
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Netra™ Data Plane Software Suite 2.0
Update 2

Reference Manual

Part No. 820-5212-11
July 2008, Revision A

Please
Recycle

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, UltraSPARC, Netra, Sun Fire, OpenBoot, docs.sun.com, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights–Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. possède les droits de propriété intellectuels relatifs à la technologie décrite dans ce document. En particulier, et sans
limitation, ces droits de propriété intellectuels peuvent inclure un ou plusieurs des brevets américains listés sur le site
http://www.sun.com/patents, un ou les plusieurs brevets supplémentaires ainsi que les demandes de brevet en attente aux les États-Unis et
dans d’autres pays.

Ce document et le produit auquel il se rapporte sont protégés par un copyright et distribués sous licences, celles-ci en restreignent l’utilisation,
la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Tout logiciel tiers, sa technologie relative aux polices de caractères, comprise, est protégé par un copyright et licencié par des fournisseurs de
Sun.

Des parties de ce produit peuvent dériver des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée
aux États-Unis et dans d’autres pays, licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, UltraSPARC, Netra, Sun Fire, OpenBoot, docs.sun.com, et Solaris sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux États-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux États-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface utilisateur graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox dans la recherche et le développement du concept des interfaces utilisateur visuelles ou graphiques
pour l’industrie informatique. Sun détient une license non exclusive de Xerox sur l’interface utilisateur graphique Xerox, cette licence couvrant
également les licenciés de Sun implémentant les interfaces utilisateur graphiques OPEN LOOK et se conforment en outre aux licences écrites de
Sun.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DÉCLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES DANS LA LIMITE DE LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE À LA QUALITÉ MARCHANDE, À L’APTITUDE À UNE UTILISATION PARTICULIÈRE OU À
L’ABSENCE DE CONTREFAÇON.

Contents

Preface ix

1. Configuration API 1

Hardware Architecture API 1

Hardware Architecture API Data Types 2

Hardware Architecture API Functions 3

Software Architecture API 35

Software Architecture API Data Types 35

Software Architecture API Functions 36

Map API 51

Map API Data Types 51

Map API Functions 52

Error – Handling API 55

Error – Handling API Data Types 55

Error – Handling API Functions 55

Error Handler Function Prototype 56

CMT – Specific Hardware Architecture Constants 57

CMT – Specific Hardware Architecture Types 58

CMT – Specific Hardware Architecture Properties 59

CMT – Specific Software Architecture Constants 60
iii

CMT – Specific Software Architecture Types 60

CMT – Specific Software Architecture Properties 61

2. User API 63

Late-Binding API 63

Late-Binding API Data Types 64

Late-Binding API Macros 64

Late-Binding API Mutex Functions 64

Late-Binding API Queue Functions 67

Late-Binding API Memory Pool Functions 70

Late-Binding API Channel Functions 73

Late-Binding API Interruptible Wait 75

Netra DPS Runtime API 79

Netra DPS Runtime API Data Types 79

Netra DPS Runtime API Memory Management Functions 80

Netra DPS Runtime API Thread Functions 82

Netra DPS Runtime API Miscellaneous Functions 85

Netra DPS Runtime API Time Functions 86

Miscellaneous Functions 88

Finite State Automata API 89

Finite State Automata API Defines 90

Finite State Automata API Macros 90

FSM Example 93

Hardware Specific Miscellaneous Functions 95

C Library Support on Bare Hardware 96

3. Profiler API 97

Profiler API Configuration 97

Profiler API 98
iv Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Profiler API Data Types 98

Profiler API Functions 99

Processor Specific Profiler Constants 102

Sun UltraSPARC T1 Processor– Specific Profiler Groups 102

Sun UltraSPARC T2 Processor – Specific Profiler Groups 105

4. Driver API 111

Netra DPS Crypto and Hashing API 111

Netra DPS Crypto and Hash API Functions 112

Netra DPS Crypto and Hash API Function Descriptions 113

Ethernet API 125

Network Applications 125

Ethernet Device Driver 125

Ethernet API Functions 126

Description of Ethernet API Functions 126

Summary 131

Notes 132

5. Fast Queue API 137

Fast Queue API Introduction 137

Fast Queue API Function Descriptions 138

6. Interprocess Communication API 143

Interprocess Communication API Introduction 143

Common Programming Interfaces 144

IPC Framework Programming Interfaces 147

IPC Programming Interfaces for Solaris Domains 150

User Space 150

Kernel 150
Contents v

7. Fastpath Manager API 151

Fastpath Manager API Introduction 151

Fastpath Manager API Function Descriptions 152

8. Access Control List Library API 155

Access Control List Library API Introduction 155

Algorithms 156

Hybrid Algorithm 156

Data Types 157

ACL Library API Function Descriptions 158

9. malloc Library for Slow Path 161

malloc Library API Introduction 161

Compiling Netra DPS Application with malloc Library 162

Declaring Memory Pools 162

Including malloc Definition 163

malloc Configuration File (malloc.conf) 163

APIs 164

Index 167
vi Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Tables

TABLE 1-1 Hardware Architecture API Data Types 2

TABLE 1-3 Map API Data Type 51

TABLE 1-4 Error-Handling Data Types 55

TABLE 2-1 Late-Binding API Data Types 64

TABLE 2-2 Late-Binding API Macros 64

TABLE 2-3 Netra DPS Runtime API Data Types 79

TABLE 2-4 Netra DPS Runtime API Macros 80

TABLE 2-5 Netra DPS Runtime API Thread Types 82

TABLE 2-6 Finite State Automata API Defines 90

TABLE 3-1 Process Properties 97

TABLE 3-2 Profiler API Data Types 98

TABLE 4-1 Ethernet API and User Applications 125

TABLE 4-2 Ethernet Devices Supported on Netra DPS Platforms 125

TABLE 4-3 Ethernet API Function Summary 131

TABLE 4-4 Ethernet Device Driver nxge Tunables 134
vii

viii Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Preface

This reference manual provides detailed information about the various functions
and parameters of the application programming interface (API). This document is
technical, and written for developers who need to know the behavior of the
software.

How This Document Is Organized
Chapter 1 describes the components and functions of the Configuration API.

Chapter 2 describes the components and functions of the User API.

Chapter 3 describes the components and functions of the Profiler API.

Chapter 4 describes the Netra DPS Crypto and Hashing API and Ethernet API.

Chapter 5 describes the Fast Queue API functions.

Chapter 6 describes the Interprocess Communication (IPC) API.

Chapter 7 describes the Fastpath Manager API.

Chapter 8 describes the Access Control List (ACL) library API.

Chapter 9 describes the memory allocation (malloc) library API.
ix

Using UNIX Commands
This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at:

http://docs.sun.com

Shell Prompts

Typographic Conventions

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.
x Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

http://docs.sun.com

Related Documentation
The following table lists the documentation for this product. The online
documentation is available at:

http://docs.sun.com/app/docs/prod/netra.dp

Documentation, Support, and Training

Application Title Part Number Format Location

Operation Netra Data Plane Software Suite 2.0 Update 2 User’s Guide 820-5211-11 PDF online

Reference Netra Data Plane Software Suite 2.0 Update 2 Reference Manual 820-5212-11 PDF online

Last-minute
information

Netra Data Plane Software Suite 2.0 Update 2 Release Notes 820-5213-11 PDF online

Documentation
Location

Netra Data Plane Software Suite 2.0 Update 2 Getting Started
Guide

820-5214-11 PDF online

Sun Function URL

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/
Preface xi

http://www.sun.com/training/
http://www.sun.com/support/
http://www.sun.com/documentation/
http://docs.sun.com/app/docs/prod/netra.dp

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun is not responsible or liable for any actual or alleged damage or loss
caused by or in connection with the use of or reliance on any such content, goods, or
services that are available on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

Netra Data Plane Software Suite 2.0 Update 2 Reference Manual,
part number 820-5212-11
xii Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

http://www.sun.com/hwdocs/feedback

CHAPTER 1

Configuration API

This chapter describes the components and functions of the Configuration API.
Topics include:

■ “Hardware Architecture API” on page 1

■ “Software Architecture API” on page 35

■ “Map API” on page 51

■ “Error – Handling API” on page 55

■ “CMT – Specific Hardware Architecture Constants” on page 57

■ “CMT – Specific Software Architecture Constants” on page 60

Hardware Architecture API
The hardware architecture API is used to describe the target hardware architecture
of the application.

The file teja_hardware_architecture.h file contains the declaration of the data
types and API functions.
1

Hardware Architecture API Data Types
The hardware architecture definitions use the following data types.

TABLE 1-1 Hardware Architecture API Data Types

Data Type Description

teja_architecture_t Hardware architecture. An architecture might contain
processors, memories, buses, hardware objects, and other
architectures.

teja_processor_t Processor. A processor is a target for an OS (teja_os_t).

teja_memory_t Memory. A memory is a target for mapping variables
declared in user-application source code.

teja_bus_t Bus connecting objects with each other.

teja_bus_visibility_t Buses have two types of visibility:
• TEJA_INTERNAL_BUS - bus not visible outside its

containing architecture
• TEJA_EXPORTED_BUS - bus made visible outside its

containing architecture
Example:
typedef enum {TEJA_INTERNAL_BUS,
TEJA_EXPORTED_BUS} teja_bus_visibility_t;

teja_hardware_object_t Generic hardware module that is not a processor, a memory,
or a bus.

teja_port_t Hardware port.

teja_address_space_t Address space. An address space is used as context for
allocating address ranges.

teja_address_range_t Address range. An address range is a (lo, hi) range obtained
from an address space.
2 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Hardware Architecture API Functions

teja_architecture_create

Description

Creates a new architecture with the specified name. The new architecture is
contained in the container architecture. The top-level architecture is created by
passing NULL as value for container. Legal values for the type parameter are found
in the chip support package (CSP) specific properties, characterized by the
TEJA_ARCHITECTURE_ prefix. Most of the types result in a read-only, preconfigured
architecture. To create custom architectures, use the
TEJA_ARCHITECTURE_USER_DEFINED value for type.

Function

teja_architecture_t teja_architecture_create(teja_architecture_t
container, const char *name, const char *type);

Parameters

container – Container for the new architecture.

name – Name of the new architecture.

type – Type of the architecture.

Return Values

teja_architecture_t – value that can be used as handle for the new architecture

teja_architecture_set_property

Description

Sets the value of the property for the architecture object.

Function

int teja_architecture_set_property(teja_architecture_t arch,
const char *property-name, const char *value);

Parameters

arch – Architecture object.

property-name – Name of the property.
Chapter 1 Configuration API 3

value – Value of the property.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_architecture_get_property

Description

Returns the value of the property for the architecture object. If the returned value+1
is greater than the size of the passed buffer, the returned value is truncated. The user
must allocate a buffer with enough space to hold the value (returned value+1) and
call the function again.

Function

int teja_architecture_get_property(teja_architecture_t arch,
const char *property-name, char *value, int buf-size);

Parameters

arch – Architecture object.

property-name – Name of the property.

value – Returned value of the property.

buf-size – Size of the character buffer that was passed for the return value.

Return Values

int – Returns the length of the current value of the property.

teja_architecture_set_read_only

Description

Prevents modification of given architecture by subsequent processing.

Function

int teja_architecture_set_read_only(teja_architecture_t arch);

Parameters

arch – Architecture object.
4 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_processor_create

Description

Creates a processor object.

Function

teja_processor_t teja_processor_create(teja_architecture_t
container, const char *name, const char *type);

Parameters

container – Container of the new processor.

name – Name of the new processor.

type – Type of the new processor.

Return Values

teja_processor_t – Returns newly created processor object.

teja_processor_set_property

Description

Sets the value of the property for the processor object.

Function

int teja_processor_set_property(teja_processor_t processor, const
char *property-name, const char *value);

Parameters

processor – Processor object.

property-name – Name of the property.

value – Value of the property.
Chapter 1 Configuration API 5

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_processor_get_property

Description

Returns the value of the property for the processor object. If the returned value+1 is
greater than the size of the passed buffer, the returned value is truncated. The user
must allocate a buffer with enough space to hold the value (returned value+1) and
call the function again.

Function

int teja_processor_get_property(teja_processor_t processor,
const char *property-name, char *value, int buf-size);

Parameters

processor – Processor object.

property-name – Name of the property.

value – Value of the property.

buf-size – Size of the character buffer that was passed for the return value.

Return Values

int – Returns the length of the current value of the property.

teja_processor_add_preprocessor_symbol

Description

Adds a preprocessor symbol to the processor. All of the processes running on the
processor have the same symbol defined. The function adds convenience when
passing values from the hardware architecture code into the user code.

Function

int teja_processor_add_preprocessor_symbol(teja_processor_t
processor,
const char *symbol, const char *value);
6 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Parameters

processor – Processor instance to which the symbol is added.

symbol – Name of the symbol.

value – Value of the symbol.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_memory_create

Description

Creates a memory object

Function

teja_memory_t teja_memory_create(teja_architecture_t container,
const char *name, const char *type);

Parameters

container – Container of the new memory.

name – Name of the new memory.

type – Type of the new memory.

Return Values

teja_memory_t – Returns the newly created memory object.

teja_memory_set_property

Description

Sets the value of the property for the memory object.

Function

int teja_memory_set_property(teja_memory_t memory, const char
*property-name, const char *value);
Chapter 1 Configuration API 7

Parameters

memory – Memory object.

property-name – Name of the property.

value – Value of the property.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_memory_get_property

Description

Returns the value of the property for the memory object. If the returned value+1 is
greater than the size of the passed buffer, the returned value is truncated. The user
must allocate a buffer with enough space to hold the value (returned value+1) and
call the function again.

Function

int teja_memory_get_property(teja_memory_t memory, const char
*property-name, char *value, int buf-size);

Parameters

memory – Memory object.

property-name – Name of the property.

value – Returned value of the property.

buf-size – Size of the character buffer that was passed for the return value.

Return Values

int – Returns the length of the current value of the property.
8 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

teja_bus_create

Description

Creates a bus object.

Function

teja_bus_t teja_bus_create(teja_architecture_t container, const char
*name, const char *type, teja_bus_visibility_t v);

Parameters

container – Container of the new bus.

name – Name of the new bus.

type – Type of the new bus.

Return Values

teja_bus_t – Returns newly created bus object.

teja_bus_set_property

Description

Sets the value of the property for the bus object.

Function

int teja_bus_set_property(teja_bus_t bus, const char *property-name,
const char *value);

Parameters

bus – Bus object.

property-name – Name of the property.

value – Value of the property.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.
Chapter 1 Configuration API 9

teja_bus_get_property

Description

Returns the value of the property for the bus object. If the returned value+1 is
greater than the size of the passed buffer, the returned value is truncated. The user
must allocate a buffer with enough space to hold the value (returned value+1) and
call the function again.

Function

int teja_bus_get_property(teja_bus_t bus, const char *property-name,
char *value, int buf-size);

Parameters

bus – Bus object.

property-name – Name of the property.

value – Returned value of the property.

buf-size – Size of the character buffer that was passed for the return value.

Return Values

int – Returns the length of the current value of the property.

teja_hardware_object_create

Description

Creates a hardware object.

Function

teja_hardware_object_t teja_hardware_object_create(
teja_architecture_t container, const char *name, const char *type);

Parameters

container – Container of the new hardware object.

name – Name of the new hardware object.

type – Type of the new hardware object.
10 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Return Values

teja_hardware_object_t – Returns newly created hardware object.

teja_hardware_object_set_property

Description

Sets the value of the property for the hardware object.

Function

int teja_hardware_object_set_property(teja_hardware_object_t
hardware-object,
const char *property-name, const char *value);

Parameters

hardware-object – Hardware object.

property-name – Name of the property.

value – Value of the property.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_hardware_object_get_property

Description

Returns the value of the property for the hardware_object. If the returned value+1 is
greater than the size of the passed buffer, the returned value is truncated. The user
must allocate a buffer with enough space to hold the value (returned value+1) and
call the function again.

Function

int teja_hardware_object_get_property(teja_hardware_object_t
hardware-object,
const char *property-name, char *value, int buf-size);

Parameters

hardware-object – Hardware object.

property-name – Name of the property.
Chapter 1 Configuration API 11

value – Returned value of the property.

buf-size – Size of the character buffer that was passed for the return value.

Return Values

int – Returns the length of the current value of the property.

teja_architecture_connect

Description

Connects an architecture to a bus.

Function

int teja_architecture_connect(teja_architecture_t architecture,
const char *bus-name, teja_bus_t bus);

Parameters

architecture – Architecture object that needs to be connected.

bus-name – Name of the bus inside the architecture that is connected to the bus.

bus – Bus object that needs to be connected to the architecture.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_processor_connect

Description

Connects a processor to a bus.

Function

int teja_processor_connect(teja_processor_t processor, const char
*bus-name,
teja_bus_t bus);

Parameters

processor – Processor object that needs to be connected.

bus-name – Name of the bus inside the processor that is connected to the bus.
12 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

bus – Bus object that needs to be connected to the processor.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_memory_connect

Description

Connects a memory to a bus.

Function

int teja_memory_connect(
teja_memory_t memory, const char *bus-name, teja_bus_t bus);

Parameters

memory – Memory object that needs to be connected.

bus-nam – Name of the bus inside the memory that is connected to the bus.

bus – Bus object that needs to be connected to the memory.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_hardware_object_connect

Description

Connects a hardware object to a bus.

Function

int teja_hardware_object_connect(teja_hardware_object_t hardware-
object,
const char *bus-name, teja_bus_t bus);

Parameters

hardware-object – Hardware object that needs to be connected.

bus-name – Name of the bus inside the hardware object that is connected to the bus.

bus – Bus object that needs to be connected to the hardware object.
Chapter 1 Configuration API 13

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_lookup_architecture

Description

Looks up an architecture in the container.

Function

teja_architecture_t teja_lookup_architecture(teja_architecture_t
architecture,
const char *architecture-name);

Parameters

architecture – Container architecture in which the user wants to look up the
architecture.

architecture-name – Name of the architecture to look up in the container.

Return Values

teja_architecture_t – The found architecture or NULL if not found.

teja_lookup_processor

Description

Looks up a processor in the container.

Function

teja_processor_t teja_lookup_processor(teja_architecture_t
architecture,
const char *processor-name);

Parameters

architecture – Container architecture in which the user wants to look up the
processor.

processor-name – Name of the processor to look up in the container.
14 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Return Values

teja_processor_t – The found processor or NULL if not found.

teja_lookup_memory

Description

Looks up a memory in the container.

Function

teja_memory_t teja_lookup_memory(teja_architecture_t architecture,
const char *memory-name);

Parameters

architecture – Container architecture in which the user wants to look up the memory.

memory-name – Name of the memory to look up in the container.

Return Values

teja_memory_t – The found memory or NULL if not found.

teja_lookup_bus

Description

Looks up a bus in the container.

Function

teja_bus_t teja_lookup_bus(teja_architecture_t architecture,
const char *bus-name);

Parameters

architecture – Container architecture in which the user wants to look up the bus.

bus-name – Name of the bus to look up in the container.

Return Values

teja_bus_t – The found bus or NULL if not found.
Chapter 1 Configuration API 15

teja_lookup_hardware_object

Description

Looks up a hardware object in the container.

Function

teja_hardware_object_t
teja_lookup_hardware_object(teja_architecture_t architecture,
const char *hardware-object-name);

Parameters

architecture – Container architecture in which the user wants to look up the hardware
object.

hardware-object-name – Name of the hardware object to look up in the container.

Return Values

teja_hardware_object_t – The found hardware object or NULL if not found.

teja_port_create

Description

Creates a port in an hardware architecture. The port can be connected externally to
ports of objects in the containing architecture, or ports of the containing architecture
itself. See “teja_architecture_set_port_internal” on page 17. The port can
also be connected internally to objects contained in this architecture. See
“teja_architecture_set_port” on page 17.

Function

teja_port_t teja_port_create(teja_architecture_t arch,
const char *port-name, const char *dir);

Parameters

arch – Container architecture in which the port is created.

port-name – Name of the port.

dir – Direction of the port. Legal values are IN and OUT.
16 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Return Values

teja_port_t – Returns the newly created port.

teja_architecture_set_port

Description

Assigns a value externally to an architecture port. If a port of another object in the
architecture containing arch is assigned with the same value, the two ports are
connected. Also, if ports belonging to the architecture containing arch are assigned
internally with the same value, the two ports are connected. The value represents the
name of a wire connecting the ports.

Function

int teja_architecture_set_port(teja_architecture_t arch,
const char *port-name, const char *value);

Parameters

arch – Architecture containing the port.

port-name – Name of the architecture port.

value – Value to be assigned externally to the port.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_architecture_set_port_internal

Description

Assigns a value internally to an architecture port. If a port of another object
contained in arch is assigned with the same value, the two ports are connected. The
value represents the name of a wire connecting the ports.

Function

int teja_architecture_set_port_internal(teja_architecture_t arch,
const char *port-name, const char *value);

Parameters

arch – Architecture containing the port.
Chapter 1 Configuration API 17

port-name – Name of the architecture port.

value – Value to be assigned internally to the port.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_processor_set_port

Description

Assigns a value to a processor port. If a port of another object in the architecture
containing the processor is assigned with the same value, the two ports are
connected. Also, if ports belonging to the architecture containing the processor are
assigned internally with the same value, the two ports are connected. The value
represents the name of a wire connecting the ports.

Function

int teja_processor_set_port(teja_processor_t proc,
const char *port-name, const char *value);

Parameters

proc – Processor containing the port.

port-name – Name of the port.

value – Value to be assigned to the port.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_memory_set_port

Description

Assigns a value to a memory port. If a port of another object in the architecture
containing the memory is assigned with the same value, the two ports are
connected. Also, if ports belonging to the architecture containing the memory are
assigned internally with the same value, the two ports are connected. The value
represents the name of a wire connecting the ports.
18 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Function

int teja_memory_set_port(teja_memory_t memory,
const char *port-name, const char *value);

Parameters

memory – Memory containing the port.

port-name – Name of the port.

value – Value to be assigned to the port.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_hardware_object_set_port

Description

Assigns a value to a hardware object port. If a port of another object in the
architecture containing the hardware object is assigned with the same value, the two
ports are connected. Also, if ports belonging to the architecture containing the
hardware object are assigned internally with the same value, the two ports are
connected. The value represents the name of a wire connecting the ports.

Function

int teja_hardware_object_set_port(teja_hardware_object_t hardware-
object,
const char *port-name, const char *value);

Parameters

hardware-object – Hardware object containing the port.

port-name – Name of the port.

value – Value to be assigned to the port.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.
Chapter 1 Configuration API 19

teja_bus_set_port

Description

Assigns a value to a bus port. If a port of another object in the architecture
containing the bus is assigned with the same value, the two ports are connected.
Also, if ports belonging to the architecture containing the bus are assigned internally
with the same value, the two ports are connected. The value represents the name of a
wire connecting the ports.

Function

int teja_bus_set_port(teja_bus_t bus, const char *port-name,
const char *value);

Parameters

bus – Bus containing the port.

port-name – Name of the port.

value – Value to be assigned to the port.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_port_add_property

Description

Associates a new key=value pair to a port. This allows association of target-specific
properties to ports.

Function

int teja_port_add_property(teja_port_t port, const char *property-
name,
const char *value, const char *description);

Parameters

port – Port to which the property is added.

property-name – Name of the new property.

value – Value of the new property.

description – Description associated to the property.
20 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_architecture_get_parent

Description

Returns the parent architecture for the specified architecture. If the specified
architecture has no parent (for example, the top level architecture), NULL is returned.

Function

teja_architecture_t
teja_architecture_get_parent(teja_architecture_t architecture);

Parameters

architecture – An architecture.

Return Values

teja_architecture_t – The architecture containing the one passed as parameter,
or NULL if such architecture is the top-level one.

teja_processor_get_parent

Description

Returns the architecture containing the specified processor.

Function

teja_architecture_t teja_processor_get_parent(
teja_processor_t processor);

Parameters

processor – A processor.

Return Values

teja_architecture_t – The architecture containing the processor.
Chapter 1 Configuration API 21

teja_bus_get_parent

Description

Returns the architecture containing the specified processor.

Function

teja_architecture_t teja_bus_get_parent(teja_bus_t bus);

Parameters

bus – A bus.

Return Values

teja_architecture_t – The architecture containing the bus.

teja_memory_get_parent

Description

Returns the architecture containing the specified memory.

Function

teja_architecture_t teja_memory_get_parent(teja_memory_t memory);

Parameters

memory – A memory.

Return Values

teja_architecture_t – The architecture containing the memory.

teja_hardware_object_get_parent

Description

Returns the architecture containing the specified hardware object.

Function

teja_architecture_t
teja_hardware_object_get_parent(teja_hardware_object_t hardware-
object);
22 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Parameters

hardware-object – A hardware object.

Return Values

teja_architecture_t – The architecture containing the hardware object.

teja_architecture_get_processors

Description

Returns an array of processors contained in the architecture. If the architecture
contains N processors, the array contains N+1 entries, with entry N set to NULL. The
user must deallocate the array by calling free() on it.

Function

teja_processor_t
*teja_architecture_get_processors(teja_architecture_t arch);

Parameters

arch – An architecture.

Return Values

teja_processor_t * – The null-terminated array of processors contained in the
architecture.

teja_architecture_get_memories

Description

Returns an array of memories contained in the architecture. If the architecture
contains N memories, the array contains N+1 entries, with entry N set to NULL. The
user must deallocate the array by calling free() on it.

Function

teja_memory_t
*teja_architecture_get_memories(teja_architecture_t arch);

Parameters

arch – An architecture.
Chapter 1 Configuration API 23

Return Values

teja_memory_t * – The null-terminated array of memories contained in the
architecture.

teja_architecture_get_hardware_objects

Description

Returns an array of hardware objects contained in the architecture. If the architecture
contains N objects, the array contains N+1 entries, with entry N set to NULL. The user
must deallocate the array by calling free() on it.

Function

teja_hardware_object_t
*teja_architecture_get_hardware_objects(teja_architecture_t arch);

Parameters

arch – An architecture.

Return Values

teja_hardware_object_t * – The null-terminated array of hardware objects
contained in the architecture.

teja_architecture_get_busses

Description

Returns an array of buses contained in the architecture. If the architecture contains N
buses, the array contains N+1 entries, with entry N set to NULL. The user must
deallocate the array by calling free() on it.

Function

teja_bus_t *teja_architecture_get_busses(
teja_architecture_t arch);

Parameters

arch – An architecture.

Return Values

teja_bus_t * – The null-terminated array of buses contained in the architecture.
24 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

teja_architecture_get_architectures

Description

Returns an array of architectures contained in the architecture. If the architecture
contains N architectures, the array contains N+1 entries, with entry N set to NULL.
The user must deallocate the array by calling free() on it.

Function

teja_architecture_t
*teja_architecture_get_architectures(teja_architecture_t arch);

Parameters

arch – An architecture.

Return Values

teja_architecture_t * – The null-terminated array of architectures contained
in the architecture.

teja_processor_get_connected_bus

Description

Returns the bus connected to the specified internal processor, or NULL. For example,
a bus b contained in the same architecture as a processor and connected to such
processor, actually connects to an bus contained inside the processor. Given the
processor and the name of the bus contained in it (internal-bus-name), this function
returns b (teja_bus_t). If no bus is connected to the specified internal bus, NULL is
returned.

Function

teja_bus_t teja_processor_get_connected_bus(
teja_processor_t processor, const char *internal-bus-name);

Parameters

processor – A processor.

internal-bus-name – Name of a bus internal to the processor.

Return Values

teja_bus_t – The bus connected to the specified internal processor bus, or NULL.
Chapter 1 Configuration API 25

teja_memory_get_connected_bus

Description

Returns the bus connected to the specified memory, or NULL. For example, a bus b
contained in the same architecture as a processor and connected to such memory,
actually connects to an bus contained inside the memory. Given the memory and the
name of the bus contained in it (internal-bus-name), this function returns b
(teja_bus_t). If no bus is connected to the specified internal bus, NULL is
returned.

Function

teja_bus_t teja_memory_get_connected_bus(
teja_memory_t memory, const char *internal-bus-name);

Parameters

memory – A memory.

internal-bus-name – Name to the bus internal to the memory.

Return Values

teja_bus_t – The bus connected to the specified internal memory bus, or NULL.

teja_hardware_object_get_connected_bus

Description

Returns the bus connected to the specified hardware object, or NULL. For example, a
bus b contained in the same architecture as a hardware object and connected to such
hardware object, actually connects to an bus contained inside the hardware object.
Given the hardware object and the name of the bus contained in it (internal-bus-
name), this function returns b (teja_bus_t). If no bus is connected to the specified
internal bus, NULL is returned.

Function

teja_bus_t teja_hardware_object_get_connected_bus(
teja_hardware_object_t hardware-object, const char *internal-bus-name);

Parameters

hardware-object – An hardware object.

internal-bus-name – Name of a bus internal to the hardware object.
26 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Return Values

teja_bus_t – The bus connected to the specified internal hardware object bus, or
NULL.

teja_architecture_get_connected_bus

Description

Returns the bus connected to the specified architecture bus, or NULL. For example,
consider an architecture arch1 contained in an architecture arch2, a bus b1 contained
in arch1, and a bus b2 contained in arch2. If b1 and b2 are connected, calling this
function with arch2 as first parameter (architecture) and the name of b2 as the second
(internal-bus-name) returns b1. If no bus is connected to b2, NULL is returned.

Function

teja_bus_t
teja_architecture_get_connected_bus(teja_architecture_t
architecture,
const char *internal-bus-name);

Parameters

architecture – An architecture.

internal-bus-name – Name of a bus internal to the architecture.

Return Values

teja_bus_t – The bus connected to the specified internal architecture bus, or NULL.

teja_bus_get_connected_processors

Description

Returns an array of processors connected to the specified bus. If N processors are
connected to the bus, the array contains N+1 entries, with entry N set to NULL. The
user must deallocate the array by calling free() on it.

Function

teja_processor_t *teja_bus_get_connected_processors(
teja_bus_t bus);
Chapter 1 Configuration API 27

Parameters

bus – A bus.

Return Values

teja_processor_t * – A NULL-terminated array of processors connected to the
bus.

teja_bus_get_connected_memories

Description

Returns an array of memories connected to the specified bus. If N memories are
connected to the bus, the array contains N+1 entries, with entry N set to NULL. The
user must deallocate the array by calling free() on it.

Function

teja_memory_t *teja_bus_get_connected_memories(teja_bus_t bus);

Parameters

bus – A bus.

Return Values

teja_memory_t * – A NULL-terminated array of memories connected to the bus.

teja_bus_get_connected_hardware_objects

Description

Returns an array of hardware objects connected to the specified bus. If N hardware
objects are connected to the bus, the array contains N+1 entries, with entry N set to
NULL. The user must deallocate the array by calling free() on it.

Function

teja_hardware_object_t
*teja_bus_get_connected_hardware_objects(teja_bus_t bus);

Parameters

bus – A bus.
28 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Return Values

teja_hardware_object_t * – A NULL-terminated array of hardware objects
connected to the bus.

teja_bus_get_connected_architectures

Description

Returns an array of architectures connected to the specified bus. If N architectures
are connected to the bus, the array contains N+1 entries, with entry N set to NULL.
The user must deallocate the array by calling free() on it.

Function

teja_architecture_t
*teja_bus_get_connected_architectures(teja_bus_t bus);

Parameters

bus – A bus.

Return Values

teja_architecture_t * – A NULL-terminated array of architectures connected to
the bus.

teja_processor_get_busses

Description

Returns an array of buses contained the specified processor. If the processor contains
N buses, the array contains N+1 entries, with entry N set to NULL. The user must
deallocate the array by calling free() on it.

Function

teja_bus_t *teja_processor_get_busses(teja_processor_t processor);

Parameters

processor – A processor.

Return Values

teja_bus_t * – A NULL-terminated array of buses contained in the processor.
Chapter 1 Configuration API 29

teja_memory_get_busses

Description

Returns an array of buses contained the specified memory. If the memory contains N
buses, the array contains N+1 entries, with entry N set to NULL. The user must
deallocate the array by calling free() on it.

Function

teja_bus_t *teja_memory_get_busses(teja_memory_t memory);

Parameters

memory – A memory.

Return Values

teja_bus_t * – A NULL-terminated array of buses contained in the memory.

teja_hardware_object_get_busses

Description

Returns an array of busses contained the specified hardware object. If the object
contains N busses, the array contains N+1 entries, with entry N set to NULL. The user
must deallocate the array by calling free() on it.

Function

teja_bus_t
*teja_hardware_object_get_busses(teja_hardware_object_t hardware-
object);

Parameters

hardware-object – A hardware object.

Return Values

teja_bus_t * – A NULL-terminated array of buses contained in the hardware
object.
30 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

teja_address_space_create

Description

Allocates an address space with the specified name, base, and high address, and
associated to the specified architecture. Requests for address ranges with various
constraints are performed against an address space. At compile time all the request
are resolved into actual address ranges within the space. Base and high address are
specified as strings containing the hexadecimal address representation (for
example,’0x100000000’).

Function

teja_address_space_t
teja_address_space_create(teja_architecture_t arch,
const char *name, const char *base, const char *high);

Parameters

arch – An architecture.

name – Name of an address space to be created.

base – Base address for the space.

high – Highest address in the space.

Return Values

teja_address_space_t – The newly created address space.

teja_address_space_join

Description

Joins two address spaces. Address range requests performed against the two spaces
is resolved as if the two addresses had been issued against a single space. The base-
high range of the resulting address space is the union of the two original ranges.

Function

int teja_address_space_join(teja_address_space_t s1,
teja_address_space_t s2);

Parameters

s1 – An address space.
Chapter 1 Configuration API 31

s2 – An address space.

Return Values

int – TEJA_SUCCESS or error code for failure.

teja_address_range_create_absolute

Description

Creates an address range with the specified absolute address and size. The symbol
has to be unique with respect to address ranges created against the same address
space.

Function

teja_address_range_t
teja_address_range_create_absolute(teja_address_space_t space,
const char *sym, const char *base,
const char *size,);

Parameters

space – An address space.

sym – A symbol to be associated to the range.

base – Base address for the range.

size – Size of the range.

Return Values

teja_address_range_t – The newly created address range.

teja_address_range_create_aligned

Description

Creates an address range with the specified size. When address range resolution is
performed, this range is assigned a base address that is multiple of alignment, but
not smaller than minaddr. The symbol has to be unique with respect to address
ranges created against the same address space.
32 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Function

teja_address_range_t
teja_address_range_create_aligned(teja_address_space_t space,
const char *sym, const char *alignment, const char *size, const char
*minaddr);

Parameters

space – An address space.

sym – A symbol to be associated to the range.

alignment – An alignment constraint.

size – Size of the range.

minaddr – A lower bound to the base address for the range.

Return Values

teja_address_range_t – The newly created address range.

teja_address_range_create_generic

Description

Creates an address range with the specified size. When address range resolution is
performed, this range is assigned a base address higher than minaddr. The symbol
has to be unique with respect to address ranges created against the same address
space.

Function

teja_address_range_t
teja_address_range_create_generic(teja_address_space_t space,
const char *sym, const char *size, const char *minaddr);

Parameters

space – An address space.

sym – A symbol to be associated to the range.

size – Size of the range.

minaddr – A lower bound to the base address for the range.
Chapter 1 Configuration API 33

Return Values

teja_address_range_t – The newly created address range.

teja_address_range_get_lower_bound

Description

This function returns a handle for the lower bound of the address range. The handle
can be set as value for any property. When address resolution is performed, tejacc
replaces such value with the actual lower bound address assigned to the range. If the
array passed as buffer to store the handle is not large enough, NULL is returned.

Function

char *teja_address_range_get_lower_bound(teja_address_range_t
range,
char *buf, int buf-size);

Parameters

range – An address range.

buf – An array of characters.

buf-size – Size of the array of characters.

Return Values

char * – The array of characters filled with the handle, or NULL in case of error.

teja_address_range_get_upper_bound

Description

Returns a handle for the upper bound of the address range. The handle can be set as
value for any property. When address resolution is performed, tejacc replaces the
value with the actual upper bound address assigned to the range. If the array passed
as a buffer to store the handle is not large enough, NULL is returned.

Function

char *teja_address_range_get_upper_bound(teja_address_range_t
range,
char *buf, int buf-size);
34 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Parameters

range – An address range.

buf – An array of characters.

buf-size – Size of the array of characters.

Return Values

char * – The array of characters filled with the handle, or NULL in case of error.

Software Architecture API
The software architecture API is used to describe the threads, processes, and OS
composing the software part of the application, as well as Netra DPS mutexes,
queues, memory pools, and channels used by the various threads.

The teja_software_architecture.h file contains the declaration of the API
functions.

Software Architecture API Data Types
The following data types are used in the software architecture definitions.

TABLE 1-2 Software Architecture API Data Types

teja_os_t OS. An OS runs on one or more processors. These are the different OS types that are
supported for different targets. Refer to the chip support package documentation for
which operating systems are supported for that particular chip support package.

teja_process_t Process. One or more processes run on an OS.

teja_thread_t Thread. One or more threads run in a process.

teja_channel_t Channel. Channels provide the communication facility to send structured data
between two or more threads.

teja_memory_pool_t Memory pool. A memory pool is a pool of same-sized nodes that are pre-allocated.
The memory pool provides an efficient mechanism for memory allocation and
deallocation at runtime without the cost of dynamic memory allocation.

teja_queue_t Queue. A queue provides a facility to pass structured data between two or more
threads.

teja_mutex_t Mutex. A mutex provides a synchronization facility between two or more threads.
Chapter 1 Configuration API 35

Software Architecture API Functions

teja_os_create

Description

Creates an OS instance. Return value can be used to set or get properties of the OS.

Function

teja_os_t teja_os_create(const char **processor-names,
const char *name, const char *type);

Parameters

processor-names – NULL-terminated array of processor names on which the OS is
running.

name – Name of the OS instance.

type – Type of the OS.

Return Values

teja_os_t – Returns an object that represents the OS instance.

teja_os_set_property

Description

Sets the specified value of the property for the OS instance.

Function

int teja_os_set_property(teja_os_t os, const char *property-name,
const char *value);

Parameters

os – OS instance for which the property is being set.

property-name – Name of the property.

value – Value of the property to be set.
36 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_os_get_property

Description

Returns the current value of the OS property. If the returned value+1 is greater than
the size of the passed buffer, the returned value is truncated. The user must allocate
a buffer with enough space to hold the value (returned value+1) and call the
function again.

Function

int teja_os_get_property(teja_os_t os, const char *property-name,
const char *value, int buf-size);

Parameters

os – OS instance for which the property is being read.

property-name – Name of the property.

value – Value that is read and returned.

buf-size – Size of the character buffer that was passed for the return value.

Return Values

int – Returns the length of the current value of the property.

teja_process_create

Description

Creates a process instance. One or more processes can be created per OS. The source
files listed in the source sets comprise the sources for the process.

Function

teja_process_t teja_process_create(teja_os_t container,
const char *name, const char **srcset);

Parameters

container – OS instance where the process is created.
Chapter 1 Configuration API 37

name – Name of the instance.

srcset – NULL-terminated list of one or more source sets that are part of the process.

Return Values

teja_process_t – Returns created process instance.

teja_process_set_property

Description

Sets a process property.

Function

int teja_process_set_property(teja_process_t process,
const char *property-name, const char *value);

Parameters

process – Process instance for which the property is being set.

property-name – Name of the property.

value – Value of the property.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_process_get_property

Description

Returns the current value of the process property. If the returned value+1 is greater
than the size of the passed buffer, the returned value is truncated. The user must
allocate a buffer with enough space to hold the value (returned value+1) and call the
function again.

Function

int teja_process_get_property(teja_process_t process,
const char *property-name, const char *value, int buf-size);

Parameters

process – Process instance for which the property is being read.
38 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

property-name – Name of the property.

value – Returned value of the property.

buf-size – Size of the character buffer that was passed for the return value.

Return Values

int – Returns the length of the current value of the property.

teja_processor_add_preprocessor_symbol

See “teja_processor_add_preprocessor_symbol” on page 6

teja_thread_create

Description

Creates a thread instance. One or more threads can be created per process.

Function

teja_thread_t teja_thread_create(teja_process_t container,
const char *name);

Parameters

container – Process instance where the thread is created.

name – Name of the thread.

Return Values

teja_thread_t – Returns thread instance.

teja_thread_set_property

Description

Sets a thread property.

Function

int teja_thread_set_property(teja_thread_t thread,
const char *property-name, const char *value);
Chapter 1 Configuration API 39

Parameters

thread – Thread instance for which the property is being set.

property-name – Name of the property.

value – Value of the property.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_thread_get_property

Description

Returns the current value of a thread property. If the returned value+1 is greater
than the size of the passed buffer, the returned value is truncated. The user must
allocate a buffer with enough space to hold the value (returned value+1) and call the
function again.

Function

int teja_thread_get_property(teja_thread_t thread,
const char *property-name, const char *value, int buf-size);

Parameters

thread – Thread instance for which the property is being read.

property-name – Name of the property.

value – Returned value of the property.

buf-size – Size of the character buffer that was passed for the return value.

Return Values

int – Returns the length of the current value of the property.
40 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

teja_lookup_os

Description

Looks up an OS from its name in the software architecture.

Function

teja_os_t teja_lookup_os(const char *os-name);

Parameters

os-name – Name of the OS.

Return Values

teja_os_t – Returns the found os instance or NULL.

teja_lookup_process

Description

Looks up a process from its name in the software architecture.

Function

teja_process_t teja_lookup_process(const char *process-name);

Parameters

process-name – Name of the process.

Return Values

teja_process_t – Returns the found process instance or NULL.

teja_lookup_thread

Description

Looks up a thread from its name in the software architecture.

Function

teja_thread_t teja_lookup_thread(const char *thread-name);
Chapter 1 Configuration API 41

Parameters

thread-name – Name of the thread.

Return Values

teja_thread_t – Returns the found thread instance or NULL.

teja_channel_declare

Description

Creates a new channel instance in the software architecture. The instance is accessed
in the user-application code as a C preprocessor symbol with the same name as
specified in this function.

Function

teja_channel_t teja_channel_declare(const char *name, const char
*type, teja_thread_t *producers, teja_thread_t *consumers);

Parameters

name – Name of the channel.

type – Type of the channel.

producers – NULL-terminated list of producer thread instances.

consumers – NULL-terminated list of consumer thread instances.

Return Values

teja_channel_t – Returns the created channel instance.

teja_channel_set_property

Description

Sets a new value for a channel property.

Function

int teja_channel_set_property(teja_channel_t channel, const char
*property-name,
const char *value);
42 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Parameters

channel – Channel instance for which the property is being set.

property-name – Name of the property.

value – Value of the property.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_channel_get_property

Description

Returns the current value of a channel property. If the returned value+1 is greater
than the size of the passed buffer, the returned value is truncated. The user must
allocate a buffer with enough space to hold the value (returned value+1) and call the
function again.

Function

int teja_channel_get_property(teja_channel_t channel, const char
*property-name,
const char *value, int buf-size);

Parameters

channel – Channel instance for which the property is read.

property-name – Name of the property.

value – Returned value of the property.

buf-size – Size of the character buffer that was passed for the return value.

Return Values

int – Returns the length of the current value of the property.
Chapter 1 Configuration API 43

teja_memory_pool_declare

Description

Creates a new memory pool instance in the software architecture.

Function

teja_memory_pool_t teja_memory_pool_declare(const char *name,
const char *type, int num-nodes, int node-size, teja_thread_t *getters,
teja_thread_t *setters,
const char *memory-bank);

Parameters

name – Name of the memory pool.

type – Type of the memory pool.

num-nodes – Number of nodes to allocate in the memory pool.

node-size – Size in bytes for each node.

getters – NULL-terminated list of getter threads.

setters – NULL-terminated list of setter threads.

memory-bank – Name of the memory bank (in the hardware architecture) from which
the memory is allocated.

Return Values

teja_memory_pool_t – Returns the memory pool instance.

teja_memory_pool_set_property

Description

Sets a new value for a memory pool property.

Function

int teja_memory_pool_set_property(teja_memory_pool_t memory-pool,
const char *property-name, const char *value);

Parameters

memory-pool – Memory pool instance for which the property is being set.
44 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

property-name – Name of the property.

value – Value of the property.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_memory_pool_get_property

Description

Returns the current value of a memory pool property. If the returned value+1 is
greater than the size of the passed buffer, the returned value is truncated. The user
must allocate a buffer with enough space to hold the value (returned value+1) and
call the function again.

Function

int teja_memory_pool_get_property(teja_memory_pool_t memory-pool,
const char *property-name, const char *value, int buf-size);

Parameters

memory-pool – Memory pool instance for which the property is being read.

property_name – Name of the property.

value – Value of the property.

buf-size – Size of the character buffer that was passed for the return value.

Return Values

int – Returns the length of the current value of the property.

teja_queue_declare

Description

Creates a new queue instance in the software architecture.

Function

teja_queue_t teja_queue_declare(const char *name,
const char *type, teja_thread_t *enqueuers, teja_thread_t *dequeuers);
Chapter 1 Configuration API 45

Parameters

name – Name of the queue.

type – Type of the queue.

enqueuers – NULL-terminated list of enqueuers threads.

dequeuers – NULL-terminated list of dequeuers threads.

Return Values

teja_queue_t – Returns queue instance.

teja_queue_set_property

Description

Sets a new value for a queue property.

Function

int teja_queue_set_property(teja_queue_t queue, const char *property-
name,
const char *value);

Parameters

queue – Queue instance for which the property is being set.

property-name – Name of the property.

value – Value of the property.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_queue_get_property

Description

Returns current value of a queue property. If the returned value+1 is greater than the
size of the passed buffer, the returned value is truncated. The user must allocate a
buffer with enough space to hold the value (returned value+1) and call the function
again.
46 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Function

int teja_queue_get_property(teja_queue_t queue, const char *property-
name,
const char *value, int buf-size);

Parameters

queue – Queue instance for which the property is being read.

property-name – Name of the property.

value – Returned value of the property.

buf-size – Size of the character buffer that was passed for the return value.

Return Values

int – Returns the length of the current value of the property.

teja_mutex_declare

Description

Creates a new mutex instance in the software architecture.

Function

teja_mutex_t teja_mutex_declare(const char *name,
const char *type, teja_thread_t *users);

Parameters

name – Name of the mutex.

type – Type of the mutex.

users – NULL-terminated list of user-threads.

Return Values

teja_mutex_t – Returns a new mutex instance.
Chapter 1 Configuration API 47

teja_mutex_set_property

Description

Sets a new value for a mutex property.

Function

int teja_mutex_set_property(teja_mutex_t mutex, const char *property-
name,
const char *value);

Parameters

mutex – Mutex instance for which the property is being set.

property-name – Name of the property.

value – Value of the property.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

teja_mutex_get_property

Description

Returns a current value of a mutex property. If the returned value+1 is greater than
the size of the passed buffer, the returned value is truncated. The user must allocate
a buffer with enough space to hold the value (returned value+1) and call the
function again.

Function

int teja_mutex_get_property(teja_mutex_t mutex, const char *property-
name,
const char *value, int buf-size);

Parameters

mutex – Mutex instance for which the property is being read.

property-name – Name of the property.

value – Returned value of the property.

buf-size – Size of the character buffer that was passed for the return value.
48 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Return Values

int – Returns the length of the current value of the property.

teja_lookup_channel

Description

Looks up the channel instance in the software architecture using the channel name
as a key.

Function

teja_channel_t teja_lookup_channel(const char *channel-name);

Parameters

channel-name – Name of the channel.

Return Values

teja_channel_t – Returns the found channel instance or NULL.

teja_lookup_memory_pool

Description

Looks up the memory pool instance in the software architecture using the memory
pool name as a key.

Function

teja_memory_pool_t teja_lookup_memory_pool(const char *memory-pool-
name);

Parameters

memory-pool-name – Name of the memory pool.

Return Values

teja_memory_pool_t – Returns the found memory pool instance or NULL.
Chapter 1 Configuration API 49

teja_lookup_queue

Description

Looks up the queue instance in the software architecture using the queue name as a
key.

Function

teja_queue_t teja_lookup_queue(const char *queue-name);

Parameters

queue-name – Name of the queue.

Return Values

teja_queue_t – Returns the found queue instance or NULL.

teja_lookup_mutex

Description

Looks up the mutex instance in the software architecture using the mutex name as a
key.

Function

teja_mutex_t teja_lookup_mutex(const char *mutex-name);

Parameters

mutex-name – Name of the mutex.

Return Values

teja_mutex_t – Returns the found mutex instance or NULL.
50 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

teja_process_add_symbol*

Description

Adds a definition of symbol in the process same as passing -D option on the
command line.

Function

int teja_process_add_symbol(teja_process_t process, const char
*symbol,
const char *value);

Parameters

process – Process instance for which the symbol is being defined.

symbol – String that represents the symbol.

value – String that represents the value for the symbol.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.

Map API
The map API is used to describe the mapping between user-application source
objects (functions and variables) and hardware architecture or software architecture.

The teja_mapping.h file contains the declaration of the Map data types and API
functions.

Map API Data Types
The following data type is used in the map definitions.

TABLE 1-3 Map API Data Type

teja_mapping_t Every mapping returns a handle of type teja_mapping_t.
Chapter 1 Configuration API 51

Map API Functions

teja_map_function_to_thread

Description

Maps a function to run on a thread.

Function

teja_mapping_t teja_map_function_to_thread(const char *function-
name,
const char *thread-name);

Parameters

function-name – Name of the function from the source files.

thread-name – Name of the thread.

Return Values

teja_mapping_t – Returns a handle that represents this mapping.

teja_map_variable_to_memory

Description

Maps a variable to memory.

Function

teja_mapping_t teja_map_variable_to_memory(const char *var-name,
const char *memory-name);

Parameters

var-name – Name of the variable from the source files.

memory-name – Name of the memory bank.

Return Values

teja_mapping_t – Returns a handle that represents this mapping.
52 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

teja_alias_variable

Description

Creates an alias for a variable. This function helps in mapping two or more variables
from different sources to the same location in memory. The user maps any one of
these variables to a memory bank using teja_map_variable_to_memory. The
remaining variables are mapped to that variable using this function.

Function

teja_mapping_t teja_alias_variable(const char *var-name,
const char *target-var-name);

Parameters

var-name – Name of the variable from the source files.

target-var-name – Name of the variable that the var_name maps to.

Return Values

teja_mapping_t – Returns a handle that represents this mapping.

teja_map_variables_to_memory

Description

Maps one or more variables to memory using a regular expression. A regular
expression can result in one or more variables from the source files. All the resultant
variables are mapped to the memory bank.

Function

teja_mapping_t *teja_map_variables_to_memory(const char *var-
regexp,
const char *memory-name);

Parameters

var-regexp – Regular expression that results in one or more variables from the source
files.

memory-name – Name of the memory bank to map.

Return Values

teja_mapping_t * – Returns an array of handles that represents this mapping.
Chapter 1 Configuration API 53

teja_map_initialization_function_to_process

Description

Maps an initialization function to the process. This function is executed before any
thread starts execution.

Function

teja_mapping_t teja_map_initialization_function_to_process
(const char *function, const char *process);

Parameters

function – Name of the function.

process – Name of the process as defined in the software architecture.

Return Values

teja_mapping_t – Returns a handle that represents this mapping.

teja_mapping_set_property

Description

Sets a new value for a mapping.

Function

int teja_mapping_set_property(teja_mapping_t mapping-handle,
const char *property-name, const char *value);

Parameters

mapping-handle – Mapping handle for which the property is being set.

property-name – Name of the property.

value – Value of the property.

Return Values

int – Returns TEJA_SUCCESS or error code for failure.
54 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Error – Handling API
The error-handling API can be used to provide a user-defined function or behavior
when an error occurs in the configuration API. The error-handling API is not
available for the User API. The teja_error.h file contains the declaration of the
error-handling data types and API functions.

Error – Handling API Data Types
The following data type is used in the error-handling definitions.

Error – Handling API Functions

teja_abort

Description

When this function is called, the control is transferred to the caller of the library
entry point function, which reports the error appropriately. When executed from the
command line, tejacc terminates returning the provided error-code.

Function

void teja_abort(int error-code, const char *error-message,);

Parameters

error-code – Error code.

error-message – Error message.

Return Values

void – Aborts the execution of the hardware architecture, software architecture, or
mapping definition.

TABLE 1-4 Error-Handling Data Types

teja_error_handler_t Represents a type for the error handler function.
Chapter 1 Configuration API 55

teja_register_error_handler

Description

Enables the user to implement a custom behavior in case of errors. When an error is
encountered during the execution of a Netra DPS hardware architecture, software
architecture, or mapping API function, the registered error handler function is
called.

Function

teja_error_handler_t
teja_register_error_handler(teja_error_handler_t handler);

Parameters

handler – Error handler function.

Return Values

teja_error_handler_t – The previously registered error handler.

Error Handler Function Prototype

int fn(int error_code, const char *error_msg);

The handler function is called with an error code and message, and returns a value.
The value returned by the handler is in turn returned by the Netra DPS API function
that encountered the error. The default error handler does not return a value, but
invokes teja_abort(), with the effect of transferring the control immediately to
the caller of the library entry point function. The user can replace the default error
56 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

handler using the teja_register_error_handler() function. For example, the
user can replace the default handler with one that just returns an error code as
follows:

Note – The software architecture, hardware architecture, and mapping have three
independent error handlers, so if the user wants to replace the default error handler,
the user must register the new one in each entry point function.

CMT – Specific Hardware Architecture
Constants
The include/csp/sun/teja_cmt.h file lists all the hardware object types and
properties that are supported by CMP CSP.

#define ERR_SHOULD_RETURN_NULL (TEJA_ERROR_CREATE_FAILED |
TEJA_ERROR_LOOKUP_FAILED)

int my_error_handler(int code, const char* msg) {
if (code & ERR_SHOULD_RETURN_NULL) {

/* code is an error during creation or lookup,
* should return NULL rather than error code
*/

return (int)NULL;
else

return code;
}

void entry_fn(void) {
teja_register_error_handler(my_error_handler);
...
Chapter 1 Configuration API 57

CMT – Specific Hardware Architecture Types

TABLE 1-5 CMT-Specific Hardware Architecture Types

Type Name Description

Architecture TEJA_ARCHITECTURE_TYPE_CMT1_CHIP Architecture type that represents the CMT 1
chip.

TEJA_ARCHITECTURE_TYPE_CMT2_CHIP Architecture type that represents the CMT 2
chip.

TEJA_ARCHITECTURE_TYPE_CMT1_BOARD Architecture type that represents a board
containing the CMT 1 chip.

TEJA_ARCHITECTURE_TYPE_CMT2_BOARD Architecture type that represents a board
containing the CMT 2 chip.

TEJA_ARCHITECTURE_TYPE_USER_DEFINED_ Architecture that represents a user-defined
architecture that is not known to tejacc.d

Processor TEJA_PROCESSOR_TYPE_CMT1 Processor type that represents a single
strand in the CMT 1 chip.

TEJA_PROCESSOR_TYPE_CMT2 Processor type that represents a single
strand in the CMT 2 chip.

Memory TEJA_MEMORY_TYPE_CMT1_DRAM Memory type that represents the DRAM
memory for the CMT 1 architecture.

TEJA_MEMORY_TYPE_CMT2_DRAM Memory type that represents the DRAM
memory for the CMT 2 architecture.

TEJA_MEMORY_TYPE_OS_BASED Memory type that represents OS-based
memory in the architecture.

Bus TEJA_BUS_TYPE_CMT1_DRAM Bus type that represents the DRAM bus for
the CMT 1 architecture.

TEJA_BUS_TYPE_CMT2_DRAM Bus type that represents the DRAM bus for
the CMT 2 based shared memory stack
implementation.

TEJA_BUS_TYPE_OS_BASED Bus type that represents a bus that connects
OS-based memory to other objects.

TEJA_BUS_TYPE_PCI Bus type that represents PCI bus in the
architecture.
58 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

CMT – Specific Hardware Architecture Properties

TABLE 1-6 CMT-Specific Hardware Architecture Properties

Property Name Description

Architecture TEJA_PROPERTY_BSP_PATH Sets the path to the board support
package (BSP) located on the host
machine. There is no default value
set.

Processor TEJA_PROPERTY_CLOCK_FREQUENCY Sets the clock frequency of the
processor. There is no default value
set.

Memory TEJA_PROPERTY_MEMORY_SIZE Sets the size of the memory in bytes.
The default value is 256.

TEJA_PROPERTY_MEMORY_OFFSET Sets the offset from where the
memory is available for the user
application. The default value is 0.

TEJA_PROPERTY_MEMORY_PHYSICAL_ADDRESS Sets the actual physical base address
that is used to access the memory.
The default value is 0.

TEJA_PROPERTY_MEMORY_BIT_ALIGNMENT Sets the alignment of the memory in
bits. The default value is 32.

TEJA_PROPERTY_MEMORY_RESERVE_WORD_0 When set to true, makes location 0
non writable. The default value is
true.

TEJA_PROPERTY_MEMORY_IS_OS_BASED When set to true, marks the
memory OS-based. The default value
is false.

TEJA_PROPERTY_MEMORY_NO_ADDRESS_CONVERSION When set to true, hal conversion is
necessary. The default value is true.
Chapter 1 Configuration API 59

CMT – Specific Software Architecture
Constants

CMT – Specific Software Architecture Types

TABLE 1-7 CMT-Specific Software Architecture Types

Type Name Description

OS TEJA_OS_TYPE_RAW This is the only type of OS
that is supported for CMT
CSP.

Channel TEJA_GENERIC_CHANNEL_SHARED_MEMORY_OS_BASED Channel type that uses OS-
based shared memory
implementation.

TEJA_GENERIC_CHANNEL_SHARED_MEMORY Channel type that uses non-
OS-based shared memory
implementation.

Memory pool TEJA_GENERIC_MEMORY_POOL_SHARED_MEMORY_OS_BASED Memory Pool type that uses
OS-based shared memory
implementation.

TEJA_GENERIC_MEMORY_POOL_SHARED_MEMORY Memory Pool type that uses
non-OS-based shared
memory implementation.

TEJA_GENERIC_MEMORY_POOL_SHARED_MEMORY_CIRCULAR_BUFFER_
OS_BASED

Memory Pool type that uses
an OS based shared memory
circular buffer
implementation

TEJA_GENERIC_MEMORY_POOL_SHARED_MEMORY_CIRCULAR_BUFFER Memory Pool type that uses
a non OS based shared
memory circular buffer
implementation

Queue TEJA_GENERIC_QUEUE_SHARED_MEMORY_OS_BASED Queue type that uses OS-
based shared memory
implementation.

TEJA_GENERIC_QUEUE_SHARED_MEMORY Queue type that uses non-
OS-based shared memory
implementation.
60 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

CMT – Specific Software Architecture Properties

Mutex TEJA_GENERIC_MUTEX_SHARED_MEMORY_OS_BASED Mutex type that uses OS-
based shared memory
implementation.

TEJA_CMT_MUTEX_SPINLOCK Mutex type that uses spin
lock implementation.

TABLE 1-8 CMT-Specific Software Architecture Properties

Property Name Description

Thread TEJA_PROPERTY_THREAD_ASSIGN_TO_PROCESSOR Enables the user to assign a thread to a
specific processor (hardware thread).
Specify the processor using a fully
qualified name from the hardware
architecture. The default value for this
property is NULL so the thread is not
assigned to any specific processor by
default.

Channel TEJA_PROPERTY_CHANNEL_BUFFER_SIZE Sets the buffer size for the circular
buffer size. The default value is 1024.

Memory Pool TEJA_PROPERTY_MEMORY_POOL_ALIGNMENT Sets the alignment for the memory
pool nodes. The default value is 32.

TABLE 1-7 CMT-Specific Software Architecture Types (Continued)

Type Name Description
Chapter 1 Configuration API 61

62 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

CHAPTER 2

User API

This chapter describes the User API which consists of functions the user can deploy
in the application code. This API consists of three main parts:

■ “Late-Binding API” on page 63

■ “Netra DPS Runtime API” on page 79

■ “Finite State Automata API” on page 89

Additional information is provided in:

■ “C Library Support on Bare Hardware” on page 96

Late-Binding API
The Late-Binding API provides primitives for the synchronization of distributed
threads, communication, and memory allocation. This API is treated specially by the
tejacc compiler, and is generated dynamically based on contextual information.
See the Netra Data Plane Software Suite 2.0 User’s Guide for an overview of this API.
63

Late-Binding API Data Types

Late-Binding API Macros

Late-Binding API Mutex Functions

teja_mutex_lock

Description

Acquires a mutual exclusion lock. If the mutex is already locked, this function does
not return until the mutex becomes available and the lock is acquired for the calling
thread. Once the lock is held by the thread, what occurs if this function is called a
second time is undefined. If an error is returned, the caller can assume the lock was
not acquired.

Function

int teja_mutex_lock(teja_mutex_t mutex);

TABLE 2-1 Late-Binding API Data Types

Data Type Description

teja_channel_t Channel data type

teja_memory_pool_t Memory pool data type

teja_mutex_t Mutex data type

teja_queue_t Queue data type

teja_thread_t Thread data type

TABLE 2-2 Late-Binding API Macros

Macros Description

TEJA_INFINITE_WAIT Used to indicate an infinite timeout in teja_wait().

TEJA_IS_RAW_OS Defined only on bare hardware systems. Such systems
support a subset of the Netra DPS API.

TEJA_NO_EVENT Used when sending data on a channel to indicate that event
logic can be skipped.
64 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Parameters

mutex – Mutex to lock.

Return Values

int – If successful, this function returns 0. In case of an error, this function
returns -1.

Example

teja_mutex_trylock

Description

Attempts to lock the given mutex without blocking. If the mutex is already locked,
this function exits immediately returning -1, otherwise the function locks the mutex
and returns 0. Once the lock is held by the thread, what occurs if this function is
called a second time is undefined.

Function

int teja_mutex_trylock(teja_mutex_t mutex);

Parameters

mutex – Mutex to lock.

if (teja_mutex_lock (mutex) < 0)
 {
 printf (“Error locking mutex\n”);
 }
else
 {
 printf (“Entered critical region”);
 /* Wait one second */
 teja_wait_time (1, 0);
 printf (“Exiting critical region”);
 if (teja_mutex_unlock (mutex) < 0)
 {
 printf (“Error unlocking mutex”);
 }
 }
Chapter 2 User API 65

Return Values

int – If successful, this function returns 0. In case of an error, this function returns
-1.

Example

teja_mutex_unlock

Description

Unlocks the given mutex. If the mutex was not locked by the current thread the
result is undefined. Avoid such behavior.

Function

int teja_mutex_unlock(teja_mutex_t mutex);

Parameters

mutex – Mutex to unlock.

Return Values

int – If successful, this function returns 0. In case of an error, this function returns
-1.

Example

See the examples in “teja_mutex_lock” on page 64 and “teja_mutex_trylock”
on page 65.

if (teja_mutex_trylock (mutex) < 0)
 {
 printf (“Trickle on mutex fielding”);
 }
else
 {
 printf (“Entered critical region”);
 /* Wait one second */
 teja_wait_time (1, 0);
 printf (“Exiting critical region”);
 if (teja_mutex_unlock (mutex) < 0)
 {
 printf (“Error unlocking mutex”);
 }
 }
66 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Late-Binding API Queue Functions
The first word of the node that is enqueued is permitted to be overwritten by the
queue implementation.

teja_queue_enqueue

Description

Enqueues a node into a queue. The queue implementation is permitted to overwrite
the first word of the node. If -1 is returned, the queue might be full or some other
error has occurred.

Function

int teja_queue_enqueue(teja_queue_t queue, void *node);

Parameters

queue – Queue to enqueue to.

node – Pointer to node to enqueue.

Return Values

int – If successful, this function returns 0. In case of an error, this function returns
-1.

Example

void * node;
node = teja_malloc (16);
if (node)
 {
 if (teja_queue_enqueue (queue, node) < 0)
 {
 printf (“Error while attempting to enqueue a node”);
 }
 }
Chapter 2 User API 67

teja_queue_dequeue

Description

Dequeues a pointer to a node from the queue. The first word of the returned node
might have been overwritten by the queue implementation.

Function

void *teja_queue_dequeue(teja_queue_t queue);

Parameters

queue – Queue to dequeue from.

Return Values

void * – NULL if the queue was empty or pointer to the dequeued node otherwise.

Example

teja_queue_is_empty

Description

Tests to see if the queue is empty.

Function

int teja_queue_is_empty(teja_queue_t queue);

Parameters

queue – Queue to test.

void * node;
node = teja_queue_dequeue (queue);
if (node)
 {
 printf (“Dequeued node %x\n”, node);
 }
else
 {
 printf (“Queue was empty\n”);
 }
68 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Return Values

int – 0 if the queue is not empty, 1 if the queue is empty.

Example

teja_queue_get_size

Description

Returns the number of elements in the queue. The function returns a value that is a
snapshot in time of the depth of the queue. Not all custom implementations support
this function. This function is to be used for debug purposes only, because its
implementation (when available) is computation intensive and not meant for fast
path operation.

Function

int teja_queue_get_size(teja_queue_t queue);

Parameters

queue – Queue to obtain size for.

Return Values

int – Value is -1 if implementation is not provided for this custom implementation,
or the number of elements currently in the queue.

Example

if (teja_queue_is_empty (queue))
 {
 printf ("Queue is empty\n");
 }
else
 {
 printf ("Queue is not empty\n");
 }

printf (“Queue size is %d\n”, teja_queue_get_size (queue));
Chapter 2 User API 69

Late-Binding API Memory Pool Functions

teja_memory_pool_get_node

Description

Returns a pointer to a newly allocated fixed-sized node from the given memory
pool.

Function

void *teja_memory_pool_get_node(teja_memory_pool_t memory-pool);

Parameters

memory-pool – Memory pool to allocate from.

Return Values

void * – NULL if the memory pool is empty or the pointer to the newly allocated
node.

Example

void * node;
node = teja_memory_pool_get_node (pool);
if (node)
 {
 printf ("Got node %x\n", node);
 if (teja_memory_pool_put_node (pool, node) < 0)
 {
 printf ("Error putting back node %x to the pool\n", node);
 }
 else
 {
 printf ("Node %x was put back to the pool\n", node);
 }
 }
else
 {
 printf ("Pool was empty\n");
 }
70 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

teja_memory_pool_put_node

Description

Frees a node back to a memory pool.

Function

int teja_memory_pool_put_node(teja_memory_pool_t memory-pool, void
*node);

Parameters

memory-pool – Memory pool to return the node to.

node – Pointer to node to free.

Return Values

int – If successful, this function returns 0. In case of an error, this function returns
-1.

Example

See the example in “teja_memory_pool_get_node” on page 70.

teja_memory_pool_get_node_from_index

Description

Memory pool nodes are contiguous in memory and have a sequential index number.
This function returns the node that corresponds to the given index. The effect of this
function is not equivalent to a teja_memory_pool_get_node call because the
node is not actually extracted from the pool. For this reason, the node must be
allocated and not free in the memory pool when used by the application. For
performance reasons, a range check is not performed, so the index value must be
valid or a programming flaw might occur.

Function

void *teja_memory_pool_get_node_from_index(teja_memory_pool_t
memory-pool, int index);

Parameters

memory-pool – Memory pool from which the node belongs.

index – Index of the node.
Chapter 2 User API 71

Return Values

void * – Pointer to the node specified by index.

Example

teja_memory_pool_get_index_from_node

Description

Memory pool nodes are contiguous in memory and have a sequential index number.
This function returns the index that corresponds to the given node pointer. For
performance reasons, a range check is not performed, so the node value must be
valid or a programming flaw might occur.

Function

int teja_memory_pool_get_index_from_node(teja_memory_pool_t
memory-pool, void *node);

Parameters

memory-pool – Memory pool from which the node belongs.

Return Values

node – Pointer to a node for which the index is requested.

int – Index of the given node.

Example

See the example in “teja_memory_pool_get_node_from_index” on page 71.

void * node;
node = teja_memory_pool_get_node_from_index (pool, 3);
if (teja_memory_pool_get_index_from_node (pool, node) != 3)
 {
 printf ("Impossible!\n");
 }
72 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Late-Binding API Channel Functions

teja_channel_is_connection_open

Description

Returns 1 if the connection is open, 0 if the connection is closed.

Function

int teja_channel_is_connection_open(teja_channel_t channel);

Parameters

channel – Channel to test.

Return Values

int – 1 if the connection is open, 0 if the connection is closed.

Example

See the example in “teja_channel_send” on page 74.

teja_channel_make_connection

Description

Establishes a connection on the given channel (if the channel requires the connection
to be established at runtime).

Function

int teja_channel_make_connection(teja_channel_t channel);

Parameters

channel – Channel to operate on.

Return Values

int – 0 if operation was successful, -1 otherwise.

Example

See the example in “teja_channel_send” on page 74.
Chapter 2 User API 73

teja_channel_break_connection

Description

Breaks an existing connection on the given channel.

Function

int teja_channel_break_connection(teja_channel_t channel);

Parameters

channel – Channel to operate on.

Return Values

int – 0 if operation was successful, -1 otherwise.

Example

See the example in “teja_channel_send” on page 74.

teja_channel_send

Description

Sends message-size bytes of data into the channel for the user. This function
optionally enables users to send an event value that can be used at the receiver to
discriminate the data type of the received data. This functionality is useful if
multiple data types are sent. The event logic can be disabled by passing
TEJA_NO_EVENT. Depending upon the channel implementation, the user might also
be signaled at the time the message is sent.

Function

int teja_channel_send(teja_channel_t channel, short int event,
void *message, int message-size);

Parameters

channel – Channel to send data on.

event – Optional value that is sent on the channel with the data. This value can be
used at the receiver to discriminate the data type of the received data. This
parameter is optional. Passing the constant TEJA_NO_EVENT causes event logic to be
skipped in the code generation.
74 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

message – Pointer to the data to send.

message-size – Size of the message being sent (in bytes).

Return Values

int – Number of bytes sent or -1 in case of error.

Example

This example shows how to send data using a channel.

See also the example in “teja_wait” on page 76, which shows how to receive data
from the channel.

Late-Binding API Interruptible Wait
The teja_wait() call enables users to wait for a timeout to expire or for data to
arrive on a list of channels, whichever happens first. This function’s semantics are
similar to the select() call on UNIX (or Linux) systems. For targets on which the
TEJA_IS_RAW_OS constant is not defined, the teja_wait() call can also be
interrupted by Netra DPS signals and by registered file descriptors.

#define MY_EVENT 7
if (teja_channel_make_connection(chan) < 0)
 {
 printf ("Error while estabilishing connecting to the channel\n");
 }
if (teja_channel_is_connection_open(chan))
 {
 if (teja_channel_send(chan,7,"hello",5) < 0)
 {
 printf ("Error sending data on the channel\n");
 }
 if (teja_channel_break_connection(chan) < 0)
 {

printf ("Error while tearing down the connection on the channeling”);
 }
 }
Chapter 2 User API 75

teja_wait

Description

Waits for a timeout, for data arriving on one of the channels, or for any registered
signals or file descriptor to be triggered, whichever happens first. For more
information on signal and file descriptor registration. Channels are checked once
before starting the timeout wait.

Function

int teja_wait(int seconds, int nanoseconds, int poll-seconds, int poll-
nanoseconds, short int *event, void *buffer, int buffer-size, ...);

Parameters

seconds – Number of seconds to wait. Passing TEJA_INFINITE_WAIT causes the
function to wait indefinitely.

nanoseconds – Number of nanoseconds to wait. This value must be from 0 to
999999999.

poll-seconds – Number of seconds to wait before polling channels. Passing
TEJA_INFINITE_WAIT causes the function not to poll channels.

poll-nanoseconds – Number of nanoseconds to wait before polling channels. This
value must be from 0 to 999999999.

event – Pointer to a variable in which the event value is copied. Passing NULL causes
event logic to be skipped.

buffer – Pointer to buffer in which received data is copied.

buffer-size – Size of the buffer.

... – List of channels to read from. The list must be NULL terminated.

Return Values

int – Returns -1 if error, 0 if timeout expires, or the number of bytes read from
channels and copied into the buffer.

The seconds and nanoseconds parameters identify the timeout. If
TEJA_INFINITE_WAIT is passed to seconds, then no timing logic is generated and
the function waits indefinitely until some data arrives on the channels. The poll-
seconds and poll-nanoseconds identify the amount of time to wait between channel
polls, while waiting.
76 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

event is an optional parameter. If a non-NULL value is passed the event value coming
from the sender is copied in the variable pointed by the event parameter. Typically
event is used to discriminate among a set of possible types for the received data so
the event can determine what data type to cast the received data to. In case event is
not needed (for example, if only one data type is sent on the channel) then the code
generator can be instructed to skip event management logic by using
TEJA_NO_EVENT at the sender and NULL at the receiver.

Buffer and buffer-size identify the buffer in which received data is copied and its size.

The final variable argument list consists of a NULL-terminated channel list. The order
in which channels are listed is the same that is used to poll channels. If no channels
are listed, then only timing logic is generated.

Note – This function may not be invoked at initialization time.
Chapter 2 User API 77

Example

This example shows how to receive data from a channel using teja_wait().

See also the example in “teja_channel_send” on page 74, which shows how to
send data.

#define BUF_SIZE 16
#define MY_EVENT 7
#define MY_OTHER_EVENT 8
struct A
{
 short int x;
 short int y;
};
int ret;
short int evt;
char buf[BUF_SIZE];
ret = teja_wait (TEJA_INFINITE_WAIT, 0, 1, 0, &evt, buf, BUF_SIZE, chan, NULL);
if (ret > 0)
 {
 switch (evt)
 {
 case MY_EVENT:
 printf ("%s\n", buf);
 break;
 case MY_OTHER_EVENT:
 printf ("%d,%d\n", ((struct A *)buf)->x, ((struct A *)buf)->y);
 break;
 }
 }
else if (ret == 0)
 {
 printf ("timeout expired\n");
 }
else
 {
 printf ("teja_wait encountered an error\n");
 }
78 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Netra DPS Runtime API
The Netra DPS Runtime API consists of portable abstractions over various operating
system facilities such as threads, nonmemory pool-based memory management,
thread management, socket communication, and signal registration and handling.
Unlike late-binding APIs, Netra DPS Runtime APIs are not treated specially by the
compiler and are implemented in precompiled libraries. See the Netra Data Plane
Software Suite 2.0 User’s Guide for an overview of this API.

Netra DPS Runtime API Data Types

TABLE 2-3 Netra DPS Runtime API Data Types

Data Type Description

int8_t 8-bit integer type

int16_t 16-bit integer type

int32_t 32-bit integer type

int64_t 64-bit integer type

teja_fd_handler_t fd handler type, used with teja_register_fd(). This
data type has the following prototype: int (*handler)
(teja_socket_t fd, void *signal-context, short int
*event, void *msg, int msg-max-size)

teja_signal_handler_t Signal handler type, used with teja_register_fd().
This data type has the following prototype: int
(*handler) (int sig_code, void *signal-context,
short int *event, void *msg, int msg-max-size)

teja_sockaddr_t Sockaddr type, used with socket API

teja_socket_t Socket type, used with socket API

teja_socklen_t Socklen type, used with socket API

teja_thread_function_t Thread function. Has the following prototype: void *
(*function) (void *)

teja_thread_handle_t Thread handle type

uint8_t 8-bit unsigned integer type
Chapter 2 User API 79

Netra DPS Runtime API Memory Management
Functions
The memory management functions offer malloc and free functionality. These
functions are computation expensive and only used in initialization code or non-
relative critical code. On bare hardware targets the free() function is an empty
operation, so use malloc() only to obtain memory that is not meant to be released.
For all other purposes, use the memory pool API.

teja_free

Description

Frees memory buffer. On bare hardware targets this operation is empty.

Function

void teja_free(void *ptr);

Parameters

ptr – Pointer to buffer to free.

uint16_t 16-bit unsigned integer type

uint32_t 32-bit unsigned integer type

uint64_t 64-bit unsigned integer type

TABLE 2-4 Netra DPS Runtime API Macros

Macros Description

TEJA_DEFAULT_STACK_SIZE Default stack size for newly started threads
(for example, only software architecture
threads).

TEJA_IS_RAW_OS Informs the user that running on an OS or in
bare hw mode. In NDPS it is always true.

TABLE 2-3 Netra DPS Runtime API Data Types (Continued)

Data Type Description
80 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Return Values

void

teja_malloc

Description

Allocates memory buffer of specified size. On bare hardware targets the
teja_free() operation is empty, so use teja_malloc()only to obtain memory
that is not meant to be released. For all other purposes, use the memory pool API.

Function

void *teja_malloc(size_t size);

Parameters

size – Size in bytes of memory to allocate.

Return Values

void * – Value to be used as pointer to allocated buffer.

teja_realloc

Description

Extends the memory buffer to become as big as the specified size. The new block
might be allocated at a new address if there was not enough space for size bytes at
the original location.

Function

void *teja_realloc(void *ptr, size_t size);

Parameters

ptr – Pointer to memory to reallocate.

size – Size in bytes of memory to allocate.

Return Values

void * – Pointer to newly allocated memory or NULL if the operation failed. In case
of failure the original block is left untouched.
Chapter 2 User API 81

Netra DPS Runtime API Thread Functions
This API offers thread management functionality. The teja_thread_t type
implements thread IDs and the type can be assigned thread identifiers defined in the
software architecture. Indicate these thread identifiers as strings in the software
architecture using teja_thread_create(). In the user application, these
identifiers are used as C identifiers (not as strings), which are defined by the
compiler.

Two data types can be used to identify threads:

teja_get_thread_id

Description

Returns the thread ID of the current thread. The thread ID can be compared against
thread identifiers defined in the software architecture.

Function

teja_thread_t teja_get_thread_id(void);

Return Values

teja_thread_t – Thread ID of the current thread.

TABLE 2-5 Netra DPS Runtime API Thread Types

Data Type Description

teja_thread_t This type is associated only to threads that are defined in
the software architecture, and not to dynamic threads,
created with teja_thread_handle_start(). This data
type is an identifier type.

teja_thread_handle_t This type is a handle that is associated to every thread in
the system, both software architecture threads and
dynamic threads. This data type is a handle data
structure.
82 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

teja_get_thread_name_for_id

Description

Returns the name of the given thread.

Function

char *teja_get_thread_name_for_id(teja_thread_t thread-id);

Parameters

thread-id – ID of the thread to operate on.

Return Values

char * – Name of the given thread.

teja_get_id_for_thread_name

Description

Returns the ID of the given thread.

Function

teja_thread_t teja_get_id_for_thread_name(char *name);

Parameters

name – Name of the thread to operate on.

Return Values

teja_thread_t – ID of the given thread.

teja_thread_handle_start

Description

Starts a new thread dynamically, executing the given function. This function is
available only on OS-based targets or targets for which the TEJA_IS_RAW_OS
constant is not defined.
Chapter 2 User API 83

Function

int teja_thread_handle_start(teja_thread_handle_t *thread,
teja_thread_function_t function, void *arg, int stack-size, int priority);

Parameters

thread – Pointer to an uninitialized TejaThread instance. Upon successful
execution, the thread contains a properly set up TejaThread handler.

function – Main function of the thread.

arg – Argument that is passed to the thread main function.

stack-size – Size of the stack for the thread. This functionality is not available on all
systems. A predefined value is TEJA_DEFAULT_STACK_SIZE.

priority – Priority of the thread. This functionality is not available on all systems.
predefined value is TEJA_DEFAULT_PRIORITY.

Return Values

int – 0 if execution was successful, -1 if an error occurred.

teja_thread_handle_end

Description

Ends a thread that was started with teja_thread_handle_start(). Do not use
this function on threads defined in the software architecture. For software
architecture threads use teja_thread_shutdown(). This function is available only
on OS-based targets or targets for which the TEJA_IS_RAW_OS constant is not
defined.

Function

void teja_thread_handle_end(void);

Return Values

void
84 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

teja_thread_handle_get_for_thread_id

Description

Returns the thread handle pointer for the given thread ID. This function is available
only on OS-based targets or targets for which the TEJA_IS_RAW_OS constant is not
defined.

Function

teja_thread_handle_t *teja_thread_handle_get_for_thread_id(int
thread-id);

Parameters

thread-id – ID of the thread to operate on.

Return Values

teja_thread_handle_t * – Handle pointer for the given thread ID.

Netra DPS Runtime API Miscellaneous Functions

teja_thread_shutdown

Description

Shuts down the current Netra DPS thread.

Note – This function may not be invoked at initialization time.

Function

void teja_thread_shutdown(void);

Return Values

void
Chapter 2 User API 85

Netra DPS Runtime API Time Functions

teja_get_time

Description

Returns the current time in seconds and nanoseconds. The precision depends on the
granularity of the underlying system clock.

Function

int teja_get_time(int *seconds, int *nanoseconds);

Parameters

seconds – User-provided variable that contains the current seconds after the call.

nanoseconds – User-provided variable that contains the current nanoseconds after the
call.

Return Values

int – 0 on success, -1 on error.

teja_wait_time

Description

Causes the current thread to sleep the specified time. The actual sleep time varies,
depending upon the granularity of the underlying system clock and the system
overhead involved in rescheduling the thread.

Note – This function is implemented as a macro on top of teja_wait(). This
function may not be invoked at initialization time.

Function

int teja_wait_time(int seconds, int nanoseconds);

Parameters

seconds – Number of seconds to wait. Passing TEJA_INFINITE_WAIT causes the
function to wait indefinitely
86 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

nanoseconds – Number of nanoseconds to wait. This value must be between 0 and
999999999.

Return Values

int – 0 on success, -1 on error.

teja_os_wait

Description

Causes the current thread to sleep the specified time. The actual sleep time varies
depending upon the granularity of the underlying system clock and the system
overhead to reschedule the thread. Unlike teja_wait_time() this function is not
implemented on top of teja_wait().

Function

int teja_os_wait(int seconds, int nanoseconds);

Parameters

seconds – Number of seconds to wait. Passing TEJA_INFINITE_WAIT causes the
function to wait indefinitely.

nanoseconds – Number of nanoseconds to wait. This value must be contained
between 0 and 999999999.

Return Values

int – 0 on success, -1 on error.
Chapter 2 User API 87

Miscellaneous Functions

teja_get_argc

Description

Returns the number of arguments passed to the program on the command line.

Function

int teja_get_argc(void);

Return Values

int

teja_get_argv

Description

Returns an array of strings containing the arguments passed to the program on the
command line.

Function

char **teja_get_argv(void);

Return Values

char **
88 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Finite State Automata API
This macro-based API can be used to implement efficient state machine logic within
a Netra DPS application. States are computational elements and transitions are
program flow elements that connect states.

These functions are available in different versions:

■ Single-context vs. multiple-context
■ Computed goto vs. function pointer

State machines come with a user-defined context. The first field of the context must
be a void * pointer and is reserved for the system. The user can freely add other
fields.

The multiple-context version of the API invokes a user-provided scheduler to switch
in a new context at the end of each transition. This is an efficient way to implement
parallel execution on single-threaded systems. For example, while a context waits,
the state machine could switch in a new context and continue computation, thus
increasing the CPU utilization.

The single-context version of the API uses a simple pointer scheduler and does not
perform any switching. This version is useful on architectures that support
multithreading in hardware.

The user might choose an implementation based on computed gotos, versus function
pointers. Computed gotos might perform faster, but not all target compilers support
them.

Note – State machines need to be declared outside of functions.
Chapter 2 User API 89

Finite State Automata API Defines

Finite State Automata API Macros

teja_fsm_declare

Description

Declares a state machine with the given name. This function must be used in the
global scope outside functions.

Function

#define teja_fsm_declare(name)

Parameters

name – Name of the state machine.

teja_fsm_begin

Description

Starts the definition of a state machine of the given name. This function must be
used after teja_fsm_declare and must be used in the global scope outside
functions. No semi-colon (;) is required at the end of this call.

TABLE 2-6 Finite State Automata API Defines

Macros Description

TEJA_FSM_SINGLE_CONTEXT If defined the single-context version of the API is used,
otherwise the multi-context version of the API is used.

TEJA_FSM_COMPUTED_GOTO If defined the computed goto optimized version is
used, otherwise the regular function pointer based
version is used. Computed goto might perform faster,
but is not available on all target compilers.

TEJA_FSM_CONTEXT Pointer to the current context. In case of single-context
implementation, this value never changes. In case of
multiple-context implementation, this value is
updated by the system.
90 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Function

#define teja_fsm_begin(name initial-state-name context-scheduler context-iterator)

Parameters

name – Name of the state machine.

initial-state-name – Name of the initial state.

context-scheduler – If using single-context mode, this is the pointer to the context. If
using multi-context mode this is the name of a user-defined function (of signature
void * f (void)) returning the next context.

context-iterator – Name of a user-defined function (of signature void * f (void))
that returns a pointer to the next context until there are no more contexts, in which
case the function returns NULL. The system uses this function to iterate over the
contexts in the beginning in order to initialize them. This function is not used in
single-context mode.

teja_fsm_end

Description

Ends the definition of a state machine. This function must be used after
teja_fsm_begin and must be used in the global scope outside functions. No semi-
colon (;) is required at the end of this call.

Function

#define teja_fsm_end()

teja_fsm_start

Description

Starts execution of a state machine with the given name. This function must be used
inside a function.

Function

#define teja_fsm_start(name)

Parameters

name – Name of the state machine.
Chapter 2 User API 91

teja_fsm_state_declare

Description

Declares a state with the given name. This function must be used inside a state
machine declaration, immediately after teja_fsm_begin.

Function

#define teja_fsm_state_declare(name)

Parameters

name – Name of the state.

teja_fsm_state_begin

Description

Starts the definition of a state of the given name. This function must be used inside
a state machine after all teja_fsm_declare calls. The user can add regular C code
immediately after this macro up to the teja_fsm_state_end macro. No semi-
colon (;) is required at the end of this call.

Function

#define teja_fsm_state_begin(name)

Parameters

name – Name of the state.

teja_fsm_state_end

Description

Ends the definition of a state. This function must be used after
teja_fsm_state_begin. The user can add regular C code immediately before this
macro. No semi-colon (;) is required at the end of this call.

Function

#define teja_fsm_state_end()
92 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

teja_fsm_goto_state

Description

Performs a jump to the given state. This function must be used inside a state
definition (that is between teja_fsm_state_begin and teja_fsm_state_end).
This macro can be invoked No semi-colon (;) is required at the end of this call.

Function

#define teja_fsm_goto_state(name)

Parameters

name – Name of the state to jump to.

FSM Example
CODE EXAMPLE 2-1 implements a simple state machine depicted in FIGURE 2-1.

■ t1 – Thread 1

■ t2 – Thread 2

■ s1 – State 1

■ s2 – State 2

FIGURE 2-1 Finite State Machine Example

CODE EXAMPLE 2-1 Finite State Machine Code Example

#include <stdio.h>
#if NUM_CONTEXTS == 1
#define TEJA_FSM_SINGLE_CONTEXT
#endif
#include “fsm/teja_fsm.h”
Chapter 2 User API 93

typedef struct Context
{
 void * state;
 int count;
} Context;
static Context contexts[NUM_CONTEXTS];
#if NUM_CONTEXTS == 1
#define ctx_scheduler() (&contexts[0])
#else
void *
ctx_scheduler (void)
{
 static int i = -1;
 i = (i + 1) % NUM_CONTEXTS;
 return &contexts[i];
}
#endif
void *
ctx_iterator (void)
{
 static int i = -1;
 void * cur_context = 0;
 i = (i + 1);
 if (i < NUM_CONTEXTS)
 cur_context = &contexts[i];
 else
 i = -1;
 return cur_context;
}
teja_fsm_declare (my_fsm);
teja_fsm_begin (my_fsm, s2, ctx_scheduler, ctx_iterator)
 teja_fsm_state_declare (s1);
 teja_fsm_state_declare (s2);
 teja_fsm_state_begin (s1)
 printf ("t1\n");
 ((Context *) TEJA_FSM_CONTEXT)->count++;
 teja_fsm_goto_state (s2);
 teja_fsm_state_end ()
 teja_fsm_state_begin (s2)
 printf ("t2: %d\n", contexts[0].count);
 if (((Context *) TEJA_FSM_CONTEXT)->count == 100)
 teja_thread_shutdown();
 teja_fsm_goto_state (s1);
 teja_fsm_state_end()
teja_fsm_end()
void
fsm_main (void)

CODE EXAMPLE 2-1 Finite State Machine Code Example (Continued)
94 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Hardware Specific Miscellaneous
Functions

teja_os_get_timer

Description

Returns the value of the clock tick register.

Function

uint64_t teja_os_get_timer(void);

Return Values

int – Returns the value of the clock tick register.

{
 int i;
 for (i = 0; i < NUM_CONTEXTS; i++)
 {
 contexts[i].count = 0;
 }
 teja_fsm_start (my_fsm);
}

CODE EXAMPLE 2-1 Finite State Machine Code Example (Continued)
Chapter 2 User API 95

C Library Support on Bare Hardware
Netra DPS programs running on bare hardware CMT can use the following standard
C library functions:

■ atoi

■ bcopy

■ bzero

■ getchar

■ memcopy

■ memmove

■ memset

■ printf

■ putchar

■ sprintf

■ strcat

■ strcmp

■ strcpy

■ strlen

■ strncmp

■ strncpy

■ strtok

■ strtol

■ strtoul
96 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

CHAPTER 3

Profiler API

This chapter describes the components and functions of the Netra DPS Profiler API.
Topics include:

■ “Profiler API Configuration” on page 97

■ “Profiler API” on page 98

■ “Processor Specific Profiler Constants” on page 102

Profiler API Configuration
The user can set two properties for a process in the software architecture. These
properties are configured per process and applied to all threads of that process.

TABLE 3-1 Process Properties

Property Description

profiler_log_table_size Sets the total number of profile records in the log. The
default value is 1024.

profiler_user_data_size Represents the maximum number of user-data in 64-bit
words that user wants to log along with the profile
record. The default value is 0.
97

Profiler API

Profiler API Data Types

TABLE 3-2 Profiler API Data Types

Data Type Description

teja_profiler_group_t; Represents a group of events. For example, events
regarding instructions and cache hit or miss in one
group, while memory related events can be in another
group. Groups are target-specific and available to the
user in preprocessor define forms.

teja_profiler_event_t; Represents what needs to be measured in a specific
group. Group and event combinations make an unique
event. Each bit in the 64-bit value represents a different
event so more that one event can be specified using an
event mask.

teja_profiler_value_t; Type for the value of the event. This is the type for the
actual value that is being measured.

TEJA_PROFILER_MAX_EVENTS Maximum number of events that can be measured per
group. This value is target-dependent.

teja_profiler_values_t; Type for the values of the events. The events array
contains the values of the events in the same group. For
example:
typedef struct teja_profiler_values_t

uint64_t events [TEJA_PROFILER_MAX_EVENTS];
98 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Profiler API Functions

teja_profiler_start

Description

Starts collecting profile data for the specified events in the specified group. More
than one event can be specified as a bit mask. Only one group is allowed. If the user
wants to start profiling more than one group, the user must invoke the same
function multiple times.

Function

int teja_profiler_start(const teja_profiler_group_t group,
const teja_profiler_event_t event);

Parameters

group – ID of the group for to start collecting profiler data.

event – Events of the group as a bit mask. Up to two different events can be specified
at a time.

In case of measuring events inside the CPU group for Sun UltraSPARC T1 processor,
the user can specify only one event. The second event is always the number of
executed instructions but is not explicitly specified.

In case of measuring events inside DRAM or JBUS group for Sun UltraSPARC T1
processor or inside any group of events for Sun UltraSPARC T2 processor, the user
can specify two events to be measured at a time. In this case, the event argument in
the teja_profiler_start function call has the following format:

event1 | event2

where event1 and event2 are events to be measured.

Return Values

int – 0 for success and -1 for error.
Chapter 3 Profiler API 99

teja_profiler_stop

Description

Stops collecting profile data for all events in the specified group. This function has
empty implementation on some targets.

Function

int teja_profiler_stop(const teja_profiler_group_t group);

Parameters

group – ID of the group to stop collecting profiler data.

Return Values

int – 0 for success and -1 for error.

teja_profiler_update

Description

Takes a snapshot of the current profiling data and saves the snapshot in the log. All
the events that were specified for the group with the teja_profiler_start are
updated. User-defined data that needs to be logged with the profiler log entry can be
specified using variable arguments. The maximum number of arguments is specified
in the software architecture using the process property.

Function

int teja_profiler_update(const teja_profiler_group_t group, ...);

Parameters

group – ID of the group for which the user wants to update profile data.

... – List of channels from which to read. The list must be NULL terminated.

Return Values

int – 0 for success and -1 for error.
100 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

teja_profiler_get_values

Description

Takes a snapshot of the current profiling data and returns it in the values parameter.
All the events that were specified for the group with teja_profiler_start is
returned.

Function

int teja_profiler_get_values(const teja_profiler_group_t group,
teja_profiler_values_t *values);

Parameters

group – ID of the group which the user wants to get the profiler data.

values – User-allocated data structure that will be filled with the profiler data.

Return Values

int – Returns overflow information or -1 for error

teja_profiler_get_value

Description

Retrieves the value of a given event from a teja_profiler_values_t data
structure.

Function

teja_profiler_value_t
teja_profiler_get_value(teja_profiler_values_t *values, int index);

Parameters

values – Data structure that was filled by teja_profiler_get_values

index – Index of the event to read (sequential number from 0 up to the maximum
number of events specifiable in a group)

Return Values

teja_profiler_value_t – Returns the value of the given event.
Chapter 3 Profiler API 101

teja_profiler_dump

Description

Dumps the profile data in stdout. The profiler data represents the profiler records
that are collected so far for the thread identifier.

Function

int teja_profiler_dump(teja_thread_t thread);

Parameters

thread – Thread identifier for which the profiler dump is requested.

Return Values

int – Returns 0 for success and -1 for error.

Processor Specific Profiler Constants

Sun UltraSPARC T1 Processor– Specific Profiler
Groups
TABLE 3-3 lists the Specific Profiler Groups for the Sun UltraSPARC T1 processor.

TABLE 3-3 Sun UltraSPARC T1 Processor – Specific Profiler Groups

Group Event or Description Description

TEJA_PROFILER_CMT_CPU (0x1) Captures events related to CPU and caches. The events measured in this group
are per strand. The following events are available for this group. The
completed instructions count is always an available event for this group. There
is additionally one more event that can be measured along with the
instructions count.

TEJA_PROFILER_CMT_CPU_SB_FULL (0x1) Measures the number of
store buffer full cycles.

TEJA_PROFILER_CMT_CPU_FP_INSTR_CNT (0x2) Measures the number of
floating point
instructions.
102 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

TEJA_PROFILER_CMT_CPU_IC_MISS (0x4) Measures the number of
instruction cache
misses.

TEJA_PROFILER_CMT_CPU_DC_MISS (0x8) Measures the number of
data cache misses.

TEJA_PROFILER_CMT_CPU_ITLB_MISS (0x10) Measures the number of
instruction TLB miss
traps taken.

TEJA_PROFILER_CMT_CPU_DTLB_MISS (0x20) Measures the number of
data TLB miss traps
taken.

TEJA_PROFILER_CMT_CPU_L2_IMISS (0x40) Measures the number of
secondary cache (L2)
misses due to
instruction cache
requests.

TEJA_PROFILER_CMT_CPU_L2_DMISS_LD (0x80) Measures the number of
secondary cache (L2)
misses due to data
cache load requests.

TEJA_PROFILER_CMT_CPU_INSTR_COMPLETED
(0x100)

Measures the number of
completed instructions.

TEJA_PROFILER_CMT_DRAM_CTL0 This group captures events related to DRAM memory read, write, and queues.
There are different groups for different DRAM controllers. The following
events can be measured in this group:

TEJA_PROFILER_CMT_DRAM_MEM_READS (0x1) Read transactions.

TEJA_PROFILER_CMT_DRAM_MEM_WRITES (0x2) Write transactions.

TEJA_PROFILER_CMT_DRAM_MEM_READ_WRITE (0x4) Read + write
transactions.

TEJA_PROFILER_CMT_DRAM_BANK_BUSY_STALLS
(0x8)

Bank busy stalls.

TEJA_PROFILER_CMT_DRAM_RD_QUEUE_LATENCY
(0x10)

Read queue latency.

TEJA_PROFILER_CMT_DRAM_WR_QUEUE_LATENCY
(0x20)

Write queue latency.

TEJA_PROFILER_CMT_DRAM_RW_QUEUE_LATENCY
(0x40)

Read + write queue
latency.

TEJA_PROFILER_CMT_DRAM_WR_BUF_HITS (0x80) Write-back buffer hits.

TABLE 3-3 Sun UltraSPARC T1 Processor – Specific Profiler Groups (Continued)

Group Event or Description Description
Chapter 3 Profiler API 103

TEJA_PROFILER_CMT_DRAM_CTL1 Measures same events as DRAM controller 0, but for DRAM controller 1.

TEJA_PROFILER_CMT_DRAM_CTL2 Measures same events as DRAM controller 0, but for DRAM controller 2.

TEJA_PROFILER_CMT_DRAM_CTL3 Measures same events as DRAM controller 0, but for DRAM controller 3.

TEJA_PROFILER_CMT_JBUS This group captures events related to JBus read, write, and cycles. Following
events can be measured for this group:

TEJA_PROFILER_CMT_JBUS_CYCLES (0x1) JBus cycles

TEJA_PROFILER_CMT_JBUS_DMA_READS (0x2) DMA read transactions
(Inbound)

TEJA_PROFILER_CMT_JBUS_DMA_READ_LATENCY
(0x4)

Total DMA read latency

TEJA_PROFILER_CMT_JBUS_DMA_WRITES (0x8) DMA write transactions

TEJA_PROFILER_CMT_JBUS_DMA_WRITE8 (0x10) DMA WR8
subtransactions

TEJA_PROFILER_CMT_JBUS_ORDERING_WAITS (0x20) Ordering waits

TEJA_PROFILER_CMT_JBUS_PIO_READS (0x40) PIO read transactions
(outbound)

TEJA_PROFILER_CMT_JBUS_PIO_READ_LATENCY
(0x80)

Total PIO read latency

TEJA_PROFILER_CMT_JBUS_AOK_DOK_OFF_CYCLES
(0x100)

AOK_OFF or DOK_OFF
seen (cycles)

TEJA_PROFILER_CMT_JBUS_AOK_OFF_CYCLES
(0x200)

AOK_OFF seen (cycles)

TEJA_PROFILER_CMT_JBUS_DOK_OFF_CYCLES
(0x400)

DOK_OFF seen (cycles)

TABLE 3-3 Sun UltraSPARC T1 Processor – Specific Profiler Groups (Continued)

Group Event or Description Description
104 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Sun UltraSPARC T2 Processor – Specific Profiler
Groups
TABLE 3-4 lists the Specific Profiler Groups for the Sun UltraSPARC T2 processor:

TABLE 3-4 Sun UltraSPARC T2 Processor – Specific Profiler Groups

Group Event or Description Description

TEJA_PROFILER_CMT_CPU (0x1)Captures events related to CPU and caches. The events measured in this
group are per strand. The user can specify up to two independent events that
can be concurrently measured. The following events are available for this
group.

TEJA_PROFILER_CMT2_COMPLETED_BRANCHES Number of completed
branches.

TEJA_PROFILER_CMT2_TAKEN_BRANCHES Number of branches
taken.

TEJA_PROFILER_CMT2_FGU_ARITHMATIC_INSTR Number of floating-
point arithmetic
instructions executed.

TEJA_PROFILER_CMT2_LOAD_INSTR Number of load
instructions executed.

TEJA_PROFILER_CMT2_STORE_INSTR Number of store
instruction executed.

TEJA_PROFILER_CMT2_SETHI_INSTR Number of sethi
instructions executed.

TEJA_PROFILER_CMT2_OTHER_INSTR Number of all other
instructions executed.

TEJA_PROFILER_CMT2_ATOMICS Number of atomic
operations executed.

TEJA_PROFILER_CMT2_ALL_INSTR Total number of
instructions executed.

TEJA_PROFILER_CMT2_ICACHE_MISSES Number of instruction
cache misses.

TEJA_PROFILER_CMT2_DCACHE_MISSES Number of L1 data
cache misses.

TEJA_PROFILER_CMT2_L2_INSTR_MISSES Number of secondary
cache (L2) misses due
to instruction cache
requests.
Chapter 3 Profiler API 105

TEJA_PROFILER_CMT2_L2_LOAD_MISSES Measures the number
of secondary cache (L2)
misses due to data
cache load requests.

TEJA_PROFILER_CMT2_ITLB_REF_L2 For each ITLB miss, this
counts the number of
accesses the ITLB
hardware tablewalk
makes to L2 when
hardware tablewalk is
enabled.

TEJA_PROFILER_CMT2_DTLB_REF_L2 For each DTLB miss,
this counts the number
of accesses the DTLB
hardware tablewalk
makes to L2 when
hardware tablewalk is
enabled.

TEJA_PROFILER_CMT2_ITLB_MISS_L2 For each ITLB miss, this
counts the number of
accesses the ITLB
hardware tablewalk
makes to L2 which
misses in L2 when
hardware tablewalk is
enabled.
Note: Depending on the
hardware tablewalk
configuration, each
ITLB miss may issue
from 1 to 4 requests to
L2 to search TSB’s.

TABLE 3-4 Sun UltraSPARC T2 Processor – Specific Profiler Groups (Continued)

Group Event or Description Description
106 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

TEJA_PROFILER_CMT2_DTLB_MISS_L2 For each DTLB miss,
this counts the number
of accesses the DTLB
hardware tablewalk
makes to L2 which
misses in L2 when
hardware tablewalk is
enabled.
Note: Depending on the
hardware tablewalk
configuration, each
DTLB miss may issue
from 1 to 4 requests to
L2 to search TSB’s.

TEJA_PROFILER_CMT2_STREAM_LD_TO_PCX Counts the number of
SPU load operations to
L2.

TEJA_PROFILER_CMT2_STREAM_ST_TO_PCX Counts the number of
SPU store operations to
L2.

TEJA_PROFILER_CMT2_CPU_LD_TO_PCX Counts the number of
CPU loads to L2.

TEJA_PROFILER_CMT2_CPU_IFETCH_TO_PCX Counts the number of I-
fetches to L2.

TEJA_PROFILER_CMT2_CPU_ST_TO_PCX Counts the number of
CPU stores to L2.

TEJA_PROFILER_CMT2_MMU_LD_TO_PCX Counts the number of
MMU loads to L2.

TEJA_PROFILER_CMT2_DES_3DES_OP Increments for each
CWQ or ASI operation
that uses DES/3DES
unit.

TEJA_PROFILER_CMT2_AES_OP Increments for each
CWQ or ASI operation
which uses AES unit.

TEJA_PROFILER_CMT2_RC4_OP Increments for each
CWQ or ASI operation
which uses RC4.

TEJA_PROFILER_CMT2_MD5_SHA1_SHA256_OP Increments for each
CWQ or ASI operation
which uses MD5, SHA-
1, or SHA-256.

TABLE 3-4 Sun UltraSPARC T2 Processor – Specific Profiler Groups (Continued)

Group Event or Description Description
Chapter 3 Profiler API 107

TEJA_PROFILER_CMT2_MA_OP Increments for each
CWQ or ASI modular
arithmetic operation.

TEJA_PROFILER_CMT2_CRC_TCPIP_CKSUM Increments for each
iSCSI CRC or TCP/IP
checksum operation.

TEJA_PROFILER_CMT2_DES_3DES_BUSY_CYCLE Increments each cycle
when DES/3DES unit is
busy.

TEJA_PROFILER_CMT2_AES_BUSY_CYCLE Number of busy cycles
encountered when
attemptingto
execute the AES
operation.

TEJA_PROFILER_CMT2_RC4_BUSY_CYCLE Number of busy cycles
encountered when
attemptingto
execute the RC4
operation.

TEJA_PROFILER_CMT2_MD5_SHA1_SHA256_BUSY_
CYCLE

Number of busy cycles
encountered when
attemptingto
execute the
MD5_SHA1_SHA256
operation.

TEJA_PROFILER_CMT2_MA_BUSY Increments each cycle
when modular
arithmetic unit is busy.

TEJA_PROFILER_CMT2_CRC_MPA_CKSUM Increments each cycle
when
CRC/MPA/checksum
unit is busy.

TEJA_PROFILER_CMT2_ITLB_MISS Includes all misses
(successful and
unsuccessful
tablewalks).

TEJA_PROFILER_CMT2_DTLB_MISS Includes all misses
(successful and
unsuccessful
tablewalks).

TABLE 3-4 Sun UltraSPARC T2 Processor – Specific Profiler Groups (Continued)

Group Event or Description Description
108 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

TEJA_PROFILER_CMT2_TLB_MISS Counts both ITLB and
DTLB misses
(successful and
unsuccessful
tablewalks).

TEJA_PROFILER_CMT_DRAM_CTL0 This group captures events related to DRAM memory read, write, and
queues. The events that can be measured are the same as for the Sun
UltraSPARC T1 processor (see TABLE 3-3 in “Sun UltraSPARC T1
Processor– Specific Profiler Groups” on page 102). There are different
groups for different DRAM controllers.

TEJA_PROFILER_CMT_DRAM_CTL1 Measures same events as DRAM controller 0, but for DRAM controller 1.

TEJA_PROFILER_CMT_DRAM_CTL2 Measures same events as DRAM controller 0, but for DRAM controller 2.

TEJA_PROFILER_CMT_DRAM_CTL3 Measures same events as DRAM controller 0, but for DRAM controller 3.

TABLE 3-4 Sun UltraSPARC T2 Processor – Specific Profiler Groups (Continued)

Group Event or Description Description
Chapter 3 Profiler API 109

110 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

CHAPTER 4

Driver API

This chapter describes the driver application programming interface (API) which
consists of the Netra DPS Crypto and Hashing API and Ethernet API. Topics
include:

■ “Netra DPS Crypto and Hashing API” on page 111

■ “Ethernet API” on page 125

Netra DPS Crypto and Hashing API
Netra DPS Crypto and Hashing API is an interface that allows Netra DPS developers
to access the cryption and hash hardware functions supported by UltraSPARC T2
based platforms.

Note – Netra DPS Cryptography API requires the SUNWndpsc Cryptography Driver
package.

Developers do not necessarily need to know the details in implementing the crypto
and hash APIs when accessing these APIs.

The Netra DPS reference application, IPSec Gateway, is an example of how to use
this API. The package SUNWndpsc (required export clearance) contains this API.

The user needs to include the following header files under
src/libs/ndps_crypto_api/ in the application:

■ crypt_const.h

■ ndpscrypto.h

■ ndpscrypto_impl.h

■ ndpscrytpo.c is linked into the Makefile.
111

The SPU driver is provided in the binary format located in SUNWndpsc:
lib/n2cp/lwrten2cp.o

The user needs to link the driver into the application.

Netra DPS Crypto and Hash API Functions
API functions are detailed in “Netra DPS Crypto and Hash API Function
Descriptions” on page 113. The API functions include the following:

■ “Crypto and Hash Context Setup Part” on page 113:

■ NDPSCreateCryptoContext

■ NDPSDestroyCryptoContext

■ “Crypto API” on page 114

■ NDPSCryptKeyLength

■ NDPSCryptKeyLoad

■ NDPSCryptIVLoad

■ NDPSCrypt

■ NDPSCryptMultiple

■ NDPSCryptAndHashMultiple

■ “Hash API” on page 119:

■ NDPSHashLength

■ NDPSHashIVLoad

■ NDPSHashIVGet

■ NDPSHashDirect

■ NDPSHashDirectMultiple

■ “Crypto and Hash Combined API” on page 121

■ NDPSCryptAndHash

■ “Miscellaneous APIs” on page 123

AES-XCBC-MAC-96 support:

■ NDPSAESXCBCMAC96init

■ NDPSAESXCBCMAC96fini

■ NDPSAESXCBCMAC96KeyLoad

■ NDPSAESXCBCMAC96AuthGenerate
112 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Netra DPS Crypto and Hash API Function
Descriptions

Crypto and Hash Context Setup Part

NDPSCreateCryptoContext

Description

NDPSCreateCryptoContext creates a context for the crypto or hash task to be
submitted to the UltraSPARC T2 crypto engine; the caller supplies the cipher, or
hash, and the mode which is the algorithms supported in the UltraSPARC T2 crypto
engine. This function allocates the necessary resource to fulfill the crypto or hash
task, such as the SPU (Stream Processing Unit) CG devices.

Function

NDPS_crypto_ctx_t NDPSCreateCryptoContext (
const NDPS_CIPHER cipher, int mode);

Parameters

cipher – An algorithm supported in UltraSPARC T2. See ndpscrypt.h, among them
are AES/DES/3DES/RC4 and MD5/SHA1/SHA256

mode – The variation for each cipher, such as ECB/CBC/CTR for AES and
ECB/CBC/CFB for DES/3DES

Return Values

Returns the opaque handle NDPS_crypto_ctx_t to the available hardware CG and
SPU devices.

A CG device is used for symmetric key encryption and hashing. The user needs to
have NDPS_crypto_ctx_t to be able to use other API functions.
Chapter 4 Driver API 113

Note – To implement, use the following approach: since each core owns one SPU,
any strands on the same core accesses the same SPU, therefore, the users routine to
access SPU depends on the strand the user is running. For UltraSPARC T2 platforms,
the CG the user is accessing = strand# % 8. If the application has only one strand per
core to access the SPU on that core, then no other action is required. If the user has
two functions running different strands on the same core and both access the
SPU.The user then needs to either place the mutex around the crypto function by
accessing the SPU, or allocate one strand whose task is to access the SPU only. It
then handles the callers in round-robin fashion to avoid locking.

NDPSDestroyCryptoContext

Description

Releases the context of accessing the SPU/CG device after finishing the crypto and
hash task. The released hardware resources are available for the next caller.

Function

int NDPSDestroyCryptoContext (NDPS_crypto_ctx_t ctx);

Parameters

The opaque NDPS_crypto_ctx_t handle is allocated through
NDPSCreateCryptoContext.

Return Values

0 – Success

1 – Failure

Crypto API

NDPSCryptKeyLength

Description

Loads the Key length for the crypto. The key length could be 128-bit, 192-bit, or 256-
bit.
114 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Function

int NDPSCryptKeyLength (NDPS_crypto_ctx_t ctx, int key_len);

Parameters

ctx – The NDPS_crypto_ctx_t handle

key_len – The key length

Return Values

0 – Success

1 – Failure

NDPSCryptKeyLoad

Description

Loads the Key for the crypto.

Function

int NDPSCryptKeyLoad (NDPS_crypto_ctx_t ctx, NDPS_key_t *key);

Parameters

ctx – The NDPS_crypto_ctx_t handle

key – The key

Note – To avoid key copy, the caller must maintain space for its key until it calls
NDPSDestroyContext()

Return Values

0 – Success

1 – Failure
Chapter 4 Driver API 115

NDPSCryptIVLoad

Description

Loads the IV for the crypto.

Function

int NDPSCryptIVLoad (NDPS_crypto_ctx_t ctx, NDPS_iv_t *iv);

Parameters

ctx – The NDPS_crypto_ctx_t handle

iv – The iv

Note – To avoid IV copy, the caller must maintain space for its IV until it calls
NDPSDestroyContext()

Return Values

0 – Success

1 – Failure

NDPSCrypt

Description

Submits the crypto task with a single data block to the UltraSPARC T2 crypto device.

Function

int NDPSCrypt (NDPS_crypto_ctx_t ctx, int encrypt_flag,
uchar_t *outbuf, int *outlen, uchar_t *inbuf, int inlen);

Parameters

ctx – The NDPS_crypto_ctx_t handle

encrypt_flag = 1 – For encrypt

encrypt_flag = 0 – For decrypt

inbuf – The text to be encrypted or decrypted

inlen – Number of the text in bytes
116 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

outbuf – Where the crypted or decrypted data is placed

outlen – Number of the crypted or decrypted data in bytes

Return Values

0 – Success

1 – Failure

NDPSCryptMultiple

Description

Submits the crypto task with chained multiple data blocks to the UltraSPARC T2
crypto device.

Function

int NDPSCryptMultiple (NDPS_crypto_ctx_t ctx, int encrypt_flag,
int num_blk, uchar_t **outbuf, size_t *outlen, uchar_t **inbuf,
size_t *inlen);

Parameters

ctx – The NDPS_crypto_ctx_t handle

encrypt_flag = 1 – For encrypt

encrypt_flag = 0 – For decrypt

num_blk – Number of data blocks to be chained

inbuf – Array of the input chained data blocks

inlen – Array of the input lengths of the chained data blocks

outbuf – Array of the chained output data blocks

outlen – Array of the lengths of the chained output data blocks

Return Values

0 – Success

1 – Failure
Chapter 4 Driver API 117

NDPSCryptAndHashMultiple

Description

Submits the Crypto and Hashing tasks with multiple data blocks to the UltraSPARC
T2 Crypto device.

Function

int NDPSCryptAndHashMultiple(NDPS_crypto_ctx_t ctx, int
encrypt_flag,
int num_blk, char **outbuf, size_t *outlen,
char **inbuf, size_t *inlen, NDPS_crypto_ctx_t
h_ctx, char **h_outbuf, size_t *h_outlen,
char **h_inbuf, size_t *h_inlen)

Parameters

ctx – The handler NDPS_crypto_ctx_t for Crypto

encrypt_flag = 1 – For encrypt and hash

encrypt_flag = 0 – For unhash and decrypt

num_blk – Number of data block CryptHash pairs to be submitted in one request

outbuf – Array of the output data blocks for Crypto

outlen – Array of the lengths of the output data blocks for Crypto

inbuf – Array of the input data blocks for Crypto

inlen – Array of the lengths of the input data blocks for Crypto

h_ctx – The handler NDPS_Crypto_ctx_t for Hash

h_outbuf – Array of the output data blocks for Hash

h_outlen – Array of the lengths of the output data blocks for Hash

h_inbuf – Array of the input data blocks for Hash

h_inlen – Array of the lengths of the input data blocks for Hash

Return Values

0 – Success

1 – Failure
118 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Hash API

NDPSHashLength

Description

Sets the Hash length.

Function

int NDPSHashLength (NDPS_crypto_ctx_t ctx, int len);

Parameters

ctx – The NDPS_crypto_ctx_t handle

len – The hash length

Return Values

0 – Success

1 – Failure

NDPSHashIVLoad

Description

Loads the Hash IV (initialization vector) load.

Note – To avoid IV copy, the caller must maintain space for its IV until it calls
NDPSDestroyContext()

Function

int NDPSHashIVLoad(NDPS_crypto_ctx_t ctx, NDPS_iv_t *iv);

Parameters

ctx – The NDPS_crypto_ctx_t handle

iv – The hash IV value

Return Values

0 – Success

1 – Failure
Chapter 4 Driver API 119

NDPSHashIVGet

Description

Acquires the IV (initialization vector) address for the hash.

Function

int NDPSHashIVGet (NDPS_crypto_ctx_t ctx, NDPS_iv_t **iv);

Parameters

ctx – The NDPS_crypto_ctx_t handle

iv – The pointer to the IV location

Return Values

0 – Success

1 – Failure

NDPSHashDirect

Description

Produces the Hash value from the input data with its length. This Hash function
does not overwrite the internal IV, but rather does a complete hash operation and
stores the result in the provided outbuf.

Function

int NDPSHashDirect (NDPS_crypto_ctx_t ctx, uchar_t *outbuf,
uchar_t *inbuf, int inlen);

Parameters

ctx – The NDPS_crypto_ctx_t handle

inbuf – The input data to be hashed

inlen – The length of data to be hashed

outbuf – The resulting hash value

Return Values

0 – Success

1 – Failure
120 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

NDPSHashDirectMultiple

Description

Submits the Hash task with chained multiple data blocks to the UltraSPARC T2
crypto device.

Function

int NDPSHashDirectMultiple (NDPS_crypto_ctx_t ctx, int num_blk,
uchar_t **outbuf, size_t *outlen, uchar_t **inbuf,
size_t *inlen);

Parameters

ctx – The NDPS_crypto_ctx_t handle

num_blk – Number of data blocks to be chained

outbuf – Array of the chained output data blocks

outlen – Array of the lengths of the chained output data blocks

inbuf – Array of the input chained data blocks

inlen – Array of the input lengths of the chained data blocks

Return Values

0 – Success

1 – Failure

Crypto and Hash Combined API

NDPSCryptAndHash

Description

Combines crypto and hash operations in one function call. It calls SPU in one call to
get a performance boost.
Chapter 4 Driver API 121

Function

int NDPSCryptAndHash(NDPS_crypto_ctx_t ctx, int encrypt_flag,
char *outbuf, int *outlen, char *inbuf, int inlen,
NDPS_crypto_ctx_t h_ctx,
char *h_outbuf, int h_outlen, char *h_inbuf, int h_inlen);

Parameters

ctx – The NDPS_crypto_ctx_t for crypto; handle

encrypt_flag = 1 – For encrypt

encrypt_flag = 0 – For decrypt

outbuf – Array of the chained output data blocks for crypto

outlen – Array of the lengths of the chained output data blocks for crypto

inbuf – Array of the input chained data blocks for crypto

inlen – Array of the input lengths of the chained data blocks for crypto

h_ctx – The NDPS_crypto_ctx_t handle for Hash

h_outbuf – Array of the chained output data blocks for Hash

h_outlen – Array of the lengths of the chained output data blocks for Hash

h_inbuf – Array of the input chained data blocks for Hash

h_inlen – Array of the input lengths of the chained data blocks for Hash

Return Values

0 – Success

1 – Failure
122 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Miscellaneous APIs
The following APIs support AES-XCBC-MAC-96.

NDPSAESXCBCMAC96init

Description

Initializes AES-XCBC-MAC-96.

Function

int NDPSAESXCBCMAC96init();

Parameters

None

Return Values

0 – Success

1 – Failure

NDPSAESXCBCMAC96fini

Description

Finalizes AES-XCBC-MAC-96.

Function

int NDPSAESXCBCMAC96fini();

Parameters

None

Return Values

0 – Success

1 – Failure
Chapter 4 Driver API 123

NDPSAESXCBCMAC96KeyLoad

Description

Loads the initial key for AES-XCBC-MAC-96. This is supplied by the caller.

Function

int NDPSAESXCBCMAC96KeyLoad (
NDPS_crypto_ctx_t ctx, NDPS_key_t *key);

Parameters

ctx – The NDPS_crypto_ctx_t handle for crypto

key – The key

Return Values

0 – Success

1 – Failure

NDPSAESXCBCMAC96AuthGenerate

Description

Generates the AES-XCBC-MAC-96 authentic value in 96-bit.

Function

int NDPSAESXCBCMAC96AuthGenerate(NDPS_crypto_ctx_t ctx,
uchar_t *inbuf, int inlen, uchar_t **auth_buf, int *auth_len);

Parameters

ctx – The NDPS_crypto_ctx_t handle for crypto

inbuf – The input data for AES-XCBC-MAC-96

inlen – The input lengths for AES-XCBC-MAC-96

auth_buf – The resulting AES-XCBC-MAC-96 hash value

auth_len – Lengths, in 96-bits

Return Values

0 – Success

1 – Failure
124 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Ethernet API
The Ethernet API is an interface between the user network application and the
device drivers. A Netra DPS application developer should be aware of the device
features and capabilities but does not need to have the knowledge of the detailed
implementation of the device driver. TABLE 4-1 shows the relationship among
Ethernet device, device driver, Ethernet API, and the user application.

Network Applications
Network Applications are any applications that requires network hardware
resources. The RLP, IP packet forwarding, and IPSec reference applications are all
network applications.

Ethernet Device Driver
TABLE 4-2 lists the Ethernet device supported in Netra DPS platforms.

See “Note 11” on page 134 for Ethernet device driver nxge tunables.

TABLE 4-1 Ethernet API and User Applications

Network Application For example: RLP, IP packet forwarding, IPSec

Ethernet API For example: eth_open, eth_close, eth_read

Device Driver For example: nxge

Ethernet Device For example: 10Gb Ethernet with NIU, Ophir

TABLE 4-2 Ethernet Devices Supported on Netra DPS Platforms

Device Driver Ethernet Device

nxge Sun multithreaded 10Gb Ethernet with NIU
Chapter 4 Driver API 125

Ethernet API Functions
The API list of functions include the following:

■ “eth_pbuf_alloc” on page 126

■ “eth_pbuf_free” on page 127

■ “eth_buf_alloc” on page 127

■ “eth_buf_free” on page 128

■ “eth_open” on page 128

■ “eth_close” on page 129

■ “eth_read” on page 129

■ “eth_write” on page 130

■ “eth_ioc” on page 131

Description of Ethernet API Functions

eth_pbuf_alloc

Description

This function is used to allocate a message block for managing incoming packet
data. The allocated entity is returned as a pointer to the buffer block structure
(pbuf_t). pbuf_t is a message block struct (mblk) consists of the all necessary
pointers and fields for manipulating the data buffer. See mblk_t in mblk.h header
file for the details of the message block. Packet data begins at b_wptr. The size of the
mblk must be the size specified as mblk_size in the eth_open() call. This API is
implemented in the user application space. (See “Note 4” on page 132). The device
driver calls this function.

Function

pbuf_t *eth_pbuf_alloc(void *hook, size_t bufsz, uint16_t pool);

Parameters

hook – User provided hook. (See in “Note 1” on page 132)

bufsz – User provided buffer size to be allocated. (See “Note 2” on page 132.)

pool – DMA channel pool (See “Note 3” on page 132.)
126 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Return Values

On success, returns pointer to mblk with b_rptr and b_wptr pointing to the start
of a valid data buffer. An error returns NULL.

eth_pbuf_free

Description

This function is used to free a message block allocated by eth_pbuf_alloc().This
function is implemented by the user and it is called by the device driver.

Function

void eth_pbuf_free(void *hook, pbuf_t * mblkp, void *arg,
uint16_t pool);

Parameters

hook – User provided hook. (See in “Note 1” on page 132.)

mblkp – Pointer to message block to be freed

arg – Not used (pass in NULL)

pool – DMA channel pool. (See “Note 3” on page 132.)

eth_buf_alloc

Description

This function is used to allocate a data buffer for storing incoming packet data. The
allocated entity is a pointer to the allocated buffer. This function is implemented in
the user application space (see “Note 4” on page 132). The device driver calls this
function.

Function

char *eth_buf_alloc(void *hook, size_t bufsz, uint16_t pool);

Parameters

hook – User provided hook. (See “Note 1” on page 132.)

bufsz – User provided buffer size to be allocated. (See “Note 2” on page 132.)

pool – DMA channel pool (See “Note 3” on page 132.)
Chapter 4 Driver API 127

Return Values

On success, returns the pointer to a valid data buffer. An error returns NULL.

eth_buf_free

Description

This function is used to free a buffer allocated by eth_buf_alloc(). This function is
implemented in the user application space. (See “Note 4” on page 132.) The device
driver calls this function.

Function

void eth_buf_free(void *hook, char *buf, void *arg, uint16_t pool);

Parameters

hook – User provided hook. (See “Note 1” on page 132.)

buf – Pointer to data buffer to be freed

arg – Not used (pass in NULL)

pool – DMA channel pool (See “Note 3” on page 132.)

eth_open

Description

This function is used to probe a network device in the target platform and if the
device is found, it initializes the network device. On a successful completion, it
returns an opaque handle which needs to be used in other API calls that is targeted
to a specific device. When multiple ports are opened, eth_open() must be invoked
in the increasing order of the port numbers, that is, port0, then port1, and so on,
during initialization.

Function

ihandle_t eth_open(uint16_t vid, uint16_t did, eth_port_t port,
int num_chans, void *txhook, void* rxhook,
size_t mblk_siz, uint_t mpbase);

Parameters

vid – Vendor id of network device

did – Device id of network device
128 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

port – Port number of the ethernet interface. (See “Note 5” on page 132.)

txhook – Application provided hook to tx fastq table. (See “Note 6” on page 133.)

rxhook – Application provided hook to rx fastq table (See “Note 7” on page 133.)

mblk_siz – Size of buffer that is returned by eth_pbuf_alloc()

mpbase – Base index into the mempool type array used in application
(See “Note 8” on page 133.)

Return Values

On success – Returns a valid opaque device handle. (ihandle_t)

On error – Returns INVALID_IHANDLE

eth_close

Description

This function is used to release the ethernet interface instance and all resources held
by it.

Function

int eth_close(ihandle_t ihandle);

Parameters

ihandle – Opaque handle returned by eth_open().

Return Values

0 – Success

1 – Failure

eth_read

Description

This function is used to receive messages from the ethernet interface instance
specified by ihandle. It can be configured to return a chain of packets. The
maximum number of packets in the chain is configurable through
ETH_IOC_SET_MAX_PKT_CHAIN. This function is non-blocking.
Chapter 4 Driver API 129

Function

pbuf_t *eth_read(ihandle_t ihandle, eth_chan_t chan_num);

Parameters

ihandle – Opaque handle returned by eth_open().

chan_num – DMA channel number (See “Note 9” on page 134.)

Return Values

On success – Returns mblk packet chain containing message

On error – Returns NULL

eth_write

Description

This function is used to send a message which is specified by the message block
structure pointer (mblk). This function is non-blocking and can fail if the hardware
transmit descriptor ring is full.

Function

int eth_write(ihandle_t ihandle, eth_chan_t chan_num,
pbuf_t * mblkp);

Parameters

ihandle – Opaque handle returned by eth_open().

chan_num – DMA channel number (See “Note 9” on page 134.)

mblkp – Message block pointer. This can be a chain; the maximum size of chain
supported is implementation-specific and can be discovered via
ETH_IOC_GET_MAX_TX_PKT_CHAIN.

Return Values

0 – Success

1 – Failure
130 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

eth_ioc

Description

This function is a catch all configuration API that can be used to control the device
driver attributes.

Function

int eth_ioc(ihandle_t ihandle, ioc_cmd_t cmd, void *arg);

Parameters

ihandle – Opaque handle returned by eth_open().

cmd – Command to execute (See “Note 10” on page 134.)

*arg – Argument passed to command

Return Values

0 – Success

1 – Failure

Summary
TABLE 4-3 lists a summary of the ethernet API functions.

TABLE 4-3 Ethernet API Function Summary

API Purpose Implemented by Called by

eth_pbuf_alloc Allocate message block User application Device driver

eth_pbuf_free Free message block User application Device driver

eth_buf_alloc Allocate buffer User application Device driver

eth_buf_free Free buffer User application Device driver

eth_open Find and init device Device driver User application

eth_close Free up device resource Device driver User application

eth_read Poll for received packet Device driver User application

eth_write Send a packet Device driver User application

eth_ioc Device Control Device driver User application
Chapter 4 Driver API 131

Notes

Note 1
This is a “catch all” argument for the user application. It can be used for any
purpose. If not used, pass in NULL.

Note 2
The size value should be large enough to hold an ethernet packet.

Note 3
When using multiple memory pools (one for each DMA channel), pool indicates the
ID of the memory pool, which is normally indexed by the DMA channel number.
When a single memory pool is used, always pass in a zero.

Note 4
The user application has the best knowledge and control of how system memory is
utilized. The device driver calls this function in the Packet Read routine.

Note 5
The port number of the device can be determined using the -v option during boot.
For example: boot net:,my_binary_file -v
132 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Part of the console output is similar to the following:

This output indicates that there are two NIU ports. The number inside the
netdev[] (0 and 1) are the port numbers used in eth_open calls.

Note 6
For an application that needs to forward packets (for example, RLP, IP packet
forwarding, and IPSec applications), the application needs to pass in the pointer to
the transmit fastq allocated by the application.

Note 7
For an application that needs to forward packets (for example, RLP, IP packet
forwarding, and IPSec applications), the application needs to pass in the pointer to
the receive fastq allocated by the application.

Note 8
When the application is using multiple memory pools, this is the index to the first
memory pool used by the device. For example, if the device to be opened has eight
memory pools (one for each DMA channel) and the memory pool ID are identified
from 0 to 7, then the base index is 0.

NIU : SUNW,niumx
netdev[0]: VendorId 0x108e DevId 0xabce
netdev[0]: Subsystem VendorId 0x0 SubsystemId 0x0
netdev[0]: RevisionId 0x0
netdev[0]: PhyType gsd
netdev[0]: Compatible SUNW,niusl
netdev[0]: cfg_addr 0x0 pio_addr 0x8100000000
netdev[0]: mac_addr 0x0:14:4f:8c:4:3e
netdev[1]: VendorId 0x108e DevId 0xabce
netdev[1]: Subsystem VendorId 0x0 SubsystemId 0x0
netdev[1]: RevisionId 0x0
netdev[1]: PhyType gsd
netdev[1]: Compatible SUNW,niusl
netdev[1]: cfg_addr 0x0 pio_addr 0x8102000000
netdev[1]: mac_addr 0x0:14:4f:8c:4:3f
Chapter 4 Driver API 133

Note 9
This is the DMA channel number of the DMA channel receiving the packet. In Sun
multithreaded 10GbE with NIU, up to 16 DMA channels can be used. The number of
DMA channels to be used is specified when calling eth_open().

Note 10
In Netra DPS 2.0, the following control commands are implemented:

■ ETH_IOC_GET_LINK – Acquire ethernet link status

■ ETH_IOC_SET_CLASSIFY – Set TCAM classification attributes

■ ETH_IOC_GET_STATS – Get network statistics

■ ETH_IOC_CHK_ERRS – Check device errors

Refer to the reference application (for example, RLP, IP packet forwarding, and
IPSec) for their usage.

Note 11
TABLE 4-4 lists the Ethernet device driver nxge tunables.

TABLE 4-4 Ethernet Device Driver nxge Tunables

Driver Tunable Description

extern uint_t nxge_max_dmas max_dmas is used to increase the maximum DMAs passed to
the eth_open() API: the default is 8, however, it can be setup
to use more than 8 channels per port. For example, it can be set
up for all 16 channels on one port.

extern uint_t nxge_tx_kicks tx_kicks specifies the number of packets the driver tx is
going to store before it actually kicks the hardware to send
packets out.

extern uint_t nxge_rxoff_var rxoff_var enables spreading of ingress packets to several
cache line-aligned start addresses for each DMA: 64 | 128.

extern uint_t nxge_rxoff_var_n2_2 rxoff_var_n2_2 enables the UltraSPARC T2 2.2 behavior
which allows two more start offsets to be used by ingress
packets: 320 | 384

extern uint_t nxge_flow_cfg flow_cfg enables different flow/classification policies as
defined above: FLOW_USE_ALL, FLOW_TCAM_LOOKUP, and so
on.
134 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Note 12
This note describes how to enable the hardware checksum offload features on the
Sun multithreaded 10Gb/NIU Ethernet hardware using the nxge driver:

The following mblk fields are used:

If (b_ick_flag and NXGE_TX_CKENB), then the hardware is programmed to
compute hardware checksum. It is expected that the ick_start/stuff point to the
L4 payload start/stuff offsets, respectively. Also, the udp/tcp header checksum
field needs to be filled with the pseudo header checksum value. The hardware will
use this field for computing the full-checksum.

On rx, if (b_ick_flag and NXGE_RX_CKERR), then the hardware detected a
checksum error in the ingress packet.

extern uint_t nxge_rx_pref rx_pref enables prefetch instructions on the rx packet data
buffer so that subsequent stages could have the data ready in
cache.

extern uint_t nxge_kstat_on kstat_on flag is 1 by default, if off will not update the
ipackets/opackets counters in the driver, it can be turned off
by setting it to the 0 setting.

extern uint_t nxge_prmsc_all prmsc_all flag is 1 by default; if set to 1, it turns on
promiscuous mode; packets that do not match port mac-id
would be received on default DMA.

extern uint_t nxge_prmsc_mgrp prmsc_mgrp flag is 1 by default; it enables receive of multicast
packets; if set to 0, it turns off multicast packets.

extern uint_t nxge_prmsc_virt prmsc_virt flag is 0 by default; if set to 1, it turns on virtual
promiscuous mode, which is a special promiscuous mode to
spread packets to all available DMAs for that port. When this
flag is enabled, it takes precedence over the other two
promiscuous mode flags: “prmsc_all” and “prmsc_mgrp”

unsigned char b_ick_flag; /* H/W checksum enable flag : TX */
unsigned char *b_ick_start; /* Pointer to start offset : TX/RX */
unsigned char *b_ick_stuff; /* Pointer to stuff offset : TX */

TABLE 4-4 Ethernet Device Driver nxge Tunables

Driver Tunable Description
Chapter 4 Driver API 135

136 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

CHAPTER 5

Fast Queue API

This chapter describes the Fast Queue API functions. Topics include:

■ “Fast Queue API Introduction” on page 137

■ “Fast Queue API Function Descriptions” on page 138

Fast Queue API Introduction
The Fast Queue API provide a facility where threads can exchange or pass data in a
first-in-first-out (FIFO) order. This API provides routines for creating and using fast
queues, a fast communication mechanism between two or more threads. The fast
queues are based on circular buffers and is an advantage over teja queues that are
for one consumer and one producer. The fast queues are poll-driven and are more
efficient for high packet rates. The fast queue API is not thread safe and need to be
protected with locks when they are used by more than one consumer or producer.

The API functions are defined in fastq.h located in the src/dev/net/include
directory of the SUNWndps package.
137

Fast Queue API Function Descriptions

fastq_create

Description

This function creates a new instance of the fast queue. The function yields the CPU
for a few cycles by executing a long latency instruction when the queue is full.

Function

fastq_t fastq_create(size_t size)

Parameters

size – Size of the queue. Required size is the power of 2.

Return Values

fastq_t – Returns a fast queue instance or NULL if it fails.

fastq_enqueue

Description

This function enqueues a node pointer into the fast queue. If -1 is returned, the
queue is either full or some other error has occurred.

Function

fastq_enqueue(queue, node)

Parameters

queue – Queue to enqueue to.

node – Pointer to the node to enqueue.

Return Values

int – Returns 0 if successful or -1 if it fails.
138 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

fastq_dequeue

Description

This function dequeues a pointer to a node from the queue. The function yields the
CPU for a few cycles by executing a long latency instruction when the queue is
empty.

Function

fastq_dequeue(queue)

Parameters

queue – Queue selected for dequeue.

Return Values

void * – Returns a pointer to the dequeued node or NULL if the queue is empty.

fastq_enqueue_noyield

Description

This function enqueues a node pointer into the fast queue. If -1 is returned, the
queue is either full or some other error has occurred.

Function

fastq_enqueue_noyield(queue,node)

Parameters

queue – Queue selected for dequeue.

node – Pointer to the node to enqueue.

Return Values

int – Returns 0 if successful or -1 if it fails.
Chapter 5 Fast Queue API 139

fastq_dequeue_noyield

Description

This function dequeues a pointer to a node from the queue.

Function

fastq_dequeue_noyield(queue)

Parameters

queue – Queue selected for dequeue.

Return Values

void * – Returns a pointer to the dequeued node or NULL if the queue is empty.

fastq_get_size

Description

This function returns a value which is the depth of the queue at a given point of
time.

Function

fastq_get_size(queue)

Parameters

queue – Queue requested to obtain size.

Return Values

int – Returns the number of elements in the queue or 0 if empty.
140 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

fastq_is_empty

Description

This function checks if the queue is empty.

Function

fastq_is_empty(queue)

Parameters

queue – Queue selected to test.

Return Values

int – Returns 1 if the queue is empty or 0 if the queue is not empty.

fastq_is_full

Description

This function checks if the queue is full.

Function

fastq_is_full(queue)

Parameters

queue – Queue selected to test.

Return Values

void * – Returns 1 if the queue is full or 0 if the queue is not full.
Chapter 5 Fast Queue API 141

142 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

CHAPTER 6

Interprocess Communication API

This chapter describes the Interprocess Communication (IPC) API. Topics include:

■ “Interprocess Communication API Introduction” on page 143

■ “Common Programming Interfaces” on page 144

■ “IPC Framework Programming Interfaces” on page 147

■ “IPC Programming Interfaces for Solaris Domains” on page 150

Interprocess Communication API
Introduction
The Interprocess Communication (IPC) mechanism provides a means to
communicate between processes that run in a domain under the Netra DPS runtime
environment and processes in a domain with a control plane operating system.

This chapter describes the APIs available for such communications. It is divided into
the common API that is available in all operating environments, the API needed to
manage IPC communications in the Netra DPS runtime, and the API for use by
Solaris processes.
143

Common Programming Interfaces
The API described in this section is available on all operating environments that
support IPC communications with a LWRTE domain. The tnipc.h header located in
the src/common/include directory of the SUNWndps package defines the
interface and must be included in source files using the API. The header file defines
a number of IPC protocol types. User-defined protocols must not be in conflict with
these predefined types.

ipc_connect

Description

This function registers a consumer with an IPC channel. The opaque handle that is
returned by a successful call to this function must be passed to access the channel
using any of the other interface functions.

Function

ipc_handle_t
ipc_connect(uint16_t channel, uint16_t ipc_proto)

Parameters

channel – ID of channel

ipc_proto – Protocol type of IPC messages that are expected

Return Values

NULL in case of failure

IPC handle otherwise. This handle needs to be passed to the tx/rx/free functions.

ipc_register_callbacks

Description

This function registers callback functions for the consumer of an IPC channel. When
a message is received by the IPC framework, it strips the IPC header from the
message and calls the rx_hdlr function with the content of the message.
144 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Function

int
ipc_register_callbacks ipc_hdl,
event_handler_ft evt_hdler,
rx_handler_ft ipc_hdler,
caddr_t arg){

Parameters

ipc_hdl – Handle for IPC channel, obtained from ipc_register_callbacks().

evt_hdlr – Function to handle link events.

rx_hdlr – Function to handle received messages.

arg – Opaque argument that the framework will pass back to the handler functions.

Return Values

IPC_SUCCESS

EFAULT – Invalid handle

ipc_tx

Description

This function transmits messages over IPC. The message is described by the mblk
passed to the function. To make the function as efficient as possible, the function
makes some nonstandard assumptions about the messages:

■ There are 8 bytes of headroom in the data buffer before the messages.

■ Messages are contained in a single data buffer.

As the memory containing the message is not freed inside the function, the caller
must deal with memory management accordingly.

Function

int
ipc_tx(mblk_t *mp, ipc_handle_t ipc_hdl)

Parameters

mp – Pointer to message block describing the messages.

ipc_hdl – Handle for IPC channel, obtained from ipc_connect().
Chapter 6 Interprocess Communication API 145

Return Values

IPC_SUCCESS

EIO – The write to the underlying media failed.

ipc_rx

Description

At this time, the only way to receive messages is through the callback function. In
LWRTE, the callback function is called when the polling context finds a message on
the channel. In Solaris user space, the callback is hidden in the framework, it makes
the message available to be read by the read() system call.

Function

mblk_t *ipc_rx(ipc_handle_t ipc_hdl)

Parameters

ipc_hdl – Handle for IPC channel, obtained from ipc_connect().

ipc_free

Description

The IPC framework allocates memory for messages that are received using its
available memory pools. The consumer of an IPC message must call this function to
return the memory to that pool.

Function

void
ipc_free(mblk_t *mp, ipc_handle_t ipc_hdl)

Parameters

mp – Pointer to message block describing message to be freed.

ipc_hdl – Handle for IPC channel, obtained from ipc_connect().
146 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

IPC Framework Programming Interfaces
In the Netra DPS runtime environment domain, the interfaces described in the
section “Common Programming Interfaces” on page 144 are used to communicate
with other domains using IPC. Before this infrastructure can be utilized, it must be
initialized. Once it is initialized, because there are no interrupts, the programmer
must ensure that every channel is polled periodically. This section describes the API
for these tasks.

To use this function, the lwrte_ipc_if.h header file, which is located in the
lib/ipc/include directory of the SUNWndps package, must be included where
needed.

tnipc_init

Description

This function must be called in the initialization routine. This function must be
called after the LDoms framework has been initialized, that is,
mach_descrip_init(), lwrte_cnex_init() and lwrte_init_ldc() must be
called first.

Function

int
tnipc_init()

Return Values

0 – Success

EFAULT – Too many channels in machine description

ENOENT – Global configuration channel not defined

tnipc_poll

Description

To receive messages or event notifications for any IPC channel, this function must be
called periodically. For example, it may be called as part of the main loop in the
statistics thread. When a message is received, this ensures that the callback function
registered for the channel and IPC type is called.
Chapter 6 Interprocess Communication API 147

Function

int
tnipc_poll()

Return Values

This function always returns 0.

Polling through the tnipc_poll() API is adequate for most IPC channels carrying
low bandwidth control traffic. For higher throughput channels, the polling can be
moved to a separate strand, using the following API functions:

■ tnipc_register_local_poll

■ tnipc_local_poll

■ tnipc_unregister_local_poll

tnipc_register_local_poll

Description

This function removes the channel identified by the handle passed to the function
from the pool of channels polled by the tnipc_poll() function. This function
returns an opaque handle that must be passed to the tnipc_local_poll()
function.

Function

ipc_poll_handle_t
tnipc_register_local_poll(ipc_handle_t ipc_hdl)

Parameter

ipc_hdl – The channel handle obtained from the ipc_connect() API call.

Return Values

NULL – Invalid input

Opaque handle to be passed to the tnipc_local_poll() call.
148 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

tnipc_local_poll

Description

This function works the same way as tnipc_poll(), except that only the channel
identified by the handle is polled. If there is data on the channel, the rx callback will
be called.

Function

int
tnipc_local_poll(ipc_poll_handle_t poll_hdl)

Parameter

poll_hdl – The handle obtained from the tnipc_register_local_poll() API call

Return Values

This function always returns 0.

tnipc_unregister_local_poll

Description

This function reverses the effect of the tnipc_register_local_poll() call and
places the channel identified by the handle back into the common pool polled by
tnipc_poll().

Function

int
tnipc_unregister_local_poll(ipc_poll_handle_t poll_hdl)

Parameter

poll_hdl – The handle obtained from the tnipc_register_local_poll() API call

Return Values

This function always returns 0.
Chapter 6 Interprocess Communication API 149

IPC Programming Interfaces for Solaris
Domains
In the Solaris Operating Environment, the IPC mechanism can be used either from
user space or from kernel space.

User Space
To use an IPC channel from the Solaris user space, the character-driver interfaces are
used. A program opens the tnsm device (/devices/pseudo/tnsm@0:tnsm),
issues an ioctl() call to connect the device to a particular channel, and then uses
read() and write() calls to send and receive messages. To use the ioctl() interface,
the tnsm.h header file, which is located in the directory
src/solaris/include/sys in the SUNWndps package, must be included.

Before any of the interfaces can be used, the tnsm driver must be installed and
loaded. This is done using the pkgadd system administration command to install
the SUNWndpsd package on the Solaris domains that use IPC for communication.

The open(), close(), read(), and write() interfaces are described in their respective
man pages.

The open() call on the tnsm driver creates a new instance for the specific client
program. Before the read() and write() calls can be used, the
TNIPC_IOC_CH_CONNECT ioctl must be called. The arguments for this ioctl are
the channel ID and IPC type to be used for messages by this instance.

Kernel
In the kernel, the interfaces described in “Common Programming Interfaces” on
page 144 are used.
150 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

CHAPTER 7

Fastpath Manager API

This chapter describes the Fastpath Manager API. Topics include:

■ “Fastpath Manager API Introduction” on page 151

■ “Fastpath Manager API Function Descriptions” on page 152

Fastpath Manager API Introduction
The fastpath manager API provides a means to register tasks that must be run
periodically. For example, the user can use this API to check whether a link is up or
perform other health checks. The fastpath manager is included as part of the
command-line interface (cli) library. The user can find the header file declaring the
API (lwrte_fastpath_mgr.h) in the include directory for that library.

The fastpath manager is run on a dedicated thread, and in an LDoms environment
usually polls the IPC channels, in particular the global control channel. The
granularity of the interval length for checking tasks that can be registered with the
framework is one millisecond. However, the user must be aware that there is no pre-
emption, so the actual granularity is dependent on the length and number of tasks
that are registered.
151

Fastpath Manager API Function
Descriptions

fastpath_mgr_init

Description

Initialization for the fastpath manager framework. This function must be called in
the init routine of applications to use the framework.

Function

void fastpath_mgr_init()

Parameters

None

Return Values

None

fastpath_mgr_process

Description

This function implements the periodic execution of scheduled tasks. This function
must run on its own strand.

Function

void fastpath_mgr_process(boolean_t poll_ipc)

Parameters

poll_ipc – Indication whether the IPC channels are polled in this thread.

Return Values

None
152 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

fastpath_mgr_register_event_handler

Description

This interface is used to register functions that periodically check for a condition.

Function

fastpath_mgr_handle_t

fastpath_mgr_register_event_handler(status_check_ft check_fun,
event_cb_ft event_cb, void *args,
int interval);

Parameters

check_fun – Function that performs check. Must return 0 if the check passed.

event_cb – Optional handler for events. If present, this function is called when the
check_fun returns a value other than 0. That value is passed to the event_cb to
identify the event.

args – Argument passed to checking and callback functions.

interval – Frequency of call to check_fun (in milliseconds).

Return Values

NULL in case of error.

Handle in case of success. This handle is needed to unregister the task.

fastpath_mgr_unregister_event_handler

Description

Unregister functions from the fastpath manager.

Note – This function may be called by the event callback registered through
fastpath_mgr_register_event_handler(), but must not be called by the checking
function registered in that call.

Function

int fastpath_mgr_unregister_event_handler(fastpath_mgr_handle_t
hdl)
Chapter 7 Fastpath Manager API 153

Parameters

hdl – The handle obtained from fastpath_mgr_register_event_handler().

Return Values

0 – Success

-1 – Failure

fastpath_mgr_check

Description

This function runs all check functions whose interval have expired. This function is
an alternative entry point into the fastpath manager that checks whether there are
any registered functions that should be run at the time of the call. If this entry point
is used, the user must make sure that it is run with a sufficient frequency.

Function

void fastpath_mgr_check(boolean_t poll_ipc)

Parameters

poll_ipc – Indication whether ipc_poll() is called in the function.

Return Values

None
154 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

CHAPTER 8

Access Control List Library API

This chapter describes the Access Control List (ACL) library API. Topics include:

■ “Access Control List Library API Introduction” on page 155

■ “Algorithms” on page 156

■ “ACL Library API Function Descriptions” on page 158

Access Control List Library API
Introduction
The Access Control List (ACL) library for Netra DPS classifies IPv4 packets using a
set of rules.

The classification can be done using the source/destination addresses and ports as
well as the protocol and the priority of the packet.

The algorithms are used in the library trade memory for speed; the rules are
preprocessed to achieve high lookup rate while using a lot of memory.
155

Algorithms
The ACL library uses various algorithms to classify the packets.

Hybrid Algorithm
This algorithm finds the Longest Matching Prefixes of the source and destination
addresses and searches for the highest priority rule among all those rules matching
the particular prefix pair. The Longest Matching Prefixes algorithm can use either
Binary Search on Prefix Lengths (BSPL) or TRIE lookup (see “TRIE” below).

This algorithm is well suited for rulesets with a large number of rules (millions)
where only a few rules (dozens) remain after the prefix lookups. The data structures
can be updated quickly, allowing to add or remove thousands of rules each second.
The initial rule insertion is even faster, that is, millions of rules can be added in a few
seconds.

Binary Search on Prefix Lengths
Binary Search on Prefix Lengths (BSPL) works by finding the longest matching
prefix of an address by doing binary search on prefix length, that is, starting in the
hash table containing median length prefixes and continuing in a hash table with
longer prefixes if a match is found, shorter prefixes otherwise.

TRIE
The TRIE (retrieval) algorithm uses a three-level prefix tree to find the longest
matching prefix of an address.

HiCut Algorithm
The ACL library also contains a reference implementation of the HiCut lookup
algorithm.

This algorithm can do very fast lookups regardless of the distribution of the rules,
but cannot use as many rules as the hybrid algorithm because the insertion time
increases exponentially by the number of rules. Moreover, there is no way to update
the ruleset, the data structures have to be rebuilt completely after adding new rules.
156 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Swapping
The ACL functions use a pointer to a data structure which contains all data
necessary to change the ruleset or match packets against them. This allows changing
the rulesets without disturbing the packet classification: by having two datasets and
using one of them to classify packets while applying changes to the other. Once the
changes are made the datasets can be swapped without affecting lookup
performance, that is, no locks are necessary.

Remapping
The ACL data structures can be copied to a new buffer or remapped to a new
address without breaking the lookup algorithm. The ACL data structures allows
preparing them in a domain and using them in another, that is, rule management
and packet classification can be done in separate domains if required.

Data Types
Data types consist of packet and rule types.

Packet Type
The packets used by the ACL library are standard TCP/UDP over IPv4 packets.

Rule Type
A rule consists of six fields to match against TCP/IP packets:

■ Source address prefix

■ Destination address prefix

■ Source port range

■ Destination port range

■ Type Of Service mask

■ IP protocol mask

The rule also contains a classification value (color) which is returned by the lookup
algorithm when the packet matches the rule. The rules are ordered by the color in
ascending order: the lookup returns the color of the lowest-color matching rule.
Chapter 8 Access Control List Library API 157

ACL Library API Function Descriptions

acl_init

Description

Initialization routine for the ACL. Based on the selected algorithm it fills up the
given buffer with data necessary to insert and remove rules and lookup packets, that
is, the caller has to allocate a buffer and pass it to acl_init and subsequent acl_*
calls.

Error code is written in the provided variable.

Function

void *acl_init(void *buf, size_t size, int alg, int *error);

Parameters

buf – Pointer to the buffer to be filled with initialized data

size – Size of the buffer

alg – Algorithm selector (see “Algorithms” on page 156), in short:
ACL_ALG_HYBRID_BSPL – Hybrid algorithm, LPM is using BSPL
ACL_ALG_HYBRID_TRIE – Hybrid algorithm, LPM is using trie ACL_ALG_HICUT –
HiCut

error – Pointer to a variable where the error code is to be written

Return Values

On success, it returns a pointer to the initialized ACL data or NULL in case of error.
The error code is returned in “error”.

acl_insert

Description

Inserts rules.

Takes the rules from the given array and inserts them into the pre-initialized data
structures, performs the necessary preprocessing and optimization, leaving the
dataset ready to be used for packet lookup.
158 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Function

int acl_insert(void *acl, rule_t *rule, int num);

Parameters

acl – Pointer to the initialized ACL data

rule – Pointer to the first rule in the array

num – Number of rules in the rule array

Return Values

On success, it returns zero, or an error code in case of error.

acl_remove

Description

Removes rules.

Takes rules from the given array and removes each of them from the data structures.

Function

int acl_remove(void *acl, rule_t *rule, int num);

Parameters

acl – Pointer to the initialized ACL data

rule – Pointer to the first rule in the array

num – Number of rules in the rule array

Return Values

On success, it returns zero, or an error code in case of error.

acl_lookup

Description

Lookup packet.

Matches the packet against the rules and returns the classification value.
Chapter 8 Access Control List Library API 159

Function

color_t acl_lookup(void *acl, packet_t *packet);

Parameters

acl – Pointer to the initialized ACL data

packet – Pointer to the packet to be processed

Return Values

Returns the color of the lowest-color matching rule or the default color value if none
of the rules matches the packet.

acl_list

Description

Lists the current ruleset. Copies rules into the provided array.

Function

int acl_list(void *buf, rule_t *rule, int num);

Parameters

buf – Pointer to the initialized ACL data

rule – Array of rules to copy to

num – Maximum number of rules to copy

Return Values

On success return the number of rules. If there are more rules to list than the
provided array can store, then return (-num).

Error Codes

ACL_INIT_OK – Initialization was successful
ACL_INIT_FAILED – Initialization has failed
ACL_INIT_UNKNOWN_ALG – Invalid algorithm was passed
ACL_INIT_MEMORY_ERROR – Buffer size is too small
ACL_INVALID_MAGIC – Corrupted data in ACL buffer
160 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

CHAPTER 9

malloc Library for Slow Path

This chapter describes the memory allocation (malloc) library API. Topics include:

■ “malloc Library API Introduction” on page 161

■ “Compiling Netra DPS Application with malloc Library” on page 162

■ “malloc Configuration File (malloc.conf)” on page 163

■ “APIs” on page 164

malloc Library API Introduction
All applications need memory and to get a block of memory there exists teja APIs
like teja_memory_pool_get_node() which can be used in Netra DPS. Using teja
APIs ensure high performance but it comes with an overhead to the application
writer of finding the optimum memory pool for the required memory size.

Since in slow path, high performance is not needed but requires memory of various
size. Hence, this library provides malloc/free implementation which can be used
in slow path.

To make use of LDC or IPC library, the user needs to have an implementation of
malloc/free and for this purpose too, you can use this library.
161

Compiling Netra DPS Application with
malloc Library
The malloc library has two components:

■ Declaring memory pools

■ Including malloc definition

Declaring Memory Pools
In the software architecture of the application, the user needs to declare the memory
pools for malloc library. To do so, do the following:

1. Add the include path /opt/SUNWndps/src/libs/malloc/include to
tajacc flags and to CFLAGS.

2. Copy /opt/SUNWndps/src/libs/malloc/malloc_mem_pool.c to the
application directory.

For example, src/config/malloc_mem_pool.c and compile it along with the
software-architecture file.

3. Create an empty file netra_dps_malloc_init.c

To carry out steps 2 and 3, add the following makefile target and call it at the
beginning:

4. To declare the memory pools needed to call create_malloc_mem_pools().

TEJACC_FLAGS+= /opt/SUNWndps/src/libs/malloc/include
CFLAGS+= /opt/SUNWndps/src/libs/malloc/include

APPSWARCH_C = src/config/swarch.c src/config/malloc_mem_pool.c

all: init $(APPHWARCH_LIB) $(APPSWARCH_LIB) $(APPMAP_LIB) app
init:
cp -f /opt/SUNWndps/src/libs/malloc/malloc_mem_pool.c
src/config/malloc_mem_pool.c touch netra_dps_malloc_init.c
162 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Including malloc Definition
1. Add the netra_dps_malloc_init.c and

/opt/SUNWndps/src/libs/malloc/netra_dps_malloc.c to the list of C
files which are passed to tejacc.

2. Call netra_dps_malloc_init() in the application initialization, to initialize
the memory pools for malloc.

malloc Configuration File
(malloc.conf)
The user needs to create the malloc.conf configuration file to create the memory
pools of the desired size and node count. In this file, the user needs to enter the
memory pool node size, followed by the total number of nodes of that size:

For example, the first entry above in malloc.conf is set to create 10000 nodes of
size 64 byte, and so on.

If the application does not have its own malloc.conf file, then it picks the
configuration file from the malloc library that is in:
/opt/SUNWndps/src/libs/malloc/malloc.conf

C += netra_dps_malloc_init.c
C += /opt/SUNWndps/src/libs/malloc/netra_dps_malloc.c

node_size total_nodes
64 10000
128 10000
256 10000
Chapter 9 malloc Library for Slow Path 163

APIs

create_malloc_mem_pools

Description

Declares the memory pools as specified in the configuration file (malloc.conf) and
generates the netra_dps_malloc_init.c.

Function

int

create_malloc_mem_pools(teja_thread_t threads[], const char *mem_bank);

Parameters

threads – NULL terminated list of all the threads, from where the application is going
to call malloc/free.

mem_bank – Name of the memory bank (in the hardware architecture) from which
the memory is allocated.

Return Values

0 – on success

-1 – on error

netra_dps_malloc_init

Description

Initializes the malloc memory pool data structures.

Function

void

netra_dps_malloc_init(void);
164 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

malloc

Description

Allocates and returns the memory of size equal to or greater than the requested size.

Function

void *

malloc(size_t size);

Parameters

size – Required memory size.

Return Values

NULL on error, otherwise, the allocated memory.

free

Description

Frees the requested memory location.

Function

void

free(void *mem);

Parameters

mem – Memory location to be freed.
Chapter 9 malloc Library for Slow Path 165

166 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

Index
A
access control list (ACL) API, 155

C
C library support on bare hardware, 96
CMT- specific profiler groups, 102, 105
CMT-specific hardware architecture

description, 57
properties, 59
types, 58

CMT-specific software architecture
properties, 61
types, 60

Configuration API, 1
Crypto and Hash Combined API, 121
Crypto and Hash Context Setup Part, 113

D
driver API

ethernet API, 125
miscellaneous API, 123
Netra DPS Crypto and Hashing API, 111

E
error-handling API

data types, 55
description, 55
functions, 55

ethernet API
API descriptions, 113, 126
functions, 126

ethernet device and device driver, 125

F
fast queue API, 137
fastpath manager API, 151
finite state automata API

defines, 90
description, 89
macros, 90

H
hardware architecture API

data types, 2
description, 1
functions, 3

Hash API, 119

I
interprocess communication (IPC) API, 143
IPC API

common programming interfaces, 144
framework programming interfaces, 147
programming interfaces for Solaris

domains, 150
Solaris domain, 150
user space, Solaris domain, 150

K
kernel, Solaris domain, 150

L
late-binding API

channel functions, 73
data types, 64
167

description, 63
interruptible wait, 75
macros, 64
memory pool functions, 70
mutex functions, 64
queue functions, 67

M
map API

data types, 51
description, 51
functions, 52

memory allocation (malloc), 161

N
Netra DPS Crypto and Hashing API

description, 111
Netra DPS Runtime API

data types, 79
description, 79
memory management functions, 80
miscellaneous functions, 85
thread functions, 82

nxge, ethernet device driver, 125

P
profiler API

configuration, 97
data types, 98
functions, 99
profiler constants, 102

S
software architecture API

data types, 35
description, 35
functions, 36

Solaris domain and IPC, 150

U
user API, 63

hardware specific miscellaneous functions, 95
168 Netra Data Plane Software Suite 2.0 Update 2 Reference Manual • July 2008

	Netra™ Data Plane Software Suite 2.0 Update 2 Reference Manual
	Contents
	Tables
	Preface
	Configuration API
	Hardware Architecture API
	Hardware Architecture API Data Types
	Hardware Architecture API Functions
	teja_architecture_create
	Description
	Function
	Parameters
	Return Values

	teja_architecture_set_property
	Description
	Function
	Parameters
	Return Values

	teja_architecture_get_property
	Description
	Function
	Parameters
	Return Values

	teja_architecture_set_read_only
	Description
	Function
	Parameters
	Return Values

	teja_processor_create
	Description
	Function
	Parameters
	Return Values

	teja_processor_set_property
	Description
	Function
	Parameters
	Return Values

	teja_processor_get_property
	Description
	Function
	Parameters
	Return Values

	teja_processor_add_preprocessor_symbol
	Description
	Function
	Parameters
	Return Values

	teja_memory_create
	Description
	Function
	Parameters
	Return Values

	teja_memory_set_property
	Description
	Function
	Parameters
	Return Values

	teja_memory_get_property
	Description
	Function
	Parameters
	Return Values

	teja_bus_create
	Description
	Function
	Parameters
	Return Values

	teja_bus_set_property
	Description
	Function
	Parameters
	Return Values

	teja_bus_get_property
	Description
	Function
	Parameters
	Return Values

	teja_hardware_object_create
	Description
	Function
	Parameters
	Return Values

	teja_hardware_object_set_property
	Description
	Function
	Parameters
	Return Values

	teja_hardware_object_get_property
	Description
	Function
	Parameters
	Return Values

	teja_architecture_connect
	Description
	Function
	Parameters
	Return Values

	teja_processor_connect
	Description
	Function
	Parameters
	Return Values

	teja_memory_connect
	Description
	Function
	Parameters
	Return Values

	teja_hardware_object_connect
	Description
	Function
	Parameters
	Return Values

	teja_lookup_architecture
	Description
	Function
	Parameters
	Return Values

	teja_lookup_processor
	Description
	Function
	Parameters
	Return Values

	teja_lookup_memory
	Description
	Function
	Parameters
	Return Values

	teja_lookup_bus
	Description
	Function
	Parameters
	Return Values

	teja_lookup_hardware_object
	Description
	Function
	Parameters
	Return Values

	teja_port_create
	Description
	Function
	Parameters
	Return Values

	teja_architecture_set_port
	Description
	Function
	Parameters
	Return Values

	teja_architecture_set_port_internal
	Description
	Function
	Parameters
	Return Values

	teja_processor_set_port
	Description
	Function
	Parameters
	Return Values

	teja_memory_set_port
	Description
	Function
	Parameters
	Return Values

	teja_hardware_object_set_port
	Description
	Function
	Parameters
	Return Values

	teja_bus_set_port
	Description
	Function
	Parameters
	Return Values

	teja_port_add_property
	Description
	Function
	Parameters
	Return Values

	teja_architecture_get_parent
	Description
	Function
	Parameters
	Return Values

	teja_processor_get_parent
	Description
	Function
	Parameters
	Return Values

	teja_bus_get_parent
	Description
	Function
	Parameters
	Return Values

	teja_memory_get_parent
	Description
	Function
	Parameters
	Return Values

	teja_hardware_object_get_parent
	Description
	Function
	Parameters
	Return Values

	teja_architecture_get_processors
	Description
	Function
	Parameters
	Return Values

	teja_architecture_get_memories
	Description
	Function
	Parameters
	Return Values

	teja_architecture_get_hardware_objects
	Description
	Function
	Parameters
	Return Values

	teja_architecture_get_busses
	Description
	Function
	Parameters
	Return Values

	teja_architecture_get_architectures
	Description
	Function
	Parameters
	Return Values

	teja_processor_get_connected_bus
	Description
	Function
	Parameters
	Return Values

	teja_memory_get_connected_bus
	Description
	Function
	Parameters
	Return Values

	teja_hardware_object_get_connected_bus
	Description
	Function
	Parameters
	Return Values

	teja_architecture_get_connected_bus
	Description
	Function
	Parameters
	Return Values

	teja_bus_get_connected_processors
	Description
	Function
	Parameters
	Return Values

	teja_bus_get_connected_memories
	Description
	Function
	Parameters
	Return Values

	teja_bus_get_connected_hardware_objects
	Description
	Function
	Parameters
	Return Values

	teja_bus_get_connected_architectures
	Description
	Function
	Parameters
	Return Values

	teja_processor_get_busses
	Description
	Function
	Parameters
	Return Values

	teja_memory_get_busses
	Description
	Function
	Parameters
	Return Values

	teja_hardware_object_get_busses
	Description
	Function
	Parameters
	Return Values

	teja_address_space_create
	Description
	Function
	Parameters
	Return Values

	teja_address_space_join
	Description
	Function
	Parameters
	Return Values

	teja_address_range_create_absolute
	Description
	Function
	Parameters
	Return Values

	teja_address_range_create_aligned
	Description
	Function
	Parameters
	Return Values

	teja_address_range_create_generic
	Description
	Function
	Parameters
	Return Values

	teja_address_range_get_lower_bound
	Description
	Function
	Parameters
	Return Values

	teja_address_range_get_upper_bound
	Description
	Function
	Parameters
	Return Values

	Software Architecture API
	Software Architecture API Data Types
	Software Architecture API Functions
	teja_os_create
	Description
	Function
	Parameters
	Return Values

	teja_os_set_property
	Description
	Function
	Parameters
	Return Values

	teja_os_get_property
	Description
	Function
	Parameters
	Return Values

	teja_process_create
	Description
	Function
	Parameters
	Return Values

	teja_process_set_property
	Description
	Function
	Parameters
	Return Values

	teja_process_get_property
	Description
	Function
	Parameters
	Return Values

	teja_processor_add_preprocessor_symbol
	teja_thread_create
	Description
	Function
	Parameters
	Return Values

	teja_thread_set_property
	Description
	Function
	Parameters
	Return Values

	teja_thread_get_property
	Description
	Function
	Parameters
	Return Values

	teja_lookup_os
	Description
	Function
	Parameters
	Return Values

	teja_lookup_process
	Description
	Function
	Parameters
	Return Values

	teja_lookup_thread
	Description
	Function
	Parameters
	Return Values

	teja_channel_declare
	Description
	Function
	Parameters
	Return Values

	teja_channel_set_property
	Description
	Function
	Parameters
	Return Values

	teja_channel_get_property
	Description
	Function
	Parameters
	Return Values

	teja_memory_pool_declare
	Description
	Function
	Parameters
	Return Values

	teja_memory_pool_set_property
	Description
	Function
	Parameters
	Return Values

	teja_memory_pool_get_property
	Description
	Function
	Parameters
	Return Values

	teja_queue_declare
	Description
	Function
	Parameters
	Return Values

	teja_queue_set_property
	Description
	Function
	Parameters
	Return Values

	teja_queue_get_property
	Description
	Function
	Parameters
	Return Values

	teja_mutex_declare
	Description
	Function
	Parameters
	Return Values

	teja_mutex_set_property
	Description
	Function
	Parameters
	Return Values

	teja_mutex_get_property
	Description
	Function
	Parameters
	Return Values

	teja_lookup_channel
	Description
	Function
	Parameters
	Return Values

	teja_lookup_memory_pool
	Description
	Function
	Parameters
	Return Values

	teja_lookup_queue
	Description
	Function
	Parameters
	Return Values

	teja_lookup_mutex
	Description
	Function
	Parameters
	Return Values

	teja_process_add_symbol*
	Description
	Function
	Parameters
	Return Values

	Map API
	Map API Data Types
	Map API Functions
	teja_map_function_to_thread
	Description
	Function
	Parameters
	Return Values

	teja_map_variable_to_memory
	Description
	Function
	Parameters
	Return Values

	teja_alias_variable
	Description
	Function
	Parameters
	Return Values

	teja_map_variables_to_memory
	Description
	Function
	Parameters
	Return Values

	teja_map_initialization_function_to_process
	Description
	Function
	Parameters
	Return Values

	teja_mapping_set_property
	Description
	Function
	Parameters
	Return Values

	Error - Handling API
	Error - Handling API Data Types
	Error - Handling API Functions
	teja_abort
	Description
	Function
	Parameters
	Return Values

	teja_register_error_handler
	Description
	Function
	Parameters
	Return Values

	Error Handler Function Prototype

	CMT - Specific Hardware Architecture Constants
	CMT - Specific Hardware Architecture Types
	CMT - Specific Hardware Architecture Properties

	CMT - Specific Software Architecture Constants
	CMT - Specific Software Architecture Types
	CMT - Specific Software Architecture Properties

	User API
	Late-Binding API
	Late-Binding API Data Types
	Late-Binding API Macros
	Late-Binding API Mutex Functions
	teja_mutex_lock
	Description
	Function
	Parameters
	Return Values
	Example

	teja_mutex_trylock
	Description
	Function
	Parameters
	Return Values
	Example

	teja_mutex_unlock
	Description
	Function
	Parameters
	Return Values
	Example

	Late-Binding API Queue Functions
	teja_queue_enqueue
	Description
	Function
	Parameters
	Return Values
	Example

	teja_queue_dequeue
	Description
	Function
	Parameters
	Return Values
	Example

	teja_queue_is_empty
	Description
	Function
	Parameters
	Return Values
	Example

	teja_queue_get_size
	Description
	Function
	Parameters
	Return Values
	Example

	Late-Binding API Memory Pool Functions
	teja_memory_pool_get_node
	Description
	Function
	Parameters
	Return Values
	Example

	teja_memory_pool_put_node
	Description
	Function
	Parameters
	Return Values
	Example

	teja_memory_pool_get_node_from_index
	Description
	Function
	Parameters
	Return Values
	Example

	teja_memory_pool_get_index_from_node
	Description
	Function
	Parameters
	Return Values
	Example

	Late-Binding API Channel Functions
	teja_channel_is_connection_open
	Description
	Function
	Parameters
	Return Values
	Example

	teja_channel_make_connection
	Description
	Function
	Parameters
	Return Values
	Example

	teja_channel_break_connection
	Description
	Function
	Parameters
	Return Values
	Example

	teja_channel_send
	Description
	Function
	Parameters
	Return Values
	Example

	Late-Binding API Interruptible Wait
	teja_wait
	Description
	Function
	Parameters
	Return Values
	Example

	Netra DPS Runtime API
	Netra DPS Runtime API Data Types
	Netra DPS Runtime API Memory Management Functions
	teja_free
	Description
	Function
	Parameters
	Return Values

	teja_malloc
	Description
	Function
	Parameters
	Return Values

	teja_realloc
	Description
	Function
	Parameters
	Return Values

	Netra DPS Runtime API Thread Functions
	teja_get_thread_id
	Description
	Function
	Return Values

	teja_get_thread_name_for_id
	Description
	Function
	Parameters
	Return Values

	teja_get_id_for_thread_name
	Description
	Function
	Parameters
	Return Values

	teja_thread_handle_start
	Description
	Function
	Parameters
	Return Values

	teja_thread_handle_end
	Description
	Function
	Return Values

	teja_thread_handle_get_for_thread_id
	Description
	Function
	Parameters
	Return Values

	Netra DPS Runtime API Miscellaneous Functions
	teja_thread_shutdown
	Description
	Function
	Return Values

	Netra DPS Runtime API Time Functions
	teja_get_time
	Description
	Function
	Parameters
	Return Values

	teja_wait_time
	Description
	Function
	Parameters
	Return Values

	teja_os_wait
	Description
	Function
	Parameters
	Return Values

	Miscellaneous Functions
	teja_get_argc
	Description
	Function
	Return Values

	teja_get_argv
	Description
	Function
	Return Values

	Finite State Automata API
	Finite State Automata API Defines
	Finite State Automata API Macros
	teja_fsm_declare
	Description
	Function
	Parameters

	teja_fsm_begin
	Description
	Function
	Parameters

	teja_fsm_end
	Description
	Function

	teja_fsm_start
	Description
	Function
	Parameters

	teja_fsm_state_declare
	Description
	Function
	Parameters

	teja_fsm_state_begin
	Description
	Function
	Parameters

	teja_fsm_state_end
	Description
	Function

	teja_fsm_goto_state
	Description
	Function
	Parameters

	FSM Example

	Hardware Specific Miscellaneous Functions
	teja_os_get_timer
	Description
	Function
	Return Values

	C Library Support on Bare Hardware

	Profiler API
	Profiler API Configuration
	Profiler API
	Profiler API Data Types
	Profiler API Functions
	teja_profiler_start
	Description
	Function
	Parameters
	Return Values

	teja_profiler_stop
	Description
	Function
	Parameters
	Return Values

	teja_profiler_update
	Description
	Function
	Parameters
	Return Values

	teja_profiler_get_values
	Description
	Function
	Parameters
	Return Values

	teja_profiler_get_value
	Description
	Function
	Parameters
	Return Values

	teja_profiler_dump
	Description
	Function
	Parameters
	Return Values

	Processor Specific Profiler Constants
	Sun UltraSPARC T1 Processor- Specific Profiler Groups
	Sun UltraSPARC T2 Processor - Specific Profiler Groups

	Driver API
	Netra DPS Crypto and Hashing API
	Netra DPS Crypto and Hash API Functions
	Netra DPS Crypto and Hash API Function Descriptions
	Crypto and Hash Context Setup Part

	NDPSCreateCryptoContext
	Description
	Function
	Parameters
	Return Values

	NDPSDestroyCryptoContext
	Description
	Function
	Parameters
	Return Values
	Crypto API

	NDPSCryptKeyLength
	Description
	Function
	Parameters
	Return Values

	NDPSCryptKeyLoad
	Description
	Function
	Parameters
	Return Values

	NDPSCryptIVLoad
	Description
	Function
	Parameters
	Return Values

	NDPSCrypt
	Description
	Function
	Parameters
	Return Values

	NDPSCryptMultiple
	Description
	Function
	Parameters
	Return Values

	NDPSCryptAndHashMultiple
	Description
	Function
	Parameters
	Return Values
	Hash API

	NDPSHashLength
	Description
	Function
	Parameters
	Return Values

	NDPSHashIVLoad
	Description
	Function
	Parameters
	Return Values

	NDPSHashIVGet
	Description
	Function
	Parameters
	Return Values

	NDPSHashDirect
	Description
	Function
	Parameters
	Return Values

	NDPSHashDirectMultiple
	Description
	Function
	Parameters
	Return Values
	Crypto and Hash Combined API

	NDPSCryptAndHash
	Description
	Function
	Parameters
	Return Values
	Miscellaneous APIs

	NDPSAESXCBCMAC96init
	Description
	Function
	Parameters
	Return Values

	NDPSAESXCBCMAC96fini
	Description
	Function
	Parameters
	Return Values

	NDPSAESXCBCMAC96KeyLoad
	Description
	Function
	Parameters
	Return Values

	NDPSAESXCBCMAC96AuthGenerate
	Description
	Function
	Parameters
	Return Values

	Ethernet API
	Network Applications
	Ethernet Device Driver
	Ethernet API Functions
	Description of Ethernet API Functions
	eth_pbuf_alloc
	Description
	Function
	Parameters
	Return Values

	eth_pbuf_free
	Description
	Function
	Parameters

	eth_buf_alloc
	Description
	Function
	Parameters
	Return Values

	eth_buf_free
	Description
	Function
	Parameters

	eth_open
	Description
	Function
	Parameters
	Return Values

	eth_close
	Description
	Function
	Parameters
	Return Values

	eth_read
	Description
	Function
	Parameters
	Return Values

	eth_write
	Description
	Function
	Parameters
	Return Values

	eth_ioc
	Description
	Function
	Parameters
	Return Values

	Summary
	Notes
	Note 1
	Note 2
	Note 3
	Note 4
	Note 5
	Note 6
	Note 7
	Note 8
	Note 9
	Note 10
	Note 11
	Note 12

	Fast Queue API
	Fast Queue API Introduction
	Fast Queue API Function Descriptions
	fastq_create
	Description
	Function
	Parameters
	Return Values

	fastq_enqueue
	Description
	Function
	Parameters
	Return Values

	fastq_dequeue
	Description
	Function
	Parameters
	Return Values

	fastq_enqueue_noyield
	Description
	Function
	Parameters
	Return Values

	fastq_dequeue_noyield
	Description
	Function
	Parameters
	Return Values

	fastq_get_size
	Description
	Function
	Parameters
	Return Values

	fastq_is_empty
	Description
	Function
	Parameters
	Return Values

	fastq_is_full
	Description
	Function
	Parameters
	Return Values

	Interprocess Communication API
	Interprocess Communication API Introduction
	Common Programming Interfaces
	ipc_connect
	Description
	Function
	Parameters
	Return Values

	ipc_register_callbacks
	Description
	Function
	Parameters
	Return Values

	ipc_tx
	Description
	Function
	Parameters
	Return Values

	ipc_rx
	Description
	Function
	Parameters

	ipc_free
	Description
	Function
	Parameters

	IPC Framework Programming Interfaces
	tnipc_init
	Description
	Function
	Return Values

	tnipc_poll
	Description
	Function
	Return Values

	tnipc_register_local_poll
	Description
	Function
	Parameter
	Return Values

	tnipc_local_poll
	Description
	Function
	Parameter
	Return Values

	tnipc_unregister_local_poll
	Description
	Function
	Parameter
	Return Values

	IPC Programming Interfaces for Solaris Domains
	User Space
	Kernel

	Fastpath Manager API
	Fastpath Manager API Introduction
	Fastpath Manager API Function Descriptions
	fastpath_mgr_init
	Description
	Function
	Parameters
	Return Values

	fastpath_mgr_process
	Description
	Function
	Parameters
	Return Values

	fastpath_mgr_register_event_handler
	Description
	Function
	Parameters
	Return Values

	fastpath_mgr_unregister_event_handler
	Description
	Function
	Parameters
	Return Values

	fastpath_mgr_check
	Description
	Function
	Parameters
	Return Values

	Access Control List Library API
	Access Control List Library API Introduction
	Algorithms
	Hybrid Algorithm
	Binary Search on Prefix Lengths
	TRIE
	HiCut Algorithm
	Swapping
	Remapping

	Data Types
	Packet Type
	Rule Type

	ACL Library API Function Descriptions
	acl_init
	Description
	Function
	Parameters
	Return Values

	acl_insert
	Description
	Function
	Parameters
	Return Values

	acl_remove
	Description
	Function
	Parameters
	Return Values

	acl_lookup
	Description
	Function
	Parameters
	Return Values

	acl_list
	Description
	Function
	Parameters
	Return Values
	Error Codes

	malloc Library for Slow Path
	malloc Library API Introduction
	Compiling Netra DPS Application with malloc Library
	Declaring Memory Pools
	Including malloc Definition

	malloc Configuration File (malloc.conf)
	APIs
	create_malloc_mem_pools
	Description
	Function
	Parameters
	Return Values

	netra_dps_malloc_init
	Description
	Function

	malloc
	Description
	Function
	Parameters
	Return Values

	free
	Description
	Function
	Parameters

	Index

