
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

OLIT QuickStart Programmer’s Guide

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open
Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript
and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks
of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xi

1. Basic OLIT Concepts . 1

What is OLIT?. 1

The X Window System . 2

Widgets . 3

2. OLIT Program Structure . 13

Overview. 13

Program Structure Example—hello.c . 15

3. OLIT Resources. 27

OLIT Resource Documentation . 27

Setting Resource Values at Widget Creation. 28

Getting and Setting Resource Values After Widget Creation . . 30

Setting Resource Values with the Resource Database 32

Specifying Resources on the Command Line 36

Dynamic Resource Changing . 38

iv OLIT QuickStart Programmer’s Guide—August 1994

4. Putting It All Together . 39

Glossary . 55

v

Figures

Figure 1-1 OLIT Applications in Client-Server Network 3

Figure 1-2 Widgets . 4

Figure 1-3 OLIT Class Hierarchy Tree. 11

Figure 2-1 hello.c Compiled and Executed. 15

Figure 2-2 hello.c Widget Instance Tree . 21

Figure 2-3 CheckBox Widget . 23

Figure 3-1 hello.c with a New Layout and Labels . 29

Figure 3-2 Resource Database. 33

Figure 3-3 hello.c without Resource Specifications 35

Figure 4-1 Translator . 40

Figure 4-2 Translator.c Widget Tree Diagram . 42

vi OLIT QuickStart Programmer’s Guide—August 1994

vii

Tables

Table 1-1 OLIT Widgets. 7

Table 3-1 Standard Command Line Options . 37

Table 4-1 Translator.c Variable List . 41

viii OLIT QuickStart Programmer’s Guide—August 1994

ix

Code Samples

Code Example 1-1 OLIT Resource/Value Pairs (in bold) 10

Code Example 2-1 Makefile . 15

Code Example 2-2 hello.c Source Code. 16

Code Example 4-1 Resource File for Translator.c
(Resources_translator) . 43

Code Example 4-2 Translator.c . 43

x OLIT QuickStart Programmer’s Guide—August 1994

xi

Preface

The purpose of the OPEN LOOK® Intrinsics Toolkit (OLIT) Quick-Start
Programming Guide is to teach essential OLIT programming concepts quickly
and easily. This manual describes OLIT widget set as well as essential X
intrinsics functions. It is not intended as a comprehensive guide OLIT
programming or the X Window System. For detailed X Window System® and
X Window System Toolkit information, refer to the documents listed at the end
of this preface.

Who Should Use This Book
Developers who are considering writing or porting applications to the Solaris
operating environment using OLIT should read this book. This book is also
helpful to developers who want to quickly assess the power, capability, and
programming concepts of OLIT, before committing to its use.

Before You Read This Book
This book presumes that you know C programming and that you are familiar
with a computer window system such as OpenWindows or SunView.
Knowledge of X is helpful, but not essential.

xii OLIT QuickStart Programmer’s Guide—August 1994

How This Book Is Organized
Chapter 1, “Basic OLIT Concepts,” describes fundamental OLIT concepts.

Chapter 2, “OLIT Program Structure,” explains OLIT program structure by
examining an example OLIT Program.

Chapter 3, “OLIT Resources,” discusses OLIT Resource management.

Chapter 4, “Putting It All Together,” shows some OLIT techniques and issues
by describing an OLIT program in detail.

“Glossary,” describes the terms used in this book.

Related Books
The following books may be of use in learning OLIT. To obtain them, call Sun
Express (1-800-873-7869) or visit your local computer bookstore.

• OLIT Reference Manual, Sun Microsystems, 1993, P/N 801-5316-10. This book
is essential for programming in OLIT.

• X Window System: Programming and Applications with Xt/ OPEN LOOK
Edition, by Douglas Young & John Pew, published by Prentice Hall,
ISBN 0-13-982992-X. The definitive OLIT programming manual.

• X Window System Toolkit by Paul Asente & Ralph Swick from Digital Press,
1990, ISBN 1-55558-051-3. The best book on Xt Intrinsics programming.

• X Toolkit Intrinsics Reference Manual, O’Reilly & Associates, Inc., ISBN
1-56592-007-4. Lists and describes Xt Intrinsics functions, prototypes,
classes, utilities, data types, methods, events, translation tables in a single
reference manual.

xiii

What Typographic Changes and Symbols Mean
The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su
Password:

<AaBbCc123> Command-line placeholder:
replace with a real name or value

To delete a file, type rm < filename>.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell
prompt

UNIX Bourne and Korn shell
prompt

Superuser prompt, all shells Superuser prompt, all shells

xiv OLIT QuickStart Programmer’s Guide—August 1994

1

Basic OLIT Concepts 1

What is OLIT?
OLIT is an X Window System-based widget set and library used to create
applications supporting the OPEN LOOK graphical user interface. Widgets are
user interface objects such as buttons, scrollbars, control areas, text edit areas,
and drawing areas. By creating and manipulating desired widgets with the X
Window System Toolkit, the programmer can create an application user interface.
Application code, i.e., the code that performs the actual work on the
application’s data, is attached to the user interface via callback programs that
are executed when the user performs some action on a widget, such as a mouse
gesture or keyboard input.

The X Window System Toolkit, also know as the X Toolkit, Xt Intrinsics, or
simply Intrinsics, is an X consortium standard library that provides the
structure and functions for assembling widgets into a user interface. The X
Toolkit provides a few basic widget classes that are usually supplemented with
a full-featured widget set such as OLIT. OLIT applications follow an object-
oriented, event-driven programming model. For further information about
OPEN LOOK, refer to Open Look Graphical User Interface Guidelines. For more
information on the X Toolkit refer to the X Window System Toolkit.

2 OLIT QuickStart Programmer’s Guide—August 1994

1

The X Window System
Figure 1-1 shows a block diagram of two OLIT programs running in the X
Window System. The X Server is a program that runs on machines controlling
one or more displays. The X Server handles output from an application (called
the client) to the screen(s), and sends keyboard and mouse input to the
appropriate client for processing.

This programming model, called the client-server computing model, provides a
device independent layer, via the X Server, between applications and the
display hardware. Any machine running an X Server, be it a workstation,
mainframe, or X terminal, can display X applications regardless of the
hardware. In addition to device independence, the distributed architecture of
the X Window System allows clients to be run on any machine in a network,
and be displayed on any other machine(s) in that network.

The X Server communicates with clients using the X Window System Protocol or
simply, the X protocol. A C library interface, called Xlib, isolates the
programmer from the intricacies and detail of the X protocol. Providing
another level of abstraction and programming simplicity is the toolkit, which
consists of the Xt Intrinsics and the widget set (OLIT). The toolkit provides an
object-oriented, event-driven interface via widgets.

Basic OLIT Concepts 3

1

Figure 1-1 OLIT Applications in Client-Server Network

Widgets
Widgets, shown in Figure 1-2, are user interface objects. In the context of the X
Window System, widgets are simply specialized X windows that can be
created, manipulated, and destroyed. Programmatically, widgets are
instantiated data structure types.

Widget types are organized by class. For example, there is the ScrollBar widget
class, TextEdit widget class, OblongButton widget class, etc. When discussing a
widget type, we refer to it as a widget class. When discussing a particular
widget, we refer to it as a widget instance. If we want to create a widget of a
particular class, we say we want to instantiate a widget.

X Server

Application 1

OLIT

Xt Intrinsics

Xlib C Language Interface

Network or Local Connection

Keyboard Mouse Screen

Clients

Server

X Protocol

Application 2

OLIT

Xt Intrinsics

Xlib C Language Interface

4 OLIT QuickStart Programmer’s Guide—August 1994

1

Figure 1-2 Widgets

AbbreviatedMenuButton CheckBox DropTarget Gauge

MenuButton RectButton ScrollbarOblongButton

Sliders

TopLevelShell

TextEdit
MenuShell

Basic OLIT Concepts 5

1

Figure 1-3 Widgets (continued)

ScrolledWindowScrollingList

Exclusive with Two RectButtons Nonexclusive with Three RectButtons

NumericFieldThree TextLines

6 OLIT QuickStart Programmer’s Guide—August 1994

1

Figure 1-3 Widgets (continued)

FileChooser

Font Chooser

Basic OLIT Concepts 7

1

John Pew’s X Window System: Programming and Applications with Xt/ OPEN
LOOK Edition categorizes widgets into five groups according to the type of
functions they perform. Action widgets accept user or application input, and
respond to the input with a programmatic action. Text Control widgets allow an
application to receive and display text or numbers. Popup widgets are used to
notify the user, bring up a pop-up menu, or prompt for input. Container widgets
are specialized widgets that manage one or more child widgets. Manager
widgets are used to combine all widgets into an entire application. A sixth
category, called Function Widgets, perform specialize functions such as setting
application fonts or importing/exporting files.

Table 1-1 OLIT Widgets

Widget Class Characteristics and Usage

Action Widgets

OblongButton A button the user can “push” by pressing SELECT on it. When pushed,
its border inverts, making it appear “pressed.” Used to initiate
application-defined actions.

RectButton A toggle button that executes one set of actions when pressed and
another when unpressed. When pressed, the button looks pressed.
Button remains pressed until pressed again or unset programmatically.

CheckBox A toggle that executes one set of actions when checked and another
when unchecked. Similar to the RectButton widget.

MenuButton An oblong button that creates a pop-up menu when user presses MENU
on it.

AbbrevMenuButton Provides a pulldown menu pane (same as the MenuButton widget) user
presses MENU on it. Uses less screen space than MenuButton.

Slider Lets user set a numeric value by sliding drag box along the bar.

Gauge Graphically displays a read-only numeric value.

Scrollbar Similar to the slider widget with additional features.

DropTarget Creates a rectangle to be used as a drop site. Provides visual indication
of the progress of a Drag and Drop operation.

Manager Widgets

BulletinBoard A composite widget that enforces no particular layout order on its
children. Application must specify x- and y-coordinates of each child.

ControlArea Widget that organizes its children controls in rows and columns.

8 OLIT QuickStart Programmer’s Guide—August 1994

1

DrawArea Provides a window on which to render images using Xlib calls.

RubberTile Organizes its children vertically or horizontally in a single file. Assigns
relative weights to each child so that it expands or contracts a certain
percentage of size changes of the RubberTile.

Form Organizes children relative to the position of other children. Manipulates
these layout when Form is resized, new children are added, moved,
resized, unmanaged, remanaged, rearranged, or destroyed.

Text Widgets

FooterPanel Attaching a footer message to the bottom of a base window.

NumericField Provides a one-line input field for alphanumeric text.

StaticText Displays an uneditable block of text.

TextEdit Provides a multi-line text editing window.

TextLine One-line input field for text data. Replaces TextField.

Container Widgets

Caption Provides a convenient way to label a widget.

Exclusives Manages a set of rectangular buttons to create a one-of-many button
selection object

Nonexclusives Manages a set of rectangular buttons or check boxes to create a several-
of-many button selection object.

FlatCheckBox Same functionality as a NonExclusives widget managing CheckBox
widgets, but instead of creating individual CheckBoxes as children of a
container widget, it creates sub-objects that have the same behavior as
the CheckBoxes. Improves performance since fewer widgets are created.

FlatExclusives Same functionality as an Exclusives widget managing RectButtons, as
the same advantages as described in FlatCheckBox.

FlatNonexclusives Provides the same functionality as a Nonexclusives widget managing
RectButtons. Has the same advantages as described in FlatCheckBox.

ScrolledWindow Provides a scrolled window view of a text or graphics pane.

ScrollingList Provides a list of items the user can scroll through and select. Items can
be exclusive or multiple choice non-exclusive. Users can edit items.

Table 1-1 OLIT Widgets

Widget Class Characteristics and Usage

Basic OLIT Concepts 9

1

By creating and manipulating the desired widgets, the developer assembles the
application’s user interface. After the user interface is assembled, the
application code, i.e., code that performs computations on the application’s
data, is attached to the desired widget as callback procedures, or simply callbacks.
A callback procedure is a operation that gets executed when the widget
receives some event, such as a mouse selection, a scrollbar being moved, or a
text field being entered. Attaching specific procedures to specific widgets
allows you to produce modular source code.

Widget Resources

A widget resource is a named piece of data that sets a specific widget attribute.
Resources set attributes such as the color, font, layout, alignment, label, or
callback list of a widget. A widget’s resource values are usually set in a
resource file for flexibility, but can also be set in the application code during
widget creation or as a command line option. Widget resources are specified in

Popup Widgets

NoticeShell Creates a pop-up user notification message. Warns user of a problem;
allows user to confirm a choice. Interaction with the application stops
until the NoticeShell is popped down.

MenuShell Creates a pop-up menu not associated with MenuButton or
AbbrevMenuButton . Has the same features as a MenuButton widget
(except those related to menu creation).

PopupWindowShell Creates a pop-up property window allowing users to set properties of an
application.

Table 1-1 OLIT Widgets

Widget Class Characteristics and Usage

10 OLIT QuickStart Programmer’s Guide—August 1994

1

resource/value pairs with the resource name followed by the resource value (see
Code Example 1-1). The OLIT Reference Manual lists and describes all the
widget class resources.

Code Example 1-1 OLIT Resource/Value Pairs (in bold)

Widget Class Hierarchy

The X Toolkit organizes widgets by class. Class defines the characteristics,
operations, and resources of a widget type. This includes the resources a
widget class uses. All widget classes are subclassed from other widget classes.
That is, a widget class is created by modifying and specializing another widget
class called its superclass. The subclass inherits some or all of the characteristics
of it’s superclass. Class architecture and inheritance make it easier to create
new widgets because subclasses use much of the same code and declarations
as its superclass.

From an programmer’s standpoint, the OLIT widget class hierarchy and
architecture would seem of minimal interest unless you were going to create a
new widget class by subclassing another widget. Understanding a little about
the architecture, however, will help understand the relationship and shared
characteristics of between all widgets.

Figure 1-3 shows the OLIT widget class hierarchy. Note that Xt Intrinsics
defines a number of widget classes that are superclasses of all other widget
classes. For example, all widget classes are subclassed from the Core widget
class, therefore, all widgets inherit the Core widget resources.

Resource/Value Pair in Application Code

hello_button = XtVaCreateManagedWidget(“button1”,
oblongButtonWidgetClass, control_area,
XtNlabel, “Hello!”,
NULL);

Resource/Value Pair in a Resource File

hello.controlarea.button1.label: Hello!
hello.controlarea.OblongButton.background: aquamarine

Basic OLIT Concepts 11

1

Figure 1-3 OLIT Class Hierarchy Tree

Object

RectObj

UnNamedObj EventObject

ButtonGadget

MenuButtonGadget

OblongButtonGadget

Core

Primitive

AbbrevMenuButton

Composite

Constraint

OverrideShell WMShell

VendorShell

TransientShell TopLevelShell

ApplicationShell

MenuShell

NoticeShell

PopupWindowShell

Manager

BulletinBoard

DrawArea

Caption

Category

CheckBox

ControlArea

Exclusives

FooterPanel

Form
ScrollingList

Nonexclusives

RubberTile

Help

ScrolledWindow
TextField

Button

MenuButton

OblongButton

RectButton
Flat

FlatButton

FlatExclusives

FlatCheckBox

FlatNonExclusives
Gauge

ListPane

Magnifier

Pixmap

DropTarget

PushPin

ScrollBar

Slider

StaticText

Stub

TextEdit

Legend

OLIT classes

Xt Intrinsics classes (italic)

Private or Meta Classes (widgets

Shell

FontChooser
FileChooser

TextLine
NumericField

FileChooserShell
FontChooserShell

used by documented widgets,
but not otherwise used)

12 OLIT QuickStart Programmer’s Guide—August 1994

1

13

OLIT Program Structure 2

Overview
The best way to learn about the OLIT program structure is to look at an OLIT
program. The example program we use throughout this chapter, hello.c
(Code Example 2-2 on page 16), contains all the major elements of an OLIT
program. These elements are:

• OLIT and Xt Intrinsics include files.

• Initialization steps consisting of calls to OlToolkitInitialize() ,
XtAppInitialize() , and XtVaAppInitialize() .

• Creation of widgets and attaching of callbacks to the widgets.

• A call to XtRealizeWidget() to make the widgets appear on the screen.

• A call to XtAppMainLoop() , an event gathering loop that gets X events
from the display connection and sends them to the appropriate widgets for
processing.

• The application code, which is implemented as callback procedures.

14 OLIT QuickStart Programmer’s Guide—August 1994

2

hello.c , like all OLIT applications are structured as follows:1

1. The code line OlSetDefaultTextFormat(OL_MB_STR_REP) will only work in OpenWindows 3.2 or
Asian OpenWindows 3.1. For details on how to internationalize an OLIT application refer to the OLIT
Reference Manual.

#include <X11/Intrinsics.h>
.
.
.
Main(argc,argv)

OlToolkitInitialize()

Create Widgets and

XtRealizeWidget()
XtAppMainLoop()
}

Callback Procedures

{

.
XtVaCreateManagedWidget()

XtAddCallback()

Initialize OLIT

Application Code is
implemented as Call-

Register Callbacks

.

.

.

.

.

OLIT Include Files

.

.

.back Procedures

Realize widgets,
Start Event Loop

XtVaAppInitialize()Initialize Application
OlSetDefaultTextFormat(OL_MB_STR_REP)For Internationalization

OLIT Program Structure 15

2

Program Structure Example—hello.c
You may obtain hello.c , its helper files Makefile and Resources_hello ,
as well as the another example program used in the manual by sending e-mail
to greg.kimura@Eng.sun.com with the subject line “OLIT Quick-Start
Programs”. To compile and execute hello.c , copy hello.c , Makefile , and
Resources_hello into a work directory. Set the environmental variable
XENVIRONMENT to ./Resources_hello and enter make<return> .
Makefil e (Code Example 2-1) compiles the program. To run the program, type
hello<return> .

hello.c (Figure 2-1) consists of four widgets: a top-level Shell widget
containing the user interface, a ControlArea widget containing two
OblongButtons, and the two OblongButton widgets themselves. A callback
procedure is attached to the Hello and Goodbye buttons such that selecting the
buttons with the mouse will print out the word Hello! or Goodbye!

Figure 2-1 hello.c Compiled and Executed

Code Example 2-1 Makefile

INCLUDE = -I${OPENWINHOME}/include
CFLAGS = ${INCLUDE} -g
LIBS = -L${OPENWINHOME}/lib -lXol -lXt -lX11

TARGETS = hello

all: ${TARGETS}

${TARGETS}: $$@.c $$@.o
${CC} ${CFLAGS} ${LDFLAGS} -o $@ $@.o ${LIBS}

clean:
rm -f core ${TARGETS} *.o

16 OLIT QuickStart Programmer’s Guide—August 1994

2

Code Example 2-2 hello.c Source Code

/* Required OLIT Headers */
1 #include <X11/Intrinsic.h>
2 #include <X11/StringDefs.h>
3 #include <Xol/OpenLook.h>

/* Specific Widget Headers */
4 #include <Xol/ControlAre.h>
5 #include <Xol/OblongButt.h>

6 main(argc,argv)
7 int argc;
8 char *argv[];
9 {
10 static char *data_h = “Hello!”;
11 static char *data_g = “Goodbye!”;
12 XtAppContext app;
13 Widget toplevel, control_area, hello_button, goodbye_button;

14 void ButtonCB();

/* Initialize toolkit, set strings to multibyte, create the toplevel shell. */
/ * Note that the OlSetDefaultTextFormat line is for internationalization and */
/ * will only work with OpenWindows 3.2 or Asian OpenWindows 3.1. If you are */
/ * not using one of these versions, comment out this line. */

15 OlToolkitInitialize((XtPointer)NULL);
16 OlSetDefaultTextFormat(OL_MB_STR_REP);
17 toplevel = XtVaAppInitialize(&app, “Hello”, (XrmOptionDescList)NULL,
18 0, &argc, argv, (String *) NULL,
19 NULL);

/* create top manager widget */
20 control_area = XtVaCreateManagedWidget(“controlarea”,
21 controlAreaWidgetClass, toplevel,
22 XtNhSpace, 10,
23 XtNvSpace, 10,
24 XtNvPad, 10,
25 XtNhPad, 10,
26 NULL);

/* create hello button widget */
27 hello_button = XtVaCreateManagedWidget(“button1”,
28 oblongButtonWidgetClass, control_area,
29 XtNlabel, “Hello!”,
30 NULL);

/* identify a callback procedure for hello_button */
31 XtAddCallback(hello_button, XtNselect, ButtonCB, (XtPointer)data_h);

/* create goodbye button widget */
32 goodbye_button = XtVaCreateManagedWidget(“button2”,

OLIT Program Structure 17

2

OLIT Include Files

Let’s examine the source code for hello.c in detail.

Lines 1 through 3 are the header files required for all OLIT programs.

Lines 4 and 5 are header files for each class of widget created in the program.
If another widget is added to the program, for example, a scrollbar, we would
have to include the scrollbar widget class file:

#include <Xol/Scrollbar.h>

Widget class header files are listed under the Synopsis section of the desired
widget in the OLIT Reference Manual.

33 oblongButtonWidgetClass, control_area,
34 XtNlabel, “Goodbye!”,
35 NULL);

/* identify a callback procedure for goodbye_button */
36 XtAddCallback(goodbye_button, XtNselect, ButtonCB, (XtPointer)data_g);

/* realize the widgets and begin the main loop */
37 XtRealizeWidget(toplevel);
38 XtAppMainLoop(app);
39 }

/* procedure called when hello_button selected */
40 void ButtonCB(widget, clientdata, calldata)
41 Widget widget;
42 XtPointer clientdata;
43 XtPointer calldata;
44 {
45 printf(“%s\n”, (char *)clientdata);
46 }

1 #include <X11/Intrinsic.h>
2 #include <X11/StringDefs.h>
3 #include <Xol/OpenLook.h>

4 #include <Xol/ControlAre.h>
5 #include <Xol/OblongButt.h>

Code Example 2-2 hello.c Source Code

18 OLIT QuickStart Programmer’s Guide—August 1994

2

Declarations

Lines 6 through 9 start the main body of the program.

Line 10 and 11 create two static character string variables called data_h and
data_g and initialize them with the strings “Hello!” and “Goodbye!” These
strings will be used by the callback procedure described later.

Line 12 defines an application context of type XtAppContext . An application
context is a pointer to an opaque data structure containing all the information
the toolkit maintains for one application. This line must appear in all OLIT
programs. XtAppContext is an Intrinsics data type. There are a number of
Intrinsics data types that are used in OLIT. In this guide, however, we’ll
describe only the ones used. For a complete listing of the X Toolkit data types,
refer to the X Toolkit Intrinsics Reference Manual or the X Window System Toolkit.

Line 13 defines four variables of type Widget (another Intrinsics data type)
called toplevel , controlarea , hello_button , and goodbye_button.

Line 14 specifies a callback procedure called ButtonCB that returns no data.
This callback will be attached to the button widgets, which we will discuss
shortly.

6 main(argc,argv)
7 int argc;
8 char *argv[];
9 {

10 static char *data_h = “Hello!”;
11 static char *data_g = “Goodbye!”;

12 XtAppContext app;

13 Widget toplevel, control_area, hello_button, goodbye_button;

14 void ButtonCB();

OLIT Program Structure 19

2

Initialization and Creating the Top-level Shell Widget

Line 15 initializes OLIT. The program must be initialized before any widgets
are created or OLIT routines are used. OlToolkitInitialize() is passed a
null argument of type XtPointer (an X type), which is reserved for future
use. Note that the prefix Ol usually signals that a function is an OLIT function.
Intrinsics functions are prefaced with Xt .

Lines 16 through 18 use the Intrinsics function XtVaAppInitialize() to
initialize the application context, parse the command line, set shell widget
resource values, and create the initial application shell widget. The shell
widget is returned as an opaque pointer and assigned to the variable
toplevel . The widget variable is referred to as a widget handle or identifier.

The argument &app is the address of the application context.

“Hello” is the application class name. Intrinsics uses the class name to specify
attribute resources for application classes. Note that the name is different from
the widget identifier, i.e., toplevel .

The next two arguments, (XrmOptionDescList)NULL and 0 specify the
command line options table and the number of option entries. In our example,
there are no command line options.

&argv and argc are a pointer and count of command line options being
passed into the application.

The next options are fallback resources. Fallback resources are used if no other
application default files are provided (see Chapter 3, “OLIT Resources”).
Fallback resources are specified as type String *. Since there are no fallback
resources in this example, we terminate with (String *)NULL .

The final arguments to XtVaAppInitialize() are the shell widget’s
NULL-terminated resource/value pairs. Generally, you should specify resource
values in resource files rather than in application code because it allows the

15 OlToolkitInitialize((XtPointer)NULL);

16 toplevel = XtVaAppInitialize(&app, “Hello”, (XrmOptionDescList)NULL,
17 0, &argc, argv, (String *) NULL,
18 NULL);

20 OLIT QuickStart Programmer’s Guide—August 1994

2

user to easily change the resource value if he doesn’t like your value. For
internationalized applications, the ability to easily change resource values is
crucial.

In this case, we don’t specify any resource/value pairs. If we did want to add
shell widget resource/value pairs, we would have to include <X11/Shell.h>
to our list of include files. Widget resources can be set by a number of methods.
These methods are described in Chapter 3, “OLIT Resources.”

For details on XtVaAppInitialize() or any Xt Intrinsics function, refer to
the X Toolkit Intrinsics Reference Manual or X Window System Toolkit.

Creating Widgets

Lines 19 to 25 create a ControlArea widget and assign it to the identifier
control_area . The ControlArea widget is called a Manager widget because it
doesn’t display any information, but manages other widgets. In this case, the
ControlArea widget manages two OblongButtons.

The Xt intrinsics call XtVaCreateManagedWidget() is one of the most
commonly used functions in OLIT. XtVaCreateManagedWidget() has the
following form:

XtVaCreateManagedWidget(name, widget_class, parent, args, NULL)

The first argument, name, is a programmer-defined name for the widget. Note
that widgets have both a name and identifier. Essentially, widget names are
used to specify resource names in resource files and widget identifiers are used
in OLIT and Intrinsics functions. The name we have given for this ControlArea
widget is “controlarea” .

The second argument, widget_class , is a widget class pointer that specifies
the class of widget created. The widget class pointer is listed in the OLIT
Reference Manual in the section pertaining to the desired widget. Usually the

19 control_area = XtVaCreateManagedWidget(“controlarea”,
20 controlAreaWidgetClass, toplevel,
21 XtNhSpace, 10,
22 XtNvSpace, 10,
23 XtNvPad, 10,
24 XtNhPad, 10,
25 NULL);

OLIT Program Structure 21

2

widget class can be derived by adding the word WidgetClass to the end of
the widget class name and making the first letter lowercase. In this example
the widget class pointer is controlAreaWidgetClass

The third argument, parent , specifies the parent widget of the widget being
created. Except for shell widgets, all widgets are children of some parent widget.
An application organizes widgets into a hierarchy of parents and children, the root
of which is the shell widget created by XtVaAppInitialize() . The widget tree
for our example program is shown below.

Figure 2-2 hello.c Widget Instance Tree

Note that the widget application hierarchy (also known as the widget instance
hierarchy) is different from the widget class hierarchy described in “Widget
Class Hierarchy” on page 10. The class hierarchy describes the fundamental
OLIT widget architecture. Application hierarchy describes the parentage of an
application’s widgets.

args , the final arguments passed to XtVaCreateManagedWidget() , are the
NULL-terminated resource/value pairs. Again, it is usually better to set
resource values in resource files rather than setting them during widget
creation. However, we do hardcode a few resource values in this example for
demonstration purposes. In Chapter 3, “OLIT Resources,” we describe how to
set OLIT resources in resource files.

Four resource are set in our example. These are XtNhSpace , XtNvSpace ,
XtNvPad , and XtNhPad . Open the OLIT Reference Manual to the ControlArea
section in Chapter 3. After the ControlArea resource table is a description of
the resources specific to the ControlArea. These resources define the horizontal
and vertical space between controlarea ’s children (buttons), as well as the

Hello

controlarea

button2button1

22 OLIT QuickStart Programmer’s Guide—August 1994

2

space from the edge of controlarea to the edge of its children. Note that you
do not have to define all resources. OLIT assigns default values if none are
specified.

Lines 26 through 29 create an OblongButton instance with the word “Hello!”
on it and assign it to the identifier hello_button . Argument 1, widget name,
is button1 . Argument 2, widget class pointer, is
oblongButtonWidgetClass . Argument 3, widget parent, is control_area .
One resource value argument, XtNlabel , is specified as Hello !

Line 30 uses the Intrinsics function XtAddCallback() to attach a callback
procedure executed when the hello button is selected. When mouse selected,
the callback procedure prints “Hello!”

Attaching Callbacks

XtAddCallback() adds callbacks to a widget action. It uses the following
form:

XtAddCallback(widget, callback_resource, callback, client_data)

widget specifies the widget identifier to which the callback is attached,
hello_button , in our example.

callback_resource is the widget resource that specifies the callback list to
which the callback procedure is to be added. Callback resources are very
different from other widget resources. Unlike other widget resources, callback
resources are not defined as resource/value pairs in null-terminated lists or in
resource files. Callback resources are specified as a single resource name in
XtAddCallback() to attach a callback procedure that is executed when a
specific user action is performed on the widget.

26 hello_button = XtVaCreateManagedWidget(“button1”,
27 oblongButtonWidgetClass, control_area,
28 XtNlabel, “Hello!”,
29 NULL);

30 XtAddCallback(hello_button, XtNselect, ButtonCB1, (XtPointer)data_h);

OLIT Program Structure 23

2

The reason for using resources to specify callbacks is that a widget may
respond differently to different user actions. For example, a CheckBox widget
(below) allows a user to toggle between two states—checked and unchecked.
You can invoke one callback when the box is checked and another callback
when it is unchecked by setting callback_resource to XtNselect for one
callback and setting callback_resource to XtNunselect for another.

You can also attach more than one callback to a specific widget action by
calling XtAddCallback() repeatedly and setting the callback argument to
a different callback each time. The callbacks will be called in the order they
were added to the callback list.

Figure 2-3 CheckBox Widget

Returning to the program example, we want to execute a single operation
when the user selects the hello button. The OblongButton section of the OLIT
Reference Manual, describes XtNselect of class XtCCallback, and that it
specifies “the list of callbacks invoked when OblongButton is selected.” Thus,
callback_resource is specified as XtNSelect .

The next argument in XtAddCallback() ,callback , gives the name of the
callback procedure. In our example this is ButtonCB .

The last argument, client_data , is data passed to callback when
callback is invoked; this is application-specific data to be used within the
callback procedure. client_data must be of type XtPointer . In this
example, client_data is the variable data_h with the contents “Hello! ”
which the application uses as a string to print out when the button is selected.

31 goodbye_button = XtVaCreateManagedWidget(“button2”,
32 oblongButtonWidgetClass, control_area,
33 XtNlabel, “Goodbye!”,
34 NULL);

✓Photon Torpedoes? Photon Torpedoes?

CheckBox Selected CheckBox Unselected

24 OLIT QuickStart Programmer’s Guide—August 1994

2

Lines 31 through 34 create another OblongButton with the label “Goodbye!” on
it and assign it to the identifier goodbye_button . The widget name is
button2 . The widget class pointer is oblongButtonClassWidget . The
parent widget is control_area . Only one resource value argument,
XtNlabel , is specified. Its value is Goodbye!

Line 35 attaches the same callback, ButtonCB , to be executed when the
Goodbye button is selected. The pointer *data_g with the contents Goodbye!
is passed to the ButtonCB() callback as client data.

Realizing Widgets and Starting Event Loop

XtRealizeWidget makes all the widgets appear on the screen and
XtAppMainLoop gathers input events from the X server and distributes them
to widgets. This routine continues looping until the program is exited.

hello.c Callback Procedure

Lines 39 to 45 define the callback invoked when the Hello! or Goodbye! button
are selected. Callback procedures have the following prototype:

void Callback(widget, client_data, call_data)

widget is the widget identifier to which the callback is registered. In our
example this is hello_button or goodbye_button depending on which
button was pressed. The second argument, client_data , is data passed by

35 XtAddCallback(goodbye_button, XtNselect, ButtonCB, (XtPointer)data_g);

36 XtRealizeWidget(toplevel);
37 XtAppMainLoop(app);
38 }

39 void ButtonCB(widget, clientdata, calldata)
40 Widget widget;
41 XtPointer clientdata;
42 XtPointer calldata;
43 {
44 printf(“%s\n”, (char *)clientdata);
45 }

OLIT Program Structure 25

2

the application in the call to XtAddCallback . In our example, this is
(XtPointer)data_h (Hello!) or (XtPointer)data_g (Goodbye!).
call_data is data passed by the widget. The type and purpose of this data (if
any) is described under the specific widget description in the OLIT Reference
Manual. OblongButton passes no widget data to its callbacks. Line 44 is the
callback procedure itself, which prints the expression “Hello!” or “Goodbye!”

26 OLIT QuickStart Programmer’s Guide—August 1994

2

27

OLIT Resources 3

OLIT resources are named data units that specify widget attribute values.
Widget attributes are specified in resource/value pairs and set characteristics
such as widget color, font, layout, alignment, and label. Resources are set in
five ways:

• In the application code when the widget is created

• In the application code after the widget is created

• Through the resource database

• In a command line option

• Dynamically while the application is running

If a resource is not set in any of these ways, OLIT will set the resource to a
default value. This chapter describes setting resources in the source code and
in a resource file. Setting resources in the command line or dynamically is
described in The X Window System Programming and Applications with Xt.

OLIT Resource Documentation
Widget class resources are documented alphabetically in the OLIT Reference
Manual. Widget class-specific resources are listed and described in the section
about the widget class. Common resources, resources that widget classes inherit
from their widget class parents (see Figure 1-3), are described in Chapter 2 of
the OLIT Reference Manual.

28 OLIT QuickStart Programmer’s Guide—August 1994

3

Common Resource

Because all widgets are subclassed from the Core widget class, all widgets
inherit the Core resources. Likewise, widget classes such ControlArea and
Rubbertile are further subclassed from Composite and Manager and so inherit
the resources of these two classes. Common resources are described in Chapter
2 of the OLIT Reference Manual.

While widget classes may share many common resources, how a common
resource affects one widget class may differ in the way it affects another
widget class. These differences, along with the widget class’s own unique
resources, are documented in the specific widget class sections in the OLIT
Reference Manual.

The OLIT Reference Manual lists resources by widget class, including the
resources of all its superclasses, to reflect the OLIT architecture. Thus, the
ControlArea Resource Table lists the ControlArea resources under four widget
classes, Composite, Core, Manager, and Widget. In most cases, however, you
aren’t interested in the architecture, but simply wish to know what the settable
resources are, what attributes do they control, what type of values do they
take, and what the default is. We provide this information along with the
architecture information so you will understand the relationship and shared
characteristics of OLIT widgets.

Setting Resource Values at Widget Creation
XtVaCreateManagedWidget() allows you to set widget resource values in
the source code when the widget is first created. Resources set in this manner
are said to be hardcoded since these resource values take precedence over values
in the resource database (described in “Setting Resource Values with the
Resource Database). Let’s see how we can set resource values during widget
creation by changing and adding a few resources in hello.c .

First we’ll change the button layout of our program. Turn to the ControlArea
section of the OLIT Reference Manual and look at the descriptions of
XtNlayoutType and XtNmeasure . As you can see, the combination
XtNlayoutType and XtNmeasure allows you to change the layout of the
child widgets of control_area . The current code aligns the buttons
horizontally. To align them vertically we set XtNlayoutType to
OL_FIXEDCOLS and XtNmeasure to 1. Open hello.c with an editor and add
the following lines to the control_area argument list:

OLIT Resources 29

3

XtNlayoutType, OL_FIXEDCOLS,
XtNmeasure, 1,

Now turn to the OblongButton section of the OLIT Reference Manual and look
at the description of XtNlabel . Let’s change our button labels from “Hello!”
and “Goodbye!” to “Bon jour!” and “Adios!” We do this by simply changing
the string value of XtNlabel as follows:

For hello_button:
XtNlabel, “Bon jour!”,

For goodbye_button:
XtNlabel, “Adios!”,

After compiling and running, the program should look like the figure below.

Figure 3-1 hello.c with a New Layout and Labels

Setting Color and Font Resources

Most widget resources are set with a simple resource value pair. Color and font
resources, however, require a value of type pixel or OlFont , which needs to be
set differently. Instead of a value pair, these resources are set using the
following format:

XtVaTypedArg,
<resource_name> , XtRString,
“ <resource_value> ”, strlen(“ <resource_value> ”)+1,

where,
<resource_name> is the name of a color or font resource.

<resource_value> is the name of a color value listed in
$OPENWINHOME/lib/rgb.txt or the name of a font listed after executing the
xlsfonts command.

30 OLIT QuickStart Programmer’s Guide—August 1994

3

When XtVaTypedArg is used in a resource specification, the next four
arguments are interpreted as special instructions to start a resource converter
and set the resource to the result of the conversion. The first argument is the
name of the resource to be set. The next argument is the type definition of the
next argument, usually XtRString (an Intrinsics-defined string resource type).
The third argument is the string value to be converted. The forth argument is
the length of the string value, taking into account the string terminator
character.

To change the color of the control_area and the goodbye_button ,
background (assuming you have a color monitor) we look through
$OPENWINHOME/lib/rgb.txt and select two colors, say DodgerBlue and
bisque . In the control_area argument list we add:

XtVaTypedArg,
XtNbackground, XtRString,
“DodgerBlue”, strlen(“DodgerBlue”)+1,

In the goodbye_button argument list we add:

XtVaTypedArg,
XtNbackground, XtRString,
“bisque”, strlen(“bisque”)+1,

To change the font of the hello_button , we type xlsfonts<Ret> in a
command window and pick a font name, say bembo-bold , and add the
following lines to the hello_button argument list:

XtVaTypedArg,
XtNfont, XtRString,
“bembo-bold”, strlen(“bembo-bold”)+1,

Modify the hello.c files to see how these changes work.

Getting and Setting Resource Values After Widget Creation
After widgets are instantiated, you can still get and set specific widget attribute
values. Let’s play with our hello.c program to see how this works.

Currently, when you press the Bon jour! button, “Bon jour!” is displayed, and
when you press the Adios! button, “Adios!” is displayed. Let’s change the
program such that when someone presses either of these buttons, the header in
the top level window displays either Adios! or Bon Jour!

OLIT Resources 31

3

To do this, we’ll need to write a callback function that retrieves the label
resource value of the selected button and assigns this value to the title resource
of the top-level application shell widget.

First, we’ll call the new callback buttonCB_label() and declare it at the
beginning of our program:

void buttonCB_label();

Next we’ll attach the callback to both hello_button and goodbye_button
by adding the following line after both widget definitions:

XtAddCallback(<widget>, XtNselect, buttonCB_label, toplevel);

where <widget> is either hello_button or goodbye_button . XtNselect
is the callback resource for when an OblongButton is pressed.
buttonCB_label is the name of the callback function. toplevel is the client
data we need to send to the callback. Remember that toplevel is the widget
identifier of the top-level application shell widget. We pass toplevel to the
callback so we can give it a new title resource value.

Finally we add the callback to the source code to the end of the program:

In the code segment above, widget is either hello_button or
goodbye_button , client_data is toplevel , and there is no call_data
for the OblongButton widget. In the function code, we define a string variable
called label , then we execute a new Xt function called XtVaGetValues() .
This function allows you to get the values of a NULL-terminated list of
resources from a specified widget, and store them at the addresses specified in
the argument list. It has the following format:

void buttonCB_label(widget, client_data, call_data)
Widget widget;
XtPointer client_data, call_data;
{
 String label;
 XtVaGetValues(widget,

XtNlabel, &label,
NULL);

 XtVaSetValues(client_data,
XtNtitle, label,
NULL);

}

32 OLIT QuickStart Programmer’s Guide—August 1994

3

void XtVaGetValues(object, . . .,NULL)
Widget object

where object is the widget whose resource values you wish to retrieve, and
. . ., NULL is a NULL-terminated variable-length list of resource names

and addresses where the values of those resources will be stored. In our
example, XtVaGetValues() gets the value of XtNlabel from the pressed
button and stores the value in &label .

The next function, XtVaSetValues() , sets the resource values for a specified
widget using a NULL-terminated vararg list. It has the following format:

void XtVaSetValues(object, . . .,NULL)
Widget object

where object is the widget whose resource values you wish to set, and
. . ., NULL is a NULL-terminated variable-length list of resource/value

pairs that override all other resource settings. If XtVaTypedArg is used in a
resource specification, the next four arguments are interpreted as special
instructions to start a resource converter and set the resource to the result of
the conversion. Refer to the previous section, “Setting Resource Values at
Widget Creation” for details.

In our example, we set the XtNtitle resource of toplevel to label . Note
that there is no section in the OLIT Reference Manual about the
ApplicationShell widget class. However, since we know that the
ApplicationShell widget class is a child of the Shell widget class, we can look
at the Shell resources described in Chapter 2 of the OLIT Reference Manual to
find out the resources used in ApplicationShell.

Enter the new code into the example, compile, and execute. Now when you
press either of the buttons, “Bon jour!” or “Adios!” will appear in the header.

Setting Resource Values with the Resource Database
Resource values not specified in code are retrieved from the resource database.
When an OLIT program is initialized, a widget resource database is
constructed from several system resource files. The database is then embedded
in the OLIT program (Figure 3-2).

OLIT Resources 33

3

The resource files are loaded into the database the following order: applications
defaults file, the per-user application defaults file, the user’s defaults file, an the user’s
per-host defaults file.

Figure 3-2 Resource Database

The applications defaults file contains the first set of resource values loaded
into the resource database. This file is provided by the application writer and
supplies the resource values for the application’s widgets. The applications
defaults file is located in the path identified by environmental variable
XFILESEARCHPATH. In the Solaris environment this is usually
$OPENWINHOME/lib/locale/app-defaults/<application class name> .

The per-user application defaults file is loaded into the resource database next.
This file allows applications to store application-specific resources specified by
the user. The environmental variable XUSERFILESEARCHPATH specifies the
directory containing per-user application defaults files.

1. $XFILESEARCHPATH

2. $XUSERFILESEARCHPATH

3. RESOURCE_MANAGER or

4. $XENVIRONMENT

4. Command-line
 (Application defaults file)

 (Per-user application defaults file)

 (User defaults)

 (User’s per-host defaults)

 Arguments

 .Xdefaults

Application

Resource Database

34 OLIT QuickStart Programmer’s Guide—August 1994

3

The user defaults file contains user customizations that apply to all
applications. The X Toolkit gets the contents of the user defaults file defined by
the RESOURCE_MANAGER property on the root window of the display. If this
property does not exist, the file .Xdefaults in the user’s home directory is
used. To look at properties on the root window use xprop command.

The per-host defaults file is last file loaded. It provides user defined attributes
for the computer on which the application is running. This file is defined by
the XENVIRONMENT environmental variable. If this variable is not defined, the
per-host defaults file is .Xdefaults -host in the user’s home directory, where
host is the name of the computer on which the application is running.

Each resource file overwrites the resource values of the previous resource file.
After all the values of these files are loaded, command line resources are added
to the resource database. Refer to X Window System Programming & Applications
with Xt for details on retrieving resources from the command line, as well as
loading the resource database.

You should only set the resource values in program for the resources that you
do not want a user to change.

Setting Resources in Resource Files

Resource specifications have the following format:

Resource: Value

Let’s use hello.c and the defaults file Resources_hello to demonstrate
how to set resources in default files.

If you haven’t already done so, specify ./Resources_hello as the per-host
resource file by setting the environmental variable XENVIRONMENT to
./Resources_hello in the window which will run hello . Using the C shell
you would enter the following:

% setenv XENVIRONMENT ./Resources_hello <Return>

Any resource specifications in Resources_hello are added to the command
window’s resource database. OLIT applications run from this window will
inherit these resource specifications. If you execute hello from a different
window, it will not inherit the specifications in Resources_hello unless you
reset XENVIRONMENT in the new command window.

OLIT Resources 35

3

After setting XENVIRONMENT, edit hello.c and comment out or remove all
the resource value pairs in control_area , hello_button , and
goodbye_button . When hello is compiled and executed it will look like this:

Figure 3-3 hello.c without Resource Specifications

Note that if a value is not specified for label , hello_button and
goodbye_button take their respective widget names as label values—in this
case button1 and button2 .

Let’s change the labels of the application header and the two OblongButtons.
Open up the file Resources_hello and add the following lines:

hello.title: Greetings
hello.controlarea.button1.label: Hello!
hello.controlarea.button2.label: Goodbye!

Now when you run hello you should get the same output as shown in
Figure 2-1. The format for setting the resource/value pairs in resource files is:

<application>.<parent widgets>.<widget>.<resource>: value

<application> is the name of the executable. <parent widgets> are the
parent widget names (not identifiers) separated by periods. <widget> is the
name of the widget. <resource> is the name of the resource without the XtN
prefix, and value is the value of the resource.

A specification does not have to list out all the ancestor widgets on the path to
the final widget. A asterisk (*) acts as a wildcard by matching any number of
interjacent widgets. For example, run the program after commenting out the
two lines we just added in Resources_hello with a ! sign and adding the
following line to Resources_hello :

*label: Oh no!

36 OLIT QuickStart Programmer’s Guide—August 1994

3

Any widget that uses the label resource will set that resource to “Oh no!” The
result is that both buttons say “Oh no!”

Now let’s use the resource file to align the buttons vertically. First comment out
*label: Oh no! and add the following lines to Resources_hello :

hello.controlarea.layoutType: fixedcols
hello.controlarea.measure: 1

Note that the value for XtNlayoutType , fixedcols , is different from the
value we used in the source code (OL_FIXEDCOLS). In many cases the resource
value string used in a resource file is different from the value used in code,
even though they do the same thing. This difference is documented in the
Values: category of a resource description in the OLIT Reference Manual. The
code string is listed first, followed by a slash, and the defaults file string is
listed second. XtNlayoutType lists the values as follows:

OL_FIXEDCOLS/fixedcols

Resource values can also be set by widget, resource, or application class. For
example, to set the color and font of all OblongButtons, add the following lines
to the defaults file and run hello.

hello.controlarea.OblongButton.Background: aquamarine
hello.controlarea.OblongButton.font: bembo-bold

Instead of specifying a particular widget, we specified the widget class,
OblongButton. As the example above shows, you can specify font and color
resources by name without going through the converting routine used when
setting these resources in code.

Specifying Resources on the Command Line
Resources can be set at the command line by using -xrm command line flag.
Simply enter the executable followed by -xrm and then the resource
specification quotes. The resource value pair is then added to the resource
database.

You can test this by executing the following command which puts the word
“Moose” up in the header.

hello -xrm “*title: Moose”

OLIT Resources 37

3

Command Line Options

A number of command line options are built into Xt Intrinsics. These are listed
in Table 3-1 and include -bg , -fg (background and foreground color), -fn ,
(font), and -rv (set reverse video to on). Using hello.c as an example, we
can set the background to orange, and the font to courier by starting up the
program with the following:

hello -fn courier -fg orange

Table 3-1 Standard Command Line Options

Option Resource Name Effect

-bg or -background *background Sets background color

-bd or -bordercolor *borderColor Sets border color

-bw or -borderwidth .borderWidth Sets border width

-display .display Sets display

-fg -foreground *foreground Sets foreground color

-fn or -font *font Sets font

-geometry .geometry Sets size & position of widget.

-iconic .iconic Sets resource to “on”

-name .name Sets name

-rv or -reverse .reverseVideo Sets resource to “on”

+rv .reverseVideo Sets resource to “off”

-selectionTimeout .selectionTimeout Sets selection timeout

-synchronous .synchronous Sets resource to “on”

+synchronous .synchronous Sets resource to “off”

-title .title Sets title resources

-xnllanguage .xnllanguage Sets language

-xrm not applicable Allow users to set attribute-value pairs.

38 OLIT QuickStart Programmer’s Guide—August 1994

3

Creating New Command Line Options

Additional command line options can be created by passing options table to
XtVaAppInitialize() . The options table must be an array of type
XrmOptionsDescList() . Refer to the X Window System Toolkit or The X
Window System Programming and Applications with Xt, OPEN LOOK Edition for
details

Dynamic Resource Changing
OLIT also allows some resources to be changed while the program is running.
Refer to The X Window System Programming and Applications with Xt, OPEN
LOOK Edition for details.

39

Putting It All Together 4

Much of OLIT programming is figuring out how the various widgets work,
and how to assemble them into a user interface. The best way to teach this is to
show it in a real OLIT program. The program described in this chapter,
Translator.c , translates a some common English expressions into several
foreign languages. Examine the run-time application and the commented
source code to get an idea of some of the issues involved in creating an OLIT
application.

You may obtain Translator.c and the its helper files (Makefile , and
Resources_translator) by sending mail to greg.kimura@Eng.sun.com with
the subject line “OLIT Quick-Start Programs”. To compile and execute
Translator.c , copy Translator.c , Makefile , and

40 OLIT QuickStart Programmer’s Guide—August 1994

4

Resources_translator into a work directory. Set the environmental
variable XENVIRONMENT to ./Resources_translator . Enter
make<return> to make. Enter Translator<return> to run.1

Figure 4-1 Translator

Translator translates some common English words into several different
languages. Here’s how to use it:

1. Selected a language by pulling down the abbreviated menu button and
highlighting the desired language. The language will be displayed next to
the abbreviated menu button.

2. Select the type of words you wish to translate by pressing the Salutations,
Affirmations, Niceties, or Gender buttons.

3. Press one of the Oblong buttons for a translation of the desired word. The
translated word will appear next to the label Translation:.

Table 4-1 lists the variables in Translator.c . Code Example 4-1 shows the
resource file for Translator.c . Code Example 4-2 lists the source code.

1. Note that if you are not using OpenWindows 3.2 or Asian OpenWindows 3.1, you may have trouble
compiling this program unless you remove the line which reads OlToolkitInitialize((XtPointer)NULL);

Putting It All Together 41

4

Table 4-1 Translator.c Variable List

Variable Type Description

abbrevmb AbbrevMenuButton Pulldown menu button for the Language buttons.

answer StaticText Foreign language translation of pressed button.

control_area ControlArea Manager widget.

goodbye_button OblongButton Right word button.

hello_button OblongButton Left word button.

holder Exclusives An Exclusives widget used to hold the RectButtons.

i int Counter.

israel[] char Israeli language button labels. Yiddish and Hebrew.

israeli_buttons OblongButtons Yiddish and Hebrew selection button widgets.

israeli_menu MenuButton Israeli MenuButton widget.

isrl_menu MenuShell ,MenuShell subwidget of israeli_menu.

lang_button_cb() void Callback procedure called when a language (lang_button) is
selected. Puts the name of the language next to the
AbbreviatedMenuButton.

lang_buttons[] char Labels for the language selection buttons. English, Spanish,
Japanese, German, French, Swahili

language_buttons[] OblongButtons English, Spanish, Japanese, German, French, Swahili selection
button widgets.

lang_label StaticText Language: label to the left of the abbreviated menu button.

lang_menu MenuShell MenuShell subwidget of abbrevmb.

new_header_cb() void Callback procedure called when the hello and goodbye button
are selected. Sets application header to the string in the
Hello/Goodbye buttons.

opposites[] char Names of the word pairs. Salutations, Affirmations, Niceties,
Gender.

opposites_cb() void Callback procedure called when an opposites button
(Salutations, Affirmations, Niceties, and Gender) is selected.
When button is selected, the corresponding word pair is
displayed in the Hello and Goodbye buttons.

42 OLIT QuickStart Programmer’s Guide—August 1994

4

Figure 4-2 Translator.c Widget Tree Diagram

Opposites[] RectButtons Opposites selection buttons. Salutations, Affirmations, Niceties,
Gender.

opposites[] char Opposites selection button labels. Salutations, Affirmations,
Niceties, Gender.

preview_lang StaticText Previews the selected language.

spacer_button OblongButton Used to create a blank space between the Goodbye button and
“Language”.

toplevel TopLevelShell Top level shell widget.

translation StaticText Static label. “Translations:”

translation_cb() void Callback executed when a word button is pressed. Matches
word and language. Prints out the foreign language translation.

Table 4-1 Translator.c Variable List

Variable Type Description

toplevel

controlarea

hello_button

language_buttons israeli_menu

goodbye_button spacer_button lang_label abbrevmb preview_lang

lang_menu

isrl_menu

israeli_buttons

holder translation answer

Opposites

Putting It All Together 43

4

Code Example 4-1 Resource File for Translator.c (Resources_translator)

####### Default Resource File #######

hello.control_area.spacer_button.label: space
hello.control_area.spacer_button.mappedWhenManaged: FALSE
hello.control_area.lang_label.string: Language
hello.control_area.translation.string: Translation:
hello.control_area.preview_lang.string: English

*lang_label.Font: -adobe-helvetica-bold-r-normal--14-140-75-75-p-82-iso8859-1
*translation.Font: -adobe-helvetica-bold-r-normal--14-140-75-75-p-82-iso8859-1

hello.control_area.layoutType: fixedcols
hello.control_area.measure: 6

hello*holder.layoutType: fixedcols
hello*holder.measure: 1

*background: grey85
*fontColor: blue
*borderColor: black
*inputFocusColor: red
*traversalOn: false

Code Example 4-2 Translator.c

/* Translator.c program */

/* Required OLIT Headers */
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Shell.h>include
#include <Xol/OpenLook.h>

/* Specific Widget Headers */
#include <Xol/ControlAre.h>
#include <Xol/OblongButt.h>
#include <Xol/MenuButton.h>
#include <Xol/StaticText.h>
#include <Xol/AbbrevMenu.h>
#include <Xol/Exclusives.h>

44 OLIT QuickStart Programmer’s Guide—August 1994

4

#include <Xol/RectButton.h>

/* The following variables are global because they are used in the callback functions, which are outside
 * of main().*/

static Widget preview_lang, hello_button, goodbye_button, answer;
char *lang_buttons[] = { “English”, “Spanish”, “Japanese”, “German”,

”French”, “Swahili” };

char *israel[] = {“Yiddish”, “Hebrew”};
char *opposites[] = { “Salutations”, “Affirmations”,”Niceties”, “Gender”};

main(argc,argv)
int argc;
char *argv[];

{
XtAppContext app;
Widget toplevel, control_area,

abbrevmb, language_buttons[XtNumber(lang_buttons)],
israeli_buttons[XtNumber(israel)], lang_menu,
israeli_menu, isrl_menu, lang_label, spacer_button, holder,
Opposites[XtNumber(opposites)], translation;

int i;
void translation_cb();
void new_header_cb();
void lang_button_cb(), opposites_cb();

/* Initialize the toolkit and create the toplevel shell. OlSetDefaultTextFormat is for
 * internationalization and will only work with OpenWindows 3.2 or Asian OpenWindows
 * 3.1. If you are not using one of these versions, comment out this line. */

OlToolkitInitialize((XtPointer)NULL);
toplevel = XtVaAppInitialize(&app, “hello”,

(XrmOptionDescList)NULL, 0,
&argc, argv,
(String *)NULL,
NULL);

/* Create application’s manager widget. The ControlArea widget class lays out children
 * widgets left to right in order of creation. Thus, the first widget displays on the left, the
 * 2nd to the right of the 1st, etc. If the layout is specified as vertical, child widgets are
 * displayed top to bottom in order of creation. */

control_area = XtVaCreateManagedWidget(“control_area”,

Code Example 4-2 Translator.c

Putting It All Together 45

4

controlAreaWidgetClass, toplevel,
NULL);

/* Create hello button widget. */

hello_button = XtVaCreateManagedWidget(“hello_button”,
oblongButtonWidgetClass, control_area,
XtNlabel, “Hello”,
NULL);

/* Attach callback procedures to the hello_button. */

XtAddCallback(hello_button, XtNselect, translation_cb, NULL);
XtAddCallback(hello_button, XtNselect, new_header_cb, toplevel);

/* Create goodbye button widget */

goodbye_button = XtVaCreateManagedWidget(“button2”,
oblongButtonWidgetClass, control_area,
XtNlabel, “Goodbye”,
NULL);

/* Attach callback procedures to the goodbye_button. */

XtAddCallback(goodbye_button, XtNselect, translation_cb, NULL);
XtAddCallback(goodbye_button, XtNselect, new_header_cb, toplevel);

/* Create spacer button widget. This button is used to put a blank space between the goodbye
 * button and “Language:” StaticText widget. This button takes up space but is not visible.
 * We make the button invisible by setting the OblongButton resource mappedWhenManaged to
 * FALSE in the resources file. */

spacer_button = XtVaCreateManagedWidget(“spacer_button”,
oblongButtonWidgetClass, control_area,
NULL);

/* Create “Language:” statictext widget. */

lang_label = XtVaCreateManagedWidget(“lang_label”, staticTextWidgetClass,
control_area,
XtNstring, “Language:”,
NULL);

/* Create AbbrevMenuButton widget. This widget allows us to pull down a menu with

Code Example 4-2 Translator.c

46 OLIT QuickStart Programmer’s Guide—August 1994

4

 * all the language selection buttons. */

abbrevmb = XtVaCreateManagedWidget(“abbrevmb”, abbrevMenuButtonWidgetClass,
 control_area, NULL);

/* The AbbrevMenuButton widget is a composite widget. That is, other widgets,
 * called subwidgets, are attached to, and part of, this widget. An AbbrevMenuButton
 * widget consists of a triangular Abbreviated Menu Button, a Current Selection
 * Widget, and a MenuShell widget. In the line below, we get a pointer to abbrevmb’s
 * MenuShell widget, and assign it to lang_menu. */

XtVaGetValues(abbrevmb, XtNmenuPane, &lang_menu, NULL);

/* Create a language preview statictext widget that will preview the language
 * selected. */

preview_lang = XtVaCreateManagedWidget(“preview_lang”, staticTextWidgetClass,
control_area, NULL);

/* Set abbrevmb’s Current Selection Widget (resource XtNpreviewWidget) to the value
 * of preview_lang. */

XtVaSetValues(abbrevmb, XtNpreviewWidget, preview_lang, NULL);

/* Create language selection buttons (OblongButton widgets). Put language labels on
 * the buttons. XtNumber() counts the number of members in an array. Note that if no
 * button label resource (XtNlabel) is specified in the code or a resource file, the
 * widget name is used as the label. Thus, all our language buttons are labeled
 * with their respective widget names. */

for(i=0;i<XtNumber(lang_buttons);i++) {
language_buttons[i] = XtVaCreateManagedWidget(lang_buttons[i],
oblongButtonWidgetClass, lang_menu, NULL);

/* Attach a callback such that when the language button is pressed, the selected
 * language is displayed next to the Abbreviated Menu Button. */

XtAddCallback(language_buttons[i], XtNselect, lang_button_cb, lang_buttons[i]);
 }

/* Create an Israeli MenuButton widget. When this button is selected then dragged
 * to the right, two more language buttons, Yiddish and Hebrew, are displayed. */

israeli_menu = XtVaCreateManagedWidget(“Israeli”, menuButtonWidgetClass,

Code Example 4-2 Translator.c

Putting It All Together 47

4

lang_menu, NULL);

/* The MenuButton widget is another composite widget. In addition to the menu button,
 * it also consists of a triangular mark, and a MenuShell widget. The MenuShell is
 * accessed by selecting the button, then dragging the mouse to the right or down.
 * In the line below, we get a pointer to israeli_menu’s MenuShell widget, and assign
 * it to isrl_menu. */

 XtVaGetValues(israeli_menu, XtNmenuPane, &isrl_menu, NULL);

/* Create two Israeli language OblongButtons, “Hebrew” and “Yiddish” in the MenuButton
 * widget. Attach a callback such that when the Hebrew or Yiddish buttons are pressed,
 * the selected language is displayed next to the Abbreviated Menu Button. Again, if no
 * button label resource (XtNlabel) is specified in the code or a resource file, the
 * widget name is used as the label. Thus, all our Israeli language buttons are labeled
 * with their respective widget names. */

for(i=0;i<XtNumber(israel);i++) {
 israeli_buttons[i] = XtVaCreateManagedWidget(israel[i],

oblongButtonWidgetClass,
isrl_menu, NULL);

XtAddCallback(israeli_buttons[i], XtNselect, lang_button_cb, israel[i]);
 }

/* Create an Exclusives Widget to contain our four RectButtons (Salutations,
 * Affirmations, Niceties, and Gender). Buttons in the Exclusives widget are
 * exclusive. That is, only one button can be selected in an exclusives widget. */

 holder = XtVaCreateManagedWidget(“holder”, exclusivesWidgetClass,
control_area, NULL);

/* Add 4 RectButton widgets to the exclusives widget. Attach a callback such that
 * when a button is selected, the corresponding word pair is displayed in the
 * hello and goodbye buttons. Again, the button labels take on the names of the
 * buttons, so there is no need to explicitly set the label resource. */

for(i=0;i<4;i++) {
 Opposites[i] = XtVaCreateManagedWidget(opposites[i], rectButtonWidgetClass,

 holder, NULL);
XtAddCallback(Opposites[i], XtNselect, opposites_cb, NULL);

 }

/* Create a statictext widget called “Translation:” */

Code Example 4-2 Translator.c

48 OLIT QuickStart Programmer’s Guide—August 1994

4

translation = XtVaCreateManagedWidget(“translation”, staticTextWidgetClass,
control_area, NULL);

/* Create a statictext widget that displays the foreign language translation of the
 * selected button. */

answer = XtVaCreateManagedWidget(“answer”, staticTextWidgetClass,
control_area,
NULL);

/* realize the widgets and begin the main loop */

XtRealizeWidget(toplevel);
XtAppMainLoop(app);

}

/* CALLBACKS!!! */

/* Procedure called when the hello and goodbye button are selected. Sets application header
 * to the string in the hello/goodbye buttons. */

void new_header_cb(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data, call_data;
{
 String label;
 XtVaGetValues(widget,

XtNlabel, &label,
NULL);

 XtVaSetValues(client_data,
XtNtitle, label,
NULL);

}

/* Procedure called when a language (lang_button) is selected. Puts the name of the
 * language next to the AbreviatedMenuButton. */

void lang_button_cb(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data, call_data;
{

XtVaSetValues(preview_lang, XtNstring, client_data, NULL);
}

Code Example 4-2 Translator.c

Putting It All Together 49

4

/* Procedure called when an opposites button (Salutations, Affirmations, Niceties, and Gender)
 * is selected. When a button is selected, the corresponding word pair is displayed in the
 * hello and goodbye buttons. */

void opposites_cb(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data, call_data;
{
 char *word;
 XtVaGetValues(widget,

XtNlabel, &word,
NULL);

 if (strcmp(word, “Affirmations”) == 0) {
 XtVaSetValues(hello_button,

XtNlabel, “Yes”,
NULL);

 XtVaSetValues(goodbye_button,
XtNlabel, “No”,
NULL);

}
 else if (strcmp(word, “Salutations”) == 0) {

 XtVaSetValues(hello_button,
XtNlabel, “Hello”,
NULL);

 XtVaSetValues(goodbye_button,
XtNlabel, “Goodbye”,
NULL);

}
 else if (strcmp(word, “Niceties”) == 0) {

 XtVaSetValues(hello_button,
XtNlabel, “Please”,
NULL);

 XtVaSetValues(goodbye_button,
XtNlabel, “Thank you”,
NULL);

}
 else
{

 XtVaSetValues(hello_button,
XtNlabel, “Sir”,
NULL);

 XtVaSetValues(goodbye_button,
XtNlabel, “Madam”,

Code Example 4-2 Translator.c

50 OLIT QuickStart Programmer’s Guide—August 1994

4

NULL);
}

}

/* Translations callback. Matches a word and language to print out the foreign language
 * translation. */

void translation_cb(widget, client_data, call_data)
Widget widget;
XtPointer client_data;
XtPointer call_data;

{
 char *word,*lang;
 XtVaGetValues(widget,

XtNlabel, &word,
NULL);

 XtVaGetValues(preview_lang,
XtNstring, &lang,
NULL);

 /* English printout commands. */

 if ((strcmp(word, “Yes”) == 0) && (strcmp(lang, “English”)) == 0)
 XtVaSetValues(answer,

XtNstring, “Yes”,
NULL);

 if ((strcmp(word, “No”) == 0) && (strcmp(lang, “English”)) == 0)
 XtVaSetValues(answer, XtNstring, “No”, NULL);

 if ((strcmp(word, “Hello”) == 0) && (strcmp(lang, “English”)) == 0)
 XtVaSetValues(answer, XtNstring, “Hello!”, NULL);

 if ((strcmp(word, “Goodbye”) == 0) && (strcmp(lang, “English”)) == 0)
 XtVaSetValues(answer, XtNstring, “Goodbye!”, NULL);

 if ((strcmp(word, “Thank you”) == 0) && (strcmp(lang, “English”)) == 0)
 XtVaSetValues(answer, XtNstring, “Thank you”, NULL);

 if ((strcmp(word, “Please”) == 0) && (strcmp(lang, “English”)) == 0)
 XtVaSetValues(answer, XtNstring, “Please”, NULL);

 if ((strcmp(word, “Sir”) == 0) && (strcmp(lang, “English”)) == 0)
 XtVaSetValues(answer, XtNstring, “Sir”, NULL);

 if ((strcmp(word, “Madam”) == 0) && (strcmp(lang, “English”)) == 0)
 XtVaSetValues(answer, XtNstring, “Madam”, NULL);

/* Translation Tables. When word and language button match is found,
 * the English translation is printed on screen */

Code Example 4-2 Translator.c

Putting It All Together 51

4

/* Spanish translations. */

 if ((strcmp(word, “Yes”) == 0) && (strcmp(lang, “Spanish”)) == 0)
 XtVaSetValues(answer, XtNstring, “Sí”, NULL);

 if ((strcmp(word, “No”) == 0) && (strcmp(lang, “Spanish”)) == 0)
 XtVaSetValues(answer, XtNstring, “No”, NULL);

 if ((strcmp(word, “Hello”) == 0) && (strcmp(lang, “Spanish”)) == 0)
 XtVaSetValues(answer, XtNstring, “Hola!”, NULL);

 if ((strcmp(word, “Goodbye”) == 0) && (strcmp(lang, “Spanish”)) == 0)
 XtVaSetValues(answer, XtNstring, “Adiós!”, NULL);

 if ((strcmp(word, “Thank you”) == 0) && (strcmp(lang, “Spanish”)) == 0)
 XtVaSetValues(answer, XtNstring, “Gracias”, NULL);

 if ((strcmp(word, “Please”) == 0) && (strcmp(lang, “Spanish”)) == 0)
 XtVaSetValues(answer, XtNstring, “Por Favor!”, NULL);

 if ((strcmp(word, “Sir”) == 0) && (strcmp(lang, “Spanish”)) == 0)
 XtVaSetValues(answer, XtNstring, “Señor”, NULL);

 if ((strcmp(word, “Madam”) == 0) && (strcmp(lang, “Spanish”)) == 0)
 XtVaSetValues(answer, XtNstring, “Señora”, NULL);

/* Japanese translations. */

 if ((strcmp(word, “Yes”) == 0) && (strcmp(lang, “Japanese”)) == 0)
 XtVaSetValues(answer, XtNstring, “Hai”, NULL);

 if ((strcmp(word, “No”) == 0) && (strcmp(lang, “Japanese”)) == 0)
 XtVaSetValues(answer, XtNstring, “iie”, NULL);

 if ((strcmp(word, “Hello”) == 0) && (strcmp(lang, “Japanese”)) == 0)
 XtVaSetValues(answer, XtNstring, “Moshi-moshi!”, NULL);

 if ((strcmp(word, “Goodbye”) == 0) && (strcmp(lang, “Japanese”)) == 0)
 XtVaSetValues(answer, XtNstring, “Sayonara”, NULL);

 if ((strcmp(word, “Thank you”) == 0) && (strcmp(lang, “Japanese”)) == 0)
 XtVaSetValues(answer, XtNstring, “Domo arrigato”, NULL);

 if ((strcmp(word, “Please”) == 0) && (strcmp(lang, “Japanese”)) == 0)
 XtVaSetValues(answer, XtNstring, “Dozo”, NULL);

 if ((strcmp(word, “Sir”) == 0) && (strcmp(lang, “Japanese”)) == 0)
 XtVaSetValues(answer, XtNstring, “-san appended to name, e.g., \
 Honorable Clinton-san”, NULL);

 if ((strcmp(word, “Madam”) == 0) && (strcmp(lang, “Japanese”)) == 0)
 XtVaSetValues(answer, XtNstring, “-san appended to name, e.g., \
 Honorable Hillery-san”, NULL);

/* German translations. */

 if ((strcmp(word, “Yes”) == 0) && (strcmp(lang, “German”)) == 0)

Code Example 4-2 Translator.c

52 OLIT QuickStart Programmer’s Guide—August 1994

4

 XtVaSetValues(answer, XtNstring, “Ja”, NULL);
 if ((strcmp(word, “No”) == 0) && (strcmp(lang, “German”)) == 0)

 XtVaSetValues(answer, XtNstring, “nein”, NULL);
 if ((strcmp(word, “Hello”) == 0) && (strcmp(lang, “German”)) == 0)

 XtVaSetValues(answer, XtNstring, “Hallo!”, NULL);
 if ((strcmp(word, “Goodbye”) == 0) && (strcmp(lang, “German”)) == 0)

 XtVaSetValues(answer, XtNstring, “Auf wiedersehen!”, NULL);
 if ((strcmp(word, “Thank you”) == 0) && (strcmp(lang, “German”)) == 0)

 XtVaSetValues(answer, XtNstring, “Dankeschön”, NULL);
 if ((strcmp(word, “Please”) == 0) && (strcmp(lang, “German”)) == 0)

 XtVaSetValues(answer, XtNstring, “Bitte”, NULL);
 if ((strcmp(word, “Sir”) == 0) && (strcmp(lang, “German”)) == 0)

 XtVaSetValues(answer, XtNstring, “Herr”, NULL);
 if ((strcmp(word, “Madam”) == 0) && (strcmp(lang, “German”)) == 0)

 XtVaSetValues(answer, XtNstring, “Frau”, NULL);

/* French translations. */

 if ((strcmp(word, “Yes”) == 0) && (strcmp(lang, “French”)) == 0)
 XtVaSetValues(answer, XtNstring, “Oui!”, NULL);

 if ((strcmp(word, “No”) == 0) && (strcmp(lang, “French”)) == 0)
 XtVaSetValues(answer, XtNstring, “Non!”, NULL);

 if ((strcmp(word, “Hello”) == 0) && (strcmp(lang, “French”)) == 0)
 XtVaSetValues(answer, XtNstring, “Allo!”, NULL);

 if ((strcmp(word, “Goodbye”) == 0) && (strcmp(lang, “French”)) == 0)
 XtVaSetValues(answer, XtNstring, “Adieu!”, NULL);

 if ((strcmp(word, “Thank you”) == 0) && (strcmp(lang, “French”)) == 0)
 XtVaSetValues(answer, XtNstring, “Merci!”, NULL);

 if ((strcmp(word, “Please”) == 0) && (strcmp(lang, “French”)) == 0)
 XtVaSetValues(answer, XtNstring, “S’il vous plâit”, NULL);

 if ((strcmp(word, “Sir”) == 0) && (strcmp(lang, “French”)) == 0)
 XtVaSetValues(answer, XtNstring, “Monsieur”, NULL);

 if ((strcmp(word, “Madam”) == 0) && (strcmp(lang, “French”)) == 0)
 XtVaSetValues(answer, XtNstring, “Madame”, NULL);

/* Swahili translations. */

 if ((strcmp(word, “Yes”) == 0) && (strcmp(lang, “Swahili”)) == 0)
 XtVaSetValues(answer, XtNstring, “Naam”, NULL);

 if ((strcmp(word, “No”) == 0) && (strcmp(lang, “Swahili”)) == 0)
 XtVaSetValues(answer, XtNstring, “Siyo”, NULL);

 if ((strcmp(word, “Hello”) == 0) && (strcmp(lang, “Swahili”)) == 0)
 XtVaSetValues(answer, XtNstring, “Jambo!”, NULL);

 if ((strcmp(word, “Goodbye”) == 0) && (strcmp(lang, “Swahili”)) == 0)

Code Example 4-2 Translator.c

Putting It All Together 53

4

 XtVaSetValues(answer, XtNstring, “Kwaheri!”, NULL);
 if ((strcmp(word, “Thank you”) == 0) && (strcmp(lang, “Swahili”)) == 0)

 XtVaSetValues(answer, XtNstring, “Asante”, NULL);
 if ((strcmp(word, “Please”) == 0) && (strcmp(lang, “Swahili”)) == 0)

 XtVaSetValues(answer, XtNstring, “Pendeza”, NULL);
 if ((strcmp(word, “Sir”) == 0) && (strcmp(lang, “Swahili”)) == 0)

 XtVaSetValues(answer, XtNstring, “Bwana”, NULL);
 if ((strcmp(word, “Madam”) == 0) && (strcmp(lang, “Swahili”)) == 0)

 XtVaSetValues(answer, XtNstring, “Bibi mkubwa”, NULL);

/* Yiddish translations. */

 if ((strcmp(word, “Yes”) == 0) && (strcmp(lang, “Yiddish”)) == 0)
 XtVaSetValues(answer, XtNstring, “Ya”, NULL);

 if ((strcmp(word, “No”) == 0) && (strcmp(lang, “Yiddish”)) == 0)
 XtVaSetValues(answer, XtNstring, “Neyn”, NULL);

 if ((strcmp(word, “Hello”) == 0) && (strcmp(lang, “Yiddish”)) == 0)
 XtVaSetValues(answer, XtNstring, “Sholom a ley-khem!”, NULL);

 if ((strcmp(word, “Goodbye”) == 0) && (strcmp(lang, “Yiddish”)) == 0)
 XtVaSetValues(answer, XtNstring, “A gut-n tog!”, NULL);

 if ((strcmp(word, “Thank you”) == 0) && (strcmp(lang, “Yiddish”)) == 0)
 XtVaSetValues(answer, XtNstring, “Zayt a-zoy gut”, NULL);

 if ((strcmp(word, “Please”) == 0) && (strcmp(lang, “Yiddish”)) == 0)
 XtVaSetValues(answer, XtNstring, “A dank”, NULL);

 if ((strcmp(word, “Sir”) == 0) && (strcmp(lang, “Yiddish”)) == 0)
 XtVaSetValues(answer, XtNstring, “Givar”, NULL);

 if ((strcmp(word, “Madam”) == 0) && (strcmp(lang, “Yiddish”)) == 0)
 XtVaSetValues(answer, XtNstring, “Givaret”, NULL);

/* Hebrew translations. */

 if ((strcmp(word, “Yes”) == 0) && (strcmp(lang, “Hebrew”)) == 0)
 XtVaSetValues(answer, XtNstring, “Ken”, NULL);

 if ((strcmp(word, “No”) == 0) && (strcmp(lang, “Hebrew”)) == 0)
 XtVaSetValues(answer, XtNstring, “Lo”, NULL);

 if ((strcmp(word, “Hello”) == 0) && (strcmp(lang, “Hebrew”)) == 0)
 XtVaSetValues(answer, XtNstring, “Shah-lom!”, NULL);

 if ((strcmp(word, “Goodbye”) == 0) && (strcmp(lang, “Hebrew”)) == 0)
 XtVaSetValues(answer, XtNstring, “Lehitra-ot!”, NULL);

 if ((strcmp(word, “Thank you”) == 0) && (strcmp(lang, “Hebrew”)) == 0)
 XtVaSetValues(answer, XtNstring, “Bevakasha”, NULL);

 if ((strcmp(word, “Please”) == 0) && (strcmp(lang, “Hebrew”)) == 0)
 XtVaSetValues(answer, XtNstring, “Toda raba”, NULL);

 if ((strcmp(word, “Sir”) == 0) && (strcmp(lang, “Hebrew”)) == 0)

Code Example 4-2 Translator.c

54 OLIT QuickStart Programmer’s Guide—August 1994

4

 XtVaSetValues(answer, XtNstring, “Adon”, NULL);
 if ((strcmp(word, “Madam”) == 0) && (strcmp(lang, “Hebrew”)) == 0)

 XtVaSetValues(answer, XtNstring, “Geveret”, NULL);
}

Code Example 4-2 Translator.c

55

Glossary

application context
A pointer to an opaque data structure containing all the information the toolkit
maintains for one application.

attributes
See resources.

callback procedures, callbacks
Procedures executed when some user action occurs on a widget.The
procedures are typically written as part of the applications, but invoked by the
toolkit.

callback list, callback resource
List of callback procedures that are executed when some user action occurs on
a widget. The callback list is referenced as an OLIT-defined callback resource.

child widget

1. In the OLIT class hierarchy (see Figure 1-3), a subclass of a widget is referred
to as the child widget.

2. In an application, a child widget is a widget that is owned and managed by
a parent widget. Parent widgets manage the size and location of their
children, and control input to their children by controlling the input focus.
An application organizes widgets into a hierarchy of children and parents,
the root of which is the top level shell widget created by
XtVaAppInitialize() .

56 OLIT QuickStart Programmer’s Guide—August 1994

class
See widget class.

client-server computing model
A computing model in which a client (application) receives user input and
sends output to a display server (a program which controls a workstation’s
display) rather than directly to a workstation’s hardware.

composite widget
Widgets composed of other subwidgets. For example, the MenuButton widget
consists of a MenuButton plus MenuShell.

display

1. Hardware: a computer’s monitor or CRT.

2. Software: a single display server process, which is capable of displaying to
multiple CRTs.

Inheritance
When a widget subclasses another widget, the subclassed widget inherits
operating characteristics and the resource set of its superclass.

instantiation
The process of creating a particular widget from a particular widget class. The
term widget instance refers to a specific widget as opposed to a widget class.

manager widgets

A class of widgets that contain and manage other widgets. ControlArea,
Exclusives, Form, and RubberTile are typical manager widgets. Some manager
widgets, such as CheckBox, Caption, FileChooser, and ScrolledWindow, are
both viewable and perform user input/output functions.

name
A string associated with a widget instance. Used to specify resource values in a
resource file.

object
A programming unit consisting of unchangeable code and changeable data
that create a programmatic entity with which to construct programs. Widgets
are objects.

57

OLIT
An X Window System-based® widget set and library used to create
applications using the OPEN LOOK® graphical user interface.

parent widget

1. In the OLIT class hierarchy (see Figure 1-3), a widget’s superclass is referred
to as the parent widget.

2. In an application, all widgets are children of some parent widget. Parent
widgets manage the size and location of their children and control input to
their children by controlling the input focus. An application organizes
widgets into a hierarchy of children and parents, the root of which is the top
level shell widget created by XtVaAppInitialize() .

primitive widgets
A class of displayable widgets that usually perform some type of information
display or user interaction function. Buttons, Gauges, Scrollbars, Sliders, and
DropTargets are all primitive widgets.

resources
Named, settable, attributes of a widget such as button label, background color,
font type, or widget position.

server

1. Software: a program which controls a workstation’s display.

2. A computer that servers other node computers by storing/retrieving files,
sending/receiving e-mail, etc.

subclass
A widget class created from another widget class. A subclassed widget is
created by modifying and specializing another widget class called the
superclass. The subclass inherits some or all of the characteristics of it’s
superclass. Class architecture and inheritance make it easier to create new
widgets because as subclasses use much of the same code and declarations as
its superclass.

subwidget
A widget that is a component of another widget. The MenuButton widget
contains one subwidget, a MenuShell, that is accessible through the
XtNmenupane resource.

58 OLIT QuickStart Programmer’s Guide—August 1994

superclass
A widget class which is modified and specialized to create another widget
class (a subclass). The subclass inherits some or all of the characteristics of the
superclass. Class architecture and inheritance make it easier to create new
widgets because subclasses use much of the same code and declarations as its
superclass.

widget
User interface elements like buttons, scrollbars, control areas, text edit areas,
etc. Programmatically, widgets are specialized X windows implemented as
data structures. When widgets are created by some X Toolkit Intrinsics
function, they are returned as an opaque data handle and assigned to a
variable called a widget identifier.

widget class
Refers to the widget’s type. Class defines the characteristics and set of
operations that can be performed on a class of widgets. ControlArea,
OblongButton, and Shell are widget classes. See Figure 1-3.

widget class hierarchy
The hierarchy of widget superclasses and subclasses. See Figure 1-3.

widget instance
Refers to a specific widget instance as opposed to a widget class. See
instantiation.

Widget set
A family of widgets used together to produce a unified user interface. Athena
is one such widget set. OLIT is another.

Xlib
The C language interface to the X protocol.

X Window System Protocol
The computer protocol by which clients communicate with the X server and
vice versa. Also referred to as the X protocol.

X Server

A program which controls a workstation’s display. The X Server handles
output from an application (also called the client) to the screen(s), and sends
input from the keyboard or mouse to the appropriate client for processing.

59

X Window System Toolkit
An X consortium standard that provides the structure and library functions for
creating and assembling widgets into a user interface. Often referred to as the
X Toolkit, Xt Intrinsics, Intrinsics, and Xt.

60 OLIT QuickStart Programmer’s Guide—August 1994

61

Index

Symbols
.Xdefaults-host, 34

A
Adios!, 29
application class name, 19
application context, 18, 55
applications defaults file, 33
attributes, 9, 55

B
Bon jour!, 29

C
callback list, 22, 55
callback procedures, 55
callbacks, 9

attaching to widgets, 22
format, 24

child widget, 55
class, 56
class name, 19
client, 2
client_data, 23
client-server computing model, 2, 56

command line options, 19, 37
creating new ones, 38

composite widget, 56
ControlArea, 20

D
device independence, 2
display, 56

F
fallback resources, 19

H
hello.c, 15

Callback Procedure, 24
source code, 16
widget instance tree, 21

I
include files, 17
Inheritance, 56
instantiate, 3
instantiation, 56
internationalization, 14, 16
Intrinsics, 1

62 OLIT QuickStart Programmer’s Guide—August 1994

M
Makefile, 15
manager widgets, 56
mappedWhenManaged, 45

N
name, 56

O
object, 56
Ol, prefix, 19
OL_FIXEDCOLS, 28
OLIT, 57

basic concepts, 1
definition, 1
example program, 39
program structure, 13, 14

OLIT, include files, 17
OlSetDefaultTextFormat, 16
OlToolkitInitialize(), 19
OPEN LOOK, 1

P
parent widget, 57
per-user application defaults file, 33
pixel, 29
primitive widgets, 57

R
resource

documentation, 27
resource database, 28, 32
resource file, 9
resource set of its superclass.

instantiation, 56
resource/value pairs, 10, 19, 21
RESOURCE_MANAGER, 34
resources, 57

applications defaults file, 33

common, 27
composite, 28
core, 28
database, 33
default values, 22
dynamic changing, 38
format of value pairs, 35
getting and setting, 30
hardcoded, 28
hello.c, 28
OLIT, 27
per-user application defaults file, 33
pixel type, 29
setting at creation, 21, 28
setting color and fonts at creation, 29
setting in resource files, 34, 36
setting on command line, 36
setting via database, 32
user’s defaults file, 33
user’s

per-host defaults file, 33
XtVaGetValues(), 31

S
server, 57
subclass, 10, 57
subwidget, 57
subwidgets, 46
superclass, 10, 58

T
top-level shell widget, 19
translator.c, 39

U
user’s defaults file, 33
user’s per-host defaults file, 33

W
widget, 58

application hierarchy, 21

63

class hierarchy, 21
core, 28
deriving class name, 21
handle, 19
identifier, 19
instance, 3
instantiation, 20
name, 20, 46
tree, 21

widget class pointer, 20
WidgetClass, 21
widgets, 1, 3

Action, 7
children, 21
class, 3
class hierarchy, 10
composite, 28, 46, 47
Container, 7
creating, 20
main loop, 24
Manager, 7
manager, 28
names, 47
parent, 21
Popup, 7
realizing, 24
resources, 9
Text Control, 7

X
X, 1
X protocol, 2
X Server, 2, 58
X Window System, 2
X Window System Protocol, 58
X Window System Toolkit, 59
XENVIRONMENT, 15, 34
XFILESEARCHPATH, 33
Xlib, 2, 58
Xt, prefix, 19
XtAddCallback(), 22, 23
XtAppContext, 18
XtAppMainLoop, 24

XtCCallback, 23
XtNlayoutType, 28
XtNmeasures, 28
XtPointer, 19
XtRealizeWidget, 24
XtVaAppInitialize(), 19
XtVaCreateManagedWidget(), 20, 28
XtVaGetValues(), 31, 32
XtVaSetValues(), 31, 32
XtVaTypedArg, 29
XUSERFILESEARCHPATH, 33

64 OLIT QuickStart Programmer’s Guide—August 1994

