
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

OpenWindows Server Device
Developer’s Guide

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open
Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript
and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks
of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xvii

New Features and Changes . xxiii

1. DDX Porting Overview . 1

The DDX Interface . 2

The Loadable DDX. 3

Simple Frame Buffer Support. 3

Multiple-Plane Group Support . 3

2. The Loadable DDX Interface . 5

How the Server Interfaces With the Loadable DDX Handler. . 5

The Initialization Function . 7

Device Self-Identification . 8

DDX Versioning . 8

3. Screen Initialization . 11

Initialization Steps . 11

sunGetDDKVersion . 12

iv OpenWindows Server Device Developer’s Guide—August 1994

Initialize the ScreenRec Functions . 13

sunScreenAllocate . 13

Device-Dependent Initialization . 14

sunSetPixmapFormat . 16

sunGetMonitorRes. 17

sunGetVisualInfo . 18

Export Supported Visuals . 18

Initialize Utility Layers . 19

Initialize the Banner Code . 19

Supply a SaveScreen Function . 20

Supply a CloseScreen Function . 21

Initializing Visual Gamma . 21

Gamma-Corrected Visuals . 21

The Monitor Intensity Response Property 22

Initializing a Root Window Property 23

4. Cursors . 25

The Basic DDX Interface . 25

Software Cursor . 26

miDC Layer . 26

The miPointer Layer . 28

The miSprite Layer . 29

Hardware Cursor . 30

The sunSprite Layer . 30

Examples of miPointerSpriteFuncs . 32

Contents v

Kernel Cursor Tracking - The sunHWCursor Layer 36

5. Multiple Plane Group Interface . 41

MPG Architectural Overview. 41

Data Structure Initialization . 43

MPG Functional Interface . 44

initPixmap . 44

mpgGetScreenState . 45

mpgInsertPlanegroup . 47

Plane Group Aliasing . 49

mpgScreenInit . 53

getMpgInfoFromVisual. 55

mpgChangeInfo . 55

freeMpgInfo . 56

mpgCursorInitialize . 56

mpgSetCursorValues . 57

mpgSetCursorHasEnable . 57

CopyPlanes and AggregatePlanes. 57

6. Overlay Window Interface . 61

Introduction . 61

Device Setup. 62

Transparent Pixel . 63

Initializing Overlays . 66

Overlay GPI Specification. 67

OvlPairs . 67

vi OpenWindows Server Device Developer’s Guide—August 1994

ovlScreenInit. 67

ovlWrapDevFuncs . 68

ovlGetPaintType . 69

ovlIsOverlay . 69

XOvlClutInfo . 70

OvlDevFuncs . 70

7. Window ID Interface . 79

Hardware Window IDs . 79

Software WID Object . 80

WID Object Attributes. 80

Accessing WID . 82

Using MPG . 82

How to Use WID . 82

DDX Handler . 82

MPG. 83

CMAP . 83

WID Data Types . 84

WidPtr . 84

WidAllocFunc. 85

WidFreeFunc . 86

WidSetColorLutFunc. 86

Window ID Functions . 87

General Routines . 87

Handler-Specific Routines . 93

Contents vii

WID Device-Dependent Allocation and Free Functions
Implementation . 94

Allocation Function . 95

Free Function . 96

8. Colormap Interface . 99

Introduction to CMAP. 99

CMAP Call Summary . 100

General Calls . 100

MHC Calls . 100

Compiling and Linking. 101

MPG and WID Initialization. 101

CMAP Initialization and Utilities . 102

Screen Initialization Routine . 102

Device-Dependent Color LUT Access Routines 103

Color LUT Pool Description. 110

Initialization Example - Multiple Color LUT 119

Initialization Example - Single Color LUT 120

WID Types . 121

Utility Routines . 121

Colormap Private Data . 123

Controlling MHC’s WIDs . 124

Overloading WIDs. 125

Overloading Control Routines . 126

Changing a Window’s WID . 128

viii OpenWindows Server Device Developer’s Guide—August 1994

cmapMhcWindowAttachWid. 128

cmapMhcWindowDetachWid . 129

Changing A Window’s Colormap . 129

cmapMhcChangeFlavor . 130

Allocating Unique WIDs. 132

9. Multibuffering Extension to X Interface. 135

Multibuffering . 135

Multibuffered Windows and Multibuffer Sets 135

Multibuffer Flip Modes. 136

HW MBX Functions. 137

MbxScreenInit . 137

MbxDevFuncs . 138

TryMpg . 138

CreateMultibuffer2 . 140

DestroyMultibuffer . 141

ResizeMultibuffer . 142

RepositionMultibuffer. 143

DisplayMultibuffer . 143

SetupMultibufferInvisible . 144

SetMultibufferVisible . 145

LastUpdateTime. 145

10. Direct Graphics Access Drawable Client Interface. 147

Overview. 147

Drawable Types . 148

Contents ix

DGA Drawables . 148

Mutual Exclusion. 149

Sites . 150

Backing Store . 151

Compiling and Linking. 152

DGA Drawable Functions. 153

Initialization and Cleanup . 153

Drawable Locking and Change Detection 156

General Utility Functions . 160

Drawable Sites . 164

Clipping State. 169

Dealing with Cursor Conflicts . 174

Backing Store Routines . 176

Colormap Grabber Interface. 182

Multibuffering Grabber Interface . 186

Miscellaneous Grabbers . 195

Zombie Drawables. 198

11. Direct Graphics Access Drawable DDX Interface. 201

Initializing Drawable Grabs . 201

Device-Supplied Routines . 203

Server-Supplied Multibuffering Routines 214

Caching Routines . 218

Device Information Routines . 220

x OpenWindows Server Device Developer’s Guide—August 1994

12. Input Devices. 223

Extension Input Device Overview. 224

Handling of Extension Input Devices . 225

Extension Device Initialization . 225

Extension Device Open . 226

Reading Input Data . 226

Extension Device Close . 228

Restart and Shutdown. 228

Adding An Extension Input Device . 228

Writing the Device Handler . 229

Adding An Entry to the OWconfig File 232

Debugging the Device Handler . 232

Writing The STREAMS Module . 233

Input Library Functions . 233

Public Server Functions . 233

Device Shared Library Functions. 252

A. The OWconfig File . 261

SPARC Sample OWconfig File . 261

x86 Sample OWconfig File . 263

File Format Definition . 266

File and Module Search Paths . 267

The XDISPLAY Class . 268

The XSCREENCONFIG Class . 269

The XSCREEN Class . 270

Contents xi

The XINPUT Class . 271

SPARC Sample XINPUT Class . 271

x86 Sample XINPUT Class . 271

The XEXTENSION Class. 272

OWconfig Access Method. 272

OWconfig Database . 272

OWconfig API . 273

Packaging . 275

Typical Usage . 275

B. Packaging and Installation Hints. 277

Installation Hints . 277

Packaging Hints . 278

Package Delivery Example . 279

C. Virtual User Input Device Interface . 283

Virtual User Input Device (vuid) . 283

What Kind of Devices? . 283

Vuid Station Codes . 284

Address Space Layout. 284

Adding a New Segment . 284

Firm Events. 285

The Firm_event Structure . 285

Device Controls . 287

Output Mode . 287

D. Dynamically Loadable Extensions. 289

xii OpenWindows Server Device Developer’s Guide—August 1994

xiii

Figures

Figure 1-1 DDX Handler Utility Library Interfaces. 2

Figure 5-1 MPG DDX Library Interfaces. 42

Figure 8-1 Relationship Between Visuals and mpgInfo s in the
mpgVisInfo Table . 113

Figure 8-2 Changing the mpgInfo of a Window. 114

Figure 8-3 Relationship Between Visuals, Default mpgInfo s, and
Color LUT Pools. 115

Figure 8-4 mpgVisInfo Table and Color LUT Pool Description for
Multi-Depth (not supported) . 116

Figure 10-1 Screen and Backing Store Memory Relationship 151

Figure 12-1 Extension Input Device Block Diagram 224

Figure 12-2 Data Flow When Reading Devices . 227

xiv OpenWindows Server Device Developer’s Guide—August 1994

xv

Tables

Table 1-1 Utility Libraries . 2

Table 3-1 Pixmap Formats . 16

xvi OpenWindows Server Device Developer’s Guide—August 1994

xvii

Preface

The OpenWindows Server Device Developer’s Guide provides detailed information
on writing device drivers that run with the OpenWindows™ environment.
These device drivers are DDX handlers that interface with the OpenWindows
server.

Who Should Use This Book
If you are an Independent Hardware Vendor (IHV) interested in writing device
drivers, you should read this book.

Before You Read This Book
Check the Driver Developer Kit Introduction and Driver Developer Kit Installation
Guide for any corrections or updates to information in this manual.

See Appendix B, “Packaging and Installation Hints” for important information
on packaging issues and installation hints.

This manual assumes that the reader has a programming background and
familiarity with, or access to, appropriate documentation for:

• Solaris 2.4
• The X Window System; specifically the MIT sample server and the DDX

(Device Dependent X) porting layer.
• C
• X, Xlib

xviii OpenWindows Server Device Developer’s Guide—August 1994

How This Book Is Organized
Chapter 1, “DDX Porting Overview,” provides an overview of porting features
and requirements of the DDX layer.

Chapter 2, “The Loadable DDX Interface,” explains the how the server
interfaces to a loadable DDX handler.

Chapter 3, “Screen Initialization,” describes some aspects of Screen
initialization common to many devices.

Chapter 4, “Cursors,” discusses software and hardware cursor
implementations and helps you decide which cursor layer to use for your
purposes.

Chapter 5, “Multiple Plane Group Interface,” provides an architectural
overview and describes the feature of the multiple plane group (MPG) DDX
module.

Chapter 7, “Window ID Interface,” defines the window management interface
routines that are part of the MPG package.

Chapter 8, “Colormap Interface,” describes all of the routines that are part of
the CMAP package. It also provides several examples.

Chapter 9, “Multibuffering Extension to X Interface,” describes how to port
your DDX handler to the MBX (Multi-buffering) Extension.

Chapter 10, “Direct Graphics Access Drawable Client Interface,” describes the
DGA library interface for clients.

Chapter 11, “Direct Graphics Access Drawable DDX Interface,” describes the
DGA library interface for DDX handlers.

Chapter 12, “Input Devices,” explains how to add an extension input device to
the server and how to access the extension with MIT’s XInput Extension.

Appendix A, “The OWconfig File,” includes the default OWconfig file and
explains its content.

Appendix B, “Packaging and Installation Hints,” discusses packaging and
installation issues pertaining to loadable modules.

xix

Appendix C, “Virtual User Input Device Interface,” explains the mechanism
that sets up input devices to generate event codes and what a device driver
needs to do in order to conform to the vuid interface.

Appendix D, “Dynamically Loadable Extensions,” discusses requirements X
extensions must meet to be dynamically loadable by the server.

Related Books

Solaris Release Information

For information on this release, see the following:

• “New Features and Changes”
• Driver Developer Kit Introduction
• Driver Developer Kit Open Issues and Late-Breaking News
• Software Developer Kit Introduction
• Software Developer Kit Open Issues and Late-Breaking News

OpenWindows Start Up Information

For information on how to start up the OpenWindows environment, see the
following manual:

• Driver Developer Kit Installation Guide
• Solaris Advanced User’s Guide

OpenWindows Environment Information

To learn how to use the OpenWindows environment, see the following
manuals:

• Solaris User’s Guide
• Solaris Advanced User’s Guide

X Window System Information

The following X Window System manuals are available through SunExpress or
your local bookstore. Contact your SunSoft representative for information on
ordering.

xx OpenWindows Server Device Developer’s Guide—August 1994

• XView Reference Manual, O’Reilly & Associates
• XView Programming Manual, O’Reilly & Associates
• Xlib Reference Manual, O’Reilly & Associates
• Xlib Programming Manual, O’Reilly & Associates
• Programmer’s Supplement for Release 5, O’Reilly & Associates
• X Toolkit Intrinsics Reference Manual, O’Reilly & Associates
• The X Window System, Third Edition, Digital Press
• The X Window System Server, Digital Press

MIT Sample Server Porting Information

The following manuals are available on line in the /doc/Server directory of
the SUNWxwddk package. The default installation directory of this package is
/opt/SUNWddk/xserver . These manuals are recommended if you are new to
X11 server development. The associated filename is in parentheses.

• Strategies for Porting the X v11 Sample Server (strat.ms)
• Definition of the Porting Layer for the X v11 Sample Server (ddx.tbl.ms)

MIT Sample Server Information on ftp.x.org

The following MIT documentation is available to systems on Internet. The MIT
documentation resides on the ftp.x.org machine. Use the File Transfer
Program (ftp) to download files from this system. If you need help using ftp ,
refer to the ftp (1) man page. To determine if your system is connected to
Internet, see your system administrator.

The directory and filename is given in parenthesis for the document.

• X Window System, Version 11, Release 5. Release Notes
(/pub/R5untarred/mit/RELNOTES.TXT)

xxi

What Typographic Changes and Symbols Mean
The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell
prompt

system$

Superuser prompt, all shells system#

xxii OpenWindows Server Device Developer’s Guide—August 1994

xxiii

New Features and Changes

The following information tells you what is new in this release of the
OpenWindows X server, and differences between the previous release and this
release.

New Overlay GPI Interface
A new interface, the Overlay GPI (Graphics Programming Interface), was
added to this release for overlay window manipulation and rendering
transparent pixels into overlay windows.

See the new chapter, Chapter 6, “Overlay Window Interface” for detailed
information.

DGA Interface
The DGA interface has been reworked this release. It is now called the DGA
drawable interface (instead of the DGA window grabber interface in the previous
release). The DGA drawable interface includes:

• New features (see “New DGA Features” on page xxiv)

• Some minor changes (see “Changes to the DGA Interface” on page xxiv)

• Colormap grabber

• Miscellaneous grabbers

xxiv OpenWindows Server Device Developer’s Guide—August 1994

See Chapter 10, “Direct Graphics Access Drawable Client Interface” and
Chapter 11, “Direct Graphics Access Drawable DDX Interface” for complete
descriptions of all routines in the DGA drawable interface. These two chapters
are new chapters—they are total rewrites of the two DGA chapters in
OpenWindows 3.3.

New DGA Features

The DGA drawable interface provides the following new features:

• Direct access to pixmaps, both cached and uncached.

• Direct access to MBX buffers. Both viewable (on screen) and nonviewable
(off screen) buffer types are supported. Nonviewable buffers can reside in
system memory or be cached in device memory.

• Window and buffer aliasing, as defined by the MBX extension, to allow
clients to directly render to a window’s display buffer.

Changes to the DGA Interface

Some changes to the DGA interface simplify client-side programming for:

• Grabbing and ungrabbing a drawable

Only one routine is necessary, as opposed to two for each operation that
were previously required.

• Removing the cursor

• dbinfo , the structure defined in dga.h , has been renamed to devinfo .

This structure is useful for all device-dependent information, not just
double-buffering data.

Backward Compatibility

The DGA drawable interface is compatible with DGA clients written with the
window grabber interface in OpenWindows 3.3. Some of the routines
described in the drawable interface are new, and some are reworked from last
release. The DGA routines from the previous release are still supported.
Specifically, the following interfaces are still provided:

• Colormap Grabber

xxv

• Miscellaneous Grabber

• Window Grabber

This includes direct access window functions, cursor grabber functions,
and retained window grabber functions.

• Multibuffer Grabber

Note – The window grabber and the multibuffer grabber interfaces are being
phased out—they will be removed in a future release. Any new DDX handlers
and clients should avoid using these interfaces; instead use the DGA drawable
interface.

Window Grabber Supported Functions

Existing clients that use the older Window Grabber interface
(XDgaGrabWindow) will continue to work with some types of windows. It is
strongly recommended that you convert your client to use the new DGA
drawable interface to directly access the newly supported drawable types and
new DGA features.

The following Window Grabber routines are supported in this release:

• XDgaGrabWindow
• XDgaUnGrabWindow
• dga_win_grab
• dga_win_ungrab
• dga_win_fbname
• dga_win_devfd
• DGA_WIN_LOCK
• DGA_WIN_UNLOCK
• DGA_WIN_MODIF
• dga_win_clipchg
• dga_win_bbox
• dga_win_singlerect
• dga_win_empty
• dga_win_obscured
• dga_win_depth
• dga_win_borderwidth
• dga_win_set_client_infop
• dga_win_get_client_infop

xxvi OpenWindows Server Device Developer’s Guide—August 1994

• dga_win_clipinfo
• dga_win_cursactive
• dga_win_curschg
• dga_win_cursupdate
• dga_rtn_grab
• dga_rtn_ungrab
• dga_win_rtnchg
• dga_rtn_active
• dga_rtn_cached
• dga_rtn_devinfop
• dga_rtn_devtype
• dga_rtn_dimensions
• dga_rtn_pixels
• dga_db_grab
• dga_db_ungrab
• dga_db_display
• dga_db_interval
• dga_db_interval_check
• dga_db_display_done
• dga_db_write
• dga_db_read
• dga_db_write_inquire
• dga_db_read_inquire
• dga_db_display_inquire
• dga_win_dbinfop

Note – Do not use the window grabber interface with the new DGA drawable
interface in the same application.

Note – Use the DGA drawable interface to grab multibuffered windows with
the MBX extension. Do not use the window grabber interface to grab these
windows; it is not guaranteed to work properly with multibuffer windows
whether the window becomes multibuffered through MBX before or after it is
grabbed.

xxvii

Multibuffer Grabber Supported Functions

XGL Compatibility Interface

XGL provides a buffer control interface independent of MBX. It allows its
clients to create multibuffers on a window and to switch the display of these
buffers. The following routines are provided so that XGL can continue to
provide this functionality. This interface, however, is deprecated; it will be
removed in a future release. XGL is the only client that should use these
routines.

Each one of these routines corresponds to an existing DGA buffer interface
dga_db_xxx routine with the same suffix. Refer to the DGA client interface
documentation on the dga_db_xxx routines for a complete description of the
routine arguments and semantics.

Use these routines only with windows (that is, not pixmaps or multibuffered
windows) and only when the window is locked.

• dga_draw_db_grab
• dga_draw_db_ungrab
• dga_draw_db_write
• dga_draw_db_read
• dga_draw_db_interval
• dga_draw_db_display
• dga_draw_db_interval_wait
• dga_draw_db_interval_check
• dga_draw_db_display_done
• dga_draw_db_write_inquire
• dga_draw_db_read_inquire
• dga_draw_db_display_inquire
• dga_draw_db_dbinfop

GPI Compatibility

The new DGA drawable interface is compatible with older DDX handlers that
only support window grabbing. The old DGA screen initialization function,
DgaDevFuncsInit , is still supported.

xxviii OpenWindows Server Device Developer’s Guide—August 1994

The new call, dgaScreenInit initializes DGA on the screen the same way as
DgaDevFuncsInit (see “Initializing Drawable Grabs” on page 201). In
addition to window grabbing, this provides support for pixmap and
multibuffer grabbing.

Note – DgaDevFuncsInit and dgaScreenInit are mutually exclusive; a
DDX handler should call only one of these.

Combining Client Interfaces

Client-Side Issues

An application can allow its window(s) to be directly accessed through the
new DGA drawable client interface, as well as through the DGA window
grabber interface. Only the drawable client interface can be used to grab
pixmaps or multibuffered (MBX) windows.

The purpose of mixing new and old features is to enable applications to
combine the use of graphics libraries with different revision levels, some using
the old interface and some using the new interface. Individual libraries, like
XGL, must only use one of these interfaces; it cannot mix functions from the
old interface with functions from the new interface. It is strongly
recommended that new applications, or clients use the new drawable interface.

Server-Side Issues

The device-dependent DGA screen function used is determined by which
screen initialization routine your DDX handler calls. Your DDX handler can
call either the new screen initialization routine (dgaScreenInit) or the old
routine (DgaDevFuncsInit).

Note – New DDX handlers should use dgaScreenInit .

If your DDX handler uses the old routine, DgaDevFuncsInit , only windows
can still be directly accessed through the drawable interface, as well as the
window grabber interface—pixmap and multibuffered windows cannot be
grabbed.

xxix

DDX handlers that use dgaScreenInit , can access windows, pixmaps and
multibuffered windows with the new DGA drawable interface.

OWconfig File Format Enhancements
The following changes were made to the OWconfig file to make per-screen
configurations available:

• A new class, XSCREENCONFIG, was added

• New attributes were added to the XDISPLAY class

These changes are backward compatible with the previous release of the
OpenWindows server (Version 3.3).

See Appendix A, “The OWconfig File” for detailed information on the
OWconfig file.

OWconfig Access Method
The OWconfig Access Method standardizes access to and manipulation of an
OpenWindows configuration (OWconfig) database file. If your DDX handler
requires configuration information, use this method to access that information
specific to your device.

See Appendix A, “The OWconfig File” for more information.

New Debug Server
This release now has a version of the server for debugging purposes. The
server is included in the SUNWxwdes (SPARC) and SUNWxwdex (x86)
packages. Use the debug server with dbx (1).

The debug server uses several dynamically linked libraries. It is important that
these libraries not be substituted for the similar libraries on the distribution
CD. The correct debug libraries have _d appended to their filename and exist
only in the DDK hierarchy. Set the load library path to the following so that the
debug server uses the correct debug libraries:

example% setenv LD_LIBRARY_PATH
/usr/openwin/lib:/opt/SUNWddk/ddk_2.4/xserver/bin/sparc

xxx OpenWindows Server Device Developer’s Guide—August 1994

Then you can use the debug server:

The source code for some of the dynamic libraries is also in the DDK
distribution. Use dbx ’s file and use commands to step through the dynamic
code.

Now you can step through the code examining values as necessary.

x86 – This does not work on x86 because the -xs compiler switch is not
supported. However, you can still print out the arguments to functions.

As a device driver developer, you are most likely interested in the initialization
stage of your driver. However, since the server loads your driver dynamically,
its symbols are not available to you at startup time. You can stop the server
before device initialization in the AddScreen function. This function contains
the address of which it is going to switch to initialize the framebuffer device.

The pfnInit function pointer should point to your device driver’s
initialization function. Now that your dynamic library has been loaded, you
can set breakpoints and step through your code in dbx .

example% cd /opt/SUNWddk/ddk_2.4/xserver/bin/sparc
example% dbx Xsun-ddkdebug

(dbx) stop in miSpritePolyFillRect
(dbx) cont
stopped in miSpritePolyFillRect at 0xeec15e60
miSpritePolyFillRect+0x2c: ld [%fp + 68], %o0
warning: can’t find source
/export/ddk/ea2/bin/Xsun/mit/server/ddx/mi/misprite.c
(dbx) use /opt/SUNWddk/ddk_2.4/xserver/server/ddx/mi
(dbx) file misprite.c

(dbx) stop in AddScreen
(dbx) run
AddScreen(pfnInit = &xxxxxxInit () at 0xef7628a4, argc = 1, argv
= 0xeffffaac) at 0x51f50

xxxi

Performance Enhancements
If you NFS mount the window server, mount it setuid allowable. This enables
the server to take advantage of performance features in the Solaris operating
system.

x86 In-line Assembly Language Note
The SunPro™ C Compilation system includes in-line assembly language
provides direct access to x86 I/O instructions, as well as optimized in-line
expansion templates. See the manual pages for cc (1) and inline (1), and
SunPro’s ProCompiler C 2.0.1 Programmer’s Guide for more information.

If you want to include in-line assembly language in your code, place the in-line
assembly definition file (with the .il extension) first in the cc command line:

Common in-line examples are included in the file below.

cc -O inline.il bitblt.c

///
/ File: inline.il
/
///
/ in and out
/ int ioaddr = 0x3c4;
/
/ Called as:
/ char data;
/ data = inb(ioaddr);
/
 .inline inb,4
 movl (%esp), %edx
 xorl %eax, %eax
 inb (%dx)
 .end

/ Called as:
/ short data;
/ data = inw(ioaddr);
/
 .inline inw,4

xxxii OpenWindows Server Device Developer’s Guide—August 1994

 movl (%esp), %edx
 xorl %eax, %eax
 inw (%dx)
 .end

/ Called as:
/ int data;
/ data = inl(ioaddr);
/
 .inline inl,4
 movl (%esp), %edx
 xorl %eax, %eax
 inl (%dx)
 .end

/ Called as:
/ char data;
/ outb(ioaddr,data);
/
 .inline outb,8
 movl (%esp), %edx
 movl 4(%esp), %eax
 outb (%dx)
 .end

/ Called as:
/ short data;
/ outw(ioaddr,data);
/
 .inline outw,8
 movl (%esp), %edx
 movl 4(%esp), %eax
 outw (%dx)
 .end

/ Called as:
/ int data;
/ outl(ioaddr,data);
/
 .inline outl,8
 movl (%esp), %edx
 movl 4(%esp), %eax
 outl (%dx)
 .end

xxxiii

DPS Extension Graphics Rendering
Due to a bug in this release of the DPS code, pixmaps used by DPS must have
their pPixmap->devKind field equal to the width of the pixmap in bytes. This
means that frame buffers that cache pixmaps in off-screen video memory need
to use regular memory under certain conditions.

A flag has been added to inform DDX handlers when they should force
pixmaps into regular memory. Make the following declaration in your DDX
handler’s pScreen->CreatePixmap routine:

Check this variable before creating a pixmap in off-screen memory. If the
variable is TRUE, your DDX handler should force the pixmap into regular
processor memory.

Note – This DPS bug workaround is unchanged from OpenWindows 3.3.

Test/Verify Recommendation
To test and verify a DDX handler, it is recommended that you run the UniSoft
Test Suite. This test suite is available from the MIT X Consortium.

///
/ Set and clear direction flags
/

/ Called as: cld();
/
 .inline cld,0
 cld
 .end

/ Called as: std();
/
 .inline std,0
 std
 .end

extern int sunCreateDFBPixmap

xxxiv OpenWindows Server Device Developer’s Guide—August 1994

You can access MIT X Consortium information if your system is connected to
Internet. The UniSoft Test Suite information resides in the /pub/XTEST
directory on the ftp.x.org machine. Use the File Transfer Program (ftp) to
download files from this system. If you need help using ftp , refer to the
ftp (1) man page. To determine if your system is connected to Internet, see
your system administrator.

1

DDX Porting Overview 1

The OpenWindows server is based on the X11R5 sample server from the MIT X
Consortium. The OpenWindows server dynamically loads DDX handler
modules at run time. This enables you, an Independent Hardware Vendor
(IHV), to develop DDX modules that can be delivered as separate components.

Sun also provides DDX utility libraries to help you port the server to new
graphics devices. These libraries contain functions common across devices.

See “Related Books” on page xix for recommended reading on the DDX layer.

Note – All porting interfaces documented in this manual are uncommitted
interfaces; therefore, they might change in future releases in ways that could
require you to change your DDX port.

2 OpenWindows Server Device Developer’s Guide—August 1994

1

The DDX Interface
As shown in Figure 1-1 on page 2, the DDX interface is quite extensive: the
Screen structure alone contains approximately 70 functions.

Figure 1-1 DDX Handler Utility Library Interfaces

Many of these functions do not need to be specialized for every device.
Table 1-1 on page 2 describes general-purpose utility libraries that can be used
to simplify your DDX handler implementation. The MI, CFB, and MFB
libraries are from the X Consortium.

Table 1-1 Utility Libraries

Utility Library Description

MI Machine independent, high-level

CFB Memory-mapped color frame buffers

MFB Monochrome frame buffers

OVL Transparent window overlay

DGA Direct graphics access for client and DDX handler

SUN Sun-specific ioctl s for frame buffers

DDX Interface

MI CFB MFB SUN MPG CMAP

OpenWindows
Server

WID

OVL DGA

Device DDX Handler

DDX Porting Overview 3

1

The Loadable DDX
The loadable DDX allows the server to dynamically load DDX modules at
runtime instead of having to relink the server to add support for new devices.
A DDX module is a shared object that is loaded by the server at runtime
through an explicit call to dlopen (3X). The location of the DDX modules and
their mappings between devices is determined by the OWconfig
(OpenWindows configuration) file.

See Chapter 2, “The Loadable DDX Interface” for information on how the
server interfaces with the loadable DDX handler, the initialization function,
device self-identification, and DDX module versioning.

See Appendix A, “The OWconfig File” for more information.

Simple Frame Buffer Support

The OpenWindows server provides a set of general-purpose support routines
for simple memory-mapped frame buffers. This includes the mfb library for
monochrome frame buffers and the CFB library for color frame buffers.

Note – Although CFB code can be compiled to support depths of 2, 4, 8, 16,
and 32 bits, only the 8, 16 and 32-bit depths are supported in this release.

Multiple-Plane Group Support

For devices with multiple-plane groups there is a utility library that provides
most of the management functions necessary for MPG devices. This library
also includes functions to minimize exposure events between windows that
reside in different plane groups. The MPG interface is designed so that the CFB
and mfb libraries can be used to render and manipulate windows.

MPG Multiple plane groups and multiple hardware colormaps

WID Window Identification that is part of the MPG library

CMAP Hardware colormap control

Table 1-1 Utility Libraries (Continued)

Utility Library Description

4 OpenWindows Server Device Developer’s Guide—August 1994

1

5

The Loadable DDX Interface 2

The server interfaces to a loadable DDX handler. This chapter discusses the
following topics:

• How the Server Interfaces With the Loadable DDX Handler
• The Initialization Function
• Device Self-Identification
• DDX Module Versioning

How the Server Interfaces With the Loadable DDX Handler
The server interfaces with the loadable DDX handler in the following manner.

1. The module containing the device’s DDX handler is installed in the modules
directory—the default directory is /usr/openwin/server/modules .
Since the /usr/openwin path could be an NFS mount point, a parallel
directory structure can be created on the local machine under
/etc/openwin/server/modules . The DDX handler modules that are
distributed with the standard OpenWindows packages (SUNWxwpls (x86)
and SUNWxwplt (SPARC)) are always installed in
/usr/openwin/server/modules . DDX handlers supplied by
Independent Hardware Vendors (IHVs) can be installed in either the
machine local path (preferred, if the installation will not be shared between
different machines), or under the default path /usr/openwin . (See
Appendix B, “Packaging and Installation Hints” for more details).

6 OpenWindows Server Device Developer’s Guide—August 1994

2

The server searches for DDX handlers using the path,
/etc/openwin/server/modules:/usr/openwin/server/modules .
This search path cannot be altered by the end user.

Note – For debugging purposes, create symbolic links from /etc/openwin to
point to your development environment where you want to debug your code.
You will need to edit the /etc/openwin/server/etc/OWconfig file to
load/configure your DDX handler. Use /etc/openwin because it is intended
to be local to the target machine (your development environment); do not use
/usr/openwin because it is intended to be shared by many machines.

2. The devices that are added as Screens are specified with the -dev
command-line option to openwin . For example:

SPARC: If no devices are specified on the command line, the server defaults
to opening the /dev/fb device. This is a symbolic link to the appropriate
driver entry in /dev/fbs , created when the system is booted with
boot -r . See the openwin (1) man page for more information.

x86: If no devices are specified on the command line, the server defaults to
values specified in the OWconfig file. The argument specified with the -dev
command line option is the name of a supported display (such as 8514 ,
v256 , or vga4). This name is matched against the name attribute specified
in a resource line. See Appendix A, “The OWconfig File” for more details.

3. The server reads a configuration file (OWconfig) to determine the filename
of the dynamically loadable DDX handler. This file is searched using the
search path /etc/openwin/server/etc:/usr/openwin/server/etc .
If the configuration file is found in both locations, the server constructs a
database combining the two files. This search path cannot be altered by the
end-user.

example% openwin -dev /dev/cgsix0 -dev /dev/cgthree0 left

The Loadable DDX Interface 7

2

For debugging purposes only, an alternate directory in which the OWconfig
file can be found can be specified by setting the environment variable
OW_CONFIG_PATH before running the server. This environment variable is
not documented in any enduser documentation and should not be
recommended to end-users.

(See Appendix A, “The OWconfig File” for more information on the
OWconfig file).

4. The server loads the appropriate DDX handler module and calls
ddxInitFunc . The ddxInitFunc initializes the device and data structures
so that the server can run. The ddxInitFunc has the same specification as
the scrInitProc defined in the MIT document, Definition of the Porting
Layer for the X v11 Sample Server.

The Initialization Function

Each graphics adapter’s DDX handler defines an initialization function that is
called at server restart. This function initializes the device and the Screen data
structure associated with it.

SPARC: For a sample implementation of the ddxInitFunc and a complete
sample implementation of a minimal DDX handler for a simple-memory frame
buffer, see the sample cg3 DDX handler on-line in
server/ddx/solaris/reference/cg3 .

x86: For a sample implementation of the ddxInitFunc and a complete sample
implementation of an equivalent DDX handler for a simple 256 color VGA
display adapter, see the sample v256 DDX handler on-line in
server/ddx/solaris/reference/v256 .

example% setenv OW_CONFIG_PATH /home/joe

Bool xxxInit(int index, ScreenPtr pScreen, int argc,
char **argv);

8 OpenWindows Server Device Developer’s Guide—August 1994

2

Device Self-Identification

As noted in Step 2 on page 6, devices added as X Screens are specified by using
the openwin command line and the -dev option. The server opens each
device specified with -dev in its InitOutput routine, in turn. (If no devices
are specified, the default device is /dev/fb). It then issues an ioctl
(VIS_GETIDENTIFIER) to the device driver. The device driver for the graphics
device is expected to implement this ioctl to identify the device uniquely.
The ioctl returns a unique string name. The server looks up this string name
in the OWconfig file under the class XSCREEN. The DDX handler filename
specified in this entry is then dynamically loaded by the server, and the
ddxInitFunc symbol specified in the entry is called by the DIX routine
AddScreen . For a complete specification of the device identification ioctl ,
see Writing Device Drivers.

x86 – This release does not automatically self-identify the various video card
adapters supported. The video cards are not able to specify the card type and
supported resolutions and features on most Intel architecture machines.
Default video adapter types, initialization and resolution information is stored
int he OWconfig file for Intel machines. This information is created during
installation with input from the user. The default video display selection is also
determined during installation and stored in the OWconfig file.

DDX Versioning

A versioning scheme is required to ensure that the server and the DDX handler
it dynamically loads are compatible. The OpenWindows server component of
the Device Developer’s Kit (DDK) contains the header files and documentation
that define the DDX interface (consisting of data structures and functions)
between the server and the dynamically loaded DDX handlers. This
component is used to build a DDX handler and has a version number, referred

The Loadable DDX Interface 9

2

to as the DDK version number. The DDK version number is available as a
manifest constant in the header file sun.h that every DDX handler must
include. The following are the important defines from the sun.h header file:

Each release of OpenWindows is accompanied by a release of the DDK that
was used to build the server. This DDK is used by IHVs to build DDX handlers
that are compatible with the OpenWindows server in that release. IHVs
supplying DDX handlers must follow these versioning rules:

• The DDK majorVersion used to build the DDX handler is stamped in the
filename of the handler, such as, ddxSUNWcg6.so.1 . The convention used
in naming DDX handlers is:

• The server is also stamped internally with the DDK version number used to
build the server. The server never dynamically loads a module with a
majorVersion greater than its own. For example, a server built with a
DDK version 1.0 will never load a DDX handler built with a DDK version
2.0.

• The server dynamically loads a DDX handler with a DDK majorVersion
less than its own DDK majorVersion , only if the server has explicitly
decided to emulate that lesser majorVersion interface. Every time a new
version of OpenWindows and a new version of the server DDK are released,
this DDK document specifies which, if any, DDK majorVersions are
emulated by the server.

/*
 * Server Device Developer’s Kit (DDK) Version number
 */

#define DDK_MAJOR_VERSION 1
#define DDK_MINOR_VERSION 0

typedef struct {
 CARD16 majorVersion;
 CARD16 minorVersion;
} sunDDKVersionRec, *sunDDKVersionPtr;

sunDDKVersionPtr sunGetDDKVersion();

ddx <organization><device> .so. <majorVersion>

10 OpenWindows Server Device Developer’s Guide—August 1994

2

Note – For this release of the server DDK, no prior versions are emulated.

• The server dynamically loads a module that has the same DDK
majorVersion as itself. If the DDX module depends on functionality that
was added in a particular minorVersion of the DDK, it is up to you to
check for the existence of that functionality, by checking the server’s DDK
version number.

A DDX module can provide its own workaround if the functionality does
not exist, or it can fail with an appropriate error message indicating the
server version number it requires.

The functionality differences between minorVersion releases of the DDK
will be documented in future releases of this manual. A DDX handler
module can check the server’s DDK version number by calling the sun
library function sunGetDDKVersion .

#include “sun.h”

sunDDKVersionRec serverVersion = sunGetDDKVersion();

if (serverVersion->majorVersion == 1
&& serverVersion->minorVersion < 5) {
....

}
else {

....

11

Screen Initialization 3

The ddxInitFunc device function should initialize the Screen structure and
all of its function vectors. See “The Initialization Function” on page 7 for
information on ddxInitFunc . This chapter provides information on some
aspects of Screen initialization common to many devices. Additional
initialization steps might be required depending on the utility layers you use in
your DDX handler. These steps are documented in subsequent chapters
describing the utility layers provided by the server.

A set of common utility functions is provided in the server that:

• Allocate private data structures
• Inquire current command-line options
• Advertise pixmap formats and supported visuals

SPARC: A complete sample implementation of the ddxInitFunc for a simple-
memory frame buffer is available on line. See the cg3 DDX handler in the
server/ddx/solaris/reference/cg3 directory.

x86: A complete sample implementation of the ddxInitFunc for a simple 256
color VGA display adapter is available on line. See the v256 DDX handler in
the server/ddx/solaris/reference/v256 directory.

Initialization Steps
Your device handler’s ddxInitFunc function should perform the following
steps to initialize the Screen structure:

12 OpenWindows Server Device Developer’s Guide—August 1994

3

• Initialize the ScreenRec structure fields
• Initialize the device
• Map device registers and the frame buffer into the address space (if the

device is memory-mappable)
• Allocate required private data structures
• Query command-line options that affect your DDX handler
• Advertise pixmap formats, visuals, and depths the device supports
• Initialize various utility layers you plan to use

It is important to know that ddxInitFunc could be called more than once
during the lifetime of the server. The server is capable of restarting, and the
ddxInitFunc is called again when this happens. This is why it is important to
wrap pScreen->CloseScreen in your ddxInitFunc , and free all data
structures allocated in the ddxInitFunc and elsewhere in the DDX handler.

Additionally, on multi-screen configurations which have multiple Screens of
the same device type (hence served by a common DDX handler), the DDX
handler module only needs to be loaded once into the server. Thereafter, the
index of the Screen is used to distinguish between Screen s. In this case, the
ddxInitFunc will be called once for each Screen . It is recommended that
any Screen private data required by the DDX handler be stored by allocating
a devPrivate index on the Screen structure. The use of global variables in
the DDX handler is discouraged for the same reason.

sunGetDDKVersion

One of the first things your DDX handler might do is check the DDK version
number of the server that is attempting to load it. This is useful if your DDX
handler depends on server functionality that was added in a specific minor
version of the server DDK. Call the server function sunGetDDKVersion to
obtain this information. See “DDX Versioning” on page 8 for a complete
specification.

Note – The sample DDX handlers provided on line do not call
sunGetDDKVersion because they are not dependent on any minor version
functionality in the server DDK.

sunDDKVersionPtr
sunGetDDKVersion();

Screen Initialization 13

3

Initialize the ScreenRec Functions

Since some utility layers wrap the functions in the ScreenRec , it’s important
that your DDX handler initialize all the functions in the ScreenRec with valid
function pointers, or NULL pointers for functions that are expected to be
wrapped by other utility layers. The ScreenRec that is passed to the
ddxInitFunc is uninitialized. It is the responsibility of ddxInitFunc to
initialize ScreenRec with valid data or NULL as appropriate. To do this, at the
beginning of your ddxInitFunc , include code that NULLs out all the Screen
functions that are not supplied in your DDX handler. This could help prevent
bugs due to uninitialized ScreenRec function pointers in your DDX handler.

Note – This step is not required if your ddxInitFunc provides valid function
pointers for all the ScreenRec functions.

sunScreenAllocate

Purpose This function allocates a Screen private index
(sunScreenIndex) and allocates the sunScreenRec data
structure used by various utility layers (defined in
server/ddx/solaris/sun.h).

Called by Your ddxInitFunc before initializing any utility layers.

Results A pointer to the sunScreenRec structure is stored in
pScreen->devPrivates[sunScreenIndex].ptr .

/* For example, if your DDX handler does not provide an
 * implementation of pScreen->BlockHandler or
 * pScreen->WakeupHandler, but these are expected to be wrapped
 * from the sunKbd device handler (for the keyboard) later in the
 * Initialization sequence.
*/
pScreen->BlockHandler = NULL;
pScreen->WakeupHandler = NULL;

Bool
sunScreenAllocate(ScreenPtr pScreen)

14 OpenWindows Server Device Developer’s Guide—August 1994

3

Returns TRUE on success
else FALSE

The sunScreenRec data structure must be freed in the CloseScreen routine
of your DDX handler. Some of the fields of this data structure are filled by
various Sun utility layers; however, a few fields need to be filled in by your
ddxInitFunc .

Note – A future release of the server might provide interfaces that will make
this data structure opaque to the DDX handler.

Access the private data structure using the macros GetScreenPrivate and
SetupScreen defined in sun.h .

Device-Dependent Initialization

Device-dependent initialization typically consists of the following steps:

• Opening the device-special file for the graphics device
• Mapping the device registers or the frame buffer into the server address

space (if the device is memory-mappable)
• Storing the file descriptor and memory mapping information in the private

sunScreenRec data structure

Note – The sample DDX handlers (such as the cg3) use a private helper
function called sunOpenFrameBuffer to open the device. This routine is
called for example only; do not call it from your ddxInitFunc . It relies on
ioctl s that are private to the cg3 device driver, and are not required to be
implemented in your device driver.

#define GetScreenPrivate(s) \
((sunScreenPtr) ((s)->devPrivates[sunScreenIndex].ptr))
#define SetupScreen(s) \
sunScreenPtr pPrivate = GetScreenPrivate(s)

Screen Initialization 15

3

The device-special filename you should open in your ddxInitFunc can be
obtained by calling the GetDevname macro in sun.h .

The file descriptor and device name should be stored in the sunScreenRec
private structure. These are used by other utility layers (such as DGA) in the
server. The code in your ddxInitFunc might look like this:

If your cursor implementation uses the sunPointerScreenFuncs utility
functions that implement Screen crossings and cursor warping, you should
initialize the pPrivate->sunFbs .EnterLeave field to NULL in your
ddxInitFunc . See Chapter 4, “Cursors” for information on
sunPointerScreenFuncs .

Note – The sample DDX handlers store device-dependent information about
the device memory-mappings in some of the other private fields of the
sunScreenRec data structure, for use in the CloseScreen routine. It is
recommended that you minimize dependencies on the sunScreenRec private
data structure, and store device-dependent information in data structures that
are private to your own DDX handler. These data structures can be stored by
allocating a devPrivate index on the Screen that is private to your DDX
handler.

char *
GetDevname(int index); /* The Screen’s index */

{
SetupScreen(pScreen);

...
pPrivate->sunFbs.fd = open(GetDevname(index), O_RDWR, 0);
strcpy(pPrivate->sunFbs.devName, GetDevname(index));
...

}

16 OpenWindows Server Device Developer’s Guide—August 1994

3

sunSetPixmapFormat

Purpose This function is used by each device to advertise the pixmap
formats supported for each depth. If there are multiple
Screens supporting the same depth, they should support a
common pixmap format for that depth. The first pixmap
format defined for that depth is the one used for all Screens
that are added.

Called by Your ddxInitFunc calls this routine once for each depth
that it plans to export in the pScreen->allowedDepths
field.

Returns TRUE if it is the first pixmap format definition for specified
depth, or if it is a repeat definition that agrees with the
existing one

FALSE for any attempt to define a new format for an existing
depth. The request variable is set to the defined format for
that depth; use the format returned in your new Screen’s
DDX handler.

Table 3-1 lists the pixmap formats supported by some devices.

Bool
sunSetPixmapFormat(PixmapFormatRec *request)

Table 3-1 Pixmap Formats

Depth BitsPerPixel ScanlinePad

1 1 BITMAP_SCANLINE_PAD

4 4 BITMAP_SCANLINE_PAD

4 8 BITMAP_SCANLINE_PAD

8 8 BITMAP_SCANLINE_PAD

24 32 BITMAP_SCANLINE_PAD

32 32 BITMAP_SCANLINE_PAD

Screen Initialization 17

3

If you want your new device to support one of these depths, use one of the
pixmap formats specified in Table 3-1 so that your device can be used with
devices by other IHV’s in a multi-screen configuration.

Note – The two 4-bit deep screen formats may not coexist simultaneously with
other IHV’s devices. The 4-bit deep, 4 BitsPerPixel format is the only 4-bit deep
screen format supported during an X server session.

If a new depth is exported by a device, register the pixmap format with Sun for
inclusion in this table, or be prepared to handle differing pixmap formats (that
is, sunSetPixmapFormat returns FALSE) in your DDX handler.

sunGetMonitorRes

Purpose This function gets the monitor’s resolution.

Results The default value, 90 DPI, is used if a monitor resolution is
not specified.

Note – Currently the monitor’s resolution is specified with the -dev
command-line option. Future releases of the OpenWindows server might offer
alternate mechanisms to query the monitor resolution, such as specifying it in
the OWconfig database.

void
sunGetMonitorRes(int screenIndex, int *dpix int *dpiy)

18 OpenWindows Server Device Developer’s Guide—August 1994

3

sunGetVisualInfo

Purpose This function gets the command-line options for Visual
information specified by the user for the Screen . Since the
user can specify the default visual class, the default depth, or
gray visual, the DDX handler must query these values before
setting up the visuals to be exported for this Screen .

Returns The default visual class specified as defclass in the
-dev command-line option, if specified; else the default
specified with the -cc option; else -1 .

The defDepth specified with the -dev option.

TRUE for grayVis , if the user specified the grayvis
modifier to the -dev option. This suppresses color visuals
and is useful if a grayscale monitor is connected to the
device. If grayVis is TRUE, this function ensures that the
user has selected a gray defClass , if a defClass has been
specified; else defClass is set to -1 .

Export Supported Visuals

The ddxInitFunc should advertise the visuals it supports, based on device
capabilities and user preferences selected with command-line options.

Note – The sample cg3 DDX handler uses the cfb utility layer to select and
advertise its visual list. See the sunCG3C.c file in the
server/ddx/solaris/reference/cg3 directory for details.

void
sunGetVisualInfo(int screenIndex, int *defClass, int *defDepth,

Bool *grayVis);

Screen Initialization 19

3

Initialize Utility Layers

The various utility layers used by your DDX handler should be initialized in
your ddxInitFunc . Depending on the utility layers used, the order of
initialization might be important, as a number of the utility layers wrap the
DDX functions.

Initialize the Banner Code

Purpose This function initializes the banner display code.

Called by The following code in your ddxInitFunc :

Results A banner is displayed by the server on every Screen, unless
openwin is started with the -nobanner command-line
option.

Note – The sample cg3 DDX handler does not implement this directly. It calls a
private helper function, sunScreenInit , to initialize the banner code and
perform other miscellaneous initialization. sunScreenInit is called for
example only; do not call it from your ddxInitFunc . It has the undesirable
effect of installing a SaveScreen routine that relies on ioctl s private to the
cg3 device driver.

extern int noBanner;
extern void sunInitBanner(ScreenPtr pScreen);

{
extern int noBanner;
extern void sunInitBanner(ScreenPtr pScreen);
...

if (!noBanner) {
sunInitBanner(pScreen);

}
...

}

20 OpenWindows Server Device Developer’s Guide—August 1994

3

Supply a SaveScreen Function

The field on has the following values:

SCREEN_SAVER_ON Turns on the screen saver; disables video

SCREEN_SAVER_OFF Turns off the screen saver; enables video

SCREEN_SAVER_FORCERUpdates time of last screen saver mode change

Note – The sample DDX handlers install a private helper routine called
sunSaveScreen as the pScreen->SaveScreen routine. Do not use this
implementation in your DDX handler; it relies on ioctl s private to the sample
device implementation. Instead, implement your own SaveScreen routine.

The following is a simple SaveScreen implementation:

Bool
pScreen->SaveScreen(ScreenPtr pScreen, int on)

Bool
xxxSaveScreen(ScreenPtr pScreen, int on)
{

if (on == SCREEN_SAVER_FORCER) {
SetTimeSinceLastInputEvent();

}
else {

if (on == SCREEN_SAVER_ON) {
VIDEO_OFF(); /* Device specific video disable */

}
else {

VIDEO_ON(); /* Device specific video enable */
}

}
return TRUE;

}

Screen Initialization 21

3

Supply a CloseScreen Function

The CloseScreen function should be wrapped by ddxInitFunc . The
CloseScreen routine should clean-up all the device state, to the extent
required by the device. For example, you might follow these steps in your
CloseScreen function:

• Enable video, if the ScreenSaver disabled video
• Clear the Screen before exiting
• Reset the device’s LUT with colors appropriate for displaying console

messages, if the device also acts as a system console
• Call the CloseScreen functions that were wrapped
• Unmap the device registers and frame buffer, if it is a memory-mapped

frame buffer
• Close all file descriptors opened by the DDX handler
• Free all allocated memory

SPARC: For a sample CloseScreen implementation, see the
server/ddx/solaris/reference/cg3 directory.

x86: For a sample CloseScreen implementation, see the
server/ddx/solaris/reference/v256 directory.

Initializing Visual Gamma
If your device supports linear and nonlinear visuals, you might want to
advertise the XSolarisGetVisualGamma property; otherwise, it is optional.

Gamma-Corrected Visuals

Some devices have linear, or gamma corrected visuals. Applications can
distinguish between linear visuals and nonlinear visuals by calling
XSolarisGetVisualGamma (3). For more information on this routine see the
OpenWindows Server Programmer’s Guide, which is part of the SDK, and the
manual page.

Devices that have linear visuals should export these visuals by adding them to
the pScreen->visuals list just like any other visual. A root window
property distinguishes it from the nonlinear visuals.

22 OpenWindows Server Device Developer’s Guide—August 1994

3

Note – If a device has a linear visual with a nonlinear counterpart having a
gamma of approximately 2.22, it is a good idea to place the nonlinear one
before the linear one on the screen visual list. Most X11 applications prefer a
nonlinear visual with this gamma value. Make the server default visual
nonlinear as well.

The Monitor Intensity Response Property

Linear and nonlinear visuals are differentiated by describing their gamma
value through a root window property, XDCCC_LINEAR_RGB_CORRECTION. It
is a standard X11 ICCCM property originally created for the X Color
Management System. But the routine XSolarisGetVisualGamma also reads
it. This property specifies for a visual a set of tables (one for each of the red,
green, and blue color channels) that describe how the intensity of colors
coming out of the frame buffer map to actual display colors on the monitor
screen. This is the intensity response of colors displayed in the visual. If the
intensity response of more than one visual is described, the property contains
more than one set of tables. See the X Window System for detailed information
on XDCCC_LINEAR_RGB_CORRECTION.

Here are some guidelines for creating the property:

1. Create the property with type XA_INTEGER and format 16.

2. Visuals with a gamma of exactly 2.22 may be omitted from the property. In
this case, XSolarisGetVisualGamma assumes a value of 2.22. This is the
most efficient way to specify this value.

3. Visuals with a gamma of exactly 1.0 should be represented using a 2-entry
type 0 table. For each channel, the first entry should be (0, 0) and the second
entry should be (numIntensities - 1, 0xffff), where numIntensities
is (1 << visual->bitsPerRGBValue) .

4. All other visuals should be represented using a type 1 table. To create this
type of table, the following expression should be evaluated for each color
channel and for each value x between 0 and xmax:

y = (unsigned short) ((65535.0 * pow((double)x/(double)xmax, γ)) + 0.5)

Screen Initialization 23

3

where γ is the gamma of the visual and xmax is numIntensities -1 (see
guideline #3).

5. bpr is the bitsPerRGBValue member of the visual structure.

6. If the gamma of all visuals is exactly 2.22, the property does not need to be
created at all.

Note – XDCCC_LINEAR_RGB_CORRECTION describes the intensity response of
the entire path from the frame buffer through the monitor, rather than just the
gamma correction function.

Note – It is okay if the intensity response described in this property is only
approximate. The DDX may not know the specific monitor attached to the
device and may need to provide an estimate. A gamma value of 2.22 is a good
estimate for most monitors.

The next section describes how to create a root window property from within a
DDX handler screen initialization function.

Initializing a Root Window Property

A root window property cannot be directly created from a DDX screen
initialization routine because at the time this routine is called the root window
has not yet been created. However, the initialization routine can arrange for the
property to be created at a later time, after the root window has been created.

The first call to pScreen->CreateWindow is for the root window. This screen
function should be wrapped. On the first call to the wrapper function, the
property should be created on the argument window. This is guaranteed to be
the root window.

24 OpenWindows Server Device Developer’s Guide—August 1994

3

A property is created by first determining the atoms for the property’s name
and type strings. If the string has a predefined atom, simply use the defined
symbol for that atom (see /usr/openwin/include/Xatom.h for the list of
predefined atoms). Otherwise, call MakeAtom to intern the string and receive
back an atom.

string is the name of the string to be interned, len is its length (in bytes),
and makeit should be TRUE. A numeric value (the atom) is returned.

Next, the property is added to the window by calling
ChangeWindowProperty :

pWin is the argument to the CreateWindow wrapper routine, property is the
interned atom for the string “XDCCC_LINEAR_RGB_CORRECTION”, type is
XA_INTEGER, format is 16, mode is PropModeReplace , len is the length of
the property (in units of 16-bit short words), value is pointer to the property
data and sendevent should be FALSE. Success is returned if the property
creation succeeded.

Note – It is a good idea to unwrap pScreen->CreateWindow after the
property has been created so other calls to CreateWindow do not incur extra
overhead.

Atom
MakeAtom (char *string, unsigned len, Bool makeit)

int
ChangeWindowProperty (WindowPtr pWin, Atom property, Atom type,

int format, int mode, unsigned long len, pointer value,
Bool sendevent)

25

Cursors 4

Cursor implementations for most device handlers fall into one of these
categories:

• Software cursor
• Limited-size hardware cursor

You can use a number of software layers to help with your cursor
implementation, depending on your graphics adapter hardware. This chapter
helps you choose the cursor layer that is best for your hardware. The porting
interface for each of the available layers is also discussed in detail.

The Basic DDX Interface
The basic DDX interface describing cursor routines for a screen is defined in
the MIT sample server document Definition of the Porting Layer for the Xv11
Sample Server. This interface consists of the following functions:

pScreen->RealizeCursor(pScr, pCurs)
pScreen->UnrealizeCursor(pScr, pCurs)
pScreen->DisplayCursor(pScr, pCurs)
pScreen->RecolorCursor(pScr, pCurs, displayed)
pScreen->ConstrainCursor(pScr, pBox)
pScreen->PointerNonInterestBox(pScr, pBox)
pScreen->CursorLimits(pScr, pCurs, pHotBox, pTopLeftBox)
pScreen->SetCursorPosition(pScr, newx, newy, generateEvent)

26 OpenWindows Server Device Developer’s Guide—August 1994

4

It is possible for your DDX handler to port directly at this level. You can do
this by supplying fully customized versions of these functions in your screen
initialization routine.

A DDX implementation of these cursor functions is provided in utility layers
discussed in the remainder of this chapter. If your graphics device is an MPG
(multiple plane group) device and your cursor implementation is in a separate
plane group, refer to Chapter 5, “Multiple Plane Group Interface.”

Note – Due to implementation constraints in the server, the Sun mouse
implementation requires you to initialize the mipointer code in your DDX
handler. The following miPointer routines are used by the ddxSUNWmouse
device handler.

• miPointerGetMotionEvents
• miPointerGetMotionBufferSize
• miPointerDeltaCursor
• miPointerPosition
• miPointerAbsoluteCursor

Software Cursor
This section describes the software cursor porting interface for your DDX
handler.

miDC Layer

The mi utility layer provides a software cursor implementation in the miDC
(mi Display Cursor) layer. If your display adapter does not have any hardware
cursor capability, a complete software cursor implementation can be enabled
by calling the miDCInitialize function in your Screen initialization routine.

SPARC: For an example of a software cursor implementation, see the cg3
reference DDX handler in the server/ddx/solaris/reference/cg3
directory.

x86: For an example of a software cursor implementation, see the v256
reference DDX handler in the server/ddx/solaris/reference/v256
directory.

Cursors 27

4

Call the miDCInitialize function after most of the Screen functions have
been initialized. It uses the miSprite layer that wraps most of the Screen
functions. See the sample cg3 or v256 handler for an example of the order in
which to call the Screen initialization functions.

Call the miDCInitialize routine with the following parameters:

The sun layer provides a set of screenFuncs that is an array of pointers to
functions required by the miPointer layer (such as CursorOffScreen ,
CrossScreen and WarpCursor).

The following example is all that is required in your DDX handler to enable the
software cursor implementation in the mi layer.

The following sections describe in more detail the mi layers that the miDC
layer uses to provide a software cursor. If you are in a hurry to get a software
cursor working on your graphics adapter, you do not need to know all of the
mi layer details.

The miDC layer internally uses the miSprite and miPointer layers to
implement the software cursor.

#include “mipointer.h”
...
miDCInitialize(ScreenPtr pScreen,

miPointerScreenFuncPtr screenFuncs);

#include “sun.h”
...
#include “mipointer.h”
...
...
extern miPointerScreenFuncRec sunPointerScreenFuncs;
...
miDCInitialize(pScreen, &sunPointerScreenFuncs)

28 OpenWindows Server Device Developer’s Guide—August 1994

4

The miPointer Layer

The miPointer layer offers a set of the basic DDX cursor interface. This means
that it supplies an implementation of the DDX eight discussed in “The Basic
DDX Interface” on page 25. To get the miPointer layer to work however, you
must provide an implementation of miPointerSpriteFuncs and
miPointerScreenFuncs . Each of these is an array of four functions that you
pass to miPointerInitialize .

miPointerSpriteFuncs is a set of four functions that implement the sprite
software.

miPointerScreenFuncs is a set of functions that implement Screen
crossings and cursor warping.

Irrespective of which sprite implementation you choose, use the
miPointerScreenFuncs implementation provided in the sun layer. The
sunPointerScreenFuncs array provides implementations for
CursorOffScreen , CrossScreen , and WarpCursor . It has NULL pointers
for EnqueueEvents and NewEventScreen ; these are initialized by

miPointerInitialize(ScreenPtr pScreen,
miPointerSpriteFuncPtr spriteFuncs,
miPointerScreenFuncPtr screenFuncs, Bool waitForUpdate)

RealizeCursor(pScr, pCurs)
UnrealizeCursor(pScr, pCurs)
SetCursor(pScr, pCurs, x, y)
MoveCursor(pScr, x, y)

CursorOffScreen(pScr, x, y)
CrossScreen(pScr, entering)
WarpCursor(pScr, x, y)
EnqueueEvent(xEvent)
NewEventScreen(pScr)

Cursors 29

4

miPointerInitialize to the routines mieqEnqueue and
mieqSwitchScreen . The sunPointerScreenFuncs array is used by
including the following code in your DDX handler.

The miSprite Layer

The miSprite layer provides a set of the miPointerSpriteFuncs required to
drive the miPointer layer. The miSprite layer offers a software sprite—a
software overlay that can be moved around on the screen, while preserving
other images on the screen.

The miSprite layer does this by wrapping all the Screen rendering functions
and all the GC functions. It saves areas under the sprite, and restores them
when the sprite moves. It removes the sprite while rendering occurs to areas
under the sprite, and restores the sprite when required. To get miSprite to
work, miSpriteInitialize needs to be passed an array of
miSpriteCursorFuncs .

miSpriteCursorFuncs is an array of these functions:

#include “sun.h”
...
#include “mipointer.h”
...
...
extern miPointerScreenFuncRec sunPointerScreenFuncs;

miSpriteInitialize(ScreenPtr pScreen,
miSpriteCursorFuncPtr cursorFuncs,
miPointerScreenFuncPtr screenFuncs);

RealizeCursor(pScr, pCurs)
UnrealizeCursor(pScr, pCurs)
PutUpCursor(pScr, pCurs, x, y)
SaveUnderCursor(pScr, x, y, w, h)
RestoreUnderCursor(pScr, x, y, w, h)
MoveCursor(pScr, x, y, w, h, dx, dy)
ChangeSave(pScr, x, y, w, h, dx, dy)
InCursorPlanes(pWin)

30 OpenWindows Server Device Developer’s Guide—August 1994

4

An implementation of these functions is provided by the miDC layer. This layer
draws the software cursor image.

Hardware Cursor
This section describes the porting interface for your DDX handler if you have a
hardware cursor. The hardware cursor is limited by the size of the cursor
image registers.

The X Protocol leaves it up to the server implementation to decide what the
cursor looks like if the cursor defined for the Screen exceeds the physical
limits imposed by the cursor hardware. Some server implementations choose
to trim the cursor image around the hotspot such that it fits into the size limits
imposed by the hardware.

Another strategy, and one that is followed by the OpenWindows server, is to
revert to a software cursor implementation whenever a cursor defined for a
Window does not fit in the hardware. This means that if there are multiple
cursors defined on the same screen, some small enough to fit in the hardware
cursor registers, and some larger, the cursor dynamically switches between
hardware and software forms as the pointer is moved across the screen. This
hardware and software cursor switching is implemented in a utility layer in
the server, called sunSprite .

The sunSprite Layer

The sunSprite layer implements a sprite that can switch between hardware and
software forms. It uses the software cursor layers described in “Software
Cursor” on page 26 whenever the cursor does not fit into hardware.

In your DDX handler, you might want to use the sunSprite layer to handle
your cursor if you want to switch between hardware and software cursors on
the same screen. It is recommended that the cursor defined by the application
be displayed as actual size, even if this means that it cannot fit into hardware.
This is motivated by the desire to keep the application’s look and feel
consistent across all graphics adapters supported by the OpenWindows server.

Cursors 31

4

The sunSprite code is initialized in the DDX handler’s Screen initialization
function by calling the following function:

To make the sunSprite layer work, you must pass the sunSprite layer a set
of four functions that implement a hardware cursor on your device
(miPointerSpriteFuncPtr) and a function that is called by the
sunSpriteLayer to check if a defined cursor should be put in hardware or
software (putInHardware). An implementation of screenFuncs is already
available:

The four functions that implement the hardware cursor and the
putCursorInHardware function are needed to port to your hardware.

This function returns TRUE if the cursor should be placed in hardware; FALSE
if the cursor should be drawn by software (miDC).

#include “sun.h”
...
...
Bool sunSpriteInitialize(ScreenPtr pScreen,

Bool (*putInHardware)(),
miPointerSpriteFuncPtr hardwareSpriteFuncs,
miPointerScreenFuncPtr screenFuncs)

#include “sun.h”
....
#include “mipointer.h”
....
....
extern miPointerScreenFuncRec sunPointerScreenFuncs;

Bool xxxPutInHardware(ScreenPtr pScr, CursorPtr pCurs)

32 OpenWindows Server Device Developer’s Guide—August 1994

4

The following code is a sample implementation of this function on a device
that has a 32x32 cursor register.

Examples of miPointerSpriteFuncs

The following code is a sample pseudo-implementation of the four
miPointerSpriteFuncs that implement a hardware cursor on the same
device.

Bool
XXXPutInHardware(pScreen, pCursor)

ScreenPtr pScreen;
CursorPtr pCursor;

{
if (pCursor->bits->width > 32 || pCursor->bits->height > 32)

return FALSE;
return TRUE;

}

Code Example 4-1 Hardware Cursor Pseudo Code

#include “sun.h”
#include “dixfontstr.h”
#include “mipointer.h”
#include “cursorstr.h”
#include “XXXhardware.h”
...
...
static Bool
XXXRealizeCursor (pScreen, pCursor)

ScreenPtrpScreen;
CursorPtrpCursor;

{
pCursor->bits->devPriv[pScreen->myNum] = NULL;
return TRUE;

}
static Bool
XXXUnrealizeCursor (pScreen, pCursor)

ScreenPtrpScreen;
CursorPtrpCursor;

{
return TRUE;

}

Cursors 33

4

/*
 * XXXLoadCursor -- Load the cursor into XXX hardware registers. When the
 * sunSprite layer is used, this routine is passed a cursor to install
 * into hardware only if the cursor fits into hardware (in this case <= 32x32).
 * However, just in case it is not the sunSprite layer calling this
 * routine, or if for DGA reasons you decide you want to force the cursor into
 * hardware regardless of its size, this routine is able to accept a
 * cursor larger than 33x32, trim it around the hotspot, and fit it into the
 * cursor register. You can either trim the cursor exactly around the
 * hotspot (bitBlt), or trim it so that you use the
 * 32-bit word of each scanline that the hotspot falls within. Do the latter
 * because it is faster. (The protocol says “The components of the cursor
 * can be transformed arbitrarily to meet display limitations...”)
 */

static void
XXXLoadCursor (pScreen, pCursor, x, y)

ScreenPtr pScreen;
CursorPtr pCursor;
int x, y;

{
SetupScreen(pScreen);
int w, h;
Unsgn32 source[32], mask[32], *pSource, *pMask;
int i;

w = pCursor->bits->width;
h = pCursor->bits->height;
xhot = pCursor->bits->xhot;
yhot = pCursor->bits->yhot;
/* Assumes BITMAP_SCANLINE_PAD == 32 in the non-trim case */
pSource = (Unsgn32 *)pCursor->bits->source;
pMask = (Unsgn32 *)pCursor->bits->mask;

/* Do I need to trim the cursor? */
if (w > 32 || h > 32) { /* trim ! */

int scanline = ((BitmapBytePad((int)(pCursor->bits->width))) >> 2);
int startWord = 0, startscan = 0, endscan = h - 1;
if (w > 32) {

xhot = pCursor->bits->xhot % 32;
startWord = pCursor->bits->xhot / 32;
w = 32;

}

Code Example 4-1 Hardware Cursor Pseudo Code (Continued)

34 OpenWindows Server Device Developer’s Guide—August 1994

4

if (h > 32) {
yhot = 16; /* easy to center around yhot */
endscan = pCursor->bits->yhot + 15;
while (endscan > h) {
endscan--;
yhot++;
}
startscan = endscan - 31;
while (startscan < 0) {
startscan++;
yhot--;
}
h = 32;

}
pSource = pSource + startWord + startscan * scanline;
pMask = pMask + startWord + startscan * scanline;
for (i = 0; i < h; i++) {

source[i] = *pSource; pSource += scanline;
mask[i] = *pMask; pMask += scanline;

}
pSource = source;
pMask = mask;

}

/* By the time we reach this point, w <= 32 && h <=32 */

/* Set the hardware cursor position and image here */
/* This is where hardware-specific code is added... */
XXXDOSETCURSORIMAGEANDPOSITION(pSource, pMask, x, y);

}

static void
XXXSetCursor (pScreen, pCursor, x, y)

ScreenPtr pScreen;
CursorPtr pCursor;
int x, y;

{

if (pCursor)
XXXLoadCursor (pScreen, pCursor, x, y);

else
XXXDisableCursor (pScreen);

}

Code Example 4-1 Hardware Cursor Pseudo Code (Continued)

Cursors 35

4

static void
XXXMoveCursor (pScreen, x, y)

ScreenPtr pScreen;
int x, y;

{
XXXMOVECURSOR((((x - xhot) << 16) | ((y - yhot) & 0xffff)));

}

static void
XXXQueryBestSize (class, pwidth, pheight, pScreen)

int class;
short *pwidth, *pheight;
ScreenPtr pScreen;

{

switch (class)
{
case CursorShape:

if (*pwidth > 32)
*pwidth = 32;

if (*pheight > 32)
*pheight = 32;

break;
default:

mfbQueryBestSize (class, pwidth, pheight, pScreen);
break;

}
}

static miPointerSpriteFuncRec XXXPointerSpriteFuncs = {
XXXRealizeCursor,
XXXUnrealizeCursor,
XXXSetCursor,
XXXMoveCursor,

};

/*
 * This function is called from the DDX handler’s Screen Init routine. */
void
XXXCursorInitialize (pScreen)

ScreenPtrpScreen;
{

extern miPointerScreenFuncRec sunPointerScreenFuncs;

Code Example 4-1 Hardware Cursor Pseudo Code (Continued)

36 OpenWindows Server Device Developer’s Guide—August 1994

4

Kernel Cursor Tracking - The sunHWCursor Layer

The preceding section outlined examples of a hardware cursor implementation
in which the hardware cursor was tracked by the X server process—that is, the
cursor position was updated in user-domain code. Under conditions of heavy
system load, this approach of tracking the cursor in the X server process might
result in a considerable latency between pointer motion and corresponding
cursor motion on the screen. One way to improve the interactive performance
of the cursor is to track the cursor in the kernel-domain.

The sunHWCursor layer offers an implementation of a hardware cursor that is
tracked in the kernel. To use this layer, the device driver for your graphics
adapter must implement a set of kernel cursor tracking ioctl s that are
documented in Writing Device Drivers. If your device driver implements these
ioctl s, and you use the sunHWCursor layer utilities for your cursor
implementation, a module (called hwc) is pushed on the mouse stream that
intercepts mouse events and sends them directly to the graphics adapter’s
device driver via the Kernel Cursor Tracking ioctl s issued from the kernel-
domain.

Additionally, the sunHWCursor implementation is layered over the sunSprite
layer. This means that when this layer is used for your cursor implementation,
the cursor switches to a software form (tracked in the user-domain) over
windows that define a cursor that is too large to fit in the hardware cursor
image registers.

pScreen->QueryBestSize = XXXQueryBestSize;
sunSpriteInitialize (pScreen, XXXPutInHardware,

&XXXPointerSpriteFuncs,
&sunPointerScreenFuncs);

}

void
XXXDisableCursor (pScreen)

ScreenPtrpScreen;
{

XXXSWITCHOFFCURSOR();
}

Code Example 4-1 Hardware Cursor Pseudo Code (Continued)

Cursors 37

4

The sunHWCursor code is initialized in the DDX handler’s Screen
initialization function by calling the following function:

sunCursorInitialize initializes pScreen->QueryBestSize with
sunQueryBestSize , and then calls sunSpriteInitialize . As mentioned
in “The sunSprite Layer” on page 30, the sunSprite layer requires an
implementation of the PutInHardware , hardwareSpriteFuncs and
screenFuncs functions.

Note – In this release, the ability to specialize these functions for the sunSprite
layer is not available when using the sunHWCursor layer; the sunHWCursor
layer has built-in implementations of these functions and the
sunQueryBestSize function. The ability to specialize some of these functions
when using the sunHWCursor layer might be offered in a future release of the
OpenWindows server.

Invoking sunCursorInitialize in your DDX handler’s initialization
routine, and implementing the ioctl s in the device driver is sufficient to
obtain a kernel-tracked cursor. If you are in a hurry to get a kernel-tracked
hardware cursor implementation going on your graphics adapter, you do not
need to know all of the sunHWCursor layer details that follow.

sunHWCursor Functions

The functions provided in the sunHWCursor layer are described in this
section.

#include “sun.h”
...
...
Bool sunCursorInitialize(ScreenPtr pScreen)

38 OpenWindows Server Device Developer’s Guide—August 1994

4

sunQueryBestSize

Results If class is CursorShape , this function issues an ioctl to
the device driver to determine the maximum hardware
cursor size. For all other values of class , this function calls
mfbQueryBestSize .

Returns If the hardware cursor size is smaller than the maximum
screen bounds, this function returns these values in pWidth
and pHeight , else it returns the maximum screen bounds.

If this implementation of pScreen->QueryBestSize is not desired, supply
an equivalent function in your DDX handler after sunCursorInitialize
has been called.

sunPutInHardware

Purpose This function is the sunHWCursor layer’s implementation of
the PutInHardware routine required by the sunSprite layer.

Results This function issues an ioctl to the device driver to
determine the maximum hardware cursor size.

Returns If the cursor passed in pCursor is larger than the hardware
size, this function returns FALSE, else it returns TRUE.

screenFuncs

Purpose This is an implementation of the screenFuncs functions
that is passed to the sunSprite layer. See “The miPointer
Layer” on page 28.

static void sunQueryBestSize(int class, short *pWidth,
short *pHeight, ScreenPtr pScreen)

static Bool sunPutInHardware(ScreenPtr pScreen,
CursorPtr *pCursor)

extern miPointerScreenFuncRec sunPointerScreenFuncs;

Cursors 39

4

hardwareSpriteFuncs

Purpose This is the sunHWCursor layer’s implementation of the
hardwareSpriteFuncs array required by the sunSprite
layer. These functions load the hardware cursor, and enable
kernel cursor tracking via the hwc module that has been
pushed onto the mouse stream. The sunMoveCursor
function is a stub that does not get called while kernel cursor
tracking is active. If the cursor is switched to a software form
by the sunSprite layer (this might happen when the pointer
traverses a window that has a large cursor defined, which
does not fit in the hardware cursor image registers), the
cursor is tracked in user-domain by the miDC layer.

miPointerSpriteFuncRec sunPointerSpriteFuncs = {
sunRealizeCursor, sunUnRealizeCursor, sunSetCursor,
sunMoveCursor,

};

40 OpenWindows Server Device Developer’s Guide—August 1994

4

41

Multiple Plane Group Interface 5

Some devices contain multiple plane groups (MPG) to support overlays and
visuals of varying depths. The MPG utility library provides the following
features for those devices:

• Windowing Operations

These functions are necessary to operate on windows with multiple plane
groups. When a window is moved, all of its physical plane groups need to
be moved; when a window is exposed, all of its damaged plane groups need
to be repaired.

• Minimizing Exposure Events

These functions minimize exposure events between windows that reside in
separate plane groups. See “CopyPlanes and AggregatePlanes” on page 57
for more information.

• Leveraging of Existing DDX Interfaces

MPG is designed to use existing rendering and windowing libraries, such as
CFB or MFB.

MPG Architectural Overview
MPG is data-driven; DDX handlers need to inform MPG which plane groups
are used by which windows and how they are used within the windows. Then
the MPG windowing operations takes care of moving, preparing and
computing exposures to the plane groups.

42 OpenWindows Server Device Developer’s Guide—August 1994

5

Figure 5-1 shows the MPG library’s interfaces to other DDX utility libraries.

Figure 5-1 MPG DDX Library Interfaces

The MPG DDX library does not actually do any rendering. Instead, it is
designed to lie on top of other DDX libraries, such as CFB and MFB, which
provide all of the rendering and some of the windowing functions. This way a
frame buffer with a 24-bit color plane group and a 1-bit overlay plane group
can use CFB32 and MFB for its depth-specific rendering and windowing
functions. MPG manages the depth-specific set up and switching between the
underlying DDX libraries, as well as provides the rest of the windowing
functions. MPG does not explicitly call CFB or MFB, and can use any device-
specific functions.

Each physical plane group requires a screen pixmap, which is a pixmap
structure that points to an on-screen data area. Each window uses one or more
plane groups. Two windows can share the same plane group, but use it
differently.

The MPG info of a window is comprised of its plane group combination and
usage. The MPG info is stored in the mpgInfoRec structure that may be
shared among windows. The flavor of a window is defined by its MPG info
and visual. There is a one-to-many relationship between MPG infos and
visuals. A sample device, such as the CG8, might have:

• three plane groups: 24-bit color, 1-bit overlay, 1-bit overlay enable

and might provide:

Device DDX Handler

MPG

MFB CFB

Multiple Plane Group Interface 43

5

• two MPG infos: color underlay and monochrome overlay, and
• three visuals: StaticGray , TrueColor , and DirectColor

In the above example, windows with TrueColor or DirectColor visuals
share the same color underlay MPG info. Each supported visual is matched by
an MPG info in the mpgPerVisInfo structure. Each window is assigned to an
MPG info based on its visual.

Data Structure Initialization

In a single plane group (SPG) device, some members of the screen structure
apply to only a single depth. In an MPG device that supports various depths,
this depth-specific information must be stored somewhere else. Currently, most
of this information is stored in the mpgInfoRec structure; the rest stored in the
mpgPerDepthInfo structure which is arranged by depth. Pointers to all
mpgInfoRec structures are listed in the mpgPerVisInfo structure arranged
by visual.

The mpgPerVisInfo and mpgPerDepthInfo structures are initialized
directly in the device’s DDX handler and attached to the screen private
structure via the mpgScreenInit function. Each mpgInfoRec structure is

44 OpenWindows Server Device Developer’s Guide—August 1994

5

initialized indirectly via mpgGetScreenState and mpgInsertPlanegroup
functions. See “MPG Functional Interface” for a detailed description of these
functions.

MPG Functional Interface

initPixmap

Purpose This function initializes the screen pixmap of a plane group.

Arguments width , height and depth are the plane group dimensions.

linebytes is the number of bytes to pad a scan line on the
plane group of a given width and depth .

Code Example 5-1 MPG Data Structure Direct Initialization

#define NUMVISUALS 3
#define NUMVISUALS1 1
#define NUMVISUALS24 2
#define NUMDEPTHS 2 /* 1 and 24 bit */

static mpgInfoRec overlay_info, color_info;

static mpgPerVisInfo cg8MPGPerVisInfo[NUMVISUALS] = {
(VisualID)0, &overlay_info,
(VisualID)0, &color_info,
(VisualID)0, &color_info,

};

static const mpgPerDepthInfo cg8MPGPerDepthInfo[NUMDEPTHS] = {
{1, mfbCreateGC, mfbCreatePixmap, mfbDestroyPixmap,

mfbGetImage, mfbGetSpans},
{24, cfb32CreateGC, cfb32CreatePixmap, cfb32DestroyPixmap,

cfb32GetImage, cfb32GetSpans}
};

void
initPixmap(ScreenPtr pScreen, int width, int height,

int linebytes, int depth,
PixmapPtr pScreenPixmap, pointer data)

Multiple Plane Group Interface 45

5

data is a pointer to a memory-mapped on-screen data area
that is used to initialize the devPrivate field of the screen
pixmap.

The following code shows you a few samples of how to use initPixmap .

mpgGetScreenState

Purpose This function stores depth-specific information about the
screen in the mpgInfoRec structure pointed to by
pMPGInfo . It stores the blackPixel and whitePixel
values, a set of depth-specific screen functions, a plane
group-specific SetupScreen function, and a set of depth-
specific backing store functions pointed to by pBSFuncs .

The following depth-specific screen functions are currently stored by
mpgGetScreenState :

• GetImage
• GetSpans
• ResolveColor
• CreateColormap
• DestroyColormap
• CopyWindow
• CreateWindow
• DestroyWindow
• RealizeWindow
• PositionWindow
• UnrealizeWindow

Code Example 5-2 initPixmap

initPixmap(pScreen, width, height, PixmapBytePad(width, 1), 1,
&cg8Private->pixmaps[CG8_ENABLE], overlay_enable_data);

initPixmap(pScreen, width, height, PixmapBytePad(width, 1), 1,
&cg8Private->pixmaps[CG8_OVERLAY], overlay_data);

initPixmap(pScreen, width, height, PixmapBytePad(width, 24), 24,
&cg8Private->pixmaps[CG8_COLOR_24], color_data);

Bool
mpgGetScreenState(ScreenPtr pScreen, mpgInfoPtr pMPGInfo,

void (*SetupScreen)(), miBSFuncPtr pBSFuncs)

46 OpenWindows Server Device Developer’s Guide—August 1994

5

• PaintWindowBorder
• PaintWindowBackground
• ChangeWindowAttributes

SetupScreen

Purpose This function normally initializes the devPrivate field of
the screen structure to point to the screen pixmap of a
specific plane group. It may also perform other software set
up for rendering on that specific plane group.

The following code shows you a few samples of how to set up screens.

mpgGetScreenState extracts most of its information from the current state of
the screen. Do not over-initialize the screen before calling
mpgGetScreenState . Routines like mfbScreenInit and cfbScreenInit
usually do too much: bringing in much of the MI library that might not be
necessary or allocating a lot of redundant memory that might never be freed
again. Use routines like mfbSetupScreen and cfbSetupScreen instead.

void
(* SetupScreen)(ScreenPtr pScreen)

Code Example 5-3 SetupScreen

static void
cg8MFBSetup(ScreenPtr pScreen)
{

pScreen->devPrivate = (pointer)&pCG8Private->pixmaps[CG8_OVERLAY];
}

static void
cg8CFB32Setup(ScreenPtr pScreen)
{

pScreen->devPrivate = (pointer)&pCG8Private->pixmaps[CG8_COLOR_24];
pScreen->devPrivates[cfb32ScreenPrivateIndex].ptr = pScreen->devPrivate;

}

Multiple Plane Group Interface 47

5

The following code shows you a few samples of how to get the screen state.

mpgGetScreenState returns TRUE if it’s successful, FALSE otherwise.

mpgInsertPlanegroup

Purpose This function builds the MPG info by filling the mpgInfoRec
structure pointed to by pMPGInfo with information on plane
group combination and usage.

Arguments iid and eid are the plane group internal and external
identifiers. Plane group identifiers are unique small integers.
Each device can enumerate its own plane groups to uniquely
identify them. Plane group identifiers are normally used to
index arrays of screen pixmaps. They are also bit-encoded
and combined together to create plane group bit masks that
express the plane group combination in each window and

Code Example 5-4 mpgGetScreenState

mfbSetupScreen(pScreen, pCG8Private->pixmaps[CG8_OVERLAY].devPrivate,
pScreen->width, pScreen->height, monitorResolution,
monitorResolution, pScreen->width);

mpgGetScreenState(pScreen, &overlay_info, cg8MFBSetup,
&mfbBSFuncRec);

cfb32SetupScreen(pScreen,
pCG8Private->pixmaps[CG8_COLOR_24].devPrivate, pScreen->width,
pScreen->height, monitorResolution, monitorResolution,
pScreen->width);

mpgGetScreenState(pScreen, &color_info, cg8CFB32Setup,
&cfb32BSFuncRec);

Bool
mpgInsertPlanegroup(mpgInfoPtr pMPGInfo, mpgPlaneId iid,

mpgPlaneId eid, mpgType type, mpgOp op, unsigned long val)

48 OpenWindows Server Device Developer’s Guide—August 1994

5

facilitate the plane group interaction among windows. MPG
provides the following macros to create and perform set
operations on plane group bit masks:

Currently the bit-encoding scheme limits plane group identifiers to be
between 0 and 31 inclusive. iid is used to represent a plane group
internally within the window, while eid is used to represent a plane group
externally with respect to other windows. For example, iid is used in
rendering and preparing plane groups in each window, while eid is used in
checking plane group interference among windows and moving a family of
windows across the screen. Windows that share the same eid damage each
other on that plane group. Normally the eid of a plane group is identical to
its iid . For backward compatibility, entering 0 for the eid currently forces
it to be identical to the iid .

type describes the usage of each plane group within its window. Entering
MPG_VISIBLE for type means the plane group is used for describing
visibility. Entering MPG_DRAWABLE for type means the plane group is used
for client rendering or to assist client rendering, for example, as the Z buffer
in 3D rendering or the WID (window ID) buffer in hardware clipping. (See
Chapter 7, “Window ID Interface” for detailed information on WIDs.)
Entering MPG_VISIBLE_DRAWABLE for type means the plane group is used
for all of the purposes stated above. Each window has one plane group of
type MPG_VISIBLE or MPG_VISIBLE_DRAWABLE to describe visibility.
Entering MPG_OTHER for type means the plane group is used for purposes
other than the ones stated above, for example, for clearing buffer or
switching colormap.

Each plane group with a unique eid has a region that represents the area of
the screen pixmap claimed by its window with respect to other windows.
The region of a plane group of type MPG_VISIBLE or
MPG_VISIBLE_DRAWABLE is used in processing VisibilityNotify
events—it is used to describe if its window is unobstructed, fully obscured,
or partially obscured by other windows that share the same plane group.
The region of a plane group of type MPG_DRAWABLE or

#define mpg_bit_encoded(i) (1<<(i))
#define mpg_union(a,b) ((a)|(b))
#define mpg_intersect(a,b) ((a)&(b))
#define mpg_subtract(a,b) ((a)&(~(b)))
#define mpg_subset(a,b) ((a)==((a)&(b)))

Multiple Plane Group Interface 49

5

MPG_VISIBLE_DRAWABLE is used in processing Expose events—it is used
to compute the effective rendering clip of its window. A window does not
receive an Expose event until all of its plane groups of type MPG_DRAWABLE
or MPG_VISIBLE_DRAWABLE are exposed.

op is performed on each plane group when it is exposed. Entering
MPG_NOOP for op means the plane group is not filled or rendered—it does
not contain data. A plane group with MPG_NOOP operation can be viewed as
a virtual plane group. It is normally used to force interference among
windows with different plane group combinations. A virtual plane group is
not copied when its window is moved.

Entering MPG_DRAW for op means the plane group is rendered by clients—it
contains data. Multiple plane groups can have the MPG_DRAW operation. The
last plane group inserted is the drawing plane group. The iid of this plane
group is used to render color data.

Note – In the current release, use MPG_DRAW with plane groups of type
MPG_DRAWABLE or MPG_VISIBLE_DRAWABLE.

Entering MPG_FILL for op means the plane group is filled with the value
supplied in val , which is constant throughout the window’s existence.
Entering MPG_FILL_WID for op means the plane group is filled with the
window id value associated with its window. Window ids are a finite
resource that can be shared and rotated among windows.

val is the value to fill the plane group with when op is MPG_FILL. It is
ignored for all other cases.

Plane Group Aliasing

In addition to supporting plane groups with multiple purposes, MPG also
supports multiple ways of addressing them. MPG allows plane group aliasing—
the ability to address a plane group partially, internal or external to the
window. This enables a plane group to be split into several disjoint partitions
or aggregated with other plane groups to form a larger cohesive entity. For
example, a 24-bit color plane group is internally addressed as an 8-bit color
plane group to support 8-bit windows, or is split into three disjoint 8-bit color

50 OpenWindows Server Device Developer’s Guide—August 1994

5

plane groups, in which mutually non-interfering 8-bit windows coexist. Enter a
different iid and eid per plane group with mpgInsertPlanegroup to use
plane group aliasing.

Note – Currently a one-to-many relationship between iid s and eid s in each
window is supported.

The following examples show you how to implement plane group aliasing
with mpgInsertPlanegroup . Each example gets more complex—the first
example shows the most common ways to plane group alias, while the last
example shows a disjointed plane group.

Code Example 5-5 Common use of mpgInsertPlanegroup

mpgInsertPlanegroup(&overlay_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&overlay_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 1);

mpgInsertPlanegroup(&color_info, CG8_COLOR_24, CG8_COLOR_24,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_OTHER, MPG_FILL, 0);

mpgInsertPlanegroup(&color_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 0);

Multiple Plane Group Interface 51

5

Code Example 5-6 Complex use of mpgInsertPlanegroup

mpgInsertPlanegroup(&overlay_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&overlay_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 1);

mpgInsertPlanegroup(&color8_info, CG8_COLOR_8, CG8_COLOR_24,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color8_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_OTHER, MPG_FILL, 0);

mpgInsertPlanegroup(&color8_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 0);

mpgInsertPlanegroup(&color24_info, CG8_COLOR_24, CG8_COLOR_24,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color24_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_OTHER, MPG_FILL, 0);

mpgInsertPlanegroup(&color24_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 0);

52 OpenWindows Server Device Developer’s Guide—August 1994

5

mpgInsertPlanegroup returns TRUE if successful, FALSE otherwise.

Code Example 5-7 More Complex use of mpgInsertPlanegroup

mpgInsertPlanegroup(&overlay_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&overlay_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 1);

mpgInsertPlanegroup(&color8A_info, CG8_COLOR_8A, CG8_COLOR_8A,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color8A_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_OTHER, MPG_FILL, 0);

mpgInsertPlanegroup(&color8A_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 0);

mpgInsertPlanegroup(&color8B_info, CG8_COLOR_8B, CG8_COLOR_8B,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color8B_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_OTHER, MPG_FILL, 0);

mpgInsertPlanegroup(&color8B_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 0);

mpgInsertPlanegroup(&color24_info, CG8_COLOR_24, CG8_COLOR_8A,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color24_info, CG8_COLOR_24, CG8_COLOR_8B,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color24_info, CG8_COLOR_24, CG8_COLOR_8C,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color24_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_OTHER, MPG_FILL, 0);

mpgInsertPlanegroup(&color24_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 0);

Multiple Plane Group Interface 53

5

mpgScreenInit

Purpose This function completes the MPG screen initialization.

Arguments numPlanes is the total number of plane groups in the
device.

pScreenPixmaps is a pointer to an array of screen pixmaps.

dispPlanes is the displayable plane groups in the device.
Displayable plane groups are plane groups that are visible at
one time or another on the screen. For example, in CG8, the
24-bit color and 1-bit overlay plane groups are displayable,
but not the 1-bit overlay enable plane group. dispPlanes is
entered as a plane group bit mask, created by combining bit-
encoded displayable plane group identifiers.

pMPGPerVisInfo is a pointer to the mpgPerVisInfo
structure, which is an arranged-by-visual array of MPG infos.

pMPGPerDepthInfo is a pointer to the mpgPerDepthInfo
structure, which is an arranged-by-depth array of depth-
specific screen functions.

Bool
mpgScreenInit(ScreenPtr pScreen, int numPlanes,

PixmapPtr pScreenPixmaps, mpgPlanes dispPlanes,
mpgPerVisInfoPtr pMPGPerVisInfo,
mpgPerDepthInfo pMPGPerDepthInfo,
void (* SwitchScreen)());

54 OpenWindows Server Device Developer’s Guide—August 1994

5

SwitchScreen

Purpose This function is a pointer to a function that performs the
hardware set up for rendering on a specific plane group.
Entering NULL means the device does not need it. pid is the
identifier of a plane group to which the screen has to be
switched.

Returns TRUE if successful; FALSE otherwise

The following fields in the screen structure should be initialized before calling
mpgScreenInit :

• visuals
• numDepths
• numVisuals
• CloseScreen
• allowedDepths

The following code shows you a sample of how to use mpgScreenInit .

Note – The initialization order for devices that use both MPG and DGA is:
MPG, DGA, and then the screen pixmap devPrivates at the end of your
DDX handler initialization,

void
(* SwitchScreen)(ScreenPtr pScreen, mpgPlaneId pid)

mpgScreenInit(pScreen, NUM_CG8_PLANEGROUPS, pCG8Private->pixmaps,
mpg_union(mpg_bit_encoded(CG8_OVERLAY),
mpg_bit_encoded(CG8_COLOR_24)), cg8MPGPerVisInfo,
cg8MPGPerDepthInfo, NULL);

Multiple Plane Group Interface 55

5

getMpgInfoFromVisual

Purpose This function uses vid to search the arranged-by-visual
mpgPerVisInfo structure, which is attached to the screen
private structure.

Returns A pointer to the matching mpgInfoRec structure.

mpgChangeInfo

Purpose This function replaces the MPG info of a window with a new
mpgInfoRec structure pointed to by pNewMPGInfo . It can
be used to change the flavor of a window at any given time.
Changing the MPG info is similar to adding, subtracting, or
replacing plane groups, or changing their types and
operations.

The following code shows you a sample of how to use mpgChangeInfo .

mpgInfoPtr
getMpgInfoFromVisual(ScreenPtr pScreen, VisualID vid)

void
mpgChangeInfo(WindowPtr pWin, mpgInfoPtr pNewMPGInfo)

/* migrate pWin from 8-bit color plane group A to 8-bit color */
/* plane group B */
if (getMpgInfoFromVisual(pScreen, pWin->optional->visual) ==

&color8A_info)
mpgChangeInfo(pWin, &color8B_info);

56 OpenWindows Server Device Developer’s Guide—August 1994

5

freeMpgInfo

Purpose This function frees the memory associated with the
mpgInfoRec structure pointed to by pMPGInfo , but not the
structure itself. The freed memory has been previously
allocated by mpgGetScreenState and
mpgInsertPlanegroup .

The following code shows you a few samples of how to use freeMpgInfo .

mpgCursorInitialize

Purpose This function sets up the screen to use the MPG software
cursor. If the device has a hardware cursor there is no need to
call mpgCursorInitialize .

Arguments cid is the identifier for the cursor plane group, on which the
cursor image is rendered with the default foreground and
background colors of 1 and 0, respectively.

eid is the identifier for the cursor enable plane group, on
which the cursor mask is filled with the default value of 1.

isDedicated is TRUE if the cursor and the cursor enable
plane groups are dedicated to the cursor and not used by any
window. Otherwise, MPG has to lift the cursor for any
conflicting rendering operation and drop it again afterwards.

Returns TRUE if successful, FALSE otherwise

void
freeMpgInfo(mpgInfoPtr pMPGInfo)

freeMpgInfo(&overlay_info);
freeMpgInfo(&color_info);

Bool
mpgCursorInitialize(ScreenPtr pScreen,

mpgPlaneId cid, mpgPlaneId eid, Bool isDedicated)

Multiple Plane Group Interface 57

5

mpgSetCursorValues

Purpose This function resets the cursor enable plane group’s fill
value, the cursor’s foreground color, and the cursor’s
background color with eval , fval and bval , respectively.

mpgSetCursorHasEnable

Purpose This function resets the need for the cursor enable plane
group.

Arguments hasEnable is FALSE if the cursor enable plane group is not
needed.

The following code shows you a sample of how to use
mpgSetCursorHasEnable .

CopyPlanes and AggregatePlanes

To minimize window exposures, MPG wraps, or replaces the existing X
windowing screen functions. For example, it cannot use the basic CopyWindow
screen function for moving a family of windows with various flavors across the
screen, since this operation involves copying different regions on several plane
groups. Instead, it allocates two function pointers in the MPG screen private
structure, CopyPlanes and AggregatePlanes , and uses them.
AggregatePlanes is a complement to CopyPlanes , and is called inside any

void
mpgSetCursorValues(ScreenPtr pScreen, unsigned long eval,

unsigned long fval, unsigned long bval)

void
mpgSetCursorHasEnable(ScreenPtr pScreen, Bool hasEnable)

mpgCursorInitialize(pScreen, CG8_OVERLAY, CG8_ENABLE, FALSE);
mpgSetCursorValues(pScreen, 1, 0, 1);/* reverse */
mpgSetCursorHasEnable(pScreen, FALSE);

58 OpenWindows Server Device Developer’s Guide—August 1994

5

CopyPlanes implementation. AggregatePlanes notifies CopyPlanes if the
device can copy several plane groups simultaneously, so that CopyPlanes
adjusts accordingly and improves its performance; otherwise, CopyPlanes
copies those plane groups one-by-one.

CopyPlanes

Note – MPG provides a generic implementation of CopyPlanes in
mpgCopyPlanes . It is highly recommended that you use mpgCopyPlanes
directly, or wrap it in conjunction with AggregatePlanes , instead of
providing your own implementations.

Arguments pWin is a pointer to the highest window in the window
subtree being moved—it is the root of the subtree. Currently
it serves as a flag to override AggregatePlanes . When
pWin is NULL, CopyPlanes still copies plane groups one at
a time, even though AggregatePlanes insists that the
device is capable of copying them simultaneously. In
mpgCopyPlanes , pWin is used as a starting point to repair
the damage on the window subtree being moved that may be
caused by copying plane groups simultaneously.

pRegions is a pointer to an indexed-by-plane group array of
regions to be copied. These regions often differ from each
other.

planes is a plane group bit mask indicating which entries
are valid in the array of regions pointed to by pRegions .

dx and dy are the horizontal and vertical distances to copy
those regions on their plane groups.

void
(* CopyPlanes)(ScreenPtr pScreen, WindowPtr pWin,

RegionPtr pRegions[], mpgPlanes planes, int dx, int dy)

Multiple Plane Group Interface 59

5

AggregatePlanes

Purpose MPG does not provide a generic implementation of
AggregatePlanes . By default, mpgCopyPlanes copies
plane groups one-by-one. Providing an implementation of
AggregatePlanes and attaching it to the screen private
structure are sufficient to allow mpgCopyPlanes to copy
plane groups simultaneously. Some devices might also need
to wrap mpgCopyPlanes .

Arguments planes is a plane group bit mask indicating which plane
groups have regions to be copied.

Returns A plane group identifier representing the aggregate of all
plane groups in planes if they can be aggregated; a negative
number otherwise.

Note – Currently CopyPlanes and AggregatePlanes are initialized by
mpgScreenInit to mpgCopyPlanes and NULL, respectively. These default
function assignments should be sufficient for a lot of devices.

When a device needs to reset AggregatePlanes , wrap mpgCopyPlanes or
implement your own CopyPlanes ,

MPG provides a macro, mpg_priv_scr , to access the screen private structure:

int
(* AggregatePlanes)(ScreenPtr pScreen, mpgPlanes planes)

#define mpg_priv_scr(pScreen) ((mpgPrivScreenPtr)(
(pScreen)->devPrivates[mpgScreenPrivateIndex].ptr))

(pScreen)->devPrivates[mpgScreenPrivateIndex].ptr))

60 OpenWindows Server Device Developer’s Guide—August 1994

5

The following code shows you samples of how to use CopyPlanes and
AggregatePlanes .

Code Example 5-8 CopyPlanes and AggregatePlanes

/* after calling mpgScreenInit, wrap mpgCopyPlanes and initialize */
/* AggregatePlanes */
{
mpgPrivScreenPtr pMPGPrivScreen = mpg_priv_scr(pScreen);

pMPGPrivScreen->CopyPlanes = cg8CopyPlanes;
pMPGPrivScreen->AggregatePlanes = cg8AggregatePlanes;

}
int
cg8AggregatePlanes(ScreenPtr pScreen, mpgPlanes planes)
{

switch (planes) {
case mpg_union(mpg_bit_encoded(CG8_COLOR_8A),

mpg_union(mpg_bit_encoded(CG8_COLOR_8B),
mpg_bit_encoded(CG8_COLOR_8C))):

return CG8_COLOR_24;
default:

return -1;
}

}

void
cg8CopyPlanes(ScreenPtr pScreen, WindowPtr pWin,

RegionPtr pRegions[], mpgPlanes planes, int dx, int dy)
{

mpgPlanes plns = mpg_union(mpg_bit_encoded(CG8_COLOR_8A),
mpg_union(mpg_bit_encoded(CG8_COLOR_8B),
mpg_bit_encoded(CG8_COLOR_8C)));

if (mpg_subset(plns, planes)) {
mpgCopyPlanes(pScreen, pWin, pRegions, plns, dx, dy);
mpgCopyPlanes(pScreen, pWin, pRegions,

pg_subtract(planes, plns), dx, dy);
} else

mpgCopyPlanes(pScreen, pWin, pRegions, planes, dx, dy);
}

61

Overlay Window Interface 6

This chapter discusses the Overlay window (OVL) graphics programming
interface (GPI). It includes an introduction, how to setup your device, how to
initialize overlays, and defines all of the functions and data types in this
interface.

Introduction
The OpenWindows server provides the basic infrastructure for the OVL GPI in
the OVL package. Your X11 client can create and configure overlay windows,
and use backing store and gravity. These features are exported by the X11
client libraries libX11 (the core Xlib library) and libXext (the Xlib extension
library).

In addition to overlay window manipulation, the server provides a means for
rendering transparent pixels into overlay windows. An extension routine that
specifies an X11 GC paint type attribute is provided. The behavior of the core
X11 rendering routines is extended to use this attribute while rendering. For
more specific information, see the OpenWindows Server Programmer’s Guide
which is part of the SDK (Software Developer’s Kit).

These capabilities are made available on all device types. However, some
devices can optimize the overlay window manipulation and rendering. This is
exported to the client through a visual in the screen’s list of visuals. The client
then creates optimal overlay windows on these visuals. However, the client still

62 OpenWindows Server Device Developer’s Guide—August 1994

6

needs to know what is the best visual to use as a matching overlay/underlay
visual for the exported visual. The Overlay Window API provides this
information, but the server gets this information from the device.

Also, some devices specify their own functions to process the requests in the
overlay extension. This interface, called the Overlay GPI, presents a solution to
these problems.

Note – The OVL package is dependent on the Multiple Plane Group (MPG)
package (see Chapter 5, “Multiple Plane Group Interface“).

Device Setup
The OpenWindows server fully implements overlay windows and renders
transparency. Device setup for overlay windows is done with the MPG
package. This section provides examples of different device types and how to
set them up for optimal performance.

The four basic types of devices are as follows.

1. Transparent Pixel

The transparent pixel device renders into a drawable plane group with a
special value to provide transparency. The special value causes a different
drawable plane group to show through.

2. Control Plane Group

The control plane group device has a special plane group that specifies
which drawable plane group is currently visible. This plane group is often
referred to as the control plane group. It could be a 1-bit enable plane, a
multi-bit WID plane group, or some other type of control plane group.

3. Shared

The shared device has the overlay windows and the underlay windows
coexisting in the same drawable plane group.

Overlay Window Interface 63

6

4. Custom

The custom device is different than the above device types—it could be a
device with some or all overlay and underlay plane groups are not memory
mapped, or a device that can render into image and control plane groups
simultaneously.

Overlay window processing and rendering transparency is dependent on how
the devices different physical plane groups are presented to MPG. In general,
rendering transparency can be thought of as making the window behind the
overlay window visible. So, all mpg setup should follow the guideline of
attaching all plane groups to an MPG info structure that would allow a
window associated with that MPG info to be visible. In the following sections,
each device type is presented with the appropriate plane group partitioning
that would facilitate overlay window processing and rendering transparency.

Transparent Pixel

A transparent pixel device has the following plane groups:

• a 24-bit drawing plane group (DRAW_A),
• an 8-bit drawing plane group (DRAW_B), and
• another 8-bit drawing plane group that can render transparency by

rendering one of several set pixel values (OVERLAY).

Also, a given transparent pixel value may be different depending on what
plane group is expected to show through. For DRAW_A, the pixel value is 254
and for DRAW_B, the pixel value is 255. The question now is what should the
mpg setup look like.

The transparent pixel device has three MPG infos. The overlay MPG info has
just the OVERLAY plane group with a type of MPG_VISIBLE_DRAWABLE and
an op of MPG_DRAW. The other two MPG infos have specific MPG_DRAWABLE
plane groups and an OVERLAY plane group as well; however, the OVERLAY
plane group is of type MPG_VISIBLE and the op is MPG_FILL. For DRAW_A,
the fill value is 254 corresponding to the pixel value needed to make DRAW_A
visible. For the same reason, the fill value for DRAW_B should be 255. The calls
to mpgInsertPlaneGroup are shown below.

64 OpenWindows Server Device Developer’s Guide—August 1994

6

A transparent pixel device is one of the more difficult devices to set up. The
other device types should be easier.

Control Plane Group

The control plane group device requires no special MPG setup for overlay
window processing. Use the standard MPG setup facilities and overlay
window processing and rendering transparency work properly.

For example, a device with a 24-bit image plane group (DRAW_A), an 8-bit
image plane group (DRAW_B), an 8-bit overlay plane group (OVERLAY), and
a control plane group (WID), has the following segmentation:

MPG infoRec pseudo_color_info, true_color_info, overlay_info;

/* Overlay Window Plane group */
mpgInsertPlaneGroup(&overlay_info, OVERLAY, 0, MPG_VISIBLE_DRAWABLE,

MPG_DRAW, 0);

/* 24 bit plane group */
mpgInsertPlaneGroup(&true_color_info, DRAW_A, 0, MPG_DRAWABLE,

MPG_DRAW, 0);
mpgInsertPlaneGroup(&true_color_info, OVERLAY, 0,

MPG_VISIBLE, MPG_FILL, 254);

/* 8 bit plane group */
mpgInsertPlaneGroup(&pseudo_color_info, DRAW_B, 0, MPG_DRAWABLE,

MPG_DRAW, 0);
mpgInsertPlaneGroup(&pseudo_color_info, OVERLAY, 0,

MPG_VISIBLE, MPG_FILL, 255);

Overlay Window Interface 65

6

Shared

If the shared device is a memory-mapped device with the
pScreen->devPrivate pointing to a screen pixmap that can address the
device, the OVL package is automatically initialized. This enables overlays to
be available on that screen.

Custom

The custom device is the most difficult to use in the OVL package. If the device
almost adheres to one of the above device types, it can initialize everything, and
then wrap all of the necessary rendering/window manipulation components to
complete its processing. For overlay window requests that are not a part of the
core protocol, a wrapping mechanism is provided in this GPI. See
“ovlWrapDevFuncs” on page 68 for a complete description of this wrapping
process.

A device able to port using this method is one that has an extra plane group
that requires special processing that MPG does not provide.

MPG infoRec pseudo_color_info, true_color_info, overlay_info;

/* Overlay Window Plane group */
mpgInsertPlaneGroup(&overlay_info, OVERLAY, 0, MPG_DRAWABLE,

MPG_DRAW, 0);
mpgInsertPlaneGroup(&overlay_info, WID, 0, MPG_VISIBLE,

MPG_FILL_WID, 0);

/* 24-bit plane group */
mpgInsertPlaneGroup(&true_color_info, DRAW_A, 0, MPG_DRAWABLE,

MPG_DRAW, 0);
mpgInsertPlaneGroup(&true_color_info, WID, 0, MPG_VISIBLE,

MPG_FILL_WID, 0);

/* 8-bit plane group */
mpgInsertPlaneGroup(&pseudo_color_info, DRAW_B, 0, MPG_DRAWABLE,

MPG_DRAW, 0);
mpgInsertPlaneGroup(&pseudo_color_info, WID, 0, MPG_VISIBLE,

MPG_FILL_WID, 0);

66 OpenWindows Server Device Developer’s Guide—August 1994

6

Initializing Overlays
The server implements all of the functionality for overlay window processing
and rendering transparency. There are three basic steps required to use this
feature on a device. First, the device must describe its plane groups
appropriately to the MPG package. This was discussed in the previous section.
The last two steps are described here. They are combined into a single
initialization function, ovlScreenInit .

Once a device has described its plane groups to the MPG package, the OVL
package can create and process overlay windows on any visual supported by
the device. However, some of the visuals may be more optimal than others for
overlay window processing. For example, a device may have a plane group
that has special features for rendering transparency or is simply a dedicated
overlay plane group to facilitate minimum damage to its underlay plane
groups. The device needs a method to hint to the client that this visual is more
optimal for overlay windows than other visuals.

In the Overlay Window API there are portable visual queries that allow the
client to query which visual pairs are optimal for overlay window processing.
If the device has specified that there are no optimal visual pairs, the portable
visual queries return regular visuals that match the clients request. See the
OpenWindows Server Programmer’s Guide for a complete description of the
portable visual queries.

The second step for enabling overlay window processing is to describe all of
the overlay and underlay combinations that are optimally supported by the
device. An overlay/underlay combination is called a pair. The second step is
combined with the third step, calling the overlay initialization function
ovlScreenInit .

ovlScreenInit is called to initialize overlay window processing and describe
the set of optimal overlay/underlay pairs supported by the device. This
routine is given a list of pairs and the number of pairs. It must be called during
screen initialization and it must be called after the MPG package has been
initialized.

Each pair in the list has an overlay and underlay MPG info structure. All
visuals pairs that may be derived from the MPG info pairs are then used to
signify an optimal pair of overlay/underlay visual pairings. Because of the
matching scheme used in the API, devices are encouraged to submit the pair
list in most optimal to least optimal order.

Overlay Window Interface 67

6

Some device may not have any optimal overlay/underlay pairs. This is the
case on shared pixel devices described above. If this is the case,
ovlScreenInit () should still be called to initialize overlay window
processing, but there should be no pairs passed into the function. This will
indicate to the OVL package that no pairs are optimal.

Overlay GPI Specification
The following functions and data types define the Overlay GPI specification.

OvlPairs

Description Specifies to the system a particular overlay/underlay pair
that the device optimally supports.

ovlScreenInit

Description This is the screen initialization function for Overlay Window
support. The given set of pairs is exported to the client as the
optimal pairs. If the device has no optimal pairs, pass in 0 for
numPairs and null for pPairs .

Results Initializes overlay support on the given screen.

Returns TRUE on success
otherwise FALSE

Arguments pScreen is the screen structure for the device.

typedef struct {
mpgInfoPtr pOvMpgInfo; /* overlay mpgInfo */
mpgInfoPtr pUnMpgInfo; /* underlay mpgInfo */

} OvlPair;

Bool
ovlScreenInit (ScreenPtr pScreen, unsigned int numPairs,

OvlPair *pPairs)

68 OpenWindows Server Device Developer’s Guide—August 1994

6

numPairs is the number of overlay/underlay pairs.

pPairs is a list describing the pairs.

OvlPair points to the MPG infos of the optimal
overlay/underlay pair.

ovlWrapDevFuncs

Description This function allows devices to wrap the requests associated
with the overlay window extension. A full description of all
the wrappable functions is given below.

This routine should only be needed by custom devices. The
default functions handle all processing for devices that are
supported by MPG.

Results Wraps the overlay request dispatch functions.

Arguments pScreen is the screen structure for the device.

newfuncs is a pointer to the new OvlDevFuncs to be
instantiated.

funcmask is a mask of all the functions specified in
newfuncs . funcmask indicates which functions in
newfuncs are to be wrapped. If a given mask bit in
funcmask is set, the appropriate field in newfuncs must be
filled in with a valid function pointer. If a given mask bit in
funcmask is not set, the appropriate field in newfuncs will
not be accessed

oldfuncs (return) A pointer to the OvlDevFuncs
previously instantiated.

The previously instantiated OvlDevFuncs is returned in
oldfuncs , if provided. OvlDevFuncs is a structure
containing pointers to the wrappable functions.

void
ovlWrapDevFuncs (ScreenPtr pScreen, OvlDevFuncs *newfuncs,

long funcmask, OvlDevFuncs *oldfuncs)

Overlay Window Interface 69

6

Valid values for funcmask are:

ovlGetPaintType

Description XSolarisOvlPaintOpaque is returned unless a client has
explicitly set the paint type to
XSolarisOvlPaintTransparent .

Returns Current paint type of the given GC.

Arguments GC is the specified GC.

ovlIsOverlay

Description Specifies whether the given window is an overlay window.

Returns TRUE if the window is an overlay window
FALSE otherwise.

Arguments pWin is the specified window.

#define CopyPaintTypeMask (1<<0)
#define CopyAreaAndPaintTypeMask (1<<1)
#define GetClutInfosMask (1<<2)
#define ReadScreenInitMask (1<<3)
#define ReadScreenMask (1<<4)
#define ReadScreenUninitMask (1<<5)

XSolarisOvlPaintType
ovlGetPaintType (GCPtr pGC)

Bool
ovlIsOverlay (WindowPtr pWin)

70 OpenWindows Server Device Developer’s Guide—August 1994

6

XOvlClutInfo

Description A structure containing color lookup table information.

OvlDevFuncs

Description Defines the function vector of DDX handler functions for
devices that want to wrap the overlay requests.

The following definitions are of data types in OvlDevFuncs .

CopyPaintType

Description If a device wraps the CopyPaintType request, their
CopyPaintType function should take this form. This
function uses the paint type information of the specified
rectangle of src to control fill operations in the specified

typedef struct {
VisualID vid;
int pool;
int count;

} XOvlClutInfo;

typedef struct {
RegionPtr (*CopyPaintType)();
RegionPtr (*CopyAreaAndPaintType)();
int (*GetClutInfos)();
int (*ReadScreenInit)();
int (*ReadScreen)();
void (*ReadScreenUninit)();

} OvlDevFuncs;

RegionPtr
(*CopyPaintType) (OvlDevFuncs * devfuncs, DrawablePtr src,

DrawablePtr dst, GCPtr pGC, int src_x, int src_y,
unsigned int width, unsigned int height, int dest_x,
int dest_y, unsigned long action, unsigned long plane)

Overlay Window Interface 71

6

rectangle of dst . src can be any type of drawable. If src is
not an overlay window, plane specifies which bit-plane to
use for paint type data. dst can be any type of drawable. The
region of dst that corresponds to opaque pixels in src is
filled with the current fill attributes of pGC. If dst is an
overlay, then the region of dst that corresponds to
transparent pixels in src is filled with transparent paint. If
dst is not an overlay, then the region of dst that
corresponds to transparent pixels in src is filled with the fill
attributes of pGC, but with the fg and bg pixel values
reversed. The function must restrict its fills according to the
specified action which is one of
XSolarisOvlCopyOpaque ,
XSolarisOvlCopyTransparent , or
XSolarisOvlCopyAll referring to the filling of just the
opaque pixels, just the transparent pixels, or both.

Results Fills the appropriate regions of dst depending on the paint
type data of src and the indicated action . Returns the
region for which GraphicsExpose events must be
generated.

Arguments devfuncs is the current set of ovldevfuncs.

src is the source drawable.

dst is the destination drawable.

pGC is the GC to use for the fills. It has the same depth as
dst .

src_x and src_y are the X and Y coordinates of the upper-
left corner of the source rectangle relative to the origin of the
source drawable.

width and height are the dimensions in pixels of both the
source and destination rectangles.

dest_x and dest_y are the X and Y coordinates of the
upper-left corner of the destination rectangle relative to the
origin of the destination drawable.

action specifies which regions of dst should be filled.

72 OpenWindows Server Device Developer’s Guide—August 1994

6

plane specifies which plane of src should be used if it is
not an overlay window. 1 means opaque, 0 means
transparent.

CopyAreaAndPaintType

Description If a device wraps the CopyAreaAndPaintType request,
their CopyAreaAndPaintType function should take this
form. This function copies the specified area from colorsrc
to the specified area in colordst and copies the paint type
area specified in painttypesrc to the specified paint type
area of painttypedst . If painttypesrc is not an overlay
window, plane specifies which bit-plane to use for paint
type data. colordst may be any drawable of the same
depth as colorsrc . painttypedst may be any type of
drawable. If colordst is an overlay, then painttypedst
will be the same overlay. If painttypedst is not an overlay,
then painttypegc is used to fill the opaque and transparent
regions of painttypedst . Opaque regions are filled
according to the fill attributes of painttypegc while
transparent regions are filled similarly but with the
foreground and background pixel values reversed. This
function must also handle the specified action . An action
may be one of XSolarisOvlCopyOpaque ,
XSolarisOvlCopyTransparent , or
XSolarisOvlCopyAll referring to the copying of just the
opaque pixels, just the transparent pixels, or both. A pointer
to a region indicating which areas must be exposed on the
colordst drawable due to incomplete color or paint type

void
(*CopyAreaAndPaintType) (OvlDevFuncs * devfuncs,

DrawablePtr colorsrc, DrawablePtr painttypesrc,
DrawablePtr colordst, DrawablePtr painttypedst,
GCPtr colorgc, GCPtr painttypegc, int colorsrc_x,
int colorsrc_y, int painttypesrc_x, int painttypesrc_y,
unsigned int width, unsigned int height, int colordst_x,
int colordst_y, int painttypedst_x, int painttypedst_y,
unsigned long action, unsigned long plane,
RegionPtr *colorexposergn, RegionPtr *painttypeexposergn)

Overlay Window Interface 73

6

information is returned in the location pointed to by
colorexposergn . A pointer to a region indicating which
areas must be exposed on the painttypedst drawable due
to incomplete paint type information is returned in the
location pointed to by painttypeexposergn .

Results Copies the given area and paint type data from one drawable
to another. Returns the regions for which GraphicsExpose
events must be generated.

Arguments devfuncs is the current set of ovldevfuncs .

colorsrc is the color information source drawable. It can be
any type of drawable.

painttypesrc is the paint type source drawable. It can be
any type of drawable.

colordst is the color information destination drawable. It
must be the same depth as colorsrc . It may be any type of
drawable.

painttypedst is the paint type destination drawable. It can
be any type of drawable. If colordst is an overlay, this
parameter will be the same as colordst .

colorgc is the GC to use for copying the color information.
It has the same depth as colordst .

painttypegc is the GC to use for rendering the opaque and
transparent regions of the paint type information if
painttypedst is not an overlay.If colordst and
painttypedst are an overlay, this parameter will be the
same as colorgc . It has the same depth as painttypedst .

colorsrc_x and colorsrc_y are the X and Y coordinates
of the upper-left corner of the source rectangle relative to the
origin of the color source drawable.

painttypesrc_x and painttypesrc_y are the X and Y
coordinates of the upper-left corner of the source rectangle
relative to the origin of the paint type source drawable.

74 OpenWindows Server Device Developer’s Guide—August 1994

6

width and height are the dimensions in pixels of all the
source and destination rectangles.

colordst_x and colordst_y are the X and Y coordinates
of the upper-left corner of the destination rectangle relative
to the origin of the color destination drawable.

painttypedst_x and painttypedst_y are the X and Y
coordinates of the upper-left corner of the destination
rectangle relative to the origin of the paint type destination
drawable. If colordst and painttypedst are an overlay,
these values will be the same as colordst_x and
colordst_y .

action specifies which portions of the paint type should be
copied.

plane specifies which painttypesrc plane to use as paint
type information if it is not an overlay window. 1 means
opaque, 0 means transparent.

colorexposergn is a pointer to a location in which to store
a pointer to the region that is to be exposed on the colordst
drawable.

painttypeexposergn is a pointer to a location in which to
store a pointer to the region that is to be exposed on the
painttypedst drawable.

GetClutInfos

Description If a device does not use the Multiple Hardware Colormap
(MHC) package to maintain its hardware colormaps, it needs
to wrap this function. This information is used by the
portable visual queries documented in the OpenWindows
Server Programmer’s Guide.

int
(*GetClutInfos)(OvlDevFuncs * devfuncs, ScreenPtr pScreen,
XOvlClutInfo ** pClutInfos)

Overlay Window Interface 75

6

This function should allocate a XOvlClutInfo structure for
each visual that it exports. Each structure should contain the
visual id, a unique pool identifier, and the number of
hardware color look up tables that are available to the visual.
The pool identifier will only be used to uniquely identify the
group. This function should return the number of structures
that are being returned. The calling function will free the
data returned in pClutInfos .

Results Gets hardware color lookup table information.

Arguments devfuncs is the current set of ovldevfuncs .

pScreen points to the ScreenRec structure for which
information is needed.

pClutInfos (return) is a pointer to be assigned the array of
XOvlClutInfo structures returned.

XOvlClutInfo is a structure containing color lookup table
information and is defined on page 70.

ReadScreenInit

Description If a device wants to wrap the ReadScreen request, it should
wrap this function, as well as ReadScreen and
ReadScreenUninit . If a device wraps the ReadScreen
request, their ReadScreenInit function should take this
form. This function is responsible for any initialization that
the device needs to prepare for the ReadScreen request. The
region of interest is specified by x , y, width , and height . x
and y are relative to pWin . This function could, for example,
take the cursor down if the cursor were a software cursor,
intersected the region of interest, and includeCursor was
set to xFalse .

int
(*ReadScreenInit)(OvlDevFuncs * devfuncs, WindowPtr pWin,

int x, int y, unsigned int width, unsigned int height,
Bool includeCursor)

76 OpenWindows Server Device Developer’s Guide—August 1994

6

Results Prepares for getting the color data displayed in a specified
area.

Returns Success if no errors were encountered,
!Success otherwise

Arguments devfuncs is the current set of ovldevfuncs .

pWin points to the WindowRec structure used to compute the
area of interest.

x and y specify the X and Y coordinates of the upper-left
corner of the area to be read.

width and height are the dimensions of the area to be read.

includeCursor specifies whether or not to include the
cursor image in the image.

ReadScreen

Description If a device wants to wrap the ReadScreen request, it should
wrap this function, as well as ReadScreenInit and
ReadScreenUninit . If a device wraps the ReadScreen
request, their ReadScreen function should take this form.
This function is responsible for getting the color information
of the area specified by x , y, width , and height . x and y are
relative to pWin . pBuffer is a pointer to an area of memory
big enough to store width*height number of long integers.
It is important to note that this function copies into pBuffer
the actual theoretical colors that can be displayed in the area
and not the pixel values. Each long stored in pBuffer is of
the form XXBBGGRR, where XX is unused, BB is a 16-bit
intensity of blue, GG is a 16-bit intensity of green, and RR is
a 16-bit intensity of red. pBuffer is allocated and freed by
the calling function.

int
(*ReadScreen)(OvlDevFuncs * devfuncs, WindowPtr pWin, int x,

int y, unsigned int width, unsigned int height,
Bool includeCursor, pointer pBuffer)

Overlay Window Interface 77

6

Called by More than once for a single ReadScreen request. It will
always be called within a
ReadScreenInit /ReadScreenUninit block.

Results Gets the color data displayed in a specified area.

Returns Success if no errors were encountered,
an X protocol error otherwise

Arguments devfuncs is the current set of ovldevfuncs .

pWin points to the WindowRec structure used to compute the
area of interest.

x and y specify the X and Y coordinates of the upper-left
corner of the area to be read.

width and height are the dimensions of the area to be read.

includeCursor specifies whether or not to include the
cursor image in the image.

pBuffer (return) points to an area of memory that is
guaranteed to be large enough to hold the color data.

ReadScreenUninit

Description If a device wants to wrap the ReadScreen request, it should
wrap this function, as well as ReadScreenInit and
ReadScreen . If a device wraps the ReadScreen request,
their ReadScreenUninit function should take this form.
This function is responsible for doing any cleanup necessary
after ReadScreen processing has completed. This could
include putting the cursor back up, if it was previously taken
down.

Results Cleans up after getting the color data displayed in a specified
area.

void
(*ReadScreenUninit)(OvlDevFuncs * devfuncs, WindowPtr pWin,

Bool includeCursor)

78 OpenWindows Server Device Developer’s Guide—August 1994

6

Arguments devfuncs is the current set of ovldevfuncs .

pWin points to the WindowRec structure used to compute the
area of interest.

includeCursor specifies whether or not to include the
cursor image in the image.

79

Window ID Interface 7

This chapter describes the window identifier (WID) interface visible to Solaris
Independent Hardware Vendors (IHVs) writing DDX ports. This interface
consists of routines that are part of the MPG package. The MPG package is
discussed in Chapter 5, “Multiple Plane Group Interface.”

Hardware Window IDs
Some graphics devices use WIDs to control the video output circuitry and
drawing functions of their frame buffer. The term display ID (DID) is also
used. For each pixel, a portion of the frame buffer describes how that pixel is to
be output to the monitor. Examples of these attributes are: the specific buffer
the color data is to be taken from, the other buffers it is to be combined with,
and the output lookup tables to use. These video output aspects are called WID
pixel attributes and are meaningful to the video display circuitry by a distinct
bit pattern.

On indirect WID devices, the WID value in the frame buffer is used to look up
the WID pixel attributes in a hardware table called a WID lookup table. On these
devices, the WID value serves as an index into this table.

On direct WID devices the WID value in the frame buffer is the actual bit pattern
of the WID pixel attributes. In this case, there is no indirection through a lookup
table.

80 OpenWindows Server Device Developer’s Guide—August 1994

7

Usually, the pixels for a given window all share the same pixel attributes. For
example, the pixels are all the same depth and all possess Z buffer information.
Because of this, a distinct WID is allocated for use by the window and the WID
plane group in the window’s visible region is filled with the value of this WID.

Note – In this release, the WID interface refers to direct WID devices that are
not supported in this release.

Software WID Object
The OpenWindows DDX interface provides a software object to represent
hardware WIDs. On a direct WID device, each software WID represents a single
hardware WID value. On indirect WID devices, a software WID can represent
one or more contiguous hardware WID values.

The DDX interface provides functions a device handler can use to allocate
WIDs. It also provides routines to initialize WID management. These routines
are included in the MPG package.

On indirect WID devices there is a concept of a WID free pool. These are the
WIDs in the hardware WID table that are not already being used by some
window.

An opaque type, WidPtr , points to the software WID object. Opaque means that
the format of the memory pointed to is known only by MPG. WID object
attributes are only accessible with the routines defined in “Window ID
Functions” on page 87.

The purpose of the software WID object is to be general enough that all device
architectures can share WID properties, and to be extensible enough to
accommodate device dependencies.

WID Object Attributes

A WID object has the following attributes. READ ONLY means that the attribute
is set at WID allocation time by WID or a device-dependent WID routine. After
allocation, the attribute cannot be changed by clients of WID.

• Screen READ ONLY

The device that owns the WID.

Window ID Interface 81

7

• Visual READ ONLY

The visual of the window passed to the allocation function.

• Value READ ONLY

The bit pattern rendered into the WID plane group that uses the WID.

• Number READ ONLY

The number of contiguous WIDs described by the WID object. For direct
WID devices, this will always be 1. For indirect WID devices, the value of
the WID object is the index into the WID table of the first WID in the group.
The values of the other WIDs in the group are in sequentially ascending
order relative to the first WID. To be specific, if n is the value of the WID
object, the values of subsequent WIDs in the group are n+1, n+2, ...,
n+(number-1).

• Unique READ ONLY

A Boolean that indicates whether the WID can be shared among multiple
windows. A value of TRUE means that the WID is not sharable; a value of
FALSE means that the WID can be shared.

For example, the unique attribute of the WID of a hardware double-buffered
window might be TRUE. Another example of a unique WID is for hardware
clipping. This type of WID must be unique because if another window
shares the WID, drawing to the first window could happen in the other
window sharing the WID, which is not the desired behavior.

• Flavor READ ONLY

A small integer representing the union of all pixel attributes for the device,
not including unique fields and colormap control. Unique fields include
display buffer control and hardware clipping. Non-unique fields include
depth and Z buffer. The values of this attribute are device-dependent. For
more information on flavors, see Chapter 8, “Colormap Interface.”

• DevData READ/WRITE

An opaque handle to arbitrary device-specific data.

• ColorLut READ/WRITE

The identifier of the hardware color lookup table to use for displaying
windows using WID.

82 OpenWindows Server Device Developer’s Guide—August 1994

7

For devices supporting only a single hardware color lookup table, the value
of this attribute is undefined and setting it is ignored.

Two WID objects are considered to be equal if their values are equal.

Accessing WID
All files using the WID routines of MPG must include the following header file:

Dynamically link all shared objects using WID with libmpg.so .

Using MPG
Devices that use WIDs are multiple plane group (MPG) devices because there
must be a plane group filled with the proper WID values when a window is
moved. MPG does this filling with a process called WID preparation.

Device handlers that use WIDs must first initialize MPG by calling
mpgScreenInit , mpgInsertplanegroup , and other MPG functions.

How to Use WID
This section describes the purpose for and usage of the WID function listed in
“Window ID Functions” on page 87.

DDX Handler

DDX handlers use the WID function to:

• Initialize WID

widScreenInit is used to initialize WID for the screen and should be
called before any other WID functions.

• Create windows

#include “mpg/wid.h”

Window ID Interface 83

7

The DDX handler wraps pScreen->CreateWindow . If the device has a
single color lookup table, call widAllocate to create a new WID for that
window and then call widSetWindowWid to attach it.

If the device has multiple color lookup tables, the DDX handler calls
cmapMhcWindowAttachWid .

See Chapter 8, “Colormap Interface” for more information on devices with
multiple color lookup tables.

MPG

MPG uses WID to:

• Change WIDs

MPG uses widDecref to indicate there is one less window using old WID
and widIncref to indicate there is one more window using the new WID.

• Prepare Window WIDs

MPG uses widGetValue to get the value with which to fill the WID plane
group.

CMAP

CMAP uses WID function to:

• Avoid unnecessary preparations

If CMAP assigns a WID to a window that was the same as the old, it does
not try to reprepare the WID. It uses widGetValue and the comparison
operator == to make the necessary test.

• Notify WIDs of color lookup table changes

When XInstallColormap changes the hardware color lookup table
assignment of a colormap, the WIDs of all windows using that colormap are
notified of the change so that the given color lookup table can be displayed
in these windows. To do this notification, CMAP calls widSetColorLut .
This can also occur in XUninstallColormap if it tries to implicitly reinstall
a colormap that previously lost its color lookup table because of another
installation.

84 OpenWindows Server Device Developer’s Guide—August 1994

7

• Manage flavors

CMAP attempts to share WIDs between windows of the same flavor. It uses
widGetWindowWid , widGetFlavor , widGetValue , and the comparison
operator == to do the necessary tests. When CMAP attempts to share WIDs,
it ignores unique WIDs by calling widGetUnique .

• Assign new WIDs

When an XSetWindowColormap occurs, CMAP attempts to find an existing
WID of the same flavor as the window. If it cannot, it creates a new one,
using widAllocate , and assigns it to the window using
mpgSetWindowWid .

See Chapter 8, “Colormap Interface” for more information on WID creation
and manipulation by the CMAP package.

WID Data Types
The function that initializes WID is widScreenInit . The following WID data
types describe the device-dependent WID functions that must be supplied to
the widScreenInit function.

WidPtr

A pointer to a WID object. A WID object represents one or more device WIDs.
This pointer is not passed as an argument to widScreenInit (see page 87), but
it is central to the set of functions described in this chapter.

Note – This pointer is opaque. The internal format of _WidObj is not exposed
to the DDX handler. Use the utility functions provided to access WidPtr .

typedef void *WidPtr;

Window ID Interface 85

7

WidAllocFunc

Purpose This is the WID allocation routine supplied by the device
handler.

Results It allocates one or more contiguous WIDs from a WID table.
The location and format of the WID table is device, and
possibly visual, dependent.

Arguments visual is used by devices whose WID allocation depends
on the window’s visual. This type of device internally
associates a visual with device-dependent WID data, such as
the location of the WID table. When the allocate function is
called, the device data associated with pWin ’s visual is
retrieved and used as appropriate.

count is the number of contiguous WIDs to allocate. For
direct WID devices, a WID object is limited to a single
hardware WID, so this value must always be 1. The base
WID value is aligned on a power-of-two boundary, which is
determined by rounding up count to the next power of two.
If n is the base WID value, subsequent WID values in the
sequence are n+1, n+2, ..., n+(count - 1).

unique is TRUE if the WID is non-sharable. This argument is
used by devices that allocate unique WIDs in different tables
from the non-unique ones.

flavor is an additional argument to use for your own
purposes. For example, if hardware clipping WIDs are
allocated in a different WID table than software WIDs,
flavor would be used to indicate the allocation of a
hardware WID versus a software WID. See “Flavors” on
page 116 for a detailed description of how to assign flavor
values.

typedef WidPtr (*WidAllocFunc)(ScreenPtr pScreen,
VisualID visual, int count, Bool unique, CARD32 flavor);

86 OpenWindows Server Device Developer’s Guide—August 1994

7

Returns On direct WID devices, this routine returns NULL if count
<> 1. For indirect WID devices, if count > 1, multiple
contiguous hardware WIDs are allocated.

On indirect WID devices, this function marks the returned
WID(s) as allocated and removes them from the free pool.

WidFreeFunc

Purpose The WID free routine supplied by the device handler.

Returns On indirect WID devices, WidFreeFunc returns the WID(s)
represented by the given WID object to the free pool and
frees the WID object memory.

On direct WID devices, this routine frees the WID object
memory.

WidSetColorLutFunc

Purpose Specifies the color lookup table ID that a WID is to display.
This function is supplied by the device handler.

Results On indirect WID devices, this routine updates the WID table
for the WID to display the given color lookup table.

On direct WID devices, this routine changes the Value
attribute.

If the WID object consists of more than one hardware WID,
the color lookup table selection attributes of all hardware
WIDs is set to the same value, the appropriate value for
clutId . Currently, this is only applicable to indirect WID
devices.

typedef void (*WidFreeFunc)(WidPtr pWid);

typedef void (*WidSetColorLutFunc) (WidPtr pWid, CARD32 clutId);

Window ID Interface 87

7

Note – No WID preparation is done. The client is expected to call an MPG
function to reprepare. This only affects direct WID devices.

Window ID Functions
This section lists the WID functions used by other parts of MPG, CMAP, and
DDX handlers. “” on page 97 provides a description of the expected use of
these routines.

General Routines

These routines are used by several different software components of the server,
including MPG, CMAP, and the device handler. The device handler can call
some of these routines from screen function wrappers such as CreateWindow ,
or from the device-dependent WID functions supplied to widScreenInit .

widScreenInit

Purpose This function initializes WID management for a screen.

Called by A DDX handler at screen initialization.

Arguments The argument functions are device-dependent functions that
understand the device details for managing WIDs. These
functions must be non-NULL.

widScreenClose

Purpose This function frees resources allocated by widScreenInit .

Bool
widScreenInit (ScreenPtr pScreen, WidAllocFunc allocFunc,

WidFreeFunc freeFunc, WidSetColorLutFunc setClutFunc)

void
widScreenClose (ScreenPtr pScreen)

88 OpenWindows Server Device Developer’s Guide—August 1994

7

Called by the device’s ScreenClose procedure

widAllocate

Purpose This function allocates a WID object appropriate for the
specified visual on pScreen . Initially, the reference count for
the WID is 0.

Arguments flavor must be less than the maxFlavors of the WID’s
plane group, or NULL is returned. maxFlavors is the value
passed to cmapScreenInit for the WID’s plane group. See
Chapter 8, “Colormap Interface” for more information.

If count is > 1 on direct WID devices, a WID object is limited
to a single hardware WID, so this value must be 1. For
indirect WID devices, if count > 1, multiple contiguous
hardware WIDs are allocated. The base WID value is aligned
on a power-of-two boundary, which is determined by
rounding up count to the next power of two. The base WID
value is retrieved by calling widGetValue . If this value is n,
subsequent WID values in the sequence are n+1, n+2, ...,
n+(count - 1).

Returns On direct WID devices, this routine returns NULL if count >
1.

widIncref

Purpose This function increments the reference count of a WID object.

WidPtr
widAllocate (ScreenPtr pScreen, VisualID visual, int count,

Bool unique, CARD32 flavor)

void
widIncref (WidPtr pWid)

Window ID Interface 89

7

widDecref

Purpose This function decrements the reference count of a WID
object. If the reference count becomes less than or equal to 0,
the device-dependent widFree function is called. This
function frees the WID object memory (see below).

Returns For indirect WID devices, the WID value(s) represented by
the WID object are returned to the free pool.

widGetScreen

Returns A pointer to the WID object’s screen.

widGetVisual

Returns Returns the ID of the visual of the window with which the
WID was created.

void
widDecref (WidPtr pWid)

ScreenPtr
widGetScreen (WidPtr pWid)

VisualID
widGetVisual (WidPtr pWid)

90 OpenWindows Server Device Developer’s Guide—August 1994

7

widGetValue

Purpose For single WID objects, this is the WID bit pattern to be
rendered into the frame buffer. For multiple WID objects, this
is the bit pattern of the first WID in the sequence.

Returns The value of the WID object.

widSetValue

Purpose For single WID objects, this is the WID bit pattern to be
rendered into the frame buffer.

Returns The value of the WID object.

widWinGetValue

Returns The value of the WID object for the specified window.

widGetNumber

Returns The number of hardware WID values represented by the
argument WID object.

unsigned long
widGetValue (WidPtr pWid)

void
widSetValue (WidPtr pWid, unsigned long value)

unsigned long
widWinGetValue (WindowPtr pWin)

unsigned int
widGetNumber (WidPtr pWid)

Window ID Interface 91

7

widGetUnique

Returns Whether a WID is unique.

widGetFlavor

Returns The flavor of a WID.

widSetDevData

Purpose This function sets device-dependent data on a WID object.

widGetDevData

Purpose This function gets device-dependent data on a WID object.

Bool
widGetUnique (WidPtr pWid)

CARD32
widGetFlavor (WidPtr pWid)

void
widSetDevData (WidPtr pWid, pointer pDevData)

pointer
widGetDevData (WidPtr pWid)

92 OpenWindows Server Device Developer’s Guide—August 1994

7

widSetColorLut

Purpose This function sets the color lookup table ID for a WID object.

Results If the WID object consists of more than one hardware WID,
the color lookup table selection attributes of the hardware
WIDs are set to the same value, that is, the appropriate value
for clutId .

Note – On devices with a single color lookup table, this value is ignored.

widGetColorLut

Purpose This function gets the color lookup table ID for a WID object.

Note – On devices with a single color lookup table, this value is undefined.

widSetWindowWid

Purpose This function specifies a window’s WID.

Results The reference count of pWid increases and the reference
count of the old WID decreases.

void
widSetColorLut (WidPtr pWid, CARD32 clutId)

CARD32
widGetColorLut (WidPtr pWid)

void
widSetWindowWid (WindowPtr pWin, WidPtr pWid, Bool prepare)

Window ID Interface 93

7

If prepare is TRUE, the WID plane group in the window’s
visible region is filled with the WID value. This is done even
if the old WID is the same as pWid .

widGetWindowWid

Returns The WID of a window. This is NULL if mpgWindowSetWid
has not been called.

Handler-Specific Routines

Call these functions only from the device-dependent WID functions supplied to
widScreenInit .

widAllocObj

Purpose This function allocates memory for a software WID object.

Called by The device-dependent allocFunc.

Results The reference count of this WID object is set to 0.

widSetValue

Purpose This function sets the value of a WID.

Called by The device-dependent allocFunc .

WidPtr
widGetWindowWid (WindowPtr pWin)

WidPtr
widAllocObj ()

void
widSetValue (WidPtr pWid, unsigned long value)

94 OpenWindows Server Device Developer’s Guide—August 1994

7

widFreeObj

Purpose Frees memory allocated by widAllocObj .

Called by The device-dependent freeFunc .

WID Device-Dependent Allocation and Free Functions Implementation
The widScreenInit function initializes WID for a device. Before calling this
routine, make whatever device-dependent preparations are necessary to start
using WIDs. For example, allocate a screen devPrivate slot for storing device-
specific WID data on the screen.

On indirect WID devices, after widScreenInit is called, all of the device WIDs
are considered to be unallocated and in the free pool. WID values returned in
WID objects allocated by allocFunc are removed from this pool until freed.

For some plane groups of a device, there is only a single WID. In this case, the
allocFunc can return a WID object with this WID as its value; ignore the WID
reference count.

void
widFreeObj (WidPtr pWid)

Window ID Interface 95

7

Allocation Function

widScreenInit takes an allocFunc argument. This is the device-dependent
WID allocation function. This function calls widAllocObj , which returns a
partially initialized WID object. allocFunc then fills in various device-
dependent attributes of the WID. This is illustrated in the following example
function.

value is of type unsigned long , clutId is of type CARD32, and
devPrivate is of type pointer .

/* Note: required for a bug workaround (described below) */
typedef struct {

unsigned long opaque1[6];
CARD32 clutId;
unsigned long opaque2[2];

} *WidInsidePtr;

WidPtr
myAllocFunc (ScreenPtr pScreen, VisualId visual, int count,

Bool unique, CARD32 flavor)
{

WidPtr pWid;

if (!(pWid = widAllocObj ())
return (NULL);

<allocate a hardware WID value>

widSetValue(pWid, <window ID value>);
widSetDevData(pWid, <anything the handler wants>);

/*
** Initialize the color LUT by reaching inside the
** opaque object. This is a temporary bug workaround.
** See note below.
*/
<initialize color LUT of hardware WID>
{ WidInsidePtr *pWidInside;
 pWidInside = (WidInsidePtr) pWid;
 pWidInside->clutId = <initial color LUT>;
}

}

96 OpenWindows Server Device Developer’s Guide—August 1994

7

The client is required to initialize the value attribute. It is also required that
clutId be initialized. Initialization of devPrivate is completely optional.

Note – There is a bug in this release: myAllocFunc cannot call
widSetColorLut to initialize pWid ’s color LUT because the screen of pWid
has not yet been initialized. pWid must have been assigned a screen for
widSetColorLut to work. The workaround is to access the clutId field of
the pWid object directly. To do this, the device handler must “reach inside” the
otherwise opaque object. This implementation is allowed only for this
workaround and will be removed in a future release when a widXXX function
is provided for color LUT setting that does not require the screen to be
initialized.

Note – Even if the device-dependent WID freeFunc calls
cmapMhcReleaseOverload , myAllocFunc should never call
cmapMhcForceOverload . This call is invoked at a higher level in the system.

Note – In general, you should not attempt to share WIDs between windows
within this routine. Instead, you should use the facilities described in
Chapter 8, “Colormap Interface.” The only exception to this rule is when there
is only a single WID for a visual. In this case, myAllocFunc can allocate pWid
only once and return copies of the pointer to it.

Free Function

The widScreenInit function takes a freeFunc argument. This is the device-
dependent WID free function.

If the device has multiple color lookup tables, this function should call
cmapMhcReleaseOverload to notify CMAP that it might be possible to
remove some overloading conditions. It passes the return value of
widGetVisual as the argument to this routine. See Chapter 8, “Colormap
Interface” for more information.

Next, it performs any device-dependent actions needed to free the WID. Finally,
freeFunc frees the WID object memory by calling widFreeObj .

Window ID Interface 97

7

If the device does not have multiple color lookup tables, this function performs
the device-dependent free actions followed by a call to widFreeObj .

98 OpenWindows Server Device Developer’s Guide—August 1994

7

99

Colormap Interface 8

This chapter describes the colormap interfaces (CMAP) visible to Solaris
Independent Hardware Vendors (IHVs) writing DDX ports. The topics
discussed are:

• Introduction to CMAP
• CMAP Call Summary
• Compiling and Linking
• MPG and WID Initialization
• CMAP Initialization and Utilities
• Controlling MHC’s WIDs
• Changing a Window’s WID
• Changing a Window’s Colormap

Introduction to CMAP
The CMAP interface provides colormap management for devices with
hardware color lookup tables. Call it from your DDX handler to initialize the
colormap functions of your device’s pScreen .

CMAP manages colormaps for devices with both a single hardware color
lookup table and multiple hardware color lookup tables.

100 OpenWindows Server Device Developer’s Guide—August 1994

8

Note – You must use CMAP to manage your colormaps. Do not attempt to
install your own custom routines into the screen colormap functions—CMAP
coordinates with DGA (direct graphics access) using facilities not exported for
your use.

CMAP Call Summary

General Calls

The CMAP interface provides these functions for initializing colormap
management for devices, retrieving the device colormap attributes, and
releasing memory:

• cmapScreenInit
• cmapScreenCleanup
• cmapGetDevFuncs
• cmapGetMultiple
• cmapGetCmapPriv
• cmapGetWidType

When calling cmapScreenInit , you must specify whether the device has a
single-color lookup table or multiple-color lookup tables.

MHC Calls

When you call cmapGetMultiple , multiple color LUT management has been
selected and CMAP provides the following additional routines. These routines
only operate when multiple color LUT management has been selected; they
return error status in the single-color LUT case.

• cmapMhcForceOverload
• cmapMhcReleaseOverload
• cmapMhcWindowAttachWid
• cmapMhcWindowDetachWid
• cmapMhcChangeFlavor
• cmapMhcAllocWids

Colormap Interface 101

8

Compiling and Linking
If you have a color device, use cmapScreenInit to initialize CMAP. The
interface to these routines is provided by these header files:

• colormapst.h
• cmap.h

These routines are built into the server, so symbolic references to these routines
are resolved when your DDX handler shared object is loaded into the server.

Additionally, MPG DDX handlers should use mpgScreenInit to initialize
MPG. The interface to this routine, and associated routines, is provided by the
following header file:

• mpg.h

These routines are provided by libmpg.so . Dynamically link the device
handler with this shared object.

Finally, dynamically link DDX handlers that use the following routines with
libmhc.so :

• cmapMhcForceOverload
• cmapMhcReleaseOverload
• cmapMhcWindowAttachWid
• cmapMhcWindowDetachWid
• cmapMhcChangeFlavor
• cmapMhcAllocWids

MPG and WID Initialization
The MHC devices supported by CMAP are MPG devices that mostly use
window IDs (WIDs). The Solaris DDK provides the WID interface for
managing these aspects of device control. See Chapter 7, “Window ID
Interface.”

Prior to initializing CMAP for multiple color LUT management, initialize MPG
by calling mpgScreenInit and mpgGetScreenState . For more information,
see Chapter 5, “Multiple Plane Group Interface.”

If the device also has WIDs, call widScreenInit . For more information see
Chapter 7, “Window ID Interface.”

102 OpenWindows Server Device Developer’s Guide—August 1994

8

CMAP Initialization and Utilities

Screen Initialization Routine

To initialize either single or multiple color lookup table management, call
cmapScreenInit . For MHC devices, call this routine after the MPG and WID
packages have been appropriately initialized.

cmapScreenInit

Purpose Initialize colormap management for the given screen. This
routine changes the following members of the screen:
CreateColormap , DestroyColormap ,
InstallColormap , UninstallColormap ,
ListInstalledColormaps , and StoreColors .

The device must supply device-dependent routines for
accessing its hardware color LUT(s).

Arguments pDevFuncs points to a structure with pointers to these
functions. This pointer must be non-NULL.

If multiple is FALSE, single hardware color lookup table
management is initialized.

If multiple is TRUE, multiple hardware color lookup table
management is selected. If this mode is selected, information
describing the configuration of the hardware color lookup
tables must be passed in the arguments numClutPools and
pClutPoolDescs .

If multiple is TRUE, the argument widType indicates
whether the device uses WIDs and, if so, what type of WID
device it is.

Bool
cmapScreenInit (ScreenPtr pScreen, CmapDevFuncs *pDevFuncs,

Bool multiple, int numClutPools,
CmapClutPoolDesc *pClutPoolDescs, CmapWidType widType)

Colormap Interface 103

8

If multiple is TRUE, mpgScreenInit must have been
already called. If not, this routine returns FALSE.
Furthermore, if multiple is TRUE and widType is
CmapWidIndirect or CmapWidDirect , widScreenInit
must have already been called. Otherwise, this routine
returns FALSE.

Results The contents of pDevFuncs and pClutPoolDescs are
copied into an internal structure rather than copying the
pointers.

The data types used by cmapScreenInit are described in the following
section.

Device-Dependent Color LUT Access Routines

A pointer to the CmapDevFuncs structure is passed to cmapScreenInit .

CmapDevFuncs

Purpose Specifies device-dependent routines for accessing the
device’s hardware color LUTs. Use WriteClutFunc in your
device handler to write an entire colormap into one of the
hardware color LUTs. This structure member must always be
non-NULL.

Arguments clutId is the device-dependent hardware identifier of the
hardware color LUT into which the color data is written. If a
single hardware color LUT operation has been selected, the
value of clutId is arbitrary.

typedef struct {
Bool (*writeClutFunc) (ColormapPtr pCmap, CARD32 clutId)
Bool (*storeColorsFunc)(ColormapPtr pCmap, CARD32 clutId,

int ndef, xColorItem *pdefs)
/* reserved for future expansion */
pointer reserved[4];
} CmapDevFuncs;

104 OpenWindows Server Device Developer’s Guide—August 1994

8

storeColorsFunc is provided by the device handler to
update a hardware color LUT with a set of XColorItem
changes. ndef is the number changes specified in the list of
changes in pdefs .

Returns TRUE on success; FALSE on failure.

Implementing writeClutFunc

When updating a color LUT, a DDX handler should avoid updating color LUT
entries whose corresponding colormap entry is unallocated. This reduces
colormap flashing. The following sections discuss the various ways to
implement this behavior.

Loading Color Lookup Tables
Some devices are mapped-access devices—devices with color LUTs memory-
mapped into the X server process. The DDX handler can access the contents of
these LUTs quickly. Other devices are request-access devices—devices with color
LUTs accessed through a request, such as a kernel driver ioctl .

For best results, request-access devices require a different color LUT update
strategy than mapped-access devices because the time required per access is
different.

For request-access devices, the possible strategies are:

• Get the entire color LUT contents, update it with allocated colormap cells,
and put the entire color LUT back.

• Get the color data for the allocated colormap cells and the list of allocated
cells. Determine contiguous ranges of allocated entries. Invoke several
requests to put the color data for these ranges into the hardware.

For mapped-access devices, the best strategy is:

• Get the color data for the allocated colormap cells and the list of allocated
cells. Use the allocation information to directly copy the data into the
hardware.

Do not use the strategy of caching color LUT contents in the DDX handler
because this does not work with DGA colormap-grabbing clients. Instead, use one
of the above strategies.

Colormap Interface 105

8

cmapGetColorData8

Purpose Gets color data and allocation information from a colormap.
Use it if the hardware color LUTs have 8 output bits per
channel.

Arguments For indexed colormaps, the data for entry i is placed in
pRmap[i] , pGmap[i] , and pBmap[i] .

For direct colormaps, the data for red entry i is placed in
pRmap[i] , for green entry i in pGmap[i] , and for blue
entry i in pBmap[i] .

The pRmap, pGmap, and pBmap locations corresponding to
unallocated entries in pCmap are unchanged.

If you are not interested in allocation information for
pRallocs , pGallocs , and pBallocs , the arguments are
NULL.

Returns The value 1 is returned on success, 0 on failure.

In pRmap, pGmap, and pBmap the color data allocated in
pCmap. It is assumed that the number of output bits per
channel is eight. The pRmap, pGmap, and pBmap arrays must
be long enough to hold all of the entries of pCmap.

Information on allocated entries, if requested. To request
allocation information, supply non-NULL arguments to
pRallocs , pGallocs , and pBallocs .

For indexed colormaps, if entry i is allocated in pCmap,
pRallocs[i] is returned as TRUE, otherwise FALSE.

For direct colormaps, if red entry i is allocated in pCmap,
pRallocs[i] is returned as TRUE, otherwise FALSE.
Likewise, pGallocs and pBallocs are used to return the
allocation status of the green and blue entries.

int
cmapGetColorData8 (ColormapPtr pCmap, unsigned char *pRmap,

unsigned char *pGmap, unsigned char *pBmap,
Bool *pRallocs, Bool *pGallocs, Bool *pBallocs)

106 OpenWindows Server Device Developer’s Guide—August 1994

8

cmapGetColorData16

Returns This routine returns the color data for allocated entries in
pCmap in pRmap, pGmap, and pBmap.

Note – This function returns the full 16 bits of color data for each channel. It is
up to the caller to convert this data to the output bits of the hardware color
LUT.

Implementing storeColorsFunc

Code Example 8-1 shows how to implement this device-dependent function in
your DDX handler.

Note – In Code Example 8-1, the color LUTs are indexed, the pixel size is 8 bits,
and hardware color LUT channel outputs size is 8 bits each.

int
cmapGetColorData16 (ColormapPtr pCmap, unsigned short *pRmap,

unsigned short *pGmap, unsigned short *pBmap,
Bool *pRallocs, Bool *pGallocs, Bool *pBallocs)

Code Example 8-1 Direct or Indirect Colormap Into Indirect Color LUT

Bool
exampleDDstoreColors (ColormapPtr pCmap, CARD32 clutId,

int ndef, xColorItem *pdefs)
{

unsigned char rmap[256], gmap[256], bmap[256];
xColorItem expanddefs[256];

/* Since the color LUTs are indexed, if we have a direct
 * colormap, we must translate the pdefs.*/

if ((pCmap->pVisual->class | DynamicClass) == DirectColor) {
ndef = cfbExpandDirectColors(pCmap, ndef, pdefs,

expanddefs);
pdefs = expanddefs;
}

Colormap Interface 107

8

Code Example 8-1 shows a special case when only a single entry is being
changed and all three channels of that entry are being changed. This is a
significant optimization because this situation happens very frequently when
color applications are started. For devices that use a system call to get the color
LUT contents out of the hardware, this optimization avoids an extra system
call.

/* Optimization: A common case for optimization is for the
 * change to be to all channels of a single entry. This
 * frequently happens when XAllocColor is called on a dynamic
 * colormap. */

if (ndef == 1 &&
(pdefs->flags & (DoRed|DoGreen|DoBlue)==(DoRed|DoGreen|DoBlue))) {

unsigned char red, green, blue;
red = pdefs->red >> 8;
green = pdefs->green >> 8;
blue = pdefs->blue >> 8;

<< put red, green, blue into color LUT clutId at pdefs->pixel >>

return (TRUE);

}

<< get entire current contents of color LUT clutId into rmap, gmap, bmap>>

/* apply changes */
while (ndef--) {

if (pdefs->flags & DoRed)
rmap[pdefs->pixel] = pdefs->red >> 8;

if (pdefs->flags & DoGreen)
gmap[pdefs->pixel] = pdefs->green >> 8;
if (pdefs->flags & DoBlue)

bmap[pdefs->pixel] = pdefs->blue >> 8;
pdefs++;

}

<<put entire rmap, gmap, bmap into the color LUT for clutId>>

return (TRUE);

}

Code Example 8-1 Direct or Indirect Colormap Into Indirect Color LUT (Continued)

108 OpenWindows Server Device Developer’s Guide—August 1994

8

Simulating a Direct Color LUT With an Indirect Color LUT
In Code Example 8-1, something special must be done when the colormap is
direct (either TrueColor or DirectColor) and the color LUT is indexed.

When an XStoreColors is performed on a single channel of a direct color
LUT, it affects the displayed colors for all pixels containing the bit pattern of
the channel entry changed. For example, if red entry 0x05 was updated, the
colors change for pixels 0x05GGBB, where GG and BB are any legal value for
the green and blue portions of the pixel. In this example, a single change to the
red entry changes the colors of multiple pixels.

When the color LUT is indexed rather than direct, several color LUT entries
must be changed to get this same effect. This is done by calling
cfbExpandDirectColors . It converts the pdefs change list describing the
changed channel entries into another change list which, when applied, updates
an indexed color LUT to achieve the desired effect.

The specification of cfbExpandDirectColors is:

This DDX function can be used by devices with any arbitrary number of color
LUT output bits. It is not limited to devices with eight bits of output per
channel.

Simulating an Indirect Colormap With a Direct Color LUT
The preceding section dealt with the case where the device has indexed color
LUTs and the device handler chooses to export indexed visuals. It is also
possible to simulate indexed visuals if the device color LUTs are direct. This is
the subject of the next section.

Code Example 8-2 is a routine that can load either indirect or direct colormaps
into a direct color LUT. The only difference is in the treatment of the pixel
value. For an indirect colormap, the same pixel value is used to index into all
three color channels. For a direct colormap, the pixel value is divided into
separate channel indexes.

int
cfbExpandDirectColors (ColormapPtr pCmap, int ndef,

xColorItem *indefs, xColorItem *outdefs)

Colormap Interface 109

8

Code Example 8-2 Direct or Indirect Colormap Into Direct Color LUT

Bool
exampleDDstoreColor (ColormapPtr pCmap, CARD32 clutId, int ndef,

xColorItem *pdefs)
{

unsigned char rmap[256], gmap[256], bmap[256];
Pixel pix;
VisualPtr pVis = pCmap->pVisual;
int direct = (pVis->class|DynamicClass) == DirectColor;

<<get entire current contents of color LUT clutId into rmap, gmap, bmap>>

/* apply changes */
while (ndef--) {

pix = pdefs->pixel;
if (direct) {

/* Direct colormap */
if (pdefs->flags & DoRed)

rmap[(pix&pVis->redmask)>>pvis->redoffset] = pdefs-
>red>>8;

if (pdefs->flags & DoGreen)
gmap[pix&pVis->greenmask)>>pVis->greenoffset] = pdefs-

>green>>8;
if (pdefs->flags & DoBlue)

bmap[pix&pVis->bluemask)>>pVis->blueoffset] = pdefs-
>blue>>8;

} else {
/* Indirect colormap */
if (pdefs->flag & DoRed)

rmap[pix] = pdefs->red>>8;
if (pdefs->flags & DoGreen)

gmap[ix] = pdefs->green>>8;
if (pdefs->flags & DoBlue)

bmap[pix] = pdefs->blue>>8;
}
pdefs++;

}
<<put entire rmap, gmap, bmap into the color LUT for clutId>>

return (TRUE);
}

110 OpenWindows Server Device Developer’s Guide—August 1994

8

Note – The single-entry optimization in “Simulating a Direct Color LUT With
an Indirect Color LUT” on page 108 can also be used in this situation, although
it is not shown in Code Example 8-2.

Color LUT Pool Description

For multiple color LUT devices, each MPG mpgInfo structure uses a specific
color LUT pool, called a clut pool. A clut pool contains one or more color LUTs.
Windows with a particular mpgInfo have their colormaps installed into the
color LUTs in this pool. The color LUTs in a pool are assigned on a first-come-
first-served basis. Throughout its existence mpgInfo always refers to the same
color LUT.

The mpgInfo structure is in the MPG library. It defines the plane groups used
by a window, what they are used for, and the window management operations
that are performed on them. For more information, see Chapter 5, “Multiple
Plane Group Interface”.

A color LUT is identified with a clut ID that is a small positive number. The
value is only interpreted by the device handler and is opaque to CMAP.

In the call to cmapScreenInit , the device handler must supply a description
of the device’s clut pools, the pool each color LUT resides in, and the pools
used by the device’s default mpgInfo s. The default mpgInfo s are the ones that
the device handler specifies in the mpgVisInfo structure passed to
mpgScreenInit . The device handler provides this description by passing in
an array of CmapClutPoolDesc structures, one for each clut pool. The number
of clut pools is passed as an argument to cmapScreenInit .

There are limitations on how mpgInfo s use clut pools. These are described
below.

Colormap Interface 111

8

CmapClutPoolDesc Structure

Code Example 8-3 shows the CmapClutPoolDesc structure that describes the
color LUTs assigned to a particular pool and the MPG infos that use them.

For each clut pool, numCluts specifies the number of cluts in the pool.
pClutIds is an array containing clut IDs for each clut in the pool. numPgs is
the number of mpgInfo s using the pool. pPgs is an array containing drawing
IDs (DIDs) for each mpgInfo using the pool. The DID is the internal ID (iid) of
the drawing plane group of that mpgInfo (this is the last plane group inserted
into the mpgInfo with op MPG_DRAW). numPgs is the number of mpgInfo
DIDs in the pPgs array. An mpgInfo DID can appear in no more than one clut
pool description.

Note – Currently, numPgs must always be equal to 1. See “Multi-Depth Color
LUT Pool Sharing” on page 115” for more details on this constraint.

The maximum number of flavors (maxFlavors) for the pool must also be
specified. See “Flavors” on page 116 for more detailed information.

Code Example 8-3 CmapClutPoolDesc Structure

typedef struct {

/* number of cluts in pool */
unsigned int numCluts;

/* array of clut IDs in pool */
CARD32 pClutIds[CMAP_POOL_MAX_CLUTS];

/* number of MPG infos using pool */
unsigned int numPgs;

/* array of MPG info dids */
CARD32 pPgs[CMAP_MAX_PGS];

/*
** maximum number of flavors for MPG infos
** using this pool
*/
unsigned int maxFlavors;

} CmapClutPoolDesc;

112 OpenWindows Server Device Developer’s Guide—August 1994

8

Note – The CMAP interface refers to an mpgInfo with the abbreviations “Pg”
or “PG.” These do not refer to individual plane groups. These abbreviations
refer to combinations of plane groups and correspond to mpg Info structures.

Note – Currently, CMAP_POOL_MAX_CLUTS is 32 and CMAP_MAX_PGS is 32 .

Relationship to MPG

This section describes the relationship between windows, visuals, mpgInfo s,
and clut pools in greater detail. See also Chapter 5, “Multiple Plane Group
Interface” for additional information.

When mpgScreenInit is called, the device handler supplies an mpgVisInfo
table that specifies, for each visual ID in the table, the default mpgInfo that is
to be assigned to windows created with that visual. When cmapScreenInit is
called, CMAP uses this table to map visual IDs to clut pools. It uses this
mapping to determine the clut into which a window’s colormap should be
installed. This depends on the window’s visual.

Window contents are stored in device memory buffers called plane groups.
Multiple plane groups can be associated with a window. The plane group in
which the image color data is stored is called the drawing plane group. Besides
the drawing plane group, the window might require other plane groups to
control rendering and to properly display the window contents. For example, it
might require a window id plane group to control visibility or a Z buffer plane
group to control 3D rendering. All the plane groups associated with a window
are described in its mpgInfo .

When an X window is created, the X client selects a visual for the window. This
visual is a type descriptor describing how the window should be displayed. It
contains information such as class and colormap entries. At the same time the
client selects a visual for the window, a depth is also selected. Both the depth
and visual remain constant for a window throughout its existence. The device
handler must assign each visual a unique visual ID.

The mpgVisInfo table passed to mpgScreenInit contains, for each visual,
the default mpgInfo for that visual. This means that when a window is
created, this table is used to find the mpgInfo for the window’s visual. This
mpgInfo is assigned to the window and controls display of the window

Colormap Interface 113

8

contents and render to the window. In the mpgVisInfo table, more than one
visual ID can point to the same mpgInfo . For example, this can happen if the
visuals differ only in the type of colormap they use for display—an 8-bit
PseudoColor visual and an 8-bit StaticColor visual can share the same
mpgInfo .

Note – Currently, the number of visuals that can refer to the same mpgInfo is
limited to 6.

The mpgVisInfo table is shown in Figure 8-1.

Figure 8-1 Relationship Between Visuals and mpgInfo s in the mpgVisInfo Table

After a window has been created, the X client may do something to it that
requires a different mpgInfo . For example, the window might become
multibuffered, grabbed through DGA, or a Z buffer attached. It might be
necessary to move the window contents to a different drawing plane group. It

8-bit StaticColor (vid0)

8-bit PseudoColor (vid1)

24-bit TrueColor (vid2)

24-bit DirectColor (vid3)

DID = 0

DID = 1

Visuals mpgInfos

114 OpenWindows Server Device Developer’s Guide—August 1994

8

might also be necessary to add plane groups to the combination used by the
window. MPG provides a routine, mpgChangeInfo , to allow a DDX handler to
change the mpgInfo of a window. This is shown in Figure 8-2.

Figure 8-2 Changing the mpgInfo of a Window.

Because the visual and depth of a window never change, the new mpgInfo
must have the same depth as the original mpgInfo . In addition, the new
mpgInfo must always use the same clut pool as the original mpgInfo . For this
reason, it is only necessary to specify to cmapScreenInit the clut pools used
by the default mpgInfo s.

The first entry in the pPgs array of a clut pool description (pPgs[0]) defines
the default mpgInfo that uses that clut pool. Other variants of this default
mpgInfo , attached to windows using mpgChangeInfo , also use that same clut
pool. This is shown in Figure 8-3.

Window
vid2 (24-bit TrueColor)

(24-bit, no Z-buffer)

mpgInfo 1
(default)

related through
mpgVisInfocurrent

(24-bit, with Z-buffer)

mpgInfo 2

new

Colormap Interface 115

8

Figure 8-3 Relationship Between Visuals, Default mpgInfo s, and Color LUT Pools.

Multi-Depth Color LUT Pool Sharing

The CmapClutPoolDesc structure has an array of mpgInfo DIDs instead of
just a single DID so that future configurations with multiple depths can share
the same color LUT pool. These are called multi-depth configurations.

Note – Multi-depth configurations are not supported in the current release.
Consequently, the numPgs of a clut pool description must always be 1. This
restriction might be relaxed in a future release.

In a multi-depth configuration, a set of color LUTs is used by mpgInfo s of
different depths. In such a configuration, the pPgs array contains more than
one mpgInfo DID. It contains one for each default mpgInfo that used the clut
pool. The different mpgInfo s in the array could be referred to by visuals of
different depths. This is shown in Figure 8-4.

8-bit StaticColor

8-bit PseudoColor

24-bit TrueColor

24-bit DirectColor

DID = 0

DID = 1

Visuals Default mpgInfos Clut Pools

116 OpenWindows Server Device Developer’s Guide—August 1994

8

Figure 8-4 mpgVisInfo Table and Color LUT Pool Description for Multi-Depth (not
supported)

Note – Sharing clut pools between default mpgInfo s of different depths is not
supported in the current release. Also, sharing clut pools between default
mpgInfo s of the same depth, but which differ in some other characteristic, is
not supported either.

Flavors

CMAP needs to know the flavors of the mpgInfo s using its clut pools. At any
one time, a window has an mpgInfo . On WID devices, a window’s WID
depends on this mpgInfo . The visible shape of the window is filled with this
WID. The hardware uses the WID to control display of and rendering into the
window. The type of the WID is called its flavor. CMAP uses the flavor of a
WID to promote the sharing of WIDs between similar windows.

4-bit StaticColor

4-bit PseudoColor

24-bit TrueColor

24-bit DirectColor

DID = 0

DID = 2

Visuals Default mpgInfos Clut Pools

8-bit TrueColor

8-bit DirectColor

DID = 1

Colormap Interface 117

8

When CMAP is first initialized and the clut pools are described, the device
handler needs to know the maximum number of flavors used by the set of all
mpgInfo s using each clut pool. On non-WID devices, maxFlavors is always 0
for each clut pool description.

A flavor is a distinct combination of hardware WID attributes. It is identified
by a small positive number. This number is opaque to CMAP and its value is
not interpreted by CMAP. Because the number uniquely identifies a flavor, the
term “flavor” is often applied to the number itself, although it really means the
combination of WID attributes it represents.

For a particular hardware WID, the flavor of a WID depends on the hardware
characteristics. The hardware WID is the bit pattern that the video display
hardware uses to display a particular pixel on the screen. The bit pattern can
also be used to control rendering to that pixel. Each pixel on the screen has an
associated WID. On Direct WID devices, the controlling bit pattern is derived
from the WID value itself. On Indirect WID devices, the WID value is used as
an index into a table to find the controlling bit pattern. The controlling bit
pattern of a WID is called its attributes. The attributes bit pattern is subdivided
into a number of fields, each of which controls a particular characteristic, such
as depth, double-buffer selection, or color LUT selection.

Note – Direct WID devices are not supported.

Since the purpose of flavors is to promote sharing of WIDs among similar
windows, any WID attribute field that is specific to an individual window, and
not sharable with other windows, is not a part of the flavor. For example, the
double-buffer selection field of a WID is not part of the flavor because buffer
changes to one window should not affect other windows. In a similar fashion,
the color LUT selection field of a WID is not part of the flavor because even if
two windows share the same visual (and the same mpgInfo) they might not
share the same colormap. These types of WID attribute fields are referred to as
unique fields. This means that each window that requires a WID in which a
unique field changes, requires a unique WID. It cannot share the WID of
another window.

Another example of a unique field is hardware clipping. It is unique because
we don’t want hardware-clipped rendering into one window to spill out into
another window. On some hardware, a WID field controlling the selection of a
fast clear set might be a unique field. (A fast clear set is a hardware construct for
rapidly setting the entire shape of a window to a specified pixel value).

118 OpenWindows Server Device Developer’s Guide—August 1994

8

Only sharable WID attribute fields are a part of the flavor. Examples include
depth and Z-buffer-enable fields. These fields are called flavor fields.

The attribute fields of a WID vary from device to device. Follow this list of
rules to determine the flavor fields for a device:

1. Start with the list of WID attribute fields that the hardware supports.

2. Eliminate the fields that are constant for all WIDs.

3. Eliminate those fields that, if enabled, prevent the WID from being shared
by other windows. Examples: hardware clip, fast clear set.

4. Eliminate those fields that will be dynamically manipulated for an
individual window. Examples: double buffer display select.

5. Eliminate those fields whose values are dependent on the values of other
fields.

6. Eliminate the color LUT select field.

The remaining fields are the flavor fields. To derive the set of flavor IDs, assign
unique small positive integers to all possible combinations of the flavor
attributes.

The following is an example of four possible flavors that might be used by a
device:

• Flavor 0: 8-bit, no Z buffer
• Flavor 1: 8-bit, Z buffer
• Flavor 2: 24-bit, no Z buffer
• Flavor 3: 24-bit, Z buffer

The maxFlavors of a clut pool is the sum of the flavors of the mpgInfo s that
can use the pool. Continuing the above example, if clut pool 0 can be used by
both an mpgInfo with an 8-bit Z buffer flavor and one with an 8-bit non-Z
buffer flavor, the maxFlavors of this pool is 2.

When multiple windows using the same mpgInfo share the same colormap,
only one WID is necessary to display the window contents. This is the WID for
that mpgInfo . However, if the windows have different colormaps, then one
WID per colormap is necessary. This is because CMAP installs each colormap
into its own color LUT.

Colormap Interface 119

8

For example, there are three 24-bit Z buffered windows, each with its own
colormap. These colormaps are installed into color LUTs 0, 1, and 2. These
windows require three distinct WIDs, each differing only in the color LUT
selection field. But the flavor attributes of these WIDs are all set to 24-bit and
Z-buffered.

If a fourth window is created that shares the same colormap as the first
window, it can share the first window’s WID; it does not need a new WID.
CMAP is designed to notice these opportunities for sharing.

For MHC WID devices, CMAP keeps track of the WIDs of windows using the
colormaps it is managing. Whenever it needs to allocate a new WID for a
window, it first checks to see if an appropriate sharable WID is already
available. An appropriate WID is defined as a WID having the same color LUT
as the window’s colormap and flavor attributes the same as the desired flavor.

Initialization Example - Multiple Color LUT

Code Example 8-4 shows how to initialize colormap management for a device
with two mpgInfo s. The first mpgInfo has one dedicated color LUT and the
second one has four dedicated color LUTs.

Code Example 8-4 Initialize CMAP For a Device With Two Plane Groups

CmapClutPoolDesc myclutDescArray[] = {

/* Pool for 8-bit mpgInfo */
{

/* clut ids */
1, { 0 },

/* used by which mpgInfo */
1, { 0 },

 /* max flavors */
3

},

/* Pool for 24-bit mpgInfo */
{

/* clut ids */
3, { 1, 2, 3 },

120 OpenWindows Server Device Developer’s Guide—August 1994

8

pMyDevFuncs is a pointer to a structure with the device-dependent colormap
access functions.

Initialization Example - Single Color LUT

To initialize colormap management for a single color LUT, the following call
should be used:

pMyDevFuncs is a pointer to a structure with the device-dependent colormap
access functions.

/* used by which mpgInfo */
1, { 1 },

/* max flavors */
1

}
};

cmapScreenInit(pMyScreen, pMyDevFuncs, TRUE, 2,
&myclutDescArray, cmapWidIndirect);

cmapScreenInit(pMyScreen, pMyDevFuncs, FALSE, 0, NULL, CmapWidNone);

Code Example 8-4 Initialize CMAP For a Device With Two Plane Groups (Continued)

Colormap Interface 121

8

WID Types

When initialized for multiple color LUT management, CMAP needs to know
whether the device uses WIDs. If the device uses WIDS, it needs to know
whether the device is an indirect or direct WID device. Use the widType
argument to cmapScreenInit to indicate this with one of the following
values:

Note – The value of the widType argument to cmapScreenInit is ignored in
single-color LUT mode. CmapWidUnknown is for use by the system; do not use
it in your DDX handler.

Note – Direct WID devices are not supported in this release.

Utility Routines

The following utility routines are provided for cleaning up after colormap
management is no longer needed, accessing arguments to cmapScreenInit ,
and making the storage method of these data opaque to the calling function.

cmapScreenCleanup

Purpose This function cleans up state initialized by
cmapScreenInit .

Called by The device-dependent CloseScreen .

typedef enum {
CmapWidUnknown,
CmapWidNone,
CmapWidIndirect,
CmapWidDirect,

} CmapWidType;

void
cmapScreenCleanup (ScreenPtr pScreen)

122 OpenWindows Server Device Developer’s Guide—August 1994

8

cmapGetDevFuncs

Returns The device-dependent colormap access functions passed to
cmapScreenInit .

cmapGetMultiple

Returns TRUE if the given screen has been initialized with multiple
color lookup table management.

cmapGetClutPoolDescs

Results The output arguments are untouched in the single-color LUT
management case.

Returns In the multiple-color LUT management case, this procedure
returns the number and array of pool descriptions given to
cmapScreenInit .

CmapDevFuncs*
cmapGetDevFuncs (ScreenPtr pScreen)

Bool
cmapGetMultiple (ScreenPtr pScreen)

void
cmapGetClutPoolDescs (ScreenPtr pScreen, int *pNumClutPools,

 CmapClutPoolDesc **pClutPoolDescs)

Colormap Interface 123

8

cmapGetWidType

Returns widType argument passed to cmapScreenInit , in
multiple-color LUT mode.

CmapWidUnknown, in single-color LUT mode.

Colormap Private Data

CMAP uses the devPriv member of ColormapRec for its own purposes. If
you want to attach device-dependent data to a colormap, it must coordinate
with CMAP.

CMAP attaches its own private data structure to all colormaps. The colormap
devPriv member points to this structure. CMAP reserves in its structure a
data member called devPriv . Set devPriv to point to your own data.

To access devPriv , call cmapGetCmapPriv .

cmapGetCmapPriv

Results If devPriv is NULL, a CmapPrivRec is created and devPriv
is pointed to it.

CmapWidType
cmapGetWidType (ScreenPtr pScreen)

CmapPrivPtr
cmapGetCmapPriv (ColormapPtr pCmap)

124 OpenWindows Server Device Developer’s Guide—August 1994

8

Returns The devPriv member of a colormap. This function returns a
pointer to a structure of the following format:

You can read and write to CmapPrivRec.devPriv as
needed by your DDX handler. The cmapopaqueX members
are opaque; do not read or write to them. So, if pCmapPriv is
the pointer returned by cmapGetCmapPriv , read or write to
the pCmapPriv->devPriv data member to attach device-
dependent data to the colormap.

Controlling MHC’s WIDs
Most MHC devices are also WID devices. This section applies only to MHC
devices that have WIDs.

An example of an MHC device that does not have WIDs, is a device with an 8-
bit plane group and a 24-bit plane group whose visibility is selected by a 1-bit
control plane. The value 0 in the control plane selects display of the 8-bit plane
group and 1 selects the 24-bit plane group. Each plane group has a single,
dedicated color LUT. This is an MHC device because it has two color LUTs; one
each for the 8-bit and 24-bit plane groups. However, visibility is controlled by
a control plane, not WIDs. If visibility was selected using a WID, then the
device would be a WID device.

Devices that support more than one color LUT per plane group are usually
WID devices. This sections applies to these devices also.

MHC devices with WIDs need to initialize the WID package. See Chapter 7,
“Window ID Interface” for more information on WIDs.

CMAP uses a set of hardware WIDs to display colormaps in windows. CMAP
is flexible about the number of WIDs it requires. It can be told to use more or
less WIDs. If it uses less, color flashing might increase. The flashing condition

typedef {
pointer cmapOpaque1;
pointer cmapOpaque2;
int cmapOpaque3;
pointer devPriv;

} CmapPrivRec, *CmapPrivPtr;

Colormap Interface 125

8

persists until CMAP is told to use more WIDs, or until one of the colormaps
causing the flashing is destroyed. See “Overloading Control Routines” on
page 126 for information on how to tell CMAP the number of WIDs to use.

Overloading WIDs

CMAP uses WIDs to display different hardware color LUTs in different
windows. Since, even on advanced display devices, WIDs are a relatively
scarce resource, there might be times when you need a WID, but cannot get
one.

The CMAP package is designed to be flexible about the number of WIDs it
uses. In normal operation, it tries to use as many WIDs as it needs. However, if
it tries to allocate a WID for a colormap and cannot, it shares the WID of
another colormap that has a similar WID. This colormap is called an overload
partner. When a colormap shares a WID with an overload partner, it uses the
color LUT of the partner. Visually, the colormap flashes against the partner
colormap. If all WIDs are used, this kind of flashing can occur even if there are
free hardware color LUTs because there must be a free WID and a free
hardware color LUT for a window to have its own LUT. This WID sharing
technique is called overloading.

Depending on the type of device, CMAP might not be the only consumer of
WIDs; the handler itself might need to use WIDs. For example, if it assigns
special WIDs to hardware clipped windows or hardware double-buffered
windows. In some situations, when the handler needs a WID it absolutely
must acquire it; it cannot share the WID with some other window. In this case,
the handler uses a unique WID.

You need to handle WID allocation failure if your handler uses WIDs. Rather
than failing the operation requiring the WID, the handler is permitted to steal a
WID from CMAP. It does this by forcing CMAP into an overloading situation.
In most cases, this approach is preferable: overloading CMAP means that there
is more colormap flashing, but failing means that the application window
needing the WID cannot be created at all.

It is recommended, therefore, that when you try to allocate a unique WID, and
the allocation fails, call cmapMhcForceOverload . (The only exception to this
is from the device-dependent widAllocate function.) This routine forces
CMAP to give up a WID by overloading two colormaps onto each other.

126 OpenWindows Server Device Developer’s Guide—August 1994

8

However, this routine does not always result in a free WID—there might not be
any more free WIDs. When cmapMhcForceOverload fails (returns 0), the
handler has no other option but to return failure.

When forcing an overload condition, be sure to also call
cmapMhcReleaseOverload whenever it frees a WID. This allows CMAP to
remove any overloading conditions that exist and go back to less flashing.
Always do this from the device-dependent WID free function, freeFunc . See
Chapter 7, “Window ID Interface” for more information.

Note – The use of cmapMhcReleaseOverload and cmapMhcForceOverload
from the WID free function is not symmetric. Even when the free function calls
cmapMhcReleaseOverload , its counterpart allocation function should never
call cmapMhcForceOverload . The cmapMhcForceOverload call is made
elsewhere in the device-independent layers of the system.

Overloading Control Routines

cmapMhcForceOverload

Purpose Forces CMAP to give up a WID.

Called by A device handler that needs a unique WID for another
purpose, such as double buffering.

Arguments visual indicates the visual type of the WID.

Returns 1 if it gives up a WID; 0 otherwise.

This code seeks to free a WID of any flavor for the visual. It starts at the least
recently installed colormap in the visual’s color LUT pool and progresses
toward more recently installed ones. For each colormap, it attempts to find a
viable overload partner colormap of the same flavor. To find the overload
partner, it starts at the least recently installed colormap and progresses toward

int
cmapMhcForceOverload (ScreenPtr pScreen, VisualID visual)

Colormap Interface 127

8

the most recently installed. It prefers partners that are not already overloaded,
but accepts partners already overloaded. If it finds a partner that is already
overloaded, the colormap becomes over-overloaded.

Note – This heuristic attempts to minimize the effect on windows with hot
(most recently installed) colormaps by confining flashing effects on less
recently used colormaps, even if it has to over-overload to do it.

Note – Call this routine only if the device handler needs a unique WID and
cannot get one. Do not call this function when creating a sharable WID for a
window. Instead, let cmapMhcWindowAttachId handle it.

cmapMhcReleaseOverload

Purpose This routine tries to take back any overloaded colormaps.
This requires a WID, so this routine is called when the caller
has reason to expect that a WID is available. This is the case
when the caller has just freed a WID.

The installed list of that visual’s color LUT pool is searched
for a colormap that is overloaded. The search progresses
from the most recently installed colormap toward less
recently installed ones until one is found that is overloaded
or the end of the list is reached. When it finds one, it allocates
a new WID and assigns it to all windows using that
colormap. The overload condition is then removed.

Arguments visual indicates the visual type of the WID that is needed.

void
cmapMhcReleaseOverload (ScreenPtr pScreen, VisualID visual)

128 OpenWindows Server Device Developer’s Guide—August 1994

8

Changing a Window’s WID
When the DDX handler for a non-MHC device creates a window, or changes a
window’s WID, it uses the WID routines of the MPG package to make the
change. For example, when a window is first created the CreateWindow
routine of the device’s screen is called. This routine calls widAllocate to
allocate a WID and then widSetWindowWid to attach the WID to the window.

If the device is MHC, it must let CMAP change the WID. To promote WID
sharing, the CMAP package needs to keep track of both WIDs and colormaps
used by windows. Specifically, CMAP must be notified when the DDX handler
does one of the following operations:

• Creates a window
• Destroys a window
• Changes a window’s colormap
• Changes a window from software clipping to hardware clipping
• Changes a window from single buffered to hardware double buffered

In either the MHC or non-MHC case, the DDX handler has ultimate
responsibility for deciding when WIDs get allocated and when WID attributes
are changed. MHC DDX handlers must use CMAP for these operations.

cmapMhcWindowAttachWid

A device that uses WIDs must wrap the pScreen->CreateWindow routine to
create the window by assigning the window a WID.

When the wrapping routine is called, it first calls the wrapped CreateWindow .
Next, it calls the following routine that ensures that the window is assigned an
appropriate WID. This routine checks if there is another window with an
appropriate WID, and uses that; if not, it allocates a new WID. It can force an
overload to get this WID.

This routine chooses an appropriate WID for the given window. The choice of
WID depends on:

• The window’s colormap

int
cmapMhcWindowAttachWid (WindowPtr pWin, Bool unique, CARD32 flavor)

Colormap Interface 129

8

• The specified flavor
• The specified uniqueness

Arguments If unique is FALSE, CMAP tries to use an existing sharable
WID of the given flavor. If it cannot find an existing one, a
new WID is allocated.

Results If the window already has a WID, it is freed.

Returns 1 is returned on success and 0 on failure.

cmapMhcWindowDetachWid

Prior to destroying a window on an MHC device, CMAP must be notified. To
do this, the device handler wraps pScreen->DestroyWindow . It calls the
following routine and then destroys the window. When the window is
destroyed the reference count of the attached WID decreases. If this was the
only reference to this particular WID, the WID is freed.

Changing A Window’s Colormap
The device handler should wrap pScreen->ChangeWindowAttributes and
detects if a CWColormap change is occurring. If not, call the wrapped
ChangeWindowAttributes normally.

If the colormap is being changed, then it first calls
cmapMhcWindowDetachWid on the window, then the wrapped
ChangeWindowAttributes . Finally, it calls cmapMhcWindowAttachWid .

Note – If the call to cmapMhcWindowAttachWid fails, the device handler
returns an error.

int
cmapMhcWindowDetachWid (WindowPtr pWin)

130 OpenWindows Server Device Developer’s Guide—August 1994

8

cmapMhcChangeFlavor

Whenever a window is modified in a way that changes its flavor, CMAP must
be notified. A new WID needs to be assigned to the window, one with the new
flavor. It is CMAP that makes this reassignment.

Call the following routine whenever the device handler is about to make a
change that affects a WID’s flavor. The routine is given the desired flavor and
it attempts to either share a WID of the same flavor or else allocate a new one.
In either case, it finds a WID and assigns it to the window.

This function tells CMAP that you want a WID of a different flavor attached to
the window. CMAP selects a new WID for the window, using either an existing
sharable WID or a new WID.

Note – Call this function only for windows with sharable WIDs.

This function returns 1 on success and 0 on failure. A failure return indicates
that a WID of the desired flavor could not be acquired for the window. In this
case, the previous WID of the window is left untouched.

Example

Code Example 8-5 shows you how to change the flavor of a window in pseudo-
code. Attaching a Z buffer to a window is used as a hypothetical example. This
code might be called from the DGA GPI routine DgaZbufSetup in response to
a call to the libdga XDgaZbufGrab API routine. See Chapter 10, “Direct
Graphics Access Drawable Client Interface” for more information.

Note – This is only a hypothetical example to illustrate the changing of a WID
flavor attribute. MPG provides a superior service for attaching a Zbuffer to a
window. For most devices, the MPG service is preferred because it sets up the
Z buffer contents to be moved when the window moves. See Chapter 5,
“Multiple Plane Group Interface” for more information. The actual possibilities
for changeable flavor attributes are device-dependent.

int
cmapMhcChangeFlavor (WindowPtr pWin, CARD32 newFlavor)

Colormap Interface 131

8

Note – Depth is a WID flavor attribute, but dynamically changing the depth of
a window is not permitted under the X model.

Code Example 8-5 Changing the Flavor of a Window Pseudo-Code

#define DDZBufFlavor<< device-dependent >>

DDAttachZBuffer (WindowPtr pWin)
{

WidPtr pWid;
unsigned long value;

pWid = mpgWindowGetWid(pWin);
value = widGetValue(pWid);

if (widGetUnique(pWid)) {
if (device has indirect WIDs) {

widAttrs = get WID LUT entry ‘value’
<change widAttrs to specify Z buffer attached>
WID LUT entry ‘value’ = widAttrs

} } else {
/* device has direct WIDs */
<change ‘value’ to specify hardware clipping>
widSetValue(pWid, value);

}
} else {

if (!mhcChangeFlavor(pWin, DDZBufFlavor))
return failure;

}

<Do other device-dependent operations to attach Z buffer>
/* For Direct WId devices, whenever you change a WID
 * attribute, you must reprepare the WID plan group of the
 * window. To do this, set the window’s WID to same WID and
 * specify repreparation. You do not need to do this for
 * Indirect WID devices.
 */
mpgWindowSetWid(pWin, pWid, 1);
return Success;

}

132 OpenWindows Server Device Developer’s Guide—August 1994

8

Allocating Unique WIDs

There are times when one or more non-sharable WIDs are needed for a
window—double buffering and XGL stenciling. These techniques require
unique WIDs. Use the following function to allocate unique WIDs; it forces an
overload if the WID allocation fails.

This function allocates the specified number of WIDs for the window. The
window’s current WID is dereferenced and the WID object representing the
new WIDs is attached. The WIDs allocated are contiguous to a power-of-two
boundary determined by rounding up number to the next power of two. The
WIDs are unique.

The value of number must be >= 1.

This function returns 1 on success and 0 on failure. If 0, pWin ’s original WID is
left untouched.

Example

Code Example 8-6 shows you how to allocate multiple unique WIDs. This is an
example of a DGA-based graphics library that wants to clip rendering to a sub-
region of the window. In the first part of the example, two consecutive unique
WIDs are allocated by the device handler and returned via the DGA
mechanism.

int
cmapMhcAllocWids (WindowPtr pWin, int number)

Colormap Interface 133

8

Code Example 8-6 Allocating Multiple Unique WIDs in Pseudo-Code

Initialize this routine as the DGA GPI routine, WidSetup . This routine is
invoked via a call to the libdga API routine, XDgaGrabWids . For more
information on these routines, see Chapter 10, “Direct Graphics Access
Drawable Client Interface.”

To complete the example, the graphics library calls XDgaGrabWids , getting
back the two WID values. The library then does the following:

• Enables the hardware clipping attribute of the WID 1. (This can be done
because WID 1 is unique.)

• Prepares the WID plane group throughout the entire drawable region of the
window to WID 2.

• Prepares the WID plane group in the interior of the clipping sub-region to
WID 1.

• Sets up the hardware to render, clipped to WID 1.
• Renders the graphics.

This will result in the graphics being clipped to the sub-region, as desired.

Note – Currently, this example is applicable only to indirect WID devices.
Multiple hardware WIDs per WID object are not supported on direct WID
devices. If the same feature is desired on a direct WID device, write the routine
to allocate two separate WID objects rather than using cmapMhcAllocWids . In
this case, if either of the WID allocations fails, call cmapMhcForceOverload ,

DDGetClippingWids (WindowPtr pWin)
{

WidPtr pWid;
unsigned long value;

if (!cmapMhcAllocWids(pWin, 2))
return failure;

pWid = widGetWindow(pWin);
value = widGetValue(pWid);

<place value and value+1 in the DGA shared information page>

return Success;
}

134 OpenWindows Server Device Developer’s Guide—August 1994

8

and retry the failing WID allocation. Once allocated, the hardware WID values
can be derived from the WID objects by calling widGetValue on each one.
Finally, store pointers to these WID objects in the handler’s devPrivates area
of the window so they can later be freed when the window is destroyed. This
may change in future releases.

135

Multibuffering Extension to X
Interface 9

This chapter describes the MBX (the Multibuffering Extension to X) interface
for DDX handlers. This implementation of MBX permits hardware
multibuffering on devices with special hardware (HW MBX). Internal changes
were made to the X11R5 MBX sample implementation and a device porting
interface was added.

Devices not capable of supporting hardware multibuffering can still use the
MBX extension without any porting effort. Devices capable of hardware
multibuffering need to register a device-dependent function vector with the
server during Screen initialization.

See the OpenWindows Server Programmer’s Guide, which is part of the SDK, for
the MBX extension specification.

Multibuffering
Clients can grab MBX image buffers and render directly to them.

Multibuffered Windows and Multibuffer Sets

A window is multibuffered if the MBX API routine XmbufCreateBuffers has
been called on the window. XmbufCreateBuffers creates a specified number
of multibuffers associated with the window. At any one time, the contents of
one of these multibuffers is displayed within the window. Together, the

136 OpenWindows Server Device Developer’s Guide—August 1994

9

window and its associated multibuffers form a multibuffer set. The window of a
multibuffer set is called the main window. The main window and its
multibuffers are called members of the multibuffer set.

Multibuffer Flip Modes

Two methods exist for an undisplayed buffer to become the displayed buffer,
or buffer flipping. The first is the copy flip method, or MBCOPY_FLIP, where the
framebuffer creates n buffers in memory. When a client requests that buffer, i
becomes the displayed buffer and the pixel contents of i are copied to the pixel
store of the window drawable. This copying is transparent to MBX clients. This
means that if the client renders to multibuffer i (the current display buffer)
again, the rendering should be immediately visible. But, since copying is being
used, the rendering instead goes into a nonviewable pixel store. Buffer aliasing
solves this problem in copy flip mode: whenever a multibuffer is made the
current display buffer, its XID is aliased to refer to the pixel store of the
window drawable. If the client makes any multibuffer the current display
buffer, subsequent rendering to that multibuffer will be immediately visible
because it is drawn to the pixel store of the window drawable, which is always
viewable.

The second method of buffer flipping is video flip, or MBVIDEO_FLIP, and can
only be accomplished on an MPG device. This method requires that the
framebuffer be capable of switching the video to be displayed out of any of the
multibuffers created for a window. When the DDX handler is notified to
display buffer i it is responsible for switching the hardware so that it displays
from buffer i . Additionally, it must notify MPG that the window has migrated
to a new plane group so that rendering to the window or displayed buffer will
be immediately viewable.

Multibuffering Extension to X Interface 137

9

HW MBX Functions

MbxScreenInit

Purpose This function initializes HW MBX from your DDX handler’s
Screen initialization function, if the Screen supports
hardware multibuffering.

Arguments major is the major version number of the server DDK (1).

minor is the minor version number of the server DDK (0).

Note – The MBX initialization function in last release,
MultibufferDevFuncsInit , is supported in this release. See New Features
and Changes for information on backward compatibility.

#define _MULTIBUF_SERVER /* do not want Xlib structures */
#include “multibufst.h”
#include “multibufstruct.h”
.
.
.
int
mbxScreenInit(pScreen, pMbxdevfuncs, major, minor)
ScreenPtr pScreen;
void *pMbxdevfuncs;
int major;
int minor;

138 OpenWindows Server Device Developer’s Guide—August 1994

9

MbxDevFuncs

This function vector, as well as many other MBX data structures and constants
referenced throughout this chapter, is defined in the multibufst.h (in
/usr/openwin/include/X11/extensions) and the multibufstruct.h
(in SUNWowddk/extensions/server/multibufstruct.h) header files.

This function vector does not have to be completely filled in by every device.
Only functions applicable to the device need to be filled in; other entries can be
NULL. Functions, if supplied, are called by the device-independent layer of
MBX when it needs to perform a device-dependent operation.

TryMpg

Purpose This function is called when a client initiates multibuffering
on a window, pWin , through MBX. The server attempts to
create the requested number of buffers, num_buf , to
associate with the window. This call requests the handler to
indicate whether the device provides MPG multibuffering. If
a device supports MPG, then the plane group used by the
window for multibuffering might be different than the
current plane group. In this case, this routine re-prepares the
necessary plane groups. Refer to Chapter 5, “Multiple Plane

typedef struct _MbxDevFuncs {
int (*TryMpg)(WindowPtr, int, int, int);
PixmapPtr (*CreateMultibuffer2)(WindowPtr, int, int, int, int, int);
void (*DestroyMultibuffer)(WindowPtr, PixmapPtr, int, int);
PixmapPtr (*ResizeMultibuffer)(WindowPtr, int, int, int, int);
void (*RepositionMultibuffer)(WindowPtr, PixmapPtr, int, int);
int (*DisplayMultibuffer)(WindowPtr,int);
int (*SetMultibufferInvisible)(WindowPtr, PixmapPtr);
int (*SetMultibufferVisible)(WindowPtr, PixmapPtr);
void (*LastUpdateTime)(WindowPtr, u_long, u_long);
} MbxDevFuncs;

int
(*TryMpg)(WindowPtr pWin, int num_buf, int updateAction,

int updateHint)

Multibuffering Extension to X Interface 139

9

Group Interface” for more details. Non-MPG devices need
not supply this routine and should have a NULL entry in the
mbufdevfunc vector.

Results If the number of buffers requested for multibuffering,
num_buf , is greater than the available number that hardware
can support, or if any other device- dependent criteria for
turning on hardware multibuffering fails, hardware
multibuffering is not enabled.

If all conditions are satisfied, the device maintains private
information about the multibuffering state if necessary.

Returns This function returns 1 if hardware multibuffering is enabled
and 0 otherwise.

Arguments The last two arguments to this function, updateAction and
updateHint , are supplied because some devices might not
handle all cases and combinations of update action or update
hint.

updateHint indicates how often the client will request a
different buffer to be displayed. This hint allows smart server
implementations to choose the most efficient means to
support a multibuffered window based on the current need
of the application (dumb implementations may choose to
ignore this hint). Possible hints are:

MultibufferUpdateHintFrequent means an
animation or movie loop is being attempted and the
fastest, most efficient means for multibuffering should be
employed.

MultibufferUpdateHintIntermittent means the
displayed image will be changed every so often. This is
common for images displayed at a rate slower than a
second. For example, a clock that is updated only once a
minute.

MultibufferUpdateHintStatic means the displayed
image buffer will not be changed any time soon.
Typically set by an application whenever there is a pause
in the animation.

140 OpenWindows Server Device Developer’s Guide—August 1994

9

updateAction indicates what should happen to a
previously displayed buffer when a different buffer becomes
displayed. Possible actions are:

MultibufferUpdateActionUndefined means the
contents of the buffer last displayed will become
undefined after the update. This is the most efficient
action since it allows the implementation to trash the
contents of the buffer if it needs to.

MultibufferUpdateActionBackground means the
contents of the buffer last displayed will be set to the
background of the window after the update. The
background action allows devices to use a fast clear
capability during an update.

MultibufferUpdateActionUntouched means the
contents of the buffer last displayed will be untouched
after the update. Used primarily when cycling through
images that have already been drawn.

MultibufferUpdateActionCopied means the
contents of the buffer last displayed will become the
same as those that are being displayed after the update.
This is useful when incrementally adding to an image.

CreateMultibuffer2

Purpose When the device does not support hardware buffers, the
buffers are implemented as software pixmaps. However, on
devices supporting hardware buffers, this function has to
create a pixmap that points to device memory and return a
pointer to the pixmap.

PixmapPtr
(*CreateMultibuffer2)(WindowPtr pWin, int num_buf,

int cur_buf, int updateAction, int updateHint,
int mode);

Multibuffering Extension to X Interface 141

9

Returns If the requested number of buffers is greater than what the
hardware can support, this routine returns NULL. If the buffer
was created, this routine returns a pointer to the pixmap.

Arguments num_buf indicates the total number of buffers being
requested and this routine is called to create each of the
requested image buffers.

cur_buf indicates the number of the buffer being created.
num_buf is provided in case you want to perform a sanity
check on cur_buf .

The values of updateHint and updateAction are
supplied, because you might not want to support hardware
buffers for certain values or combinations of updateAction
and updateHint . See page 139 and page 140 for complete
definitions of these arguments.

mode is an integer pointer that the DDX handler should fill in
with either MBCOPY_FLIP or MBVIDEO_FLIP, depending
on the type of buffer created. All buffers for any window
must be the same mode.

Note – The MBX creation function in last release, CreateMultibuffer , is
supported in this release. See New Features and Changes for information on
backward compatibility.

DestroyMultibuffer

Purpose This function is called when the server is destroying the
multibuffers of a window so that the DDX handler can clean
up the resources used by the buffers. This function is called
once for each buffer in a window’s multibuffer set that is
being destroyed.

void
(*DestroyMultibuffer)(Windowptr pWin, PixmapPtr pPix,

int num_buf, int cur_buf);

142 OpenWindows Server Device Developer’s Guide—August 1994

9

Arguments pPix is the PixmapPtr that was returned by
CreateMultibuffer2 .

num_buf is the total number of buffers allocated to this
window. This number should not change throughout the
existence of a multibuffer. It can change if a multibuffered
window is unbuffered, then buffered again with a differing
number of buffers. In particular, this value should not change
during the buffer destruction process (rather than being
updated after the deletion of each buffer/pixmap).

cur_buf is the buffer number of the buffer currently being
deleted.

ResizeMultibuffer

Purpose If a multibuffer window pWin , is resized, and if the buffers
are in hardware, they need to be resized as well. Often, this
means destroying the previously allocated hardware buffer
and recreating a new one with the new size. This function, if
available, is called to resize each of the buffers associated
with the window pWin .

Results The new dimensions of the buffer are the same as the
dimensions of the window, pWin . All the conditions specified
for CreateMultibuffer also apply to this function.

If the device maintains private data about the hardware
buffers, it is updated as well. The contents from the buffer
before it was resized are copied into the newly resized buffer.

Returns If the hardware pixmap-buffer associated with the cur_buf
is successfully resized, a pointer to this pixmap-buffer is
returned. Otherwise a NULL pointer is returned.

PixmapPtr
(*ResizeMultibuffer)(WindowPtr pWin, int num_buf,

int cur_buf, int updateAction, int updateHint);

Multibuffering Extension to X Interface 143

9

Arguments num_buf indicates the total number of buffers associated
with this window and cur_buf indicates the number of the
buffer currently being resized.

See page 139 and page 140 for complete definitions of
updateAction and updateHint .

RepositionMultibuffer

Purpose If a multibuffer window pWin , is repositioned, and if the
buffers are in hardware, they each need to be repositioned.
The hardware might need to be updated with the new origin
of the buffer, as well as any private information that the
device maintains about this buffer. This function, if available,
is called to reposition each of the hardware buffers.

Arguments new_x and new_y indicate the new coordinates of the
window.

Depending on the hardware, the contents in the hardware
buffers might need to be copied to the new location.

DisplayMultibuffer

Purpose When the client program issues a request to display a certain
buffer on a multibuffered window, pWin , this function, if
available, is called. If the multibuffer set of pWin is of type
MBVIDEO_FLIP, mpgChangeInfo() must be called to migrate
the window to the plane group of the new display buffer.

void
(*RepositionMultibuffer)(WindowPtr pWin,

PixmapPtr pBuffer, int new_x, int new_y)

int
(*DisplayMultibuffer)(WindowPtr pWin, int buf_num)

144 OpenWindows Server Device Developer’s Guide—August 1994

9

Returns This function then initiates flipping the buffer to display the
hardware buffer associated with this buffer number and
return 1 upon success and 0 on failure. If the hardware
buffer flip fails for some reason, the contents of the buffer are
copied to the window using CopyArea .

Arguments buf_num indicates the number of the buffer to be displayed.

DisplayMultibuffer can be an asynchronous function. It
can post the buffer flip to the device and return immediately.
If this is the case, it is the responsibility of the device
handlers’ rendering code to block until the buffer flip has
been completed before proceeding to render.

Some devices do not display a new buffer by doing a flip in
hardware. Instead their hardware is specialized to perform
accelerated copying from the hardware buffer to the window.
These devices have a NULL entry in the device function
vector for this function.

SetupMultibufferInvisible

Purpose This function, if available, is called to indicate that pPrevBuf
is no longer the visible buffer of the multibuffered window,
pWin .

In the device-independent part of MBX, the resource id of the
window is aliased to the resource id of the visible buffer.
When the client requests a new buffer to be displayed, the
resource id of the window needs to be aliased to the new
buffer. If the currently visible buffer is in hardware, the
hardware might need to be updated to know that this buffer
is no longer the visible buffer.

Returns This function returns 1 upon success and 0 on failure.

int
(*SetMultibufferInvisible)(WindowPtr pWin,

PixmapPtr pPrevBuf);

Multibuffering Extension to X Interface 145

9

SetMultibufferVisible

Purpose This function, if available, is called to indicate that the buffer,
pCurBuf is the currently visible buffer on the multibuffered
window, pWin .

After marking the currently visible buffer as invisible, MBX
then aliases the resource id of the window to the resource id
of the buffer (pixmap) about to be displayed. If this buffer is
in hardware, the hardware might need to be updated to
indicate that this buffer is now visible.

Returns This function returns 1 upon success and 0 on failure.

LastUpdateTime

Purpose This function, if available, is called to find out when the last
display update was completed. You are required to supply
the last update time in your device handler.

Results This function assumes that DisplayMultibuffer returns
after the buffer is flipped.

On devices that allow DisplayMultibuffer to be asynchronous, this
assumption is no longer valid.

int
(*SetMultibufferVisible)(WindowPtr pWin, PixmapPtr pCurBuf);

int
(*LastUpdateTime)(WindowPtr pWin, u_long months,

u_long milliseconds)

146 OpenWindows Server Device Developer’s Guide—August 1994

9

147

Direct Graphics Access Drawable
Client Interface 10

The direct graphics access (DGA) drawable interface, like the rest of the DGA
client interface, is not an application developer interface. To use it, a developer
must know the specifics of the hardware interface for each device supported.
Many graphics devices are supported under Solaris, and often the hardware
interfaces are not documented in books available in your local bookstore. DGA
is an interface targeted for IHVs (Independent Hardware Vendors) porting
Solaris graphics libraries to a particular graphics device. Developers porting
the XGL, XIL, and Direct Xlib libraries may want to take advantage of the DGA
drawable interface in the device handlers for those libraries.

The DGA drawable interface is compatible to the DGA window grabber
interface in Version 3.3. All of the existing DGA client interface routines are
still supported. See New Features and Changes for information about backward
compatibility.

Overview
The DGA drawable interface is the basic mechanism for sharing screen access
between the window server and one or more X11 client processes. This allows
a DGA client to access the frame buffer for improved performance while the
window server is still in charge of managing screen real estate for all clients in
order to maintain the integrity of the screen. This is accomplished via efficient
locking primitives and shared memory information which is accessed via a set
of routines and macros. Not only does it apply to windows residing on a
screen, but to other types of drawables that can be created on a screen, such as
pixmaps and MBX buffers.

148 OpenWindows Server Device Developer’s Guide—August 1994

10

The goal of DGA is to provide clients with direct access to the graphics
hardware while retaining coherence with the window system. DGA allows the
window server to pass device-specific information to Solaris VISUAL
foundation library clients such as XGL, XIL, and Direct Xlib. The device-
specific information is passed to the foundation library device handler so that
the handler knows how to drive the hardware.

The coordination between the server and the client is provided by means of the
DGA drawable interface. This interface performs two primary functions; first,
it allows the server to pass the target drawable’s size and clip shape to the
client; and second, it allows the client to lock the drawable, so that it does not
change while graphics are being rendered. It also enables the client to detect
changes to the drawable, such as the addition of backing store, which the client
must maintain. A secondary function of the drawable interface is a mechanism
that allows the device-dependent portions of the server to share device-
dependent information with the client.

Drawable Types

The OpenWindows server provides clients with several different types of
resources on which graphics can be drawn. These resources are called
drawables. Drawables are always associated with a particular X screen. There
are two basic types of drawables: viewable and nonviewable. The pixel contents
of viewable drawables can be directly seen by the user. They reside in special
device memory from which a video signal can be output to the display screen.
The contents of nonviewable drawables cannot be directly seen by the user. For
the user to be able to view the drawable contents, the pixels of a nonviewable
drawable must be copied to a viewable drawable.

Windows are always viewable drawables. Pixmaps are always nonviewable.
MBX multibuffers may be either viewable or nonviewable depending on the
type of memory where their pixels reside.

DGA Drawables

A graphics client that intends to do direct rendering into one or more
drawables first makes arrangements with the window system to grab the
drawable. This enables direct access to the drawable. Only window and
pixmap drawables are grabbed. MBX multibuffer drawables are implicitly
grabbed by grabbing their associated window.

Direct Graphics Access Drawable Client Interface 149

10

Once a drawable is grabbed, the client must lock the drawable prior to
rendering to it. The client must provide arguments to the lock routines
specifying the drawable it is going to render to. For each drawable locked, the
lock routines take a Dga_drawable and a buffer index. A Dga_drawable is a
opaque handle returned by grabbing a drawable. It is some times also called a
DGA client structure for the drawable. Depending on the values of the
Dga_drawable and buffer index, the client can specify any of the following to
be locked: a multibuffer of a window, the window itself, or a pixmap. For
details see “Drawable Locking and Change Detection” on page 156.

It should be emphasized that multibuffers share the same Dga_drawable as
their main window; it is only through the buffer index that windows and
multibuffers are differentiated. The buffer index for windows and pixmaps is
always -1. The buffer index for a multibuffer is always a small natural number.

The drawable’s client structure contains a pointer to the shared memory
information about the drawable. This information is shared with the window
server. It acts as a communication pathway between the window server and
the client. DGA clients cannot access the contents of the Dga_drawable
structure or the shared memory information directly; access it through this
DGA interface. When this initialization transaction is complete, the client can
begin rendering into the drawable.

The window server updates its information in response to changes in the
drawable’s attributes. These changes are usually initiated by the user, by
popping up a menu or resizing a window, for example. Some of these changes
can be initiated by a client program through a programmatic interface, such as
the MBX (multibuffering extension) API or the XGL double buffering API. The
client uses the routines provided in the drawable interface to maintain
consistency with these changes.

Mutual Exclusion

At a given time, only a single process may access the shared drawable
information. Mutual exclusion is enforced by lock and release primitives in the
client and window server code streams. Denial of access permission is
transparent to the requesting process; it will be blocked when it tries to lock
down the shared data structure and will not continue until it has acquired the
right to own the shared data structure. Once a process acquires the shared data
structure, it retains uninterrupted use of it. When a process decides to give up
ownership, another process may acquire ownership. For this reason, the DGA

150 OpenWindows Server Device Developer’s Guide—August 1994

10

locking primitives should not be held outside of rendering code or for
extended periods of time. At present, DGA does not support multi-threaded
graphics access to a single drawable from within a single client process.

The drawable interface enforces fairness in that, a process which is denied
access is given ownership rights as soon as they become available. Release of
ownership is voluntary and the owning process can retain ownership for an
indefinite period of time. This exposes a potentially vulnerable area in the
mutual exclusion technique, since the owning process may loop, sleep,
terminate or perform time-consuming operation while in possession of access
rights. This situation is ameliorated by a time-out mechanism that limits a
client process’s ownership time to a maximum value (currently three seconds).
The window server process is not so limited and may retain possession of the
lock indefinitely.

Sites

A drawable can reside in different types of memory called drawable site types.
System memory and device off-screen memory are examples of drawable site
types. Within a site type, a drawable has a location. This location is defined
either by an address or, for some types of multibuffers, a render buffer state.
Together, the site type and location within the site define the drawable’s site.

In between locks, a drawable’s site may change for several reasons:

1. The display buffer may have changed, causing aliasing to another site.
(Refer to the section “Multibuffer Flip Modes” on page 136 for more
information).

2. The cache state of the drawable may have changed.

Because any type of drawable can potentially change site between locks, the
client should either:

• always check for a site change when the drawable is locked and
DGA_DRAW_MODIF returns nonzero, or

• register a site change notification function

There are two ways of detecting site changes:

Direct Graphics Access Drawable Client Interface 151

10

1. MODIF Testing

A site change causes DGA_DRAW_MODIF to return nonzero. As part of the
state interrogation that follows this, the client can call
dga_draw_sitechg to see if the site has changed since the last lock.

2. Notification

Another way to detect site changes is to register a site change notification
function. This function is automatically called by the drawable locking
routines when a site change is detected.

The client may use either of these two approaches.

When a drawable is first grabbed, its site is considered changed so the client
can synchronize with the initial site.

Backing Store

When a window has backing store, DGA clients must update the backing store
as illustrated in Figure 10-1.

Figure 10-1 Screen and Backing Store Memory Relationship

The backing store always contains the contents of the nonvisible portion of the
window. Not only is the DGA client supposed to render to the visible portion
of the window, but it is also expected to keep the valid pixel area of the

Window

Visible
Portion

Nonvisible
Portion

Screen Backing Store Memory

Valid Pixels

Window Backing

Ignored

Store

152 OpenWindows Server Device Developer’s Guide—August 1994

10

backing store up-to-date. The valid portion of the backing store always has the
same shape as the nonvisible portion of the window. This shape is equal to the
window’s boundary shape minus the visible shape.

The backing store of a window is not a drawable itself. It can be rendered to
and can be cached like a pixmap, but it cannot be separately grabbed. It has no
XID of its own and no presence in the system independent of its owning
window. Backing store can only be accessed by grabbing the window that
owns it.

During each lock critical section, the amount of rendering the client must
perform depends on the degree to which the window is obscured.
dga_draw_visibility can be called to determine which of the following
cases holds:

1. If the drawable is entirely unobscured (DGA_VIS_UNOBSCURED), the client
can restrict rendering to just the visible shape of the drawable. This shape is
returned by dga_draw_clipinfo .

2. If the window is partially obscured (DGA_VIS_PARTIALLY_OBSCURED), the
client should render to both the visible and the retained portions.

3. If the drawable is completely obscured (DGA_VIS_FULLY_OBSCURED) then
the client should render to the entire backing store area.

The client must complete rendering updates to both the drawable and backing
store within a single lock critical section.

If the client needs to read pixels from the drawable, it should use the clip state
of the drawable to determine whether it should read the pixels from the visible
portion of the drawable, the backing store, or both. This is done in a similar
fashion to rendering (described above).

By default, the shared information file for backing store is placed by the server
in /tmp but because these files can tend to be rather large the server also
supports placing the files in a path as defined by the -sharedretainedpath
server command-line argument.

Compiling and Linking
To use this interface, the /usr/openwin/include/dga/dga.h file should be
included in a library device handler’s source file (it contains the definitions of
many of the defined symbols and data structures referred to in this document).

Direct Graphics Access Drawable Client Interface 153

10

The library device handler should be linked with the
/usr/openwin/lib/libdga.so library.

Note – Routines with all uppercase names, such as DGA_DRAW_LOCK, are C
macros—you cannot manipulate them as true C routines.

DGA Drawable Functions
Most DGA drawable routines can only be called when the drawable is locked.
Otherwise, conflicts could occur with either the server or another client
accessing the drawable. An inquiry routine called while the drawable is not
locked may return invalid information. An action routine called while the
drawable is not locked may not have the desired effect.

In the following routine specifications, if a routine must be called within a lock
critical section, it is marked with the tag ”(Lock Only)”. The results of calling
such a routine outside a lock critical section are undefined.

All other routines may be called either inside or outside of a lock critical
section.

Initialization and Cleanup

The following routines initialize DGA, initiate and terminate direct access to a
drawable, and cleanup DGA.

DGA_INIT

Purpose This macro performs the initialization required to use any of
the DGA interfaces: this drawable interface, the window
compatibility interface, the colormap grabber, and the
miscellaneous grabbers.

void
DGA_INIT()

154 OpenWindows Server Device Developer’s Guide—August 1994

10

Called by All client programs before making any other DGA function
calls. This macro can be called multiple times by a client
program so that, multiple libraries using DGA can be used
by the application program without difficulty.

XDgaGrabDrawable

Purpose Initiates direct access to a window or pixmap drawable.
drawid is the XID of the window or pixmap. If the grab
succeeds, a handle to the DGA client structure for the
drawable is returned. If the grab fails or is refused by the
server, 0 is returned.

Returns The returned Dga_drawable is used to form the handle to
be passed to subsequent DGA inquiry routines on that
drawable.

For a window, use buffer index equal to -1. Likewise for a
pixmap.

If the client wants direct access to a multibuffer, it should
first query MBX to determine the main window of the
multibuffer set. It should then call XDgaGrabDrawable to
grab this window. When locking the multibuffer or inquiring
state for the multibuffer, the index of the multibuffer
(received from MBX) should be passed to DGA along with
the Dga_drawable of the main window.

Results This routine allocates several resources in the calling
process’s address space for the drawable, including a
mapping of the shared memory information. This function
opens a file descriptor for the correct graphics device file,
using information found in the shared memory area. Only
one file descriptor per graphics device will be opened.

Dga_drawable
XDgaGrabDrawable (dpy, drawid)
Display *dpy;
Drawable drawid;

Direct Graphics Access Drawable Client Interface 155

10

Note – If the drawable is a member of a multibuffer set (a multibuffered
window or one of its multibuffers) the grab will succeed only if the number of
multibuffers is less than or equal to 16.

Note – One file descriptor is consumed when the client grabs a window by
calling DgaGrabDrawable . If dga_draw_rtngrab is also called, an additional
file descriptor is consumed. In addition, a single additional file descriptor is
used whenever there are one or more pixmaps grabbed, or windows grabbed
with one or more multibuffers. Since multibuffers that are not viewable can be
assigned to windows subsequent to the grab, this file descriptor may not be
actually consumed by DgaGrabDrawable itself, but rather, may be allocated
during a later lock of the drawable. Finally, for each file descriptor used by the
client, a file descriptor is consumed in the server.

XDgaUnGrabDrawable

Purpose This function terminates direct access to a drawable. If this
was the last direct use of the drawable by the client, DGA
resources for the drawable in the client’s address space are
freed. These were the resources allocated by a previous call
to XDgaGrabDrawable . All resources and memory
mappings that were created are freed or made inaccessible as
a result of this operation. If this was the last direct use of the
drawable on the screen, the window server DGA resources
for this drawable are also freed.

Results If dgadraw refers to a multibuffered window, all
multibuffers associated with this window are also
ungrabbed.

If the drawable is locked at the time of this call, it is first
unlocked.

int
XDgaUnGrabDrawable (dgadraw)
Dga_drawable dgadraw;

156 OpenWindows Server Device Developer’s Guide—August 1994

10

If resources for backing store have been allocated for the
drawable, these resources are freed. The shared memory
mappings for the backing store in the calling process’s
address space are unmapped, the backing store shared info
file is closed, and the server is notified to free all its resources
associated with the direct access to backing store.

Returns Nonzero on success
0 on failure

Drawable Locking and Change Detection

The following functions provide the ability to gain exclusive access to a
drawable while client operations are being performed. Routines are also
provided to detect changes that have occurred to the drawable since the client
last locked it.

DGA_DRAW_LOCK

Purpose This macro locks the drawable info shared memory data
structure. The client must lock the drawable info shared
memory area before it uses any information in it. This
restrains the window server from applying any modifications
to the attributes of the drawable a client is rendering into it.
It also prevents collisions with other clients. The lock should
be held while any rendering is performed or information
from the shared memory is being accessed. The lock is
lightweight enough to be placed around a small number of
primitives without sacrificing performance. Thus calls to the
locking primitives should be kept in the graphics library and
not exposed in the library API.

void
DGA_DRAW_LOCK(dgadraw, bufIndex)
Dga_drawable dgadraw;
short bufIndex;

Direct Graphics Access Drawable Client Interface 157

10

Results The current lock subject is the drawable (window, pixmap, or
multibuffer) to which subsequent DGA inquiry routines
executed within the lock apply.

If dgadraw is a multibuffered window, not only is the
window locked but all the multibuffers in the current
multibuffer set are locked as well.

Locks nest correctly. If DGA_DRAW_LOCK has been called
multiple times without an intervening unlock,
DGA_DRAW_UNLOCK must be called the same number of times
before the drawable is unlocked.

Arguments If the drawable to be locked is a non-multibuffered window
or pixmap, bufIndex should be -1. The current lock subject
(used within the lock critical section by other DGA routines)
will be the window or the pixmap.

If the drawable to be locked is a multibuffer, dgadraw
should be the Dga_drawable of the main window of this
multibuffer. bufIndex should be its buffer index. The
current lock subject will refer to this multibuffer.

DGA_DRAW_UNLOCK (Lock Only)

Purpose This macro permits external modification of the information
in the shared memory data structure. Locke nest properly.
This routine should be used only when a drawable has been
first locked with DGA_DRAW_LOCK. If DGA_DRAW_LOCK has
been called multiple times without an intervening unlock,
DGA_DRAW_UNLOCK must be called the same number of times
before the drawable is unlocked.

void
DGA_DRAW_UNLOCK(dgadraw)
Dga_drawable dgadraw;

158 OpenWindows Server Device Developer’s Guide—August 1994

10

DGA_DRAW_LOCK_SRC_AND_DST

Purpose This macro atomically locks two drawables at the same time.
It should be used when the client will be accessing two
drawables in a rendering operation. An example of such an
operation is a copy from the source drawable to the
destination drawable. dgasrc must not be the same as
dgadst . Furthermore, it is required that at least one of
dgasrc or dgadst be a pixmap drawable. No failure status
is returned if either of these conditions fails. For this macro,
there are two current lock subjects, one for each
Dga_drawable .

Results The current lock subject is the drawable (window, pixmap, or
multibuffer) to which subsequent DGA inquiry routines
executed within the lock apply.

If either of the drawables is a multibuffered window, not
only is the window locked, but all the multibuffers in the
current multibuffer set are locked as well.

Locks nest correctly. If DGA_DRAW_LOCK_SRC_AND_DST has
been called multiple times without an intervening unlock,
DGA_DRAW_UNLOCK_SRC_AND_DST must be called the same
number of times before the drawables are unlocked.

Arguments If the drawable to be locked is a window or pixmap, the
buffer index should be -1 . The current lock subject of that
drawable (used within the lock critical section by other DGA
routines) will be the window or the pixmap.

void
DGA_DRAW_LOCK_SRC_AND_DST(dgasrc, bufIndexSrc, dgadst,

bufIndexDst)
Dga_drawable dgasrc;
short bufIndexSrc;
Dga_drawable dgadst;
short bufIndexDst;

Direct Graphics Access Drawable Client Interface 159

10

If either of the drawables to be locked is a multibuffer, the
Dga_drawable passed in should be that of the main
window for the multibuffer. bufIndex should be its buffer
index. The current lock subject will refer to this multibuffer.

When using this macro, make sure you call
DGA_DRAW_MODIF for both dgasrc and dgadst , to
synchronize with any changes that have occurred to either
drawable.

DGA_DRAW_UNLOCK_SRC_AND_DST (Lock Only)

Purpose This macro permits external modification of the drawable.
This routine should be used only when the drawable was
locked with DGA_DRAW_LOCK_SRC_AND_DST. Locks nest
correctly. If DGA_DRAW_LOCK_SRC_AND_DST has been called
multiple times without an intervening unlock,
DGA_DRAW_UNLOCK_SRC_AND_DST must be called the same
number of times before the drawables are unlocked.

Results If either the source or destination drawable is a multibuffer,
the lock count for the entire multibuffer set is decremented,
and if zero, all members of the multibuffer set are unlocked.

DGA_DRAW_MODIF (Lock Only)

Purpose This macro checks to see if the current lock subject has been
altered since the calling client locked it.

void
DGA_DRAW_UNLOCK_SRC_AND_DST(dgasrc, dgadst)
Dga_drawable dgasrc;
Dga_drawable dgadst;

int
DGA_DRAW_MODIF(dgadraw)
Dga_drawable dgadraw;

160 OpenWindows Server Device Developer’s Guide—August 1994

10

Called by The client must call this macro after locking, prior to
rendering.

Returns Nonzero is returned if some state information has changed
with which the client needs to synchronized.

If no change has occurred, or the client has been notified of
all changes through notification call back routines, this
routine returns zero.

If this macro returns nonzero and the client has not registered
with DGA to receive change notifications, the client should
call the following routines to detect changes to the drawable:
dga_draw_curshandle , dga_draw_sitechg ,
dga_draw_rtnchg and dga_draw_clipchg . These
routines should always be called in this order. (If the client
has registered with DGA to receive a particular type of
change notification by specifying a notification callback, do
not call these routines.)

General Utility Functions

These routines allow the client to inquire various drawable attributes.

dga_draw_display

Returns The display of a drawable that has been grabbed with
XGrabDrawable .

Display *
dga_draw_display(dgadraw)
Dga_drawable dgadraw;

Direct Graphics Access Drawable Client Interface 161

10

dga_draw_id

Returns The XID of a drawable that has been grabbed with
XGrabDrawable .

Note – This routine only returns the XID of a window or a pixmap. To
determine the XID of a multibuffer, use this routine to inquire the XID of the
main window and then use the MBX API routine,
XmbufGetWindowAttributes , to inquire the multibuffer set information.

dga_draw_type

Returns The type of the drawable client structure. The returned value
is one of: DGA_DRAW_WINDOW or DGA_DRAW_PIXMAP.

dga_draw_devname

Returns A pointer to a null-terminated string representing the device
name of the screen with which the grabbed drawable is
associated.

Drawable
dga_draw_id(dgadraw)
Dga_drawable dgadraw;

int
dga_draw_type(dgadraw)
Dga_drawable dgadraw;

char *
dga_draw_devname(dgadraw)
Dga_drawable dgadraw;

162 OpenWindows Server Device Developer’s Guide—August 1994

10

dga_draw_devfd

Returns The client’s file descriptor for the screen with which the
grabbed drawable is associated.

dga_draw_depth

Returns This routine returns the depth of the grabbed drawable.

dga_draw_set_client_infop

Purpose This routine allows the client to set a pointer to client-specific
data associated with dgadraw . This pointer could point to
information that is local to the client alone.

int
dga_draw_devfd(dgadraw)
Dga_drawable dgadraw;

int
dga_draw_depth(dgadraw)
Dga_drawable dgadraw;

void
dga_draw_set_client_infop(dgadraw, client_info_ptr)
Dga_drawable dgadraw;
void *client_info_ptr;

Direct Graphics Access Drawable Client Interface 163

10

dga_draw_get_client_infop

Returns The client-specific data pointer associated with dgadraw . If
this pointer was not set by the client, then this routine
returns NULL.

dga_draw_devinfo (Lock Only)

Returns This function returns a pointer to the device-specific
information area the DGA shared information area for the
current lock subject. The structure should be accessed by the
client to inquire device-dependent information which is be
shared between server and client. DGA routines do not
interpret the device-dependent data but the client graphics
library device-dependent code may need to. The size of this
area is 132 bytes. The returned pointer is 4-byte aligned.

If the lock subject is cached, the device-dependent
information can specify its location in the cache.

The format of this data area is completely device-dependent.
The return pointer is NULL if the lock subject is not cached.
An example of this structure could be:

void *
dga_draw_get_client_infop(dgadraw)
Dga_drawable dgadraw;

void *
dga_draw_devinfo(dgadraw)
Dga_drawable dgadraw;

struct {
short basex, basey; /* drawable’s position in dev. memory */
u_char mode; /* a device specific mode */
u_char pad[2];
} Cache_Dev_Info;

164 OpenWindows Server Device Developer’s Guide—August 1994

10

Note – This routine returns a pointer to the device_info data member of the
Dga_dbinfo structure. A pointer to this structure is returned by the buffer
interface routine dga_win_dbinfop . This routine is still supported for
compatibility with existing clients.

Drawable Sites

The routines in this section allow a client to detect site changes. Write the client
to detect site changes for all types of drawables—all types of drawables can
potentially undergo site changes.

• Pixmaps and nonviewable multibuffers can undergo site changes because
they can become cached in device memory and alternately uncached.

• A site change can occur to a viewable multibuffer if the multibuffers in the
multibuffer set for the main window are destroyed and then recreated. The
multibuffer of the same buffer index in the multibuffer set may have a
different address or viewability.

• Windows can also undergo site changes. But since a window may become
multibuffered anytime after it is grabbed, and window aliasing of a
multibuffer window can produce a site change, any window may
potentially undergo a site change.

dga_draw_sitechg (Lock Only)

Returns Nonzero if the current lock subject has undergone a change
in site since the last time it was locked by this client.
dga_draw_site can be called to inquire the site in which
the drawable currently resides. The site can change for two
reasons: either the site itself changed or the location within
the site changed.

int
dga_draw_sitechg(dgadraw, reason)
Dga_drawable dgadraw;
int *reason;

Direct Graphics Access Drawable Client Interface 165

10

This routine should be called if DGA_DRAW_MODIF returns
nonzero and the client has not registered a site change
notification function.

Zero is returned if the last site and location within the site
noted by the client still applies.

This routine returns valid results only the first time it is
called after locking the drawable.

If nonzero is returned, reason indicates why the site change
occurred. These are the possible values for this return
argument:

DGA_SITECHG_INITIAL — A site change is always reported
the first time a drawable is locked.

DGA_SITECHG_ZOMBIE — The site change occurred
because the current lock subject is a zombie drawable (i.e. it’s
underlying X11 resource has been destroyed).

DGA_SITECHG_ALIAS — The site change is due to a
change in the display buffer of the current lock subject from
the previous lock subject. (This is only applicable to
drawables that are members of an active multibuffer set).

DGA_SITECHG_CACHE — The site change is due to a
change to the cache state of the current lock subject from the
previous lock subject.

DGA_SITECHG_MB — The site change happened because
the multibuffer set was changed (activated, deactivated, or
replaced).

166 OpenWindows Server Device Developer’s Guide—August 1994

10

dga_draw_sitesetnotify

Purpose Registers a function to be called by one of the drawable
locking routines whenever a site change has occurred since
the last lock of the drawable.

Arguments client_data is a client-specific data pointer that is given to
the notification function as an argument.

DgaSiteNotifyFunc is defined as:

Description The calling sequence for a typical notification function is:

The notification function should call dga_draw_site to
determine the current site of the drawable.

site_notify_func will be called whenever a site change
occurs to either the window or, if multibuffered, to any of its
associated multibuffers. When the change has occurred to a
window, bufIndex will be -1 , otherwise it will be the index
of the changed multibuffer.

int
dga_draw_sitesetnotify(dgadraw, site_notify_func, client_data)
Dga_drawable dgadraw;
DgaSiteNotifyFunc site_notify_func;
void *client_data;

typedef void (*DgaSiteNotifyFunc)
(Dga_drawable, short, void *, int);

void
site_notify_func(dgadraw, bufIndex, client_data, reason)
Dga_drawable dgadraw;
short bufIndex;
void *client_data;
int reason;

Direct Graphics Access Drawable Client Interface 167

10

When a site notification function is registered for a drawable,
the client will receive notification of drawable site changes
only through this function. dga_draw_sitechg will never
return nonzero.

The site notification function is always called within the lock
critical section. Therefore, care should be taken to not
perform lengthy and time-consuming operations within it,
such as system calls. Otherwise, the DGA lock time-out
might expire, causing the lock to be prematurely broken.

dga_draw_sitegetnotify

Returns The site notification function and client data for the drawable
which was given to dga_draw_sitesetnotify . NULL is
returned for both if this routine has not been called.

dga_draw_site (Lock Only)

Returns The site in which the current lock subject resides. Possible
return values are:

void
dga_draw_sitegetnotify(dgadraw, site_notify_func, client_data)
Dga_drawable dgadraw;
DgaSiteNotifyFunc *site_notify_func;
void **client_data;

int
dga_draw_site(dgadraw)
Dga_drawable dgadraw;

DGA_SITE_SYSTEM
DGA_SITE_DEVICE
DGA_SITE_NULL

168 OpenWindows Server Device Developer’s Guide—August 1994

10

DGA_SITE_SYSTEM indicates the current lock subject resides
in system memory (i.e. memory that is mapped into the
client address space). In this case, the routines
dga_draw_address , dga_draw_linebytes
dga_draw_bitsperpixel return, respectively, the address
of the origin pixel of the drawable, the inter-scanline stride
(i.e. the number of bytes per scanline), and the number of
bits per pixel.

DGA_SITE_DEVICE indicates the drawable resides in device
memory. In this case, the return values of the routines
dga_draw_address , dga_draw_linebytes , and
dga_draw_bitsperpixel are invalid. Information about
the exact location of the drawable within the site can be
queried with dga_draw_devinfo . The data returned by this
routine is device dependent and is not interpreted by DGA.

DGA_SITE_NULL means the underlying X11 resource for the
drawable has been destroyed since the last time the drawable
was locked. Refer to the section “Zombie Drawables” on
page 198 for more details.

The site of a viewable drawable is always
DGA_SITE_SYSTEM, unless it has been destroyed, in which
case the site is DGA_SITE_NULL. The site of a nonviewable
depends on whether or not it is cached.

dga_draw_address (Lock Only)

Returns A pointer to the origin pixel of the current lock subject (x = 0,
y = 0). A valid result is only returned when the site of the
drawable is DGA_SITE_SYSTEM.

void *
dga_draw_address (dgadraw)
Dga_drawable dgadraw;

Direct Graphics Access Drawable Client Interface 169

10

dga_draw_linebytes (Lock Only)

Returns The value of the inter-scanline stride of the current lock
subject. A valid result is only returned when the site of the
drawable is DGA_SITE_SYSTEM.

dga_draw_bitsperpixel (Lock Only)

Returns The bits per pixel of the current lock subject. A valid result is
only returned when the site of the drawable is
DGA_SITE_SYSTEM.

Clipping State

The following functions enable clients to detect whether the clipping
information of a drawable has changed and to synchronize with the new
information.

dga_draw_clipchg (Lock Only)

Purpose If DGA_DRAW_MODIF returns nonzero, this routine should be
called to determine if the clipping state for the current lock
subject changed. Zero is returned if there were no such
changes, otherwise nonzero is returned.

int
dga_draw_linebytes(dgadraw)
Dga_drawable dgadraw;

int
dga_draw_bitsperpixel(dgadraw)
Dga_drawable dgadraw;

int
dga_draw_clipchg(dgadraw)
Dga_drawable dgadraw;

170 OpenWindows Server Device Developer’s Guide—August 1994

10

If a clipping change has occurred, the dga_draw_bbox ,
dga_draw_visibility , dga_draw_empty and
dga_draw_clipinfo routines can be called to inquire the
new clipping information.

Returns Valid information only the first time it is called after the
drawable is locked.

dga_draw_bbox (Lock Only)

Returns The screen coordinates of the upper left origin of the current
lock subject and the width and height in the locations
pointed to by the xp , yp , widthp , and heightp arguments.
These values represent the shape of the bounding box of the
drawable. If dga_draw_visibility returns
DGA_VIS_UNOBSCURED and dga_draw_singlerect
returns nonzero, the bounding box can be used to clip
rendering rather than using the clip shape returned by
dga_draw_clipinfo .

If the current lock subject is a window or multibuffer, the
returned rectangle shape does not include any clipping of the
window by other overlapping windows or multibuffers. For
viewable drawables, the bounding box corresponds to the
minimum and maximum x and y coordinates of the
drawable. If the drawable is nonviewable, the x and y
coordinates of the origin are (0, 0).

void
dga_draw_bbox(dgadraw, xp, yp, widthp, heightp)
Dga_drawable dgadraw;
int *xp, *yp, *widthp, *heightp;

Direct Graphics Access Drawable Client Interface 171

10

dga_draw_visibility (Lock Only)

Returns Whether the drawable is fully obscured, partially obscured,
or fully unobscured. Possible return values are:)

DGA_VIS_UNOBSCURED means the drawable is not obscured by
any other drawable (i.e. children, siblings, or ancestors).
DGA_VIS_PARTIALLY_OBSCURED means a proper subset of the
drawable pixels are obscured by some other drawable.
DGA_VIS_FULLY_OBSCURED means the entire drawable is
obscured.

This routine is useful for deciding how much of the backing
store of a window should be rendered. See section “Backing
Store” on page 151 for more details.

dga_draw_empty (Lock Only)

Returns Nonzero if the current clipping shape of the current lock
subject is empty, zero otherwise.

int
dga_draw_visibility(dgadraw)
Dga_drawable dgadraw;

DGA_VIS_UNOBSCURED
DGA_VIS_PARTIALLY_OBSCURED
DGA_VIS_FULLY_OBSCURED

int
dga_draw_empty(dgadraw)
Dga_drawable dgadraw;

172 OpenWindows Server Device Developer’s Guide—August 1994

10

dga_draw_clipinfo (Lock Only)

Purpose This routine is used to get the address of the clipping shape
of the current lock subject. The clip shape is represented by a
sequence of signed shorts which describes a sequence of
rectangles. The data consists of a sequence of one or more
(ymin , ymax) pairs, each of which is followed by a sequence
of one or more (xmin , xmax) pairs. (xmin , xmax) sequences
are terminated by a single value of DGA_X_EOL. (ymin ,
ymax) sequences are terminated by a single value of
DGA_Y_EOL. DGA_X_EOL and DGA_Y_EOL are defined
constants. This is best described with the following sample
code:

Note that for each (min , max) pair, the min coordinate pixels
are included in the clipping shape, but the max coordinate
pixels are not (they are one pixel unit outside the clipping
shape). The client should not modify the contents of the data
area pointed to by the return value.

If the drawable is a window, this clip shape does not include
the clipping shape of the children of the window.

If the drawable is a pixmap, the clip shape is always a single
rectangle.

short *
dga_draw_clipinfo(dgadraw)
Dga_drawable dgadraw;

int x0, y0, x1, y1, *ptr;
ptr = dga_draw_clipinfo(dgadraw);
while((y0=*ptr++)!= DGA_Y_EOL) {

y1 = *ptr++;
while((x0=*ptr++)!= DGA_X_EOL) {

x1 = *ptr++;
printf(“rectangle from (%d,%d)to (%d,%d)\n”,x0,y0,x1,y1);

}
}

Direct Graphics Access Drawable Client Interface 173

10

A NULL pointer is returned if the X resource referred to if
the current lock subject no longer exists. In this case, all
rendering to this drawable will be entirely clipped.

Note – It is recommended that dga_draw_visibility be used rather than
the following two routines. However, these two routines are still provided for
the convenience of programmers used to the older DGA window grabbing
interface. These two routines are deprecated and will be removed in a future
version of this interface.

dga_draw_singlerect (Lock Only)

Returns Nonzero if the current clipping shape of the current lock
subject is a single rectangle, zero otherwise. Note that a
clipping shape consisting of a single rectangle is not
necessarily the same as the bounding box of the drawable.

dga_draw_obscured (Lock Only)

Returns Nonzero if the current clipping shape of the drawable is the
same as the full shape of the window without regard to
overlapping windows, zero otherwise. At present, this
routine returns valid information only for rectangular
windows.

int
dga_draw_singlerect(dgadraw)
Dga_drawable dgadraw;

int
dga_draw_obscured(dgadraw)
Dga_drawable dgadraw;

174 OpenWindows Server Device Developer’s Guide—August 1994

10

Dealing with Cursor Conflicts

The cursor image may conflict with rendering when the DGA client is about to
perform. In these cases, the client must detect the conflict and take down the
cursor image. Only then should the client render. The window system restores
the cursor image after the client unlocks the drawable.

Some devices always render the cursor image in a plane group dedicated for
that purpose. These devices never display viewable drawables in this plane
group. On these types of devices, there will never be any cursor conflicts.
These devices are called dedicated cursor devices.

Some devices always render the cursor image in a plane group in which
viewable drawables also reside. In this case, each time a viewable drawable is
locked, the DGA client must detect a cursor conflict and then deal with the
conflict. These devices are called software cursor devices.

Always truncate the cursor on a hardware cursor device. This forces the cursor
into hardware any time a window is grabbed.

Whether a DGA client must handle potential cursor conflicts depends,
therefore, on the type of device. No cursor conflict handling is needed for
dedicated cursor devices or hardware cursor register devices that always
truncate large cursor images. On the other hand, conflict handling is required
for software cursor devices or hardware cursor register devices that don’t
truncate.

Except on devices for which there will never be conflicts, DGA clients are
required to call dga_draw_curshandle if, after a drawable is locked,
DGA_DRAW_MODIF returns nonzero. This is the case for window and
multibuffer drawables only. This is not required for pixmap drawables. If the
cursor image currently intersects the pixels of the drawable, the cursor will be
taken down.

Direct Graphics Access Drawable Client Interface 175

10

dga_draw_curshandle (Lock Only)

Purpose If the device is can have cursor conflicts, this routine should
be called if, after locking a drawable, DGA_DRAW_MODIF
returns nonzero. If there is a cursor conflict, this routine will
take down the cursor.

Arguments take_down_func is a pointer to a client-supplied function
which can take down the cursor by restoring the pixels that
the cursor was rendered over. client_data is a pointer to
arbitrary client data which will be passed to the client-
supplied function. The calling sequence for a typical take-
down function is defined by the following type:

where the Dga_cur_memimage structure is defined as
follows:

void
dga_draw_curshandle(dgadraw, take_down_func, client_data)
Dga_drawable dgadraw;
DgaCursTakeDownFunc take_down_func;
void *client_data;

typedef void (*DgaCursTakeDownFunc)(
void *, /* client_data */
Dga_drawable, /* dgadraw */
int, int, /* x, y */
Dga_curs_memimage */* memimgp */

);

typedef struct dga_curs_memimage {
u_int width;
u_int height;
u_int depth;
u_int linebytes;
void *memptr;

} Dga_curs_memimage;

176 OpenWindows Server Device Developer’s Guide—August 1994

10

take_down_func should restore (width*height) pixels of
depth depth stored at the locations pointed to by memptr to
the screen starting at (x , y) relative to the window origin.
Successive scanlines of the stored pixels are separated by
linebytes bytes. The current possible depths are 1, 8, 32.
Depth 1 pixels are packed 8 pixels per byte. Depth 8 pixels
are packed 1 pixel per byte. Depth 32 pixels are packed 1
pixel per 4 bytes.

The cursor take-down function is always called within the
lock critical section. Therefore, care should be taken to not
perform lengthy and time-consuming operations within it,
such as system calls. Otherwise, the DGA lock time-out
might expire, causing the lock to be prematurely broken.

Note – take_down_func will only be called if the cursor needs to be taken
down because it is currently up and intersects the pixels of the drawable. The
overlap test is currently based on the bounding box of the drawable, not on the
actual exposed shape.

Note – It is very important that dga_draw_curshandle be called after every
window or multibuffer lock for which DGA_DRAW_MODIF returns nonzero. If
the drawable is locked without checking DGA_DRAW_MODIF and calling
dga_draw_curshandle , future locks of the drawable may not notice the
cursor conflict.

Backing Store Routines

The following routines are provided for direct access to the backing store of a
drawable. Currently, only windows have backing store.

Direct Graphics Access Drawable Client Interface 177

10

dga_draw_rtngrab

Purpose This routine provides direct access to the backing store of a
window. A window may have backing store either due to
some client setting the
XWindowAttributes.backing_store attribute of the
window to WhenMapped or Always, or due to the window
being occluded by a save-under window.

Returns Nonzero if direct access to the backing store of a window is
permitted. In this case, the necessary client/server
information sharing channel is established.

Zero is returned if the server denies access to backing store
for the drawable or the routine otherwise fails.

The window does not need to actually have backing store at
the time of the call. The backing store may be provided by
the server at a later time. It is the responsibility of the client
to always check for the presence of backing store. See section
“dga_draw_rtnchg (Lock Only)” on page 178 for more on
this.

Note – If a DGA client does not call this routine, or if it does call it, but the
routine fails, the server assumes that the client is not updating the contents of
the backing store when it renders. If this is the case, the server considers the
backing store inconsistent when the drawable is unlocked. This may cause an
exposure event to be sent for the drawable.

Note – Grabbing the backing store of a drawable consumes one file descriptor
in the client and one file descriptor in the server.

int
dga_draw_rtngrab(dgadraw)
Dga_drawable dgadraw;

178 OpenWindows Server Device Developer’s Guide—August 1994

10

dga_draw_rtnungrab

Purpose This routine terminates direct access to backing store for the
given window and frees any associated resources.

dga_draw_rtnchg (Lock Only)

Purpose This routine should be called if, after the window drawable
is locked, DGA_DRAW_MODIF returns nonzero.

Returns Nonzero if the state of the drawable backing store has
changed since the last time the drawable was locked. If
nonzero is returned, dga_draw_rtnactive should be called
to determine whether backing store is currently present. This
is because the window server may attach or detach backing
store at any time. If backing store is present, the client is
required to update the contents of the backing store
appropriately.

This routine returns valid information only the first time it is
called after locking the drawable. To use this routine,
dga_draw_rtngrab must have first been called on the
drawable and the grab must have succeeded.

Another reason this type of change can happen is if the
current lock subject of the window is actually a multibuffer.
Since multibuffers don’t have backing store in the current
release, it might result in a reported retained change if the
window itself has backing store. Another reason might be
that a window with backing store was previously aliased but
is no longer.

int
dga_draw_rtnungrab(dgadraw)
Dga_drawable dgadraw;

int
dga_draw_rtnchg(dgadraw)
Dga_drawable dgadraw;

Direct Graphics Access Drawable Client Interface 179

10

For initialization purposes, this routine will always return
nonzero the first time it is called.

dga_draw_rtnactive (Lock Only)

Purpose This routine should be called each time dga_draw_rtnchg
indicates a change occurred to the state of a window
drawable’s backing store; the server may have granted or
taken away backing store from the windows.

Returns Nonzero if backing store is currently available to the
drawable; otherwise zero.

A return value of zero indicates that backing store is not (or
no longer) available for the drawable. In this case, the client
does not need to update the backing store contents.
Otherwise, the client should call the routines described
below in order to update the backing store.

dga_draw_rtncached (Lock Only)

Returns A nonzero value if the backing store is cached in hardware as
opposed to being in system memory. If the return value is set
to DGA_RTN_NEW_DEV, then it means that the server has re-
cached the backing store from system memory to the
hardware device associated with the drawable. If this is the
case, then the name and type of the device may be obtained
by calling dga_draw_rtndevtype (see page 181).

int
dga_draw_rtnactive(dgadraw)
Dga_drawable dgadraw;

int
dga_draw_rtncached(dgadraw)
Dga_drawable dgadraw;

180 OpenWindows Server Device Developer’s Guide—August 1994

10

If the return value is set to DGA_RTN_SAME_DEV, then the
backing store remains cached in the same device as
previously recorded. If the backing store is not cached,
DGA_RTN_NOT_CACHED is returned. DGA_RTN_NEW_DEV,
DGA_RTN_SAME_DEV and DGA_RTN_NOT_CACHED are
predefined constants.

dga_draw_rtndevinfop (Lock Only)

Returns A pointer to the device-specific shared backing store
information when the backing store is cached. The pointer is
invalid if the backing store is not cached. This structure
contains device-specific information. This device-specific
information is required because devices that support cached
backing store may implement it differently. The pointer
points to a memory area which is 8 bytes long and 4-byte
aligned. An example of this structure could be:

void *
dga_draw_rtndevinfop(dgadraw)
Dga_drawable dgadraw;

struct {
short basex, basey; /* backing store’s position on frame buffer */
u_char mode; /* a device specific mode */
u_char pad[2];
} Shared_Retained_Dev_Info;

Direct Graphics Access Drawable Client Interface 181

10

dga_draw_rtndevtype (Lock Only)

Purpose This routine is used to obtain the shared backing store’s
hardware cache device type and name.

Arguments type is device dependent.

name should point to an array of characters. The returned
name will be a maximum of 32 characters long, including a
NULL terminator.

dga_draw_rtndimensions (Lock Only)

Purpose This routine is used to obtain the dimensions of the shared
backing store.

Arguments linebytes is valid only for non-cached backing store.

void
dga_draw_rtndevtype(dgadraw, type, name)
Dga_drawable dgadraw;
u_char *type;
char **name;

void
dga_rtn_dimensions(dgadraw, width, height, linebytes)
Dga_drawable dgadraw;
short *width;
short *height;
u_int *linebytes;

182 OpenWindows Server Device Developer’s Guide—August 1994

10

dga_draw_rtnpixels (Lock Only)

Returns A pointer to the backing store’s pixel memory. This pointer is
valid only for non-cached backing store. The format of the
shared memory backing store is the same as the pixmap
format of the corresponding depth for the window’s screen.

Colormap Grabber Interface

The following routines are the client’s interface to the colormap grabber
functions.

XDgaGrabColormap

Results This function grabs an existing X11 (virtual) colormap and
creates server-side resources for sharing updates to it with
the client. The window server is sent a protocol request to
create a shared colormap information file.

Returns A token, which is used by the client to access the shared
information.

An error code if the window system refuses the registration
request. The request also fails if the DGA client and the
server are not running on the same machine.

void *
dga_draw_rtnpixels(dgadraw)
Dga_drawable dgadraw;

Dga_token XDgaGrabColormap(dpy, cmap)
Display *dpy;
Colormap cmap;

Direct Graphics Access Drawable Client Interface 183

10

dga_cm_grab

Purpose This function is similar to dga_win_grab , in that it maps a
shared memory data structure and returns a pointer to a
client-side structure.

Arguments devfd is the file descriptor of the graphics device on which
the grabbed window is resident.

If the device is not known or not yet opened, the caller can
pass in -1, and dga_cm_grab opens the correct device file,
using information found in the shared memory area.

token must be obtained by a previous call to
XDgaGrabColormap .

Returns A Dga_cmap handle if successful; NULL for failure.

The Dga_cmap structure contains client-specific information
and a pointer to the shared memory. Thus, several clients can
grab the same colormap.

dga_cm_ungrab

Purpose This function releases resources allocated by a previous call
to dga_cm_grab . All resources and memory mappings
created by dga_cm_grab are freed or made inaccessible as a
result of this operation. Call XDgaUnGrabColormap after
invoking this function to free window server resources. If the
cflag argument is a nonzero value, the graphic device file is
also closed.

Dga_cmap dga_cm_grab(devfd, token)
int devfd;
Dga_token token;

void dga_cm_ungrab(dgacmap,cflag)
Dga_cmap dgacmap;
int cflag;

184 OpenWindows Server Device Developer’s Guide—August 1994

10

XDgaUnGrabColormap

Purpose This function releases server resources associated with a
shared colormap by sending the window server a protocol-
extension request.

dga_cm_devfd

Returns The client’s file descriptor for the frame buffer with which
the grabbed colormap is associated.

dga_cm_devinfop

Returns A pointer to a shared-memory area containing device-
dependent colormap information. The pointer is guaranteed
to be 4-byte aligned and points to an area of 132 bytes. On
devices with multiple hardware colormaps, information
regarding the identity of the hardware colormap associated
with the grabbed X colormap could be stored here. This
device-specific information is required because each device
that supports multiple hardware colormaps implements it
differently. Any device information that needs to be sent
between the server device code and the client device code is
stored here. Device-dependent server code stores information
here that the client can read.

int XDgaUnGrabColormap(dpy, cmap)
Display *dpy;
Colormap cmap;

int dga_cm_devfd(dgacmap)
Dga_cmap dgacmap;

void *dga_cm_devinfop(dgacmap)
Dga_cmap dgacmap;

Direct Graphics Access Drawable Client Interface 185

10

dga_cm_set_client_infop

Purpose This routine allows the client to set a pointer to client-specific
data associated with dgacmap . This pointer could point to
information that is local to the client alone.

dga_cm_get_client_infop

Returns The client-specific data pointer associated with dgacmap . If
this pointer was not set by the client, then this routine
returns NULL.

dga_cm_write

Purpose This function requests that the colormap information in the
red , green , and blue arrays in user data space be placed in
the grabbed colormap referenced by the dgacmap argument,
starting at index , for count entries.

Arguments putfunc is a client-supplied and device-dependent callback
function that updates the hardware colormap when
necessary.

void dga_cm_set_client_infop(dgacmap, client_info_ptr)
Dga_cmap dgacmap;
void *client_info_ptr;

void *dga_cm_get_client_infop(dgacmap)
Dga_cmap dgacmap;

void dga_cm_write(dgacmap, index, count, red, green, blue,
putfunc)

Dga_cmap dgacmap;
int index, count;
u_char *red, *green, *blue;
void (*putfunc());

186 OpenWindows Server Device Developer’s Guide—August 1994

10

The calling sequence for the callback routine is:

The purpose of calling the device-dependent routine
indirectly through dga_cm_write is to ensure proper
coordination with the server.

If the colormap is currently installed, then the new values are
loaded into the appropriate hardware colormap via the
client-supplied callback routine. If the X11 colormap is not
currently installed, no hardware update is performed. The
putfunc function is called only if the colormap is installed
in hardware.

dga_cm_read

Purpose This function reads colormap information into the red ,
green , and blue arrays in user data space. The dgacmap
argument describes which colormap to read from. The data is
read, starting at index , for count entries. The information is
read from the shared-memory representation of the X11
virtual colormap.

Multibuffering Grabber Interface

The following functions do not manipulate graphics device registers or device
state. The developers of the graphics library device-dependent code that use
these routines are responsible for all manipulations of a particular graphics
device, and for providing callback routines that are called from within these
functions. The callback routines can get to device-dependent information
stored in shared memory.

void putfunc(dgacmap, index, count, red, green, blue);

void dga_cm_read(dgacmap, index, count, red, green, blue)
Dga_cmap dgacmap;
int index, count;
u_char *red, *green, *blue;

Direct Graphics Access Drawable Client Interface 187

10

Some of the following functions let the client communicate with the server
with shared memory, which buffer it is using for pixel reads and writes, and
for display. The server uses this information to select the buffer for Xlib
rendering, so that applications that mix server rendering with DGA rendering
in the same window behave properly.

dga_db_grab

Purpose This function requests the window system to provide
multibuffering services for the grabbed window named in
the dgawin argument. The call requests nbuffers to be
allocated to the client. This window must have been grabbed
previously via XDgaGrabWindow. The call to
XDgaGrabWindow yields a handle, dgawin , which is used in
this call. The window server initializes the portion of the
shared memory window information area that relates to
multibuffering.

Returns Zero if the window system refuses the registration request; a
nonzero value upon success. Each graphics device supports a
small number of buffers. If more buffers are specified than
the device can support, this call fails.

Arguments vrtfunc is a client-supplied function that blocks the client
process until (at least) the beginning of the next vertical
retrace period. This function is called when operations
dependent on the vertical retrace period are performed on
dgawin . If this pointer is NULL, the functions
dga_db_display (page 191), dga_db_interval_wait

int dga_db_grab(dgawin, nbuffers, vrtfunc, vrtcounterp)
Dga_window dgawin;
int nbuffers;
void (*vrtfunc)();
u_int *vrtcounterp;

188 OpenWindows Server Device Developer’s Guide—August 1994

10

(page 192) and dga_db_interval_check (page 192) will
not perform accurate timing of the minimal interval between
buffer swaps. The calling sequence of this function is:

Often, vrtfunc is implemented as an ioctl to the associated
device driver which, in turn, blocks until (at least) the
beginning of the next vertical retrace period. The vrtfunc
function might require the file descriptor of the device or
information stored in the client-private data area and can
obtain the information with dga_win_devfd and
dga_win_get_client_infop .

vrtcounterp is a pointer to a client-supplied free-running
vertical retrace counter. Often, this counter is implemented as
a read-only device register that can be mapped into the
client’s address space or a memory location mapped into the
client’s space which is incremented by the associated device
driver at vertical retrace interrupt. The DGA functions only
read this counter. If this pointer is NULL, the functions
dga_db_display , dga_db_interval_wait and
dga_db_interval_check will not perform accurate timing
of the minimal interval between buffer swaps.

dga_db_ungrab

Returns A previously multibuffered window to single-buffer mode. It
also frees server and client multibuffering resources
associated with dgawin .

If any of these steps fail, zero is returned. A nonzero value is
returned upon success.

void *vrtfunc(dgawin);

int dga_db_ungrab(dgawin)
Dga_window dgawin;

Direct Graphics Access Drawable Client Interface 189

10

dga_db_write

Purpose This function selects which buffer is written to when the
client program draws to a multibuffered window.

Arguments The device-dependent callback routine for setting the write
buffer, writefunc , is supplied by the client program.

Permissible values for the buffer argument are small
integers (from 0 to nbuffers-1). No function will be called if
writefunc is NULL. The calling sequence of the callback
routine is:

The purpose of calling the device-dependent routine
indirectly through dga_db_write is to ensure proper
coordination with the server. The application program uses
data to pass private information to (and from) writefunc
(but the data argument is now redundant, since
dga_win_get_client_infop has been added to the
interface).

void dga_db_write(dgawin, buffer, writefunc, data)
Dga_window dgawin;
int buffer;
int (* writefunc)();
void *data;

int writefunc(data, dgawin, buffer);

190 OpenWindows Server Device Developer’s Guide—August 1994

10

dga_db_read

Purpose This function selects which buffer is read from when the
client program reads pixel values from a multibuffered
window.

Arguments The device-dependent callback routine for setting the read
buffer, readfunc , is supplied by the client program.

Permissible values for the buffer argument are small
integers. No function will be called if readfunc is NULL.
The calling sequence of the callback routine is:

The purpose of calling the device-dependent routine
indirectly through dga_db_read is to ensure proper
coordination with the server. Use data to pass private
information to (and from) readfunc (but the data argument
is redundant, because dga_win_get_client_infop has
been added to the interface).

dga_db_interval

Purpose This function establishes a timed delay between buffer
swaps.

void dga_db_read(dgawin, buffer, readfunc, data)
Dga_window dgawin;
int buffer;
int (*readfunc)();
void *data;

void readfunc(data, dgawin, buffer);

void dga_db_interval(dgawin, interval)
Dga_window dgawin;
int interval;

Direct Graphics Access Drawable Client Interface 191

10

Arguments interval specifies in milliseconds the minimum delay
between successive buffer swaps. The default interval is one
refresh period. Assigning a negative value to interval
results in the interval being set to the default interval. The
exact duration of the default interval depends on the
frequency characteristics of the monitor.

 dga_db_display

Purpose This function causes buffer to become visible. A device-
dependent callback routine for making this buffer visible is
supplied by the caller in the form of the visfunc routine.
This routine gets the values of data , dgawin and buffer as
arguments.

Arguments No function is called if visfunc is NULL. Use data to pass
private information to (and from) visfunc (but the data
argument is now redundant, since
dga_win_get_client_infop has been added to the
interface).

This routine performs the following steps:

This function first waits for the minimum display interval to
elapse for the previous frame (if it has not already done so).
Then, visfunc makes the named buffer visible. After calling
visfunc , this function returns. visfunc need not block
until the buffer is actually visible. It is up to the device-

void dga_db_display(dgawin, buffer, visfunc, data)
Dga_window dgawin;
int buffer;
int (*visfunc)();
void *data;

call dga_db_interval_check();
if (interval isn’t exhausted)

call dga_db_interval_wait () ;
call (*visfunc (data, dgawin, buffer));

192 OpenWindows Server Device Developer’s Guide—August 1994

10

rendering routines to ensure that buffer flip has been
completed before commencing rendering. Typically, the
actual visibility of the new buffer will be delayed until the
next vertical retrace. This means that rendering a subsequent
frame to the old buffer might need to be delayed until the
next retrace. A client can check to see if the operation is
completed by calling the dga_db_display_done routine
(see page 193).

The purpose of calling visfunc indirectly through this
routine is proper coordination with the server and
maintenance of the buffer swap timing and vertical retrace
synchronization.

dga_db_interval_wait

Results This function blocks the calling process until the minimum
display interval time is exhausted.

dga_db_interval_check

Purpose This Boolean function indicates whether the minimum
display time has elapsed since a buffer flip was requested.

Returns A nonzero value if the time has elapsed, zero if there is still
time left.

void
dga_db_interval_wait(dgawin)
Dga_window dgawin;

int
dga_db_interval_check(dgawin)
Dga_window dgawin;

Direct Graphics Access Drawable Client Interface 193

10

dga_db_display_done

Purpose This function checks to see if the new buffer is visible after a
previous call to dga_db_display . If the flag is set to zero,
it performs a polling function. In this case, the function
returns a nonzero value if the buffer has been switched, zero
otherwise. If the flag is set to a nonzero value, the function
blocks until the buffer has switched. In this case, a nonzero
value is returned once the switch has occurred, -1 on error.

Arguments display_done_func is a non-blocking routine that returns
1 when the new buffer is visible, 0 when the new buffer is
not yet visible and -1 on error. The calling sequence of this
function is:

dga_db_write_inquire

Purpose This function is used to determine the state of multibuffering
on a window, and indicates which buffer is selected for
writing.

Returns The buffer number.

int
dga_db_display_done(dgawin, flag, display_done_func)
Dga_window dgawin;
int flag;
int (*display_done_func)();

(*display_done_func)(dgawin);

int
dga_db_write_inquire(dgawin)
Dga_window dgawin;

194 OpenWindows Server Device Developer’s Guide—August 1994

10

dga_db_read_inquire

Purpose This function is used to determine the state of multibuffering
on a window, and indicates which buffer is selected for
reading.

Returns The buffer number.

dga_db_display_inquire

Returns The buffer number of the visible buffer.

dga_win_dbinfop

Returns A pointer to the multibuffering area in the DGA shared
memory. The structure can be accessed for device-dependent
information that must be shared between server and client.
DGA routines do not interpret device-dependent data, but
your graphics library device-dependent code might. This

int
dga_db_read_inquire(dgawin)
Dga_window dgawin;

int
dga_db_display_inquire(dgawin)
Dga_window dgawin;

Dga_dbinfop
*dga_win_dbinfop(dgawin)
Dga_window dgawin;

Direct Graphics Access Drawable Client Interface 195

10

structure also contains information regarding the hardware
window ids associated with multibuffered windows. The
definition of this structure is in the file dga.h .

Miscellaneous Grabbers

The following routines define the client interface to the window id grabber, fast
clear plane grabber, stereo grabber and Z buffer grabber. These grabbers may
require specialized hardware.

Note – Currently, miscellaneous grabbers only work for windows; they will fail
for pixmaps.

typedef struct dga_dbinfo {
short number_buffers;
short read_buffer;
short write_buffer;
short display_buffer;
u_int reserved_1; /* for the future */
u_int reserved_2; /* for the future */
u_int reserved_3; /* for the future */
u_int reserved_4; /* for the future */
u_int reserved_5; /* for the future */
u_int wid; /* db window id */
u_int reserved_6; /* for the future */
u_char device_info[132];

} Dga_dbinfo;

196 OpenWindows Server Device Developer’s Guide—August 1994

10

XDgaDrawGrabWids

Purpose Some graphics devices control video display characteristics
and/or hardware clipping via a control plane group called a
window ID (WID) plane group. Normally WIDs are allocated
and managed by the server. In some cases, DGA clients can
make use of multiple WIDs for a single window to optimize
some operation. XDgaDrawGrabWids is called to allocate
nwids consecutive WID’s. The window must have
previously been grabbed via XDgaGrabDrawable .

Returns Zero for failure; nonzero for success.

If successful, the WID values can be obtained from the
shared memory via the dga_draw_widinfop (see page 197)
routine. WIDs are 16-bit unsigned integer values. The base
WID will be aligned on a power-of-two boundary which is
determined by rounding up nwids to the next power of two.

To release the allocated WIDs, call XDgaDrawGrabWids with
an nwids argument of zero.

int
XDgaDrawGrabWids(dpy, drawid, nwids)
Display dpy;
Drawable drawid;
int nwids;

Direct Graphics Access Drawable Client Interface 197

10

dga_draw_widinfop

Returns A pointer to the dga_widinfo structure in the shared
memory area for dgadraw . The structure is defined as
follows and can also be found in the file dga.h :

In this structure, w_number_wids is the total number of
wids that have been allocated as a contiguous block.
w_start_wid is the starting window id value of this block.
w_wid is the value of the window id currently being used for
the window associated with the handle dagdraw .

XDgaDrawGrabFCS

Purpose Some graphics devices have a feature called fast clear sets
which can effectively speed up the clearing of the back buffer
in a multibuffering application. Fast clear sets are scarce
resources dedicated to a particular window.
XDgaDrawGrabFCS is used to request one or more fast clear
sets. The window must have previously been grabbed via
XDgaGrabDrawable . The function returns zero for failure,

Dga_widinfo *
dga_draw_widinfop(dgadraw)
Dga_drawable dgadraw;

typedef struct dga_widinfo {
short w_number_wids; /* number contiguous block wids allocated */
short w_start_wid; /* starting wid of the wid block */
short w_wid; /* current drawing wid */
short reserved_1; /* for the future */
} Dga_widinfo;

int
XDgaDrawGrabFCS(dpy, drawid, nfcs)
Display *dpy;
Drawable drawid
int nfcs;

198 OpenWindows Server Device Developer’s Guide—August 1994

10

nonzero for success. If successful, the FCS values can be
obtained from the shared memory via the
dga_draw_db_dbinfop routine, described in a previous
section. The FCS information will be stored in the device-
dependent section (device_info) of the dga_dbinfo
structure. To release the allocated FCSs call
XDgaDrawGrabFCS with an nfcs argument of zero.

XDgaDrawGrabStereo

Purpose Some graphics devices are capable of stereo display of
images. This function is used to inform the server that a
particular window will be using stereo display. The window
must have previously been grabbed via XDgaGraDrawable .

Returns Zero for failure, nonzero for success.

Arguments st_mode is 1 to enable stereo, 0 to disable it.

Zombie Drawables

There is nothing to prevent an X11 drawable resource from being destroyed at
any time by an X11 client. Even if the underlying drawable resource is
destroyed, a DGA client may still hold a handle to the drawable in the form of
a Dga_drawable client structure. A Dga_drawable window or pixmap
whose underlying X11 resource has been destroyed is called a zombie. A
multibuffer can also be a zombie if the buffer index specified by the client is
outside the range of multibuffers in the current multibuffer set. This can be the
case if the main window is no longer multibuffered or the buffer index is
greater or equal to the current number of multibuffers.

int
XDgaDrawGrabStereo(dpy, drawid, st_mode)
Display *dpy;
Drawable drawid
int st_mode;

Direct Graphics Access Drawable Client Interface 199

10

The first time a client locks a zombie drawable after its underlying X11
resource has been destroyed, a site change is reported. The site will be reported
as DGA_SITE_NULL. In addition, dga_draw_clipinfo always returns NULL
for a zombie drawable.

Note – When an MBX application changes the number of multibuffers in a
multibuffer set, it must first destroy all of the existing multibuffers and then
create new ones. Because multibuffers in the DGA drawable interface are
identified with a buffer index, it is possible for the index that identified a
certain multibuffer in the old set, to now refer to a new one. To avoid this type
of aliasing, client libraries should avoid rendering into multibuffers that have
been destroyed. Presently, client libraries themselves need to make this
determination with help from the application.

200 OpenWindows Server Device Developer’s Guide—August 1994

10

201

Direct Graphics Access Drawable
DDX Interface 11

This chapter describes routines the server provides for you to interface with
DGA with your DDX handlers to make various types of changes to a drawable.
This interface is called the direct graphics access (DGA) drawable DDX
interface.

Note – It is strongly recommended that you upgrade your DDX handler to use
the DGA drawable interface. If you do not upgrade your DDX handler to work
with the drawable interface, see New Features and Changes for detailed
information about functions that are still supported.

The DGA initialization function defined in the previous release,
DgaDevFuncsInit , is still supported. This routine allows grabbing of
windows only. DgaDevFuncsInit and the new initialization function,
dgaScreenInit should never be used by a DDX handler at the same time.

Initializing Drawable Grabs
The latest version of the DGA applications programmer’s interface (API) in the
SDK supports direct access to window, pixmap, and multibuffer drawables. In
the initialization sequence that supports arbitrary drawable types, not only is
this same function vector given to DGA, but two new functions are also given.
Providing these new functions is optional. If they are NULL, the DGA drawable
interface (dga_draw_ xxxx API routines) is only able to grab window
drawables.

202 OpenWindows Server Device Developer’s Guide—August 1994

11

Call the following initialization routine from the InitOutput routine of your
DDX handler.

dgaScreenInit

Arguments pDgadevfuncs is a function vector of device-dependent
functions cast to a void*:

The pDgadevfuncs argument may be NULL. If so, it means
that client DGA is not available on the device.

The device handler is not required fill out all members of
devFunc s; some functions may not be applicable to a device
and these entries should be NULL in the vector.

int
dgaScreenInit(pScreen, pDgadevfuncs, major, minor)
ScreenPtr pScreen;
void *pDgadevfuncs;
int major;
int minor;

typedef struct _DgaDevFuncsDraw {
int (*DgaAvail)();
void (*GrabDrawable)(DrawablePtr);
void (*UngrabDrawable)(DrawablePtr);
int (*CacheDrawInit)(DrawablePtr);
int (*CacheDrawCleanup)(DrawablePtr);
int (*DbSetup)(WindowPtr, WXINFO*, int, Bool);
int (*WidSetup)(WindowPtr, int, WXINFO*);
int (*FcsSetup)(WindowPtr, int, WXINFO*);
int (*ZbufSetup)(WindowPtr, int, WXINFO*);
int (*StereoSetup)(WindowPtr, int, WXINFO*);
int (*ChokeFb)(ScreenPtr, Bool);
int (*SyncDrawable)(DrawablePtr,GCPtr);
int (*UnsyncDrawable)(DrawablePtr,GCPtr);
int (*CmapSetup)(CmapPtr, Grabbedcmap*)
} DgaDevFuncsDraw;

Direct Graphics Access Drawable DDX Interface 203

11

The major and minor arguments are the major and minor
version numbers for the DDK release as specified in “DDX
Versioning” on page 8.

All of the types and structures listed above are defined in the
include file dga/dgawinstr.h .

Device-Supplied Routines
Use the following routines during DGA initialization. Values can be NULL;
however, functionality might be limited.

DgaAvail

Purpose This function advertises the flavor of DGA that a device
supports. If this function is NULL, the device is considered
to not support client DGA. All devices supporting client
DGA must supply this routine.

Returns The definitions of the return codes are found in
dga/dgawinstr.h .

If a device does not support DGA, this routine should return
DGA_AVAIL_NONE.

If the device supports DGA and also has a cursor that is
always rendered in hardware, it should return
DGA_AVAIL_CURS_HW.

If the cursor is always rendered in software, this routine
should return DGA_AVAIL_CURS_SW.

A device that has a limit to the size of cursor that can be
drawn in hardware and intends to support larger cursors in
software, this routine should return
DGA_AVAIL_CURS_HW_SW.

int (*DgaAvail)()

204 OpenWindows Server Device Developer’s Guide—August 1994

11

For example, on the GX/GX+, the maximum size for a
hardware cursor is 32x32. If a client loads in a cursor that is
larger than this, the GX switches to software to render this
cursor. So, GX/GX+ would return DGA_AVAIL_CURS_HW_SW
from this routine.

GrabDrawable

Purpose This function is called when a drawable is first grabbed to
allow the device handler to initialize device-dependent
information for the drawable. See Server-Supplied
Multibuffering Routines for routines to update the device-
dependent information area of a drawable. Also, this section
describes routines that should be called if the drawable is
cached.

Note – This function is only called the first time a client grabs the drawable. It
is never called for subsequent attempts to grab the same drawable, either by
the client to first grab or other clients. Likewise, UngrabDrawable is only
called when the last grabbing client ungrabs.

Note – This function is called on the first grab, even if the drawable is a
window that is being grabbed through the older version of the DGA interface,
the Window Compatibility Interface. In this case the WindowPtr is cast to a
DrawablePtr . See “Window Grabber Supported Functions” on page 263.

void (*GrabDrawable)(DrawablePtr pDraw)

Direct Graphics Access Drawable DDX Interface 205

11

UngrabDrawable

Purpose This function is called when a drawable is ungrabbed. It
should undo anything that GrabDrawable has done. For
example, the device-specific shared information may need to
be updated.

Note – This function is called on the first grab, even if the drawable is a
window that is being grabbed through the older version of the DGA interface,
the Window Compatibility Interface. In this case the WindowPtr is cast to a
DrawablePtr . See “Window Grabber Supported Functions” on page xxv.

CachedDrawInit

Purpose This function allows the device handler to do any device-
specific setup needed for the drawable when it is cached.
Examples include: location within the cache and the format
of the data within the cache.

This routine is called for drawables that may be cached in
special device memory. Drawable types that can cached
include: pixmaps, nonviewable multibuffers, and the backing
store of a window.

Note – Drawable refers to backing store in this context, even though a backing
store is technically not a drawable because it doesn’t have an XID.

The type of drawable may be determined by inspecting
pDraw->type . If this is DRAWABLE_WINDOW, the type of
drawable that is being referred to is the drawable’s backing

void (*UngrabDrawable)(DrawablePtr pDraw)

int (*CachedDrawInit)(DrawablePtr pDraw)

206 OpenWindows Server Device Developer’s Guide—August 1994

11

store. The server-internal structure for this backing store
(which, incidentally, happens to be of type PixmapPtr) can
be derived using the expression:

If the type is DRAWABLE_PIXMAP, then the routine
DgaMbIsMultibuffer should be called to determine if the
drawable is a pixmap or a multibuffer.

Results If the drawable is cached, this routine should do the
following:

1. Call DgaCacheDescribeDev on the pScreen of the
drawable with devCode and devname .

2. Call DgaCacheStateChange with a value of TRUE.

3. Call DgaDevInfoGet and DgaDevInfoChange to update
any device-dependent information which is necessary for the
cached drawable.

After this routine has been called, whenever the device
handler changes the cache state of the drawable, it should
call these routines.

Returns If this routine returns 0, DGA assumes that the drawable is of
type DGA_DRAW_SYSTEM and it copies the contents of the
pixmap to the shared page.

This routine should return 1 if the drawable is not of type
DGA_DRAW_SYSTEM, or the device handler has already
copied the pixmap to the shared page.

((miBSWindowPtr)((WindowPtr)pDraw)->backStorage)->pBackingPixmap

Direct Graphics Access Drawable DDX Interface 207

11

CachedDrawCleanup

Purpose This function is called when a nonviewable drawable or
backing store is ungrabbed. It should undo anything done by
CachedDrawInit . For example, it would call
DgaCacheStateChange to mark the drawable as uncached.
DgaDevInfoGet and DgaDevInfoChange might need to be
called to clean up information in the device-dependent
shared area.

The type of drawable might be determined by inspecting
pDraw->type . If this is DRAWABLE_WINDOW, the type of
drawable being referred to is the drawable’s backing store.
The server-internal structure for this backing store can be
derived using the expression:

If the type is DRAWABLE_PIXMAP, then the routine
DgaMbIsMultibuffer should be called to determine if the
drawable is a pixmap or a multibuffer.

Returns 1 on success; 0 on failure. If 0 is returned, DGA assumes the
drawable (or backing store) is uncached and directs its data
pointer at the shared page. At this time, the contents of the
drawable (or backing store) are copied to the shared page.

int
(*CachedDrawCleanup)(DrawablePtr pDraw)

((miBSWindowPtr)((WindowPtr)pDraw)->backStorage)->pBackingPixmap

208 OpenWindows Server Device Developer’s Guide—August 1994

11

DBSetup

Purpose This function is called when an application requests direct
access to do multibuffering. Typically, this function would
update some device-specific structures/hardware states, as
well as information on the shared info page.

Arguments The WXINFO structure has a field, wx_dbuf , which is a
structure containing information relevant to multibuffering.
The definitions of these structures are found in
dga/dgawinstr.h .

This function must update the following structures:

infop->wx_dbuf.num_buffers should be set equal to the
total number of buffers that the device supports in hardware.
If the number of buffers available from the device is less than
the requested number, num_buf , this function should return
failure (0).

MPG Devices with hardware window ids can allocate a new
window id for the multibuffered window. If so, this function
is responsible for repreparing the window with the new
(hardware) window id. If a new and unique WID is allocated
for this window, the infop->wx_dbuf.WID field should be
updated with this new value and the
infop->wx_dbuf.UNIQUE flag should be set to 1 to indicate
that this is a unique window id. See Chapter 5, “Multiple
Plane Group Interface” for more information.

The wx_dbuf structure contains a device-specific field,
wx_dbuf->device , that can be used by the device to
communicate information between the server and the client.
In the wx_dbuf structure, this is declared as:

int
(*DbSetup)(WindowPtr pWin, WXINFO *infop, int num_buf,

Bool flag)

union { char pad[128];} device

Direct Graphics Access Drawable DDX Interface 209

11

Each device can cast this to its own structure and
communicate information to the client.

infop->w_refresh_period should be set equal to the
refresh period of the monitor in milliseconds. This
information is required by client-side DGA code. If this value
is not supplied (set to zero), the client-side code defaults to a
66Hz monitor. See Chapter 11, “Direct Graphics Access
Drawable DDX Interface” for more details.

Returns 1 on success; 0 on failure.

WidSetup

Purpose This function is called when an application requests a block
of window ids to be grabbed. The allocation of window ids is
device specific and should be handled by this routine.

Results On MPG devices, the window might need to be reprepared
after new window ids are allocated. This routine should take
care of the repreparation as well.

Arguments This routine should update information in the DGA shared
page pertaining to window ids:

infop->w_number_wids should be set equal to the number
of contiguous wids, num_wids that have been allocated. If
the device was not able to allocate the requested number of
contiguous wids, this function should return 0 for failure.

infop->w_start_wid should be set equal to the value of
the first WID in the newly allocated block. The base WID
should be aligned on a power-of-two boundary.

infop->w_wid should be set equal to the current WID of the
window. This is often equal to infop->w_start_wid .

int
(*WidSetup)(WindowPtr pWin, int num_wids, WXINFO *infop)

210 OpenWindows Server Device Developer’s Guide—August 1994

11

If the window has been allocated a new window id, this
function is responsible for repreparing the window with this
WID value. See Chapter 5, “Multiple Plane Group Interface”
for details on how to do this.

Returns 1 on success; 0 on failure.

FcsSetup

Purpose This function is called when an application requests a
number of fast clear planes, num_fcs , to be grabbed for a
window, pWin . The allocation of fcs planes is device-specific
and should be handled by this routine.

On MPG devices, allocation of FCS planes may require
repreparation of the window. This function is responsible for
repreparation. See Chapter 5, “Multiple Plane Group
Interface” for more details about accessing the MPG
information.

Arguments This routine should update the information in the DGA
shared page pertaining to fast clear planes. Information
about a window’s fast clear planes is stored in the device-
specific portion of the wx_dbuf structure found in the
WXINFO structure infop->wx_dbuf.device . This structure
can be cast to a device-defined structure and the fcs
information could be stored here.

Returns 1 on success; 0 on failure.

int
(*FcsSetup)(WindowPtr pWin, int num_fcs, WXINFO *infop)

Direct Graphics Access Drawable DDX Interface 211

11

ZbufSetup

Purpose This function is called when an application requests direct
access to the Zbuffer for a window, pWin . This is a device-
specific operation and should be handled by this routine.

Arguments This routine should update the device-specific information in
the DGA shared page pertaining to Zbuffer. A device may
support various types of Z buffers and the second argument,
zbuf_type , indicates which type of Zbuffer is being
requested. Each device may support different types of Z
buffers.

Information about a window’s Zbuffer is stored in the
device-specific portion of the wx_dbuf structure found in the
WXINFO structure infop->wx_dbuf.device .

This array can be cast to a device-defined structure and the
Zbuffer information could be stored here. On MPG devices,
allocation of Zbuffer may require repreparation of the
window. This function is responsible for repreparation.
Please see Chapter 5, “Multiple Plane Group Interface” for
more details about accessing the MPG information.

Returns 1 on success; 0 on failure.

StereoSetup

Purpose This function is called when an application requests that a
stereo mode be associated or disassociated with this window,
pWin .

int
(*ZbufSetup)(WindowPtr pWin, int zbuf_type, WXINFO *infop)

int
(*StereoSetup)(WindowPtr pWin, int st_mode, WXINFO *infop)

212 OpenWindows Server Device Developer’s Guide—August 1994

11

Arguments If the second argument, st_mode is a nonzero value, a stereo
mode is associated with the window and if it is equal to zero,
stereo mode is turned off. This is device-specific and should
be handled by this routine.

This routine should update the device-dependent
information in the DGA shared page pertaining to stereo.

Information about a window’s stereo state is stored in the
device-specific portion of the wx_dbuf structure found in the
WXINFO structure infop->wx_dbuf.device .

This array can be cast to a device-defined structure and the
stereo information could be stored here.

Returns 1 on success; 0 on failure.

ChokeFb

Purpose When all windows on a screen are locked down, frame
buffers having asynchronous accelerators need to choke the
accelerator. This prevents the accelerator from rendering into
a locked window. Since this is a device-specific operation,
this function has to implement the choking and unchoking.

Arguments If the second argument, flag , is 1, this function should
choke the accelerator; if flag is 0, it should unchoke the
accelerator. Typically, this is done via an ioctl . For example,
the GT uses the FBIOGRABHW ioctl to choke its accelerator.

Returns 1 on success; 0 on failure.

int
(*ChokeFb)(ScreenPtr pScreenr, Bool flag)

Direct Graphics Access Drawable DDX Interface 213

11

SyncDrawable

Purpose When DGA is used to switch buffers, all X rendering
functions need to be directed at the currently displayed
buffer. This function is called before calling the X rendering
function but only if the window is multibuffered.

This routine can also be used to update device-private
structures with the current buffer state.

Results This function might need to call dgaMbGetBufferInfo to
get the current buffer configuration.

UnsyncDrawable

Purpose This function should undo anything that was done in
SyncDrawable .

This routine can also be used to update device private
structures with the current buffer state.

Results This function may need to call dgaMbGetBufferInfo to get
the current buffer configuration.

int
(*SyncDrawable)(DrawablePtr pDraw, GCPtr pGC)

int
(*UnsyncDrawable)(DrawablePtr pDraw, GCPtr pGC)

214 OpenWindows Server Device Developer’s Guide—August 1994

11

CmapSetup

Purpose This function is called when a colormap is being grabbed.
The include file that provides definition of the Grabbedcmap
structure is dga/dgacmapstr.h . This function is typically
used by devices supporting multiple hardware colormaps or
other specialized colormap hardware.

Arguments In this routine, the DDX handlers can set up
cginfo->devinfop to point to a private data area. The
maximum size of this private area is DGA_CM_DEV_INFO_SZ,
defined in dga/dgacmapstr.h . This field is declared as an
u_char array.

Each DDX handler can cast this to a device-private structure.
Typically, this device-dependent structure contains
information about the hardware colormap associated with
the grabbed X colormap.

On the client side, the client program can gain access to this
data by using the appropriate libdga function call,
dga_cm_get_devinfo . See Chapter 9, “Multibuffering
Extension to X Interface” for more information.

Devices that do not have specialized colormap hardware, like
multiple hardware color look up tables, do not need to fill
out this element in the function vector, DgaDevFuncsDraw .

Server-Supplied Multibuffering Routines
If your DDX handler defines a non-NULL MBX TryMpg function, you are
required to use the following routines to inform DGA of multibuffer set
attributes of a multibuffered window. If your DDX handler does not define
TryMpg , you do not need to make these calls.

To use these routines, include the dgambufstr.h header file.

int
(*CmapSetup)(CmapPtr pCmap, Grabbedcmap cginfop)

Direct Graphics Access Drawable DDX Interface 215

11

dgaMbCrtSetInfo

Purpose This function informs DGA of the attributes of the
multibuffer set of a multibuffered window. Nonzero is
returned if the information was successfully associated with
the window, zero otherwise.

Called by The MBX TryMpg routine. If the device driver does not call
this routine, the following defaults will apply:

flipMode DGA_MBFLIP_COPY

accessMode DGA_MBACCESS_MULTIADDR

siteTypeConst FALSE

bufViewableMask 0 (all nonviewable)

Arguments flipMode specifies the method used to display multibuffers.
It may be one of:

DGA_MBFLIP_VIDEO — use this if multibuffers are
displayed by copying their contents into a viewable
drawable

DGA_MBFLIP_COPY — use this if they are displayed by
directly outputting a video single from the multibuffer

accessMode specifies how a foundation library client can
access the multibuffers. It may be one of:

DGA_MBACCESS_SINGLEADDR — specifies single address
access mode. In this mode, clients use a single address and a
render buffer state in the device to specify the rendering
destination

int
dgaMbCrtSetInfo (pWin, flipMode, accessMode, siteTypeConst

bufViewabilityMask)
WindowPtr pWin;
int flipMode;
int accessMode;
Bool siteTypeConst;
unsigned long bufViewabilityMask

216 OpenWindows Server Device Developer’s Guide—August 1994

11

DGA_MBACCESS_MULTIADDR — specifies multiple
address mode. In this mode, clients use a unique address for
each buffer to specify the rendering destination

siteTypeConst is TRUE if the sites of the multibuffers in
the multibuffer set will never change during the lifetime of
the set, and FALSE otherwise.

bufViewableMask is a bit mask in which the bits specify
the viewability of all multibuffers in the multibuffer set. The
viewability of multibuffer i is specified by (1L<<i) in the
mask. 1 means the multibuffer is viewable (video can be sent
directly out of it). 0 means the multibuffer is nonviewable
(the multibuffer must be copied to a viewable drawable to be
seen).

dgaMbSetBufViewability

Purpose This function is used to specify the viewability of an
individual buffer.

Called by The MBX ResizeMultibuffer routine if resizing causes a
change in the viewability of a multibuffer.

Arguments bufIndex is the index of the multibuffer in the multibuffer
set (counted from 0).

If viewable is TRUE, the multibuffer is viewable, otherwise
it is nonviewable.

Returns Nonzero if the information was successfully associated with
the window; zero otherwise.

int
dgaMbSetBufViewability (pWin, bufIndex, viewable)
WindowPtr pWin;
short bufIndex;
Bool viewable;

Direct Graphics Access Drawable DDX Interface 217

11

dgaMbSetDisplayBuf

Purpose This function specifies the current display buffer of a
multibuffered window. This routine must be called only after
a creation sequence has been successfully completed on the
window. The initial display buffer is 0.

Called by DisplayMultibuffer , if the DDX handler defines a non-
NULL DisplayMultibuffer .

dgaMbIsMultibuffer

Returns TRUE if the given pixmap is actually a pixmap that was
created through the MBX extension. In other words, returns
TRUE if it is a multibuffer. Otherwise returns FALSE.
Regardless of the drawable type, the drawable must have
been previously grabbed. Otherwise returns FALSE.

If TRUE is returned, a pointer to the main window of the
multibuffer is also returned.

Note – The DGA cache notification routines (see “Caching Routines” on
page 218) use this routine to distinguish multibuffers from pixmaps.

Note – This should be implemented by adding a field to the DgaPixmapRec .
This field has three states: pixmap, multibuffer, or don’t know. If pixmap or
multibuffer, return FALSE or TRUE respectively. If don’t know, do a

void
dgaMbSetDisplayBuf (pWin, bufIndex)
WindowPtr pWin;
short bufIndex;

Bool
dgaMbIsMultibuffer (pPix, ppWin)
PixmapPtr pPix;
WindowPtr *ppWin

218 OpenWindows Server Device Developer’s Guide—August 1994

11

LookupIdByType on pPix->drawable.id with type
MultibufferResType . If this succeeds, it’s a multibuffer. If not, it’s a pixmap.
Record the result in the DgaPixmapRec and return it.

dgaMbGetBufferInfo

Returns Information about the current buffer set.

Called by The DGA routines, SyncDrawable and UnsyncDrawable .

Caching Routines
The following routines allow a DDX handler to keep DGA informed of caching
changes on a device.

dgaCacheDescribeDev

Results The contents of devName are copied into an internal
structure.

void
dgaMbGetBufferInfo (pDraw, num_buffers, read_buffer,
write_buffer, display_buffer)
DrawablePtr pDraw;
short *num_buffers;
short *read_buffer;
short *write_buffer;
short *display_buffer;

void
DgaCacheDescribeDev (pScreen, devCode, devName)
ScreenPtr pScreen;
int devCode;
char *devName;

Direct Graphics Access Drawable DDX Interface 219

11

dgaCacheStateChange

Purpose Informs DGA that a change has occurred to the cache state of
a drawable. DgaCacheDescribeDev must have been called
prior to calling this routine.

Arguments If state is TRUE, the drawable is currently cached. If it is
FALSE, the drawable is not cached.

dgaSharedDataInfo

Purpose When a nonviewable drawable or backing store is not
cached, the data pointer of the drawable should be directed
toward the pixel store that exists in the shared page and the
contents of the drawable should be copied into the shared
page. This is automatically performed by DGA if the DGA
routines CacheDrawInit or CacheDrawCleanup return 0.
However, the DDX handler itself may want to copy the
drawable contents into the shared page (for performance). To
do this, the DDX handler must know where to put the data.
It must also know the scanline stride (linebytes). This routine
supplies the necessary information necessary. This routine
should only be called when the drawable has been grabbed.

void
DgaCacheStateChange (pDraw, state)
DrawablePtr pDraw;
Bool state;

void
DgaSharedDataInfo (pDraw, addr, linebytes)
DrawablePtr pDraw;
pointer *addr;
int *linebytes

220 OpenWindows Server Device Developer’s Guide—August 1994

11

Device Information Routines
In each shared information page of a drawable, DGA provides an area in
which a DDX handler can place device-specific information. When anything in
this area changes, the DDX handler must inform DGA so that it can signal the
change to the client.

dgaDevInfoGet

Purpose The device-dependent area can be used by DDX handlers to
transmit device-dependent information to the DDX handlers
of the client foundation libraries. The format of this area is
completely opaque to DGA; no interpretation is given.

Called by This routine might need to be called from a DDX handler’s
DGA GrabDrawable routine to initialize device-dependent
information for a drawable. It might also need to be called
for a cached nonviewable drawable if the DDX handler
changes the location of the cache.

Results If the device alters any information in this area, it should call
DgaDevInfoChange to inform DGA.

Returns A pointer to the device-dependent area in the shared
information of the given drawable. Returns NULL if the
drawable has not yet been grabbed.

pointer
DgaDevInfoGet (pDraw)
DrawablePtr pDraw;

Direct Graphics Access Drawable DDX Interface 221

11

dgaDevInfoChange

Purpose This routine informs DGA that a change has occurred to the
device-dependent area of the drawable. A pointer to this area
is returned by calling DgaCacheDevInfo . This routine must
be called after any DDX handler changes to this area.

void
DgaDevInfoChange (pDraw)
DrawablePtr pDraw;

222 OpenWindows Server Device Developer’s Guide—August 1994

11

223

Input Devices 12

This chapter describes how to add an extension input device to the
OpenWindows server and access it with the MIT XInput Extension. This
extension is an MIT standard that is distributed with X11 Release 5 (X11R5).
The OpenWindows server loads input devices dynamically and accesses them
through the Input Extension. Dynamic loading reduces the size of the core X
server and allows you to develop device drivers independently.

Note – The client interface for accessing input devices in OpenWindows is the
Input Extension as defined in X11R5. The design presented here does not
change that interface in any way. All client protocol requests in this chapter are
as defined in the Input Extension.

The Input Extension includes the following three documents that are
prerequisite to this chapter. These documents are on line in the
doc/extensions/xinput directory. The associated filename is in
parentheses.

• X11 Input Extension Protocol Specification, Patrick and Sachs, MIT X
Consortium. (protocol .ms)

• X11 Input Extension Library Specification, Patrick and Sachs, MIT X
Consortium. (lib rary.ms)

• X11 Input Extension Porting Document, Sachs, MIT X Consortium.
(porting.ms)

224 OpenWindows Server Device Developer’s Guide—August 1994

12

Extension Input Device Overview
Figure 12-1 on page 224 shows a block diagram of the device input portion of
the OpenWindows server. The diagram also indicates which components must
be developed by Independent Hardware Vendors (IHVs) and Independent
Software Vendors (ISVs) to add an extension input device to OpenWindows.

The server implements most of the Input Extension capabilities: decoding
protocol requests, managing input devices, and distributing events to
interested clients. No changes to the server are required to add a new input
device.

The device handler reads device events, converts device events to X events, and
adds the events to the servers global event queue. Each new input device must
have a device handler developed for it.

The device’s STREAMS modules convert raw data from the physical input
device into event packets that are read by the device handler. A STREAMS
module is not required for each input device, but when needed it is developed
by the IHV and ISV.

Figure 12-1 Extension Input Device Block Diagram

OpenWindows Server

Sun Supplied

IHV/ISV Supplied

Mouse
Handler

Mouse
STREAM

Keyboard
Handler

Keyboard
STREAM

Extension
Device 1
Handler

Extension
Device 1
STREAM

Extension
Device n
Handler

Extension
Device n
STREAM

Input Devices 225

12

Handling of Extension Input Devices
This section provides a high level discussion of how extension input devices
are implemented in the OpenWindows environment.

Extension Device Initialization

After server start-up, the core keyboard and core pointer are the only devices
that are initialized and generating events. Additional devices can be requested
by a client with the XListInputDevices request. Each time a client issues
this request, the server executes the following tasks:

1. Reads the configuration file

The server parses the OWconfig configuration file, searching for input
devices. Each time the OWconfig file is read due to an
XListInputDevices request, devices listed in the XDISPLAY class as
coreKeyboard and corePointer and at server start-up were not the core
pointer and keyboard, are treated as extension devices.

For more information on the OWconfig file, see Appendix A, “The
OWconfig File.”

2. Loads input device

All devices in the OWconfig file that have not been initialized are loaded.
Thus, for the first request after start-up the core keyboard and core pointer
have already been initialized; only new devices are loaded.

Later, upon receipt of another XListInputDevices request, the server
again searches the OWconfig file for any devices that have been added since
the last request. If it finds new devices, they are loaded.

3. Initializes the device

After a device is loaded, its DeviceControlProc function is called with a
value of DEVICE_INIT , causing the device to register all of its features with
the server. DeviceControlProc is defined on page 252.

The server can now return a reply to the XListInputDevices request
issued by the client. The XListInputDevices request does not turn on the
device so the server does not accept input from them yet.

226 OpenWindows Server Device Developer’s Guide—August 1994

12

If during initialization the DeviceControlProc routine returns a failure,
the server assumes the hardware is not present and unloads the device.

Extension Device Open

After receiving the reply to the XListInputDevices , the client can open an
extension device and start receiving input from it with the XOpenDevice
request. When the server receives the first XOpenDevice request for a
particular device, it tells the device to start generating events by calling the
DeviceControlProc function with a value of DEVICE_ON.

The server keeps a list of clients that currently have the device open. If the
device is already opened by a client when an XOpenDevice request is
received, the requesting client is added to the client list.

Server start-up is now complete. When input is pending on the device, the
server reads the data and puts it into the event stream. The client can now
issue any of the standard Input Extension protocol requests to receive events,
initiate grabs, and control features of the device.

Reading Input Data

During initialization, devices register a read procedure with the server and set
the device STREAM to generate SIGPOLLs when data reaches the STREAM
head. The input data flow begins when a SIGPOLL signal is received by the
server. The server then loops through the following steps as illustrated in
Figure 12-2 on page 227, until no more events are available on any of the input
devices:

1. For each device that is turned on, call the DeviceReadProc function for
that device. DeviceReadProc is defined on page 254.

2. Check to see if there are any events from all of the sources just read.
• If there are no more events, break out of the loop and return.
• If there are more events, continue to step 3.

3. Find the oldest event.

4. Give the oldest event to the DeviceEnqueueProc for that device.
DeviceEnqueueProc is defined on page 253.

.

Input Devices 227

12

The DeviceEnqueueProc procedure takes an event, processes any device-
dependent information on the event, converts it to an xEvent , and places it
on the global event queue via the mieqEnqueue procedure.

5. Loop back to Step 1.

Figure 12-2 Data Flow When Reading Devices

Receive SIGPOLL

Find oldest event

Return
Any more
events?

Set dev = next dev

No

No

Call Read function
for device

Call EnqueueProc
for oldest event

No

Yes

Yes

Yes

4
5

3

2

1

dev = on?

dev = last dev?

228 OpenWindows Server Device Developer’s Guide—August 1994

12

Extension Device Close

When a client is finished with a device, it issues an XCloseDevice request to
the server. The client that issued the XCloseDevice request does not receive
any more events from the device. What happens next depends on how many
clients have the device open:

• If other clients have the device open, the server continues to read the device
until no clients have the device open. The client that issued the
XCloseDevice request does not receive any more events from the device
because the event mask for that client is cleared by the Input Extension as
part of the XCloseDevice procedure.

• If the client is the only client with the device open, the server calls the
DeviceControlProc with a value of DEVICE_OFF instructing the device
to stop generating events.

Restart and Shutdown

Restarting and shutting down the server involve the same actions. All open
devices are closed and unloaded. During the close process the input device is
notified of the shutdown. The device must free any memory that has been
allocated and close the device’s file descriptor.

When the server is about to exit or restart, the server calls the
DeviceControlProc function with a value of DEVICE_CLOSE. This call
instructs the device to free all of its resources because the server is about to
exit.

Adding An Extension Input Device
Each device added to the server must have the following components:

• A device handler shared object

• An entry in the local OWconfig file

And is recommended to have:

• A STREAMS module

Input Devices 229

12

Writing the Device Handler

All device handlers must have DeviceControlProc , DeviceGetEvents ,
and DeviceEnqueueProc procedures, as well as device-dependent
procedures. This section describes each of these procedures. A sample tablet
handler is provided in server/ddx/solaris/reference/sunTablet to
aid in the understanding of this chapter.

Device Control Procedure

The DeviceControlProc function allows the server to control an extension
device without having to know the capabilities of each particular device. There
are four actions that the DeviceControlProc must handle:

• DEVICE_INIT
• DEVICE_ON
• DEVICE_OFF
• DEVICE_CLOSE

DEVICE_INIT
When the DeviceControlProc is called with action DEVICE_INIT , the
procedure completes the following tasks:

1. The device is opened and initialized.

2. Any private device structures are allocated and initialized.

3. An atom for the device must be generated and assigned to the device. The
device’s state is initialized to off by setting the device->on flag to FALSE.

4. The device registers its DeviceGetEvents and DeviceEnqueueProc by
calling RegisterFdIo .

5. All device-dependent structures must be initialized and device-dependent
procedures registered. If the device can become the core pointer or the core
keyboard, pointer or keyboard interest must be registered. The initialization
and registry functions are listed in “Public Server Functions” on page 233.

DEVICE_ON
When the DeviceControlProc is called with action DEVICE_ON, the
procedure completes the following tasks:

230 OpenWindows Server Device Developer’s Guide—August 1994

12

1. Call AddEnabledDevice to let the server know the device has been turned
on.

2. Set the devices on state to TRUE.

3. Cause the device to generate SIGPOLLs with the I_SETSIG ioctl .

DEVICE_OFF
When the DeviceControlProc is called with action DEVICE_OFF, the
procedure completes the following tasks:

1. Call RemoveEnabledDevice to let the server know the device has been
turned off.

2. Set the device’s on state to FALSE.

DEVICE_CLOSE
When the DeviceControlProc is called with action DEVICE_CLOSE, the
procedure completes the following tasks:

1. If the device’s on state is TRUE, call RemoveEnabledDevice and set on
state to FALSE.

2. Perform any device specific clean-up.

3. Close the device.

4. Free any private device structures.

Device Get Events Procedure

The DeviceGetEvents procedure must read the device, put the events into an
XI_event structure, and return a pointer to the event or events. If the
DeviceGetEvents procedure allocates memory for the XI_event structure it
must be freed in the DeviceEnqueueProc . The example tablet device handler
keeps a static array of XI_event structures and passes a pointer to this array
each time.

Input Devices 231

12

Device Enqueue Procedure

The DeviceEnqueueProc is required to be in all device handlers. The
DeviceEnqueueProc takes one XI_eventPtr and enqueues one or more
events on the global event queue. The DeviceEnqueueProc is passed a
XI_event structure which has an opaque pointer to the event. The
DeviceEnqueueProc must typecast this pointer to match the format that the
DeviceGetEvents procedure put into the structure. The server does not do
any processing on the event before it is passed to the DeviceEnqueueProc .
As noted above, if the DeviceGetEvents procedure allocates memory for the
XI_event structure it must be freed here.

As stated in X11 Input Extension Protocol Specification, DeviceKeyPress ,
DeviceKeyRelease , DeviceButtonPress , DeviceButtonRelease ,
ProximityIn , ProximityOut , and DeviceStateNotify events can be
followed by zero or more DeviceValuator events. Devices that have
valuators and are reporting absolute motion must follow each of the above
events with one or more DeviceValuator events to specify the current state
of the valuators. Devices that don’t have valuators or have valuators but are
reporting relative motion send zero DeviceValuator events following the
events listed above. A DeviceMotionNotify event is always followed by one
or more DeviceValuator events regardless of the mode of the device
(relative or absolute). See the Input Extension Protocol Specification for more
details.

Devices that have registered themselves as potential core pointer devices must
be able to control the cursor from this procedure. The device must not control
the cursor until after the server has notified the device that it is the core
pointer. Cursor control is accomplished calling either
miPointerDeltaCursor or miPointerAbsoluteCursor depending on
whether the device is reporting relative or absolute motion. The device must
not enqueue MotionNotify events when it is the core pointer; this is done by
the miPointer procedures. It is the responsibility of the device handler to
enqueue ButtonPress and ButtonRelease events if the device supports buttons.

Devices that have registered themselves as potential core keyboards enqueue
DeviceKeyPress and DeviceKeyRelease events unless the device handler
has been notified that it is the core keyboard. Once it becomes the core
keyboard it must enqueue KeyPress and KeyRelease events until such time the
device is notified it is no longer the core keyboard.

232 OpenWindows Server Device Developer’s Guide—August 1994

12

Device-Dependent Procedures

Devices also have to support additional procedures based on the types of input
classes a given device supports, such as KEY, BUTTON, and VALUATOR.
These procedures are explained in “Device Shared Library Functions” on
page 252.

Adding An Entry to the OWconfig File

Appendix A, “The OWconfig File” describes the OWconfig file and the name
value attribute pairs that describe each input device. Appendix B, “Packaging
and Installation Hints” discusses how a new input device is packaged for
installation by users. “DDX Versioning” on page 8” specifies shared object
naming and versioning conventions. Read these sections before attempting to
add an input device.

Debugging the Device Handler

Since the input device handlers are shared objects, breakpoints cannot be set in
the handler until after the server has loaded the shared object. All extension
input device handlers are loaded when the first client issues an
XListInutDevices.

Breakpoints can be set in an input device handler by following these steps:

1. Add a line to the OWconfig file for the input device to be debugged. Make
sure the new line is directly below the mouse and keyboard lines.

2. From a remote machine, debug the server (dbx Xsun or debugger Xsun).

3. Set a breakpoint in AddInputDevice.

4. Run the server. The AddInputDevice breakpoint hits twice during server
initialization; just continue each time.

5. Start a client that opens the extension input device. This causes the
breakpoint to hit again. At this point the input device handler is loaded and
you can set breakpoints inside the handler.

Input Devices 233

12

Writing The STREAMS Module

A STREAMS module is not required for every input device. For example, the
device handler could read, interpret, and format the raw data from the ttya
port. This design is least attractive from a performance perspective and it is
strongly recommended that the interpreting and formatting of data be handled
in a STREAMS module. This method is attractive if you have a limited amount
of time to get an input device working, are unfamiliar with STREAMS module
development, and are not concerned about performance.

A STREAMS module outputs vuid (virtual user input device) type events. See
Appendix C, “Virtual User Input Device Interface” for more information on
vuid events.

Note – The DeviceReadProc function returns the XI_eventPtr structure
that is a timestamp and an opaque pointer to the devices event. This
timestamp could be generated in DeviceReadProc . However it is strongly
recommended that the device’s STREAMS module timestamp the event and
DeviceReadProc use this timestamp for the XI_eventPtr .

Input Library Functions
This section describes new functions in two categories:

• Public server functions
• Device-shared library functions

Public Server Functions

The functions in this section are callable from the device shared library.

234 OpenWindows Server Device Developer’s Guide—August 1994

12

InitPointerDeviceStruct

Purpose This function is provided to allocate and initialize
ButtonClassRec , ValuatorClassRec , and
PtrFeedbackClassRec .

Used by the initial core pointer device. A call to
InitPointerDeviceStruct is equivalent to calling
InitButtonClassDeviceStruct (page 236),
InitValuatorClassDeviceStruct (page 236), and
InitPtrFeedbackClassDeviceStruct page 239).

Called by DeviceControlProc of the core pointer device during the
DEVICE_INIT action.

Results Allocates and initializes ButtonClassRec ,
ValuatorClassRec , and PtrFeedbackClassRec .

Returns TRUE on success
FALSE on failure

InitKeyboardDeviceStruct

Purpose This function is provided to allocate and initialize
KeyClassRec , FocusClassRec , and
KbdFeedbackClassRec.

Used by the initial core keyboard device. A call to
InitKeyboardDeviceStruct is equivalent to calling
InitKeyClassDeviceStruct (page 235),
InitFocusClassDeviceStruct (page 238), and
InitKbdFeedbackClassDeviceStruct (page 239).

Bool InitPointerDeviceStruct(DevicePtr device, CARD8 *map,
int numButtons, DeviceGetMotionProc GetMotionProc,
DevicePtrCtrlProc PtrCtrlProc, int numMotionEvents)

Bool InitKeyboardDeviceStruct(DevicePtr device,
KeySymsPtr pKeySyms, CARD8 pModifiers[],
DeviceBellProc BellProc, DeviceKbdCtrlProc KbdCtrlProc)

Input Devices 235

12

Called by DeviceControlProc of the core keyboard device during
the DEVICE_INIT action.

Results Allocates and initializes KeyClassRec , FocusClassRec ,
and KbdFeedbackClassRec .

Returns TRUE on success
FALSE on failure

InitKeyClassDeviceStruct

Purpose This function is provided to allocate and initialize a
KeyClassRec , and is called for extension devices that have
keys. It is passed a pointer to the device, and pointers to
arrays of keysyms and modifiers reported by the device.

InitKeyboardDeviceStruct calls this routine for the core
X keyboard. It must be called explicitly for extension devices
that have keys.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes KeyClassRec .

Returns TRUE on success
FALSE on failure

Bool InitKeyClassDeviceStruct(DeviceIntPtr dev,
KeySymsPtr pKeySyms, CARD8 pModifiers[])

236 OpenWindows Server Device Developer’s Guide—August 1994

12

InitButtonClassDeviceStruct

Purpose This function is provided to allocate and initialize a
ButtonClassRec , and is called for extension devices that
have buttons. It is passed a pointer to the device, the number
of buttons supported, and a map of the reported button
codes.

InitPointerDeviceStruct calls this routine for the core
X pointer. It must be called explicitly for extension devices
that have buttons.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes ButtonClassRec .

Returns TRUE on success
FALSE on failure

InitValuatorClassDeviceStruct

Purpose This function is provided to allocate and initialize a
ValuatorClassRec , and is called for extension devices that
have valuators. It is passed the number of axes of motion
reported by the device, the address of the motion history
procedure for the device, the size of the motion history
buffer, and the mode (Absolute or Relative) of the device.

InitPointerDeviceStruct calls this routine for the core
X pointer. It must be called explicitly for extension devices
that report motion.

Called by DeviceControlProc during the DEVICE_INIT action.

Bool InitButtonClassDeviceStruct(DeviceIntPtr dev,
int numButtons, CARD8 *map)

Bool InitValuatorClassDeviceStruct(DeviceIntPtr dev,
int numAxes, DeviceGetMotionProc GetMotionProc,
int numMotionEvents, int mode)

Input Devices 237

12

Results Allocates and initializes ValuatorClassRec .

Returns TRUE on success
FALSE on failure

InitValuatorAxisStruct

Purpose This function is provided to initialize an XAxisInfoRec ,
and is called for core and extension devices that have
valuators. The space for the XAxisInfoRec is allocated by
the InitValuatorClassDeviceStruct function, but is
not initialized.

InitValuatorAxisStruct is called once for each axis of
motion reported by the device. Each invocation is passed the
axis number (starting with 0), the minimum value for the
axis, the maximum value for that axis, and the resolution of
the device in counts per meter. If the device reports relative
motion, 0 is reported as the minimum and maximum values.

This routine is not called by InitPointerDeviceStruct
for the core X pointer. It must be explicitly called for core and
extension devices that report motion.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Initializes XAxisInfoRec .

Returns TRUE on success
FALSE on failure

Bool InitValuatorAxisStruct(DeviceIntPtr dev, int axnum,
int minval, int maxval, int resolution)

238 OpenWindows Server Device Developer’s Guide—August 1994

12

InitFocusClassDeviceStruct

Purpose This function is provided to allocate and initialize a
FocusClassRec , and is called for extension devices that can
be focused. It is passed a pointer to the device.

InitKeyboardDeviceStruct calls this routine for the core
X keyboard. It must be called explicitly for extension devices
that can be focused. Whether or not a particular device can
be focused is implementation-dependent.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes FocusClassRec.

Returns TRUE on success
FALSE on failure

InitProximityClassDeviceStruct

Purpose This function is provided to allocate and initialize a
ProximityClassRec , and is called for extension absolute
pointing devices that report proximity. It is passed a pointer
to the device.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes a ProximityClassRec.

Returns TRUE on success
FALSE on failure

Bool InitFocusClassDeviceStruct(DeviceIntPtr dev)

Bool InitProximityClassDeviceStruct(DeviceIntPtr dev)

Input Devices 239

12

InitKbdFeedbackClassDeviceStruct

Purpose This function is provided to allocate and initialize a
KbdFeedbackClassRec , and is called for extension devices
that support some or all of the feedbacks that the core
keyboard supports. It is passed a pointer to the device, a
pointer to the procedure that sounds the bell, and a pointer
to the device control procedure.

InitKeyboardDeviceStruct calls this routine for the core
X keyboard. It must be called explicitly for extension devices
that have the same feedbacks as a keyboard. Some feedbacks,
such as LEDs and bell, can be supported either with a
KbdFeedbackClass or with BellFeedbackClass or
LedFeedbackClass feedbacks.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes KbdFeedbackClassRec .

Returns TRUE on success
FALSE on failure

InitPtrFeedbackClassDeviceStruct

Purpose This function is provided to allocate and initialize a
PtrFeedbackClassRec , and is called for extension devices
that allow the setting of acceleration and threshold. It is
passed a pointer to the device, and a pointer to the device
control procedure.

Bool InitKbdFeedbackClassDeviceStruct(DeviceIntPtr dev,
DeviceBellProc BellProc, DeviceKbdCtrlProc KbdCtrlProc)

Bool InitPtrFeedbackClassDeviceStruct(DeviceIntPtr dev,
DevicePtrCtrlProc PtrCtrlProc)

240 OpenWindows Server Device Developer’s Guide—August 1994

12

InitPointerDeviceStruct () calls this routine for the core
X pointer. It must be called explicitly for the extension
devices that support the setting of acceleration and
threshold.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes PtrFeedbackClassRec .

Returns TRUE on success
FALSE on failure

InitLedFeedbackClassDeviceStruct

Purpose This function is provided to allocate and initialize a
LedFeedbackClassRec , and is called for extension devices
that have LEDs. It is passed a pointer to the device, and a
pointer to the device control procedure.

Up to 32 LEDs per feedback can be supported, and a device
can have multiple feedbacks of the same type.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes LedFeedbackClassRec .

Returns TRUE on success
FALSE on failure

Bool InitLedFeedbackClassDeviceStruct(DeviceIntPtr dev,
DeviceLedCtrlProc LedCtrlProc)

Input Devices 241

12

InitBellFeedbackClassDeviceStruct

Purpose This function is provided to allocate and initialize a
BellFeedbackClassRec , and is called for extension
devices that have a bell. It is passed a pointer to the device,
and a pointer to the device control procedure.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes BellFeedbackClassRec .

Returns TRUE on success
FALSE on failure

InitStringFeedbackClassDeviceStruct

Purpose This function is provided to allocate and initialize a
StringFeedbackClassRec , and is called for extension
devices that have a display upon which a string can be
displayed. It is passed a pointer to the device and a pointer
to the device control procedure.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes StringFeedbackClassRec .

Returns TRUE on success
FALSE on failure

Bool InitBellFeedbackClassDeviceStruct(DeviceIntPtr dev,
DeviceBellCtrlProc BellCtrlProc)

Bool InitStringFeedbackClassDeviceStruct(DeviceIntPtr dev,
DeviceStringCtrlProc StringCtrlProc, int max_symbols,
int num_symbols_supported, KeySym *symbols)

242 OpenWindows Server Device Developer’s Guide—August 1994

12

InitIntegerFeedbackClassDeviceStruct

Purpose This function is provided to allocate and initialize an
IntegerFeedbackClassRec , and is called for extension
devices that have a display upon which an integer can be
displayed. It is passed a pointer to the device and a pointer
to the device control procedure.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes IntegerFeedbackClassRec .

Returns TRUE on success
FALSE on failure

RegisterFdIo

Purpose This function is provided to register the device’s file
descriptor, read function, and enqueue function.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Registers the device’s file descriptor, read function, and
enqueue function with the server. The device’s read
function is called when there is input pending on the given
file descriptor.

Returns Success on success
!Success on failure

Bool InitIntegerFeedbackClassDeviceStruct(DeviceIntPtr dev,
DeviceIntegerCtrlProc IntegerCtrlProc)

int RegisterFdIo(DevicePtr devptr, int fd,
DeviceReadProc readProc, DeviceEnqueueProc enqueueProc)

Input Devices 243

12

RegisterModifierCheckProc

Purpose This function is provided to register a function to be called
when a keycode needs to be checked for validity by the
device. This is only valid for devices that support keys. See
“DeviceModifierCheckProc” on page 254.

Called by DeviceControlProc during the DEVICE_INIT action.

Results If the device supports keys and this function is not specified,
the server assumes that the keycode is valid. If the function is
specified, the server calls the function to check validity.

Returns Success on success
!Success on failure

RegisterSetDeviceModeProc

Purpose This function is provided to register a function to be called
when a client requests a change in the mode of a device. This
refers to the device reporting absolute or relative positions.
See “DeviceSetModeProc” on page 255.

Called by DeviceControlProc during the DEVICE_INIT action.

Results If this function is not specified, the server assumes that the
mode of this device cannot be changed. If the function is
present, the server calls it to notify the device that the client
requests a mode change.

Returns Success on success
!Success on failure

int RegisterModifierCheckProc(DevicePtr devptr,
DeviceModifierCheckProc ModifierCheckProc)

int RegisterSetDeviceModeProc(DevicePtr devptr,
DeviceSetModeProc SetDeviceModeProc)

244 OpenWindows Server Device Developer’s Guide—August 1994

12

RegisterSetDeviceValuatorsProc

Purpose This function is provided to register a function to be called
when a client requests a change in the valuators of a device.
See “DeviceSetDeviceValuatorsProc” on page 255.

Called by DeviceControlProc during the DEVICE_INIT action.

Results If this function is not specified, the server assumes that the
valuators of this device cannot be changed. If the function is
present, the server calls it to notify the device that the client
requests a change to the valuators.

Returns Success on success
!Success on failure

RegisterChangeDeviceControlProc

Purpose This function is provided to register a function to be called
when a client requests a change in the control of a device.
This can refer to any control on the device, but is currently
limited to just the resolution of the device. See
“DeviceChangeDeviceControlProc” on page 256.

Called by DeviceControlProc during the DEVICE_INIT action.

Results If this function is not specified, the server assumes that the
control of this device cannot be changed. If the function is
present, the server calls it to notify the device that the client
wishes to change the control.

Returns Success on success
!Success on failure

int RegisterSetDeviceValuatorsProc(DevicePtr devptr,
DeviceSetDeviceValuatorsProc SetDeviceValuatorsProc)

int RegisterChangeDeviceControlProc(DevicePtr devptr,
DeviceChangeDeviceControlProc ChangeDeviceControlProc)

Input Devices 245

12

RegisterXKeyboardInterest

Purpose This function is provided to register interest with the server
to indicate that the given device can become the core
keyboard if a client so requests. The focusable argument
specifies whether the device is focusable when it is not the
core keyboard. See “DeviceChangeCoreKeyboardProc” on
page 256.

Called by DeviceControlProc during the DEVICE_INIT action.

Results The device is registered as a possible core keyboard with the
focusability that is specified. If the device is not registered as
a possible core keyboard, the server assumes that the device
cannot become the core keyboard.

Returns Success on success
!Success on failure

RegisterXPointerInterest

Purpose This function is provided to register interest with the server
to indicate that the given device can become the core pointer
if a client so requests. The focusable argument specifies
whether the device is focusable when it is not the core
pointer.

The DevicePointerAxisChangeProc is called when the
client requests this device to become the core pointer. See
“DevicePointerAxisChangeProc” on page 257.

Called by DeviceControlProc during the DEVICE_INIT action.

int RegisterXKeyboardInterest(DevicePtr devptr, Bool focusable,
DeviceChangeCoreKeyboardProc ChangeCoreKeyboardProc)

int RegisterXPointerInterest(DevicePtr devptr, Bool focusable,
DevicePointerAxisChangeProc PointerAxisChangeProc)

246 OpenWindows Server Device Developer’s Guide—August 1994

12

Results The device is registered as a possible core pointer with the
focusability that is specified. If the device is not registered as
a possible core pointer, the server assumes that the device
cannot become the core pointer.

Returns Success on success
!Success on failure

mieUpdateKbdPtr

Purpose This function is provided to update the core keyboard or
pointer device.

Called by The device shared libraries calls mieqUpdateKbdPtr from
the DeviceChangeCoreKeyboardProc or
DevicePointerAxisChangeProc each time the core
keyboard or pointer device changes. mieqUpdateKbdPtr is
called by the device that is becoming the core keyboard or
pointer with it’s DevicePtr in the appropriate argument.
Set the other argument to NULL.

Results The mi event code treats the new device as the core keyboard
or pointer.The old keyboard or pointer are treated as
extension devices by the mi event code.

Returns None

mieqEnqueue

Purpose This function is provided to place the xEvent on the server’s
global event queue.

Called by Many different locations in the server, but for the current
design this routine is being called only from the
DeviceEnqueueProc in the device shared library.

void mieqUpdateKbdPtr(DevicePtr pKbd, DevicePtr pPtr)

void mieqEnqueue(xEvent *e)

Input Devices 247

12

Results The xEvent is placed on the global event queue.The event is
copied from the caller, so the memory can be reused by the
DeviceEnqueueProc .

Returns None

miPointerPosition

Purpose This function is provided to obtain the current location of the
cursor. It is passed two pointers that are filled in with the
current location of the cursor.

Called by The device shared libraries when they need to know the
current location of the cursor.

Results The *x and *y pointers are set to the current x and y
position of the cursor.

Returns None

miPointerDeltaCursor

Purpose This function is provided to move the cursor as a result of
device events. It is passed the delta x and y that the cursor is
to move relative to its current position as well as the time of
the motion event.

Called by DeviceEnqueueProc of the current core pointer in the
device shared library.

Results The cursor is moved dx,dy from its previous position.

Returns None

void miPointerPosition(int *x, int *y)

void miPointerDeltaCursor(int dx, int dy, unsigned long time)

248 OpenWindows Server Device Developer’s Guide—August 1994

12

miPointerAbsoluteCursor

Purpose This function is provided to move the cursor as a result of
device events. It is passed an absolute x and y position to
which the cursor moves, as well as the time of the motion
event.

Called by DeviceEnqueuProc of the current core pointer in the device
shared library.

Results The cursor is moved to x,y .

Returns None

RegisterHandlers

Purpose This function is provided to register wakeup handlers or
block handlers or both for the device. The server calls
wakeupHandler immediately after it comes out of its
select call due to client input or input device activity. The
server calls blockHandler right before going into the
select call. Some devices such as keyboards might need
this functionality to implement features such as auto repeat.
It is passed the address of the devices wakeup handler or
block handler or both and a pointer to the index of the
handler that the device uses to refer to the handler. A NULL
can be passed for either handler indicating not to register it.

Called by DeviceControlProc during the DEVICE_INIT action.

Results A wakeup handler or block handler or both are registered
with the server.

Returns Success on success
!Success on failure

void miPointerAbsoluteCursor(int x, int y, unsigned long time)

int RegisterHandlers(DeviceWakeupHandler wakeupHandler,
DeviceBlockHandler blockHandler, int *index)

Input Devices 249

12

RemoveHandlers

Purpose This function is provided to remove the device’s block
handler or wakeup handler or both. It is passed the index to
the handlers that was returned in the RegisterHandlers
call.

Called by DeviceControlProc during the DEVICE_INIT action.

Results The device’s block handler or wakeup handler or both are
removed.

Returns None

NextWakeupHandler

Purpose This function is provided to call the next wakeupHandler
registered. It must be called by a device’s wakeupHandler
and passes along all the parameters that are passed into the
device’s DeviceWakeupHandlerProc .

Called by The device’s DeviceWakeupHandlerProc.

Results The wakeup handler that was registered just before the
device’s DeviceWakeupHandlerProc is called.

Returns None

void RemoveHandlers(int index)

void NextWakeupHandler(int index, int nscreen, pointer pbdata,
unsigned long err, pointer pReadmask)

250 OpenWindows Server Device Developer’s Guide—August 1994

12

NextBlockHandler

Purpose This function is provided to call the next blockHandler
registered. Is must be called by a device’s block handler and
passes all the parameters that are passed into the device’s
DeviceBlockHandlerProc .

Called by The device’s DeviceBlockHandlerProc.

Results The block handler that was registered just before the device’s
DeviceBlockHandlerProc is called.

Returns None

MakeAtom

Purpose This function is provided to make an atom for a device to be
passed as a parameter to AssignTypeAndName . It is passed
a char pointer to the name of the device, the length of the
string, and makeit equals FALSE.

Called by DeviceControlProc during the DEVICE_INIT action.

Results An atom is found.

Returns Atom

void NextBlockHandler(int index, int nscreen, pointer pbdata,
struct timeval **pptv, pointer pReadmask)

Atom MakeAtom(char *name, unsigned len, Bool makeit)

Input Devices 251

12

AssignTypeAndName

Purpose This function is provided to assign a type and name to a
device. It is passed a pointer to the device, the atom returned
from MakeAtom, and the char pointer to the name of the
device.

Called by DeviceControlProc during the DEVICE_INIT action.

Results The dev->type and dev->name entries are set to the values
specified by the arguments.

Returns None

AddEnableDevice

Purpose This function is provided to cause the server to start checking
for input on the device corresponding to the given file
descriptor.

Called by DeviceControlProc during the DEVICE_ON action.

Results The device’s file descriptor is selected for pending input.

Returns None

RemoveEnableDevice

Purpose This function is provided to cause OpenWindows to stop
checking for input on the device corresponding to the given
file descriptor.

void AssignTypeAndName(DeviceIntPtr dev, Atom type, char *name)

void AddEnabledDevice(int fd)

void RemoveEnabledDevice(int fd)

252 OpenWindows Server Device Developer’s Guide—August 1994

12

Called by DeviceControlProc during the DEVICE_OFF action.

Results The device’s file descriptor is no longer selected for pending
input.

Returns None

Device Shared Library Functions

The functions in this section are in the device shared libraries. The
*DeviceHandlerCompatible, *DeviceControlProc ,
*DeviceEnqueueProc , and *DeviceReadProc functions are required for
each device library. All other functions are optional and depend on the features
a particular device supports.

DeviceHandlerCompatible

Purpose This function checks for compatibility and returns the
device’s major and minor numbers as well as a pointer to
DeviceControlProc .

Results Compares the device’s version number against the version
number passed in. If it is incompatible, return !Success ;
otherwise, fill in the device major and minor number and a
pointer to DeviceControlProc .

Returns Success on success
!Success on failure

DeviceControlProc

Purpose This function allows the server to control the actions of a
device.

typedef int (*DeviceHandlerCompatible)(int major, int minor,
int *myMajor, int *myMinor, int (**pContorlProc)());

typedef int (*DeviceControlProc)(DevicePtr devptr, int action);

Input Devices 253

12

Results Results depend upon the given action:

DEVICE_INIT . The device registers all of its features with the
server, opens the device, registers how to read it, and
initializes itself.

DEVICE_ON. The device turns itself on by calling
AddEnabledDevice .

DEVICE_OFF. The device turns itself off by calling
RemoveEnabledDevice .

DEVICE_CLOSE. The device cleans up its resources and
closes itself. The server is about to exit.

Returns Success on success
!Success on failure

DeviceEnqueueProc

Purpose This function places one or more new xEvents on the global
event queue.

Results Completes any device specific processing on a given event,
converts the event into an xEvent , and then places the event
on the global event queue by calling mieqEnqueue.

Note – The memory associated with the XI_event can be freed after
mieqEnqueue has been called to queue the new xEvents .

Returns None

typedef void (*DeviceEnqueueProc)(DevicePtr devptr,
XI_eventPtr Xev);

254 OpenWindows Server Device Developer’s Guide—August 1994

12

DeviceReadProc

Purpose This function reads data from a device when there is input
pending, and returns a pointer to a list of XI_events . This
routine is only used for devices that can read themselves.

Results If there is no data to be read, this function returns NULL, sets
numev to 0, and sets again to FALSE.

If there is data to be read, this function returns a pointer to a
list of XI_events and sets numev to the number of
XI_events returned. The server uses again to determine if
the device has more data to be read. If again is set to TRUE,
the server calls this function again without reentering
select . If again is set to FALSE, the function is not called
again without reentering select .

Note – The server passes the list of events back to the device’s enqueue
function one at a time, so the memory for the XI_events is released after the
device has called mieqEnqueue in the DeviceEnqueueProc .

Returns A pointer to a list of XI_events or NULL.
numev indicating the number of events returned.
again indicating the possibility of this device having more
data to be read.

DeviceModifierCheckProc

Purpose This function checks the validity of the given keycode .
Checking occurs when a client is trying to set the modifier
map of a device. This function is only valid for devices that
support keys.

typedef XI_eventPtr (*DeviceReadProc)(DevicePtr devptr,
int * numev, Bool * again);

typedef Bool (*DeviceModifierCheckProc)(DevicePtr devptr,
KeyCode keycode);

Input Devices 255

12

Results None

Returns TRUE if the keycode is valid
FALSE if the keycode is not valid

DeviceSetModeProc

Purpose This function sets the mode of a device. The mode can be
either Absolute or Relative. This routine applies only to
devices that generate DeviceMotionNotify events.

Results On success, the mode of the device is set to mode.
On failure, the mode is unchanged.

Returns Success on success
!Success on failure

DeviceSetDeviceValuatorsProc

Purpose This function sets the valuators of a device to the values in
valuators starting with valuator first_valuator and
continuing through num_valuators .

Results On success, the value of the specified valuators are changed
to valuators .

On failure, the value of the valuators is unchanged.

Returns Success on success
!Success on failure

typedef int (*DeviceSetModeProc)(DevicePtr devptr, int mode);

typedef int (*DeviceSetDeviceValuatorsProc)(DevicePtr devptr,
int *valuators, int first_valuator, int num_valuators);

256 OpenWindows Server Device Developer’s Guide—August 1994

12

DeviceChangeDeviceControlProc

Purpose This function changes the specified device controls on the
given input device. Currently, only the
DEVICE_RESOLUTION control is supported.

Results On success, the specified control is changed.
On failure, the control is unchanged.

Returns Success on success
!Success on failure

DeviceChangeCoreKeyboardProc

Purpose This function notifies the device that a client has requested
that the device is now the core keyboard (isCore == TRUE)
or that it is now not the core keyboard (isCore == FALSE).
The DeviceChangeCoreKeyboardProc function must call
mieqUpdateKbdPtr to notify the server that the core
keyboard has been changed.

Results On success, the specified control is changed.
On failure, the control is unchanged.

Returns Success on success
!Success on failure

typedef int (*DeviceChangeDeviceControlProc)(DevicePtr devptr,
xDeviceCtl *control);

typedef int (*DeviceChangeCoreKeyboardProc)(DevicePtr devptr,
Bool isCore);

Input Devices 257

12

DevicePointerAxisChangeProc

Purpose This function notifies the device that a client has requested
that the device is now the core pointer (isCore == TRUE)
or that it is now not the core pointer (isCore == FALSE).

If (isCore == TRUE) , axis number x moves the pointer in
the X direction and axis number y moves the pointer in the Y
direction.

DevicePointerAxisChangeProc must call
mieqUpdateKbdPtr () to notify the server that the core
keyboard has been changed.

Results On success, the given device becomes the new core pointer,
and the old core device becomes an extension device that has
its focusability set by its focusable flag.

On failure, the core pointer is unchanged.

Returns Success on success
!Success on failure

DeviceGetMotionProc

Purpose This function returns any events in the device’s motion
history buffer that occurred between the start and stop
times.

Called by ProcGetMotionEvents in dix/devices.c .

Results Copies any events in the device’s motion history buffer that
occurred between the start and stop times to coordinates.

typedef int (*DevicePointerAxisChangeProc)(DevicePtr devptr,
Bool isCore, unsigned char x, unsigned char y);

typedef int (*DeviceGetMotionProc)(DeviceIntPtr devptr,
INT32 *coords, unsigned long start, unsigned long stop,
ScreenPtr pScreen);

258 OpenWindows Server Device Developer’s Guide—August 1994

12

Returns Number of events copied to coordinates.

DeviceBellProc

Purpose This function rings the device’s bell to the specified percent
of maximum.

Results The device’s bell is rung.

Returns None

DeviceWakeupHandlerProc

Purpose Determined by the device handler implementation.

Results Depends on the device handler implementation.

Returns None

DeviceBlockHandlerProc

Purpose Determined by the device handler implementation.

Results Depends on the device handler implementation.

Returns None

typedef void (*DeviceBellProc)(int newpercent,
DeviceIntPtr devptr);

typedef void (*DeviceWakeupHandlerProc)(int nscreen,
pointer pbdata, unsigned long err, pointer pReadMask);

typedef void (*DeviceBlockHandlerProc)(int nscreen,
pointer pbdata, struct timeval **pptv,
pointer pReadmask);

Input Devices 259

12

DevicePtrCtrlProc

Purpose This function allows the server to control the actions of a
pointer device.

Results Sets the value in the device’s PtrCtrl structure.

Returns None

DeviceKbdCtrlProc

Purpose This function allows the server to control the actions of a
keyboard device.

Results Sets the value in the device’s KeybdCtrl structure.

Returns None

DeviceLedCtrlProc

Purpose This function allows the server to control the actions of a
device with LEDs.

Results Sets the value in the device’s LedCtrl structure.

Returns None

typedef void (*DevicePtrCtrlProc) (DeviceIntPtr devintptr,
PtrCtrl *ctrl);

typedef void (*DeviceKbdCtrlProc) (DeviceIntPtr devintptr,
KeybdCtrl *ctrl);

typedef void (*DeviceLedCtrlProc) (DeviceIntPtr devintptr,
LedCtrl *ctrl);

260 OpenWindows Server Device Developer’s Guide—August 1994

12

DeviceBellCtrlProc

Purpose This function allows the server to control the actions of a
device with a bell.

Results Sets the value in the device’s BellCtrl structure.

Returns None

DeviceStringCtrlProc

Purpose This function allows the server to control the actions of a
device with a display upon which a string can be displayed.

Results Sets the value in the device’s StringCtrl structure.

Returns None

DeviceIntegerCtrlProc

Purpose This function allows the server to control the actions of a
device with a display upon which an integer can be
displayed.

Results Sets the value in the device’s IntegerCtrl structure.

Returns None

typedef void (*DeviceBellCtrlProc) (DeviceIntPtr devintptr,
BellCtrl *ctrl);

typedef void (*DeviceStringCtrlProc) (DeviceIntPtr devintptr,
StringCtrl *ctrl);

typedef void (*DeviceIntegerCtrlProc) (DeviceIntPtr devintptr,
IntegerCtrl *ctrl);

261

TheOWconfig File A

The OWconfig file is used by the server to dynamically load extensions,
XInput modules, and DDX graphics handler modules. By default, the
OWconfig file is distributed in the /usr/openwin/server/etc directory.

The format of the OWconfig file is an uncommitted interface between the
OpenWindows 3.4 server and dynamically loaded modules. This file is a
server-private file. It is read by the OpenWindows server and edited by IHV
installation scripts (see Appendix B, “Packaging and Installation Hints”).

x86: The OWconfig file can be edited by the kdmconfig utility. This utility
runs during installation. You can also invoke kdmconfig any time after
installation to tailor your configuration.

SPARC Sample OWconfig File
Code Example A-1 lists a sample SPARC OWconfig file.

Code Example A-1 Sample SPARC OWconfig File

Start SUNWxwplt
Copyright 1993 Sun Microsystems, Inc.
#”@(#)OWconfig1.11 26 May 1993 SMI”
OWconfig file for OpenWindows X server Version 3.4
#
WARNING: This file is automatically generated when
the OpenWindows software package is installed. This file can be
automatically edited by other optional software packages that
are installed on the system.

262 OpenWindows Server Device Developer’s Guide—August 1994

A

ANY CHANGES YOU MAKE TO THIS FILE WILL BE LOST DURING
PACKAGE INSTALLATION, REMOVAL AND UPGRADES!
The format of this file is private to the OpenWindows
X Server and subject to change in future releases.

X Display
class=”XDISPLAY” name=”0”

coreKeyboard=”IKBD” corePointer=”IMOUSE”;

CG6 display adapter
class=”XSCREEN” name=”SUNWcg6”

ddxHandler=”ddxSUNWcg6.so.1” ddxInitFunc=”sunCG6Init”;

CG3 display adapter
class=”XSCREEN” name=”SUNWcg3”

ddxHandler=”ddxSUNWcg3.so.1” ddxInitFunc=”sunCG3Init”;

CG4 display adapter
class=”XSCREEN” name=”SUNWcg4”

ddxHandler=”ddxSUNWcg4.so.1” ddxInitFunc=”sunCG4Init”;

BW2 display adapter
class=”XSCREEN” name=”SUNWbw2”

ddxHandler=”ddxSUNWbw2.so.1” ddxInitFunc=”sunBW2Init”;

CG8 display adapter
class=”XSCREEN” name=”SUNWcg8”

ddxHandler=”ddxSUNWcg8.so.1” ddxInitFunc=”sunCG8Init”;

CG2 display adapter
class=”XSCREEN” name=”SUNWcg2”

ddxHandler=”ddxSUNWcg2.so.1” ddxInitFunc=”sunCG2Init”;

sun Keyboard module
class=”XINPUT” name=”IKBD”

ddxHandler=”ddxSUNWkbd.so.1”
ddxInitFunc=”ddxSUNWkbdProc”;

sun Mouse module
class=”XINPUT” name=”IMOUSE”

ddxHandler=”ddxSUNWmouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”;

Code Example A-1 Sample SPARC OWconfig File (Continued)

The OWconfig File 263

A

x86 Sample OWconfig File
Code Example A-2 lists a sample x86 OWconfig file.

sun Dials Compatibility module
class=”XINPUT” name=”IDIALSC”

ddxHandler=”ddxSUNWdialsCompat.so.1”
ddxInitFunc=”ddxSUNWdialsCompatProc”;

sun Dials module
class=”XINPUT” name=”IDIALS”

ddxHandler=”ddxSUNWdials.so.1”
ddxInitFunc=”ddxSUNWdialsProc”;

sun Buttons module
class=”XINPUT” name=”IBUTTONS”

ddxHandler=”ddxSUNWdials.so.1”
ddxInitFunc=”ddxSUNWbuttonsProc”;

Example of a dynamically loaded extension “ACMExtn”
class=”XEXTENSION” name=”ACMExtn”
sharedObject=”ACMExtn.so.1”
initFunc=”ACMExtnExtensionInit”
preLoad=”NO”;

End SUNWxwplt

Code Example A-2 Sample x86 OWconfig File

Start SUNWxwpls
Copyright 1993 Sun Microsystems, Inc.
#”@(#)OWconfig.x861.14 21 Dec 1993 SMI”
OWconfig file for OpenWindows Version 3.4

X Display
class=”XDISPLAY” name=”0”
Please make sure that one of the two following lines regarding the
type of mouse is always uncommented.
It is assumed that you are using a Logitech Mouseman serial mouse by
default.
#
Logitech Mouseman Serial Mouse
 coreKeyboard=”ATKBD” corePointer=”MOUSEMAN-S”

Code Example A-1 Sample SPARC OWconfig File (Continued)

264 OpenWindows Server Device Developer’s Guide—August 1994

A

Logitech Bus Mouse
coreKeyboard=”ATKBD” corePointer=”LOGI-B”

dev0=”/dev/fb”
listOfScreens=”my8514”;

Sample XSCREENCONFIG class
class=”XSCREENCONFIG” name=”my8514”

device=”8514”
pmifile=”/usr/openwin/etc/vesa/8514/ati.pmi”
res=”1024x768”;

Standard VGA display adapter, 640x480 and 16 colors.
class=”XSCREEN” name=”vga4”

ddxHandler=”ddxSUNWvga4.so.1” ddxInitFunc=”vga4Init”;

Standard VGA display adapter, 800x600 and 16 colors.
Panning within a 640x480 window
class=”XSCREEN” name=”vga4”

ddxHandler=”ddxSUNWvga4.so.1” ddxInitFunc=”vga4Init”;

8514 display adapter
class=”XSCREEN” name=”8514”

ddxHandler=”ddxSUNW8514.so.1” ddxInitFunc=”i8514Init”;

Super VGA display adapter, 1024x768 and 256 colors.
class=”XSCREEN” name=”vga8”

ddxHandler=”ddxSUNWvga8.so.1” ddxInitFunc=”vga8Init”;

PC Keyboard module
class=”XINPUT” name=”ATKBD”

ddxHandler=”ddxSUNWatkbd.so.1”
ddxInitFunc=”ATKbdProc”
layout=”1”
type=”101”;

Mouseman module
class=”XINPUT” name=”MOUSEMAN-S”

ddxHandler=”ddxSUNWx86mouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”
buttons=”3”
strmod=”vuidm4p”
dev=”/dev/tty00”;

Code Example A-2 Sample x86 OWconfig File

The OWconfig File 265

A

Logitech serial module
#class=”XINPUT” name=”LOGI-S”
ddxHandler=”ddxSUNWx86mouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”
buttons=”3”
strmod=”vuidm5p”
dev=”/dev/tty00”;

Logitech bus module
class=”XINPUT” name=”LOGI-B”

ddxHandler=”ddxSUNWx86mouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”
buttons=”3”
strmod=”vuidm5p”
dev=”/dev/logi”;

3 button Kdmouse bus module
#class=”XINPUT” name=”KDMOUSE-B”
ddxHandler=”ddxSUNWx86mouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”
buttons=”3”
strmod=”vuid3ps2”
dev=”/dev/kdmouse”;

Microsoft serial module
#class=”XINPUT” name=”MS-S”
ddxHandler=”ddxSUNWx86mouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”
buttons=”3”
strmod=”vuidm3p”
dev=”/dev/tty00”;

Microsoft bus module
#class=”XINPUT” name=”MS-B”
ddxHandler=”ddxSUNWx86mouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”
buttons=”3”
trmod=”vuidm5p”
dev=”/dev/msm”;
End SUNWxwpls

Code Example A-2 Sample x86 OWconfig File

266 OpenWindows Server Device Developer’s Guide—August 1994

A

File Format Definition
The OWconfig file is composed of a number of resource entries, described by a
collection of lines similar to a kernel device driver’s .conf file (see
driver.conf (4)). A resource is typically a device, such as a frame buffer or a
keyboard. Each resource entry consists of a number of “attribute=value ”
pairs, separated by white space (including spaces, tabs, and new line
characters) and terminated by a semicolon (;) character. Any characters
following a “#” through the end of the line are treated as a comment and
disregarded.

The quotes around the value strings are required only if the string contains
delimiters (such as white space or “;” (semicolon)). The back slash character
“\” is used as an escape character. For example, \” could be used to include
the “ character as part of a string value. The parsing routines strip the quotes
surrounding string values and pass just the string to the underlying software.
The parsing software treats all values as strings; the interpretation of the string
value is up to you.

Each resource entry in the file completely defines an instance of a class. For
each resource class, there is a set of attributes pertaining to that class. Values
for the class and name attributes are required in every resource entry. The class
attribute defines the class of the resource. It can be one of the following:

• XDISPLAY
• XSCREENCONFIG
• XSCREEN
• XINPUT
• XEXTENSION

The name attribute identifies the particular resource through a string unique to
the class (such as SUNWcg6, IKBD, MIT-SHM). Each class might define
additional mandatory attributes specific to that class. Each class is discussed in
greater detail starting on page 268.

#Sample OWconfig entry
class=”class name” name=”name”

[property-name=value ...];

The OWconfig File 267

A

To avoid name space collisions between multiple vendors, it is strongly
recommended (as in driver.conf (4)) that the name attribute for vendor-
specific classes begin with a vendor-unique string. A reasonably compact and
unique choice is the vendor over-the-counter stock symbol. With other classes,
such as XEXTENSION, name space collisions can be avoided by registering
extension names with the Xregistry (maintained by the MIT X Consortium).

File and Module Search Paths
By default, OpenWindows is installed in /usr/openwin . The directory
/usr/openwin/server/etc contains the default OWconfig file that is
distributed with the OpenWindows software. Similarly, the directory
/usr/openwin/server/modules will contain the DDX handler modules,
Xinput modules and extension modules that are distributed as part of the X
Windows package. These constitute components that are distributed and
maintained by Sun.

In addition to this, DDX support utility libraries, such as cfb, mfb, mi, mpg and
server private libraries such as font, typescaler, and dga are located in the
directory /usr/openwin/server/lib.

Since /usr/openwin can be an NFS-mounted installation that is shared by
multiple machines on the network, you need a machine-specific configuration
directory to describe the local system configuration. You must create this
machine-specific directory path in your installation scripts since it is not
created by default nor required. The file that describes the local configuration
is the OWconfig file. The server searches for the OWconfig file in
/etc/openwin/server/etc .

SPARC: It is optional to have an OWconfig file in
/etc/openwin/server/etc because by default,
/usr/openwin/server/etc contains the default OWconfig file.

x86: It is not optional to have an OWconfig file in
/etc/openwin/server/etc ; the kdmconfig utility always creates the file in
/etc/openwin/server/etc . Your installation script can edit the
/etc/openwin/server/etc/OWconfig file.

The OWconfig search path is:

/etc/openwin/server/etc:/usr/openwin/server/etc

268 OpenWindows Server Device Developer’s Guide—August 1994

A

Dynamically loaded modules (XInput, extensions, or DDX handlers) can be
located in /etc/openwin/server/modules . The search path for loadable
modules is:

If an OWconfig file is present in both locations, both files are read, and the
server merges these files into a single database. If there are conflicting entries
in both files (when an entry has the same values for the “class” and “name”
attributes in both files), the server merges both entries on a per-attribute basis.
That is, the entry from /etc/openwin/server/etc will take precedence
over the entry from the file in /usr/openwin/server/etc . If there are
duplicate entries within the same file (when an entry has the same values for
the “class” and “name” attributes in the same file), then the last entry for either
of these attributes is used.

See Appendix B, “Packaging and Installation Hints” for more details.

The XDISPLAY Class
An XDISPLAY is a collection of graphics output and input devices that the X
server manages. It is a collection of Screens, Core Keyboard and Core Pointer.

The attributes coreKeyboard and corePointer select devices of class
XINPUT as the core keyboard and pointer respectively.

listOfScreens is an optional attribute that is new to this release:

/etc/openwin/server/modules:/usr/openwin/server/modules

XDISPLAY

class=”XDISPLAY” name=”0”
coreKeyboard=”IKBD” corePointer=”IMOUSE”
listOfScreens=”myGX:my2ndHead,left”;

[name[:name[,left|right|top|bottom]]]

The OWconfig File 269

A

If this attribute is not present, the graphics adapter selection defaults to
/dev/fb . The value of listOfScreens is a colon-separated list of names of
objects of class XSCREENCONFIG. The names can be modified by geometry
specifiers (left, right, top or bottom). The semantics of these specifiers are
equivalent to the command-line modifiers by the same name. See the Xsun (1)
man page.

The Screens specified in listOfScreens are added in order. In the above
example, the server recognizes myGX as Screen 0 and my2ndHead as Screen 1.

x86 – If the display adapter is not associated with the kernel driver (for vga4,
vga8 and 8514) the listOfScreens attribute must exist. The kdmconfig
utility will create a listOfScreens attribute and value in the XDISPLAY class
entry.

The XSCREENCONFIG Class
An XSCREENCONFIG instantiates an object of class XSCREEN and abstracts
the per-instance configuration information.

The name attribute is referenced in the listOfScreens of the XDISPLAY
class. The value of the name attribute is not important; however, the actual
names generated should be unique within an instance of the OWconfig file. It
is up to you, the IHV, to generate a meaningful name (my8514 is an x86
example). The OWconfig file specification and the X server do not attach any
meaningful semantic to the actual value of this name.

The device attribute is equivalent to the -dev command-line option as
specified for Xsun .

#XSCREENCONFIG
class=”XSCREENCONFIG” name=”my8514”

device=”/dev/fb0” # SPARC example
device=”8514” # x86 example
dpix=”90” dpiy=”90”
defclass=”PseudoColor”
defdepth=”8”
grayvis=”NO”
res=”1024x768” # x86 example
pmifile=”/usr/openwin/etc/vesa/i8514/ati.pmi”;# x86 example

270 OpenWindows Server Device Developer’s Guide—August 1994

A

The dpix , dpiy , defclass , defdepth , and grayvis attributes are optional
and are equivalent to the -dev command-line option as specified for Xsun (1).

The value of the device attribute depends on whether a kernel graphics device
driver is associated with the display adapter or frame buffer. If a driver exists
(as is always the case on SPARC), the device attribute value is the device
special filename associated with the driver (for example, /dev/fb0). If a
driver does not exist (as can happen with several x86 graphics adapters), the
device attribute value is a descriptive name of the graphics adapter (for
example, 8514), and corresponds directly to the name of an object of class
XSCREEN.

The XSCREEN Class
An XSCREEN is a graphics display adapter, or frame buffer.

The value of the name attribute depends on whether a kernel graphics device
driver is associated with the display adapter or frame buffer. If the kernel
driver exists, it is probed with the VIS_GETIDENTIFIER ioctl to determine
the name of the object of class XSCREEN that is loaded by the server. For more
information on drivers, see Writing Device Drivers.

x86: The name attribute is a descriptive name of the graphics adapter and
corresponds directly to the value of the device attribute in an object of class
XSCREENCONFIG.

The ddxHandler follows the naming convention
ddx<organization><device>.so.<majorVersion>. The initialization function is the
single symbolic entry point into the DDX handler. To avoid namespace
collisions, it is recommended that IHV’s follow a coding practice of prefixing
the InitFunc name with an <organization><device> prefix as well. It is further
recommended that all symbols internal to the DDX handler, and symbols in
support libraries linked to the DDX handler (if any), be similarly prefixed to
minimize namespace collisions.

XSCREEN
class=”XSCREEN” name=”SUNWcg6”

ddxHandler=”ddxSUNWcg6.so.1” ddxInitFunc=”sunCG6Init”;

The OWconfig File 271

A

The XINPUT Class
The XINPUT class is for X Input Extension modules and X input core
Keyboard and Pointer modules.

SPARC Sample XINPUT Class

x86 Sample XINPUT Class

XINPUT modules follow the naming convention:

Devices of class XINPUT are selected as the coreKeyboard or corePointer
devices by setting the attributes in the XDISPLAY class to the appropriate
value. See “The XDISPLAY Class” on page 268.

sun Keyboard module
class=”XINPUT” name=”IKBD”

ddxHandler=”ddxSUNWkbd.so.1”
ddxInitFunc=”ddxSUNWKbdProc”;

sun Mouse module
class=”XINPUT” name=”IMOUSE”

ddxHandler=”ddxSUNWmouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”;

3-button Kdmouse bus module
class=”XINPUT” name=”KDMOUSE-S”

ddxHandler=”ddxSUNWx86mouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”
buttons=”3”
strmod=”vuid3ps2”
dev=”/dev/kdmouse”;

ddx< organization ><device >.so.< majorVersion >.

272 OpenWindows Server Device Developer’s Guide—August 1994

A

The XEXTENSION Class
The XEXTENSION class is for X Extension modules that are dynamically
loaded by the server.

In this case, the extension name should be registered in the Xregistry
(maintained by the MIT X Consortium) to avoid name space collisions. The
value of the preLoad attribute can be YES or NO depending on whether you
want the server to load this extension at startup (YES), or when
XQueryExtension is called (NO). Either way, XListExtensions lists all
statically linked extensions in the server and dynamically loadable extensions
with an entry in the OWconfig file. XListExtensions simply lists extensions;
it does not cause the extensions to be dynamically loaded.

OWconfig Access Method
The OWconfig Access Method standardizes access to and manipulation of an
OpenWindows configuration (OWconfig) database file. If your DDX handler
requires configuration information, use this method to access that information
specific to your device. Note that not all DDX handlers require configuration
information.

OWconfig Database

An OWconfig database is a hierarchical list of name/value pairs. The meaning
of a particular name/value pair depends upon its position in the hierarchy, as
well as the application’s interpretation of its value. More concretely:

• An OWconfig database is a list of “classes”; each “class” has a name.
• A “class” is a list of “instances”; each “instance” has a name.
• An “instance” is a list of “attributes”; each “attribute” has a name and a

value.

XEXTENSION named ACMExtn
class=”XEXTENSION” name=”ACMExtn”

sharedObject=”ACMExtn.so.1”
initFunc=”ACMExtnExtensionInit”
preLoad=”NO”;

The OWconfig File 273

A

As an example, a typical OWconfig database file contains a declaration of an
instance of class “XDISPLAY” whose name is “0” (for screen 0). This instance
of the “XDISPLAY” class may contain definitions for attributes such as
“coreKeyboard” and “corePointer.” The OWconfig file may contain several
declarations of instances of class “XDISPLAY.”

The access method does not enforce class/instance/attribute naming
conventions, nor does it check values of attributes.

OWconfig API

The C language definition of the OWconfig Access Method API may be found
in the include file /usr/openwin/include/X11/Sunowconfig.h .

OWconfigGetClassNames

Purpose All users of this function should call
OWconfigFreeClassNames to free the list and the strings to
which it points.

Returns (char **) to list of class instance names, or NULL if class
did not exist. The end of the list is indicated by a NULL
pointer.

Arguments class : name of class for which to name all instances.

OWconfigFreeClassNames

Purpose Frees results of OWconfigGetClassNames .

Arguments list: NULL terminated list of strings to free.

char **
OWconfigGetClassNames(char *class)

void
OWconfigFreeClassNames(char **list)

274 OpenWindows Server Device Developer’s Guide—August 1994

A

OWconfigGetAttribute

Returns (char *) to value of attribute or NULL if attribute could not
be found. The string returned by this function can be freed
using OWconfigFreeAttribute .

Arguments class : name of class to which named attribute belongs

name: name of instance of class to which named attribute
belongs

attribute : name of sought attribute

OWconfigFreeAttribute

Purpose Frees string returned by OWconfigGetAttribute .

Arguments attribute: string, allocated by OWconfigGetAttribute, to be
freed.

OWconfigGetInstance

Purpose Use this function to free the memory allocated to the
information returned by OWconfigGetInstance .

Arguments class : name of class from which to list attributes

name: name of instance of class from which to list attributes

char *
OWconfigGetAttribute(char *class, char *name, char *attribute)

void
OWconfigFreeAttribute(char *attribute)

OWconfigAttributePtr
OWconfigGetInstance(char *class, char *name, int *numberInAttr)

The OWconfig File 275

A

numberInAttr : receives number of attributes in returned
list

Returns OWconfigAttributePtr or NULL.

OWconfigFreeInstance

Frees a list created by OWconfigGetInstance.

Arguments attr : list of attributes to free

numberInAttr : number of attributes in list

Packaging

The API components of the access method are in the following files:

• /usr/openwin/lib/libowconfig.so.1
• /usr/openwin/lib/libowconfig.so
• /usr/openwin/include/X11/Sunowconfig.h

Typical Usage

If you want to retrieve configuration information for your device from the
OWconfig database you will need to use, at a minimum, the
OWconfigGetAttribute and OWconfigFreeAttribute functions. Note
that not all DDX handlers require configuration information.

By the time your DDX handler’s initialization function is called, the server has
loaded into memory a copy of the OWconfig database. The functions in
“OWconfig API” on page 273 are provided as a read-only access method to this
database.

There are two types of configuration information that you may want to access:

• attributes documented in the DDK manual

void
OWconfigFreeInstance(OWconfigAttributePtr attr, int

numberInAttr)

276 OpenWindows Server Device Developer’s Guide—August 1994

A

To access these attributes use the documented class and name values as part
of an appropriate OWconfig function call.

• attributes added to an OWconfig file as part of your installation process
(configuration information specific to your device)

To access these attributes you must first know how to access the OWconfig
attribute that belongs to your device. The following code illustrates how to
get this information:

The tag value is the key to locating information belonging to a particular
device driver.

int
ddxACMEProc(DevicePtr pAcme, int what)
{
char *tmp;
...
switch(what) {
case DEVICE_INIT:
...

/* The following illustrates how to get configuration */
/* information belonging to this device (ddx) driver ,which */
/* in this case belongs to the XINPUT class, and which */
/* contains an attribute called dev. */
tmp = OWconfigGetAttribute(”XINPUT”,

((DeviceIntPtr)pAcme)->devEntry->tag, “dev”);
...

277

Packaging and Installation Hints B

The Loadable DDX interface introduces issues pertaining to packaging and
installation of loadable modules (DDX handlers, Xinput modules and X
Extension modules). This appendix discusses these issues and assumes
familiarity with the Application Packaging & Installation facilities in Solaris
2.x. See the SunOS 5.x Application Packaging and Installation Guide for more
information.

Installation Hints
Loadable modules and OWconfig file entries are installed in either of two
directories, as discussed in “File and Module Search Paths” on page 267. The
directories in /etc/openwin are intended to be machine-specific, or local,
whereas the directories in /usr/openwin could be either local to the machine
or NFS mounted from a remote filesystem. The /etc/openwin location is
recommended for most loadable modules installed by IHVs (Independent
Hardware Vendors). The exception is when a module is being installed on a
server for shared use by a number of workstations requiring the module. In
this case, install the module in the same directory in which either the
SUNWxwplt (SPARC) or SUNWxwpls (x86) package was installed.

Whether you install a module in the /etc or /usr location, your installation
script should always checks for an OWconfig file and the relevant entries in
that location. If an OWconfig file does not exist in the installation location, the
installation script should create it with the relevant module entries inserted in

278 OpenWindows Server Device Developer’s Guide—August 1994

B

the file. The package should also have a corresponding removal script that
removes any entries inserted by it into the OWconfig file. It should delete the
file if (and only if) it becomes empty as a result of the deletions.

If you use the /etc location for installation, the installation script takes into
account the fact that there might not be sufficient space in the / filesystem to
accommodate large loadable modules. The recommended approach is to install
the DDX modules in a subdirectory under /opt/<package_name> , and
populate the /etc/openwin/server/modules directory with symbolic
links. Install and edit the OWconfig file in the /etc location directly, not via
symbolic links.

Packaging Hints
Follow the following convention for package names:

For example:

• SUNWxwplt Sun’s OpenWindows required package for SPARC

• SUNWxwpls Sun’s OpenWindows required package for x86

• ACMEowdyn ACME dynamo frame buffer’s DDX handler package

The typical convention is that packages edit the OWconfig file to insert entries
with the following comment lines containing the package name. The package
in this example is ACMEowdyn.

The SUNWxwplt package, for example, marks all of the default entries it
installs (in /usr location) as follows:

<organization><package-descriptor>

Start ACMEowdyn
[a number of lines containing the actual OWconfig entry]
End ACMEowdyn

Start SUNWxwplt
[a number of lines containing the default OWconfig entries]
End SUNWxwplt

Packaging and Installation Hints 279

B

Package Delivery Example

The following is an example of the packaging scripts and prototype files for
delivering a package containing the DDX handler module for the ACME
dynamo graphics display adapter. All of these examples are for the
ACMEowdyn package.

Code Example B-1 pkginfo File

PKG=ACMEowdyn
NAME=ACME Dynamo Display Adapter Support
ARCH=sparc
VERSION=1.0.0,REV=2.2.2
CATEGORY=system,graphics
PRODNAME=Dynamo
PRODVERS=2.3
DESC=”OpenWindows dynamically loaded drivers for the Dynamo
display adapter. Not needed if you do not have a Dynamo display
adapter installed on your system.”
BASEDIR=/etc
VENDOR=”ACME Display Adapters, Inc.”
HOTLINE=”1-800-USA-ACME”
EMAIL=”hotline@ACME.COM”
MAXINST=1000
CLASSES=base OWconfig

Code Example B-2 Prototype File

i pkginfo
i copyright
i depend
i i.OWconfig
i r.OWconfig
d base openwin 0775 root bin
d base openwin/server 0775 root bin
d base openwin/server/etc 0775 root bin
e OWconfig openwin/server/etc/OWconfig 0755 root bin
d base openwin/server/modules 0775 root bin
f base openwin/server/modules/ddxACMEdyn.so.1 0755 bin bin

280 OpenWindows Server Device Developer’s Guide—August 1994

B

Put the following code in a stub file named OWconfig .

Code Example B-3 OWconfig File

Start ACMEowdyn
ACME dynamo display adapter
class=”XSCREEN” name=”ACMEdyn”

ddxHandler=”ddxACMEdyn.so.1” ddxInitFunc=”ACMEdynInit”;
End ACMEowdyn

Code Example B-4 i.OWconfig File

#
Installation script for the OWconfig class
If an OWconfig file existed, remove any entry belonging to
this package, and append a new entry.
#
while read src dst
do

if [-r $dst]
then

An OWconfig file already exists
if [-w $dst]
then

It’s editable by this script, edit it.
cp $dst /tmp/$$OWconfig || exit 2
sed -e “/# Start ACMEowdyn/,/# End ACMEowdyn/d” \
/tmp/$$OWconfig > $dst || exit 2
cat $src >> $dst || exit 2
rm -f /tmp/$$OWconfig

else
An OWconfig file exists that’s not editable !
exit 2

fi
else

An OWconfig file was not present
cat $src >> $dst || exit 2

fi
done
exit 0

Packaging and Installation Hints 281

B

Code Example B-5 r.OWconfig File

#
Removal script for the OWconfig class
Remove any entries that belong to this package.
Delete the file if it’s empty.
#
while read dst
do

sed -e ~~/# Start ACMEowdyn/,/# End ACMEowdyn/d” $dst > \
/tmp/$$OWconfig || exit 2
if [-s /tmp/$$OWconfig]
then

mv /tmp/$$OWconfig $dst || exit 2
else

rm $dst || exit 2
fi

done
exit 0

Code Example B-6 depend File

P SUNWcar Core Architecture, (Root)
P SUNWkvm Core Architecture, (Kvm)
P SUNWcsr Core Sparc, (Root)
P SUNWcsu Core Sparc, (Usr)
P SUNWcsd Core Sparc Devices
P SUNWxwplt OpenWindows required core package for SPARC
P SUNWxwpls OpenWindows required core package for x86

Code Example B-7 copyright File

Copyright 1993 ACME Display Adapters, Inc.
<insert your copyright information here>

All Rights Reserved.

282 OpenWindows Server Device Developer’s Guide—August 1994

B

283

Virtual User Input Device Interface C

This appendix discusses the manipulation of workstation data, which is mostly
global data related to input and input devices. This chapter also explains the
mechanism that sets up input devices to generate event codes and how a
device driver conforms to the Virtual User Input Device (vuid) interface.

Virtual User Input Device (vuid)
The vuid is a possible interface between input devices and the device handler.
Device drivers in OpenWindows 3.3 must read themselves and are not required
to generate vuid events. Devices can generate vuid events, a variation of the
vuid format, or a totally new format. The vuid format provided in this
appendix is an example format.

What Kind of Devices?

Vuid is targeted to input devices that gather command data from users.
Examples of these devices are: mice, keyboards, joysticks, light pens, knobs,
sliders, buttons, and ascii terminals. The vuid interface is not designed to
support input devices that produce extremely large amounts of data, such as
input scanners, disk drives, and voice packets.

284 OpenWindows Server Device Developer’s Guide—August 1994

C

Vuid Station Codes
This section defines the layout of the address space of vuid station codes. It
explains how to extend the vuid address space.

Address Space Layout

The address space for vuid events is 16-bits long, from 0 to 65535 inclusive. It
is broken into 256 segments that are 256 entries long (VUID_SEG_SIZE). The
top 8 bits contain a vuid segment identifier value. The bottom 8 bits contains a
segment-specific value from 0 to 255. Some segments are predefined and some
are available for expansion. Here is how the address space is currently broken
down:

• ASCII_DEVID (0x00) — ASCII codes, which include META codes.

• TOP_DEVID (0x01) — Top codes, which are ASCII with the 9th bit on.

• Reserved (0x02 to 0x7F) — For Sun vuid implementations.

• Reserved for Sun customers (0x80 to 0xFF) — If you are writing a new vuid,
you can use a segment in here.

Adding a New Segment

The central registry of virtual user input devices is
usr/include/sys/vuid_event.h . To allocate a new vuid you must modify
this file:

• Choose an unused portion of the address space. Vuids from 0x00 to 0x7F are
reserved for use by Sun. Vuids from 0x80 to 0xFF are reserved for Sun
customers.

• Add the new device with a *_DEVID #define in this file. Briefly describe
the purpose or usage or both of the device. Mention the place where more
information can be found.

• Add the new device to the Vuid_device enumeration with a
VUID_devname entry.

• List the specific event codes in another header file that is specific to the new
device. ASCII_DEVID , TOP_DEVID and WORKSTATION_DEVID events are
listed in vuid_event.h .

Virtual User Input Device Interface 285

C

Firm Events
A stream of firm events is what your driver is expected to emit when called
through the read system call. This stream is a byte stream that encodes
Firm_event structures. A firm event is a structure comprising an ID that
indicates what kind of event it is, the value of the event, and a time when this
event occurred; it also carries some information that allows the event’s
eventual consumer to maintain the complete state of its input system.

The Firm_event Structure

The firm_event structure is defined in usr/include/sys/vuid_event.h :

id — is the event’s unique identifier. It is either the id of an existing vuid
event (if you are trying to emulate part of the vuid) or one you created.

value — is the event’s value. It is often 0 (up) or 1 (down). For valuators it
is a 32-bit integer.

time — is the event’s timestamp of when the event occurred. The
timestamp is not defined to be meaningful except to compare with other
Firm_event time stamps. In the kernel, a call to uniqtime , which takes a
pointer to a struct timeval , gets you a close-to-current unique time. In
user processes, a call to gettimeofday (2) gets time from the same source
(but it is not guaranteed to be unique).

typedef struct firm_event {
u_short id;
u_char pair_type;
u_char pair;
int value;
struct timeval time;

} Firm_event;

#define FE_PAIR_NONE 0
#define FE_PAIR_SET 1
#define FE_PAIR_DELTA 2
#define FE_PAIR_ABSOLUTE 3

286 OpenWindows Server Device Developer’s Guide—August 1994

C

Pairs

The pair_type and pair fields enable a consumer of events to maintain
input state in an event-independent way. The pair field is critical for an input
state maintenance package—one that is designed to know about the semantics
of particular events, to maintain correct data for corresponding absolute, delta,
and paired-state variables. Some examples help make this clear:

• You have a tablet emitting absolute locations. Depending on the client, the
absolute location is important (for digitizing) or the difference between the
current location and the previous location is important (for computing
acceleration while tracking a cursor).

• You have a keyboard in which the user has typed ^C. Your driver first emits
a SHIFT_CTRL event as the control key goes down. Next your driver emits
a ^C event (one of the events from the ASCII vuid segment) as the “c” key
goes down. Now the application that your are driving happens to be using
the “c” key as a shift key in some specialized application.

The vuid supports a notion of updating a companion event at the same time
that a single event is generated. In the first situation, your want your tablet to
update companion absolute and relative event values with a single event. In
the second situation, you want your keyboard to update companion ^C and
“c” event values with a single event. The vuid supports this notion of updating
a companion event in such a way as to be independent from these two
particular cases. pair_type defines the type of companion event:

FE_PAIR_NONE — is the common case in which pair is not defined, that is,
there is no companion.

FE_PAIR_SET — is used for ASCII controlled events in which pair is the
uncontrolled base event, that is, ^C and “c” or “C”, depending on the state
of the shift key. The use of this pair type is not restricted to ASCII situations.
This pair type simply says to set the pairth event in id ’s vuid segment to
value .

FE_PAIR_DELTA — identifies pair as the delta companion to id . This
means that the pair th event in id ’s vuid segment is set to the delta of id ’s
current value and value . Always create vuid valuator events as
delta/absolute pairs. For example, the events LOC_X_DELTA and
LOC_X_ABSOLUTE are pairs and the events LOC_Y_DELTA and
LOC_Y_ABSOLUTE are pairs.

Virtual User Input Device Interface 287

C

FE_PAIR_ABSOLUTE — identifies pair as the absolute companion to id .
This means that the pair th event in id ’s vuid segment is set to the sum of
id ’s current value and value . Always create vuid valuator events as
delta/absolute pairs.

As indicated, pair must be in the same vuid segment as id .

Device Controls
A vuid driver responds to a variety of device controls.

Output Mode

It is more common to start from an existing device driver that already speaks
its own native protocol and flush this old protocol in favor of the vuid
protocol. In this case, you might want to operate in both modes. VUID*FORMAT
ioctls are used to control which byte stream format an input device emits.

VUIDSFORMAT sets the input device byte stream format to one of:

• VUID_NATIVE — the device’s native byte stream format (it could be vuid).

• VUID_FIRM_EVENT — the byte stream format is Firm_events .

An errno of ENOTTY or EINVAL indicates that a device cannot speak
Firm_events .

VUIDGFORMAT gets the input device byte stream format.

288 OpenWindows Server Device Developer’s Guide—August 1994

C

289

Dynamically Loadable Extensions D

X extensions must meet the following criteria to be dynamically loadable by
the server:

• The extension must be decoupled from the DIX and DDX layers of the
server. This means that the extension must not require any server code
changes to the DIX or DDX code. Implement all extensions with X11R5
wrappers around DDX vectors.

• The extension must not depend on any resource devPrivates . An
exception is the Screen devPrivates , which can be dynamically
reallocated, unlike other resource devPrivates (such as Window and GC)
that can only be allocated before any resources are instantiated.

Follow these steps to make an X extension meet these criteria:

1. Compile and link the extension as a shared object.

x86 – On some SunPro development system releases, -z text flags errors
against non-relocatable sections in instances where no problems exist. In
general, you can build the shared object without the -z text flag.

example% cc -K PIC ... *.c
example% ld -G -z text *.o ... -o ACMExtn.so.1

290 OpenWindows Server Device Developer’s Guide—August 1994

D

2. Create an entry for the extension in the OWconfig file.
See Appendix A, “The OWconfig File” and Appendix B, “Packaging and
Installation Hints” for information on adding this entry.

3. Install the shared object into the modules directory.
The server searches the following path for extension modules listed in the
OWconfig file:
/etc/openwin/server/modules:/usr/openwin/server/modules .
See Appendix B, “Packaging and Installation Hints” for more information.

4. Start the server and verify if the extension is listed with xdpyinfo .
XListExtensions lists the extension as available if an entry in the
OWconfig file exists, without actually forcing the extension to be loaded.

5. Invoke XQueryExtension or make an extension request to verify that the
extension actually gets dynamically loaded.

291

Index

Numerics
4-bit deep screen format note, 17

A
AddEnableDevice function, 251
AggregatePlanes function, 59

code example, 60
default value, 59

AssignTypeAndName function, 251

C
CachedDrawCleanup function, 207
CachedDrawInit function, 205
ChokeFb function, 212
CloseScreen function, 21
CMAP library

introduction, 99
allocating unique WIDs, 132
allocating unique WIDs, example

code, 133
changing a colormap, 129
changing a window’s WID, 128
colormap flashing reduction, 104
compiling and linking, 101
controlling MHC’s WIDs, 124 to 127
initialization functions, list of, 100

MHC functions, list of, 100
MPG and WID initialization, 101
overloading WIDs, 125
using WID, 83

CmapClutPoolDesc structure, 111
CmapDevFuncs, 103
cmapGetColorData16 function, 106
cmapGetColorData8 function, 105
cmapMhcChangeFlavor function, 130
cmapMhcForceOverload function, 126
cmapMhcReleaseOverload function, 127
cmapMhcWindowAttachWid

function, 128
cmapMhcWindowDetachWid

function, 129
cmapScreenInit function, 102
CmapSetup function, 214
color LUT pool description, 110
colormap flashing reduction with

CMAP, 104
control plane group device with OVL, 64
CopyAreaAndPaintType function, 72
CopyPaintType function, 70
CopyPlanes function, 58

code example, 60
default value, 59

CreateMultibuffer2 function, 140

292 OpenWindows Server Device Developer’s Guide—August 1994

cursor
hardware, 30 to 39
kernel tracking, 36, 39
software, 26 to 30

custom device with OVL, 65

D
DBSetup function, 208
DDX handler naming convention, 9
DDX interface, basic functions, 25
DDX versioning, 8 to 10
debugging note, 6
DestroyMultibuffer function, 141
device self-identification, 8
DeviceBellCtrlProc function, 260
DeviceBellProc function, 258
DeviceBlockHandlerProc function, 258
DeviceChangeCoreKeyboardProc

function, 256
DeviceChangeDeviceControlProc

function, 256
DeviceControlProc function, 252

DEVICE_CLOSE action, 230
DEVICE_INIT action, 229
DEVICE_OFF action, 230
DEVICE_ON action, 229

device-dependent initialization, 14
DeviceEnqueueProc function, 253
DeviceGetMotionProc function, 257
DeviceHandlerCompatible function, 252
DeviceIntegerCtrlProc function, 260
DeviceKbdCtrlProc function, 259
DeviceLedCtrlProc function, 259
DeviceModifierCheckProc function, 254
DevicePointerAxisChangeProc

function, 257
DevicePtrCtrlProc function, 259
DeviceReadProc function, 254
DeviceSetDeviceValuatorsProc

function, 255
DeviceSetModeProc function, 255

DeviceStringCtrlProc function, 260
DeviceWakeupHandlerProc function, 258
DGA drawable client library

overview, 147 to 152
backing store, 151, 176 to 182
backing store and screen

diagram, 151
clipping state, 169 to 173
compiling and linking, 152
cursor conflict, 174 to 176
DGA drawables, 148
drawable sites, 164 to 169
drawable types, 148
functions, 153 to 199
locking and change detection, 156 to

160
multibuffering grabber, 186 to 195
multibuffers destroyed note, 199
mutual exclusion, 149
sites, 150
utility functions, 160 to 164

DGA drawable DDX library
caching functions, 218 to 219
device functions, 203 to 214
device information functions, 220 to

221
initialization, 201 to 203
server multibuffering functions, 214

to 218
dga_cm_devfd function, 184
dga_cm_devinfop function, 184
dga_cm_get_client_infop function, 185
dga_cm_grab function, 183
dga_cm_read function, 186
dga_cm_set_client_infop function, 185
dga_cm_ungrab function, 183
dga_cm_write function, 185
Dga_cur_memimage structure, 175
Dga_cur_memimage structure, DGA_

DRAW_MODIF note, 176
dga_db_display function, 191
dga_db_display_done function, 193
dga_db_display_inquire function, 194

Index 293

dga_db_grab function, 187
dga_db_interval function, 190
dga_db_interval_check function, 192
dga_db_interval_wait function, 192
dga_db_read function, 190
dga_db_read_inquire function, 194
dga_db_ungrab function, 188
dga_db_write function, 189
dga_db_write_inquire function, 193
dga_draw_address function, 168
dga_draw_bbox function, 170
dga_draw_bitsperpixel function, 169
dga_draw_clipchg function, 169
dga_draw_clipinfo function, 172
dga_draw_curshandle function, 175
dga_draw_depth function, 162
dga_draw_devfd function, 162
dga_draw_devinfo function, 163
dga_draw_devname function, 161
dga_draw_display function, 160
dga_draw_empty function, 171
dga_draw_get_client_infop function, 163
dga_draw_id function, 161
dga_draw_linebytes function, 169
DGA_DRAW_LOCK macro, 156
DGA_DRAW_LOCK_SRC_AND_DST

macro, 158
DGA_DRAW_MODIF macro, 159
dga_draw_obscured function, 173
dga_draw_rtnactive function, 179
dga_draw_rtncached function, 179
dga_draw_rtnchg function, 178
dga_draw_rtndevinfop function, 180
dga_draw_rtndevtype function, 181
dga_draw_rtndimensions function, 181
dga_draw_rtnpixels function, 182
dga_draw_set_client_infop function, 162
dga_draw_singlerect function, 173
dga_draw_site function, 167
dga_draw_sitechg function, 164

dga_draw_sitegetnotify function, 167
dga_draw_sitesetnotify function, 166
dga_draw_type function, 161
DGA_DRAW_UNLOCK macro, 157
DGA_DRAW_UNLOCK_SRC_AND_

DST macro, 159
dga_draw_visibility function, 171
dga_draw_visibility function,

recommended use note, 173
dga_draw_widinfop function, 197
DGA_INIT macro, 153
dga_win_dbinfop function, 194
DgaAvail function, 203
dgaCacheDescribeDev function, 218
dgaCacheStateChange function, 219
DgaDevFuncsDraw structure, 202
dgaDevInfoChange function, 221
dgaDevInfoGet function, 220
dgaMbCrtSetInfo function, 215
dgaMbGetBufferInfo function, 218
dgaMbIsMultibuffer function, 217
dgaMbSetBufViewability function, 216
dgaMbSetDisplayBuf function, 217
dgaScreenInit function, 202
dgaSharedDataInfo function, 219
direct color LUT, simulating indirect color

LUT, 108
DisplayMultibuffer function, 143
document conventions, xxi
drawable site types, definition, 150
drawables, definition, 148

E
export supported visuals, 18
extensions

requirements for dynamically
loading, 289 to 290

F
FcsSetup function, 210

294 OpenWindows Server Device Developer’s Guide—August 1994

features, new this release, xxiii
firm_event structure, 285 to 287
freeMpgInfo function, 56
ftp program, xxxiv

G
gamma-corrected visuals, 21 to 24
GetClutInfos function, 74
GetDevname macro, 15
getMpgInfoFromVisual function, 55
GrabDrawable function, 204
GrabDrawable function, first grab

notes, 204

H
hardware cursor, 30 to 39
hardware window IDs, 79 to 80
hardwareSpriteFuncs array, 39

I
indirect color LUT, simulating direct color

LUT, 108
InitBellFeedbackClassDeviceStruct

function, 241
InitButtonClassDeviceStruct

function, 236
InitFocusClassDeviceStruct function, 238
initialization

device dependent, 14
function, 7
SPARC example, 7
steps, 11 to 12
x86 example, 7

InitIntegerFeedbackClassDeviceStruct
function, 242

InitKbdFeedbackClassDeviceStruct
function, 239

InitKeyboardDeviceStruct function, 234
InitKeyClassDeviceStruct function, 235

InitLedFeedbackClassDeviceStruct
function, 240

initPixmap function, 44
InitPointerDeviceStruct function, 234
InitProximityClassDeviceStruct

function, 238
InitPtrFeedbackClassDeviceStruct

function, 239
InitStringFeedbackClassDeviceStruct

function, 241
InitValuatorAxisStruct function, 237
InitValuatorClassDeviceStruct

function, 236
Input extension library

overview, 224
adding a device, 228 to 233
block diagram, 224
close device, 228
debugging the device handler, 232
device control procedure, 229
device shared functions, 252 to 260
device-dependent procedures, 232
enqueue device procedure, 231
functions, 233 to 260
get device events procedure, 230
initialization, 225
open device, 226
OWconfig file entry, 232
prerequisite MIT documents, 223
reading devices data flow

diagram, 227
reading input data, 226
restart and shutdown, 228
STREAMS module, 233
VUID

overview, 283
device controls, 287
firm events, 285 to 287
firm_event structure, 285
station codes, 284

writing the device handler, 229 to 232
intended audience, xvii

Index 295

L
LastUpdateTime function, 145
libraries

short description table, 2
colormap (CMAP), 99 to 134
DGA drawable client, 147 to 199
DGA drawable DDX, 201 to 221
Input extension, 223 to 260
MBX, 135 to 145
multiple plane group (MPG), 41 to 60
overlay windows (OVL), 61 to 78
where to initialize, 19
window ID (WID), 79 to 97

loadable DDX handler
device self-identification, 8
initialization function, 7
installation hints, 277 to 278
packaging hints, 278 to 281
versioning, 8 to 10

loadable DDX interface
debugging note, 6
how the server interfaces with, 5

M
MakeAtom function, 250
mapped-access devices, 104
MBX library

functions, 137 to 145
initialization function, last release

note, 137
multibuffer flip modes, 136
windows and sets, definitions, 135

MbxDevFuncs structure, 138
MbxScreenInit function, 137
miDC layer, 26 to 27
mieqEnqueue function, 246
mieUpdateKbdPtr function, 246
minimize window exposures, how to, 57

to 60
miPointer layer, 28 to 29
miPointerAbsoluteCursor function, 248
miPointerDeltaCursor function, 247

miPointerPosition function, 247
miPointerScreenFuncs, 28
miPointerSpriteFuncs, 28
miPointerSpriteFuncs sample code, 32 to

36
miSprite layer, 29 to 30
MIT sample server, how to access, xx
MIT sample server, porting

information, xx
MPG info, definition, 42
MPG library

architecture overview, 41 to 44
data structure initialization, 43
data structure initialization code

example, 44
functions, 44 to 60
initialization order with DGA

note, 54
interface diagram, 42
macros, 48
plane group aliasing, 49
with WID, 82, 83

MPG_DRAW, use with note, 49
mpg_priv_scr macro, 59
mpgChangeInfo function, 55
mpgCopyPlanes function, 58
mpgCursorInitialize function, 56
mpgGetScreenState, 45
mpgInfo, changing diagram, 114
mpgInsertPlanegroup function, 47
mpgScreenInit function, 53
mpgSetCursorHasEnable function, 57
mpgSetCursorValues, 57
mpgVisInfo diagram, 113
multibuffer flip modes, 136
multiple-plane group support, 3

N
new features, xxiii
NextBlockHandler function, 250
NextWakeupHandler function, 249

296 OpenWindows Server Device Developer’s Guide—August 1994

O
other applicable documents, xix
OVL library

introduction, 61
device setup, 62 to 65

control plane group, 64
custom, 65
shared, 65
transparent pixel, 63

initialization, 66 to 67
MPG dependency note, 62

OvlDevFuncs structure, 70
ovlGetPaintType function, 69
ovlIsOverlay function, 69
OvlPairs structure, 67
ovlScreenInit function, 67
ovlWrapDevFuncs function, 68
OWconfig file

access method, 272 to 276
database, 272
functions, 273 to 275
packaging, 275
typical usage, 275

attributes, list of, 266
file and module search paths, 267
file format definition, 266
SPARC example file, 261
x86 example file, 263
XDISPLAY class, 268
XEXTENSION class, 272
XINPUT class, 271
XSCREEN class, 270
XSCREENCONFIG class, 269

OWconfig file
search path, SPARC, 267
search path, x86, 267

OWconfigFreeAttribute function, 274
OWconfigFreeClassNames, 273
OWconfigFreeClassNames function, 273
OWconfigGetAttribute function, 274
OWconfigGetClassNames, 273
OWconfigGetClassNames function, 273
OWconfigGetInstance function, 274

P
pixmap formats supported, 16
plane group aliasing, 49
prerequisite knowledge, xvii

R
ReadScreen function, 76
ReadScreenInit function, 75
ReadScreenUninit function, 77
RegisterChangeDeviceControlProc

function, 244
RegisterFdIo function, 242
RegisterHandlers function, 248
RegisterModifierCheckProc function, 243
RegisterSetDeviceValuatorsProc

function, 244
RegisterXKeyboardInterest, 245
RegisterXPointerInterest function, 245
ReigsterSetDeviceModeProc

function, 243
RemoveEnableDevice function, 251
RemoveHandlers function, 249
RepositionMultibuffer function, 143
ResizeMultibuffer function, 142

S
SaveScreen function, 20
SaveScreen function, sample code, 20
screen pixmap, definition, 42
screenFuncs function, 38
ScreenRec function, 13
SetMultibufferVisible function, 145
SetupMultibufferInvisible function, 144
SetupScreen function, 46
shared device with OVL, 65
simple frame buffer support, 3
software cursor, 26 to 30
software WID object, 80
StereoSetup function, 211

Index 297

storeColorsFunc example code, 106
Sun mouse, server constraints note, 26
sunGetDDKVersion function, 12
sunGetMonitorRes function, 17
sunGetVisualInfo function, 18
sunHWCursor functions, 37 to 39
sunHWCursor layer, 36 to 39
sunInitBanner function, 19
sunOpenFrameBuffer function, do not use

note, 14
sunPutInHardware function, 38
sunQueryBestSize function, 38
sunSaveScreen function, do not use

note, 20
sunScreenAllocate function, 13
sunScreenInit function, do not use

note, 19
sunScreenRec data structure, minimize

dependencies note, 15
sunSetPixmapFormat function, 16
sunSprite layer, 30 to 32
SwitchScreen function, 54
SyncDrawable function, 213

T
take_down_func structure, 175
take_down_func structure, call note, 176
transparent pixel device with OVL, 63
TryMpg function, 138

U
UngrabDrawable function, 205
UngrabDrawable function, first grab

note, 205
UnsyncDrawable function, 213

V
virtual user input device (vuid)

interface, 283 to 287
visfunc function, 191

vrtfunc function, 188

W
WID library

allocation function example code, 95
changing a WID with CMAP, 128
data types, 84 to 86
device-dependent allocation, 94
free functions, 94, 96
functions, 87 to 94
hardware, 79 to 80
how to access, 82
object attributes, 80 to 82
overloading WIDs with CMAP

library, 125
pixel attributes, definition, 79
using CMAP, 83
using MPG, 82, 83
with DDX handlers, 82

widAllocate function, 88
WidAllocFunc structure, 85
widAllocObj function, 93
widDecref function, 89
WidFreeFunc structure, 86
widFreeObj function, 94
widGetColorLut function, 92
widGetDevData function, 91
widGetFlavor function, 91
widGetNumber function, 90
widGetScreen function, 89
widGetUnique function, 91
widGetValue function, 90
widGetVisual function, 89
widGetWindowWid function, 93
widIncref function, 88
WidPtr structure, 84
widScreenClose function, 87
widScreenInit function, 87
widSetColorLut function, 92
WidSetColorLutFunc structure, 86
widSetDevData function, 91
WidSetup function, 209

298 OpenWindows Server Device Developer’s Guide—August 1994

widSetValue function, 90, 93
widSetWindowWid function, 92
widWinGetValue function, 90
wx_dbuf structure, device-specific

field, 208

X
XDgaDrawGrabFCS function, 197
XDgaDrawGrabStereo function, 198
XDgaDrawGrabWids function, 196
XDgaGrabColormap function, 182
XDgaGrabDrawable function, 154
XDgaUnGrabColormap function, 184
XDgaUnGrabDrawable function, 155
XDISPLAY class, 268
XEXTENSION class, 272
XI_event structure with

DeviceEnqueueProc function
note, 253

XINPUT class, 271
XOvlClutInfo structure, 70
XSCREEN class, 270
XSCREENCONFIG class, 269

Z
ZbufSetup function, 211

