
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Netra™ Data Plane Software Suite 2.0
Update 2

User’s Guide

Part No. 820-5211-11
July 2008, Revision A

Please
Recycle

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, UltraSPARC, Netra, Sun Fire, OpenBoot, docs.sun.com, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. possède les droits de propriété intellectuels relatifs à la technologie décrite dans ce document. En particulier, et sans
limitation, ces droits de propriété intellectuels peuvent inclure un ou plusieurs des brevets américains listés sur le site
http://www.sun.com/patents, un ou les plusieurs brevets supplémentaires ainsi que les demandes de brevet en attente aux les États-Unis et
dans d’autres pays.

Ce document et le produit auquel il se rapporte sont protégés par un copyright et distribués sous licences, celles-ci en restreignent l’utilisation,
la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Tout logiciel tiers, sa technologie relative aux polices de caractères, comprise, est protégé par un copyright et licencié par des fournisseurs de
Sun.

Des parties de ce produit peuvent dériver des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée
aux États-Unis et dans d’autres pays, licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, UltraSPARC, Netra, Sun Fire, OpenBoot, docs.sun.com, et Solaris sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux États-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux États-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface utilisateur graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox dans la recherche et le développement du concept des interfaces utilisateur visuelles ou graphiques
pour l’industrie informatique. Sun détient une license non exclusive de Xerox sur l’interface utilisateur graphique Xerox, cette licence couvrant
également les licenciés de Sun implémentant les interfaces utilisateur graphiques OPEN LOOK et se conforment en outre aux licences écrites de
Sun.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DÉCLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES DANS LA LIMITE DE LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE À LA QUALITÉ MARCHANDE, À L’APTITUDE À UNE UTILISATION PARTICULIÈRE OU À
L’ABSENCE DE CONTREFAÇON.

Contents

Preface xvii

1. Netra Data Plane Software Suite Overview 1

Product Description 1

Supported Systems 2

Software Installation 3

Platform Firmware Prerequisites 4

Package Dependencies 6

Package Installation Procedures 6

Building and Booting Reference Applications 9

.cshrc File and Required Compiler Path 9

Building Reference Application Instructions 10

Programming Methodology 12

Reusing Existing C Code 13

tejacc Compiler Basic Operation 14

tejacc Compiler Mechanics 14

tejacc Compiler Options 15

tejacc Compiler Configuration 15

tejacc Compiler and Netra DPS Interaction 16

Architecture Elements 18
iii

Hardware Architecture API Overview 18

Software Architecture and Late-Binding API Overview 22

User API Overview 27

Late-Binding API Overview 27

Netra DPS Runtime API Overview 27

Finite State Machine API Overview 29

Map API Overview 29

2. tejacc Basics 31

Command-Line Options 31

tejacc Command-Line Options 32

Optimization 33

Optimization Options 33

Context-Sensitive Generation 34

Language 35

Language Characteristics 35

Include Files 35

Late-Binding Object Identifiers 35

3. Profiler 37

Profiler Introduction 37

How the Profiler Works 38

Groups and Events 38

Profiler Output 39

Profiler Examples 41

Profiler API 41

Profiler Configuration 42

Profiler Output Example 42

Profiling Application Performance 44
iv Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Sun UltraSPARC T1 Performance Counters 44

Sun UltraSPARC T2 Performance Counters 47

User-Defined Statistics 50

Profiling Metrics 51

Using the Profiler Script 51

Profiler Scripts 52

Raw Profile Data 53

Summarized Profile Data 56

Performance Parameters Calculations 61

4. Debugger 67

Debugger Introduction 67

Native Debugger 68

Debugging Configuration Code 68

Entering the Debugger 69

Native Debugger Commands 69

Resolving Symbols 77

GNU Project Debugger (GDB) 79

Configuring LDoms for GDB Support 79

GDB Showcase Application 80

5. Interprocess Communication Software 87

IPC Introduction 87

Programming Interfaces Overview 88

Configuring the Environment for IPC 88

Memory Management 88

IPC in the LDoms Environment 89

LDoms Channel Setup 89

IPC Channel Setup 90
Contents v

Example Environment for UltraSPARC T1 Based Servers 92

Domains 92

Virtual Data Plane Channels 94

IPC Channels 95

Example Environment for UltraSPARC T2 Based Servers 96

Reference Applications 97

Common Header 97

Solaris Utility Code 97

Forwarding Application 98

6. Remote Command-Line Interface 101

Remote Command-Line Interface Introduction 101

IPC Setup for Remote CLI 102

Accessing the Remote CLI 103

Debugging Remotely 104

Coredump Support 105

System Configuration 106

Compiling the Remote CLI Application 107

Build Script 107

Usage 107

Build Script Arguments 107

Argument Descriptions 108

7. Eclipse Development Environment 109

ADE Introduction 109

Starting the Eclipse-Based ADE GUI 110

Creating a Teja Project 110

Files and Viewers 114

Hardware Architecture Viewer 114
vi Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Software Architecture Viewer 117

Mapping Viewer 119

Build 121

8. Receive Packet Classification 123

Receive Packet Classification Introduction 123

Supported Networking Interfaces 124

Sun Multithreaded 10GbE and NIU Receive Packet Classifier 124

Hashing Based on Level 2, Level 3, and Level 4 Header Classification 125

Hash Key generation 125

Application 126

Classification Policy 126

Flow Match Based on Level 2, Level 3, and Level 4 Header Classification 127

Level 2 (L2) Classification 127

Level 3 and Level 4 (L3/L4) Classification 127

Applications 128

Classification Programming Interface 128

Examples 132

9. Auto-Configuration 137

Auto-Configuration Introduction 137

Installation 138

Prerequisites 138

User Interface 139

Configuring a Logical Domain Environment for Reference Applications 139

Custom Configuring a Primary Domain 140

Custom Configuring a Guest Domain 141

Configuring LDC and IPC 142

Saving Current Guest Domains Configuration 144
Contents vii

Configuring LDoms from a Saved Location 145

10. Reference Applications 147

IP Packet Forwarding Application 147

Source Files 148

Compiling the ipfwd Application 148

Default Configurations 152

Other IPFWD Options 153

Format 155

Differentiated Services Application 156

Classifier 157

Policing (Meter) 158

DSCP Marker 158

Shaping 158

Building the DiffServ Application 159

DiffServ Command-Line Interface Implementation 160

Command-Line Interface for the IPv4-DiffServ Application 160

DiffServ References 172

Access Control List Application 172

Building the ACL Application 172

Running the ACL Application 173

Command-Line Interface for the ACL Application 173

Radio Link Protocol Application 175

Compiling the RLP Application 175

Default Configurations 178

Other RLP Options 179

IPSec Gateway Application 180

IPSec Gateway Application Architecture 180

IPSec Gateway Application Capabilities 181
viii Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

High-Level Packet Processing 182

Security Association (SA) Database and Security Policy Database 183

Static Security Policy Database (SPD) and Security Association Database
(SAD) 185

Packet Encapsulation and De-encapsulation 188

Memory Pools 192

Pipelining 193

Source Code File Description 193

Build Script 194

Reference Applications Configurations 197

Flow Policy for Spreading Traffic to Multiple DMA Channels 207

Traffic Generator Application 208

User Interface 208

Parameters Description 220

Traffic Generator Output 221

Template Files 221

Using the Traffic Generator 222

Compiling the Traffic Generator 227

Default Configurations 229

Interprocess Communication (IPC) Reference Application 230

IPC Reference Application Content 231

Building the IPC Reference Application 232

Using the ipctest Utility 233

Installing the lwmod STREAMS Module 235

11. Performance Tuning 237

Performance Tuning Introduction 237

UltraSPARC T1 Processor Overview 238

UltraSPARC T2 Processor Overview 240
Contents ix

Identifying Performance Issues 243

UltraSPARC T1 Performance 243

UltraSPARC T2 Performance 246

Optimization Techniques 248

Code Optimization 248

Pipelining 248

Parallelization 250

Mapping 251

Parking Idle Strands 251

Slowing Down Polling 252

Tuning Troubleshooting 253

What Is a Compute-Bound Versus a Memory-Bound Thread? 253

Cannot Reach Line Rate for Packets Smaller Than 300 Bytes 253

Cannot Scale Throughput to Multiple Ports 253

How Do I Achieve Line Rate for 64-byte Packets? 254

When Should I Consider Thread Placement? 255

Example RLP Exercise 255

Application Configuration 255

Using the Profiling API 257

Profiling Data 260

Metrics 262

Results 262

Analysis 264

Other Uses for Profiling 266

A. Tutorial 267

Application Code 267

Configuration Code 270

Build Process 272
x Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Executing the Binary Image 274

B. Frequently Asked Questions 275

Summary 276

General Questions 278

Configuration Questions 279

Building Questions 281

Late-Binding Questions 284

Eclipse Questions 286

API and Application Questions 287

Optimization Questions 293

Legacy Code Integration Questions 294

Sun CMT Specific Questions 296

Address Resolution Protocol Questions 297

Solaris Domain and Netra DPS Domain Question 299

Traffic Generation 299

Glossary 301

Index 309
Contents xi

xii Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Figures

FIGURE 1-1 Teja 4.0 Overview Diagram 17

FIGURE 7-1 Eclipse-Based ADE GUI 111

FIGURE 7-2 Teja Project Settings 113

FIGURE 7-3 PacketClassifier Hardware Architecture – Inner Hardware 115

FIGURE 7-4 PacketClassifier Hardware Architecture – Outer Hardware 116

FIGURE 7-5 PacketClassifier Software Architecture – OS View 118

FIGURE 7-6 PacketClassifier Software Architecture – Late-Binding View 119

FIGURE 7-7 PacketClassifier Mapping 120

FIGURE 10-1 IPv4 DiffServ Internal Data Path 157

FIGURE 10-2 IPSec Gateway Application Architecture 180

FIGURE 11-1 UltraSPARC T1 Architecture 238

FIGURE 11-2 UltraSPARC T2 Architecture 241

FIGURE 11-3 UltraSPARC T1 Forwarding Packet Rate Limited by I/O Throughput 244

FIGURE 11-4 Instructions per Packet Versus Frame Size 245

FIGURE 11-5 UltraSPARC T2 Forwarding Packet Rate 247

FIGURE 11-6 Example of Pipelining 249

FIGURE 11-7 Pipelining Effect on Throughput 250

FIGURE 11-8 Parallelizing Encryption Using Multiple Strands 250

FIGURE 11-9 RLP Application Setup 256

FIGURE 11-10 Results From Configuration 1 263
xiii

FIGURE 11-11 Results From Configuration 2 264

FIGURE B-1 Example for the ipfwd Application 289

FIGURE B-2 Memory Allocation Stack 291
xiv Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Tables

TABLE 1-1 SUNWndps and SUNWndpsc Package Contents 3

TABLE 1-2 SUNWndpsd Package Contents 3

TABLE 1-3 Reference Application Instruction Files 10

TABLE 1-4 Boot Optional Parameters 11

TABLE 1-5 Options to tejacc 15

TABLE 1-6 Configuration Options to tejacc 16

TABLE 1-7 Basic Hardware Architecture Elements 19

TABLE 1-8 Advanced Hardware Architecture Elements 21

TABLE 1-9 Late-Binding Elements 24

TABLE 1-10 Other Elements 26

TABLE 1-11 Mapping of Elements 29

TABLE 2-2 Optimizations for tejacc 33

TABLE 3-1 Profiler Record Fields 39

TABLE 3-2 Sun UltraSPARC T1 CPU Performance Counters 44

TABLE 3-3 DRAM Performance Counters 45

TABLE 3-4 JBus Performance Counters 46

TABLE 3-5 Sun UltraSPARC T2 CPU Performance Counters 47

TABLE 3-6 Sun UltraSPARC T1 Profile Data Output Field Descriptions 56

TABLE 3-7 Sun UltraSPARC T2 Profile Data Output Field Descriptions 59

TABLE 5-1 tnsmctl Parameters 91
xv

TABLE 5-2 Environment Domains 92

TABLE 6-1 Remote CLI Application Build Scripts 107

TABLE 8-1 Hash Policy Values 126

TABLE 8-2 opcode Values 128

TABLE 8-3 action Values 129

TABLE 8-4 fs_type Possible Values 129

TABLE 10-1 ipfwd Application Build Script 149

TABLE 10-2 Flow Policy Descriptions * 154

TABLE 10-3 DiffServ References 172

TABLE 10-4 rlp Application Build Script 175

TABLE 10-5 Netra DPS Memory Pools 192

TABLE 10-6 Source Files 195

TABLE 10-7 IPSec Library Files 196

TABLE 10-8 Crypto Library Files 197

TABLE 10-9 Traffic Generator Control Plane Application Options 209

TABLE 10-10 Traffic Generator Output Example 221

TABLE 10-11 Traffic Generator Output Description 221

TABLE 10-12 LDoms Configuration 222

TABLE 10-13 LDC Channels Configured 223

TABLE 10-14 ntgen Application Build Script 227

TABLE 11-1 UltraSPARC T1 Key Performance Limits and Latencies 239

TABLE 11-2 UltraSPARC T2 Key Performance Limits and Latencies 242

TABLE 11-3 Configuration 1 257

TABLE 11-4 Configuration 2 257

TABLE 11-5 Metrics 262

TABLE B-1 Optimization Options for tejacc 293

TABLE B-2 Default Memory Setup 296
xvi Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Preface

This user’s guide provides information regarding the operation and use of the
Netra™ Data Plane Software Suite 2.0. This document is written for software
engineers, developers, programmers, and users who have advanced experience with
low-level programming.

Netra Data Plane Software is also referred to in this document as Netra DPS.

How This Document Is Organized
Chapter 1 is an introduction to Netra Data Plane Software Suite 2.0, and provides
installation and theoretical information.

Chapter 2 discusses some of the basic aspects of the tejacc compiler.

Chapter 3 discusses the profiler used in the Netra Data Plane software.

Chapter 4 describes the Netra DPS native debugger and GNU debugger (GDB).

Chapter 5 describes interprocess communication (IPC) support.

Chapter 6 describes the remote command-line-interface (CLI).

Chapter 7 describes the Eclipse-based Teja Advance Development Environment.

Chapter 8 describes the basic functions of the Receive Packet Classifier and the Netra
DPS software interface.

Chapter 9 describes the Netra DPS auto-configuration tool.

Chapter 10 describes Netra DPS reference applications.
xvii

Chapter 11 provides guidelines for diagnosing and tuning network applications
running under the Netra DPS Runtime Environment.

Appendix A is a tutorial to tejacc programming.

Appendix B provides frequently asked questions regarding the Netra Data Plane
Software and how it interacts with the tejacc compiler.

Glossary

Using UNIX Commands
This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at:

http://docs.sun.com

Shell Prompts

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
xviii Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

http://docs.sun.com

Typographic Conventions

Related Documentation
The following table lists the documentation for this product. The online
documentation is available at:

http://docs.sun.com/app/docs/prod/netra.dp

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Application Title Part Number Format Location

Operation Netra Data Plane Software Suite 2.0 Update 2 User’s Guide 820-5211-11 PDF online

Reference Netra Data Plane Software Suite 2.0 Update 2 Reference Manual 820-5212-11 PDF online

Last-minute
information

Netra Data Plane Software Suite 2.0 Update 2 Release Notes 820-5213-11 PDF online

Documentation
Location

Netra Data Plane Software Suite 2.0 Update 2 Getting Started
Guide

820-5214-11 PDF online
Preface xix

http://docs.sun.com/app/docs/prod/netra.dp

Reference Documentation
■ Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems

http://www.opensparc.net/publications/published-by-
sun/developing-and-tuning-applications-on-ultrasparcr-t1-chip-
multithreading-systems.html

■ CoolThreads — CMT Application Tuning and UltraSPARC T2 Server Resources
http://www.sun.com/servers/coolthreads/tnb/t2.jsp

■ Sun Studio 12: C User’s Guide
http://docs.sun.com/app/docs/doc/819-5265

■ Netra Data Plane Software Suite 2.0 Update 2 Reference Manual (tejacc 4.0 for Sun
CMT reference manual)

Available in the Netra Data Plane Software Suite 2.0 release package.

■ UltraSPARC T1 Supplement to UltraSPARC Architecture 2005 Specification
http://opensparc-t1.sunsource.net/index.html

■ UltraSPARC Architecture 2007 Specification and OpenSPARC T2 Implementation-
Supplement
http://www.opensparc.net/opensparc-t2

■ Logical Domains (LDoms): Sun SPARC CMT Virtualization Technology
http://www.sun.com/servers/coolthreads/ldoms/index.xml

■ Eclipse: An Open Development Platform: http://www.eclipse.org/

■ GDB: The GNU Project Debugger: http://sourceware.org/gdb/

■ Information and documentation for the Logical Domains (LDoms) virtualization
technology: http://www.sun.com/ldoms
xx Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

http://sourceware.org/gdb/
http://www.sun.com/servers/coolthreads/tnb/t2.jsp
http://www.eclipse.org/
http://www.sun.com/servers/coolthreads/ldoms/index.xml
http://www.sun.com/ldoms
http://www.opensparc.net/opensparc-t2
http://opensparc-t1.sunsource.net/index.html
http://docs.sun.com/app/docs/doc/819-5265
http://www.opensparc.net/publications/published-by-sun/developing-and-tuning-applications-on-ultrasparcr-t1-chip-multithreading-systems.html

Documentation, Support, and Training

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

Netra Data Plane Software Suite 2.0 Update 2 User’s Guide,
part number 820-5212-11

Sun Function URL

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/
Preface xxi

http://www.sun.com/training/
http://www.sun.com/hwdocs/feedback
http://www.sun.com/support/
http://www.sun.com/documentation/

xxii Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

CHAPTER 1

Netra Data Plane Software Suite
Overview

This chapter is an introduction to the Netra Data Plane Software Suite 2.0, and
provides installation and theoretical information. Topics include:

■ “Product Description” on page 1

■ “Supported Systems” on page 2

■ “Software Installation” on page 3

■ “Building and Booting Reference Applications” on page 9

■ “Programming Methodology” on page 12

■ “tejacc Compiler Basic Operation” on page 14

■ “Architecture Elements” on page 18

■ “User API Overview” on page 27

Product Description
The Netra Data Plane Software (Netra DPS) Suite 2.0 is a complete board software
package solution. The software provides an optimized rapid development and
runtime environment on top of multistrand partitioning firmware for Sun CMT
platforms. The software enables a scalable framework for fast-path network
processing. Netra DPS 2.0 includes the following features:

■ Event-driven scheduling with run to completion states

■ Explicit parallelization

■ Static memory allocation

■ Code generation based on hardware description and mapping

■ Efficient communication pipes between pipeline states
1

The Netra Data Plane Software Suite 2.0 uses the tejacc compiler. tejacc is a
component of the Teja NP 4.0 Software Platform used to develop scalable, high-
performance C applications for embedded multiprocessor target architectures.

tejacc operates on a system-level view of the application, through three techniques
not usually found in a traditional language system:

■ tejacc obtains the characteristics of the targeted hardware and software system
architecture by executing a user-supplied architecture specification (context).

■ tejacc simultaneously examines multiple sets of source files along with their
relationships to the target architecture.

■ tejacc recognizes APIs used in the application code, and generates them based
on the system-level context.

The result is a superior code validation and optimization, enabling more reliable and
higher performance systems.

Supported Systems
Netra DPS 2.0 supports the following Sun UltraSPARC® T1 and UltraSPARC T2
platforms:

■ Sun Fire™ T1000 system (OEM variants)

■ Sun Fire T2000 system (OEM variants)

■ Sun SPARC® Enterprise T5210 system (OEM variants)

■ Sun SPARC Enterprise T5220 system (OEM variants)

■ Netra T2000 system

■ Netra T5220 system

■ Netra ATCA CP3060 system

■ Netra ATCA CP3260 system
2 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Software Installation
The Netra DPS Suite 2.0 is distributed for SPARC platforms.

■ Netra_Data_Plane_Software_Suite_2.0.zip contains the SUNWndps and
SUNWndpsd packages.

■ Netra_Data_Plane_Software_Suite_Crypto_2.0.zip contains the
SUNWndpsc package.

The SUNWndps and SUNWndpsc packages are installed in the development server.
The SUNWndpsd package is installed on the target deployment system.

TABLE 1-1 describes the contents of the SUNWndps and SUNWndpsc packages:

TABLE 1-2 describes the contents of the SUNWndpsd package:

TABLE 1-1 SUNWndps and SUNWndpsc Package Contents

Directory Contents

/opt/SUNWndps/bsp Contains header files and low-level Sun UltraSPARC T1 and
Sun UltraSPARC T2 platform initialization and management
code.

/opt/SUNWndps/lib Contains system-level libraries, such as CLI, IPC, and
LDoms/LDC (Logical Domain Channel).

/opt/SUNWndps/src Contains ipfwd, remotecli, rlp, and PacketClassifier
reference applications, and network device driver interface
header definitions.

/opt/SUNWndps/tools Contains the compiler and runtime system.

/opt/SUNWndpsc/lib Contains the Netra DPS Sun UltraSPARC T2 cryptograpghy
driver.

/opt/SUNWndpsc/src Contains Netra DPS Crypto API, IPsec reference application
source, and libraries.

TABLE 1-2 SUNWndpsd Package Contents

Directory Contents

/opt/SUNWndpsd/bin/ Contains the Netra Data Plane CMT/IPC Share Memory
Driver. Includes:
/kernel/drv/sparcv9/tnsm
/kernel/drv/tnsm.conf
Chapter 1 Netra Data Plane Software Suite Overview 3

Platform Firmware Prerequisites
To support Netra Data Plane Software Suite 2.0, use the appropriate firmware
installed. See Netra Data Plane Software Suite 2.0 Release Notes for the latest
information in using the correct combination of firmware and software.

▼ To Check Your OpenBoot PROM Firmware Version
● As superuser, use the showhost command to verify your version of the

OpenBoot™ PROM firmware.

See the following four examples for each system supported:

ok showhost
Netra CP3260, No Keyboard
Copyright 2007 Sun Microsystems, Inc. All rights reserved.
OpenBoot 4.27.8, 16256 MB memory available, Serial #93062640.
Ethernet address 0:14:4f:8c:5:f0, Host ID: 858c05f0.

sc> showhost
 Sun System Firmware 7.0.7.c 2007/11/26 07:18

Host flash versions:
 Hypervisor 1.5.4 2007/10/29 20:27
 OBP 4.27.8 2007/11/15 07:09
 POST 4.27.7 2007/10/24 08:5
4 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

ok showhost
SPARC Enterprise T5120, No Keyboard Copyright 2007 Sun Microsystems, Inc.
All rights reserved.
OpenBoot 4.27.0, 32640 MB memory available, Serial #75404926.
Ethernet address 0:14:4f:7e:96:7e, Host ID: 847e967e.

ok showhost
Sun Fire T2000, No Keyboard
Copyright 2007 Sun Microsystems, Inc. All rights reserved.
OpenBoot 4.27.0, 8064 MB memory available, Serial #64545116.
Ethernet address 0:3:ba:d8:e1:5c, Host ID: 83d8e15c.

ok showhost
Netra T2000, No Keyboard Copyright 2007 Sun Microsystems, Inc.
All rights reserved.
OpenBoot 4.26.1, 8064 MB memory available, Serial #69940576.
Ethernet address 0:14:4f:2b:35:60, Host ID: 842b3560.

ok showhost
Netra CP3060, No Keyboard Copyright 2007 Sun Microsystems, Inc. All
rights reserved.
OpenBoot 4.26.1, 16256 MB memory available, Serial #69061958.
Ethernet address 0:14:4f:1d:cd:46, Host ID: 841dcd46.
Chapter 1 Netra Data Plane Software Suite Overview 5

Package Dependencies
The package software has the following dependencies:

■ The SUNWndps package depends on Sun Studio 12, Java™ version 1.6.0 and
gmake. The user must install these packages before applications are built.

■ The SUNWndpsc crypto package requires the SUNWndps base package.

■ The user must perform the debugger symbol resolution on the host using a tool
called dbghelper.pl. This tool depends on and requires dis, dbx, and perl to
be installed on the system.

Package Installation Procedures

Note – The SUNWndps software package is only supported on a SPARC system
running the Solaris 10 operating system.

Note – The SUNWndpsd software package located in the
Netra_Data_Plane_Software_Suite_2.0.zip file is not installed on the
development system. See “Interprocess Communication Software” on page 87 for
details on using this package in the LDoms environment.

Note – If you have previously installed an older version of the Netra Data Plane
Software Suite 2.0, remove it before installing the new version. See “To Remove the
Software” on page 9.

▼ To Install the Software Into the Default Directory
1. After downloading the Netra Data Plane Software Suite 2.0 from the web, as

superuser, change to your download directory and go to Step 2.

2. Expand the .zip file. Type:

unzip Netra_Data_Plane_Software_Suite_2.0.zip
6 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

3. Install the SUNWndps package. Type:

The software is installed in the /opt directory.

4. Use a text editor to add the /opt/SUNWndps/tools/bin directory to your
PATH environment variable.

Use Netra_Data_Plane_Software_Suite_Crypto_2.0.zip for crypto
drivers. For information on Netra DPS regarding the crypto package, see
Support Services at: http://www.sun.com/service/online/

▼ To Install the Software in a Directory Other Than the
Default
1. After downloading the Netra Data Plane Software Suite 2.0 from the web, as

superuser, change to your download directory and go to Step 2.

2. Expand the zip file. Type:

3. Add the SUNWndps package to your_directory. Type:

The software is installed in your_directory.

/usr/sbin/pkgadd . SUNWndps

unzip Netra_Data_Plane_Software_Suite_2.0.zip

pkgadd -d ‘pwd‘ -R your_directory SUNWndps
Chapter 1 Netra Data Plane Software Suite Overview 7

http://www.sun.com/service/online/

When using the pkgadd -R command, the following warning messages may
appear and should be ignored.

4. Open the your_directory/opt/SUNWndps/tools/bin/tejacc.sh file in a text
editor and find the following line:

5. Change the line in Step 4 to:

6. Use a text editor to add the your_directory/opt/SUNWndps/tools/bin directory
to your PATH environment variable.

WARNING:
 The <SUNWcar> package "Core Architecture, (Root)" is a

prerequisite package and should be installed.
WARNING:
 The <SUNWkvm> package "Core Architecture, (Kvm)" is a

prerequisite package and should be installed.
WARNING:

The <SUNWcsr> package "Core Solaris, (Root)" is a prerequisite
package and should be installed.

WARNING:
The <SUNWcsu> package "Core Solaris, (Usr)" is a prerequisite
package and should be installed.

WARNING:
The <SUNWcsd> package "Core Solaris Devices" is a prerequisite
package and should be installed.

export TEJA_INSTALL_DIR=/opt/SUNWndps/tools

export TEJA_INSTALL_DIR= your_directory/opt/SUNWndps/tools
8 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

▼ To Remove the Software
Before installing Netra DPS 2.0 software, you must remove previous versions:

● To remove the SUNWndps packages, as superuser, type:

The Netra Data Plane Software Suite 2.0 is removed.

Note – For more details about using the pkgadd and pkgrm commands, see the
man pages.

Building and Booting Reference
Applications
The user needs to add the compiler path to your .cshrc file before continuing with
build instructions.

.cshrc File and Required Compiler Path
All the application build scripts are C shell scripts, which do not inherit the
environment from where they are invoked. These scripts use the compiler whose
path is defined in your .cshrc file.

SUNWndps 2.0 requires Sun Studio 12. Ensure that the correct PATH is set and Sun
Studio 12 binaries are used for Netra DPS application compilation.

/usr/sbin/pkgrm SUNWndps SUNWndpsc
Chapter 1 Netra Data Plane Software Suite Overview 9

The Netra DPS application build scripts use csh, therefore, the user .cshrc file must
contain the correct path setting for Sun Studio 12. If the user path points to an older
cc compiler, the build script exits with a message such as the following:

Building Reference Application Instructions
The instructions for building reference applications are located in the application
directories.

TABLE 1-3 lists the directories and instructional file.

The application image is booted over the network. Ensure that the target system is
configured for network boot. The command syntax is:

boot network_device:[dhcp|bootp,][server_ip],[boot_filename],
[client_ip],[router_ip],[boot_retries],[tftp_retries],[subnet_mask],[boot_arguments
]

$ pwd
/opt/SUNWndps/src/apps/rlp

$./build_10g_niu
cc is a tracked alias for /opt/SUNWspro/bin/cc
cc version 5.8 is less than 5.9
Please install Sun Studio 12

TABLE 1-3 Reference Application Instruction Files

Reference Applications Building Instruction Location

ipfwd /SUNWndps/src/apps/ipfwd/README

remotecli /SUNWndps/src/apps/remotecli/README.remotecli

udp /SUNWndps/src/apps/udp/README

ipsec /SUNWndpsc/src/apps/ipsec-gw-nxge/README

Teja(R) Tutorial /SUNWndps/tools/examples/PacketClassifier/README
10 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

TABLE 1-4 describes the optional parameters.

Note – For the boot command, commas are required to demark missing parameters
unless the parameters are at the end of the list.

▼ To Boot an Application Image
1. Copy the application image to the tftpboot directory of the boot server.

2. At the ok prompt, type one of the following commands:

■ To boot using RARP, type:

■ To boot using DHCP, type:

TABLE 1-4 Boot Optional Parameters

Option Description

network_device The network device used to boot the system.

dhcp|bootp Use DHCP or BOOTP address discovery protocols for
boot. Unless configured otherwise, RARP is used as
the default address discovery protocol.

server_ip The IP address of the DHCP, BOOTP, or RARP server.

boot_filename The file name of the boot script file or boot application
image.

client_ip The IP address of the system being booted.

router_ip The IP address of a router between the client and
server.

boot_retries Number of times the boot process is attempted.

tftp_retries Number of times that the TFTP protocol attempts to
retrieve the MAC address.

subnet_mask The subnet mask of the client.

boot_arguments Additonal arguments used for boot.

ok> boot network_device:,boot_filename [-v]

ok> boot network_device:dhcp,server_ip,boot_filename [-v]
Chapter 1 Netra Data Plane Software Suite Overview 11

Note – The -v argument is an optional verbose flag.

Programming Methodology
In Netra DPS, you write an application with multiple C programs that execute in
parallel and coordinate with each other. The application is targeted to
multiprocessor architectures with shared resources. Ideally, the applications are
written to be used in several projects and architectures. Additionally, the Netra DPS
attains maximum performance in the target mapping.

When writing the application, you must do the following:

■ Be aware of the multiple threads of the application.

■ Protect critical regions of the code by using mutual exclusion primitives.

■ Communicate structured data using polled queues or event-driven channels.

■ Allocate memory efficiently in a unified manner using memory pools.

tejacc provides the constructs of threads, mutex, queue, channel, and memory
pool within the application code. These constructs enable you to specify coordinated
parallel behavior in a target-independent, reusable manner. When the application is
mapped to a specific target, tejacc generates optimized, target-specific code. The
constructs and their associated API is called late-binding.

One technique for scaling performance is to organize the application in a parallel-
pipeline matrix. This technique is effective when the processed data is in the form of
independent packets. For this technique, the processing loop is broken up into
multiple stages and the stages are pipelined. For example, in an N-stage pipeline,
while stage N is processing packet k, stage (N - 1) is processing packet (k + 1), and
so on. In order to scale performance even further and balance the pipeline, each
stage can run its code multiple times in parallel, yielding an application-specific
parallel-pipeline matrix.

There are several issues with this technique. The most important issue is where to
break the original processing loop into stages. This choice is dictated by the
following factors:

■ Natural partitioning points in the application functionality

■ Structure of the application code

■ Balance in the execution time of the different stages

■ Ease of design and transferability of the context information from one stage to the
next
12 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

The context carried over from one stage to the next is reduced when the stack is
empty at the end of that stage. Applications written with modular functions are
more flexible for such architecture exploration. During the processing of a context,
the code might wait for the completion of some long-latency operation, such as I/O.
During the wait, the code could switch to another available data context. While
applicable to most targets, such a technique is important when the processor does
not support hardware multithreading. If the stack is empty when the context is
switched, the context information is minimized. Performance is improved as code
modularity becomes more granular.

Expressing the flow of code as state machines (finite state automata) enables
multiple levels of modularity and fine-grained architecture exploration.

Reusing Existing C Code
Standardized C programs can be compiled using tejacc without change. The
following two methods are available in reusing C code with tejacc:

■ Create libraries from existing C code and compile new C code to call these
libraries. This method requires that the libraries are available for the target system
and that code changes are minimized.

■ Substitute system and application calls with calls to the Netra DPS user
application API and compile using tejacc. Use this method when the libraries
are not available for the target system or when performance improvements are
desired.

Increasing the execution performance of existing C programs on multicore
architectures requires targeting for parallel-pipeline execution. This process is
iterative.

■ In the first iteration, some program functions are mapped to a second and
additional processors, executing in parallel. All threads of execution operate on
the same copy of the shared global data structures, with mutual exclusion
primitives for protection.

■ In the second iteration, each thread operates on its own copy of the global data
structures, leaving the others as shared. The threads coordinate with each other
using both mutual exclusion and communication messages.

■ In the final iteration, each thread runs its functions in a loop, operating on a
stream of data to be processed.

By using this method, the bulk of the application code is reused while small changes
are made to the overall control flow and coordination.
Chapter 1 Netra Data Plane Software Suite Overview 13

tejacc Compiler Basic Operation
C code developers are familiar with a compiler that takes a C source file and
generates an object file. When multiple source files are submitted to the compiler, it
processes the source files one by one. The tejacc compiler extends this model to a
system-level, multifile process for a multiprocessor target.

tejacc Compiler Mechanics
The basic function of tejacc is to take multiple sets of user application source files
and produce multiple sets of generated files. When processed by target-specific
compilers or assemblers, these generated file sets produce images that are loaded
into the processors of the target architecture. All user source files must adhere to the
C syntax (see “Language” on page 35 for the language reference). The translation of
the source to the image is governed by options that control or configure the behavior
of tejacc.

tejacc is a command-line program suitable for batch processing. For example:

In this example, there are two sets of source files, mysrcset and yoursrcset. The files in
mysrcset are file1 and file2, and the files in yoursrcset are file2, file3, and file4. file2
intentionally appears in both source sets.

file2 defines a global variable, myglobal, whose scope is the source file set. This
situation means that tejacc allocates two locations for myglobal, one within mysrcset
and the other within yoursrcset. References to myglobal within mysrcset resolve to the
first location, and references to myglobal within yoursrcset resolve to the second
location.

A source set can be associated to one or more application processes. In that case, the
source set is compiled several times and the global variable is scoped to the
respective process address space. An application process can also have multiple
source sets associated to it.

Each source set can have a set of compile options. For example:

tejacc options -srcset mysrcset file1 file2 -srcset yoursrcset file2 file3 file4

tejacc options -srcset mysrcset -D mydefine file1 file2 -srcset yoursrcset -D
mydefine -I mydir/include file2 file3 file4
14 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

In this example, when mysrcset is compiled, tejacc defines the symbol mydefine for
file1 and file2. Similarly, when yoursrcset is compiled, tejacc defines the symbol
mydefine and searches the mydir/include directory for file2, file3 and file4.

When a particular option is applied to every set of source files, that option is
declared to tejacc before any source set is specified. For example:

In this example, the definition of mydefine is factored into the options passed to
tejacc.

tejacc Compiler Options
TABLE 1-5 lists options to tejacc.

tejacc Compiler Configuration
In addition to the tejacc mechanics and options, the behavior of tejacc is
configured by user libraries that are dynamically linked into tejacc.

tejacc -D mydefine other_options -srcset mysrcset file1 file2 -srcset yoursrcset
-I mydir/include file2 file3 file4

TABLE 1-5 Options to tejacc

Option Comment

-include includefile Where includefile is included in each file in each
source set to facilitate the inclusion of common
system files of the application or the target system.

-I includedir Where includedir is searched for each file in each
source set.

-d destdir Where the compilation outputs are placed in a
directory tree with destdir as the root.
Chapter 1 Netra Data Plane Software Suite Overview 15

The libraries describe to tejacc the target hardware architecture, the target
software architecture, and the mapping of the variables and functions in the source
set files to the target architecture. TABLE 1-6 describes some of the configuration
options of tejacc.

The three entry point functions into the shared library files take no parameters and
return an int.

The shared library files can be used for multiple configuration options, but the entry
point for each option must be unique, take no parameters, and return an int. The
trade-off is the ease of maintaining fewer libraries versus the speed of updating only
one of several libraries.

Once the memory models are created, tejacc parses and analyzes the source sets
and generates code for the source sets within the context of the models. Using the
system-level information tejacc obtains from the models, in conjunction with
specific API calls made in the user source files, tejacc can apply a variety of
validation and optimization techniques during code generation. The output by
tejacc is source code as input to the target-specific compilers. Although the
compiler-generated code is available for inspection or debugging, you should not
modify this code.

tejacc Compiler and Netra DPS Interaction
FIGURE 1-1 shows the interaction of tejacc with the other platform components of
Netra DPS.

TABLE 1-6 Configuration Options to tejacc

Option Comment

-hwarch myhwarchlib,myhwarch Load the myhwarchlib shared library and execute
the function myhwarch() in it. The execution of
myhwarch() creates a memory model of the target
hardware architecture.

-swarch myswarchlib,myswarch Load the myswarchlib shared library and execute the
function myswarch() in it. The execution of
myswarch() creates a memory model of the target
software architecture.

-map mymaplib,mymap Load the mymaplib shared library and execute the
function mymap() in it. Executing the mymap()
function in the mymaplib shared library creates a
memory model of the application source code
mapping to the target architecture.
16 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

FIGURE 1-1 Teja 4.0 Overview Diagram

Create the dynamically linked shared libraries for the hardware architecture,
software architecture, and map by writing C programs using the Teja Hardware
Architecture API, the Teja Software Architecture API, and the Teja Map API
respectively. The C programs are compiled and linked into dynamically linked
shared libraries using the C compiler.
Chapter 1 Netra Data Plane Software Suite Overview 17

Your application source files might contain calls to the Teja late-binding API and the
Netra DPS Runtime API. tejacc is aware of the late-binding API. Depending on the
context of the target hardware, software architecture, and the mapping, tejacc
generates code for the late-binding API calls. The calls are optimized for the specific
situation described in the system context. tejacc is not aware of the Netra DPS
Runtime API, and calls to this API pass to the generated code where the calls are
either macro expanded (if defined in the Netra DPS Runtime library include file) or
linked to the target-specific Netra DPS Runtime library.

Netra DPS also provides a graphical application development environment (ADE) to
visualize and manipulate applications. A description of the ADE is not within the
scope of this document.

Architecture Elements

Hardware Architecture API Overview
The Hardware Architecture API is used to describe target hardware architectures. A
hardware architecture is comprised of processors, memories, buses, hardware
objects, ports, address spaces, address ranges, and the connectivity among all these
elements. A hardware architecture might also contain other hardware architectures,
thereby enabling hierarchical description of complex and scalable architectures.

Most users will not need to specify the hardware architectures as the Netra DPS
platform is predefined. Only in the situation of a custom hardware architecture is the
API used.

Note – The Hardware Architecture API runs on the development host in the context
of the compiler and is not a target API.

Hardware Architecture Elements
Hardware architecture elements are building blocks that appear in almost all
architectures. Each element is defined using the relevant create function, of the form:
teja_type_create(). The user can assign values to the properties of each
function using the teja_type_set_property() and
teja_type_get_property() functions.
18 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

TABLE 1-7 describes the basic hardware architecture elements.

Architecture Relationships
An architecture can contain other architectures, processors, memories, hardware
objects, and buses. The respective create function for a given element indicates the
containment relationship. An architecture, a processor, a memory, and a hardware
object can connect to a bus using teja_type_connect() functions.

TABLE 1-7 Basic Hardware Architecture Elements

Element Description

Hardware
architecture

A hardware architecture is a container of architecture elements. A
hardware architecture has a user-defined name that must be unique in its
container, and a type that indicates whether its contents are predefined
by tejacc or defined by the user.
Various types of architectures are predefined in the
teja_hardware_architecture.h file and are understood by
tejacc. The user cannot modify a predefined architecture.
User-defined architectures are sometimes desirable to prevent application
developers from modifying an architecture. The user can create a user-
defined architecture by first populating the architecture and then calling
the teja_architecture_set_read_only() function.

Processor A processor is a target for running an operating system. A processor is
contained in an architecture that provides it a name and type.

Memory A memory is a target for mapping program variables. A memory is
contained in an architecture that provides a name and type.

Hardware
object

A hardware object is a logic block that is either known to tejacc or is a
target for user-defined hardware logic. A hardware object is contained in
an architecture that provides it a name and type.

Bus A bus is used to interconnect elements in a hardware architecture.
tejacc uses connection information to validate the user application
and reach ability information to optimize the generated code. A bus is
contained in an architecture that provides it a name and type, and
indicates whether the bus is exported. That is, the bus is visible outside
of the containing architecture.
Chapter 1 Netra Data Plane Software Suite Overview 19

Utility Functions
Utility functions are provided to look up a named element within an architecture, set
the value of a property, and get the value of a property. These actions are
accomplished with the teja_lookup_type(), teja_type_set_property(), and
teja_type_get_property() functions, respectively. Properties are set to select or
influence specific validation, code generation, or optimization algorithms in tejacc.
Each property and its effect is described in the Netra Data Plane Software Suite 2.0
Update 2 Reference Manual.

Advanced Hardware Architecture Elements
Some hardware architecture elements are available for advanced users and might
not be needed for all targets. Each element is defined using the relevant create
function of the form teja_type_create(). The user can assign values to the
elements properties using the teja_type_set_property() and
teja_type_get_property() functions.

TABLE 1-8 describes advanced hardware architecture elements.
20 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

TABLE 1-8 Advanced Hardware Architecture Elements

Element Description

Port A bus is a collection of signals in the hardware with a certain protocol for
using the signals. When an element connects to a bus, ports on the
element tap into the bus. The port exposes a level of detail hidden by the
bus. In some configurable target architectures, this action is necessary
because certain signals need to be connected to handles within the user
architecture specification.
A port is also a handle on an architecture for connecting to another port.
A port is contained in an architecture that provides the port a name and
direction.
Elements such as processors, memory, buses, or hardware objects also
have ports, though these ports are predefined within the element. When
a port is connected to a signal, the port is given a value that is the name
of that signal. See the teja_type_set_port() function in the Netra
Data Plane Software Suite 2.0 Update 2 Reference Manual.
A port on an architecture might connect to a signal within the
architecture as well. See the
teja_architecture_set_port_internal() function in the Netra
Data Plane Software Suite 2.0 Update 2 Reference Manual.

Address space
and address
range

In a complex network of shared memories and processors sharing them,
the addressing scheme is not obvious. Address spaces and ranges are
used to specify abstract requirements for shared memory access.
tejacc assigns actual values to the address spaces and ranges by
resolving these requirements.
An address space is an abstract region of contiguous memory used as a
context for allocating address ranges. An address space is contained in an
architecture that provides it a name, a base address, and a high address.
The teja_address_space_join() facility can join two address
spaces. When their constraints are merged, more stringent resolution is
required, as each of the original address spaces refers to the same joined
address space.
An address range is a region of contiguous memory within an address
space. An address range is contained in an address space that specifies its
size. The address range might be generic, or constrained by specific
address values, alignment, and other requirements.
Chapter 1 Netra Data Plane Software Suite Overview 21

Software Architecture and Late-Binding API
Overview
A software architecture is comprised of operating systems, processes, threads,
mutexes, queues, channels, memory pools, and the relationships among these
elements.

A subgroup of the software architecture elements is defined in the software
architecture description and used in the application code. This subgroup consists of
mutex, queue, channel, and memory pool. The software architecture part of the API
runs on the development host in the context of the compiler. The application part of
the API runs on the target. The API that uses elements of the subgroup in the
application code is the Late-Binding API which is treated specially by tejacc.

The late-binding API offers the functionality of mutual exclusion, queuing, sending
and receiving messages, memory management, and interruptible wait. The functions
in this API are known to tejacc. tejacc generates the implementation of this
functionality in a context-sensitive manner. The context that tejacc uses to
generate the implementation consists of the following:

■ Global system description of hardware and software

■ Constant parameters that are known at compile time

■ User-provided hints

The user can choose the implementation of a late-binding object. For example, a
communication channel could be implemented as a shared memory circular buffer
or as a TCP/IP socket. The user can also indicate how many producers and
consumers a certain queue has, affecting the way late-binding API code is generated.
For example, if a communication channel is used by one producer and one
consumer, tejacc can generate the read-write calls to and from this channel as a
mutex-free circular buffer. If there are two producers and one consumer, tejacc
generates an implementation that is protected by a mutex on the sending side.

The advantage of this method over precompiled libraries is that system functions
contain only the minimal necessary code. Otherwise, a comprehensive, generic
algorithm must account for all possible execution paths at runtime.

If the channel ID is passed to the channel function as a constant, then tejacc knows
all the characteristics of the channel and can generate the unique, minimal code for
each call to that channel function. If the channel ID is a variable, then tejacc must
generate a switch statement and the implementation must be picked at runtime.

Regardless of the method you prefer, you can modify the context without touching
the application code, as the Late-Binding API is completely target independent. This
flexibility enables different software configurations at optimization time without
changing the algorithmic part of the program.
22 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Note – The software architecture API runs on the development host in the context
of the compiler and is not a target API. The Late-Binding API runs on the target and
not on the development host.

Late-Binding Elements
The user declares each of the Late-Binding objects (mutex, queue, channel, and
memory pool) using the teja_type_declare()function. The user can assign
values to the properties of most of these elements using the
teja_type_set_property() and teja_type_get_property() functions.

Each of these objects has an identifier indicated by the user as a string in the
software architecture using the declare() function. In the application code, the
element is labeled with a C identifier and not a string. tejacc reads the string from
the software architecture and transforms it in a #define for the application code.
The transformation from string to preprocessor macro is part of the interaction
between the software architecture and the application code.

Multiple target-specific (custom) implementations of the Late-Binding objects are
available. Refer to the Netra Data Plane Software Suite 2.0 Update 2 Reference Manual
for a full list of custom implementations. Every implementation has the same
semantics but different algorithms. Choosing the right custom implementation and
related parameters is important at optimization time.

For example, with mutex, one custom implementation might provide fair access
while another might be unfair. In another example, a channel with multiple
consumers might not broadcast the same message to all consumers.
Chapter 1 Netra Data Plane Software Suite Overview 23

TABLE 1-9 describes the Late-Binding elements

TABLE 1-9 Late-Binding Elements

Late-Binding
Element Description

Mutex The mutex element provides mutual exclusion functionality and is used
to protect critical regions of code.
The Late-Binding API for mutex consists of the following:
• teja_mutex_lock() – Lock a mutex.
• teja_mutex_trylock() – Try and lock a mutex without blocking.
• teja_mutex_unlock() – Unlock a mutex.

Queue The queue element provides thread-safe and atomic enqueue and
dequeue API functions for storing and accessing nodes* in a first-in-
first-out method.
The Late-Binding API for queue consists of the following:
• teja_queue_dequeue() – Dequeue an element from a queue.
• teja_queue_enqueue() – Enqueue an element to a queue.
• teja_queue_is_empty() – Check for queue emptiness.
• teja_queue_get_size()\ – Obtain queue size
24 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

•

Memory pool Memory pools provide an efficient, thread-safe, cross-platform memory
management system. This system requires you to subdivide memory in
preallocated pools.
A memory pool is a set of user-defined, same-size contiguous memory
nodes. At runtime, you can get a node from, or put a node to, a memory
pool. This mechanism is more efficient at dynamic allocation than the
traditional free() and malloc() calls.
Sometimes the application needs to match accesses to two memory
pools. Given a buffer from one memory pool, obtain the memory pool
index value and then obtain the node with the same index value from
the other memory pool.
The Late-Binding API for memory pool consists of the following:
• teja_memory_pool_get_node() – Get a new node from the pool.
• teja_memory_pool_put_node() – Return a node to the pool.
• teja_memory_pool_get_node_from_index() – Provide a

pointer to a node, given its sequential index.
• teja_memory_pool_get_index_from_node() – Provide the

sequential index of a node, given its pointer.

Channel The Channel API is used to establish connections among threads, to
inspect connection states, and to exchange data across threads.
Channels are logical communication mediums between two or more
threads.
Threads sending messages to a channel are called producers, threads
receiving messages from a channel are called consumers. Channels are
unidirectional, and they can have multiple producers and consumers.
The semantics of channels are that of a pipe. Data is copied into the
channel at the sender and is copied out of the channel at the receiver.
The user can send a pointer over a channel, as the pointer value is
simply copied into the channel as data. When pointers are sent across
the channel, ensure that the consumer has access to the same memory
or is able to convert the pointer to access that same memory.
The Late-Binding API for channel consists of:
• teja_channel_is_connection_open()d – Check if a connection

on a channel is open.
• teja_channel_make_connection() – Establish a connection on a

channel.
• teja_channel_break_connection() – Break a connection on a

channel.
• teja_channel_send() – Send data on a channel.
• teja_wait() – Wait on timeout and a list of channels. If data arrives

on channels before timeout expires, read it.

TABLE 1-9 Late-Binding Elements (Continued)

Late-Binding
Element Description
Chapter 1 Netra Data Plane Software Suite Overview 25

Other Elements
Each of the non-late-binding elements can be defined using the relevant
teja_type_create() create function.

Use the teja_type_set_property() and teja_type_get_property()
functions to assign values to the properties of most of these elements.

TABLE 1-10 describes other elements.

Utility Functions
Utility functions are provided to look up a named element within an architecture, set
the value of a property, and get the value of a property. These actions are
accomplished with the teja_lookup_type(), teja_type_set_property(), and
teja_type_get_property() functions, respectively. Set properties to select or
influence specific validation, code generation, or optimization algorithms in tejacc.
Each property and its effect is described in the Netra Data Plane Software Suite 2.0
Update 2 Reference Manual.

* The first word of the node that is enqueued is allowed to be overwritten by the queue implementation.

\ teja_queue_get_size() is only meant for debugging purposes.

d Connection functions are only available on channels that support the concept of connection, such as the TCP/IP
channel. For connectionless channels, these operations are empty.

TABLE 1-10 Other Elements

Other Element Description

Operating system An operating system runs on processors and is a target for
running processes. An operating system has a name and type.
One of the operating system types defined in tejacc states that
no operating system is run on the given processors, implying that
the application will run on bare silicon.

Process A process runs on an operating system and is a target for running
threads. All threads in a process share an address space. The
process has a name and lists the names of source sets that contain
the application code to be compiled for the process.

Thread A thread runs in a process and is a target for executing a
function. A thread has a name.
26 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

User API Overview
This section gives an overview of the Netra DPS API for writing the user application
files in the source sets given to tejacc. This API is executed on the target and it is
composed of three sets of functions:

■ “Late-Binding API Overview” on page 27

■ “Netra DPS Runtime API Overview” on page 27

■ “Finite State Machine API Overview” on page 29

Late-Binding API Overview
The Late-Binding API is described in “Software Architecture and Late-Binding API
Overview” on page 22. This API provides primitives for the synchronization of
distributed threads, communication and memory allocation. This API is treated
specially by the tejacc() compiler and it is generated on the fly based on contextual
information. The Netra Data Plane Software Suite 2.0 Update 2 Reference Manual
contains API function information.

Netra DPS Runtime API Overview
The Netra DPS Runtime API consists of portable, target-independent abstractions
over various operating system facilities such as thread management, heap-based
memory management, time management, socket communication, and file descriptor
registration and handling. Unlike late-binding APIs, Netra DPS Runtime APIs are
not treated by the compiler and are implemented in precompiled libraries.

The memory management functions offer teja_malloc and teja_free
functionality. These functions are computation expensive and should only be used in
initialization code or nonrelative critical code. On bare hardware targets, the
teja_free() function is an empty operation, so only teja_malloc() should be
used to obtain memory that is not meant to be released. For all other purposes, the
memory pool API should be used.

The thread management functions offer the ability to start and end threads
dynamically.

The time management functions offer the ability to measure time.

The socket communication functions offer an abstraction over connection and non-
connection oriented socket communication.
Chapter 1 Netra Data Plane Software Suite Overview 27

The signal handling functions offer the ability to register Teja signals with a handler
function. Teja signals can be sent to a destination thread that runs in the same
process as the sender. These functions are cross-platform, so they can also be used on
systems that do not support UNIX-like signaling mechanism. Signal handling
functions are more efficient than OS signals, and unlike OS signals, their associated
handler is called synchronously.

Any function can be safely called from within the handler. This ability removes the
limitations of asynchronous handling. Even when the registered signal is a valid OS
signal code, when the application receives an actual OS signal, the handler is still
called synchronously. If a Teja process running multiple threads receives an OS
signal, every one of its threads receive the signal.

Since Teja signals are handled synchronously, threads can only receive signals and
execute their registered handler when the thread is in an interruptible state given by
the teja_wait() function.

Any positive integer is a valid Teja signal code that can be passed to the registration
function. However, if the signal code is also a valid OS code, such as SIGUSR1 on
UNIX, the signal is also registered using the native OS mechanism. The thread reacts
to OS signals as well as to Teja signals.

A typical Teja signal handler reads any data from the relevant source and returns the
data to the caller. The caller is teja_wait(), which in turn exits and returns the
data to the user program.

Registration of file descriptors has some similarities to registration of signals. The
operation registers a fd with the system and associates the fd with a user-defined
handler and optionally with a context, which is a user-defined value (for example, a
pointer). Whenever data is received on the fd, the system automatically executes the
associated handler and passes to it the context.

Just like signal handlers, file descriptor handlers are called synchronously, so any
function can be safely called from within the handler. This ability removes the
limitations of asynchronous handling.

Since fd handlers are called synchronously, threads can only receive fd input and
execute their registered handler when the thread is in an interruptible state given by
the teja_wait() function.

An fd handler reads the data from the fd and returns it to teja_wait(), which in
turn returns the data to the user application.

A complete reference of the Netra DPS Runtime API is provided in the Netra Data
Plane Software Suite 2.0 Update 2 Reference Manual.
28 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Finite State Machine API Overview
The Finite State Machine API enables easy modularization and pipelining of code.
Finite state machines are used to organize the control flow of code execution in an
application. State machine support is through various macros, which are expanded
before they reach tejacc. While tejacc does not recognize these macros, higher
level tools such as the Netra DPS advance development environment (ADE) might
impose additional formatting restrictions on how these macros are used.

A complete reference of the state machine API is given in the Netra Data Plane
Software Suite 2.0 Update 2 Reference Manual. The API includes facilities to do the
following:

■ Declare a state machine

■ Begin and end the state machine

■ Declare the state machine’s states

■ Begin and end each state with the block of code to be executed in that state

■ Declare the start state

■ Transition from one state to the next

Map API Overview
The Map API is used to map elements of the user source files to the target
architecture. TABLE 1-11 describes these relationships.

If a variable is mapped multiple times, the last mapping is used. This functionality
enables you to specify a general class of mappings using a regular expression and
then refine the mapping for a specific variable.

TABLE 1-11 Mapping of Elements

Elements Mapping

Functions Mapped to threads with the teja_map_function_to_thread()
function.

Variables Mapped to memories or process address spaces with the
teja_map_variable_to_memory() and
teja_map_variables_to_memory() functions.

Processors Initialized with the
teja_map_initialization_function_to_processor() function.

Mapping-
specific
properties

Assigned with the teja_mapping_set_property() function.
Chapter 1 Netra Data Plane Software Suite Overview 29

30 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

CHAPTER 2

tejacc Basics

This chapter discusses some of the basic aspects of the tejacc compiler. Topics
include:

■ “Command-Line Options” on page 31

■ “Optimization” on page 33

■ “Language” on page 35

Command-Line Options
The tejacc command-line syntax is as follows:

tejacc common_options [-srcset name srcset_options source_files]+

where:

■ common_options are the options that apply to tejacc or options that apply to all
source files.

■ name is the name of the source set.

■ srcset_options are the options that are applied only to the source set.

■ source_files are the files used to create the source set.

-srcset creates a source set that can be mapped to one or more processes.
Additionally, one or more source sets can be created.
31

tejacc Command-Line Options

TABLE 2-1 tejacc Options

Option Description

-hwarch hwarch_lib,hwarch_function The hwarch_function from the dynamic shared library
hwarch_lib is executed to create a memory model of the
target hardware architecture representation on which the
generated application is run. There are no default values
for this option, so options are mandatory.

-swarch swarch_lib,swarch_function The swarch_function from the dynamic shared library
swarch_lib is executed to create a memory model of the
target software architecture representation on which the
generated application is mapped. There are no default
values for this option, so options are mandatory.

-map map_lib,map_function The map_function from the dynamic shared library map_lib
is executed to create a mapping between the user
application, software architecture, and hardware
architecture. There are no default values for this option, so
options are mandatory.

-D name[=definition] Redefines name as a macro, with definition or 1 if not
specified. This option is applied to the preprocessing stage
of the compilation.

-include includefile Processes includefile as if #include “file” appeared as
the first line of the primary source file.

-I includedir Adds the directory includedir to the head of the list of
directories to be searched for header files.

-E Prints preprocessed output to the stdout and stops any
further processing.

-w Suppresses all warnings.

-d destdir Specifies the destination directory for the generated code.
The default value is the current_dir /code.

-O Enables optimizations. All applicable optimizations are
used for code generation.

-fcontext-sensitive-generation Enables context-sensitive code generation optimization.
The generated Late-Binding API implementation has
separate implementations for every context and enables
inlining through the target compiler.

-pg Enables profiling. Calling the profiling API in the source
files generates target-specific code to enable profiling and
collect data. If the -pg option is not specified, the profiling
API is not called.
32 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Optimization

Optimization Options
The user can do the following command-line switches to tejacc to enable
optimization:

■ -O – enables all optimizations
■ -fcontext-sensitive-generation – enables context sensitive generation

only

TABLE 2-2 lists the available optimizations for the tejacc compiler.

-h, ?h, -help, ?help Prints tejacc usage.

-srcset
srcset_namesrcset_specific_optionssource_files

Defines a source set consisting of one or more source files.
The source set is used to map to one or more processes.
srcset_specific_options are applied only to the files listed in
the source_files. The -D, -I and -include options are also
part of the source set specific options.

-finline=comma separated list of functions This option is only applicable to the source set and tries to
inline the functions that are specified in the list. There are
no errors or warnings if a listed function is not found in the
sources.

TABLE 2-2 Optimizations for tejacc

Optimization Comment

Context-sensitive generation Affects all late-binding functions. See “Late-
Binding Elements” on page 23. These functions are
generated from context information such as
constant parameters known to the compiler and
global information from software architecture,
hardware architecture, and mapping.

TABLE 2-1 tejacc Options (Continued)

Option Description
Chapter 2 tejacc Basics 33

Context-Sensitive Generation
All late-binding APIs and profiler APIs benefit from context-sensitive generation.

▼ To Enable Optimization
1. Add the appropriate switch to the tejacc command line.

Refer to “Optimization Options” on page 33.

2. Use constants in late-binding calls that you want to optimize.

■ For channel, mutex, queue, and memory pool functions, ensure that the late-
binding object you are passing is constant. The user can increase the performance
for channels with a circular buffer-based implementation. When you use a fixed
and constant message size (1, 2, 4, or 8) for all teja_channel_send calls on a
given circular buffer based channel c, the code generator detects the condition
and uses a unique and very fast implementation of the buffer.

■ For teja_wait, ensure that the four parameters specifying a time quantity are
constant and that any channels passed are constant.

If these two conditions are not met for a given function call, that function call is
generated without context-sensitive optimization.

Global inlining Functions marked with the inline keyword get
inlined throughout the entire application, including
across files.

Reachability Unused functions and variables are not generated,
saving code space.

Target compiler optimizations —

TABLE 2-2 Optimizations for tejacc (Continued)

Optimization Comment
34 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Language

Language Characteristics
The tejacc compiler front-end parses a subset of extended C as defined by gcc.
However, there are some limitations:

■ The compiler does not parse K and R syntax for function declaration.

■ tejacc does not assign integer types to variables by default.

■ The compiler does not support undeclared functions and does not default to type
int.

■ tejacc implements strict type checking, and might return warnings or errors in
the situation of a type mismatch.

■ Though the tejacc compiler recognizes a subset of extended C, for
interoperability, the compiler supports the language that is used by the target
complier.

Include Files
For each user source file, the teja_include_all.h file is always included before
any other include or C code is preprocessed. The teja_include_all.h file is
located in the include/runtime/target_processor_name/target_os_name directory.
This directory also contains other target-dependent include files.

Late-Binding Object Identifiers
Late-binding objects such as channels, memory pools, queues, and mutexes are
created in the software architecture. The Late-Binding API described in the file
teja_late_binding.h provides operations on these objects and is called inside
the user application source code.

The mechanism to access late-binding objects in the user application code is to use
them as C preprocessor symbols that have the same names as the strings that were
used to create the late-binding objects in the software architecture. The tejacc
compiler creates a set of defines for these late-binding object identifiers and passes
them to the command-line during the compilation.

The list of C preprocessor symbols are generated in the
reports/process_name_predefined_symbols.h file.
Chapter 2 tejacc Basics 35

36 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

CHAPTER 3

Profiler

This chapter discusses the Netra DPS profiler used in the Netra Data Plane software.
Topics include:

■ “Profiler Introduction” on page 37

■ “How the Profiler Works” on page 38

■ “Groups and Events” on page 38

■ “Profiler Output” on page 39

■ “Profiler Examples” on page 41

■ “Profiling Application Performance” on page 44

■ “User-Defined Statistics” on page 50

■ “Profiling Metrics” on page 51

■ “Using the Profiler Script” on page 51

■ “Profiler Scripts” on page 52

Profiler Introduction
The Netra DPS profiler is a set of API calls that help you collect various critical data
during the execution of an application. The user can profile one or more areas of
your application such as CPU utilization, I/O wait times, and so on. Information
gathered using the profiler helps you decide where to direct performance-tuning
efforts. The profiler uses special counters and resources available in the system
hardware to collect critical information about the application.

As with instrumentation-based profiling, there is a slight overhead for collecting
data during the application run. The profiler uses as little overhead as possible so
that the presented data is very close to the actual application run without the
profiler API in place.
37

How the Profiler Works
The user enables the profiler with the -pg command-line option (tejacc). Insert the
API calls at desired places to start collecting profiling data. The profiler configures
and sets the hardware resources to capture the requested data. At the same time, the
profiler reserves and sets up the memory buffer where the data will be stored. Insert
calls to update the profiler data at any further location in the application. With this
setup, the profiler reads the current values of the data and stores the values in
memory.

There is an option to store additional user data in the memory along with each
update capture. Storing this data helps you analyze the application in the context of
different application-specific data.

The user can also obtain the current profiler data in the application and use the data
as desired. With the assistance of other communication mechanisms you can send
the data to the host or other parts of the application.

By demarking the portions that are being profiled, you can dump the collected data
to the console. The data is presented as a comma-delimited table that can be further
processed for report generation.

To minimize the amount of memory space needed for the profile capture, the profiler
uses a circular buffer mechanism to store the data. In a circular buffer, the start and
the end data is preserved, yet the intermediate data is overwritten when the buffer
becomes full.

Groups and Events
The profiling data is captured into different groups. For example, with the CPU
performance group, events such as completed instruction cycles, data cache misses
and secondary cache misses are captured. In the memory performance group, events
such as memory queue and memory cycles are captured. Refer to the Profiler API
chapter of the Netra Data Plane Software Suite 2.0 Update 2 Reference Manual for the
different groups and different events that are captured and measured on the target.
38 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Profiler Output
The profiler output consists of one line per profiler record. Each line commonly has
a format of nine comma-delimited fields. The fields contain values in hexadecimal. If
a record is prefixed with a -1, the buffer allocated for the profiler records has
overrun. When a buffer overrun occurs, you should increase the value of the
profiler_buffer_size property as described in the Configuration API chapter of
the Netra Data Plane Software Suite 2.0 Update 2 Reference Manual, and run the
application again.

TABLE 3-1 describes the fields of the profiler record:

TABLE 3-1 Profiler Record Fields

Field Description

CPU ID Represents the CPU ID where the current profiler call was made.

Caller ID Represents the source location of the teja_profiler call. The
records/profiler_call_locations.txt file lists all of the IDs and
their corresponding source locations.

Call Type Type of teja_profiler call. The values listed are defined in the
teja_profiler.h file.

Completed
Cycles

Running total of completed clock cycles so far. The user can use this
value to calculate the time between two entries.

Program
Counter

Value of the program counter when the current profiler call was invoked.

Group Type Group number of the events started or being measured.
Chapter 3 Profiler 39

Refer to “Profiler Output Example” on page 42 for an example of dump output.

Event Values Value of the events. This value can be one or more columns depending
on the target CSP. The target-dependent values are described in the
Profiler API chapter in the Netra Data Plane Software Suite 2.0 Update 2
Reference Manual. The order of the events are the same as the location of
the bit set in the event bit mask, passed to teja_profiler_start,
starting from left to right. For the entry that represents
teja_profiler_start, the values represent the event types.
There are two events per record (group) in the dump output:
• event_hi – represents the higher bit set in the event mask
• event_lo – represents the lower bit set in the event mask
Overflow values consist of the following:
• 0x0 – no overflow
• 0x1 – overflow of the event_lo
• 0x2 – overflow of the event_hi
• 0x3 – overflow of both event_hi and event_lo

Overflow Overflow information of one or more events being measured. The value
is target-dependent.

User Data Value of the user-defined data. Zero or more columns, depending on the
number of counters allocated and recorded by the user.

TABLE 3-1 Profiler Record Fields (Continued)

Field Description
40 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Profiler Examples
For profiler API function descriptions, refer to the Netra Data Plane Software Suite 2.0
Update 2 Reference Manual.

Profiler API
This section includes profiler API usage for both Sun UltraSPARC T1 and Sun
UltraSPARC T2 processors.

Profiler API Usage for the Sun UltraSPARC T1 Processor
The only difference when profiling functions are used for the Sun UltraSPARC T1
processor is in the teja_profiler_start function call for CPU group of events.
Profiling CPU group on the Sun UltraSPARC T1 processor enables the measuring of
only one additional event along with the completed instruction count that is always
an available event for this group.

CODE EXAMPLE 3-1 provides an example of profiler API usage for the Sun
UltraSPARC T1 processor.

CODE EXAMPLE 3-1 Sample Profiler API Usage for the Sun UltraSPARC T1 Processor

main()
{

/* ...user code... */
teja_profiler_start(TEJA_PROFILER_CMT_CPU,

TEJA_PROFILER_CMT_CPU_IC_MISS);
 /* ...user code... */
 while (packet) {

 /* ...user code... */
teja_profiler_update(TEJA_PROFILER_CMT_CPU, num_pkt);
 if (num_pkt == 100)

teja_profiler_dump(generator_thread);
num_pkt = 0;

}
}
teja_profiler_stop(TEJA_PROFILER_CMT_CPU);

}

Chapter 3 Profiler 41

Profiler API Usage for the Sun UltraSPARC T2 Processor
CODE EXAMPLE 3-2 provides an example of profiler API usage for the Sun
UltraSPARC T2 processor.

Profiler Configuration
The user can change the profiler configuration in the software architecture. The
following example shows the profiler properties that you can change per process.

main_process is the process object that was created using the
teja_process_create call. The property values are applied to all threads mapped
to the process specified using main_process.

Profiler Output Example
The following is an example of the profiler output.

CODE EXAMPLE 3-2 Sample Profiler API Usage for the Sun UltraSPARC T2 Processor

main()
{

/* ...user code... */
teja_profiler_start(TEJA_PROFILER_CMT_CPU,

TEJA_PROFILER_CMT_CPU_IC_MISS |
TEJA_PROFILER_CMT_CPU_DC_MISS);

/* ...user code... */
 while (packet) {

 /* ...user code... */
teja_profiler_update(TEJA_PROFILER_CMT_CPU, num_pkt);
if (num_pkt == 100)

teja_profiler_dump(generator_thread);
num_pkg = 0

}
}
teja_profiler_stop(TEJA_PROFILER_CMT_CPU);

}

teja_process_set_property(main_process, “profiler_log_table_size”,"4096");

TEJA_PROFILE_DUMP_START,ver1.1
CPUID,ID,Type,Cycles,PC,Grp,Evt_Hi,Evt_Lo,Overflow,User Data
4,15136,1,4d048ad5c4,521f08,1,100,2
4,30e6,2,4d162a0db0,5128f0,1,36c2ba96,ce,0,1e8480,3da594c
4,18236,1,4cf2eb9ce4,521f08,1,100,1
4,3a2f,2,4d048acb40,5128f0,1,31cffa4,c2a,0,1b7740,3da594c
TEJA_PROFILE_DUMP_END
42 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

The string, ver1.1, is the profiler dump format version. The string is used as an
identifier of the output format. The string helps scripts written to process the output
validate the format before processing further.

In the first record, call type 1 represents teja_profiler_start. The values 100
and 1 seen in the event_hi and event_lo columns are the types of events in group
1 being measured. In the record with ID 30e6, call type 2 represents
teja_profiler_update, so the values 36c2ba96 and ce are the values of the event
types 100 and 2, respectively.

Cycle counts are in increasing order so the difference between two of them provides
the exact number of cycle counts between two profiler API calls. The difference
divided by the processor frequency calculates the actual time between two calls.

IDs 18236 and 15136 represent the source location of the profiler API call. The
records/profiler_call_locations.txt file lists a table that maps IDs and
actual source locations.
Chapter 3 Profiler 43

Profiling Application Performance
Profiling consists of instrumenting your application to extract performance
information that can be used to analyze, diagnose, and tune your application.
Netra DPS provides an interface to assist you to obtain this information from your
application. In general, profiling information consists of hardware performance
counters and a few user-defined counters. This section defines the profiling
information and how to obtain it.

Profiling is a disruptive activity that can have a significant performance effect. Take
care to minimize profiling code and also to measure the effects of the profiling code.
This can be done by measuring performance with and without the profiling code.
One of the most disruptive parts of profiling is printing the profiling data to the
console. To reduce the effects of prints, try to aggregate profiling statistics for many
periods before printing, and print only in a designated strand.

Sun UltraSPARC T1 Performance Counters
The CPU, DRAM, and JBus performance counters for Sun UltraSPARC T1 processor
are described in TABLE 3-2, TABLE 3-3, and TABLE 3-4, respectively.

TABLE 3-2 Sun UltraSPARC T1 CPU Performance Counters

Event Name Description

instr_cnt Number of completed instructions. Annulled, mispredicted, or
trapped instructions are not counted.*

SB_full Number of store buffer full cycles.\

FP_instr_cnt Number of completed floating-point instructions. d Annulled or
trapped instruction are not counted.

IC_miss Number of instruction cache (L1) misses.

DC_miss Number of data cache (L1) misses for loads (store misses are not
included because the cache is write-through nonallocating).

ITLB_miss Number of instruction TLB miss trap taken (includes
real_translation misses).
44 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

DTLB_miss Number of data TLB miss trap taken (includes real_translation
misses).

L2_imiss Number of secondary cache (L2) misses due to instruction cache
requests.

L2_dmiss_Id Number of secondary cache (L2) misses due to data cache load
requests.\

* Tcc instructions that are cancelled due to encountering a higher-priority trap are still counted.

\ SB_full increments every cycle a strand (virtual processor) is stalled due to a full store buffer, regardless of
whether other strands are able to keep the processor busy. The overflow trap for SB_full is not precise to the
instruction following the event that occurs when ovfl is set. The trap might occur on the instruction following
the event or the following two instructions.

d Only floating-point instructions that execute in the shared FPU are counted. The following instructions are ex-
ecuted in the shared FPU: FADDS, FADDD, FSUBS, FSUBD, FMULS, FMULD, FDIVS, FDIVD, FSMULD, FS-
TOX, FDTOX, FXTOS, FXTOD, FITOS, FDTOS, FITOD, FSTOD, FSTOI, FDTOI, FCMPS, FCMPD, FCMPES,
FCMPED.

\ L2 misses because stores cannot be counted by the performance instrumentation logic.

TABLE 3-3 DRAM Performance Counters

Event Name Description

mem_reads Number of read transactions.

mem_writes Number of write transactions.

bank_busy_stalls Number of bank busy stalls (when transactions are pending).

rd_queue_latency Read queue latency (incremented by number of read transactions in
the queue each cycle).

wr_queue_latency Write queue latency (incremented by number of write transactions
in the queue each cycle).

rw_queue_latency Read and write queue latency (incremented by number of write
transactions in the queue each cycle).

wr_buf_hits Writeback buffer hits (incremented by 1 each time a read is deferred
due to conflicts with pending writes).

TABLE 3-2 Sun UltraSPARC T1 CPU Performance Counters (Continued)

Event Name Description
Chapter 3 Profiler 45

Each strand has its own set of CPU counters that only tracks its own events and can
only be accessed by that strand. Performance counters are 32 bits wide so they can
measure the values in range from 0 to 232. If measured event has value greater than
232 the corresponding counter will overflow as it will be indicated in the Overflow
field of the output record. If the counter will overflow or not depends on properties
of the code that is profiled, the clock frequency of the processor, the measured event
and the profiling period. In the case of performance counter overflow it is suggested
to the user to decrease the profiling period. When taking measurements, ensure that
the application behavior is in a steady state. To check this behavior, measure the
event a few times to see that it does not vary by more than a few percent between
measurements. To measure all nine CPU counters, eight measurements are required.
The application’s behavior should be consistent over the entire collection period. To
profile each strand on a 32-thread application, each thread must have code to read
and set the counters. The user must compile their own aggregate statistics across
multiple strands or a core.

Since the JBus and DRAM performance counters are shared across all strands, only
one thread should gather these counters.

TABLE 3-4 JBus Performance Counters

Event Name Description

jbus_cycles JBus cycles (time).

dma_reads DMA read transactions (inbound).

dma_read_latency Total DMA read latency.

dma_writes DMA write transactions.

dma_write8 DMA WR8 sub transactions.

ordering_waits Ordering waits (JBI to L2 queues blocked each cycle).

pio_reads PIO read transactions (outbound).

pio_read_latency Total PIO read latency.

pio_writes PIO write transactions.

aok_dok_off_cycles AOK or DOK off cycles seen.

aok_off_cycles AOK_OFF cycles seen.

dok_off_cycles DOK_OFF cycles seen.
46 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Sun UltraSPARC T2 Performance Counters
The CPU performance counters for the Sun UltraSPARC T2 processor are described
in TABLE 3-5.

TABLE 3-5 Sun UltraSPARC T2 CPU Performance Counters

Event Name Description

Completed_branches Number of completed branches.

Taken_branches Number of branches taken.

FGU_arithmatic_instr Number of floating-point arithmetic instructions executed.

Load_instr Number of load instructions executed.

Store_instr Number of store Instructions executed.

sethi_instr Number of sethi instructions executed.

Other_instr Number of all other instructions executed.

Atomics Number of atomic operations executed.

All_instr Total number of instructions executed.

Icache_misses Number of instruction cache misses.

Dcache_misses Number of L1 data cache misses.

L2_instr_misses Number of secondary cache (L2) misses due to instruction cache
requests.

L2_load_misses Measures the number of secondary cache (L2) misses due to data
cache load requests.

ITLB_ref_L2 For each ITLB miss, this counts the number of accesses the ITLB
hardware tablewalk makes to L2 when hardware tablewalk is
enabled.

DTLB_ref_L2 For each DTLB miss, this counts the number of accesses the DTLB
hardware tablewalk makes to L2 when hardware tablewalk is
enabled.

ITLB_miss_L2 For each ITLB miss, this counts the number of accesses the ITLB
hardware tablewalk makes to L2 which misses in L2 when
hardware tablewalk is enabled.
Note: Depending on the hardware tablewalk configuration, each
ITLB miss may issue from 1 to 4 requests to L2 to search TSB’s.

DTLB_miss_L2 For each DTLB miss, this counts the number of accesses the DTLB
hardware tablewalk makes to L2 which misses in L2 when
hardware tablewalk is enabled.
Note: Depending on the hardware tablewalk configuration, each
DTLB miss may issue from 1 to 4 requests to L2 to search TSB’s.
Chapter 3 Profiler 47

Note – The final output of the profiler displays the Event names, shown in
TABLE 3-5, which are the same as the events listed in Netra Data Plane Software Suite
2.0 Update 2 Reference Manual (“Sun UltraSPARC T2 Processor – Specific Profiler
Groups” on page 105).

Stream_LD_to_PCX Counts the number of SPU load operations to L2.

Stream_ST_to_PCX Counts the number of SPU store operations to L2.

CPU_LD_to_PCX Counts the number of CPU loads to L2.

CPU_Ifetch_to_PCX Counts the number of I-fetches to L2.

CPU_ST_to_PCX Counts the number of CPU stores to L2.

MMU_LD_to_PCX Counts the number of MMU loads to L2.

DES_3DES_OP Increments for each CWQ or ASI operation that uses DES/3DES
unit.

AES_OP Increments for each CWQ or ASI operation which uses AES unit.

RC4_OP Increments for each CWQ or ASI operation which uses RC4.

MD5_SHA1_SHA256_OP Increments for each CWQ or ASI operation which uses MD5,
SHA-1, or SHA-256.

MA_OP Increments for each CWQ or ASI modular arithmetic operation.

CRC_TCPIP_Cksum_OP Increments for each iSCSI CRC or TCP/IP checksum operation.

DES_3DES_Busy_cycle Increments each cycle when DES/3DES unit is busy.

AES_Busy_cycle Number of busy cycles encountered per profiling interval when
attempting to execute the AES operation.

RC4_Busy_cycle Number of busy cycles encountered per profiling interval when
attempting to execute the RC4 operation.

MD5_SHA1_SHA256_Busy_cycle Number of busy cycles encountered per profiling interval when
attempting to execute the MD5_SHA1_SHA256 operation.

MA_Busy Increments each cycle when modular arithmetic unit is busy.

CRC_MPA_Cksum Increments each cycle when CRC/MPA/checksum unit is busy.

ITLB_miss Includes all misses (successful and unsuccessful tablewalks).

DTLB_miss Includes all misses (successful and unsuccessful tablewalks).

TLB_miss Counts both ITLB and DTLB misses (successful and unsuccessful
tablewalks).

TABLE 3-5 Sun UltraSPARC T2 CPU Performance Counters (Continued)

Event Name Description
48 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Each strand has its own set of CPU counters that only tracks its own events and can
only be accessed by that strand. Performance counters are 32 bits wide so they can
measure the values in range from 0 to 232. If measured event has value greater than
232 the corresponding counter will overflow as it will be indicated in the Overflow
field of the output record. If the counter will overflow or not depends on the
properties of the code that is profiled, the clock frequency of the processor, the
measured event, and the profiling period. In the case of performance counter
overflow, it is suggested to the user to decrease the profiling period.

When taking measurements, ensure that the application behavior is in a steady state.
To check this behavior, measure the event a few times to see that it does not vary by
more than a few percent between measurements. Since a user can measure any two
events at a time, in order to measure all 38 CPU counters, 19 measurements are
required. The application behavior should be consistent over the entire collection
period. To profile each strand on a 64-thread application, each thread must have
code to read and set the counters. Sample code is provided in CODE EXAMPLE 3-2
(“Sample Profiler API Usage for the Sun UltraSPARC T2 Processor” on page 42).
The user must compile their own aggregate statistics across multiple strands or a
core.

The Sun UltraSPARC T2 DRAM Performance Counters are the same as the Sun
UltraSPARC T1 DRAM Performance Counters described in TABLE 3-3.
Chapter 3 Profiler 49

User-Defined Statistics
The key user-defined statistic is the count of packets processed by the thread.
Another statistic that can be important is a measure of idle time, which is the
number of times the thread polled for a packet and did not find any packets to
process.

The following example shows how to measure idle time. Assume that the workload
looks like the following:

User-defined counters count the number of times through the loop where no work
was done. Measure the time of the idle loop by running idle loop alone
(idle_loop_time). Then run real workload, counting the number of idle loops
(idle_loop_count)

while(1){
If(work_to_do) {

Do work
Increment work_count

} else {
Increment idle_loop_count

}
}

Idle_time = idle_loop_count * idle_loop_time
50 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Profiling Metrics
The user can calculate the following metrics after collecting the appropriate
hardware counter data using the Netra DPS profiling infrastructure. Use the metrics
to quantify performance effects and help in optimizing the application performance.

■ Instructions per cycle (IPC)

Calculate this metric by dividing instruction count by the total number of ticks
during a time period when the thread is in a stable state. The user can also
calculate the IPC for a specific section of code. The highest number possible is 1
IPC, which is the maximum throughput of 1 core of the UltraSPARC T processor.

■ Cycles per instructions (CPI)

This metric is the inverse of IPC. This metric is useful for estimating the effect of
various stalls in the CPU.

■ Instruction cache misses per instruction (IC_miss per instruction)

Multiplying this number with the L1 cache miss latency helps estimate the cost, in
cycles, of instruction cache misses. Compare this number to the overall CPI to see
if this is the cause of a performance bottleneck.

■ L2 instruction cache misses per instruction (L2_imiss per instruction)

This metric indicates the number of instructions that miss in the L2 cache, and
enables you to calculate the contribution of instruction misses to overall CPI.

■ Data cache misses per instruction (DC_miss per instruction)

Data cache miss rate in combination with the L2 cache miss rate quantifies the
effect of memory accesses. Multiplying this metric with data cache miss latency
provides an indication of its effect (contribution) on CPI.

■ L2 cache misses per instruction (L2_miss per instruction)

Similar to data cache miss rate, this metric has higher cost in terms of cycles of
contribution to overall CPI. This metric also enables you to estimate the memory
bandwidth requirements.

Using the Profiler Script
The profiler script is used to summarize the profiling output generated from the
profiler. The profiler script (written in perl) converts the raw profiler output to a
summarized format that is easy to read and interpret.
Chapter 3 Profiler 51

Profiler Scripts
Two scripts are available, profiler.pl and profiler_n2.pl. profiler.pl is
used for parsing outputs generated from a Sun UltraSPARC T1 (CMT1) processor.
profile_n2.pl is used for parsing outputs generated from a Sun UltraSPARC T2
(CMT2) processor.

Usage
For Sun UltraSPARC T1 platforms (such as a Sun Fire T2000 system):

For Sun UltraSPARC T2 platforms (such as a Sun SPARC Enterprise T5220 system):

input_file

This file consists of raw profile data generated by the Netra DPS profiler. Typically,
this data is captured on the console and saved into a file with .csv suffix, indicating
that this is a CSV (comma-separated values) file. For example, input_file.csv

output_file

This file is generated by redirecting the outputs of the profiler.pl script to an
output file. This file should also be in CSV format. For example, output_file.csv.

Note – If there is no redirection (that is, the output_file is not specified), the output of
the script will display on the console.

profiler.pl input_file > output_file

profiler_n2.pl input_file > output_file
52 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Raw Profile Data
Raw profile data is the direct output from the profiler.

The following shows an example of the raw profile data output from a Sun
UltraSPARC T1 processor:

TEJA_PROFILE_DUMP_START,ver1.1
CPUID,ID,Type,Cycles,PC,Grp,Evt_Hi,Evt_Lo,Overflow,User Data
4,18236,1,4cf2eb9ce4,521f08,1,100,1
4,3a2f,2,4d048acb40,5128f0,1,31cffa4,c2a,0,1b7740,3da594c
4,18236,1,4d048ad5c4,521f08,1,100,2
4,3a2f,2,4d162a0db0,5128f0,1,31d274e,0,0,1e8480,3da594c
4,18236,1,4d162a1888,521f08,1,100,4
4,3a2f,2,4d27c951cc,5128f0,1,31d2e36,50e,0,2191c0,3da594c
4,18236,1,4d27c95c28,521f08,1,100,8
4,3a2f,2,4d396893a0,5128f0,1,31d238f,25b863,0,249f00,3da594c
4,18236,1,4d39689dd8,521f08,1,100,10
4,3a2f,2,4d4b07cca0,5128f0,1,31cf8de,0,0,27ac40,3da594c
4,18236,1,4d4b07d708,521f08,1,100,20
4,3a2f,2,4d5ca70e88,5128f0,1,31d183c,0,0,2ab980,3da594c
4,18236,1,4d5ca7194c,521f08,1,100,40
4,3a2f,2,4d6e4654ac,5128f0,1,31d2bd3,1b2,0,2dc6c0,3da594c
4,18236,1,4d6e465ef4,521f08,1,100,80
TEJA_PROFILE_DUMP_END
Chapter 3 Profiler 53

The following shows an example of the raw profile data output from the Sun
UltraSPARC T2 processor:

TEJA_PROFILE_DUMP_START,ver1.1
CPUID,ID,Type,Cycles,PC,Grp,Evt_Hi,Evt_Lo,Overflow,User Data
2,315,1,d8a403c78c,52cf10,1,12,12
2,21c9,2,d8a403e3b1,514fe8,1,e,e,0,927c0,1d905b
2,4cd,1,d8a403eca2,52cf10,1,22,22
2,21c9,2,d8b8cd3be2,514fe8,1,5e89cc,5e89cc,0,30d40,0
2,4cd,1,d8b8cd3fee,52cf10,1,42,42
2,21c9,2,d8cd9812d0,514fe8,1,0,0,0,30d40,0
2,4cd,1,d8cd98178a,52cf10,1,82,82
2,21c9,2,d8e2636b16,514fe8,1,db21ac,db21ac,0,30d40,0
2,4cd,1,d8e2636f18,52cf10,1,102,102
2,21c9,2,d8f72f1c5c,514fe8,1,46042d,46042d,0,30d40,0
2,4cd,1,d8f72f2058,52cf10,1,202,202
2,21c9,2,d90bfa2d22,514fe8,1,0,0,0,30d40,0
2,4cd,1,d90bfa3181,52cf10,1,402,402
2,21c9,2,d920c5ce6c,514fe8,1,24ea141,24ea141,0,30d40,0
2,4cd,1,d920c5d301,52cf10,1,802,802
2,21c9,2,d93590ffc6,514fe8,1,8fb2c,8fb2c,0,30d40,0
2,4cd,1,d9359103dc,52cf10,1,fd2,fd2
2,21c9,2,d94a5cf7e3,514fe8,1,3f5f51c,3f5f51c,0,30d40,0
2,4cd,1,d94a5cfc19,52cf10,1,13,13
2,21c9,2,d95f283398,514fe8,1,0,0,0,30d40,0
2,4cd,1,d95f28379f,52cf10,1,23,23
2,21c9,2,d973f413a1,514fe8,1,2734a8,2734a8,0,30d40,0
2,4cd,1,d973f417ba,52cf10,1,103,103
2,21c9,2,d988bfbbca,514fe8,1,0,0,0,30d40,0
2,4cd,1,d988bfbfe1,52cf10,1,203,203
2,21c9,2,d99d8be47f,514fe8,1,61aa,61aa,0,30d40,0
2,4cd,1,d99d8be94f,52cf10,1,44,44
2,21c9,2,d9b257ba5a,514fe8,1,0,0,0,30d40,0
2,4cd,1,d9b257be48,52cf10,1,84,84
2,21c9,2,d9c7237ebc,514fe8,1,0,0,0,30d40,0
2,4cd,1,d9c72382f0,52cf10,1,104,104
2,21c9,2,d9dbee7725,514fe8,1,0,0,0,30d40,0
2,4cd,1,d9dbee7b2f,52cf10,1,204,204
2,21c9,2,d9f0b99d84,514fe8,1,0,0,0,30d40,0
2,4cd,1,d9f0b9a1c5,52cf10,1,15,15
2,21c9,2,da05853c14,514fe8,1,0,0,0,30d40,0
2,4cd,1,da05854024,52cf10,1,25,25
2,21c9,2,da1a5067bf,514fe8,1,0,0,0,30d40,0
54 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

2,4cd,1,da1a506bdd,52cf10,1,45,45
2,21c9,2,da2f1c54fd,514fe8,1,300388,300388,0,30d40,0
2,4cd,1,da2f1c5948,52cf10,1,85,85
2,21c9,2,da43e87245,514fe8,1,0,0,0,30d40,0
2,4cd,1,da43e876d0,52cf10,1,105,105
2,21c9,2,da58b3416a,514fe8,1,3d0910,3d0910,0,30d40,0
2,4cd,1,da58b3457e,52cf10,1,205,205
2,21c9,2,da6d7e5a3b,514fe8,1,0,0,0,30d40,0
2,4cd,1,da6d7e5e5d,52cf10,1,16,16
2,21c9,2,da824aa191,514fe8,1,0,0,0,30d40,0
2,4cd,1,da824aa5e5,52cf10,1,26,26
2,21c9,2,da9715c92e,514fe8,1,0,0,0,30d40,0
2,4cd,1,da9715cd85,52cf10,1,46,46
2,21c9,2,daabe167f2,514fe8,1,0,0,0,30d40,0
2,4cd,1,daabe16c18,52cf10,1,86,86
2,21c9,2,dac0ad6c8d,514fe8,1,0,0,0,30d40,0
2,4cd,1,dac0ad7142,52cf10,1,106,106
2,21c9,2,dad5792613,514fe8,1,0,0,0,30d40,0
2,4cd,1,dad5792a2b,52cf10,1,206,206
2,21c9,2,daea449364,514fe8,1,0,0,0,30d40,0
2,4cd,1,daea44979f,52cf10,1,17,17
2,21c9,2,daff0f72f4,514fe8,1,0,0,0,30d40,0
2,4cd,1,daff0f76fd,52cf10,1,27,27
2,21c9,2,db13db2e84,514fe8,1,0,0,0,30d40,0
2,4cd,1,db13db32cc,52cf10,1,47,47
2,21c9,2,db28a68860,514fe8,1,0,0,0,30d40,0
2,4cd,1,db28a68c8d,52cf10,1,87,87
2,21c9,2,db3d7120a0,514fe8,1,0,0,0,30d40,0
2,4cd,1,db3d7125a6,52cf10,1,107,107
2,21c9,2,db523c58b1,514fe8,1,0,0,0,30d40,0
2,4cd,1,db523c5cdf,52cf10,1,207,207
2,21c9,2,db6707bf3f,514fe8,1,0,0,0,30d40,0
2,4cd,1,db6707c3ea,52cf10,1,4b,4b
2,21c9,2,db7bd4202d,514fe8,1,0,0,0,30d40,0
2,4cd,1,db7bd42494,52cf10,1,8b,8b
2,21c9,2,db909fb827,514fe8,1,0,0,0,30d40,0
2,4cd,1,db909fbc6c,52cf10,1,cb,cb
2,21c9,2,dba56a6332,514fe8,1,0,0,0,30d40,0
2,4cd,1,dba56a67dd,52cf10,1,12,12
TEJA_PROFILE_DUMP_END
Chapter 3 Profiler 55

Summarized Profile Data
Summarized profile data is the processed data generated from the profiler.pl
and the profile_n2.pl for the Sun UltraSPARC T1 (CMT1) and (Sun UltraSPARC
T2 (CMT2) processors, respectively.

Sun UltraSPARC T1 Processor Profiler Output
For the Sun UltraSPARC T1 processor, the summary displays as in the following
example:

TABLE 3-6 describes each field in the top section of the summarized Sun UltraSPARC
T1 profile data output:

cpuid , cycle , SB_full ,ITLB_miss ,Instr_cnt ,FP_instr_cnt ,DTLB_miss
,IC_miss ,L2_Imiss ,DC_miss ,L2_Dmiss_LD ,userdata1 ,userdata2 ,
4 , 289219777 ,3121, 0, 51104522, 0, 0, 1080, 433, 2471858, 236191, 2600000
,64641356 ,
CPU,StartPC,UpdatePC,Cycles,Instr_cnt,CntrName,Value,UserData.1,UserData.2,
4,0x521f08,0x5128f0,295649212,52240523,FP_instr_cnt,0,400000,64641356,
4,0x521f08,0x5128f0,147824128,26122620,IC_miss,689,600000,64641356,
4,0x521f08,0x5128f0,295647284,52238312,DC_miss,2472263,800000,64641356,
4,0x521f08,0x5128f0,295646420,52234078,ITLB_miss,0,1000000,64641356,
4,0x521f08,0x5128f0,295644896,52241803,DTLB_miss,0,1200000,64641356,
4,0x521f08,0x5128f0,295649084,52246157,L2_Imiss,434,1400000,64641356,
4,0x521f08,0x5128f0,295646316,52250156,L2_Dmiss_LD,236270,1600000,64641356,
4,0x521f08,0x5128f0,295644764,52232100,SB_full,3114,1800000,64641356,

TABLE 3-6 Sun UltraSPARC T1 Profile Data Output Field Descriptions

Field Description

cpuid CPU ID found in the first column of the raw profile data. Note: If
profiling is done for multiple strands, then multiple rows of
summarized data (with different CPU IDs) are shown in the top
section.

cycle Average number of clock cycles elapsed per profiling interval.

SB_full Average number of SB_full occurrences per profiling interval.

ITLB_miss Average number of ITLB_miss occurrences per profiling interval.

Instr_cnt Average number of instructions executed per profiling interval.

FP_instr_cnt Average number of floating point instructions executed per profiling
interval.

DTLB_miss Average number of DTLB_miss occurrences per profiling interval.
56 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Sun UltraSPARC T2 Processor Profiler Output
For the Sun UltraSPARC T2 processor, the summary displays as in the following
example:

IC_miss Average number of IC_miss occurrences per profiling interval.

L2_Imiss Average number of L2_Imiss occurrences per profiling interval.

DC_miss Average number of DC_miss occurrences per profiling interval.

L2_Dmiss_LD Average number of L2_Dmiss_LD occurrences per profiling
interval.

UserData.1 Average number taken from the User Defined Data1 column.

UserData.2 Average number taken from the User Defined Data2 column.

TABLE 3-6 Sun UltraSPARC T1 Profile Data Output Field Descriptions (Continued)

Field Description
Chapter 3 Profiler 57

CPUid 8
Cycles 213357798
Store_instr 5157787
L2_instr_misses 549
ITLB_miss_L2 0
CPU_ST_to_PCX 4801072
MA_OP 0
MA_Busy 0
Completed_branches 8346953
Icache_misses 1932
Stream_LD_to_PCX 0
DES_3DES_OP 0
DES_3DES_Busy_cycle 0
Sethi_instr 0
L2_load_misses 59993
DTLB_miss_L2 0
MMU_LD_to_PCX 0
CRC_TCPIP_Cksum_OP 0
CRC_MPA_Cksum 0
Taken_branches 5334546
Dcache_misses 1024428
Stream_ST_to_PCX 0
AES_OP 0
AES_Busy_cycle 0
Other_instr 37370926
FGU_arithmatic_instr 0
ITLB_ref_L2 0
CPU_LD_to_PCX 1779478
RC4_OP 0
RC4_Busy_cycle 0
ITLB_miss 0
Atomics 347142
Load_instr 14564094
DTLB_ref_L2 0
CPU_Ifetch_to_PCX 2603
MD5_SHA1_SHA256_OP 0
MD5_SHA1_SHA256_Busy_cycle 0
DTLB_miss 0
TLB_miss 0
All_instr 65033422
Userdata.1 200000
Userdata.2 0
58 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Note – The data in the second and third sections of the Sun UltraSPARC T2
summary are identical. The format of the first section is the field header. The format
in the second section matches the layout of the field header. The format in the third
section is in one single column. This layout enables you to easily transfer data to a
spreadsheet file column.

TABLE 3-7 describes each field in the top section of the summarized Sun UltraSPARC
T2 profile data output:

TABLE 3-7 Sun UltraSPARC T2 Profile Data Output Field Descriptions

Field Description

CPUid CPU ID found in the first column of the raw profile data. Note: If
profiling is done for multiple strands, then multiple rows of
summarized data (with different CPU IDs) are shown in the top section.

cycles Average number of clock cycles elapsed per profiling interval.

Completed_branches Number of completed branches per profiling interval.

Taken_branches Number of branches taken per profiling interval.

FGU_arithmatic_instr Number of Floating-point arithmetic instructions executed per profiling
interval.

Load_instr Number of Load instructions executed per profiling interval.

Store_instr Number of Store Instructions executed per profiling interval.

sethi_instr Number of sethi instructions executed per profiling interval.

Other_instr Number of all other instructions executed per profiling interval.

Atomics Number of atomic operations executed per profiling interval.

All_instr Total number of instructions executed per profiling interval.

Icache_misses Number of Instruction Cache misses per profiling interval.

Dcache_misses Number of L1 Data Cache misses per profiling interval.

L2_instr_misses Number of L2 cache instruction misses per profiling interval.

L2_load_misses Number of L2 cache load misses per profiling interval.

ITLB_ref_L2 For each ITLB miss, this is the number of accesses the ITLB hardware
tablewalk makes to L2 per profiling interval when hardware tablewalk
is enabled.

DTLB_ref_L2 For each DTLB miss, this is the number of accesses the DTLB hardware
tablewalk makes to L2 per profiling interval when hardware tablewalk
is enabled.
Chapter 3 Profiler 59

ITLB_miss_L2 For each ITLB miss, this is the number of accesses the ITLB hardware
tablewalk makes to L2 which misses in L2 per profiling interval when
hardware tablewalk is enabled.
Note: Depending on the hardware tablewalk configuration, each ITLB
miss may issue from 1 to 4 requests to L2 to search TSB’s.

DTLB_miss_L2 For each DTLB miss, this is the number of accesses the DTLB hardware
tablewalk makes to L2 which misses in L2 per profiling interval when
hardware tablewalk is enabled.
Note: Depending on the hardware tablewalk configuration, each DTLB
miss may issue from 1 to 4 requests to L2 to search TSB’s.

Stream_LD_to_PCX Number of SPU load operations to L2 per profiling interval.

Stream_ST_to_PCX Number of SPU store operations to L2 per profiling interval.

CPU_LD_to_PCX Number of CPU loads to L2 per profiling interval.

CPU_Ifetch_to_PCX Number of I-fetches to L2 per profiling interval.

CPU_ST_to_PCX Number of CPU stores to L2 per profiling interval.

MMU_LD_to_PCX Number of MMU loads to L2 per profiling interval.

DES_3DES_OP Number of increments for each CWQ or ASI operation which uses
DES/3DES unit per profiling interval.

AES_OP Number of increments for each CWQ or ASI operation which uses AES
unit per profiling unit.

RC4_OP Number of increments for each CWQ or ASI operation which uses RC4
per profiling interval.

MD5_SHA1_SHA256_OP Number of increments for each CWQ or ASI operation which uses MC5,
SHA-1, or SHA-256 per profiling interval.

MA_OP Number of increments for each CWQ or ASI modular arithmetic
operation per profiling interval.

CRC_TCPIP_Cksum_OP Number of increments for each iSCSI CRC or TCP/IP checksum
operation per profiling interval.

DES_3DES_Busy_cycle Number of increments per profiling interval for each cycle when
DES/3DES unit is busy

AES_Busy_cycle Number of busy cycles encountered per profiling interval when
attempting to execute the AES operation.

RC4_Busy_cycle Number of busy cycles encountered per profiling interval when
attempting to execute the RC4 operation.

MD5_SHA1_SHA256_Busy_cycle Number of busy cycles encountered per profiling interval when
attempting to execute the MD5_SHA1_SHA256 operation.

TABLE 3-7 Sun UltraSPARC T2 Profile Data Output Field Descriptions (Continued)

Field Description
60 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Performance Parameters Calculations
Use the output values of the summarized data to derive various important
performance parameters. This section lists performance parameters and the method
from which they are derived.

■ Key for this section:

■ Division: /

■ Multiplication: *

■ pkts_per_interval = Number of packets per interval (for example, 200000)

This can be obtained from the Userdata.1 field.

■ cpu_frequency = CPU frequency in Hz (for example, 1200000000 for T2000
system)

MA_Busy Number of increments per profiling interval for each cycle when
modular arithmetic unit is busy.

CRC_MPA_Cksum Number of increments per profiling interval for each cycle when
CRC/MPA/checksum unit is busy.

ITLB_miss Number of misses (successful and unsuccessful tablewalks) per
profiling interval.

DTLB_miss Number of misses (successful and unsuccessful tablewalks) per
profiling interval.

TLB_miss Number of both ITLB and DTLB misses, including successful and
unsuccessful tablewalks per profiling interval.

Userdata.1 Average number taken from the User Defined Data1 column.

Userdata.2 Average number taken from the User Defined Data2 column.

TABLE 3-7 Sun UltraSPARC T2 Profile Data Output Field Descriptions (Continued)

Field Description
Chapter 3 Profiler 61

Sun UltraSPARC T1 Processor

Instructions per Packet:

Average number of instructions executed in a packet.

Formula: value = (Instr_cnt / pkts_per_interval)

Instructions per Cycle (IPC):

Average number of instructions executed per cycle.

Formula: value = (Instr_cnt / cycle)

Packet Rate:

Average number of packets executed per second (in Kilo-packets per second).

Formula: value = ((pkts_per_interval / (cycle / cpu_frequency)) / 1000)

SB_full per thousand instructions:

Average number of SB_full occurrences per 1000 instructions executed.

Formula: value = ((SB_full / Instr_cnt) * 1000)

FP_instr_cnt per thousand instructions:

Average number of FP_instr_cnt occurrences per 1000 instructions executed.

Formula: value = ((FP_Instr_cnt / Instr_cnt) * 1000)

IC_miss per thousand instructions:

Average number of IC_miss occurrences per 1000 instructions executed.

Formula: value = ((IC_miss / Instr_cnt) * 1000)

DC_miss per thousand instructions:

Average number of DC_miss occurrences per 1000 instructions executed.

Formula: value = ((DC_miss / Instr_cnt) * 1000)

ITLB_miss per thousand instructions:

Average number of ITLB_miss occurrences per 1000 instructions executed.

Formula: value = ((ITLB_miss / Instr_cnt) * 1000)
62 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

DTLB_miss per thousand instructions:

Average number of DTLB_miss occurrences per 1000 instructions executed.

Formula: value = ((DTLB_miss / Instr_cnt) * 1000)

L2_imiss per thousand instructions:

Average number of L2_miss occurrences per 1000 instructions executed.

Formula: value = ((L2_miss / Instr_cnt) * 1000)

L2_dmiss_LD per thousand instructions:

Average number of L2_Dmiss_LD occurrences per 1000 instructions executed.

Formula: value = ((L2_miss / Instr_cnt) * 1000)

Sun UltraSPARC T2 Processor

Instruction per Packet:

Average number of instructions executed in a packet.

Formula: value = (All_instr / pkts_per_interval)

Instructions per Cycle (IPC):

Average number of instructions executed per cycle.

Formula: value = (All_instr / cycle)

Note – The Sun UltraSPARC T2 processor has two pipelines in each core. The
maximum IPC number of each pipeline is 1. Therefore, the maximum IPC number of
each core is 2. Pipeline utilization is this number of each pipeline multiplied by
100%. For example, if the IPC is 0.8, then the pipeline utilization of that pipeline is
80%.

Store Instructions per Packet:

Average number of Store instructions executed per packet.

Formula: value = (Store_instr / pkts_per_interval)
Chapter 3 Profiler 63

Load Instructions per Packet:

Average number of Load instructions executed per packet.

Formula: value = (Load_instr / pkts_per_interval)

L2 Load misses per Packet:

Average number of L2 cache Load misses per packet.

Formula: value = (L2_load_misses / pkts_per_interval)

Icache misses per 1000 Packets:

Average number of L1 Icache misses per 1000 packet.

Formula: value = (Icache_misses x 1000) / pkts_per_interval)

Dcache misses per Packet:

Average number of L1 Icache misses per packet.

Formula: value = (Dcache_misses / pkts_per_interval)

Packet Rate:

Average number of packets executed per second (in Kilo-packets per second).

Formula: value = ((pkts_per_interval / (cycle / cpu_frequency)) / 1000)

Note – Not all possible parameters are shown here. The user can derive any
parameter with any formula using the data outputs from the summary.

Note – These formulas can easily be inserted into a spreadsheet program.
64 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

▼ To Use a Spreadsheet For Performance Analysis
1. Open the summary file.

For example, an output_file.csv generated by profiler.pl.

2. Insert formulas into the spreadsheet.

3. Save the spreadsheet for future reference.
Chapter 3 Profiler 65

66 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

CHAPTER 4

Debugger

This chapter describes the Netra DPS native debugger and GNU debugger (GDB).
Topics include:

■ “Debugger Introduction” on page 67

■ “Native Debugger” on page 68

■ “GNU Project Debugger (GDB)” on page 79

Debugger Introduction
The Netra DPS native debugger is the default debugger and is useful for debugging
during development. This debugger also identifies system hangs or crashes in the
field deployment. To access the Netra DPS native debugger, press Ctrl-C.

To use the GNU Debugger (GDB), the user must have their own source code and the
binary. It is necessary to turn on the flag for this application, for example,
USR_CFLAGS = -DTEJA_DEBUGGER_MODE=TEJA_DEBUGGER_GDB_MODE

See “GNU Project Debugger (GDB)” on page 79 for detailed setup and example
information.
67

Native Debugger
The native debugger runs on the target and enables users to do the following:

■ Set, clear, and display breakpoints

■ Set and display memory

■ Display registers

■ Display stack trace

■ Manage thread focus

■ Step to the next assembly instruction

The debugger is not symbolic. Symbol resolution is performed separately using a
host-based tool called dbghelper.pl. See “Resolving Symbols” on page 77.

The native debugger is denoted by dbg. See “Native Debugger Commands” on
page 69.

Debugging Configuration Code
As seen in “tejacc Compiler Configuration” on page 15, tejacc gets information
about hardware architecture, software architecture, and mapping by executing the
configuration code compiled into dynamic libraries.

The code is written in C and might contain errors causing tejacc to crash. Upon
crashing, you are presented with a Java™ Hotspot exception, as tejacc is internally
implemented in Java. The information reported in the exception requires
knowledgeable interpretation.

An alternative version of tejacc.sh, called tejacc_dbg.sh, is provided to assist
debugging configuration code. This program runs tejacc inside the default host
debugger (dbx for Solaris hosts), stopping the execution immediately after the
configuration libraries have been loaded. The user can then continue execution to
reach the instruction that causes the problem and verify its location. Alternatively,
you can set breakpoints on the configuration functions, step through code, or use
any other functionality provided by the host debugger.

To use tejacc_dbg.sh, replace the invocation of tejacc.sh in the makefile
with tejacc_dbg.sh.
68 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Entering the Debugger
The application program calls the native debugger when any of the following
conditions occur:

■ At start time – If the application was compiled without the -O option, the
application calls the debugger at start time. Applications compiled with the -O
option start normally.

■ At a breakpoint – If the application was compiled without the -O option and
while running encounters a breakpoint, the application calls the debugger.
Applications compiled with the -O option cannot set breakpoints.

■ In a crash – If the application crashes, it calls the debugger. The debugger is called
regardless of whether the application was compiled with or without the -O
option.

■ Typing Ctrl-C – If the application calls the teja_debugger_check_ctrl_c()
function and you type the Ctrl-C key sequence, the debugger is also called. The
debugger is called regardless of whether the application was compiled with or
without the -O option.

Note – A call to the debugger stops all threads.

Note – The teja_check_ctrl_c() function must be executed periodically by at
least one of the threads in order for the Ctrl-C function to work. If the thread calling
the teja_check_ctrl_c() function crashes or goes into a deadlock, the Ctrl-C key
sequence stops.

Native Debugger Commands

Displaying Help

help command or
h command

Description

Displays help for a command. If the command variable is absent, a general help page
is displayed.
Chapter 4 Debugger 69

Example

Managing Breakpoints
Setting breakpoints is only supported in nonoptimized mode and means that the
application must be built without the -O option to tejacc.

break address Command or
b address Command

Description

Sets a breakpoint, where address is the hexadecimal address at which to break. The
breakpoint is set only in regions of code that are characterized by sequential
execution and not affected by control flow changes. The easiest way to set a proper
breakpoint is to use the dbghelper script. See “Resolving Symbols” on page 77.

dbg>help
 break <address> - set breakpoint

not available for all instructions (see docs)
 b <address> - set breakpoint

not available for all instructions (see docs)
 bt n - display stack trace
 delete breakpoint <bpid> - clear breakpoint
 d breakpoint <bpid> - clear breakpoint
 info - display info help
 i - display info help
 help [cmd] - display help
 h [cmd] - display help
 ? [cmd] - display help
 cont - resume execution
 c - resume execution
 step - step to next Assembly instruction

not available for all instructions (see docs)
 s - step to next Assembly instruction

not available for all instructions (see docs)
 x/nfu <address> - display memory:
 n (count)
 u = {b|h|w|g} (unit)
 f = {x|d|u|o|t|a|f|s|i} (format)
 thread <thdid> - switch thread focus
 w/u addr value - set memory
 u = {b|h|w|g} (unit)
70 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Example

info break Command or
i break Command

Description

Displays a list of active breakpoints.

Example

In this example, only one breakpoint exists. The breakpoint has an ID of 1. When
more than one breakpoint is set, each breakpoint receives a consecutive ID.

delete breakpoint ID Command or
d breakpoint ID Command

Description

Deletes a breakpoint, where ID is the ID of the breakpoint.

Example:

dbg>break 50b188
Breakpoint set at 0x50b188

dbg>info break
breakpoint [1] set at 0x50b188

dbg>delete breakpoint [1]
Chapter 4 Debugger 71

Managing Program Execution

cont Command or
c Command

Description

Continues execution of the application.

Example

step Command or
s Command

Description

Steps to the next assembly instruction within the application.

Example

Note – Only use the step command in regions of code that are characterized by
sequential execution and not affected by control flow changes.

dbg>cont

dbg>step
72 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Displaying and Setting Memory

x/nfu address Command

Description

Displays memory contents where:

■ n – Number of memory units to display.

■ f – The display format. The only supported value is x, for hexadecimal format.

■ u – The size of the unit. Supported values are the following:

■ b – byte

■ h – 2-byte half-word

■ w – 4-byte word

■ g – 8-byte long word

■ address – The starting address in hexadecimal.

Example:

w/u address value Command

Description

Sets memory where:
■ u – The size of the unit. Supported values are:

■ b – byte

■ h – 2-byte half-word

■ w – 4-byte word

■ g – 8-byte long word

■ address – The starting address in hexadecimal.

■ value – The value to write in hexadecimal.

dbg>x/8xw 10000000
count = 8; format = HEX; unitsize = 4
[10000000] : 00000100 000000cd 00000001 00000114 00000100 000000ce
00000001 00518a44
Chapter 4 Debugger 73

Example

Managing Threads

info threads Command or
i threads Command

Description

Displays a list of the active threads. The thread that has the focus is shown with an
F symbol. Similarly, if a thread has crashed, it is shown with an F symbol.

Example

thread ID Command

Description

Changes the thread focus to the thread with the Teja thread ID of ID.

Example

In the previous example, the focus (F) was on classifierthread, with Teja ID of
1. In this example, the focus has been moved to generatorthread.

dbg>w/w 10000000 00518a44

dbg>info threads
 : generatorthread: Teja thread id 0, strand id 0
F : classifierthread: Teja thread id 1, strand id 1

dbg>thread 0
Thread focus changed to 0
74 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Displaying Registers

info reg Command or i reg Command

Description

Displays the register contents for the thread in focus.

Example

dbg>info reg
Registers of strand 0:
G registers:
g[0] : 0000000000000000 0000000000000000 0000000000500000 0000000000000000
g[4] : 0000000000000000 0000000000615fa0 0000000000000000 0000000000000000
I registers:
i[0] : 000000000000006e ffffffffef1fe8d4 0000000000520c30 0000000010e01bc8
i[4] : 0000000000000000 0000000000000000 0000000010e00d91 000000000051458c
O registers:
o[0] : 000000000000006e 0000000000520c30 0000000010e01bc8 0000000000000000
o[4] : 0000000000600000 0000000000000061 0000000010e00cd1 0000000000514a18
L registers:
l[0] : 000000000000006e 0000000010e0172c 000000000051e8f0 ffffffffef1fe8d4
l[4] : 0000000000520c30 0000000000000000 0000000000000000 0000000000000000
gl : 0000000000000001
tl : 0000000000000001
tt : 000000000000007c
tpc : 0000000000508c88
tnpc : 0000000000508c8c
tstate : 0000009914001600
pstate : 0000000000000014
tick : 000001884f873558
tba : 0000000000500000
asi : 0000000000000014
Chapter 4 Debugger 75

Displaying Stack Trace

bt frame_count Command

Description

Displays the stack trace for the thread in focus for frame_count number of frames.

Example

dbg>bt 4
frame 1, sp 0x10e03580, call instruction at 0x50e888:
l[0] : 0000000000000001 00000000111606a8 0000000011160600 0000000000000000
l[4] : 00000000006170d8 0000000000001000 0000000000010000 0000000000000150
i[0] : 0000000000000800 0000000010e036f0 0000000010e036e8 0000000010e036e4
i[4] : 0000000000002000 0000000019ae8ec8 0000000010e02e31 000000000050e888
frame 2, sp 0x10e03630, call instruction at 0x50fcc4:
l[0] : 0000000000000001 00000000111606a8 0000000011160600 0000000000000000
l[4] : 00000000006170d8 0000000000001000 0000000000010000 0000000000000150
i[0] : 0000000000000800 0000000000000001 0000000019d8c148 0000000000000800
i[4] : 0000000019d8c140 0000000019d8c000 0000000010e02f01 000000000050fcc4
frame 3, sp 0x10e03700, call instruction at 0x50fbd8:
l[0] : 0000000000000001 00000000111606a8 0000000011160600 0000000000000000
l[4] : 00000000006170d8 0000000000001000 0000000000010000 0000000000000150
i[0] : 00000000111000e0 0000000000000015 0000000000010000 0000000011160580
i[4] : 0000000000002000 0000000019ae8ec8 0000000010e02fd1 000000000050fbd8
frame 4, sp 0x10e037d0, call instruction at 0x50e104:
l[0] : ffffffffffffffd8 ffffffffffffffba 0000000000000003 0000000000000000
l[4] : 00000000006170d8 0000000000617000 0000000000000617 0000000000000400
i[0] : 00000000111000e0 000000000000792d 000000000000792d 0000000011100180
i[4] : 000000000000792d 0000000000000000 0000000010e03081 000000000050e104
76 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Resolving Symbols
The dbghelper.pl script is used to resolve symbols to set breakpoints in the
correct places. The script is located in install_dir/tools/bin directory, where
install_dir is the SUNWndps package installation directory. For example,
/opt/SUNWndps/tools/bin/dbghelper.pl.

-h Option

Description

Displays help information.

-f function_name Option

Description

Prints a debugger command to set a breakpoint at the given function_name. This
option does not work for static functions. To set a breakpoint inside of a static
function, use the -l file_name:line_number option.

Example

-g global_variable Option

Description

Prints a debugger command to display the contents of the given global_variable. The
size of the memory displayed is fixed and does not consider the actual size of the
global_variable. The user might need to increase the size of the memory.

Example

$ dbghelper.pl -f classifier ./main
b 50b17c

$ dbghelper.pl -g stats ./main
x/1wx 13000640
Chapter 4 Debugger 77

-l file_name:line_number Option

Description

Prints a debugger command to set a breakpoint at the provided
file_name:line_number. The file_name and line_number refer to your source code.

Example

$ dbghelper.pl -l src/classifier.c:57 ./main
b 50b188
78 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

GNU Project Debugger (GDB)
GDB, the GNU Project debugger, enables the user to debug the program in C source
code level. The following sections describe the reference Netra DPS application (gdb
showcase application) that gives a showcase of the GDB support in Netra DPS over
the Logical Domain Channel (LDC). In this release, only the IPFwd and GDB
showcase applications have been prepared for gdb support. Other applications can
easily be instrumented by following these examples.

Configuring LDoms for GDB Support
GDB requires Logical Domains 1.0.1 or later release. If not installed, download:
http://www.sun.com/ldoms

▼ To Configure LDoms Required to Run the Netra DPS
Application with GDB Support
Refer to Chapter 9, “Auto-Configuration” on page 137, on how to create LDC
channels. The GDB currently runs over LDC only, not over IPC. The GDB uses the
vdpc service named ndps-cli and the corresponding client named solaris-cli.
This service/client pair can be created either by using the ldm commands shown
below or by using the respective commands in the auto configuration process
(Chapter 9).

/opt/SUNWldm/bin/ldm add-vdpcs ndps-cli ndps-domain-name
/opt/SUNWldm/bin/ldm add-vdpcc solaris-cli ndps-cli solaris-domain-name
Chapter 4 Debugger 79

http://www.sun.com/ldoms

▼ To Configure the Solaris Domain for GDB
Once the LDoms domains are configured and running, do the following steps to
configure the gateway for GDB in the Solaris domain.

1. Ensure that the SUNWndpsd package is installed in the domain.

2. Load the driver as shown below:

3. Run the following:

GDB Showcase Application
The Netra DPS package contains a simple test application to showcase the use of
gdb. This application is used as an example below.

▼ To Compile the GDB Showcase
● From the SUNWndps package, compile the application under /src/apps/gdb.

Type:

This action generates the binary file called main under
src/apps/gdb/code/main. The required Solaris utility binaries are under
src/apps/gdb/solaris-gw/ldc_so.

rem_drv remldc
add_drv remldc

echo “remotegw 34980/tcp” >> /etc/services
svccfg import /var/svc/manifest/network/remotegw.xml
svcadm enable svc:/network/remotegw:remotegw

gmake clean
gmake CMT=N1(for UltraSPARC T1 based platforms)
gmake CMT=N2(for UltraSPARC T2 based platforms)
cd code/main
gmake
80 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

▼ To Load the GDB Showcase Binary in the Netra DPS
Domain
1. Verify that you have copied your GDB Netra DPS binary main into your install

server under /tftpboot.

2. Type the following at the Netra DPS domain OpenBoot Prom ok prompt:

3. If compiled without the -o option, continue from initial break point.

▼ To Run the GDB Command
● Once your GDB showcase application is compiled, do the following under any

host machine as long as you can access your code base
src/apps/gdb/code/main:.

main is the same binary code that you loaded into your Netra DPS domain.

The GDB debugger then displays the following:

Acquire the host name or IP address for the Solaris domain by typing:

ok boot /virtual-devices@100/channel-devices@200/network@0:,main

cd src/apps/gdb/code/main
/opt/SUNWndps/bin/gdb

GNU gdb 6.6
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “--host=sparc-sun-solaris2.10 --target=sparc64-
elf”...
(gdb)

ifconfig -a
Chapter 4 Debugger 81

Assuming your IP address is 10.1.1.249

This connects to your Netra DPS GDB application. The Netra DPS console then
displays:

This indicates that the GDB showcase application reached the initial breakpoint
artificially created by the application. You can then use the following GDB
commands to investigate your application.

GDB commands include the following:

■ target remote tcp:10.1.1.194:34980 – Connects to remote Netra DPS
target

■ info thread – Display threads

■ thread # – Switch thread

■ info reg – Show the register files

■ info break – Show the breakpoint

■ b # – Set breakpoint

■ d # – Clear breakpoint

■ c – Continue

■ s – Step

■ x – Check memory location

■ p – Display variable

■ list – Display source code, for example, list debug_func

■ bt – Backtrace

■ detach – To end the remote communication, allow the Solaris gateway program
to exit. See “Step-By-Step Procedure to Run Netra DPS Application with GDB
Support” on page 83 for more details.

For additional GDB information and instructions, see GDB: The GNU Project
Debugger at http://sourceware.org/gdb/.

(gdb) target remote tcp:10.1.1.249:34980

LDC Status = UP
calling set_debug_traps()....
Program started: initial breakpoint reached
82 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

http://sourceware.org/gdb/

▼ Step-By-Step Procedure to Run Netra DPS Application
with GDB Support
As an example, to run the IPFwd application with GDB support, do the following.

1. Go to src/apps/ipfwd and compile with gdb as one of the arguments in the
command line, as shown below:

2. Load the src/apps/ipfwd/code/ipfwd/ipfwd binary into your Netra DPS
domain.

3. Configure the Solaris gateway in the Solaris domain (for example, 10.1.1.194).

4. In the Solaris domain, calculate the basepaddr and run the tnsmctl -P -v
command, if the binary booted in the Netra DPS domain uses NIU.

See “How Do I Calculate the Base PA Address for NIU/LDoms to Use with the
tnsmctl Command?” on page 292.

5. Run the commands shown in “To Configure the Solaris Domain for GDB” on
page 80.

6. Go to /opt/SUNWndps/bin and run the gdb binary from the Solaris domain.

ipfwd is the same binary code that you loaded into your Netra DPS domain.

The following is the example output from the gdb showcase application which
shows the usage of all of the GDB commands.

./build cmt2 10g_niu ldoms gdb

./gdb ipfwd
Chapter 4 Debugger 83

GNU gdb 6.6
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “--host=sparc-sun-solaris2.10 --target=sparc64-
linux-elf”...
(gdb) target remote tcp:10.1.1.249:34980
Remote debugging using tcp:10.1.1.249:34980
0x0053f34c in teja_breakpoint ()
Current language: auto; currently minimal
(gdb) info thread
* 2 Thread 2 (stat_thd) 0x0053f34c in teja_breakpoint ()
 1 Thread 1 (main_thd00) 0x0050c5d8 in main_thread ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:97
(gdb) thread 1
[Switching to thread 1 (Thread 1)]#0 0x0050c5d8 in main_thread ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:97
97 while (count < (2))
(gdb) list debug_func
58 int i ;
59 int j ;
60 // char *tmp; File: src/app/remcon_impl.c Line: 40
61 char * tmp ;
62 // tmp = “0xdeadbeef”; File: src/app/remcon_impl.c Line: 41
63 tmp = “0xdeadbeef”;
64 // gdbptr = “0xbaddcafe”; File: src/app/remcon_impl.c Line: 42
65 gdbptr = “0xbaddcafe”;
66 // i = first_time++; File: src/app/remcon_impl.c Line: 43
67 i = first_time ++;
(gdb) b 67
Breakpoint 1 at 0x50c510: file src/apps/gdb/code/main/_src_app_remcon_impl.c,
line 67.
(gdb) p first_time
$1 = 18255275
(gdb) c
Continuing.
Can’t send signals to this remote system. SIGSTOP not sent.
84 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Program received signal SIGSTOP, Stopped (signal).
debug_func ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:67
67 i = first_time ++;
(gdb) c
Continuing.
Can’t send signals to this remote system. SIGSTOP not sent.

Program received signal SIGSTOP, Stopped (signal).
0x0050c514 in debug_func ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:67
67 i = first_time ++;
(gdb) c
Continuing.
Can’t send signals to this remote system. SIGSTOP not sent.
Program received signal SIGSTOP, Stopped (signal).
debug_func ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:67
67 i = first_time ++;
(gdb) p first_time
$4 = 18255276
(gdb) info thread
 2 Thread 2 (stat_thd) 0x00508f04 in hv_ldc_rx_get_state ()
* 1 Thread 1 (main_thd00) debug_func ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:67
(gdb) s
Can’t send signals to this remote system. SIGSTOP not sent.

Program received signal SIGSTOP, Stopped (signal).
0x0050c534 in debug_func ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:67
67 i = first_time ++;
(gdb) s
Can’t send signals to this remote system. SIGSTOP not sent.

Program received signal SIGSTOP, Stopped (signal).
debug_func ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:69
69 j = i + (first_time);
(gdb) detach
Ending remote debugging.
Chapter 4 Debugger 85

7. Once debugging is completed, type detach.

Note – Once completed, always type detach in gdb. Otherwise, the remotegw
process is left with an outdated state in the Solaris domain. If this happens, stop the
remotegw process using the svcadm command (svcadm disable remotegw)
before you start again.

8. (Optional) Reload your binary in the Netra DPS domain.

If your source changes, you need to quit the gdb and re-enter gdb.

(gdb) detach
86 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

CHAPTER 5

Interprocess Communication
Software

This chapter describes the interprocess communication (IPC) software. Topics
include:

■ “IPC Introduction” on page 87

■ “Programming Interfaces Overview” on page 88

■ “Configuring the Environment for IPC” on page 88

■ “Example Environment for UltraSPARC T1 Based Servers” on page 92

■ “Example Environment for UltraSPARC T2 Based Servers” on page 96

■ “Reference Applications” on page 97

IPC Introduction
The interprocess communication (IPC) mechanism provides a means to
communicate between processes that run in a domain under the Netra DPS
Lightweight Runtime Environment (LWRTE) and processes in a domain with a
control plane operating system. This chapter gives an overview of the programming
interfaces, shows how to set up an LDoms environment in which the IPC mechanism
can be used, and explains the IPC specific portions of the IP forwarding reference
application (see Chapter 10, “Reference Applications” on page 147).
87

Programming Interfaces Overview
Chapter 5, Interprocess Communication API, of the Netra Data Plane Software Suite
2.0 Update 2 Reference Manual contains a detailed description of all APIs needed to
use IPC. The common API can be used in an operating system to connect to an IPC
channel, and transmit and receive packets. First, the user must connect to the
channel and register a function to receive packets. Once the channel is established
this way, the ipc_tx()function can be used to transmit. The framework calls the
registered callback function when a message is received.

In an Netra DPS application, the programmer is responsible for calling the
framework initialization routines for the IPC and LDC frameworks before using IPC,
and must ensure that polling happens periodically.

In a Solaris domain, the IPC mechanism can be accessed from either user or kernel
space. Before any API can be used, you must install the SUNWndpsd package using
the pkgadd command, and you must add the tnsm driver to the system using
add_drv. Refer to the respective man pages for detailed instructions. From the
Solaris kernel, the common APIs mentioned above are used for IPC. In user space,
the tnsm driver is seen as a character driver. The open(), ioctl(), read(), write(),
and close() interfaces are used to connect to a channel, and send and receive
messages.

Configuring the Environment for IPC
This section describes the configuration of the environment needed to use the IPC
framework. This section also covers setup of memory pools for the LWRTE
application, the LDoms environment, and the IPC channels.

Memory Management
The IPC framework shares its memory pools with the basic LDoms framework.
These pools are accessed through malloc() and free() functions that are
implemented in the application. The ipfwd_ldom reference application contains an
example implementation.
88 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

The file ldc_malloc_config.h contains definitions of the memory pools and their
sizes. ldc_malloc.c contains the implementation of the malloc() and free()
routines. These functions have the expected signatures:

■ void *malloc(size_t size)

■ void free(void *addr)

In addition to these implementation files, the memory pools must be declared to the
Netra DPS runtime. This declaration is done in the software architecture definition
in ipfwd_swarch.c.

IPC in the LDoms Environment
In the LDoms environment, the IPC channels use Logical Domain Channels (LDCs)
as their transport media. These channels are set up as Virtual Data Plane Channels
using the ldm command (see the LDoms documentation). These channels are set up
between a server and a client. Some basic configuration channels must be defined
adhering to the naming convention described in “LDoms Channel Setup” on
page 89. Each channel has a server defined in the LWRTE domain and a client defined
in the link partner domain.

LDoms Channel Setup
There must be a domain that has the right to set up IPC channels in the LWRTE
domain. This domain can be the primary domain or a guest domain with the client
for the configuration service. The administrator must only set up this channel. When
the service (LWRTE) and the client domain are up (and the tnsm driver attached at
the client), the special IPC channel with ID 0 is established automatically between
the devices. The tnsmctl utility can then be used in the configuring domain to set
up additional IPC channels (provided that the required Virtual Data Plane Channels
have been configured.)

■ In the LWRTE domain, a data plane channel service with the name primary-gc
must be established using the command
ldm add-vdpcs primary-gc lwrte-domain-name.

■ In the configuration domain, the respective client with the name tnsm-gc0 must
be established using the command
ldm add-vdpcc tnsm-gc0 primary-gc config-domain-name.
Chapter 5 Interprocess Communication Software 89

To enable IPC communications between the LWRTE domain and additional domains,
a special configuration channel must be set up between these domains. Again, the
channel names must adhere to a naming convention. In the LWRTE domain, the
service name must begin with the prefix config-tnsm, whereas the client name in
the other domain must be named config-tnsm0. For example, such a channel
could be established using the ldm commands.

■ ldm add-vdpcs config-tnsm-clnt-domain-name lwrte-domain-name
in the LWRTE domain

■ ldm add-vdpcc config-tnsm0 config-tnsm-clnt-domain-name clnt-domain-
name in the client domain

Additional channels can be added for data traffic between these domains, there are
no naming conventions to follow for these channels. These commands are
configured using the ldm commands.

■ ldm add-vdpcs service-name lwrte-domain-name
in the LWRTE domain

■ ldm add-vdpcc client-name service-name client-domain-name
in the client domain.

Names for data plane channel servers and clients cannot be longer than 48
characters. This limit includes the prefixes of configuration channels.

Note – A Solaris domain may only have one configuration channel. In the
configuration domain, where the channel client tnsm-gc0 is present, a channel client
with the name config-tnsm0 must not be configured.

IPC Channel Setup
Once the data plane channels are set up by the administrator in the primary domain,
the tnsmctl utility is used to set up IPC channels from the IPC control domain. This
utility is part of the SUNWndpd package and is located in the bin directory. tnsmctl
uses the following syntax:

tnsmctl -S -C channel-id -L local-ldc -R remote-ldc -F control-channel-id
90 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

The parameters to tnsmctl are described in TABLE 5-1. All of these parameters need
to be present to set up an IPC channel.

The tnsm driver stores the channel configuration so it can be replayed when the
Netra DPS domain reboots. This stored configuration can be purged through the
following command:

Note – This option clears the stored configuration, but does not affect the currently
operating channels.

TABLE 5-1 tnsmctl Parameters

Parameter Description

-S Set up IPC channel.

-C channel-id Channel ID of the new channel to be set up.

-L local-ldc Local LDC ID of the Virtual Data Plane Channel to be used for this
IPC channel. Local here always means local to the LWRTE domain.
Obtain this LDC ID using the ldm list-bindings command.

-R remote-ldc Remote LDC ID of the Virtual Data Plane Channel to be used for this
IPC channel, that is, the LDC ID seen in the client domain. Obtain this
LDC ID using the ldm list-bindings command with the -e flag.

-F control-channel-
id

IPC channel ID of the control channel between the LWRTE and the
client domain. If the client domain is the control domain, this channel
ID is 0. For all other client domains, the control channel must be set
up by the administrator. To set up the control channel, use the same
ID for both the -C and the -F options.

tnsmctl -p
Chapter 5 Interprocess Communication Software 91

Example Environment for UltraSPARC
T1 Based Servers
The following is a sample environment, complete with all commands needed to set
up the environment in a Sun Fire T2000 server.

Domains
TABLE 5-2 describes the four environment domains.

The primary as well as the guest domains ldg2 and ldg3 run the Solaris 10
11/06 operating system (or later) with the patch level required for LDoms operation.
The SUNWldm package is installed in the primary domain. The SUNWndpsd package
is installed in both ldg2 and ldg3.

Assuming 4GByte of memory for each of the domains, and starting with the factory
default configuration, the environment can be set up using the following domain
commands:

TABLE 5-2 Environment Domains

Domain Description

primary Owns one of the PCI buses, and uses the physical disks and networking
interfaces to provide virtual I/O to the Solaris guest domains.

ldg1 Owns the other PCI bus (bus_b) with its two network interfaces and
runs an LWRTE application.

ldg2 Runs control plane applications and uses IPC channels to communicate
with the LWRTE domain (ldg1).

ldg3 Controls the LWRTE domain through the global control channel. The
tnsmctl utility is used here to set up IPC channels.
92 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

primary

ldm remove-mau 8 primary
ldm remove-vcpu 28 primary
ldm remove-mem 28G primary (This assumes 32GByte of total memory. Adjust
accordingly.)
ldm remove-io bus_b primary
ldm add-vsw mac-addr=you-mac-address net-dev=e1000g0 primary-vsw0
primary
ldm add-vds primary-vds0 primary
ldm add-vcc port-range=5000-5100 primary-vcc0 primary
ldm add-spconfig 4G4Csplit

ldg1 - LWRTE
ldm add-domain ldg1
ldm add-vcpu 20 ldg1
ldm add-mem 4G ldg1
ldm add-vnet mac-addr=your-mac-address-2 vnet0 primary-vsw0

ldg1
ldm add-var auto-boot\?=false ldg1
ldm add-io bus_b ldg1

ldg2 - Control Plane Application
ldm add-domain ldg2
ldm add-vcpu 4 ldg2
ldm add-mem 4G ldg2
ldm add-vnet mac-addr=your-mac-address-3 vnet0 primary-vsw0 ldg2
ldm add-vdsdev your-disk-file vol2@primary-vds0
ldm add-vdisk vdisk1 vol2@primary-vds0 ldg2
ldm add-var auto-boot\?=false ldg2
ldm add-var boot-device=/virtual-devices@100/channel-
devices@200/disk@0 ldg2

ldg3 - Solaris Control Domain
ldm add-domain ldg3
ldm add-vcpu 4 ldg3
ldm add-mem 4G ldg3
ldm add-vnet mac-addr=your-mac-address-4 vnet0 primary-vsw0 ldg3
ldm add-vdsdev your-disk-file-2 vol3@primary-vds0
ldm add-vdisk vdisk1 vol3@primary-vds0 ldg3
Chapter 5 Interprocess Communication Software 93

ldm add-var auto-boot\?=false ldg3
ldm add-var boot-device=/virtual-devices@100/channel-
devices@200/disk@0 ldg3

The disk files are created using the mkfile command. Solaris is installed once the
domains are bound and started in a manner described in the LDoms administrator’s
guide.

Virtual Data Plane Channels
While the domains are unbound, the Virtual Data Plane Channels are configured in
the primary domain as follows:

Global Control Channel
ldm add-vdpcs primary-gc ldg1
ldm add-vdpcc tnsm-gc0 primary-gc ldg3

Client Control Channel
ldm add-vdpcs config-tnsm-ldg2 ldg1
ldm add-vdpcc config-tnsm0 config-tnsm-ldg2 ldg2

Data Channel
ldm add-vdpcs ldg2-vdpcs0 ldg1
ldm add-vdpcc vdpcc0 ldg2-vdpcs0 ldg2

Additional data channels can be added with names selected by the system
administrator. Once all channels are configured, the domains can be bound and
started.
94 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

IPC Channels
The IPC channels are configured using the /opt/SUNWndpsd/bin/tnsmctl utility
in ldg3.

Before you can use the utility, you must install the SUNWndpsd package in both ldg3
and ldg2, using the pkgadd system administration command. After installing the
package, you must add the tnsm driver by using the add_drv system
administration command.

To be able to configure these channels, the output of ldm ls-bindings -e in the
primary domain is needed to determine the LDC IDs. As an example, the relevant
parts of the output for the configuration channel between ldg1 and ldg2 might
appear as follows:

For ldg1:

For ldg2:

The channel uses the local LDC ID 6 in the LWRTE domain (ldg1) and remote LDC
ID 5 in the Solaris domain. Given this information, and choosing channel ID 3 for the
control channel, this channel is set up using the following command line:

After the control channel is set up, you can then set up the data channel between
ldg1 and ldg2. Assuming local LDC ID 7, remote LDC ID 6, and IPC channel ID 4
(again, the LDC IDs must be determined using ldm ls-bindings -e), the following
command line sets up the channel:

VDPCS
 NAME CLIENT LDC
 config-tnsm-ldg2 config-tnsm0@ldg2 6

VDPCC
 NAME SERVICE LDC

config-tnsm0 config-tnsm-ldg2@ldg1 5

tnsmctl -S -C 3 -L 6 -R 5 -F 3

tnsmctl -S -C 4 -L 7 -R 6 -F 3
Chapter 5 Interprocess Communication Software 95

Note that the -C 4 parameter is the ID for the new channel. -F 3 has the channel ID
of the control channel set up previously. After the completion of this command, the
IPC channel is ready to be used by an application connecting to channel 4 on both
sides. An example application using this channel is contained in the SUNWndps
package, and described in the following section.

Example Environment for UltraSPARC
T2 Based Servers
The example configuration described in “Example Environment for UltraSPARC T1
Based Servers” on page 92 can be used with UltraSPARC T2 based servers with some
minor modifications.

■ The LWRTE domain (ldg1) must still be core aligned.

The UltraSPARC T2 chip has eight threads per core, so changing the number of
vcpus in the primary from four to eight aligns the second domain to a core
boundary.

■ The UltraSPARC T2 chip does not have two PCI buses.

In the environment in “Example Environment for UltraSPARC T1 Based Servers”
on page 92, the primary domain owned one of the PCI buses (bus_a), while the
Netra DPS Runtime Environment domain owned the other one (bus_b). With a
UltraSPARC T2 there is only one PCI bus (pci) and the Network Interface Unit
(niu). To set up an environment on such a system, the NIU should be removed
from the primary domain and added to the Netra DPS Runtime Environment
domain (ldg1).

In addition, the IP forwarding and RLP reference applications use forty threads in
the UltraSPARC T2 LDoms configurations, and the Netra DPS Runtime Environment
domain must be sized accordingly.
96 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Reference Applications
The Netra DPS package contains an IP forwarding reference application that uses the
IPC mechanism. The Netra DPS package contains an IP forwarding application in
LWRTE and a Solaris utility that uses an IPC channel to upload the forwarding tables
to the LWRTE domain (see “Forwarding Application” on page 98). Netra DPS chooses
which table to use and where to gather some simple statistics, and displays the
statistics in the Solaris domain. The application is designed to operate in the
example setup shown in “IPC Channels” on page 95.

Common Header
The common header file fibtable.h, located in the src/common/include
subdirectory, contains the data structures shared between the Solaris and the LWRTE
domains. In particular, the command header file contains the message formats for
communication protocol used between the domains, and the IPC protocol number
(201) that it uses. This file also contains the format of the forwarding table entries.

Solaris Utility Code
The code for the Solaris utility is in the src/solaris subdirectory and is composed
of the single file fibctl.c. This file implements a simple CLI to control the
forwarding application running in the LWRTE domain. The application is built using
gmake in the directory and deployed into a domain that has an IPC channel to the
LWRTE domain established. The program opens the tnsm driver and offers the
following commands:

connect Channel_ID

Connects to the channel with ID Channel_ID. The forwarding application is hard
coded to use channel ID 4. The IPC type is hard coded on both sides. This command
must be issued before any of the other commands.

use-table Table_ID

Instructs the forwarding application to use the specified table. In the current code,
the table ID must be 0 or 1.
Chapter 5 Interprocess Communication Software 97

write-table Table_ID

Transmits the table with the indicated ID to the forwarding application. There are
two predefined tables in the application.

stats

Requests statistics from the forwarding application and displays them.

read

Reads an IPC message that has been received from the forwarding application.
Currently not used.

status

Issues the TNIPC_IOC_CH_STATUS ioctl.

exit / x / quit /q

Exits the program.

help

Contains program help information.

Forwarding Application
The code that implements the forwarding application consists of two components:

■ The hardware and software architecture as well as the mapping. These files are
located in the src/config subdirectory.

■ The actual implementation of the packet handling and forwarding algorithm. The
files for this implementation are located in the src/app subdirectory.

The hardware architecture is identical to the default architecture in all other
reference applications.

The software architecture differs from other applications in that it contains code for
the specific number of strands that the target LDoms will have. Also, the memory
pools used in the malloc() and free() implementation for the LDoms and IPC
frameworks are declared here.

The mapping file contains a mapping for each strand of the target LDoms.
98 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

The rx.c and tx.c files contain simple functions that use the Ethernet driver to
receive and transmit a packet, respectively.

ldc_malloc.c contains the implementation of the memory allocation algorithm.
The corresponding header file, ldc_malloc_config.h, contains some
configuration for the memory pools used.

user_common.c contains the memory allocation provided for the Ethernet driver,
as well as the definition for the queues used to communicate between the strands.
The corresponding header file, user_common.h, contains function prototypes for
the routines used in the application, as well as declarations for the common data
structures.

ipfwd.c contains the definition of the functions that are run on the different
strands. In this version of the application, all strands start the _main() function.
Based on the thread IDs, the _main() function calls the respective functions for rx,
tx, forwarding, a thread for IPC, the cli, and statistics gathering.

The main functionality is provided by the following processes:

■ The rx_process strand polls one Ethernet interface and places received packets
on a queue.

■ The ipfwd_process polls the queue of its associated rx interface, calls the IP
forwarding algorithm, and places the packet in the outbound queue indicated by
the forwarding decision. This process services a single queue inbound, but puts
outgoing packets into one of an array of queues.

■ The tx_process polls an array of queues (one for each forwarding thread) and
transmits any packet on the Ethernet interface.

The IP forwarding algorithm called by the forwarding thread is implemented in
ipfwd_lib.c. The lookup algorithm used is a simple linear search through the
forwarding table. The destination MAC address is set according to the forwarding
entry found, and the TTL is decremented.

ipfwd_config.h contains configuration for the forwarding application, such as the
number of strands and memory sizes used.

init.c contains the initialization code for the application. First, the queues are
initialized. Initialization of the Ethernet interfaces is left to the rx strands, but the tx
strands must wait until that initialization is done before they can proceed. The
initialization of the LDoms framework is accomplished using calls to the functions
mach_descrip_init(), lwrte_cnex_init(), and lwrte_init_ldc(). After this
initialization, the IPC framework is initialized by a call of tnipc_init(). The
previous four functions must be called in this specific order. The data structures are
then initialized for the forwarding tables.

The forwarding application can be built using the build script located in the main
application directory. For this application in an LDoms environment:
Chapter 5 Interprocess Communication Software 99

■ The user_defs.mk file in the same directory must contain the location of the IPC
library.

■ The make file must contain the line “CLI_MOD = -DLDOMS” to enable LDoms
support.

To deploy the application, the image must be copied to a tftp server. The image can
then be booted using a network boot from either one of the Ethernet ports, or from a
virtual network interface. See the README file for details. After booting the
application, the IPC channels are initialized as described in “Example Environment
for UltraSPARC T1 Based Servers” on page 92. Once the IPC channels are up, you
can use the fibctl utility to manipulate the forwarding tables and gather statistics.
100 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

CHAPTER 6

Remote Command-Line Interface

This chapter describes the remote command-line-interface (CLI). Topics include:

■ “Remote Command-Line Interface Introduction” on page 101

■ “IPC Setup for Remote CLI” on page 102

■ “Accessing the Remote CLI” on page 103

■ “Debugging Remotely” on page 104

■ “Coredump Support” on page 105

■ “System Configuration” on page 106

Remote Command-Line Interface
Introduction
The remote command-line interface (CLI) provides you remote access to commands
for you to configure and gather the Netra DPS runtime system information (for
example, platform). The CLI also provides you remote access to the Netra DPS
runtime interactive debugger and a core dump facility.
101

IPC Setup for Remote CLI
To access the CLI remotely, you must have the interprocess communication (IPC)
mechanism set up on your system (see Chapter 5 for IPC information). In the same
way that the IPC channel with ID 4 was set up to be used by the IP forward
reference application, a channel with ID 1 must be set up for the remote CLI.
SUNWndpsd must be installed on the Solaris system that will host the remote CLI.

Note – The remote CLI communicates over IPC channel number 1 (one), therefore,
IPC channel number 1 should not be used for any other purpose.

The applications that use the remote command-line interface must have the
following:

■ The cli type is declared as “remote” in hardware configuration file
teja_architecture_set_property(cmt1_chip, “cli_type”,
“remote”);

■ On one of the CPU strands, the Fast Path Manager must be running
lwrte_fastpath_manager_process();USR_LIBS contains common, LDC
and IPC libraries

■ USR_LIBS = /opt/SUNWndps/lib/common/lwrtecmn.o
/opt/SUNWndps/lib/ldc/lwrteldc.o
/opt/SUNWndps/lib/ipc/lwrteipc.o
102 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Accessing the Remote CLI
Once IPC channel number 1 is set up between Netra DPS Runtime and the remote
CLI Solaris host system, you are ready to access the remote CLI.

▼ To access the CLI Console
1. Connect to the Solaris CLI host system.

Use telnet to the hosting Solaris system at the default port number 30001.

2. Enter help at the prompt, as shown in this example, to list options.

telnet solarisdomain 30001
Trying 192.168.1.6...
Connected to solarisdomain.
Escape character is ’^]’.
ndps>

ndps> help
 connect : connect to NDPS
 disconnect : disconnect from NDPS Channel
 send break dbg : jump into debugger
 send break sys : jump into system cli
 cont : quit from debugger
 c : quit from debugger
 coredump [-d <dump dir>] <corename> : dumps lwrte core

[-d <dump dir>] dump directory (default: "/var/lwrtedump")
 <corename> core dump file name
 quit : quit from system cli
 exit : quit this program
 help : help for this
 console [-f file] : connects to runtime console
 file is the optional log file
ndps>
Chapter 6 Remote Command-Line Interface 103

3. To connect to the remote CLI, type connect at the prompt:

Type disconnect, as shown, to close the channel to the remote CLI.

4. To close the connection, type exit at the prompt.

Debugging Remotely
Once connected to the Netra DPS runtime, you can access the Netra DPS debugger.

▼ To Access the Netra DPS Debugger
● Type the send break dbg command:

Type help or ? for help options.

Type c or cont to quit the debugger program:

ndps> connect
Opening channel 1
IPC channel #: 1
ndps> disconnect
Closing channel 1

ndps> exit
the IPC link is DOWN or CLOSED, please type connect to bring it up again!
Connection to sol closed by foreign host.
#

ndps> connect
Opening channel 1
IPC channel #: 1
ndps> send break dbg
enter NDPS debugger...
dbg>

dbg> c
exit NDPS debugger...
ndps>
104 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Coredump Support
Coredump is supported under the Debugger program (see “Debugging Remotely”
on page 104). From the dbg mode, use the coredump command to dump the Netra
DPS Runtime system core. The coredump command has the following format:

dump_dir is the directory where the core is saved on the CLI hosting Solaris system.
By default, the core is saved in /var/lwrtedump.

corename is the core file name. The next available numeric is appended to this core
file name, followed by .gz.

The preceding core file is created at /var/lwrtedump/core-1.gz on the remote
CLI host system (solarisdomain).

coredump [-d dump_dir] corename

dbg> coredump core
Using dump directory “/var/lwrtedump”
Total dumped: 74024954 bytes, compressed to: 456741 bytes
finished coredump successfully!
dbg>
Chapter 6 Remote Command-Line Interface 105

System Configuration
The user can collect system information and, if desired, change the configuration
from the system (sys) mode.

▼ To Go to the sys Mode From the Remote CLI
1. Connect to the remote CLI.

See “Accessing the Remote CLI” on page 103.

2. To connect to sys mode, use the send break sys command.

3. Enter help for options.

4. To disconnect from sys mode, type quit.

ndps> connect
Opening channel 1
IPC channel #: 1
ndps> send break sys
enter NDPS system cli...
sys>

sys> help
set - set commands

 clr - clear commands
 show - show commands
 help - help commands
 version - version command
 quit - quit sys cli command
sys>

sys> quit
exit NDPS system cli...
ndps>
106 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Compiling the Remote CLI Application

Build Script
TABLE 6-1 shows the remotecli application build script.

Usage
./build <cmt> [profiler]

Build Script Arguments
< > – Required arguments

[] – Optional arguments

TABLE 6-1 Remote CLI Application Build Scripts

Build Script Usage

./build

(See “Argument Descriptions”
on page 108)

Build ipfwd application to run on e1000g Ethernet interface.

Build ipfwd application to run on e1000g Ethernet interface on the Netra
ATCA CP3060 System.

Build ipfwd application to run on Sun multithreaded 10GbE with NIU
QGC (quad 1Gbps nxge Ethernet interface)

Build ipfwd application to run on Sun multithreaded 10G (dual 10Gbps
nxge Ethernet interface).

Build ipfwd application to run on NIU (dual 10Gbps UltraSPARC T2
Ethernet interface) on a CMT2 based system.
Chapter 6 Remote Command-Line Interface 107

Argument Descriptions
<cmt>

This argument specifies whether to build the remotecli application to run on the
CMT1 (UltraSPARC T1) platform or CMT2 (UltraSPARC T2) platform.

cmt1 – Build for CMT1 (UltraSPARC T1) architecture
cmt2 – Build for CMT2 (UltraSPARC T2) architecture

This argument is required for scripts that expect <cmt>.

[profiler]

This is an optional argument that generate code with profiling enabled.

The above creates the bootable image at code/main/main.
108 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

CHAPTER 7

Eclipse Development Environment

This chapter describes the Eclipse-based Teja Advance Development Environment
(ADE) graphical user interface (GUI). Topics include:

■ “ADE Introduction” on page 109

■ “Starting the Eclipse-Based ADE GUI” on page 110

■ “Creating a Teja Project” on page 110

■ “Files and Viewers” on page 114

■ “Build” on page 121

ADE Introduction
Eclipse is an open source community where projects are focused on building
extensive development platforms, runtimes, and application frameworks. Eclipse
includes building, deploying, and managing software across the entire software life
cycle.

Eclipse is more than a Java IDE. The Eclipse open source community has over 60
open source projects. These projects can be conceptually organized into seven
different categories:

■ Enterprise development

■ Embedded and device development

■ Rich client platform

■ Rich internet applications

■ Application frameworks

■ Application lifecycle management (ALM)

■ Service oriented architecture (SOA)

Refer to http:// www.eclipse.org for detailed information.
109

http://www.eclipse.org

Starting the Eclipse-Based ADE GUI
Start the Eclipse-based ADE GUI by running bin/eclipse.sh from a shell
terminal window.

▼ To Start the Eclipse-Based ADE GUI
● Type:

Creating a Teja Project
To use the Eclipse-based Teja ADE, the user creates a project. A project can be
created from scratch or from an already existing Teja application. In the latter case,
the project can be created in the same directory as the application or in a different
one but linking some files from the original application directory.

▼ To Create a Project in the Same Directory as an
Existing Teja Application
The following steps describe how to create a project in the same directory as an
existing Teja application using examples/PacketClassifier as an example.

1. From the File menu, select New Project.

2. Choose Teja/Teja Project in the list of possible wizards, then click Next.

3. In the Project Name field, type the name of the project.

In this example, type PacketClassifier (the name does not need to match the
name of the application).

4. To create the project in the directory of the application,

a. Deselect Use default.

% /opt/SUNWndps/tools/bin/eclipse.sh
110 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

b. Click the Browse button to get to the PacketClassifier directory.

c. Press OK.

Keeping Use default selected would create the project in the workspace. See
FIGURE 7-1.

FIGURE 7-1 Eclipse-Based ADE GUI

The user does not need to set the C/Make Project Setting tab, which defines the
project and Builder settings, at this point.
Chapter 7 Eclipse Development Environment 111

In the Teja Project Settings tab, the information used to create the product specific
graphic files is set. By default, these files have the same name as the project and are
contained in the project directory. In the Graphic Files Info section, you can specify a
different location and a different name, which will be the same for the three files
with extension tjh, tjs and tjm. The user can select whether to generate all three
graphic files, or a subset, by putting a tag in the list in the General section.

Populate the Teja Project Setting (FIGURE 7-2) tab in two ways:

■ By specifying a configuration file, selecting the Config file button in the
General section, and providing the name in the Configuration File section. This
file is generated by tejacc with the name parameters. tjc contains all the
information on the parameters tejacc was invoked (use the parameters_file
switch to tejacc.sh to specify a different file name). This file includes which
libraries are correlated to know which architectures that refer to which mapping.
With a config file it is possible to validate across libraries.

■ Providing the libraries and entry function names for hardware and software
architectures and mapping. This approach decouples the hardware architecture,
software architecture and mapping, allowing for visualizing one even when the
other is not available or has bugs. To use this approach, select the Libraries and
functions button in the General section and type the required information in the
active sections. For each architecture and mapping, you have to provide the path
of the shared library and the name of the entry point function.

In both ways, only the selected graphics files will be generated. Press the Finish
button and a project is then created.
112 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

FIGURE 7-2 Teja Project Settings

The user can also specify only the project name and directory and press Finish. The
project is created without the graphic files, which can be added in a second step.
Chapter 7 Eclipse Development Environment 113

▼ To Add the Graphic Files to a Project
1. In the Navigator view, right-click on the directory name inside the project

where you would like to have the graphic files.

2. Open New/Other/Teja/Teja Graphic Files and press Next.

The Teja Project Settings tab appears. Fill this out as described in “To Create a
Project in the Same Directory as an Existing Teja Application” on page 110.

Files and Viewers
The Eclipse-based Teja ADE can view three Teja elements: hardware architecture,
software architecture, and mapping. To display the Teja element, the viewer uses the
graphical information stored in separate files, one for each part of the application.
These files are created when the project is created and have the same name as the
project but with different extensions, tjh for the hardware architecture, tjs for the
software architecture, and tjm for the mapping. These files contain the name of the
library and entry function name and some graphical data such as the coordinates of
the various objects, orientation, and type of routing.

After a project is created, it is visible in the Navigator tab by expanding and showing
all the files and directories of the application, in addition to the graphical files.
Double-clicking on these files opens a viewer for the element associated to the files.

Hardware Architecture Viewer
The Hardware Architecture Viewer (FIGURE 7-3) gives a graphical representation of
the hardware architecture. Since hardware architectures can contain other hardware
architectures, you can navigate the containment by double-clicking on architectures.
The Outline tab provides a more straightforward visualization of the containment
and the objects that a hardware architecture contains. To open this tab, go to the
Window/Show view/Outline menu. Click any element in the outline to select the
same element in the viewer, possibly changing the architecture shown to the one
containing the selected object.
114 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Chapter 7 Eclipse Development Environment 115

FIGURE 7-3 PacketClassifier Hardware Architecture – Inner Hardware

FIGURE 7-4 PacketClassifier Hardware Architecture – Outer Hardware

Netra DPS objects have properties with values of potential interest. The Properties
tab displays such properties and their values. To open the Properties tab, go to the
Window/Show view/Others/Properties menu. Along with the application
properties there are also the GUI properties, some of which can be changed. For
example, a bus has the GUI property AlignStyle. Clicking on the value and pulling
down the menu (there is an arrow on the left) shows the possible values, in this case
Horizontal and Vertical. By choosing one value and selecting Enter, the bus
alignment change is applied. Another property is Source File which is the name of
116 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

the file where the selected object was created. If such a file is opened in the GUI,
then clicking the object will indicate in the file the line of code where that object was
created.

Software Architecture Viewer
The Software Architecture Viewer (FIGURE 7-5) gives a graphical representation of the
software architecture and consists of two tabs. The viewer opens showing the OS
view tab, with information of threads, processes, and processors. FIGURE 7-5 shows
the OS View.
Chapter 7 Eclipse Development Environment 117

FIGURE 7-5 PacketClassifier Software Architecture – OS View

A second tab, the Late-Binding View (FIGURE 7-6) shows the information of threads,
mutexes, channels, queues, and memory pools. When a validation is available, that
is, the project was created through a configuration file, the processors displayed in
the OS View are actually created in the hardware architecture. The processors are
checked for a mismatch in the hardware architecture, and in case of error, the
processors display a cross to highlight the problem. The outline and properties
views are the same as the ones described for the hardware architecture (“Hardware
Architecture Viewer” on page 114.)
118 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

FIGURE 7-6 PacketClassifier Software Architecture – Late-Binding View

Mapping Viewer
The Mapping Viewer (FIGURE 7-7) shows which functions are mapped on which
threads and which variables are mapped on which memory banks. In the Type
combo box, select an element among Function, Memory Bank, Thread, and Variable.

The Mapping table displays a list of all the elements chosen in the combo. Selecting
an element in the Mapping table causes all the elements mapped to it to be shown in
the right-side list. For example, if you choose Function, the left side of the Mapping
table shows you all the functions that are defined in the application code. When one
function is selected, the names of the threads that have that function as an entry
point function are shown on the right side of the table.
Chapter 7 Eclipse Development Environment 119

FIGURE 7-7 PacketClassifier Mapping
120 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Set the Mapping Viewer in one of two modes:

■ The basic mode shows only information available in the corresponding mapping
library without considering the hardware architecture, software architecture or
application code. This mode is useful to see what you specified in the mapping,
but does not validate that such information is correct when correlated to the rest
of the elements. For example, if you map a function f1() on a thread t1, the
basic mode shows no indication of whether f1() and t1 actually exist in the
application code and software architecture is provided. Also, if the user maps
variables to a memory using the regexp variant of the mapping API, the regular
expression provided for the variables is shown rather than the matching
variables.

■ The extended mode gathers and correlates the information from all the libraries.
The extended mode provides architectural validation, but requires all the libraries
to exist. As an example of information currently shown in this mode, if an
application has unmapped variables, such variables are shown in the rightmost
list when the Type combo is set to Variables. This is an error in the user
application since all variables must be mapped.

Build
It is possible to compile the Teja application in the Eclipse-based ADE.

▼ To Compile the Teja Application in the Eclipse-
Based ADE
1. Create the target All.

2. Select the project name in the navigator tab and right click on Create Make
Target.

3. Type in the Target Name and Make Target fields. Click Create.

4. To compile, select the project name again and right-click Build Make Target.

5. Choose All and click Build.

In the Console tab, the compiler output and warnings or errors, if any, are shown.
Chapter 7 Eclipse Development Environment 121

122 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

CHAPTER 8

Receive Packet Classification

This chapter describes the basic functions of the Receive Packet Classification and
the Netra DPS software interface. Topics include:

■ “Receive Packet Classification Introduction” on page 123

■ “Sun Multithreaded 10GbE and NIU Receive Packet Classifier” on page 124

■ “Hashing Based on Level 2, Level 3, and Level 4 Header Classification” on
page 125

■ “Flow Match Based on Level 2, Level 3, and Level 4 Header Classification” on
page 127

■ “Examples” on page 132

Receive Packet Classification
Introduction
The Sun multithreaded 10GbE with Network Interface Unit (NIU) networking
hardware consists of a Receive Packet Classifier that performs L2/L3/L4 header
parsing, matching and searching functions. Netra DPS provides the software
interface to utilize this hardware mechanism.

Classification is needed for the following reasons:

■ To spread traffic flows into multiple DMA for load balancing

This classification spreads traffic flows across multiple CPUs so that each CPU
hardware strand shares the load of 10 Gbps processing. By spreading the load
across at least eight pipelines, packets are processed at 10Gbps preventing
overloading of processing power on a particular processing unit.
123

■ To separate and isolate different traffic types for special treatment

This classification refers to blocking, re-routing, or to perform special processing
to certain traffic types from the incoming traffic stream.

■ To sustain high traffic throughput rate

This classification sustains forwarding of 10Gbps of incoming traffic with a
relatively small packet size from the 10Gbps ethernet ingress port to the 10Gbps
egress port. Traffic must be spread into multiple DMA channels for processing.

Supported Networking Interfaces
The following network interfaces support classification:

■ Sun multithreaded 10GbE, 4GbE and the on-chip 10GbE

■ Network Interface Unit (NIU) in UltraSPARC T2.

Sun Multithreaded 10GbE and NIU
Receive Packet Classifier
Sun multithreaded PCIE 10GbE, PCIe 4GbE, and 10GbE NIU supports two ways to
spread input packets:

■ Hashing based on Level 2, Level 3, and Level 4 (L2/L3/L4) headers

Determines the target DMA channel based on a L2 RDC group and then a hash
algorithm applied on the defined values of L2/L3/L4 header fields.

■ Flow match based on L2/L3/L4 header

Determines the target DMA channel based on the values of L2/L3/L4 header
fields with the help of hardware lookup tables and TCAM preprogrammed with
matching rules.
124 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Hashing Based on Level 2, Level 3, and
Level 4 Header Classification
The procedure of hashing includes a hash lookup table based on the hash key. The
hash key is created by applying a hash algorithm to a flow key and the flow key is
generated from extracting certain fields from Level 2, Level 3, and Level 4
(L2/L3/L4) packet headers.

The header fields in the flow key selections consist of the following individual
header fields:

■ MAC port number

■ MAC destination address

■ VLAN ID if tagged

■ Protocol ID/next header

■ IP source address, IP destination address

■ Level 4 source and destination port number.
or a combination of these fields.

Hash Key generation
The hashing algorithm is based on polynomial hashing with CRC-32C. The
algorithm is a 32-bit hash value. The last four bits of the value is used to index into
a hardware hash table to lookup a DMA channel. In a Netra DPS environment, one
RDC table is used. The DMA channel number is one-to-one corresponding to the
RDC table entry number, the value of the last four bits, therefore, equals the DMA
channel number.

X32 + x28 + X27 + X26 + X25 + X23 + X22 + X20 + X19 + X18 + X14 + X13 + X11 + X10 + X9

+ X8 + X6 + 1
Chapter 8 Receive Packet Classification 125

Application
Use hashing for general load spreading and load balancing applications. The traffic
load of each DMA channel depends on the value in the header fields used for the
hash. Since the target DMA channel is determined by a polynomial, the correlation
between the header value and the target DMA channel cannot be easily determined.
How balance of the DMA channels are spread also depends on the value and range
of the header fields. Hashing is considered a general purpose load spreading
scheme.

Classification Policy
Hashing is enabled by default. The hash policy is determined by setting the
FLOW_POLICY to one of the values shown in TABLE 8-1:

The default FLOW_POLICY is set to HASH_ALL, meaning that the hash hardware hash
algorithm is applied on all of the above header fields. To disable hash, set
FLOW_POLICY to 0 or TCAM_CLASSIFY. When set to 0, no traffic spreading is
performed. All traffic ends up at a default DMA channel. When set to
TCAM_CLASSIFY, traffic spreading is determined by predefined flow specifications.

TABLE 8-1 Hash Policy Values

Value Meaning

HASH_IP_ADDR Hash on IP destination and source addresses

HASH_IP_DA Hash on IP destination address

HASH_IP_SA Hash on IP source address

HASH_VLAN_ID Hash on VLAN ID

HASH_PORTNUM Hash on physical MAC port number

HASH_L2DA Hash on L2 destination address

HASH_PROTO Hash on protocol number

HASH_SRC_PORT Hash on L4 source port number

HASH_DST_PORT Hash on L4 destination port number

HASH_ALL Hash on all of the above fields

TCAM_CLASSIFY Perform TCAM lookup
126 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Flow Match Based on Level 2, Level 3,
and Level 4 Header Classification

Level 2 (L2) Classification
L2 header classification is performed by lookup into the MAC address tables or the
VLAN tables. MAC address tables and VLAN tables consist of information on the
target DMA channels. L2 header classification is not currently supported.

Level 3 and Level 4 (L3/L4) Classification
L3/L4 header classification relies on the TCAM hardware to determine how traffic
flows are distributed. There are multiple TCAM hardware entries (256 in Sun
multithreaded 10GbE, 128 in NIU) for specifying flow specification. The CAM
lookup table key generation use the concept of classes of packets to assemble a key.
With the CAM key, a packet goes through a single CAM lookup table for an
associative search. The L3/L4 header classification starts when the header parse
identifies the incoming L2/L3 packet type.

The following packet classes are supported in Netra DPS:

■ UDP over IPv4

■ TCP over IPv4

■ SCTP over IPv4

■ IPSEC (AH/ESP) over IPv4

■ TCP over IPv6

■ UDP over IPv6

■ SCTP over IPv6A

■ IPSEC (AH/ESP) over IPv6
Chapter 8 Receive Packet Classification 127

Applications
Use flow tables and TCAM to direct a particular type of traffic flow (with different
traffic classes) into particular DMA channels. Flow tables and TCAM are ideal for
use in load balancing applications.

Classification Programming Interface
The interface to the Flow Matching scheme is the ETH_IOC_SET_CLASSSIFY
“IO Control” command of the Netra DPS ethernet interface. The following shows
the calling convention of the interface:

eth_ioc(ihdlnet[port], ETH_IOC_SET_CLASSIFY, (void
*)&clsfy_ioc);

ihdlnet[] is an array of device driver handle indexed by the ethernet port number
[port]. ETH_IOC_SET_CLASSIFY is the set classifier command.

The clsfy_ioc structure is defined as follows:

typedef struct classify_ioc_s {
uint_t opcode;
uint_t action;
flow_spec_t flow_spec;

} classify_ioc_t;

opcode

opcode specifies what to do about a new traffic flow. TABLE 8-2 shows possible
opcode values:

TABLE 8-2 opcode Values

Value Meaning

IOC_ADD_CLASSIFY Add a flow.

IOC_INVALIDATE_CLASSIFY Invalidate a flow.
128 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

action

action specifies what action to take when there is a match. TABLE 8-3 shows possible
action values:

flow_spec

flow_spec is the flow specification specifying the characteristics of a flow. The
following shows the flow_spec structure:

fs_type

TABLE 8-4 shows the possible values of the traffic flow spec types (fs_type):

TABLE 8-3 action Values

Value Meaning

IOC_FLOW_ACCEPT Accept when a match.

IOC_FLOW_DISCARD Discard when a match.

typedef struct flow_spec_s {
uint_t fs_type;
uint_t index;
uint_t channel;
union {

flow_spec_ipv4_t ip4;
flow_spec_ipv6_t ip6;
flow_spec_l2_t l2;
uint8_t hd[64];

} ue, um;
} flow_spec_t;

TABLE 8-4 fs_type Possible Values

Value Meaning

FSPEC_TCPIP4 TCP over IPv4

FSPEC_UDPIP4 UDP over IPv4

FSPEC_AHIP4 IPSEC/AH over IPv4

FSPEC_ESPIP4 IPSEC/ESP over IPv4

FSPEC_SCTPIP4 SCTP over IPv4
Chapter 8 Receive Packet Classification 129

index

This is the index into the TCAM entries (for L3/L4 TCAM classification) or index
into the MAC or VLAN table (for L2 MAC/VLAN classification).

■ For TCAM on Sun multithreaded 10GbE: value range is 0 ~ 255

■ For TCAM on NIU: value range is 0 ~ 127

Note – The software application must keep tract of the index number.

channel

This is the target DMA channel ranges 0 ~ 15.

ue or um
ue is the 5-tuple for IPv4 or 4-tuple for IPv6 structure for L3/L4 TCAM
classification. For L2 classification, it is the L2 header structure. um is the bit-mask
corresponding to the ue. Set 1 to bit-mask for don’t care (not to compare). Set 0
in bit-mask to compare.

hd

This is the entire 64-bit header.

FSPEC_TCPIP6 TCP over IPv6

FSPEC_UDPIP6 UDP over IPv6

FSPEC_AHIP6 IPSEC/AH over IPv6

FSPEC_ESPIP6 IPSEC/ESP over IPv6

FSPEC_SCTPIP6 SCTP over IPv6

TABLE 8-4 fs_type Possible Values

Value Meaning
130 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

flow_spec_ipv4_t

The following is the IPv4 flow specification structure:

flow_spec_ipv6_t

The following is the IPv6 flow specification structure:

typedef struct port_s {
uint16_t src;
uint16_t dst;

} port_t;

typedef struct spi_port_s {
uint32_t port;

} spi_port_t;

typedef struct flow_spec_ipv4_s {
uint8_t protocol;
union {

port_t tcp;
port_t udp;
spi_port_t spi;

} port;
uint32_t src;
uint32_t dst;

} flow_spec_ipv4_t;

typedef struct flow_spec_ipv6_s {
uint8_t protocol;
union {

port_t tcp;
port_t udp;
spi_port_t spi;

} port;
uint8_t src[16];
uint8_t dst[16];

} flow_spec_ipv6_t;
Chapter 8 Receive Packet Classification 131

flow_spec_l2_t

This is the L2 header structure as shown below:

Examples

▼ To Use Hash Flow
● Set FLOW_POLICY to a desired policy. For example:

This command tells Sun multithreaded 10GbE with NIU hardware to hash on all
L2/L3/L4 header fields.

▼ To Use TCAM Classification
This example shows how a flow table can be established in the application.

1. Set up an array of flow table entries.

typedef struct flow_spec_l2_s {
uint8_t dst[6]; /* MAC address */
uint8_t src[6]; /* MAC address */
uint16_t type; /* Ether type */
uint16_t vlantag; /* VLANID|CFI|PRI */

} flow_spec_l2_t;

gmake FLOW_POLICY=HASH_ALL
132 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

For example, use entries with the following structure:

typedef struct flow_spec_ip4_tab_s {
int index;
uint8_t protocol;
uint8_t protocol_mask;
uint16_t src_port;
uint16_t src_port_mask;
uint16_t dst_port;
uint16_t dst_port_mask;
char *src_addr;
char *src_addr_mask;
char *dst_addr;
char *dst_addr_mask;
int action;
uint8_t dma_chan;

} flow_spec_ip4_tab_t;
Chapter 8 Receive Packet Classification 133

2. Populate the flow table as shown in the below example.

flow_spec_ip4_tab_t ip4_flow_tab[] = {
{0, IPPROTO_UDP, 0xFF, 0, 0xFFFF, 0, 0xFFFF,

“192.30.50.0”, “255.255.255.255”,
“192.31.50.1”, “255.255.255.0”,
FLOW_ACCEPT, 0},

{1, IPPROTO_UDP, 0xFF, 0, 0xFFFF, 0, 0xFFFF,
“192.30.50.0”, “255.255.255.255”,
“192.31.50.2”, “255.255.255.0”,
FLOW_ACCEPT, 1},

{2, IPPROTO_UDP, 0xFF, 0, 0xFFFF, 0, 0xFFFF,
“192.30.50.0”, “255.255.255.255”,
“192.31.50.3”, “255.255.255.0”,
FLOW_ACCEPT, 2},

{3, IPPROTO_UDP, 0xFF, 0, 0xFFFF, 0, 0xFFFF,
“192.30.50.0”, “255.255.255.255”,
“192.31.50.4”, “255.255.255.0”,
FLOW_ACCEPT, 3},

{4, IPPROTO_UDP, 0xFF, 0, 0xFFFF, 0, 0xFFFF,
“192.30.50.0”, “255.255.255.255”,
“192.31.50.5”, “255.255.255.0”,
FLOW_ACCEPT, 4},

{5, IPPROTO_UDP, 0xFF, 0, 0xFFFF, 0, 0xFFFF,
“192.30.50.0”, “255.255.255.255”,
“192.31.50.6”, “255.255.255.0”,
FLOW_ACCEPT, 5},

{6, IPPROTO_UDP, 0xFF, 0, 0xFFFF, 0, 0xFFFF,
“192.30.50.0”, “255.255.255.255”,
“192.31.50.7”, “255.255.255.0”,
FLOW_ACCEPT, 6},

{7, IPPROTO_UDP, 0xFF, 0, 0xFFFF, 0, 0xFFFF,
“192.30.50.0”, “255.255.255.255”,
“192.31.50.8”, “255.255.255.0”,
FLOW_ACCEPT, 7},

{-1, 0, 0, 0, 0, 0, 0, "", "", "", "", 0, 0}
};
134 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

3. Write a parsing function to parse the entries in the table as shown in the below
example.

void
classify_parse_entries(uint_t flow_cfg, uint8_t port,

uint8_t chan, flow_spec_ip4_tab_t *fe)
{

classify_ioc_t clsfy_ioc;
int i;
for (i = 0; fe[i].index != -1; i++) {

if (fe[i].dma_chan != chan)
continue;

clsfy_ioc.opcode = IOC_ADD_CLASSIFY;
clsfy_ioc.flow_spec.fs_type = FSPEC_UDPIP4;
clsfy_ioc.flow_spec.index = fe[i].index;
clsfy_ioc.flow_spec.channel = fe[i].dma_chan;
clsfy_ioc.flow_spec.ue.ip4.protocol =

fe[i].protocol;
clsfy_ioc.flow_spec.ue.ip4.port.udp.src =

fe[i].src_port;
clsfy_ioc.flow_spec.ue.ip4.port.udp.dst =

fe[i].dst_port;
clsfy_ioc.flow_spec.ue.ip4.src =

ips2h(fe[i].src_addr);
clsfy_ioc.flow_spec.ue.ip4.dst =

ips2h(fe[i].dst_addr);
clsfy_ioc.flow_spec.um.ip4.protocol =

~fe[i].protocol_mask;
clsfy_ioc.flow_spec.um.ip4.port.udp.src =

~fe[i].src_port_mask;
clsfy_ioc.flow_spec.um.ip4.port.udp.dst =

~fe[i].dst_port_mask;
clsfy_ioc.flow_spec.um.ip4.src =

~ips2h(fe[i].src_addr_mask);
clsfy_ioc.flow_spec.um.ip4.dst =

~ips2h(fe[i].dst_addr_mask);
if (fe[i].action == FLOW_ACCEPT)

clsfy_ioc.action = IOC_FLOW_ACCEPT;
/* Program the TCAM HW */
(void) eth_ioc(ihdlnet[port],

ETH_IOC_SET_CLASSIFY,
(void *)&clsfy_ioc);

}
}

Chapter 8 Receive Packet Classification 135

4. During the build, enable TCAM classification and disable hashing. To do this,
type:

This command enables Sun multithreaded 10GbE with NIU hardware to enable
TCAM classification with matching rules as shown in Step 1 to Step 3.

gmake FLOW_POLICY=TCAM_CLASSIFY
136 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

CHAPTER 9

Auto-Configuration

This chapter describes the Netra DPS auto-configuration (autoconfig) tool. Topics
include:

■ “Auto-Configuration Introduction” on page 137

■ “Installation” on page 138

■ “Prerequisites” on page 138

■ “User Interface” on page 139

Auto-Configuration Introduction
Auto-configuration is a tool for automatically configuring the Logical Domains
Environment for Netra DPS applications. Use the autoconfig tool for the
following:

■ Configure primary and guest domains for reference applications

■ Custom configure primary and guest domains for your own applications

■ Configure Logical domain channel (LDC) and interprocess communication (IPC)
channels
137

Installation
The auto-configuration tool is packaged with both SUNWndps and SUNWndpsd
packages.

To invoke the autoconfig tool, install the SUNWndps package on the primary
domain and run the following command:

Alternatively, you can copy the auto-configuration tool from the above location from
a machine where you have installed the SUNWndps package to the primary domain.

The user can also copy the auto-configuration tool to the primary domain from a
machine where you installed the SUNWndpsd package. In this case, you can find
auto-configuration under the /opt/SUNWndpsd/bin/autoconfig directory.

Prerequisites
Before running the tool, make sure the following prerequisites are satisfied:

■ The system supports Logical Domains 1.0.1 or 1.0.2 and has the required
firmware.

■ The system has Logical Domains Manager Version 1.0.1 or later software
installed.

■ Storage for virtual disks are identified.

Please refer to the Logical Domains User Guide documents for Logical domains
firmware and Logical domains manager software installation.

/opt/SUNWndps/tools/bin/solaris/autoconfig
138 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

User Interface
This section describes user interface configurations.

Configuring a Logical Domain Environment for
Reference Applications
When the auto-configuration tool is invoked on a system where Logical Domains are
yet to be configured, the following screen is displayed:

To configure a Logical Domain Environment, that is, the primary and the guest
domains, for a reference application, select option 1. Once you select the option, the
auto-configuration tool will list the set of reference applications for which it can
create the primary and guest domains automatically.

*** Netra Data Plane Suite Configurator ***

The Netra Data Plane Suite (Netra DPS) Configurator can be used to
configure the Logical Domains Environment for Netra DPS applications.
Check for the following prerequisites before proceeding:

* Your system supports Logical Domains and has the required firmware
* Your system has Logical Domains Manager installed
* Storage for virtual disks have been identified

Do you want to proceed? [y] y

Your system is ready to configure the Logical Domains Environment.
You can either choose a Logical Domain Environment that has been
predefined for various Netra DPS applications or create your own.

1) Choose a predefined Logical Domain Environment from a list
2) Custom configure a Logical Domain Environment
3) Quit

Option [1]: 1
Chapter 9 Auto-Configuration 139

Select the application for which you want the tool to create the primary and guest
domains.

Once the auto-configuration tool completes the configuration, you can use the same
tool to configure LDC and IPC channels for the application according to your
requirements.

Custom Configuring a Primary Domain
When the auto-configuration tool is invoked on a system where Logical Domains are
yet to be configured, the following screen is displayed:

To custom configure a Primary domain, select option 2. Once you select the option,
the auto-configuration tool will ask a series of questions regarding your primary
domain configuration such as memory, VCPU, MAU, disk, network and console
services, and so on. Answer the prompts according to your requirements.

Once the auto-configuration tool collects all the requirements, the tool configures
the primary domain and saves the configuration on the system controller as
ndps-config-initial.

*** Netra Data Plane Suite Configurator ***

The Netra Data Plane Suite (Netra DPS) Configurator can be used to
configure the Logical Domains Environment for Netra DPS applications.
Check for the following prerequisites before proceeding:

* Your system supports Logical Domains and has the required firmware
* Your system has Logical Domains Manager installed
* Storage for virtual disks have been identified

Do you want to proceed? [y] y

Your system is ready to configure the Logical Domains Environment.
You can either choose a Logical Domain Environment that has been
predefined for various Netra DPS applications or create your own.

1) Choose a predefined Logical Domain Environment from a list
2) Custom configure a Logical Domain Environment
3) Quit

Option [1]: 2
140 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Note – For the changes to be effective, the system should undergo a power cycle.
Allow the tool to do the power cycle or you can do it manually.

Once the system is up after the power cycle, you can configure the guest domains
using the auto-configuration tool.

Custom Configuring a Guest Domain
When the auto-configuration tool is invoked on a system where Logical Domains are
already configured, the following screen is displayed:

To custom configure a guest domain, select option 1. Once you select the option, the
auto-configuration tool will ask a series of questions regarding your guest domain
configuration such as memory, VCPU, MAU disk, network, and so on. Answer the
prompts according to your requirements.

 *** Netra Data Plane Suite Configurator ***

The Netra Data Plane Suite (Netra DPS) Configurator can be used to
configure the Logical Domains Environment for Netra DPS applications.
Check for the following prerequisites before proceeding:

* Your system supports Logical Domains and has the required firmware
* Your system has Logical Domains Manager installed
* Storage for virtual disks have been identified

Do you want to proceed? [y] y

A primary domain has been configured and is in active state.

Please select from one of the following options:

1) Custom configure guest domain
2) Configure guest domains under a configuration directory
3) Save guest domains configuration under a directory
4) Configure LDC channels
5) Configure IPC channels
6) Quit

Option [1]: 1
Chapter 9 Auto-Configuration 141

Once the auto-configuration tool collects all the information, it configures the guest
domain. If the configuration succeeds, you can use the same tool to setup the tftp
boot server for the domain. To set up tftp, you need to provide a private IP for the
guest domain, and if not already present, a private IP for the primary. As an option,
you can also move an image to the /tftpboot directory.

Configuring LDC and IPC
The auto-configuration tool can be used to configure LDC and IPC communication
channels. To configure LDC or IPC, you should have three domains in active state.
One domain for the Netra DPS Runtime Environment application, one domain for
the Control application, and the last for the Global configuration domain. For more
information, refer to Chapter 5.

Once you have created the required domains and they are in active state, invoke
auto-configuration and select option 4 for LDC or option 5 for IPC from the
following Netra Data Plane Suite Configurator display.

Note – The user can only configure IPC after configuring the LDC.
142 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Before configuring IPC, you need to have installed the required Solaris operating
system on the Control and Global configuration domains. The user should also have
installed the SUNWndpsd package on those domains, rebooting the domain system
after the package is installed. While configuring IPC, make sure the Netra DPS
Runtime Environment domain has the required Netra DPS application running.

 *** Netra Data Plane Suite Configurator ***

The Netra Data Plane Suite (Netra DPS) Configurator can be used to
configure the Logical Domains Environment for Netra DPS applications.
Check for the following prerequisites before proceeding:

* Your system supports Logical Domains and has the required firmware
* Your system has Logical Domains Manager installed
* Storage for virtual disks have been identified

Do you want to proceed? [y] y

A primary domain has been configured and is in active state.

Please select from one of the following options:

1) Custom configure guest domain
2) Configure guest domains under a configuration directory
3) Save guest domains configuration under a directory
4) Configure LDC channels
5) Configure IPC channels
6) Quit

Option [1]: 4 (or) 5
Chapter 9 Auto-Configuration 143

Saving Current Guest Domains Configuration
Save the current guest domains configuration as XML files in a directory. To do this,
select option 3 from the following Netra Data Plane Suite Configurator display:

Once you select the option, the auto-configuration tool will save the Logical Domain
configurations as XML files in the directory that you provide.

 *** Netra Data Plane Suite Configurator ***

The Netra Data Plane Suite (Netra DPS) Configurator can be used to
configure the Logical Domains Environment for Netra DPS applications.
Check for the following prerequisites before proceeding:

* Your system supports Logical Domains and has the required firmware
* Your system has Logical Domains Manager installed
* Storage for virtual disks have been identified

Do you want to proceed? [y] y

A primary domain has been configured and is in active state.

Please select from one of the following options:

1) Custom configure guest domain
2) Configure guest domains under a configuration directory
3) Save guest domains configuration under a directory
4) Configure LDC channels
5) Configure IPC channels
6) Quit

Option [1]: 3
144 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Configuring LDoms from a Saved Location
Create Guest Domains from their respective XML files present in a directory. To do
this, select option 2 from the following Netra Data Plane Suite Configurator display:

Once you select the option, the auto-configuration tool will create guest domains
from the directory you provide.

 *** Netra Data Plane Suite Configurator ***

The Netra Data Plane Suite (Netra DPS) Configurator can be used to
configure the Logical Domains Environment for Netra DPS applications.
Check for the following prerequisites before proceeding:

* Your system supports Logical Domains and has the required firmware
* Your system has Logical Domains Manager installed
* Storage for virtual disks have been identified

Do you want to proceed? [y] y

A primary domain has been configured and is in active state.

Please select from one of the following options:

1) Custom configure guest domain
2) Configure guest domains under a configuration directory
3) Save guest domains configuration under a directory
4) Configure LDC channels
5) Configure IPC channels
6) Quit

Option [1]: 2
Chapter 9 Auto-Configuration 145

146 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

CHAPTER 10

Reference Applications

This chapter describes Netra DPS reference applications. Topics include:

■ “IP Packet Forwarding Application” on page 147

■ “Differentiated Services Application” on page 156

■ “Access Control List Application” on page 172

■ “Radio Link Protocol Application” on page 175

■ “IPSec Gateway Application” on page 180

■ “Traffic Generator Application” on page 208

■ “Interprocess Communication (IPC) Reference Application” on page 230

Each UltraSPARC T2 processor CPU core has a crypto unit. This unit leverages the
Modular Arithmetic Unit and the Hash and Cipher Unit inside the SPU to accelerate
crypto operations. There are a total of eight crypto units in an eight-core system.

If you are using NIU ports under LDoms environment, refer to “How Do I Calculate
the Base PA Address for NIU/LDoms to Use with the tnsmctl Command?” on
page 292.

IP Packet Forwarding Application
The IP packet forwarding application (ipfwd) simulates an IPv4 (Internet Protocol
Version 4) forwarding operation. When each packet is received, the program
performs a forward table search (three memory searches), rewrites the MAC source
and destination address, rewrites the TTL, and recalculates the IP header checksum.
The packet is then sent out to a specified port. The application can either simulate
the lookup or actually do a lookup.
147

Source Files
All ipfwd source files are located in the following package directory:
/opt/SUNWndps/src/apps/ipfwd. The contents include:

■ Makefiles for two different ethernet hardware devices include:

■ ./Makefile.nxge

■ Information files for ipfwd and LDoms configuration include:

■ ./README

■ ./README.config

■ Build script for one step build include:

■ ./build

■ System configuration for the application include:

■ ./src/config

■ ./src/config/ipfwd_hwarch.c

■ ./src/config/ipfwd_map.c

■ ./src/config/ipfwd_swarch.c

■ Solaris Forwarding Information Base (FIB) Control applications for ipfwd LDoms
include:

■ ./src/solaris

■ ./src/solaris/Makefile

■ ./src/solaris/fibctl.c

Compiling the ipfwd Application
Copy the ipfwd reference application from the /opt/SUNWndps/src/apps/ipfwd
directory to a desired directory location and do the build script in that location.
148 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Build Script
TABLE 10-1 shows the IP packet forwarding (ipfwd) application build script.

Usage
./build <cmt> <type> [ldoms [diffserv] [acl] [gdb] [arp]
[no_freeq]] [profiler] [2port] -hash <POLICY_NAME>

Build Script Arguments
< > – Required arguments

[] – Optional arguments

Argument Descriptions
<cmt>

This argument specifies whether to build the ipfwd application to run on the CMT1
(UltraSPARC T1) platform or CMT2 (UltraSPARC T2) platform.

cmt1 – Build for CMT1 (UltraSPARC T1)
cmt2 – Build for CMT2 (UltraSPARC T2)

TABLE 10-1 ipfwd Application Build Script

Build Script Usage

./build
(See “Build Script Arguments”
on page 149.)

Build ipfwd application to run on e1000g Ethernet interface on the Netra
ATCA CP3060 System.

Build ipfwd application to run on Sun QGC (quad 1Gbps nxge Ethernet
interface).

Build ipfwd application to run on Sun multithreaded 10G (dual 10Gbps
nxge Ethernet interface).

Build ipfwd application to run on NIU (dual 10Gbps UltraSPARC T2
Ethernet interface) on a CMT2-based system.
Chapter 10 Reference Applications 149

[type]

1g_1060:

Build the ipfwd application to run on e1000g Ethernet interface on a Netra ATCA
CP3060 System.

4g:

Build ipfwd application to run on 10Gb Ethernet QGC (quad 1Gbps nxge Ethernet
interface).

10g:

Build ipfwd application to run on 10Gb Ethernet (dual 10Gbps nxge Ethernet
interface).

10g_niu:

Build ipfwd application to run on NIU (dual 10Gbps UltraSPARC T2 Ethernet
interface) on a CMT2-based system.

[ldoms]:

This is an optional argument specifying whether to build the ipfwd application to
run on the LDoms environment. When this flag is specified, the IP forwarding
LDoms reference application will be compiled. If this argument is not specified, then
the non-LDoms (standalone) application will be compiled. Refer to “How Do I
Calculate the Base PA Address for NIU/LDoms to Use with the tnsmctl
Command?” on page 292.

[acl]:

This is an optional argument to enable the Access Control List (ACL) reference
application.

[gdb]:

This is an optional argument to enable gdb support in the LDoms environment.

[no_freeq]:

This option disables the use of free queues. May be used with the diffserv option in
an LDoms environment.

[profiler]:

This is an optional argument that generate code with profiling enabled.

[2port]:

This is an optional argument to compile dual ports on the 10Gb Ethernet or the
UltraSPARC T2 NIU.
150 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

[-hash POLICY_NAME]:

This is an optional argument used to enable flow policies. For more information, see
“Other IPFWD Options” on page 153.

Build Example
In ...src/sys/lwrte/apps/ipfwd, pick the correct build script and run it. For
example, to build for 10G Ethernet on a Netra or Sun Fire T2000 system, enter the
following at your shell window.

In this example, the build script with the 10g option is used to build the IP
forwarding application to run on the 10G Ethernet. The <cmt> argument is specified
as cmt1 to build the application to run on UltraSPARC T1-based Netra or Sun Fire
T2000 systems.

▼ To Run the ipfwd Application
1. Copy the binary into the /tftpboot directory of the tftpboot server.

2. On the tftpboot server, type:

3. On the target machine, type the following at the ok prompt:

Note – net is an OpenBoot PROM alias corresponding to the physical path of the
network.

% ./build cmt1 10g

% cp your_workspace/ipfwd/code/ipfwd/ipfwd /tftpboot/ipfwd

ok boot net:,ipfwd
Chapter 10 Reference Applications 151

Default Configurations
This section shows the default configurations:

Default System Configuration

Main files that control the system configurations:

■ ipfwd/src/apps/config/ipfwd_swarch.c

■ ipfwd/src/apps/config/ipfwd_map.c

Default ipfwd Application Configuration

Main files that control the application configurations:

■ ipfwd/src/apps/ipfwd_config.c

■ ipfwd/src/apps/ipfwd_config.h

NDPS domain
(Strand IDs)

Statistics
(Strand ID)

Other domains
(Strand IDs)

CMT1 NON-LDOM: 0 – 31 31 NA

CMT1 LDOM: 0 – 19 19 20 – 31

CMT2 NON-LDOM: 0 – 63 63 NA

CMT2 LDOM: 0 – 39 39 40 – 63

Applications
runs on

Number of Ports
Used

Number of Channels
per Port

Total Number of Q
Instances

Total Number of
Strands Used

1G (CP 1060): 2 1 (fixed) 2 6

4G-PCIE (nxge QGC): 4 1 4 12

10G-PCIE (nxge 10G): 1 4 4 12

10G-NIU (niu 10G): 1 8 8 24
152 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Other IPFWD Options

Radix Forwarding Algorithm
To enable the Radix Forwarding Algorithm for IP forwarding, uncomment the
following line from Makefile.nxge for e1000g 1Gb PCIe ethernet adapter or Sun
multithreaded 10Gb and 1Gb PCIe Ethernet adapter, respectively:

- DIPFWD_RADIX

Bypassing the ipfwd Operation
To bypass the ipfwd operation (that is, receive --> transmit without forwarding
operation), uncomment the following line from Makefile.nxge e1000g 1Gb PCIe
ethernet adapter or Sun multithreaded 10 Gb and 1Gb PCIe Ethernet adapter,
respectively:

-DIPFWD_RAW

Multiple Forward Port Destinations
When the Multiple Forward Destinations option is enabled, the output destination
port is determined by the output of the Forwarding Table Lookup. Otherwise, the
output destination port is the same as the input port. To enable this option,
uncomment the following line from Makefile.nxge for e1000g 1Gb PCIe ethernet
adapter or Sun multithreaded 10GbE Ethernet, respectively:

-DIPFWD_MULTI_QS

UltraSPARC T2 Version 2.1 Mode
The N2_1_MODE flag is enabled by default. This flag needs to be disabled when
running Netra DPS on UltraSPARC T2 Version 2.2 and above.

Statistics Flags
■ The KSTAT_ON flag enables the device driver to collect statistical information.

■ The IPFWD_DISPLAY_STATS flag enables the IP Forwarding application to
display statistical information on the console.
Chapter 10 Reference Applications 153

IP Forward Static Cross Configuration
When IP Forwarding is configured as “Cross Configuration”, the
IPFWD_STATIC_CROSS_CONFIG flag needs to be enabled. The following is one
example of cross configuration:

Port0 ---> Port1
Port1 ---> Port0

Flow Policy for Spreading Traffic to Multiple DMA
Channels
Specify a policy for spreading traffic into multiple DMA flows by hardware hashing.
TABLE 10-2 describes each policy:

To enable one of the above policies, use the -hash option.

If none of the policies listed in TABLE 10-2 are specified, a default policy is given. The
default policy is set to HASH_ALL. When you use the default policy, all L2/L3/L4
header fields are used for spreading traffic.

TABLE 10-2 Flow Policy Descriptions *

Name Definition

IP_ADDR Hash on IP destination and source addresses.

IP_DA Hash on IP destination address.

IP_SA Hash on IP source address.

VLAN_ID Hash on VLAN ID.

PORTNUM Hash on port number.

L2DA Hash on L2 destination address.

PROTO Hash on Protocol number.

SRC_PORT Hash on source port number.

DST_PORT Hash on destination port number.

ALL Hash on all of the above fields.

TCAM_CLASSIFY Performs TCAM lookup.
154 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

ipfwd Flow Configurations
The ipfwd_config.c file assists you in mapping application tasks to CPU core and
hardware strands. Normally, mapping is set in the ipfwd_map.c file in the config
directory. This configuration file is a productivity tool. This file provides a way to
facilitate mapping in a quick manner without any modification to the ipfwd_map.c
file.

This configuration file is not a replacement of ipfwd_hwarch.c, ipfwd_swarch.c
and ipfwd_map.c. This framework is to conduct performance analysis and
measurement with different system configurations. The default (*_def)
configurations specified assumes a minimum of 16 threads of the system allocated
for Netra DPS in ipfwd_map.c and all memory pool resources required are
declared in ipfwd_swarch.c. The user still needs to specify system resources
declarations and mapping in ipfwd_hwarch.c, ipfwd_swarch.c, and
ipfwd_map.c. The configuration is assigned to a pointer named
ipfwd_thread_config.

Note – The user has the option to bypass this file entirely and perform all the
mapping in ipfwd_map.c. In this case, you would also need to modify ipfwd.c so
that it does not interpret the contents of this file.

Format
Each application configuration is represented in an array of a six-element entry. Each
entry (each row) represents a software task and its corresponding resources:

■ Thread ID – Strand number of the hardware strand (0 ~ 31 on an UltraSPARC T1
system, 0 ~ 63 on an UltraSPARC T2 system) on which this software task is to be
run.

■ HW init – If zero, it indicates no Ethernet port needs to be opened when this task
is activated. If non-zero, it indicates ethernet port (port number specified by
port#) needs to be opened. The contents of OPEN_OP consists of vendor and
device id as (NXGE_VID << 16) | NXGE_DID.

■ Port# – This is the port number of the ethernet port to be opened. Port# should
start from zero. Port# denotes the first ethernet port probed on the system for this
given OPEN_OP.

■ Chan# – If this is a multichannel device (such as Sun multithreaded 10GbE with
NIU), this entry indicates the channel number within each port. Sun
multithreaded 10GbE device has 24 transmit channels (0~23) and 16 receive
channels (0~16) in each port. Sun multithreaded 10GbE with NIU has 16 channels
(both tx and rx) in each port.

■ Role – This is the role of the software task.
Chapter 10 Reference Applications 155

TROLE_ETH_NETIF_RX — This task performs a receive function.
TROLE_ETH_NETIF_TX — This task performs a transmit function.
TROLE_APP_IPFWD — This task performs IP forwarding function.

See common.h for all definitions. If you do not want to run any software task on
this hardware strand, the role field should be set to -1. By default, during
initialization of the ipfwd application, the hardware strand that encounters a -1
software role is parked.

Note – A parked strand is a strand that does not consume any pipeline cycles (an
inactive strand).

■ MemPool# – This is the identity of the memory pool. Note that in this reference
application, each Ethernet port has its own memory pool. Each channel within
each port has its own memory pool. Memory pools are declared in
ipfwd_swarch.c.

Note – The application can be configured such that a single memory pool is
dedicated to a particular DMA channel or all DMA channels sharing a global
memory pool. The default configuration is one memory pool per DMA channel.

Differentiated Services Application
The Differentiated Services (DiffServ) reference application is integrated with the IP
forwarding application. The DiffServ data path consists of classifier, meter, marker,
and policing components. These components provide Quality of Services (QoS)
features for traffic entering the node and avoids congestion in the network. These
components can be arranged in the pipeline such that each component performs
specific task and propagates the result (traffic class and policing information) to the
next component. The following are major features of DiffServ:

■ DSCP classifier (RFC 2474)

■ 6-tuple exact match classifier

■ Single and two rate three color meter (RFC 2697/4115)

■ DSCP marker

■ DRR packet scheduler

■ Queue Manager
156 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

FIGURE 10-1 shows the arrangement of the components in the data path. The
scheduler and queue manager are executed in a separate thread, whereas the other
components are located in the forwarding thread. The following sections describe
the functions of the different parts.

FIGURE 10-1 IPv4 DiffServ Internal Data Path

Classifier
This section describes the Diffserv classifiers.

Differentiated Services Code Point Classifier
The differentiated services code point (DSCP) classifier fast path component sets QoS
variables (flow and color) based on the DSCP value extracted from the IPv4 packet
header and directs packets to the proper next component (meter, marker, IPv4) for
further processing. The DSCP classifier always remain enabled.

6-Tuple Classifier
The 6-tuple classifier fast path component performs an exact-match lookup on the
IPv4 header. The classifier maintains a hash table with exact-match rules. Thus, a
table lookup can fail only if there is no static rule defined. An empty rule
corresponds to best-effort traffic. As a result, on a lookup failure a packet is assigned
Chapter 10 Reference Applications 157

to the best-effort service (default rule) and passed on for further processing. The
classifier slow path component configures the hash table used by the classifier fast
path component. 6-tuple classifier can be enabled or disabled at run time.

Policing (Meter)
The three color (TC) meter implements two metering algorithms: single rate three
color meter (SRTCM) and two rate three color meter (TRTCM).

Single Rate Three Color Marker (SRTCM)
The Single-Rate Three-Color Marker (SRTCM) meters an IP packet stream and marks
its packets green, yellow, or red. Marking is based on a Committed Information Rate
(CIR) and two-associated burst sizes, a Committed Burst Size (CBS) and an Excess
Burst Size (EBS). A packet is marked green if it does not exceed the CIR; yellow if it
does exceed the CBS, but not the EBS; and red, otherwise.

Two Rate Three Color Marker (TRTCM)
The Two-Rate Three-Color Marker (TRTCM) meters an IP packet stream and marks
its packets green, yellow, or red. A packet is marked red if it exceeds the Peak
Information Rate (PIR). Otherwise, it is marked either yellow or green depending on
whether it exceeds or does not exceed the Committed Information Rate (CIR).

DSCP Marker
The DSPC marker updates the type of service (TOS) field in the IPv4 header and
recomputes the IPv4 header checksum

Shaping

Deficit Round Robin Scheduler
The deficit round robin (DRR) scheduler schedules packets in a flexible queuing
policy with priority concept. With this scheduler, the parameters are the number of
sequential service slots that each queue can get during its service turn. The number
of services for each queue depends on the value of its parameter called deficit factor.
158 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

The deficit of queue is reduced as the scheduler schedules packets from that queue.
The maximum deficit of each queue can be configured and is called weight of that
queue. The DRR scheduler will schedule the packets by considering the packet size
of the packet at the top of the queue. Queues are still served in round robin fashion
(cyclically) in a preassigned order.

Queue Manager
The Queue Manager performs enqueue and dequeue operations on the queues. The
queue manager manages an array of queues, with each queue corresponding to a
particular per hop behavior (PHB), for queuing packets per port. The Queue
Manager receives enqueue requests from the IPv4/DiffServ pipeline. Upon receiving
the enqueue request, the queue manager places the packet into the queue
corresponding to the PHB indicated by the DSCP value in the packet.The Queue
Manager maintains the state for each queue and uses the tail drop mechanism in
case of congestion.

The Queue Manager receives the dequeue requests from the scheduler. The dequeue
request consists of the PHB and the output port. Packets from the queue
corresponding to this PHB and output port is dequeued and the dequeued packet is
placed on the transmit queue for the output port.

Building the DiffServ Application
To build the DiffServ application, specify the diffserv keyword on the build script
command line. All files of the DiffServ data path implementation are located in the
diffserv subdirectory of stc/app in the IP forwarding application. The DiffServ
application requires an LDoms environment, as all configuration is through an
application running on a Solaris control domain that communicates with the data
plane application through IPC.

For example, to build the DiffServ application to make use of both NIU ports on an
UltraSPARC T2-based system, use the following command:

./build cmt2 10g_niu ldoms diffserv no_freeq 2port
Chapter 10 Reference Applications 159

DiffServ Command-Line Interface
Implementation
The IPv4 Forwarding Information Base (FIB) table configuration (fibctl)
command-line interface (CLI) has been extended to support configuration of
DiffServ tables. This support behavior is the same as the FIB table configuration
protocol over IPC between the control plane and data plane LDoms. Support is
provided for configuring (choosing) the following DiffServ tables:

■ DSCP Classifier table

■ Classifier 6-tuple table

■ STRCM and TRTCM table

■ Queue Manager configuration table

■ Scheduler configuration table

To build the extended control utility, issue the following command in the
src/solaris subdirectory of the IP forwarding reference application.

Command-Line Interface for the IPv4-DiffServ
Application

DSCP Classifier

Add DSCP Entry

Description

This command is used to add the DSCP classifier entry in DSCP table.

Command syntax

diffserv dscp add DSCP_value port_number flow_id color_id class_id next_block

Parameters

DSCP_value – DSCP value should be greater than 0 and less than 64.

gmake DIFFSERV=on
160 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

port_number – Port number should be less than NUM_PORTS.

flow_id – ID used to identify the traffic flow to which the packet belongs.

color_id – ID should be green, yellow, or red.

class_id – ID used to identify the queue number within an output port.

next_block – Next block should be meter, marker, or fwder.

Example

diffserv dscp add 1 0 1 green 1 meter

Delete DSCP Entry

Description

This command is used to delete DSCP classifier entry from DSCP table.

Command syntax

diffserv dscp delete DSCP_value port_number

Parameters

DSCP_value – DSCP value should be greater than 0 and less than 64.

port_number – Port number should be less than NUM_PORTS.

Example

diffserv dscp delete 1 0

Update DSCP Entry

Description

This command is used to update the existing DSCP classifier entry in DSCP table.

Command syntax

diffserv dscp update DSCP_value port_number flow_id color_id class_id
next_block

Parameters

DSCP_value – DSCP value should be greater than 0 and less than 64.
Chapter 10 Reference Applications 161

port_number – Port number should be less than NUM_PORTS.

flow_id – ID used to identify the traffic flow to which the packet belongs.

color_id – ID should be green, yellow, or red.

class_id – ID used to identify the queue number within an output port.

next_block – Next block should be meter, marker, or fwder.

Example

diffserv dscp update 1 0 1 yellow 1 fwder

Purge DSCP Table

Description

This command is used to purge the DSCP table.

Command syntax

diffserv dscp purge

Display DSCP Table Entries

Description

This command is used to display the DSCP table.

Command syntax

diffserv dscp display

6-Tuple Classifier

Add 6-Tuple Entry

Description

This command is used to add classifier 6-tuple entry in 6-tuple table.
162 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Command syntax

diffserv class6tuple add SrcIp DestIp Proto Tos SrcPrt DestPrt IfNum flow_id
color_id next_block class_id

Parameters

SrcIp – Source IP address (for example, 192.168.1.5) in the IP header of packet.

DestIp – Destination IP address (for example, 192.168.1.5) in the IP header of packet.

Proto – IP protocol field in the IP header of packet.

Tos – Differentiated services code point (6 bits of TOS field).

SrcPrt – Source port number in the TCP/UDP header packet.

DestPrt – Destination port number in the TCP/UDP header packet.

IfNum – Input port starting form port 0, on which the packet is received.

flow_id – ID used to identify the traffic flow to which the packet belongs.

color_id – ID used to identify the packet drop precedence level (green, yellow, or
red).

next_block – Used to identify the next packet processing block meter, marker, and
fwder.

class_id – ID used to identify the queue number within an output port
(for example: ef, af0, af1, af2, af3, be).

Example

diffserv class6tuple add 211.2.9.195 192.168.115.76 17 16 61897
2354 0 50 green meter 44

Delete 6-Tuple Entry

Description

This command is used to delete 6-tuple classifier entry from 6-tuple table.

Command syntax

diffserv class6tuple delete SrcIp DestIp Proto Tos SrcPrt DestPrt IfNum
Chapter 10 Reference Applications 163

Parameters

SrcIp – Source IP address (for example, 192.168.1.5) in the IP header of packet.

DestIp – Destination IP address (for example, 192.168.1.5) in the IP header of packet.

Proto – IP protocol field in the IP header of packet.

Tos – Differentiated services code point (6 bits of TOS field).

SrcPrt – Source port number in the TCP/UDP header packet.

DestPrt – Destination port number in the TCP/UDP header packet.

IfNum – Input port starting form port 0, on which the packet is received.

Example

diffserv class6tuple delete 211.2.9.195 192.168.115.76 17 16
61897 2354 0

Update 6-Tuple Entry

Description

This command is used to update the existing 6-tuple classifier entry in 6-tuple table.

Command syntax

diffserv class6tuple update SrcIp DestIp Proto Tos SrcPrt DestPrt IfNum
flow_id color_id next_block class_id

Parameters

SrcIp – Source IP address (for example, 192.168.1.5) in the IP header of packet.

DestIp – Destination IP address (for example, 192.168.1.5) in the IP header of packet.

Proto – IP protocol field in the IP header of packet.

Tos – Differentiated services code point (6 bits of TOS field).

SrcPrt – Source port number in the TCP/UDP header packet.

DestPrt – Destination port number in the TCP/UDP header packet.

IfNum – Input port starting form port 0, on which the packet is received.

flow_id – ID used to identify the traffic flow to which the packet belongs.
164 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

color_id – ID used to identify the packet drop precedence level (green, yellow, or
red).

next_block – Used to identify the next packet processing block meter, marker, and
fwder.

class_id – ID used to identify the queue number within an output port
(for example: ef, af0, af1, af2, af3, be).

Example

diffserv class6tuple update 211.2.9.195 192.168.115.76 17 16
61897 2354 0 50 red marker 44

Purge 6-Tuple Table

Description

This command is used to purge the 6-tuple table.

Command syntax

diffserv class6tuple purge

Display 6-Tuple Table Entries

Description

This command is used to display the 6-tuple table.

Command syntax

diffserv class6tuple display

6-Tuple Enable/Disable

Description

This command is used to enable/disable the 6-tuple table.

Command syntax

diffserv class6tuple enable/disable
Chapter 10 Reference Applications 165

Example

diffserv class6tuple enable

diffserv class6tuple disable

TC Meter

Add TC Meter Entry

Description

This command is used to add a meter instance in TC meter table.

Command syntax

diffserv meter add flow_id CBS EBS CIR EIR green_dscp green_action yellow_dscp
yellow_action red_dscp red_action meter_type stat_flag

Parameters

flow_id – ID used to identify the traffic flow to which the packet belongs.

CBS – The value of the Committed Burst Size (CBS) is larger than 0, it is larger than
or equal to the size of the largest possible IP packet in the stream. cbs is measured in
bytes.

EBS – The value of the Excess Burst Size (EBS) is larger than 0, it is larger than or
equal to the size of the largest possible IP packet in the stream. EBS is measured in
bytes.

CIR – Committed Information Rate (CIR) at which a traffic source is signed up to
send packets to the meter instance. It is measured in bytes/sec. The cir should be in
M-bytes per seconds.

EIR – Excess Information Rate (EIR) at which a traffic source is signed up to send
packets to the meter instance. It is measured in bytes/sec. This is used only when
TRTCM is enabled. The eir should be in M-bytes per seconds.

green_dscp – DSCP packet mark value for green packets.

green_action – Select the next packet processing block for green packets (drop,
fwder, and marker).

yellow_dscp – DSCP packet mark value for yellow packets.
166 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

yellow_action – Select the next packet processing block for yellow packets (drop,
fwder, and marker).

red_dscp – DSCP packet mark value for red packets.

red_action – Select the next packet processing block for red packets (drop, fwder,
and marker).

meter_type

0 – TRTCM color aware

1 – TRTCM color blind

2 – SRTCM color aware

3 – SRTCM color blind

stat_flag

0 – Statistics Disable or 1 – Statistics Enable

Example

diffserv meter add 1 1500 1500 1 1 12 marker 13 drop 14 drop 1
1

Delete TC-Meter Entry

Description

This command is used to delete a meter instance in TC meter table.

Command syntax

diffserv meter delete flow_id

Parameters

flow_id – ID used to identify the traffic flow to which the packet belongs.

Example

diffserv meter delete 1
Chapter 10 Reference Applications 167

Update TC-Meter Entry

Description

This command is used to update a meter instance in TC meter table.

Command syntax

diffserv meter update flow_id CBS EBS CIR EIR green_dscp green_action
yellow_dscp yellow_action red_dscp red_action meter_type stat_flag

Parameters

flow_id – ID used to identify the traffic flow to which the packet belongs.

CBS – The value of the Committed Burst Size (CBS) is larger than 0, it is larger than
or equal to the size of the largest possible IP packet in the stream. cbs is measured in
bytes.

EBS – The value of the Excess Burst Size (EBS) is larger than 0, it is larger than or
equal to the size of the largest possible IP packet in the stream. EBS is measured in
bytes.

CIR – Committed Information Rate (CIR) at which a traffic source is signed up to
send packets to the meter instance. It is measured in bytes/sec. The cir should be in
M-bytes per seconds.

EIR – Excess Information Rate (EIR) at which a traffic source is signed up to send
packets to the meter instance. It is measured in bytes/sec. This is used only when
TRTCM is enabled. The eir should be in M-bytes per seconds.

green_dscp – DSCP packet mark value for green packets.

green_action – Select the next packet processing block for green packets (drop,
fwder, and marker).

yellow_dscp – DSCP packet mark value for yellow packets.

yellow_action – Select the next packet processing block for yellow packets (drop,
fwder, and marker).

red_dscp – DSCP packet mark value for red packets.

red_action – Select the next packet processing block for red packets (drop, fwder,
and marker).

meter_type

0 – TRTCM color aware

1 – TRTCM color blind
168 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

2 – SRTCM color aware

3 – SRTCM color blind

stat_flag

0 – Statistics Disable or 1 – Statistics Enable

Example

diffserv meter update 1 1500 1500 1 1 12 marker 13 drop 14 drop
0 0

Purge TC-Meter Table

Description

This command is used to purge meter table.

Command syntax

diffserv meter purge

Display TC-Meter Table Entries

Description

This command used to display the TC meter table.

Command syntax

diffserv meter display

Display TC-Meter statistics

Description

This command used to display the TC meter statistics.

Command syntax

diffserv meter stats flow_id
Chapter 10 Reference Applications 169

Parameters

flow_id – ID used to identify the traffic flow to which the packet belongs.

Example

diffserv meter stats 1

Scheduler

Add scheduler Entry

Description

This command is used to configure weight for all AF classes and maximum rate
limit for EF class.

Command syntax

diffserv scheduler add output_port class_id weight

Parameters

output_port – Port number should be less than NUM_PORTS.

class_id – ID used to identify the queue number within an output port
(for example: ef, af0, af1, af2, af3, be).

weight – Maximum number of bytes to be scheduled. If class is ef the weight will be
bytes/seconds, otherwise, number of bytes.

Example

diffserv scheduler add 1 af1 128

Update Scheduler Entry

Description

This command is used to update weight for all AF classes and maximum rate limit
for EF class.
170 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Command syntax

diffserv scheduler update output_port class_id weight

Parameters

output_port – Port number should be less than NUM_PORTS.

class_id – ID used to identify the queue number within an output port
(for example: ef, af0, af1, af2, af3, be).

weight – Maximum number of bytes to be scheduled. If class is ef the weight will be
bytes/seconds, otherwise, number of bytes.

Example

diffserv scheduler update 1 af1 256

Display scheduler Entry

Description

This command is used to display scheduler table entries.

Command syntax

diffserv scheduler display output_port

Parameters

output_port – Port number should be less than NUM_PORTS.

Example

diffserv scheduler display 1
Chapter 10 Reference Applications 171

DiffServ References
TABLE 10-3 lists DiffServ references.

Access Control List Application
The Access Control List (ACL) reference application is integrated with the IP
forwarding application. The ACL component classifies IPv4 packets using a set of
rules. The classification can be done using the source and destination addresses and
ports, as well as the protocol and the priority of the packet.

The algorithms (trie, bspl, and hicut) are used in the ACL library trade memory
for speed. The rules are preprocessed to achieve a high lookup rate while using a lot
of memory.

Building the ACL Application
To build the IP packet forwarding (ipfwd) application with ACL, specify the acl
keyword on the build script command line. For example:

TABLE 10-3 DiffServ References

Reference Document Descriptions

RFC 2474 Definition of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers

RFC 2475 An Architecture for Differentiated Services

RFC 2597 Assured Forwarding PHB Group

RFC 2697 A Single Rate Three Color Marker

RFC 3246 An Expedited Forwarding PHB (Per-Hop Behavior)

RFC 3260 New Terminology and Clarifications for DiffServ

RFC 4115 A Differentiated Service Two-Rate, Three-Color Marker with Efficient
Handling of in-Profile Traffic

% ./build cmt2 10g_niu ldoms acl
172 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Running the ACL Application
The ipfwd application with ACL requires an LDoms environment, since all
configurations are done through an application running on a Solaris control domain.
The Netra DPS domain needs to be configured with at least 8 Gbytes of memory,
which is a requirement for the ACL application.

▼ To Configure the Environment for ACL
1. Enable shared memory by adding the following line to the /etc/system file:

2. Enable the ACL communication channel between the Netra DPS domain and
the Solaris control domain.

To do this, a special configuration channel must be set up between these domains.
The channel is established as follows:

3. Add /opt/SUNWndpsd/lib to LD_LIBRARY_PATH.

Command-Line Interface for the ACL Application
The acltool is a command-line tool that sends commands to the ACL engine
running in the Netra DPS domain. The interface is similar to iptables(8). The
major difference is that it does not take a chain as a parameter. The acltool can be
found in the /opt/SUNWndpsd/bin directory.

Following is a description of the various acltool commands and options.

Usage
acltool command [options]

set ldc:ldc_shmem_enabled = 1

% ldm add-vdpcs shmem-server Netra DPS domain name
% ldm add-vdpcc shmem-client shmem-server Solaris control domain
name

acltool --help
Chapter 10 Reference Applications 173

Commands

Help command

-h --help Prints usage help.

Control commands

--init algorithm Initializes ACL engine using algorithm for packet
lookup.

--start Starts the packet classification.

--stop Stops the packet classification.

--status Prints the status of the ACL engine.

-c --config-file filename Reads rule commands from the configuration file.

Rule commands

-A --append rule Appends a rule.

-D --delete rule Removes the matching rule.

-L --list Lists all rules.

-F --flush Flushes (removes) all rules.

Rule Specification Options
-p --protocol num Protocol (tcp, udp, icmp) or protocol

number

-s --source ip[/mask] Source ip prefix

-d --destination ip[/mask] Destination ip prefix

-j --jump num Where to jump (action)

-g --goto num Same as --jump

--sport num[:num] Source protocol port

--source-port num[:num] Source protocol port

--dport num[:num] Destination protocol port

--destination-port num[:num] Destination protocol port

--tos num Type of service
174 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Radio Link Protocol Application
The Radio Link Protocol (RLP) application (rlp) simulates Radio Link Protocol
operation, which is one of the protocols in the CDMA-2000 High Rate Packet Data
interfaces (HRPD-A). This application implements the forwarding direction fully,
with packets flowing from PDSN --> AN --> AT (that is, Packet Data Serving Node
to Access Network to Access Terminal). Reverse direction support is also
implemented, but requires an AT side application which can generate NAKs
(Negative Acknowledges). The application must be modified to process reverse
traffic.

Compiling the RLP Application
Copy the rlp reference application from the /opt/SUNWndps/src/apps/rlp
directory to a desired directory location and do the build script in that location.

Build Script
TABLE 10-4 shows the radio link protocol (rlp) application build script.

TABLE 10-4 rlp Application Build Script

Build Script Usage

./build
(See “Argument Descriptions”
on page 176.)

Build rlp application to run on e1000g Ethernet interface.

Build rlp application to run on e1000g Ethernet interface on the Netra
ATCA CP3060 System.

Build rlp application to run on Sun QGC (quad 1Gbps nxge Ethernet
interface).

Build rlp application to run on Sun multithreaded 10G (dual 10Gbps
nxge Ethernet interface).

Build rlp application to run on NIU (dual 10Gbps UltraSPARC T2
Ethernet interface) on a CMT2-based system.
Chapter 10 Reference Applications 175

Usage
./build <cmt> <type> [ldoms] [arp] [profiler][-hash FLOW_POLICY]

Build Script Arguments
< > – Required arguments

[] – Optional arguments

Argument Descriptions
<cmt>

This argument specifies whether to build the ipfwd application to run on the CMT1
(UltraSPARC T1) platform or CMT2 (UltraSPARC T2) platform.

cmt1 – Build for CMT1 (UltraSPARC T1)
cmt2 – Build for CMT2 (UltraSPARC T2)

[type]

1g_1060:

Build the rlp application to run on e1000g Ethernet interface on a CMT1-based
system.

4g:

Build rlp application to run on QGC (quad 1Gbps nxge Ethernet interface).

10g:

Build rlp application to run on 10Gb Ethernet (dual 10Gbps nxge Ethernet
interface).

10g_niu:

Build rlp application to run on NIU (dual 10Gbps UltraSPARC T2 Ethernet
interface) on a CMT2-based system.
176 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

[ldoms]

This is an optional argument specifying whether to build the rlp application to run
on the LDoms environment. When this flag is specified, the rlp LDoms reference
application will be compiled. If this argument is not specified, then the non-LDoms
(standalone) application will be compiled. Refer to “How Do I Calculate the Base PA
Address for NIU/LDoms to Use with the tnsmctl Command?” on page 292.

[arp]

This is an optional argument to enable arp and can run only on the LDoms
environment.

[profiler]

This is an optional argument that generate code with profiling enabled.

[-hash FLOW_POLICY]:

This is an optional argument used to enable flow policies. For more information, see
“Other RLP Options” on page 179.

Build Example
In ...src/apps/rlp, pick the correct build script and run it. For example, For
example, to build for 10G Ethernet on a Netra or Sun Fire T2000 system, enter the
following at your shell window:

In this example, the 10g option is used to build the RLP application to run on the
Sun multithreaded 10Gb Ethernet. The <cmt> argument is specified as cmt1 to build
the application to run on UltraSPARC T1-based Netra or Sun Fire T2000 systems.

% ./build cmt1 10g
Chapter 10 Reference Applications 177

▼ To Run the Application
1. Copy the binary into the /tftpboot directory of the tftpboot server, and

perform.

2. On the tftpboot server, type:

3. On the target machine, type the following at the ok prompt:

Note – net is an OpenBoot PROM alias corresponding to the physical path of the
network.

Default Configurations
This section shows the default configurations.

Default System Configuration

Main files that control the system configurations are:

■ ipfwd/src/apps/config/rlp_swarch.c

■ ipfwd/src/apps/config/rlp_map.c

% cp your_workspace/rlp/code/rlp/rlp /tftpboot/rlp

ok boot net:,rlp

NDPS domain
(Strand IDs)

IPC Polling,
Statistics

(Strand ID)

Other domains
(Strand IDs)

CMT1 NON-LDOM: 0 – 31 31 NA

CMT1 LDOM: 0 – 19 18, 19 20 – 31

CMT2 NON-LDOM: 0 – 63 63 NA

CMT2 LDOM: 0 – 39 38, 39 40 – 63
178 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Default rlp Application Configuration

Main files that control the application configurations are:

■ ipfwd/src/apps/rlp_config.c

■ ipfwd/src/apps/rlp_config.h

Other RLP Options

▼ To Bypass the rlp Operation
● To bypass the rlp operation (that is, receive --> transmit without

rlp_process operation), uncomment the following line from
Makefile.nxge for 1Gb PCIe ethernet adapter or Sun multithreaded 10 Gb
and 1Gb PCIe Ethernet adapter, respectively:

-DIPFWD_RAW

Note – This action disables the RLP processing operation only, the queues are still
used. This is not the default option.

▼ To Use One Global Memory Pool
By default, the RLP application uses a single global memory pool for all the DMA
channels.

1. Enable the single memory pool by using the following flag:.

-DFORCEONEMPOOL

2. Update the rlp_swarch.c file to use individual memory pools.

Applications
runs on

Number of Ports
Used

Number of Channels
per Port

Total Number of Q
Instances

Total Number of
Strands Used

1G (CP 1060): 2 1 (fixed) 2 6

4G-PCIE (nxge QGC): 4 1 4 12

10G-PCIE (nxge 10G): 1 4 4 12

10G-NIU (niu 10G): 1 8 8 24
Chapter 10 Reference Applications 179

Flow Policy for Spreading Traffic to Multiple DMA
Channels
The user can specify a policy for spreading traffic into multiple DMA flows by
hardware hashing or by hardware TCAM lookup (classification). Refer to TABLE 10-2
for flow policy options.

IPSec Gateway Application
The IPSec Gateway Reference Application implements the IP Encapsulating Security
Payload (ESP) protocol using Tunnel Mode. This application allows two Gateways
(or a host and a gateway) to securely send packets over an unsecure network with
the original IP packet tunneled and encrypted (privacy service). This application
also implements the optional integrity service allowing the ESP header and tunneled
IP packet to be hashed on transmit and verified on receipt.

IPSec Gateway Application Architecture
The design calls for six Netra DPS threads in a classic architecture where four
threads are dedicated to packet reception and transmission (two receivers, two
senders). In this architecture, a thread takes plain text packets and encapsulates and
encrypts them, as well as a thread that de-encapsulates and decrypts. The
architecture is shown in FIGURE 10-2.

FIGURE 10-2 IPSec Gateway Application Architecture

Refer to Request for Comments (RFC) documents for a description of IPSec and the
ESP protocol:

■ 4301 – Security Architecture for the Internet Protocol

■ 4303 – IP Encapsulating Security Payload (ESP)

Encapsulate packet Xmit packet

Xmit packet De-encapsulate packet Recv packet

Loopback
cable

Plaintext Ciphertext

Recv packet
180 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

The IPSec RFC refers to outbound and inbound packets. These design notes refer to
these terms.

■ Outbound packets are those coming into the IPSec Gateway as plaintext (from the
unprotected hosts) and being sent to the peer gateway as ciphertext packets
(encrypted).

■ Inbound packets are the opposite, that is, IPSec-encapsulated (ciphertext) packets
coming in from the peer gateway and being decrypted and sent to the
unprotected hosts.

IPSec Gateway Application Capabilities
IPSec is a complex protocol. This application handles the following most common
processing:

■ Static Security Association Database (SADB)

Contains the type of service to provide (privacy, integrity), crypto and hashing
types and keys to be used for a session, among other housekeeping items. An
item in the SADB is called a Security Association (SA). An SA can be unique to
one connection, or shared among many.

■ Static Security Policy database (SPD)

A partial implementation that is used to contain “selectors” that designate what
action should be taken on a packet based on the source and destination IP
addresses, protocol, and port numbers.

■ SPD cache

A critical cache used to quickly look up the SA to use for packets coming from the
plaintext side. The packet source and destination addresses and ports are hashed
to find the action to take on the packet (discard, pass-through, or IPSec protect)
and the SA.

■ Security Parameter Index (SPI) hash

A cache is used to quickly look up an SA for ESP packets entering the system
from the ciphertext side. The Security Parameter Index is in the ESP header.

■ ESP Protocol, Tunnel Mode

This IPSec implementation uses the ESP protocol (it does not currently handle
AH, though ESP provides most of the AH functionality). Tunnel Mode is used to
encapsulate (tunnel) IP packets between hosts and interface to a peer gateway
machine.
Chapter 10 Reference Applications 181

■ Privacy Service

■ Encrypt/Decrypt traffic

■ Supported algorithms:
AES (ECB/CBC/CTR) with 128/192/256 bits
DES/3DES (ECB/CBC/FCB) with 128/192/256 bits
RC4

■ Integrity Service

■ Authenticate via optional hashing

■ Supported algorithms: HMAC-SHA1, HMAC-SHA256, HMAC-MD5

High-Level Packet Processing
The following describes functions of outbound and inbound packet processing:

Outbound Packets
■ Receive packets from an ingress network port

■ Hash the source/destination IP address and port numbers

■ Look up in (Security Policy Database caches (SPD-cache) to determine action to
take and a pointer to the Security Association (SA)

■ If action is IPSec-protect:

■ Build (prepend) outer IP header, ESP header

■ Encrypt payload (original IP packet) using security parameters in SA

■ Optionally calculate and add a hash value

■ Transmit ciphertext packet from an egress network port

Inbound Packets
■ Receive Packets from an ingress network port

■ If action is an ESP packet:

■ Hash Security Parameter Index (SPI) from ESP header to obtain SA

■ Optionally hash and verify hash value (integrity service)

■ Decrypt payload

■ Remove outer IP header, ESP header and trailer

■ Transmit plaintext packets from an egress network port
182 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Security Association (SA) Database and Security
Policy Database
The packet encapsulation and encryption code is straight-forward once you have a
pointer to the SA. The SA contains the following information:

■ Crypto algorithm to use (AES, 3DES, and others)

■ Key length

■ Key

■ Initial Vector (IV)

■ Type of service to apply (privacy-only or privacy + integrity)

■ Hash algorithm (SHA1, SHA256, and so on)

■ Hash length

■ Hash key

■ Sequence number

■ Refer to the sadb.h header file (/opt/SUNWndpsc/src/libs/ipsec/sadb.h)
for all other fields in the SA database.

Packet encapsulation and de-encapsulation is just a matter of determining where the
new IP header goes or where the original IP header is, building the new IP header,
and invoking the crypto APIs on the correct packet location and length. For the
IPSec implementation, you need to find the SA to use when a packet is received
(either outbound on inbound). The user must use software hashing and hash table
lookups for every packet. Note that when this is ported to Sun multithreaded 10G
Ethernet on PCIe, the packet classification features speed-up this hashing.

The following sections describe how the SA is obtained for each packet.

Outbound Packets and Inbound Packets
The following sections describe how the SA is obtained for each packet.

Outbound Packets

The user must look at the packet selectors to determine what action to take, either
DISCARD, PASS-THROUGH (as is), or PROTECT. The selectors are the source and
destination IP addresses, the source and destination ports, and the protocol (TCP,
UDP, and others).

The action to take is stored in the Security Policy Database (SPD). For this
application, the complete SPD is not implemented. A static SPD exists that consists
of rules that must be searched in order using the packet selectors.
Chapter 10 Reference Applications 183

For each selector (source IP, destination IP, source port, destination port, protocol),
the rule states one of the following:

■ Single value (for example, matches on source addr of 129.1.2.3)

■ List of values (for example, matches either 129.1.2.3, 129.1.2.5, 129.1.2.10)

■ Range of values (for example, 129.1.1.3 - 129.1.1.10)

■ Match-all (for example, any source port)

■ Mask (for example, matches any source addr after applying mask 0x3F)

If all selectors match the rules, use the SP entry to determine what action to take. If
it is PROTECTED (IPSec), the inbound and outbound Security Parameter Index (SPI)
knows which SA to use. This implies the following:

■ An SA can be exclusive to a given connection

■ An SA can be shared among many connections (for example, a single SA can be
used to protect all traffic between to hosts)

■ Each “connection” or flow of traffic has two SAs: one for outbound traffic and one
for inbound traffic. Due to the loopback configuration (refer to later sections for
loopback configurations), the receive bound is receiving ciphertext packets from
the transmit. Therefore, an SPI of the outbound packet plus 1 should be used as
the SPI.

The last rule in the SPD should be a catch-all that says DISCARD the packet.

The SPD structures and definitions can be found in spd.h.

The source code for the SPD can be found in spd.c.

The function used to lookup a rule is SPD_Search(), which is passed the selector
values from the packet.

The above lookup is complex for every packet. Because of this, a cache called the
SPD-Cache is maintained. The first time you lookup a particular connection, create a
SPDC structure, hash the selectors, and place this SPDC in a hash table.

When packet that uses the exact combination of selectors comes in, it needs to be
looked up in the SPDC hash table using the SPDC_HASH() function. If found,
immediate access to the SA is made.

The definitions of this SPDC and the function can be found in sadb.h and sadb.c,
respectively.

This application does not hash on the protocol type because UDP or TCP protocols
types are assumed due to the presence of the source and destination ports in the
packets.
184 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

The SPDC hash table is defined as:

The primary function used to lookup an SPDC entry is:

For this hash table, take the hash value, mask off the hash table size - 1, then index
into this table to get an entry. The application then compares the entry for a match,
and if there is not a match, the function will walk the chain until one is found.

Inbound Packets

Inbound IPSec packets contain an ESP header with an SPI. The application parses
the SPI, hashes it using SPI_HASH_FROM_SPI(), looks it up in the SPI hash table,
and accesses the SA pointer from there. The application cannot use the same hashing
as done for outbound packets since the selectors (source/destination IP address and
ports) have been encapsulated and encrypted. Decryption cannot be done until the
SA is looked up.

The SPI hash table is defined as:

Static Security Policy Database (SPD) and Security
Association Database (SAD)
For the purposes of the application, statically define the test SPD and SAD in
compile-time initialized C-code in the following C file: sa_init_static_data.c

spdc_entry_t *spdc_hash_table[SPDC_HASH_TABLE_SIZE];

spdc_e *spdc_hash_lookup_from_iphdr(iphdr)

spi_entry_t *spi_hash_table[SPI_HASH_TABLE_SIZE];
Chapter 10 Reference Applications 185

SPD
Two SPD rules are defined.

■ The first rule appears as shown below:

This rule matches any source or destination IP address and protocol (TCP or
UDP), and a source port of 6666 and a destination port of 7777. The load
generator is set to send UDP packets with those ports. This needs to be changed if
other ports are used.

■ The second rule matches everything else and the action is set to IPSEC_DISCARD,
which means drop the packet.

These rules are added to the SPD at init-time (init_ipsec() calls
sa_init_static_data()) through the following call: SPD_Add()

Two other functions are defined but not currently used: SPD_Delete() and
SPD_Flush().

SAD
The SAD is also statically defined in sa_init_static_data.c. There are currently
two SA entries: one for the outbound SA and one for the inbound SA. Only the
outbound SA needs to be defined since the inbound SA is just a copy of the
outbound SA, except for the SPI.

sp_t sp_rule1 = {
1, /* rule # */
SA_OUTB1, /* outb_spi */
SA_INB1, /* inb_spi */
IPSEC_PROTECT, /* action */
SPD_PROTOCOL_MATCH_ALL, /* match on all protocols */
{ SPD_MATCH_ALL }, /* match all connections for now */
{ SPD_MATCH_ALL },
{ SPD_SINGLETON, 0, {6666} }, /* Only match UDP ports 6666, 7777 */
{ SPD_SINGLETON, 0, {7777} }, /* Only match UDP ports 6666, 7777 */

};
186 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

To perform various encryption and hashing scenarios, this SA entry is where the
user needs to make changes, as shown below:

The first element to note is the service type. If the user wants to test privacy
(encryption), leave INTEGRITY commented out. No hashing will be done. If the user
wants hashing, comment in the #define for INTEGRITY.

The next fields you might change are the encryption parameters: encr alg, encr
mode, encr key len, encr IV len, encr block len, and the encr key. The
IV is only used for certain modes, such as CBC for AES.

sa_t sa_outb1 = { /* First outbound SA */
 (void *)NULL, /* auth ndps cctx */
 (void *)NULL, /* encr ndps cctx */
 SA_OUTB1, /* SPI */
 1, /* SPD rule # */
 0, /* seq # */
 0x0d010102, /* local_gw_ip */
 0x0d010103, /* remote_gw_ip */
 {{0x0,0x14,0x4f,0x3c,0x3b,0x18}}, /* remote_gw_mac */
 PORT_CIPHERTEXT_TX, /* local_gw_nic */
//#define INTEGRITY
#ifdef INTEGRITY
 IPSEC_SVC_ESP_PLUS_INT, /* service type */
#else
 IPSEC_SVC_ESP, /* service type */
#endif
 IPSEC_TUNNEL_MODE, /* IPSec mode */
 0, /* dont use ESN */

 (int)NDP_CIPHER_AES128, /* encr alg */
 (int)NDP_AES128_ECB, /* encr mode */
 /*(int)NDP_AES128_CBC, /* encr mode */
 128/8, /* encr key len */
 0/8, /* encr IV len */
 16, /* encr block len */

 (int)NDP_HASH_SHA256, /* auth alg */
 0, /* auth mode */
 256/8, /* auth key len */
 256/8, /* auth hash len - will get a default */

 {{TEST_ENCR_KEY_128}}, /* encr key */
 {{TEST_AUTH_KEY_256}}, /* auth key */
 //{{TEST_ENCR_IV_128}}, /* encr IV */
 {{’\000’}}, /* auth IV - will get a default*/
 /* everything else is dynamic and does not need initing here */
Chapter 10 Reference Applications 187

It is important to ensure the proper key lengths and IV lengths in the table.

The user might then need to modify the hashing algorithms in a similar manner
assuming you chose INTEGRITY.

Eventually, the SPD and SAD need to be integrated with a Control Plane (CP) such
that the CP determines the static databases. There are two scenarios on how this
takes place: download the tables and shared memory.

Download the Tables

The CP uses the LDoms IPC mechanism to interface with Netra DPS to download
(add) or modify the SPD and SA. Some functionality already exists to build these
databases once the protocol is defined:

■ SPD_Add()

■ SPD_Delete()

■ SPD_Flush()

■ SADB_ADD()

Shared Memory

The CP sets up the tables in memory that is accessible from both the CP and Netra
DPS and informs the Netra DPS application of updates through the LDoms IPC
mechanism.

Packet Encapsulation and De-encapsulation
The main packet processing functions are called from the two processing threads
which reside in ipsecgw.c.

The main plaintext packet processing thread is called
PlaintextRcvProcessLoop() and it pulls a newly received packet out of a Netra
DPS fast queue and calls:

IPSEC_Process_Plaintext_Pkt(mblk)

The main ciphertext packet processing thread is called
CiphertextRcvProcessLoop() and it takes a packet off a fast queue and calls:
188 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

IPSEC_Process_Ciphertext_Pkt(mblk)

Find the IPSEC_Process_Plaintext_Pkt() and
IPSEC_Process_Ciphertext_Pkt() functions in:
ipsec_proc.c

The following two functions perform the hashing and invoke the actual processing
code:

■ IPSEC_ESP_Encapsulate()

■ IPSEC_ESP_Deencapsulate()

The message block (mblk) contains pointers to the start and end of the incoming
packets (b_rptr and b_wptr). Because plaintext packets must be prepended with a
new outer IP header and ESP header, the user application should not shift the
incoming packet data down which is a copy. Therefore, when the ethernet driver
asks for a new receive buffer through teja_dma_alloc(), a buffer is grabbed from
the receive buffer Netra DPS memory pool. The memory pool size is 2KB and the
memory pool function returns an offset into that buffer which tells the driver where
to place the packet data. This offset is set to 256 (MAX_IPSEC_HEADER), which is
enough space to prepend the IPSec header information.

Packet Encapsulation
This section contains notes on how to calculate the location of the various parts of
the ESP packet (outbound and inbound).
Chapter 10 Reference Applications 189

Outbound

Orig:
OrigIPStart
OrigIPLen (from original IP header, includes IP hdr + tcp/udp hdr + payload)

New:
 ETH_HDR_SIZE: 14
 IP_HDR_SIZE: 20
 ESP_HDR_FIXED: 8 (SPI + Seq#)
 EncIVLen: variable - from SA or cryp_ctx
 EncBlkSize: variable - from static structs
 AuthICVLen: variable - from SA or cryp_ctx

 ESPHdrLen = ESP_HDR_FIXED + EncIVLen
 ESPHdrStart = OrigIPStart - ESPHdrLen

NewIPStart = OrigIPStart - (ETH_HDR_SIZE + IP_HDR_SIZE + ESP_HDR_FIXED +
 EncIVLen)
 CryptoPadding = OrigIPLen % EncBlkSize
 ESPTrailerPadLen = 4
190 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

HashStart = ESPHdrStart
HashLen = ESPHdrLen + OrigIPLen + CryptoPadding + ESPTrailerPadLen

 CryptoStart = OrigIPStart
 CryptoLen = OrigLen + CryptoPadding + ESPTrailerPadLen

 NewIPLen = IP_HDR_SIZE + HashLen + AuthICVLen

NewPktStart---->0 1
 +---------------+
 |EtherHDR |
 +---------------+
NewIPStart----->14 15
 +---------------+
 |IP HDR |
 +---------------+
ESPHdrStart---->32 33
HashStart +---------------+<====== to be hashed from here
 |ESP HDR |
 +---------------+
 40 41
OrigIPStart---->+---------------+<====== to be crypted from here
 | Orig IP HDR |
 +---------------+
 .
 .
 .
CryptoLen +---------------+=== OrigIPLen + CryptoPadLen +
 ESP_TRAILER_FIXED

ICVLoc--------->+---------------+=== HashStart + HashedBytesLen
HashedBytesLen === ESPHdrLen + OrigIPLen + CryptoPadLen +
 ESP_TRAILER_FIXED;

NDPSCrypt(OrigIPStart, CryptoLen)
 NDPSHashDirect(ICVLoc, HashStart, HashedBytesLen)
Chapter 10 Reference Applications 191

Inbound

Memory Pools
The IPSec Gateway uses the Netra DPS memory pools shown in table. The names
and sizes are defined in ipsecgw_config.h:

OrigIPStart
OrigIPLen (from original IP header, includes IP hdr + tcp/udp hdr + payload)
HashStart = OrigIPStart + IP_HDR_SIZE
HashLen = OrigIPLen - (IP_HDR_SIZE + AuthICVLen)

CryptoStart = HashStart + ESP_HDR_FIXED + EncIVLen
CryptoLen = HashLen - (ESP_HDR_FIXED + EncIVLen)

PadOffset = HashStart + HashLen - 2
PadLen = *PadOffset

NewIPStart = CryptoStart
NewIPLen = same as tunneled IPLen - get from IP header

TABLE 10-5 Netra DPS Memory Pools

Memory Pool Description

SPDC_ENTRY_POOL Pool for SPDC entries stored in the SPDC hash table.

SPI_ENTRY_POOL Pool for SPI entries stored in the SPI hash table. These hash
tables are actually arrays indexed by the hash value
(masked with the hash table size).

SP_POOL Pool of SP entries.

SA_POOL Pool of SA entries.

CRYP_CTX_POOL Crypto context structures (maintained by the Crypto API library).
192 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Pipelining
The two main processing threads (PlaintextRcvProcessLoop and
CiphertextRcvProcessLoop) are pipelined into two threads: one to perform most
of the packet encapsulation and de-encapsulation, and the other to perform the
encryption and decryption and optional hashing.

An extra fast queue is inserted in each path. For example, the pipeline for the eight
threads configurations is shown as follows:

The two new threads (EncryptAndHash and HashAndDecrypt) reside in
ipsec_processing.c rather than ipsecgw.c where the other threads reside.

The packet processing portion of this pipeline must pass the packet to the crypto
part of the pipeline. Packets are normally passed on fast queues through the mblk
pointer. Other vital information also needs to be passed, such as the SA pointer.
Rather than allocation of a new structure to pass the data and the mblk (message
block), this data is piggy-backed at the beginning of the receive buffer, which is not
used. Refer to the cinfo structure defined in ipsec_processing.c.

Source Code File Description
The IPSec package comes with the following directories:

■ </opt/SUNWndpsc>/src/apps/ipsec-gw-nxge

This directory consists of IPSec code that supports the Sun multithreaded 10G
Ethernet on PCI-E or on-chip NIU in UltraSPARC T2.

■ </opt/SUNWndpsc>/src/libs/ndps_crypto_api

This directory consists of Crypto API that interface to the Crypto hardware.

■ </opt/SUNWndpsc>/src/libs/ipsec

This directory consists of IPSec library functions.

PlaintextRcvPacket ->
PlaintextRcvProcessLoop ->

EncryptAndHash ->
CiphertextXmitPacket -> Network port 1 ---->

LOOPBACK
<- CiphertextRcvPacket <- Network port 2 <----

<- CiphertextRcvProcessLoop
<- HashAndDecrypt

PlaintextXmitPacket
Chapter 10 Reference Applications 193

Build Script

Usage
./build <cmt> <type> [auth] [-hash FLOW_POLICY]

Build Script Arguments
< > – Required arguments

[] – Optional arguments

Argument Descriptions
<cmt>

This is an argument specifying whether to build the IPSec Gateway application to
run on the CMT1 platform or CMT2 platform.

cmt1 – Build for CMT1 (UltraSPARC T1)
cmt2 – Build for CMT2 (UltraSPARC T2)

<type>

This argument specifies the application type. Available application types are shown
as follows.

ipcrypto

Build the ipsecgw application to run Crypto on IP packets only (no IPSec protocol).
This application configuration can be used to measure raw Crypto overheads.

qgc

Build the ipsecgw application to run on the Sun Multithreaded Quad Gigabit
Ethernet.

10g_niu

Build the ipsecgw application to run one application instance on the UltraSPARC
T2 10G Ethernet (NIU).

niu_multi

Build the ipsecgw application to run up to four application instances on the
UltraSPARC T2 10G Ethernet (NIU).
194 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

niu_tunnel_in

Build the ipsecgw application to run up to eight application instances on the
UltraSPARC T2 10G Ethernet (NIU).

niu_tunnel_out

Build the ipsecgw application to run up to eight application instances on the
UltraSPARC T2 10G Ethernet (NIU).

[auth]

This is an optional argument to apply Authentication (hashing protocol) to the
packet stream along with Crypto. The hash algorithm is specified in the
sa_init_static_data.c source file.

[-hash FLOW_POLICY]

This is an optional argument used to enable flow policies. Refer to TABLE 10-2 for the
Flow Policies for all flow policy options.

The file descriptions in the following tables are based on the files in the
ipsec-gw-nxge directory.

TABLE 10-6 lists the source files.

TABLE 10-6 Source Files

Source File Description

common.h Header file consists of common information.

config.h Consists of receive buffer configuration information.

debug.c Used when compiling in DEBUG mode (see IPSEC_DEBUG in
the Makefile to turn on IPSec debugs). This file contains the
debug thread that calls teja_debugger_check_ctrl_c().

init.c Main initialization code called by Netra DPS runtime for
setting up fast queues and initializing the Crypto library and
the IPSec code.

init_multi.c Main initialization code called by Netra DPS runtime for
setting up fast queues used by the IPSec multiple instances
code.

ip_crypto.c Location of the main application threads for the IPSec crypto
(Crypto only, no IPSec overhead).

ipsec_niu_config.c Assists user to map application tasks to CPU core and
hardware strands of the UltraSPARC T2 chip specific to the
NIU (Network Interface Unit of the UltraSPARC T2 chip)
configuration.

ipsecgw.c Contains the main application threads.
Chapter 10 Reference Applications 195

TABLE 10-7 lists the IPSec library files.

ipsecgw_config.c Assists user to map application tasks to CPU core and
hardware strands.

ipsecgw_flow.c Contains the classification flow entries.

ipsecgw_flow.h Contains the definitions of the classification flow.

ipsecgw_impl_config.
h

Contains the information related to mblk, receive buffer
sizes, number of channels, SA, SPDC.

ipsecgw_niu.c Main application thread for the NIU configuration.

ipsecgw_niu_multi.c Main application thread for the NIU multi-instances
configuration.

lb_objects.h Contains memory pool definitions.

mymalloc.c Used by the low-level crypto-code.

mymalloc.h Memory pool definitions used by Crypto library.

perf_tools.c Used for profiling (not available on UltraSPARC T2).

perf_tools.h Used for profiling (not available on UltraSPARC T2).

rx.c Packet receive code which uses ethernet API.

tx.c Packet xmit code which uses ethernet API encryption and
hashing algorithms.

user_common.c Contains the callback functions used by the Netra DPS
ethernet APIs.

user_common.h Contains fast queue definitions and function prototypes.

util.c Contains IPSec utility functions.

TABLE 10-7 IPSec Library Files

IPSec Library File Description

init_ipsec.c Code that is called at startup to initialize IPSec structures.

ipsec_common.h Function prototypes, some common macros, other definitions.

ipsec_defs.h IPSec protocol definitions and macros.

ipsec_proc.c This is the main IPSec processing code. This is where all the
encapsulation-encryption, de-encapsulation-decryption and
hashing functions reside.

netdefs.h Constant and macro definitions of common ethernet and IP
protocols.

TABLE 10-6 Source Files (Continued)

Source File Description
196 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

TABLE 10-8 lists the Crypto library files.

Reference Applications Configurations
IPSec and Crypto has five reference application configurations:

■ “IP with Encryption and Decryption” on page 198

■ “IPSec Gateway on Quad GE” on page 199

■ “IPSec Gateway on NIU 10G Interface (One Instance)” on page 200

■ “IPSec Gateway on NIU 10G Interface (Up to Four Instances)” on page 201

■ “Multiple Instances (Up to Eight Instances) Back-to-Back Tunneling
Configuration” on page 204

sa_init_static_data.c Contains the statically-defined SAD and SPD. This is the file to
modify for testing various SA configurations.

sadb.c SADB functions.

sadb.h SADB definitions.

spd.c SPD functions.

spd.h SPD definitions.

TABLE 10-8 Crypto Library Files

Crypto Library File Description

crypt_consts.h Contains various crypto constants.

ndpscript.c Contains Crypto API implementations.

ndpscrypt.h Contains data structures and function prototypes.

ndpscrypt_impl.h Contains Crypto Context structure.

TABLE 10-7 IPSec Library Files (Continued)

IPSec Library File Description
Chapter 10 Reference Applications 197

IP with Encryption and Decryption
This configuration can be used to evaluate the raw performance of the Crypto
Engine. Two UltraSPARC T2 crypto engines are used. One for encryption, one for
decryption.

Default Configuration

■ Equipment Required

■ One UltraSPARC T2-based system

■ One Traffic Generator port

■ Two NIU 10G Ethernet ports (two XAUI cards)

■ One pair of straight connect copper cable, one cross-over copper cable

■ Build Method

■ ./build cmt2 ipcrypto

■ Traffic Generator Configuration

■ Frame Data – Select EthernetII, IPv4 + UDP/IP

■ DA MAC – MAC ID of port 0 (the recipient of plaintext)

■ IPv4 – SA=69.235.4.0 DA=69.235.4.1

■ UDP – SP=6666 DP=7777; this has to be consistent with sp_rule1 in
src/libs/ipsec/sa_init_static_data.c

■ Payload – Fill Pattern = 0x55

RX encrypt

TX

RX

TX

port 0

port 1

port 0

port 1

decrypt
198 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

■ Static Data (sa_init_static_data.c) Configuration

■ Use default

IPSec Gateway on Quad GE
This configuration implements one traffic flow on the PCIE Quad Gigabit Ethernet
card.

Default Configuration

■ Equipment Required

■ One UltraSPARC T2-based system

■ One Traffic Generator port

■ One PCIE Quad Gigabit Ethernet card

■ One pair of straight connect copper cable, one cross-over copper cable

■ Build Method

■ ./build cmt2 qgc

■ Traffic Generator Configuration

■ Frame Data – Select EthernetII, IPv4 + UDP/IP

■ DA MAC – MAC ID of port 0 shown in the above diagram

■ IPv4 – SA=69.235.4.0 DA=69.235.4.1

RX encrypt/hashipsec

TX hash/decrypt

RX

TX

port 0

port 2

port 3

port 1

ipsec
Chapter 10 Reference Applications 199

■ UDP – SP=6666 DP=7777; this has to be consistent with sp_rule1 in
src/libs/ipsec/sa_init_static_data.c

■ Payload – Fill Pattern = 0x55

■ Static Data (sa_init_static_data.c) Configuration

■ Must specify Remote Gateway MAC ID (port 2) in the MAC ID entry of
sa_outb1.

IPSec Gateway on NIU 10G Interface (One Instance)
This configuration runs one instance of IPSec Gateway Application on the NIU 10G
Ethernet interface. Two UltraSPARC T2 Crypto engines are used. One for
encrypt/hash, the other for hash/decrypt. This configuration is not yet supported
on the Netra CP3260 platform.

Default Configuration

■ Equipment Required

■ One UltraSPARC T2-based system

■ One Traffic Generator port

■ One PCIE 10G Ethernet card

■ One pair of straight connect copper cable, one cross-over copper cable

RX ipsec

TX hash/decrypt

RX

TX

port 1

port 0

port 1

port 0

ipsec

encrypt/hash
200 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

■ Build Method

■ For Crypto only:
./build cmt2 10g_niu -hash <FLOW_POLICY>

■ For Crypto and Authentication:
./build cmt2 10g_niu auth -hash <FLOW_POLICY>

■ Policy TCAM_CLASSIFY is recommended for both configurations.

■ Traffic Generator Configuration

■ Frame Data – select EthernetII, IPv4 + UDP/IP

■ DA MAC – MAC ID of port 1 shown in the diagram in “Default
Configuration” on page 200

■ IPv4 – SA=69.235.4.0 DA=69.235.4.1

■ UDP – SP=6666 DP=7777; this has to be consistent with sp_rule1 in
src/libs/ipsec/sa_init_static_data.c

■ Payload – Fill Pattern = 0x55

■ Static Data (sa_init_static_data.c) Configuration

■ Must specify Remote Gateway MAC ID (port 0) in the MAC ID entry of
sa_outb1.

IPSec Gateway on NIU 10G Interface (Up to Four
Instances)
This configuration implements multiple instances of IPSEC Gateway Application on
the NIU interface through internal loopback. Eight UltraSPARC T2 Crypto engines
are used. Four to perform encrypt/hash, four to perform decrypt/hash.
Chapter 10 Reference Applications 201

Default Configuration

■ Equipment Required

■ One UltraSPARC T2-based system

■ One Traffic Generator port

■ One NIU 10G Ethernet port (one XAUI card)

■ One straight connect fiber cable

■ Build Method

■ For Crypto only:
./build cmt2 niu_multi -hash <FLOW_POLICY>

■ For Crypto and Authentication:
./build cmt2 niu_multi auth -hash <FLOW_POLICY>

Note – To build for running on Netra ATCA CP3260 systems, HASH_POLICY
options are limited to the following policies: IP_ADDR, IP_DA, and IP_SA.

■ Traffic Generator Configuration

■ Frame Data – Select EthernetII, IPv4 + UDP/IP

■ DA MAC – MAC ID of port 0 shown in the diagram in “Default
Configuration” on page 202

■ IPv4 – If <FLOW_POLICY> is IP_ADDR (default)
SA=69.235.4.0
DA=69.235.0.0 ~ 69.235.255.255 (continue increment by 1)

Port 0, DMA Channels 0 to 3

RX

RX

RX

RX

ipsec

ipsec

ipsec

ipsec

ipsec

ipsec

ipsec

ipsec

TX

TX

TX

TX

encrypt/hash

encrypt/hash

encrypt/hash

encrypt/hash

hash/decrypt

hash/decrypt

hash/decrypt

hash/decrypt

DMA CHAN0

DMA CHAN1

DMA CHAN2

DMA CHAN3
202 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

– If <FLOW_POLICY> is TCAM_CLASSIFY
SA=69.235.4.0
DA=69.235.4.1 ~ 69.235.4.4 (increment by 1 and repeat every 4 counts)

■ UDP – SP=6666 DP=7777; this has to be consistent with sp_rule1 in
src/libs/ipsec/sa_init_static_data.c

■ Payload – Fill Pattern = 0x55

Note – This setting of the traffic generator applies to the Sun SPARC Enterprise
T5120 and T5220 systems. For Netra ATCA CP3260 systems, see “Flow Policy for
Spreading Traffic to Multiple DMA Channels” on page 207.

Note –
To build for Netra CP3260, in src/libs/ipsec/sa_init_static_data.c, the
sa_outb1 remote_gw_mac must be set to the port address of the outgoing
Ethernet port.

■ Static Data (sa_init_static_data.c) Configuration

■ Use default

Note – In the application configuration file (for example,
ipsecgw_niu_config.c), if port 0 is used, no action is required; if port 1 is used,
add: ..., OPEN_OPEN, NXGE_10G_START_PORT+1, ...
Chapter 10 Reference Applications 203

Multiple Instances (Up to Eight Instances) Back-to-Back
Tunneling Configuration
This configuration implements multiple instances of the IPSec Gateway Application
on the NIU interfaces through back-to-back between two systems.

Default Configuration

System1 (tunnel in):

Port 0

RX

RX

RX

RX

ipsec

ipsec

ipsec

ipsec

TX

TX

TX

TX

encrypt/hash

encrypt/hash

encrypt/hash

encrypt/hash

DMA CHAN0

DMA CHAN1

DMA CHAN2

DMA CHAN3

To System2 Port0

Port 1

RX

RX

RX

RX

ipsec

ipsec

ipsec

ipsec

TX

TX

TX

TX

encrypt/hash

encrypt/hash

encrypt/hash

encrypt/hash

DMA CHAN4

DMA CHAN5

DMA CHAN6

DMA CHAN7

To System2 Port0

To System2 Port0

To System2 Port0

To System2 Port0

To System2 Port0

To System2 Port0

To System2 Port0
204 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

System1 (tunnel out):

■ Equipment Required

■ Two UltraSPARC T2-based systems

■ Two Traffic Generator ports

■ Four NIU 10G Ethernet ports (four XAUI cards, two for each system)

■ Two pair of straight connect fiber cables, one pair of cross-over fiber cable

Port 0

RX

RX

RX

RX

TX

TX

TX

TX

DMA CHAN0

DMA CHAN1

DMA CHAN2

DMA CHAN3

Port 1

RX

RX

RX

TX

TX

TX

TX

DMA CHAN4

DMA CHAN5

DMA CHAN6

DMA CHAN7

ipsec

ipsec

ipsec

ipsec

hash/decrypt

hash/decrypt

hash/decrypt

hash/decrypt

ipsec

ipsec

ipsec

ipsec

hash/decrypt

hash/decrypt

hash/decrypt

hash/decryptRX
Chapter 10 Reference Applications 205

■ Build Method

■ Two different binaries are required to run the back-to-back Tunneling
configuration. The following shows the two different methods generating the
binaries for the corresponding system.

- System1:

For Crypto only:
./build cmt2 niu_tunnel_in -hash <FLOW_POLICY>

For Crypto and Authentication:
./build cmt2 niu_tunnel_in auth -hash <FLOW_POLICY>

- System2:

For Crypto only:
./build cmt2 niu_tunnel_out -hash TCAM_CLASSIFY

For Crypto and Authentication:
./build cmt2 niu_tunnel_out auth -hash TCAM_CLASSIFY

Note – Although other hash policies may still be used to generate binary for
System2, traffic may not spread evenly on the System2 Rx input. TCAM_CLASSIFY
policy will guarantee that traffic will spread evenly among the 8 DMA channels for
this particular configuration.

■ Traffic Generator Configuration

■ Frame Data – select EthernetII, IPv4 + UDP/IP

■ DA MAC – MAC ID of System1 port 0 shown in the diagram in “Default
Configuration” on page 204

■ IPv4 – If <FLOW_POLICY> is IP_ADDR (default)
SA=69.235.4.0
DA=69.235.0.0 ~ 69.235.255.255 (continue increment by 1)

–If <FLOW_POLICY> is TCAM_CLASSIFY
SA=69.235.4.0
DA=69.235.4.1 ~ 69.235.4.8 (increment by 1 and repeat every 8 counts)

■ UDP – SP=6666 DP=7777; this has to be consistent with sp_rule1 in
src/libs/ipsec/sa_init_static_data.c

■ Payload – Fill Pattern = 0x55

■ Static Data (sa_init_static_data.c) Configuration

■ Must specify Remote Gateway MAC ID (System2 port 0) in the MAC ID entry
of sa_outb1.
206 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Note – In the application configuration file (for example,
ipsecgw_niu_config.c), if port 0 is used, no action is required; if port 1 is used,
add: ..., OPEN_OPEN, NXGE_10G_START_PORT+1, ...

Flow Policy for Spreading Traffic to Multiple
DMA Channels
The user can specify a policy for spreading traffic into multiple DMA flows by
hardware hashing or by hardware TCAM lookup (classification). Refer to TABLE 10-2
for flow policy options.

▼ To Enable a Flow Policy
● Add the following into the gmake line:

FLOW_POLICY=policy

whereas policy is one of the above specified policies.

For example, to enable hash on an IP destination and source address, run the build
script with the following arguments:

Note – If you specify FLOW_POLICY=HASH_ALL which is backward compatible with
Sun SPARC Enterprise T5120/T5220 systems, all fields are used.

If none of the policies in TABLE 10-2 are specified (do not specify the FLOW_POLICY in
the above gmake line, for example, #FLOW_POLICY=HASH_IP_ADDR, a default
policy will be given. When the default policy is used, all level (L2/L3/L4) header
fields are used for spreading traffic.

% ./build cmt2 niu_multi -hash FLOW_POLICY=HASH_IP_ADDR
Chapter 10 Reference Applications 207

Traffic Generator Application
This section explains how to compile Netra DPS traffic generator tool (ntgen), how
to use the tool, and the options provided by this tool.

The traffic generator (ntgen) tool allows the generation of IPv4 UDP packets with
options to modify various header fields in headers of all layers.

The traffic generator operates only with LDoms enabled. The user interface
application runs in the Solaris LDoms and the ntgen tool runs in the Netra DPS
domain.

The user interface application provides a template packet to ntgen with user-
provided options for modifications. The traffic generator creates new packets using
the template packet and applies the modifications as per the user options and
transmits the packets.

The template packets are read by the user interface application from a snoop capture
file (see the templates/ directory in the ntgen application directory.). This chapter
explains the various options provided by the ntgen tool, methods on using ntgen,
and compiling with the ntgen build script.

Note – tnsmctl -P -v is required to start the traffic generator on systems that use
NIU. The user interface application must be run as root in the Solaris LDoms. On Sun
SPARC Enterprise T5120 and T5220 systems, 4Gb of memory is required.

User Interface
The ntgen control plane application is represented by the binary ntgen.

● To start ntgen, type:

Usage

./ntgen [options ...] filename

See TABLE 10-9 for the list of options.

% ./ntgen
208 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Parameters

filename – Snoop file

See “Parameters Description” on page 220 for further descriptions and examples.

TABLE 10-9 lists the options for the ntgen control plane application. See -I for further
descriptions and examples.

TABLE 10-9 Traffic Generator Control Plane Application Options

Option Description

-h Prints this message.

-D Sets destination MAC address.

-S Sets source MAC address.

-A Sets source and destination IPv4 addresses.

-P Sets payload size.

-p Sets UDP source and destination ports.

-V Sets VLAN ID range.

-k Sets GRE key range.

-iD Destination MAC address increment mask.

-iS Increment source IP address, destination IP address host or network.

-iA Increment SIP,DIPs host or network.

-ip Increment UDP source/destination port.

-iV Increment or decrement VLAN ID.

-ik Increment or decrement GRE key.

-dD Destination MAC address decrement mask.

-dS Source MAC address decrement mask.

-dA Decrement source IP address, destination IP address host or network.

-dp Decrement UDP source or destination port.

-c Continuous generation.

-n Generate number of packets specified.

-I Ingress/receive only mode.
Chapter 10 Reference Applications 209

Option Descriptions

-h

Prints displayed message.

Example

ntgen -h

-D xx:xx:xx:xx:xx:xx
Change destination MAC address

Allows the user to change the destination MAC address of a packet. The destination
MAC address is specified in the colon format.

Example

ntgen -D aa:bb:cc:dd:ee:00 filename

-S xx:xx:xx:xx:xx:xx
Change source MAC address

Allows the user to change the source MAC address of a packet. The source MAC
address is specified in the colon format.

Example

ntgen -S 11:22:33:44:55:00 filename

-A xx.xx.xx.xx, yy.yy.yy.yy
Change IP addresses

Allows the user to change the source and destination IP addresses in the packet. The
IP addresses are specified in the dotted decimal notation.

The first argument in the option is the source IP address. The second argument in
the option is the destination IP address. An asterisk (*) can be specified for either the
source IP address or the destination IP address to imply that no change needs to be
done for that parameter.

Examples

■ ntgen -A 192.168.1.1,192.168.2.1 filename

In this example, the source IP address is changed to 192.168.1.1 and the
destination IP address is changed to 192.168.2.1.
210 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

■ ntgen -A 192.168.1.10,* filename

In this example, the source IP is changed to 192.168.1.10 and the destination IP is
unchanged. The destination IP in this case is retained as it is in the template
packet.

-p xx,yy
Change UDP port numbers

Allows the user to change the UDP source port and destination port numbers.

The first argument is the UDP source port number and the second argument is the
UDP destination port number. An asterisk (*) can be specified for either the source
port or the destination port to imply that no change needs to be done to that
parameter. In that case, the value present in the template packet is retained.

Examples

■ ntgen -p 1111,2222 filename

In this example, the source port number is changed to 1111 and the destination
port number is changed to 2222.

■ ntgen -p *,2222 filename

In this example, the source port number remains unchanged from its value in the
template packet. The destination port number is changed to 2222 in the packets
generated.

-P x
Change UDP payload size

Allows the user to increase the UDP payload size. The value specified must be
between 1 and 65536. The value denotes the number of bytes that needs to be
added to the payload.

Example

ntgen -P 1024 filename

In this example, the UDP packet payload size gets incremented by 1024 bytes, that
is, original size plus 1024 bytes is the new payload size.

Note – Currently, the -P option is not supported for GRE encapsulated UDP
datagrams.
Chapter 10 Reference Applications 211

-V VLAN ID Start Value, VLAN ID End Value
Change VLAN IDs
Allows the user to create Ethernet frames with 802.1Q VLAN tags in the traffic
packets. The Ethernet header of each packet that is generated is appended with a
VLAN tag. The VLAN Identifier (VLAN ID) in the VLAN tags of the outgoing frames
vary between VLAN ID Start Value and VLAN ID End Value. Two methods of VLAN
ID variation are provided through the -iV option. When the -iV option is used
with an argument of 1, the VLAN IDs are incremented. When the -iV option is used
with an argument of 0, the VLAN IDs are decremented. See the explanation of the
-iV option for further details and examples.

Example

■ ntgen -V 100,4094 filename

In this example, Ethernet frames with VLAN tags are generated where the VLAN
IDs in the VLAN tags of all frames are set to 100, that is, the VLAN ID start value.
The VLAN IDs do not vary in this example since the -iV option is not used.

■ ntgen -V 1,4094 -iV 1 filename

In this example, Ethernet frames with VLAN tags are generated where the VLAN
IDs in the VLAN tags vary from 1 to 4094 in an incremental fashion.

■ ntgen -V 1,4094 -iV 0 filename

In this example, Ethernet frames with VLAN tags are generated where the VLAN
IDs in the VLAN tags vary from 1 to 4094 in a decremental fashion.

-k GRE Key Start Value, GRE Key End Value
Change GRE Keys
Allows the user to change the GRE key of GRE encapsulated packets in the range
specified using this option. The GRE Key field in the generated packets will vary
between the GRE Key Start value and the GRE Key End value. Two methods of the
GRE Key variation are provided with the -ik option. When the -ik option is used
with value 1, GRE Keys are incremented. When the -ik option is used with value 0,
the GRE keys are decremented. See “-ik 1/0 Increment or decrement GRE Key” on
page 216 for further details.

Example

■ ntgen -k 1,1000 -ik 1 filename

In this example, GRE keys in the generated traffic start from 1 and increase to 1000.

■ ntgen -k 1,1000 -ik 0 filename

In this example, GRE keys in the generated traffic start from 1000 and decrease to 1.

Note – Only the file_gre_novlan template file can be used with this option.
212 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

-iD xx:xx:xx:xx:xx:xx
Increment destination MAC address

Allows the user to specify the bytes in the destination MAC address that is specified
using the -D option, to be incremented. The option is followed by the byte mask. An
ff implies increment the byte and 0 implies no increment for that byte.

Examples

■ ntgen -D aa:bb:cc:dd:ee:00 -iD 00:00:00:00:00:ff filename

In this example, only byte 0 is incremented.

■ ntgen -D aa:bb:cc:dd:ee:00 -iD ff:ff:ff:ff:ff:ff filename

In this example, all bytes are incremented.

-iS xx:xx:xx:xx:xx:xx
Increment source MAC address

Allows the user to specify the bytes in the source MAC address that is specified
using the -S option, to be incremented. The option is followed by the byte mask. An
ff implies increment the byte and a 0 implies no increment for that byte.

Examples

■ ntgen -S aa:bb:cc:dd:ee:00 -iS 00:00:00:00:00:ff filename

In this example, only byte 0 is incremented.

■ ntgen -S aa:bb:cc:dd:ee:00 -iS ff:ff:ff:ff:ff:ff filename

In this example, all bytes are incremented.

-iA host/net/[pfx]/*, host/net/[pfx]/*
Increment the host or the network portion of an IP address

Allows the user to increment the source IP address and destination IP address (that
were specified using the -A option) based on the IP address class or based on a
prefix. The first argument corresponds to the source IP address of a packet. The
second argument corresponds to the destination IP Address of a packet.

A class-based increment can be done by using the host or net arguments with the
-iA option. ntgen determines the class of IP address (class A, class B, class C or
class D) that is specified with the -A option. From the class, it determines the length
of the host part and the network part of the IP address. Then, based on the
parameters passed through the -iA option, either the host part or the network part
of the IP address is incremented. If an asterisk (*) is passed, then the IP address is
not incremented.
Chapter 10 Reference Applications 213

The string net denotes that the network portion of the corresponding IP address
needs to be incremented. The string host denotes that the host part of the IP address
needs to be incremented.

Prefix-based increment can be done by providing the prefix length argument with
the -iA option. The user provides a prefix length for each IP address (source and
destination) as an arguments to the -iA option. This is used to calculate the portion
of the IP address that must be incremented. If an asterisk (*) is passed, then the
corresponding IP address is not incremented.

Note – Currently, only 16 bits of an IP address can be incremented using either
class-based or prefix-based methods.

Examples

■ ntgen -A 192.168.1.1,192.168.2.1 -iA net,host filename

In this example, the network portion of the source IP address and the host portion
of the destination IP address are incremented

■ ntgen -A 192.168.1.1,192.168.2.1 -iA host,host filename

In this example, the host portion of both the source and destination IP addresses
are incremented.

■ ntgen -A 192.168.10.10,192.168.10.20 -iA host,* filename

In this example, the host portion of the source IP address is incremented. The
destination IP address is not incremented.

■ ntgen -A 10.10.10.10,10.10.10.11 -iA 10,12 filename

In this example, the source IP address is incremented with a prefix length of 10
and the destination IP address is incremented with a prefix length of 12.

■ ntgen -A 10.10.10.10,10.10.10.11 -iA 10,* filename

In this example, the source IP address is incremented with a prefix length of 10.
The destination IP address is not incremented.
214 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

-ip 0/1, 0/1
Increment the UDP source and destination port

Allows the user to increment the UDP source port and destination port numbers.
The first argument corresponds to the UDP source port and the second argument to
the UDP destination port. 0 implies no increment and 1 implies that increment is
needed.

Examples

■ ntgen -p 1111,2222 -ip 0,1 filename

In this example, the source port is not incremented, but the destination port is
incremented.

■ ntgen -p 1111,2222 -ip 1,1 filename

In this example, both the source and destination ports are incremented.

-iV 1/0
Increment or decrement VLAN ID

Allows the user to increment or decrement VLAN IDs in the VLAN tag s of the
generated Ethernet frames. Argument 1 denotes increment operation and a 0
denotes decrement operations.

The VLAN IDs are provided by the user using the -V option. For increment
operation, the first VLAN ID is the VLAN ID Start Value that is provided in the -V
option. Thereon, the VLAN ID is incremented for each subsequent frame until VLAN
ID End Value provided with the -V option is reached. Then the VLAN ID wraps
around to the VLAN ID Start Value and the sequence is repeated.

For the decrement operation, the first VLAN ID is the VLAN ID End Value that is
provided with the -V option. Thereon, the VLAN ID is decremented for each
subsequent frame until VLAN ID Start Value provided with the -V option is reached.
Then the VLAN ID wraps around to the VLAN ID End Value and the sequence is
repeated.

Examples

■ ntgen -V 100,200 -iV 1 filename

In this example, Ethernet frames are appended with a VLAN tag that contain VLAN
ID in the range 100 to 200. The VLAN IDs are incremented for each frame starting
at 100 until 200.

■ ntgen -V 100,200 -iV 0 filename

In this example, Ethernet frames are appended with a VLAN tag that contain VLAN
ID in the range 200 to 100. The VLAN IDs are decremented for each frame starting
at 200 until 100.
Chapter 10 Reference Applications 215

-ik 1/0
Increment or decrement GRE Key

Allows the user to increment or decrement GRE Keys in the GRE header of the
generated GRE packets. An argument of 1 denotes increment operation and a 0
denotes decrement operation. The GRE Keys are provided using the -k option.

For the increment operation, the first GRE key is the GRE Key Start Value provided
with the -k option. Thereon, the GRE Key is incremented for each subsequent
packet until the GRE Key End value provided with the -k option is reached. The
GRE Key then wraps around to the GRE Key Start Value and the sequence is
repeated.

For the decrement operation, the first GRE key is the GRE Key End Value provided
with the -k option. Thereon, the GRE Key is decremented for each subsequent
packet until the GRE Key Start Value provided with the -k option is reached. The
GRE Key then wraps around to the GRE Key End Value and the sequence is
repeated.

Examples

■ ntgen -k 1,100 -ik 1 filename

In this example, GRE packets with key values in the range 1 to 100 are generated.
The key value is incremented for each packet starting at 1 until 100.

■ ntgen -k 1,100 -ik 0 filename

In this example, GRE packets with key values in the range 100 to 1 are generated.
The key value is decremented for each packet starting at 100 until 1.

-dD xx:xx:xx:xx:xx:xx
Decrement destination MAC address

Allows the user to specify the bytes in the destination MAC address, that is specified
using the -D option, to be decremented. The option is followed by a byte mask. An
ff implies decrement the byte and a 00 implies no decrement for that byte.

Examples

■ ntgen -D aa:bb:cc:dd:ee:00 -dD 00:00:00:00:00:00 filename

In this example, only byte 0 of the MAC address is decremented.

■ ntgen -D aa:bb:cc:dd:ee:00 -dD ff:ff:ff:ff:ff:ff filename

In this example, all bytes of the MAC address are decremented.
216 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

-dS xx:xx:xx:xx:xx:xx
Decrement source MAC address

Allows the user to specify the bytes in the source MAC address, that is specified
using the -S option, to be decremented. The option is followed by a byte mask. An
ff implies decrement the byte and a 00 implies no decrement for that byte.

Examples

■ ntgen -S aa:bb:cc:dd:ee:00 -dS 00:00:00:00:00:00 filename

In this example, only byte 0 of the MAC address is decremented.

■ ntgen -S aa:bb:cc:dd:ee:00 -dS ff:ff:ff:ff:ff:ff filename

In this example, all bytes of the MAC address are decremented.

-dA host/net/[pfx]/*, host/net/[pfx]/*
Decrement the host or the network portion of an IP address

Allows the user to decrement the source IP address and destination IP address (that
were specified using the -A option) based on the IP address class or based on a
prefix. The first argument corresponds to the source IP address of a packet. The
second argument denotes the destination IP address of a packet.

A class-based decrement can be done by using the host or net arguments with the
-dA option. ntgen determines the class of the IP address (class A, class B, class C or
class D) that is specified using the -A option. From the class, it determines the length
of the host part and the network part of the IP address. Then, based on the
parameters passed through the -iA option, either the host part or the network part
of the IP address is decremented. If an asterisk (*) is passed, then the IP address is
not decremented.

The string net denotes that the network portion of the corresponding IP address
needs to be decremented. The string host denotes that the host part of the
corresponding IP address needs to be decremented.

Prefix-based decrement can be done by providing the prefix length argument with
the -dA option. The user provides a prefix length for each IP address (source and
destination) as an argument to the -dA option. This is used to calculate the portion
of the IP address that needs to be decremented. If an asterisk (*) is passed, then the
corresponding IP address is not decremented.

Note – Currently, only 16 bits of an IP address can be decremented using either
class-based or prefix-based methods.
Chapter 10 Reference Applications 217

Examples

■ ntgen -A 192.168.1.1,192.168.2.1 -dA net,host filename

In this example, the network portion of the source IP address and the host portion
of the destination IP address are decremented.

■ ntgen -A 192.168.1.1,192.168.2.1 -dA host,host filename

In this example, the host portion of both the source and destination IP addresses
are decremented.

■ ntgen -A 192.168.10.10,192.168.10.20 -iA host,* filename

In this example, the host portion of the source IP address is decremented. The
destination IP address is not decremented.

■ ntgen -A 10.10.10.10,10.10.10.11 -dA 10,12 filename

In this example, the source IP address is decremented using a prefix length of 10
and the destination IP address is decremented using a prefix length of 12.

■ ntgen -A 10.10.10.10,10.10.10.11 -dA 10,* filename

In this example, the source IP address is decremented using a prefix length of 10.
The destination IP address is not decremented.

-dp 0/1,0/1
Decrement the UDP source and destination port

Allows the user to decrement the UDP source port and destination port numbers.
The first argument corresponds to the UDP source port and the second argument to
the UDP destination port. A 0 implies no decrement and a 1 implies that decrement
is needed.

Examples

■ ntgen -p 1111,2222 -dp 0,1 filename

In this example, the UDP source port is not decremented, but the destination port
is decremented.

■ ntgen -p 1111,2222 -dp 1,1 filename

In this example, both the source and destination ports are decremented.
218 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

-c
Generate packets continuously

Allows the user to generate packets continuously.

Example

■ ntgen -c filename

In this example, the packets in the file are generated continuously without
applying any modifications.

■ ntgen -D aa:bb:cc:dd:ee:00 -S 11:22:33:44:55:00
-A 192.168.10.10,192.168.10.11 -p 9999,8888
-iD ff:ff:ff:ff:ff:ff -iS ff:ff:ff:ff:ff:ff -iA host,host
-ip 1,1 -c filename

In this example, all the modifications pertaining to the options specified are
applied and the packets are generated continuously.

-n <number of packets>
Generate a specified number of packets

Allows the user to specify the number of packets that need to be generated.

Examples

ntgen -n 1000000 filename

In this example, a million packets are generated.

-I
Ingress or Receive only mode

Allows the user to run the traffic generator in ingress mode. In this mode the traffic
generator only receives packets, displays statistics about the ingress traffic and
discards the received traffic. This option takes no arguments.
Chapter 10 Reference Applications 219

Parameters Description
filename – The Snoop input file

Allows the user to specify a snoop file that contains the template packet to be used
for creating the traffic packets. One of the files in the templates/ directory in the
ntgen application directory can be used. These files contain packets whose fields
can be modified with the ntgen tool options. These snoop files can be analyzed by
the user using the snoop program in Solaris. The protocol header fields can be
modified using the options provided by ntgen. A detailed explanation of the
template snoop files is provided in “Template Files” on page 221.

Note – Only one packet (the first) from a snoop is used by ntgen for generating
traffic.

Notes

The increment options (-iD, -iS, -iA and -ip) and the decrement options (-dD,
-dS, -dA and -dp) have effect only when the values that need to be
incremented/decremented are also being modified.

For example, the following commands have no effect:

■ ntgen -iD ff:ff:ff:ff:ff:ff filename

This command has no effect and the destination MAC address will not be
incremented.

■ ntgen -iA host,host filename

This command has no effect. The source and destination IP addresses will not be
incremented.

■ ntgen -ip 1,1 filename

This command has no effect. The port numbers will not be incremented.

The following commands will have effect:

■ ntgen -D aa:bb:cc:dd:ee:00 -iD ff:ff:ff:ff:ff:ff filename

This command increments the destination MAC address after changing it to
aa:bb:cc:dd:ee:00. Since -D option is being used, the -iD option takes effect.

■ ntgen -A 192.168.1.1,192.168.1.2 -iA host,host filename

This command increments the source and destination IP addresses. Since the -A
option is being used, the -iA option takes effect.

■ ntgen -p 1234,6789 -ip 1,1 filename

This command increments the source and destination UDP ports. Since the -p
option is being used, the -ip option takes effect.
220 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Traffic Generator Output
TABLE 10-10 shows an example of the traffic generator output.

TABLE 10-11 describes the traffic generator output.

Template Files
The following template files are provided with the application to be used with
ntgen.

■ file_64B_novlan:

Snoop file that contains a single 64-byte Ethernet frame that has no VLAN tag.
This file has a UDP/IPv4 payload.

■ file_256B_novlan

Snoop file that contains a single 256 bytes Ethernet frame that has no VLAN tag.
The file has a UDP/IPv4 payload.

TABLE 10-10 Traffic Generator Output Example

Port,Chan Tx Rate (pps) Tx Rate (mbps) Rx Rate (pps) Rx Rate (mbps)

0, 0 947550.5506 485.1459 32224.4898 386.6939

1, 0 947550.5506 485.1459 32224.4898 386.6939

2, 0 947550.5506 485.1459 32224.4898 386.6939

3, 0 947550.5506 485.1459 32224.4898 386.6939

TABLE 10-11 Traffic Generator Output Description

Column Description

Port,Chan Port is the port number and Chan is the channel number for which the
statistics are displayed.
In the example output shown in TABLE 10-10 for NxGE QGC, port varies
from 0 to 3 and Chan is 0 for all ports.

Tx Rate (pps) Transmission rate in packets per second.

Tx Rate (mbps) Transmission rate in megabits per second.

Rx Rate (pps) Receive rate in packets per second.

Rx Rate (mbps) Receive rate in megabits per second.
Chapter 10 Reference Applications 221

■ file_1514B_novlan

Snoop file that contains a single 1514 bytes Ethernet frame that has no VLAN tag.
This file has a UDP/IPv4 payload.

■ file_gre_novlan

Snoop file that contains a GRE packet with an IPv4 as the delivery protocol and
IPv4 as the payload protocol. The payload is a UDP datagram. The UDP
datagram has a payload of 22 bytes. Both IPv4 headers have no IP options. GRE
header consists of GRE Key and GRE checksum values.

Using the Traffic Generator
This section describes configuring, starting, and stopping the ntgen tool.

Configuring LDoms for the Traffic Generator
TABLE 10-12 shows the domain role in the configuration.

TABLE 10-12 LDoms Configuration

Domain Operating System Role

primary Solaris Owns one of the PCI buses, and uses the physical
disks and networking interfaces to provide virtual I/O
to the Solaris guest domains.

ldg1 LWRTE Owns the other PCI bus (bus_b) with its two network
interfaces and runs an LWRTE application.

ldg2 Solaris Runs control plane application (ntgen), add_drv
tnsm (SUNWndpsd package) and uses ntgen to
control traffic generation.

ldg3 Solaris Controls lwrte (global configuration channel),
add_drv tnsm (SUNWndpsd package) and uses
tnsmctl to setup configuration.
222 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

TABLE 10-13 shows the LDC channels configured.

These LDC channels can be added with the following LDoms manager commands:

In the Solaris domains, the tnsm driver needs to be added. To do this,

1. Install the SUNWndpsd package.

2. Type the following to install the driver:

The primary-gc and tnsm-gc0 combination is the global configuration channel.
LWRTE accepts configuration messages on this channel.

The config-tnsm-ldgx and config-tnsm0 combination is for setup messages
between LWRTE and the control plane domain.

To find out what the LDC IDs are on both sides, use the following:

■ For LDoms 1.0, use ldm list-bindings

■ For LDoms 1.0.1, use ldm list-bindings -e

TABLE 10-13 LDC Channels Configured

Server Client

ldg1 primary-gc ldg3 tnsm-gc0

ldg1 config-tnsm-ldg2 ldg2 config-tnsm0

ldg1 ldg2-vdpcs0 ldg2 vdpcc0

ldg1 ldg2-vdpcs1 ldg2 vdpcc1

ldm add-vdpcs primary-gc ldg1
ldm add-vdpcc tnsm-gc0 primary-gc ldg3
ldm add-vdpcs config-tnsm-ldg2 ldg1
ldm add-vdpcc config-tnsm0 config-tnsm-ldg2 ldg2

ldm add-vdpcs ldg2-vdpcs0 ldg1
ldm add-vdpcc vdpcc0 ldg2-vdpcs0 ldg2
etc.

add_drv tnsm
Chapter 10 Reference Applications 223

Example Output from LDoms 1.0

Example Output from LDoms 1.0.1

Pick a channel number to be used for the control IPC channel that uses this LDC
channel, for example, 3. Bring up the control channel with the following command:

Description of parameters:

■ -S – Set up a channel

■ -C n1 – Channel ID for new channel

■ -L n2 – LDC ID local to LWRTE

■ -R n3 – LDC ID remote to LWRTE (local to link partner LDom)

■ -F n4 – Channel ID of the control channel between the two link partners. Since
this command brings up the control channel, n1 == n4

ldm list-bindings
In ldg1:
Vdpcs: config-tnsm-ldg2
 [LDom ldg2, name: config-tnsm0]
 [LDC: 0x6]
In ldg2:
Vdpcc: config-tnsm0 service: config-tnsm-ldg2 @ ldg1
 [LDC: 0x5]

ldm list-bindings -e
In ldg1:
VDPCS
 NAME
 config-tnsm-ldg2
 CLIENT LDC
 config-tnsm0@ldg2 6
In ldg2:
VDPCC
 NAME SERVICE LDC
 config-tnsm0 config-tnsm-ldg2@ldg1 5

tnsmctl -S -C 3 -L 6 -R 5 -F 3
224 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

In the above tnsmctl command example,

■ n1 = 3 – The channel ID chosen for this configuration channel.

■ n2 = 6 – The LDC ID shown by ldm list-bindings for config-tnsm-ldg2 in
ldg1.

■ n3 = 5 – The LDC ID shown by ldm list-bindings for config-tnsm0 in
ldg2.

■ n4 = 3 – The same channel ID as n1, because the config channel is being
initialized.

Control channel 3 can now be used to set up general purpose IPC channels between
LWRTE and Solaris.

For example, set up channel ID 4 for use by the ntgen to ndpstgen communication:

Look up the LDC IDs on both ends.

Example Output from LDoms 1.0

Example Output from LDoms 1.0.1

ldg1:
Vdpcs: ldg2-vdpcs0
 [LDom ldg2, name: vdpcc0]
 [LDC: 0x7]
ldg2:
Vdpcc: vdpcc0 service: ldg2-vdpcs0 @ ldg1
 [LDC: 0x6]

ldg1:
VDPCS
 NAME
 ldg2-vdpcs0
 CLIENT LDC
 vdpcc0@ldg2 7
ldg2:
VDPCC
 NAME SERVICE LDC
 vdpcc0‘ ldg2-vdpcs0@ldg1 6
Chapter 10 Reference Applications 225

With this information, do the following in ldg3:

Note that the -C 4 parameter is the ID for the new channel, the -F 3 has the
channel set up before.

Also, note that the global configuration channel between ldg3 and LWRTE comes up
automatically as soon as the application is booted in LWRTE and the tnsm device
driver is added in ldg3.

Build the ntgen utility in the Solaris subtree. Once the channel to be used is
initialized using tnsmctl (must be channel ID 4 which is hard coded into the
ndpstgen application), use ntgen to generate traffic (refer to the NTGEN User’s
Manual).

▼ To Prepare Building the ntgen Utility
1. Build the Netra DPS image.

2. Build the ntgen user interface application (in the src/solaris subdirectory)

▼ To Setup and Use LDoms for the Traffic Generator
1. Configure the primary domain.

2. Save the configuration (ldm add-spconfig) and reboot.

3. Configure the Netra DPS domain (including the vdpcs services).

4. Configure the Solaris domains (including vdpcc clients).

5. Bind the Netra DPS domain (ldg1).

6. Bind the Solaris domains (ldg2 and ldg3).

7. Start and boot all domains (can be in any order).

8. Install the SUNWndpsd package in the Solaris domains.

9. Load the tnsm driver in the Solaris domains (add_drv tnsm).

10. In the global configuration Solaris domain (ldg3), use
/opt/SUNWndpsd/bin/tnsmctl to set up the control channel between the
Netra DPS domain (ldg1) and the control domain (ldg2).

tnsmctl -S -C 4 -L 7 -R 6 -F 3
226 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

11. In the global configuration Solaris domain (ldg3), use
/opt/SUNWndpsd/bin/tnsmctl to set up the ntgen control channel (channel
ID 4).

12. In the control domain (ldg2), use the ntgen utility to start traffic generation.

Starting the Traffic Generation
Start the traffic generator tool by using the ntgen application binary.

For example, type:

Stopping Traffic Generation
The traffic generation can be stopped at any point of time by pressing Ctrl-C from
the keyboard.

Compiling the Traffic Generator
Copy the ntgen reference application from the /opt/SUNWndps/src/apps/ntgen
directory to a desired directory location and do the build script in that location.

Build Script
TABLE 10-14 shows the traffic generator (ntgen) application build script.

% ./ntgen -c file_64B_novlan

TABLE 10-14 ntgen Application Build Script

Build Script Usage

./build

(See “Argument Descriptions”
on page 228.)

Build ntgen application to run on e1000g Ethernet interface.

Build ntgen application to run on e1000g Ethernet interface on the Netra
ATCA CP3060 System.
Chapter 10 Reference Applications 227

Usage
./build <cmt> <app> [profiler] [2port]

Build Script Arguments
< > – Required arguments

[] – Optional arguments

Argument Descriptions
<cmt>

This is an argument specifying whether to build the traffic generator application to
run on the CMT1 platform or CMT2 platform.

cmt1 – Build for CMT1 (UltraSPARC T1)
cmt2 – Build for CMT2 (UltraSPARC T2)

<app>

4g – Builds the traffic generator application to run on QGC (quad 1Gbps nxge
Ethernet interface).

10g – Builds the traffic generator application to run on 10Gb Ethernet (dual 10Gbps
nxge Ethernet interface).

10g_niu – Builds the traffic generator application to run on NIU (dual 10Gbps
UltraSPARC T2 Ethernet interface) on a CMT2 based system.

[profiler]:

This is an optional argument that generates code with profiling enabled.

Build ntgen application to run on Sun QGC (quad 1Gbps nxge Ethernet
interface).

Build ntgen application to run on Sun multithreaded 10G (dual 10Gbps
nxge Ethernet interface).

Build ntgen application to run on NIU (dual 10Gbps UltraSPARC T2
Ethernet interface) on a CMT2-based system.

TABLE 10-14 ntgen Application Build Script (Continued)

Build Script Usage
228 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

[2port]:

This is an optional argument to compile dual ports on the 10Gb Ethernet card or the
UltraSPARC T2 Network Interface Unit (NIU).

For example, to build for 10Gb Ethernet on the Netra T2000 system, type:

In this example, the build script is used to build the traffic generator application to
run on the 10Gb Ethernet. <cmt> argument is specified as cmt1 to build the
application to run on the Netra T2000 system which is an UltraSPARC T1-based
system. The <app> argument is specified as 10g to run on 10Gb Ethernet.

▼ To Run
On a tftpboot server, type:

At the target machine OK prompt, type:

Default Configurations
The following is the default system configuration:

The main files that control the system configuration are:

■ ntgen/src/apps/config/tgen_swarch.c

■ ntgen/src/apps/config/tgen_map.c

% ./build cmt1 10g

% cp your_workspace/ntgen/code/ndpstgen/ndpstgen /tftpboot/ndpstgen

ok boot net:,ndpstgen

NDPS domain
(Strand IDs)

Statistics
(Strand ID)

Other domains
(Strand IDs)

CMT1 LDOM: 0 – 19 NA 20 – 31

CMT2 LDOM: 0 – 39 NA 40 – 63
Chapter 10 Reference Applications 229

The following is the default ntgen application configuration:

The main files that control the application configurations are:

■ ntgen/src/apps/tgen_config.c

■ ntgen/src/apps/tgen_config.h

Interprocess Communication (IPC)
Reference Application
The IPC reference application showcases the programming interfaces of the IPC
framework (see Chapter 5, “Interprocess Communication Software” on page 87 and
the Netra Data Plane Software Suite 2.0 Update 2 Reference Manual).

The IPC reference application consists of the following three components:

■ A Netra DPS application that receives and transmits test data messages.

■ A Solaris test utility that transmits and receives messages from user space.

■ A STREAMS module that intercepts network traffic from an interface to send it to
the Netra DPS domain, and transmits packets it receives via IPC on this network
interface.

The application is designed to run in an LDoms environment very similar to the one
described in (see “Example Environment for UltraSPARC T1 Based Servers” on
page 92 and “Example Environment for UltraSPARC T2 Based Servers” on page 96).

Applications
runs on

Number of Ports
Used

Number of Channels
per Port

Total Number of Q
Instances

Total Number of
Strands Used

4G-PCE (nxge QGC): 4 1 4 12

10G-PCIE (nxge 10G): 1 4 4 12

10G-NIU (niu 10G): 1 8 8 40
230 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

IPC Reference Application Content
The complete source code for the IPC reference application can be found in the
SUNWndps package in the /opt/SUNWndps/src/apps/ipc_test directory. The
source code files include the following:

■ Build script and make files for the application

■ Makefile

■ build

■ Common header file describing the communications protocol used between the
components

■ src/common/include/ipctest.h

■ System configuration for the Netra DPS application in the src/config directory:

■ src/config/ipc_test_hwarch.c

■ src/config/ipc_test_swarch.c

■ src/config/ipc_test_map.c

■ Netra DPS application files in the src/app directory

■ src/app/common.h

■ src/app/init.c

■ src/app/ipc_test_config.h

■ src/app/ipc_test.c

■ src/app/lb_objects.h

■ src/app/ldc_malloc_config.h

■ src/app/ldc_malloc.c

■ Solaris user space application in src/solaris/cmd

■ src/solaris/cmd/ipctest.c

■ src/solaris/cmd/Makefile

■ Solaris STREAMS module in the src/solaris/module

■ src/solaris/module/include/lwmod.h

■ src/solaris/module/lwmod.c

■ src/solaris/module/Makefile
Chapter 10 Reference Applications 231

Building the IPC Reference Application

Usage
build <cmt> [single_thread] | solaris

Build Script Arguments
< > – Required arguments

[] – Optional arguments

Argument Descriptions
<cmt>

This argument specifies whether to build the ipc_test application to run on the
CMT1 (UltraSPARC T1) platform or CMT2 (UltraSPARC T2) platform.

cmt1 – Build for CMT1 (UltraSPARC T1)
cmt2 – Build for CMT2 (UltraSPARC T2)

This argument is required to build the Netra DPS application.

[single_thread]

With this option, two data IPC channels are polled by the same thread. In the default
case, three channels are polled, each one on its own thread. The interfaces and usage
for the Solaris side remain unchanged.

solaris

Build the Solaris user space application and the STREAMS module in their
respective source directories.

Build Example
The commands shown below build the Netra DPS application for single thread
polling on a UltraSPARC T2 processor and the Solaris components, respectively.

./build cmt2 single_thread
./build solaris
232 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Running the Application
In addition to the channels described in “Example Environment for UltraSPARC T1
Based Servers” on page 92, two IPC channels with IDs 5 and 6, respectively, need to
be set up using the ldm and tnsmctl commands.

The Netra DPS application is booted from either a physical or a virtual network
interface assigned to its domain. For example, if a tftp server has been set up in the
subnet, and there is a vnet interface for the Netra DPS domain, the IPC test
application can be booted with the following command at the OpenBoot Prom:

Using the ipctest Utility
First, the ipc_test application must be booted in the Netra DPS domain, and the
IPC channels to be used must be set up using the tnsmctl utility from the control
domain. Copy the ipctest binary from the src/solaris/cmd directory to the
Solaris domain (for example, ldg2 as shown in the Solaris user space application in
src/solaris/cmd).

The ipctest utility drives a single IPC channel, which is selected by the connect
command (see Commands). Multiple channels can be driven by separate instances of
the utility, and the utility can be used at the same time as the STREAMS module (see
“Installing the lwmod STREAMS Module” on page 235). In this case, however, the
IPC channel with ID 5 is not available for this utility. For example, the utility can be
used on channel 4 to read statistics of the traffic between the Netra DPS application
and the Solaris module on channel 5.

ok boot /virtual-devices@100/channel-devices@200/network@0:,ipc_test
Chapter 10 Reference Applications 233

Commands
The ipctest utility opens the tnsm driver and offers the following commands:

connect Channel_ID

Connects to the channel with ID Channel_ID. The forwarding application is hard
coded to use channel ID 4. The IPC type is hard coded on both sides. This command
must be issued before any of the other commands.

stats

Requests statistics from the ipc_test application and displays them.

perf-stats iterations

Requests statistics from the ipc_test application for iterations times and displays
the time used.

perf-pkts-rx num_messages message_size

Send request to the Netra DPS to send num_messages messages with a data size of
message_size and receive the messages.

perf-pkts-tx num_messages message_size

Send num_messages messages with a data size of message_size to the Netra DPS
domain.

perf-pkts-rx-tx num_messages message_size

Sends request to the Netra DPS to send num_messages messages with a data size of
message_size and receive the messages. Also, spawns a thread that sends as many
messages of the same size to the Netra DPS domain.

exit
x
quit
q

Exits the program.

help

Contains program help information.
234 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Installing the lwmod STREAMS Module
After copying the lwmod module from the rc/solaris/module/sparcv9
directory to the Solaris domain (for example, ldg2 as shown in the Solaris
STREAMS module in src/solaris/module), the module needs to be loaded and
inserted just above the driver for either a virtual or a physical networking device.

To use a physical device, modify the configuration such that the primary domain is
connected through IPC channel 5, or, on an UltraSPARC T1-based system, assign the
second PCI bus to ldg2.

Note – Before inserting the module, the ipc_test application must have been
booted in the Netra DPS domain, and the IPC channels must have been set up.

Set up the module on a secondary vnet interface by entering the following sequence
of commands:

After this sequence, the modules position can be displayed by entering the following
command:

With the module installed, all packets sent to vnet1 will be diverted to the Netra
DPS domain, where the application will reverse the MAC addresses and echo the
packets back to the Solaris module. The module will transmit the packet on the same
interface.

Note – No packet will be delivered to the stack above the module. If networking to
the domain is needed, the module should not be inserted in the primary interface.

The module can be removed from the interface by entering the following command:

modload lwmod
ifconfig vnet1 modinsert lwmod@2

ifconfig vnet1 modlist
0 arp
1 ip
2 lwmod
3 vnet

ifconfig vnet1 modremove lwmod@2
Chapter 10 Reference Applications 235

236 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

CHAPTER 11

Performance Tuning

This appendix provides guidelines for diagnosing and tuning network applications
running under the Lightweight Runtime Environment (LWRTE) on UltraSPARC®

T Series processor multithreading systems.

Topics in include:

■ “Performance Tuning Introduction” on page 237

■ “UltraSPARC T1 Processor Overview” on page 238

■ “UltraSPARC T2 Processor Overview” on page 240

■ “Identifying Performance Issues” on page 243

■ “Optimization Techniques” on page 248

■ “Tuning Troubleshooting” on page 253

■ “Example RLP Exercise” on page 255

Performance Tuning Introduction
The UltraSPARC T series CMT systems deliver a strand-rich environment with
performance and power efficiency that are unmatched by other processors. From a
programming point of view, the UltraSPARC T1 and UltraSPARC T2 processor
strand-rich environment can be thought of as symmetric multiprocessing on a chip.

The Lightweight Runtime Environment (LWRTE) provides an ANSI C development
environment for creating and scheduling application threads to run on individual
strands on the UltraSPARC T series processor. With the combination of the
UltraSPARC T series processor and LWRTE, developers have a platform to create
applications for the fast path and the bearer-data plane space.
237

UltraSPARC T1 Processor Overview
The Sun UltraSPARC T1 processor employs chip multithreading, or CMT, which
combines chip multiprocessing (CMP) and hardware multithreading (MT) to create a
SPARC® V9 processor with up to eight 4-way multithreaded cores for up to 32
simultaneous threads. To feed the thread-rich cores, a high-bandwidth, low-latency
memory hierarchy with two levels of on-chip cache and on-chip memory controllers
is available. FIGURE 11-1 shows the UltraSPARC T1 architecture.

FIGURE 11-1 UltraSPARC T1 Architecture

The processing engine is organized as eight multithreaded cores, with each core
executing up to four strands concurrently. Each core has a single pipeline and can
dispatch at most 1 instruction per cycle. The maximum instruction processing rate is
238 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

1 instruction per cycle per core or 8 instructions per cycle for the entire eight core
chip. This document distinguishes between a hardware thread (strand), and a
software thread (lightweight process (LWP)) in Solaris.

A strand is the hardware state (registers) for a software thread. This distinction is
important because the strand scheduling is not under the control of software. For
example, an operating system can schedule software threads on to and off of a
strand. But once a software thread is mapped to a strand, the hardware controls
when the thread executes. Due to the fine-grained multithreading, on each cycle a
different hardware strand is scheduled on the pipeline in cyclical order. Stalled
strands are switched out and their slot in the pipeline given to the next strand
automatically. Therefore, the maximum throughput of 1 strand is 1 instruction per
cycle if all other strands are stalled or parked. In general, the throughput is lower
than the theoretical maximums.

The memory system consists of two levels of on-chip caching and on-chip memory
controllers. Each core has level 1 instruction and data caches and TLBs. The
instruction cache is 16 Kbyte, the data cache is 8 Kbyte, and the TLBs are 64 entries
each. The level 2 cache is a 3 Mbyte unified instruction, and it is 12-way set
associative and 4-way banked. The level 2 cache is shared across all eight cores. All
cores are connected through a crossbar switch to the level 2 cache.

Four on-chip DDR2 memory controllers provide low-latency, high-memory
bandwidth of up to 25 Gbyte per second. Each core has a modular arithmetic unit for
modular multiplication and exponentiation to accelerate SSL processing. A single
floating-point unit (FPU) is shared by all cores, so this software is not optimal for
floating-point intensive applications. TABLE 11-1 summarizes the key performance
limits and latencies.

TABLE 11-1 UltraSPARC T1 Key Performance Limits and Latencies

Feeds Speeds

Processor instruction
execution bandwidth

9.6 G instructions per sec (peak @ 1.2 GHz)

Memory

L1 hit latency ~ 3 cycles

L2 hit latency ~ 23 cycles

L2 miss latency ~ 90 ns

Bandwidth 17 GBps (25 GBps peak)

I/O bandwidth ~ 2 GBps (JBus limitation)
Chapter 11 Performance Tuning 239

UltraSPARC T2 Processor Overview
The Sun UltraSPARC T2 processor is the second generation of CMT processor. In
addition to features found in UltraSPARC T1, UltraSPARC T2 dramatically increases
processing power by increasing the number of hardware strands in each core. This
processor also increases the floating point performance by introducing one FPU unit
per CPU core. The UltraSPARC T2 also includes on-chip 10G Ethernet and crypto
accelerator. FIGURE 11-2 shows the UltraSPARC T2 system architecture.
240 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

FIGURE 11-2 UltraSPARC T2 Architecture

The processing engine is organized as 8 multithreaded cores, with each core
consisting of two independent integer execution pipelines. Each pipeline executes up
to 4 strands concurrently. Therefore, the processor has a total of 8 strands per CPU
core (64 strands per CPU). The maximum instruction processing rate is 2
instruction/cycle per core or 16 instructions/cycle for the entire 8 core chip. Unlike
UltraSPARC T1, in which one FPU is shared by all 8 CPU cores, UltraSPARC T2 has
an independent FPU per CPU core.

Similar to UltraSPARC T1, the memory system consists of two levels of on-chip
caching and on-chip memory controllers. Each core has separate level 1 instruction
and data caches and TLBs. The instruction cache is 16KB, the data cache is 8KB, and
the TLBs are 64 entries for instructions (ITLB) and 128 entries for data (DTLB).
UltraSPARC T2 has a larger L2 cache compared to its predecessor. The level 2 cache
is a 4 Mbyte unified instruction. The cache is 16-way set associative and 8-way
banked.

UltraSPARC T2 has doubled the memory capacity of its predecessor. This processor
consists of 4 dual-channel FBDIMM memory controllers at 4.8 Gb/sec, capable of
controlling up to 256 Gbyte memory per system. Memory bandwidth is increased to
50 Gbyte/sec.

The integrated Network Interface Unit (NIU) provides dual on-chip 10GbE
processing capability. All network data is sourced from and destined to memory
without having the need to go through the I/O interface. This configuration
eliminates the I/O protocol translation overhead and takes full advantage of the
high memory bandwidth. The NIU also features line rate packet classification and
multiple DMA engines to handle multiple incoming traffic flows in parallel.

Also integrated on-chip is the cryptographic coprocessor, one per CPU core. The
Crypto engine facilitates wire-speed encryption and decryption.

UltraSPARC T2 eliminates the JBUS (the I/O bus of the UltraSPARC T1) entirely. I/O
is controlled by an on-chip x8 at 2.5 GHz per lane PCIe root complex, providing a
total of 3-4 Gbyte/sec I/O bandwidth with maximum payload sizes of 128 bytes to
512 bytes.

TABLE 11-2 summarizes the key performance limits and latencies.

TABLE 11-2 UltraSPARC T2 Key Performance Limits and Latencies

Feeds Speeds

Processor instruction
execution bandwidth

22.4 G instructions/sec (peak@1.4GHz)

Memory

L1 hit latency ~ 3 cycles
Chapter 11 Performance Tuning 241

Identifying Performance Issues
The key performance metric is the measure of throughput, usually expressed as
either packets processed per second, or network bandwidth achieved in bits or bytes
per second. This section discusses UltraSPARC T1 and UltraSPARC T2 performance.

UltraSPARC T1 Performance
In UltraSPARC T1 systems, the I/O limitation of 2 Gbyte per second puts an upper
bound on the throughput metric. FIGURE 11-3 shows the packet forwarding rate
limited by this I/O bottleneck.

L2 hit latency ~ 23 cycles

L2 miss latency ~ 135 ns

Bandwidth ~ 40 GBytes/sec peak for read
~ 20 GBytes/sec peak for write

I/O bandwidth 3~4 GBytes/sec (PCI-Express)

TABLE 11-2 UltraSPARC T2 Key Performance Limits and Latencies (Continued)

Feeds Speeds
242 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

FIGURE 11-3 UltraSPARC T1 Forwarding Packet Rate Limited by I/O Throughput

The theoretical maximum represents the throughput of 10 Gbytes per second. The
measured results show that the achievable forwarding throughput is a function of
packet size. For 64-byte packets, the measured throughput is 2.2 Gbyte per second or
3300 kilo packets per second.
Chapter 11 Performance Tuning 243

In diagnosing performance issues, there are three main areas: I/O bottlenecks,
instruction processing bandwidth, and memory bandwidth. In general, the
UltraSPARC T1 systems have more than enough memory bandwidth to support the
network traffic allowed by the JBus I/O limitation. Nothing can be done about the
I/O bottleneck, therefore this document focuses on instruction processing limits.

For UltraSPARC T1 systems, the network interfaces are 1 Gbit and the interface is
mapped to a single strand. In the simplest case, one strand is responsible for all
packet processing from the corresponding interface. At a 1 Gbit line rate, 64-byte
packets arrive at 1.44 Mpps (million packets per second) or one packet every 672 ns.
To maintain this line rate, the processor must process the packet within 672 ns. On
average, that is 202 instructions per packet. FIGURE 11-4 shows the average maximum
number of instructions the processor can execute per packet while maintaining line
rate.

FIGURE 11-4 Instructions per Packet Versus Frame Size

The inter-arrival time increases with packet size, so that more processing can be
accomplished.
244 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

UltraSPARC T2 Performance
In UltraSPARC T2 systems, the I/O bandwidth is largely expanded from
2 Gbytes/sec to 3 ~ 4 Gbytes/sec range. This is because the Jbus interface is replaced
by the PCI Express interface. The on-chip Ethernet interface substantially improves
network performance by removing the entire I/O bus overhead. When the Network
Interface Unit (NIU) is utilized, ingress traffic data from input ports enters into
memory directly through the DMA engine, and vice versa for egress data.
Performance is no longer I/O bound. The next speed bump is determined by the
CPU processing power and memory controller capacity. CPU frequency and memory
controller capacity on the system platform becomes a factor in determining the
maximum packet forwarding rate.

FIGURE 11-5 shows the forwarding packet rate limited by CPU processing power or
memory controller bandwidth.
Chapter 11 Performance Tuning 245

246 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

FIGURE 11-5 UltraSPARC T2 Forwarding Packet Rate

Optimization Techniques

Code Optimization
Writing efficient code and using the appropriate compiler option is the primary step
in obtaining optimal performance for an application. Sun Studio 12 compilers
provide many optimization flags to tune your application. Refer to the Sun Studio 12:
C Users Guide for the complete list of optimization flags available. See “Reference
Documentation” on page xx. The following list describes some of the important
optimization flags that might help optimize an application developed with LWRTE.

■ Inlining

Use the inline keyword declaration before a function to ensure that the
compiler inlines that particular function. Inlining reduces the path length, and is
especially useful for functions that are called repeatedly.

■ Optimization level

The -xO[12345] option optimizes the object code differently based on the
number (level). Generally, the higher the level of optimization, the better the
runtime performance. However, higher optimization levels can result in longer
compilation time and larger executable files. Use a level of -xO3 for most cases.

■ -xtarget=UltraT1

This option indicates that the target hardware for the application is an
UltraSPARC T1 CPU and enables the compiler to select the correct instruction
latencies for that processor.

■ -xprefetch and -xprefetch_level

Useful options if cache misses seem to slow down the application.

Pipelining
The thread-rich UltraSPARC T1 processor and the LWRTE programming
environment enables the user to easily pipeline the application to achieve greater
throughput and higher hardware utilization. Pipelining involves splitting a function
into multiple functions and assigning each to a separate strand, either on the same
processor core or on a different core. The user can program the split functions to
communicate through Netra DPS fast queues or channels.
Chapter 11 Performance Tuning 247

One approach is to find the function with the most clock cycles per instruction (CPI)
and then split that function into multiple functions. The goal is to reduce the overall
CPI of the CPU execution pipeline. Splitting a large slow function into smaller pieces
and assigning those pieces to different hardware strands is one way to improve the
CPI of some subfunctions, effectively separating the slow and fast sections of the
processing. When slow and fast functions are assigned to different strands, the CMT
processor uses the execution pipelines more efficiently and improves the overall
processing rate.

FIGURE 11-6 shows how to split and map an application using fast queues and CMT
processor to three strands.

FIGURE 11-6 Example of Pipelining

FIGURE 11-7 shows how pipelining improves the throughput.
248 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

FIGURE 11-7 Pipelining Effect on Throughput

In this example, a single-strand application takes nine units of time to complete
processing of a packet. The same application split into three functions and mapped
to three different strands takes longer to complete the same processing, but is able to
process more packets in the same time.

Parallelization
The other advantage of a thread-rich CMT processor is the ability to easily
parallelize an application. If a particular software process is very compute-intensive
compared to other processes in the application, the user can allocate multiple
strands to this processing. Each strand executes the same code but works on
different data sets. For example, since encryption is a heavy operation, the
application shown in FIGURE 11-8 is allocated three strands for encryption.

FIGURE 11-8 Parallelizing Encryption Using Multiple Strands

The process strand uses well-defined logic to fan out encryption processing to the
three encryption strands.
Chapter 11 Performance Tuning 249

Packet processing applications that perform identical processing repeatedly on
different packets easily lend themselves to this type of parallelization. Any
networking protocol that is compute-bound can be allocated on multiple strands to
improve throughput.

Mapping
Four strands share an execution pipeline in the UltraSPARC T1 processor. There are
eight such execution pipes, one for each core. Determining how to map threads
(LWRTE functions) to strands is crucial to achieving the best throughput. The
primary goal of performance optimization is to keep the execution pipeline as busy
as possible, which means trying to achieve an IPC of 1 for each processor core.

Profiling each thread helps quantify the relative processing speed of each thread and
provide an indication of the reasons behind the differences. The general approach is
to assign fast threads (high IPC) with slow threads on the same core. On the other
hand, if instruction cache miss is a dominant factor for a particular function, then
assign multiple instances of the same function on the same core. On UltraSPARC T1
processors, the user must assign any threads that have floating-point instructions to
different strands if floating-point instructions are the performance bottleneck.

Parking Idle Strands
Often a workload does not have processing to run on every strand. For example, a
workload has five 1 Gbit ports with each port requiring four threads for processing.
This workload employs 20 strands for processing, leaving 12 strands unused or idle.
The user might run other applications on these idle strands but currently are testing
only part of the application. LWRTE provides the options to park or to run
while(1) loops on idle strands (that is, strands not participating in the processing).

Parking a strand means that there is nothing running on it and, therefore, the strand
does not consume any of the processor resources. Parking the idle strands produces
the best result because the idle strands do not interfere with the working strands.
The downside of parking strands is that there is currently no interface to activate a
parked strand. In addition, activating a parked strand requires sending an interrupt
to the parked strand, which might take hundreds of cycles before the strand is able
to run the intended task.

If the user wants to run other processing on the idle strands, then parking these
strands might result in optimistic performance measurements. When the final
application is executed, the performance might be significantly lower than that
measured with parked strands. In this case, running with a while(1) loop on the
idle strands might be a more representative case.
250 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

The while(1) loop is an isolated branch. The while(1) loop executing on a strand
takes execution resources that might be needed by the working strands on the same
core to attain the required performance. while(1) loops only affect strands on the
same core, they do not have an effect on strands on other cores. The while(1) loop
often consumes more core pipeline resources than your application. Therefore, if
your working strands are compute-bound, running while(1) loops on all the idle
strands is close to a worst case. In contrast, parking all the idle strands is the best
case. To understand the range of expected performance, run your application with
both parked and while(1) loops on the idle strands.

Slowing Down Polling
As explained in “Parking Idle Strands” on page 251, strands executing on the same
core can have both beneficial and detrimental effects on performance due to
common resources. The while(1) loop is a large consumer of resources, often
consuming more resources than a strand doing useful work. Polling is very common
in LWRTE threads and, as seen with the while(1) loop, might waste valuable
resources needed by the other strands on the core to achieve performance. One way
to alleviate the waste by polling is to slow down the polling loop by executing a long
latency instruction. This situation causes the strand to stall, making its resources
available for use by the other strands on the core. LWRTE exports interfaces to
slowing down the polling that include:

■ Access the memory location using a little endian load (ASI_PRIMARY_LITTLE).
This option always goes to L2 and takes about 30 cycles.

■ Meaningless CAS, which takes about 39 cycles.

■ Meaningless PIO.

■ ASI register read.

■ Floating-point instructions.

The method selected depends on your application. For instance, if the application is
using the floating-point unit, the user might not want a useless floating-point
instruction to slow down polling because that might stall useful floating-point
instructions. Likewise, if the application is memory bound, using a memory
instruction to slow polling might add memory latency to other memory instructions.
Chapter 11 Performance Tuning 251

Tuning Troubleshooting

What Is a Compute-Bound Versus a Memory-
Bound Thread?
A thread is compute-bound if its performance is dependent on the rate the processor
can execute instructions. A memory-bound thread is dependent on the caching and
memory latency. As a rough guideline for the UltraSPARC T processor, the CPI for a
compute-bound thread is less than five and for a memory-bound thread is
considerably higher than five.

Cannot Reach Line Rate for Packets Smaller Than
300 Bytes
Single-thread receives, processes, and transmits packets can only achieve line rate
for 300 byte packets or larger.

Goal: Want to get line rate for 250 byte packets.

Solution: Need to optimize single-thread performance. Try compiler optimization,
different flags -O2, -O3, -O4, -O5, or fast function inlining. Change code to optimize
hot sections of code. The user might need to do profiling.

Goal: Want to get to line rate for 64-byte packets.

Solution: Parallelize or pipeline. To get from 300 to 64-byte packets running at line
rate is probably too much for just optimizing single-thread performance.

Cannot Scale Throughput to Multiple Ports
When you increase the number of ports the results don’t scale. For example, with a
line rate of 400 byte packets with two interfaces, when you increase to three
interfaces, you get only 90% of line rate.

Solution: If the problem is in parallelizing, determine if there are conflicts for shared
resources, or synchronization and communication issues. Are there any lock
contention or shared data structures? Is there a significant increase in CPI, cache
252 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

misses, or store buffer full cycles? Are you using the shared resources such as the
modular arithmetic unit or floating-point unit? Is the application at the I/O
throughput bottleneck? Is the application at the processing bottleneck?

If there is a conflict for pipeline resources, optimizing single-thread performance
would use fewer resources and improve overall throughput and scaling. In this
situation, distribute the threads across the cores in a more optimal fashion or park
unused strands.

How Do I Achieve Line Rate for 64-byte Packets?
The goal is to achieve line rate processing on 64-byte packets for a single 1 Gigabit
Ethernet port. The current application requires 575 instructions per packet executing
on 1 strand.

Solution: A 64-byte packet size has 202 instructions per packet. So optimizing your
code will not be sufficient. The user must parallelize or pipeline. In parallelization,
the task is executed in multiple threads, each thread doing the identical task. In
pipelining, the task is split up into smaller subtasks, each running on a different
thread, that are sequentially executed. Use a combination of parallelization and
pipelining.

In parallelization, parallelize the task N ways, to increase the instructions per packet
N times. For example, execute the task on three threads, and each thread can now
have 606 instructions per packet (202 x 3) and still maintain 1 Gbit line rate for 64-
byte packets. If the task requires 575 instructions per packet, run the code on 3
threads (606 instruction per packet), to achieve 1 Gbit line rate for 64-byte packets.
Parallelizing maximizes the throughput by duplicating the application on multiple
strands. However, some applications cannot be parallelized or depend too much
upon synchronization when executed in parallel. For example, the UltraSPARC T1
network driver is difficult to parallelize.

In pipelining, increase the amount of processing done on each packet by partitioning
the task into smaller subtasks that are then run sequentially on different strands.
Unlike parallelization, there are not more instructions per packet on a given strand.
Using the example from the previous paragraph, split the task into three subtasks,
each executing up to 202 instructions of the task. In both the parallel and pipelined
cases, the overall throughput is similar at three packets every 575 instructions.
Similar to parallelization, not all applications can easily be pipelined and there is
overhead in passing information between the pipe stages. For optimal throughput,
the subtasks need to execute in approximately the same time, which is often difficult
to do.
Chapter 11 Performance Tuning 253

When Should I Consider Thread Placement?
Thread placement refers to the mapping of threads onto strands. Thread placement
can improve performance if the workload is instruction-processing bound. Thread
placement is useful in cases where there are significant sharing or conflicts in the L1
caches, or when the compute-bound threads are grouped on a core. In the case of
conflicts in the L1 caches, put the threads that conflict on different cores. In the case
of sharing in the L1 caches, put the threads that share on the same core. In the case
of compute-bound threads fighting for resources, put these threads on different
cores. Another method would be to place high CPI threads together with low CPI
threads on the same core.

Other shared resources that might benefit from thread placement include TLBs and
modular arithmetic units. There are separate instruction and data TLBs per core.
TLBs are similar to the L1 caches in that there can be both sharing and conflicts.
There is only one modular arithmetic unit per core, so placing threads using this unit
on different cores might be beneficial.

Example RLP Exercise
This section uses the reference application RLP to analyze the performance of two
versions of an application. The versions of the application are functionally
equivalent but are implemented differently. The profiling information helps to make
decisions regarding pipelining and parallelizing portions of the code. The
information also enables efficient allocation of different software threads to strands
and cores.

Application Configuration
The RLP reference application has three basic components:

■ PDSN

■ ATIF

■ RLP

The PDSN and ATIF each have receive (RX) and transmit (TX) components. A Netra
T2000 system with four in-ports and four out-ports was configured for the four
instances of the RLP application. FIGURE 11-9 describes the architecture.
254 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

FIGURE 11-9 RLP Application Setup

In the application, the flow of packets from PDSN to AT is the forward path. The
RLP component performs the main processing. The PDSN receives packets
(PDSN_RX) and forwards the packets to the RLP strand. After processing the packet
header, the RLP strand forwards the packet to the AT strand for transmission
(ATIF_TX). Summarizing:

■ -> PDSN_RX -> RLP -> ATIF_TX -> (forward path)

■ <- PDSN_TX <- RLP <- ATIF_RX <- (reverse path)

The example focuses on the forward path performance only.
Chapter 11 Performance Tuning 255

Configuration 1
In configuration 1, the PDSN, ATIF, and RLP functionality is assigned to different
threads as shown in TABLE 11-3.

Configuration 2
In configuration 2, the PDSN and ATIF functionality is split into separate RX and TX
functions, and assigned to different strands as shown in TABLE 11-4.

Using the Profiling API
It is important to understand hardware counter data collected from the strands that
have been assigned some functionality. The strands assigned while(1) loops take
up CPU resources but are not analyzed in this study. This study analyzes overall
thread performance by sampling hardware counter data. After the application has
reached a steady state, the hardware counters are sampled at predetermined
intervals. Sampling reduces the performance perturbations of profiling and averages

TABLE 11-3 Configuration 1

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Strand 0 PDSN_RXTX_0 PDSN_RXTX_2 while(1) while(1) while(1) RLP_0 while(1) while(1)

Strand 1 ATIF_RXTX_0 ATIF_RXTX_3 while(1) while(1) while(1) RLP_1 while(1) while(1)

Strand 2
PDSN_RXTX_1 PDSN_RXTX_4 while(1) while(1) while(1) RLP_2 while(1) Profile

thread

Strand 3 ATIF_RXTX_1 ATIF_RXTX_4 while(1) while(1) while(1) RLP_3 while(1) Stat thread

TABLE 11-4 Configuration 2

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Strand 0
PSDN_RX_0 PSDN_RX_1 PSDN_RX_

2
PSDN_RX_
3

while(1) while(1) PSDN_TX_1 while(1)

Strand 1 RLP_0 RLP_1 RLP_2 RLP_3 while(1) while(1) PSDN_TX_2 while(1)

Strand 2
ATIF_RX_0 ATIF_RX_1 ATIF_RX_

2
ATIF_RX_
3

while(1) while(1) PSDN_TX_3 Profile
thread

Strand 3
ATIF_TX_0 ATIF_TX_1 ATIF_TX_

2
ATIF_TX_
3

while(1) PSDN_TX_
0

while(1) Stat thread
256 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

out small differences in the hardware counter data collected. In both versions of the
application, the profiling affected performance by about 5-7% in overall throughput.
The goal is to have the application in a steady state with profiling on.

The analysis uses the Netra DPS Profiling API (refer to the Netra Data Plane Software
Suite 2.0 Update 2 Reference Manual) and creates a simple function that collects
hardware counter data for all the available counters per strand. The function is
called from a relevant section of the application. The hardware counter data is
related to application performance as the number of packets processed by the
application-defined counter that is passed to the API. To reduce the performance
impact of profiling, the profiling API is not called for each packet processed. For the
RLP application and Netra T2000 hardware combination, the API is called every five
seconds, otherwise the counters overflow.

The pseudo-code in CODE EXAMPLE 11-1 shows the functions that were created to
collect the hardware counter data.
Chapter 11 Performance Tuning 257

Continued on next page.

CODE EXAMPLE 11-1 Sample Code to Cycle Through UltraSPARC T1 Processor Hardware Counters

#ifdef TEJA_PROFILE
/* some global vars */
int event[MAX_CPUS];
uint64_t start_profile_value[MAX_CPUS]; /* when to start collection hw counter data */
uint64_t update_interval_value[MAX_CPUS]; /* when to move to the next counter */
int number_profile_samples[MAX_CPUS]; /* number of samples to be taken before dumping */
int dump_enable[MAX_CPUS]; /* 0 = Dump Disabled 1 = Dump enabled */
int samples_collected[MAX_CPUS]; /* running count of samples collected */
/* set up control values for collection all CPU hardware counter */
inline void init_profiler(uint64_t start_val, uint64_t interval, int num_samples){

int cpuid = teja_get_cpu_number();
event[cpuid] = 1;
number_profile_samples[cpuid] = num_samples;
start_profile_value[cpuid] = start_val;
update_interval_value[cpuid] = interval;
dump_enable[cpuid] = 0;
samples_collected[cpuid] = 0;

}
/* pass the value to be compared against for control */
/* this can be time/packet count */
inline void collect_profile(uint64_t user_value){

int ret;
int cpuid = teja_get_cpu_number();
if (user_value == start_profile_value[cpuid]) {

ret = teja_profiler_start(TEJA_PROFILER_CMT_CPU, event[cpuid]);
if (ret == -1)

printf(“Error Starting Profile \n”);
}

}
if ((user_value % update_interval_value[cpuid])==0) {

ret = teja_profiler_update(TEJA_PROFILER_CMT_CPU, user_value);
if (ret == -1)

printf(“Error Updating Profile \n”);
event[cpuid] = event[cpuid] * 2 ;
if (event[cpuid]==256){

event[cpuid] = 1;
samples_collected[cpuid]++;
if (samples_collected[cpuid] == number_profile_samples[cpuid]){

dump_enable[cpuid] = 1;
/* there is a race here but the side effect is benign as Teja should print*/
/* appropriate records when things get over-written */
samples_collected[cpuid] = 0;

}
}

258 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

The code uses the teja_profiling_api to create a simple set of functions for
collecting hardware counter data. The code is just one example of API usage, but it
is a very good starting point for performance analysis of a LWRTE application.

Each strand that does useful work is annotated with a call to the
collect_profile() function and is passed the number of packets that have been
processed. The location in the code where the call is made is important. In this
application, the call is made in the active section of the code where a packet returned
is not null. The init_profiler() function call sets up the starting point, an
interval, and number of samples to be collected. The dump_hw_profile() function
is called in the statistics strand and prints the data to the console.

Profiling Data
The API calls teja_profile_start and teja_profiler_update to set up and
collect a specific pair of hardware counters. The call to teja_profile_dump
outputs the collected statistics to the console. These function calls are in bold in
CODE EXAMPLE 11-1. For a detailed description of these API functions refer to the
Netra Data Plane Software Suite 2.0 Update 2 Reference Manual.

/* 256 is 2^8 8 is number of HW counter in N1 */
ret = teja_profiler_start(TEJA_PROFILER_CMT_CPU, event[cpuid]);
if (ret == -1)

printf (“Error Starting Profiler\n”);
}

}
inline void
dump_hw_profile(){

int cpuid;
for (cpuid = 0 ; cpuid < MAX_CPUS ; cpuid++){

if (dump_enable[cpuid] == 1){
teja_profiler_dump(cpuid);
dump_enable[cpuid] = 0;

}
}

}
#endif
Chapter 11 Performance Tuning 259

A sample output based on the code in CODE EXAMPLE 11-1 is shown in
CODE EXAMPLE 11-2.

All the numbers in the output are hexadecimal. This format can be imported into a
spreadsheet or parsed with a script to calculate the metrics discussed in “Profiling
Metrics” on page 51. The output in CODE EXAMPLE 11-2 shows two types of records
that correspond to teja_profile_start and teja_profile_update calls.

■ An example of a teja_profile_start record:

This record is formatted as CPUID, ID, Call Type, Tick Counter, Program Counter,
Group Type, Hardware counter 1 code, and Hardware counter 2 code. There is
one such record for every call to teja_profiler_start indicated by a 1 in the
Call Type (third) field.

■ An example of a teja_profile_update record:

CODE EXAMPLE 11-2 Sample Profile Output

PROFILE_DUMP_START,ver,2.0
CPUID,ID,Type,Cycles,PC,Grp,Evt_Hi,Evt_Lo,Overflow,User Data
4,6043,2,30051d74250,512598,1,3a372e12,dc22fb0,0,30c1b080
4,1fad3,1,30051d74c70,525968,1,100,2
4,6043,2,3021dd890b0,512598,1,3a3215c1,0,0,30e03500
4,1fad3,1,3021dd89abc,525968,1,100,4
4,6043,2,303e9d9e3e0,512598,1,3a2ee368,15561,0,30feb980
4,1fad3,1,303e9d9ee4c,525968,1,100,8
4,6043,2,305b5db43b0,512598,1,3a2ef375,29d8db7,0,311d3e00
4,1fad3,1,305b5db4db0,525968,1,100,10
4,6043,2,30781dc9ae0,512598,1,3a2f5793,0,0,313bc280
4,1fad3,1,30781dca544,525968,1,100,20
4,6043,2,3094dddeb10,512598,1,3a303d12,0,0,315a4700
4,1fad3,1,3094dddf51c,525968,1,100,40
4,6043,2,30b19df3258,512598,1,3a2ebfbf,6774,0,3178cb80
4,1fad3,1,30b19df3ccc,525968,1,100,80
4,6043,2,30ce5e08248,512598,1,3a2eb2aa,8c9c8f,0,31975000
4,1fad3,1,30ce5e08e24,525968,1,100,1
4,6043,2,30eb1e1e37c,512598,1,3a2f090e,dbbe5ae,0,31b5d480
4,1fad3,1,30eb1e1eea0,525968,1,100,2
4,6043,2,3107de334a8,512598,1,3a2f958f,0,0,31d45900
4,1fad3,1,3107de33f9c,525968,1,100,4
4,6043,2,31249e48ba8,512598,1,3a2fe948,1564a,0,31f2dd80
PROFILE_DUMP_END

4,1fad3,1,30051d74c70,525968,1,100,2

4,6043,2,31249e48ba8,512598,1,3a2fe948,1564a,0,31f2dd80
260 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

This record is formatted as CPUID, ID, Call Type, Tick Counter, Program Counter,
Group Type, Counter Value 1, Counter Value 2, Overflow Indicator, and user-
defined data. There is one such record for every call to teja_profile_update
indicated by a 2 in the Call Type field.

Metrics
The data from the output is processed using a spreadsheet to calculate the metrics
per strand as presented in TABLE 11-5.

These metrics in TABLE 11-5 provide insight into the performance of each strand and
of each core.

Results

Configuration 1
Configuration 1 sustained 224 kpps (kilo packets per second) on each of the four
flows or 65% of 1 Gbps line rate for a 342 byte packet. Only three cores of the
UltraSPARC T1 processor were used to achieve this throughput. See FIGURE 11-10.

TABLE 11-5 Metrics

Metrics Description

Instructions per packet Average path length to process 1 packet

Instructions per cycle Strand’s instruction processing rate

Packet rate (Kpps) Packet processing rate

SB_full per 1000 instructions
FP_instr_cnt per 1000 instructions
IC_miss per 1000 instructions
DC_miss per 1000 instructions
ITLB_miss per 1000 instructions
DTLB_miss per 1000 instructions
L2_imiss per 1000 instructions
L2_dmiss_ld per 1000 instructions

The hardware counter rates per 1000
instructions enables comparison rates
from different strands.
Chapter 11 Performance Tuning 261

FIGURE 11-10 Results From Configuration 1

Configuration 2
Configuration 2 sustained 310 kpps (kilo packets per second) on each of the four
flows or 90% of 1 Gbps line rate for a 342 byte packet. Four cores of the UltraSPARC
T1 processor were used to achieve this throughput. The Polling notation implies
that the ATIF_RX thread was allocated to a strand, but no packets were handled by
that thread during the test. See FIGURE 11-11.
262 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

FIGURE 11-11 Results From Configuration 2

Analysis
When comparing the processed hardware counter information it is necessary to co-
relate that data with the collection method. The counter information was sampled
over the steady-state run of the application. Other methods of collecting hardware
counter data enables you to optimize a particular section of the application.

Comparing the Instruction per Cycle columns from FIGURE 11-10 and FIGURE 11-11
shows that RXTX threads in configuration 1 are slower than the split RX and TX
threads in configuration 2. The focus is on the forward path processing. Consider the
following:

■ For configuration 1 – PDSN_RXTX -> RLP -> ATIF_RXTX
Chapter 11 Performance Tuning 263

■ For configuration 2 – PDSN_RX -> RLP -> ATIF_TX

The main bottleneck in configuration 1 is the combined ATIF_RXTX thread that runs
at the slowest rate, taking about 12 cycles per instruction. In configuration 2,
ATIF_RX is moved to another strand and the bottleneck in the forward path (that
does not need ATIF_RX) is removed, allowing ATIF_TX to run at a considerably
faster 2.82 cycles per instruction. Also in configuration 2, using another strand
speeded up the slowest section of pipelined processing. To speed up this
configuration even more would require optimizing PDSN_RX, which is now the
slowest part of the pipeline taking up 8.53 cycles per instruction. This optimization
can be accomplished by optimizing code to reduce the number of instructions per
packet or by splitting up this thread using more strands.

To explain the high CPI of the ATIF_RXTX strand in configuration 1, note that there
are 82 DC_misses (dcache misses) per 1000 instructions as compared to just six
misses in the ATIF_TX of configuration 2. The user can estimate the effect of these
misses by calculating the number of cycles these misses add to overall processing.
Use information from TABLE 11-1 to calculate the worst case effect of the data cache
and L2 cache misses. The results for these calculations are shown in TABLE 11-6 for
configuration 1 and in TABLE 11-7 for configuration 2.

TABLE 11-6 Effect of Dcache and L2 Cache Misses on CPI – Configuration 1

CPI
Cycle per Dcache
Miss

Dcache Miss
Effective % Cycles per L2 Miss

L2 Miss
Effective %

PDSN_RXTX 9.07 1.76 19.45 1.73 19.05

ATIF_RXTX 12.51 1.89 15.11 0.93 7.46

PDSN_RXTX 9.02 9.02 9.02 9.02 9.02

ATIF_RXTX 1.69 1.69 1.69 1.69 1.69

TABLE 11-7 Effect of Dcache and L2 Cache Misses on CPI – Configuration 2

CPI
Cycle per Dcache
Miss

Dcache Miss
Effective % Cycles per L2 Miss

L2 Miss
Effective %

PDSN_RX 8.53 1.43 16.71 1.8 21.1

RLP 3.91 0.33 8.43 0.7 17.86

ATIF_RX

ATIF_TX 2.82 0.13 4.63 0.1 3.39
264 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

The highlighted rows show that the CPI contribution of dcache and L2 cache misses
in configuration 1 is much higher than configuration 2, making the ATIF_RXTX
strand much slower.

Other effects are involved here besides those outlined in the preceding tables. The
move to put the RLP on the same core as PDSN_RX and ATIF_TX causes constructive
sharing in the level 1 instruction and data caches as seen in the DC_misses per 1000
instructions for RLP strand. Another effect is that the slower processing rate of
configuration 1 causes the RLP strand to spin on null more often, increasing the
number of instructions per packet metric and slowing down processing. Other
experiments have shown that threads that poll or do the while(1) loop take away
processing bandwidth from other more useful threads.

In conclusion, configuration 2 achieves a higher throughput because the ATIF
processing was split to RX and TX, and each was mapped to a different strand,
effectively parallelizing the ATIF thread. Configuration 2 used more strands, but
was able to achieve much higher throughput.

Other Uses for Profiling
The same teja_profiling_api can be used in another way to evaluate and
understand the performance of an application. Besides the sampling method
outlined in the preceding section, the user can use the API to profile specific sections
of the code. This type of profiling enables the user to make decisions regarding
pipelining and reorganizing memory structures in the application.
Chapter 11 Performance Tuning 265

266 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

APPENDIX A

Tutorial

This appendix is a tutorial to tejacc programming. Topics include:

■ “Application Code” on page 267

■ “Configuration Code” on page 270

■ “Build Process” on page 272

■ “Executing the Binary Image” on page 274

Application Code
The application used for the tutorial has two threads, tick and tock. The tick
thread sends a countdown (9, 8, ..., 0) to the tock thread using a channel. Both of the
threads run in a single process called ticktock.

The application code is a file called ticktock.c. The application code has a
ticker function for the tick thread, and a tocker function for the tock thread.
CODE EXAMPLE A-1 lists the ticktock.c file and provides comment.
267

l

CODE EXAMPLE A-1 ticktock.c File and Comments

#include <stdio.h> stdio.h and
teja_late_binding.h
are included. This action
declares the Netra DPS
late-binding API.

#include “teja_late_binding.h”

void The ticker function uses
two late-binding objects, a
memory pool called
tick_memory_pool and
a channel called
ticktock_channel.
These functions are
declared in the software
architecture definition. The
function loops ten times,
sending the count over the
ticktock_channel
once every second.
teja_wait_time is a
macro of teja_wait
defined in the
teja_late_binding.h
file.

ticker(void)
{
 short i;
 char * node = 0;
 int ret;
 for(i=9; i>=0; i--) {
 teja_wait_time(1, 0);
 node = (char *) teja_memory_pool_get_node
(tick_memory_pool);
 if (!node) {
 printf (“Memory pool is empty!”);
 continue;
 }
 sprintf(node, "%d...", i);
 do {

ret = teja_channel_send(ticktock_channel, i, &node,
size of (char *));

if (ret < 0) {
printf(“Failed to send %s\n”, node);

} else {
printf(“%s sent\n”, node);

}
 } while (ret < 0); /* if channel full, spin & keep
trying */
 }
}

268 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

void The tocker function
loops forever, and in each
iteration waits forever for a
message to come in over the
ticktock_channel.
The teja_wait function
is instructed to poll every
tenth of a second (1E8
nanoseconds).
TEJA_INFINITE_WAIT
is defined in the
teja_late_binding.h
file.

tocker(void)
{
 short i;
 char * node = 0;
 while(1) {
 teja_wait(TEJA_INFINITE_WAIT, 0, 0, (int) 1E8,

&i, (void*) &node, size of (char *), ticktock_channel,
NULL);
 if (i > 0) {
 printf(“Received %s\n”, node);

teja_memory_pool_put_node (tick_memory_pool, node);
 } else if (i == 0) {
 printf(“BLAST OFF!!!\n”);
 break;
 }
 }
}

int This simple example
needs no initialization.
The init function is
provided as an example
to show how an
initialization function
can be mapped to a
process.

init(void)
{
 printf(“init\n”);
 return 0;
}

CODE EXAMPLE A-1 ticktock.c File and Comments (Continued)
Appendix A Tutorial 269

Configuration Code
Unlike the application code, the configuration code is target specific. The
configuration code is written to a file called config.c and contains the hardware
architecture, software architecture, and the mapping to the application code.
CODE EXAMPLE A-2 lists the config.c file and provides comment.

CODE EXAMPLE A-2 config.c File and Comments

#include <stdio.h> Teja configuration APIs
are declared. This
example targets generic
PCs and so includes
teja_cmt.h from the
Sun CMT chip support
package. The package has
a function to create the
CMT1 board architecture.
That function is declared
as external

#include “teja_hardware_architecture.h”
#include “teja_software_architecture.h”
#include “teja_mapping.h”
#include “csp/sun/teja_cmt.h”
extern teja_architecture_t
create_cmt1board_architecture(
 teja_architecture_t container, const char *name);

int A user-defined hardware
architecture called top is
created as a container for
the PC architecture

hwarch(void)
{
 teja_architecture_t top;
 teja_architecture_t pc;
 teja_architecture_t cmt1_chip;
 top = teja_architecture_create(
 NULL, “top”,
 TEJA_ARCHITECTURE_TYPE_USER_DEFINED);
 pc = create_cmt1board_architecture (top, “pc”);
 cmt1_chip = teja_lookup_architecture (pc, “cmt1_chip”);
 teja_architecture_set_property (cmt1_chip, “bsp_dir”,
BSP_DIR);
 return 0;
}

270 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

int The software architecture
consists of the raw OS
running on the CMT
with the ticktock
process running on that.
The tick and tock
threads are mapped
respectively to strand0
and strand1 of the
CMT architecture. The
ticktock_channel
and the
tick_memory_pool
have tick as the
producer and tock as the
consumer.

swarch(void)
{
 teja_os_t os;
 teja_process_t process;
 teja_thread_t tick, tock;
 teja_channel_t channel;
 teja_memory_pool_t tick_memory_pool;
const char* processors[3] = {"top.pc.cmt1_chip.strand0",

 "top.pc.cmt1_chip.strand1",
 NULL};
 const char* srcsets[2] = {"ticktock_srcs", NULL};
 teja_thread_t producers[2], consumers[2];
os = teja_os_create(processors, "os", TEJA_OS_TYPE_RAW);
process = teja_process_create(os, "ticktock", srcsets);

 tick = teja_thread_create(process, "tick_thread");
 tock = teja_thread_create(process, "tock_thread");
 teja_thread_set_property(tick,
TEJA_PROPERTY_THREAD_ASSIGN_TO_PROCESSOR,
 "top.pc.cmt1_chip.strand0");
 teja_thread_set_property(tock,
TEJA_PROPERTY_THREAD_ASSIGN_TO_PROCESSOR,
 "top.pc.cmt1_chip.strand1");
 producers[0] = tick; producers[1] = NULL;
 consumers[0] = tock; consumers[1] = NULL;
 channel = teja_channel_declare
 ("ticktock_channel",
 TEJA_GENERIC_CHANNEL_SHARED_MEMORY_OS_BASED,
 producers,
 consumers);
 tick_memory_pool = teja_memory_pool_declare
 ("tick_memory_pool",
 TEJA_GENERIC_MEMORY_POOL_SHARED_MEMORY_OS_BASED,
 100,
 32,
 producers,
 consumers,
 "top.pc.dram_mem");
 return 0;
}

CODE EXAMPLE A-2 config.c File and Comments (Continued)
Appendix A Tutorial 271

Build Process

▼ To Create the Binary Image
1. Create the shared library config.so by compiling the config.c file and the

Netra DPS-supplied cmt1_board.c chip support file.

int The ticker function is
mapped to the tick
thread. The tocker
function is mapped to
tock_thread. The
application code has no
variables to be mapped.
The init function is
mapped to the target
process.

map(void)
{
 teja_map_function_to_thread("ticker", "tick_thread");
 teja_map_function_to_thread("tocker", "tock_thread");
 teja_map_initialization_function_to_process(
 "init", "ticktock");
 return 0;
}

CODE EXAMPLE A-2 config.c File and Comments (Continued)
272 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

2. Compile the ticktock.c file using tejacc to generate the application code in
the code directory.

The following makefile shows how this is done.

3. Run the gmake command in the code/process_name/ generated source directory
to create the application binary image.

TEJA_INSTALL_DIR=/opt/SUNWndps/tools
BSP_DIR=/opt/SUNWndps/bsp/Niagara1

all: config.so ticktock

%.o:%.c
cc -g -c -xcode=pic13 -xarch=v9

-DTEJA_RAW_CMT -DBSP_DIR='$(BSP_DIR)'
-I$(TEJA_INSTALL_DIR)/include $< -o $@

config.so: config.o cmt1_board.o
ld -G -o config.so config.o cmt1_board.o

$(TEJA_INSTALL_DIR)/bin/libtejahwarchapi.so
$(TEJA_INSTALL_DIR)/bin/libtejaswarchapi.so
$(TEJA_INSTALL_DIR)/bin/libtejamapapi.so

cmt1_board.o: $(TEJA_INSTALL_DIR)/src/csp/sun/sparc64/cmt1_board.c
cc -g -c -xcode=pic13 -xarch=v9

-DTEJA_RAW_CMT -DBSP_DIR='$(BSP_DIR)'
-I$(TEJA_INSTALL_DIR)/include $< -o $@

ticktock: ticktock.c
$(TEJA_INSTALL_DIR)/bin/tejacc.sh

-Dprintf=teja_synchronized_printf
-I$(BSP_DIR)/include

-hwarch config.so,hwarch
-swarch config.so,swarch
-map config.so,map
-srcset ticktock_srcs ticktock.c

clean:
rm -rf config.so *.o code
Appendix A Tutorial 273

Executing the Binary Image

▼ To Execute the Binary Image
● Copy the binary image to the tftpboot directory of the tftp server.

The CMT machine is reset, and the system is booted. See “Building and Booting
Reference Applications” on page 9. When the application starts, the following
countdown is printed to the console.

init
tick started.
tock started.
9...
8...
7...
6...
5...
4...
3...
2...
1...
SHUTDOWN. Exiting tick thread ...
BLAST OFF!!!
SHUTDOWN. Exiting tock thread ...
274 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

APPENDIX B

Frequently Asked Questions

This appendix provides frequently asked questions regarding the Netra DPS.

■ “Summary” on page 276

■ “General Questions” on page 278

■ “Configuration Questions” on page 279

■ “Building Questions” on page 281

■ “Late-Binding Questions” on page 284

■ “Eclipse Questions” on page 286

■ “API and Application Questions” on page 287

■ “Optimization Questions” on page 293

■ “Legacy Code Integration Questions” on page 294

■ “Example for the ipfwd Application” on page 289

■ “Address Resolution Protocol Questions” on page 297

■ “Solaris Domain and Netra DPS Domain Question” on page 299

■ “Traffic Generation” on page 299
275

Summary
General Questions

■ “What Is Teja 4.x and How Does it Differ From an Ordinary C Compiler?” on
page 278

■ “Where Are the Tutorials?” on page 278

Configuration Questions

■ “What Purpose Are the Hardware Architecture, Software Architecture, and
Mapping Dynamic Libraries?” on page 279

■ “How Can I Debug the Dynamic Libraries?” on page 279

■ “What Should I Do When the tejacc Compiler Crashes?” on page 280

■ “What if the Hardware Architecture, Software Architecture, or Mapping Dynamic
Libraries Crash?” on page 280

■ “Can I Build Hardware Architecture, Software Architecture, and Mapping in the
Same Dynamic Library?” on page 281

■ “Can I Map Multiple Variables With One Function Call?” on page 281

Building Questions

■ “Where Is the Generated Code?” on page 281

■ “Where Is the Executable Image?” on page 282

■ “How Can I Compile Multiple Modules on the Same Command Line?” on
page 282

■ “How Can I Pass Different CLI Options to Different Modules on the tejacc
Command Line?” on page 282

■ “How Can I Change the Behavior of the Generated makefile Without Modifying
it?” on page 282

■ “How Do I Compile the Reference Applications?” on page 283

Late-Binding Questions

■ “What Is the Late-Binding API?” on page 284

■ “What Is a Memory Pool?” on page 284

■ “What Is a Channel?” on page 285

■ “What Is the Difference Between OS Based and Non-OS Based Memory Pools and
Channels?” on page 285

■ “How Do I Access a Late-Binding Object From Application Code?” on page 285

■ “Can I Define a Symbol in the Software Architecture and Use it in My Application
Code?” on page 286
276 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Eclipse Questions

■ “How Can I Change the Build Command?” on page 286

■ “How Can I Change the Compiler Invocation Command?” on page 286

API and Application Questions

■ “How Do I Synchronize a Critical Region?” on page 287

■ “How Do I Send Data From a Thread to Another Thread?” on page 287

■ “How Do I Allocate Memory?” on page 288

■ “When Should I Use Queues Instead of Channels?” on page 288

■ “Why Is it Not Necessary to Block Interface or Queue Reads?” on page 288

■ “Can Multiple Strands on the Same Queue Take Advantage of the Extra CPU
Cycles if the Strands Are Not Being Used?” on page 289

■ “Why Does the Application Choose the Role for the Strand From the Code
Instead of the Software Architecture API?” on page 289

■ “Is It Possible to Park a Strand under LDoms as Done in a Non-LDoms
Environment?” on page 290

■ “What Is bss_mem?” on page 290

■ “What Is the Significance of bss_mem Placement in the Code Listing?” on
page 290

■ “How Are app.cmt2board.heap_mem0 and Similar Heaps Affected?” on page 291

■ “Can You Clarify BSS, Code, Heap, and DRAM Memory Allocation?” on page 291

■ “Does the eth_* API Support Virtual Ethernet (VNET) Devices?” on page 292

■ “How Do I Calculate the Base PA Address for NIU/LDoms to Use with the
tnsmctl Command?” on page 292

Optimization Questions

■ “How Do I Enable Optimization?” on page 293

■ “What Is Context-Sensitive Generation?” on page 293

■ “What Is Global Inlining?” on page 294

Legacy Code Integration Questions

■ “How Can I Reuse Legacy C Code in a Netra DPS Application?” on page 294

■ “How Can I Reuse Legacy C++ Code in a Netra DPS Application?” on page 295

Sun CMT Specific Questions

■ “Is There a Maximum Allowed Size for Text and BSS in My Program?” on
page 296

■ “How Is Memory Organized in the Sun CMT Hardware Architecture?” on
page 296

■ “How Do I Increase the Size of the DRAM membank?” on page 297
Appendix B Frequently Asked Questions 277

Address Resolution Protocol Questions

■ “How Do I Enable ARP in the RLP Application?” on page 297

■ “How Do I Enable ARP Without Relying on a Control Domain?” on page 298

■ “How Do I Enable ARP Using a Control Domain?” on page 298

Solaris Domain and Netra DPS Domain Question

■ “How Do I Access kstat Information From the Solaris Domain for Network
Interfaces That Are in Use by the Netra DPS domain?” on page 299

Traffic Generation

■ “How Do I Stop Traffic Generation?” on page 299

General Questions

What Is Teja 4.x and How Does it Differ From an
Ordinary C Compiler?
Teja 4.x is an optimizing C compiler (called tejacc) and API system for developing
scalable, high-performance applications for embedded multiprocessor architectures.
tejacc operates on a system-level view of the application through three techniques:

■ tejacc obtains the characteristics of the targeted hardware and software system
architecture by executing a user-supplied architecture specification.

■ tejacc examines multiple sets of source files and their relationship to the target
architecture in parallel.

■ tejacc handles a special class of APIs used in the application code according to
the system-level context. See “What Is Context-Sensitive Generation?” on
page 293.

The techniques yield superior code validation and optimization, leading to more
reliable and higher performance systems.

Where Are the Tutorials?
The ticktock tutorial is described in “Tutorial” on page 267.
278 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Configuration Questions

What Purpose Are the Hardware Architecture,
Software Architecture, and Mapping Dynamic
Libraries?
These three dynamic libraries are user supplied. The libraries describe the
configuration of the hardware (processors, memories, buses), software (OS,
processes, threads, communication channels, memory pools, mutexes), and mapping
(functions to threads, variables to memory banks). The library code runs in the
context of the tejacc compiler. The tejacc compiler uses this information as a
global system view on the entire system (hardware, user code, mapping,
connectivity among components) for different purposes:

■ Validation – For example, if a thread tries to reach a variable that is mapped to a
memory bank that is not reachable by the processor on which the thread runs, the
compiler flags this as an error.

■ Optimization – See “What Is Context-Sensitive Generation?” on page 293.

The dynamic libraries are run on the host, not on the target.

How Can I Debug the Dynamic Libraries?
Two ways to help debug the dynamic libraries are:

■ Add printf() calls to the hardware architecture, software architecture, and
mapping code. For example:

■ On targets that use gcc as the target compiler (not Sun CMT), use the following
procedure.

printf(“%s:%d\n”,__FILE__,__LINE__)
Appendix B Frequently Asked Questions 279

▼ To Debug the Dynamic Libraries
1. Type:

2. Set a breakpoint on the teja_user_libraries_loaded function.

3. Type run followed by the same parameters that were passed to tejacc.

4. Control returns immediately after the user dynamic libraries are loaded.

5. Set a breakpoint on the desired dynamic library function, and type cont.

What Should I Do When the tejacc Compiler
Crashes?
There might be a bug in the hardware architecture, software architecture, or
mapping dynamic libraries. See “How Can I Debug the Dynamic Libraries?” on
page 279.

What if the Hardware Architecture, Software
Architecture, or Mapping Dynamic Libraries
Crash?
tejacc gets information about hardware architecture, software architecture, and
mapping by executing the configuration code compiled into dynamic libraries. The
code is written in C and might contain errors causing tejacc to crash. Upon
crashing, you are presented with a Java Hotspot exception, as tejacc is internally
implemented in Java.

An alternative version of tejacc.sh, called tejacc_dbg.sh, is provided to assist
debugging configuration code. This program runs tejacc inside the default host
debugger (dbx for Solaris hosts). The execution automatically stops immediately
after the hardware architecture, software architecture, and mapping dynamic
libraries have been loaded by tejacc.

You can continue the execution and the debugger stops at the instruction causing the
crash. Alternatively, you can set breakpoints in the code before continuing or use
any other feature provided by the host debugger.

gdb $teja-install-directory/bin/tejacc
280 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Can I Build Hardware Architecture, Software
Architecture, and Mapping in the Same Dynamic
Library?
The dynamic libraries can be combined, but the entry points must be different.

Can I Map Multiple Variables With One Function
Call?
Use regular expressions to map multiple variables to a memory bank, using the
function:

For example, to map all variables starting with my_var_ to the OS-based memory
bank:

Building Questions

Where Is the Generated Code?
The generated code is located in the top-level-application/code/process directory,
where top-level-application is the directory where make was invoked and process is the
process name as defined in the software architecture.

If you are generating with optimization there is an additional directory,
code/process/.ir. Optimized generation is a two-step process. The .ir directory
contains the result of the first step.

teja_mapping_t teja_map_variables_to_process_(const char * var,
const char * process);

teja_map_variables_to_memory (“my_var_.*”,
TEJA_MEMORY_TYPE_OS_BASED);
Appendix B Frequently Asked Questions 281

Where Is the Executable Image?
The executable image is located in the code/process directory, where process is the
process name as defined in the software architecture.

How Can I Compile Multiple Modules on the
Same Command Line?
tejacc is a global compiler. And all C files must be provided on the same command
line in order for tejacc to perform global validation and optimization. To compile
an application that requires multiple modules, use the srcset CLI option. The
syntax for this option is:

where:

■ srcset-name – Name defined in the software architecture.

■ srcset-specific-options – Options (for example, -D or -I) that apply only to this
source set.

■ source-files – List of files that are contained in this source set.

How Can I Pass Different CLI Options to
Different Modules on the tejacc Command
Line?
See “How Can I Compile Multiple Modules on the Same Command Line?” on
page 282.

How Can I Change the Behavior of the Generated
makefile Without Modifying it?
You can create an auxiliary file that modifies the behavior of the generated Makefile,
and then invoke the generated Makefile with the EXTERNAL_MAKEFILE variable set
to this file name. Or, use the external_makefile property in the software
architecture (both mechanisms are explained in this section). This action causes the
generated makefile to include the file after setting up all the parameters but before

-srcset srcset-name srcset-specific-options source-files
282 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

invoking any compilation command. You can then overwrite any parameter that the
generated Makefile is setting and the new value for that parameter will be in effect
for the compilation.

You can specify a file name using the external_makefile property of the process.
For example, to set the new value for the property, do the following:

If the path is not specified, the top-level application directory is assumed. The path
can be relative to the top-level application directory or an absolute value.

Note – There is no warning or error if the file does not exist. The compilation
continues with the generated Makefile parameters.

If you prefer, you can also specify this external defines filename as a value to the
EXTERNAL_DEFINES parameter during the compilation of the generated code. For
example:

This value takes precedence over the value specified in the software architecture if
both of the approaches are used.

An example of user_defs.mk is USR_CFLAGS=-xO3.

You can generate the Makefile as shown below:

This invocation has the effect of adding the -xO3 flag to the compilation lines.

How Do I Compile the Reference Applications?
See Chapter 10, “Reference Applications” on page 147.

teja_process_set_property(<process_obj>, “external_makefile”,
“new-filename-with-or-without-path”)

gmake EXTERNAL_DEFINES=../../user_defs.mk

gmake EXTERNAL_DEFINES=user_defs.mk
Appendix B Frequently Asked Questions 283

Late-Binding Questions

Note – Refer to “Late-Binding API Overview” on page 27 for more information on
the Late-Binding API.

What Is the Late-Binding API?
The Late-Binding API is the Netra DPS equivalent of OS system calls. However, OS
calls are fixed in precompiled libraries, and Late-Binding API calls are generated
based on contextual information. This situation ensures that the Late-Binding API
calls are small and optimized. See “What Is Context-Sensitive Generation?” on
page 293.

The Late-Binding API addresses the following services:

■ Memory allocation by memory pools

■ Communication through channels and queues

■ Synchronization from mutex

■ Waiting select-like on timeout and channels with teja_wait().

What Is a Memory Pool?
A memory pool is a portion of contiguous memory that is preallocated at system
startup. The memory pool is subdivided into equal-sized nodes and allocated. You
declare memory pools in the software architecture using
teja_memory_pool_declare(). Memory pools enable you to choose size,
implementation type, producers, consumers, and so on.

In the application code, you can get nodes from or put nodes in the memory pool,
using teja_memory_pool_get_node() and teja_memory_pool_put_node. The
allocation mechanism is more efficient than malloc() and free(). The get_node
and put_node primitives are Late-Binding API calls, so they benefit from context-
sensitive generation.
284 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

What Is a Channel?
A channel is a pipe-like mechanism to send data from one thread to another.
Channels are declared in the software architecture using
teja_channel_declare(), which enables you to choose the size and number of
nodes, implementation type, and so on.

In the application code, you can write data to the channel using
teja_channel_send() and read from the channel using teja_wait(). The send
and wait primitives are Late-Binding API calls (see “What Is the Late-Binding
API?” on page 284), so they benefit from context-sensitive generation.

What Is the Difference Between OS Based and
Non-OS Based Memory Pools and Channels?
The operating system (OS) based memory pools and channels allocate buffer in the
heap, which is limited by default. The non-OS based memory pools and channels
allocate buffer with a memory map and have no limitation except the size of the
RAM bank.

How Do I Access a Late-Binding Object From
Application Code?
Use the teja_late-binding-object-type_declare call to declare all late-binding objects
(memory pool, channel, mutex, queue) in the software architecture. The first
parameter of this call is a string containing the name of the object. In the application
code, the late-binding objects are accessed as a C preprocessor symbolic
interpretation of the object name. The name is no longer a string. tejacc makes
these symbols available to the application by processing the software architecture
dynamic library.
Appendix B Frequently Asked Questions 285

Can I Define a Symbol in the Software
Architecture and Use it in My Application Code?
The following function in the software architecture can define a C preprocessor
symbol used in application code:

where

■ process — Process in which the symbol is defined.

■ symbol — String containing the symbol name.

■ value — String containing the symbol value.

Note – In the application, the symbol is accessed as a C preprocessor symbol, not as
a string.

Eclipse Questions

How Can I Change the Build Command?
In Eclipse, open the Window/Preferences menu. In the left-side tree, open the
C/C++/New CDT project wizard/Makefile project node. In the right-side of the
window, select the Builder settings tab. In the section Builder, deselect Use default
build command and in the text field below it, type the command of choice.

How Can I Change the Compiler Invocation
Command?
In Eclipse, open the Window/Preferences menu. In the left-side tree open the
C/C++/New CDT project wizard/Makefile project node. In the right-side of the
window select the Discovery options tab and in the Compiler invocation command
text field, type the command of choice.

int teja_process_add_preprocessor_symbol (teja_process_t process,
const char * symbol, const char * value);
286 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

API and Application Questions

Note – Refer to the Netra Data Plane Software Suite 2.0 Update 2 Reference Manual for
detailed description of the API functions.

How Do I Synchronize a Critical Region?
Use the mutex API which consists of the following:

■ teja_mutex_declare()

■ teja_mutex_lock()

■ teja_mutex_unlock()

■ teja_mutex_trylock()

How Do I Send Data From a Thread to Another
Thread?
Use the Channel API or the Queue API.

The Channel API is composed of:

■ teja_channel_declare()

■ teja_channel_is_connection_open()

■ teja_channel_make_connection()

■ teja_channel_break_connection()

■ teja_channel_send()

■ teja_wait()

The Queue API is composed of:

■ teja_queue_declare()

■ teja_queue_enqueue()

■ teja_queue_dequeue()

■ teja_queue_is_empty()

■ teja_queue_get_size()
Appendix B Frequently Asked Questions 287

How Do I Allocate Memory?
Use the Memory Pool API, which is composed of:

■ teja_memory_pool_declare()

■ teja_memory_pool_get_node()

■ teja_memory_pool_put_node()

■ teja_memory_pool_get_node_from_index()

■ teja_memory_pool_get_index_from_node()

When Should I Use Queues Instead of Channels?
Generally, queues are more efficient than channels. Consider the following
guidelines when deciding between queues or channels:

■ Fast Queue functions have less code and overhead. Fast Queue functions are poll-
driven, and so are more efficient for passing high-rate packet streams.

■ Channels can accommodate variable data size and enables you to perform event-
driven communication. Data is copied into the channel at the sender and copied
out of the channel at the receiver.

■ Channels enable you to send an event value to the receiver that distinguishes the
type of received data. This capability is good for classifier applications and events
that do not arrive regularly.

■ The decision to use a queue instead of a channel depends on the application
model. For example, if an ipfwd application does not require classification, Fast
Queue is more efficient.

Why Is it Not Necessary to Block Interface or
Queue Reads?
If a queue is used by one producer and one consumer, there is no need to block
during the queue read. For example, in the ipfwd application, each queue has only
one producer and consumer, and does not need to block. See FIGURE B-1.

Ethernet
read Rx2ipfwdQ IPfwd2TxQ

Ethernet
write
288 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

FIGURE B-1 Example for the ipfwd Application

Note – If the Netra DPS queue API is used instead of Fast Queue, then locks are
generated implicitly during compile time.

It is not necessary to block ethernet interface reads, as there is only one thread
reading from or writing to a particular interface port or DMA channel at any given
time.

Can Multiple Strands on the Same Queue Take
Advantage of the Extra CPU Cycles if the Strands
Are Not Being Used?
A strand is not being used or consuming the pipeline only when the strand is
parked. Even when a strand is calling teja_wait(), the CPU consumes cycles
because the strand does a busy wait. If the strand performs busy polls, the polls can
be optimized so that other strands on the same CPU core utilize the CPU. This
optimization is accomplished by executing instructions that release the pipeline to
other strands until the instruction completes.

Consider IP-forwarding type applications. When the packet receiving stream
approaches line rate, it is better to let the strand perform busy poll for arriving
packets. At less than the line rate, the polling mechanism is optimized by inserting
large instructions between polls. Under this methodology, the pipeline releases and
enables other strands to utilize unused CPU cycles.

Why Does the Application Choose the Role for
the Strand From the Code Instead of the Software
Architecture API?
When the role is determined from the code, the application (for example, ipfwd.c)
can be made more adaptable to the number of flows and physical interfaces without
modifying any mapping files. In some situations, however, the Software Architecture
API can provide a better role for a strand.
Appendix B Frequently Asked Questions 289

Is It Possible to Park a Strand under LDoms as
Done in a Non-LDoms Environment?
Methods of parking strands are no different in an LDoms environment. Strands not
utilized are automatically parked. If a strand is assigned to a logical domain but is
not used, then that strand should be parked. Strands that are not assigned to the
Netra DPS Runtime Environment logical domain are not visible to that domain and
cannot be parked.

Can You Assign Partial Cores to a Netra DPS
domain?
You must assign complete cores to the Netra DPS Runtime Environment. Otherwise,
you have no control over the resources consumed by other domains on the core.

What Is bss_mem?
bss_mem is a location where all global and static variables are stored.

Note – The sum of BSS and the code size must not exceed 5 Mbytes of memory.

For example:

What Is the Significance of bss_mem Placement in
the Code Listing?
When the example in What Is bss_mem? is inserted into the code, all subsequent
variables using .*_dram are superseded. To clarify, all variables suffixed with
_dram are mapped to the DRAM memory region. All other variables are mapped to
the BSS.

(ipfwd_map.c) (teja_map_variables_to_memory(“.*”,
“app.cmt1board.bss_mem”);
290 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

How Are app.cmt2board.heap_mem0 and
Similar Heaps Affected?
The heap region is used by teja_malloc(). Every time teja_malloc() is called,
the heap space is reduced.

Can You Clarify BSS, Code, Heap, and DRAM
Memory Allocation?
FIGURE B-2 illustrates the allocation of memory for BSS, code, heap, and DRAM.

FIGURE B-2 Memory Allocation Stack

Note – These memory regions are not necessarily contiguous. There may be gaps in
between each region.

where:

■ BSS – Global and static variables.

■ Code – Code segment.

■ Heap – Region for teja_malloc().

■ DRAM – Used for memory pools. For example, DMA buffers, descriptors, queue
data, user application memory, and so on.

BSS

Code

Heap

DRAM

Address

Address+w+x

Address+w+x+y

Address+w+x+y+z

Address+w
}
}
}
}

w memory space

x memory space

y memory space

z memory space
Appendix B Frequently Asked Questions 291

Does the eth_* API Support Virtual Ethernet
(VNET) Devices?
The eth_* API only supports physical ethernet devices at this time.

How Do I Calculate the Base PA Address for
NIU/LDoms to Use with the tnsmctl
Command?
Command syntax:

tnsmctl -P -v basepaddr

The basepaddr is needed when using NIU under LDoms; it is based on the LDoms
configuration on the machine in question. The value is derived from the output of
the ldm command for the domain in which the NIU will be operated under the
Netra DPS environment. This command is issued on the Solaris control domain.

Assuming ldg1 is the Netra DPS domain in this example, then based on the above
information, the basepaddr variable can be calculated as PA - RA = basepaddr. In the
above example, the base PA address is 0x40000000 as calculated below:

0x48000000 - 0x8000000 = 0x40000000

/opt/SUNWldm/bin/ldm list -l
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
ldg1 bound ----v 5000 16 4G
...
MEMORY
 RA PA SIZE
 0x8000000 0x48000000 4G
...
292 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Optimization Questions

How Do I Enable Optimization?
TABLE B-1 describes the options for tejacc to enable optimization:

What Is Context-Sensitive Generation?
Context-sensitive generation is the ability of the tejacc compiler to generate
minimal and optimized system calls based on global context information provided
from:

■ Hardware architecture

■ Software architecture

■ Mapping

■ Function parameters

■ User guidelines

In the traditional model, the operating system is completely separated from the
compiler and the operating system calls are fixed in precompiled libraries. In the
tejacc compiler, each system call is generated based on the context.

For example, if a shared memory communication channel is declared in the software
architecture as having only one producer and one consumer, the tejacc compiler
can generate that channel as a mutex-free circular buffer. On a traditional operating
system, the mutex would have to be included because the usage of the function call
was not known when the library was built. See “Late-Binding API Overview” on
page 27 for more information on the Late-Binding API.

TABLE B-1 Optimization Options for tejacc

Option for tejacc Description

-O Enables all optimizations.

-fcontext-sensitive-generation Enables context sensitive generation only.
Appendix B Frequently Asked Questions 293

What Is Global Inlining?
Functions marked with the inline keyword or with the -finline command-line
option get inlined throughout the entire application, even across files.

Legacy Code Integration Questions

How Can I Reuse Legacy C Code in a Netra DPS
Application?
You can port pre-existing applications to the Netra DPS environment. There are two
methods to integrate legacy application C code with newly compiled Netra DPS
application code:

■ “Linking Legacy Code to Netra DPS Code” on page 294

■ “Changing Legacy Source Code” on page 294

Linking Legacy Code to Netra DPS Code
By linking legacy code the to Netra DPS code as libraries, the legacy code is not
compiled and changes are minimized. The legacy library is also linked to the Netra
DPS generated code, so those libraries must be available on the target system, where
performance is not an important factor.

Changing Legacy Source Code
Introducing calls to the Netra DPS API in the legacy source code enables context-
sensitive and late-binding optimizations to be activated in the legacy code. This
method provides higher performance than the linking method.

Heavy memory allocation operations such as malloc and free are substituted with
Netra DPS preallocated memory pools, generated in a context-sensitive manner. The
same advantage applies to mutexes, queues, communication channels, and functions
such as select(), which are substituted with teja_wait().
294 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Note – It is not necessary to substitute all legacy calls with Netra DPS calls as only
performance-critical parts of legacy code need to be ported to Netra DPS. Error
handling and exception code can remain unchanged.

How Can I Reuse Legacy C++ Code in a Netra
DPS Application?

Note – See “How Can I Reuse Legacy C Code in a Netra DPS Application?” on
page 294.

C++ code can be integrated with a Netra DPS application by two methods:

■ “Mixing C and C++ Code” on page 295

■ “Translating C++ Code to C Code” on page 296

Mixing C and C++ Code
Netra DPS generates C code, so the final program is in C. Mixing C++ and Netra
DPS code is similar to mixing C++ and C code. This topic has been discussed
extensively in C and C++ literature and forums. Basically, declare the C++ functions
you call from Netra DPS to have C linkage. For example:

Compile the C++ code natively with the C++ compiler and link the code to the
generated Netra DPS code. The Netra DPS code can call the C++ functions with C
linkage.

For detailed discussions of advanced topics such as overloading, templates, classes,
and exceptions, refer to these URLs:

■ http://developers.sun.com/sunstudio/articles/mixing.html
■ http://www.parashift.com/c++-faq-lite/mixing-c-and-cpp.html

#include <iostream>
extern “C” int print(int i, double d)
{
 std::cout << “i = " << i << ", d = " << d;
}

Appendix B Frequently Asked Questions 295

http://www.parashift.com/c++-faq-lite/mixing-c-and-cpp.html
http://developers.sun.com/sunstudio/articles/mixing.html

Translating C++ Code to C Code
The third-party packages at the following web sites can be used to translate code
from C++ to C. Sun has not verified the functionality of these software programs:

■ http://www.comeaucomputing.com/

■ http://www.desy.de/user/projects/C++/products/solbourne.html

■ http://javashoplm.sun.com/ECom/docs/Welcome.jsp?StoreId=
8&PartDetailId=GCC2C-2.0-MP-G-F&TransactionId=Try

Sun CMT Specific Questions

Is There a Maximum Allowed Size for Text and
BSS in My Program?
The limit is 5 Mbyte. If the application exceeds this limit, the generated makefile
indicates so with a static check.

How Is Memory Organized in the Sun CMT
Hardware Architecture?
TABLE B-2 lists the default memory setup in Sun CMT hardware architecture:

TABLE B-2 Default Memory Setup

Memory Address Space Description

0x00000000 - 0x11000000 Reserved for system use.

0x11000000 - 0x13000000 Private heap memory for each strand. On CMT
systems, there are 32 strands. Each strand receives
1/32th of the memory from 0x11000000 to 0x13000000.
The first strand has its heap from 0x11000000 to
0x11100000, the second one has its heap from 0x1110000
to 0x11200000, and so on. Heap memory is used by
teja_malloc().

0x13000000 - 0x100000000 Shared DRAM. Variables that are mapped to DRAM are
generated in the static memory map.
296 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

http://javashoplm.sun.com/ECom/docs/Welcome.jsp?StoreId=8&PartDetailId=GCC2C-2.0-MP-G-F&TransactionId=Try
http://www.desy.de/user/projects/C++/products/solbourne.html
http://www.comeaucomputing.com/

These values are changed in the memory bank properties of the hardware
architecture. For example, to move the end of DRAM to 0x110000000, add the
following code to your hardware architecture:

How Do I Increase the Size of the DRAM
membank?
You can increase the size of DRAM as explained in “How Is Memory Organized in
the Sun CMT Hardware Architecture?” on page 296.

Address Resolution Protocol Questions

How Do I Enable ARP in the RLP Application?

▼ To Enable ARP in RLP
1. Modify rlp_config.h to give IP addresses to the network ports.

For example:

a. Assign an IP address to the network ports of the system, running Netra DPS.

teja_memory_t mem; char * new_value = “0x110000000”; ... mem =
teja_lookup_memory (board, “dram_mem”); teja_memory_set_property
(mem, TEJA_PROPERTY_MEMORY_SIZE, new_value);

#define IP_BY_PORT(port) \
((port == 0)? __GET_IP(192, 12, 1, 2): \
(port == 1)? __GET_IP(192, 12, 2, 2): \
(port == 2)? __GET_IP(192, 12, 3, 2): \
(port == 3)? __GET_IP(192, 12, 4, 2): \
(0))
Appendix B Frequently Asked Questions 297

b. Tell the RLP application the remote IP address to which its going to send IP
packets.

c. Assign netmask to each port, to define a subnet.

2. Compile the RLP application with ARP=on.

How Do I Enable ARP Without Relying on a
Control Domain?
Netra DPS applications can make use of the LWIP stack, provided in the SUNWndps
package. LWIP wrapper APIs are provided for the ease of the application writer.
These APIs are located in the following header file: netif/lwrtearp.h
(/opt/SUNWndps/src/libs/lwip/src/include/netif/lwrtearp.h). The
RLP reference application (/opt/SUNWndps/src/apps/rlp) makes use of these
APIs.

How Do I Enable ARP Using a Control Domain?
The ipfwd-ARP integration makes use of the LWIP stack in the control-plane to
update the ARP entries in the Forward Information Base (Forwarding table) and
passes the Forwarding table to Netra DPS runtime. If the application writer needs
ARP using a control-domain, then they can design their application according to the
ipfwd reference application (see Chapter 10, “Reference Applications” on page 147).

#define DEST_IP_BY_PORT(port) \
((port == 0)? __GET_IP(192, 12, 1, 1): \
(port == 1)? __GET_IP(192, 12, 2, 1): \
(port == 2)? __GET_IP(192, 12, 3, 1): \
(port == 3)? __GET_IP(192, 12, 4, 1): \
(0))

#define NETMASK_BY_PORT(port) (0xffffff00)

$ gmake clean
$ gmake ARP=on
298 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Solaris Domain and Netra DPS Domain
Question

How Do I Access kstat Information From the
Solaris Domain for Network Interfaces That Are
in Use by the Netra DPS domain?
This feature is available on the IP packet forwarding application (ipfwd). On the
Solaris domain, use the following command line to access kstat information:

To enable statistics in the ipfwd application, edit the Makefile.nxge file and
uncomment the -DKSTAT_ON flag.

Traffic Generation

How Do I Stop Traffic Generation?
If the Netra DPS application is in an unrecoverable state, then a single Ctrl-C might
not exit the user interface application. In that case, pressing Ctrl-C four times will
exit the user interface application and the Netra DPS application can then be
restarted from the primary domain by restarting the Netra DPS domain.

kstat tnxge:0
module: tnxge instance: 0
name: Port Stats class: net

crtime 2975750.16388507
ipackets 6
obytes 384
opackets 6
rbytes 384

snaptime
3145512.6135888
Appendix B Frequently Asked Questions 299

300 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Glossary

A
ADE Netra DPS Eclipse-based Teja Advance Development Environment (ADE)

graphical user interface. Teja ADE views three Teja elements: hardware
architecture, software architecture and mapping.

AF Assured forwarding.

AH/ESP Authentication header/encapsulating security payload.

AN Access network.

API Application Programming Interface.

AT Access terminal.

ARP Address resolution protocol.

B
bsp Header files and low-level Sun UltraSPARC T1 and Sun UltraSPARC T2

platform initialization and management code.
301

C
CAM Content addressable memory.

CBS Committed burst size.

CG Cipher group.

CIR Committed information rate.

CLI Command-line interface.

CMT Chip multithreading.

CMT1 Chip multithreading for Sun UltraSPARC T1 systems.

CMT2 Chip multithreading for Sun UltraSPARC T2 systems.

consumers Threads receiving messages from a channel.

CSP Chip support package. A target-specific section of the code generator aware of
hardware features. CSP is responsible for generating thread startup code,
mutexes, and so on.

D
dbg Chip multithreading (CMT) debugger program. Netra DPS native debugger

is the default debugger and is useful for debugging during development,

DMA Direct memory access.

DRR Deficit round robin.

DSCP Differentiated services code point.

E
EBS Excess burst size.

Eclipse An open source community where projects are focused on building
extensive development platforms, runtimes, and application frameworks.
302 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

EF Expedited forwarding.

ESP Encapsulating security payload.

F
FIB Forwarding information base.

G
GDB GNU debugger that enables you to debug your program in C source code

level.

GRE Generic Routing Encapsulation application.

GUI Graphical user interface.

I
IPC Interprocess communication software mechanism that provides a means to

communicate between processes that run in a domain under the Netra DPS
Runtime Environment and processes in a domain with a control plane
operating system.

IPSec Internet Protocol Security.

IPv4 Internet Protocol Version 4.

IPv6 Internet Protocol Version 6.

IV Initialization vector.
Glossary 303

L
late-binding Provides primitives for the synchronization of distributed threads,

communication, and memory allocation.

LDC Logical domain channel.

LDoms Logical Domains.

LWRTE Lightweight Runtime Environment. Provides an ANSI C development
environment for creating and scheduling application threads to run on
individual strands on the UltraSPARC T series processor.

M
mblk Message Block. A data structure that carries packet information.

N
NAK Negative-Acknowledge is sent by a station to indicate that an error was

detected in the previously received block and that the receiver is ready to
accept retransmission of that block.

Netra DPS Netra Data Plane Software Suite. In this document, this suite is also referred to
as Netra DPS.

Netra DPS Runtime
API Consists of portable, target-independent abstractions over various operating

system facilities such as thread management, heap-based memory
management, time management, socket communication, and file descriptor
registration and handling.

NTGen (ntgen) Netra DPS traffic generator tool.

NIU Network Interface Unit (Sun multithreaded 10GbE with Network Interface
Unit). Networking hardware consisting of a Receive Packet Classifier that
performs L2/L3/L4 header parsing, matching, and searching functions.
304 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

P
parked A parked strand does not consume any pipeline cycles (an inactive strand).

PDSN The Packet Data Serving Node, or PDSN, is a component of a CDMA2000
mobile network. It acts as the connection point between the Radio Access and
IP networks. This component is responsible for managing PPP sessions
between the mobile provider core IP network and the mobile station.

PHB Per hop behavior.

PIR Peak information rate.

producers Threads sending messages to a channel.

Q
QM Queue Manager.

QoS Quality of Services.

R
RFC Request for Comments (RFC) documents are a series of memoranda

encompassing new research, innovations, and methodologies applicable to
Internet technologies.

S
SA Security Association.

SAD Static Security Association Database.

SCTP Stream Control Transmission Protocol.

source set Consists of one or more source files. The source set is used to map to one or
more processes.
Glossary 305

SP Security Policy.

SPD Security Policy Database.

SPDC Security Policy Database Cache.

SPI Security Parameter Index.

SPU Stream Processing Unit.

SRTCM Single Rate Three Color Marker.

strand A hardware thread, multistrand partitioning firmware for Sun CMT platforms.

Studio 12 C compiler software.

SUNWndps Netra DPS software package installed in the development server. Contains
system-level libraries, header files, and low-level Sun UltraSPARC T1 and Sun
UltraSPARC T2 platform code, and tools for compiler and runtime system.

SUNWndpsd Netra DPS software package installed on the target deployment system.
Contains the Netra Data Plane CMT and IPC Share Memory Driver.

SUNWndpsc Netra DPS software package containing the Sun UltraSPARC T2 cryptography
driver.

T
TCAM Temary content addressable memory.

TCP Transmission control protocol.

TC Three color meter.

tejacc A compiler that provides the constructs of threads, mutex, queue, channel, and
memory pool within the application code.

Teja NP 4.0 Teja NP 4.0 software platform used to develop scalable, high-performance C
applications for embedded multiprocessor target architectures.

thread Runs in a process and is a target for executing a function. Thread management
functions offer the ability to start and end threads dynamically.

tnsmctl Contained in SUNWndpsd package and contains the Netra Data Plane CMT and
IPC share memory driver.

TOS Type of service.

TRTCM Two-rate three color marker.
306 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

U
UDP User/universal datagram protocol.

UltraSPARC T1 Processor that employs chip multithreading, or CMT, which combines chip
multiprocessing (CMP) and hardware multithreading (MT). This processor
creates a SPARC V9 processor with up to eight 4-way multithreaded cores for
up to 32 simultaneous threads.

UltraSPARC T2 Processor that is the second generation of the CMT processor. In addition to
features found in UltraSPARC T1, UltraSPARC T2 dramatically increases
processing power by increasing the number of hardware strands in each core.
UltraSPARC T2 includes on-chip 10G Ethernet and crypto accelerator.

V
VLAN Virtual local area network.
Glossary 307

308 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

Index
A
access control list (ACL) reference application, 172
autoconfig tool, 137

B
basepaddress, calculating, 292
boot an application image, 11
building reference applications, 10

C
command-line options, tejacc, 31
common header file, 97
configuring IPC environment, 88
context-sensitive generation, 34

D
debugger commands, 69
debugger configuration code, 68
debugger, GDB, 79
debugger, native, 68
diagnosing network applications, 237

E
Eclipse GUI, 109

F
FAQ, 275
file contents, software, 3
finite state machine API, 29
firmware

checking version, 4
installation, 4

frequently asked questions, 275

G
GDB debugger, 79

H
hardware architecture overview, 18

I
interprocess communication (IPC), 87, 102
IP packet forwarding

ipfwd, 147
IPC

configuring environment, 88
overview, 87, 102

IPC channels, 95
ipfwd, 147
IPSec gateway reference application, 180

L
language characteristics, 35
late-binding API, 27
late-binding elements, 23
LDoms environment, 89

M
map API, 29
309

N
Netra DPS Runtime API, 27
network interface unit (NIU), 123
NIU (network interface unit), 123
ntgen, 208

O
optimization options, 33
overview, 1

P
profiler, 37
profiler API examples, 42
profiler script, using, 51
programming methodology, 12

Q
questions, FAQ, 275

R
radio link protocol (RLP), 175
Receive Packet Classifier, 123
reference application instructions, 10
remote command-line-interface (CLI)

accessing, 103
coredump support, 105
debugging remotely, 104
introduction, 101
IPC setup, 102
system configuration, 106

RLP (radio link protocol), 175

S
software

file contents, 3
installation, 3
package contents, 3

software architecture and late-binding overview, 22
Solaris utility code, 97
SUNWndps and SUNWndpsd package contents, 3

T
tejacc basics, 31
tejacc compiler basic operation, 14
traffic generator

ntgen, 208
tuning network applications, 237
tutorial, 267

U
UltraSPARC T1 processor, 238
UltraSPARC T2 processor, 240
UltraSPARC T2, example environment, 96

V
virtual data plane channels, 94
310 Netra Data Plane Software Suite 2.0 Update 2 User’s Guide • July 2008

	Netra™ Data Plane Software Suite 2.0 Update 2 User’s Guide
	Contents
	Figures
	Tables
	Preface
	Netra Data Plane Software Suite Overview
	Product Description
	Supported Systems
	Software Installation
	Platform Firmware Prerequisites
	To Check Your OpenBoot PROM Firmware Version

	Package Dependencies
	Package Installation Procedures
	To Install the Software Into the Default Directory
	To Install the Software in a Directory Other Than the Default
	To Remove the Software

	Building and Booting Reference Applications
	.cshrc File and Required Compiler Path
	Building Reference Application Instructions
	To Boot an Application Image

	Programming Methodology
	Reusing Existing C Code

	tejacc Compiler Basic Operation
	tejacc Compiler Mechanics
	tejacc Compiler Options
	tejacc Compiler Configuration
	tejacc Compiler and Netra DPS Interaction

	Architecture Elements
	Hardware Architecture API Overview
	Hardware Architecture Elements
	Architecture Relationships
	Utility Functions
	Advanced Hardware Architecture Elements

	Software Architecture and Late-Binding API Overview
	Late-Binding Elements
	Other Elements
	Utility Functions

	User API Overview
	Late-Binding API Overview
	Netra DPS Runtime API Overview
	Finite State Machine API Overview
	Map API Overview

	tejacc Basics
	Command-Line Options
	tejacc Command-Line Options

	Optimization
	Optimization Options
	Context-Sensitive Generation
	To Enable Optimization

	Language
	Language Characteristics
	Include Files
	Late-Binding Object Identifiers

	Profiler
	Profiler Introduction
	How the Profiler Works
	Groups and Events
	Profiler Output
	Profiler Examples
	Profiler API
	Profiler API Usage for the Sun UltraSPARC T1 Processor
	Profiler API Usage for the Sun UltraSPARC T2 Processor

	Profiler Configuration
	Profiler Output Example

	Profiling Application Performance
	Sun UltraSPARC T1 Performance Counters
	Sun UltraSPARC T2 Performance Counters

	User-Defined Statistics
	Profiling Metrics
	Using the Profiler Script
	Profiler Scripts
	Usage
	Raw Profile Data
	Summarized Profile Data
	Sun UltraSPARC T1 Processor Profiler Output
	Sun UltraSPARC T2 Processor Profiler Output

	Performance Parameters Calculations
	Sun UltraSPARC T1 Processor
	Instructions per Packet:
	Instructions per Cycle (IPC):
	Packet Rate:
	SB_full per thousand instructions:
	FP_instr_cnt per thousand instructions:
	IC_miss per thousand instructions:
	DC_miss per thousand instructions:
	ITLB_miss per thousand instructions:
	DTLB_miss per thousand instructions:
	L2_imiss per thousand instructions:
	L2_dmiss_LD per thousand instructions:
	Sun UltraSPARC T2 Processor
	Instruction per Packet:
	Instructions per Cycle (IPC):
	Store Instructions per Packet:
	Load Instructions per Packet:
	L2 Load misses per Packet:
	Icache misses per 1000 Packets:
	Dcache misses per Packet:
	Packet Rate:

	To Use a Spreadsheet For Performance Analysis

	Debugger
	Debugger Introduction
	Native Debugger
	Debugging Configuration Code
	Entering the Debugger
	Native Debugger Commands
	Displaying Help

	help command or h command
	Description
	Example
	Managing Breakpoints

	break address Command or b address Command
	Description

	info break Command or i break Command
	Description
	Example

	delete breakpoint ID Command or d breakpoint ID Command
	Description
	Managing Program Execution

	cont Command or c Command
	Description

	step Command or s Command
	Description
	Example
	Displaying and Setting Memory

	x/nfu address Command
	Description

	w/u address value Command
	Description
	Example
	Managing Threads

	info threads Command or i threads Command
	Description

	thread ID Command
	Description
	Example
	Displaying Registers

	info reg Command or i reg Command
	Description
	Example
	Displaying Stack Trace

	bt frame_count Command
	Description
	Example

	Resolving Symbols
	-h Option
	Description

	-f function_name Option
	Description

	-g global_variable Option
	Description
	Example

	-l file_name:line_number Option
	Description
	Example

	GNU Project Debugger (GDB)
	Configuring LDoms for GDB Support
	To Configure LDoms Required to Run the Netra DPS Application with GDB Support
	To Configure the Solaris Domain for GDB

	GDB Showcase Application
	To Compile the GDB Showcase
	To Load the GDB Showcase Binary in the Netra DPS Domain
	To Run the GDB Command
	Step-By-Step Procedure to Run Netra DPS Application with GDB Support

	Interprocess Communication Software
	IPC Introduction
	Programming Interfaces Overview
	Configuring the Environment for IPC
	Memory Management
	IPC in the LDoms Environment
	LDoms Channel Setup
	IPC Channel Setup

	Example Environment for UltraSPARC T1 Based Servers
	Domains
	primary
	ldg1 - LWRTE
	ldg2 - Control Plane Application
	ldg3 - Solaris Control Domain

	Virtual Data Plane Channels
	Global Control Channel
	Client Control Channel
	Data Channel

	IPC Channels

	Example Environment for UltraSPARC T2 Based Servers
	Reference Applications
	Common Header
	Solaris Utility Code
	connect Channel_ID
	use-table Table_ID
	write-table Table_ID
	stats
	read
	status
	exit / x / quit /q
	help
	Forwarding Application

	Remote Command-Line Interface
	Remote Command-Line Interface Introduction
	IPC Setup for Remote CLI
	Accessing the Remote CLI
	To access the CLI Console

	Debugging Remotely
	To Access the Netra DPS Debugger

	Coredump Support
	System Configuration
	To Go to the sys Mode From the Remote CLI

	Compiling the Remote CLI Application
	Build Script
	Usage
	Build Script Arguments
	Argument Descriptions

	Eclipse Development Environment
	ADE Introduction
	Starting the Eclipse-Based ADE GUI
	To Start the Eclipse-Based ADE GUI

	Creating a Teja Project
	To Create a Project in the Same Directory as an Existing Teja Application
	To Add the Graphic Files to a Project

	Files and Viewers
	Hardware Architecture Viewer
	Software Architecture Viewer
	Mapping Viewer

	Build
	To Compile the Teja Application in the Eclipse- Based ADE

	Receive Packet Classification
	Receive Packet Classification Introduction
	Supported Networking Interfaces
	Sun Multithreaded 10GbE and NIU Receive Packet Classifier
	Hashing Based on Level 2, Level 3, and Level 4 Header Classification
	Hash Key generation
	Application
	Classification Policy

	Flow Match Based on Level 2, Level 3, and Level 4 Header Classification
	Level 2 (L2) Classification
	Level 3 and Level 4 (L3/L4) Classification
	Applications
	Classification Programming Interface
	opcode
	action
	flow_spec
	channel
	ue or um
	hd
	flow_spec_ipv4_t
	flow_spec_ipv6_t
	flow_spec_l2_t

	Examples
	To Use Hash Flow
	To Use TCAM Classification

	Auto-Configuration
	Auto-Configuration Introduction
	Installation
	Prerequisites
	User Interface
	Configuring a Logical Domain Environment for Reference Applications
	Custom Configuring a Primary Domain
	Custom Configuring a Guest Domain
	Configuring LDC and IPC
	Saving Current Guest Domains Configuration
	Configuring LDoms from a Saved Location

	Reference Applications
	IP Packet Forwarding Application
	Source Files
	Compiling the ipfwd Application
	Build Script
	Usage
	Build Script Arguments
	Argument Descriptions
	Build Example
	To Run the ipfwd Application

	Default Configurations
	Default System Configuration
	Default ipfwd Application Configuration

	Other IPFWD Options
	Radix Forwarding Algorithm
	Bypassing the ipfwd Operation
	Multiple Forward Port Destinations
	UltraSPARC T2 Version 2.1 Mode
	Statistics Flags
	IP Forward Static Cross Configuration
	Flow Policy for Spreading Traffic to Multiple DMA Channels
	ipfwd Flow Configurations

	Format

	Differentiated Services Application
	Classifier
	Differentiated Services Code Point Classifier
	6-Tuple Classifier

	Policing (Meter)
	Single Rate Three Color Marker (SRTCM)
	Two Rate Three Color Marker (TRTCM)

	DSCP Marker
	Shaping
	Deficit Round Robin Scheduler
	Queue Manager

	Building the DiffServ Application
	DiffServ Command-Line Interface Implementation
	Command-Line Interface for the IPv4-DiffServ Application
	DSCP Classifier
	Description
	Command syntax
	Parameters
	Example
	Description
	Parameters
	Parameters
	Example
	Description
	Command syntax
	Description
	Command syntax
	6-Tuple Classifier
	Description
	Command syntax
	Parameters
	Example
	Description
	Command syntax
	Parameters
	Example
	Description
	Command syntax
	Parameters
	Example
	Description
	Command syntax
	Description
	Command syntax
	Description
	Command syntax
	Example
	TC Meter
	Description
	Command syntax
	Parameters
	Example
	Description
	Command syntax
	Parameters
	Example
	Description
	Command syntax
	Parameters
	Example
	Description
	Command syntax
	Description
	Command syntax
	Description
	Command syntax
	Parameters
	Example
	Scheduler
	Description
	Command syntax
	Parameters
	Example
	Description
	Command syntax
	Parameters
	Example
	Description
	Command syntax
	Parameters
	Example

	DiffServ References

	Access Control List Application
	Building the ACL Application
	Running the ACL Application
	To Configure the Environment for ACL

	Command-Line Interface for the ACL Application
	Usage
	Commands
	Help command
	Control commands
	Rule commands
	Rule Specification Options

	Radio Link Protocol Application
	Compiling the RLP Application
	Build Script
	Usage
	Build Script Arguments
	Argument Descriptions
	Build Example

	To Run the Application
	Default Configurations
	Default System Configuration
	Default rlp Application Configuration

	Other RLP Options
	To Bypass the rlp Operation
	To Use One Global Memory Pool
	Flow Policy for Spreading Traffic to Multiple DMA Channels

	IPSec Gateway Application
	IPSec Gateway Application Architecture
	IPSec Gateway Application Capabilities
	High-Level Packet Processing
	Outbound Packets
	Inbound Packets

	Security Association (SA) Database and Security Policy Database
	Outbound Packets and Inbound Packets

	Static Security Policy Database (SPD) and Security Association Database (SAD)
	SPD
	SAD

	Packet Encapsulation and De-encapsulation
	Packet Encapsulation

	Memory Pools
	Pipelining
	Source Code File Description
	Build Script
	Usage
	Build Script Arguments
	Argument Descriptions

	Reference Applications Configurations
	IP with Encryption and Decryption
	IPSec Gateway on Quad GE
	IPSec Gateway on NIU 10G Interface (One Instance)
	IPSec Gateway on NIU 10G Interface (Up to Four Instances)
	Multiple Instances (Up to Eight Instances) Back-to-Back Tunneling Configuration

	Flow Policy for Spreading Traffic to Multiple DMA Channels
	To Enable a Flow Policy

	Traffic Generator Application
	User Interface
	Usage
	Parameters
	Option Descriptions

	Parameters Description
	Traffic Generator Output
	Template Files
	Using the Traffic Generator
	Configuring LDoms for the Traffic Generator
	To Prepare Building the ntgen Utility
	To Setup and Use LDoms for the Traffic Generator
	Starting the Traffic Generation
	Stopping Traffic Generation

	Compiling the Traffic Generator
	Build Script
	Usage
	Build Script Arguments
	Argument Descriptions
	To Run

	Default Configurations

	Interprocess Communication (IPC) Reference Application
	IPC Reference Application Content
	Building the IPC Reference Application
	Usage
	Build Script Arguments
	Argument Descriptions
	Build Example
	Running the Application

	Using the ipctest Utility
	Commands

	connect Channel_ID
	stats
	perf-stats iterations
	perf-pkts-rx num_messages message_size
	perf-pkts-tx num_messages message_size
	perf-pkts-rx-tx num_messages message_size
	exit x quit q
	help
	Installing the lwmod STREAMS Module

	Performance Tuning
	Performance Tuning Introduction
	UltraSPARC T1 Processor Overview
	UltraSPARC T2 Processor Overview
	Identifying Performance Issues
	UltraSPARC T1 Performance
	UltraSPARC T2 Performance

	Optimization Techniques
	Code Optimization
	Pipelining
	Parallelization
	Mapping
	Parking Idle Strands
	Slowing Down Polling

	Tuning Troubleshooting
	What Is a Compute-Bound Versus a Memory- Bound Thread?
	Cannot Reach Line Rate for Packets Smaller Than 300 Bytes
	Cannot Scale Throughput to Multiple Ports
	How Do I Achieve Line Rate for 64-byte Packets?
	When Should I Consider Thread Placement?

	Example RLP Exercise
	Application Configuration
	Configuration 1
	Configuration 2

	Using the Profiling API
	Profiling Data
	Metrics
	Results
	Configuration 1
	Configuration 2

	Analysis
	Other Uses for Profiling

	Tutorial
	Application Code
	Configuration Code
	Build Process
	To Create the Binary Image

	Executing the Binary Image
	To Execute the Binary Image

	Frequently Asked Questions
	Summary
	General Questions
	What Is Teja 4.x and How Does it Differ From an Ordinary C Compiler?
	Where Are the Tutorials?

	Configuration Questions
	What Purpose Are the Hardware Architecture, Software Architecture, and Mapping Dynamic Libraries?
	How Can I Debug the Dynamic Libraries?
	To Debug the Dynamic Libraries

	What Should I Do When the tejacc Compiler Crashes?
	What if the Hardware Architecture, Software Architecture, or Mapping Dynamic Libraries Crash?
	Can I Build Hardware Architecture, Software Architecture, and Mapping in the Same Dynamic Library?
	Can I Map Multiple Variables With One Function Call?

	Building Questions
	Where Is the Generated Code?
	Where Is the Executable Image?
	How Can I Compile Multiple Modules on the Same Command Line?
	How Can I Pass Different CLI Options to Different Modules on the tejacc Command Line?
	How Can I Change the Behavior of the Generated makefile Without Modifying it?
	How Do I Compile the Reference Applications?

	Late-Binding Questions
	What Is the Late-Binding API?
	What Is a Memory Pool?
	What Is a Channel?
	What Is the Difference Between OS Based and Non-OS Based Memory Pools and Channels?
	How Do I Access a Late-Binding Object From Application Code?
	Can I Define a Symbol in the Software Architecture and Use it in My Application Code?

	Eclipse Questions
	How Can I Change the Build Command?
	How Can I Change the Compiler Invocation Command?

	API and Application Questions
	How Do I Synchronize a Critical Region?
	How Do I Send Data From a Thread to Another Thread?
	How Do I Allocate Memory?
	When Should I Use Queues Instead of Channels?
	Why Is it Not Necessary to Block Interface or Queue Reads?
	Can Multiple Strands on the Same Queue Take Advantage of the Extra CPU Cycles if the Strands Are Not Being Used?
	Why Does the Application Choose the Role for the Strand From the Code Instead of the Software Architecture API?
	Is It Possible to Park a Strand under LDoms as Done in a Non-LDoms Environment?
	Can You Assign Partial Cores to a Netra DPS domain?
	What Is bss_mem?
	What Is the Significance of bss_mem Placement in the Code Listing?
	How Are app.cmt2board.heap_mem0 and Similar Heaps Affected?
	Can You Clarify BSS, Code, Heap, and DRAM Memory Allocation?
	Does the eth_* API Support Virtual Ethernet (VNET) Devices?
	How Do I Calculate the Base PA Address for NIU/LDoms to Use with the tnsmctl Command?

	Optimization Questions
	How Do I Enable Optimization?
	What Is Context-Sensitive Generation?
	What Is Global Inlining?

	Legacy Code Integration Questions
	How Can I Reuse Legacy C Code in a Netra DPS Application?
	Linking Legacy Code to Netra DPS Code
	Changing Legacy Source Code

	How Can I Reuse Legacy C++ Code in a Netra DPS Application?
	Mixing C and C++ Code
	Translating C++ Code to C Code

	Sun CMT Specific Questions
	Is There a Maximum Allowed Size for Text and BSS in My Program?
	How Is Memory Organized in the Sun CMT Hardware Architecture?
	How Do I Increase the Size of the DRAM membank?

	Address Resolution Protocol Questions
	How Do I Enable ARP in the RLP Application?
	To Enable ARP in RLP

	How Do I Enable ARP Without Relying on a Control Domain?
	How Do I Enable ARP Using a Control Domain?

	Solaris Domain and Netra DPS Domain Question
	How Do I Access kstat Information From the Solaris Domain for Network Interfaces That Are in Use by the Netra DPS domain?

	Traffic Generation
	How Do I Stop Traffic Generation?

	Glossary
	Index

