
SunOS Reference Manual

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

 1994 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This product and related documentation are protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form
by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX and Berkeley 4.3 BSD systems, licensed from UNIX Systems
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party
software, including font technology, in this product is protected by copyright and licensed from Sun’s Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR
52.227-19.

This product or the products described herein may be protected by one or more U.S., foreign patents, or pending
applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun Logo, SunSoft, Sun Microsystems Computer Corporation and Solaris, are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered trademark of
Novell, Inc., in the United States and other countries; X/Open Company, Ltd., is the exclusive licensor of such trademark.
OPEN LOOK is a registered trademark of Novell, Inc. All other product names mentioned herein are the trademarks of
their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC
International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic,
SPARCcluster, SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are
licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and
licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or
graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical
User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with
Sun’s written license agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Portions  AT&T 1983-1990 and reproduced with permission from AT&T.

Preface

OVERVIEW
A man page is provided for both the naive user, and sophisticated user who is
familiar with the SunOS operating system and is in need of on-line information.
A man page is intended to answer concisely the question “What does it do?”
The man pages in general comprise a reference manual. They are not intended
to be a tutorial.

The following contains a brief description of each section in the man pages and
the information it references:

· Section 1 describes, in alphabetical order, commands available with the
operating system.

· Section 1M describes, in alphabetical order, commands that are used chiefly
for system maintenance and administration purposes.

· Section 2 describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value.

· Section 3 describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in
Section 2 of this volume.

i

· Section 4 outlines the formats of various files. The C structure declarations
for the file formats are given where applicable.

· Section 5 contains miscellaneous documentation such as character set tables,
etc.

· Section 7 describes various special files that refer to specific hardware
peripherals, and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

· Section 9 provides reference information needed to write device drivers in
the kernel operating systems environment. It describes two device driver
interface specifications: the Device Driver Interface (DDI) and the
Driver–Kernel Interface (DKI).

· Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point
routines a developer may include in a device driver.

· Section 9F describes the kernel functions available for use by device drivers.

· Section 9S describes the data structures used by drivers to share
information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual
section generally follow this order, but include only needed headings. For
example, if there are no bugs to report, there is no BUGS section. See the intro
pages for more information and detail about each section, and man(1) for more
information about man pages in general.

NAME
This section gives the names of the commands or functions documented,
followed by a brief description of what they do.

SYNOPSIS
This section shows the syntax of commands or functions. When a command or
file does not exist in the standard path, its full pathname is shown. Literal
characters (commands and options) are in bold font and variables (arguments,
parameters and substitution characters) are in italic font. Options and
arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

ii

The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

. . . Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example,
‘filename . . .’.

| Separator. Only one of the arguments separated by this character can
be specified at time.

PROTOCOL
This section occurs only in subsection 3R to indicate the protocol description
file. The protocol specification pathname is always listed in bold font.

AVAILABILITY
This section briefly states any limitations on the availabilty of the command.
These limitations could be hardware or software specific.

A specification of a class of hardware platform, such as x86 or SPARC, denotes
that the command or interface is applicable for the hardware platform specified.

In Section 1 and Section 1M, AVAILABILITY indicates which package contains
the command being described on the manual page. In order to use the
command, the specified package must have been installed with the operating
system. If the package was not installed, see pkgadd(1) for information on how
to upgrade.

MT-LEVEL
This section lists the MT-LEVEL of the library functions described in the
Section 3 manual pages. The MT-LEVEL defines the libraries’ ability to support
threads. See Intro(3) for more information.

DESCRIPTION
This section defines the functionality and behavior of the service. Thus it
describes concisely what the command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands, subcommands, requests, macros,
functions and such, are described under USAGE.

Preface iii

IOCTLS
This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctls(2) system call is called ioctls and
generates its own heading. IOCTLS for a specific device are listed alphabetically
(on the man page for that specific device). IOCTLS are used for a particular class
of devices all which have an io ending, such as mtio(7).

OPTIONS
This lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the
SYNOPSIS section. Possible arguments to options are discussed under the
option, and where appropriate, default values are supplied.

RETURN VALUES
If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a
function can return only constant values, such as 0 or −1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph describes the return
values of each function. Functions declared as void do not return values, so
they are not discussed in RETURN VALUES.

ERRORS
On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described
in a separate paragraph under the error code.

USAGE
This section is provided as a guidance on use. This section lists special rules,
features and commands that require in-depth explanations. The subsections
listed below are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

iv

EXAMPLES
This section provides examples of usage or of how to use a command or
function. Wherever possible a complete example including command line entry
and machine response is shown. Whenever an example is given, the prompt is
shown as

example%

or if the user must be super-user,

example#

Examples are followed by explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

ENVIRONMENT
This section lists any environment variables that the command or function
affects, followed by a brief description of the effect.

FILES
This section lists all filenames referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive
summary or explanation.

SEE ALSO
This section lists references to other man pages, in-house documentation and
outside publications.

DIAGNOSTICS
This section lists diagnostic messages with a brief explanation of the condition
causing the error. Messages appear in bold font with the exception of variables,
which are in italic font.

WARNINGS
This section lists warnings about special conditions which could seriously affect
your working conditions — this is not a list of diagnostics.

Preface v

NOTES
This section lists additional information that does not belong anywhere else on
the page. It takes the form of an aside to the user, covering points of special
interest. Critical information is never covered here.

BUGS
This section describes known bugs and wherever possible suggests
workarounds.

vi

SunOS 5.4 Headers, Tables, and Macros Intro (5)

NAME Intro, intro − introduction to miscellany

DESCRIPTION This section contains miscellaneous documentation such as character set tables, etc.

Name Appears on Page Description

advance regexp(5) regular expression compile and match routines
ascii ascii(5) map of ASCII character set
compile regexp(5) regular expression compile and match routines
environ environ(5) user environment
eqnchar eqnchar(5) special character definitions for eqn
fcntl fcntl(5) file control options
filesystem filesystem(5) file system organization
floatingpoint floatingpoint(5) IEEE floating point definitions
iconv iconv(5) code set conversion tables
langinfo langinfo(5) language information constants
man man(5) macros to format Reference Manual pages
mansun mansun(5) macros to format Reference Manual pages
math math(5) math functions and constants
me me(5) macros for formatting papers
ms ms(5) text formatting macros
nl_types nl_types(5) native language data types
prof prof(5) profile within a function
regexp regexp(5) regular expression compile and match routines
siginfo siginfo(5) signal generation information
signal signal(5) base signals
stat stat(5) data returned by stat system call
stdarg stdarg(5) handle variable argument list
step regexp(5) regular expression compile and match routines
term term(5) conventional names for terminals
types types(5) primitive system data types
ucontext ucontext(5) user context
values values(5) machine-dependent values
varargs varargs(5) handle variable argument list
wstat wstat(5) wait status

modified 2 Oct 1992 5-5

ascii (5) Headers, Tables, and Macros SunOS 5.4

NAME ascii − map of ASCII character set

DESCRIPTION ascii is a map of the ASCII character set, giving both octal and hexadecimal equivalents of
each character, to be printed as needed. It contains:

000 nul	001 soh	002 s t x	003 e t x	004 eo t	005 enq	006 ack	007 be l	
010 bs	011 h t	012 n l	013 v t	014 np	015 c r	016 so	017 s i	
020 dl e	021 dc1	022 dc2	023 dc3	024 dc4	025 nak	026 syn	027 e t b	
030 can	031 em	032 sub	033 e s c	034 f s	035 gs	036 r s	037 us	
040 sp	041 !	042 "	043 #	044 $	045 %	046 &	047 ´	
050 (051)	052 ∗	053 +	054 ,	055 −	056 .	057 /	
060 0	061 1	062 2	063 3	064 4	065 5	066 6	067 7	
070 8	071 9	072 :	073 ;	074 <	075 =	076 >	077 ?	
100 @	101 A	102 B	103 C	104 D	105 E	106 F	107 G	
110 H	111 I	112 J	113 K	114 L	115 M	116 N	117 O	
120 P	121 Q	122 R	123 S	124 T	125 U	126 V	127 W	
130 X	131 Y	132 Z	133 [134 \	135]	136 ˆ	137 _	
140 `	141 a	142 b	143 c	144 d	145 e	146 f	147 g	
150 h	151 i	152 j	153 k	154 l	155 m	156 n	157 o	
160 p	161 q	162 r	163 s	164 t	165 u	166 v	167 w	
170 x	171 y	172 z	173 {	174		175 }	176 ˜	177 de l

00 nul	01 soh	02 s t x	03 e t x	04 eo t	05 enq	06 ack	07 be l	
08 bs	09 h t	0a n l	0b v t	0c np	0d c r	0e so	0 f s i	
10 d l e	11 dc1	12 dc2	13 dc3	14 dc4	15 nak	16 syn	17 e t b	
18 can	19 em	1a sub	1b e s c	1c f s	1d gs	1e r s	1 f us	
20 sp	21 !	22 "	23 #	24 $	25 %	26 &	27 ´	
28 (29)	2a ∗	2b +	2c ,	2d −	2e .	2 f /	
30 0	31 1	32 2	33 3	34 4	35 5	36 6	37 7	
38 8	39 9	3a :	3b ;	3c <	3d =	3e >	3 f ?	
40 @	41 A	42 B	43 C	44 D	45 E	46 F	47 G	
48 H	49 I	4a J	4b K	4c L	4d M	4e N	4 f O	
50 P	51 Q	52 R	53 S	54 T	55 U	56 V	57 W	
58 X	59 Y	5a Z	5b [5c \	5d]	5e ˆ	5 f _	
60 `	61 a	62 b	63 c	64 d	65 e	66 f	67 g	
68 h	69 i	6a j	6b k	6c l	6d m	6e n	6 f o	
70 p	71 q	72 r	73 s	74 t	75 u	76 v	77 w	
78 x	79 y	7a z	7b {	7c		7d }	7e ˜	7 f de l

FILES /usr/pub/ascii

5-6 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros environ (5)

NAME environ − user environment

DESCRIPTION When a process begins execution, exec routines make available an array of strings called
the environment (see exec(2)). By convention, these strings have the form variable=value,
for example, PATH=/sbin:/usr/sbin. These environmental variables provide a way to
make information about a program’s environment available to programs. The following
environmental variables can be used by applications and are expected to be set in the tar-
get run-time environment.

HOME The name of the user’s login directory, set by login(1) from the password
file (see passwd(4)).

LANG The string used to specify localization information that allows users to
work with different national conventions. The setlocale(3C) function looks
for the LANG environment variable when it is called with "" as the locale
argument. LANG is used as the default locale if the corresponding environ-
ment variable for a particular category is unset.

For example, when setlocale() is invoked as

setlocale(LC_CTYPE, ""),

setlocale() will query the LC_CTYPE environment variable first to see if it is
set and non-null. If LC_CTYPE is not set or null, then setlocale() will check
the LANG environment variable to see if it is set and non-null. If both
LANG and LC_CTYPE are unset or null, the default C locale will be used to
set the LC_CTYPE category.

Most commands will invoke
setlocale(LC_ALL, "")

prior to any other processing. This allows the command to be used with
different national conventions by setting the appropriate environment vari-
ables.

The following environment variables are supported to correspond with
each category of setlocale(3C):

LC_COLLATE This category specifies the collation sequence being used.
The information corresponding to this category is stored in
a database created by the colltbl(1M) command. This
environment variable affects strcoll(3C) and strxfrm(3C).

LC_CTYPE This category specifies character classification, character
conversion, and widths of multibyte characters. The infor-
mation corresponding to this category is stored in a data-
base created by the chrtbl(1M) command. The default C
locale corresponds to the 7-bit ASCII character set. This
environment variable is used by ctype(3C), mbchar(3C),
and many commands; for example: cat(1), ed(1), ls(1), and
vi(1).

modified 3 Jul 1990 5-7

environ (5) Headers, Tables, and Macros SunOS 5.4

LC_MESSAGES This category specifies the language of the message data-
base being used. For example, an application may have
one message database with French messages, and another
database with German messages. Message databases are
created by the mkmsgs(1) command. This environment
variable is used by exstr(1), gettxt(1), gettxt(3C), and
srchtxt(1).

LC_MONETARY This category specifies the monetary symbols and delim-
iters used for a particular locale. The information
corresponding to this category is stored in a database
created by the montbl(1M) command. This environment
variable is used by localeconv(3C).

LC_NUMERIC This category specifies the decimal and thousands delim-
iters. The information corresponding to this category is
stored in a database created by the chrtbl(1M) command.
The default C locale corresponds to "." as the decimal del-
imiter and no thousands delimiter. This environment vari-
able is used by localeconv(3C), printf(3S), and strtod(3C).

LC_TIME This category specifies date and time formats. The infor-
mation corresponding to this category is stored in a data-
base specified in strftime(4). The default C locale
corresponds to U.S. date and time formats. This environ-
ment variable is used by many commands and functions;
for example: at(1), calendar(1), date(1), strftime(3C), and
getdate(3C).

MSGVERB Controls which standard format message components fmtmsg selects when
messages are displayed to stderr (see fmtmsg(1) and fmtmsg(3C)).

SEV_LEVEL Define severity levels and associate and print strings with them in standard
format error messages (see addseverity(3C), fmtmsg(1), and fmtmsg(3C)).

NETPATH A colon-separated list of network identifiers. A network identifier is a char-
acter string used by the Network Selection component of the system to pro-
vide application-specific default network search paths. A network
identifier must consist of non-NULL characters and must have a length of at
least 1. No maximum length is specified. Network identifiers are normally
chosen by the system administrator. A network identifier is also the first
field in any /etc/netconfig file entry. NETPATH thus provides a link into the
/etc/netconfig file and the information about a network contained in that
network’s entry. /etc/netconfig is maintained by the system administrator.
The library routines described in getnetpath(3N) access the NETPATH
environment variable.

NLSPATH Contains a sequence of templates which catopen(3C) uses when attempting
to locate message catalogs. Each template consists of an optional prefix, one
or more substitution fields, a filename and an optional suffix.

5-8 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros environ (5)

For example:

NLSPATH="/system/nlslib/%N.cat"

defines that catopen() should look for all message catalogs in the directory
/system/nlslib, where the catalog name should be constructed from the
name parameter passed to catopen(), %N, with the suffix .cat.

Substitution fields consist of a % symbol, followed by a single-letter key-
word. The following keywords are currently defined:

%N The value of the name parameter passed
to catopen().

%L The value of LANG.
%l The language element from LANG.
%t The territory element from LANG.
%c The codeset element from LANG.
%% A single % character.

An empty string is substituted if the specified value is not currently defined.
The separators ‘‘_’’ and ‘‘.’’ are not included in %t and %c substitutions.

Templates defined in NLSPATH are separated by colons (:). A leading colon
or two adjacent colons (::) is equivalent to specifying %N.

For example:

NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

indicates to catopen() that it should look for the requested message catalog
in name, name.cat and /nlslib/$LANG/name.cat.

PATH The sequence of directory prefixes that sh(1), time(1), nice(1), nohup(1),
etc., apply in searching for a file known by an incomplete path name. The
prefixes are separated by colons (:). login(1) sets PATH=/usr/bin. For
more detail, see sh(1).

TERM The kind of terminal for which output is to be prepared. This information
is used by commands, such as vi(1), which may exploit special capabilities
of that terminal.

TZ Time zone information. The contents of the environment variable named
TZ are used by the functions ctime(3C), localtime() (see ctime(3C)),
strftime(3C) and mktime(3C) to override the default timezone. If the first
character of TZ is a colon (:), the behavior is implementation defined, other-
wise TZ has the form:

std offset [dst [offset], [start [/time], end [/time]]]

std and dst Three or more bytes that are the designation for the standard (std) and day-
light savings time (dst) timezones. Only std is required. If dst is missing,
then daylight savings time does not apply in this locale. Upper- and
lower-case letters are allowed. Any characters except a leading colon (:),

modified 3 Jul 1990 5-9

environ (5) Headers, Tables, and Macros SunOS 5.4

digits, a comma (,), a minus (−) or a plus (+) are allowed.

offset Indicates the value one must add to the local time to arrive at Coordinated
Universal Time. The offset has the form:

hh [: mm [: ss]]

The minutes (mm) and seconds (ss) are optional. The hour (hh) is required
and may be a single digit. The offset following std is required. If no offset
follows dst , daylight savings time is assumed to be one hour ahead of stan-
dard time. One or more digits may be used; the value is always interpreted
as a decimal number. The hour must be between 0 and 24, and the minutes
(and seconds) if present between 0 and 59. Out of range values may cause
unpredictable behavior. If preceded by a ‘‘−’’, the timezone is east of the
Prime Meridian; otherwise it is west (which may be indicated by an
optional preceding ‘‘+’’ sign).

start/time, end/time
Indicate when to change to and back from daylight savings time, where
start/time describes when the change from standard time to daylight savings
time occurs, and end/time describes when the change back happens. Each
time field describes when, in current local time, the change is made.

The formats of start and end are one of the following:

Jn The Julian day n (1 ≤ n ≤ 365). Leap days are not counted. That is,
in all years, February 28 is day 59 and March 1 is day 60. It is
impossible to refer to the occasional February 29.

n The zero-based Julian day (0 ≤ n ≤ 365). Leap days are counted, and
it is possible to refer to February 29.

Mm.n.d
The dth day, (0 ≤ d ≤ 6) of week n of month m of the year (1 ≤ n ≤ 5,
1 ≤ m ≤ 12), where week 5 means ‘‘the last d-day in month m’’
which may occur in either the fourth or the fifth week). Week 1 is
the first week in which the dth day occurs. Day zero is Sunday.

Implementation specific defaults are used for start and end if these optional
fields are not given.

The time has the same format as offset except that no leading sign (‘‘−’’ or
‘‘+’’) is allowed. The default, if time is not given is 02:00:00.

Further names may be placed in the environment by the export command and
name=value arguments in sh(1), or by exec(2). It is unwise to conflict with certain shell
variables that are frequently exported by .profile files: MAIL, PS1, PS2, IFS (see profile(4)).

SEE ALSO cat(1), date(1), ed(1), fmtmsg(1), login(1), ls(1), mkmsgs(1), nice(1), nohup(1), sh(1),
sort(1), time(1), vi(1), chrtbl(1M), colltbl(1M), montbl(1M), exec(2), addseverity(3C),
catopen(3C), ctime(3C), ctype(3C), fmtmsg(3C), getdate(3C), getnetpath(3N), gettxt(3C),
localeconv(3C), mbchar(3C), mktime(3C), printf(3S), strcoll(3C), strftime(3C),

5-10 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros environ (5)

strtod(3C), strxfrm(3C), netconfig(4), passwd(4), profile(4), strftime(4), TIMEZONE(4)

modified 3 Jul 1990 5-11

eqnchar (5) Headers, Tables, and Macros SunOS 5.4

NAME eqnchar − special character definitions for eqn

SYNOPSIS eqn /usr/share/lib/pub/eqnchar [filename] � troff [options]

neqn /usr/share/lib/pub/eqnchar [filename] � nroff [options]

DESCRIPTION The eqnchar command contains troff(1) and nroff(1) character definitions for construct-
ing characters that are not available on the Graphic Systems typesetter. These definitions
are primarily intended for use with eqn(1) and neqn. It contains definitions for the fol-
lowing characters:

ciplus �+ | | || square �
citimes �× langle /

\ circle �
wig ∼ rangle \

/ blot �
-wig ≈ hbar h

�
bullet ·

>wig >∼ ppd �| prop ∝
<wig <∼ <-> ←→ empty ∅
=wig =∼∼ <=> <==> member ∈
star ∗ | < <| nomem ∈/
bigstar +× | > >| cup ∪
=dot =. ang /� cap ∩
orsign \\// rang |� incl |———
andsign //\\ 3dot

... subset ⊂
=del =

∆ thf ... supset ⊃
oppA \\//---- quarter 1⁄4 !subset ⊆
oppE ——

—�� 3quarter 3⁄4 !supset ⊇
angstrom A° degree °

FILES /usr/share/lib/pub/eqnchar

SEE ALSO eqn(1), nroff(1), troff(1)

5-12 modified 25 Feb 1992

SunOS 5.4 Headers, Tables, and Macros fcntl (5)

NAME fcntl − file control options

SYNOPSIS #include <fcntl.h>

DESCRIPTION The <fcntl.h> header defines the following requests and arguments for use by the func-
tions fcntl(2) and open(2).

Values for cmd used by fcntl (the following values are unique):
F_DUPFD Duplicate file descriptor
F_GETFD Get file descriptor flags
F_SETFD Set file descriptor flags
F_GETFL Get file status flags
F_SETFL Set file status flags
F_GETLK Get record locking information
F_SETLK Set record locking information
F_SETLKW Set record locking information; wait if blocked

File descriptor flags used for fcntl:
FD_CLOEXEC Close the file descriptor upon execution of an exec func-

tion (see exec(2))

Values for l_type used for record locking with fcntl (the following values are
unique):

F_RDLCK Shared or read lock
F_UNLCK Unlock
F_WRLCK Exclusive or write lock

The following three sets of values are bitwise distinct: Values for oflag used by
open:

O_CREAT Create file if it does not exist
O_EXCL Exclusive use flag
O_NOCTTY Do not assign controlling tty
O_TRUNC Truncate flag

File status flags used for open and fcntl:
O_APPEND Set append mode
O_NDELAY Non-blocking mode
O_NONBLOCK Non-blocking mode (POSIX)
O_DSYNC Write I/O operations on the file descriptor complete as

defined by synchronized I/O data integrity completion
O_RSYNC Read I/O operations on the file descriptor complete at

the same level of integrity as specified by the the
O_DSYNC and O_SYNC flags. If both O_DSYNC and
O_RSYNC are set in oflag, all I/O operations on the file
descriptor complete as defined by synchronized I/O
data integrity completion. If both O_SYNC and
O_RSYNC are set in oflag, all I/O operations on the file
descriptor complete as defined by synchronized I/O file

modified 3 Jul 1990 5-13

fcntl (5) Headers, Tables, and Macros SunOS 5.4

integrity completion.
O_SYNC When opening a regular file, this flag affects subsequent

writes. If set, each write(2) will wait for both the file
data and file status to be physically updated. Write I/O
operations on the file descriptor complete as defined by
synchronized I/O file integrity completion.

Mask for use with file access modes:
O_ACCMODE Mask for file access modes

File access modes used for open and fcntl:
O_RDONLY Open for reading only
O_RDWR Open for reading and writing
O_WRONLY Open for writing only

The structure flock describes a file lock. It includes the following members:

short l_type; /∗ Type of lock ∗/
short l_whence; /∗ Flag for starting offset ∗/
off_t l_start; /∗ Relative offset in bytes ∗/
off_t l_len; /∗ Size; if 0 then until EOF ∗/
long l_sysid; /∗ Returned with F_GETLK ∗/
pid_t l_pid; /∗ Returned with F_GETLK ∗/

SEE ALSO creat(2), exec(2), fcntl(2), open(2), fsync(3C), fdatasync(3R)

NOTES Data is successfully transferred for a write operation to a regular file when the system
ensures that all data written is readable on any subsequent open of the file (even one that
follows a system or power failure) in the absense of a failure of the physical storage
medium.

Data is successfully transferred for a read operation when an image of the data on the
physical storage medium is available to the requesting process.

Synchronized I/O data integrity completion (see fdatasync(3R)):

For reads, the operation has been completed or diagnosed if unsuccessful. The read
is complete only when an image of the data has been successfully transferred to the
requesting process. If there were any pending write requests affecting the data to be
read at the time that the synchronized read operation was requested, these write
requests will be successfully transferred prior to reading the data.

For writes, the operation has been completed or diagnosed if unsuccessful. The
write is complete only when the data specified in the write request is successfully
transferred, and all file system information required to retrieve the data is success-
fully transferred.

File attributes that are not necessary for data retrieval (access time, modification time,
status change time) need not be successfully transferred prior to returning to the calling
process.

5-14 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros fcntl (5)

Synchronized I/O file integrity completion (see fsync(3C)):

Identical to a synchronized I/O data integrity completion with the addition that all
file attributes relative tothe I/O operation (including access time, modification time,
status change time) will be successfully transferred prior to returning to the calling
process.

modified 3 Jul 1990 5-15

filesystem (5) Headers, Tables, and Macros SunOS 5.4

NAME filesystem − file system organization

SYNOPSIS /
/usr
/export

DESCRIPTION The file system tree is organized for administrative convenience. Distinct areas within
the file system tree are provided for files that are private to one machine, files that can be
shared by multiple machines of a common architecture, files that can be shared by all
machines, and home directories. This organization allows sharable files to be stored on
one machine but accessed by many machines using a remote file access mechanism such
as NFS. Grouping together similar files makes the file system tree easier to upgrade and
manage.

The file system tree consists of a root file system and a collection of mountable file sys-
tems. The mount(2) program attaches mountable file systems to the file system tree at
mount points (directory entries) in the root file system or other previously mounted file
systems. Two file systems, / (the root) and /usr, must be mounted in order to have a com-
pletely functional system. The root file system is mounted automatically by the kernel at
boot time; the /usr file system is mounted by the system start-up script, which is run as
part of the booting process.

Root File System The root file system contains files that are unique to each machine. It contains the follow-
ing directories:

/dev Primary location for special files. Typically, device files are
built to match the kernel and hardware configuration of the
machine.

/dev/dsk Block disk devices.

/dev/pts Pseudo-terminal devices.

/dev/rdsk Raw disk devices.

/dev/rmt Raw tape devices.

/dev/sad Entry points for the STREAMS Administrative driver.

/dev/term Terminal devices.

/etc Host-specific administrative configuration files and data-
bases. /etc may be viewed as the directory that defines the
machine’s identity.

/etc/acct Accounting system configuration information.

/etc/cron.d Configuration information for cron(1M).

/etc/default Defaults information for various programs.

/etc/dfs Configuration information for exported file systems.

5-16 modified 28 Apr 1994

SunOS 5.4 Headers, Tables, and Macros filesystem (5)

/etc/fs Binaries organized by file system types for operations
required before /usr is mounted.

/etc/inet Configuration files for Internet services.

/etc/init.d Shell scripts for transitioning between run levels.

/etc/lib Shared libraries needed during booting.

/etc/lp Configuration information for the printer subsystem.

/etc/mail Mail subsystem configuration.

/etc/net Configuration information for transport independent net-
work services.

/etc/opt Configuration information for optional packages.

/etc/rc0.d Scripts for entering or leaving run level 0. See init(1M).

/etc/rc1.d Scripts for entering or leaving run level 1. See init(1M).

/etc/rc2.d Scripts for entering or leaving run level 2. See init(1M).

/etc/rc3.d Scripts for entering or leaving run level 3. See init(1M).

/etc/saf Service Access Facility files.

/etc/skel Default profile scripts for new user accounts. See
useradd(1M).

/etc/sm Status monitor information.

/etc/sm.bak Backup status monitor information.

/etc/tm Trademark files; contents displayed at boot time.

/etc/uucp UUCP configuration information. See uucp(1C).

/export Default root of the exported file system tree.

/home Default root of a subtree for user directories.

/kernel Subtree of loadable kernel modules, including the base ker-
nel itself, /kernel/unix. See kernel(1M).

/mnt Default temporary mount point for file systems. This is an
empty directory on which file systems may be temporarily
mounted.

/opt Root of a subtree for add-on application packages.

/proc Root of a subtree for the process file system.

/sbin Essential executables used in the booting process and in
manual system recovery. The full complement of utilities is
available only after /usr is mounted.

/tmp Temporary files; cleared during the boot operation.

/var Root of a subtree for varying files. Varying files are files that
are unique to a machine but that can grow to an arbitrary
(that is, variable) size. An example is a log file.

modified 28 Apr 1994 5-17

filesystem (5) Headers, Tables, and Macros SunOS 5.4

/var/adm System logging and accounting files.

/var/cron Log files for cron(1M).

/var/mail Directory where users’ mail is kept.

/var/news Community service messages. Note: this is not the same as
USENET-style news.

/var/nis NIS+ databases.

/var/opt Root of a subtree for varying files associated with optional
software packages.

/var/preserve Backup files for vi(1) and ex(1).

/var/sadm Databases maintained by the software package management
utilities.

/var/saf Service access facility logging and accounting files.

/var/spool Root directory for files used in printer spooling, mail
delivery, cron(1M), at(1), etc.

/var/spool/cron cron(1M) and at(1) spooling files.

/var/spool/locks Spooling lock files.

/var/spool/lp Line printer spool files. See lp(1).

/var/spool/mqueue Mail queued for delivery.

/var/spool/pkg Spooled packages.

/var/spool/uucp Queued uucp(1C) jobs.

/var/spool/uucppublic Files deposited by uucp(1C).

/var/tmp Transitory files; this directory is not cleared during the boot
operation.

/var/uucp uucp(1C) log and status files.

/var/yp Databases needed for backwards compatibility with NIS and
ypbind(1M); unnecessary after full transition to NIS+.

/usr File System Because it is desirable to keep the root file system small and not volatile, on disk-based
systems larger file systems are often mounted on /home, /opt, /usr, and /var.

The file system mounted on /usr contains architecture-dependent and architecture-
independent sharable files. The subtree rooted at /usr/share contains architecture-
independent sharable files; the rest of the /usr tree contains architecture-dependent files.
By mounting a common remote file system, a group of machines with a common archi-
tecture may share a single /usr file system. A single /usr/share file system can be shared
by machines of any architecture. A machine acting as a file server may export many dif-
ferent /usr file systems to support several different architectures and operating system
releases. Clients usually mount /usr read-only so that they do not accidentally change
any shared files.

5-18 modified 28 Apr 1994

SunOS 5.4 Headers, Tables, and Macros filesystem (5)

The /usr file system contains the following subdirectories:

/usr/4lib a.out libraries for the Binary Compatibility Package. See
Solaris Binary Compatibility Guide.

/usr/bin Primary location for standard system utilities.

/usr/bin/sunview1 SunView executables. This directory is only present when
the Binary Compatibility Package is installed.

/usr/ccs C compilation system.

/usr/ccs/bin C compilation commands and system utilities.

/usr/ccs/lib Libraries and auxiliary files.

/usr/demo Demo programs and data.

/usr/dt root of a subtree for CDE Motif.

/usr/dt/bin Primary location for CDE Motif system utilities.

/usr/dt/include Header files for CDE Motif.

/usr/dt/lib Libraries for CDE Motif.

/usr/dt/man On-line reference manual pages for CDE Motif.

/usr/games Game binaries and data.

/usr/include Include headers (for C programs, etc).

/usr/kvm Implementation architecture-specific binaries and libraries.

/usr/lib Program libraries, various architecture-dependent databases,
and executables not invoked directly by the user (system
daemons, etc).

/usr/lib/acct Accounting scripts and binaries. See acct(1M).

/usr/lib/dict Database files for spell(1).

/usr/lib/class Scheduling class-specific directories containing executables
for priocntl(1) and dispadmin(1M).

/usr/lib/font troff(1) font description files.

/usr/lib/fs File system type dependent modules; generally not intended
to be invoked directly by the user.

/usr/lib/iconv Conversion tables for iconv(1).

/usr/lib/libp Profiled libraries.

/usr/lib/locale Localization databases.

/usr/lib/lp Line printer subsystem databases and back-end executables.

/usr/lib/mail Auxiliary programs for the mail(1) subsystem.

/usr/lib/netsvc Internet network services.

/usr/lib/nfs Auxiliary NFS-related programs and daemons.

/usr/lib/pics Position Independent Code (PIC) archives needed to rebuild
the run-time linker.

modified 28 Apr 1994 5-19

filesystem (5) Headers, Tables, and Macros SunOS 5.4

/usr/lib/refer Auxiliary programs for refer(1).

/usr/lib/sa Scripts and commands for the system activity report pack-
age. See sar(1).

/usr/lib/saf Auxiliary programs and daemons related to the service
access facility.

/usr/lib/spell Auxiliary programs and databases for spell(1). This direc-
tory is only present when the Binary Compatibility Package
is installed.

/usr/lib/uucp Auxiliary programs and daemons for uucp(1C).

/usr/local Commands local to a site.

/usr/net/servers Entry points for foreign name service requests relayed using
the network listener. See listen(1M).

/usr/oasys Commands and files related to the optional Framed Access
Command Environment (FACE) package. See face(1).

/usr/old Programs that are being phased out.

/usr/openwin Installation or mount point for the OpenWindows software.

/usr/sadm System administration files and directories.

/usr/sadm/bin Binaries for the Form and Menu Language Interpreter
(FMLI) scripts. See fmli(1).

/usr/sadm/install Executables and scripts for package management.

/usr/sbin Executables for system administration.

/usr/sbin/static Statically linked version of selected programs from /usr/bin
and /usr/sbin. These are used to recover from broken
dynamic linking and before all pieces necessary for dynamic
linking are present.

/usr/share Architecture-independent sharable files.

/usr/share/man On-line reference manual pages (if present).

/usr/share/lib Architecture-independent databases.

/usr/share/lib/keytables Keyboard layout description tables.

/usr/share/lib/mailx Help files for mailx(1).

/usr/share/lib/nterm nroff(1) terminal tables.

/usr/share/lib/pub Character set data files.

/usr/share/lib/spell Auxiliary scripts and databases for spell(1).

/usr/share/lib/tabset Tab setting escape sequences.

/usr/share/lib/terminfo Terminal description files for terminfo(4).

5-20 modified 28 Apr 1994

SunOS 5.4 Headers, Tables, and Macros filesystem (5)

/usr/share/lib/tmac Macro packages and related files for text processing tools, for
example, nroff(1) and troff(1).

/usr/share/lib/zoneinfo Time zone information.

/usr/share/src Source code for utilities and libraries.

/usr/snadm SNAG files.

/usr/ucb Berkeley compatibility package binaries. See Solaris Source
Compatibility Guide.

/usr/ucbinclude Berkeley compatibility package headers.

/usr/ucblib Berkeley compatibility package libraries.

/usr/vmsys Commands and files related to the optional FACE package.
See face(1). Berkeley compatibility package libraries.

/export File System A machine with disks may export root file systems, swap files, and /usr file systems to
diskless or partially-disked machines that mount them into the standard file system
hierarchy. The standard directory tree for sharing these file systems from a server is:

/export The default root of the exported file system tree.

/export/exec/architecture-name
The exported /usr file system supporting architecture-name for
the current release.

/export/exec/architecture-name.release-name
The exported /usr file system supporting architecture-name for
release-name.

/export/exec/share The exported common /usr/share directory tree.

/export/exec/share.release-name
The exported common /usr/share directory tree for release-
name.

/export/root/hostname The exported root file system for hostname .

/export/swap/hostname The exported swap file for hostname .

/export/var/hostname The exported /var directory tree for hostname .

SEE ALSO at(1), ex(1), face(1), fmli(1), iconv(1), lp(1), mail(1), mailx(1), nroff(1), priocntl(1),
refer(1), sar(1), sh(1), spell(1), troff(1), uucp(1C), vi(1), acct(1M), cron(1M),
dispadmin(1M), fsck(1M), init(1M), kernel(1M), mknod(1M), mount(1M), useradd(1M),
ypbind(1M), mount(2), intro(4), terminfo(4)

Solaris Binary Compatibility Guide
Solaris Source Compatibility Guide

modified 28 Apr 1994 5-21

floatingpoint (5) Headers, Tables, and Macros SunOS 5.4

NAME floatingpoint − IEEE floating point definitions

SYNOPSIS #include <floatingpoint.h>

DESCRIPTION This file defines constants, types, and functions used to implement standard floating
point according to ANSI/IEEE Std 754-1985. The functions are implemented in libc. The
included header file <sys/ieeefp.h> defines certain types of interest to the kernel.

IEEE Rounding Modes:

fp_direction_type The type of the IEEE rounding direction mode. Note: the order of
enumeration varies according to hardware.

fp_precision_type The type of the IEEE rounding precision mode, which only applies
on systems that support extended precision such as machines
based on the Intel 80387 FPU or the 80486.

SIGFPE handling:

sigfpe_code_type The type of a SIGFPE code.

sigfpe_handler_type The type of a user-definable SIGFPE exception handler called to
handle a particular SIGFPE code.

SIGFPE_DEFAULT A macro indicating the default SIGFPE exception handling, namely
to perform the exception handling specified by the user, if any, and
otherwise to dump core using abort(3C).

SIGFPE_IGNORE A macro indicating an alternate SIGFPE exception handling,
namely to ignore and continue execution.

SIGFPE_ABORT A macro indicating an alternate SIGFPE exception handling,
namely to abort with a core dump.

IEEE Exception Handling:

N_IEEE_EXCEPTION The number of distinct IEEE floating-point exceptions.

fp_exception_type The type of the N_IEEE_EXCEPTION exceptions. Each exception is
given a bit number.

fp_exception_field_type
The type intended to hold at least N_IEEE_EXCEPTION bits
corresponding to the IEEE exceptions numbered by
fp_exception_type. Thus fp_inexact corresponds to the least
significant bit and fp_invalid to the fifth least significant bit. Note:
some operations may set more than one exception.

IEEE Formats and Classification:

single; extended; quadruple
Definitions of IEEE formats.

fp_class_type An enumeration of the various classes of IEEE values and symbols.

5-22 modified 5 Mar 1993

SunOS 5.4 Headers, Tables, and Macros floatingpoint (5)

IEEE Base Conversion:

The functions described under floating_to_decimal(3) and
decimal_to_floating(3) satisfy not only the IEEE Standard, but also the stricter
requirements of correct rounding for all arguments.

DECIMAL_STRING_LENGTH
The length of a decimal_string.

decimal_string The digit buffer in a decimal_record.

decimal_record The canonical form for representing an unpacked decimal
floating-point number.

decimal_form The type used to specify fixed or floating binary to decimal
conversion.

decimal_mode A struct that contains specifications for conversion between binary
and decimal.

decimal_string_form An enumeration of possible valid character strings representing
floating-point numbers, infinities, or NaNs.

FILES /usr/include/sys/ieeefp.h

SEE ALSO abort(3C), decimal_to_floating(3), econvert(3), floating_to_decimal(3), sigfpe(3),
string_to_decimal(3), strtod(3C)

modified 5 Mar 1993 5-23

iconv (5) Headers, Tables, and Macros SunOS 5.4

NAME iconv − code set conversion tables

DESCRIPTION The following code set conversions are supported:
Code Set Conversions Supported

Code Symbol Target Code Symbol comment
ISO 646 646 ISO 8859-1 8859 US Ascii
ISO 646de 646de ISO 8859-1 8859 German
ISO 646da 646da ISO 8859-1 8859 Danish
ISO 646en 646en ISO 8859-1 8859 English Ascii
ISO 646es 646es ISO 8859-1 8859 Spanish
ISO 646fr 646fr ISO 8859-1 8859 French
ISO 646it 646it ISO 8859-1 8859 Italian
ISO 646sv 646sv ISO 8859-1 8859 Swedish
ISO 8859-1 8859 ISO 646 646 7 bit Ascii
ISO 8859-1 8859 ISO 646de 646de German
ISO 8859-1 8859 ISO 646da 646da Danish
ISO 8859-1 8859 ISO 646en 646en English Ascii
ISO 8859-1 8859 ISO 646es 646es Spanish
ISO 8859-1 8859 ISO 646fr 646fr French
ISO 8859-1 8859 ISO 646it 646it Italian
ISO 8859-1 8859 ISO 646sv 646sv Swedish

The conversions are performed according to the tables following. All values in the tables
are given in octal.

ISO 646 (US
ASCII) to ISO

8859-1

For the conversion of ISO 646 to ISO 8859-1 all characters in ISO 646 can be mapped
unchanged to ISO 8859-1

ISO 646de
(GERMAN) to ISO

8859-1

For the conversion of ISO 646de to ISO 8859-1 all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 646de ISO 8859-1
100 247
133 304
134 326
135 334
173 344
174 366
175 374
176 337

5-24 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros iconv (5)

ISO 646da
(DANISH) to ISO

8859-1

For the conversion of ISO 646da to ISO 8859-1 all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 646da ISO 8859-1
133 306
134 330
135 305
173 346
174 370
175 345

ISO 646en
(ENGLISH ASCII)

to ISO 8859-1

For the conversion of ISO 646en to ISO 8859-1 all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 646en ISO 8859-1
043 243

ISO 646fr
(FRENCH) to ISO

8859-1

For the conversion of ISO 646fr to ISO 8859-1 all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 646fr ISO 8859-1
043 243
100 340
133 260
134 347
135 247
173 351
174 371
175 350
176 250

modified 3 Jul 1990 5-25

iconv (5) Headers, Tables, and Macros SunOS 5.4

ISO 646it
(ITALIAN) to ISO

8859-1

For the conversion of ISO 646it to ISO 8859-1 all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 646it ISO 8859-1
043 243
100 247
133 260
134 347
135 351
140 371
173 340
174 362
175 350
176 354

ISO 646es
(SPANISH) to ISO

8859-1

For the conversion of ISO 646es to ISO 8859-1 all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 646es ISO 8859-1
100 247
133 241
134 321
135 277
173 260
174 361
175 347

5-26 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros iconv (5)

ISO 646sv
(SWEDISH) to ISO

8859-1

For the conversion of ISO 646sv to ISO 8859-1 all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 646sv ISO 8859-1
100 311
133 304
134 326
135 305
136 334
140 351
173 344
174 366
175 345
176 374

ISO 8859-1 to ISO
646 (ASCII)

For the conversion of ISO 8859-1 to ISO 646 all characters not in the following table are
mapped unchanged.

Converted to Underscore ’_’ (137)
200 201 202 203 204 205 206 207

210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 366 367
370 371 372 373 374 375 376 377

modified 3 Jul 1990 5-27

iconv (5) Headers, Tables, and Macros SunOS 5.4

ISO 8859-1 to ISO
646de (GERMAN)

For the conversion of ISO 8859-1 to ISO 646de all characters not in the following tables
are mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646de
247 100
304 133
326 134
334 135
337 176
344 173
366 174
374 175

Converted to Underscore ’_’ (137)
100 133 134 135 173 174 175 176

200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 327
330 331 332 333 335 336 337
340 341 342 343 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 367
370 371 372 373 375 376 377

5-28 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros iconv (5)

ISO 8859-1 to ISO
646da (DANISH)

For the conversion of ISO 8859-1 to ISO 646da all characters not in the following tables
are mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646da
305 135
306 133
330 134
345 175
346 173
370 174

Converted to Underscore ’_’ (137)
133 134 135 173 174 175

200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327

331 332 333 334 335 336 337
340 341 342 343 344 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 366 367

371 372 373 374 376 377

ISO 8859-1 to ISO
646en (ENGLISH

ASCII)

For the conversion of ISO 8859-1 to ISO 646en all characters not in the following tables
are mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646en
243 043

modified 3 Jul 1990 5-29

iconv (5) Headers, Tables, and Macros SunOS 5.4

Converted to Underscore ’_’ (137)
043

200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 366 367
370 371 372 373 374 375 376 377

ISO 8859-1 to ISO
646fr (FRENCH)

For the conversion of ISO 8859-1 to ISO 646fr all characters not in the following tables are
mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646fr
243 043
247 135
250 176
260 133
340 100
347 134
350 175
351 173
371 174

5-30 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros iconv (5)

Converted to Underscore ’_’ (137)
043

100 133 134 135 173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 244 245 246

251 252 253 254 255 256 257
261 262 263 264 265 266 267

270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337

341 342 343 344 345 346
352 353 354 355 356 357

360 361 362 363 364 365 366 367
370 372 373 374 375 376 377

ISO 8859-1 to ISO
646it (ITALIAN)

For the conversion of ISO 8859-1 to ISO 646it all characters not in the following tables are
mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646it
243 043
247 100
260 133
340 173
347 134
350 175
351 135
354 176
362 174
371 140

modified 3 Jul 1990 5-31

iconv (5) Headers, Tables, and Macros SunOS 5.4

Converted to Underscore ’_’ (137)
043

100 133 134 135 173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 244 245 246
250 251 252 253 254 255 256 257

261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337

341 342 343 344 345 346
352 353 354 355 356 357

360 361 363 364 365 366 367
370 372 373 374 375 376 377

ISO 8859-1 to ISO
646es (SPANISH)

For the conversion of ISO 8859-1 to ISO 646es all characters not in the following tables are
mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646es
241 133
247 100
260 173
277 135
321 134
347 175
361 174

5-32 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros iconv (5)

Converted to Underscore ’_’ (137)
100 133 134 135 173 174 175

200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 242 243 244 245 246
250 251 252 253 254 255 256 257

261 262 263 264 265 266 267
270 271 272 273 274 275 276
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346
350 351 352 353 354 355 356 357
360 362 363 364 365 366 367
370 371 372 373 374 375 376 377

ISO 8859-1 to ISO
646sv (SWEDISH)

For the conversion of ISO 8859-1 to ISO 646sv all characters not in the following tables are
mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646sv
304 133
305 135
311 100
326 134
334 136
344 173
345 175
351 140
366 174
374 176

modified 3 Jul 1990 5-33

iconv (5) Headers, Tables, and Macros SunOS 5.4

Converted to Underscore ’_’ (137)
100 133 134 135 136 140

173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 306 307
310 312 313 314 315 316 317
320 321 322 323 324 325 327
330 331 332 333 335 336 337
340 341 342 343 346 347
350 352 353 354 355 356 357
360 361 362 363 364 365 367
370 371 372 373 375 376 377

FILES /usr/lib/iconv/iconv_data lists the conversions supported
/usr/lib/iconv/∗∗.t conversion tables

SEE ALSO iconv(1)

5-34 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros langinfo (5)

NAME langinfo − language information constants

SYNOPSIS #include <langinfo.h>

DESCRIPTION This header contains the constants used to identify items of langinfo data. The mode of
items is given in nl_types.

DAY_1 Locale’s equivalent of ’sunday’
DAY_2 Locale’s equivalent of ’monday’
DAY_3 Locale’s equivalent of ’tuesday’
DAY_4 Locale’s equivalent of ’wednesday’
DAY_5 Locale’s equivalent of ’thursday’
DAY_6 Locale’s equivalent of ’friday’
DAY_7 Locale’s equivalent of ’saturday’
ABDAY_1 Locale’s equivalent of ’sun’
ABDAY_2 Locale’s equivalent of ’mon’
ABDAY_3 Locale’s equivalent of ’tue’
ABDAY_4 Locale’s equivalent of ’wed’
ABDAY_5 Locale’s equivalent of ’thur’
ABDAY_6 Locale’s equivalent of ’fri’
ABDAY_7 Locale’s equivalent of ’sat’
MON_1 Locale’s equivalent of ’january’
MON_2 Locale’s equivalent of ’february’
MON_3 Locale’s equivalent of ’march’
MON_4 Locale’s equivalent of ’april’
MON_5 Locale’s equivalent of ’may’
MON_6 Locale’s equivalent of ’june’
MON_7 Locale’s equivalent of ’july’
MON_8 Locale’s equivalent of ’august’
MON_9 Locale’s equivalent of ’september’
MON_10 Locale’s equivalent of ’october’
MON_11 Locale’s equivalent of ’november’
MON_12 Locale’s equivalent of ’december’
ABMON_1 Locale’s equivalent of ’jan’
ABMON_2 Locale’s equivalent of ’feb’
ABMON_3 Locale’s equivalent of ’mar’
ABMON_4 Locale’s equivalent of ’apr’
ABMON_5 Locale’s equivalent of ’may’
ABMON_6 Locale’s equivalent of ’jun’
ABMON_7 Locale’s equivalent of ’jul’
ABMON_8 Locale’s equivalent of ’aug’
ABMON_9 Locale’s equivalent of ’sep’
ABMON_10 Locale’s equivalent of ’oct’
ABMON_11 Locale’s equivalent of ’nov’
ABMON_12 Locale’s equivalent of ’dec’

modified 3 Jul 1990 5-35

langinfo (5) Headers, Tables, and Macros SunOS 5.4

RADIXCHAR Locale’s equivalent of ’.’
THOUSEP Locale’s equivalent of ’,’
YESSTR Locale’s equivalent of ’yes’
NOSTR Locale’s equivalent of ’no’
CRNCYSTR Locale’s currency symbol
D_T_FMT Locale’s default format for date and time
D_FMT Locale’s default format for the date
T_FMT Locale’s default format for the time
AM_STR Locale’s equivalent of ’AM’
PM_STR Locale’s equivalent of ’PM’

This information is retrieved by nl_langinfo.

The items CRNCYSTR, RADIXCHAR and THOUSEP are extracted from the fields
currency_symbol, decimal_point and thousands_sep in the structure returned by
localeconv.

The items T_FMT, D_FMT, D_T_FMT, YESSTR and NOSTR are retrieved from a special
message catalog named Xopen_info which should be generated for each locale sup-
ported and installed in the appropriate directory [see gettxt(3C) and mkmsgs(1)]. This
catalog should have the messages in the order T_FMT, D_FMT, D_T_FMT, YESSTR and
NOSTR.

All other items are as returned by strftime.

SEE ALSO mkmsgs(1), chrtbl(1M), gettxt(3C), localeconv(3C), nl_langinfo(3C), strftime(3C),
nl_types(5)

5-36 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros man (5)

NAME man − macros to format Reference Manual pages

SYNOPSIS nroff −man filename. . .

troff −man filename. . .

DESCRIPTION These macros are used to lay out the reference pages in this manual. Note: if filename con-
tains format input for a preprocessor, the commands shown above must be piped
through the appropriate preprocessor. This is handled automatically by the man(1) com-
mand. See the ‘‘Conventions’’ section.

Any text argument t may be zero to six words. Quotes may be used to include SPACE
characters in a “word”. If text is empty, the special treatment is applied to the next input
line with text to be printed. In this way .I may be used to italicize a whole line, or .SB
may be used to make small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs,
and is reset to default value upon reaching a non-indented paragraph. Default units for
indents i are ens.

Type font and size are reset to default values before each paragraph, and after processing
font and size setting macros.

These strings are predefined by −−man:

\∗∗R ‘’, ‘(Reg)’ in nroff.
\∗∗S Change to default type size.

Requests ∗ n.t.l. = next text line; p.i. = prevailing indent
Request Cause If no Explanation

Break Argument

.B t no t=n.t.l.∗ Text is in bold font.

.BI t no t=n.t.l. Join words, alternating bold and italic.

.BR t no t=n.t.l. Join words, alternating bold and roman.

.DT no .5i 1i... Restore default tabs.

.HP i yes i=p.i.∗ Begin paragraph with hanging indent.
Set prevailing indent to i.

.I t no t=n.t.l. Text is italic.

.IB t no t=n.t.l. Join words, alternating italic and bold.

.IP x i yes x="" Same as .TP with tag x.

.IR t no t=n.t.l. Join words, alternating italic and roman.

.IX t no - Index macro, for SunSoft internal use.

.LP yes - Begin left-aligned paragraph.
Set prevailing indent to .5i.

.P yes - Same as .LP.

.PD d no d=.4v Set vertical distance between paragraphs.

.PP yes - Same as .LP.

.RE yes - End of relative indent.
Restores prevailing indent.

.RB t no t=n.t.l. Join words, alternating roman and bold.

modified 19 May 1993 5-37

man (5) Headers, Tables, and Macros SunOS 5.4

.RI t no t=n.t.l. Join words, alternating roman and italic.

.RS i yes i=p.i. Start relative indent, increase indent by i.
Sets prevailing indent to .5i for nested
indents.

.SB t no - Reduce size of text by 1 point, make text bold.

.SH t yes - Section Heading.

.SM t no t=n.t.l. Reduce size of text by 1 point.

.SS t yes t=n.t.l. Section Subheading.

.TH n s d f m yes - Begin reference page n, of of section s; d is the
date of the most recent change. If present, f is
the left page footer; m is the main page
(center) header. Sets prevailing indent and
tabs to .5i.

.TP i yes i=p.i. Begin indented paragraph, with the tag given
on the next text line.
Set prevailing indent to i.

.TX t p no - Resolve the title abbreviation t; join to punc-
tuation mark (or text) p.

Conventions When formatting a manual page, man examines the first line to determine whether it
requires special processing. For example a first line consisting of:

’\" t

indicates that the manual page must be run through the tbl(1) preprocessor.

A typical manual page for a command or function is laid out as follows:

.TH title [1-9]
The name of the command or function, which serves as the title of the manual
page. This is followed by the number of the section in which it appears.

.SH NAME
The name, or list of names, by which the command is called, followed by a dash
and then a one-line summary of the action performed. All in roman font, this
section contains no troff(1) commands or escapes, and no macro requests. It is
used to generate the windex database, which is used by the whatis(1) command.

.SH SYNOPSIS

Commands:

The syntax of the command and its arguments, as typed on the com-
mand line. When in boldface, a word must be typed exactly as printed.
When in italics, a word can be replaced with an argument that you sup-
ply. References to bold or italicized items are not capitalized in other
sections, even when they begin a sentence.

5-38 modified 19 May 1993

SunOS 5.4 Headers, Tables, and Macros man (5)

Syntactic symbols appear in roman face:

[] An argument, when surrounded by brackets is optional.

| Arguments separated by a vertical bar are exclusive. You can
supply only one item from such a list.

. . . Arguments followed by an ellipsis can be repeated. When an
ellipsis follows a bracketed set, the expression within the brack-
ets can be repeated.

Functions:

If required, the data declaration, or #include directive, is shown first, fol-
lowed by the function declaration. Otherwise, the function declaration
is shown.

.SH DESCRIPTION
A narrative overview of the command or function’s external behavior. This
includes how it interacts with files or data, and how it handles the standard
input, standard output and standard error. Internals and implementation details
are normally omitted. This section attempts to provide a succinct overview in
answer to the question, "what does it do?"

Literal text from the synopsis appears in constant width, as do literal filenames
and references to items that appear elsewhere in the reference manuals. Argu-
ments are italicized.

If a command interprets either subcommands or an input grammar, its command
interface or input grammar is normally described in a USAGE section, which fol-
lows the OPTIONS section. The DESCRIPTION section only describes the behavior
of the command itself, not that of subcommands.

.SH OPTIONS
The list of options along with a description of how each affects the command’s
operation.

.SH FILES
A list of files associated with the command or function.

.SH SEE ALSO
A comma-separated list of related manual pages, followed by references to other
published materials.

.SH DIAGNOSTICS
A list of diagnostic messages and an explanation of each.

.SH BUGS
A description of limitations, known defects, and possible problems associated
with the command or function.

modified 19 May 1993 5-39

man (5) Headers, Tables, and Macros SunOS 5.4

FILES /usr/share/lib/tmac/an
/usr/share/man/windex

SEE ALSO man(1), nroff(1), troff(1), whatis(1)

Dale Dougherty and Tim O’Reilly, Unix Text Processing

5-40 modified 19 May 1993

SunOS 5.4 Headers, Tables, and Macros mansun (5)

NAME mansun − macros to format Reference Manual pages

SYNOPSIS nroff −mansun filename. . .

troff −mansun filename. . .

DESCRIPTION These macros are used to lay out the reference pages in this manual. Note: if filename con-
tains format input for a preprocessor, the commands shown above must be piped
through the appropriate preprocessor. This is handled automatically by man(1). See the
‘‘Conventions’’ section.

Any text argument t may be zero to six words. Quotes may be used to include SPACE
characters in a “word”. If text is empty, the special treatment is applied to the next input
line with text to be printed. In this way .I may be used to italicize a whole line, or .SB
may be used to make small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs,
and is reset to default value upon reaching a non-indented paragraph. Default units for
indents i are ens.

Type font and size are reset to default values before each paragraph, and after processing
font and size setting macros.

These strings are predefined by −−mansun:

\∗∗R ‘’, ‘(Reg)’ in nroff.
\∗∗S Change to default type size.

Requests ∗ n.t.l. = next text line; p.i. = prevailing indent
Request Cause If no Explanation

Break Argument

.B t no t=n.t.l.∗ Text is in bold font.

.BI t no t=n.t.l. Join words, alternating bold and italic.

.BR t no t=n.t.l. Join words, alternating bold and Roman.

.DT no .5i 1i... Restore default tabs.

.HP i yes i=p.i.∗ Begin paragraph with hanging indent.
Set prevailing indent to i.

.I t no t=n.t.l. Text is italic.

.IB t no t=n.t.l. Join words, alternating italic and bold.

.IP x i yes x="" Same as .TP with tag x.

.IR t no t=n.t.l. Join words, alternating italic and Roman.

.IX t no - Index macro, for SunSoft internal use.

.LP yes - Begin left-aligned paragraph.
Set prevailing indent to .5i.

.P yes - Same as .LP.

.PD d no d=.4v Set vertical distance between paragraphs.

.PP yes - Same as .LP.

.RE yes - End of relative indent.
Restores prevailing indent.

.RB t no t=n.t.l. Join words, alternating Roman and bold.

modified 11 Jun 1992 5-41

mansun (5) Headers, Tables, and Macros SunOS 5.4

.RI t no t=n.t.l. Join words, alternating Roman and italic.

.RS i yes i=p.i. Start relative indent, increase indent by i.
Sets prevailing indent to .5i for nested
indents.

.SB t no - Reduce size of text by 1 point, make text bold.

.SH t yes - Section Heading.

.SM t no t=n.t.l. Reduce size of text by 1 point.

.SS t yes t=n.t.l. Section Subheading.

.TH n s d f m yes - Begin reference page n, of of section s; d is the
date of the most recent change. If present, f is
the left page footer; m is the main page
(center) header. Sets prevailing indent and
tabs to .5i.

.TP i yes i=p.i. Begin indented paragraph, with the tag given
on the next text line.
Set prevailing indent to i.

.TX t p no - Resolve the title abbreviation t; join to punc-
tuation mark (or text) p.

Conventions When formatting a manual page, mansun examines the first line to determine whether it
requires special processing. For example a first line consisting of:

’\" t

indicates that the manual page must be run through the tbl(1) preprocessor.

A typical manual page for a command or function is laid out as follows:

.TH title [1-8]
The name of the command or function, which serves as the title of the manual
page. This is followed by the number of the section in which it appears.

.SH NAME
The name, or list of names, by which the command is called, followed by a dash
and then a one-line summary of the action performed. All in Roman font, this
section contains no troff(1) commands or escapes, and no macro requests. It is
used to generate the windex database, which is used by the whatis(1) command.

.SH SYNOPSIS

Commands:

The syntax of the command and its arguments, as typed on the com-
mand line. When in boldface, a word must be typed exactly as printed.
When in italics, a word can be replaced with an argument that you sup-
ply. References to bold or italicized items are not capitalized in other
sections, even when they begin a sentence.

5-42 modified 11 Jun 1992

SunOS 5.4 Headers, Tables, and Macros mansun (5)

Syntactic symbols appear in Roman face:

[] An argument, when surrounded by brackets is optional.

| Arguments separated by a vertical bar are exclusive. You can
supply only one item from such a list.

. . . Arguments followed by an ellipsis can be repeated. When an
ellipsis follows a bracketed set, the expression within the brack-
ets can be repeated.

Functions:

If required, the data declaration, or #include directive, is shown first, fol-
lowed by the function declaration. Otherwise, the function declaration
is shown.

.SH DESCRIPTION
A narrative overview of the command or function’s external behavior. This
includes how it interacts with files or data, and how it handles the standard
input, standard output and standard error. Internals and implementation details
are normally omitted. This section attempts to provide a succinct overview in
answer to the question, "what does it do?"

Literal text from the synopsis appears in constant width, as do literal filenames
and references to items that appear elsewhere in the reference manuals. Argu-
ments are italicized.

If a command interprets either subcommands or an input grammar, its command
interface or input grammar is normally described in a USAGE section, which fol-
lows the OPTIONS section. The DESCRIPTION section only describes the behavior
of the command itself, not that of subcommands.

.SH OPTIONS
The list of options along with a description of how each affects the command’s
operation.

.SH FILES
A list of files associated with the command or function.

.SH SEE ALSO
A comma-separated list of related manual pages, followed by references to other
published materials.

.SH DIAGNOSTICS
A list of diagnostic messages and an explanation of each.

.SH BUGS
A description of limitations, known defects, and possible problems associated
with the command or function.

modified 11 Jun 1992 5-43

mansun (5) Headers, Tables, and Macros SunOS 5.4

FILES /usr/share/lib/tmac/ansun
/usr/share/man/windex

SEE ALSO man(1), nroff(1), troff(1), whatis(1)

Dale Dougherty and Tim O’Reilly, Unix Text Processing

5-44 modified 11 Jun 1992

SunOS 5.4 Headers, Tables, and Macros math (5)

NAME math − math functions and constants

SYNOPSIS #include <math.h>

DESCRIPTION This file contains declarations of all the functions in the Math Library (described in Sec-
tion 3M), as well as various functions in the C Library (Section 3C) that return floating-
point values.

It defines the structure and constants used by the matherr(3M) error-handling mechan-
isms, including the following constant used as a error-return value:

HUGE The maximum value of a single-precision floating-point number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (e).

M_LOG2E The base-2 logarithm of e.

M_LOG10E The base-10 logarithm of e.

M_LN2 The natural logarithm of 2.

M_LN10 The natural logarithm of 10.

M_PI π, the ratio of the circumference of a circle to its diameter.

M_PI_2 π/2.

M_PI_4 π/4.

M_1_PI 1/π.

M_2_PI 2/π.

M_2_SQRTPI 2/√π.

M_SQRT2 The positive square root of 2.

M_SQRT1_2 The positive square root of 1/2.

The following mathematical constants are also defined in this header file:

MAXFLOAT The maximum value of a non-infinite single-precision floating point
number.

HUGE_VAL positive infinity.

For the definitions of various machine-dependent constants see values(5).

SEE ALSO intro(3), matherr(3M), values(5)

modified 3 Jul 1990 5-45

me (5) Headers, Tables, and Macros SunOS 5.4

NAME me − macros for formatting papers

SYNOPSIS nroff −−me [options] filename . . .
troff −−me [options] filename . . .

DESCRIPTION This package of nroff and troff macro definitions provides a canned formatting facility
for technical papers in various formats. When producing 2-column output on a terminal,
filter the output through col(1).

The macro requests are defined below. Many nroff and troff requests are unsafe in con-
junction with this package, however, these requests may be used with impunity after the
first .pp:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.ls n (line spacing) n=1 single, n=2 double space

.na no alignment of right margin

.ce n center next n lines

.ul n underline next n lines

.sz +n add n to point size

Output of the eqn(1), neqn(1), refer(1), and tbl(1) preprocessors for equations and tables
is acceptable as input.

REQUESTS In the following list, “initialization” refers to the first .pp, .lp, .ip, .np, .sh, or .uh macro.
This list is incomplete.

Request Initial Cause Explanation
Value Break

.(c - yes Begin centered block.

.(d - no Begin delayed text.

.(f - no Begin footnote.

.(l - yes Begin list.

.(q - yes Begin major quote.

.(xx - no Begin indexed item in index x.

.(z - no Begin floating keep.

.)c - yes End centered block.

.)d - yes End delayed text.

.)f - yes End footnote.

.)l - yes End list.

.)q - yes End major quote.

.)x - yes End index item.

.)z - yes End floating keep.

.++ m H - no Define paper section.
m defines the part of the paper,
and can be C (chapter), A (appendix),
P (preliminary, for instance,

5-46 modified 25 Feb 1992

SunOS 5.4 Headers, Tables, and Macros me (5)

abstract, table of contents, etc.),
B (bibliography), RC (chapters
renumbered from page one each
chapter), or RA (appendix renumbered
from page one).

.+c T - yes Begin chapter (or appendix, etc.,
as set by .++). T is
the chapter title.

.1c 1 yes One column format on a new page.

.2c 1 yes Two column format.

.EN - yes Space after equation produced by eqn
or neqn.

.EQ x y - yes Precede equation; break out and
add space. Equation number is y.
The optional argument x may be I
to indent equation (default),
L to left-adjust the equation, or
C to center the equation.

.GE - yes End gremlin picture.

.GS - yes Begin gremlin picture.

.PE - yes End pic picture.

.PS - yes Begin pic picture.

.TE - yes End table.

.TH - yes End heading section of table.

.TS x - yes Begin table; if x is H table
has repeated heading.

.ac A N - no Set up for ACM style output.
A is the Author’s name(s), N is the
total number of pages. Must be given
before the first initialization.

.b x no no Print x in boldface; if no argument
switch to boldface.

.ba +n 0 yes Augments the base indent by n.
This indent is used to set the indent
on regular text (like paragraphs).

.bc no yes Begin new column.

.bi x no no Print x in bold italics (nofill only).

.bu - yes Begin bulleted paragraph.

.bx x no no Print x in a box (nofill only).

.ef ´x´y´z ´´´´´ no Set even footer to x y z.

.eh ´x´y´z ´´´´´ no Set even header to x y z.

.fo ´x´y´z ´´´´´ no Set footer to x y z.

.hx - no Suppress headers and footers on
next page.

.he ´x´y´z ´´´´´ no Set header to x y z.

modified 25 Feb 1992 5-47

me (5) Headers, Tables, and Macros SunOS 5.4

.hl - yes Draw a horizontal line.

.i x no no Italicize x; if x missing, italic
text follows.

.ip x y no yes Start indented paragraph, with
hanging tag x. Indentation is
y ens (default 5).

.lp yes yes Start left-blocked paragraph.

.lo - no Read in a file of local macros
of the form .∗∗x. Must be
given before initialization.

.np 1 yes Start numbered paragraph.

.of ´x´y´z ´´´´´ no Set odd footer to x y z.

.oh ´x´y´z ´´´´´ no Set odd header to x y z.

.pd - yes Print delayed text.

.pp no yes Begin paragraph. First line indented.

.r yes no Roman text follows.

.re - no Reset tabs to default values.

.sc no no Read in a file of special characters
and diacritical marks. Must be
given before initialization.

.sh n x - yes Section head follows, font
automatically bold. n is level
of section, x is title of section.

.sk no no Leave the next page blank.
Only one page is remembered ahead.

.sm x - no Set x in a smaller pointsize.

.sz +n 10p no Augment the point size by n points.

.th no no Produce the paper in thesis format.
Must be given before initialization.

.tp no yes Begin title page.

.u x - no Underline argument (even in troff).
(Nofill only).

.uh - yes Like .sh but unnumbered.

.xp x - no Print index x.

FILES /usr/share/lib/tmac/e
/usr/share/lib/tmac/∗∗.me

SEE ALSO eqn(1), nroff(1), refer(1), tbl(1), troff(1)

5-48 modified 25 Feb 1992

SunOS 5.4 Headers, Tables, and Macros ms (5)

NAME ms − text formatting macros

SYNOPSIS nroff −−ms [options] filename . . .

troff −−ms [options] filename . . .

DESCRIPTION This package of nroff(1) and troff(1) macro definitions provides a formatting facility for
various styles of articles, theses, and books. When producing 2-column output on a ter-
minal or lineprinter, or when reverse line motions are needed, filter the output through
col(1). All external −−ms macros are defined below.

Note: this −−ms macro package is an extended version written at Berkeley and is a super-
set of the standard −−ms macro packages as supplied by Bell Labs. Some of the Bell Labs
macros have been removed; for instance, it is assumed that the user has little interest in
producing headers stating that the memo was generated at Whippany Labs.

Many nroff and troff requests are unsafe in conjunction with this package. However, the
first four requests below may be used with impunity after initialization, and the last two
may be used even before initialization:

.bp begin new page

.br break output line

.sp n insert n spacing lines

.ce n center next n lines

.ls n line spacing: n=1 single, n=2 double space

.na no alignment of right margin

Font and point size changes with \f and \s are also allowed; for example, \fIword\fR
will italicize word . Output of the tbl(1), eqn(1) and refer(1) preprocessors for equations,
tables, and references is acceptable as input.

REQUESTS Macro Initial Break? Explanation
Name Value Reset?

.AB x − y begin abstract; if x=no do not label abstract

.AE − y end abstract

.AI − y author’s institution

.AM − n better accent mark definitions

.AU − y author’s name

.B x − n embolden x; if no x, switch to boldface

.B1 − y begin text to be enclosed in a box

.B2 − y end boxed text and print it

.BT date n bottom title, printed at foot of page

.BX x − n print word x in a box

.CM if t n cut mark between pages

.CT − y,y chapter title: page number moved to CF (TM only)

.DA x if n n force date x at bottom of page; today if no x

.DE − y end display (unfilled text) of any kind

.DS x y I y begin display with keep; x=I, L, C, B; y=indent

modified 25 Feb 1992 5-49

ms (5) Headers, Tables, and Macros SunOS 5.4

.ID y 8n,.5i y indented display with no keep; y=indent

.LD − y left display with no keep

.CD − y centered display with no keep

.BD − y block display; center entire block

.EF x − n even page footer x (3 part as for .tl)

.EH x − n even page header x (3 part as for .tl)

.EN − y end displayed equation produced by eqn

.EQ x y − y break out equation; x=L,I,C; y=equation number

.FE − n end footnote to be placed at bottom of page

.FP − n numbered footnote paragraph; may be redefined

.FS x − n start footnote; x is optional footnote label

.HD undef n optional page header below header margin

.I x − n italicize x; if no x, switch to italics

.IP x y − y,y indented paragraph, with hanging tag x; y=indent

.IX x y − y index words x y and so on (up to 5 levels)

.KE − n end keep of any kind

.KF − n begin floating keep; text fills remainder of page

.KS − y begin keep; unit kept together on a single page

.LG − n larger; increase point size by 2

.LP − y,y left (block) paragraph.

.MC x − y,y multiple columns; x=column width

.ND x if t n no date in page footer; x is date on cover

.NH x y − y,y numbered header; x=level, x=0 resets, x=S sets
to y

.NL 10p n set point size back to normal

.OF x − n odd page footer x (3 part as for .tl)

.OH x − n odd page header x (3 part as for .tl)

.P1 if TM n print header on first page

.PP − y,y paragraph with first line indented

.PT - % - n page title, printed at head of page

.PX x − y print index (table of contents); x=no suppresses
title

.QP − y,y quote paragraph (indented and shorter)

.R on n return to Roman font

.RE 5n y,y retreat: end level of relative indentation

.RP x − n released paper format; x=no stops title on first
page

.RS 5n y,y right shift: start level of relative indentation

.SH − y,y section header, in boldface

.SM − n smaller; decrease point size by 2

.TA 8n,5n n set TAB characters to 8n 16n . . . (nroff)
5n 10n . . . (troff)

.TC x − y print table of contents at end; x=no suppresses
title

.TE − y end of table processed by tbl

5-50 modified 25 Feb 1992

SunOS 5.4 Headers, Tables, and Macros ms (5)

.TH − y end multi-page header of table

.TL − y title in boldface and two points larger

.TM off n UC Berkeley thesis mode

.TS x − y,y begin table; if x=H table has multi-page header

.UL x − n underline x, even in troff

.UX x − n UNIX; trademark message first time; x appended

.XA x y − y another index entry; x=page or no for none;
y=indent

.XE − y end index entry (or series of .IX entries)

.XP − y,y paragraph with first line indented, others
indented

.XS x y − y begin index entry; x=page or no for none; y=indent

.1C on y,y one column format, on a new page

.2C − y,y begin two column format

.] −− − n beginning of refer reference

.[0 − n end of unclassifiable type of reference

.[N − n N= 1:journal-article, 2:book, 3:book-article,
4:report

REGISTERS Formatting distances can be controlled in −−ms by means of built-in number registers. For
example, this sets the line length to 6.5 inches:

.nr LL 6.5i

Here is a table of number registers and their default values:

Name Register Controls Takes Effect Default

PS point size paragraph 10
VS vertical spacing paragraph 12
LL line length paragraph 6i
LT title length next page same as LL
FL footnote length next .FS 5.5i
PD paragraph distance paragraph 1v (if n), .3v (if t)
DD display distance displays 1v (if n), .5v (if t)
PI paragraph indent paragraph 5n
QI quote indent next .QP 5n
FI footnote indent next .FS 2n
PO page offset next page 0 (if n), ∼1i (if t)
HM header margin next page 1i
FM footer margin next page 1i
FF footnote format next .FS 0 (1, 2, 3 available)

When resetting these values, make sure to specify the appropriate units. Setting the line
length to 7, for example, will result in output with one character per line. Setting FF to 1
suppresses footnote superscripting; setting it to 2 also suppresses indentation of the first
line; and setting it to 3 produces an .IP-like footnote paragraph.

modified 25 Feb 1992 5-51

ms (5) Headers, Tables, and Macros SunOS 5.4

Here is a list of string registers available in −−ms; they may be used anywhere in the text:

Name String’s Function

\∗∗Q quote (" in nroff, ‘‘ in troff)
\∗∗U unquote (" in nroff, ’’ in troff)
\∗∗−− dash (-- in nroff, — in troff)
\∗∗(MO month (month of the year)
\∗∗(DY day (current date)
\∗∗∗∗ automatically numbered footnote
\∗∗´ acute accent (before letter)
\∗∗` grave accent (before letter)
\∗∗ˆ circumflex (before letter)
\∗∗, cedilla (before letter)
\∗∗: umlaut (before letter)
\∗∗˜ tilde (before letter)

When using the extended accent mark definitions available with .AM, these strings
should come after, rather than before, the letter to be accented.

FILES /usr/share/lib/tmac/s
/usr/share/lib/tmac/ms.???

SEE ALSO col(1), eqn(1), nroff(1), refer(1), tbl(1), troff(1)

BUGS Floating keeps and regular keeps are diverted to the same space, so they cannot be mixed
together with predictable results.

5-52 modified 25 Feb 1992

SunOS 5.4 Headers, Tables, and Macros nl_types (5)

NAME nl_types − native language data types

SYNOPSIS #include <nl_types.h>

DESCRIPTION This header contains the following definitions:

nl_catd Used by the message catalog functions catopen, catgets and catclose to
identify a catalogue.

nl_item Used by nl_langinfo to identify items of langinfo data. Values for
objects of type nl_item are defined in <langinfo.h>.

NL_SETD Used by gencat when no $set directive is specified in a message text
source file. This constant can be used in subsequent calls to catgets as
the value of the set identifier parameter.

NL_MGSMAX Maximum number of messages per set.

NL_SETMAX Maximum number of sets per catalogue.

NL_TEXTMAX Maximum size of a message.

SEE ALSO gencat(1), catgets(3C), catopen(3C), nl_langinfo(3C), langinfo(5)

modified 3 Jul 1990 5-53

prof (5) Headers, Tables, and Macros SunOS 5.4

NAME prof − profile within a function

SYNOPSIS #define MARK
#include <prof.h>

void MARK(name);

DESCRIPTION MARK introduces a mark called name that is treated the same as a function entry point.
Execution of the mark adds to a counter for that mark, and program-counter time spent
is accounted to the immediately preceding mark or to the function if there are no preced-
ing marks within the active function.

name may be any combination of letters, numbers, or underscores. Each name in a single
compilation must be unique, but may be the same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined before the header prof.h is
included, either by a preprocessor directive as in the synopsis, or by a command line
argument:

cc −−p −−DMARK work.c

If MARK is not defined, the MARK(name) statements may be left in the source files con-
taining them and are ignored. prof −−g must be used to get information on all labels.

EXAMPLE In this example, marks can be used to determine how much time is spent in each loop.
Unless this example is compiled with MARK defined on the command line, the marks
are ignored.

#include <prof.h>
work()
{

int i, j;
. . .
MARK(loop1);
for (i = 0; i < 2000; i++) {

. . .
}
MARK(loop2);
for (j = 0; j < 2000; j++) {

. . .
}

}

SEE ALSO profil(2), monitor(3C)

5-54 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros regexp (5)

NAME regexp, compile, step, advance − regular expression compile and match routines

SYNOPSIS #define INIT declarations
#define GETC(void) getc code
#define PEEKC(void) peekc code
#define UNGETC(void) ungetc code
#define RETURN(ptr) return code
#define ERROR(val) error code

#include <regexp.h>

char ∗compile(char ∗instring, char ∗expbuf, char ∗endbuf, int eof);

int step(char ∗string, char ∗expbuf);

int advance(char ∗string, char ∗expbuf);

extern char ∗loc1, ∗loc2, ∗locs;

DESCRIPTION These functions are general purpose regular expression matching routines to be used in
programs that perform regular expression matching. These functions are defined by the
<regexp.h> header.

The functions step() and advance() do pattern matching given a character string and a
compiled regular expression as input.

The function compile() takes as input a regular expression as defined below and pro-
duces a compiled expression that can be used with step() or advance().

A regular expression specifies a set of character strings. A member of this set of strings is
said to be matched by the regular expression. Some characters have special meaning
when used in a regular expression; other characters stand for themselves.

The regular expressions available for use with the regexp functions are constructed as fol-
lows:

Expression Meaning

c the character c where c is not a special character.

\c the character c where c is any character, except a digit in the range 1−9.

ˆ the beginning of the line being compared.

$ the end of the line being compared.

. any character in the input.

[s] any character in the set s, where s is a sequence of characters and/or a range
of characters, for example, [c−c].

[ˆs] any character not in the set s, where s is defined as above.

r∗ zero or more successive occurrences of the regular expression r. The long-
est leftmost match is chosen.

modified 3 Jul 1990 5-55

regexp (5) Headers, Tables, and Macros SunOS 5.4

rx the occurrence of regular expression r followed by the occurrence of regular
expression x. (Concatenation)

r\{m,n\} any number of m through n successive occurrences of the regular expres-
sion r. The regular expression r\{m\} matches exactly m occurrences;
r\{m,\} matches at least m occurrences.

\(r\) the regular expression r. When \n (where n is a number greater than zero)
appears in a constructed regular expression, it stands for the regular expres-
sion x where x is the nth regular expression enclosed in \(and \) that
appeared earlier in the constructed regular expression. For example,
\(r\)x\(y\)z\2 is the concatenation of regular expressions rxyzy.

Characters that have special meaning except when they appear within square brackets
([]) or are preceded by \ are: ., ∗, [, \. Other special characters, such as $ have special
meaning in more restricted contexts.

The character ˆ at the beginning of an expression permits a successful match only
immediately after a newline, and the character $ at the end of an expression requires a
trailing newline.

Two characters have special meaning only when used within square brackets. The char-
acter − denotes a range, [c−c], unless it is just after the open bracket or before the closing
bracket, [−c] or [c−] in which case it has no special meaning. When used within brackets,
the character ˆ has the meaning complement of if it immediately follows the open bracket
(example: [ˆc]); elsewhere between brackets (example: [cˆ]) it stands for the ordinary char-
acter ˆ.

The special meaning of the \ operator can be escaped only by preceding it with another
\, for example \\.

Programs must have the following five macros declared before the #include <regexp.h>
statement. These macros are used by the compile() routine. The macros GETC, PEEKC,
and UNGETC operate on the regular expression given as input to compile().

GETC This macro returns the value of the next character (byte) in the regular
expression pattern. Successive calls to GETC should return successive
characters of the regular expression.

PEEKC This macro returns the next character (byte) in the regular expression.
Immediately successive calls to PEEKC should return the same character,
which should also be the next character returned by GETC.

UNGETC This macro causes the argument c to be returned by the next call to
GETC and PEEKC. No more than one character of pushback is ever
needed and this character is guaranteed to be the last character read by
GETC. The return value of the macro UNGETC(c) is always ignored.

5-56 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros regexp (5)

RETURN(ptr) This macro is used on normal exit of the compile() routine. The value
of the argument ptr is a pointer to the character after the last character of
the compiled regular expression. This is useful to programs which have
memory allocation to manage.

ERROR(val) This macro is the abnormal return from the compile() routine. The
argument val is an error number (see ERRORS below for meanings). This
call should never return.

The syntax of the compile() routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter, instring, is never used explicitly by the compile() routine but is use-
ful for programs that pass down different pointers to input characters. It is sometimes
used in the INIT declaration (see below). Programs which call functions to input charac-
ters or have characters in an external array can pass down a value of (char ∗)0 for this
parameter.

The next parameter, expbuf, is a character pointer. It points to the place where the com-
piled regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled regular
expression may be placed. If the compiled expression cannot fit in (endbuf−expbuf)
bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end of the regular expression. This
character is usually a /.

Each program that includes the <regexp.h> header file must have a #define statement for
INIT. It is used for dependent declarations and initializations. Most often it is used to set
a register variable to point to the beginning of the regular expression so that this register
variable can be used in the declarations for GETC, PEEKC, and UNGETC. Otherwise it can
be used to declare external variables that might be used by GETC, PEEKC and UNGETC.
(See EXAMPLE below.)

The first parameter to the step() and advance() functions is a pointer to a string of char-
acters to be checked for a match. This string should be null terminated.

The second parameter, expbuf, is the compiled regular expression which was obtained by
a call to the function compile().

The function step() returns non-zero if some substring of string matches the regular
expression in expbuf and zero if there is no match. If there is a match, two external char-
acter pointers are set as a side effect to the call to step(). The variable loc1 points to the
first character that matched the regular expression; the variable loc2 points to the charac-
ter after the last character that matches the regular expression. Thus if the regular expres-
sion matches the entire input string, loc1 will point to the first character of string and loc2
will point to the null at the end of string.

The function advance() returns non-zero if the initial substring of string matches the reg-
ular expression in expbuf. If there is a match, an external character pointer, loc2, is set as a
side effect. The variable loc2 points to the next character in string after the last character
that matched.

modified 3 Jul 1990 5-57

regexp (5) Headers, Tables, and Macros SunOS 5.4

When advance() encounters a ∗ or \{ \} sequence in the regular expression, it will
advance its pointer to the string to be matched as far as possible and will recursively call
itself trying to match the rest of the string to the rest of the regular expression. As long as
there is no match, advance() will back up along the string until it finds a match or
reaches the point in the string that initially matched the ∗ or \{ \}. It is sometimes desir-
able to stop this backing up before the initial point in the string is reached. If the external
character pointer locs is equal to the point in the string at sometime during the backing
up process, advance() will break out of the loop that backs up and will return zero.

The external variables circf, sed, and nbra are reserved.

EXAMPLE The following is an example of how the regular expression macros and calls might be
defined by an application program:

#define INIT register char ∗∗sp = instring;
#define GETC (∗∗sp++)
#define PEEKC (∗∗sp)
#define UNGETC(c) (−−−−sp)
#define RETURN(∗∗c) return;
#define ERROR(c) regerr

#include <regexp.h>
. . .

(void) compile(∗∗argv, expbuf, &expbuf[ESIZE],’\0’);
. . .

if (step(linebuf, expbuf))
succeed;

DIAGNOSTICS The function compile() uses the macro RETURN on success and the macro ERROR on
failure (see above). The functions step() and advance() return non-zero on a successful
match and zero if there is no match. Errors are:

11 range endpoint too large.

16 bad number.

25 \ digit out of range.

36 illegal or missing delimiter.

41 no remembered search string.

42 \(\) imbalance.

43 too many \(.

44 more than 2 numbers given in \{ \}.

45 } expected after \.

46 first number exceeds second in \{ \}.

49 [] imbalance.

50 regular expression overflow.

5-58 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros siginfo (5)

NAME siginfo − signal generation information

SYNOPSIS #include <siginfo.h>

DESCRIPTION If a process is catching a signal, it may request information that tells why the system gen-
erated that signal (see sigaction(2)). If a process is monitoring its children, it may receive
information that tells why a child changed state (see waitid(2)). In either case, the system
returns the information in a structure of type siginfo_t, which includes the following
information:

int si_signo /∗ signal number ∗/
int si_errno /∗ error number ∗/
int si_code /∗ signal code ∗/
union sigval si_value /∗ signal value ∗/

si_signo contains the system-generated signal number. For the waitid(2) function,
si_signo is always SIGCHLD.

If si_errno is non-zero, it contains an error number associated with this signal, as defined
in <errno.h>.

si_code contains a code identifying the cause of the signal.

If the value of the si_code member is SI_NOINFO, only the si_signo member of
siginfo_t is meaningful, and the value of all other members is unspecified.

User Signals If the value of si_code is less than or equal to 0, then the signal was generated by a user
process (see kill(2), _lwp_kill(2), sigsend(2), abort(3C), and raise(3C)) and the siginfo
structure contains the following additional information:

typedef long pid_t si_pid /∗ sending process ID ∗/
typedef long uid_t si_uid /∗ sending user ID ∗/

If the signal was generated by a user process, the following values are defined for
si_code:

SI_USER the implementation sets si_code to SI_USER if the signal was
sent by kill(2), sigsend(2), raise(3C) or abort(3C).

SI_LWP the signal was sent by _lwp_kill(2).

SI_QUEUE the signal was sent by

SI_TIMER the signal was generated by the expiration of a timer set by

SI_ASYNCIO the signal was generated by the completion of an asynchronous
I/O request.

SI_MESGQ the signal was generated by the arrival of a message on an empty
message queue. (see mq_notify(3R)).

si_value contains the application specified value, which is passed to the application’s
signal-catching function at the time of the signal delivery, if si_code is any of SI_QUEUE,
SI_TIMER, SI_ASYNCHIO, or SI_MESGQ.

modified 12 Aug 1993 5-59

siginfo (5) Headers, Tables, and Macros SunOS 5.4

System Signals Otherwise, si_code contains a positive value reflecting the reason why the system gen-
erated the signal:

Signal Code Reason
SIGILL ILL_ILLOPC illegal opcode

ILL_ILLOPN illegal operand
ILL_ILLADR illegal addressing mode
ILL_ILLTRP illegal trap
ILL_PRVOPC privileged opcode
ILL_PRVREG privileged register
ILL_COPROC co-processor error
ILL_BADSTK internal stack error

SIGFPE FPE_INTDIV integer divide by zero
FPE_INTOVF integer overflow
FPE_FLTDIV floating point divide by zero
FPE_FLTOVF floating point overflow
FPE_FLTUND floating point underflow
FPE_FLTRES floating point inexact result
FPE_FLTINV invalid floating point operation
FPE_FLTSUB subscript out of range

SIGSEGV SEGV_MAPERR address not mapped to object
SEGV_ACCERR invalid permissions for mapped object

SIGBUS BUS_ADRALN invalid address alignment
BUS_ADRERR non-existent physical address
BUS_OBJERR object specific hardware error

SIGTRAP TRAP_BRKPT process breakpoint
TRAP_TRACE process trace trap

SIGCHLD CLD_EXITED child has exited
CLD_KILLED child was killed
CLD_DUMPED child terminated abnormally
CLD_TRAPPED traced child has trapped
CLD_STOPPED child has stopped
CLD_CONTINUED stopped child had continued

SIGPOLL POLL_IN data input available
POLL_OUT output buffers available
POLL_MSG input message available
POLL_ERR I/O error
POLL_PRI high priority input available
POLL_HUP device disconnected

5-60 modified 12 Aug 1993

SunOS 5.4 Headers, Tables, and Macros siginfo (5)

In addition, the following signal-dependent information is available for kernel-generated
signals:

Signal Field Value
SIGILL caddr_t si_addr address of faulting instruction
SIGFPE
SIGSEGV caddr_t si_addr address of faulting memory reference
SIGBUS
SIGCHLD pid_t si_pid child process ID

int si_status exit value or signal
SIGPOLL long si_band band event for POLL_IN, POLL_OUT, or

POLL_MSG

SEE ALSO _lwp_kill(2), kill(2), sigaction(2), sigsend(2), waitid(2), abort(3C), raise(3C),
aio_read(3R), mq_notify(3R), sigqueue(3R), timer_create(3R), signal(5)

NOTES For SIGCHLD signals, if si_code is equal to CLD_EXITED, then si_status is equal to the
exit value of the process; otherwise, it is equal to the signal that caused the process to
change state. For some implementations, the exact value of si_addr may not be available;
in that case, si_addr is guaranteed to be on the same page as the faulting instruction or
memory reference.

modified 12 Aug 1993 5-61

signal (5) Headers, Tables, and Macros SunOS 5.4

NAME signal − base signals

SYNOPSIS #include <signal.h>

DESCRIPTION A signal is an asynchronous notification of an event. A signal is said to be generated for
(or sent to) a process when the event associated with that signal first occurs. Examples of
such events include hardware faults, timer expiration and terminal activity, as well as the
invocation of the kill(2) or sigsend(2) system calls. In some circumstances, the same
event generates signals for multiple processes. A process may request a detailed
notification of the source of the signal and the reason why it was generated (see sig-
info(5)).

A process responds to signals in similar ways whether it is using threads (see
thr_create(3T)) or it is using lightweight processes (LWPs). Each process may specify a
system action to be taken in response to each signal sent to it, called the signal’s disposi-
tion. All threads or LWPs in the process share the disposition. The set of system signal
actions for a process is initialized from that of its parent. Once an action is installed for a
specific signal, it usually remains installed until another disposition is explicitly
requested by a call to either sigaction, signal or sigset, or until the process execs (see
sigaction(2) and signal(3C)). When a process execs, all signals whose disposition has
been set to catch the signal will be set to SIG_DFL. Alternatively, a process may request
that the system automatically reset the disposition of a signal to SIG_DFL after it has
been caught (see sigaction(2) and signal(3C)).

A signal is said to be delivered to a process when a thread or LWP within the process
takes the appropriate action for the disposition and signal. Delivery of a signal can be
blocked. Each thread or LWP has a signal mask (see thr_sigsetmask(3T) or sigproc-
mask(2)) that defines the set of signals currently blocked from delivery to it. The signal
mask of the main thread or LWP is inherited from the signal mask of the thread or LWP
that created it in the parent process. The selection of the thread or LWP within the pro-
cess that is to take the appropriate action for the signal is based on the method of signal
generation and the signal masks of the threads or LWPs in the receiving process. Signals
that are a generated by action of a particular thread or LWP such as hardware faults or
alarms (see alarm(2)), are delivered to the thread or LWP that caused the signal. Signals
that are directed to a particular thread or LWP (see thr_kill(3T) or _lwp_kill(2)) are
delivered to the targeted thread or LWP. If the selected thread or LWP has blocked the
signal, it remains pending on the thread or LWP until it is unblocked. For all other types
of signal generation (e.g. kill(2), sigsend(2), terminal activity, and other external events
not ascribable to a particular thread or LWP) one of the threads or LWPs that does not
have the signal blocked is selected to process the signal. If all the threads or LWPs within
the process block the signal, it remains pending on the process until a thread or LWP in
the process unblocks it. If the action associated with a signal is set to ignore the signal
then both currently pending and subsequently generated signals of this type are dis-
carded immediately for this process.

5-62 modified 12 Aug 1993

SunOS 5.4 Headers, Tables, and Macros signal (5)

The determination of which action is taken in response to a signal is made at the time the
signal is delivered to a thread or LWP within the process, allowing for any changes since
the time of generation. This determination is independent of the means by which the sig-
nal was originally generated.
The signals currently defined by <signal.h> are as follows:

Name Value Default Event
SIGHUP 1 Exit Hangup (see termio(7))
SIGINT 2 Exit Interrupt (see termio(7))
SIGQUIT 3 Core Quit (see termio(7))
SIGILL 4 Core Illegal Instruction
SIGTRAP 5 Core Trace/Breakpoint Trap
SIGABRT 6 Core Abort
SIGEMT 7 Core Emulation Trap
SIGFPE 8 Core Arithmetic Exception
SIGKILL 9 Exit Killed
SIGBUS 10 Core Bus Error
SIGSEGV 11 Core Segmentation Fault
SIGSYS 12 Core Bad System Call
SIGPIPE 13 Exit Broken Pipe
SIGALRM 14 Exit Alarm Clock
SIGTERM 15 Exit Terminated
SIGUSR1 16 Exit User Signal 1
SIGUSR2 17 Exit User Signal 2
SIGCHLD 18 Ignore Child Status Changed
SIGPWR 19 Ignore Power Fail/Restart
SIGWINCH 20 Ignore Window Size Change
SIGURG 21 Ignore Urgent Socket Condition
SIGPOLL 22 Exit Pollable Event (see streamio(7))
SIGSTOP 23 Stop Stopped (signal)
SIGTSTP 24 Stop Stopped (user) (see termio(7))
SIGCONT 25 Ignore Continued
SIGTTIN 26 Stop Stopped (tty input) (see termio(7))
SIGTTOU 27 Stop Stopped (tty output) (see termio(7))
SIGVTALRM 28 Exit Virtual Timer Expired
SIGPROF 29 Exit Profiling Timer Expired
SIGXCPU 30 Core CPU time limit exceeded (see getrlimit(2))
SIGXFSZ 31 Core File size limit exceeded (see getrlimit(2))
SIGWAITING 32 Ignore Process’s LWPs are blocked
SIGLWP 33 Ignore Special signal used by thread library
SIGFREEZE 34 Ignore Check point Freeze
SIGTHAW 35 Ignore Check point Thaw
SIGRTMIN ∗ Exit First real time signal
(SIGRTMIN + 1) ∗ Exit Second real time signal
. . .

(SIGRTMAX - 1) ∗ Exit Second-to-last real time signal
SIGRTMAX ∗ Exit Last real time signal
(The symbols SIGRTMIN through SIGRTMAX are evaluated
dynamically in order to permit future configurability)

modified 12 Aug 1993 5-63

signal (5) Headers, Tables, and Macros SunOS 5.4

A process, using a signal(3C), sigset(3C) or sigaction(2) system call, may specify one of
three dispositions for a signal: take the default action for the signal, ignore the signal, or
catch the signal.

Default Action:
SIG_DFL

A disposition of SIG_DFL specifies the default action. The default action for each signal
is listed in the table above and is selected from the following:

Exit When it gets the signal, the receiving process is to be terminated with all the
consequences outlined in exit(2).

Core When it gets the signal, the receiving process is to be terminated with all the
consequences outlined in exit(2). In addition, a ‘‘core image’’ of the process is
constructed in the current working directory.

Stop When it gets the signal, the receiving process is to stop. When a process is
stopped, all the threads and LWPs within the process also stop executing.

Ignore When it gets the signal, the receiving process is to ignore it. This is identical to
setting the disposition to SIG_IGN.

Ignore Signal:
SIG_IGN

A disposition of SIG_IGN specifies that the signal is to be ignored. Setting a signal
action to SIG_IGN for a signal that is pending causes the pending signal to be discarded,
whether or not it is blocked. Any queued values pending are also discarded, and the
resources used to queue them are released and made available to queue other signals.

Catch Signal: function
address

A disposition that is a function address specifies that, when it gets the signal, the thread
or LWP within the process that is selected to process the signal will execute the signal
handler at the specified address. Normally, the signal handler is passed the signal
number as its only argument; if the disposition was set with the sigaction function how-
ever, additional arguments may be requested (see sigaction(2)). When the signal handler
returns, the receiving process resumes execution at the point it was interrupted, unless
the signal handler makes other arrangements. If an invalid function address is specified,
results are undefined.

If the disposition has been set with the sigset or sigaction function, the signal is automati-
cally blocked in the thread or LWP while it is executing the signal catcher. If a longjmp
(see setjmp(3C)) is used to leave the signal catcher, then the signal must be explicitly
unblocked by the user (see signal(3C) and sigprocmask(2)).

If execution of the signal handler interrupts a blocked system call, the handler is executed
and the interrupted system call returns a −1 to the calling process with errno set to
EINTR. However, if the SA_RESTART flag is set the system call will be transparently
restarted.

5-64 modified 12 Aug 1993

SunOS 5.4 Headers, Tables, and Macros signal (5)

Some signal−generating functions, such as high resolution timer expiration, asynchro-
nous I/O completion, inter-process message arrival, and the sigqueue(3R) function, sup-
port the specification of an application defined value, either explicitly as a parameter to
the function, or in a sigevent structure parameter. The sigevent structure is defined by
<signal.h> and contains at least the following members:

Member Member
Type Name Description
int sigev_notify Notification type
int sigev_signo Signal number
union sigval sigev_value Signal value

The sigval union is defined by <signal.h> and contains at least the following members:
Member Member
Type Name Description
int sival_int Integer signal value
void ∗∗ sival_ptr Pointer signal value

sigev_notify specifies the notification mechanism to use when an asynchronous event
occurs. sigev_notify may be defined with the following values:

SIGEV_NONE No asynchronous notification is delivered when the event
of interest occurs.

SIGEV_SIGNAL A queued signal, with its value application-defined, is gen-
erated when the event of interest occurs.

Your implementation may define additional notification mechanisms.

sigev_signo specifies the signal to be generated.

sigev_value references the application defined value to be passed to the signal-catching
function at the time of the signal delivery as the si_value member of the siginfo_t struc-
ture.

The sival_int member will be used when the application defined value is of type int; and
the sival_ptr member will be used when the application defined value is a pointer.

When a signal is generated by sigqueue(3R) or any signal−generating function which
supports the specification of an application defined value, the signal is marked pending
and, if the SA_SIGINFO flag is set for that signal, the signal is queued to the process
along with the application specified signal value. Multiple occurrences of signals so gen-
erated are queued in FIFO order. If the SA_SIGINFO flag is not set for that signal, later
occurrences of that signal’s generation, when a signal is already queued, are silently dis-
carded.

NOTES The dispositions of the SIGKILL and SIGSTOP signals cannot be altered from their
default values. The system generates an error if this is attempted.

The SIGKILL and SIGSTOP signals cannot be blocked. The system silently enforces this
restriction.

modified 12 Aug 1993 5-65

signal (5) Headers, Tables, and Macros SunOS 5.4

Whenever a process receives a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal,
regardless of its disposition, any pending SIGCONT signal are discarded.

Whenever a process receives a SIGCONT signal, regardless of its disposition, any pend-
ing SIGSTOP, SIGTSTP, SIGTTIN, and SIGTTOU signals is discarded. In addition, if
the process was stopped, it is continued.

SIGPOLL is issued when a file descriptor corresponding to a STREAMS (see intro(2)) file
has a ‘‘selectable’’ event pending. A process must specifically request that this signal be
sent using the I_SETSIG ioctl call. Otherwise, the process will never receive SIGPOLL.

If the disposition of the SIGCHLD signal has been set with signal or sigset, or with
sigaction and the SA_NOCLDSTOP flag has been specified, it will only be sent to the
calling process when its children exit; otherwise, it will also be sent when the calling
process’s children are stopped or continued due to job control.

The name SIGCLD is also defined in this header and identifies the same signal as
SIGCHLD. SIGCLD is provided for backward compatibility, new applications should
use SIGCHLD.

The disposition of signals that are inherited as SIG_IGN should not be changed.

SEE ALSO intro(2), exit(2), getrlimit(2), kill(2), pause(2), sigaction(2), sigaltstack(2), sigproc-
mask(2), sigsend(2), sigsuspend(2), wait(2), signal(3C), sigsetops(3C), sigqueue(3R),
siginfo(5), ucontext(5)

5-66 modified 12 Aug 1993

SunOS 5.4 Headers, Tables, and Macros stat (5)

NAME stat − data returned by stat system call

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION The system calls stat, lstat and fstat return data in a stat structure, which is defined in
stat.h.

The constants used in the st_mode field are also defined in this file:
#define S_IFMT /∗ type of file ∗/
#define S_IAMB /∗ access mode bits ∗/
#define S_IFIFO /∗ fifo ∗/
#define S_IFCHR /∗ character special ∗/
#define S_IFDIR /∗ directory ∗/
#define S_IFNAM /∗ XENIX special named file ∗/
#define S_INSEM /∗ XENIX semaphore subtype of IFNAM ∗/
#define S_INSHD /∗ XENIX shared data subtype of IFNAM ∗/
#define S_IFBLK /∗ block special ∗/
#define S_IFREG /∗ regular ∗/
#define S_IFLNK /∗ symbolic link ∗/
#define S_ISUID /∗ set user id on execution ∗/
#define S_ISGID /∗ set group id on execution ∗/
#define S_ISVTX /∗ save swapped text even after use ∗/
#define S_IREAD /∗ read permission, owner ∗/
#define S_IWRITE /∗ write permission, owner ∗/
#define S_IEXEC /∗ execute/search permission, owner ∗/
#define S_ENFMT /∗ record locking enforcement flag ∗/
#define S_IRWXU /∗ read, write, execute: owner ∗/
#define S_IRUSR /∗ read permission: owner ∗/
#define S_IWUSR /∗ write permission: owner ∗/
#define S_IXUSR /∗ execute permission: owner ∗/
#define S_IRWXG /∗ read, write, execute: group ∗/
#define S_IRGRP /∗ read permission: group ∗/
#define S_IWGRP /∗ write permission: group ∗/
#define S_IXGRP /∗ execute permission: group ∗/
#define S_IRWXO /∗ read, write, execute: other ∗/
#define S_IROTH /∗ read permission: other ∗/
#define S_IWOTH /∗ write permission: other ∗/
#define S_IXOTH /∗ execute permission: other ∗/

modified 3 Jul 1990 5-67

stat (5) Headers, Tables, and Macros SunOS 5.4

The following macros are for POSIX conformance:
#define S_ISBLK(mode) block special file
#define S_ISCHR(mode) character special file
#define S_ISDIR(mode) directory file
#define S_ISFIFO(mode) pipe or fifo file
#define S_ISREG(mode) regular file

SEE ALSO stat(2), types(5)

5-68 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros stdarg (5)

NAME stdarg − handle variable argument list

SYNOPSIS #include <stdarg.h>

va_list pvar;

void va_start(va_list pvar, parmN);

type va_arg(va_list pvar, type);

void va_end(va_list pvar);

DESCRIPTION This set of macros allows portable procedures that accept variable numbers of arguments
of variable types to be written. Routines that have variable argument lists (such as
printf) but do not use stdarg are inherently non-portable, as different machines use dif-
ferent argument-passing conventions.

va_list is a type defined for the variable used to traverse the list.

The va_start() macro is invoked before any access to the unnamed arguments and initial-
izes pvar for subsequent use by va_arg() and va_end(). The parameter parmN is the
identifier of the rightmost parameter in the variable parameter list in the function
definition (the one just before the , ...). If this parameter is declared with the register
storage class or with a function or array type, or with a type that is not compatible with
the type that results after application of the default argument promotions, the behavior is
undefined.

The parameter parmN is required under strict ANSI C compilation. In other compilation
modes, parmN need not be supplied and the second parameter to the va_start() macro can
be left empty (for example, va_start(pvar,);). This allows for routines that contain no
parameters before the ... in the variable parameter list.

The va_arg() macro expands to an expression that has the type and value of the next
argument in the call. The parameter pvar should have been previously initialized by
va_start(). Each invocation of va_arg() modifies pvar so that the values of successive
arguments are returned in turn. The parameter type is the type name of the next argu-
ment to be returned. The type name must be specified in such a way so that the type of a
pointer to an object that has the specified type can be obtained simply by postfixing a ∗∗ to
type. If there is no actual next argument, or if type is not compatible with the type of the
actual next argument (as promoted according to the default argument promotions), the
behavior is undefined.

The va_end() macro is used to clean up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

modified 3 Jul 1990 5-69

stdarg (5) Headers, Tables, and Macros SunOS 5.4

EXAMPLE This example gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments) with function f1, then passes the array as a single
argument to function f2. The number of pointers is specified by the first argument to f1.

#include <stdarg.h>
#define MAXARGS 31

void f1(int n_ptrs, ...)
{

va_list ap;
char ∗∗array[MAXARGS];
int ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;

va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char∗∗);
va_end(ap);
f2(n_ptrs, array);

}

Each call to f1 shall have visible the definition of the function or a declaration such as

void f1(int, ...)

SEE ALSO vprintf(3S)

NOTES It is up to the calling routine to specify in some manner how many arguments there are,
since it is not always possible to determine the number of arguments from the stack
frame. For example, execl is passed a zero pointer to signal the end of the list. printf can
tell how many arguments there are by the format. It is non-portable to specify a second
argument of char, short, or float to va_arg, because arguments seen by the called function
are not char, short, or float. C converts char and short arguments to int and converts
float arguments to double before passing them to a function.

5-70 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros term (5)

NAME term − conventional names for terminals

DESCRIPTION Terminal names are maintained as part of the shell environment in the environment vari-
able TERM (see sh(1), profile(4), and environ(5)). These names are used by certain com-
mands (for example, tabs, tput, and vi) and certain functions (for example, see
curses(3X)).

Files under /usr/share/lib/terminfo are used to name terminals and describe their capa-
bilities. These files are in the format described in terminfo(4). Entries in terminfo source
files consist of a number of comma-separated fields. To print a description of a terminal
term, use the command infocmp −−I term (see infocmp(1M)). White space after each
comma is ignored. The first line of each terminal description in the terminfo database
gives the names by which terminfo knows the terminal, separated by bar (|) characters.
The first name given is the most common abbreviation for the terminal (this is the one to
use to set the environment variable TERMINFO in $HOME/.profile; see profile(4)), the
last name given should be a long name fully identifying the terminal, and all others are
understood as synonyms for the terminal name. All names but the last should contain no
blanks and must be unique in the first 14 characters; the last name may contain blanks for
readability.

Terminal names (except for the last, verbose entry) should be chosen using the following
conventions. The particular piece of hardware making up the terminal should have a
root name chosen, for example, for the AT&T 4425 terminal, att4425. This name should
not contain hyphens, except that synonyms may be chosen that do not conflict with other
names. Up to 8 characters, chosen from the set a through z and 0 through 9, make up a
basic terminal name. Names should generally be based on original vendors rather than
local distributors. A terminal acquired from one vendor should not have more than one
distinct basic name. Terminal sub-models, operational modes that the hardware can be
in, or user preferences should be indicated by appending a hyphen and an indicator of
the mode. Thus, an AT&T 4425 terminal in 132 column mode is att4425−−w. The follow-
ing suffixes should be used where possible:

Suffix Meaning Example
−−w Wide mode (more than 80 columns) att4425−−w
−−am With auto. margins (usually default) vt100−−am
−−nam Without automatic margins vt100−−nam
−−n Number of lines on the screen aaa−−60
−−na No arrow keys (leave them in local) c100−−na
−−np Number of pages of memory c100−−4p
−−rv Reverse video att4415−−rv

To avoid conflicts with the naming conventions used in describing the different modes of
a terminal (for example, −−w), it is recommended that a terminal’s root name not contain
hyphens. Further, it is good practice to make all terminal names used in the terminfo(4)
database unique. Terminal entries that are present only for inclusion in other entries via
the use= facilities should have a ’+’ in their name, as in 4415+nl.

modified 3 Jul 1990 5-71

term (5) Headers, Tables, and Macros SunOS 5.4

Here are some of the known terminal names: (For a complete list, enter the command
ls -C /usr/share/lib/terminfo/?).

2621,hp2621 Hewlett-Packard 2621 series
2631 Hewlett-Packard 2631 line printer
2631−−c Hewlett-Packard 2631 line printer,

compressed mode
2631−−e Hewlett-Packard 2631 line printer, expanded

mode
2640,hp2640 Hewlett-Packard 2640 series
2645,hp2645 Hewlett-Packard 2645 series
3270 IBM Model 3270
33,tty33 AT&T Teletype Model 33 KSR
35,tty35 AT&T Teletype Model 35 KSR
37,tty37 AT&T Teletype Model 37 KSR
4000a Trendata 4000a
4014,tek4014 TEKTRONIX 4014
40,tty40 AT&T Teletype Dataspeed 40/2
43,tty43 AT&T Teletype Model 43 KSR
4410,5410 AT&T 4410/5410 in 80-column mode, ver-

sion 2
4410−−nfk,5410−−nfk AT&T 4410/5410 without function keys, ver-

sion 1
4410−−nsl,5410−−nsl AT&T 4410/5410 without pln defined
4410−−w,5410−−w AT&T 4410/5410 in 132-column mode
4410v1,5410v1 AT&T 4410/5410 in 80-column mode, ver-

sion 1
4410v1−−w,5410v1−−w AT&T 4410/5410 in 132-column mode, ver-

sion 1
4415,5420 AT&T 4415/5420 in 80-column mode
4415−−nl,5420−−nl AT&T 4415/5420 without changing labels
4415−−rv,5420−−rv AT&T 4415/5420 80 columns in reverse

video
4415−−rv−−nl,5420−−rv−−nl AT&T 4415/5420 reverse video without

changing labels
4415−−w,5420−−w AT&T 4415/5420 in 132-column mode
4415−−w−−nl,5420−−w−−nl AT&T 4415/5420 in 132-column mode

without changing labels
4415−−w−−rv,5420−−w−−rv AT&T 4415/5420 132 columns in reverse

video
4418,5418 AT&T 5418 in 80-column mode
4418−−w,5418−−w AT&T 5418 in 132-column mode
4420 AT&T Teletype Model 4420
4424 AT&T Teletype Model 4424
4424-2 AT&T Teletype Model 4424 in display func-

tion group ii
4425,5425 AT&T 4425/5425
4425−−fk,5425−−fk AT&T 4425/5425 without function keys

5-72 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros term (5)

4425−−nl,5425−−nl AT&T 4425/5425 without changing labels in
80-column mode

4425−−w,5425−−w AT&T 4425/5425 in 132-column mode
4425−−w−−fk,5425−−w−−fk AT&T 4425/5425 without function keys in

132-column mode
4425−−nl−−w,5425−−nl−−w AT&T 4425/5425 without changing labels in

132-column mode
4426 AT&T Teletype Model 4426S
450 DASI 450 (same as Diablo 1620)
450−−12 DASI 450 in 12-pitch mode
500,att500 AT&T-IS 500 terminal
510,510a AT&T 510/510a in 80-column mode
513bct,att513 AT&T 513 bct terminal
5320 AT&T 5320 hardcopy terminal
5420_2 AT&T 5420 model 2 in 80-column mode
5420_2−−w AT&T 5420 model 2 in 132-column mode
5620,dmd AT&T 5620 terminal 88 columns
5620−−24,dmd−−24 AT&T Teletype Model DMD 5620 in a 24x80

layer
5620−−34,dmd−−34 AT&T Teletype Model DMD 5620 in a 34x80

layer
610,610bct AT&T 610 bct terminal in 80-column mode
610−−w,610bct−−w AT&T 610 bct terminal in 132-column mode
630,630MTG AT&T 630 Multi-Tasking Graphics terminal
7300,pc7300,unix_pc AT&T UNIX PC Model 7300
735,ti Texas Instruments TI735 and TI725
745 Texas Instruments TI745
dumb generic name for terminals that lack reverse

line-feed and other special escape sequences
hp Hewlett-Packard (same as 2645)
lp generic name for a line printer
pt505 AT&T Personal Terminal 505 (22 lines)
pt505−−24 AT&T Personal Terminal 505 (24-line mode)
sync generic name for synchronous Teletype

Model 4540-compatible terminals

Commands whose behavior depends on the type of terminal should accept arguments of
the form −−Tterm where term is one of the names given above; if no such argument is
present, such commands should obtain the terminal type from the environment variable
TERM, which, in turn, should contain term.

FILES /usr/share/lib/terminfo/?/∗
compiled terminal description database

SEE ALSO sh(1), stty(1), tabs(1), tput(1), vi(1), infocmp(1M), curses(3X), profile(4), terminfo(4),
environ(5)

modified 3 Jul 1990 5-73

types (5) Headers, Tables, and Macros SunOS 5.4

NAME types − primitive system data types

SYNOPSIS #include <sys/types.h>

DESCRIPTION The data types defined in types.h are used in UNIX System code. Some data of these
types are accessible to user code:

typedef struct { int r[1]; } ∗∗physadr;
typedef long clock_t;
typedef long daddr_t;
typedef char ∗∗ caddr_t;
typedef unsigned char unchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;
typedef unsigned long ino_t;
typedef long uid_t;
typedef long gid_t;
typedef ulong nlink_t;
typedef ulong mode_t;
typedef short cnt_t;
typedef long time_t;
typedef int label_t[10];
typedef ulong dev_t;
typedef long off_t;
typedef long pid_t;
typedef long paddr_t;
typedef int key_t;
typedef unsigned char use_t;
typedef short sysid_t;
typedef short index_t;
typedef short lock_t;
typedef unsigned int size_t;
typedef long clock_t;
typedef long pid_t;

The form daddr_t is used for disk addresses except in an inode on disk. Times are
encoded in seconds since 00:00:00 UTC, January 1, 1970. The major and minor parts of a
device code specify kind and unit number of a device and are installation-dependent.
Offsets are measured in bytes from the beginning of a file. The label_t variables are used
to save the processor state while another process is running.

5-74 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros ucontext (5)

NAME ucontext − user context

SYNOPSIS #include <ucontext.h>

DESCRIPTION The ucontext structure defines the context of a thread of control within an executing pro-
cess.

This structure includes at least the following members:

ucontext_t uc_link
sigset_t uc_sigmask
stack_t uc_stack
mcontext_t uc_mcontext

uc_link is a pointer to the context that to be resumed when this context returns. If
uc_link is equal to 0, then this context is the main context, and the process exits when this
context returns.

uc_sigmask defines the set of signals that are blocked when this context is active [see sig-
procmask(2)].

uc_stack defines the stack used by this context [see sigaltstack(2)].

uc_mcontext contains the saved set of machine registers and any implementation specific
context data. Portable applications should not modify or access uc_mcontext.

SEE ALSO getcontext(2), sigaction(2), sigaltstack(2), sigprocmask(2), makecontext(3C)

modified 3 Jul 1990 5-75

values (5) Headers, Tables, and Macros SunOS 5.4

NAME values − machine-dependent values

SYNOPSIS #include <values.h>

DESCRIPTION This file contains a set of manifest constants, conditionally defined for particular proces-
sor architectures.

The model assumed for integers is binary representation (one’s or two’s complement),
where the sign is represented by the value of the high-order bit.

BITS(type) The number of bits in a specified type (for example, int).

HIBITS The value of a short integer with only the high-order bit set.

HIBITL The value of a long integer with only the high-order bit set.

HIBITI The value of a regular integer with only the high-order bit set.

MAXSHORT The maximum value of a signed short integer.

MAXLONG The maximum value of a signed long integer.

MAXINT The maximum value of a signed regular integer.

MAXFLOAT, LN_MAXFLOAT
The maximum value of a single-precision floating-point number, and its
natural logarithm.

MAXDOUBLE, LN_MAXDOUBLE
The maximum value of a double-precision floating-point number, and its
natural logarithm.

MINFLOAT, LN_MINFLOAT
The minimum positive value of a single-precision floating-point number,
and its natural logarithm.

MINDOUBLE, LN_MINDOUBLE
The minimum positive value of a double-precision floating-point
number, and its natural logarithm.

FSIGNIF The number of significant bits in the mantissa of a single-precision
floating-point number.

DSIGNIF The number of significant bits in the mantissa of a double-precision
floating-point number.

SEE ALSO intro(3), math(5)

5-76 modified 2 Mar 1993

SunOS 5.4 Headers, Tables, and Macros varargs (5)

NAME varargs − handle variable argument list

SYNOPSIS #include <varargs.h>

va_alist

va_dcl

va_list pvar;

void va_start(va_list pvar);

type va_arg(va_list pvar, type);

void va_end(va_list pvar);

DESCRIPTION This set of macros allows portable procedures that accept variable argument lists to be
written. Routines that have variable argument lists (such as printf(3S)) but do not use
varargs are inherently non-portable, as different machines use different argument-
passing conventions.

va_alist is used as the parameter list in a function header.

va_dcl is a declaration for va_alist. No semicolon should follow va_dcl.

va_list is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. type is the type the
argument is expected to be. Different types can be mixed, but it is up to the routine to
know what type of argument is expected, as it cannot be determined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

EXAMPLE This example is a possible implementation of execl (see exec(2)).

#include <unistd.h>
#include <varargs.h>
#define MAXARGS 100

/∗∗ execl is called by
execl(file, arg1, arg2, ..., (char ∗∗)0);

∗∗/
execl(va_alist)
va_dcl
{

va_list ap;
char ∗∗file;
char ∗∗args[MAXARGS]; /∗∗ assumed big enough∗∗/
int argno = 0;

va_start(ap);

modified 3 Jul 1990 5-77

varargs (5) Headers, Tables, and Macros SunOS 5.4

file = va_arg(ap, char ∗∗);
while ((args[argno++] = va_arg(ap, char ∗∗)) != 0)

;
va_end(ap);
return execv(file, args);

}

SEE ALSO exec(2), printf(3S), vprintf(3S), stdarg(5)

NOTES It is up to the calling routine to specify in some manner how many arguments there are,
since it is not always possible to determine the number of arguments from the stack
frame. For example, execl is passed a zero pointer to signal the end of the list. printf can
tell how many arguments are there by the format.

It is non-portable to specify a second argument of char, short, or float to va_arg, since
arguments seen by the called function are not char, short, or float. C converts char and
short arguments to int and converts float arguments to double before passing them to a
function.

stdarg is the preferred interface.

5-78 modified 3 Jul 1990

SunOS 5.4 Headers, Tables, and Macros wstat (5)

NAME wstat − wait status

SYNOPSIS #include <sys/wait.h>

DESCRIPTION When a process waits for status from its children via either the wait or waitpid function,
the status returned may be evaluated with the following macros, defined in <sys/wait.h>.
These macros evaluate to integral expressions. The stat argument to these macros is the
integer value returned from wait or waitpid.

WIFEXITED(stat) Evaluates to a non-zero value if status was returned for a child
process that terminated normally.

WEXITSTATUS(stat) If the value of WIFEXITED(stat) is non-zero, this macro evaluates
to the exit code that the child process passed to _exit() (see
exit(2)) or exit(3C), or the value that the child process returned
from main.

WIFSIGNALED(stat) Evaluates to a non-zero value if status was returned for a child
process that terminated due to the receipt of a signal.

WTERMSIG(stat) If the value of WIFSIGNALED(stat) is non-zero, this macro evalu-
ates to the number of the signal that caused the termination of
the child process.

WIFSTOPPED(stat) Evaluates to a non-zero value if status was returned for a child
process that is currently stopped.

WSTOPSIG(stat) If the value of WIFSTOPPED(stat) is non-zero, this macro evalu-
ates to the number of the signal that caused the child process to
stop.

WIFCONTINUED(stat)
Evaluates to a non-zero value if status was returned for a child
process that has continued.

WCOREDUMP(stat) If the value of WIFSIGNALED (stat) is non-zero, this macro
evaluates to a non-zero value if a core image of the terminated
child was created.

SEE ALSO exit(2), wait(2), waitpid(2), exit(3C)

modified 10 Sep 1991 5-79

Index

A
ASCII character set

— ascii, 5-6

C
character definitions for equations — eqnchar,

5-12
code set conversion tables

— iconv, 5-24

D
data types, primitive system

— types, 5-74
document production

man — macros to format manual pages, 5-37
mansun — macros to format manual pages,

5-41
me — macros to format technical papers, 5-46
ms — macros to format articles, theses and

books, 5-49
special character definitions for equations —

eqnchar, 5-12

E
environ — user environment, 5-7
environment variables

HOME, 5-7
LANG, 5-7

environment variables, continued
LC_COLLATE, 5-7
LC_CTYPE, 5-7
LC_MESSAGES, 5-7
LC_MONETARY, 5-7
LC_NUMERIC, 5-7
LC_TIME, 5-7
MSGVERB, 5-7
NETPATH, 5-7
PATH, 5-7
SEV_LEVEL, 5-7
TERM, 5-7
TZ, 5-7

eqnchar — special character definitions for equa-
tions, 5-12

F
file control options

— fcntl, 5-13
filesystem — file system layout, 5-16

/export File System, 5-21
/usr File System, 5-18
Root File System, 5-16

floatingpoint — IEEE floating point definitions,
5-22

Index−1

I
iconv — code set conversion tables, 5-24
IEEE arithmetic

floating point definitions — floatingpoint,
5-22

L
language data types, native — nl_types, 5-53
language information constants — langinfo, 5-35

M
machine-dependent values

— values, 5-76
macros

to format articles, theses and books — ms, 5-49
to format Manual pages — man, 5-37, 5-41
to format technical papers — me, 5-46

man — macros to format manual pages, 5-37
mansun — macros to format manual pages, 5-41
math — math functions and constants, 5-45
math functions and constants — math, 5-45
me — macros to format technical papers, 5-46
ms — macros to format articles, theses and books,

5-49

N
nl_types — native language data types, 5-53

P
processes

base signals — signal, 5-62
signal generation information — siginfo,

5-59
wait status — wstat, 5-79

profiling utilities
profile within a function — prof, 5-54

R
regular expression compile and match routines

— advance, 5-55
— compile, 5-55
— regexp, 5-55
— step, 5-55

S
shell environment

conventional names for terminals — term,
5-71

signal — base signals, 5-62
signal generation information

— siginfo, 5-59
special character definitions for equations —

eqnchar, 5-12
stat — data returned by stat system call, 5-67
system calls

— stat, 5-67

T
term — conventional names for terminals, 5-71
terminals

conventional names — term, 5-71

U
UNIX System Code

data types — types, 5-74
user context

— ucontext, 5-75
user environment

— environ, 5-7

V
values — machine-dependent values, 5-76
variable arguments

handle list — stdarg, 5-69, 5-77

W
wait status

— wstat, 5-79

Index−2

