
object file in the same directory, you can place the debugging and profiling
object files and executables in subdirectories. However, this requires a
technique for adding the name of the subdirectory as a prefix to each entry in
the list of object files.

Makefile for a C library with alternate variants.

CFLAGS= -O

.KEEP_STATE

.PRECIOUS: libpkg.a

all debug profile: libpkg.a
debug := CFLAGS= -g
profile := CFLAGS= -pg -O

libpkg.a: libpkg.a(calc.o map.o draw.o)
ar rv $@ $?
libpkg.a(%.o): %.o
@true

lint: calc.ln map.ln draw.ln
$(LINT.c) calc.ln map.ln draw.ln

clean:
rm -f libpkg.a calc.o map.o draw.o calc.ln \
map.ln draw.ln

190 Programming Utilities Guide—November 1995

4

Pattern-Replacement Macro References

A pattern-replacement macro reference is similar in form and function to a
suffix replacement reference.1 You can use a pattern-replacement reference to
add or alter a prefix, suffix, or both, to matching words in the value of a macro.
A pattern-replacement reference takes the form:

$(macro: p%s =np%ns)

where p is the existing prefix to replace (if any), s is the existing suffix to
replace (if any), np and ns are the new prefix and new suffix, and % is a wild
card. The pattern replacement is applied to all words in the value that match
‘p%s ’. For instance:

produces:

You may use any number of % wild cards in the right-hand (replacement) side
of the = sign, as needed. The following replacement:

would produce:

1. As with pattern-matching rules, pattern-replacement macro references aren’t available in earlier versions of
make.

SOURCES= old_main.c old_data.c moon
OBJECTS= $(SOURCES:old_%.c=new_%.o)
all:

@echo $(OBJECTS)

$ make
new_main.o new_data.o moon

...
OBJECTS= $(SOURCES:old_%.c=%/%.o)

main/main.o data/data.o moon

make Utility 191

4

Note, however, that pattern-replacement macro references should not appear
in the dependency line of the target entry for a pattern-matching rule. This
produces a conflict, since make cannot tell whether the wild card applies to the
macro, or to the target (or dependency) itself. With the makefile:

it looks as if make should attempt to build x from x.Z . However, the pattern-
matching rule is not recognized; make cannot determine which of the %
characters in the dependency line to use in the pattern-matching rule.

Makefile for a Program with Separate Variants

The following example shows a makefile for a C program with separately
maintained variants. First, the .INIT special target creates the debug_dir
and profile_dir subdirectories (if they don’t already exist), which will
contain the debugging and profiling object files and executables.

The variant executables are made to depend on the object files listed in the
VARIANTS.o macro. This macro is given the value of OBJECTS by default;
later on it is reassigned using a conditional macro definition, at which time
either the debug_dir/ or profile_dir/ prefix is added. Executables in the
subdirectories depend on the object files that are built in those same
subdirectories.

Next, pattern-matching rules are added to indicate that the object files in both
subdirectories depend upon source (.c) files in the working directory. This is
the key step needed to allow all three variants to be built and maintained from
a single set of source files.

OBJECT= .o

x:
x.Z:

@echo correct
%: %$(OBJECT:%o=%Z)

make performs the rule in the
.INIT target just after the
makefile is read.

192 Programming Utilities Guide—November 1995

4

Finally, the clean target has been updated to recursively remove the
debug_dir and profile_dir subdirectories and their contents, which
should be regarded as temporary. This is in keeping with the custom that
derived files are to be built in the same directory as their sources, since the
subdirectories for the variants are considered temporary.

Figure 4-10 Sample Makefile for Separate Debugging and Profiling Program Variants

Simple makefile for maintaining separate debugging and
profiling program variants.

CFLAGS= -O

SOURCES= main.c rest.c
OBJECTS= $(SOURCES:%.c=$(VARIANT)/%.o)
VARIANT= .

functions profile debug: $$(OBJECTS)
$(LINK.c) -o $(VARIANT)/$@ $(OBJECTS)

debug := VARIANT = debug_dir
debug := CFLAGS = -g
profile := VARIANT = profile_dir
profile := CFLAGS = -O -pg

.KEEP_STATE:

.INIT: profile_dir debug_dir
profile_dir debug_dir:

test -d $@ || mkdir $@
$$(VARIANT)/%.o: %.c

$(COMPILE.c) $< -o $@
clean:

rm -r profile_dir debug_dir $(OBJECTS) functions

make Utility 193

4

Makefile for a Library with Separate Variants

The modifications for separate library variants are quite similar:

Figure 4-11 Sample Makefile for Separate Debugging and Profiling Library Variants

While an interesting and useful compilation technique, this method for
maintaining separate variants is a bit complicated. For the sake of clarity, it is
omitted from subsequent examples.

Makefile for maintaining separate library variants.

CFLAGS= -O

SOURCES= main.c rest.c
LIBRARY= lib.a
LSOURCES= fnc.c

OBJECTS= $(SOURCES:%.c=$(VARIANT)/%.o)
VLIBRARY= $(LIBRARY:%.a=$(VARIANT)/%.a)
LOBJECTS= $(LSOURCES:%.c=$(VARIANT)/%.o)
VARIANT= .

program profile debug: $$(OBJECTS) $$(VLIBRARY)
$(LINK.c) -o $(VARIANT)/$@ $<

lib.a debug_dir/lib.a profile_dir/lib.a: $$(LOBJECTS)
ar rv $@ $?

$$(VLIBRARY)($$(VARIANT)%.o): $$(VARIANT)%.o
@true

profile := VARIANT = profile_dir
profile := CFLAGS = -O -pg

debug := VARIANT = debug_dir
debug := CFLAGS = -g

.KEEP_STATE:
profile_dir debug_dir:

test -d $@ || mkdir $@
$$(VARIANT)/%.o: %.c

$(COMPILE.c) $< -o $@

194 Programming Utilities Guide—November 1995

4

Maintaining a Directory of Header Files

The makefile for maintaining an include directory of headers is really quite
simple. Since headers consist of plain text, all that is needed is a target, all ,
that lists them as dependencies. Automatic SCCS retrieval takes care of the
rest. If you use a macro for the list of headers, this same list can be used in
other target entries.

Compiling and Linking with Your Own Libraries

When preparing your own library packages, it makes sense to treat each
library as an entity that is separate from its header(s) and the programs that
use it. Separating programs, libraries, and headers into distinct directories
often makes it easier to prepare makefiles for each type of module. Also, it
clarifies the structure of a software project.

A courteous and necessary convention of makefiles is that they only build files
in the working directory, or in temporary subdirectories. Unless you are using
make specifically to install files into a specific directory on an agreed-upon file
system, it is regarded as very poor form for a makefile to produce output in
another directory.

Building programs that rely on libraries in other directories adds several new
wrinkles to the makefile. Up until now, everything needed has been in the
directory, or else in one of the standard directories that are presumed to be
stable. This is not true for user-supplied libraries that are part of a project
under development.

Since these libraries aren’t built automatically (there is no equivalent to hidden
dependency checking for them), you must supply target entries for them. On
the one hand, you need to ensure the libraries you link with are up to date.

Makefile for maintaining an include directory.

FILES.h= calc.h map.h draw.h

all: $(FILES.h)

clean:
rm -f $(FILES.h)

It is not a good idea to have
things pop up all over the file
system as a result of running
make.

make Utility 195

4

On the other, you need to observe the convention that a makefile should only
maintain files in the local directory. In addition, the makefile should not
contain information duplicated in another.

Nested make Commands

The solution is to use a nested make command, running in the directory the
library resides in, to rebuild it (according to the target entry in the makefile
there).

The library is specified with a path name relative to the current directory. In
general, it is better to use relative path names. If the project is moved to a new
root directory or machine, so long as its structure remains the same relative to
that new root directory, all the target entries will still point to the proper files.

Within the nested make command line, the dynamic macro modifiers F and D
come in handy, as does the MAKE predefined macro. If the target being
processed is in the form of a pathname, $(@F) indicates the filename part,
while $(@D) indicates the directory part. If there are no / characters in the
target name, then $(@D) is assigned the dot character (.) as its value.

The target entry can be rewritten as:

Forcing A Nested make Command to Run

Because it has no dependencies, this target will only run when the file named
../lib/libpkg.a is missing. If the file is a library archive protected by
.PRECIOUS, this could be a rare occurrence. The current make invocation
neither knows nor cares about what that file depends on, nor should it. It is
the nested invocation that decides whether and how to rebuild that file.

First cut entry for target in another directory.

../lib/libpkg.a:
cd ../lib ; $(MAKE) libpkg.a

Second cut.

../lib/libpkg.a:
cd $(@D); $(MAKE) $(@F)

The MAKE macro, which is set
to the value ‘‘make’’ by default,
overrides the -n option. Any
command line in which it is
referred to is executed, even
though -n may be in effect.
Since this macro is used to
invoke make, and since the
make it invokes inherits -n from
the special MAKEFLAGS
macro, make can trace a
hierarchy of nested make
commands with the -n option.

196 Programming Utilities Guide—November 1995

4

After all, just because a file is present in the file system doesn’t mean it is up-
to-date. This means that you have to force the nested make to run, regardless
of the presence of the file, by making it depend on another target with a null
rule (and no extant file):

Figure 4-12 Target Entry for a Nested make Command

In this way, make reliably changes to the correct directory ../lib and builds
libpkg.a if necessary, using instructions from the makefile found in that
directory.

The following makefile uses a nested make command to process local libraries
that a program depends on.

Figure 4-13 Makefile for C Program with User-Supplied Libraries

Reliable target entry for a nested make command.

../lib/libpkg.a: FORCE
cd $(@D); $(MAKE) $(@F)

FORCE:

$ make ../lib/libpkg.a
cd ../lib; make libpkg.a
make libpkg.a
‘libpkg.a’ is up to date.

Makefile for a C program with user-supplied libraries and
nested make commands.

CFLAGS= -O

.KEEP_STATE:

functions: main.o data.o ../lib/libpkg.a
$(LINK.c) -o $@ main.o data.o ../lib/libpkg.a -lcurses -ltermlib

../lib/libpkg.a: FORCE
cd $(@D); $(MAKE) $(@F)

FORCE:

lint: main.ln data.ln
$(LINT.c) main.ln data.ln

clean:
rm -f functions main.o data.o main.ln data.ln

These lines are produced by the
nested make run.

make Utility 197

4

When ../lib/libpkg.a is up to date, this makefile produces:

The MAKEFLAGSMacro

Like the MAKE macro, MAKEFLAGS is also a special case. It contains flags (that
is, single-character options) for the make command. Unlike other FLAGS
macros, the MAKEFLAGS value is a concatenation of flags, without a leading ‘- ’.
For instance the string eiknp would be a recognized value for MAKEFLAGS,
while -f x.mk or macro=value would not.

If the MAKEFLAGS environment variable is set, make runs with the combination
of flags given on the command line and contained in that variable.

The value of MAKEFLAGS is always exported, whether set in the environment
or not, and the options it contains are passed to any nested make commands
(whether invoked by $(MAKE) , make, or /usr/bin/make). This insures that
nested make commands are always passed the options which the parent make
was invoked.

Passing Parameters to Nested make Commands

With the exception of MAKEFLAGS,1make imports variables from the
environment and treats them as if they were defined macros. In turn, make
propagates those environment variables and their values to commands it
invokes, including nested make commands. Macros can also be defined as
command-line arguments, as well as the makefile. This can lead to name-value
conflicts when a macro is defined in more than one place, and make has a
fairly complicated precedence rule for resolving them.

First, conditional macro definitions always take effect within the targets (and
their dependencies) for which they are defined.

1. and SHELL. The SHELL environment variable is neither imported nor exported in this version of make.

$ make
cc -O -c main.c
cc -O -c data.c
cd ../lib; make libpkg.a
‘libpkg.a’ is up to date.
cc -O -o functions main.o data.o ../lib/libpkg.a -lcurses -l termlib

Do not define MAKEFLAGS in
your makefiles.

198 Programming Utilities Guide—November 1995

4

If make is invoked with a macro-definition argument, that definition takes
precedence over definitions given either within the makefile, or imported from
the environment. (This does not necessarily hold true for nested make
commands, however.) Otherwise, if you define (or redefine) a macro within the
makefile, the most recent definition applies. The latest definition normally
overrides the environment. Lastly, if the macro is defined in the default file
and nowhere else, that value is used.

With nested make commands, definitions made in the makefile normally
override the environment, but only for the makefile in which each definition
occurs; the value of the corresponding environment variable is propagated
regardless.

Command-line definitions override both environment and makefile definitions,
but only in the make run for which they are supplied. Although values from
the command line are propagated to nested make commands, they are
overridden both by definitions in the nested makefiles, and by environment
variables imported by the nested make commands.

The -e option behaves more consistently. The environment overrides macro
definitions made in any makefile, and command-line definitions are always
used ahead of definitions in the makefile and the environment. One drawback
to -e is that it introduces a situation in which information that is not contained
in the makefile can be critical to the success or failure of a build.

To avoid these complications, when you want to pass a specific value to an
entire hierarchy of make commands, run make -e in a subshell with the
environment set properly (in the C shell):

% (unsetenv MAKEFLAGS LDFLAGS; setenv CFLAGS -g ; make -e)

make Utility 199

4

If you want to test out the cases yourself, you can use the following makefiles
to illustrate the various cases.

The following is a summary of macro assignment orders:

top.mk

MACRO= "Correct but unexpected."

top:
@echo "------------------------------ top"
echo $(MACRO)
@echo "------------------------------"
$(MAKE) -f nested.mk
@echo "------------------------------ clean"

clean:
rm nested

nested.mk

MACRO=nested

nested:
@echo "------------------------------ nested"
touch nested
echo $(MACRO)
$(MAKE) -f top.mk
$(MAKE) -f top.mk clean

Table 4-4 Summary of Macro Assignment Order

Without -e With -e in effect

top-level make commands:

Conditional definitions Conditional definitions

Make command line Make command line

Latest makefile definition Environment value

Environment value Latest makefile definition

Predefined value, if any Predefined value, if any

nested make commands:

Conditional definitions Conditional definitions

200 Programming Utilities Guide—November 1995

4

Compiling Other Source Files

Compiling and Linking a C Program with Assembly Language
Routines

The makefile in the next example maintains a program with C source files
linked with assembly language routines. There are two varieties of assembly
source files: those that do not contain cpp preprocessor directives, and those
that do.

By convention, assembly source files without preprocessor directives have the
.s suffix. Assembly sources that require preprocessing have the .S suffix.

Assembly sources are assembled to form object files in a fashion similar to that
used to compile C sources. The object files can then be linked into a C
program. make has implicit rules for transforming .s and .S files into object
files, so a target entry for a C program with assembly routines need only
specify how to link the object files. You can use the familiar cc command to
link object files produced by the assembler:

Figure 4-14 Summary of Macro Assignment Order

Note that the .S files are processed using the cc command, which invokes the
C preprocessor cpp , and invokes the assembler.

Make command line Make command line

Latest makefile definition Parent make cmd. line

Environment variable Environment value

Predefined value, if any Latest makefile definition

Parent make cmd. line Predefined value, if any

CFLAGS= -O
ASFLAGS= -O

.KEEP_STATE:

driver: c_driver.o s_routines.o S_routines.o
cc -o driver c_driver.o s_routines.o S_routines.o

Table 4-4 Summary of Macro Assignment Order

ASFLAGS passes options for as
to the .s.o and .S.o implicit
rules.

make Utility 201

4

Compiling lex and yacc Sources

lex and yacc produce C source files as output. Source files for lex end in the
suffix .l , while those for yacc end in .y . When used separately, the
compilation process for each is similar to that used to produce programs from
C sources alone.

There are implicit rules for compiling the lex or yacc sources into .c files;
from there, the files are further processed with the implicit rules for compiling
object files from C sources. When these source files contain no #include
statements, there is no need to keep the .c file, which in this simple case
serves as an intermediate file. In this case one could use .l.o rule, or the
.y.o rule, to produce the object files, and remove the (derived) .c files.

For example, the makefile:

produces the result shown below.

Things get to be a bit more complicated when you use lex and yacc in
combination. In order for the object files to work together properly, the C code
from lex must include a header produced by yacc . It may be necessary to
recompile the C source file produced by lex when the yacc source file
changes. In this case, it is better to retain the intermediate (.c) files produced
by lex , as well as the additional .h file that yacc provides, to avoid running
lex whenever the yacc source changes.

CFLAGS= -O
.KEEP_STATE:

all: scanner parser
scanner: scanner.o
parser: parser.o

$ make -n
rm -f scanner.c
lex -t scanner.l > scanner.c
cc -O -c -o scanner.o scanner.c
rm -f scanner.c
yacc parser.y
cc -O -c -o parser.o y.tab.c
rm -f y.tab.c

202 Programming Utilities Guide—November 1995

4

The following makefile maintains a program built from a lex source, a yacc
source, and a C source file.

Since there is no transitive closure for implicit rules, you must supply a target
entry for scanner.c . This entry bridges the gap between the .l.c implicit
rule and the .c.o implicit rule, so that the dependency list for scanner.o
extends to scanner.l . Since there is no rule in the target entry, scanner.c is
built using the .l.c implicit rule.

The next target entry describes how to produce the yacc intermediate files.
Because there is no implicit rule for producing both the header and the C
source file using yacc -d , a target entry must be supplied that includes a rule
for doing so.

Specifying Target Groups with the + Sign

In the target entry for parser.c and parser.h , the + sign separating the
target names indicates that the entry is for a target group. A target group is a
set of files, all of which are produced when the rule is performed. Taken as a
group, the set of files comprises the target. Without the + sign, each item listed
would comprise a separate target. With a target group, make checks the
modification dates separately against each target file, but performs the target’s
rule only once, if necessary, per make run.

Maintaining Shell Scripts with make and SCCS

Although a shell script is a plain text file, it must have execute permission to
run. Since SCCS removes execute permission for files under its control, it is
convenient to make a distinction between a shell script and its “source” under

CFLAGS= -O
.KEEP_STATE:

a2z: c_functions.o scanner.o parser.o
cc -o $@ c_functions.o scanner.o parser.o

scanner.c:

parser.c + parser.h: parser.y
yacc -d parser.y
mv y.tab.c parser.c
mv y.tab.h parser.h

yacc produces output files
named y.tab.c and y.tab.h. If
you want the output files to have
the same basename as the
source file, you must rename
them.

make Utility 203

4

SCCS. make has an implicit rule for deriving a script from its source. The
suffix for a shell script source file is .sh . Even though the contents of the
script and the .sh file are the same, the script has execute permissions, while
the .sh file does not. make’s implicit rule for scripts “derives” the script from
its source file, making a copy of the .sh file (retrieving it first, if necessary)
and changing the mode of the resulting script file to allow execution. For
example:

Running Tests with make

Shell scripts are often helpful for running tests and performing other routine
tasks that are either interactive or don’t require make’s dependency checking.
Test suites, in particular, often entail providing a program with specific,
repeatable input that a program might expect to receive from a terminal.

In the case of a library, a set of programs that exercise its various functions may
be written in C, and then executed in a specific order, with specific inputs from
a script. In the case of a utility program, there may be a set of benchmark
programs that exercise and time its functions. In each of these cases, the
commands to run each test can be incorporated into a shell script for
repeatability and easy maintenance.

Once you have developed a test script that suits your needs, including a target
to run it is easy. Although make’s dependency checking may not be needed
within the script itself, you can use it to make sure that the program or library
is updated before running those tests.

$ file script.sh
script.sh: ascii text
$ make script
cat script.sh > script
chmod +x script
$ file script
script: commands text

204 Programming Utilities Guide—November 1995

4

In the following target entry for running tests, test depends on lib.a . If the
library is out of date, make rebuilds it and proceeds with the test. This insures
that you always test with an up-to-date version:

test also depends on testscript , which in turn depends on the three test
programs.

This ensures that they too are up-to-date before make initiates the test
procedure. lib.a is built according to its target entry in the makefile;
testscript is built using the .sh implicit rule; and the test programs are
built using the rule in the last target entry, assuming that there is just one
source file for each test program. (The .c implicit rule doesn’t apply to these
programs because they must link with the proper libraries in addition to their
.c files).

Escaped References to a Shell Variable

The string \$\$ in the rule for test illustrates how to escape the dollar-sign
from interpretation by make. make passes each $ to the shell, which expands
the $$ to its process ID . This technique allows each test to write to a unique
temporary filename. The set -x command forces the shell to display the
commands it runs on the terminal, which allows you to see the actual file name
containing the results of the specific test.

#This is the library we’re testing
LIBRARY= lib.a

test: $(LIBRARY) testscript
set -x ; testscript > /tmp/test.\$\$

testscript: testscript.sh test_1 test_2 test_3

#rules for building the library
$(LIBRARY):

@ echo Building $(LIBRARY)
(library-building rules here)

#test_1 ... test_3 exercise various library functions
test_1 test_2 test_3: $$@.c $(LIBRARY)

$(LINK.c) -o $@ $<

make Utility 205

4

Shell Command Substitutions

You can supply shell command substitutions within a rule as in the following
example:

You can even place the backquoted expression in a macro:

However, you can only use this form of command substitution within a rule.

Command Replacement Macro References

If you supply a shell command as the definition of a macro:

you can use a command replacement macro reference to instruct make to replace
the reference with the output of the command in the macro’s value. This form
of command substitution can occur anywhere within a makefile:

This example imports a list of targets from another file and indicates that each
target depends on a corresponding .c file.

As with shell command substitution, a command replacement reference
evaluates to the standard output of the command. NEWLINE characters are
converted to SPACE characters. The command is performed whenever the
reference is encountered. The command’s standard error is ignored. However,
if the command returns a non zero exit status, make halts with an error.

A workaround for this is to append the true command to the command line:

do:
@echo ‘cat Listfile‘

DO= ‘cat Listfile‘
do:

@echo $(DO)

COMMAND= cat Listfile

COMMAND= cat Listfile
$(COMMAND:sh): $$(@:=.c)

COMMAND = cat Listfile ; true

206 Programming Utilities Guide—November 1995

4

Command Replacement Macro Assignment

A macro assignment of the form

cmd_macro:sh = command

assigns the standard output of the indicated command to cmd_macro; for
instance:

is equivalent to the previous example. However, with the assignment form,
the command is only performed once per make run. Again, only the standard
output is used, NEWLINE characters are converted to SPACE characters, and a
non zero exit status halts make with an error.

Alternate forms of command replacement macro assignments are:

macro:sh += command
Append command output to the value of macro.

target := macro:sh = command
Conditionally define macro to be the output of command when processing
target and its dependencies.

target := macro:sh += command
Conditionally append the output of command to the value of macro when
processing target and its dependencies.

Maintaining Software Projects
make is especially useful when a software project consists of a system of
programs and libraries. By taking advantage of nested make commands, you
can use it to maintain object files, executables, and libraries in a whole
hierarchy of directories. You can use make in conjunction with SCCS to ensure
that sources are maintained in a controlled manner, and that programs built
from them are consistent. You can provide other programmers with duplicates
of the directory hierarchy for simultaneous development and testing if you
wish (although there are trade-offs to consider).

You can use make to build the entire project and install final copies of various
modules onto another file system for integration and distribution.

COMMAND:sh = cat Listfile
$(COMMAND): $$(@:=.c)

make Utility 207

4

Organizing a Project for Ease of Maintenance

As mentioned earlier, one good way to organize a project is to segregate each
major piece into its own directory. A project broken out this way usually
resides within a single filesystem or directory hierarchy. Header files could
reside in one subdirectory, libraries in another, and programs in still another.
Documentation, such as reference pages, may also be kept on hand in another
subdirectory.

Suppose that a project is composed of one executable program, one library that
you supply, a set of headers for the library routines, and some documentation,
as in the following diagram.

The makefiles in each subdirectory can be borrowed from examples in earlier
sections, but something more is needed to manage the project as a whole. A
carefully structured makefile in the root directory, the root makefile for the
project, provides target entries for managing the project as a single entity.

As a project grows, the need for consistent, easy-to-use makefiles also grows.
Macros and target names should have the same meanings no matter which
makefile you are reading. Conditional macro definitions and compilation
options for output variants should be consistent across the entire project.

Where feasible, a template approach to writing makefiles makes sense. This
makes it easy for you keep track of how the project gets built. All you have to
do to add a new type of module is to make a new directory for it, copy an
appropriate makefile into that directory, and make a few edits.

project

bin
Makefile
data.c
main.c

lib
Makefile
calc.c
draw.c
map.c

include
Makefile
pkgdefs.h

doc
Makefile
project.ms
pkg.3x
functions.1

SCCS
SCCS

SCCS

SCCSsccs files
sccs files

sccs files

sccs files

208 Programming Utilities Guide—November 1995

4

Of course, you also need to add the new module to the list of things to build in
the root makefile.

Conventions for macro and target names, as those used in the default makefile,
should be instituted and observed throughout the project. Mnemonic names
mean that although you may not remember the exact function of a target or
value of a macro, you’ll know the type of function or value it represents (and
that’s usually more valuable when deciphering a makefile anyway).

Using include Makefiles

One method of simplifying makefiles, while providing a consistent compilation
environment, is to use the make

include filename

directive to read in the contents of a named makefile; if the named file is not
present, make checks for a file by that name in /etc/default .

For instance, there is no need to duplicate the pattern-matching rule for
processing troff sources in each makefile, when you can include its target
entry, as shown below.

Here, make reads in the contents of the ../pm.rules.mk file:

SOURCES= doc.ms spec.ms
...
clean: $(SOURCES)
include ../pm.rules.mk

pm.rules.mk
#
Simple "include" makefile for pattern-matching
rules.

%.tr: %.ms
troff -t -ms $< > $@

%.nr: %.ms
nroff -ms $< > $@

make Utility 209

4

Installing Finished Programs and Libraries

When a program is ready to be released for outside testing or general use, you
can use make to install it. Adding a new target and new macro definition to do
so is easy:

A similar target entry can be used for installing a library or a set of headers.

Building the Entire Project

From time to time it is necessary to take a snapshot of the sources and the
object files that they produce. Building an entire project is simply a matter of
invoking make successively in each subdirectory to build and install each
module.

The following (rather simple) example shows how to use nested make
commands to build a simple project.

Assume your project is located in two different subdirectories, bin and lib ,
and that in both subdirectories you want make to debug, test, and install the
project.

DESTDIR= /proto/project/bin

install: functions
-mkdir $(DESTDIR)
cp functions $(DESTDIR)

210 Programming Utilities Guide—November 1995

4

First, in the projects main, or root , directory, you put a makefile such as this:

Then, in each subdirectory (in this case, bin) you would have a makefile of
this general form:

Root makefile for a project.

TARGETS= debug test install
SUBDIRS= bin lib

all: $(TARGETS)
$(TARGETS):

@for i in $(SUBDIRS) ; \
do \

cd $$i ; \
echo "Current directory: $$i" ;\
$(MAKE) $@ ; \
cd .. ; \

done

#Sample makefile in subdirectory
debug:

@echo " Building debug target"
@echo

test:
@echo " Building test target"
@echo

install:
@echo " Building install target"
@echo

make Utility 211

4

When you type make (in the base directory), you get the following output:

Maintaining Directory Hierarchies with the Recursive Makefiles

If you extend your project hierarchy to include more layers, chances are that
not only will the makefile in each intermediate directory have to produce
target files, but it will also have to invoke nested make commands for
subdirectories of its own.

Files in the current directory can sometimes depend on files in subdirectories,
and their target entries need to depend on their counterparts in the
subdirectories.

The nested make command for each subdirectory should run before the
command in the local directory does. One way to ensure that the commands
run in the proper order is to make a separate entry for the nested part and
another for the local part. If you add these new targets to the dependency list
for the original target, its action will encompass them both.

$ make
Current directory: bin

Building debugging target

Current directory: lib
Building debugging target

Current directory: bin
Building testing target

Current directory: lib
Building testing target

Current directory: bin
Building install target

Current directory: lib
Building install target

$

212 Programming Utilities Guide—November 1995

4

Maintaining Recursive Targets

Targets that encompass equivalent actions in both the local directory and in
subdirectories are referred to as recursive targets.1 A makefile with recursive
targets is referred to as a recursive makefile.

In the case of all , the nested dependencies are NESTED_TARGETS; the local
dependencies, LOCAL_TARGETS:

The nested make must also be recursive, unless it is at the bottom of the
hierarchy. In the makefile for a leaf directory (one with no subdirectories to go
to), you only build local targets.

1. Strictly speaking, any target that calls make, with its name as an argument, is recursive. However, here the
term is reserved for the narrower case of targets that have both nested and local actions. Targets that only
have nested actions are referred to as “nested” targets.

NESTED_TARGETS= debug test install
SUBDIRS= bin lib
LOCAL_TARGETS= functions

all: $(NESTED_TARGETS) $(LOCAL_TARGETS)

$(NESTED_TARGETS):
@ for i in $(SUBDIRS) ; \
do \

echo "Current directory: $$i" ;\
cd $$i ; \
$(MAKE) $@ ; \
cd .. ; \

done

$(LOCAL_TARGETS):
@ echo "Building $@ in local directory."
(local directory commands)

make Utility 213

4

Maintaining a Large Library as a Hierarchy of Subsidiaries

When maintaining a very large library, it is sometimes easier to break it up into
smaller, subsidiary libraries, and use make to combine them into a complete
package. Although you cannot combine libraries directly with ar , you can
extract the member files from each subsidiary library, and then archive those
files in another step, as shown in the following example.

A subsidiary library is maintained using a makefile in its own directory, along
with the (object) files it is built from. The makefile for the complete library
typically makes a symbolic link to each subsidiary archive, extracts their
contents into a temporary subdirectory, and archives the resulting files to form
the complete package.

The next example updates the subsidiary libraries, creates a temporary
directory in which to put extracted the files, and extracts them. It uses the *
(shell) wild card within that temporary directory to generate the collated list of
files. While filename wild cards are generally frowned upon, this use of the
wild card is acceptable because a new directory is created whenever the target
is built. This guarantees that it will contain only files extracted during the
current make run.

The example relies on a naming convention for directories. The name of the
directory is taken from the basename of the library it contains. For instance, if
libx.a is a subsidiary library, the directory that contains it is named libx .

$ ar xv libx.a
x - x1.o
x - x2.o
x - x3.o
$ ar xv liby.a
x - y1.o
x - y2.o
$ ar rv libz.a *.o
a - x1.o
a - x2.o
a - x3.o
a - y1.o
a - y2.o
ar: creating libz.a

In general, use of shell filename
wild cards is considered to be
bad form in a makefile. If you do
use them, you need to take
steps to insure that it excludes
spurious files by isolating
affected files in a temporary
subdirectory.

214 Programming Utilities Guide—November 1995

4

It makes use of suffix replacements in dynamic-macro references to derive the
directory name for each specific subdirectory. (You can verify that this is
necessary.) It uses a shell for loop to successively extract each library and a
shell command substitution to collate the object files into proper sequence for
linking (using lorder and tsort) as it archives them into the package.
Finally, it removes the temporary directory and its contents.

For the sake of clarity, this example omits support for alternate variants, as
well as the targets for clean , install , and test (does not apply since the
source files are in the subdirectories).

The rm -f *_*_.SYMDEF command embedded in the collating line prevents
a symbol table in a subsidiary (produced by running ar on that library) from
being archived in this library.

Since the nested make commands build the subsidiary libraries before the
current library is processed, it is a simple matter to extend this makefile to
account for libraries built from both subsidiaries and object files in the current
directory. You need only add the list of object files to the dependency list for
the library and a command to copy them into the temporary subdirectory for
collation with object files extracted from subsidiary libraries.

Makefile for collating a library from subsidiaries.

CFLAGS= -O

.KEEP_STATE:

.PRECIOUS: libz.a

all: lib.a

libz.a: libx.a liby.a
-rm -rf tmp
-mkdir tmp
set -x ; for i in libx.a liby.a ; \

do (cd tmp ; ar x ../$$i) ; done
(cd tmp ; rm -f *_*_.SYMDEF ; ar cr ../$@ ‘lorder * | tsort‘)
-rm -rf tmp libx.a liby.a

libx.a liby.a: FORCE
-cd $(@:.a=) ; $(MAKE) $@
-ln -s $(@:.a=)/$@ $@

FORCE:

make Utility 215

4

Reporting Hidden Dependencies to make

You may need to write a command for processing hidden dependencies. For
instance, you may need to trace document source files that are included in a
troff document by way of .so requests. When .KEEP_STATE is in effect,
make sets the environment variable SUNPRO_DEPENDENCIES to the value:

SUNPRO_DEPENDENCIES=’report-file target’

After the command has terminated, make checks to see if the file has been
created, and if it has, make reads it and writes reported dependencies to
.make.state in the form:

target: dependency. . .

where target is the same as in the environment variable.

Makefile for collating a library from subsidiaries and local
objects.

CFLAGS= -O

.KEEP_STATE:

.PRECIOUS: libz.a

OBJECTS= map.o calc.o draw.o

all: libz.a

libz.a: libx.a liby.a $(OBJECTS)
-rm -rf tmp
-mkdir tmp
-cp $(OBJECTS) tmp
set -x ; for i in libx.a liby.a ; \

do (cd tmp ; ar x ../$$i) ; done
(cd tmp ; rm -f *_*_.SYMDEF ; ar cr ../$@ ‘lorder * | tsort‘)

-rm -rf tmp lix.a liby.a

libx.a liby.a: FORCE
-cd $(@:.a=) ; $(MAKE) $@
-ln -s $(@:.a=)/$@ $@

FORCE:

216 Programming Utilities Guide—November 1995

4

make Enhancements Summary
The following summarizes additional new features to make.

Default Makefile

make’s implicit rules and macro definitions are no longer hard-coded within
the program itself. They are now contained in the default makefile
/usr/share/lib/make/make.rules . make reads this file automatically
unless there is a file in the local directory named make.rules . When you use
a local make.rules file, you must add a directive to include the standard
make.rules file to get the standard implicit rules and predefined macros.

The State File .make.state

make also reads a state file, .make.state , in the directory. When the special-
function target .KEEP_STATE is used in the makefile, make writes out a
cumulative report for each target containing a list of hidden dependencies (as
reported by compilation processors such as cpp) and the most recent rule used
to build each target. The state file is very similar in format to an ordinary
makefile.

Hidden-Dependency Checking

When activated by the presence of the .KEEP_STATE target, make uses
information reported from cc , cpp , f77 , ld , make, pc and other compilation
commands and performs a dependency check against any header files (or in
some cases, libraries) that are incorporated into the target file. These “hidden”
dependency files do not appear in the dependency list, and often do not reside
in the local directory.

Command-Dependency Checking

When .KEEP_STATE is in effect, if any command line used to build a target
changes between make runs (either as a result of editing the makefile or
because of a different macro expansion), the target is treated as if it were out of
date; make rebuilds it (even if it is newer than the files it depends on).

make Utility 217

4

Automatic Retrieval of SCCS Files

This section discusses the rule for the automatic retrieval of files under sccs .

Tilde Rules Superseded

This version of make automatically runs sccs get , as appropriate, when
there is no rule to build a target file. A tilde appended to a suffix in the
suffixes list indicates that sccs extraction is appropriate for the dependency
file. make no longer supports tilde suffix rules that include commands to
extract current versions of sccs files.

To inhibit or alter the procedure for automatic extraction of the current sccs
version, redefine the .SCCS_GET special-function target. An empty rule for
this target entirely inhibits automatic extraction.

Pattern-Matching Rules

Pattern-matching rules have been added to simplify the process of adding new
implicit rules of your own design. A target entry of the form:

tp%ts : dp%ds
rule

defines a pattern-matching rule for building a target from a related
dependency file. tp is the target prefix; ts, its suffix. dp is the dependency
prefix; ds, its suffix. The % symbol is a wild card that matches a contiguous
string of zero or more characters appearing in both the target and the
dependency file name. For example, the following target entry defines a
pattern-matching rule for building a troff output file, with a name ending in
.tr from a file that uses the -ms macro package ending in .ms :

%.tr: %.ms
troff -t -ms $< > $@

With this entry in the makefile, the command:

make doc.tr

produces:

$ make doc.tr
troff -t -ms doc.ms > doc.tr

218 Programming Utilities Guide—November 1995

4

Using that same entry, if there is a file named doc2.ms , the command:

make doc2.tr

produces:

An explicit target entry overrides any pattern-matching rule that might apply
to a target. Pattern-matching rules, in turn, normally override implicit rules.
An exception to this is when the pattern matching rule has no commands in
the rule portion of its target entry. In this case, make continues the search for a
rule to build the target, and uses as its dependency the file that matched the
(dependency) pattern.

Pattern-Replacement Macro References

As with suffix rules and pattern-matching rules, pattern replacement macro
references have been added to provide a more general method for altering the
values of words in a specific macro reference than that already provided by
suffix replacement in macro references. A pattern-replacement macro reference
takes the form:

$ (macro : p %s =np %ns)

where p is an existing prefix (if any), s is an existing suffix (if any), np and ns
are the new prefix and suffix, and % is a wild card character matching a string
of zero or more characters within a word.

The prefix and suffix replacements are applied to all words in the macro value
that match the existing pattern. Among other things, this feature is useful for
prefixing the name of a subdirectory to each item in a list of files. For instance,
the following makefile:

$ make doc2.tr
troff -t -ms doc2.ms > doc2.tr

SOURCES= x.c y.c z.c
SUBFILES.o= $(SOURCES:%.c=subdir/%.o)

all:
@echo $(SUBFILES.o)

make Utility 219

4

produces:

You may use any number of % wild cards in the right-hand (replacement) side
of the = sign, as needed. The following replacement:

would produce:

Please note that pattern-replacement macro references should not appear on
the dependency line of a pattern-matching rule’s target entry. This produces
unexpected results. With the makefile:

it looks as if make should attempt to build a target named x from a file named
x.Z . However, the pattern-matching rule is not recognized; make cannot
determine which of the % characters in the dependency line apply to the
pattern-matching rule and that apply to the macro reference.

Consequently, the target entry for x.Z is never reached. To avoid problems
like this, you can use an intermediate macro on another line:

$ make
subdir/x.o subdir/y.o subdir/z.o

...
NEW_OBJS= $(SOURCES:%.c=%/%.o)

...
x/x.o y/y.o z/z.o

OBJECT= .o

x:
%: %.$(OBJECT:%o=%Z)

cp $< $@

OBJECT= .o
ZMAC= $(OBJECT:%o=%Z)

x:
%: %$(ZMAC)

cp $< $@

220 Programming Utilities Guide—November 1995

4

New Options

The new options are:

–d
Display dependency-check results for each target processed. Displays all
dependencies that are newer, or indicates that the target was built as the
result of a command dependency.

–dd
The same function as -d had in earlier versions of make. Displays a great
deal of output about all details of the make run, including internal states,
etc.

–D
Display the text of the makefile as it is read.

–DD
Display the text of the makefile and of the default makefile being used.

–p
Print macro definitions and target entries.

–P
Report all dependencies for targets without rebuilding them.

Support for C++ and Modula-2

This version of make contains predefined macros for compiling C++ programs.
It also contains predefined macros and implicit rules for compiling Modula-2.

Naming Scheme for Predefined Macros

The naming scheme for predefined macros has been rationalized, and the
implicit rules have been rewritten to reflect the new scheme. The macros and
implicit rules are upward compatible with existing makefiles.

Some examples include the macros for standard compilations commands:

LINK.c

Standard cc command line for producing executable files.

make Utility 221

4

COMPILE.c

Standard cc command line for producing object files.

New Special-Purpose Targets
.KEEP_STATE

When included in a makefile, this target enables hidden dependency and
command-dependency checking. In addition, make updates the state file
.make.state after each run.

.INIT and .DONE

These targets can be used to supply commands to perform at the beginning
and end of each make run.

.FAILED

The commands supplied are performed when make fails.

.PARALLEL

These can be used to indicate which targets are to be processed in parallel,
and which are to be processed in serial fashion.

.SCCS_GET

This target contains the rule for extracting current versions of files from
sccs history files.

.WAIT

When this target appears in the dependency list, make waits until the
dependencies that precede it are finished before processing those that
follow, even when processing is parallel.

New Implicit lint Rule

Implicit rules have been added to support incremental verification with lint .

Macro Processing Changes

A macro value can now be of virtually any length. Whereas in earlier versions
only trailing white space was stripped from a macro value, this version strips
off both leading and trailing white space characters.

The .KEEP_STATE target
should not be removed once
it has been used in a make
run.

222 Programming Utilities Guide—November 1995

4

Macros: Definition, Substitution, and Suffix Replacement

New Append Operator
+=

This is the new append operator that appends a SPACE followed by a word
or words, onto the existing value of the macro.

Conditional Macro Definitions
:=

This is the conditional macro definitions operator that indicates a
conditional (targetwise) macro definition. A makefile entry of the form:

target := macro = value

indicates that macro takes the indicated value while processing target and its
dependencies.

Patterns in Conditional Macros

make recognizes the % wild card pattern in the target portion of a conditional
macro definition. For instance:

profile_% := CFLAGS += -pg

would modify the CFLAGS macro for all targets having the ‘profile_ ’ prefix.
Pattern replacements can be used within the value of a conditional definition.
For instance:

profile_% := OBJECTS = $(SOURCES:%.c=profile_%.o)

applies the profile_ prefix and .o suffix to the basename of every .c file in
the SOURCES list (value).

Suffix Replacement Precedence
Substring replacement now takes place following expansion of the macro
being referred to. Previous versions of make applied the substitution first,
with results that were counterintuitive.

Nested Macro References
make now expands inner references before parsing the outer reference. A
nested reference as in this example:

make Utility 223

4

CFLAGS-g = -I../include
OPTION = -g
$(CFLAGS$(OPTION))

now yields the value -I../include , rather than a null value, as it would
have in previous versions.

Cross-Compilation Macros
The predefined macros HOST_ARCH and TARGET_ARCH are available for
use in cross-compilations. By default, the arch macros are set to the value
returned by the arch command..

Shell Command Output in Macros

A definition of the form:

MACRO :sh = command

sets the value of MACRO to the standard output of the indicated command,
NEWLINE characters being replaced with SPACE characters. The command is
performed just once, when the definition is read. Standard error output is
ignored, and make halts with an error if the command returns a non zero exit
status.

A macro reference of the form:

$(MACRO :sh)

expands to the output of the command line stored in the value of MACRO,
whenever the reference is evaluated. NEWLINE characters are replaced with
SPACE characters, standard error output is ignored, and make halts with an
error if the command returns a non zero exit status.

Improved ar Library Support

make automatically updates an ar -format library member from a file having
the same name as the member. Also, make now supports lists of members as
dependency names of the form:

lib.a: lib.a(member member . . .)

224 Programming Utilities Guide—November 1995

4

Target Groups

It is now possible to specify that a rule produces a set of target files. A + sign
between target names in the target entry indicates that the named targets
comprise a group. The target group rule is performed once, at most, in a make
invocation.

Incompatibilities with Previous Versions
This section briefly discusses the following:

• The -d Option

• Dynamic Macros

• Tilde Rules

• Target Names

The -d Option

The –d option now reports the reason why a target is considered out of date.

Dynamic Macros

Although the dynamic macros $< and $* were documented as being assigned
only for implicit rules and the .DEFAULT target, in some cases they actually
were assigned for explicit target entries. The assignment action is now
documented properly.

The actual value assigned to each of these macros is derived by the same
procedure used within implicit rules (this hasn’t changed). This can lead to
unexpected results when they are used in explicit target entries.

Even if you supply explicit dependencies, make doesn’t use them to derive
values for these macros. Instead, it searches for an appropriate implicit rule
and dependency file. For instance, if you have the explicit target entry:

test: test.f
@echo $<

make Utility 225

4

and the files: test.c and test.f , you might expect that $< would be
assigned the value test.f . This is not the case. It is assigned test. c ,
because .c is ahead of .f in the suffixes list:

For explicit entries, it is best to use a strictly deterministic method for deriving
a dependency name using macro references and suffix replacements. For
example, you could use $@.f instead of $< to derive the dependency name.
To derive the base name of a .o target file, you could use the suffix
replacement macro reference: $(@:.o=) instead of $* .

When hidden dependency checking is in effect, the $? dynamic macro value
includes the names of hidden dependencies, such as header files. This can lead
to failed compilations when using a target entry such as:

and the file x.c #include ’s header files. The workaround is to replace ‘$? ’
with ‘$@.<’.

Tilde Rules

Tilde rules are not supported. This version of make does not support tilde
suffix rules for version retrieval under SCCS. This may create problems when
older makefiles redefine tilde rules to perform special steps when version
retrieval under SCCS is required.

Target Names

Target names beginning with ./ are treated as local filenames.

When make encounters a target name beginning with ‘./ ’, it strips those
leading characters. For instance, the target named:

./filename

is interpreted as if it were written:

filename

$ make test
test.c

x: x.c
$(LINK.c) -o $@ $?

226 Programming Utilities Guide—November 1995

4

This can result in endless loop conditions when used in a recursive target. To
avoid this, rewrite the target relative to ‘.. ’, the parent directory:

../ dir/filename

227

SCCS Source Code Control System 5

Coordinating write access to source files is important when changes can be
made by several people. Maintaining a record of updates allows you to
determine when and why changes were made.

The Source Code Control System (SCCS) allows you to control write access to
source files, and to monitor changes made to those files. SCCS allows only one
user at a time to update a file, and records all changes in a history file.

SCCS allows you to:

• Retrieve copies of any version of the file from the SCCS history.

• Check out and lock a version of the file for editing, so that only you can
make changes to it. SCCS prevents one user from unwittingly “clobbering”
changes made by another.

• Check in your updates to the file. When you check in a file, you can also
supply comments that summarize your changes.

• Back out changes made to your checked-out copy.

• Inquire about the availability of a file for editing.

• Inquire about differences between selected versions.

• Display the version log summarizing the changes checked in so far.

228 Programming Utilities Guide

5

The sccs Command

The Source Code Control System is composed of the sccs (1) command, which
is a front end for the utility programs in the /usr/ccs/bin directory. The
SCCS utility programs are listed in Table 5-2 on page 255.

The sccs create Command

The sccs create command places your file under SCCS control. It creates a
new history file, and uses the complete text of your source file as the initial
version. By default, the history file resides in the SCCS subdirectory.

The output from SCCS tells you the name of the created file, its version number
(1.1), and the count of lines.

To prevent the accidental loss or damage to an original, sccs create makes
a second link to it, prefixing the new filename with a comma (referred to as the
comma-file.) When the history file has been initialized successfully, SCCS
retrieves a new, read-only version. Once you have verified the version against
its comma-file, you can remove that file.

Do not try to edit the read-only version that SCCS retrieves. Before you can
edit the file, you must check it out using the sccs edit command described
below.

To distinguish the history file from a current version, SCCS uses the ‘s. ’ prefix.

Owing to this prefix, the history file is often referred to as the s. file (s-dot-file).
For historical reasons, it may also be referred to as the SCCS-file.

The format of an SCCS history file is described in sccsfile (4).

$ sccs create program.c
program.c:
1.1
87 lines

$ cmp ,program.c program.c
(no output means that the files match exactly)
$ rm ,program.c

SCCS Source Code Control System 229

5

Basic sccs Subcommands

The following sccs subcommands perform the basic version-control functions.
They are summarized here, and, except for create , are described in detail
under “sccs Subcommands” on page 231.

create
Initialize the history file and first version, as described above.

edit
Check out a writable version (for editing). SCCS retrieves a writable copy
with you as the owner, and places a lock on the history file so that no one
else can check in changes.

delta
Check in your changes. This is the complement to the sccs edit
operation. Before recording your changes, SCCS prompts for a comment,
which it then stores in the history file version log.

get
Retrieve a read-only copy of the file from the s. file. By default, this is the
most recent version. While the retrieved version can be used as a source file
for compilation, formatting, or display, it is not intended to be edited or
changed in any way. (Attempting to bend the rules by changing
permissions of a read-only version can result in your changes being lost.)

If you give a directory as a filename argument, sccs attempts to perform
the subcommand on each s. file in that directory. Thus, the command:

sccs get SCCS

retrieves a read-only version for every s. file in the SCCS subdirectory.

prt
Display the version log, including comments associated with each version.

Deltas and Versions

When you check in a version, SCCS records only the line-by-line differences
between the text you check in and the previous version. This set of differences
is known as a delta. The version that is retrieved by an edit or get is
constructed from the accumulated deltas checked in so far.

230 Programming Utilities Guide

5

The terms “delta” and “version” are often used synonymously. However, their
meanings aren’t exactly the same; it is possible to retrieve a version that omits
selected deltas (see “Excluding Deltas from a Retrieved Version” on page 241).

SIDs

An SCCS delta ID, or SID, is the number used to represent a specific delta.
This is a two-part number, with the parts separated by a dot (.). The SID of
the initial delta is 1.1 by default. The first part of the SID is referred to as the
release number, and the second, the level number. When you check in a delta,
the level number is incremented automatically. The release number can be
incremented as needed. SCCS also recognizes two additional fields for branch
deltas (described under “Branches” on page 246).

Strictly speaking, an SID refers directly to a delta. However, it is often used to
indicate the version constructed from a delta and its predecessors.

ID Keywords

SCCS recognizes and expands certain keywords in a source file, which you can
use to include version-dependent information (such as the SID) into the text of
the checked-in version. When the file is checked out for editing, ID keywords
take the following form:

%C%

where C is a capital letter. When you check in the file, SCCS replaces the
keywords with the information they stand for. For example, %I% expands to
the SID of the current version.

You would typically include ID keywords either in a comment or in a string
definition. If you do not include at least one ID keyword in your source file,
SCCS issues the diagnostic:

No Id Keywords (cm7)

For more information about ID keywords, refer to “Incorporating Version-
Dependent Information by Using ID Keywords” on page 235.

SCCS Source Code Control System 231

5

sccs Subcommands

Checking Files In and Out

The following subcommands are useful when retrieving versions or checking
in changes.

Checking Out a File for Editing: sccs edit

To edit a source file, you must check it out first using sccs edit .1

SCCS responds with the delta ID of the version just retrieved, and the delta ID
it will assign when you check in your changes.

You can then edit it using a text editor. If a writable copy of the file is present,
sccs edit issues an error message; it does not overwrite the file if anyone
has write access to it.

Checking in a New Version: sccs delta

Having first checked out your file and completed your edits, you can check in
the changes using sccs delta .

 Checking a file in is also referred to as making a delta. Before checking in your
updates, SCCS prompts you for comments. These typically include a brief
summary of your changes.

1. The sccs edit command is equivalent to using the –e option to sccs get .

$ sccs edit program.c
1.1
new delta 1.2
87

$ sccs delta program.c
comments?

232 Programming Utilities Guide

5

You can extend the comment to an additional input line by preceding the
NEWLINE with a backslash:

SCCS responds by noting the SID of the new version, and the numbers of lines
inserted, deleted and unchanged. Changed lines count as lines deleted and
inserted. SCCS removes the working copy. You can retrieve a read-only
version using sccs get .

Think ahead before checking in a version. Making deltas after each minor edit
can become excessive. On the other hand, leaving files checked out for so long
that you forget about them can inconvenience others.

Comments should be meaningful, since you may return to the file one day.

It is important to check in all changed files before compiling or installing a
module for general use. A good technique is to:

• Edit the files you need.

• Make all necessary changes and tests.

• Compile and debug the files until you are satisfied.

• Check them in, retrieve read-only copies with get.

• Recompile the module.

Retrieving a Version: sccs get

To get the most recent version of a file, use the command:

sccs get filename

For example:

$ sccs delta program.c
comments? corrected typo in widget(), \
null pointer in n_crunch()
1.2
5 inserted
3 deleted
84 unchanged

$ sccs get program.c
1.2
86

SCCS Source Code Control System 233

5

retrieves program.c , and reports the version number and the number of lines
retrieved. The retrieved copy of program.c has permissions set to read-only.

Do not change this copy of the file, since SCCS will not create a new delta
unless the file has been checked out. If you force changes into the retrieved
copy, you may lose them the next time someone performs an sccs get or an
sccs edit on the file.

Reviewing Pending Changes: sccs diffs

Changes made to a checked-out version, which are not yet checked in, are said
to be pending. When editing a file, you can find out what your pending
changes are using sccs diffs . The diffs subcommand uses diff (1) to
compare your working copy with the most recently checked-in version.

Most of the options to diff can be used. To invoke the –c option to diff , use
the –C argument to sccs diffs .

Deleting Pending Changes: sccs unedit

sccs unedit backs out pending changes. This comes in handy if you
damage the file while editing it and want to start over. unedit removes the
checked-out version, unlocks the history file, and retrieves a read-only copy of
the most recent version checked in. After using unedit , it is as if you hadn’t
checked out the file at all. To resume editing, use sccs edit to check the file
out again. (See also “Repairing a Writable Copy: sccs get -k -G” on page 234.)

Combining delta and get : sccs delget

sccs delget combines the actions of delta and get . It checks in your
changes and then retrieves a read-only copy of the new version. However, if
SCCS encounters an error during the delta , it does not perform the get .
When processing a list of filenames, delget applies all the delta s it can, and
if errors occur, omits all of the get actions.

$ sccs diffs program.c
------ program.c ------
37c37
< if (((cmd_p - cmd) + 1) == l_lim) {

> if (((cmd_p - cmd) - 1) == l_lim) {

234 Programming Utilities Guide

5

Combining delta and edit : sccs deledit

sccs deledit performs a delta followed by an edit . You can use this to
check in a version and immediately resume editing.

Retrieving a Version by SID: sccs get -r

The -r option allows you to specify the SID to retrieve:

Retrieving a Version by Date and Time: sccs get -c

In some cases you don’t know the SID of the delta you want, but you do know
the date on (or before) which it was checked in. You can retrieve the latest
version checked in before a given date and time using the –c option and a
date-time argument of the form:

-c yy [mm [dd [hh [mm [ss]]]]]

For example:

retrieves whatever version was current as of July 22, 1988 at 12:00 noon.
Trailing fields can be omitted (defaulting to their highest legal value), and
punctuation can be inserted in the obvious places; for example, the above line
could be written as:

sccs get –c"88/07/22 12:00:00" program.c

Repairing a Writable Copy: sccs get -k -G

Without checking out a new version, sccs get -k -G filename retrieves a
writable copy of the text, and places it in the file specified by ‘-G ’. This can be
useful when you want to replace or repair a damaged working copy using
diff and your favorite editor.

$ sccs get -r1.1 program.c
1.1
87

$ sccs get –c880722120000 program.c
1.2
86

SCCS Source Code Control System 235

5

Incorporating Version-Dependent Information by Using ID Keywords

As mentioned above, SCCS allows you to include version-dependent
information in a checked-in version through the use of ID keywords. These
keywords, which you insert in the file, are automatically replaced by the
corresponding information when you check in your changes. SCCS ID
keywords take the form:

%C%

where C is an uppercase letter.

For instance, %I% expands to the SID of the most recent delta. %W% includes
the filename, the SID, and the unique string @(#) in the file. This string is
searched for by the what command in both text and binary files (allowing you
to see which source versions a file or program was built from). The %G%
keyword expands to the date of the latest delta. Other ID keywords and the
strings they expand to are listed in Table 5-1 on page 254.

To include version dependent information in a C program, use a line such as:

If the file were named program.c , this line would expand to the following
when version 1.2 is retrieved:

Since the string is defined in the compiled program, this technique allows you
to include source-file information within the compiled program, which the
what command can report:

For shell scripts and the like, you can include ID keywords within comments:

static char SccsId[] = "%W%\t%G%";

static char SccsId[] = "@(#)program.c 1.2 08/29/80";

$ cd /usr/ucb
$ what sccs
sccs
sccs.c 1.13 88/02/08 SMI

%W% %G%
. . .

Defining a string in this way
allows version information to be
compiled into the C object file. If
you use this technique to put ID
keywords into header (.h) files,
use a different variable in each
header file. This prevents
errors from attempts to redefine
the (static) variables.

236 Programming Utilities Guide

5

If you check in a version containing expanded keywords, the version-dependent
information will no longer be updated. To alert you to this situation, SCCS
gives you the warning:

No Id Keywords (cm7)

when a get , edit , or create finds no ID keywords.

Making Inquiries

The following subcommands are useful for inquiring about the status of a file
or its history.

Seeing Which Version Has Been Retrieved: The what Command

Since SCCS allows you (or others) to retrieve any version in the file history,
there is no guarantee that a working copy present in the directory reflects the
version you desire. The what command scans files for SCCS ID keywords. It
also scans binary files for keywords, allowing you to see which source versions
a program was compiled from.

In this case, the file contains a working copy of version 1.1.

Determining the Most Recent Version: sccs get -g

To see the SID of the latest delta, you can use sccs get -g :

In this case, the most recent delta is 1.2. Since this is more recent than the
version reflected by what in the example above, you would probably want to
use get for the new version.

$ what program.c program
program.c:

program.c 1.1 88/07/05 SMI;
program:

program.c 1.1 88/07/05 SMI;

$ sccs get -g program.c
1.2

SCCS Source Code Control System 237

5

Determining Who Has a File Checked Out: sccs info

To find out what files are being edited, type:

sccs info

This subcommand displays a list of all the files being edited, along with other
information, such as the name of the user who checked out the file. Similarly,
you can use

sccs check

silently returns a non-zero exit status if anything is being edited. This can be
used within a makefile to force make(1S) to halt if it should find that a source
file is checked out.

If you know that all the files you have checked out are ready to be checked in,
you can use the following to process them all:

sccs delta ‘sccs tell -u‘

tell lists only the names of files being edited, one per line. With the -u
option, tell reports only those files checked out to you. If you supply a
username as an argument to -u , sccs tell reports only the files checked out
to that user.

Displaying Delta Comments: sccs prt

sccs prt produces a listing of the version log, also referred to as the delta
table, which includes the SID, time and date of creation, and the name of the
user who checked in each version, along with the number of lines inserted,
deleted, and unchanged, and the commentary:

To display only the most recent entry, use the -y option.

$ sccs prt program.c
D 1.2 80/08/29 12:35:31 pers 2 1 00005/00003/00084
corrected typo in widget(),
null pointer in n_crunch()

D 1.1 79/02/05 00:19:31 zeno 1 0 00087/00000/00000
date and time created 80/06/10 00:19:31 by zeno

238 Programming Utilities Guide

5

Updating a Delta Comment: sccs cdc

If you forget to include something important in a comment, you can add the
missing information using

sccs cdc -r sid

The delta must be the most recent (or the most recent in its branch, see
“Branches” on page 246). Also, you must either be the user who checked the
delta in, or you must own and have permission to write on both the history file
and the SCCS subdirectory. When you use cdc , SCCS prompts for your
comments and inserts the new comment you supply:

The new commentary, as displayed by prt , looks like this:

Comparing Checked-In Versions: sccs sccsdiff

To compare two checked-in versions, use the following to see the differences
between delta 1.1 and delta 1.2.

$ sccs cdc -r1.2 program.c
comments? also taught get_in() to handle control chars

$ sccs prt program.c
D 1.2 80/08/29 12:35:31 pers 2 1 00005/00003/00084
also taught get_in() to handle control chars
*** CHANGED *** 88/08/02 14:54:45 pers
corrected typo in widget(),
null pointer in n_crunch()

D 1.1 79/02/05 00:19:31 zeno 1 0 00087/00000/00000
date and time created 80/06/10 00:19:31 by zeno

$ sccs sccsdiff -r1.1 -r1.2 program.c

SCCS Source Code Control System 239

5

Displaying the Entire History: sccs get -m -p

If you wish to see a listing of all changes made to the file and the delta in
which each was made, you can use the -m and -p options to get :

To find out what lines are associated with a particular delta, you can pipe the
output through grep (1V):

You can also use –p by itself to send the retrieved version to the standard
output, rather than to the file.

Creating Reports: sccs prs -d

You can use the prs subcommand with the -d dataspec option to derive reports
about files under SCCS control. The dataspec argument offers a rich set of data
keywords that correspond to portions of the history file. Data keywords take
the form:

: X :

and are listed in Table 5-3 on page 256. There is no limit on the number of
times a data keyword may appear in the dataspec argument. A valid dataspec
argument is a (quoted) string consisting of text and data keywords.

prs replaces each recognized keyword with the appropriate value from the
history file.

The format of a data keyword value is either simple, in which case the
expanded value is a simple string, or multiline, in which case the expansion
includes RETURN characters.

A TAB is specified by ‘\t ’ and a RETURN by ‘\n ’.

$ sccs get -m -p program.c
1.2
1.2 #define L_LEN 256
1.1
1.1 #include <stdio.h>
1.1
. . .
84

sccs get –m –p program.c | grep ’^1.2’

240 Programming Utilities Guide

5

Here are some examples:

Deleting Committed Changes

Replacing a Delta: sccs fix

From time to time a delta is checked in that contains small bugs, such as
typographical errors, that need correcting but that do not require entries in the
file audit trail. Or, perhaps the comment for a delta is incomplete or in error,
even when the text is correct. In either case, you can make additional updates
and replace the version log entry for the most recent delta using sccs fix :

$ sccs fix –r 1.2 program.c

This checks out version 1.2 of program.c . When you check the file back in,
the current changes will replace delta 1.2 in the history file, and SCCS will
prompt for a (new) comment. You must supply an SID with ‘-r ’. Also, the
delta that is specified must be a leaf (most recent) delta.

Although the previously-checked-in delta 1.2 is effectively deleted, SCCS
retains a record of it, marked as deleted, in the history file.

Before using sccs fix it is a good idea to make a copy of the current version,
just in case.

Removing a Delta: sccs rmdel

To remove all traces of the most recent delta, you can use the rmdel
subcommand. You must specify the SID using -r . In most cases, using fix is
preferable to rmdel , since fix preserves a record of “deleted” delta, while
rmdel does not.1

1. Refer to sccs-rmdel (1) for more information.

$ sccs prs -d"Users and/or user IDs for :F: are:\n:UN:" program.c
Users and/or user IDs for s.program.c are:
zeno
pers
$ sccs prs -d"Newest delta for :M:: :I:. Created :D: by :P:." -r program.c
Newest delta for program.c: 1.3. Created 88/07/22 by zeno.

SCCS Source Code Control System 241

5

Reverting to an Earlier Version

To retrieve a writable copy of an earlier version, use get -k . This can come in
handy when you need to backtrack past several deltas.

To use an earlier delta as the basis for creating a new one:

1. Check out the file as you normally would (using sccs edit).

2. Retrieve a writable copy of an earlier “good” version (giving it a different
file name) using get -k :

sccs get -k -r sid -Goldname filename

The -Goldname option specifies the name of the newly retrieved version.

3. Replace the current version with the older “good” version:

mv oldname filename

4. Check the file back in.
In some cases, it may be simpler just to exclude certain deltas. Or refer to
“Branches” on page 246 for information on how to use SCCS to manage
divergent sets of updates to a file.

Excluding Deltas from a Retrieved Version

Suppose that the changes that were made in delta 1.3 aren’t applicable to the
next version, 1.4. When you retrieve the file for editing, you can use the -x
option to exclude delta 1.3 from the working copy:

When you check in delta 1.5, that delta will include the changes made in delta
1.4, but not those from delta 1.3. In fact, you can exclude a list of deltas by
supplying a comma-separated list to -x , or a range of deltas, separated with a
dash. For example, if you want to exclude 1.3 and 1.4, you could use:

or

$ sccs edit –x1.3 program.c

$ sccs edit –x1.3,1.4 program.c

$ sccs edit –x1.3–1.4 program.c

242 Programming Utilities Guide

5

In this example SCCS excludes the range of deltas from 1.3 to the current
highest delta in release 1:

In certain cases when using –x there will be conflicts between versions; for
example, it may be necessary to both include and delete a particular line. If
this happens, SCCS displays a message listing the range of lines affected.
Examine these lines carefully to see if the version SCCS derived is correct.

Since each delta (in the sense of “a set of changes”) can be excluded at will, it
is most useful to include a related set of changes within each delta.

Combining Versions: sccs comb

The comb subcommand generates a Bourne shell script that, when run,
constructs a new history file in which selected deltas are combined or
eliminated. This can be useful when disk space is at a premium.

Note – In combining several deltas, the comb-generated script destroys a
portion of the file’s version log, including comments.

The -p sid option indicates the oldest delta to preserve in the reconstruction.
Another option,

-c sid-list

allows you to specify a list of deltas to include. sid-list is a comma-separated
list; you can specify a range between two SID s by separating them with a dash
(’- ’) in the list. -p and -c are exclusive. The -o option attempts to minimize
the number of deltas in the reconstruction.

The -s option produces a script that compares the size of the reconstruction
with that of the original. The comparison is given as a percentage of the
original the reconstruction would occupy, based on the number of blocks in
each.

Note – When using comb, it is a good idea to keep a copy of the original
history file on hand. While comb is intended to save disk space, it may not
always. In some cases, it is possible that the resulting history file may be larger
than the original.

$ sccs edit –x 1.3–1 program.c

SCCS Source Code Control System 243

5

If no options are specified, comb preserves the minimum number of ancestors
needed to preserve the changes made so far.

Version Control for Binary Files
Although SCCS is typically used for source files containing ASCII text, this
version of SCCS allows you to apply version control to binary files as well (files
that contain NULL or control characters, or do not end with a NEWLINE The
binary files are encoded1 into an ASCII representation when checked in;
working copies are decoded when retrieved.

You can use SCCS to track changes to files such as icons, raster images, and
screen fonts.

You can use sccs create -b to force SCCS to treat a file as a binary file.
When you use create or delta for a binary file, you get the warning
message:

Not a text file (ad31)

You may also get the message:

No id keywords (cm7)

These messages can safely be ignored. Otherwise, everything proceeds as
expected:

1. See uuencode (1C) for details.

$ sccs create special.font

special.font:
Not a text file (ad31)
No id keywords (cm7)
1.1
20
No id keywords (cm7)
$ sccs get special.font
1.1
20
$ file special.font SCCS/s.special.font
special.font: vfont definition
SCCS/s.special.font:sccs

244 Programming Utilities Guide

5

Since the encoded representation of a binary file can vary significantly between
versions, history files for binary sources can grow at a much faster rate than
those for ASCII sources. However, using the same version control system for
all source files makes dealing with them much easier.

Maintaining Source Directories
When using SCCS, it is the history files, and not the working copies, that are
the real source files.

Duplicate Source Directories

If you are working on a project and wish to create a duplicate set of sources for
some private testing or debugging, you can make a symbolic link to the SCCS
subdirectory in your private working directory:

This makes it a simple matter to retrieve a private (duplicate) set of working
copies, of the source files using:

sccs get SCCS

While working in the duplicate directory, you can also check files in and
out—just as you could if you were in the original directory.

$ cd /private/working/cmd.dir
$ ln -s /usr/src/cmd/SCCS SCCS

Use SCCS to control the
updates to source files, and
make to compile objects
consistently.

SCCS Source Code Control System 245

5

SCCS and make

SCCS is often used with make(1S) to maintain a software project. make
provides for automatic retrieval of source files. (Other versions of make
provide special rules that accomplish the same purpose.) It is also possible to
retrieve earlier versions of all the source files, and to use make to rebuild
earlier versions of the project:

As a general rule, no one should check in source files while a build is in
progress. When a project is about to be released, all files should be checked in
before it is built. This insures that the sources for a released project are stable.

Keeping SIDs Consistent Across Files

With some care, it is possible to keep the SIDs consistent across sources
composed of multiple files. The trick here is to edit all the files at once. The
changes can then be made to whatever files are necessary. Check in all the files
(even those not changed). This can be done fairly easily by specifying the
SCCS subdirectory as the file name argument to both edit and delta :

With the delta subcommand, you are prompted for comments only once; the
comment is applied to all files being checked in. To determine which files have
changed, you can compare the “lines added, deleted, unchanged” fields in each
file delta table.

$ mkdir old.release ; cd old.release
$ ln -s ../SCCS SCCS
$ sccs get -c"87/10/01" SCCS
SCCS/s.Makefile:
1.3
47
. . .
$ make
. . .

$ sccs edit SCCS
. . .
$ sccs delta SCCS

246 Programming Utilities Guide

5

Starting a New Release

To create a new release of a program, specify the release number you want to
create when you check out the file for editing, using the -r n option to edit ; n
is the new release number:

In this case, when you use delta with the new version, it will be the first level
delta in release 2, with SID 2.1. To change the release number for all SCCS files
in the directory, use:

Temporary Files Used by SCCS

When SCCS modifies an s. file (that is, a history file), it does so by writing to a
temporary copy called an x. file. When the update is complete, SCCS uses the
x. file to overwrite the old s. file. This insures that the history file is not
damaged when processing terminates abnormally. The x. file is created in the
same directory as the history file, is given the same permissions, and is owned
by the effective user.

To prevent simultaneous updates to an SCCS file, subcommands that update
the history create a lock file, called a z. file, which contains the PID of the
process performing the update. Once the update has completed, the z. file is
removed. The z file is created with mode 444 (read-only) in the directory
containing the SCCS file, and is owned by the effective user.

Branches
You can think of the deltas applied to an SCCS file as the nodes of a tree; the
root is the initial version of the file. The root delta (node) is number ‘1.1’ by
default, and successor deltas (nodes) are named 1.2, 1.3, and so forth. As noted
earlier, these first two parts of the SID are the release and level numbers. The
naming of a successor to a delta proceeds by incrementing the level number.
You have also seen how to check out a new release when a major change to the
file is made. The new release number applies to all successor deltas as well,
unless you specify a new level in a prior release.

$ sccs edit –r 2 program.c

$ sccs edit –r 2 SCCS

SCCS Source Code Control System 247

5

Thus, the evolution of a particular file may be represented in the following
figure:

Figure 5-1 Evolution of an SCCS File

This structure is called the trunk of the SCCS delta tree. It represents the
normal sequential development of an SCCS file; changes that are part of any
given delta depend upon all the preceding deltas.

However, situations can arise when it is convenient to create an alternate
branch on the tree. For instance, consider a program which is in production
use at version 1.3, and for which development work on release 2 is already in
progress. Thus, release 2 may already have some deltas. Assume that a user
reports a problem in version 1.3 which cannot wait until release 2 to be
corrected. The changes necessary to correct the problem will have to be
applied as a delta to version 1.3. This requires the creation of a new version,
but one that is independent of the work being done for release 2. The new
delta will thus occupy a node on a new branch of the tree.

The SID for a branch delta consists of four parts: the release and level numbers,
and the branch and sequence numbers:

release. level. branch. sequence

1.1

1.2

1.3

1.4

2.1

s.file file

248 Programming Utilities Guide

5

The branch number is assigned to each branch that is a descendant of a
particular trunk delta; the first such branch is 1, the next one 2, and so on. The
sequence number is assigned, in order, to each delta on a particular branch.
Thus, 1.3.1.1 identifies the first delta of the first branch derived from delta 1.3,
as shown in the followwing figure.

Figure 5-2 Tree Structure with Branch Deltas

The concept of branching may be extended to any delta in the tree; the naming
of the resulting deltas proceeds in the manner just illustrated. The first two
components of the name of a branch delta are always those of the ancestral
trunk delta.

The branch component is assigned in the order of creation on the branch,
independent of its location relative to the trunk. Thus, a branch delta may
always be identified as such from its name, and while the trunk delta may be
identified from the branch delta name, it is not possible to determine the entire
path leading from the trunk delta to the branch delta.

For example, if delta 1.3 has one branch emanating from it, all deltas on that
branch will be named 1.3.1.n. If a delta on this branch then has another branch
emanating from it, all deltas on the new branch will be named 1.3.2.n.

1.1

1.2

1.4

2.1

s.file file

1.3.1.1

1.3

SCCS Source Code Control System 249

5

The only information that may be derived from the name of delta 1.3.2.2 is that
it is the second chronological delta on the second chronological branch whose
trunk ancestor is delta 1.3.

In particular, it is not possible to determine from the name of delta 1.3.2.2 all of
the deltas between it and its trunk ancestor (1.3).

Figure 5-3 Extending the Branching Concept

Branch deltas allow the generation of arbitrarily complex tree structures. It is
best to keep the use of branches to a minimum.

1.1

1.2

1.4

2.1

s.file file

1.3.1.1

1.3

2.2

1.3.1.2

1.3.2.1

1.3.2.2

250 Programming Utilities Guide

5

Using Branches

You can use branches when you need to keep track of an alternate version
developed in parallel, such as for bug fixes or experimental purposes. Before
you can create a branch, you must enable the “branch” flag in the history file
using the sccs admin command, as follows:

The –fb option sets the b (branch) flag in the history file.

Creating a Branch Delta

To create a branch from delta 1.3 for program.c , you would use the sccs
edit subcommand shown in the following figure:

When you check in your edited version, the branch delta will have SID 1.3.1.1.
Subsequent deltas made from this branch will be numbered 1.3.1.2, and so on.

Retrieving Versions from Branch Deltas

Branch deltas usually aren’t included in the version retrieved by get . To
retrieve a branch version (the version associated with a branch delta), you
must specifically request it with the -r option. If you omit the sequence
number, as in the next example, SCCS retrieves the highest delta in the branch:

Merging a Branch Back into the Main Trunk

At some point, perhaps when you’ve finished with the experiment, you may
want to introduce the experimental features into production. But in the
meantime, work may have progressed on the production version, in which
case there may be incompatibilities between the branch version and the latest
trunk version.

$ sccs admin –f b program.c

$ sccs edit -r 1.3 –b program.c

$ sccs get –r 1.3.1 program.c
1.3.1.1
87

SCCS Source Code Control System 251

5

To help you sort this situation out, the -i option to sccs edit allows you to
specify a list of deltas to include when you check out the file. If any of the
changes that were included result in conflicts, edit issues a warning message.
A conflict would arise if a line would have to be deleted to satisfy one delta,
but inserted to satisfy another. While it is up to you to resolve each conflict,
knowing where they are is a big help.

Administering SCCS Files
By convention, history files and all temporary SCCS files reside in the SCCS
subdirectory. In addition to the standard file protection mechanisms, SCCS
allows certain releases to be frozen, and access to releases to be restricted to
certain users (see sccs-admin (1) for details). History files normally have
permissions set to 444 (read-only for everyone), to prevent modification by
utilities other than SCCS. In general, it is not a good idea to edit the history
files.

A history file should have just one link. SCCS utilities update the history file
by writing out a modified copy (x.file), and then renaming the copy.

Interpreting Error Messages: sccs help

The help subcommand displays information about SCCS error messages and
utilities.

help normally expects either the name of an SCCS utility, or the code (in
parentheses) from an SCCS error message. If you supply no argument, help
prompts for one. The directory /usr/ccs/lib/help contains files with the
text of the various messages help displays.

Altering History File Defaults: sccs admin

There are a number of parameters that can be set using the admin command.
The most interesting of these are flags. Flags can be added by using the –f
option.

For example, the following command sets the d flag to the value 1:

$ sccs admin –f d1 program.c

252 Programming Utilities Guide

5

This flag can be deleted by using:

The most useful flags are:

b
Allow branches to be made using the -b option to sccs edit (see
“Branches” on page 246).

dSID
Default SID to be used on an sccs get or sccs edit . If this is just a
release number it constrains the version to a particular release only.

i
Give a fatal error if there are no ID keywords in a file. This prevents a
version from being checked in when the ID keywords are missing or
expanded by mistake.

y
The value of this flag replaces the %Y% ID keyword.

–t file
store descriptive text from file in the s. file. This descriptive text might be
the documentation or a design and implementation document. Using the
–t option ensures that if the s. file is passed on to someone else, the
documentation will go along with it. If file is omitted, the descriptive text is
deleted. To see the descriptive text, use prt -t .

The sccs admin command can be used safely any number of times on files.
A current version need not be retrieved for admin to work.

Validating the History File

You can use the val subcommand to check certain assertions about a history
file. val always checks for the following conditions:

• Corrupted history file.

• The history file can’t be opened for reading, or the file is not an SCCS
history.

If you use the -r option, val checks to see if the indicated SID exists.

$ sccs admin –d d program.c

SCCS Source Code Control System 253

5

Restoring the History File

In particularly bad circumstances, the history file itself may get corrupted.
Usually by someone editing it. Since the file contains a checksum, you will get
errors every time you read a corrupted file. To correct the checksum, use:

Note – When SCCS says that the history file is corrupted, it may indicate
serious damage beyond an incorrect checksum. Be careful to safeguard your
current changes before attempting to correct a history file.

$ sccs admin –z program.c

254 Programming Utilities Guide

5

Reference Tables

Table 5-1 SCCS ID Keywords

Keyword Expands to

%Z% @(#) (search string for the what command)

%M% The current module (file) name

%I% The highest SID applied

%W% shorthand for:%Z%%M%tab %I%

%G% The date of the delta corresponding to the %I% keyword.

%R% The current release number.

%Y% The value of the t flag (set by sccs admin).

SCCS Source Code Control System 255

5

1. what is a general-purpose command.

Table 5-2 SCCS Utility Commands

SCCS Utility Programs

Command Refer to:

admin sccs-admin(1)

cdc sccs-cdc(1)

comb sccs-comb(1)

delta sccs-delta(1)

get sccs-get(1)

help sccs-help(1)

prs sccs-prs(1)

prt sccs-prt(1)

rmdel sccs-rmdel(1)

sact sccs-sact(1)

sccsdiff sccs-sccsdiff(1)

unget sccs-unget(1)

val sccs-val(1)

what 1 what(1)

256 Programming Utilities Guide

5

Table 5-3 Data Keywords for prs -d

Keyword Data Item File Section Value Format1

:Dt: Delta information Delta Table see below2 S

:DL: Delta line statistics " :Li:/:Ld:/:Lu: S

:Li: Lines inserted by Delta " nnnnn S

:Ld: Lines deleted by Delta " nnnnn S

:Lu: Lines unchanged by Delta " nnnnn S

:DT: Delta type " D or R S

:I: SCCS ID string (SID) " :Rf3:.:Lf3:.:Bf3:.:S
:

S

:R: Release number " nnnn S

:L: Level number " nnnn S

:B: Branch number " nnnn S

:S: Sequence number " nnnn S

:D: Date Delta created " :Dy:/:Dm:/:Dd: S

:Dy: Year Delta created " nn S

:Dm: Month Delta created " nn S

:Dd: Day Delta created " nn S

:T: Time Delta created " :Th:::Tm:::Ts: S

:Th: Hour Delta created " nn S

:Tm: Minutes Delta created " nn S

:Ts: Seconds Delta created " nn S

:P: Programmer who created Delta " logname S

:DS: Delta sequence number " nnnn S

:DP: Predecessor Delta seq-no. " nnnn S

SCCS Source Code Control System 257

5

:DI: Sequence number of deltas
 included, excluded, ignored

 " :Dn:/:Dx:/:Dg: S

:Dn: Deltas included (seq #) " :DS: :DS: . . . S

:Dx: Deltas excluded (seq #) " :DS: :DS: . . . S

:Dg: Deltas ignored (seq #) " :DS: :DS: . . . S

:MR: MR numbers for delta " text M

:C: Comments for delta " text M

:UN: User names User Names text M

:FL: Flag list Flags text M

:Y: Module type flag " text S

:MF: MR validation flag " yes or no S

:MP: MR validation pgm name " text S

:KF: Keyword error/warning flag " yes or no S

:BF: Branch flag " yes or no S

:J: Joint edit flag " yes or no S

:LK: Locked releases " :R: . . . S

:Q: User defined keyword " text S

:M: Module name " text S

:FB: Floor boundary " :R: S

:CB: Ceiling boundary " :R: S

:Ds: Default SID " :I: S

:ND: Null delta flag " yes or no S

:FD: File descriptive text Comments text M

Table 5-3 Data Keywords for prs -d (Continued)

Keyword Data Item File Section Value Format1

258 Programming Utilities Guide

5

1. S = single-line format; M = multi-line

2. :Dt: = :DT: :I: :D: :T: :P: :DS: :DP:

:BD: Body Body text M

:GB: Gotten body " text M

:W: A form of what (1) string N/A :Z::M:\t:I: S

:A: A form of what (1) string N/A :Z::Y: :M: :I::Z: S

:Z: what (1) string delimiter N/A @(#) S

:F: SCCS file name N/A text S

:PN: SCCS file path name N/A text S

Table 5-3 Data Keywords for prs -d (Continued)

Keyword Data Item File Section Value Format1

259

m4 Macro Processor 6

Overview
m4 is a general-purpose macro processor that can be used to preprocess C and
assembly language programs. Besides the straightforward replacement of one
string of text by another, m4 lets you perform

• Integer arithmetic

• File inclusion

• Conditional macro expansion

• String and substring manipulation

You can use built-in macros to perform these tasks or you can define your own
macros. Built-in and user-defined macros work exactly the same way except
that some of the built-in macros have side effects on the state of the process.

The basic operation of m4 is to read every alphanumeric token (string of letters
and digits) and determine if the token is the name of a macro. The name of the
macro is replaced by its defining text, and the resulting string is replaced onto
the input to be rescanned. Macros can be called with arguments. The
arguments are collected and substituted into the right places in the defining
text before the defining text is rescanned.

Macro calls have the general form

name(arg1, arg2, ..., argn)

260 Programming Utilities Guide—November 1995

6

If a macro name is not immediately followed by a left parenthesis, it is
assumed to have no arguments. Leading unquoted blanks, tabs, and newlines
are ignored while collecting arguments. Left and right single quotes are used
to quote strings. The value of a quoted string is the string stripped of the
quotes.

When a macro name is recognized, its arguments are collected by searching for
a matching right parenthesis. If fewer arguments are supplied than are in the
macro definition, the trailing arguments are taken to be null. Macro evaluation
proceeds normally during the collection of the arguments, and any commas or
right parentheses that appear in the value of a nested call are as effective as
those in the original input text. After argument collection, the value of the
macro is returned to the input stream and rescanned. This is explained in the
following paragraphs.

You invoke m4 with a command of the form

Each argument file is processed in order. If there are no arguments or if an
argument is a hyphen, the standard input is read. If you are eventually going
to compile the m4 output, use a command like this:

You can use the –D option to define a macro on the m4 command line. Suppose
you have two similar versions of a program. You might have a single m4 input
file capable of generating the two output files. That is, file1.m4 could
contain lines such as

Your makefile for the program might look like this:

$ m4 file file file

$ m4 file1.m4 > file1.c

if(VER, 1, do_something)
if(VER, 2, do_something)

file1.1.c : file1.m4
m4 –DVER=1 file1.m4 > file1.1.c
...
file1.2.c : file1.m4
m4 –DVER=2 file1.m4 > file1.2.c
...

m4 Macro Processor 261

6

You can use the –U option to ‘‘undefine’’ VER. If file1.m4 contains

then your makefile would contain

m4 Macros

Defining Macros

The primary built-in m4 macro is define() , which is used to define new
macros. The following input

causes the string name to be defined as stuff. All subsequent occurrences of
name will be replaced by stuff. The defined string must be alphanumeric and
must begin with a letter (an underscore is considered as a letter). The defining
string is any text that contains balanced parentheses; it may stretch over
multiple lines.

As a typical example

defines N to be 100 and uses the symbolic constant N in a later if statement.

if(VER, 1, do_something)
if(VER, 2, do_something)
ifndef(VER, do_something)

file0.0.c : file1.m4
m4 –UVER file1.m4 > file1.0.c
...
file1.1.c : file1.m4
m4 –DVER=1 file1.m4 > file1.1.c
...
file1.2.c : file1.m4
m4 –DVER=2 file1.m4 > file1.2.c
...

define(name, stuff)

define(N, 100)
...
if (i > N)

262 Programming Utilities Guide—November 1995

6

As noted, the left parenthesis must immediately follow the word define to
signal that define() has arguments. If the macro name is not immediately
followed by a left parenthesis, it is assumed to have no arguments. In the
previous example, then, N is a macro with no arguments.

A macro name is only recognized as such if it appears surrounded by non-
alphanumeric characters. In the following example the variable NNN is
unrelated to the defined macro N even though the variable contains Ns.

m4 expands macro names into their defining text as soon as possible. So

defines M to be 100 because the string N is immediately replaced by 100 as the
arguments of define(M, N) are collected. To put this another way, if N is
redefined, M keeps the value 100 .

There are two ways to avoid this result. The first, which is specific to the
situation described here, is to change the order of the definitions:

Now M is defined to be the string N, so when the value of M is requested later,
the result will always be the value of N at that time. The M will be replaced by
N which will be replaced by 100.

Quoting

The more general solution is to delay the expansion of the arguments of
define() by quoting them. Any text surrounded by left and right single
quotes is not expanded immediately, but has the quotes stripped off as the
arguments are collected. The value of the quoted string is the string stripped
of the quotes.

define(N, 100)
...
if (NNN > 100)

define(N, 100)
define(M, N)

define(M, N)
define(N, 100)

m4 Macro Processor 263

6

Therefore, the following defines M as the string N, not 100 .

The general rule is that m4 always strips off one level of single quotes
whenever it evaluates something. This is true even outside of macros. If the
word define is to appear in the output, the word must be quoted in the input:

It’s usually best to quote the arguments of a macro to ensure that what you are
assigning to the macro name actually gets assigned. To redefine N, for
example, you delay its evaluation by quoting:

Otherwise the N in the second definition is immediately replaced by 100 .

The effect is the same as saying:

Note that this statement will be ignored by m4 since only things that look like
names can be defined.

If left and right single quotes are not convenient, the quote characters can be
changed with the built-in macro changequote() :

In this example the macro makes the “quote” characters the left and right
brackets instead of the left and right single quotes. The quote symbols can be
up to five characters long. The original characters can be restored by using
changequote() without arguments:

define(N, 100)
define(M, ‘N’)

‘define’ = 1;

define(N, 100)
...
define(‘N’, 200)

define(N, 100)
...
define(N, 200)

define(100, 200)

changequote([,])

changequote

264 Programming Utilities Guide—November 1995

6

undefine() removes the definition of a macro or built-in macro:

Here the macro removes the definition of N. Be sure to quote the argument to
undefine() . Built-ins can be removed with undefine() as well:

Note that once a built-in is removed or redefined, its original definition cannot
be reused. Macros can be renamed with defn() . Suppose you want the built-
in define() to be called XYZ() . You specify

After this, XYZ() takes on the original meaning of define() . So

defines A to be 100 .

The built-in ifdef() provides a way to determine if a macro is currently
defined. Depending on the system, a definition appropriate for the particular
machine can be made as follows:

The ifdef() macro permits three arguments. If the first argument is defined,
the value of ifdef() is the second argument. If the first argument is not
defined, the value of ifdef() is the third argument:

If there is no third argument, the value of ifdef() is null.

Arguments

So far you have been given information about the simplest form of macro
processing, that is, replacing one string with another (fixed) string. Macros can
also be defined so that different invocations have different results. In the

undefine(‘N’)

undefine(‘define’)

define(XYZ, defn(‘define’))
undefine(‘define’)

XYZ(A, 100)

ifdef(‘pdp11’, ‘define(wordsize,16)’)
ifdef(‘u3b’, ‘define(wordsize,32)’)

ifdef(‘unix’, on UNIX, not on UNIX)

m4 Macro Processor 265

6

replacement text for a macro (the second argument of its define()), any
occurrence of $n is replaced by the nth argument when the macro is actually
used. So the macro bump() , defined as

is equivalent to x = x + 1 for bump(x) .

A macro can have as many arguments as you want, but only the first nine are
accessible individually, $1 through $9 . $0 refers to the macro name itself. As
noted, arguments that are not supplied are replaced by null strings, so a macro
can be defined that concatenates its arguments:

That is, cat(x, y, z) is equivalent to xyz . Arguments $4 through $9 are
null since no corresponding arguments were provided.

Leading unquoted blanks, tabs, or newlines that occur during argument
collection are discarded. All other white space is retained, so

defines a to be b c .

Arguments are separated by commas. A comma “protected” by parentheses
does not terminate an argument. The following example has two arguments, a
and (b,c) . You can specify a comma or parenthesis as an argument by
quoting it. :

In the following example,$(** is replaced by a list of the arguments given to
the macro in a subsequent invocation. The listed arguments are separated by
commas. So

define(bump, $1 = $1 + 1)

define(cat, $1$2$3$4$5$6$7$8$9)

define(a, b c)

define(a, (b,c))

define(a, 1)
define(b, 2)
define(star, ‘$(**’)
star(a, b)

266 Programming Utilities Guide—November 1995

6

gives the result 1,2 . So does

because m4 strips the quotes from a and b as it collects the arguments of
star() , then expands a and b when it evaluates star() .

$@ is identical to $(** except that each argument in the subsequent invocation
is quoted. That is,

gives the result a,b because the quotes are put back on the arguments when
at() is evaluated.

$# is replaced by the number of arguments in the subsequent invocation. So

gives the result 3,

gives the result 1, and

gives the result 0.

The built-in shift() returns all but its first argument. The other arguments
are quoted and returnedto the input with commas in between. The simplest
case

star(‘a’, ‘b’)

define(a, 1)
define(b, 2)
define(at, ‘$@’)
at(‘a’, ‘b’)

define(sharp, ‘$#’)
sharp(1, 2, 3)

sharp()

sharp

shift(1, 2, 3)

m4 Macro Processor 267

6

gives 2,3 . As with $@, you can delay the expansion of the arguments by
quoting them, so

gives the result b because the quotes are put back on the arguments when
shift() is evaluated.

Arithmetic Built-Ins

m4 provides three built-in macros for doing integer arithmetic. incr()
increments its numeric argument by 1. decr() decrements by 1. So to handle
the common programming situation in which a variable is to be defined as
“one more than N” you would use

That is, N1 is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in macro called eval() ,
which is capable of arbitrary arithmetic on integers. Its operators, in
decreasing order of precedence, are

Parentheses may be used to group operations where needed. All the operands
of an expression given to eval() must ultimately be numeric. The numeric
value of a true relation (like 1 > 0) is 1, and false is 0. The precision in
eval() is 32 bits.

define(a, 100)
define(b, 200)
shift(‘a’, ‘b’)

define(N, 100)
define(N1, ‘incr(N)’)

+ - (unary)
(**(**
(** / %
+ -
== != < <= > >=
! ~
&
| ^
&&
||

268 Programming Utilities Guide—November 1995

6

As a simple example, you can define M to be 2(**(**N+1 with

Then the sequence

gives 9 as the result.

File Inclusion

 A new file can be included in the input at any time with the built-in macro
include() :

inserts the contents of filename in place of the macro and its argument. The
value of include() (its replacement text) is the contents of the file. If needed,
the contents can be captured in definitions and so on.

A fatal error occurs if the file named in include() cannot be accessed. To get
some control over this situation, the alternate form sinclude() (“silent
include”) can be used. This built-in says nothing and continues if the file
named cannot be accessed.

Diversions

m4 output can be diverted to temporary files during processing, and the
collected material can be output on command. m4 maintains nine of these
diversions, numbered 1 through 9. If the built-in macro divert(n) is used, all
subsequent output is appended to a temporary file referred to as n. Diverting
to this file is stopped by the divert() or divert(0) macros, which resume
the normal output process.

Diverted text is normally placed at the end of processing in numerical order.
Diversions can be brought back at any time by appending the new diversion to
the current diversion. Output diverted to a stream other than 0 through 9 is
discarded. The built-in undivert() brings back all diversions in numerical

define(M, ‘eval(2(**(**N+1)’)

define(N, 3)
M(2)

include(filename)

m4 Macro Processor 269

6

order; undivert() with arguments brings back the selected diversions in the
order given. Undiverting discards the diverted text (as does diverting) into a
diversion whose number is not between 0 and 9, inclusive.

The value of undivert() is not the diverted text. Furthermore, the diverted
material is not rescanned for macros. The built-in divnum() returns the
number of the currently active diversion. The current output stream is 0
during normal processing.

System Commands

Any program can be run by using the syscmd() built-in. The following
example invokes the operating system date command. Normally, syscmd()
would be used to create a file for a subsequent include() .

 To make it easy to name files uniquely, the built-in maketemp() replaces a
string of XXXXX in the argument with the process ID of the current process.

Conditional Testing

Arbitrary conditional testing is performed with the built-in ifelse() . In its
simplest form

compares the two strings a and b. If a and b are identical, ifelse() returns
the string c. Otherwise, string d is returned. Thus, a macro called compare()
can be defined as one that compares two strings and returns yes or no , if they
are the same or different:

Note the quotes, which prevent evaluation of ifelse() from occurring too
early. If the final argument is omitted, the result is null, so

is c if a matches b, and null otherwise.

syscmd(date)

ifelse(a, b, c, d)

define(compare, ‘ifelse($1, $2, yes, no)’)

ifelse(a, b, c)

270 Programming Utilities Guide—November 1995

6

ifelse() can actually have any number of arguments and provides a limited
form of branched decision capability. In the input

if the string a matches the string b, the result is c. Otherwise, if d is the same as
e, the result is f. Otherwise, the result is g.

String Manipulation

The len() macro returns the length of the string (number of characters) in its
argument. So

is 6, and

is 5.

The substr() macro can be used to produce substrings of strings. So

returns the substring of s that starts at the ith position (origin 0) and is n
characters long. If n is omitted, the rest of the string is returned. When you
input the following example:

it returns the following string:

If i or n are out of range, various things happen.

The index(s1 , s2) macro returns the index (position) in s1 where the string s2
occurs, -1 if it does not occur. As with substr() , the origin for strings is 0.

ifelse(a, b, c, d, e, f, g)

len(abcdef)

len((a,b))

substr(s , i, n)

substr(‘now is the time’,1)

ow is the time

m4 Macro Processor 271

6

translit() performs character transliteration [character substitution] and
has the general form

that modifies s by replacing any character in f by the corresponding character
in t.

Using the following input

replaces the vowels by the corresponding digits. If t is shorter than f,
characters that do not have an entry in t are deleted. As a limiting case, if t is
not present at all, characters from f are deleted from s.

Therefore, the following would delete vowels from s :

The macro dnl() deletes all characters that follow it, up to and including the
next newline. It is useful mainly for removing empty lines that otherwise
would clutter m4 output. The following input, for example, results in a
newline at the end of each line that is not part of the definition:

So the new-line is copied into the output where it may not be wanted. When
you add dnl() to each of these lines, the newlines will disappear. Another
method of achieving the same result is to type:

translit(s , f, t)

translit(s, aeiou, 12345)

translit(s, aeiou)

define(N, 100)
define(M, 200)
define(L, 300)

divert(-1)
define(...)
...
divert

272 Programming Utilities Guide—November 1995

6

Printing

The built-in macro errprint() writes its arguments on the standard error
file. An example would be

dumpdef() is a debugging aid that dumps the current names and definitions
of items specified as arguments. If no arguments are given, then all current
names and definitions are printed.

errprint(‘fatal error’)

m4 Macro Processor 273

6

Summary of Built-In m4Macros

Table 6-1 Summary of Built-In m4 Macros

Built-In m4 Macros Description

changequote(L, R) Change left quote to L, right quote to R

changecom Change left and right comment markers from the default # and newline

decr Return the value of the argument decremented by 1

define(name, stuff) Define name as stuff

defn(‘name’) Return the quoted definition of the argument(s)

divert(number) Divert output to stream number

divnum Return number of currently active diversions

dnl Delete up to and including newline

dumpdef(‘name’, ‘name’, . . .) Dump specified definitions

errprint(s, s, . . .) Write arguments s to standard error

eval(numeric expression) Evaluate numeric expression

ifdef(‘name’, true string, false string) Return true string if name is defined, false string if name is not defined

ifelse(a, b, c, d) If a and b are equal, return c, else return d

include(file) Include contents of file

incr(number) Increment number by 1

index(s1, s2) Return position in s1 where s2 occurs, or –1 if s2 does not work

len(string) Return length of string

maketemp(. . .XXXXX. . .) Make a temporary file

m4 exit Cause immediate exit from m4

m4 wrap Argument 1 will be returned to the input stream at final EOF

popdef Remove current definition of argument(s)

pushdef Save any previous definition (similar to define)

shift Return all but first argument(s)

sinclude(file) Include contents of file — ignore and continue if file not found

substr(string, position, number) Return substring of string starting at position and number characters long

syscmd(command) Run command in the system

sysval Return code from the last call to syscmd

traceoff Turn off trace globally and for any macros specified

274 Programming Utilities Guide—November 1995

6

traceon Turn on tracing for all macros, or with arguments, turn on tracing for
named macros

translit(string, from, to) Transliterate characters in string from the set specified by from to the set
specified by to

undefine(‘name’) Remove name from the list of definitions

undivert(number,number,. . .) Append diversion number to the current diversion

Table 6-1 Summary of Built-In m4 Macros (Continued)

Built-In m4 Macros Description

275

A System Vmake A

Note – This version of make (/usr/ccs/lib/svr4.make) is included for
those users who have makefiles that rely on the older, System V version of
make. However, it is recommended that you use the default version of make
(/usr/ccs/bin/make) where possible. See also Chapter 4, make Utility, on
page 143.

To use this version of make, set the system variable USE_SVR4_MAKE:

$ USE_SVR4_MAKE=”” ; export USE_SVR4_MAKE (Bourne Shell)

% setenv USE_SVR4_MAKE (C shell)

For more information on this version of make, see also the sysV-make(1) man
page.

The trend toward increased modularity of programs means that a project may
have to cope with a large assortment of individual files. A wide range of
generation procedures may be needed to turn the assortment of individual files
into the final executable product.

make provides a method for maintaining up-to-date versions of programs that
consist of a number of files that may be generated in a variety of ways.

An individual programmer can easily forget:

• file-to-file dependencies

276 Programming Utilities Guide—November 1995

A

• files that were modified and the impact that has on other files

• the exact sequence of operations needed to generate a new version of the
program

In a description file, make keeps track of the commands that create files and
the relationship between files. Whenever a change is made in any of the files
that make up a program, the make command creates the finished program by
recompiling only those portions directly or indirectly affected by the change.

The basic operation of make is to

• find the target in the description file

• ensure that all the files on which the target depends, the files needed to
generate the target, exist and are up to date

• (re)create the target file if any of the generators have been modified more
recently than the target

The description file that holds the information on interfile dependencies and
command sequences is conventionally called makefile , Makefile ,
s.makefile , or s.Makefile . If this naming convention is followed, the
simple command make is usually sufficient to regenerate the target regardless
of the number of files edited since the last make. In most cases, the description
file is not difficult to write and changes infrequently. Even if only a single file
has been edited, rather than entering all the commands to regenerate the
target, entering the make command ensures that the regeneration is done in the
prescribed way.

Basic Features
The basic operation of make is to update a target file by ensuring that all of the
files on which the target file depends exist and are up-to-date. The target file is
regenerated if it has not been modified since the dependents were modified.
The make program searches the graph of dependencies. The operation of make
depends on its ability to find the date and time that a file was last modified.

The make program operates using three sources of information:

• a user-supplied description file

• filenames and last-modified times from the file system

• built-in rules to bridge some of the gaps

A System V make 277

A

To illustrate, consider a simple example in which a program named prog is
made by compiling and loading three C language files x.c , y.c , and z.c with
the math library, libm . By convention, the output of the C language
compilations will be found in files named x.o , y.o , and z.o . Assume that the
files x.c and y.c share some declarations in a file named defs.h , but that
z.c does not. That is, x.c and y.c have the line

The following specification describes the relationships and operations:

If this information were stored in a file named makefile , the command

would perform the operations needed to regenerate prog after any changes
had been made to any of the four source files x.c , y.c , z.c , or defs.h . In
the previous example, the first line states that prog depends on three .o files.
Once these object files are current, the second line describes how to load them
to create prog . The third line states that x.o and y.o depend on the file
defs.h . From the file system, make discovers that there are three .c files
corresponding to the needed .o files and that use built-in rules on how to
generate an object from a C source file (that is, issue a cc –c command).

If make did not have the ability to determine automatically what needs to be
done, the following longer description file would be necessary:

If none of the source or object files have changed since the last time prog was
made, and all of the files are current, the command make announces this fact
and stops. If, however, the defs.h file has been edited, x.c and y.c (but not

#include "defs.h"

prog : x.o y.o z.o
cc x.o y.o z.o –lm –o prog

x.o y.o : defs.h H

$ make

prog : x.o y.o z.o
cc x.o y.o z.o –lm –o prog

x.o : x.c defs.h
cc –c x.c

y.o : y.c defs.h
cc –c y.c

z.o : z.c
cc –c z.c

278 Programming Utilities Guide—November 1995

A

z.c) are recompiled; and then prog is created from the new x.o and y.o files,
and the existing z.o file. If only the file y.c had changed, only it is
recompiled; but it is still necessary to reload prog . If no target name is given
on the make command line, the first target mentioned in the description is
created; otherwise, the specified targets are made. The command

would regenerate x.o if x.c or defs.h had changed.

A method often useful to programmers is to include rules with mnemonic
names and commands that do not actually produce a file with that same name.
These entries can take advantage of make’s ability to generate files and
substitute macros (for information about macros, see Description Files and
Substitutions on page 281.) Thus, an entry save might be included to copy a
certain set of files, or an entry clean might be used to throw away unneeded
intermediate files.

If a file exists after such commands are executed, the file’s time of last
modification is used in further decisions. If the file does not exist after the
commands are executed, the current time is used in making further decisions.

You can maintain a zero-length file purely to keep track of the time at which
certain actions were performed. This technique is useful for maintaining
remote archives and listings.

A simple macro mechanism for substitution in dependency lines and command
strings is used by make. Macros can either be defined by command-line
arguments or included in the description file. In either case, a macro consists
of a name followed by the symbol = followed by what the macro stands for. A
macro is invoked by preceding the name by the symbol $. Macro names
longer than one character must be enclosed in parentheses. The following are
valid macro invocations:

The last two are equivalent.

$ make x.o

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

A System V make 279

A

There are four special macros $* , $@, $? , and $< that change values during
the execution of the command. (These four macros are described under
Description Files and Substitutions on page 281.) The following fragment
shows assignment and use of some macros:

The command

loads the three objects with both the lex (–ll) and the math (–lm) libraries,
because macro definitions on the command line override definitions in the
description file. (In operating system commands, arguments with embedded
blanks must be quoted.)

OBJECTS = x.o y.o z.o
LIBES = –lm
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) –o prog
...

$ make LIBES="–ll –lm"

280 Programming Utilities Guide—November 1995

A

As an example of the use of make, a description file that might be used to
maintain the make command itself is given. The code for make is spread over
a number of C language source files and has a yacc grammar. The description
file contains the following:

The make program prints each command before issuing it.

Description file for the make command

FILES = Makefile defs.h main.c doname.c misc.c \
files.c dosys.c gram.y

OBJECTS = main.o doname.o misc.o files.o dosys.o gram.o
LIBES =
LINT = lint –p
CFLAGS = –O
LP = lp

make: $(OBJECTS)
$(CC) $(CFLAGS) –o make $(OBJECTS) $(LIBES)
@size make

$(OBJECTS): defs.h

cleanup:
–rm *.o gram.c
–du

install:
make
@size make /usr/bin/make
cp make /usr/bin/make && rm make

lint: dosys.c doname.c files.c main.c misc.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c gram.c

print files that are out-of-date
with respect to "print" file.

print: $(FILES)
pr $? | $(LP)
touch print

A System V make 281

A

The following output results from entering the command make in a directory
containing only the source and description files:

The last line results from the size make command. The printing of the
command line itself was suppressed by the symbol @ in the description file.

Description Files and Substitutions
The following section explains the most commonly used elements of the
description file.

Comments

The # symbol marks the beginning of a command, and all characters on the
same line after it are ignored. Blank lines and lines beginning with # are
ignored.

Continuation Lines

If a noncomment line is too long, the line can be continued by using the
symbol \ , which must be the last character on the line. If the last character of
a line is \ , then it, the new line, and all following blanks and tabs are replaced
by a single blank.

cc –O –c main.c
cc –O –c doname.c
cc –O –c misc.c
cc –O –c files.c
cc –O –c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc –O –c gram.c
cc –o make main.o doname.o misc.o files.o dosys.o gram.o 13188 +
3348 + 3044 = 19580

282 Programming Utilities Guide—November 1995

A

Macro Definitions

A macro definition is an identifier followed by the symbol =. The identifier
must not be preceded by a colon (:) or a tab. The name (string of letters and
digits) to the left of the = (trailing blanks and tabs are stripped) is assigned the
string of characters following the = (leading blanks and tabs are stripped). The
following are valid macro definitions:

The last definition assigns LIBES the null string. A macro that is never
explicitly defined has the null string as its value. Remember, however, that
some macros are explicitly defined in make’s own rules. (See Internal Rules on
page 298.)

General Form

The general form of an entry in a description file is

Items inside brackets may be omitted and targets and dependents are strings of
letters, digits, periods, and slashes. Shell metacharacters such as * and ? are
expanded when the commands are evaluated. Commands may appear either
after a semicolon on a dependency line or on lines beginning with a tab
(denoted above as \ t) immediately following a dependency line. A
command is any string of characters not including #, except when # is in
quotes.

Dependency Information

A dependency line may have either a single or a double colon. A target name
may appear on more than one dependency line, but all of those lines must be
of the same (single or double colon) type. For the more common single colon
case, a command sequence may be associated with at most one dependency
line. If the target is out of date with any of the dependents on any of the lines
and a command sequence is specified (even a null one following a semicolon

2 = xyz
abc = –ll –ly –lm
LIBES =

target1 [target2 ...] :[:] [dependent1 ...] [; commands] [# ...]
[\t commands] [# ...]
 . . .

A System V make 283

A

or tab), it is executed; otherwise, a default rule may be invoked. In the double
colon case, a command sequence may be associated with more than one
dependency line. If the target is out of date with any of the files on a particular
line, the associated commands are executed. A built-in rule may also be
executed. The double-colon form is particularly useful in updating archive-
type files, where the target is the archive library itself. (An example is
included in the Archive Libraries section.)

Executable Commands

If a target must be created, the sequence of commands is executed. Normally,
each command line is printed and then passed to a separate invocation of the
shell after substituting for macros. The printing is suppressed in the silent
mode (–s option of the make command) or if the command line in the
description file begins with an @ sign. make normally stops if any command
signals an error by returning a nonzero error code. Errors are ignored if the
–i flag has been specified on the make command line, if the fake target name
.IGNORE appears in the description file, or if the command string in the
description file begins with a hyphen (-). If a program is known to return a
meaningless status, a hyphen in front of the command that invokes it is
appropriate. Because each command line is passed to a separate invocation of
the shell, care must be taken with certain commands (cd and shell control
commands, for instance) that have meaning only within a single shell process.
These results are forgotten before the next line is executed.

Before issuing any command, certain internally maintained macros are set.
The $@ macro is set to the full target name of the current target. The $@ macro
is evaluated only for explicitly named dependencies. The $? macro is set to
the string of names that were found to be younger than the target. The $?
macro is evaluated when explicit rules from the makefile are evaluated. If
the command was generated by an implicit rule, the $< macro is the name of
the related file that caused the action; and the $* macro is the prefix shared by
the current and the dependent filenames. If a file must be made but there are
no explicit commands or relevant built-in rules, the commands associated with
the name .DEFAULT are used. If there is no such name, make prints a message
and stops.

In addition, a description file may also use the following related macros:
$(@D), $(@F) , $(*D) , $(*F) , $(<D) , and $(<F) .

284 Programming Utilities Guide—November 1995

A

Extensions of $*, $@, and $<

The internally generated macros $* , $@, and $< are useful generic terms for
current targets and out-of-date relatives. To this list is added the following
related macros: $(@D), $(@F) , $(*D) , $(*F) , $(<D) , and $(<F) . The D
refers to the directory part of the single character macro. The F refers to the
filename part of the single character macro. These additions are useful when
building hierarchical makefile s. They allow access to directory names for
purposes of using the cd command of the shell. Thus, a command can be

Output Translations

The values of macros are replaced when evaluated. The general form, where
brackets indicate that the enclosed sequence is optional, is as follows:

The parentheses are optional if there is no substitution specification and the
macro name is a single character. If a substitution sequence is present, the
value of the macro is considered to be a sequence of ‘‘words’’ separated by
sequences of blanks, tabs, and new-line characters. Then, for each such word
that ends with string1, string1 is replaced with string2 (or no characters if
string2 is not present).

This particular substitution capability was chosen because make is sensitive to
suffixes. The usefulness of this type of translation occurs when maintaining
archive libraries. Now, all that is necessary is to accumulate the out-of-date
members and write a shell script that can handle all the C language programs
(that is, files ending in .c). The following fragment optimizes the executions
of make for maintaining an archive library:

cd $(<D); $(MAKE) $(<F)

$(macro[:string1=[string2]])

$(LIB): $(LIB)(a.o) $(LIB)(b.o) $(LIB)(c.o)
$(CC) –c $(CFLAGS) $(?:.o=.c)
$(AR) $(ARFLAGS) $(LIB) $?
rm $?

A System V make 285

A

A dependency of the preceding form is necessary for each of the different types
of source files (suffixes) that define the archive library. These translations are
added to make more general use of the wealth of information that make
generates.

Recursive Makefiles

Another feature of make concerns the environment and recursive invocations.
If the sequence $(MAKE) appears anywhere in a shell command line, the line is
executed even if the –n flag is set. Since the –n flag is exported across
invocations of make (through the MAKEFLAGS variable), the only thing that is
executed is the make command itself. This feature is useful when a hierarchy
of makefile s describes a set of software subsystems. For testing purposes,
make –n can be executed and everything that would have been done will be
printed, including output from lower-level invocations of make.

Suffixes and Transformation Rules

make uses an internal table of rules to learn how to transform a file with one
suffix into a file with another suffix. If the –r flag is used on the make
command line, the internal table is not used.

The list of suffixes is actually the dependency list for the name .SUFFIXES .
make searches for a file with any of the suffixes on the list. If it finds one,
make transforms it into a file with another suffix. Transformation rule names
are the concatenation of the before and after suffixes. The name of the rule to
transform a .r file to a .o file is thus .r.o . If the rule is present and no
explicit command sequence has been given in the user’s description files, the
command sequence for the rule .r.o is used. If a command is generated by
using one of these suffixing rules, the macro $* is given the value of the stem
(everything but the suffix) of the name of the file to be made; and the macro $<
is the full name of the dependent that caused the action.

The order of the suffix list is significant since the list is scanned from left to
right. The first name formed that has both a file and a rule associated with it is
used. If new names are to be appended, the user can add an entry for
.SUFFIXES in the description file. The dependents are added to the usual list.

A .SUFFIXES line without any dependents deletes the current list. It is
necessary to clear the current list if the order of names is to be changed.

286 Programming Utilities Guide—November 1995

A

Implicit Rules

make uses a table of suffixes and a set of transformation rules to supply default
dependency information and implied commands. The default suffix list (in
order) is as follows:

.o
Object file

.c
C source file

.c~
SCCS C source file

.y
yacc C source grammar

.y~
SCCS yacc C source grammar

.l
lex C source grammar

.l~
SCCS lex C source grammar

.s
Assembler source file

.s~
SCCS assembler source file

.sh
Shell file

.sh~
SCCS shell file

.h
Header file

.h~
SCCS header file

A System V make 287

A

.f
FORTRAN source file

.f~
SCCS FORTRAN source file

.C
C++ source file

.C~
SCCS C++ source file

.Y
yacc C++ source grammar

.Y~
SCCS yacc C++ source grammar

.L
lex C++ source grammar

.L~
SCCS lex C++ source grammar

Figure A-1 summarizes the default transformation paths. If there are two
paths connecting a pair of suffixes, the longer one is used only if the
intermediate file exists or is named in the description.

Figure A-1 Summary of Default Transformation Path

.o

.c .y .l .s .f .C

.y .l .Y .L

288 Programming Utilities Guide—November 1995

A

If the file x.o is needed and an x.c is found in the description or directory, the
x.o file would be compiled. If there is also an x.l , that source file would be
run through lex before compiling the result. However, if there is no x.c but
there is an x.l , make would discard the intermediate C language file and use
the direct link as shown in Figure A-1.

It is possible to change the names of some of the compilers used in the default
or the flag arguments with which they are invoked by knowing the macro
names used. The compiler names are the macros AS, CC, C++C, F77 , YACC,
and LEX. The following command will cause the newcc command to be used
instead of the usual C language compiler.

The macros CFLAGS, YFLAGS, LFLAGS, ASFLAGS, FFLAGS, and C++FLAGS
may be set to cause these commands to be issued with optional flags. Thus

causes the cc command to include debugging information.

Archive Libraries

The make program has an interface to archive libraries. A user may name a
member of a library in the following manner:

or

where the second method actually refers to an entry point of an object file
within the library. (make looks through the library, locates the entry point, and
translates it to the correct object filename.)

$ make CC=newcc

$ make CFLAGS=–g

projlib(object.o)

projlib((entry_pt))

A System V make 289

A

To use this procedure to maintain an archive library, the following type of
makefile is required:

and so on for each object. This is tedious and prone to error. Obviously, the
command sequences for adding a C language file to a library are the same for
each invocation; the filename being the only difference each time. (This is true
in most cases.)

The make command also gives the user access to a rule for building libraries.
The handle for the rule is the .a suffix. Thus, a .c.a rule is the rule for
compiling a C language source file, adding it to the library, and removing the
.o file. Similarly, the .y.a , the .s.a , and the .l.a rules rebuild yacc ,
assembler, and lex files. The archive rules defined internally are .c.a ,
.c~.a , .f.a , .f~.a , and .s~.a . (The tilde (~) syntax will be described
shortly.) The user may define other needed rules in the description file.

The above two-member library is then maintained with the following shorter
makefile :

The internal rules are already defined to complete the preceding library
maintenance. The actual .c.a rule is as follows:

Thus, the $@ macro is the .a target (projlib); the $< and $* macros are set
to the out-of-date C language file, and the filename minus the suffix,
(pfile1.c and pfile1). The $< macro (in the preceding rule) could have
been changed to $*.c .

projlib:: projlib(pfile1.o)
$(CC) –c $(CFLAGS) pfile1.c
$(AR) $(ARFLAGS) projlib pfile1.o
rm pfile1.o

projlib:: projlib(pfile2.o)
$(CC) –c $(CFLAGS) pfile2.c
$(AR) $(ARFLAGS) projlib pfile2.o
rm pfile2.o

projlib: projlib(pfile1.o) projlib(pfile2.o)
@echo projlib up-to-date.

.c.a:
$(CC) –c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o
rm –f $*.o

290 Programming Utilities Guide—November 1995

A

It is useful to go into some detail about exactly what make does when it sees
the construction

Assume the object in the library is out of date with respect to pfile1.c . Also,
there is no pfile1.o file.

1. make projlib .

2. Before using make projlib , check each dependent of projlib .

3. projlib (pfile1.o) is a dependent of projlib and needs to be
generated.

4. Before generating projlib (pfile1.o), check each dependent of
projlib (pfile1.o). (There are none.)

5. Use internal rules to try to create projlib (pfile1.o). (There is no explicit
rule.) Note that projlib (pfile1.o) has a parenthesis in the name to
identify the target suffix as .a . This is the key. There is no explicit .a at the
end of the projlib library name. The parenthesis implies the .a suffix. In
this sense, the .a is hard wired into make.

6. Breakup the name projlib (pfile1.o) into projlib and pfile1.o .
Define two macros, $@ (projlib) and $* (pfile1).

7. Look for a rule . X.a and a file $*. X. The first . X (in the .SUFFIXES list)
which fulfills these conditions is .c so the rule is .c.a , and the file is
pfile1.c . Set $< to be pfile1.c and execute the rule. In fact, make
must then compile pfile1.c .

8. The library has been updated. Execute the command associated with the
projlib: dependency, namely

It should be noted that to let pfile1.o have dependencies, the following
syntax is required:

projlib: projlib(pfile1.o)
@echo projlib up-to-date

@echo projlib up-to-date

projlib(pfile1.o): $(INCDIR)/stdio.h pfile1.c

A System V make 291

A

There is also a macro for referencing the archive member name when this form
is used. The $% macro is evaluated each time $@ is evaluated. If there is no
current archive member, $% is null. If an archive member exists, then $%
evaluates to the expression between the parenthesis.

Source Code Control System (SCCS) Filenames

The syntax of make does not directly permit referencing of prefixes. For most
types of files on operating operating system machines, this is acceptable since
nearly everyone uses a suffix to distinguish different types of files. SCCS files
are the exception. Here, s. precedes the filename part of the complete path
name.

To allow make easy access to the prefix s. , the symbol ~ is used as an
identifier of SCCS files. Hence, .c~.o refers to the rule which transforms an
SCCS C language source file into an object file. Specifically, the internal rule is
$(GET) $(GFLAGS) $< $(CC) $(CFLAGS) –c $*.c rm –f $*.c .

Thus, ~ appended to any suffix transforms the file search into an SCCS
filename search with the actual suffix named by the dot and all characters up
to (but not including the tilde symbol.

The following SCCS suffixes are internally defined:

The following rules involving SCCS transformations are internally defined:

.c~ .sh~ .C~

.y~ .h~ .Y~

.l~ .f~ .L~

.s

.c~: .s~.s: .c~:

.c~.c: .s~.a: .C~.C:

.c~.a: .s~.o: .C~.a:

.c~.o: .sh~: .C~.o:

.y~.c: .sh~.sh: .Y~.C:

292 Programming Utilities Guide—November 1995

A

Obviously, the user can define other rules and suffixes that may prove useful.
The ~ provides a handle on the SCCS filename format so that this is possible.

The Null Suffix

There are many programs that consist of a single source file. make handles this
case by the null suffix rule. To maintain the operating system program cat , a
rule in the makefile of the following form is needed:

In fact, this .c: rule is internally defined so no makefile is necessary at all.
The user only needs to enter $ make cat dd echo date (these are all
operating system single-file programs) and all four C language source files are
passed through the above shell command line associated with the .c: rule.
The internally defined single suffix rules are

Others may be added in the makefile by the user.

.y~.o: .h~.h: .Y~.o:

.y~.y: .f~: .Y~.Y:

.l~.c: .f~.f: .L~.C:

.l~.o: .f~.a: .L~.o:

.l~.l: .f~.o: .L~.L:

.s,:

$(CC) –o $@ $(CFLAGS) $(LDFLAGS) $<

.c: .sh: .f,:

.c,: .sh,: .C:

.s: .f: .C,:

.s,:

A System V make 293

A

Included Files

The make program has a capability similar to the #include directive of the C
preprocessor. If the string include appears as the first seven letters of a line
in a makefile and is followed by a blank or a tab, the rest of the line is
assumed to be a filename, which the current invocation of make will read.
Macros may be used in filenames. The file descriptors are stacked for reading
include files so that no more than 16 levels of nested include s are
supported.

SCCS Makefiles

Makefiles under SCCS control are accessible to make. That is, if make is typed
and only a file named s.makefile or s.Makefile exists, make will do a get
on the file, then read and remove the file.

Dynamic-Dependency Parameters

A dynamic-dependency parameter has meaning only on the dependency line
in a makefile . The $$@ refers to the current ‘‘thing’’ to the left of the :
symbol (which is $@). Also the form $$(@F) exists, which allows access to the
file part of $@. Thus, in the following example:

the dependency is translated at execution time to the string cat.c . This is
useful for building a large number of executable files, each of which has only
one source file. For instance, the operating system software command
directory could have a makefile like:

Obviously, this is a subset of all the single file programs. For multiple file
programs, a directory is usually allocated and a separate makefile is made.
For any particular file that has a peculiar compilation procedure, a specific
entry must be made in the makefile .

cat: $$@.c

CMDS = cat dd echo date cmp comm chown

$(CMDS): $$@.c
$(CC) $(CFLAGS) $? –o $@

294 Programming Utilities Guide—November 1995

A

The second useful form of the dependency parameter is $$(@F) . It represents
the filename part of $$@. Again, it is evaluated at execution time. Its
usefulness becomes evident when trying to maintain the /usr/include
directory from makefile in the /usr/src/head directory. Thus, the
/usr/src/head/makefile would look like

This would completely maintain the /usr/include directory whenever one
of the above files in /usr/src/head was updated.

Command Usage

The make Command

The make command takes macro definitions, options, description filenames,
and target filenames as arguments in the form:

The following summary of command operations explains how these arguments
are interpreted.

First, all macro definition arguments (arguments with embedded = symbols)
are analyzed and the assignments made. Command line macros override
corresponding definitions found in the description files. Next, the option
arguments are examined. The permissible options are as follows:

–i
Ignore error codes returned by invoked commands. This mode is entered if
the fake target name .IGNORE appears in the description file.

INCDIR = /usr/include

INCLUDES = \
$(INCDIR)/stdio.h \
$(INCDIR)/pwd.h \
$(INCDIR)/dir.h \
$(INCDIR)/a.out.h

$(INCLUDES): $$(@F)
cp $? $@
chmod 0444 $@

$ make [options] [macro definitions and targets]

A System V make 295

A

–s
Silent mode. Do not print command lines before executing. This mode is
also entered if the fake target name .SILENT appears in the description file.

–r
Do not use the built-in rules.

–n
No execute mode. Print commands, but do not execute them. Even lines
beginning with an @ sign are printed.

–t
Touch the target files (causing them to be up to date) rather than issue the
usual commands.

–q
Question. The make command returns a zero or nonzero status code
depending on whether the target file is or is not up to date.

–p
Print the complete set of macro definitions and target descriptions.

–k
Abandon work on the current entry if something goes wrong, but continue
on other branches that do not depend on the current entry.

–e
Environment variables override assignments within makefile s.

–f
Description filename. The next argument is assumed to be the name of a
description file. A file name of – denotes the standard input. If there are no
–f arguments, the file named makefile , Makefile , s.makefile , or
s.Makefile in the current directory is read. The contents of the
description files override the built-in rules if they are present. The
following two fake target names are evaluated in the same manner as flags:

.DEFAULT
If a file must be made but there are no explicit commands or relevant built-
in rules, the commands associated with the name .DEFAULT are used if it
exists.

296 Programming Utilities Guide—November 1995

A

.PRECIOUS
Dependents on this target are not removed when Quit or Interrupt is
pressed.

Finally, the remaining arguments are assumed to be the names of targets to be
made and the arguments are done in left-to-right order. If there are no such
arguments, the first name in the description file that does not begin with the
symbol . is made.

Environment Variables

Environment variables are read and added to the macro definitions each time
make executes. Precedence is a prime consideration in doing this properly.
The following describes make’s interaction with the environment. A macro,
MAKEFLAGS, is maintained by make. The macro is defined as the collection of
all input flag arguments into a string (without minus signs). The macro is
exported and thus accessible to recursive invocations of make. Command line
flags and assignments in the makefile update MAKEFLAGS. Thus, to describe
how the environment interacts with make, the MAKEFLAGS macro
(environment variable) must be considered.

When executed, make assigns macro definitions in the following order:

1. Read the MAKEFLAGS environment variable. If it is not present or null, the
internal make variable MAKEFLAGS is set to the null string. Otherwise, each
letter in MAKEFLAGS is assumed to be an input flag argument and is
processed as such. (The only exceptions are the –f , –p , and –r flags.)

2. Read the internal list of macro definitions.

3. Read the environment. The environment variables are treated as macro
definitions and marked as exported (in the shell sense).

4. Read the makefile (s). The assignments in the makefile (s) override the
environment. This order is chosen so that when a makefile is read and
executed, you know what to expect. That is, you get what is seen unless the
–e flag is used. The –e is the input flag argument, which tells make to have
the environment override the makefile assignments. Thus, if make –e
is entered, the variables in the environment override the definitions in the
makefile . Also MAKEFLAGS overrides the environment if assigned. This
is useful for further invocations of make from the current makefile .

A System V make 297

A

It may be clearer to list the precedence of assignments. Thus, in order from
least binding to most binding, the precedence of assignments is as follows:

1. internal definitions

2. environment

3. makefile (s)

4. command line

The –e flag has the effect of rearranging the order to:

1. internal definitions

2. makefile (s)

3. environment

4. command line

This order is general enough to allow a programmer to define a makefile or
set of makefile s whose parameters are dynamically definable.

Suggestions and Warnings
The most common difficulties arise from make’s specific meaning of
dependency. If file x.c has the following line:

then the object file x.o depends on defs.h ; the source file x.c does not. If
defs.h is changed, nothing is done to the file x.c while file x.o must be
recreated.

To discover what make would do, the –n option is very useful. The command

orders make to print out the commands that make would issue without
actually taking the time to execute them. If a change to a file is absolutely
certain to be mild in character (adding a comment to an include file, for

#include "defs.h"

$ make -n

298 Programming Utilities Guide—November 1995

A

example), the –t (touch) option can save a lot of time. Instead of issuing a large
number of superfluous recompilations, make updates the modification times
on the affected file. Thus, the command

(touch silently) causes the relevant files to appear up to date. Obvious care is
necessary because this mode of operation subverts the intention of make and
destroys all memory of the previous relationships.

Internal Rules
The standard set of internal rules used by make are reproduced below.

Suffixes recognized by make are:

The following are predefined macros:

AR=ar

ARFLAGS=-rv

AS=as

ASFLAGS=

BUILD=build

CC=cc

CFLAGS= -0

C++C=CC

C++FLAGS= -0

F77=f77

FFLAGS= -0

GET=get

GFLAGS=

LEX=lex

LFLAGS=

LD=ld

$ make –ts

.o .c .c~ .y .y~ .l .l~ .s .s~ .sh .sh~

.h .h~ .f .f~ .C .C~ .Y .Y~ .L .L~

A System V make 299

A

LDFLAGS=

MAKE=make

MAKEFLAGS=

YACC=yacc

YFLAGS=

$=$

Special Rules

This section covers special make rules with either single or double suffixes.

Single-Suffix Rules

The following are single-suffix rules:

.c:
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $<

.c~:
$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) $(LDFLAGS) -o $* $*.c
rm -f $*.c

.s:
$(AS) $(AFLAGS) -o $@ $<

.s~:
$(GET) $(GFLAGS) $<
$(AS) $(AFLAGS) -o $@ $*.s
rm -f $*.s

.sh:
cp $< $@; chmod 0777 $@

.sh~:
$(GET) $(GFLAGS) $<

cp $*.sh $*; chmod 0777 $@
rm -f $*.sh

markfile.o : markfile
A=@; echo "static char _sccsid[]=\042‘grep $$A’(#)’ \
markfile‘\042;" > markfile.c
$(CC) -c markfile.c
rm -f markfile.c

300 Programming Utilities Guide—November 1995

A

.f:
$(F77) $(FFLAGS) $(LDFLAGS) -o $@ $<

.f~:
$(GET) $(GFLAGS) $<
$(F77) $(FFLAGS) -o $@ $(LDFLAGS) $*.f
rm -f $*.f

.C~:
$(GET) $(GFLAGS) $<
$(C++C) $(C++FLAGS) -o $@ $(LDFLAGS) $*.C
rm -f $*.C

.C:
$(C++C) $(C++FLAGS) -o $@ $(LDFLAGS) $<

Double-Suffix Rules

The following are double-suffix rules:

$(GET) $(GFLAGS) $<

.c.a:
$(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.o

c.a~:
$(GET) $(GFLAGS) $<
$(CC) -c $(CFLAGS) $*.c
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.[co]

.c.o:
$(CC) $(CFLAGS) -c $<

.c~.o:
$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) -c $*.c
rm -f $*.c

.y.c:

$(YACC) $(YFLAGS) $<
mv y.tab.c $@

.c~.c .y~.y .l~.l .s~.s .sh~.sh

.h~.h .f~.f .C~.C .Y~.Y .L~.L

A System V make 301

A

.y~.c:

$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.y
mv y.tab.c $*.c
rm -f $*.y

.y.o:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm –f y.tab.c
mv y.tab.o $@

.y~.o:
$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAGS) -c y.tab.c
rm -f y.tab.c $*.y
mv y.tab.o $*.o

.l.c:
$(LEX) $(LFLAGS) $<
mv lex.yy.c $@

.l~.c:
$(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $*.l
mv lex.yy.c $@
rm -f $*.l

.l.o:
$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
rm –f lex.yy.c
mv lex.yy.o $@

.l~.o:
$(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $*.l
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c $*.l
mv lex.yy.o $@

.s.a:
$(AS) $(ASFLAGS) -o $*.o $*.s
$(AR) $(ARFLAGS) $@ $*.o

302 Programming Utilities Guide—November 1995

A

.s~.a:
$(GET) $(GFLAGS) $<
$(AS) $(ASFLAGS) -o $*.o $*.s
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.[so]

.s.o:
$(AS) $(ASFLAGS) -o $@ $<

.s~.o:
$(GET) $(GFLAGS) $<
$(AS) $(ASFLAGS) -o $*.o $*.s
rm -f $*.s

.f.a:
$(F77) $(FFLAGS) -c $*.f
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.o

.f~.a:
$(GET) $(GFLAGS) $<
$(F77) $(FFLAGS) -c $*.f
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.[fo]

.f.o:
$(F77) $(FFLAGS) -c $*.f

.f~.o:
$(GET) $(GFLAGS) $<
$(F77) $(FFLAGS) -c $*.f
rm -f $*.f

.C.a:
$(C++C) $(C++FLAGS) -c $<
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.o

.C~.a:
$(GET) $(GFLAGS) $<
$(C++C) $(C++FLAGS) -c $*.C
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.[Co]

.C.o:
$(C++C) $(C++FLAGS) -c $<

.C~.o:
$(GET) $(GFLAGS) $<
$(C++C) $(C++FLAGS) -c $*.C
rm -f $*.C

A System V make 303

A

.Y.C:
$(YACC) $(YFLAGS) $<
mv y.tab.c $@

.Y~.C:
$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.Y
mv y.tab.c $*.C
rm -f $*.Y

.Y.o
$(YACC) $(YFLAGS) $<
$(C++C) $(C++FLAGS) -c y.tab.c
rm -f y.tab.c
mv y.tab.o $@

.Y~.o:
$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.Y
$(C++C) $(C++FLAGS) -c y.tab.c
rm -f y.tab.c $*.Y
mv y.tab.o $*.o

.L.C:
$(LEX) $(LFLAGS) $<
mv lex.yy.c $@

.L~.C:
$(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $*.L
mv lex.yy.c $@
rm -f $*.L

.L.o:
$(LEX) $(LFLAGS) $<
$(C++C) $(C++FLAGS) -c lex.yy.c
rm -f lex.yy.c
mv lex.yy.o $@

.L~.o:
$(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $*.L
$(C++C) $(C++FLAGS) -c lex.yy.c
rm -f lex.yy.c $*.L
mv lex.yy.o $@

304 Programming Utilities Guide—November 1995

A

305

Index

Symbols
#include directive, 159
$PATH (TNF), 4
$set_name (TNF), 11
.fini (TNF), 3
.init (TNF), 3, 4
.prexrc, 15
/proc (TNF), 48

A
access control for editing, SCCS, 227
adding suffix rules in make, 171
admin, sccs subcommand, 251, 253
allocating buffer (TNF), 25
attaching prex to process, 5
attributes (TNF), 10

B
buffer, allocating (TNF), 25
building a project with make, 209
building libraries with make, 180

C
C++, 76

C++ mangled symbols, 72, 116
CC, 76
cdc, sccs subcommand, 238
check in, then check out file for editing,

sccs deledit, 234
comb, sccs subcommand, 242
comma-file, SCCS, 228
command

dependency checking in make, 158
line, 294, 296

 replacement macro reference, 205
compare versions, sccsdiff, 238
compiling alternate library variants in

make, 189
complex compilations and make, 182
conditional macro definitions in

make, 187
consistency control (make), 143
control, place file under SCCS, 228
cookie.c (TNF), 16
create
 delta (SCCS), 231

reports, sccs prs, 239
SCCS history file, 228, 229

 sccs subcommand, 228, 229
cross-compilation macro

HOST_ARCH, 223

306 Programming Utilities Guide—November 1995

TARGET_MACH, 223

D
data keywords, 239, 254
debug function (TNF), 3
debugging (TNF), 1
.DEFAULT special target in make, 152
default makefile, 147
defining

new types for probes (TNF), 44
 macros in make, 157
 user types (TNF), 44
delayed macro references in make, 170
deledit, sccs subcommand, 234
delete pending changes, sccs unedit, 233
delta (SCCS)

check in a file, 229, 231
combining, 242
creating, 231
creating a new release, 246
display commentary, sccs prt, 237
display entire history, 239
excluding from working copy, 241
fix commentary, 240
ID, SID, 230
remove, 240
update commentary, sccs cdc, 238
vs. version, 229

demangling symbols, 72, 116
dependency

checking in make, 148
file, 144

diffs, sccs subcommand, 233
dlclose(3X) (TNF), 49
dlopen(3X) (TNF), 3, 49
Don’t know how to make target, 152
duplicate targets (make), 153
dynamic macros

implicit rules in make, 169
modifiers in make, 169

E
edit, sccs subcommand, 229, 231, 241, 246
editing (SCCS)

check editing status of, sccs info, 237
check in, then out, sccs deledit, 234
check out for editing, 229, 231
controlling file access, 227
delete pending changes, sccs

unedit, 233
enabling

kernel probes (TNF), 26
enhancements to make, 216
environment variables, 296, 297
errors, interpreting SCCS messages, 251
escaped NEWLINE, and make, 147
example, testing with make, 204
exec() (TNF), 49
extern C functions, 76
extracting kernel trace data (TNF), 29

F
failure code (TNF), 49
files

administering SCCS, 251 to 253
binary, and SCCS, 243
check editing status of, sccs info, 237
check in under SCCS, 229, 231
check in, then out, for editing, sccs

deledit, 234
check out for editing from SCCS, 229,

231
combining SCCS deltas, 242
comma-file, SCCS, 228
compare versions, sccs sccsdiff, 238
create an SCCS history, 228
delete pending changes, sccs

unedit, 233
dependency, in make, 145
display entire SCCS history, 239
duplicate source directories with

SCCS, 244
excluding deltas from SCCS working

copy, 241

Index 307

fix SCCS delta or commentary, 240
get most recent SID, 236
get selected version, 234
get version by date, 234
get working copy, 232
get working copy under SCCS, 229
locking sources with SCCS, 227
naming retrieved working copy, 234
parameters for SCCS history files, 251
presumed static by make, 145
remove SCCS delta, 240
restoring corrupted SCCS history

file, 253
retrieving writable working copy

from SCCS, 234, 241
review pending changes, sccs

diffs, 233
review SCCS commentary, 229
s.file 228
SCCS-file, 228
target, in make, 145
temporary SCCS files, 246
trace (TNF), 22
validating SCCS history files, 252
x.file, SCCS 246
z.file, SCCS, 246

fix, sccs subcommand, 240
force processing of target in make, 152
fork(2) (TNF), 49
fork1(2) (TNF), 49

G
get (SCCS)

access to a file for editing under
SCCS, 229, 231

most recent SID, 236
selected version of a file, 234
version by date, 234
version of a file by date under

SCCS, 234
working copy of a file, 232
working copy of a file under

SCCS, 229

get, sccs subcommand, 229, 232, 234, 236,
239, 241

grammar (TNF), 10

H
headers
 hidden dependencies, make, 159,160

maintaining directory of, make, 194
help, sccs subcommand, 251
hidden dependency checking, make, 159
history file, create, SCCS 228, 229
HOST_ARCH macro, 223

I
ID keywords, 235, 254
iend, make(1), 303
.IGNORE special target in make, 155
ignored command exit status, make, 154
implicit rules, make, 147, 168
incompatibilities with older versions,

make, 224 to 226
info, sccs subcommand, 237
.INIT special target, perform rule

initially, 191
inserting probe points (TNF), 39
installing programs and libraries,

make, 209
interpreting SCCS error messages, 251
istart, make(1), 275

K
.KEEP_STATE special target in make, 158
kernel (TNF) 24-38

disabling tracing, 28
enabling probes, 26
enabling tracing, 28
extracting trace data, 29
probes, 26, 30
reading trace, 30
resetting kernel tracing, 29
script for tracing, 35

308 Programming Utilities Guide—November 1995

 tracing, resetting, 29
keywords

data, 239, 254
ID, 235, 254

L
level number, in SID, 230
lex(1), 51 to 79
 command line, 52 to 54
 definitions, 67 to 70, 77
 disambiguating rules, 62 to 63
 how to write source, 54 to 71
 library, 53 to 54, 76
 operators, 55 to 58
 quick reference, 77 to 79
 routines, 60, 64 to 67
 source format, 54, 77 to 79
 start conditions, 68 to 70
 use with yacc(1), 67 to 68, 73 to 76,

81 to 84, 91 to 92, 112 to 114
 user routines, 64 to 65, 70 to 71
 yylex(), 52 to 53, 74
lexical analyzer (see lex(1)), 54
/lib/svr4.make, 275
libraries, maintaining, 288, 291
libraries, building with make, 180
libtnfprobe, 3, 4, 5
linking with system-supplied libraries in

make, 185
lint and make, 184
local I/O probes, 34
locking, file versions (SCCS), 227

M
m4(1), 259 to 274
 argument handling, 264 to 267
 arithmetic capabilities, 267 to 268
 command line, 260 to 261
 conditional preprocessing, 269 to 270
 defining macros, 261 to 264

 file manipulation, 268 to 269
 quoting, 262 to 264
 string handling, 270 to 271
macros, 278, 285, 289, 291
 defining (m4), 261 to 264

references in make, 157
 processing changes for make, 221
maintaining,

libraries, 288, 291
 programs with make, 143
 software projects and make, 206
 subsidiary libraries with make, 213
make, 143 to 226

#include directive, 159
adding suffix rules, 171
building libraries, 180
command-line arguments, 157
delayed macro reference, 170
depend replaced by hidden

dependency checking, 159
enhancements, 216
escaped NEWLINE, 147
implicit rules, 147
improved library support, 223
and lint, 184
macro references in, 157
macros, 288
MAKEFLAGS macro, 197

 metacharacters (shell) in make
rules, 146

 nested make commands, 195
 noninteractive tasks and make, 143
 options, 161

pattern-matching rules, 147, 173
predefined macros, 162
reserved words, 153
SHELL variable, 197
silent execution, 154

 special targets, 152
suffix list, 167
suffix rules, 166
-t option, warning against, 163

 target entry format for make, 145

Index 309

target group, 202
or shell scripts, 144
version incompatibilities, 224 to 226
which version, 275

make target, 144, 145, 146, 150
.DEFAULT, 152
.IGNORE, 155
.KEEP_STATE, 158
.PRECIOUS, 182
.SILENT, 154

makefile, 144
and SCCS, 146
default file, 147
or Makefile, 146
searched for in working

directory, 146
MAKEFLAGS macro in make, 197
messages, errors (SCCS), 251
metacharacters (shell) in make rules, 146

N
nested make commands, described, 195
No Id Keywords (cm7), 236
noninteractive tasks and make, 143

O
options, make, 161
organization issues and make, 206
organization of guide, xvii

P
page daemon (TNF), 33
page faults (TNF), 33
page I/O (TNF), 33
parser (see yacc(1)), 81
passing command-line arguments to

make, 157
pattern, replacement macro references in

make, 190
pattern-matching rules in make, 147,173

pattern-matching rules for troff, example
of how to write, 209

performance data (TNF), 1
performance issues (TNF), 48
.PRECIOUS — special target in make, 182
predefined macros, using, in

make, 162,165
prex, 3

attaching to process, 5
attributes, 10
commands, 13
connecting probe points, 15
disabling kernel tracing, 28
enabling probe points, 15
enabling tracing (kernel), 28
halting and continuing, 6
kernel tracing, 24
options, 4, 7
sample session, 18
script, 15
selecting kernel probes, 26
starting your program, 4
tnfdump sample, 23
trace file, 22
trace file name, 8
tracing, 15

probe functions (TNF), 3
probe points (TNF), 3

connecting, 15
enabling, 15, 28
tracing, 15

program maintenance with make, 143
program sample (TNF), 16
prs, sccs subcommand, 239
prt, prt subcommand, 229
prt, sccs subcommand, 237

R
recursive makefiles and directory

hierarchies in make, 211
recursive targets, as distinct from nested

make commands, 212
regular expressions, 55 to 58

310 Programming Utilities Guide—November 1995

release number, in SID, 230
repetitive tasks and make, 143
reserved make words, 153
reserved words (TNF), 12
resetting kernel tracing (TNF), 29
retrieve copies, SCCS, 227
retrieving current file versions from SCCS,

in make, 155
review pending changes, sccs diffs, 233
rmdel, sccs subcommand, 240
rule, in target entry for make, 144
running tests with make, 203

S
s.file, 228
sample program (TNF), 16
SCCS, 227

administering s.files, 251 to 253
and binary files, 243
branches, 246 to 251
create a history file, 228
data keywords, 239, 254
delta ID, 230
delta vs. version, 229
duplicate source directories, 244
history file parameters, 251
history files as true source files, 244
ID keywords, 235, 254
and make, 143, 245
and makefile, 146
restoring a corrupted history file, 253
s.file, 228
temporary files, 246
utility commands, 254
validating history files, 252
x.file, 246
z.file, 246

sccs, 229
admin, 251
admin -z, 253
cdc, 238
comb, 242
command, 228 to 246

create, 228, 229
deledit, 234
delta, 229, 231
diffs, 233
diffs and the c option for diff, 233
edit, 229, 231
edit -r, 246
edit -x, 241
fix, 240
get, 229, 232
get -c, 234
get -G, 234
get -g, 236
get -k, 234, 241
get -m, 239
get -r, 234
help, 251
info, 237
prs, 239
prt, 229, 237
rmdel, 240
sccsdiff, 238
unedit, 233
val, 252

SCCS subdirectory, 228
sccsdiff, sccs subcommand, 238
SCCS-file, 228
script for kernel tracing (TNF), 35
scripts and prex, 15
selecting kernel probes (TNF), 26
selector_list (TNF), 11
shell

scripts vs. make, 144
special characters and make, 146
variables, references in make, 204

SHELL environment variable, and
make, 197

SID, SCCS delta ID, 230
signals (TNF), 49
.SILENT special target in make, 154
silent command execution, make, 154
source code control system, 227

Index 311

spaces, leading, common error in make
rules, 145

special targets in make, 152
stderr (TNF), 3
suffix
 list, in make, 167
 replacement macro references in

make, 183
 rules in makefiles, 166
 transformation, 285, 288, 298, 303
suppressing automatic SCCS retrieval in

make, 156
swapper (TNF), 34
symbols, mangled, 72, 116
system call probes (TNF), 32
System V make, 275

T
target entry format for make, 145
target group, 202
target, make, 144
TARGET_ARCH macro, 223
targets, duplicate, 153
targets, special in make, 152
temporary files for SCCS, 246
thread probes (TNF), 31
thread scheduling probe (TNF), 34
TNF_DECLARE_RECORD, 44
TNF_DEFINE_RECORD_n, 44
TNF_PROBE macros, 39
tnf_probes, 30
tnfdump, 3, 7, 22, 30

sample, 23
tnfxtract, 29
trace file (TNF), 22
Trace Normal Form (TNF), 3
tracing kernel

disabling kernel (TNF), 28
enabling kernel (TNF), 28
extracing kernel data (TNF), 29
kernel (TNF), 24

resetting kernel (TNF), 29
tracing execution (TNF), 1, 15
transitive closure, none for suffix rules in

make, 171

U
unedit, sccs subcommand, 233
USE_SVR4_MAKE system variable, 275
user types for probes, 44
/usr/ccs/bin/make, 275
/usr/share/lib/make/make.rules, 147

V
val, sccs subcommand, 252
variant object files and programs from the

same sources in make, 188
version

SCCS delta ID, 230
vs. delta, in SCCS, 229

virtual memory probes (TNF), 32
VM probes (TNF), 32

W
words, reserved (TNF), 11
words, reserved in make, 153

X
x.file, 246

Y
yacc(1), 81 to 142
yacc(1) library, 76
 definitions, 90 to 92
 disambiguating rules, 99 to 109
 error handling, 109 to 112
 how to write source, 84 to 90
 library, 112 to 114
 routines, 117
 source format, 84

312 Programming Utilities Guide—November 1995

 symbols, 84 to 90
 typing, 119 to 120
 use with dbx(1), 114
 use with lex(1), 67 to 68, 73 to 76, 81 to

84, 91 to 92, 112 to 114
 yylex(), 113
 yyparse(), 112 to 114

Z
z.file, 246

Index 313

Copyright 1995 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs de
licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX System Laboratories Inc., filiale
entierement detenue par Novell, Inc. ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le logiciel
détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par
des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: l’utilisation, la duplication ou la divulgation par l’administration
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et aux
logiciels informatiques du DFARS 252.227-7013 et FAR 52.227-19. Le produit décrit dans ce manuel peut Être protege par un ou
plusieurs brevet(s) americain(s), etranger(s) ou par des demandes en cours d’enregistrement.

MARQUES

Sun, Sun Microsystems, le logo Sun, Solaris sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-
Unis et dans certains autres pays. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays, et exclusivement
licenciée par X/Open Company Ltd. OPEN LOOK est une marque enregistrée de Novell, Inc. PostScript et Display PostScript
sont des marques d’Adobe Systems, Inc.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox
sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN LOOK GUIs et
qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y
COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE
SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

