XIL Device Porting and Extensibility Guide

— @2@ Sun SQﬂ

A Sun Microsystems, Inc. Business

[0 1994 Sun Microsystems, Inc.—Printed in the United States of America.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., awholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, Sun Microsystems Computer Corporation, the Sun Microsystems Computer
Corporation logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, NFS, and XIL are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered
trademark of Novell, Inc. in the United States and other countries. X/Open Company, Ltd. is the exclusive licensor of such
trademark. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. Photo CD, the Photo CD logo,
PhotoYCC, and Kodak are trademarks or registered trademarks of Eastman Kodak Company. All other product names
mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, SPARCompiler, ProWorks, and
ProCompiler are licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark and product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

&0
Retf;tstre ‘(‘ ’

Adobe PostScript

Contents .

Preface. Xiii
1. OVEIVIEW . .o

Introduction to the XIL Imaging Library 1

Solaris Graphics Architecture. 1

Division of Function in the XIL Library 2

XIL APLLayer. ... 3

XILBase ClasSes. . ..o vvv i 5

The XilDebugObject Class.................... 5

The XilGlobalState Class 5

The XilSystemState Class 6

The XilObject Class..................ccoiu.. 9

The XilDeviceType Class 10

The XilDevice Class.............. ..., 11

XILAPILevelClasses., 12

The XillmageType Class....................... 13

The Xillmage Class.................

The XilKernel Class..........................

The XilRoi Class ...,

The XilLookup Class..........................

The XilCis Class ...,

The XilError Class

The XilHistogram Class. ...t

The XilColorspace Class
TheXilSel Class

The XilDitherMask Class

The XilAttribute Class. ...t

The XillnterpolationTable Class............
XILCore Layer. ... e e e
Deferred Execution it
The XIL Library Method
Graph Evaluation and Molecules.
Some Considerations.,
Unusual Effects of Deferred Execution............
CoreLayer Classes.
TheXilOp Class..........

The XilOpTreeNode Class

XIL GPILayer. . ..o
IZO DEVICES . .o\ttt

Compute DeviCes.t

XIL Device Porting and Extensibility Guide—August 1994

14
22
22
28
31
34
37
37
39
40
1
42
43
43
44
45
45
48
49
49
53
54
55
55

Storage Devices
Compression Devices

2. More on Writing Device Handlers.
How XIL Device Handlers Work
The Development Environment.
Installing XIL Device Handlers
Error Reporting for XIL Device Handlers.
What Kinds of Ports Are Possible in the XIL Library?
What Kinds of Ports Are Not Possible in the XIL Library? ...
Version Control for XIL Handlers
3. HODEVICES. . .ot
ADOUt I/O DEVICES . ..o
XilDevicelnputOutputType Class
Handling Multiple Devices inan I/O Handler..........
XilDevicelnputOutput Class.........ccovin..
Device Attribute Functions.

Parent Function,

Image Type Functions

Read- and Write-Only Functions

Op Number Functions.
Addingan I/0Device i
Samplel/OHandler.........
XilDevicelnputOutputTypeCG6.h
XilDevicelnputOutputTypeCG6.cc ~

Contents

56
56
57
57
60
62
62
63
64
65
67
67
68
69
70
72
73
73
74
74
75
75
77
79

Vi

XilDevicelnputOutputCG6.h 85
XilDevicelnputOutputCG6.cc, 88
Sample I/0 Device Handler. 106
Compute DeVICES 121
About Compute Devices. ... 121
Implementing an XIL Function 122
AddingaCompute Device...............ccciiiiii... 124
Loading Compute Handlers. 129
AddingaNew Molecule. 130
Manipulating Molecules. L 132
Moleculesand I/O Devices ..., 133
Sample Compute Device Handler........................ 134
XilDeviceComputeTypeBandMemory.h 135
XilDeviceComputeTypeBandMemory.cc ~ 136
Add8BandMemory.cc 137
band_memory_utils.cc ... 143
Storage DeVvICeS.ot 147
About Storage Devices 147
XilDeviceStorageType Classot 148
XilDeviceStorage Class. ..o 150
Adding aStorage Device o 153
Sample Storage Device Handler 154
XilBandMemoryDefines.h 155
XilDeviceStorageTypeBandMemory.cc ~ 156

XIL Device Porting and Extensibility Guide—August 1994

6. Compression/Decompression. ..., 173
Implementation of Compression......................... 173
XilDeviceCompressionType Class 175
XilDeviceCompression Class............cooiiiin, 177
Base Class Implementations. 180
Sufficient Default Implementation. 181

No Action for the Default Implementation........ 182
Determine the CIS Read Position. 183
Adjustthe Startofa CIS 184
Compression Types with Ordinal Numbering. 184
ErrorReporting i 185

Error Recovery 185
Functions That Must Be Implemented 186

The CISBuffer Manager 189
XilCisBuffer Class 189
XilCisBufferManager Class..........oooo it 192
AttributesofaFrame. 194

The Constructor and Associated Functions 195
ResettheCodec 196

Set/Get Maximum Frame Size and Number of Frames per

Buffer. 196

Method One of Adding Data to a CIS Bitstream 196

Method Two of Adding Data to a CIS Bitstream 197

Guarantee a Complete Frame for the Codec to
DeCOMPIeSS. . .o e 198

Contents vii

After a Frame is Decompressed 198
An Alternative to Compressing intoaCIS......... 199
ReturnaPointertoData........................ 200

Return Data and Frame Information about the CIS.. 200

Determine if a Complete Frame Exists 201

Over-read Bytes i, 203

Seek a Specific Frame withinthe CIS. 203

Adjust Start Frame within Buffer Lists 206

Device Compression with Out-of-Order Frames. ... 206

Error Handling and Recovery 208

Adding a New Compression Method 209
Adding Compression Hardware 211
Sample CoOmMPressor. . ..o vt 214
XilDeviceCompressionTypeldentity.h 215
XilDeviceCompressionTypeldentity.cc ~ 217
XilDeviceCompressionldentity.h 220
XilDeviceCompressionldentity.cc ~ 223
XilDeviceComputeTypeldentityMemory.h ~ 232
XilDeviceComputeTypeldentityMemory.cc ~ 233
compress_ldentity.cc ... 235
decompress_ldentity.cc ..., 239

A. SampleMolecule 243
B. XIL Atomic Functions. 249
C. XilOp Object. 261

viii XIL Device Porting and Extensibility Guide—August 1994

Figures

Figure P-1 Directory Structure of XIL DDK Release XVi
Figure 1-1 The XIL Internal Architecture 2
Figure 1-2 XIL Library Object Hierarchy 4
Figure 1-3 APl LevelObjects i 13
Figure 2-1 An Example of Creatingan I/O Handler 59
Figure 2-2 Flow of Creating an 1/0, Storage, or Compression Handler . 60
Figure 6-1 RelationshipofClasses. 174
Figure 6-2 Actions Taken by XilCisBufferManager::seek() ~ 205

XIL Device Porting and Extensibility Guide—August 1994

Tables

Table P-1 TypographicConventionsiiiun... XV
Table 1-1 XIL Device-Independent Classes 3
Table 1-2 Opcodes and Their Associated Color Spaces. 38
Table 1-3 XILCoreLevel Classes. ..o, 49
Table 1-4 XILGPI Level Classes. 55
Table 2-1 XIL_DEBUGOPLIONSot 61
Table 3-1 Standard Frame Buffer Attributes. 73
Table 4-1 Image Data Memory Functions of the Xillmage Class..... 123
Table 6-1 Required and Optional Functions for Adding a New Compression
Method 209
Table B-1 XIL Atomic Functions. ... 249

Xi

xii

XIL Device Porting and Extensibility Guide—August 1994

Preface

This document describes the architecture of, and internal interfaces to, the XIL
library. It describes the library’s C++ classes and discusses the mechanism for
acceleration and porting of new hardware. The functionality of the XIL library
is discussed in the documents XIL Programmer’s Guide and XIL Reference
Manual.

Who Should Use This Book

This book is designed for people porting hardware to use the XIL imaging
library, as well as for people who are writing additional device-independent
acceleration code for XIL functions.

Before You Read This Book

It is assumed that the reader is familiar with C++ and the ideas of classes and
class inheritance in C++. It is further assumed that the reader has studied the
XIL Programmer’s Guide to become familiar with the capabilities of the XIL
library.

Xiii

What’s in This Book?

Related Books

Xiv

Chapter 1, “Overview” provides an overview of the XIL library and describes
the device-independent classes used to implement the library.

Chapter 2, “More on Writing Device Handlers” provides general information
about writing XIL device handlers.

Chapter 3, “1/O Devices” describes how to write 1/0 device handlers and
provides an example implementation of an 1/0 device handler.

Chapter 4, “Compute Devices” describes how to write compute device
handlers and provides an example implementation of a compute device
handler.

Chapter 5, “Storage Devices” describes how to write storage device handlers
and provides an example implementation of a storage device handler.

Chapter 6, “Compression/Decompression” describes how to add a new
compression method and compression hardware, and provides an example
implementation of a compressor.

Appendix A, “Sample Molecule” provides an example that illustrates a
molecule for performing 16-to-8 bit remapping of memory images.

Appendix B, “XIL Atomic Functions” provides the name of the function that
must be supplied in the XILCONFIG header comment to associate an
implemented function with an API call.

Appendix C, “XilOp Obiject” lists the number of image sources supported by
an XIL function and the XilOp member functions that must be used to extract
the image sources and to extract an XIL function’s parameters from the XilOp
object.

XIL Reference Manual
XIL Programmer’s Guide

XIL Test Suite User’s Guide

XIL Device Porting and Extensibility Guide—August 1994

What Typographic Changes and Symbols Mean

The following table describes the type changes and symbols used in this book.

Table P-1

Typographic Conventions

Typeface or
Symbol

Meaning

Example

AaBbCc123

AaBbCc123

AaBbCc123

AaBbCc123

The names of commandes, files,
and directories; on-screen
computer output

What you type, contrasted with
on-screen computer output

Command-line placeholder:
replace with a real name or
value

Book titles, new words or terms,
or words to be emphasized

Edit your .login file.
Usels -a to list all files.
system% You have mail.

system% su

Password:

To delete a file, type rm filename.

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

%
$

UNIX C shell prompt

UNIX Bourne and Korn shell
prompt

Superuser prompt, all shells

system%

system$

system#

Preface

XV

XIL DDK Directory Structure

The default installation directory for the XIL DDK (Driver Developer Kit) is
/opt/SUNWddk/ddk_2.4/xil . The structure of the XIL DDK directories is
described in Figure P-1 and in the sections that follow.

Jopt/SUNWddk
I
ddk_2.4
I
xil
I
src Xilch
compressor molecule p9000 data arch src
cg6_device_handler io_device_handler | ‘ ‘ tests
_ _ bin data lib
compute_device_handler storage_device_handler doc examples

config include

Figure P-1 Directory Structure of XIL DDK Release

XVi XIL Device Porting and Extensibility Guide—August 1994

src/

Xilch/

The src directory contains seven subdirectories of examples; six of these
examples are described in this manual: cg6_device handler , compressor
compute_device_handler , i0_device_handler , molecule , and
storage_device_handler

Note — The directory src/cg6_device_handler contains an example 170
device handler that treats a SPARC GX frame-buffer window as an 1/0 device.
The directory src/p9000 , which isn’t discussed in this manual, contains an
example for an x86-specific module that is based on the SPARC GX example: it
treats a p9000 frame-buffer window as an 1/0 device. The p9000 example isn’t
discussed in this manual because the p9000 architecture is similar to the CG6
architecture. The p9000 code is included to demonstrate some of the differences
you can expect when writing an XIL module for x86.

The src/doc directory contains a source (.po) file used for generating error
messages.

The Xilch directory contains the files for the XIL Test Suite, including
executables, data files, and examples. The XIL Test Suite is described in the XIL
Test Suite User’s Guide.

Preface XVii

Xviii XIL Device Porting and Extensibility Guide—August 1994

Overview 1

Introduction to the XIL Imaging Library

The Solaris™ XIL™ Imaging Library provides a basic set of functions for
imaging and video applications. The XIL library is the imaging component of
the Solaris Graphics Architecture, a strategy for providing low-level software
interfaces known as foundation libraries. Application and API developers can
port their code to such foundation libraries. The XIL library is complemented
by the XGL™ Graphics Library, which addresses application and API
requirements for geometry-based graphics.

Solaris Graphics Architecture

The XIL foundation library is an integral part of the Solaris Graphics
Architecture. The Solaris software, using loadable drivers, enables display
devices using the Solaris Graphics Architecture to be easily installed and used,
without requiring kernel modifications. The Solaris Graphics Architecture,
through the XIL, XGL, and OpenWindows™ software, provides a means for
third-party hardware and software vendors to develop applications with the
knowledge that their investment will see long-term benefits, including access
to a range of computing platforms and complete integration into the Solaris
environment.

Note — Currently, the GPI interfaces to the library discussed in this book are
uncommitted interfaces; therefore, they may change in future releases in ways
that could require you to change your code. In a release in the near future, the
interfaces will be deemed committed, and much stricter rules will then apply to
interface changes. The API interfaces are committed.

Division of Function in the XIL Library

The XIL architecture consists of a high-level application programming interface
(API), device-independent core code (including the XIL APl and GPI layers),
which manages the loading and calling of specific device-dependent functions,
a graphic porting interface (GPI), which separates device-independent and
device-dependent code, and the device-dependent (DD) algorithm
implementation. Figure 1-1 illustrates this division of function and shows how
these sections relate:

Application

XIL API

Standard dynamic linking

XIL API Layer

XIL Core

XIL GPI Layer

Runtime linking with dlopen

XIL GPI

Device-Dependent Modules

Figure 1-1 The XIL Internal Architecture
This document describes the XIL core (including the XIL APl and GPI layers),

the graphic porting interface (GPI), and the method needed to supply
alternative DD code. In general, porting new hardware to the XIL environment

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

XIL API Layer

involves providing new implementations of DD modules. The GPI is the
interface through which the DD modules are called and is responsible for
allowing the creation of new DD implementations without requiring exposure
of XIL library source code.

The API layer in the XIL library contains the C wrappers on the C++ device-
independent classes. It consists of functions that can be categorized in the
following way:

Create and destroy objects

Set and get object attributes
Modify image data

Extract information from an image
Modify data in non-image objects
Synchronize operations

The semantics of the functions exposed in the API are described in the XIL
Programmer’s Guide and the XIL Reference Manual.

The C++ XIL API level classes are used to implement the API functions
described above. These classes provide a device-independent interface to the
XIL library imaging functionality and are primarily used to pass information
through the GPI to the DD modules. They are listed in Table 1-1 and
individually described in the following sections.

Table 1-1 XIL Device-Independent Classes

Class Name Definition
XilDebugObject The base class from which all other classes derive
XilGlobalState Contains a list of system states and the tree of

atomic/molecular operations and their corresponding
function pointers

XilSystemState Contains the creation methods for all API classes

XilObject The parent class for all of the XIL API classes

XilAttribute Contains multiple device attributes

XilinterpolationTable Contains an array of 1 x n kernels that represent the
interpolation filter in either the horizontal or vertical
direction

Overview 3

Table 1-1 XIL Device-Independent Classes (Continued)

Class Name Definition

XillmageType Contains an image description without data

Xillmage The basic data element for XIL functions

XilCis Contains the compressed image data and compression
functions

XilKernel Contains kernel data used in convolution and error
diffusion

XilSel A structuring element used in erosion and dilation

XilDitherMask
XilRoi
XilLookup
XilColorspace
XilHistogram

XilError

Contains dither matrices for ordered dithering
Contains region of interest information for an image
Contains data for image conversion and colormap use
Contains information to specify a colorspace

Contains image histogram information

Contains information for reporting errors

Figure 1-2 shows the base part of the XIL library object hierarchy.

XilGlobalState

XilSystemState

XilDebugObject

XilDeviceType

Figure 1-2 XIL Library Object Hierarchy

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

XIL Base Classes

The XilDebugObject Class

The XilDebugObject class is the base class from which all XIL classes are
derived. Its purpose is to allow members to be added to all classes at the same
time for debugging purposes. It is currently empty.

Part of the definition of the XilDebugObject class is shown below:

Code Example 1-1 Definition of XilDebugObject Class

class

kh

XilDebugObject {

The XilGlobalState Class

This class contains the tree of atomic/molecular operations and their
corresponding function pointers. This tree is created initially by the atoms and
molecules provided with the XIL library. Each node in the tree contains a list of
function pointers. The base of the tree is stored in this class. A new compute
handler uses describeMembers() to add all of the member functions from
the compute handler into the list of function pointers at each node. If the
compute handler has a new molecule, then a node is created for that sequence
of atoms. See Chapter 4, “Compute Devices,” for more detail about compute
devices.

A single instance of this class is created when the first XilSystemState class
is created (during the call to xil_open()). Only one XilGlobalState is
created; it is pointed to by the single global variable xil_global_state

Overview 5

Part of the definition of the XilGlobalState class is shown below:

Code Example 1-2 Definition of XilGlobalState Class

class XilGlobalState : public XilDebugObiject {
public:
XilOpTreeNode* getOpTreeBase(); //Getthe base ofthe tree that holdsthe
/I atomic/molecular operations and their
/I corresponding function pointers.

h

extern XilGlobalState* xil_global_state;// The single global variable

The actual calls to dynamically load the various modules are done through the
dlopen() system interface. A private member function of the

XilGlobalState class implements this and additionally provides code to
allow for loading alternate versions of the modules using the XIL_DEBUG
interface. For information regarding XIL_DEBUG refer to the section “The
Development Environment” on page 60 of Chapter 2.

Multiple system states may be created by multiple calls to xil_open() . The
various system states are created and destroyed through the global state. A
singly linked list is used to store the system state objects. The global state
destructor uses the list to make sure all the system state objects get destroyed.

The global state also contains the descriptions of atomic and combined image
functions, or molecules, in a tree structure. See the description of the
XilOpTreeNode object in the section “The XilOpTreeNode Class” on page 53
and the discussion on deferred execution and molecules in the section
“Deferred Execution” on page 43.

The XilSystemState Class

The XilSystemState class contains all the information for an individual XIL
session. The constructor for this class is called by xil_open() , which returns
the XilSystemState handle. Applications must save this handle, since it is a
required argument for all object creation routines. At the C++ level, all
constructors of the API level XIL objects are members of this class. All of the
API objects for an XIL session belong to that session’s system state.

XIL Device Porting and Extensibility Guide—August 1994

Part of the definition of the XilSystemState class is shown below:

Code Example 1-3 Definition of XilSystemState Class (1 of 3)

class XilSystemState : public XilDebugObject {
public:

I/ notifyError is the main error reporting function. It is called
// by the handler code, normally via the XIL_ERROR macros defined
I/ in xil/XilError.h
void notifyError(XilErrorCategory category, char id],
int primary, int line, char* file, XilObject* object);

I/l AP object creation - image creation is overloaded to support

/I creation from user data and creation from image type.

/I The following GPI functions have the same parameters as their
/I corresponding API functions (except the void* parameter of the
I/ createlmage function--in the API the parameter is XilAttribute).

XillmageType* createlmageType(unsigned int width, unsigned int height,
unsigned int nbands, XilDataType datatype);

Xillmage* createlmage (XillmageType* image_type);

Xillmage* createlmage (unsigned int width, unsigned int height,
unsigned int nbands, XilDataType datatype);

Xillmage* createlmage (char device[], void* value);
Xillmage* createlmageWindow (Display* display, Window window);
XilKernel* createKernel (unsigned int width, unsigned int height,

unsigned int keyx, unsigned int keyy,
float *data);

XilDitherMask* createDitherMask(unsigned int width, unsigned int height,
unsigned int bands, float* data);

XilSel* createSel (unsigned int width, unsigned int height,
unsigned int keyx, unsigned int keyy,
unsigned int *data);

Overview

Code Example 1-3 Definition of XilSystemState Class (2 of 3)

XilLookup*

XilLookup*

XilLookup*

XilHistogram*

createLookup (XilDataType input_type,
XilDataType output_type,
unsigned int nbands, unsigned int num_entries,
short offset, void* data);

createColorCube(XilDataType input_type,
XilDataType output_type,
unsigned int nbands, short offset,
int multipliers[], unsigned int dimensions[]);

createCombinedLookup (XilLookup lookup_list[],
unsigned int num_lookups);

createHistogram(unsigned int nbands, unsigned int nbins],
float low_valuel], float high_value[]);

XilColorspace* createColorspace(char* name, unsigned int opcode,

XilRoi*

XilCis*

XilAttribute*

unsigned short nbands);
createRoi ();

createCis(char* compression_name);

createAttribute (char* device_name);// the API

/I xil_device_create invokes this function

XillnterpolationTable*createlnterpolationTable (unsigned int kernel_size,

unsigned int subsamples, float* data);

/I Attribute function to control whether the functions for this system
/I state are synchronized or allowed to be deferred.

Xil_boolean getSynchronize();
void setSynchronize(Xil_boolean onoff);

/I Attribute function to control whether image operations are reported

/I -1 means check environment variable XIL_DEBUG for “show_action”
// 0 means no show action

/I ' 1 means show action

int getShowAction();
void setShowAction(int env_off_on);

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

Code Example 1-3 Definition of XilSystemState Class (3 of 3)

[/l Entry point to the named object database
XilObject* getObjectByName(char* name, XilObjectType type);

h

The XilObject Class

XilObject s the base class from which all of the API level XIL objects are
derived. It contains all the attributes and functions that are generic to those
exposed objects. It is an abstract class; no instance of this class is ever created.

Each API level object has a version number, which is updated using the
member function newVersion() each time that the object is modified. This
version number is a 64-bit quantity, and can be returned for any XilObject
derived class by use of the member function getVersion() . A copy of an
object returns the same version number. Use of object versions allows
intelligent caching of API objects within the implementation.

Part of the definition of the XilObject class is shown below:

Code Example 1-4 Definition of XilObject Class

class XilObject : public XilDebugObject {

public:

char* getName (); /I get a copy of the object’s name

void setName (char *name);// set the object’'s name to the one supplied
void destroy (); /I destroy objects. Use thisrather than “delete”
XilSystemState* getSystemState();// get a pointer to the system state that
/I All objects have unique version numbers,

/I which change every time the contents or

// attributes of the object change. This allows implementations to

Il perform intelligent caching of objects.

XilVersionNumber getVersion(); /I get the version number of this object

/I this object was created under

Overview 9

10

Code Example 1-4 Definition of XilObject Class (Continued)

/I set the version number of this object to the one supplied. This is

/l used when making identical copies of objects

void setVersion(XilVersionNumber new_version);// set the version number
/I of this object to the one supplied.
/I This is used when making identical
Il copies

XilObjectType getObjectType(); /I return the XilObjectType of the object

/I each object has a character pointer associated with it for use in
/I error reporting. getErrorString copies “storage_size” characters
/I from the buffer pointed to by this pointer to the “error_storage”

/I buffer. setErrorString sets this pointer to “str”.

virtual void getErrorString(char* error_storage, int storage_size);

virtual void setErrorString(char* str);

The XilDeviceType Class

The XIL library has the concept of devices—software and hardware—which are
represented by the device handler modules. More than one instance of a device
may be created. In this case, information that is common to all instances of a
device should be held in the device type class. XilDeviceType is an abstract
class, containing the general information needed at this level. The XIL library
subclasses XilDeviceType for each of the kinds of devices that are
supported.

Note — Each class derived from the XilDeviceType class must have its own
destructor (even if it takes no action). The base class has a virtual destructor. If
the derived class does not supply the destructor, the compiler attempts to in-
line the virtual destructor. This results in a warning message and creates out-
of-line copies of the destructor, which could result in wasted space.

XIL Device Porting and Extensibility Guide—August 1994

Part of the definition of the XilDeviceType class is shown next:

Code Example 1-5 Definition of XilDeviceType Class

#include “XilDebugObject.h”

/I This class contains all information common to I/O, storage, and compute
// device types. XilDeviceType is an abstract class. The library subclasses one
I/l instance of an XilDeviceType for each of the kinds of devices it supports.

class XilDeviceType : public XilDebugObiject {
public:
virtual void printStatus(); [/ print any information that the
/I device writer thinks might be
/I useful for debugging

virtual void optimizeMemoryUsage(); // routine to request that the
/I device free any “optional” system
/I memory that it may be using

virtual ~XilDeviceType(); /I destructor

XilDeviceType(char *dname); /I constructor with name param

The XilDevice Class

XilDevice is an abstract class that is subclassed for each of the kinds of
devices supported by the XIL library (described below). It is similar to
XilDeviceType , but contains the general information needed for each
instance of the device.

Overview

12

Part of the definition of the XilDevice class is shown below:

Code Example 1-6 Definition of XilDevice Class

#include “XilDebugObject.h”

/I XilDevice
1

/I This is the base class for all the various XIL devices
/I printStatus() is potentially useful for debugging.

class XilDevice : public XilDebugObject {

virtual void printStatus();
virtual ~XilDevice();

XIL API Level Classes

As described earlier in this chapter, XilObject is the base class for all the API
level classes. You cannot instantiate an object from these classes; instead, you
must get a copy of or a reference (pointer) to the object. If you get a copy, you
are responsible for freeing the allocated data.

Figure 1-3 describes the relationship among the API level objects. The classes
are described in the following sections.

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

XilDitherMask
» XilColorspace

M XilHistogram
XilAttribute
@ XillmageType

Figure 1-3 API Level Objects

XillnterpolationTable

The XillmageType Class

This class carries information about an image, independent of its associated
pixel values. It is used at the API level to return information about the kind of
image the application should create to act as a destination from a
decompression or device capture, or as a source to a compression or device
display. XillmageType is subclassed by the XIL library to create the
Xillmage class. There is an API function that creates an image directly from
an XillmageType object.

Overview 13

14

Part of the definition of XillmageType class is shown next:

Code Example 1-7 Definition of XillmageType Class

class XillmageType : public XilObject {

public:
unsigned short getWidth(); // the width (extent in x) of the image
unsigned short getHeight(); /l the height (extent in y) of the image

/I overloaded functions to return the x and y image size
void getSize(unsigned short* width, unsigned short* height);
void getSize(unsigned int* width, unsigned int* height);

unsigned short getBands(); // the number of bands in the image
XilDataType getDataType(); /l the data type of the image

/I overloaded functions to return all of the image parameters
void getinfo(unsigned int* width, unsigned int* height,

unsigned int* nbands, XilDataType* datatype);
void getinfo(unsigned short* width, unsigned short* height,

unsigned short* nbands, XilDataType* datatype);

Il functions to set or get a copy of the XillmageType'’s colorspace
void setColorspace(XilColorspace* colorspace);
XilColorspace* getColorspace();

The Xillmage Class

Derived from the XillmageType class, Xillmage represents an image along
with its associated data. The Xillmage class contains member functions that
make up the XIL image functions. It also contains member functions for

storage and retrieval of image attributes.

Three of the member functions getStorage() , getMemoryStorage()

requestStorage() have similar names and deserve an explanation noting

their differences.

getStorage() returns a pointer to a structure that describes the data storage

for the specified storage type. If the current device is not the specified type and
cannot emulate the type; then the routine returns NULL NULL indicates you

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

must try another storage type. If the routine is successful, it returns a pointer.
The structure does not take child image offsets into account, so you must
calculate the offsets by using the offsetX , offsetY , and offsetBand fields
returned by the getChildOffsets() member function. For example, for a
byte image that is a child image, you would perform the calculation below to
have an accurate pointer to the start of the image data:

new_storage.byte.data = storage->byte.data+
storage->byte.scanline_stride*offsetY+
storage->byte.pixel_stride*offsetX+
offsetBand;

getMemoryStorage() does not allow you to specify the storage type. It uses
only the memory storage handler structures defined in

XilMemoryDefines.h . This routine takes child offsets into account, so there
are not extra calculations that you must perform.

requestStorage() returns a pointer to a structure that describes the data
storage for the specified storage type, but does not force a propagation as
getStorage does. If the storage has not already been allocated for this image,
the routine returns NULL If the requested device does not have the storage or
cannot efficiently emulate the requested device, the routine returns NULL

Note that an exported image is required to stay in memory and will not be
propagated to another storage type, which may prevent acceleration.

Two member functions enable you to indicate which pixels in the destination
image are touched by an operation and to indicate that the XIL core is
responsible for freeing the ROlI—setPixelsTouchedRoi() and
setPixelsTouchedRoi_flag()

Operations must intersect the ROI for the source image and destination image
to determine the ROI that is written by the operation. This determination is
standard procedure and is usually performed by using XiliGetRoiList()

For example,

(set up for operation)

I get the intersection of source and destination image’s ROIs

Overview 15

16

intersected_list =
XiliGetRoiList(&intersected_roi,srcl,src2,dest)

(loop over the intersected list of rectangles to perform
operation)

/I clean up from operation
intersected_roi->destroy();
intersected_list->destroy();
return(XIL_SUCCESS);

For device images, XIL may need the intersected ROI after the operation has
completed and the display operation has begun (see Chapter 3, “1/0 Devices,
for information about device images). Therefore, the intersected ROI should
not be destroyed as shown in the code above. Instead, the intersected ROI
should be stored (as shown above) and assigned as the “PixelsTouchedRoi”
(the pixels that were touched) for the image. Then, a flag should be set that
indicates that the XIL core is responsible for freeing the intersected ROI. For
example,

(set up for operation)

/I get the intersection of source and destination image’s ROIs
intersected_list =
XiliGetRoiList(&intersected_roi,dest,srcl,src2)

/I set up the PixelsTouchedRoi
srcl->setPixelsTouchedRoi(intersected_roi);
srcl->setPixelsTouchedRoi_flag(TRUE);

(loop over the intersected list of rectangles to perform
operation)

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

I/ clean up from operation
intersected_list->destroy();
return(XIL_SUCCESS);

Note - If PixelsTouchedRoi is assigned, the routine must not destroy the
intersected ROI.

If a routine does not assign the intersected ROI as the PixelsTouchedRoi for the
image, the ROI on the display image determines which pixels are touched.

Part of the definition of the Xillmage class is shown below:

Code Example 1-8 Definition of Xillmage Class (1 of 5)

class Xillmage : public XillmageType {
public:
/I get only attributes (set at create time)
Xillmage *getParent(); /I return the pointer to the image’s
/I parent, NULL if there is no parent.

void* getMemoryStorage(); // get a pointer to a structure
/I that describes the memory
[l layout. This function takes child
/I image offsets into account.

void setMemoryStorage(XilMemoryStorage* storage);// set the memory
// storage of an image

void* getStorage(char storage_typel[]); // get a pointer to a structure
/l that describes the data storage.
/I This function returns the
/I storage information on the parent
// only, but allows the calling process
/I to request a particular kind of
/I storage.

XilDevicelnputOutput* getDevicelnputOutput(); // access the input/output
/l device, if the image is a device
/l image. This will be NULL if it is
/l not a device image.

Overview 17

18

Code Example 1-8 Definition of Xillmage Class (2 of 5)

void getDimensions (unsigned int *x_size,// get the image size parameters
unsigned int *y_size,
unsigned int *nbands);

void getChildOffsets(unsigned int *offsetX,// get the child image offsets
unsigned int *offsetY, /I if this is a child image.
unsigned int *offsetBand);// If this is not a child
/I image, the offsets will be 0

/ functions to return whether this image can be read (if it is an
// output device image, it might not be), or written (if it is an

/I input device image, it probably cannot be).

Xil_boolean isReadable ();

Xil_boolean isWriteable ();

I get/set attributes

float getOriginX(); /I get the x image origin
float getOriginY(); /I get the y image origin
void getOrigin(float* x, float* y); // get the image origin in floats
void getOrigin(long* x, long* y); /I get the image origin in longs
void setOrigin(float x, float y); /I set the image origin

int getAttribute (char attribute_name[], void**); // get (return a pointer
// to) a user-assigned attribute

int setAttribute (char attribute_name[], void*); // set a user-

// assigned attribute

int getDeviceAttribute(char name[], void**); // get (return a
I/ pointer to) a device-specific
// attribute. This only applies
// to images that are device
/l images.

int setDeviceAttribute(char name[], void* value); // set a device-
1/ specific attribute.
/I This only applies to images
// that are device images.

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

Code Example 1-8 Definition of Xillmage Class (3 of 5)

/ functions used by the blackGeneration() function
void setUndercolor (float color);// set the image undercolor value

float getUndercolor (); /I get the image undercolor value
void setBlack (float color); /I set the image black color value
float getBlack (); /I get the image black color value

// ROI functions

XilRoi* getRoi(); /l return a copy of the ROI
/l assigned to this image. If no ROl is
/l assigned, NULL is returned.

XilRoi* getimageSpaceRoi(); [l return a pointer to the
/I image-origin adjusted, clipped ROI
/I assigned to this image. If no ROI was
/l initially assigned, a pointer to an
/I ROI that encompasses the entire image
/I is returned. The calling routine must
// not delete this ROI.

void setRoi(XilRoi* roi); /I set the image’s ROI. An
/l internal copy is made of the ROI that
Il is passed to this function.

/I PIXELS TOUCHED functions

/l Functions to set the region of pixels touched by the last routine

/ that writes to the image. The flag indicates whether the routine used
/I the PTRoi mechanism (This means only new routines will know to set
I the flag. Old routines will default to the old behavior)

void setPixelsTouchedRoi (XilRoi* roi); // assign the roi as the
/I images’s PixelsTouchedRoi

void setPixelsTouchedRoi_flag (Xil_boolean value);// set a flag to
// indicate the image has a valid
/I pixelsTouchedRoi

Overview 19

20

Code Example 1-8 Definition of Xillmage Class (4 of 5)

/ functions pertaining to deferred execution
void sync (); I/l evaluate the contents of
/I this image immediately

void toss(); /I indicate to the deferred-
/I execution mechanism that we are no
/I longer interested in the contents of
/I this image.

void setSynchronize (Xil_boolean onoff);// set the synchronization
/I of the image. If set to TRUE,
/l operations are always executed
/l immediately. Setting it to FALSE
/I enables deferral of operations
/I (and possible optimization)

Xil_boolean getSynchronize (); /I return the current synchronization
/l value of the image

/I overloaded functions for child image creation

Xillmage* createChild (unsigned int xstart, unsigned int ystart,
unsigned int width, unsigned int height,
unsigned int startband, unsigned int numbands);

Xillmage* createChild (unsigned short xstart, unsigned short ystart,
unsigned short width, unsigned short height,
unsigned short startband, unsigned short numbands);

/I overloaded functions for making image copies

Xillmage* createCopy (unsigned int xstart, unsigned int ystart,
unsigned int width, unsigned int height,
unsigned int startband, unsigned int numbands);

Xillmage* createCopy (unsigned short xstart, unsigned short ystart,
unsigned short width, unsigned short height,
unsigned short startband, unsigned short numbands);

I/l overloaded functions for setting and getting single pixel values
void setPixel(unsigned short x, unsigned short y, float* pixel_value);
void setPixel(unsigned int x, unsigned int y, float* pixel_value);

void getPixel(unsigned short X, unsigned short y, float* pixel_value);
void getPixel(unsigned int X, unsigned int y, float* pixel_value);

XIL Device Porting and Extensibility Guide—August 1994

Code Example 1-8 Definition of Xillmage Class (5 of 5)

/I import export stuff
int export(); /I cause the image data to be moved
/I from the library space to
Il application space (memory).
/I Applications cannot access image
/l data that has not been exported.
/I The function returns XIL_SUCCESS or
/I XIL_FAILURE.

void import(Xil_boolean change_flag);// cause the image data
//'to be moved from application space
I/ to the XIL library space

int getExported(); I return one of three possible values:
/10 if the image is not exported
N1 if the image is exported
/I -1 if the image is not exportable
i (for example, a device image)

void* getExportedMemoryStorage();// get a pointer to a structure
/ that describes the memory
// layout once the image has been
/I exported. This function takes child
/I image offsets into account.

void setDimensions (unsigned int x_size,// set the image size
unsigned inty_size, // parameters (resize the image)
unsigned int nbands);

void* requestStorage (char storage_type[]);// get a pointer to a
/ to a that describes the data
/I storage. This function returns the
/ storage information on the parent only
/Il but allows the calling process to
/I to request a particular kind of
/I storage. If the request cannot be
/l satisfied, NULL is returned.

Overview

1
=

The XilKernel Class

The XilKernel class represents a two-dimensional array of floating point
values. XilKernel objects are used as parameters in the image convolution
and blend functions.

Part of the definition of the XilKernel class is shown below:

Code Example 1-9 Definition of XilKernel Class

class XilKernel : public XilObject {

public:
unsigned short getWidth (); // return the width (x size) of the kernel
unsigned short getHeight (); // return the height (y size) of the kernel
unsigned short getkeyX (); I/ return the x key pixel value of the kernel
unsigned short getkeyY (); [/l return the y key pixel value of the kernel

float *getValue (); [/l return a pointer to the actual kernel data

XilKernel* createCopy(); I/ return a copy of the kernel

The XilRoi Class

XilRoi describes an arbitrary region of interest (ROI). Member functions exist
to manipulate and logically combine XIL ROIs. The functions of the XilRoi
class are all pure virtual but are implemented in derived classes within the XIL
library.

22 XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

Each ROI is made up of a list of rectangles. If the ROI is empty, then the
number of rectangles in the list is 0 (zero). An empty ROl may be returned
when the intersection of specified ROIs have no overlapping pixels. In the
following case, the intersect routine does not return a NULL pointer; instead, it
returns an empty ROI.

roi_intersected = roi_intersect(roi2);

if (roi_intersected->getNumRects()==0) {
/I code here for empty ROI

}

else {

}

Il process list of rectangles

To process a list of rectangles, take the following steps:

1. Get the list of rectangles from a specific ROl by using the getRectList()
function of the XilRoi class.

2. Move through the list of rectangles by using the next() function of the
XilRoiList class.

class XilRoiList : public XilObject {

public:
virtual Xil_boolean next (
long *x, Il rectangle left-most x
long *y, I rectangle topmost y
unsigned int *x_size, Il rectangle size in x

unsigned int *y_size = 0);// rectangle size iny

The next() function expects pointers to variables. The function writes
information about the rectangle (starting x, starting y, width in x, and height in
y) to these variables. The next() function returns a status of TRUEwhen there
is a rectangle whose information has been loaded into the given parameters.
Each time TRUEis returned, XilRoiList updates its internal state, tracking
the current “next” rectangle. The next() function returns a status of FALSE
when no more rectangles are in the list. If the next() function encounters an
empty ROI, it returns FALSE on the first call.

Overview 23

24

Typically, routines operate on an intersected ROI, the area intersected by the
source(s) and destination ROIs. Source and destination ROIs are intersected in
image space, taking into account the original offsets and size of the image to
which they are attached. For example,

roi = (dst->getimageSpaceRoi())->
intersect(src->getimageSpaceRoi());

If no ROI is active on an image, then the image has a ROI that is the same size
as the image. This semantic is handled internally in XIL by the
getlimageSpaceRoi() function. Once the routine has the intersected ROI, the
routine loops over the rectangle list (roi_list).

roi_list = roi->getRectList();
while(roi_list->next(&over_x,&over_y,
&over_x_size,&over_y_size)) {

/I process the rectangles

When the routine completes the operation, it must destroy the roi_list

roi_list->destroy;

Normally, the ROI is stored via the setPixelsTouchedRoi() function of the
Xillmage class. See the section “The Xillmage Class” on page 14 for more
information.

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

You can use the XiliGetRoiList() routine as a shortcut for forming a
roi_list . This routine intersects up to four images using image space ROlIs.
It stores in outroi the copy of the final intersected ROI and returns a copy of
the rectangle list of that ROI. The prototype is shown next:

XilRoiList* XiliGetRoilList (
XilRoi** outroi,
Xillmage* imagel,
Xillmage* image2,
Xillmage* image3=NULL,
Xillmage* image4=NULL);

Only image pointers that are non-NULL are valid for the calculations of a
rectangle list, and the image pointers are searched up to a NULL. You must
provide at least the imagel and image2 pointers (normally
destination/sourcel). If there are more sources, then use image3 and image4.
For example, if you have a routine that needs an ROI intersection for two
source images and a destination image, XiliGetRoiList() would look like:

roi_list=XiliGetRoiList(&roi,dest,srcl,src2);

Part of the definition of the XilRoi class is shown next. Notice that the
member functions in this class are all pure virtual. Subclasses that contain the
functionality for each of these virtual functions are provided in the library. The
caller of any function that returns a new ROI is responsible for destroying it.

Code Example 1-10 Definition of XilRoi Class (1 of 4)

class
public:

virtual int addimage (Xillmage* image) = 0;// add values that are nonzero

virtual int addRect (long X, long y, /I add the specified rectangle

XilRoi : public XilObject {

// in the passed image to the ROI.

/I The image is expected to be of type
/I XIL_BIT. Images are converted to
/I rectangles and added to the ROI.

long width, long height) = 0; // to the ROI

Overview 25

26

Code Example 1-10 Definition of XilRoi Class (2 of 4)

virtual int addRegion (Region region) = 0;// add the specified X region
/ to the ROI

virtual XilRoi* affine(float* matrix) = 0;// return a new ROI that is the
/I result of the affine transformation
/I of this ROI with the specified matrix

virtual XilRoi* createCopy () =0; // return a new ROI which is a
/I copy of this ROI

virtual void dump () = 0; /I print out debugging information
I/ describing the ROI

virtual Xillmage* getAsimage () = 0; // return an XIL_BIT image which
/I represents the ROI. The image
/I needs to encompass the entire
Il extent of the ROI, with pixels
/I within the ROl set to 1,
/I pixels outside set to 0.

virtual Region getAsRegion () = 0; /l return an X Region which
/l the ROI

virtual XilRoi* intersect (XilRoi* roi) = 0;// return a new ROI that
/'is the result of an
/l intersection between “this”
/I ROI and the passed ROI

virtual XilRoi* intersect (short* cliplist, int orgx, int orgy) = 0;
/I return a new ROI that is the
I result of an intersection between
/[“this” ROl and the passed cliplist
Il (primarily used for DGA cliplists)

/I return a new ROI which is the result of an intersection between
/ the current (“this”) ROI and all the passed ROIs

virtual XilRoi* intersect (XilRoi* roil, XilRoi* roi2) = 0;

virtual XilRoi* intersect (XilRoi* roil, XilRoi* roi2, XilRoi* roi3) =0;

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

Code Example 1-10 Definition of XilRoi Class (3 of 4)

virtual XilRoi* rotate (float angle, float xorigin, float yorigin) = 0;
/lreturnanew ROl thatis the result
/I of a rotation of “this” ROI about
I the specified origin

virtual XilRoi* scale (float xscale, float yscale, float xorigin,
float yorigin) = O; /l return a new ROI that
/'is the result of scaling of “this”
/I ROI about the specified origin

virtual int subtractRect(long x, long y, long width, long height)=0;
/I remove the specified rectangle
I/l from the ROI

virtual XilRoi* translate(int x, int y)=0;// return a new ROI that is the
/I result of a translation of “this”
/I ROI by the specified x and y
/I amounts

virtual XilRoi* transpose (XilFlipType fliptype, float xorigin,
float yorigin) = 0O; /l return a new ROI that
/I is the result of transposing
// “this” ROI about the specified
/I origin

virtual XilRoi* unite (XilRoi* roi) = 0;// return a new ROI that is the
/I union of “this” ROI with the
I/ specified ROI

virtual Xil_boolean pointinRegion (long x, long y) = 0;
/I return TRUE or FALSE, depending on
/I whether the specified point is
/I within or outside the ROI

virtual int numRects () = 0; /l return the number of rectangles
/I it would take to fully specify
/l the ROI

virtual void boundingBox (long* x1, long* x2, long* y1, long* y2) = 0;
I return a rectangle that bounds
/l the whole ROI

Overview 27

28

Code Example 1-10 Definition of XilRoi Class (4 of 4)

virtual XilRoiList* getRectList () =0; // return a list-of-rectangles
/I object for this ROI. This allows
/I application code to step through
/Il the rectangles in an ROI using
I/ using XilRoiList::next()

/I XilRoi object constructor
XilRoi(XilSystemState* system_state) : XilObject(system_state,XIL_ROI) {};

2
The XilLookup Class
The XilLookup class describes a table of data that is used to interpret image
data. It can be used to modify the data, creating an output image by treating
each input image pixel as an array index. The lookup table can have multiple
output data for each input value; that is, it can convert a single band image
into a multiple band image. In the special case of three bands output, it can be
thought of as a colormap. The data elements may be extracted from the lookup
and placed into an X colormap.
To support the common occurrence of performing a lookup on a color image
with different response curves for each band, XilLookup also supports
multiband lookups. The XilLookup object can contain a separate data array
for each band in the input image. The number of bands in the output image
must match the number of bands in the input.
Part of the definition of the XilLookup class is shown below:
Code Example 1-11 Definition of XilLookup Class

class XilLookup : public XilObject {

public:

XilDataType getinputDataType (); // return the datatype of the input
XilDataType getOutputDataType ();// return the datatype of the output
unsigned int getNumEntries (); /I return the total number of entries

/I in the table or returns O for a
/I combined (multiband) lookup.

XIL Device Porting and Extensibility Guide—August 1994

Code Example 1-11 Definition of XilLookup Class (Continued)

unsigned short getNBands (); Il return the number of bands in the
I/ output

void* getData (); /l return a pointer to the actual data

short getOffset (); /I return the offset that describes

/ the input value corresponding to
/I the first table value or returns 0
/I for a combined (multiband) lookup.

void setOffset (short); /I set the offset that describes
/ the input value corresponding to
/I the first table value. Returns O if it
/I is a multiband lookup.

void getValues (short start, unsigned int count, void* data);
/I copy ‘count’ data values from the
/I LUT starting at the table entry
/ position ‘start’ into buffer ‘data’

void setValues (short start, unsigned int count, void* data);
/I copy ‘count’ data values from the
/l buffer ‘data’ into the LUT starting
/I at the table entry position ‘start’.
/I Generates an error ifitis a
/I multiband lookup.

Xil_boolean getlsColorCube (); [/ return TRUE if the LUT is formatted
/l as a colorcube, FALSE otherwise

Xil_boolean getColorCubelnfo(int multipliers[], unsigned int dimensions[],
short* origin);
/I return information on the colorcube
/I formatting if this LUT is a colorcube

XilLookup* convert (XilLookup* dst);// calculate and return a copy of
/I the LUT that converts
// between the two LUTs “this”
/l and dst. The resulting LUT’s input
/I datatype will be that of the input
/l datatype of “this”, and its output
I/l datatype will be that of the input

Overview

29

30

Code Example 1-11 Definition of XilLookup Class (Continued)

/I datatype of dst. The LUT's offset

/I and number of entries are the same

/I as those for “this”. Index N of the

Il resulting LUT contains the index of

/I the nearest color in dst to the color

/I at index N in “this”. Nearest color

Il is determined by Euclidean distance.

/I Source and destination LUTs must have
/I the same input datatypes, output

/l datatypes, and number of bands.

XilLookup* createCopy (); /l return a copy of the LUT

unsigned short getinputNBands ();// return the number of bands in
// the input

/I Each of the following functions returns a list where each index
I/l in the list corresponds to a band in the combined (multiband) lookup.

unsigned int* getEntriesList (); // return the list of the number of
/I entries for each lookup in a combined
/l table

short* getOffsetsList (); Il return the list of the offset for each
//'lookup in a combined table

void** getDatalList (); Il return the list of the data for each
[/l lookup in a combined table

XilLookup* getBandLookup (unsigned int band_num);// return an XilLookup
// from a combined lookup

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

The XilCis Class

The XilCis (for compressed image sequence) class is the primary object for
compression in the XIL library. It contains member functions to allow access to

and movement through compressed data. The XilCis is created by loading a

specified compressor.
Part of the definition of the XilCis class is shown below:

Code Example 1-12 Definition of XilCis Class (1 of 4)

class XilCis : public XilObject {

public:
/I get only attributes (set at create time or by compressor)
char* getCompressor(); // return the name of a compressor
char* getCompressionType(); // return the name of the type of

/I compressor

Xil_boolean getRandomAccess(); /I return TRUE if the compressor
/I supports random accessing of
/lindividual frames of the sequence;
/I otherwise, returns FALSE

int getStartFrame(); [/ return the index to the first
/I compressed image in the CIS

int getReadFrame(); // return the index to the current
/l read frame

int getWriteFrame(); / return the index to the next
/I frame that will be written

XillmageType* getlnputType(); I/ return the XillmageType that the
/I CIS will accept for compression

XillmageType* getOutputType(); /l return the XillmageType
/I produced by a compressor

Overview

31

32

Code Example 1-12 Definition of XilCis Class (2 of 4)

Xil_boolean getReadlInvalid(); /I return TRUE if a bitstream error
/I occurs during decompression.
/I Otherwise, returns FALSE
/l indicating that the CIS is valid
// and able to be decompressed.

Xil_boolean getWritelnvalid(); I/l return TRUE if a bitstream error
/I occurs during compression.
/I Otherwise, returns FALSE
/l indicating that the CIS is valid
/I and compression can continue.

/I get functions: these return something about the state of
/I the cis (probably attributes)

int hasData(); I/ return the number of bytes of
/I compressed data the CIS contains

int numberOfFrames(); / return the number of complete
/l frames the CIS contains

Xil_boolean hasFrame(); // return TRUE if a complete frame
I/ exists at the read frame position.
/I Otherwise, return FALSE.

Il get/set attributes

int getKeepFrames(); [l returnthe value that has been set
/I as the maximum number of frames
/I that the CIS should keep in a
/I compressor buffer

void setKeepFrames(int k); // set the number of frames before
/ the read frame that the CIS should
// keep in a compressor buffer

int getMaxFrames(); [/ return the value that has been set
/I as the maximum number of
/I compressed frames that the CIS
/I will buffer at one time

XIL Device Porting and Extensibility Guide—August 1994

Code Example 1-12 Definition of XilCis Class (3 of 4)

void setMaxFrames(int m); // set the upper limit on the number
/I of compressed frames that the CIS
/I should buffer

int getFramesToCompress(); // return the value that has been set
/I as the number of frames that are
/I compressed if the source image is
/I SEQUENTIAL

void setFramesToCompress(int number_of_frames);
I/ set the number of frames to
/I compress if the image is
/I SEQUENTIAL

Xil_boolean getAutorecover(); /l return TRUE if autorecovery
// has been turned ON. Otherwise,
/l return FALSE.

void setAutorecover(Xil_boolean on_off);// set autorecovery ON
/lorOFF.ThedefaultisOFF (FALSE).
/l'lf autorecovery is ON, recovery is
/I attempted after a bitstream error
Il occurs.

int getAttribute(char attribute_name[], void** value);
I/ return the value of the specified
/I compressor attribute

int setAttribute(char attribute_name], void* value);
/I set a compressor attribute

/I compression/decompression functions
/l these functions use this image as a destination so they just insert
/I an operation

1

void flush(); Il instruct the compressor to
/I complete any pending write
/l operations

void sync();

void reset();

void seek(int framenumber, int relative_to);

Overview

33

34

Code Example 1-12 Definition of XilCis Class (4 of 4)

h

void attemptRecovery(unsigned int nframes, unsigned int nbytes);
/I attempt recovery after an error
/I occurs in a CIS

/I this function cannot be deferred because it interacts with
/I non-library data
void getErrorString(char* error_storage, int storage_size);

/I get the XilDeviceCompression pointer for this CIS
XilDeviceCompression* getDeviceCompression(void);

/I This function is used by device compressions that do not have a
/I reliable way to get back to deferred frames. They MUST get back
/I to the current frame, but can use this function to avoid having any
/l frames older than read_frame - 1. It is in the public part instead

/I of the private in order to avoid having to install XilCisPrivate.h
/'in the install point.

void flushPriorDecompressOps(int frame_no);

#define XIL_CIS_ERROR(category,id,primary,dc, read_invalid, write_invalid) \
do {\

if (I(dc)->inMolecule()) \
(dc)->generateError((category), (id), (primary), \
(read_invalid), (write_invalid), _ LINE__, _ FILE_);\

} while (0);

#define XIL_CIS_UNCOND_ERROR(category,id,primary,dc,read_invalid,
write_invalid) \

(dc)->generateError((category), (id), (primary), (read_invalid), \
(write_invalid), _ LINE__, _ FILE_);

The XilError Class

This class describes errors in the XIL library. Its member functions allow
programs to get information about the error, to retrieve the object that is
associated with the error, and to control the error handling routines.

XIL Device Porting and Extensibility Guide—August 1994

Part of the definition of the XilError class is shown below:

Code Example 1-13 Definition of XilError ~ Class

class XilError {

public:
char* getString(); /I get a string associated with the error.
/I This function uses the localization functions
/I bindtextdomain() and dgettext() to parse the
/ error id string into a localized message
char* getld(); Il get the error id string

void setld(char error_string[]);// set the error id string

int getLine(); I/ get the line number where the error occurred
void setLine(int line); // set the line number where the error occurred
char* getFile(); /I get the file in which the error occurred

void setFile(char* file); // set the file in which the error occurred

char* getLocation(); /I primarily an internal routine to indicate
/l where and in which file an error occurred

XilErrorCategory getCategory();// get the error category define; one of:
/I XIL_ERROR_SYSTEM
/I XIL_ERROR_RESOURCE
/I XIL_ERROR_ARITHMETIC
Il XIL_ERROR_CIS_DATA
/I XIL_ERROR_USER
/I XIL_ERROR_CONFIGURATION
/I XIL_ERROR_OTHER

char* getCategoryString();// get the error category as a string
void setCategory(XilErrorCategory category); // set the error category

int getPrimary(); /I get the type of error (primary or secondary)
void setPrimary(int primary);// set the type of error

XilObject* getObject(); // get the object associated with the error

Overview

35

36

Code Example 1-13 Definition of XilError ~ Class (Continued)

void setObject(XilObject* object);// set the object associated with error

XilSystemState* getSystemState(); // get the system state associated with
/Il the error

void setSystemState (XilSystemState* sysSt);// set the system state
/I associated with the error

kh

/I defines for different ways of reporting errors
#define XIL_ERROR(sysSt,category,id,primary) \

{\
XilSystemState* _state=sysSt; \
state->notifyError(category,id,primary, LINE__, FILE__,
(XilObject*)NULL); \

}

#define XIL_OBJ_ERROR(sysSt,category,id,primary,object) \

{\
XilSystemState* _state=sysSt; \
state->notifyError(category,id,primary, LINE__, FILE__,object); \

}

#define XIL_OBJ_STR_ERROR(sysSt,category,id,primary,object,str) \

{\
XilSystemState* _state=sysSt; \
object->setErrorString(str); \
state->notifyError(category,id,primary, LINE__, FILE__,object); \
object->setErrorString(NULL); \

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

The XilHistogram Class

The XilHistogram class describes a multidimensional histogram. This object
can be used to gather statistical information on images.

Part of the definition of the XilHistogram class is shown below:

Code Example 1-14 Definition of XilHistogram Class

class XilHistogram : public XilObject {
public:

unsigned short getNBands (); /I the number of bands in the
Il histogram (this is a
/I multi-dimensional object)

void getNBins (unsigned int *nbins); // the number of bins for each band

unsigned int getNElements (); /[total number of elements in the
Il array

void getLowValue(float *low_value); // copy the array of floats that
/I define the value of the first bin
[for each band to the user-supplied
[/l array “low_value”

void getHighValue(float *high_value);// copy the array of floats that
/I define the value of the last bin
// for each band to the user-supplied
[l array “high_value”

void getData (unsigned int *data); /I copy the histogram data into the
/I user-supplied buffer “data”

unsigned int *getDataPtr(); /I return apointertothe actual data

The XilColorspace Class

XilColorspace describes a color space of an image in such a way that images
may be transformed from one color space to another. The XIL Imaging Library
supports ten color spaces, which are created at the time of a call to

xil_open() . Each of the supported color spaces is assigned an opcode. This

opcode is referenced by the color conversion routines. The correlation between

Overview 37

38

opcode and color space is defined in the cs.h file and is shown in Table 1-2.
In the table, the string that follows the “CS” prefix is the color space name. For
more information regarding supported color spaces, see XIL Programmer’s
Guide or the man page for xil_colorspace_get by name()

Table 1-2 Opcodes and Their Associated Color Spaces

Color Space Opcode

CSrgblinear
CSrgh709
CSphotoycc
CSycc601
CSycc709
CSylinear
CSy601
CSy709

© 00 ~N oo o B~ W N -

CScmy
CScmyk

[N
o

In the current release of the XIL library, there is no way to create a color space;
all supported color spaces are created as standard objects at start-up time and
can be retrieved using the xil_colorspace_get by name() functions in
the core. Future releases of the library will enhance this scheme to allow the
creation of device-dependent color spaces, to enable device color management.

XIL Device Porting and Extensibility Guide—August 1994

Part of the definition of the XilColorspace class is shown below:

Code Example 1-15 Definition of XilColorspace Class

class XilColorspace : public XilObject {
public:
unsigned int getOpcode(); I/ return the opcode associated with
// the XIL supported color space

unsigned short getNBands(); // return the number of bands in the
I/ colorspace

XilColorspace* createCopy(); // return a copy of the colorspace

The XilSel Class

The XilSel class describes a structuring element, which is a two-dimensional
description of a pixel neighborhood. In the XIL library, the structuring element
is described with a two-dimensional boolean (integer) array, with pixels in a

neighborhood having true values in the array, and pixels excluded from the

neighborhood having false values. Structuring elements are currently used as

parameters to the xil_erode() and xil_dilate()

Overview

39

40

Part of the definition of the XilSel class is shown below:

Code Example 1-16 Definition of XilSel Class

class XilSel : public XilObject {

public:
unsigned short getWidth (); // return the width (x size) of the sel
unsigned short getHeight (); // return the height (y size) of the sel
unsigned short getKeyX (); Il return the x key pixel value of the sel
unsigned short getKeyY (); I/l return the y key pixel value of the sel

unsigned int *getValue (); I return a pointer to the actual sel data

XilSel* createCopy(): // return a copy of the sel

The XilDitherMask Class

In the simplest case, the dither mask is a two-dimensional array of values that
determines how the noise added during the dither process is spread across the
image. In the XIL library, the dither mask can have multiple bands, each band
with its own matrix. This allows noise to be spread differently for each channel
of a true-color image, which can enhance the result of the dither operation. For
dithering of multiband images, the number of bands in the dither mask must
match the number of bands in the source image.

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

Part of the definition of the XilDitherMask class is shown below:

Code Example 1-17 Definition of XilDitherMask Class

class XilDitherMask : public XilObject {
public:
unsigned short getWidth (); // return the width (x size) of the dither
/I mask

unsigned short getHeight (); // return the height (y size) of the dither
// mask

unsigned short getBands (); // return the number of bands of the dither
/I mask

float *getValue (); I return a pointer to the actual dither
/l mask data

XilDitherMask* createCopy(); // return a copy of the dither mask

The XilAttribute Class

The XilAttribute class describes the attribute/value pairs of a device. The
member functions of this class enable you to access and set a device’s
attributes.

An XilAttribute object can be used to set multiple device attributes

simultaneously. This is important when device images are created and when
the setting of device attributes incurs substantial overhead.

When you use this object to create a device, you should set only attributes the
device understands. If the device does not recognize an attribute that you have

set through the XilAttribute object, an error is generated. You should set
default values for a device’s attributes based on the list of attribute/value pairs
returned by the XilAttribute object.

Overview 41

1
=

The definition of the XilAttribute class is shown next:

Code Example 1-18 Definition of XilAttribute Class

I/ Data structure for the attribute-value pairs

typedef struct __ XilKeyValue Pairs {
char* key; /I store the attribute name
void* value; /I store the attribute value
} XilKeyValuePairs;

class XilAttribute : public XilObject {

public:
/l return a pointer to a list of attribute-value pairs that exist for
/I this XilAttribute object. The list is of length “list_length”
XilKeyValuePairs** getAttributes (unsigned int* list_length);
/l assign an attribute-value pair of this XilAttribute object
/I if the attribute name has already been set, then the specified

/I attribute_value will replace the previous value

void setValue (char* attribute_name, void* attribute_value);

The XillnterpolationTable Class

The XillnterpolationTable class supports general interpolation. See XIL
Programmer’s Guide for a discussion about general interpolation. This class
describes an array of 1 x n kernels. The array represents the interpolation filter
in either the horizontal or vertical direction. The member functions of this class
enable you to access the data in an XilinterpolationTable object.

42 XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

The definition of the XillnterpolationTable class is shown next.

Code Example 1-19 Definition of XilinterpolationTable Class

class XilinterpolationTable : public XilObject {

public:
unsigned int getKernelSize (); I/l return the size of the
[interpolation filter
unsigned int getSubsamples (); Il return the number of subsamples
Il kernel entry
float* getData (); // return pointer to the table data

XillnterpolationTable* createCopy ();// return a copy of the table

XIL Core Layer

The Core layer in the XIL library manages the dynamic loading of device
handlers, deferred execution, and operation scheduling.

Deferred Execution

The primary problem in achieving adequate performance in an imaging library
comes from the way in which the units (or atoms) of functionality are
arbitrarily combined to perform useful work. The typical imaging case is much
more general than, for example, XGL with its well-defined processing pipeline.
This has tended to limit the usefulness of general imaging libraries, since any
reasonable division of imaging functionality into atoms renders the
performance of many applications substandard. The result is that useful
libraries tend to be closely tailored to applications and vertical markets.

The use of multiple passes of atoms impedes performance in at least three
ways:

®* Multiple passes through an image cause the entire image to be paged into
memory multiple times. Since in many cases the images are large compared
with available physical memory, and the application is often working with
multiple images simultaneously, this significantly impairs performance.

Overview 43

44

Often a pixel operation can be performed in a single CPU clock cycle, so the
time spent getting to the data far outweighs the time needed for the
operation. Imaging is often a worst case of 1/0 bound processing.

® Many combinations of atoms can be performed in a single logical step with
little penalty. For example, in the case of a rotation followed by a zoom, the
backward-mapped algorithms often used to perform the rotation can
perform both operations in nearly the same time as the rotation alone.

® The application must often create temporary images to hold intermediate
results. Such intermediate images are not needed in customized code and
may be avoided if the operations can be combined.

The XIL Library Method

There are several methods that can address these problems. In the XIL library,
we have chosen to implement deferred execution and multiple atomic
operation replacement. In this approach, the core-layer code keeps track of
image dependencies and causes the operations to occur as late as possible. This
enables significant performance improvements as described below.

In the library, atomic functions are, by default, deferred as long as possible. To
implement this, the API level function creates an instance of the XilOp class,
adds the API parameters to the XilOp , and then places the operation on a
tree-like structure that holds deferred operation information. void is then
returned to the calling routine (the C binding in this case).

The deferred execution data is stored as a directed acyclic graph (DAG), where
the nodes are the instances of the XilOp class described above. The fact that a
destination function depends on its sources is stored, along with the operation
and parameters necessary to produce the destination image once the sources
are produced. As image results are needed, the parts of the graph that hold
that information are evaluated. Their dependent images are generated by
performing the operations that have been stored.

Several actions can cause the evaluation of a subgraph:
® The reuse of an image on which other images depend
® The use of a destination image that has the member synchronized set

® A call to xil_set_synchronize() that turns on synchronization for an
image, or for another image that depends on that image.

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

The DAG is disassembled upon a call to xil_close()

Graph Evaluation and Molecules

When the graph is evaluated, each node’s op (the operation used to produce
the node’s destination image) is available and could be used to index into a list
of function pointers. In fact, the library does something a little more general
than this, and thus gains the ability to accelerate combined operations.

The XIL library stores its function table as an array of trees, each tree having
one of the atomic functions as its base. Branches exist from the base node
describing each composite operation (molecule) that exists. This structure is
built from the description of the contents of each compute device handler
(described below). As the core code looks at the DAG, it attempts to match the
longest sequence of atoms in the DAG to the function table. If the needed
molecule is available, it is called; otherwise, the sequence of functions is
checked again, leaving off the last function, which is performed atomically.

Each node on the function tree is a list of possible functions, usually using
different compute devices. The core code calls the first function, which is
assumed to be the optimal (accelerated) one. The accelerated function is
allowed to fail gracefully, in which case the second function in the list is called.
Typically, the last function in the list is the unaccelerated memory port, which is
guaranteed to work for all cases. This construction allows an IHV to accelerate
a function for only a subset of the input parameters. For example, the code
supporting an accelerator that only scales images up can fail gracefully (and
cause the memory function to be called) if the scale factors it pulls off the DAG
are less than unity. The mechanism for inserting a function into the table is
described later in this document.

The core code does not require porting.

Device porters can accelerate either atomic functions or molecules.

Some Considerations

The time needed to determine the sequence of operations from the DAG and
choose the appropriate function from the table appears to be trivial compared
to typical image operations.

Overview 45

46

Not all operations can be deferred. An example of this is the xil_extremay()
function, which supplies the maximum and minimum image values. The
library makes no effort to hide the values returned in an opaque structure, the
contents of which could be deferred. Thus, the use of xil_extrema() causes
an evaluation of the source image. In general, only the functions that have as
their destination an Xillmage or XilCis object (or create those objects) can
be deferred. The complete list of the rules for deferred execution is as follows:

1. Functions that return information based on values in the current image
cannot be deferred. These functions are:

xil_choose_colormap()
xil_compress_colormap()
xil_extrema()
xil_generate_colormap()
xil_histogram()
xil_squeeze_range()

2. Functions that have nonstandard ROI, origin, or size behavior cannot be
deferred. These functions are:

xil_affine()

xil_paint()

xil_rotate()

xil_scale() *
xil_subsample_adaptive()
xil_subsample_binary to_gray()
xil_tablewarp()
xil_tablewarp_horizontal()
xil_tablewarp_vertical()
xil_translate()
xil_transpose() *

* These operations may be deferred under special circumstances. See XIL
Programmer’s Guide.

3. General rules that apply to the other XIL functions are as follows:
a. The source and destination images must have the same ROI.
b. The source and destination images must have the same origins.**

c. The source and destination images must have the same width (xsize) and
height (ysize).**

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

d. The source images cannot have the same parent as the destination image.
** The xil_copy_pattern() function is exempt from this rule.

We do not envision a large number of molecules in a typical release. In
particular, display(zoom(decompress())) molecules have proven to be
advantageous. Other display pipelines (display(zoom()) ,
display(dither(zoom())) , etc.) will prove useful. It is possible, however,
for a third party to add molecules that particularly benefit its vertical market,
without requiring that other software running on the XIL library be modified.

One goal of deferred execution is that the application need never know when
functions are actually performed. Asynchronous error reporting allows this to
be the case in general. However, some cases are impossible to hide. Consider
the case of a frame grabber used as a source to an operation that is done in
response to an external signal. In normal operation, the actual grab would be
postponed until the dependency tree was evaluated, possibly several steps
further in the program. A possible resolution to this is to make the destination
of the grab operation synchronized. This causes the grab to occur when the
function call is made, but precludes any optimization of the grab function. In
the end, the application must choose whether the operation should be deferred
or not, and when the synchronization should occur. With the general rule “no
optimization through synchronization,” the application writer can judge an
appropriate place to synchronize.

Molecules must behave semantically like the sequence of atomic operations,
and produce the same (or nearly the same) results as calling the individual
atomic functions. A molecule cannot have a greater precision than the atomic
functions that the molecule contains.

Overview 47

48

Unusual Effects of Deferred Execution

One effect of deferred execution is that in some cases source code may not
accurately reflect the actual operations done. Consider the following case,
where im2 is not set to be synchronous, but display_image s set to be

synchronous:

for (i=0; i<N; i++) {
al0] =1i;
xil_add_const(im1, a, im2);
}

xil_copy(im2, display_image);

In the XIL library, only one add (the last one) is done as a result of this code,
since the earlier results are obscured by the later ones. If the final copy were
not called, no evaluation of the add would take place at all. In normal code,
such cases rarely arise, but one must be careful in benchmarking the library.
This is not unlike the situation that occurs with optimizing compilers.

Consider another case where only the final decompress is executed.

while (xil_cis_has_frame(cis)) {
xil_decompress(cis,im2);

}

xil_copy(im2,display_image);

Each call to xil_decompress() schedules a frame from cis to be
decompressed into image im2. This destination image is not used until the
decompress loop is exited. The last decompressed frame is copied to a display
image; this is the only operation that is evaluated.

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

Core Layer Classes

There are a few classes that are defined as part of the core layer. The class
XilOp is created, and its members are set, in the API layer. It is used, but not
modified, in the DD code.

Table 1-3 XIL Core Level Classes

Class Name Definition

XilOp The class that holds the information required to store the
operation on the DAG

XilOpTreeNode Defines the tree node for deferred execution

The XilOp Class

The class XilOp contains the information that is stored in the DAG
representing a specific XIL operation. The source and destination images of
atomic functions must be accessible to the operation. These images are stored
in the XilOp object. Atomic operations may have up to three source images,
depending on the function that performs the operation. For example,

xil_copy (sourcel, dest);
xil_multiply (sourcel, source2, dest);
xil_blend (sourcel, source2, dest, source3);

You can extract the source and destination images of an operation using the
following XilOp member functions:

® getSrcl() , get pointer to source image 1
® getSrc2() , get pointer to source image 2
® getSrc3() , get pointer to source image 3

® getDst() , get pointer to destination image

In the case of xil_compress , the source is an image and the destination is a
CIS. Therefore, you would use getDstCis() instead of getDst() to get the
pointer to the destination CIS. Likewise for xil_decompress , the destination
is an image and the source is a CIS. Therefore, you would use getSrcCis()
instead of getSrc1() to get the pointer to the source CIS.

Overview 49

50

The parameters of XIL functions also are stored in the XilOp object. You can
extract them by using the following XilOp member functions:

® getLongParam()
® getPtrParam()
® getFloatParam()

® getObjParam()

The number of image sources supported by an XIL operation and the XilOp
member functions that you must use to extract the image sources and to extract
an XIL function’s parameters from the XilOp object are listed in Appendix C,
“XilOp Object.”

The arguments to each element (atomic or molecular) in a compute device
handler are op and op_count . For example,

int XilDeviceComputeTypeMemory::Add8(
XilOp* op, [/l a pointer into the DAG
int op_count); /I the number of combined operations to be
Il performed

For an atomic operation, op_count is always 1.

Let’s look at an example of extracting from the XilOp object the source image,
the destination image, and the parameters for the function xil_fill() . This
function has one source image, a destination image, and four parameters.

source = op->getSrcl();

dest = op->getDst();

xseed = op->getFloatParam(1); Il get float value xseed
yseed = op->getFloatParam(2); /I get float value yseed
boundary = (float *)(op->getPtrParam(3));// get &boundary[0]
fill_color = (float *)(op->getPtrParam(4));// get &fill_color[0]

XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

A molecule is a chain of atomic operations. For a molecule, the chain must be
followed properly to extract in a logical order the parameters and images from
the XilOp object. For a molecule, the op_count parameter specifies how many
atomic operations exist along the chain for the molecule. This is necessary
because each molecule might contain a different number of operations.

The op passed to the routine is the op associated with the last operation in the
chain (the operation that writes its output to a destination image). The
molecule must extract the destination image and the function’s parameters
from the XilOp object. Then, to move up the chain of operations, you can use
the following functions:

® getOpl() , get pointer to op that has sourcel as its destination
®* getOp2() , get pointer to op that has source2 as its destination

® getOp3() , get pointer to op that has source3 as its destination

For more information about molecules and a chain of operations, see the
section “Adding a New Molecule” on page 130 of Chapter 4.

Part of the definition of the XilOp class is shown below:

Code Example 1-20 Definition of the XilOp Class (1 of 3)

kh

class XilOp {
public:

union Xil_param { /I union structure for op parameters
Xillmage *getSrc1 (); I get the first input image
Xillmage *getSrc2 (); /I get the second input image
Xillmage *getSrc3 (); /I get the third input image
Xillmage *getDst (); /I get the destination image
XilCis *getSrcCis (); /I get a pointer to the source cis
XilCis *getDstCis (); /I get a pointer to the destination cis
XilOp *getOp1(); /I get the first operation
XilOp *getOp2(); /I get the second operation
XilOp *getOp3(); /I get the third operation
unsigned int getOp (); /I get the op number

XilObject* o;

Overview 51

52

Code Example 1-20 Definition of the XilOp Class (2 of 3)

XIL Device Porting and Extensibility Guide—August 1994

Code Example 1-20 Definition of the XilOp Class (3 of 3)

/I NOTE: the parameters must be fetched in the format that they were stored

long getLongParam (int n); /I get the nth parameter as a long
float getFloatParam (int n); /I get the nth parameter as a float
void *getPtrParam (int n); /l get the nth parameter as a pointer

XilObject* getObjParam(int n); /I get the nth parameter as an XilObject

/ function to cause the op to be executed
void flush();

The XilOpTreeNode Class

The XilOpTreeNode class contains the data structure and member functions
that store the descriptions of compute device capabilities. The use of the
member functions of this class is handled automatically by the creation of the
describeMembers.cc routine generated by the xilcompdesc program. See
page 128 (step 3) for a discussion of xilcompdesc . The core code adds new
functions to the tree using the addFunction() member when it loads various
computation modules. In general, the device-dependent code should not need
to access this class explicitly.

Each XilOpTreeNode contains both a list of function pointers that implement
the (possibly combined) operation that the node represents and a pointer to
other XilOpTreeNode objects that perform more combined operations. So, for
example, the XilOpTreeNode for “multiply” will point to the list of function
pointers that perform the atomic “multiply” operation, plus potentially a set of
pointer to other XilOpTreeNode objects that can perform a multiply followed
by an add, a multiply followed by another multiply, and so on.

Overview 53

1
=

Part of the definition of the XilOpTreeNode class is shown below:

Code Example 1-21 Definition of the XilOpTreeNode Class

class XilOpTreeNode {
public:
/I Each of the following three functions returns a pointer to the
/I XilOpTreeNode that contains the list of function pointers that
Il perform the operation described by the ‘operator_name’ character
/I string. Combined operation nodes are accessed by successive branches.
XilOpTreeNode* branch(char operator_name[]);
XilOpTreeNode* branch2(char operator_namel]);
XilOpTreeNode* branch3(char operator_namel]);

int addFunction(XilDeviceComputeType* compute_type,// add a new function
MemberFuncPtr member_func); // to the current XilOpTreeNode
// that will implement the
// operation that this node
/I describes

int addMarker(void); /I for multibranch molecules, the end points of
/I each branch other than the right-most branch
/l terminates in a marker instead of a function

Xil_boolean removeFunctions(XilDeviceComputeType* compute_type);
/I remove all the functions that have been
/l'inserted in the tree for a particular compute
/l device. This provided so that the partial
/I loading of a compute device does not happen.

XIL GPI Layer

The GPI (Graphics Porting Interface) layer is the interface for device-
dependent code. In general, porting a device to the XIL library requires
subclassing one or more of the base device classes defined below, and then
configuring the resulting object files so that they can be loaded at run-time by
the library. In addition to enabling third parties to port hardware, the functions
and device access in the standard XIL release are provided through this
interface as well.

54 XIL Device Porting and Extensibility Guide—August 1994

[EEN
i

In the XIL library, there are classes that define four types of devices:

® |/0 Devices

® Compute Devices

® Storage Devices

® Compression Devices

These devices are represented by the GPI layer classes, which are discussed
individually in Chapters 3 through 6:

Table 1-4 XIL GPI Level Classes

Class Name Definition

XilDeviceType The base class for the device type object
XilDevice The base class for the device object
XilDeviceComputeType The abstract class for compute devices
XilDevicelnputOutputType The abstract class for 1/0 devices
XilDevicelnputOutput The device-specific base class for 170
XilDeviceStorageType The abstract class for storage devices
XilDeviceStorage The device-specific base class for storage
XilDeviceCompressionType The abstract class for compression devices
XilDeviceCompression The device-specific base class for compression

I1/0O Devices

170 devices include any devices that can produce or display images, such as
frame grabbers, image files, and displays. Configured 1/0 devices appear as
“device images” to XIL applications, and may be used as sources and
destinations for all XIL imaging operations. These devices are described in
Chapter 3, “1/0 Devices.”

Compute Devices

Compute handlers contain the device-dependent implementation of one or
more atoms or molecules. For example, a compute device might implement the
geometric operators accelerated by an add-on card, or might provide a
combination of frequently used functions in the form of a molecule. A compute

Overview 55

device may be hardware specific, or may be a software-only implementation of
a superior algorithm. Compute handlers are loaded during the first call to
xil_open() . These handlers are described in e.”

Storage Devices

Storage devices allow images to reside in other places besides host CPU
memory. Such a device is typically associated with a compute device, allowing
an accelerator to take advantage of image data remaining local to the
accelerator during sequential function calls.

The handlers for storage devices are responsible for allocating, deallocating,
and describing the data format of the storage on their devices. They are also
responsible for data conversion between storage devices. In addition, it is
useful to have the storage handler perform single-pixel access for
xil_get_pixel() and xil_set_pixel() to avoid having to convert image
data in those cases.

Typically, a compute device handler will cause the storage device handler for
the device to be loaded when it first tries to create an image on the device. The
CPU memory storage handler is loaded at the time of the first image creation.
Storage devices are discussed in detail in Chapter 5, “Storage Devices.”

Compression Devices

Compression devices contain most of the utility functions for implementing a
method of compression and decompression, even though the actual compress
and decompress functions are provided in an associated compute device
handler. The compression device performs buffer management and
implements the semantics of the XilCis object. A compression device for a
specified compressor is loaded when xil_cis_create() is called.
Compression devices are discussed in Chapter 6,
“Compression/Decompression.”

XIL Device Porting and Extensibility Guide—August 1994

More on Writing Device Handlers 2=

How XIL Device Handlers Work

Each type of device in the XIL library handles a different aspect of imaging
device dependence. The inner workings of each type of device are detailed in
the following chapters along with an example of each device handler.
However, the overall concept behind providing a device handler is similar
among different kinds of devices.

To implement a specific device, you must define a derived class from the
appropriate XilDeviceType class that represents the device. Only one
derived class can exist for each device, and therefore only one for each handler.
The purpose of the derived class is to:

® initialize the device

® create the derived XilDevice class

Note — If you are writing a device handler, be aware that not all XIL
application programs call xil_close () before exiting. Therefore you should
make sure, if possible, that your device handler frees all system resources if an
application dies abnormally.

57

58

As an example, consider the case of an 1/0 device called camera , which
represents the combination of a frame grabber and camera (as shown in
Figure 2-1). This example demonstrates the flow of creating an XIL handler, as

follows:
1. The subclass XilDevicelnputOutputTypeCamera is created by a call to
the global function XilCreatelnputOutputType() , which must exist in

the loadable library that contains the handler.

The XilCreatelnputOutputTypeCamera subclass initializes the frame
grabber, and holds all the global information that is shared among different
instances of the actual device. The XilCreatelnputOutputType()

function is called when the handler is loaded. In this example of an 1/0
device, this happens the first time the API function
xil_create_from_device() is called with the Camera handler name as
the device-name parameter.

After initializing, the XIL core code calls code in
XilDevicelnputOutputTypeCamera that creates an instance of the
derived class XilDevicelnputOutputCamera . This class contains all the
code needed to perform the image acquisition. The second time the
application calls xil_create_from_device() with the same device
name, the second instance of XilDevicelnputOutputCamera is created.
To the application, this appears as a second device image. The two device
images can exist in sequence or simultaneously.

XIL Device Porting and Extensibility Guide—August 1994

N
1]

XilCreatelnputOutputType()
handler global routine

XilDevicelnputOutputTypeCamera

initialize frame grabber
hold global device info
create device instances

XilDevicelnputOutputCamera

implement capture
device image #1

XilDevicelnputOutputCamera

implement capture
device image #3

XilDevicelnputOutputCamera

implement capture
device image #2

Figure 2-1 An Example of Creating an 1/0 Handler

More on Writing Device Handlers 59

The flow of creating a device handler is essentially the same for 1/0, storage,
and compression handlers (Figure 2-2), but not identical for compute devices.

XilCreateDevice XilDeviceType XilDevice

Figure 2-2 Flow of Creating an 1/0, Storage, or Compression Handler

Compute devices have only a single instantiation, which is controlled by the
XIL core code. Thus, there is no derived class called XilDeviceCompute ; only
the XilDeviceComputeType class exists. Like the other device classes, the
XilDeviceComputeType class must be subclassed, this time to represent the
XIL functions that are being accelerated. The mechanism for allowing the XIL
core code to instantiate the compute class is described in detail in Chapter 4,
“Compute Devices.”

The Development Environment

60

The porting interface for the XIL library is written in C++. Due to the lack of a
stable binary interface for C++ compilers, it is important that device handler
code be written with the same compiler as the interface part of the library. Two
compilers are supported: SPARCompiler™ C++ v2.0 (or 2.0.1) and
ProCompiler™ C++ 2.0.1.

SPARC - Although the XIL Programmer’s Guide recommends the
SPARCompiler C 3.0 or later compiler for building XIL applications, the
SPARCompiler C++ 3.0 compiler cannot be used for writing device handler
code.

The XIL library contains the XIL Test Suite. It enables you to perform
regression tests against proven reference signatures. The XIL Test Suite is
described in XIL Test Suite User’s Guide, which is part of this software release.

XIL Device Porting and Extensibility Guide—August 1994

2

The environment variable XIL_DEBUGcan be useful in development situations.
The options for XIL_DEBUGare described in Table 2-1.

Table 2-1 XIL_DEBUG Options

XIL_DEBUG Option

Definition

link xx

show_action

set_synchronize

verbose_cleanup

no_cleanup

Add the two characters following the option link to the
base name of the loadable handlers. This option is especially
useful when you want to load a debug version of a handler.
For example, link_g causes xilioxlib_g.so.1 to be
loaded. If this version does not exist, then the handler with
the standard name (xilioxlib.so.1) is loaded.

Print XIL_ACTION, the name of the device (e.g.,
XilDeviceComputeMemory) and the name of the function
being called to execute each XIL operation (e.g.,
setvalue8()). For example,
XIL_ACTION[XilDeviceComputeMemory]:setvalue8()

Disable deferred execution.

Print the name and class of each XIL object that you were
responsible for destroying but did not. If an object that you
were responsible for destroying is still on the list of active
XIL objects at xil_close() , then the object’s destroy
function is invoked. An example of output for this option is
Cleaning up an XIL_IMAGE object

this object has no assigned name

Do not destroy extra XIL objects at xil_close() . By
default, if an object that you were responsible for destroying
is still on the list of active XIL objects at xil_close() , then
the object’s destroy function is invoked.

Multiple variables may be set at once. For example, you could set XIL_DEBUG

to “show_action:set_synchronize

More on Writing Device Handlers 61

2

Installing XIL Device Handlers

By default, XIL looks for the device handlers in the directory
/opt/SUNWiIts/Graphics-swi/xil/lib/pipelines

This location is the default installation point for the Driver Developers Kit
(DDK) packages. If XIL does not find the device handlers in this location, it
will look in the directory

/usr/openwin/etc/devhandlers

The environment variable XILHOMEoverrides where XIL looks for the device
handlers. If you set this environment variable, XIL looks for the device
handlers only in

$XILHOME/lib/pipelines

The file xil.compute is a configuration file for handlers and their
dependencies. This file resides in the same directory as the XIL runtime
libraries (assuming default installation of the Software Developers Kit (SDK)
packages):

/opt/SUNWiIts/Graphics-swi/xil/lib

If you have set the environment variable XILHOME the library uses the
xil.compute file in $XILHOME/lib

Each of the following chapters that discuss 1/0, storage, and compute drivers
reference the xil.compute file and the changes you must make to it to add a
new device handler.

Note — Be sure not to overwrite any existing files when you write your device
handlers to the pipelines directory.

Error Reporting for XIL Device Handlers

62

All the possible error messages in the XIL library are listed in a file xil.po
This file is located in the directory

lopt/SUNWddk/ddk_2.4/xil/src/doc

XIL Device Porting and Extensibility Guide—August 1994

2

As part of the release process, this file is compiled into another file, called
xil.mo , which is used to localize error messages for different languages. In the
system programmer release, the xil.po file is included. Where possible, you
should make use of the currently existing error messages.

When you need to use device-specific error messages that are to included in
the standard XIL release, you should create a new error file. The current
xil.po file contains the device-independent error message IDs. These IDs are
numbered and prefixed with the string di- (for example, di-312).

For device-dependent errors, the prefix for the error ID should be the device
name for the handler. For example, for a handler with the device name
MYCAMERAhe error IDs should have the form MYCAMERA-123In this
example, the XIL library looks for the device-specific error message number
123 in the directory

/opt/SUNWiIts/Graphics-swi/xil/lib/locale/ current_locale\
/LC_MESSAGES/MYCAMERA.mo

The XIL library is internationalized; that is, it uses functions to extract error
messages for a given locale. For information on localization of error messages
and the creation of the .mo files, see the document Developer’s Guide to
Internationalization (available in AnswerBook).

What Kinds of Ports Are Possible in the XIL Library?

The mechanism for porting in the XIL library allows you to decide which
functions would provide the maximum benefit for your customers. If an add-
on card is only good at geometric operators, only those functions need to be
ported; the memory versions of the remaining functions are called
automatically. If the device is a general-purpose imaging accelerator, you may
find it reasonable to provide a compute handler for most or all of the possible
XIL atomic functions.

If only a compute handler is written, the XIL library expects that an image
ends up residing in the CPU memory after each operation. If an accelerator has
its own memory, it is often an advantage to allow the image data to reside on
the device between operations. This avoids the overhead of having to copy the
data back to the CPU after each operation. The XIL library has the concept of a
storage handler, which is a set of functions which implements a copy to and
from the specific device. If a storage handler is written, the XIL core code

More on Writing Device Handlers 63

allows the image to reside in accelerator memory until another function
requests that it be moved somewhere else. Writing a storage handler can
greatly speed up a port for certain types of accelerator devices.

Additional molecules may be implemented by combining atomic functions in
ways that accelerate specific application areas. Faster implementations of
atomic functions can be used in place of the default implementation. While not
properly a device port, molecules can greatly improve the performance of
groups of operations.

For devices that act as either a source or destination image in an operation, the
XIL library has the concept of an 1/0 handler. Once the handler is written, the
application programmer can use the 1/0 device as a source or destination
through the device image mechanism.

A single device may be represented by more than one handler. For example, an
input frame grabber that has integrated processing support can be described
by an 170 handler and an associated compute handler. If it appears as though
multiple processing operations will be done often on the grabbed images, a
storage handler can be written for the frame-grabber board as well.

Compression devices must implement the compression but may be associated
with other compute, storage, or 1/0 handlers as well.

The following chapters will describe each type of handler in detail.

What Kinds of Ports Are Not Possible in the XIL Library?

64

The major constraint on porting in the XIL library is that the set of atomic
functions may not be extended by the user. All molecules, including those
going to 1/0 hardware, must be made up of groups of the atomic functions
that the XIL library defines and implements. The list of available atomic
functions is given in Appendix B, “XIL Atomic Functions.”

In addition, the IHV should not change the meaning of existing atomic
functions; a new implementation should do exactly what the original version
does. The correctness of a new function can be tested using the XIL Test Suite.

Porting of functions not defined by the XIL library must be performed using
the mechanism defined by xil_export()

XIL Device Porting and Extensibility Guide—August 1994

N
1]

Version Control for XIL Handlers
The XIL core contains a global function:
xilVersionPtr* XilGetVersion()

This function returns a pointer to a structure that contains 16-bit unsigned
integers containing the major and minor release numbers of the current XIL
library. The structure looks like this:

typedef struct {
Xil_unsigned16 majorVersion;
Xil_unsigned16 minorVersion;
} *xilVersionPtr;

The rules for loading handlers are fairly simple;

® The library will not load a module with a majorVersion greater than its
own. An attempt to load a module greater than the current library version
results in an error.

® Currently, the allowable (earlier) module versions that are supported are
versions 1.1 and 1.2. Thus, majorVersion can only equal 1, and
minorVersion can equal either 1 or 2.

® The library loads and executes any module with the same majorVersion
number.

Similar version control rules exist for all of the OGI foundation libraries,
including the port for the OpenWindows™ software.

These rules have implications for writers of XIL device handlers. You should
write your handler with the earliest version of the Solaris OS that you wish to
support. Upgrading to a new OS version by the end user will, in general, not
require a new release of XIL device handlers. If you wish to write a handler
that requires functionality only available after a specific library release, you
must check the majorVersion and minorVersion numbers to make sure the
handler has been loaded by an appropriate version of the library.

More on Writing Device Handlers 65

66

In order for the library to properly load handlers, the name of the handler
must contain its major version number as a suffix. For example, the standard
XIL 1/0 handler for X11 support is called xilioxlib.so.1 . For the 1.x
release of the XIL library, it is sufficient to ensure that each handler name

includes the suffix .1 .

XIL Device Porting and Extensibility Guide—August 1994

About I/0O Devices

I/0 Devices 3

In the XIL Imaging Library, 1/0 devices include any devices that can generate
or receive images, such as frame grabbers, image files, and displays. The XIL
library supports these types of devices by allowing them to appear as device
images to an application. When a device image is used as a source in an
operation, an image is captured from the device. When a device image is used
as a destination in an operation, an image is written to the device.

The 1/0 device handler provides an implementation for an image captured
from a device and for an image written to a device. The first time a device
image is created using the xil_create_from_device() API call, the
software module containing the handler is loaded. Once the 1/0 handler is
loaded, any compute devices that have only the 1/0 handler as a dependence
are loaded. The 170 handler information is cached so that subsequent creations
of new device images from the same device do not require reloading the 1/0
handler.

The character string representing the name of the device, passed as the second
argument to xil_create_from_device() , is used to select the appropriate
loadable library. Currently, the following API call attempts to load an 1/0
handler named /opt/SUNWits/Graphics-sw/xil/lib/pipelines/
xiliomy_device.so0.1 and fails with an error if this loadable library does
not exist:

device_image = xil_create_from_device(systemState, “iomy_device”,

NULL);

67

1]l
w

Note — For I/0 handlers that are frame buffers, the string returned by the
ioctl call for VIS_GETINDENTIFIER must match the name of the loadable
device handler. XIL prepends the unique string returned by this ioctl call
with io . Therefore, XIL is looking for xilio vis_identifier.name.so.1 . For more
information about graphics device drivers and ioctl , see the man page for
visual_io or the manual Writing Device Drivers.

XilDevicelnputOutputType Class

As described in Chapter 1, “Overview,” the abstract class XilDeviceType is
subclassed by the library to form the Type handler for each kind of handler the
library supports. For 1/0 devices, the abstract class
XilDevicelnputOutputType is defined (see Code Example 3-1). This class
must be further subclassed to represent the particular 1/0 device type
represented in the handler. Only one instantiation of this class exists for each
type of 1/0 device created by the device-specific driver.

Code Example 3-1 Definition of XilDevicelnputOutputType Class

#include “XilDeviceType.h”

class XilDevicelnputOutputType : public XilDeviceType {
public:

/I This function is used to create instances of the input/output
/I object.

virtual XilDevicelnputOutput* createDevicelnputOutput(
Xillmage* parent, XilAttribute* attribs)=0;
/I destructor. This should release all resources that were used to

/l make the connection to the device.

virtual ~XilDevicelnputOutputType();

k

68 XIL Device Porting and Extensibility Guide—August 1994

3

When the handler is loaded, the library looks through the symbol table of the
loadable library for a specific function that must exist in each 1/0 handler:

XilDevicelnputOutputType* XilCreatelnputOutputType()

The library invokes this function, which is responsible for doing any global,
one-time initialization of the device, and sets up any data that will be used by
all instances of this 1/0 device. This derived “type” class must contain the
function createDevicelnputOutput() , which creates each instance of the
device class. This function is declared with an XilAttribute* parameter. The
XilAttribute object is used for atomically setting multiple device attributes.
See the section “The XilAttribute Class” in Chapter 1 for more information.

The section “Sample 1/0 Handler” on page 75 contains a derived type class
XilDevicelnputOutputTypeCG6 , Which instantiates the device class
XilDevicelnputOutputCG6 . Likewise, the section “Sample I/0 Device
Handler” on page 106 contains a derived type class
XilDevicelnputOutputTypeXlib , Which instantiates the device class
XilDevicelnputOutputXlib

Handling Multiple Devices in an 1/O Handler

The 1/0 “type” class (for example, XilDevicelnputOutputTypeCG6) is
responsible for keeping track of multiple devices. This tracking is
accomplished by the use of a linked list of descriptors. Each entry in the list
describes a given device, and each frame buffer attached to the system has a
descriptor. The descriptors have the same fields but different values. Each
window, for example, created on a device (such as a frame buffer) is an
instantiation of the device class. The class contains information that maps the
device back to a descriptor entry in the linked list. Each device stores its own
specific information (such as position/size on the screen). The example in the
section “Sample 1/0 Handler” on page 75 illustrates these concepts.

1/0 Devices 69

70

Consider the case of a system with two CG6 frame buffers and a window on
each:

XilDevicelnputOutputTypeCG6
head-> descriptor_CG60 -+
|[next
descriptor_CG61 <-+
instantiation 0
XilDevicelnputOutputCG6
windowO
my_descriptor - descriptor_CG60
specifics of window0
instantiation 1
XilDevicelnputOutputCG6
windowl
my_descriptor = descriptor_CG61

specifics of windowl1

XilDevicelnputOutput Class

The handler creates a device specific class that derives from
XilDevicelnputOutput . This is where all of the device-specific information
pertaining to a particular instance of the 1/0 device is stored. For example, an
X display object might store information about a display, window, and
graphics context here. See Code Example 3-2 for the definition of the base
XilDevicelnputOutput class. A new instance of this class must be created
for each device image.

Code Example 3-2 Definition of XilDevicelnputOutput Class (1 of 3)

It
1

/I Description:

1

I/l The XilDevicelnputOutput class describes one instantiation of a
/I particular input/output device. There can be many of these.
/I See the example input/output driver for more information.

1
1

class XilDevicelnputOutput : public XilDevice {

XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-2 Definition of XilDevicelnputOutput

Class (2 of 3)

public:

/I set a device-specific attribute

virtual int setDeviceAttribute (char attribute_name[], void *value)=0;

/I get (return a pointer to) a device-specific attribute.

virtual int getDeviceAttribute (char attribute_name[], void **value)=0;

/I implement display on this input/output device
virtual void display (Xillmage*)=0;

/I implement capture on this input/output device
virtual void capture (Xillmage*)=0;

/I get and set particular image pixel values directly

/l from/to the device

virtual void getPixel(unsigned short x, unsigned short y,
unsigned short band, unsigned short count,
float* data)=0;

virtual void setPixel(unsigned short x, unsigned short y,
unsigned short band, unsigned short count,
float* data)=0;

I return the pointer to the image the input/output device uses
/ as its buffer to (display from / capture to)
Xillmage* getParent ();

Il return the XillmageType that should be returned from the
/I xil_create_from_device() call
XillmageType* getimageType();

/I return the actual XillmageType that is used internally.

/I this may be different from the way it appears to the

/I application. For example, the image type for a 24-bit

/I frame buffer may be a 3-banded image, whereas the real
/I image type would be a 4-band image to make the copy to
/l the display faster.

XillmageType* getReallmageType();

/I functions to indicate whether this device can be read from/
/I written to
Xil_boolean isReadable ();

1/0 Devices

71

72

Code Example 3-2 Definition of XilDevicelnputOutput Class (3 of 3)

Xil_boolean isWritable ();

/ return the op
unsigned short

I return the op
unsigned short

number of the display operation associated with this device
getDisplayOpNumber();

number of the capture operation associated with this device
getCaptureOpNumber();

/I flag to indicate whether the buffer image contents are valid
/I (if a molecule has been used to write directly to the display,
Il for example, the buffer image is no longer valid)
Xil_boolean memorylsValid();

/I set the memory-valid bit
void setMemoryValid(Xil_boolean valid);

/ldestructor

virtual ~XilDevicelnputOutput();

protected:
Xillmage*
XillmageType*
XillmageType*
Xil_boolean
Xil_boolean
unsigned short
unsigned short
Xil_boolean

h

parent;
imageType;
reallmageType;
readable;
writeable;
displayOpNumber;
captureOpNumber;
memoryValid,;

Device Attribute Functions

170 devices may define attributes that are used to modify or report their
behavior. For example, a frame grabber would use attributes to allow the
application to select the type of output image or to select which video input to
use. A file input device would use attributes to set the path name.

setDeviceAttribute() takes an attribute and a value and performs the
device-specific function that the attribute defines.

getDeviceAttribute() returns the value associated with the given
device-specific attribute.

XIL Device Porting and Extensibility Guide—August 1994

w
1]

getPixel() returns pixel information for the 1/0 device.
setPixel() sets the device pixel to the given value.

display() causes the parent image to be copied to the device.
capture() causes the device to copy data into the parent image.

Device image attributes are defined by the port, but some frame-buffer-specific
attributes have already been defined by the standard handlers. These attributes
are listed in Table 3-1:

Table 3-1 Standard Frame Buffer Attributes

Attribute Value

XCOLORMAP The X colormap of the device image (write only)
WINDOW The X window (read only)

DISPLAY The X display (read only)

Future releases of the XIL library will suggest common attributes for
camera-like 170 devices; other 1/0 devices such as files and printers will have
other attributes.

Parent Function

The parent member is the image that holds the results of the capture and the
source of the display. When a device image is used as a source, the library
inserts a device-dependent capture into the current operation sequence and
returns the parent image. When a device image is used as a destination, the
library inserts a copy from the source to the parent image and then inserts a
display operation into the current operation sequence. The parent is created
by the XIL library and is passed to the constructor for the
XilDevicelnputOutput subclass. The parent is primarily used in the
constructor of the derived XilDevicelnputOutput class to set up the image
type of the device image that is stored in imageType .

Image Type Functions

The imageType member holds the image type of the device image. The
imageType describes the size, number of bands, and data type of the image
that is required or will be generated by the device image. The imageType is

1/0 Devices 73

74

created by the handler using the createlmageType() member of the system
state. Sometimes, it is necessary to return to the application an imageType
different from the actual description of the device. For example, the
imageType for a 24-bit frame buffer may be a 3-banded image, but the true
imageType is a 4-band image. The reallmageType member holds the
description of the actual device; normally, the imageType is the same as the
reallmageType

reallmageType = imageType = parent->getSystemState()->
createlmageType(xsize,ysize,nbands,datatype);

Read- and Write-Only Functions

The readable and writeable members allow a device to appear as
read-only or write-only. If the handler wishes for a device to be read-only,
these members can be set appropriately when the class is created.

Op Number Functions

The members displayOpNumber and captureOpNumber are ordinals that
describe the type of operation. They provide a unique reference to the specific
capture or display operation in order for it to be placed into the DAG. The
displayOpNumber and captureOpNumber members are assigned
automatically when the 1/0 handler is loaded and the device type is created.
The number (opcode) is keyed from the function names display_ devicename
and capture_ devicename, where devicename is the name of the 1/0 device
handler. Each device class instantiation must request and store these opcodes.
The opcodes are obtained by using the XilLookupOpNumber() function with
the appropriate keyname. Shown next is the action for the device ioSUNWcg®6:
displayOpNumber = XilLookupOpNumber(“display_ioSUNWcg6");

captureOpNumber = XilLookupOpNumber(“capture_ioSUNWcg6");

XilLookupOpNumber() also is used for compute handlers. See Chapter 4,
“Compute Devices,” for more information.

When a device image is the destination or source of an operation, the library
inserts a display or capture operation into the current operation sequence of
the DAG. The core uses the getDisplayOpNumber and
getCaptureOpNumber member functions to extract the operation number.

XIL Device Porting and Extensibility Guide—August 1994

w
1]

Adding an 1/0 Device

Sample I/0O Handler

Adding an 170 device is straightforward in the XIL library. The handler writer
must follow these steps:

1. Implement the XilCreateDevicelnputOutput() function. It must create
an instance of the derived XilDevicelnputOutputType class.
2. Implement the XilDevicelnputOutputType class to provide device

creation and initialization. Place all common information for all instances of
the device in this class.

3. Implement the XilDevicelnputOutput class for the device, including
capture() ,display() , get/setPixel() , as well as
get/setDeviceAttribute() if needed.

4. Place the new loadable library file in an application package so that it will
be installed in the correct location. See the document SunOS Application
Packaging and Installation Guide for information on using the package system.
Also see Chapter 1, “Overview,” for information about packaging handlers.

The name of the loadable library must be unique; we strongly suggest using
the name xilio device_name.so , where device_name is the name that will be
used to describe the device in the xil_create_from_device() API call.
The first part of the device_name should be a unique identifier for the
company producing the handler; for example, all Sun 170 handlers should
contain the string SUNWas the first part of the device name.

This section shows an example 1/0 device handler that treats a SPARC GX
frame-buffer window as an 170 device. It’s an important example because it
illustrates how to write an 1/0 handler that talks directly to hardware using
DGA (Direct Graphics Access). The files for the GX example are located in
directory /opt/SUNWddk/ddk_2.4/xil/src/cg6_device handler .

A parallel example for an x86-specific module treats a p9000 frame-buffer
window as an I/0 device. The p9000 example isn’t shown in this manual
because the p9000 architecture is similar to the CG6 architecture. The p9000
code is included to demonstrate some of the differences you can expect when
writing an XIL module for x86. The files for the p9000 example are located in
directory /opt/SUNWddk/ddk_2.4/xil/src/p9000

1/0 Devices 75

76

The GX example shown below has four files:

XilDevicelnputOutputTypeCG6.h
XilDevicelnputOutputTypeCG6.cc
XilDevicelnputOutputCG6.h
XilDevicelnputOutputCG6.cc

The p9000 example, not shown but located in directory
Jopt/SUNWddk/ddk_2.4/xil/src/p9000 , also has four files:

XilDevicelnputOutputTypeP9000.h
XilDevicelnputOutputTypeP9000.cc
XilDevicelnputOutputP9000.h
XilDevicelnputOutputP9000.cc

XIL Device Porting and Extensibility Guide—August 1994

XilDevicelnputOutputTypeCG6.h

Code Example 3-3 XilDevicelnputOutputTypeCG6.h

/[This line lets emacs recognize this as -*- C++ -*- Code
1
1
Il File: XilDevicelnputOutputTypeCG6.h

/I Project: XIL

/I Created: 93/08/20

/I RespEngr: John L. Furlani

/I Revision: 1.1

/I Last Mod: 18:14:19, 07 Sep 1993

I

/I Description:

/I This file contains the description of the CG6 device type

/I class. The device type is created once for each instance of XIL
/I -- not on a per-window basis. It contains all of the device

/I information which does not change from window-to-window (like
Il the device mapping).

I
1
#pragma ident “@(#)XilDevicelnputOutputTypeCG6.h1.1\t93/09/07 “

#ifndef XILDEVICEINPUTOUTPUTTYPECG6
#define XILDEVICEINPUTOUTPUTTYPECG6

#include <stdlib.h>

#include <sys/cg6fbc.h>

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <xil/XilDevicelnputOutputType.h>
#include <xil/XilError.h>

#include <dga/dga.h>

I
/I A structure that describes a mapping of a CG6 device. Only one
/I mapping is created for all of the windows on the screen. A list
/I is kept where each node represents a single mapping of a different
/I CG6 device.
1
struct CG6Description {
int fd;
unsigned char* fbo_mem;

1/0 Devices

77

78

Code Example 3-3 XilDevicelnputOutputTypeCG6.h (Continued)
int fb_height;
int fb_width;
int fb_size;
fbc* fb_fbc;

char name[32];
struct CG6Description* next;

%
class XilDevicelnputOutputTypeCG6 : public XilDevicelnputOutputType {
public:

1

/I The routine called by the XIL core to create the device type.

1

virtual XilDevicelnputOutput* createDevicelnputOutput(Xillmage* parent,
void* data);

I

/I Our constructors and destructors...
I

XilDevicelnputOutputTypeCG6();
~XilDevicelnputOutputTypeCG6();

I

/I This routine returns a full description of the given CG6

/I device. A list of CG6 descriptions is kept in this class so

/I multiple windows on the same device will not have multiple
/I mappings.

I

CG6Description* getCG6Description(char* device_name);

private:

h

I

/I The CG6 description list...

I

CG6Description* baseCG6Description;

#endif

XIL Device Porting and Extensibility Guide—August 1994

XilDevicelnputOutputTypeCG6.cc

Code Example 3-4 XilDevicelnputOutputTypeCG6.cc

(1 of 6)

/[This line lets emacs recognize this as -*- C++ -*- Code
1
1
Il File: XilDevicelnputOutputTypeCG6.cc
/I Project: XIL

/I Created: 93/08/20

/I RespEngr: John L. Furlani

/I Revision: 1.1

/I Last Mod: 18:14:28, 07 Sep 1993

I
Il
#pragma ident “@(#)XilDevicelnputOutputTypeCG6.cc1.1\t93/09/07 “

#include <sys/fbio.h>
#include <sys/cg6reg.h>
#include <sys/mman.h>

#include “XilDevicelnputOutputTypeCG6.h”
#include “XilDevicelnputOutputCG6.h”

I
Il The XIL core calls this routine when opening this 1/O pipeline to
/I create the DevicelnputOutputType for the CG6 device.
1
XilDevicelnputOutputType *XilCreatelnputOutputType()
{
return(new XilDevicelnputOutputTypeCG6());

}

XilDevicelnputOutputTypeCG6:: XilDevicelnputOutputTypeCG6()
{

Il

/I Initialize the list of CG6 description structure to NULL

Il

baseCG6Description=NULL;

}

XilDevicelnputOutputTypeCG6::~XilDevicelnputOutputTypeCG6()

{
CG6Description* temp = baseCG6Description;

1/0 Devices

79

80

Code Example 3-4 XilDevicelnputOutputTypeCG6.cc (2 of 6)

while(baseCG6Description) {
baseCG6Description = baseCG6Description->next;
delete temp;
temp = baseCG6Description;
}
}

1

Il The XIL core calls this routine when the user calls

/I xil_create_from_window() with an X window that resides on a CG6.

/I For every display window the user opens, this routine is called

Il a new instantiation of XilDevicelnputOutputCG6 is created.

1

XilDevicelnputOutput*

XilDevicelnputOutputTypeCG6::createDevicelnputOutput(Xillmage* parent,
void* data)

{

1

/I Create an instantiation of the DevicelnputOutput for this

/I window.

I

XilDevicelnputOutputCG6* device = new XilDevicelnputOutputCG6(parent,data);

if(device==NULL) {
XIL_ERROR(NULL,XIL_ERROR_RESOURCE,"di-1", TRUE);
return NULL;

}

I

/I Check that it was created successfully by getting the

/I ImageType which is set in the constructor.

I

if(device->getimageType()==NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-1",TRUE);
delete device;
return NULL;

}

return device;

}

1
/I The routine that creates and manages the CGDescription list with a

XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-4 XilDevicelnputOutputTypeCG6.cc

(3 of 6)

/I single node entry per CG6 device on the system.
1
CG6Description*
XilDevicelnputOutputTypeCG6::getCG6Description(char* name)
{
1l
/I Look through the list to determine if the device has already
/I been opened.
1
CG6Description* tmp = baseCG6Description;
while(tmp) {
if(strcmp(name, tmp->name)==NULL) {
return tmp;
}
tmp = tmp->next;

}

1

/I Well, this device hasn't opened yet so we'll go ahead and

/I create a new description.

i

CG6Description* description= new CG6Description;

if('description) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-1",TRUE);
return NULL;

}

strcpy(description->name,name);

1

/I Now we actually open the device and get its attributes.

1

description->fd = open(description->name, O_RDWR);

if(description->fd < 0) {
XIL_ERROR(NULL,XIL_ERROR_RESOURCE,"di-212", TRUE);
delete description;
return NULL,;

}

I

/I Get the device attributes.
I

struct fbgattr attr;

1/0 Devices

81

82

Code Example 3-4 XilDevicelnputOutputTypeCG6.cc

(4 of 6)

if(ioctl(description->fd, FBIOGATTR, &attr) < 0) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-213", TRUE);
delete description;
return NULL;

}

Il

/I Be certain the device is really a CG6.

I

if(attr.real_type != FBTYPE_SUNFAST_COLOR) {
1
/I Somehow we were called on a non-CG6 framebuffer.
/I Definite error.
I
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-214", TRUE);
delete description;
return NULL;

}

I

/I Get the information describing the CG6 from the FBIOGXINFO

/I ioctl call.

)

cg6_info cg6_information;

if(ioctl(description->fd, FBIOGXINFO, &cg6_information) < 0) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-213", TRUE);
delete description;
return NULL;

}

1

/I Fill our description of the CG6.

1

description->fb_width = cg6_information.accessible_width;
description->fb_height = cg6_information.accessible_height;
description->fb_size = cg6_information.vmsize*1024*1024;

I

/I Get the register mappings.
)

description->fb_fbc = (fbc*)

mmap(NULL, CG6_FBCTEC_SZ, PROT_READ|PROT_WRITE, MAP_PRIVATE,

XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-4 XilDevicelnputOutputTypeCG6.cc (5 of 6)

description->fd, CG6_VADDR_FBCTEC);
if(description->fb_fbc == (fbc*) -1) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-215", TRUE);
delete description;
return NULL;

}

I

/I Map the framebuffer itself

I

description->fb_mem = (Xil_unsigned8*)
mmap(NULL, description->fb_size, PROT_READ|PROT_WRITE, MAP_SHARED,

description->fd, CG6_VADDR_COLOR);

if(description->fb_mem == (Xil_unsigned8*) -1) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-215", TRUE);
munmap((caddr_t)description->fb_fbc, CG6_FBCTEC_SZ);
delete description;
return NULL,;

}

I

/I Wait to ensure the GX is idle and ready for us to set some
Il registers.

I

while(description->fb_fbc->_fbc_status & L_FBC_BUSY);

I
/I Initialize the registers to what we want done.
)
description->fb_fbc->I_fbc_misc.|_fbc_misc_blit=L_FBC_MISC_BLIT_NOSRC;
description->fb_fbc->|_fbc_misc.l_fbc_misc_data=L_FBC_MISC_DATA_COLORS;
description->fb_fbc->I_fbc_misc.l_fbc_misc_draw=L_FBC_MISC_DRAW_RENDER;
description->fb_fbc-
>| _fbc_misc.|_fbc_misc_bwriteO=L_FBC_MISC_BWRITEO_ENABLE;
description->fb_fbc-
>|_fbc_misc.l_fbc_misc_bwritel=L_FBC_MISC_BWRITE1_DISABLE;
description->fb_fbc->I_fbc_misc.|_fbc_misc_bread=L_FBC_MISC_BREAD_0;
description->fb_fbc->I_fbc_planemask= 0xff;
description->fb_fbc->I_fbc_pixelmask= Oxffffffff;
description->fb_fbc->I_fbc_clipcheck= 0;
description->fb_fbc->|_fbc_rasteroffx= 0;
description->fb_fbc->I_fbc_rasteroffy=0;

1/0 Devices

83

84

Code Example 3-4 XilDevicelnputOutputTypeCG6.cc

(6 of 6)

description->fb_fhc->l_fbc_autoincx= 0;
description->fb_fbc->|_fbc_autoincy= 0;

I

/I Add the newly created description to our description list and
/I return the new description to the caller.

I

description->next= baseCG6Description;
baseCG6Description= description;

return description;

XIL Device Porting and Extensibility Guide—August 1994

XilDevicelnputOutputCG6.h

Code Example 3-5 XilDevicelnputOutputCG6.h

(1 0of 3)

/[This line lets emacs recognize this as -*- C++ -*- Code

1
1
I
I
I
1
1
I
I
I
I
1
1
I
I
I
1

*

File: XilDevicelnputOutputCG6.h
Project: XIL

Created: 93/08/20

RespEngr: John L. Furlani

Revision: 1.1

Last Mod: 18:13:44, 07 Sep 1993

Description:
This file contains the device instantiation-specific
information for the CG6 device. This object is created on a
per-displayimage basis by the XIL core. It is responsible for
the per-window access to the CG6 device. This includes
display/capture/setPixel/getPixel.

#pragma ident “@(#)XilDevicelnputOutputCG6.h1.1\t93/09/07 “

#ifndef XILDEVICEINPUTOUTPUTCG6
#define XILDEVICEINPUTOUTPUTCG6

#include <stdlib.h>

#include <sys/cg6reg.h>

#include <sys/cg6fbc.h>

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <xil/XilDevicelnputOutput.h>
#include <xil/XilError.h>

#include <dga/dga.h>

class XilDevicelnputOutputCG6 : public XilDevicelnputOutput {
public:

1

/I Set and get CG6 device-specific attributes

1

virtual int setDeviceAttribute(char attribute_name[], void* value);
virtual int getDeviceAttribute(char attribute_name[], void**);

1/0 Devices

85

86

Code Example 3-5 XilDevicelnputOutputCG6.h (2 of 3)

1

/I The display routine which copies the entire XIL image backing
/I store to the display. And, the capture routine which updates

/I the XIL image backing store with what's actually on the display.
I

virtual void display(Xillmage®);

virtual void capture(Xillmage®*);

1

/I The single-pixel operations to just modify a few pixels.

1

virtual void getPixel(unsigned short X, unsigned short y,
unsigned short band, unsigned short count,
float *data);

virtual void setPixel(unsigned short x, unsigned short y,
unsigned short band, unsigned short count,
float *data);

I

/I The constructor and destructor.

I

XilDevicelnputOutputCG6(Xillmage* parent, void* data);
virtual ~XilDevicelnputOutputCG6();

1

/I Our publicly available data which describes the window
I

Display* displayptr;

Window window;

Dga_window infop;

short* cliplist;

int win_x,win_y,win_width,win_height;

int fd;

1

/I Colormap Installation Info
1

Dga_cmap dga_cmap;
Colormap xcmap;

I
/I This flag indicates whether we’re on a machine that

XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-5 XilDevicelnputOutputCG6.h

(3 of 3)

/I only has CG6 display devices that can use the double
/I loads and stores

Il

Xil_boolean doubleLoadnStore;

Il

/I CG6 Specific Info
1

short fb_width;
short fb_height;

int fb_size;
unsigned char* fb_mem;
fbc* fb_fbc;
int fhc_config;
int* dac_base;
int* tec_base;
cg6_cmap* cgécmap;
3
#endif

1/0 Devices

87

88

XilDevicelnputOutputCG6.cc

Code Example 3-6 XilDevicelnputOuputCG6.cc

(1 of 18)

/[This line lets emacs recognize this as -*- C++ -*- Code
1
1
/I File:XilDevicelnputOutputCG6.cc
/I Project:XIL

/I Created:93/08/20

/I RespEngr:John L. Furlani

/I Revision:1.1

/I Last Mod:18:13:49, 07 Sep 1993
I
It
#pragma ident“@ (#)XilDevicelnputOutputCG6.cc1.1\t93/09/07 “

#include <sys/utsname.h>
#include <sys/mman.h>
#include <X11/Xlib.h>

#include <xil/xilwindow.h>
#include <xil/Xillmage.h>
#include <xil/XilOp.h>

#include <xil/XilRoi.h>

#include <xil/XilRoiList.h>
#include <xil/XilColorDefines.h>
#include <xil/xil_memcpy.h>

#include “XilDevicelnputOutputTypeCG6.h”
#include “XilDevicelnputOutputCG6.h”

XilDevicelnputOutputCG6:: XilDevicelnputOutputCG6(Xillmage* parent,

void* data)
{
1
/I Initialize the imageType to NULL to indicate the creation of
/I this device has not succeeded.
I
imageType = NULL;

I
/I Store a pointer to my parent...
1

XIL Device Porting and Extensibility Guide—August 1994

w
1]

Code Example 3-6 XilDevicelnputOuputCG6.cc (2 of 18)

this->parent = parent;

Il

/I The CG6 is both readable and writeable.
Il

readable = writeable = TRUE;

1
/I Determine if this machine has a sun4 architecture or not. If
/I itis a sun4 architecture, then we must use the plain memcpy()
/I because CG6’s on the sun4 architecture are connected to the P4
/I bus which does not support double loads and stores. Otherwise,
/I we've got an SBus based CG6.
1
struct utsname uname_info;
ifluname(&uname_info) == -1) {
XIL_ERROR(NULL, XIL_ERROR_SYSTEM, “di-315", TRUE);
return;
}
if('strcmp(uname_info.machine, “sun4”)) {
doubleLoadnStore = FALSE;
}else {
doubleLoadnStore = TRUE;

}

1

/I Indicate to the XIL core that the memory version of the window
/I is currently not valid which means a capture is required if

/I someone tries to read from the display image.

1

memoryValid = FALSE;

I

/I Initialize the colormap variables for this window. The xcmap
/I and the dga_cmap are initially set to NULL vales to indicate
/I that the user has not set the X_COLORMAP device attribute.
/I The colormap information is initialized each time the user

/I calls X_COLORMAP.

I

xcmap = 0;

dga_cmap = NULL;

1/0 Devices 89

1]l
w

Code Example 3-6 XilDevicelnputOuputCG6.cc (3 of 18)
1
/I Save the X Display and the X Window
I

XilWindow* xil_window = (XilWindow*)data;

this->displayptr = xil_window->display;
this->window = xil_window->window;

1

/I Here we connect to DGA and turn the window we’ve been given

/I into a DGA window so we can access the hardware directly.

1

int dga_token = XDgaGrabWindow(xil_window->display, xil_window->window);

if(dga_token == NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-219", TRUE);
return;

}

if((infop = ((Dga_window) dga_win_grab(-1, dga_token))) == NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-219", TRUE);
XDgaUnGrabWindow(xil_window->display, xil_window->window);
return;

}

1

/I Get a pointer to the CG6 type so | can get the information

/I about the device my window is on.

1

XilDevicelnputOutputTypeCG6* io_cg6_type = (XilDevicelnputOutputTypeCG6*)
xil_global_state->getDevicelnputOutputType(“ioSUNWcg6™);

if(io_cg6_type == NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-188",FALSE);
return;

}

1

/I Create or get the already created device information from the

/I CG6 type.

I

CG6Description* cg6_description =
io_cg6_type->getCG6Description(dga_win_fbname(infop));

90 XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-6 XilDevicelnputOuputCG6.cc

(4 of 18)

if('cg6_description) {
1
/I TODO: generate an appropriate error
I
return;

}

1

/I Initialize our own variables.

I

this->fd = cg6_description->fd;
this->fb_width = cg6_description->fh_width;
this->fb_height = cg6_description->fb_height;
this->fb_mem = cg6_description->fb_mem;
this->fb_fbc = cg6_description->fb_fbc;

I
/I Determine what the imageType is going to be for this XIL
/I display image.
I
Window root_window;
unsigned int x_depth;
unsigned int height;
unsigned int width;
int X,Y;
unsigned int border_width;
Status status = XGetGeometry(displayptr,
this->window,
&root_window,
&x, &y,
&width, &height,
&border_width, &x_depth);
if(status == 0) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-220", TRUE);
return;

}

1

/I For the CG6 the imageType and the reallmageType are the same.

I
imageType = reallmageType =

parent->getSystemState()->createlmageType(width,height,1,XIL_BYTE);

1/0 Devices

91

92

Code Example 3-6 XilDevicelnputOuputCG6.cc (5 of 18)

}

ifimageType == NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-188",FALSE);
return;

}

I

/I Lookup and cache the display and capture op numbers.

I

displayOpNumber = XilLookupOpNumber(“display_ioSUNWcg6");
captureOpNumber = XilLookupOpNumber(“capture_ioSUNWcg6");

XilDevicelnputOutputCG6::~XilDevicelnputOutputCG6()

{

dga_win_ungrab(infop, 1);
XDgaUnGrabWindow(displayptr,window);
if (imageType) imageType->destroy();

void
XilDevicelnputOutputCG6::setPixel(unsigned short X,

unsigned short y,
unsigned short,
unsigned short,
float* data)

/!

/I Lock the DGA window so | can access the framebuffer.
Il

DGA_WIN_LOCK(infop);

1

/I We grab the cliplist every time since checking it may have

/I cause problems with molecules that go directly to the display
/I which need to know if the window has been modified. It's

/I cheap enough.

1

cliplist = dga_win_clipinfo(infop);

dga_win_bbox(infop, &win_x, &win_y, &win_width, &win_height);

1
/I Transform the point into screen space.

XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-6 XilDevicelnputOuputCG6.cc

(6 of 18)

Il
y = y+win_y;
X = X+Win_x;

I
/I Loop over the cliplist to figure out which rectangle contains
/I the pixel we're looking for.
I
while(*cliplist I= DGA_Y_EOL) {
if((y >= (unsigned short)cliplist[0]) &&
(y <= (unsigned short)cliplist[1])) {
cliplist += 2;
while(*cliplist '= DGA_X_EOL) {
if((x >= (unsigned short)cliplist[0]) &&
(x <= (unsigned short)cliplist[1])) break;
cliplist += 2;
}
if(*cliplist '= DGA_X_EOL) break;
cliplist++;
}else {
cliplist += 2;
while(*cliplist I= DGA_X_EOL) cliplist += 2;
cliplist++;
}
}

if(*cliplist '= DGA_Y_EOL) {
1l
/I Set the pixel now that we've found the right rectangle on
/I the screen.
1l
Xil_unsigned8* dst = fb_mem + y*fb_width + x;

I

/I Round the pixel up.

I

float value = data[0] + .5;

I

/I Clip the value properly and set it on the screen.
I

if(value > 255.0) {

1/0 Devices

93

94

Code Example 3-6 XilDevicelnputOuputCG6.cc (7 of 18)

}

*dst = 255;
} else if (value < 0.0) {
*dst = 0;
}else {
*dst = (unsigned char) value;
}
}

1

/I Unlock the window...

1l
DGA_WIN_UNLOCK(infop);

void XilDevicelnputOutputCG6::getPixel(unsigned short x,

unsigned short y,
unsigned short,
unsigned short,

float* data)
Il
/I Lock the DGA window so | can access the framebuffer.
I

DGA_WIN_LOCK(infop);

I

/I We grab the cliplist every time since checking it may have

/I cause problems with molecules that go directly to the display
/I which need to know if the window has been modified. It's

/I cheap enough.

1

cliplist = dga_win_clipinfo(infop);

dga_win_bbox(infop, &win_x, &win_y, &win_width, &win_height);

1

/I Transform the point into screen space.
I

y=y+win_y;

X =X+ win_x;

XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-6 XilDevicelnputOuputCG6.cc

(8 of 18)

I
/I Loop over the cliplist to figure out which rectangle contains
/I the pixel we're looking for.
I
while(*cliplist I= DGA_Y_EOL) {
if((y >= (unsigned short)cliplist[0]) &&
(y <= (unsigned short)cliplist[1])) {
cliplist += 2;
while(*cliplist I= DGA_X_EOL) {
if((x >= (unsigned short)cliplist[0]) &&
(x <= (unsigned short)cliplist[1])) break;
cliplist += 2;
}
if(*cliplist = DGA_X_EOL) break;
cliplist++;
}else {
cliplist += 2;
while(*cliplist I= DGA_X_EOL) cliplist += 2;
cliplist++;
}
}

if(*cliplist '= DGA_Y_EOL) {
1
/I Return what's on the screen.
1
Xil_unsigned8* src = fb_mem + y*fb_width + x;
*data = *src;
}else {
1
/I Data point is obscured by another window so return 0.0
1l
*data = 0.0;
}

I

/I Unlock the window...

i
DGA_WIN_UNLOCK(infop);

1/0 Devices

95

96

Code Example 3-6 XilDevicelnputOuputCG6.cc (9 of 18)

void
XilDevicelnputOutputCG6::display(Xillmage* copy_image)

{

I

/I NOTE: There is code elsewhere which depends on this function handling
I any arbitrary 1-band XIL_BYTE image.

1

1

/I Get the image origin and the child offsets.
1

long x_origin, y_origin;
copy_image->getOrigin(&x_origin,&y_origin);

unsigned int offset_x,offset_y,offset_band,;
copy_image->getChildOffsets(&offset_x,&offset_y,&offset_band);

1

/I Get the memory for the XIL image backing store.

1

XilMemoryStorageByte* storage =
(XilMemoryStorageByte*)copy_image->getMemoryStorage();

if(storage == NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-140",FALSE);
return;

}

I

/I Get any ROIs associated with the display image.

I

XilRoi* roi = copy_image->getPixelsTouchedRoi();

if(roi == NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-6”,FALSE);
return;

}

1l

/I Lock the DGA window for our use.
/!

DGA_WIN_LOCK(infop);

XIL Device Porting and Extensibility Guide—August 1994

w
1]

Code Example 3-6 XilDevicelnputOuputCG6.cc (10 of 18)

1

/I We grab the cliplist every time since checking it may

/I cause problems with codec molecules that go directly to the

/I display which need to know if the window has been modified.
/I It's cheap enough to not worry.

1

cliplist = dga_win_clipinfo(infop);

dga_win_bbox(infop, &win_x, &win_y, &win_width, &win_height);

I
/I Intersect the ROI list and the window cliplist to generate the
/I actual ROI of pixels we will touch on the display.
1
XilRoi* clipped_roi = roi->intersect(cliplist,
(int)(win_x+x_origin+offset_x),
(int)(win_y+y_origin+offset_y));
if(clipped_roi == NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-7",FALSE);
DGA_WIN_UNLOCK(infop);
return;

}

1

/I Get the ROI as a list of rectangles...

1

XilRoiList* roi_list = clipped_roi->getRectList();

if(roi_list == NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-8",FALSE);
return;

}

1l

/I Take into account the child offsets
1l

win_x += offset_x;

win_y += offset_y;

I

/I Operate over each rectangle. The rectangles are guaranteed
/I not to go out outside of the image.

1

1/0 Devices 97

98

Code Example 3-6 XilDevicelnputOuputCG6.cc

(11 of 18)

unsigned int x_size, y_size;

long X, Y;

unsigned char* src;

unsigned char* dst;
while(roi_list->next(&x,&y,&x_size,&y_size)) {

}

1

/I All of the rectangles must be adjusted by
/I the image origin.

1

X += Xx_origin;

y +=y_origin;

src = storage->data +
y*storage->scanline_stride +
x*storage->pixel_stride;

dst =fb_mem +
(win_y+y)*fb_width +
(Win_x+x);

i
/I If this CG6 supports double loads and stores, then we can
/I use xil_memcpy() to put the data onto the screen.
/I Otherwise, we must use the plain memcpy() which does not
/I accelerate the copy by using double loads and stores.
1
if(doubleLoadnStore == TRUE) {
for(inti=0; i<y_size; i++) {
xil_memcpy(dst,src,x_size);

dst += fb_width;
src += storage->scanline_stride;
}
}else {
for(inti = 0; i<y_size; i++) {
memcpy(dst,src,x_size);

dst += fb_width;
src += storage->scanline_stride;
}
}

XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-6 XilDevicelnputOuputCG6.cc

(12 of 18)

I
/I Unlock the DGA window.
1
DGA_WIN_UNLOCK(infop);

1

/I Destroy all of the ROIs | created.
1

clipped_roi->destroy();
roi_list->destroy();

}

void
XilDevicelnputOutputCG6::capture(Xillmage* copy_image)
{
I
/I Get the image origin and the child offsets.
1
long x_origin, y_origin;
copy_image->getOrigin(&x_origin,&y_origin);

unsigned int offset_x,offset_y,offset_band,;
copy_image->getChildOffsets(&offset_x,&offset_y,&offset_band);

1

/I Get the memory for the XIL image backing store.

I

XilMemoryStorageByte* storage =
(XilMemoryStorageByte*)copy_image->getMemoryStorage();

if(storage == NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-140",FALSE);
return;

}

1

/I Get any ROls associated with the display image.

1

XilRoi* roi = copy_image->getimageSpaceRoi();

if(roi == NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-6",FALSE);
return;

}

1/0 Devices

99

100

Code Example 3-6 XilDevicelnputOuputCG6.cc (13 of 18)
I
/I Lock the DGA window for our use.
I

DGA_WIN_LOCK(infop);

I

/I We grab the cliplist every time since checking it may have

/I cause problems with molecules that go directly to the display
/I which need to know if the window has been modified. It's

/I cheap enough.

I

cliplist = dga_win_clipinfo(infop);

dga_win_bbox(infop, &win_x, &win_y, &win_width, &win_height);

I
/I Intersect the ROI list and the window cliplist to generate the
/I actual ROI of pixels we will touch on the display.
1
XilRoi* clipped_roi = roi->intersect(cliplist,
(int)(win_x+x_origin+offset_x),
(int)(win_y+y_origin+offset_y));
if(clipped_roi == NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-7",FALSE);
DGA_WIN_UNLOCK(infop);
return;

}

1

/I Get the ROI as a list of rectangles...

1

XilRoiList* roi_list = clipped_roi->getRectList();

if(roi_list == NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-8",FALSE);
return;

}

Il

/I Take into account the child offsets
1l

win_x += offset_x;

win_y += offset_y;

XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-6 XilDevicelnputOuputCG6.cc

(14 of 18)

1
/I Operate over each rectangle. The rectangles are guaranteed
/I not to go out outside of the image.

Il
unsigned int x_size, y_size;
long X, Y;

unsigned char* src;
unsigned char* dst;
while(roi_list->next(&x,&y,&x_size,&y_size)) {
I
/I All of the rectangles must be adjusted by
/I the image origin.
)
X += X_origin;
y +=y_origin;

src =fb_mem +
(win_y+y)*fb_width +
(Win_x+x);

dst = storage->data +
y*storage->scanline_stride +
x*storage->pixel_stride;

1
/I If this CG6 supports double loads and stores, then we can
/I use xil_memcpy() to put the data onto the screen.
/I Otherwise, we must use the plain memcpy() which does not
/I accelerate the copy by using double loads and stores.
)
if([doubleLoadnStore == TRUE) {

for(int i=0; i<y_size; i++) {

xil_memcpy(dst, src, x_size);

src += fb_width;
dst += storage->scanline_stride;
}
}else {
for(int i=0; i<y_size; i++) {
memcpy(dst, src, x_size);

src += fb_width;

1/0 Devices

101

102

Code Example 3-6 XilDevicelnputOuputCG6.cc

(15 of 18)

dst += storage->scanline_stride;
}
}
}

Il
/I Unlock the DGA window.
1
DGA_WIN_UNLOCK(infop);

I

/I Destroy all of the ROIs | created.
I

clipped_roi->destroy();
roi_list->destroy();

I

/I Mark the XIL image backing storage as Valid
I

setMemoryValid(TRUE);

}

void

install_cmap(Dga_cmap dga_cmap,
int index,
int count,

Xil_unsigned8* red,
Xil_unsigned8* green,
Xil_unsigned8* blue)

cg6_cmap* cgécmap = (cg6_cmap*)dga_cm_get_client_infop(dga_cmap);

I
/I Store colors side-by-side
1
static Xil_unsigned8 cmap[3*256];
for(int i=0,j=0; j<count; i+=3,j++) {
cmapli] = red[j];
cmapli+1] = green[j];
cmapli+2] = blue[j];
}

XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-6 XilDevicelnputOuputCG6.cc (16 of 18)
I
/I cg6 Cmap
I
cgb6cmap->addr = index << 24;
int nument = (((count<<l)+count)>>2); // ncolors*3
volatile u_int* hw_cmap = &cgbcmap->cmap;
int* incmap = (int*) cmap;

for(i=0; i<nument; i++, incmap++) {
*hw_cmap = *incmap;
*hw_cmap = *incmap << 8;
*hw_cmap = *incmap << 16;
*hw_cmap = *incmap << 24;

}
}
int
XilDevicelnputOutputCG6::setDeviceAttribute(char attribute_name[],
void* value)
{

if(!strcmp(attribute_name, “XCOLORMAP")) {
XilColorList* clist = (XilColorList*)value;

if(clist->cmap != xcmap) {
if(clist->cmap != 0) {
1l
/I UnGrab Cmap Grabber
I
XDgaUnGrabColormap(displayptr, xcmap);
dga_cmap = NULL;
}

xcmap = 0;

1
/I Connect to the Cmap Grabber
1
Dga_token dga_token = XDgaGrabColormap(displayptr, clist->cmap);
if(dga_token==NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-219", TRUE);

return XIL_FAILURE;

}
if((dga_cmap =

1/0 Devices

103

104

Code Example 3-6 XilDevicelnputOuputCG6.cc

(17 of 18)

((Dga_cmap) dga_cm_grab(dga_win_devfd(infop),

dga_token))) == NULL) {

XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-219", TRUE);

XDgaUnGrabColormap(displayptr, clist->cmap);
return XIL_FAILURE;

}

xcmap = clist->cmap;

1

/I Mmap Hardware

1

if((cg6cmap = (struct cg6_cmap*)

mmap(NULL, CG6_CMAP_SZ, PROT_READ|PROT_WRITE,

MAP_PRIVATE, fd, CG6_VADDR_CMAP)) ==
(struct cg6_cmap*)-1) {

XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-215", TRUE);

return XIL_FAILURE;
}

dga_cm_set_client_infop(dga_cmap, cgécmap);

}

XColor* colors = clist->colors;
Xil_unsigned32 ncolors = clist->ncolors;
unsigned long index = colors[0].pixel;

)

/I Check to see if the colors are linear and convert

)

static Xil_unsigned8 red[256], green[256], blue[256];

for(int i=(int)(index),j=0; i<(ncolors+index); i++,j++) {
if(colors[i-index].pixel '=1) {

XStoreColors(displayptr, clist->cmap, colors, ncolors);

return XIL_SUCCESS;

}

red[j] = colors[j].red>>8;
green(j] = colorsJj].green>>8;
blue[j] = colors[j].blue>>8;

}

XIL Device Porting and Extensibility Guide—August 1994

w
1]

Code Example 3-6 XilDevicelnputOuputCG6.cc (18 of 18)
)
/I Install the new colormap.
I

dga_cm_write(dga_cmap, (int)index, ncolors,
red, green, blue, install_cmap);

return XIL_SUCCESS;
}

return XIL_FAILURE;
}

int XilDevicelnputOutputCG6::getDeviceAttribute(char attribute_name[],
void** value)
{
if (Istrcemp(attribute_name,"WINDOW”))
*value= (void *)window;
else if (strcmp(attribute_name,”"DISPLAY™))
*value= (void *)displayptr;
else if (strcmp(attribute_name,”FBC"))
*value= (void *)fb_fbc;
else if (Istremp(attribute_name,”"DGA_WIN"))
*value= (void *)infop;
else
return XIL_FAILURE;

return XIL_SUCCESS;

1/0 Devices 105

3

Sample 1/O Device Handler

106

The following example shows an I/0 handler that treats an X11 window as a
I/0 device. It contains an implementation of

XilDevicelnputOutputTypeXlib and XilDevicelnputOutputXlib ,
which are classes derived from XilDevicelnputOutputType and
XilDevicelnputOutput , respectively. It also shows sample implementations
of the member functions of these classes. This is the code delivered in the XIL
library to allow device images to be created from X11 windows.

Code Example 3-7 XlibCreateType.cc (1 of 14)

/[This line lets emacs recognize this as -*- C++ -*- Code

It
I
1
1
1
I
I
I
1

#pragma ident

Contains the member functions of XilDevicelnputOutputTypeXlib
and XilDevicelnputOutputXlib.

“‘@#)XlibCreateType.ccl1.2\t94/03/23

#include <stdlib.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <xil/xili.h>

/*

* Derived instantiation of XilDevicelnputOutputType class
* This is the description of the connection to the device
* There is only one of these

*/

class XilDevicelnputOutputTypeXlib : public XilDevicelnputOutputType {

k

/*

virtual XilDevicelnputOutput* createDevicelnputOutput(
Xillmage* parent, void* data);

* Derived instantiation of XilDevicelnputOutput class

XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-7 XlibCreateType.cc (2 of 14)

* This is the description of a particular instantiation of the device
* There can be many of these
*/
class XilDevicelnputOutputXlib : public XilDevicelnputOutput {
public:
virtual int setDeviceAttribute(char attrbute_name[], void* value);
virtual int getDeviceAttribute(char attribute_name[], void** value);
virtual void display(Xillmage®);
virtual void capture(Xillmage®*);
virtual void getPixel(unsigned short X, unsigned short y,
unsigned short band, unsigned short count,
float *data);
virtual void setPixel(unsigned short x, unsigned short y,
unsigned short band, unsigned short count,
float *data);

XilDevicelnputOutputXlib(Xillmage* parent, void* data);
virtual ~XilDevicelnputOutputXlib();

private:
Display* displayptr;
Window window;
XImage* ximage;
unsigned int x_depth;
GC gc;

%

/*

* This is the global function called by XIL to create this kind of
*1/O device

*/

XilDevicelnputOutputType *XilCreatelnputOutputType()

{

}

/*

* This is the routine that creates new images on this particular 1/0

* device

*/

XilDevicelnputOutput* XilDevicelnputOutputTypeXlib::createDevicelnputOutput(
Xillmage* parent, void* data)

return(new XilDevicelnputOutputTypeXlib());

{

1/0 Devices

107

108

Code Example 3-7 XlibCreateType.cc (3 of 14)

XilDevicelnputOutputXlib* device;

device=new XilDevicelnputOutputXlib(parent,data);

if (device==NULL) {
XIL_ERROR(NULL,XIL_ERROR_RESOURCE,"di-1",TRUE);
return NULL;

}

if (device->getimageType()==NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-188",FALSE);
delete device;
return NULL;

return(device);

}

/*
* Constructor for an object (image) of this device
*/
XilDevicelnputOutputXlib:: XilDevicelnputOutputXlib(
Xillmage* parent,void* data)
{
XGCValues gc_val;
XilWindow* window;
XilDataType depth;
unsigned int nbands;
unsigned int width;
unsigned int height;

window = (XilWindow*)data;

[* indicate readability and writeability */
readable= TRUE;
writeable= TRUE;

[* save the display and window */
this->displayptr= window->display;
this->window= window->window;

/* find out the image type */
{

Window root;

int x,y;

unsigned int border_width;

XIL Device Porting and Extensibility Guide—August 1994

w
1]

Code Example 3-7 XlibCreateType.cc (4 of 14)

Status status=XGetGeometry(displayptr,this->window,&root,&x,&y,&width,
&height,&border_width, &x_depth);
if (status==0) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-220", TRUE);
imageType=NULL;
return;
}
}
switch (x_depth) {
case 1:
depth= XIL_BIT;
nbands= 1,
imageType=reallmageType=
parent->getSystemState()->createlmageType(width,height,1,depth);

break;

case 4:

case 8:
depth= XIL_BYTE;
nbands=1;

imageType=reallmageType=
parent->getSystemState()->createlmageType(width,height,1,depth);

break;

case 16:
depth= XIL_SHORT;
nbands=1;

imageType=reallmageType=
parent->getSystemState()->createlmageType(width,height,1,depth);

break;

case 24:
depth= XIL_BYTE;
nbands= 3;

imageType=parent->getSystemState()-
>createlmageType(width,height,3,depth);
reallmageType=parent->getSystemState()-
>createlmageType(width,height,4,depth);
break;
default:
imageType=reallmageType=NULL;
break;
}
if (imageType==NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-188",FALSE);

1/0 Devices

109

110

Code Example 3-7 XlibCreateType.cc (5 of 14)

return;

}

if (reallmageType==NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-188",FALSE);
imageType->destroy();
imageType=NULL,;
return;

}

[* create a graphics context */

gc_val.foreground= 0;

gc_val.function= GXcopy;

this->gc= XCreateGC(displayptr,this-

>window,GCForeground|GCFunction,&gc_val);

if ('this->gc) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-162", TRUE);
imageType->destroy();
imageType=NULL,;
return;

}

[* create an X image */

XWindowAttributes win_attr;

if (IXGetWindowAttributes(displayptr,this->window,&win_attr)) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-249", TRUE);
XFreeGC(displayptr,gc);
imageType->destroy();
imageType=NULL,;
return;

}

xImage=

XCreatelmage(displayptr,win_attr.visual,win_attr.depth,ZPixmap,0,0,
10, 10, 8, 0);

if (ximage==NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-250", TRUE);
XFreeGC(displayptr,gc);
imageType->destroy();
imageType=NULL,;
return;

XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-7 XlibCreateType.cc (6 of 14)

[* go ahead and throw way the storage that the X image created
* since we'll be copying directly out of the XIL image

*/

XFree(xImage->data);

xImage->data=NULL;

[* get the display operation numbers */

displayOpNumber=XilLookupOpNumber(“display_ioxlib");

captureOpNumber=XilLookupOpNumber(“capture_ioxlib");
}

/*
* This is the destructor for the storage device
*/
XilDevicelnputOutputXlib::~XilDevicelnputOutputXlib()
{

if (imageType) {

XFreeGC(displayptr,gc);
xImage->data=NULL;
XDestroylmage(xImage);
imageType->destroy();
if (reallmageType!=imageType) reallmageType->destroy();
}
}

/*
* write image to device
*
void XilDevicelnputOutputXlib::display(Xillmage* copy_image)
{
unsigned short width,height,nbands;
XilDataType data_type;
XilMemoryStorage* storage;
long x_origin, y_origin;
XilRoi* roi;
XilRoiList* roi_list;
long x,y;
unsigned int offset_x,offset_y,offset_band,;

[* get information about the image */
copy_image->getinfo(&width,&height,&nbands,&data_type);
copy_image->getOrigin(&x_origin,&y_origin);

1/0 Devices

111

1]l
w

Code Example 3-7 XlibCreateType.cc (7 of 14)

[* get format information and put it into the X image*/

storage= (XilMemoryStorage*)copy_image->getMemoryStorage();

if (storage==NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-140",FALSE);
return;

}

[* get the child offset information */
copy_image->getChildOffsets(&offset_x,&offset_y,&offset_band);

switch (copy_image->getDataType()) {

case XIL_BIT:
xImage->data= (char*)storage->bit.data;
xImage->bytes_per_line= (int)storage->bit.scanline_stride;
break;

case XIL_BYTE:
xImage->data= (char*)storage->byte.data-offset_band;
xImage->bytes_per_line= (int)storage->byte.scanline_stride;
break;

case XIL_SHORT:
xImage->data= (char*)storage->shrt.data;
xImage->bytes_per_line= (int)storage->shrt.scanline_stride*2;
break;

case XIL_FLOAT:
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-216",FALSE);
return;

}

xImage->width= width;

xIlmage->height= height;

[* figure out the plane mask */
if (x_depth==24) {
unsigned long mask;
switch (copy_image->getBands()) {
case 1:
mask= 0xFF0000;
break;
case 2:
mask= OxFFFFOO;
break;
case 3:
mask= OXFFFFFF;

112 XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-7 XlibCreateType.cc (8 of 14)

break;
}
mask= mask >> ((offset_band-1) * 8);
XSetPlaneMask(displayptr,gc,mask);
}

/* get ROI */

roi= copy_image->getPixelsTouchedRoi();

if (roi==NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-6",FALSE);
return;

}

[* get the roi list from the roi */

roi_list= roi->getRectList();

if (roi_list==NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-8",FALSE);
return;

}

/* operate on each ROI, all of the regions are guaranteed not to go outside
* the image
*/
unsigned int x_size,y_size;
while (roi_list->next(&x,&y,&x_size,&y_size)) {
X+= X_origin;
y+=y_origin;
XPutlmage(displayptr,window,gc,xImage, (int)x,(int)y,(int)x+offset_x,
(int)y+offset_y,x_size,y_size);

}

/* se the plane mask back to normal */
if (x_depth==24) XSetPlaneMask(displayptr,gc,0xFFFFFF);

XFlush(displayptr);
xImage->data= NULL;
roi_list->destroy();

1/0 Devices

113

1]l
w

Code Example 3-7 XlibCreateType.cc (9 of 14)

/*
* read image from device
*/
void XilDevicelnputOutputXlib::capture(Xillmage* copy_image)
{
unsigned short width,height,nbands;
XilDataType data_type;
XilMemoryStorage* storage;
long x_origin, y_origin;
XilRoi* roi;
XilRoiList* roi_list;
long Xx,y;
unsigned int offset_x,offset_y,offset_band;

[* get information about the image */
copy_image->getinfo(&width,&height,&nbands,&data_type);
copy_image->getOrigin(&x_origin,&y_origin);

[* get format information and put it into the X image*/

storage= (XilMemoryStorage*)copy_image->getMemoryStorage();

if (storage==NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-140",FALSE);
return;

}

[* get the child offset information */
copy_image->getChildOffsets(&offset_x,&offset_y,&offset_band);

switch (copy_image->getDataType()) {

case XIL_BIT:
xImage->data= (char*)storage->bit.data;
xImage->bytes_per_line= (int)storage->bit.scanline_stride;
break;

case XIL_BYTE:
xImage->data= (char*)storage->byte.data-offset_band;
xImage->bytes_per_line= (int)storage->byte.scanline_stride;
break;

case XIL_SHORT:
xImage->data= (char*)storage->shrt.data;
xImage->bytes_per_line= (int)storage->shrt.scanline_stride*2;
break;

case XIL_FLOAT:

114 XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-7 XlibCreateType.cc (10 of 14)

XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-216",FALSE);
return;

}

xImage->width= width;

xIlmage->height= height;

[* get ROI */

roi= copy_image->getimageSpaceRoi();

if (roi==NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-6",FALSE);
return;

}

[* get the roi list from the roi */

roi_list= roi->getRectList();

if (roi_list==NULL) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-8",FALSE);
return;

}

/* operate on each ROI, all of the regions are guaranteed not to go outside
* the image
*/
unsigned int x_size,y_size;
while (roi_list->next(&x,&y,&x_size,&y_size)) {
X+= X_origin;
y+=y_origin;
XGetSublmage(displayptr,window,(int)x+offset_x,(int)y+offset_y,
X_size,y_size,0xffffffff, ZPixmap,xImage, (int)x,(int)y);
}
XFlush(displayptr);
xIlmage->data= NULL;
roi_list->destroy();

}

void XilDevicelnputOutputXlib::setPixel(unsigned short x, unsigned short y,
unsigned short band, unsigned short count,
float* data)
{
float value;
unsigned long pixel;
unsigned long mask;

1/0 Devices

115

116

Code Example 3-7 XlibCreateType.cc

(11 of 14)

[* set the pixel */
switch (x_depth) {
case 1:
value= data[0]+.5;
if (value > 1.0) {
pixel=1;
} else if (value < 0.0) {
pixel=0;
}else {
pixel=(unsigned long)value;

mask=1;
break;
case 4:
case 8:
value= data[0]+.5;
if (value > 255.0) {
pixel=255;
} else if (value < 0.0) {
pixel=0;
}else {
pixel=(unsigned long)value;

mask=0xFF;
break;
case 24:
pixel=0;
switch (count) {
case 3:
value= data[2];
if (value > 255.0) {
pixel|=0xFF0000;
} else if (value < 0.0) {
}else {
pixel |= (unsigned long)value << 16;
}
case 2:
value= data[1];
if (value > 255.0) {
pixel|=0xFFQ0;
} else if (value < 0.0) {
}else {

XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-7 XlibCreateType.cc (12 of 14)

pixel |= (unsigned long)value << 8;
}
case 1:
value= data[0];
if (value > 255.0) {

pixel|=0xFF;
} else if (value < 0.0) {
}else {
pixel |= (unsigned long)value;
}
switch (count) {
case 1:
mask= OxFF;
break;
case 2:
mask= OxFFFF;
break;
case 3:
mask= OXFFFFFF;
break;
}

mask = mask << (band * 8);

pixel = pixel << (band * 8);
}
XSetPlaneMask(displayptr,gc,mask);
XSetForeground(displayptr,gc,pixel);
XDrawPoint(displayptr,window,gc,x,y);
XSetPlaneMask(displayptr,gc,Oxffffffff);
XFlush(displayptr);

}

void XilDevicelnputOutputXlib::getPixel(unsigned short x, unsigned short y,
unsigned short band, unsigned short count,
float* data)

unsigned long pixel;
Xlmage* image;

image=XGetlmage(displayptr,window,x,y,1,1,0xFFFFFF,ZPixmap);
if (limage) {
XIL_ERROR(NULL,XIL_ERROR_SYSTEM,"di-316", TRUE);

1/0 Devices

117

118

Code Example 3-7 XlibCreateType.cc (13 of 14)

return;
}
pixel= XGetPixel(image,0,0);
XDestroylmage(image);

switch (x_depth) {
case 1:
case 4:
case 8:
data[O]=pixel;
break;
case 24:
pixel >> (band * 8);
switch (count) {
case 3:
data[2]= (pixel & OXFF) >> 16;
/* break intentionally omitted */
case 2:
data[1]= (pixel & OXFF) >> 8;
/* break intentionally omitted */
case 1:
data[0]= pixel & OxFF;
[* break intentionally omitted */
}
break;
}
}

int XilDevicelnputOutputXlib::setDeviceAttribute(char attribute_name],
void* value)
{

if (Istrcmp(attribute_name,”XCOLORMAP")) {
XilColorList* clist = (XilColorList*)value;
XStoreColors(displayptr, clist->cmap, clist->colors, clist->ncolors);
return XIL_SUCCESS;

}

return XIL_FAILURE;

}

int XilDevicelnputOutputXlib::getDeviceAttribute(char attribute_name[],
void **value)

XIL Device Porting and Extensibility Guide—August 1994

Code Example 3-7 XlibCreateType.cc

(14 of 14)

{

}

if (Istrcmp(attribute_name,"WINDOW"))
*value=(void *)window;

else if (Istrcmp(attribute_name,”DISPLAY™))
*value=(void *)displayptr;

else
return XIL_FAILURE;

return XIL_SUCCESS;

1/0 Devices

119

120

XIL Device Porting and Extensibility Guide—August 1994

Compute Devices 4

About Compute Devices

Compute handlers are the basic operation grouping in the XIL library. A single
compute handler can contain the implementation of one or more atomic XIL
image functions and/or one or more molecules. (General aspects of molecules
are described in Chapter 1, “Overview.”). Compute handlers are device
specific; they provide an implementation of the operational capability of a
device. In addition, compute handlers integrate with storage handlers (see
Chapter 5, “Storage Devices”) and with I/0 handlers (see Chapter 3, “1/0
Devices”). They also are used to implement the compress and decompress part
of XIL compression and decompression (see Chapter 6,
“Compression/Decompression”).

Each compute handler must contain the following global function:
XilDeviceComputeType* XilCreateComputeType()

This function provides device initialization and describes the list of
implemented image processing functions that need to be added to the global
list of available functions.

XilDeviceComputeType is an empty class. Unlike 1/0, compression, and
storage devices, no instances of a compute device exist. The compute handler
subclasses XilDeviceComputeType , adding the functions that have been
implemented. The default memory device has all the functions implemented. In
the derived class, you need only implement any additional functions you
desire.

121

A

Implementing an XIL Function

To create a compute device, you must implement an XIL function. There are
several examples of this in this document. Appendix A, “Sample Molecule,”
shows an example of creating a two-atom molecule. The section “Sample
Compute Device Handler” on page 134,” shows how to create an atom that
uses a different storage mechanism from the standard memory storage. The
functions that may be implemented are listed in Appendix B, “XIL Atomic
Functions.”

The language for implementing XIL functions is C++. All image functions are
members of the Xillmage class. Class members, such as
Xillmage::getBands() , are available for use in compute handlers.

The arguments to each element (atomic or molecular) in a compute handler are
the op and the op_count . For the implementation in Appendix A, “Sample
Molecule,” the prototype looks like this:

int

XilDeviceComputeTypeMemory::Rescale16Convert16to8(
XilOp* op, /I a pointer into the DAG
int op_count) // the number of combined ops to be done

The XilOp class holds the information required to store the XIL operation in
the DAG. The op parameter is a pointer that represents a specific XIL operation
on the DAG. The source and destination images of atomic functions must be
accessible to the operation. These images are stored in the XilOp object. The
parameters of XIL functions also are stored in the XilOp object. The XilOp
class contains member functions that enable you to extract the image and
parameter information for an operation. See the section “The XilOp Class” in
Chapter 1 for a complete description of this class. The number of image
sources supported by an XIL operation and the XilOp member functions that
you must use to extract the images sources and to extract an XIL function’s
parameters from the XilOp obiject are listed in Appendix C, “XilOp Obiject.”

122 XIL Device Porting and Extensibility Guide—August 1994

N
1]

Access to the image data is obtained via three member functions of the
Xillmage class:

Table 4-1 Image Data Memory Functions of the Xillmage Class

Member Function Definition

getStorage() Returns a pointer to a structure that describes the
data storage for the specified storage type. It does
not take child offsets into account.

getMemoryStorage() Returns a pointer that describes the memory
layout. It does not allow you to specify the
storage type. It does take child offsets into
account.

requestStorage() Returns a pointer to a structure that describes the
data storage for the specified storage, but, unlike
getStorage (), does not force a propagation.

These member functions are discussed in detail in the section “The Xillmage
Class” in Chapter 1.

An example of the use of getMemoryStorage () is as follows:

Il get source’s memory storage
XilMemoryStorageShort *short_storage;
short_storage = (XilMemoryStorageShort *)src->getMemoryStorage();
if (short_storage==NULL) {
return XIL_FAILURE;
}
Xil_signed16 *src_base_addr = (Xil_signed16 *)short_storage->data;
unsigned long src_next_pixel = short_storage->pixel_stride;
unsigned long src_next_scan = short_storage->scanline_stride;

Almost all image operations in the XIL library will be affected by regions of
interest (ROIs). XIL ROIs may be of arbitrary shape. The internal
representation in the current release is a series of rectangles, much like the X11
region, except that the XIL library uses 32-bit quantities instead of 16-bit
guantities to define the position and extent of the rectangles. The internal
function XiliGetRoiList() can be used to obtain the intersection of the
source and destination ROIs. For a detailed discussion of ROIs, see the section
“The XilRoi Class” in Chapter 1.

Compute Devices 123

Note — The values produced by the implementation of an XIL function should
match as closely as possible the values produced by the memory port. This has
several implications. The results of operations should be clamped; that is,
intermediate results should be tested against the maximum and minimum
values of the destination data type before they are converted to that data type.
For many of the simple functions, any difference from the default version
should not be tolerated. More complicated operations, where there are many
floating-point or fixed-point calculations done for each pixel, do not always
allow pixel-for-pixel accuracy with any sort of reasonable code. Often, new
algorithms provide slightly different values. It is up to the implementor of the
algorithm to make sure that there are no systematic differences between the
new implementation and the old one.

The XIL Test Suite can aid you in verifying new implementations of XIL
functions. The XIL Test Suite enables you to perform regression tests of new
code against verified reference signatures and includes the capability of
specifying a tolerance for the comparison. This test suite is described in a
separate document, XIL Test Suite User’s Guide, which is part of this release.

Error handling in an implementation is performed by calling the

notifyError() member function of the system state. A macro XIL_ERROR
that simplifies this interface is defined in XilError.h . Both compute handler
examples use this interface. The method used to add error messages for device-
dependent errors is discussed in Chapter 2, “More on Writing Device
Handlers.”

Adding a Compute Device

124

When writing a compute device, you can implement support for one or more
atomic or molecular functions. The default (memory) compute device contains
implementations of all the XIL atomic functions, as well as a few molecules.

Each subclass of a compute handler can implement multiple atomic or
molecular functions. Each member function (routine) of a subclass can be an
entry point for multiple atoms or molecules. Each routine can perform

XIL Device Porting and Extensibility Guide—August 1994

A

equivalent functions or can contain common code that branches out for specific
parameter values. For example, in the code below, Affine8 is a common entry
point for several types of affine operations on the byte data type.

[* XILCONFIG: Affine8= affineNN8() */
/* XILCONFIG: Affine8= affineBL8() */
/* XILCONFIG: Affine8= affineBC8() */
XilDeviceComputeTypeMemory:: Affine8(
XilOp *op, Il a pointer into the DAG
int op_count) // number of combined operations

Molecules also can share a common entry point. In the example below, the
DecompressDither8 treats the rescale as an optional operation, which can be
replaced with some reasonable default value. Therefore, this routine must be
written to handle a chain of two or three operations. The code checks the
operation number of the second operation using the utility function
XilLookupOpNumber() , which returns the operation number for a specified
routine name.

/* XILCONFIG: DecompressDither8=*/
ordereddither8_8(decompress_Codec())

I* XILCONFIG: DecompressDither8= */
ordereddither8_8(rescale(decompress_Codec())

int
XilDeviceComputeTypeCodecMemory::DecompressDither8(
XilOp* *op, /I a pointer into the DAG
int op_count) // number of combined operations
{

/I Pull everything needed off the chain of operations
/I First, the ordered dither operation

dst = op->getDst();

cube = (XilLookup *)op->getObjParam(1);

dmask = (XilDitherMask *)op->getObjParam(2);

Compute Devices 125

126

// move to next operation along the chain
op = op->getOp1();

/I Now, look at the next operation number and test for the
/I optional rescale operation
rescale8_opnum == XilLookupOpNumber(“rescale8”)
if (op->getOp() == rescale8_opnum) {
rescale = (float *)op->getPtrParam(1);
offset = (float *)op->getPtrParam(2);
/I move to next operation along the chain
op = op->getOpl();

}else {
/I default values for optional rescale
rescale = 0;
offset = 0;

}

/I Now, the decompress operation

dc = (XilDeviceCompressionCodec*)
(op->getSrcCis())->getDeviceCompression();

dc->seek((int)op->getLongParam(1));

The next example illustrates that you can have multiple routines in the same
file. And, a file can contain both atoms and molecules and the XILCONFIG lines
can be in any order (meaning they do not have to be in the order the routines
are presented in the file).

[* XILCONFIG: SubtractAdd8 = add8(subtract8()) */
[* XILCONFIG: Add8 = add8() */
/* XILCONFIG: MultiplyAdd8 = add8(multiply8())) */

XilDeviceComputeTypeMemory::Add8(XilOp *op, int op_count)
{

XIL Device Porting and Extensibility Guide—August 1994

N
1]

XilDeviceComputeTypeMemory::MultiplyAdd8(XilOp *op, int
op_count)

{

}

XilDeviceComputeTypeMemory::SubtractAdd8(XilOp *op, int
op_count)

{

The compute device implementation follows these steps:

1. Subclass the XilDeviceComputeType class, including the functions for
this specific compute device. As an example, consider the case of a device
that can add 8-bit images. The implementation would include a subclass
like:

class XilDeviceComputeTypeMyDevice: public XilDeviceComputeType{
public:
int MyAdd8(XilOp* op, int count);

2. After the implementation is compiled, link it into the execution table so that
it will be referenced properly by the core code. The XIL library provides a
nearly automatic means of doing this. For you to use this method, the
implementation file must contain a comment line of the following type:

/* XILCONFIG: MyAdd8 = add8() */

The add8() indicates the XIL atom that the implementation MyAdd8
represents. Remember that multiple atoms and/or molecules may be
implemented within a single routine and within a single file. For each atom
and molecule, an appropriate XILCONFIG line must be present. The atomic
functions available for implementing are described in Appendix B, “XIL
Atomic Functions.”

Compute Devices 127

128

3. After you have added the configuration lines, run the executable

xilcompdesc . This executable automatically generates a file that, when
compiled, will provide a routine to correctly integrate the implementation of
the subclass into the XIL execution table. The executable

$XILHOME/bin/xilcompdesc classname [files]

parses the given files (or the standard input) looking for the configuration
lines described above. It produces a C++ source file on standard output that
is the implementation of a member function of the given class called
describeMembers() . describeMembers() should be invoked inside
XilCreateComputeType() . When invoked, describeMembers() adds
all the member functions from this compute handler into the available
function tree. For example,

// routine called by the XIL core to initialize the band_memory
/I compute device
XilDeviceComputeType* XilCreateComputeType()

{
XilDeviceComputeTypeBandMemory* device;
/Il create an instantiation of the device
device= new XilDeviceComputeTypeBandMemory();
/I register with the core the functions that this device
/l implements
if (device->describeMembers()==XIL_FAILURE) {
delete device;
return NULL;
}else {
return device;
}
}

4. Finally, there is a file /opt/SUNWits/Graphics-swixil/lib

Ixil.compute that lists the compute handlers and their dependencies (see
Chapter 2, “More on Writing Device Handlers,” for more information on

XIL Device Porting and Extensibility Guide—August 1994

A

installing handlers). You must edit this file to give the library instructions on
the order in which to load the compute modules (see the following section
“Loading Compute Handlers”). The format looks like this:

computememory
computeSUNWQgx ioSUNWgXx
computeMYCOMPANYmyhandler

Loading Compute Handlers

As part of xil_open() , the library parses the xil.compute file, looking for
the appropriate modules in /opt/SUNWits/Graphics-swixil/lib . The
name of the compute handler is listed first, followed by any other handlers on
which the compute handler is dependent. The compute handlers that have no
dependents are loaded as they are reached in the xil.compute file.

In the following example, the first line loads all the functions in
xilcomputememory.so , and the second line has a dependent, so
xilcomputeSUNWgx.so and xilioSUNWgx.so are not loaded. The third line
loads xilcomputeMYCOMPANYmyhandler.so.

computememory
computeSUNWgx ioSUNWgx
computeMYCOMPANYmyhandler

If this handler contains, for example, the add8() function, this new version
replaces the existing memory version (which was loaded by the first line) in
the function tree. Actually, each node in the function tree is kept as a linked list
of function pointers. When the new version of add8() is encountered, it is
simply added to the head of the list. When the add8() atom occurs in the
course of processing, the first function in the list is called. If, for some reason,
the function returns XIL_FAILURE , the second function in the list is called,
and so forth down the list, until the memory version is called. This strategy
allows a function implementation to limit the range of parameters for which it
works, leaving undesired parameter sets to the memory version, which will
work for all legal parameters.

Compute Devices 129

Let’s consider another example with compute handlers that have dependents:

computeSUNWgx ioSUNWgx
computeCell_SUNWgx Cell ioSUNWGX

The compute handlers that have dependents are loaded when all the
dependents have been loaded. For instance, the computeSUNWgx handler is
dependent on the ioSUNWgx handler. When this 1/0 handler is loaded and
initialized, then the compute handlers in xil.compute that have ioSUNWQgx
as their remaining dependency are loaded. Since ioOSUNW(gXx is the only
dependent of computeSUNWgXx this compute handler is loaded at that time.
For example,

xil_create_from_device(state, “‘ioSUNWgx", NULL);
I/l causes ioSUNWgx handler to be loaded
// once the 1/0O handler is loaded, then computeSUNWgx is loaded

The computeCell_ SUNWgx handler still has Cell as a dependent, so it would
not be loaded yet.

Adding a New Molecule

130

The XIL core code determines the function that will be called for each
combination of atomic functions. The first thing you must do when adding a
new molecule is to decide what the molecule is to do.

XIL supports both single and multiple branch molecules. Single branch
molecules can be described in the form:

function_1(function_2(...(function_N())...))

An example of code that can be written as a molecule is:

xil_add(im1, im2, im3)
xil_add(im3, im4, im5)

This code can be rewritten as a molecule of the form

XIL Device Porting and Extensibility Guide—August 1994

N
1]

xil_add(xil_add())
The output of the first add is used as an input to the second one.

An example of code that can be written as a multiple branch molecule is:

xil_add(im1,im2,im3)
xil_add(im4,im5,im6)
xil_subtract(im3,im6,im7)

Both sources in the subtract operation have dependencies. The left branch,
which branches into sourcel of the subtract operation, is the first add
operation. The right branch, which branches into source2 of the subtract
operation, is the second add operation.

The routines use the existing interface getOpl1() to follow the left-most branch
of the chain op operations. Two new interfaces on the XilOp class exist to
access the right branch chain of ops: getOp2() , associated with source2, and
getOp3() , associated with source3. See the section “Manipulating Molecules”
in this chapter for more information.

Also, you can have a linear molecule along the right branch of the chain of
operations. For example,

xil_add(im1,im2,im3);
xil_subtract(im4,im3,im5);

This code can be rewritten as a molecule of the form:
xil_subtract(,xil_add())
Adding a molecule is one example of adding a compute device. In the file that

contains the implementation of a single branch molecule, the following
configuration line must be included:

/* XILCONFIG: SingleBranchMoleculeName = atom2(atom1()) */

where atom2 and atom1 refer to existing atomic functions listed in Appendix B,
“XIL Atomic Functions.”

In the file that contains the implementation of a multiple branch molecule, the
following configuration line must be included:

Compute Devices 131

/* XILCONFIG: MultiBranchMoleculeName = atom1(atom2(), atom3()) */

In the file that contains the implementation of a linear molecule along the right
branch of the chain of operations, the following configuration line must be
included:

/* XILCONFIG: RightBranchMoleculeName = atom1(, atom2);

The configuration is done using xilcompdesc in the manner described
previously for other compute handlers. The file /opt/SUNWits/
Graphics-swixil/lib/xil.compute must be updated in order for the
compute handler to be loaded.

Like other compute handlers, molecules may execute on processors other than
the host CPU. If it would be advantageous to allow the image data to remain in
nonhost memory, a storage handler for the device is required. Storage device
handlers are described in Chapter 5, “Storage Devices.”

Appendix A, “Sample Molecule,” shows an example of a molecule made up of
rescalel6 followed by convertl6to8 , using the standard memory storage
handler. It is important to note that, like new atoms, molecules should strive to
give the same answers as would be obtained through the atomic path. As an
example, consider a molecule subtract_const8(add_const8()) that first
adds a constant value to an 8-bit image and then subtracts away a possibly
different constant value. It might seem reasonable to simply subtract the two
constants from each other and add the difference to the source image.
However, this could cause the molecule to behave differently from the atomic
path. If the initial add causes the image values to exceed the maximum value
for the data type (255), the result of the initial add must be clamped to that
maximum value. Subtracting the second constant would subtract from 255, not
from the source value plus the first constant. Since either the molecular or
atomic path may be taken, depending on how the application is written, it is
vital that they behave alike.

Manipulating Molecules

132

A molecule is a chain of atomic operations. For a molecule, the chain must be
properly followed to extract in a logical order the parameters and images from
the XilOp object. The op_count parameter is useful to determine how many
atomic operations exist along the chain, in case molecules of varying lengths
share the same routine.

XIL Device Porting and Extensibility Guide—August 1994

A

The op passed to the routine is the op associated with the last operation in the
chain (the operation that writes its output to a destination image). The
molecule must extract the destination image and the function’s parameters
from the XilOp object. Then, to move up the chain of operations, you can use
the following functions:

® getOpl() , get pointer to op that has sourcel as its destination
® getOp2() , get pointer to op that has source?2 as its destination

* getOp3() , get pointer to op that has source3 as its destination

For information about the XilOp class, see the section “The XilOp Class” in
Chapter 1.

Molecules and 1/0O Devices

I/0 handlers may have their capture() or display() functions included as
part of a molecule. For example, the final destination of a decompression
molecule might be the display to enable digital video.

Note — Whenever the device is the final step in a molecule, it is important to
mark the buffer memory as invalid by calling setMemoryValid(FALSE) from
the device. Subsequent writes to the device may cause a capture() from the
device to set the buffer.

In this case, the compute handler containing the molecule has a dependency on
the 170 handler, since the latter contains the information to initialize the 170
device and contains the attributes. The xil.compute file contains this
dependency information. The compute handlers that have dependents are
loaded when all the dependents have been loaded.

Consider the following example:

computememory

computeSUNWgx ioSUNWgx

computeMYCOMPANYmyhandler
computeMYCOMPANYmyotherhandler ioMYCOMPANYmyiodevice

Compute Devices 133

The computeSUNW(gx handler contains several molecules that depend on the
gx I/0 handler. Before the computeSUNWgx handler is loaded, the ioSUNWgx
handler must be loaded and initialized. The
computeMYCOMPANYmyotherhandler handler contains molecules that
depend on ioMYCOMPANYmyiodevice 1/0 handler. Before the
computeMYCOMPANYmyotherhandler handler is loaded, the
ioMYCOMPANYmyiodevice handler must be loaded and initialized.

Sample Compute Device Handler

134

This example illustrates a compute handler for images that are stored in a
band-sequential format. The atomic function that the compute handler
implements is add8() , the arithmetic addition of two 8-bit images. This
compute handler requires a corresponding storage handler that stores images
in band-sequential format. The example at the end of Chapter 5, “Storage
Devices,” illustrates such a handler. The files in this example include:

® XilDeviceComputeTypeBandMemory.h and
XilDeviceComputeTypeBandMemory.cc , which describe and implement
the compute handler classes

* Add8BandMemory.cc , which is the band-sequential implementation of
add8()

® band_memory_utils.cc , which contains utility functions for handling
child images

XIL Device Porting and Extensibility Guide—August 1994

XilDeviceComputeTypeBandMemory.h

Code Example 4-1 XilDeviceComputeTypeBandMemory.h

1l

/I foo

1

#include <xil/XilDeviceComputeType.h>

class XilDeviceComputeTypeBandMemory : public XilDeviceComputeType {
public:

/I constructor

XilDeviceComputeTypeBandMemory()

: XilDeviceComputeType(“XilDeviceComputeBandMemory”) {};

/I destructor
~XilDeviceComputeTypeBandMemory();

/I local describeMembers routine
int describeMembers();

// routines that this compute device implements
int Add8(XilOp* op, int count);

Compute Devices

135

i
AN

XilDeviceComputeTypeBandMemory.cc

Code Example 4-2 XilDeviceComputeTypeBandMemory.cc

1
/I foo
I

#include <xil/xili.h>
#include “XilDeviceComputeTypeBandMemory.h”

XilDeviceComputeTypeBandMemory::~XilDeviceCompute TypeBandMemory() {}

I routine called by the XIL core to initialize the band_memory
/I compute device

XilDeviceComputeType* XilCreateComputeType()

{

XilDeviceComputeTypeBandMemory* device;

/I create an instantiation of the device

device= new XilDeviceComputeTypeBandMemory();

if (device==NULL) {
XIL_ERROR(NULL,XIL_ERROR_RESOURCE,"di-1", TRUE);
return NULL;

}

/I register with the core the functions that this device implements
if (device->describeMembers()==XIL_FAILURE) {
delete device;
return NULL;
}else {
return device;
}
}

136 XIL Device Porting and Extensibility Guide—August 1994

N
1]

Add8BandMemory.cc

Code Example 4-3 Add8BandMemory.cc (1 of 6)

/[This line lets emacs recognize this as -*- C++ -*- Code
1
1
Il File: Add8BandMemory.cc

/I Project: XIL

/I Created: 93/04/30

/I RespEngr: Chuck Mosher

/I Revision: 1.2

/I Last Mod: 11:34:47, 23 Mar 1994

I

/I Description:

1

/I This routine performs the arithmetic addition of 2 8-bit images
/I that are in band-sequential memory format

I
I
I
#pragma ident “@(#)Add8BandMemory.cc1.2\t94/03/23 “

#include <xil/XilDefines.h>
#include <xil/XilError.h>
#include <xil/Xillmage.h>
#include <xil/XilOp.h>
#include <xil/XilRoi.h>
#include <xil/XilRoiList.h>

#include “../storage_device_handler/XilBandMemoryDefines.h”

I
/I Class declaration of this particular compute function
1
class XilDeviceComputeTypeBandMemory : public XilDeviceComputeType {
public:
int Add8(XilOp* op, int count);
~XilDeviceComputeTypeBandMemory();
¥
1
I/ Global function which returns band-sequential storage information.
// This could also be handled locally by the compute functions.
I

Compute Devices 137

138

Code Example 4-3 Add8BandMemory.cc (2 of 6)

XilBandMemoryStorage *getBandMemoryStorage(Xillmage *);

I
/Il Line which describes which atomic function (or set of functions) that
// this routine implements. The utility function “xilcompdesc” will cause

/I this description to be included in the local version of describeMembers.cc

/* XILCONFIG: Add8 = add8() */

1
/I The compute routine
1
XilDeviceComputeTypeBandMemory::Add8(
XilOp *op, /l/ a pointer into the DAG.
int) /l unused parameter (hnumber of combined ops to be done).
{
[* region location */
long x,y;

[* region size */
unsigned int x_size,y_size;

/* the images */
Xillmage *srcl,*src2,*dest;

[* the base addresses */
Xil_unsigned8 *src1l_base_addr,*src2_base_addr,*dest_base_addr;

[* pointer to the current band */
Xil_unsigned8 *src1_band,*src2_band,*dest_band;

[* pointer to the current scanline */
Xil_unsigned8 *srcl_scanline,*src2_scanline,*dest_scanline;

[* pointer to the current pixel */
Xil_unsigned8 *srcl_pixel,*src2_pixel,*dest_pixel;

[* next band offset (in bytes), range=1..65535 */
unsigned long src1_next_band,src2_next_band,dest_next_band;

[* next scanline offset (in bytes), range=1..(65535*255) */
unsigned long srcl_next_scan,src2_next_scan,dest_next_scan;

XIL Device Porting and Extensibility Guide—August 1994

Code Example 4-3 Add8BandMemory.cc (3 of 6)

[* x offset of image origin, range=1..65535 */
long srcl_x_origin,src2_x_origin,dest_x_origin;

[* y offset of image origin, range=1..65535 */
long srcl_y_origin,src2_y_origin,dest_y_origin;

[* the number of bands, range=1..255 */
unsigned int nbands;

[* loop counters */
unsigned int pixel_count, scanline_count, band_count;

[* get information about source 1 */
srcl= op->getSrcl();
src1->getOrigin(&srcl_x_origin,&srcl_y_origin);

[* get source 1's memory storage */
XilBandMemoryStorageByte *storage;
storage= (XilBandMemoryStorageByte *)getBandMemoryStorage(srcl);
if (storage==NULL) {
return XIL_FAILURE;
}
srcl_base_addr= (Xil_unsigned8 *)storage->data;
srcl_next_band= storage->band_stride;
srcl_next_scan= storage->scanline_stride;
delete storage;

[* get information about source 2 */
src2= op->getSrc2();
src2->getOrigin(&src2_x_origin,&src2_y_origin);

[* get source 2's memory storage */
storage= (XilBandMemoryStorageByte *)getBandMemoryStorage(src2);
if (storage==NULL) {
return XIL_FAILURE;
}
src2_base_addr= (Xil_unsigned8 *)storage->data;
src2_next_band= storage->band_stride;
src2_next_scan= storage->scanline_stride;
delete storage;
[* get information about the destination */
dest= op->getDst();

Compute Devices

139

140

Code Example 4-3 Add8BandMemory.cc (4 of 6)

dest->getOrigin(&dest_x_origin,&dest_y_origin);

[* get the destination’s memory storage */
storage= (XilBandMemoryStorageByte *)getBandMemoryStorage(dest);
if (storage==NULL) {
return XIL_FAILURE;
}
dest_base_addr= (Xil_unsigned8 *)storage->data;
dest_next_band= storage->band_stride;
dest_next_scan= storage->scanline_stride;
delete storage;

[* get the number of bands (same for all images) */
dest->getDimensions(NULL,NULL,&nbands);

/* getthe ROI (and the list of rectangles) that comprises the intersection
of the ROIs of srcl, src2, and dest */

XilRoi* roi;

XilRoiList* roi_list= XiliGetRoiList(&roi,dest,src1,src2);

if (roi_list==NULL) {
XIL_ERROR(src1->getSystemState(), XIL_ERROR_SYSTEM, “di-12", FALSE);
return XIL_FAILURE;

}

/*

* Now that we've intersected to determine the pixels that will
* be touched in the destination, set the pixelsTouchedRoi on
* the image.

*/

dest->setPixelsTouchedRoi(roi);
dest->setPixelsTouchedRoi_flag(TRUE);

[* operate on each ROI, all of the ROI's are guaranteed not to go outside
* any of the images
*/
while (roi_list->next(&x,&y,&x_size,&y_size)) {
/l adjust starting addresses to take image origins into account
srcl_band= srcl_base_addr+((y+srcl_y origin)*srcl_next_scan)+
((x+srcl_x_origin));
src2_band= src2_base_addr+((y+src2_y_origin)*src2_next_scan)+
((x+src2_x_origin));

XIL Device Porting and Extensibility Guide—August 1994

Code Example 4-3 Add8BandMemory.cc (5 of 6)

dest_band= dest_base_addr+((y+dest_y_origin)*dest_next_scan)+
((x+dest_x_origin));

band_count = nbands;
do { /* each band */

[* point to the first scanline of the band */
srcl_scanline= src1_band;
src2_scanline= src2_band;
dest_scanline= dest_band;

scanline_count=y_size;
do { /* each scanline */

/* point to the first pixel of the scanline */
srcl_pixel=srcl_scanline;
src2_pixel= src2_scanline;
dest_pixel= dest_scanline;

pixel_count= x_size;
do { // each pixel

/* result cannot be greater than MAXBYTE */
int result = (int)(*src1_pixel + *src2_pixel);
*dest_pixel = ((result>>8) ? (0xff) : (result & 0xff));

/* move to next data element */
srcl_pixel++;
src2_pixel++;
dest_pixel++;
} while (--pixel_count);

/* move to the next scanline */

srcl_scanline+=srcl_next_scan;

src2_scanline+=src2_next_scan;

dest_scanline+=dest_next_scan;
} while (--scanline_count);

/* move to the next band */

srcl_band+=srcl_next_band;
src2_band+=src2_next_band;
dest_band+=dest_next_band;

Compute Devices

141

142

Code Example 4-3 Add8BandMemory.cc (6 of 6)

} while (--band_count);

}

[* get rid of the roi_list

* (the roi stored in dest “pixelsTouchedRoi”
* will be destroyed by the xil core)

*/

roi_list->destroy();

return(XIL_SUCCESS);

XIL Device Porting and Extensibility Guide—August 1994

N
1]

band_memory_utils.cc

Code Example 4-4 band_memory_utils.cc (1 of 3)

1

/I Utility routine(s) that are needed by the band_memory compute routines
1

#include <xil/XilDefines.h>

#include <xil/XilError.h>

#include <xil/Xillmage.h>

#include <xil/XilOp.h>

#include “../storage_device_handler/XilBandMemoryDefines.h”

1
/I Device storage information returned by the getStorage() function
/I is always with respect to the parent image. IHVs must write a
/I routine similar to this one to handle the case of child images.
/I This routine adjusts the image data pointer and offset information
/I in case the image being requested is a child.
1
XilBandMemoryStorage*
getBandMemoryStorage(Xillmage *image)
{
XilBandMemoryStorage *storage;
XilBandMemoryStorage *parent_storage;

/I get the parent storage description
parent_storage= (XilBandMemoryStorage*)image->getStorage(“band_memory”);
if (parent_storage==NULL) {
return NULL;
}

I

/I Allocate the storage description to return to the compute routine.

/I The compute routine will then be responsible for deleting it.

I

/I Note that this is done differently in the XIL memory storage driver

/I 'and associated memory compute routines (the memory storage driver
/I just passes back a reference that the compute routine does not delete).
/'t is up to the IHV writing these functions to decide how they want

I/ to implement this.

I

Compute Devices 143

144

Code Example 4-4 band_memory_utils.cc (2 of 3)

storage = new XilBandMemoryStorage;
if (storage==NULL) {

return NULL;

/I Get image offset information

unsigned int offsetX, offsetY, offsetBand,;
image->getChildOffsets(&offsetX,&offsetY,&offsetBand);

if(offsetX || offsetY || offsetBand) {

1l
/I 1f this is a child, take offsets into account
1
XilDataType datatype= image->getDataType();
switch (datatype) {
case XIL_BIT:
storage->bit.scanline_stride= parent_storage->bit.scanline_stride;
storage->bit.band_stride= parent_storage->bit.band_stride;
storage->bit.offset= (unsigned char)
(((unsigned long)parent_storage->bit.offset +
offsetX)%(unsigned long)8);
storage->bit.data= parent_storage->bit.data +
parent_storage->bit.band_stride*offsetBand +
parent_storage->bit.scanline_stride*offsetY +
offsetX;
break;

case XIL_BYTE:
storage->byte.scanline_stride=parent_storage->byte.scanline_stride;
storage->byte.band_stride= parent_storage->byte.band_stride;
storage->byte.data= parent_storage->byte.data +
parent_storage->byte.band_stride*offsetBand +
parent_storage->byte.scanline_stride*offsetY +
offsetX;
break;

case XIL_SHORT:
storage->shrt.scanline_stride= parent_storage->shrt.scanline_stride;
storage->shrt.band_stride= parent_storage->shrt.band_stride;
storage->shrt.data= parent_storage->shrt.data +

XIL Device Porting and Extensibility Guide—August 1994

Code Example 4-4 band_memory_utils.cc (3 0f 3)

}

parent_storage->shrt.band_stride*offsetBand +
parent_storage->shrt.scanline_stride*offsetY +
offsetX;
break;

case XIL_FLOAT:
storage->flt.scanline_stride= parent_storage->flt.scanline_stride;
storage->flt.band_stride= parent_storage->flt.band_stride;
storage->flt.data= parent_storage->flt.data +
parent_storage->flt.band_stride*offsetBand +
parent_storage->flt.scanline_stride*offsetY +
offsetX;
break;

}
}

else {
)
/l can just copy the parent description
1
memcpy(storage, parent_storage, sizeof(XilBandMemoryStorage));

}

return(storage);

Compute Devices

145

146

XIL Device Porting and Extensibility Guide—August 1994

About Storage Devices

Storage Devices 5

Storage device handlers allow images to reside in places besides host CPU
memory or in a format different from the standard memory layout. They are
always associated with a compute device, allowing an accelerator to take
advantage of image data remaining local to the accelerator during sequential
function calls. Since accelerators usually have their own idea of how image
data memory is laid out, storage handlers allow reformatting of data as it is
copied between devices.

The handlers for storage devices are responsible for allocating, deallocating,
and describing the data format of the storage on their device. A particular
function from a compute device will request the image in a specific storage
type (format) via a call to the getStorage() member of the Xillmage class.
The storage handler attempts to satisfy that request and return a description of
the image’s data layout in the requested format. There is a close relationship
between a compute device and the associated storage device.

In addition to the above functions, it is useful to have the storage handler
perform single-pixel access for xil_get_pixel() and xil_set_pixel() to
avoid having to copy all of the image data in that case.

A storage device is not required to be able to handle all images, but can limit
the sort of images it will store based on any parameter. For example, a storage
device may only be capable of storing 8-bit images, or images that are
320-by-240 pixels in size. Processing functions that request this restricted

147

storage must either know of these restrictions and use alternate storage devices
for noncompliant images, or correctly handle the failure of a storage request by
attempting alternative storage.

Aside from storing data, the main job of a storage handler is format
conversion. The interface provided via getStorage() is an attempt at a
compromise between forcing every device to convert to a single interchange
format and requiring each handler to convert between every possible format.
The former forces an intermediate copy between devices, while the latter is
actually impossible, since the potential list of device formats is unlimited.

Much like 1/0 devices, storage devices are loaded the first time they are
needed. Typically, a compute device handler will cause the storage device
handler for a device to be loaded when it first tries to create an image of the
associated storage type. The CPU memory storage handler is loaded at the
time of the first image creation.

Each storage handler must contain the following global function:
XilDeviceStorageType* XilCreateStorageType()

This function is called by the handler loader and performs device initialization
and sets up any data that will be used by all instances of the storage device.

XilDeviceStorageType Class

148

This class describes the connection to a storage device. There is only one
instance of this class for each type of storage device, which is created by the
device-specific driver. In addition to implementing this class, the driver can
add any device-dependent data or functions that are not needed in every
instance of a storage handler.

XilDeviceStorageType is the abstract class shown below:

Code Example 5-1 Definition of XilDeviceStorageType Class

class XilDeviceStorageType : public XilDeviceType {

/I This is the propagate-to-this-device call.

/I This is the function that creates new images on this particular device,

XIL Device Porting and Extensibility Guide—August 1994

o1
1]

Code Example 5-1 Definition of XilDeviceStorageType Class

/I or moves images from memory to this device. The ‘typename’ field
/I tells the name of the storage type that the ‘image’ is currently.
/I If this storage device knows about the internals of the device type
/I specified by ‘typename’, then it creates a new storage device of
/I this type, copies the image data into it, and returns pointers to
// both the new storage device and the device dependent ‘description’
/I of the storage. Otherwise it should return NULL. All storage devices
/I need to know how to propagate from memory. The ‘take_ownership’
// field tells the device driver whether it should delete the data
/l when the storage object is destroyed. See the example storage driver
// for more information.
1
virtual XilDeviceStorage * propagateDeviceStorage (Xillmage *image,
char typename[], void *description,
int take_ownership)=0;

/I destructor. This should release all resources that were used to
/I make the connection to the device.

virtual ~XilDeviceStorageType();
3

The handler creates a device-specific class that derives from
XilDeviceStorageType . All device-specific information unique to this
instance of the object should be stored here. In the storage handler example on
page 154, this class is used to derive a storage handler that supports band-
sequential data. The class XilDeviceStorageTypeBandMemory is derived
from XilDeviceStorageType

propagateDeviceStorage() in the type class implements image data
transfer to the device. If the handler knows how to read image storage from the
device typename , it must create the image storage, copy the image data from
the named device, and return a pointer to the local image storage. If
take_ownership s true, the device storage handler should delete the image
data storage when the image is destroyed. If the handler does not know how to
propagate from the specified device, it should return NULL

All device storage handlers must know how to propagate to and from the
memory device, and may know about other devices as well. When a
propagation is requested, the core code first tries to use the source and

Storage Devices 149

destination devices to see if either knows how to copy directly between the
two devices. If neither knows how to copy directly, then two propagations are
used: one from the source device to standard memory and a second from
standard memory to the destination device.

The propagateDeviceStorage() function returns derived instances of the
storage object for a particular device.

XilDeviceStorage Class

150

This class describes one instance of a particular storage device. Many of these
can exist.

The abstract class for XilDeviceStorage looks like this:

Code Example 5-2 Definition of XilDeviceStorage Class

I
1
/I Description:

1

/I Definition of the interface to the XilDeviceStorage class
1
1

class XilDeviceStorage : public XilDevice {

public:

)

/I This function allows this device to emulate other device types, so

/l that images can be shared across devices that know about each other
// without needing to copy the data. It returns a pointer to the

// device dependent structure that describes the internal information

/I about how to access the image as if it were the specified type.

/I The image should either be of the specified type or the storage device
/I driver should be capable of efficiently emulating the specified type.

/I If the storage device cannot emulate the requested type than this

// function should return NULL.

1

virtual void* requestStoragelnfo (char typename[])=0;

1

/I This is the propagate-from-this-device call.

I

/I This is the function that moves images from the current device to

XIL Device Porting and Extensibility Guide—August 1994

Code Example 5-2 Definition of XilDeviceStorage Class (Continued)

/I the named device. If this storage device knows about the internals

/I of the device type specified by ‘typename’, then it creates a new

/I storage device of the requested type, copies the image data into it,

// and returns a pointer to it. If the storage device cannot convert

/I directly to the requested type then it should return NULL.

i

/I All storage devices need to know how to convert to a ‘memory’ type image.
1l

virtual XilDeviceStorage* propagateDeviceStorage (char typename[])=0;

1

/ functions to get and set particular image pixel values without

/ forcing a propagation of the image to memory

I

virtual void getPixel(unsigned short X, unsigned short y,
unsigned short band, unsigned short count,
float* data)=0;

virtual void setPixel(unsigned short x, unsigned short y,
unsigned short band, unsigned short count,
float* data)=0;

1l

/I destructor. This should release all resources that were used to
/I make this particular storage device.

Il

virtual ~XilDeviceStorage();

k

Storage Devices

151

152

The device storage driver should create a device-specific class derived from
XilDeviceStorage . The instance of this derived class represents the storage
of data for a single image.

requestStoragelnfo() should return a device-dependent structure that
describes the memory layout for the specific image data storage as if it were
the specified type. If the image is not of the specified type, or cannot be
efficiently treated as if it is of the specified type, requestStoragelnfo()

should return NULL This additional complexity allows an image that resides
on a device that can be memory-mapped to expose the device-resident image
as a memory image.

The device-dependent storage information need not include things like the
image width and height, since that information is available in the
device-independent image class.

propagateDeviceStorage() in the device class copies data from the current
device into the named device. If the handler knows about the device type
specified by typename , it should create a new storage device of the requested
type, copy the data into it, and return a pointer to the new storage class. As
mentioned above, it should return NULL if it cannot convert the data to the
requested storage type, but it must be capable of converting to the memory
storage type.

getPixel() and setPixel() are used to implement the corresponding
API-level functions. They are part of the storage class to prevent having to
propagate the image in order to return single pixel values. The pixel
information these functions return is an array of floating point data with a size
equal to the number of bands in the image.

One note of caution concerning the getStorage() member of Xillmage : it
does not respect the existence of children. This means that if getStorage() is
called on a spatial or band child, getStorage() returns the storage
information for the parent image, not the child. Since the caller usually wants
the information corresponding to the child image, getStorage() is not
usually called directly, but rather through a utility function. In the storage
handler example on page 154, this utility function is called
getBandMemoryStorage() . It calls getStorage(“band_memory”) , Which
returns the parent data. It then constructs the appropriate data structure for the
requested child image.

XIL Device Porting and Extensibility Guide—August 1994

o1
1]

Adding a Storage Device

The decision to implement a storage handler should be driven by the
performance enhancement expected from allowing the image data to reside on
an accelerator. If an accelerator performs several atomic operations that are
likely to be called in sequence, it will undoubtedly be advantageous to provide
a storage handler to support the compute handler for the accelerator. If,
however, the accelerator only provides functionality for a single operator (for
example, a JPEG decompressor), the advantage of keeping the image data local
to the accelerator is minimal, since the next usage of the image would cause the
propagation to the memory format anyway. Storage handlers also can be used
to allow local data on an 1/0 device, but, in the same way, it is of little
advantage if the 1/0 device cannot perform subsequent operators.

Storage devices that modify the format of the image without tying it to an

actual hardware device can be useful as well. (The storage handler example on
page 154 is this sort of storage device). However, before such a storage handler
can be used, there must exist compute handlers that ask for this storage format.

Adding a storage device is relatively simple compared to compute or
compression devices. The handler writer must perform the following steps:

1. Subclass the XilDeviceStorageType class to represent the desired storage
type. If there is initialization needed for the storage device, it should go
here. The propagateDeviceStorage() defined here should create
instances of the class derived below, from XilDeviceStorage f
take_ownership is TRUE the data associated with the image should be
deallocated when the XilDeviceStorage instance’s destructor is called.

2. Subclass the XilDeviceStorage class to represent the desired storage. As
a minimum, the implementation of propagateDeviceStorage() from the
derived XilDeviceStorage class must be able to propagate the image
data to and from the memory storage format. The internal representation of
the XIL memory layout is pixel interleaved (except for bit images), exactly
the same as exported data. This exported format is described in the XIL
Reference Manual under xil_get_memory_storage() . If the writer of the
handler has in-depth knowledge of the layout of some other storage format,
the function may also allow propagation to and from that additional format.

3. The implementation should be placed in the file
$XILHOME/lib/pipelines/xil device_name.so , where device_name is the
name of the storage device (see the section on handler installation in

Storage Devices 153

i
o1

Chapter 2, “More on Writing Device Handlers”). Storage devices are not
referenced as dependencies in the xil.compute configuration file, but are
referenced directly by name via the getStorage() parameters.

Sample Storage Device Handler

This example illustrates a storage handler for memory images that are stored in
band-sequential format. (The standard XIL memory operators expect images
stored in a pixel-sequential format). The example is fairly complete, and
illustrates the majority of the features of a storage driver. Note, however, that
this example only works for 1-band images (of any type), or XIL_BIT images
(XIL already stores them in band-sequential format). For the handler to be fully
functional, the copyMemory2BandMemory() and
copyBandMemory2Memory() routines would need to be implemented. This
example contains two files:

® XilBandMemoryDefines.h , which describes structures needed by the
storage handler

¢ XilDeviceStorageTypeBandMemory.cc , which implements the storage
handler

154 XIL Device Porting and Extensibility Guide—August 1994

o1
1]

XilBandMemoryDefines.h

Code Example 5-3 XilBandMemoryDefines.h

#ifndef XIL_BANDMEMORYDEFINES_H
#define XIL_BANDMEMORYDEFINES_H

I
/I Definition of band-sequential memory storage description
/I Other storage drivers may need other information as well (file descriptors,

I/l accelerator ids, etc.)
1

typedef struct __XilBandMemoryStorageBit {
Xil_unsigned8* data; /* pointer to the first byte of the image */
unsigned short scanline_stride; /* the number of bytes between scanlines */
unsigned long band_stride; /* the number of bytes between bands */
unsigned char offset; /* the number of bits to the first pixel */

} XilBandMemoryStorageBit;

typedef struct __ XilBandMemoryStorageByte {
Xil_unsigned8* data; [* pointer to the first byte of the image */
unsigned long scanline_stride; /* the number of bytes between scanlines */
unsigned long band_stride; /* the number of bytes between bands */

} XilBandMemoryStorageByte;

typedef struct __XilBandMemoryStorageShort {
Xil_signed16* data; [* pointer to the first word of the image */
unsigned long scanline_stride; /* the number of shorts between scanlines */
unsigned long band_stride; /* the number of shorts between bands */

} XilBandMemoryStorageShort;

typedef struct __XilBandMemoryStorageFloat {
float* data; /* pointer to the first float in the image */
unsigned long scanline_stride; /* the number of floats between scanlines */
unsigned long band_stride; /* the number of floats between bands */

} XilBandMemoryStorageFloat;

typedef union __XilBandMemoryStorage {
XilBandMemoryStorageBit bit;
XilBandMemoryStorageByte byte;
XilBandMemoryStorageShort shrt;
XilBandMemoryStorageFloat flt;

} XilBandMemoryStorage;

Storage Devices 155

i
o1

Code Example 5-3 XilBandMemoryDefines.h (Continued)

#endif

XilDeviceStorageTypeBandMemory.cc

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc

(1 of 17)

#include <strings.h>

#include <xil/XilDeviceStorage.h>
#include <xil/Xillmage.h>

#include <xil/XilDeviceStorageType.h>
#include <xil/XilError.h>

#include “XilBandMemoryDefines.h”

1l
1
/l This is an implementation of a band-sequential (or band-interleaved)
/l memory storage driver. The example is fairly complete, and illustrates
// the majority of the features of a storage driver. Note however that

/I this example only works for 1-band images (of any type), or XIL_BIT
/l images (since they are already stored in band-sequential format). In
/Il order to become fully functional, the copyMemory2BandMemory() and
/I copyBandMemory2Memory() routines would need to be implemented.
1
1

1

/I Derived instantiation of XilDeviceStorageType class

Il This is the description of the connection to the device

I/l There is only one of these

1

class XilDeviceStorageTypeBandMemory : public XilDeviceStorageType {

156 XIL Device Porting and Extensibility Guide—August 1994

o1
1]

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc

(2 of 17)

public:
virtual XilDeviceStorage* propagateDeviceStorage(Xillmage* image,
char type_name(], void* description, int take_ownership);
private:
XilDeviceStorageTypeBandMemory();
~XilDeviceStorageTypeBandMemory();
XilBandMemoryStorage* allocateStorage(Xillmage* image);
XilBandMemoryStorage* convertMemoryStorage(Xillmage* image,
XilMemoryStorage* memory_storage,
Xil_boolean* need_copy);

/I this is a friend for the purpose of calling the constructor
friend XilDeviceStorageType* XilCreateStorageType();

I3

1
/I Derived instantiation of XilDeviceStorage class
/I This is the description of a particular instantiation of the device
// There can be many of these
1
class XilDeviceStorageBandMemory : public XilDeviceStorage {
public:
virtual void* requestStoragelnfo(char typenamel]);
virtual XilDeviceStorage* propagateDeviceStorage(char typenamel]);
virtual void getPixel(unsigned short x, unsigned short y,
unsigned short band, unsigned short count,
float *data);
virtual void setPixel(unsigned short x, unsigned short y,
unsigned short band, unsigned short count,
float *data);
private:
XilDeviceStorageBandMemory(Xillmage* image, XilBandMemoryStorage*
description, int take_ownership);
~XilDeviceStorageBandMemory();
XilDataType dataType;// datatype of image
XilBandMemoryStorage storage;// device storage description
XilMemoryStorage memory_storage;// used for emulating memory images
int owner;// whether device owns data or not
Xillmage* parent;// pointer to parent image description
friend class XilDeviceStorageTypeBandMemory;

Storage Devices

157

158

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc

(3 of 17)

1

/I prototypes of device utility functions (not implemented in this example)
1

void

copyMemory2BandMemory(XilMemoryStorage *, XilBandMemoryStorage *, Xillmage *);

void

copyBandMemory2Memory(XilBandMemoryStorage *, XilMemoryStorage *, Xillmage *);

1

/l This is the global function called by XIL to create this kind of storage
device

1

XilDeviceStorageType* XilCreateStorageType()

{
XilDeviceStorageType* device_type;

Il create the storage type
device_type=new XilDeviceStorageTypeBandMemory();
if (device_type==NULL) {
return NULL;
}
return device_type;

}

1

I/l This is the constructor for the storage device

/I It is called only once at startup

1

XilDeviceStorageTypeBandMemory::XilDeviceStorage TypeBandMemory()
{

/I there is no data to initialize at the moment

}

I

// This is the destructor for the storage device

/'t is called only once at shutdown

1
XilDeviceStorageTypeBandMemory::~XilDeviceStorageTypeBandMemory()

{

XIL Device Porting and Extensibility Guide—August 1994

o1
1]

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc (4 of 17)

I
// Routine that creates new images on this particular device, or moves images
/I from memory to this device. This is the propagate-to-this-device call.
1
XilDeviceStorage* XilDeviceStorageTypeBandMemory::propagateDeviceStorage(
Xillmage* image, char *type_name, void* description, int take_ownership)
{
[/l if an image is not being passed in, allocate one
if (type_name==NULL) {
type_name="band_memory”;
description= (void*) allocateStorage(image);
if (description==NULL) {
return NULL;
}

else if (strcmp(type_name,”"memory”)==NULL){

/I This is a memory image -- we can convert it

Xil_boolean need_copy;

XilBandMemoryStorage* band_description= (XilBandMemoryStorage *)
convertMemoryStorage(image, (XilMemoryStorage*) description,

&need_copy);

if (band_description==NULL) {
/I Could not allocate the storage for the converted image
return NULL;

}

if(need_copy == TRUE) {
/I Could not convert the image in place - need to copy it
copyMemory2BandMemory((XilMemoryStorage *)description,
band_description,
image);
I/ however, since this is not implemented, clean up and fail
delete band_description;
return NULL;
}
else {
/* Didn’t require copy */
}

description= band_description;

Storage Devices 159

160

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc

(5 of 17)

}

else if (strcmp(type_name,”band_memory”)) {
/l This is already a band_memory image -- don’t need to do anything
}
else {
/I This is an image of a type that this handler cannot interpret -- fail
return NULL,

}

I create the storage object
XilDeviceStorage* device= new XilDeviceStorageBandMemory(image,
(XilBandMemoryStorage*)description,
take_ownership);
if (device==NULL) {
if(take_ownership)
delete ((XilBandMemoryStorage*)description)->bit.data;
delete description;
return NULL;

}

/I Now that the image is on this device, delete the external reference to it
delete description;

return device;

}

1
/I Routine that actually allocates the storage on this device
1
XilBandMemoryStorage*
XilDeviceStorageTypeBandMemory::allocateStorage(Xillmage* image)
{

unsigned short width,height,nbands;

XilDataType datatype;

unsigned long size;

/I allocate the storage description
XilBandMemoryStorage* storage= new XilBandMemoryStorage;
if (storage==NULL) {
return NULL;
}

XIL Device Porting and Extensibility Guide—August 1994

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc (6 of 17)

}

/Aillitin
image->getinfo(&width,&height,&nbands,&datatype);
switch (datatype) {
case XIL_BIT:
storage->bit.scanline_stride=(unsigned short)(width+XIL_BIT_ALIGNMENT-
1)/

XIL_BIT_ALIGNMENT*(XIL_BIT_ALIGNMENT/8);
storage->bit.band_stride=storage->bit.scanline_stride*height;
storage->bit.offset= 0;
size= storage->bit.band_stride*nbands;
break;

case XIL_BYTE:
storage->byte.scanline_stride= width*nbands;
storage->byte.band_stride=storage->byte.scanline_stride*height;
size= width*height*nbands*sizeof(Xil_unsigned8);
break;
case XIL_SHORT:
storage->shrt.scanline_stride= width*nbands;
storage->shrt.band_stride=storage->shrt.scanline_stride*height;
size= width*height*nbands*sizeof(Xil_signed16);
break;
case XIL_FLOAT:
storage->flt.scanline_stride= width*nbands;
storage->flt.band_stride=storage->flt.scanline_stride*height;
size= width*height*nbands*sizeof(float);
break;
default:
return NULL;
}

/ allocate the actual storage
storage->bit.data= new Xil_unsigned8[size];
if (storage->bit.data==NULL) {

delete storage;

return NULL;
}

return storage;

Storage Devices

161

i
o1

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc (7 of 17)

1
/I Constructor for an object (image) of this device
I
XilDeviceStorageBandMemory::XilDeviceStorageBandMemory/(
Xillmage* image,
XilBandMemoryStorage* storage,
int take_ownership)
{
I/ copy the description
dataType= image->getDataType();
switch (dataType) {
case XIL_BIT:
this->storage.bit= storage->bit;
break;
case XIL_BYTE:
this->storage.byte= storage->byte;
break;
case XIL_SHORT:
this->storage.shrt= storage->shrt;
break;
case XIL_FLOAT:
this->storage.flt= storage->flt;
break;

}

owner=take_ownership;
parent= image;

}

1
/I Destructor for an object (image) of this device
1
XilDeviceStorageBandMemory::~XilDeviceStorageBandMemory()
{
I/l throw away the data if owner
if (owner) {
switch (dataType) {
case XIL_BIT:
delete storage.bit.data;
break;
case XIL_BYTE:
delete storage.byte.data;

162 XIL Device Porting and Extensibility Guide—August 1994

o1
1]

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc (8 of 17)

break;

case XIL_SHORT:
delete storage.shrt.data;
break;

case XIL_FLOAT:
delete storage.flt.data;
break;

}

}
}

1
// Routine that allows this device to emulate other device types, so
I/l images can be shared across devices that know about each other without
// needing to copy them
1
void* XilDeviceStorageBandMemory::requestStoragelnfo(char typename[])
{
if (strcemp(typename,”’band_memory”)==NULL) {
/I image is of requested type, don’t need to do anything
return &storage;

else if ((strcmp(typename,’memory”)==NULL) &&

((parent->getBands() == 1) || (dataType == XIL_BIT))) {

/I 1-banded band_memory images have the same storage representation as
/ memory images. Also, 1-bit memory images are already band-sequential.
//'In either of these cases, we can emulate a memory image by passing back

/l the appropriate storage description.

switch (dataType) {

case XIL_BIT:
memory_storage.bit.scanline_stride= storage.bit.scanline_stride;
memory_storage.bit.band_stride= storage.bit.band_stride;
memory_storage.bit.offset= storage.bit.offset;
memory_storage.bit.data= storage.bit.data;
break;

case XIL_BYTE:
memory_storage.byte.scanline_stride= storage.byte.scanline_stride;
memory_storage.byte.pixel_stride= 1,
memory_storage.byte.data= storage.byte.data;
break;

Storage Devices 163

164

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc

(9 of 17)

case XIL_SHORT:
memory_storage.shrt.scanline_stride= storage.shrt.scanline_stride;
memory_storage.shrt.pixel_stride= 1;
memory_storage.shrt.data= storage.shrt.data;
break;

case XIL_FLOAT:
memory_storage.flt.scanline_stride= storage.flt.scanline_stride;
memory_storage.flt.pixel_stride= 1;
memory_storage.flt.data= storage.flt.data;
break;

default:
return NULL,;

}

return &memory_storage;

}

else {
/I the band-sequential memory storage device cannot emulate any
/Il other storage types at this time
return NULL;

}

}

1

/I Routine to move images from the current device to the named device
/I This is the propagate-from-this-device call

I

XilDeviceStorage* XilDeviceStorageBandMemory::propagateDeviceStorage(char

type_name[])

XilDeviceStorage* new_storage_device;
XilMemoryStorage* memory_storage;

if (strcemp(type_name,”band_memory”)==NULL) {
Il it is already on the specified device
return NULL,

}else {
/I get the storage type so we can access the device that the image
/I will be going to
XilDeviceStorageType* storage_type;
storage_type=xil_global_state->getDeviceStorageType(type_name);

XIL Device Porting and Extensibility Guide—August 1994

o1
1]

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc

(10 of 17)

if (storage_type==NULL) {
return NULL;
}

XilDeviceStorage* storage_device;

/I if it is the memory device then create a new memory image and
/I copy if necessary
if(strcmp(type_name,’memory”)==NULL) {

if((parent->getBands() == 1) || (dataType == XIL_BIT){
/l'itis one band or XIL_BIT memory image -- don’t need to copy it
XilMemoryStorage* mem_storage = new XilMemoryStorage;

mem_storage->byte.data = storage.byte.data;
mem_storage->byte.scanline_stride = storage.byte.scanline_stride;
mem_storage->byte.pixel_stride =1;

/I Let the memory device take it over
storage_device=
storage_type->propagateDeviceStorage(parent,
“memory”,
mem_storage,
TRUE);
if(storage_device==NULL) {
return NULL;
}

}else {
[/ it is a multi-band, non-bit memory image -- must copy

/Il create the memory image
storage_device=

storage_type->propagateDeviceStorage(parent,NULL,NULL,TRUE);

if(storage_device==NULL) {
return NULL;
}

/I get the storage information
memory_storage=
(XilMemoryStorage*)storage_device-
>requestStoragelnfo(“memory”);
if (memory_storage==NULL) {

Storage Devices

165

i
o1

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc (11 of 17)

return NULL;
}

// do the copy
copyBandMemory2Memory(&storage,memory_storage,parent);
I/ however, since this is not implemented, clean up and fail
delete memory_storage;
return NULL;

}

}else {
/l it is an image type that this handler does not know how to
/I propagate to -- must copy it

Il first ask the other handler if it knows how to propagate from
band_memory
storage_device= storage_type->propagateDeviceStorage(parent,
“band_memory”,&storage, TRUE);
if (storage_device==NULL) {
/I The other handler doesn’t know about band_memory:
/I Create a memory image and propagate to that. Then tell
/I the other handler to propagate from memory to itself
/I (all handlers need to be able to do this)

1
/I create the intermediate memory image:
1
/I get access to the memory storage device
storage_type = xil_global_state->getDeviceStorageType(“memory”);
/I create an instance of a memory image
storage_device=storage_type-
>propagateDeviceStorage(parent, NULL,NULL, TRUE);
if (storage_device==NULL) {
return NULL;
}
/I get the memory storage information of the memory image
memory_storage= (XilMemoryStorage*)storage_device-
>requestStoragelnfo(“memory”);
if (memory_storage==NULL) {
return NULL;
}

166 XIL Device Porting and Extensibility Guide—August 1994

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc

/I copy from band_memory to memory
copyBandMemory2Memory(&storage,memory_storage,parent);
/I however, since this is not implemented, clean up and fail
delete memory_storage;

return NULL;

// tell the memory device handler to propagate to the requested type
new_storage_device=storage_device-
>propagateDeviceStorage(type_name);
if (new_storage_device==NULL) {
return NULL;
}
return new_storage_device;
}
}
delete this;
return storage_device;
}
}

void XilDeviceStorageBandMemory::getPixel(unsigned short x, unsigned short y,
unsigned short band, unsigned short count,
float* data)
{
switch (parent->getDataType()) {
case XIL_BIT:
{

Xil_unsigned8* pixel_byte;

Xil_unsigned8 pixel_bit;

pixel_byte= storage.bit.data +

band*storage.bit.band_stride +
y*storage.bit.scanline_stride;

pixel_byte= pixel_byte + ((long)storage.bit.offset+(long)x)/(long)8;

pixel_bit= (Xil_unsigned8)(1 <<
(((long)storage.bit.offset+(long)x)%(long)8));

for (unsigned short i=0; i<count; i++) {

*data++= (*pixel_byte & pixel_bit) ? 1.0 : 0.0;
pixel_byte= pixel_byte+storage.bit.band_stride;
}
}

break;

Storage Devices

167

168

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc

(13 of 17)

case XIL_BYTE:
{
Xil_unsigned8* pixel;
pixel= storage.byte.data +
band*storage.byte.band_stride +
y*storage.byte.scanline_stride + x;
for (unsigned short i=0; i<count; i++) *data++ = *pixel++;
}
break;
case XIL_SHORT:
{
Xil_signed16* pixel;
pixel= storage.shrt.data +
band*storage.shrt.band_stride +
y*storage.shrt.scanline_stride + x;
for (unsigned short i=0; i<count; i++) *data++ = *pixel++;
}
break;
case XIL_FLOAT:
{
float* pixel;
pixel= storage.flt.data +
band*storage.flt.band_stride +
y*storage.flt.scanline_stride + x;
for (unsigned short i=0; i<count; i++) *data++ = *pixel++;
}
break;
}
}

void XilDeviceStorageBandMemory::setPixel(unsigned short x, unsigned short y,
unsigned short band, unsigned short count,
float* data)

{

switch (parent->getDataType()) {

case XIL_BIT:

{
Xil_unsigned8* pixel_byte;
Xil_unsigned8 pixel_bit;
pixel_byte= storage.bit.data+
band*storage.bit.band_stride+
y*storage.bit.scanline_stride;

XIL Device Porting and Extensibility Guide—August 1994

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc

(14 of 17)

pixel_byte= pixel_byte + ((long)storage.bit.offset+(long)x)/(long)8;
pixel_bit= (Xil_unsigned8)(1 <<
((long)storage.bit.offset+(long)x)%(long)8);
for (unsigned short i=0; i<count; i++) {
if (*data < .5) {
*pixel_byte &= ~pixel_hit;
}else {
*pixel_byte |= pixel_bit;
}
pixel_byte= pixel_byte+storage.bit.band_stride;
data++;
}
}

break;
case XIL_BYTE:

{
Xil_unsigned8* pixel;
pixel= storage.byte.data +
band*storage.byte.band_stride +
y*storage.byte.scanline_stride + x;
for (unsigned short i=0; i<count; i++) {

if (*data > 254.5) {

*pixel= 255;
} else if (*data < .5) {
*pixel=0;
}else {
*pixel= (Xil_unsigned8)(*data + .5);
}
pixel++;
data++;
}
}
break;
case XIL_SHORT:
{

Xil_signed16* pixel;
pixel= storage.shrt.data +
band*storage.shrt.band_stride +
y*storage.shrt.scanline_stride + x;
for (unsigned short i=0; i<count; i++) {
if (*data > 32766.5) {
*pixel= 32767;

Storage Devices

169

i
o1

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc (15 of 17)

} else if (*data < -32768.5) {
*pixel= -32768;

} else if (*data > 0.0) {
*pixel= (Xil_signed16)(*data + .5);

}else {
*pixel= (Xil_signed16)(*data - .5);

}

pixel++;

data++;

}
}

break;
case XIL_FLOAT:

float* pixel;
pixel= storage.flt.data +
band*storage.flt.band_stride +
y*storage.flt.scanline_stride + x;
for (unsigned short i=0; i<count; i++) *pixel++ = *data++;

}

break;

}
}

XilBandMemoryStorage*
XilDeviceStorageTypeBandMemory::convertMemoryStorage(Xillmage* image,
XilMemoryStorage* memory_storage,
Xil_boolean* need_copy)
{
/I allocate a storage description
XilBandMemoryStorage* storage = new XilBandMemoryStorage;
if(storage == NULL)
return NULL;

/il it in

XilDataType dataType= image->getDataType();

switch (dataType) {

case XIL_BIT:
storage->bit.data= memory_storage->bit.data;
storage->bit.offset= memory_storage->bit.offset;
storage->bit.scanline_stride= memory_storage->bit.scanline_stride;

170 XIL Device Porting and Extensibility Guide—August 1994

o1
1]

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc (16 of 17)

storage->bit.band_stride= memory_storage->bit.band_stride;
break;
case XIL_BYTE:
storage->byte.data= memory_storage->byte.data;
storage->byte.scanline_stride= memory_storage->byte.scanline_stride;
storage->byte.band_stride= memory_storage->byte.scanline_stride *
image->getHeight();
break;
case XIL_SHORT:
storage->shrt.data= memory_storage->shrt.data;
storage->shrt.scanline_stride= memory_storage->shrt.scanline_stride;
storage->shrt.band_stride= memory_storage->shrt.scanline_stride *
image->getHeight();
break;
case XIL_FLOAT:
storage->flt.data= memory_storage->flt.data;
storage->flt.scanline_stride= memory_storage->flt.scanline_stride;
storage->flt.band_stride= memory_storage->flt.scanline_stride *
image->getHeight();
break;

}

/I check if a copy is necessary
if ((image->getBands() == 1) || (dataType == XIL_BIT)) {
/I 1-banded band_memory images have the same storage representation as
/ memory images. Also, 1-bit memory images are already band-sequential.
/I In either of these cases, we do not need to reformat (copy) the data.
*need_copy = FALSE;
}
else {
/I otherwise, we do
*need_copy = TRUE;
}

return(storage);

}

void

copyMemory2BandMemory(XilMemoryStorage *memory_storage,
XilBandMemoryStorage *storage,
Xillmage *parent)

Storage Devices 171

172

Code Example 5-4 XilDeviceStorageTypeBandMemory.cc

(17 of 17)

{
}

void

copyBandMemory2Memory(XilBandMemoryStorage *storage,

XilMemoryStorage *memory_storage,
Xillmage *parent)

XIL Device Porting and Extensibility Guide—August 1994

Compression/Decompression 6

This chapter explains how to add a new compression method and compression
hardware.

In the XIL library, compression and decompression are implemented using
loadable handlers. The library defines a generic compression/decompression
interface; different compressors implement this interface and store the
implementation in dynamically loadable libraries. The handlers are loaded at
runtime when they are requested, much like the 1/0 handlers. From the
viewpoint of the application, this allows a variety of compression techniques to
be used in a similar fashion.

The public semantics of compression and the description of the compressors in
the XIL library are explained in the XIL Programmer’s Guide. The information in
this chapter assumes you are familiar with those concepts.

Implementation of Compression

The implementation of compression is somewhat different from other handlers
in that it is divided into two handlers: a compression handler and a compute
handler. Compression handlers contain most of the utility functions for
implementing a method of compression and decompression, even though the
actual compress and decompress functions are provided in an associated
compute handler. The compression handler performs buffer management and
implements the semantics of the XilCis object.

173

174

Figure 6-1 shows the relationship of the classes that must be used to implement
compression.

XilCis -a—p| XilDeviceCompressionType

!

XilDeviceCompression

derived
XilDeviceCompression

derived
XilDeviceCompression

XilCisBufferManager

XilCisBuffer XilCisBuffer

Figure 6-1 Relationship of Classes

The class XilDeviceCompression contains functions that manipulate
compressed data buffers to enable compression. The actual compress() and
decompress() functions belong to an associated compute handler. This is
similar to the situation with 1/0 devices and the associated compute handlers
containing molecules for that 1/0 device.

XIL Device Porting and Extensibility Guide—August 1994

6

The API interface object that holds compression information is called the
Compressed Image Sequence, or CIS. The CIS object is created by naming a
specific compression via the API call:

XilCis xil_cis_create(XilSystemState system_state,
char* compressor_name)

Calling this function causes the named compression handler to be loaded. For
example, if the compressor_name parameter is MyCompressor , the core code
looks for a loadable library named xilMyCompressor.so , which should
contain the device compression classes.

XilDeviceCompressionType Class

When the compression handler is loaded, the XIL core looks for a specific
function to call to create a class derived from XilDeviceCompressionType
for the specific compression. Each compression handler must contain the

following function:

XilDeviceCompressionType* XilCreateCompressionType()

This function creates a class derived from XilDeviceCompressionType A
single instance of this class holds all the information common to a specific
compression type. For example, any non-varying tables used in compression
could be placed here. The compression handler example on page 214 creates a
derived class XilDeviceCompressionTypeldentity ; the call to
XilCreateCompressionType() instantiates this derived class. Compression
attribute names are shared between instances of the XilDeviceCompression
class, so they are defined here. The primary purpose of this class is to create

instances of XilDeviceCompression through the
createDeviceCompression() member function.

The XilDeviceCompressionType class public data is shown below:.
Code Example 6-1 Definition of XilDeviceCompressionType Class

class XilDeviceCompressionType : public XilDeviceType {
public:
virtual XilDeviceCompression* createDeviceCompression(
XilCis* xcis)=0;
/I constructor for base class
/I expects compression name and compression type
XilDeviceCompressionType::XilDeviceCompressionType(char *cname, char *ctype);

Compression/Decompression 175

176

Code Example 6-1 Definition of XilDeviceCompressionType Class (Continued)

Il register attribute is set up to remember only the last registered version
I of an attribute. Since the compression-specific attributes are registered
I/ last, this allows a compression to override the default implementation
I/ of an attribute.
protected:

void registerAttr(char* name, setAttrFunc set, getAttrFunc get);

k

The constructor for the class derived from XilDeviceCompressionType
should call the XilDeviceCompressionType constructor with the
compressor name and compression type attributes of the CIS. This initializes
the compress and decompress function names for this handler, appending
chame to the compress_ or decompress_ basename. Also, the

registerAttr() calls are made at this time. These calls register the codec
functions that are called when the application calls
xil_cis_set_attribute() and xil_cis_get_attribute() for a

particular attribute string. Attributes are shared among actual instances of the
device compression class (but attribute values are specific to an instance).
Following is an example of the constructor for the ldentity codec with an
attribute COMPRESSION_QUALIT¥hat can be set:

typedef void (XilDeviceCompression::*setAttrFunc) (void *value);
typedef void* (XilDeviceCompression::*getAttrFunc) ();

XilDeviceCompressionTypeldentity::XilDeviceCompressionTypeldentity()

: XilDeviceCompressionType(“Identity”,” IDENTITY”) {
registerAttr(“COMPRESSION_QUALITY”,
(setAttrFunc)XilDeviceCompressionldentity::setCompressionQuality);
(getAttrFunc)XilDeviceCompressionldentity::getCompressionQuality);

The initialization of compressor name and compression type, and the
registration of attributes that the base class provides is sufficient for most
compression types.

XIL Device Porting and Extensibility Guide—August 1994

|

0=
The member function createDeviceCompression() is used to create each
instance of the compression device. It is a pure virtual function in
XilDeviceCompressionType ; that is, no default implementation exists. A
reasonable implementation of createDeviceCompression() must be made
part of the compression-specific class derived from
XilDeviceCompressionType
The ok() function of the XilDeviceCompression class must be called to

ensure that the device compression instantiation was successful. The status of
the constructor can be tracked by a local flag. This function returns a pointer to
the device compression object if the constructor was successful. If the
constructor failed, then it returns NULL If destroy is TRUE then this function
will call the destructor before returning. This function should also call the
ok() function of the base class to ensure it was successful. Shown next is an
example of an ok() function:

XilDeviceCompressionldentity*
XilDeviceCompressionldentity::ok(Xil_boolean destroy) {
if(this == NULL) {
return NULL;
}else {
/I check base class constructor
if(XilDeviceCompression::ok(FALSE) == this && isok ==

TRUE) {
return this;
}else {
[l either failure in base class or in this constructor
if(destroy == TRUE) delete this;
return NULL;
}
}
}

XilDeviceCompression Class

More than one CIS may exist for a particular compression type. For each CIS,
there is an instance of the class derived from XilDeviceCompression . The
instance of the derived class is created using the

Compression/Decompression 177

178

createDeviceCompression() function described above. This class
implements the various utility functions needed to control the compressed
data. The definition of the XilDeviceCompression class is shown next.

Code Example 6-2 Definition of XilDeviceCompression Class (1 of 3)

class XilDeviceCompression : public XilDevice {

public:

/I Sufficient default implementation.

// Functions in this grouping should have an adequate default

/l implementation in the base class for a variety of compression types.
/I They support calls from the XilCis class.

virtual int setinputType(XillmageType* type);// called if inputType is
/l unknown
char* getCompressor();
char* getCompressionType();
Xil_boolean getRandomAccess();
XillmageType* getlinputType();
XillmageType* getOutputType(); /l may have to parse to get this
XillmageType* getOutputTypeHoldTheDerivation(); // no parsing
XilCisBufferManager* getCisBufferManager();
XilCis* getCis();
int getFramesToCompress();
void setFramesToCompress(int number_of_frames);
int getAttribute(char *name, void** value)
{ return comp_type->getAttr(this, name, value); }
int setAttribute(char *name, void* value)
{ return comp_type->setAttr(this, name, value); }
void setinMolecule(Xil_boolean on_off)
{in_molecule = on_off; }
Xil_boolean inMolecule()
{ return in_molecule; }
void destroy() {delete this; };

/I Dependent on XilCisBufferManager

/I These functions reflect the actual state of the cis, as opposed to the state
I the user sees (if operations are deferred).

int getStartFrame();

int getReadFrame();

int getWriteFrame();

/I No-action default implementation
/I Functions in this grouping take no action for the default implementation,

XIL Device Porting and Extensibility Guide—August 1994

Code Example 6-2 Definition of XilDeviceCompression Class (2 of 3)

/I which will be sufficient for simple compression types
virtual int decompressHeader(void);
virtual void flush(void);

/l Dependent on XilCisBufferManager, the default is no-typed frames.
/I Functions in this grouping call functions within XilCisBufferManager
/I to perform the action for compression types with no notion of history.
/' If codec has history (typed frames that are known as key frames), these
/l functions must be implemented in the derived class.
virtual void seek(int framenumber, /I Seek to the given frame number
Xil_boolean history_update = TRUE); // Maintain valid history if
I/ history_update flag is TRUE
virtual int adjustStart(int new_start_frame);// Call to adjust the beg.
/I of the CIS

// Dependent on XilCisBufferManager ordinal numbering default.

/I Functions in this grouping call functions within the XilCisBufferManager to

/I perform the action for compression, where XilCisBufferManager considers

/I frames in the order they appear in the CIS.

/I If this does not apply for the compression type, as in MPEG1, these

// function must be implemented in the derived class.

virtual void* getBitsPtr(int* nbytes, int* nframes);

virtual int hasData();

virtual int numberOfFrames();

virtual Xil_boolean hasFrame();

virtual void putBitsPtr(int nbytes, int nframes, void* data,
XIL_FUNCPTR_DONE_WITH_DATA done_with_data = NULL);

virtual void putBits(int nbytes, int nframes, void* data);

/I Error reporting function
/I Defaults to notifyError provided for each systemState
/I which is sufficient for most compression types
void generateError(XilErrorCategory category, char* id,
int primary, Xil_boolean read_invalid,
Xil_boolean write_invalid,
int line, char* file);
void generateError(XilErrorCategory category, char* id,
int primary, int line, char* file);

/I Error recovery function
/I Activated by xil_cis_attempt_recovery
// Defaults to no action

Compression/Decompression

179

180

Code Example 6-2 Definition of XilDeviceCompression Class (3 of 3)

virtual void attemptRecovery(unsigned int nframes, unsigned int nbytes,
Xil_boolean &read_invalid, Xil_boolean &write_invalid);

/I These functions MUST be implemented in the derived class
/I Functions that are specific to the compression type

virtual void reset(void);

virtual int deriveOutputType(void);

virtual int findNextFrameBoundary();

/I Function called to ensure the device compression instantiation was
Il successful
XilDeviceCompression* ok(Xil_boolean destroy = TRUE);

protected:
virtual int getMaxFrameSize() = 0; /I called to figure maximum
/I frame size
virtual void burnFrames(int nframes) = 0;// update history going forward

This class has several virtual functions with default implementations. These
implementations will work for most compression types that do not have
interframe encoding. For compression techniques that require interframe
encoding, the implementor must replace these functions with appropriate ones
that obey the semantics.

There is a library of buffer management classes that is used to implement the
default versions of these members. The CIS buffer manager is described in the
section “The CIS Buffer Manager” on page 189.

Base Class Implementations

This section discusses the functions that use the base class implementations.
These functions support calls from the XilCis class.

The following functions return class variables that have been initialized during
the creation of the codec:

® getCompressor()
® getCompressionType()

XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

getRandomAccess()
getinputType()

getOutputType()
getOutputTypeHoldTheDerivation()
getCisBufferManager()

getCis()

getFramesToCompress()
setFramesToCompress()
getAttribute()

setAttribute()

Note that getAttribute() and setAttribute() essentially invoke the
codec function that was registered (in the type constructor) with char *name

setinMolecule() sets a flag that indicates if the currently active codec
function is a molecule. At the entry point of the molecule, this flag should be
set to TRUE At the entry point of an atomic compress or decompress, this flag
should be set to FALSE This function is used by the error reporting.

destroy() calls the destructor of the derived class when the CIS is destroyed
via xil_cis_destroy()

The following three functions query the XilCisBufferManager object for the
actual state of the CIS (opposed to the state the user sees):

® getStartFrame()
® getReadFrame()
® getWriteFrame()

The return values will not include operations that have been deferred. The
return values are the current values the XilCisBufferManager object has for
the start, read, and write frame of the CIS.

Sufficient Default Implementation

setinputType() provides the mechanism to track the input and output types
of a CIS. The type includes the width, height, number of bands, and the data
type of the CIS. This function is called automatically by the XilCis class when
the first xil_compress() is scheduled. Once the input type of the CIS has
been defined with nonzero values, it cannot be changed. Therefore, any
subsequent xil_compress() calls with different values for the width, height,
number of bands, or data type than the original values generates an error

Compression/Decompression 181

182

condition. When no calls to xil_compress () are made, the
deriveOutputType() function activates the type tracking after it determines
the type from the bitstream. See the section“Functions That Must Be
Implemented” on page 186 for a description of deriveOutputType()

No Action for the Default Implementation

The following two functions take no action for the default implementation:

® decompressHeader()
® flush()

intdecompressHeader(void);

decompressHeader() is called when the function xil_decompress() is
scheduled. This function takes no action for the default implementation.
However, decompressHeader() can be implemented to parse the bitstream
and make attributes for the current frame available to the application. The
implementation of decompressHeader() is useful when there are attributes
of the CIS that are easily located by parsing the frame. For example, each frame
in an H261 bitstream has an attribute bit that flags the source of the image as a
document Camera. In an application, you may want to direct document
Camera images to a different destination than non-document Camera images
from the CIS. Therefore, the handler could have a decompressHeader()
function that stores the attribute value from the current frame. Then, the
application can use the xil_cis_get_attribute() function to get the value
of the attribute and take appropriate action before the scheduled decompress
gets executed.

void flush(void);

flush() is called when the function xil_flush() is scheduled. This
function takes no action for the default implementation. The CIS will be
synchronized so that any pending compress operations are scheduled. This
function should be implemented for a codec that buffers frames internally
(such as MPEG). The buffered frames need to be made available in some form
for the output CIS.

XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

Determine the CIS Read Position

Note — seek() calls a function within XilCisBufferManager to perform the
action for compression types with no typed frames. If a codec has history
(typed frames that are known as key frames), this function must be
implemented in the derived class.

void seek(intframenumber, Xil_boolean history_update);

seek() determines the CIS read position (this is always to a frame number).
The framenumber parameter is determined by the XilCis class, which tracks
the read frame. The history update parameter of the seek() function is
determined by the function that is coupled with seek() , which is handled by
the XilCis class, as shown next:

xil_cis_seek(cis,0,0); /I Set up XilCis read_frame
xil_cis_has_frame(cis); // Call deviceCompression->seek();
// then call deviceCompression->hasFrame()

The value history_update indicates whether the seek must maintain valid
history. TRUEindicates that the history is necessary; FALSE indicates it is not
necessary. Note that the history_update parameter is useful only for
compression types that have key frames (history). The default value for
history update is FALSE which assumes the compression type has no key
frames. Therefore, seeks are based only on position.

Shown next is the default implementation of the seek() function in the
XilDeviceCompression class, which shows that the actual seek is performed
by the XilCisBufferManager::seek() function:

frames_to_burn = cbm.seek(framenumber,XIL_CIS_ANY_FRAME_TYPE);
if (frames_to_burn > 0)
burnFrames(frames_to_burn);

The value returned, frames_to_burn , is the number of frames that must be
processed to reach the requested position. For more information on the
XilCisBufferManager::seek() function, see the section “Seek a Specific

Compression/Decompression 183

184

Frame within the CIS” on page 203. burnFrames() = must be implemented for
each class derived from XilDeviceCompression . The parsing

burnFrames() performs is compression specific. See the section “Functions
That Must Be Implemented” on page 186 for a description of burnFrames()

The following table explains the meanings for the possible values of
frames_to_burn

Value Meaning

Negative An error occurred

Zero (0) The read position of the CIS is at the desired frame

Positive The number of frames which must be processed to reach the

requested position

Adjust the Start of a CIS

intadjustStart(intnew_start_frame);

adjustStart() is called by the XilCis class when the start of a CIS must be
adjusted. An adjustment is activated by the CIS attributes defined by
xil_cis_set_keep_frames() and xil_cis_set_max_frames() . These
two functions are described in XIL Programmer’s Guide. The default
implementation of the adjustStart() function adjusts the start frame based
only on the input parameter for the frame number.

Note — This default implementation is not sufficient for a compression type
with key frames (history), which may be kept in the CIS prior to the start
frame. See the section “Adjust Start Frame within Buffer Lists” on page 206
that discusses the XilCisBufferManager::adjustStart() function.

Compression Types with Ordinal Numbering

The following functions depend on the XilCisBufferManager class to
perform the requested action:

® getBitsPtr()
® hasData()
® numberOfFrames()

XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

® hasFrame()
® putBitsPtr()
® putBits()

The default implementations of these functions as defined in the
XilCisBufferManager class work correctly for compression types with
ordinal numbering. In other words, when there are five frames in the CIS, the
frames are numbered 0-4, in order. However, for a codec that has out-of-order
frames (such as MPEG), the codec must determine if the five frames in the CIS
are really frames 0-4 by tracking the temporal reference of each frame.

The tracking of the temporal reference of each frame requires extra parsing,
which is not implemented in the default functions listed above. Therefore, if a
codec has out-of-order frames, these functions must be implemented in the
derived class.

See the section “XilCisBufferManager Class” on page 192 for a description of
each of these functions.

Error Reporting

void generateError (XilErrorCategory category,
char*id, intprimary, Xil_booleanread_invalid,
Xil_booleanwrite_invalid, intline, char*file);

generateError() is called by the derived XilDeviceCompression class to
register the state of its error. If the error occurs during the reading
(decompress) of the bitstream, the read_invalid parameter should be set to
TRUE If the error occurs during the writing (compress) to the bitstream, the
write_invalid parameter should be set to TRUE This error function calls a
corresponding function in the XilCis class to store the information for the
read/write invalid flags and current CIS state.

Error Recovery

attemptRecovery() , by default, takes no action. It is a hook that is provided
to enable you to manage a response to an illegal bitstream and to go beyond
error reporting.

Compression/Decompression 185

i
(@)

Functions That Must Be Implemented

The following functions must be implemented in the derived class:

reset()
getMaxFrameSize()
deriveOQutputType()
burnFrames()
findNextFrameBoundary()

voidreset(void);

reset() is called when the codec is reset via xil_cis_reset() . This
function must clear the state of the CIS so that it is the same as a newly created
CIS. Clearing the state of the CIS involves many of the same actions that are
performed by the class constructor. In the XIL codec implementations, each
class has a private function, initValues() , that performs the common
actions for start-up and reset.

One of the common actions is to set up the default input type of the CIS. The
value of the variable fields within an input type must be 0 (zero). The value of
the non-variable fields within an input type must be their restricted value. For
example, “MyCodec” operates only on byte images, but the byte images can be
of varying size and number of bands. Therefore, the input type has only one
non-variable field, and its value must be XIL_BYTE. The other fields are
variable fields, and their values are 0 (zero), as shown in the following code:

int XilDeviceCompressionMyCodec::initValues() {
/Il set up input/output type
XillmageType* t = cis->getSystemState()->
createlmageType(0,0,0,XIL_BYTE);
outputType = inputType = t;

/l initialize any state
width = 0;
height = 0;

return XIL_SUCCESS;

186 XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

reset() must destroy the current input and output type, call the
initValues() function, and then call the base class reset() function. The
base class reset() function performs the reset for the

XilCisBufferManager class. For example,

void XilDeviceCompressionMycodec::reset() {
if (inputType != outputType)
outputType->destroy();
inputType->destroy();

initValues();
XilDeviceCompression::reset();

intderiveOutputType(void);

deriveOutputType() is called when the input/output type of the CIS is
unknown (for example when the data has been loaded into the CIS from an
external file, rather than compressed). In this case, the bitstream must be
parsed to determine the fields for the type: xsize, ysize, humber_bands, and
datatype. The parsed type must be passed to the setinputType() function of
the base class. setlnputType() will compare the parsed type against the
variable fields for this CIS and report any errors. If no errors exist,
setinputType() stores the parsed type as the input/output type of the CIS.
For example,

/I get pointer to current frame
bp32 = (Xil_unsigned32*)cbm.nextFrame();

image_width = *bp32++;
image_height = *bp32++;
image_bands = *bp32++;

ifimage_width && image_height && image_bands) {
newtype = cis->getSystemState()->createlmageType(image_width,
image_height, image_bands, XIL_BYTE);

/Il set up input/output type and check variable fields
setlnputType(newtype);

Compression/Decompression 187

188

intfindNextFrameBoundary();

findNextFrameBoundary() is activated by the XilCisBufferManager

class when frame boundaries have not been determined for a CIS. This
function parses the CIS bitstream, using special interface functions within the
XilCisBufferManager class, until the end of the current frame is found, or
until no more available data in the CIS exists. The function then returns a
status to indicate its success or failure at finding the end of the current frame.
See the section “Determine if a Complete Frame Exists” on page 201” for a
detailed discussion of findNextFrameBoundary()

void burnFrames(int nframes);

burnFrames() must process through the number of frames specified by the
input parameter, nframes . The XilDeviceCompression object must process
the bitstream in accordance with the device’s dependence on history or
interframe data. Burning a frame can be as simple as parsing through until the
end-of-frame marker is found, or it may invoke many of the same functions as
a decompress. The burnFrames() function should use the nextFrame() and
decompressedFrame() functions in the XilCisBufferManager class (see
the section “Guarantee a Complete Frame for the Codec to Decompress” on
page 198 and the section “After a Frame is Decompressed” on page 198.
Below is an example that has a fixed size for each frame; in this case burning is
quite simple:

void
XilDeviceCompressionldentity::burnFrames(int nframes)

{

Xil_unsigned8* bp = (Xil_unsigned8*)cbm.nextFrame();

for(int i=0; i<nframes; i++) {
bp += frame_size;
cbm.decompressedFrame(bp);

}

intgetMaxFrameSize();

getMaxFrameSize() = must determine the worst case compression for the
given input type of a CIS. This function should return the maximum number of
bytes for any frame in the CIS, which must include anything that appears

XIL Device Porting and Extensibility Guide—August 1994

6

between the start of a frame and the start of the next frame (for example,
headers and markers). This function is used by the XilCisBufferManager

class to determine the space needed for compression and to test for at least one
frame in the current buffer.

For the Identity example at the end of this chapter, the getMaxFrameSize()
function is the (xsize*ysize*nbands) + “12”, for the three header words:

int XilDeviceCompressionldentity::getMaxFrameSize(void) {
return ((int)inputType->getWidth()*
(int)inputType->getHeight()*
inputType->getBands() +12);

The CIS Buffer Manager

XilCisBuffer

The CIS buffer manager maintains a list of buffers in which compressed data is
stored. There is a XilCisBufferManager object associated with each
XilDeviceCompression object (see Figure 6-1).

What follows is a description of the CIS buffer manager interface. The default
implementation of the virtual functions in the XilDeviceCompression class
make use of the CIS buffer manager. If the CIS buffer manager works for your
compression technique, you should make use of it; overriding the default
virtual functions in the XilDeviceCompression class is possible without it,
but re-implementing the functionality of the CIS buffer manager will certainly
increase the effort needed to implement a new compression technique.

Class

An XilCisBuffer object acts as a buffer for compressed data. It can be used
to create a buffer of a particular size or to make use of an already-existing
buffer. The object contains the number of complete frames and number of bytes
currently contained in the buffer, the size of the buffer, and an index to the first
frame in the buffer. It also contains a flag that indicates whether the buffer may
contain a partial frame at its end.

Compression/Decompression 189

i
(@)

Note — An XilClsBuffer object contains only frames. It does not support a
bitstream that mixes frame data with non-frame data (for instance, audio). If
frame data mixed with non-frame data is supported by your codec, then the
non-frame data must be grouped along with its associated frame, which can be
either the previous or following frame. The codec is responsible for handling
and processing the non-frame data. If you are mixing frame and non-frame
data, the maximum frame size for the compression type must include the
maximum size of the attached non-frame data.

The XilCisBuffer object maintains pointers to the start of the current frame
being written to, the current frame being read from, and the next available byte
in the buffer. XilCisBuffer may be allowed control over its buffer; in this
case it may destroy the buffer if needed. Otherwise, the buffer is expected to be
allocated elsewhere, and a callback function may be provided to free the
external storage.

XilCisBuffer also keeps a list of objects that contain information about each
frame within the buffer. These XilFramelnfo objects contain information
such as the starting byte of a frame within the buffer and the number of bytes
in the frame. This list is built up by the compressor each time it compresses a
frame, and by the decompressor each time a frame is decompressed. A pointer
to the current position in the list is also held by the XilCisBuffer object.

The public part of the XilCisBuffer class is shown below:

Code Example 6-3 The XilCisBuffer Class

class XilCisBuffer {

public:

XilCisBuffer(unsigned buf_size, int approx_nframes);

XilCisBuffer(unsigned nbytes, int nframes, Xil_unsigned8* buf,
int frame_id, XIL_FUNCPTR_DONE_WITH_DATA done_data,

int approx_nframes = 0);

~XilCisBuffer();
XilCisBuffer * ok(); // constructor creation OK function

[f-mmmmmmmm e Byte Addition Functions

190 XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

Code Example 6-3 The XilCisBuffer Class

void addByte(intb);
void addBytes(Xil_unsigned8* b, unsigned nbytes);

void addShort(int s) { addByte((s) >> 8); addByte(s); }
void addShorts(int* s, unsigned m_shorts);

int getNumFrames() const { return num_frames; }

int getStartFrameld() const { return start_frame_id; }

int getNumBytes() const { return wptr - buffer; }

unsigned getBufferSize() const { return buffer_size; }

int getNumBytesInWFrame() const { return wptr - wfptr; }

int getNumBytesInRFrame();

Xil_unsigned8* getNumBytesToFrame(int end_id, int* nbytes);

int frameAtRfptr() const;
int frameAfterRfptr(int max_frame_size, Xil_boolean need_EOF = FALSE) const;
int numAvailBytes() const;

M-mmmemeee- Merging PB --------------------

int removeStartFrame();
friend class XilCisBufferManager;

kh

For device compressions that use the implementation of the XilCisBuffer :
the only functions that are important are the byte addition functions:

® addByte() inserts the given byte
® addBytes() inserts n bytes starting from the given pointer
® addShort() inserts the given short

® addShorts() inserts n shorts starting from the given pointer

These functions allow a compressor that uses the
XilCisBufferManager::nextBuffer() function to add bytes into the
current buffer.

Compression/Decompression 191

i
(@)

The other functions in the XilCisBuffer class are used by the
XilCisBufferManager class (discussed next). These functions are shown in
Code Example 6-3 in the case that you want to reimplement them.

XilCisBufferManager Class

The XilCisBufferManager class manages the multiple XilCisBuffer

objects that make up a CIS. This class maintains a list of buffers in which the
compressed data is kept. Three important positions exist within this list of
buffers: the start of the list, the buffer which certain operations will read from,
and the current write buffer. The XilCisBufferManager class is shown next:

Code Example 6-4 The XilCisBufferManager Class (1 of 3)

class XilCisBufferManager {
public:

XilCisBufferManager(int mfs, int nfpb); // constructor

void reset();

XilCisBufferManager* ok(); /I constructor creation OK function
void setXilDeviceCompression(XilDeviceCompression* dc);
XilDeviceCompression* getXilDeviceCompression();

Il functions to set or get the maximum frame size or number of frames per buffer

int setFrameSize(int fs); /I set maximum frame size (mfs)

void setNumFramesPerBuffer(int nfpb)// set number of frames per buffer (nfpb)
int getFrameSize(); I/l get mfs

int getNumFramesPerBuffer(); /I get nfpb

// functions to get attributes of a frame

int getSFrameld(); /l get start frame 1D

int getRFrameld(); /I get read frame ID

int getWFrameld(); /I get write frame ID

int getRFrameType(); I/l get read frame type

void* getRFrameUserPtr(); /I get read frame user pointer

int setRFrameUserPtr(void* uptr); I set read frame user pointer

/I compress frame into CIS, method 1
XilCisBuffer* nextBuffer();
int compressedFrame(int type = XIL_CIS_DEFAULT_FRAME_TYPE);

192 XIL Device Porting and Extensibility Guide—August 1994

Code Example 6-4 The XilCisBufferManager Class (2 of 3)

/I compress frame into CIS, method 2
Xil_unsigned8* nextBufferSpace();
int doneBufferSpace(int nbytes, int type = XIL_CIS_DEFAULT_FRAME_TYPE);

[/ function to guarantee a complete frame is available for codec to decompress
Xil_unsigned8* nextFrame(Xil_unsigned8** r_buffer_end = NULL,
Xil_boolean need_EOF = FALSE);

I function that is called by the decompressor when it is done with a frame
void decompressedFrame(Xil_unsigned8* bfptr,
int type = XIL_CIS_DEFAULT_FRAME_TYPE, void* user_ptr = NULL);

I functions to put data into a buffer of the CIS buffer manager

void putBits(int nbytes, int nframes, void* data);

void putBitsPtr(int nbytes, int nframes, void* data,
XIL_FUNCPTR_DONE_WITH_DATA = NULL);

//function to return a pointer to data that has been compressed or loaded into
I the current read buffer of the CIS buffer manager
void* getBitsPtr(int* nbytes, int* nframes);

// functions to return data and frame information about the CIS
int hasData();

int numberOfFrames();

Xil_boolean hasFrame();

I/ functions to determine if a complete frame exists in the current read buffer
Xil_unsigned8* getNextByte();

Xil_unsigned8* getNextBytes(int* nbytes);

int foundNextFrameBoundary(Xil_unsigned8* frame_ptr);

I function to return any bytes that may have been over-read
Xil_unsigned8* ungetBytes(Xil_unsigned8* curr_ptr, int nbytes);

[l functions to seek a specific frame within a CIS

int seek(int framenumber, int type = XIL_CIS_ANY_FRAME_TYPE);

void setSeekToStartFrameFlag(Xil_boolean value)
{seek_to_start_frame_flag = value;}

// function to adjust the start frame within buffer lists

int adjustStart(int framenumber, int type = XIL_CIS_ANY_FRAME_TYPE);

Compression/Decompression

193

194

Code Example 6-4 The XilCisBufferManager Class (3 of 3)

// this function is a special case of seek()
int seekBackToFrameType(int type);

/ function to add end-of-sequence marker for MPEG
int addToLastFrame(Xil_unsigned8* data, int nbytes);

[/ functions to allow MPEG to implement its own getBits function
Xil_unsigned8* getRBuffer() { return ((Xil_unsigned8 *) r_buffer); }
Xil_unsigned8* getNumBytesToFrame(int end_id, int* nbytes);
int moveEndStartOneBuffer();

[/ functions to handle errors and recovery

void byteError(Xil_unsigned8* bptr); // called instead of decompressedFrame
int nextSeek(int framenumber, int type = XIL_CIS_ANY_FRAME_TYPE);

int prevSeek(int framenumber, int type = XIL_CIS_ANY_FRAME_TYPE);
void nextKnownFrameBoundary(Xil_unsigned8* cptr, Xil_unsigned8** fptr,

int* num_frames);

void errorRecoveryDone(Xil_unsigned8* fptr, int num_frames,

Xil_boolean fixed);

void foundFrameDuringRecovery(Xil_unsigned8* fptr);

k

An XilCisBufferManager object has a frame size and a number of frames
per buffer value associated with it. Whenever the manager deems it necessary
to create a new XilCisBuffer object with its own data storage, it will create
the new object such that it has a buffer of size (max_frame_size *
num_frames_per_buf) bytes. For XilCisBuffer objects with external
storage, the memory buffer is allocated by the application and is whatever size
the application provides.

Attributes of a Frame

The elemental unit of a CIS is a frame. The codec can access three attributes of
a frame through the XilCisBufferManager class, as follows:

® The frame’s ID (frame_id), which is an ordinal number that refers to the
position in the CIS, starting at 0 and increasing monotonically.

XIL Device Porting and Extensibility Guide—August 1994

6

® The frame’s type (frame_type), which is a positive integer assigned to the
frame when the frame was compressed or decompressed. This attribute is
useful for codecs that understand the concept of key frames in the bitstream.
This attribute defaults to XIL_CIS_DEFAULT_FRAME_TYPE

® The frame’s user data pointer (user_ptr), which is a pointer to data allocated
by the decompressor that is associated with the frame using malloc() . For
instance, an MPEG codec might use this attribute to store the frame’s
display ID, since this is different from the ordinal frame_id.

The XilCisBufferManager class keeps track of the following special frames:

* Write frame, which is the frame_id of the write position in a CIS. It may be
equal to -1 if an unknown number of frames has been loaded into the CIS.

® Start frame, which is the frame_id of the first position in the CIS. It is
initialized as 0, but the start of the CIS may be adjusted to minimize data
storage requirements. See the discussion of adjustStart() in the section
“Adjust the Start of a CIS” on page 184.

® Read frame, which is the frame_id of the read position in a CIS. It is
advanced when data is read from the CIS, either for a decompress or for an
output (getBits) operation. The read frame can be positioned by an
explicit seek from the application. Refer to the discussion of seek() in the
section “Determine the CIS Read Position” on page 183.

The Constructor and Associated Functions

The constructor for the XilCisBufferManager class requires two
parameters:

®* mfs, the maximum frame size for the compression type

* nfpb , the number of frames per buffer

The value of mfs must be the worst case scenario (for example, the largest
number of bytes that a compressed frame might require, including header,
markers, etc.). The value of nfpb is used with the value of mfs to determine
the number of bytes allocated for each XilCisBuffer object (mfs * nfpb).

ok() checks the success of the constructor in a similar fashion to the
XilDeviceCompression::ok function. ok() returns a NULL pointer if a
failure occurs; otherwise, it returns a pointer to the XilCisBufferManager
object.

Compression/Decompression 195

196

setXilDeviceCompression() is called by the base class
XilDeviceCompression during the instantiation. This function registers the
derived XilDeviceCompression class, which is necessary for access to that
class’s findNextFrameBoundary() function.

getXilDeviceCompression() returns the registered pointer.

Reset the Codec

reset() is called by the base class XilDeviceCompression when the codec
must be reset. reset() handles the freeing of currently buffered data in a CIS.
The pointers for the start, read, and write positions are reset to 0, and any local
variables are initialized to their default values. The CIS is empty and ready for
a new bitstream.

Set/Get Maximum Frame Size and Number of Frames per Buffer

The following functions are used to set/get the maximum frame size and the
number of frames per buffer:

* setFrameSize() sets the maximum frame size per buffer
® getFrameSize() gets the maximum frame size per buffer
® setNumFramesPerBuffer() sets the number of frames per buffer

* getNumFramesPerBuffer() gets the number of frames per buffer

The codec is allowed only to increase the maximum frame size, not decrease it.
A request to decrease its value generates an error.

Method One of Adding Data to a CIS Bitstream

One method of adding data to a CIS bitstream is to use the nextBuffer()
and compressedFrame() functions.

XilCisBuffer* nextBuffer();

The nextBuffer() function is called by the compressor to request space for a
compressed frame. The XilCisBufferManager object checks the current
XilCisBuffer to see if max_frame_size bytes are available. If they are not,
XilCisBufferManager allocates a new XilCisBuffer object. The pointer to
the appropriate buffer is returned to the compressor. The derived

XIL Device Porting and Extensibility Guide—August 1994

6

XilDeviceCompression class must use the XilCisBuffer functions shown
in the following code example to add data to the CIS. The buffer tracks its own
pointer to the added bytes/shorts. Next, the example compressor adds the
header bytes to the CIS for width, height, and nbands.

/I write the image parameters into the byte-stream

cisbuf->addBytes((Xil_unsigned8*)&cis_width,

sizeof(cis_width));

cisbuf->addBytes((Xil_unsigned8*)&cis_height,
sizeof(cis_height));

cisbuf_addBytes((Xil_unsigned8*)&cis_bands, sizeof(cis_bands));

intcompressedFrame(inttype =
XIL_CIS_DEFAULT_FRAME_TYPE);

When the compressor has finished adding data to the CIS bitstream, it must
call compressedFrame() . If the frame that was compressed needs to have a
type associated with it, you should pass the frame’s type as a parameter to the
compressedFrame() function. Otherwise, the default value for a frame type
is assigned to the frame.

Note — You must use nextBuffer() with compressedFrame()

Method Two of Adding Data to a CIS Bitstream

Method two of adding data to a CIS bitstream is to use the
nextBufferSpace() and doneBufferSpace() functions.

Xil_unsigned8* nextBufferSpace();

for the compressor to call the nextBufferSpace() function is called by the
compressor to return a pointer to an available buffer. The pointer is of type
Xil_unsigned8* , which means the compressor is responsible for adding data
one frame at a time and tracking its own pointer. There are no calls to the
XilCisBuffer class.

Compression/Decompression 197

198

intdoneBufferSpace(intnbytes, inttype =
XIL_CIS_DEFAULT_FRAME_TYPE);

When the compressor has finished adding data to the CIS bitstream, it must
call the doneBufferSpace() function. The first parameter you must pass to
this function is the number of bytes (nbytes) added to the buffer. Also, there
is an optional frame type parameter for doneBufferSpace()

doneBufferSpace() may cancel a call to nextBufferSpace() if the value
of nbytes for doneBufferSpace() is -1.

Note — You must use nextBufferSpace() with doneBufferSpace()

Guarantee a Complete Frame for the Codec to Decompress

nextFrame() is the only function that guarantees a complete frame is
available for the codec to decompress. The prototype of nextFrame() is:

Xil_unsigned8* nextFrame(Xil_unsigned8**r_buffer_end,
Xil_booleanneed_EOF);

This function returns a pointer to the start of the frame. If a non-NULL value
for the optional parameter r_buffer_end is supplied, the function will be
loaded with a pointer to the last byte in the current buffer. This pointer can be
used by the decompressor to protect against bad bitstreams. If you supply a
non-NULL value for the optional parameter r_buffer_end and set the
parameter need_EOF to TRUE r_buffer_end will be loaded with a pointer to
the end of the frame. Requesting a pointer to the end of the frame may be very
expensive with regard to time because the frame must be pre-parsed. Normally
just a pointer to the end of the buffer is sufficient to protect against reading
past valid memory.

After a Frame is Decompressed

decompressedFrame() is called by the decompressor when it is done with a
frame. The prototype of decompressedFrame() is:

XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

void decompressedFrame(Xil_unsigned8+** bfptr, inttype,
void* user_ptr);

The XilCisBufferManager object expects the first parameter, bfptr , to be
set to one byte past the end of the frame. Several optional parameters exist. The
type parameter may specify a positive integer to store as the frame type. The
user_ptr parameter is assumed to be a pointer to data that the codec has
allocated and wishes to associate with the frame. If the value of the user_ptr
parameter is NULL, no change to the current value is made. The update_next
parameter (flag) is TRUEIf the function was called after the frame data was
processed, not just parsed. The setting of this flag is necessary since there are
functions that call decompressedFrame() that only establish frame
boundaries.

An Alternative to Compressing into a CIS

An alternative to compressing into a CIS is to load the CIS with already
compressed data from another bitstream or a file. You can use putBits() and
putBitsPtr() to put data into a buffer of the XilCisBufferManager

object.

void putBits(intnbytes, intnframes, void* data);

putBits() copies nbytes from specified data into a newly allocated
XilCisBuffer object.

void putBitsPtr(int nbytes, int nframes, void* data,
XIL_FUNCPTR_DONE_WITH_DATA);

putBitsPtr() creates a new XilCisBuffer object whose buffer space
references the external storage at a given data pointer. This function has an
optional parameter XIL_FUNCPTR_DONE_WITH_DAT#at is a pointer to a
function that can be called when the XilCisBuffer object with an external
storage pointer is destroyed. This XilCisBuffer object can be destroyed
because the CIS was reset or destroyed, or the frames in the buffer are no
longer necessary to the CIS (see the section “Adjust Start Frame within Buffer
Lists” on page 206). The callback can be used to reclaim data space. The default
value for this parameter is NULL, which means no callback is made.

Compression/Decompression 199

200

Both functions expect the parameter nframes to be specified with one of the
following values:

Value Meaning

-1 Unknown number of frames
0 May contain partial frames
An integer (n) greater than 0 n frames

Note - It is very important that a buffer be loaded with a correct value for
nframes .

Return a Pointer to Data

getBitsPtr() returns a pointer to data that has been compressed or loaded
into the current read buffer of the XilCisBufferManager object, starting at
the current read frame. The prototype of the function is:

void* getBitsPtr(int* nbytes, int* nframes);

The pointer returned is to the start of the read frame; the parameters nbytes
and nframes are loaded with the number of bytes and the number of
complete frames in the buffer. If there is not a complete frame of data to return,
the pointer is NULL, and nbytes and nframes are loaded with 0.

Return Data and Frame Information about the CIS

The following three functions return either data or frame information about the
Cls:

® hasData()
® numberOfFrames()
® hasFrame()

inthasData();

This function returns the amount of data in the CIS from the current read
position to the end of the CIS.

XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

intnumberOfFrames();

This function returns the number of complete frames in the CIS from the
current read position to the end of the CIS.

Xil_boolean hasFrame();

This function returns TRUEIf a complete frame exists at the read position of the
CIS.

Note — When a CIS is loaded and the frame boundaries are not known,
hasFrame() and numberOfFrames() invoke the

findNextFrameBoundary() function of the XilDeviceCompression class,
if necessary, to determine the frame boundaries.

Determine if a Complete Frame EXxists

The XilCisBufferManager object is responsible for determining if a
complete frame exists in the current read buffer for certain functions, such as
nextFrame() . Frame boundaries are easy to locate in a CIS that was just
compressed; the compressor established each frame’s start and end. However,
if the CIS was loaded with data that contained a partial frame, then the CIS
must be parsed to establish the next frame boundary. This parsing is done by
each XilDeviceCompression object.

When the XilCisBufferManager object cannot determine if a complete
frame exists, the object saves data about the current read buffer and position,
and creates temporary pointers for use by the XilDeviceCompression

object. Then, the XilCisBufferManager object calls the

findNextFrameBoundary() function of the specific
XilDeviceCompression object.
findNextFrameBoundary() must use the getNextByte() and

getNextBytes() functions of the XilCisBufferManager object to get data
from the CIS. These functions update the temporary pointers that the
XilCisBufferManager object created for use by the

XilDeviceCompression object when parsing.

Compression/Decompression 201

202

Xil_unsigned8* getNextByte();

getNextByte() returns a pointer to the next available byte in the CIS. This
function handles the transition to the next frame buffer if it reaches the end of
the current buffer. If no next buffer exists (the end of the CIS is reached), the
function returns NULL

Xil_unsigned8* getNextBytes(int* nbytes);

getNextBytes() returns a pointer to the next available byte in the CIS and a
count of the number of bytes to the end of that buffer. When
XilDeviceCompression has parsed through all of the bytes in the buffer and
needs to parse the next buffer, it must call getNextBytes() again. If there is
no next buffer, getNextBytes() returns NULL

intfoundNextFrameBoundary(Xil_unsigned8*frame_ptr);

If findNextFrameBoundary() is successful in finding the end of the frame, it
must call the XilCisBufferManager::foundNextFrameBoundary()

function and return this function’s status. foundNextFrameBoundary()

expects a pointer to one byte beyond the end of the frame, which is the same as
the first byte of the next frame. This function resolves the previous state saved
by XilCisBufferManager (the state saved before

findNextFrameBoundary() was called) and the current state (the state after
the getNextByte() and getNextBytes() functions were called). For
example, the frame end found by findNextFrameBoundary() may be within
the next buffer instead of the current read buffer. This would require the
XilCisBufferManager to allocate a new buffer that can hold the entire frame
and copy the frame pieces into this new buffer.

The foundNextFrameBoundary() function returns the status of either
XIL_SUCCESSor XIL_FAILURE to findNextFrameBoundary() , which then
should return the status to its calling function in the XilCisBufferManager
object, as shown below:

/I success, within findNextFrameBoundary
return(cbm->foundNextFrameBoundary(frame_end);

If findNextFrameBoundary() did not find the end of the frame and has
exhausted all the bytes available in the CIS, it should return XIL_FAILURE .
The exception is for a compression type that does not use an end-of-frame

XIL Device Porting and Extensibility Guide—August 1994

6

marker; the end of this frame is determined by the start of the next frame. In
this case, findNextFrameBoundary() should return XIL_UNRESOLVEDThe
XilCisBufferManager object interprets this status according to whether or
not partial frames are present in the buffer.

Over-read Bytes

ungetBytes() allows the XilDeviceCompression object to return any
bytes that it may have over-read when determining the frame end (using
findNextFrameBoundary()). This function is needed because some
compression types do not contain an end-of-frame marker. The next start-of-
frame marker must be read and identified before the end-of-frame is known.
“Reading ahead” may move the frame tracking pointers to a different
XilCisBuffer object. Since only data within an XilCisBuffer is
contiguous, the compression device cannot just subtract n bytes from the
current pointer to find the end-of-frame pointer. Instead, the compression
device must request to return the over-read bytes by using the ungetBytes()
function. This function will detect and handle backing up the pointer by n
bytes of valid buffer data.

Seek a Specific Frame within the CIS

The following functions are used for seeking a specific frame within a CIS:

* seek()
® setSeekToStartFrameFlag()

intseek(intframenumber, inttype);

The XilCompressionDevice object uses the seek() function to seek to a
specific frame within a CIS. The parameter framenumber corresponds to the
frame ID of a frame in the CIS. The optional type parameter specifies the
frame type, which corresponds to the type of a frame in the CIS. This
parameter defaults to XIL_CIS_ANY_FRAME_TYPE(any frame type), which
allows a seek based on position only.

The XilCisBufferManager object performs a seek in two stages: the first
stage is for position and the second stage is for type. First,
XilCisBufferManager positions the read frame as close as possible to the
desired frame. If the desired frame does not have a frame boundary, the read

Compression/Decompression 203

204

frame is the closest preceding frame number (this could be the first frame in
the CIS, the start frame). The delta between the current read frame and the
desired frame number is stored, and the second stage begins.

The second stage positions the read frame based on the requested type. If the
frame type is XIL_CIS_ANY_FRAME_TYPEor matches the current read frame
type, then the second stage delta is zero. Otherwise, XilCisBufferManager
searches backward until it finds the requested frame type. Then, it leaves the
read frame at this frame and stores the additional number of frames from the
position of the read frame in the second stage delta. The return value is the
total of the first stage delta (position) and the second stage delta (frame type).

Note that the XilCisBufferManager object treats the next decompressed
frame in a special way. During the seek, the next decompress frame is assigned
the type XIL_CIS_ANY_FRAME_TYPE This assignment ensures that a burn
forward into a CIS starts from the last decompressed frame. The next
decompress frame is tracked via the update_next parameter of the
decompressedFrame() function.

The history_update parameter of the XilDeviceCompression::seek()
function can be used to determine the frame type specified to the
XilCisBufferManager::seek() function. If history_update is TRUE
then the seek must preserve history. The type specified in the
XilCisBufferManager::seek() function must be the appropriate key
frame type. If history_update is FALSE then the seek is for position only,
and the type specified in the XilCisBufferManager::seek() function
should be the XIL_CIS_NO_BURN_TYPE which is a special flag to the
XilCisBufferManager object to skip the second stage delta. Following is a
typical code fragment:

if (history_update == TRUE)
frames_to_burn = cbm.seek(framenumber, seekFrameType);
else
frames_to_burn = cbm.seek(framenumber, XIL_CIS_NO_BURN_TYPE);

Figure 6-2 is a diagram that helps to illustrate the actions taken by the
XilCisBufferManager object for a seek.

XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

Key frame Key frame

v \

0 1 2 3 4 5 6 71 8| 9 10| eee

f

Current read frame

Figure 6-2 Actions Taken by XilCisBufferManager::seek()

Figure 6-2 shows key frames at 0 and 5 and a block of four frames starting at
frame 7, where boundaries are not known. The current read frame is frame 3
for all examples below.

cbm->seek(3, xxxx) position 3, returns 0, regardless of frame type
cbm->seek(4, Key) position 3, returns 1 (burn 1 forward)
cbm->seek(2, Key) position 0, returns 2 (burn 2 forward)
cbm->seek(6, Key) position 5, returns 1 (burn 1 forward)
cbm->seek(6, Any) position 6, returns 0

cbm->seek(8, Key) position 5, returns 3 (burn 3 forward)
cbm->seek(8, Any) position 7, returns 1 (burn 1 forward)

Note that frames are typed by the function decompressedFrame() or
compressedFrame()

void setSeekToStartFrameFlag(Xil_booleanvalue);

This function determines the behavior of the

XilCisBufferManager::seek() function during the second stage, seek to
frame type. When the XilCisBufferManager object has moved back through
the CIS to the start frame and still has not matched with the requested type, it
checks the value of the seek _to_start_frame_flag parameter. If the value
of this parameter is TRUE then the start frame of the CIS is granted the type
XIL_CIS_ANY_FRAME_TYPE In this case, the worst case burn starts from the

Compression/Decompression 205

206

first available frame, which for most compressions is a reasonable option. The
default value of the seek to_start frame_flag parameter is TRUEfor an
initialized (reset) XilCisBufferManager object.

Adjust Start Frame within Buffer Lists

adjustStart() is used to adjust the start frame within the buffer lists. The
prototype of this function is:

intadjustStart(intframenumber, inttype);

Since the new start frame may not be able to be processed without information
from prior frames, adjustStart() can take as a parameter a frame type. Any
frames from the desired frame back to a frame of the given type are kept
within the CIS, although the frames may not be accessed directly via seek()
These additional frames are used only to process the new start frame. Once the
adjustment is made, any buffers prior to the new start buffer are destroyed.

This function returns an int that represents status, either XIL_SUCCESSor
XIL_FAILURE .

Device Compression with Out-of-Order Frames

The following functions discussed in this section provide necessary interfaces
for device compression with out-of-order frames to take advantage of the
XilCisBufferManager class:

® seekBackToFrameType()
® addTolLastFrame()

Out-of-order frames means the frame ID and display ID do not match (MPEG
is an example of this type of device compression). For more information about
MPEG, see the XIL Programmer’s Guide.

intseekBackToFrameType(inttype);

seekBackToFrameType() is a special case of seek. It begins looking for the
specified frame type at the frame previous to the current read frame. This
function does not have framenumber as a parameter. It takes identical action
to the second stage of the seek() function. It positions the current read frame
at a frame of the specified type, which must be positioned before the original

XIL Device Porting and Extensibility Guide—August 1994

6

read frame. The number returned is the number of frames from the current
read frame to the original read frame (the read frame upon entry to the
function).

intaddToLastFrame(Xil_unsigned8*data, intnbytes);

Device compression with out-of-order frames uses an end-of-sequence marker,
which from the library’s standpoint is part of the last frame in the CIS. This
function allows the bytes for the end-of-sequence marker to be added after the
last frame has already been registered via the compressedFrame() function.
addTolLastFrame() automatically increases the frame size by nbytes and
adjusts the write pointers of the CIS.

The following functions allow device compression with out-of-order frames to
implement its own getBits function, which can handle out-of-order frames:

* getRBuffer()
* getNumBytesToFrame()
®* moveEndStartOneBuffer()

Xil_unsigned8* getRBuffer();

getRBuffer() returns a pointer to the current read buffer. This pointer allows
the XilDeviceCompression object to determine when it has “crossed” the
buffer boundary to get to the next frame.

Xil_unsigned8* getNumBytesToFrame(intend_id,
int*nbytes);

getNumBytesToFrame() returns a pointer to a data block starting at the
current read frame in the current buffer. The number of bytes between the
current read frame and the specified end frame (end_id) is loaded into
nbytes . This allows the XilDeviceCompression object to get less than all of
the frames in the current read buffer by allowing you to specify on which
frame to stop.

intmoveEndStartOneBuffer();

moveEndStartOneBuffer() moves the last frame of the current buffer and
the start frame of the next buffer into a new buffer and inserts it into the buffer
list. This function is used to move a predictive frame at the buffer end and
bidirectional frame at the next buffer start into the same buffer.

Compression/Decompression 207

208

Error Handling and Recovery

The following functions discussed in the section are provided as hooks for
error handling and recovery:

byteError()

nextSeek()

prevSeek()
nextknownFrameBoundary()
errorRecoveryDone()
foundFrameDuringRecovery()

Currently, these functions are not used by the XIL Imaging Library.

void byteError(Xil_unsigned8* bptr);

byteError() is called when a decompressor finds a bitstream error during
decompress() or findNextFrameBoundary() . The byte pointer input
parameter should be set to the location of the bitstream error. Doing this sets
up the next byte that getNextByte() returns.

intnextSeek(intframenumber, inttype);

nextSeek() determines the closest frame that is greater than or equal to the
given framenumber . It returns -1 when no such “seekable” frame exists.

intprevSeek(intframenumber, inttype);

prevSeek() determines the closest frame that is less than or equal to the
given framenumber . It returns -1 if no such “seekable” frame exists.

void nextKknownFrameBoundary(Xil_unsigned8* cptr,
Xil_unsigned8**fptrint* num_frames);

nextknownFrameBoundary() returns a pointer to the next established frame
boundary in relation to a pointer in the current buffer (cptr). It returns the
pointer in fptr and a number of frames (hum_frames) between the current
position and the known boundary, including the current frame.

XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

void errorRecoveryDone(Xil_unsigned8*fptr,
intnum_frames, Xil_booleanfixed);

errorRecoveryDone() is called by xil_cis_attempt_recovery() just
before it completes. It expects the current pointer, the number of frames
parsed, and the state of the recovery.

void foundFrameDuringRecovery(Xil_unsigned8*fptr);

foundFrameDuringRecovery() expects a pointer to the start of the next
frame, which established previous bytes as part of the previous frame.

Adding a New Compression Method

The complexity of adding a new compression type to the XIL library varies
widely, depending on the compression technology. In order to install a
compressor like JPEG or CCITT G3, very little work has to be done other than
to actually write the compression and decompression functions and the few
pure virtual functions. The default implementation for the
XilDeviceCompression will likely work. For a more complicated
compression technique, like MPEG 1, with its multiple frame types and
out-of-order transmission, relatively little of the default implementation may
be used. In either case, however, the general steps to add a compression
technique are the same.

Table 6-1 lists the classes that you must create, the functions that you must
implement, and the functions that you optionally can implement to add a new
compression method.

Table 6-1 Required and Optional Functions for Adding a New Compression Method

Class/Function Required Optional

Derived class from XilDeviceCompressionType class

createDeviceCompression()

Derived class from XilDeviceCompression class

burnFrames()

X
X
X
findNextFrameBoundary() X
X
getMaxFrameSize() X

X

reset()

Compression/Decompression 209

210

Table 6-1 Required and Optional Functions for Adding a New Compression Method

Class/Function Required Optional

decompressHeader()
seek()

flush()

adjustStart()
getBitsPtr()
putBits()
putBitsPtr()
hasData()
numberOfFrames()
hasFrame()
setlnputType()

attemptRecovery()

deriveOutputType() X

X X X X X X X X X X X X

1. Create the derived class from XilDeviceCompressionType

For example, the code at the end of this chapter defines
XilDeviceCompressionTypeldentity . The global function
XilCreateCompressionType() must be written to create a single
instance of this derived class. If the compression technique contains exposed
attributes, these should be registered here by calling registerAttr() from
within the constructor for XilDeviceCompressionType . Finally, the pure
virtual member function createDeviceCompression() must be written.
Usually, this involves calling the constructor for the

XilDeviceCompression derived class.

. Next, a class derived from XilDeviceCompression must be created.

In the example, the class XilDeviceCompressionldentity is created.
Table 6-1 lists the pure virtual functions that must be implemented in the
derived class and the ones that are optional. Optional functions need only
be implemented if the default implementation inherited from
XilDeviceCompression is inadequate.

XIL Device Porting and Extensibility Guide—August 1994

6

3. The actual compression and decompression functions are added to a
compute handler, as described in Chapter 4, “Compute Devices.”
The names of these functions should be compress_ compression_name and
decompress_ compression_name, where compression_name is the name of the
new compression type. In the section “Sample Compressor” on page 214 the
example derives a compute class called
XilDeviceComputeTypeldentity . It contains three members:
describeMembers() , compress_Identity() and
decompress_ldentity() . describeMembers() is generated
automatically as described in Chapter 4, “Compute Devices.”

The name of the created compute module should look like this:
xilcompute Compressorname_COMPANYNAMEmMemory.so. major_ver_no

In the case of the example, the compute module is named
xilcomputeldentity SUNWmemory.so A

4. Finally, the /opt/SUNWiIts/Graphics-swixil/lib/xil.compute
configuration file must be updated to show the new compression type.
The appropriate line to add looks like this:

compute Compressorname_COMPANYNAMEmMemory Compressorname

This indicates the dependence on the compression handler by the compute
handler, which implements the compression and decompression. More
information on installing handlers can be found in Chapter 2, “More on
Writing Device Handlers.”

Adding Compression Hardware

Hardware to support compression usually falls into two categories. In the first,
the device operates on memory, doing compression using a fast special
purpose processor, and then putting the results back into memory. Adding
support into the XIL library for this type of hardware can be a simple as
rewriting a single function (or pair of functions, if the device is capable of
compression and decompression). The second type of device is usually tied to
input or output: a frame grabber with built-in JPEG compression, for example,
or a JPEG decompress board with the ability to map windows onto the screen.
In this case, it is necessary to write the appropriate 1/0 handler for the device,
and write a molecule to perform the capture/compress or the

Compression/Decompression 211

212

decompress/display function. If the desired compression format is not one that
is currently available, the entire compression handler must be created in the
manner described in the previous section.

The simpler case is for devices that are not associated with input or output,
and for a compression type that currently exists in the XIL library (say, JPEG).
In the simplest fashion, porting this type of device requires subclassing the
XilDeviceComputeType , just like what is done to add accelerator support
for any XIL operator. The new functions would be named

compress_ Compressorname() and decompress_ Compressorname() , where
Compressorname is the name of the compression type that is being supported.
The function describeMembers() must be generated using the method
described in Chapter 4, “Compute Devices.” The new compute handler
containing the compression functions should be called

xilcompute Compressorname_ COMPANYNAMEdevicename.so

where devicename is the name for the accelerator device. A line in the
xil.compute configuration file should be added as follows:

compute Compressorname_COMPANYNAMEdevicename Compressorname

As described in Chapter 4, “Compute Devices,” adding this compute device
will replace the default function called for compress() . The implementation
of compress() and decompress() is required to put their compressed data
and decompressed images back in the CPU memory when the operation is
done. If a device also has other capabilities, such as doing RGB to YCC color
conversion, then it would also be advantageous to provide a molecule
compress(color_convert()) , for example. Molecules are added in this
case exactly like the noncompression case described in Chapter 4, “Compute
Devices.”

If the device contains integrated input or output, the situation is slightly
different. First, in order for the XIL library to expose the device as a device
image to the application, an 1/0 handler must be written. This procedure is
described in Chapter 3, “1/0 Devices.” In most cases, it is advantageous to
provide such a handler even for the cases where compression or
decompression are not performed (raw frame grab or displaying
uncompressed data), if the hardware supports such capabilities. In order to
provide the decompression capabilities of the device, a molecule must be
written that supports display(decompress()) or

compress(capture()) . This is also discussed in Chapter 3, “I/0O Devices,”

XIL Device Porting and Extensibility Guide—August 1994

6

where the interaction of compute and 1/0 handlers is discussed. Again, it may
be advantageous to provide other molecules to support whatever functionality
the hardware has: color conversion or zoom, for example.

After the 170 handler is written, the compute handler must be written. The
situation is the same as described above. The compute module should be called
xilcompute Compressorname_COMPANYNAMEdevicename.so

just as before. However, this time, there is an added notation in the

configuration file that indicates the dependence on the 1/0 handler for the
device:

compute Compressorname_COMPANYNAMEdevicenamel
Compressorname i0COMPANYNAMEdevicename

These two dependency entries in xi.compute would reference the following
modules:

xil Compressorname.so

and

xilio devicename.so

The first module contains the generic compression information for the
compression type, and the second contains the generic 1/0 handler for the
accelerator device.

Finally, I/0 compression devices with associated image storage may also be
defined. Chapter 5, “Storage Devices,” describes storage devices in detail.

Compression/Decompression 213

6

Sample Compressor

214

The code in this sample implements an example identity compression. In this
lossless compression, raw image data is simply put into the CIS in a predefined
manner.

The example contains four files:

XilDeviceCompressionTypeldentity.h and
XilDeviceCompressionTypeldentity.cc , which defines the device
compression type

XilDeviceCompressionldentity.h and
XilDeviceCompressionldentity.cc , which defines the identity device
compression itself

compress_ldentity.cc , which encodes the images into the CIS
decompress_ldentity.cc , which decodes the images from the CIS

XIL Device Porting and Extensibility Guide—August 1994

XilDeviceCompressionTypeldentity.h

Code Example 6-5 XilDeviceCompressionTypeldentity.h

/[This line lets emacs recognize this as -*- C++ -*- Code

1
1
I
I
/
1
1
I
I
I
1
1
1
I
I
I
1
1
1
I
I

=~

File:XilDeviceCompressionTypeldentity.h
Project:XIL

Created:93/04/14

Revision:1.1

Last Mod:12:05:08, 07 Mar 1994

Description:
This is the class that maintains the Identity compression
type information. It is derived from the more generic
XilDeviceCompressionType class and is responsible for
registering the attribute setting/getting functions for
Identity compression and decompression.

The class is also used to maintain information which is not
specific to any single instantiation of the Identity
compressor. There will be only one instantiation of this
class for the Identity compression irregardless of how many
XilCis objects are created.

I

#pragma ident*@ (#)XilDeviceCompressionTypeldentity.h1.1\t94/03/07 “

#ifndef XilDeviceCompressionTypeldentity H
#define XilDeviceCompressionTypeldentity H

#include <xil/XilError.h>
#include <xil/XilCis.h>
#include <xil/XilDeviceCompressionType.h>

classXilDeviceCompressionTypeldentity : public XilDeviceCompressionType

{

public:

virtual XilDeviceCompression* createDeviceCompression(XilCis* xcis);

I

/I The constructor is moved into the public space here because
/I this derived class can be created, but the parent class is not
/I permitted to be created without being derived upon.

Compression/Decompression

215

216

Code Example 6-5 XilDeviceCompressionTypeldentity.h

(Continued)

I
XilDeviceCompressionTypeldentity(void);
~XilDeviceCompressionTypeldentity(void);

h

#endif XilDeviceCompressionTypeldentity H

XIL Device Porting and Extensibility Guide—August 1994

XilDeviceCompressionTypeldentity.cc

Code Example 6-6 XilDeviceCompressionTypeldentity.cc

(1 of 3)

/[This line lets emacs recognize this as -*- C++ -*- Code
1
1
Il File: XilDeviceCompressionTypeldentity.cc
/I Project: XIL

/I Created: 93/04/14

/I Revision: 1.2

/I Last Mod: 09:31:22, 22 Mar 1994

I

/I Description:

Il
#pragma ident“@ (#)XilDeviceCompressionTypeldentity.cc1.2\t94/03/22 *“

#include “XilDeviceCompressionTypeldentity.h”
#include “XilDeviceCompressionldentity.h”

I/
1
/I Function: XilCreateCompressionType

/I Created: 93/04/14

1

/I Description:

/I The XilCreateCompressionType() is called when the XIL core
/I opens the xilldentity.so library. XilCreateCompressiontype()

/I is responsible for creating the Identity compression type class.
1
1

XilDeviceCompressionType*
XilCreateCompressionType()
{

XilDeviceCompressionTypeldentity* device;

device = new XilDeviceCompressionTypeldentity();
if(device==NULL) {

/l out of memory

XIL_ERROR(NULL, XIL_ERROR_RESOURCE,"di-1", TRUE);
}

Compression/Decompression

217

218

Code Example 6-6 XilDeviceCompressionTypeldentity.cc (2 of 3)

}

It
1
1
1
I
I
1
1
1
I
It

return device;

Function: XilDeviceCompressionTypeldentity::createDeviceCompression()
Created: 93/04/14

Description:

createDeviceCompression() is used to create new instances of
the Identity device compression when new CISs are created by the
user.

XilDeviceCompression*
XilDeviceCompressionTypeldentity::createDeviceCompression(XilCis* xcis)

{

XilDeviceCompressionldentity* device;

1
/I Create a new XilDeviceCompressionldentity
I
device = new XilDeviceCompressionldentity(this, xcis);
if(device == NULL) {
/I out of memory
XIL_ERROR(xcis->getSystemState(), XIL_ERROR_RESOURCE,"di-1”, TRUE);
}

I

/I Check to see if the device construction was completed

/I successfully.

I

device = device->0k();

if(device == NULL) {
/I Couldn’t create internal base XilDeviceCompression object
XIL_ERROR(xcis->getSystemState(), XIL_ERROR_SYSTEM,"di-278", FALSE);

}

return device;

XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

Code Example 6-6 XilDeviceCompressionTypeldentity.cc (3 0of 3)
1
I
/I Function: XilDeviceCompressionTypeldentity()

/I Created: 93/04/14

I

/I Description:

/I The device compression type constructor initializes any

/I 1dentity compression type specific data and registers all of the
/I 1dentity attributes with the XIL core.

1
Il

XilDeviceCompressionTypeldentity::XilDeviceCompressionTypeldentity()
: XilDeviceCompressionType(“Identity”,”IDENTITY")

{
/I any attributes which the codec would like to provide access
// to via the xil_cis_set_attribute() and/or xil_cis_get_attribute()
// bindings must be registered here.
/I NOTE: These attribute functions are registered here as an
/I example ONLY...the Identity codec does not make use of
[/l “quality” ...it is just an example of the registerAttr mechanism.
registerAttr(“COMPRESSION_QUALITY”,
(setAttrFunc)XilDeviceCompressionldentity::setCompressionQuality,
(getAttrFunc)XilDeviceCompressionldentity::getCompressionQuality);
registerAttr(‘DECOMPRESSION_QUALITY”,

(setAttrFunc)XilDeviceCompressionldentity::setDecompressionQuality,

(getAttrFunc)XilDeviceCompressionldentity::getDecompressionQuality);

}

XilDeviceCompressionTypeldentity::~XilDeviceCompressionTypeldentity(void) { }

Compression/Decompression 219

220

XilDeviceCompressionldentity.h

Code Example 6-7 XilDeviceCompressionldentity.h

(1 of 3)

/[This line lets emacs recognize this as -*- C++ -*- Code

1
1
I
I
1
1
1
I
I
I
1
1
1
I
I
1
1
1
1
1
I
1
1
1
1

File: XilDeviceCompressionldentity.h
Project: XIL
Created: 93/04/14
Revision: 1.2
Last Mod: 09:29:16, 22 Mar 1994
Description:
The file contains the definitions for Identity compression and
decompression. Each Identity cis has its own instantiation of

this class.
The Identity bit stream has the following format:

[32-bit INTEGER] width
[32-bit INTEGER] height
[32-bit INTEGER] nbands
[IMAGE DATA]

NOTE: The code included here to implement this bitstream
creates a compressed stream which is not portable between
different endian machines (i.e. x86 <--> SPARC).

#pragma ident@ (#) XilDeviceCompressionldentity.h1.2\t94/03/22 “

#ifndef XilDeviceCompressionldentity H
#define XilDeviceCompressionldentity H

#include <xil/XilError.h>

#include <xil/XilCis.h>

#include <xil/Xillmage.h>

#include <xil/XilDeviceCompression.h>

#define FRAMES_PER_BUFFER 3
#define IDENTITY_FRAME_TYPE 1

XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

Code Example 6-7 XilDeviceCompressionldentity.h

(2 of 3)

class XilDeviceCompressionldentity : public XilDeviceCompression
{
public:
XilDeviceCompressionldentity(XilDeviceCompressionType* xdct,
XilCis* cis);
~XilDeviceCompressionldentity(void);

int comp_quality; /lcompression quality attribute
int decomp_quality; /I decompression quality attribute
Xil_boolean derivedType; // flag for derived type from bitstream

1
/I Pure virtual member functions of XilDeviceCompression which |
/I must implement.

I

int getMaxFrameSize(void);

void burnFrames(int nframes);

int findNextFrameBoundary(void);

/I Allocation/Creation verification member function
Il
XilDeviceCompressionldentity* ok(Xil_boolean destroy = TRUE);

I

/I Function to read header and fill in the header information --
/I specifically width and height

I

int deriveOutputType(void);

I

/I Function to reset the codec state, destroy old inputType
I

voidreset();

1

/I Virtual member functions of XilDeviceCompression which I've
/I chosen to implement because the default functions do not work
/I for the Identity codec.

/I the Identity codec marks even frames with its own

/I frame type; this is done in order to illustrate how a codec

/I with typed frames would interface with the cbm

Compression/Decompression

221

222

Code Example 6-7 XilDeviceCompressionldentity.h

(3 of 3)

void seek(int framenumber, Xil_boolean history_update=TRUE);
int adjustStart(int framenumber);

/l functions for registered attribute set/get
void setCompressionQuality(int value);
int getCompressionQuality();

void setDecompressionQuality(int value);
int getDecompressionQuality();

private:

k

Xil_boolean isok;

1

/I Function used by reset and the constructor to set values
I

int initValues();

#endif

XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

XilDeviceCompressionldentity.cc

Code Example 6-8 XilDeviceCompressionldentity.cc (1 of 9)

/[This line lets emacs recognize this as -*- C++ -*- Code
1
1
Il File: XilDeviceCompressionldentity.cc

/I Project: XIL

/I Created: 93/04/14

/I Revision: 1.3

/I Last Mod: 08:37:54, 28 Mar 1994

I

/I Description:

/I Contains the member functions of XilDeviceCompressionldentity.
1
1
1
I
I
I
1
1
#pragma ident “@(#)XilDeviceCompressionldentity.cc1.3\t94/03/28 “

#include “XilDeviceCompressionldentity.h”

XilDeviceCompressionldentity*
XilDeviceCompressionldentity::ok(Xil_boolean destroy) {
if(this == NULL) {
return NULL;
}else {
if(XilDeviceCompression::0k(FALSE) == this && isok == TRUE) {
return this;
}else {
if(destroy == TRUE) delete this;
return NULL;
}
}
}

int XilDeviceCompressionldentity::getMaxFrameSize(void) {
return ((int)inputType->getWidth()*(int)inputType->getHeight()
*inputType->getBands() + 12);

Compression/Decompression 223

224

Code Example 6-8 XilDeviceCompressionldentity.cc (2 0f 9)
}
int
XilDeviceCompressionldentity::initValues()
{

XillmageType* t =
getCis()->getSystemState()->createlmageType(0,0,0,XIL_BYTE);

XIL_SIMULATE_FAILURE(992, t=NULL);

if(t == NULL) {
// out of memory
XIL_ERROR(getCis()->getSystemState(), XIL_ERROR_RESOURCE,"di-1",TRUE);
return XIL_FAILURE;

}
inputType = outputType =t;

I/l output type has not yet been derived from bitstream
derivedType = FALSE;

/l reset any attributes to default state
comp_quality = 0;
decomp_quality = 0;

return XIL_SUCCESS;
}

void
XilDeviceCompressionldentity::reset()
{
if (inputType != outputType)
outputType->destroy();
inputType->destroy();

initValues();
XilDeviceCompression::reset();

}

1

/I FRAMES_PER_BUFFER is arecommendation on the size of each buffer inside the
/I CBM.

I

XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

Code Example 6-8 XilDeviceCompressionldentity.cc (3 0f9)

XilDeviceCompressionldentity::XilDeviceCompressionldentity
(XilDeviceCompressionType* xdct, XilCis* cis)
: XilDeviceCompression(xdct, cis, 0, FRAMES_PER_BUFFER)

{
isok = FALSE;
if(XilDeviceCompression::ok(FALSE) == NULL) {
/I Couldn’t create internal base XilDeviceCompression object
XIL_ERROR(getCis()->getSystemState(), XIL_ERROR_SYSTEM,"di-278",
FALSE);
return;
}
if(initValues() == XIL_FAILURE) {
/I Couldn’t create internal Identity compressor object
XIL_ERROR(getCis()->getSystemState(), XIL_ERROR_SYSTEM,"di-275",
FALSE);
return;
}
isok = TRUE;
}

XilDeviceCompressionldentity::~XilDeviceCompressionldentity(void) { }

1
/I Function to read header and fill in the ImageType information
1
int
XilDeviceCompressionldentity::deriveOutputType(void)
{
/I derivedType flags if the type has been derived from
/I the bitstream--prevents an infinite loop when neither the
// boundary nor type of the first frame in the CIS have been
/I established
if (derivedType == FALSE) {
I
/I This call will ensure that there is an entire frame for me to
/I look through. If necessary, the cbm will call this class’s
/I findNextFrameBoundary to parse the bitstream and
/I locate the end of the frame.

Compression/Decompression 225

i
(@)

Code Example 6-8 XilDeviceCompressionldentity.cc (4 of 9)

1
Xil_unsigned32* bp32 =
(Xil_unsigned32*)cbm.nextFrame();
if(bp32 == NULL) {
return XIL_FAILURE;
}

I

/I NOTE: This doesn’t produce an endian-portable bitstream.
1

unsigned int image_width = *bp32++;

unsigned int image_height = *bp32++;

unsigned int image_bands = *bp32++;

ifimage_width && image_height && image_bands) {
XillmageType* newtype =
cis->getSystemState()->createlmageType(image_width, image_height,
image_bands, XIL_BYTE);

XIL_SIMULATE_FAILURE(993, newtype=NULL);
if(newtype == NULL) {
// out of memory
XIL_ERROR(getCis()->getSystemState(), XIL_ERROR_RESOURCE,"di-
1", TRUE);
return XIL_FAILURE;
}

I
/I This will also set the outputType as a side-effect
I
setinputType(newtype);
newtype->destroy();// destroy copy
derivedType=TRUE;
}
}
return XIL_SUCCESS;
}

void
XilDeviceCompressionldentity::burnFrames(int nframes)

{

226 XIL Device Porting and Extensibility Guide—August 1994

Code Example 6-8 XilDeviceCompressionldentity.cc

(50f 9)

int frame_type;

/I In order to illustrate “key” frames,

/I this codec marks even frames with its own frame type

/I This illustrates the use of frame type with the

/I compressedFrame/decompressFrame/seek/adjustStart functions
/I (Of course, codecs generally have a much better reason

/I to mark a frame as a “key” frame!)

I

/I Get the information about the CIS image type.

1

XillmageType* cis_outtype = getOutputType();
unsigned int cis_width = cis_outtype->getWidth();
unsigned int cis_height = cis_outtype->getHeight();

unsigned int cis_bands = cis_outtype->getBands();
1

/I Compute how far the next frame should be...

1

unsigned long frame_size =
cis_width*cis_height*cis_bands + 3*sizeof(Xil_unsigned32);

for(int i=0; i<nframes; i++) {
Xil_unsigned8* bp = (Xil_unsigned8*)cbm.nextFrame();

/I Get the frame number of the burn frame
if (cbm.getRFrameld() & 0x1)
// odd frame, no special frame type
frame_type = XIL_CIS_DEFAULT_FRAME_TYPE;
else
/I even frame, mark it as our key frame
frame_type = IDENTITY_FRAME_TYPE;

bp += frame_size;
cbm.decompressedFrame(bp,frame_type);
}
}

Compression/Decompression

227

228

Code Example 6-8 XilDeviceCompressionldentity.cc

(6 of 9)

1
/I Function to find the next frame boundary
1
int
XilDeviceCompressionldentity::findNextFrameBoundary(void)
{

Xil_unsigned8* bp;

unsigned long frame_size;

if (derivedType==FALSE) {
unsigned int image_dimensions[3] = {0,0,0};
unsigned int i,j;

// not yet derived input/output type
/I cannot call getOutputType because we will recurse on this function!
/I parse bitstream bytes to get width/height/bands
for (i=0;i<3;i++) {
for (j=0;j<sizeof(Xil_unsigned32);j++) {
if ((bp=cbm.getNextByte())==NULL)
/I here if no more bytes in buffer--failed!
return XIL_FAILURE;
/l accumulate bytes into current dimension
image_dimensions][i] = (image_dimensions][i]*256) + *bp;
}
}
1
/I Compute how far we have to advance the pointer.
1
frame_size =
image_dimensions[0]*image_dimensions[1]*image_dimensions[2];
}
else {
unsigned int image_width;
unsigned int image_height;
unsigned int image_bands;
1
Il Get the information about the CIS image type.
/I will cause deriveOutputType() to be called if
/I outputType not yet established.
1
XillmageType* cis_outtype = getOutputType();
image_width = cis_outtype->getWidth();

XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

Code Example 6-8 XilDeviceCompressionldentity.cc (7 of 9)

}

image_height = cis_outtype->getHeight();
image_bands = cis_outtype->getBands();

1
/I Compute how far we have to advance the pointer.
1
frame_size =
image_width*image_height*image_bands + 3*sizeof(Xil_unsigned32);

}

I

/I Run through the frame one byte at a time up to the second to
/I last byte in the frame. The final byte will be set to the

/I return value of getNextByte() -- as opposed to updating it

/I on every cycle of the loop.

I

for(int i=0; i<frame_size - 1; i++) {
if(cbm.getNextByte() == NULL) return XIL_FAILURE;

}
if((bp = cbm.getNextByte()) == NULL) return XIL_FAILURE;

I

/I Tell the CisBufferManager where the frame boundary is...
I

return cbm.foundNextFrameBoundary(bp + 1);

void
XilDeviceCompressionldentity::seek(int framenumber, Xil_boolean
history_update)

{

int frames_to_burn;

if (history_update == TRUE)

/I when history_update is true, if we have key frames

/I then we must seek with respect to the key frame.

/I The “frames_to_burn” returned by the cbm

/I will start from a key frame, which means our history remains

/I correct

frames_to_burn = cbm.seek(framenumber, IDENTITY_FRAME_TYPE);
else

Compression/Decompression 229

230

Code Example 6-8 XilDeviceCompressionldentity.cc (8 of 9)

/l when history_update is false, then we are interested

/I in position only for this seek. Flag the cbm that

/ there should be no burn frames for frame type.

frames_to_burn = cbm.seek(framenumber, XIL_CIS_NO_BURN_TYPE);

if(frames_to_burn > 0) {
burnFrames(frames_to_burn);
}
}

int

XilDeviceCompressionldentity::adjustStart(int new_start_frame)

{
/ICalled by the compression core to indicate that existing
[lframes prior to the frame number given are not to be retained
/lany longer due to KEEPFRAMES or MAXFRAMES requirements.
/IWe'll just simply call the XilCisBufferManager and tell it
/lwhich type of frame MUST be kept and let it do any actual
//deleting of data.

return cbm.adjustStart(new_start_frame, IDENTITY_FRAME_TYPE);
}

/I NOTE: the Identity codec does not make use of
// “quality” ...these functions are here to illustrate
I/ the XilDeviceCompressionldentityType registerAttr mechanism.

void
XilDeviceCompressionldentity::setCompressionQuality(int value)

{

comp_quality = value;

}

int
XilDeviceCompressionldentity::getCompressionQuality()

{

return comp_quality;

}

void
XilDeviceCompressionldentity::setDecompressionQuality(int value)

XIL Device Porting and Extensibility Guide—August 1994

Code Example 6-8 XilDeviceCompressionldentity.cc

(9 of 9)

{

decomp_quality = value;
}
int
XilDeviceCompressionldentity::getDecompressionQuality()
{

return decomp_quality;
}

Compression/Decompression

231

i
(@)

XilDeviceComputeTypeldentityMemory.h

Code Example 6-9 XilDeviceComputeTypeldentityMemory.h

/[This line lets emacs recognize this as -*- C++ -*- Code
1
1
Il File: XilDeviceComputeTypeldentityMemory.h

/I Project: XIL

/I Created: 93/04/15

/I Revision: 1.2

/I Last Mod: 09:32:01, 22 Mar 1994

I

/I Description:

/I Contains the definitions of the derived XilDeviceComputeType
/I for Identity compression and decompression.

1
1
#pragma ident“@ (#)XilDeviceComputeTypeldentityMemory.h1.2\t94/03/22 *“

#include <xil/XilDeviceComputeType.h>
#include “XilDeviceCompressionldentity.h”

class XilDeviceComputeTypeldentityMemory : public XilDeviceComputeType {
public:

XilDeviceComputeTypeldentityMemory()

: XilDeviceComputeType(“XilDeviceCompldentityMemory”) {};

int describeMembers();

1

/I Compress

I

int compress_ldentity(XilOp* op, int op_count);

1

/I Decompress

I

int decompress_ldentity(XilOp* op, int op_count);

~XilDeviceComputeTypeldentityMemory();

232 XIL Device Porting and Extensibility Guide—August 1994

XilDeviceComputeTypeldentityMemory.cc

Code Example 6-10 XilDeviceComputeTypeldentityMemory.cc

/[This line lets emacs recognize this as -*- C++ -*- Code
Il
1
Il File: XilDeviceComputeTypeldentityMemory.cc
/I Project: XIL

/I Created: 93/04/15

/I Revision: 1.2

/I Last Mod: 09:32:03, 22 Mar 1994

1

/I Description:

1
1
1
1
1
1
1
1
I/
#pragma ident“@ (#)XilDeviceComputeTypeldentityMemory.cc1.2\t94/03/22 “

#include <xil/xili.h>
#include “XilDeviceComputeTypeldentityMemory.h”

XilDeviceComputeType* XilCreateComputeType()
{

XilDeviceComputeTypeldentityMemory* device;
device= new XilDeviceComputeTypeldentityMemory();

XIL_SIMULATE_FAILURE(942, delete device;device=NULL);
if(device==NULL) {
/I out of memory error
XIL_ERROR(NULL, XIL_ERROR_RESOURCE,"di-1",TRUE);
return NULL;

}

device->describeMembers();

return(device);

Compression/Decompression

233

234

Code Example 6-10 XilDeviceComputeTypeldentityMemory.cc

(Continued)

}

XilDeviceComputeTypeldentityMemory::~XilDeviceComputeTypeldentityMemory()

{
}

XIL Device Porting and Extensibility Guide—August 1994

compress_ldentity.cc

Code Example 6-11 compress_ldentity.cc (1 of 4)

/[This line lets emacs recognize this as -*- C++ -*- Code
1
1
Il File: compress_ldentity.cc
/I Project: XIL

/I Created: 93/04/15

/I Revision: 1.2

/I Last Mod: 09:32:32, 22 Mar 1994
I

/I Description:

I
1
1
1
I
I
I
1
1
#pragma ident“@ (#)compress_Identity.cc1.2\t94/03/22 “

#include <xil/XilRoi.h>

#include <xil/XilRoiList.h>

#include <xil/XilOp.h>

#include “XilDeviceComputeTypeldentityMemory.h”
#include “XilDeviceCompressionldentity.h”

I* XILCONFIG: compress_ldentity= compress_Identity() */

int

XilDeviceComputeTypeldentityMemory::compress_ldentity(XilOp* op, int)
{

int frame_type;

I

/I Get the source image off of the DAG.
I

Xillmage* src = op->getSrcl();

Compression/Decompression

235

236

Code Example 6-11 compress_ldentity.cc (2 of 4)

1

/I Get the XilDeviceCompression associated with this CIS

1

XilDeviceCompressionldentity* dc = (XilDeviceCompressionldentity*)
(op->getDstCis())->getDeviceCompression();

1

/I Get the system state.

1

XilSystemState* systemState = src->getSystemState();

/I In order to illustrate “key” frames,

/I this codec marks even frames with its own frame type

/I This illustrates the use of frame type with the

/I compressedFrame/decompressFrame/seek/adjustStart functions
/I (Of course, codecs generally have a much better reason

/l to mark a frame as a “key” frame!)

/I Get the frame number of the compress
if (op->getLongParam(1) & 0x1)
/l odd frame, no special frame type
frame_type = XIL_CIS_DEFAULT_FRAME_TYPE;
else
/I even frame, mark it as our key frame
frame_type = IDENTITY_FRAME_TYPE;

I

/I Local copies of image type information.

1

XillmageType* cis_intype = dc->getOutputType();
unsigned int cis_width = cis_intype->getWidth();
unsigned int cis_height = cis_intype->getHeight();
unsigned int cis_bands = cis_intype->getBands();

I

/I No ROI clipping or non-zero origins are allowed for compressions.

/I Also, the image width and image height must match the size of the CIS.
/I Both of these conditions are checked in XilCis::compress(). So, no

/I check is required here.

1

XIL Device Porting and Extensibility Guide—August 1994

Code Example 6-11 compress_ldentity.cc (3 0f4)
I
/I Get the next buffer to compress into.
1
XilCisBuffer* cisbuf = dc->getCisBufferManager()->nextBuffer();
I
/I Write the image parameters into the byte-stream
I

cisbuf->addBytes((Xil_unsigned8*)&cis_width, sizeof(cis_width));
cisbuf->addBytes((Xil_unsigned8*)&cis_height, sizeof(cis_height));
cisbuf->addBytes((Xil_unsigned8*)&cis_bands, sizeof(cis_bands));

1

/I Get the source image’s memory storage.
I

long x_origin, y_origin;
src->getOrigin(&x_origin,&y_origin);

I

/I Actually perform the compression into the CisBuffer

I

XilMemoryStorageByte* src_mem =
(XilMemoryStorageByte*)src->getMemoryStorage();

Xil_unsigned8* src_data = src_mem->data;

Xil_unsigned8* src_scanline =
src_mem->data +
(y_origin * src_mem->scanline_stride) +
(x_origin * src_mem->pixel_stride);

Xil_unsigned8* src_pixel;
Xil_unsigned8* src_band;

for(int i=0; i<cis_height; i++) {
src_pixel = src_scanline;
for(int j=0; j<cis_width; j++) {
src_band = src_pixel;
for(int k=0; k<cis_bands; k++) {
cisbuf->addByte(*src_band);
src_band++;

}

Compression/Decompression

237

238

Code Example 6-11 compress_ldentity.cc (4 of 4)

}

src_pixel += src_mem->pixel_stride;
}
src_scanline += src_mem->scanline_stride;

}

dc->getCisBufferManager()->compressedFrame(frame_type);

return XIL_SUCCESS;

XIL Device Porting and Extensibility Guide—August 1994

(@)
1]

decompress_Identity.cc

Code Example 6-12 decompress_ldentity.cc (1 of 4)

/[This line lets emacs recognize this as -*- C++ -*- Code
Il
1
Il File: decompress_ldentity.cc
/I Project: XIL

/I Created: 93/04/15

/I Revision: 1.2

/I Last Mod: 09:33:15, 22 Mar 1994
1

/I Description:

1
I
1
1
1
1
1
1
Il
#pragma ident“@(#)decompress_ldentity.cc1.2\t94/03/22 “

#include <xil/XilOp.h>
#include <xil/XilDefines.h>
#include “XilDeviceComputeTypeldentityMemory.h”

/* XILCONFIG: decompress_Identity= decompress_ldentity() */

#define IDENTITY_BYTESTREAM_ERROR(bp,ftype) \

{\
dc->getCisBufferManager()->decompressedFrame((Xil_unsigned8*)bp,ftype); \
XIL_CIS_ERROR(XIL_ERROR_SYSTEM, “di-285”, TRUE, dc, FALSE, FALSE); \
return XIL_FAILURE; \

}

int
XilDeviceComputeTypeldentityMemory::decompress_Identity(XilOp* op, int)
{

int frame_type;

Compression/Decompression 239

i
(@)

Code Example 6-12 decompress_ldentity.cc (2 of 4)

1

/I Get the destination image off of the DAG
1

Xillmage* dst = op->getDst();

1

/I Get the XilDeviceCompression associated with this CIS

1

XilDeviceCompressionldentity* dc = (XilDeviceCompressionldentity*)
(op->getSrcCis())->getDeviceCompression();

I

/I The frame number which we’re supposed to decompress is
/I specified by the first parameter on the Op. So, we'll seek to
/I that frame.

I

dc->seek((int)op->getLongParam(1));

/I In order to illustrate “key” frames,

/I this codec marks even frames with its own frame type

/I This illustrates the use of frame type with the

/I compressedFrame/decompressFrame/seek/adjustStart functions
/I (Of course, codecs generally have a much better reason

// to mark a frame as a “key” frame!)

/I Test odd/even frame for decompress
if (op->getLongParam(1) & 0x1)
/l odd frame, no special frame type
frame_type = XIL_CIS_DEFAULT_FRAME_TYPE;
else
/I even frame, mark it as our key frame
frame_type = IDENTITY_FRAME_TYPE;

1

/I Get the information about the CIS image type.

1

XillmageType* cis_outtype = dc->getOutputType();
unsigned int cis_width = cis_outtype->getWidth();
unsigned int cis_height = cis_outtype->getHeight();
unsigned int cis_bands = cis_outtype->getBands();

240 XIL Device Porting and Extensibility Guide—August 1994

Code Example 6-12 decompress_ldentity.cc (3 of 4)

1
/I Get the pointer to the data to decompress...
1
Xil_unsigned32* bp32 =
(Xil_unsigned32*) dc->getCisBufferManager()->nextFrame();

if(bp32 == NULL) {
/I XilCis: No data to decompress
XIL_CIS_ERROR(XIL_ERROR_SYSTEM, “di-100", TRUE, dc, FALSE, FALSE);
return XIL_FAILURE;

}

Il

/I Just in case we've had an error before, we don’t want to

/I SEGV trying to access a word when non-word aligned

Il

if((int)bp32 % sizeof(unsigned int)) {
IDENTITY_BYTESTREAM_ERROR(bp32,frame_type);

}

if(*bp32++ != cis_width) {
IDENTITY_BYTESTREAM_ERROR(bp32,frame_type);

}

if(*bp32++ != cis_height) {
IDENTITY_BYTESTREAM_ERROR(bp32,frame_type);

}

if(*bp32++ != cis_bands) {
IDENTITY_BYTESTREAM_ERROR(bp32,frame_type);

}

Xil_unsigned8* bp = (Xil_unsigned8*) bp32;

1

/I Get the destination image’s origin
1

long x_origin, y_origin;
dst->getOrigin(&x_origin,&y_origin);

I

/I Get the destination image’s memory storage.

I

XilMemoryStorageByte* dst_mem =
(XilMemoryStorageByte*)dst->getMemoryStorage();

Compression/Decompression

241

242

Code Example 6-12 decompress_ldentity.cc

(4 of 4)

Xil_unsigned8* dst_data = dst_mem->data;

Xil_unsigned8* dst_scanline =
dst_mem->data +
(y_origin * dst_mem->scanline_stride) +
(x_origin * dst_mem->pixel_stride);

Xil_unsigned8* dst_pixel;
Xil_unsigned8* dst_band;

for(int i=0; i<cis_height; i++) {
dst_pixel = dst_scanline;
for(int j=0; j<cis_width; j++) {
dst_band = dst_pixel;
for(int k=0; k<cis_bands; k++) {
*dst_band++ = *bp++;
}
dst_pixel += dst_mem->pixel_stride;
}

dst_scanline += dst_mem->scanline_stride;

}

dc->getCisBufferManager()->decompressedFrame(bp,frame_type);

return XIL_SUCCESS;

XIL Device Porting and Extensibility Guide—August 1994

Sample Molecule A

This example illustrates a molecule for performing 16-to-8 bit remapping of
memory images. It implements the combined atomics
convert1l6_8(rescalel6()) . The source image must be a 1-banded,
XIL_SHORT image. The destination must be a 1-banded, XIL_BYTE image.
This example contains a single file, Rescale16Convert16to8.cc , which
implements the molecule.

Code Example A-1 Rescalel6Convert16yo8.cc (1 of 6)

/[This line lets emacs recognize this as -*- C++ -*- Code

It

I
1
1

I
I

=~

/
1
1
I
I
I
1
1
I

Side Effects:

Contains the convert(rescale()) molecule for 16 bit to 8 bit conversion
(Memory to memory 16-to-8 bit remapping)

Source must be a 1-banded, XIL_SHORT image.
Destination must be a 1-banded, XIL_BYTE image.

XIL_SUCCESS or XIL_FAILURE

243

244

Code Example A-1 Rescalel6Convertl16yo8.cc (2 of 6)

1

/I Deficiencies/ToDo:

/I Should be able to handle multiple bands.
)
1
I
#pragma ident “@(#)Rescale16Convert16to8.cc1.2\t94/03/23 “

#include <xil/XilDefines.h>
#include <xil/XilError.h>
#include <xil/Xillmage.h>
#include <xil/XilOp.h>
#include <xil/XilRoi.h>
#include <xil/XilRoiList.h>

1
/I Class definition for this molecule
1
class XilDeviceComputeTypeMemory : public XilDeviceComputeType {
public:
int Rescale16Convert16to8(XilOp* op, int count);
~XilDeviceComputeTypeMemory();

1

/I Declaration of molecule name and the atomic functions it

[/l implements for describeMembers routine

I

[* XILCONFIG: Rescalel6Convert16to8 = convertl6to8(rescalel16()) */

Z define for 16-bit rounding

;/Edefine ROUND_16(_round16_input_, round16_output_) \

{ float _round16_tmp_; \ \
if (_round16_input_) >=0) { \ \

XIL Device Porting and Extensibility Guide—August 1994

>
1]

Code Example A-1 Rescalel6Convert16yo8.cc (3 of 6)

_round16_tmp_ = (_round16_input_) + 0.5; \

} \

else { \
_round16_tmp_ = (_round16_input_) + -0.5; \

} \

if (_round16_tmp_ >= (float) MAXSHORT) { \
(_round16_output_) = (MAXSHORT); \

} \

else if (_round16_tmp_ <= (float)MINSHORT) { \
(_round16_output_) = (MINSHORT); \

} \

else { \
(_round16_output_) = ((Xil_signed16) _round16_tmp_);\

} \

}

1
I/ the molecule
I
int
XilDeviceComputeTypeMemory::Rescale16Convert16to8(
XilOp* op, /I a pointer into the DAG
int) /l unused--the number of combined ops to be done

1

/I Get the destination image from the convert16to8 op
I

Xillmage* dst = op->getDst();

1

/I Go to the next operation on the DAG (the rescalel16 op)
/I 'and get the source image and the rescale values

1

op = op->getOpl();

Xillmage* src = op->getSrc1();

float *scale_value = (float *)(op->getPtrParam(1));

float *offset_value = (float *)(op->getPtrParam(2));

I
/I ensure that molecule requirements are met (1 banded images, 16 to 8)
I

Sample Molecule 245

i
>

Code Example A-1 Rescalel6Convert16yo8.cc (4 of 6)

if((src->getBands() = 1) ||
(dst->getBands() '= 1) ||
(src->getDataType() != XIL_SHORT) ||
(dst->getDataType() != XIL_BYTE))
return XIL_FAILURE;

1

/I get information about the source

1

long src_x_origin, src_y_origin;
src->getOrigin(&src_x_origin, &src_y_origin);

I
/I get source’s memory storage
XilMemoryStorageShort *short_storage;
short_storage = (XilMemoryStorageShort *)src->getMemoryStorage();
if (short_storage==NULL) {

/I we could flag an error here, but the core will re-try with

[/l atomic operators

return XIL_FAILURE;
}
Xil_signed16 *src_base_addr = (Xil_signed16 *)short_storage->data;
unsigned long src_next_pixel = short_storage->pixel_stride;
unsigned long src_next_scan = short_storage->scanline_stride;

I

/I get information about the destination

I

long dst_x_origin, dst_y_origin;
dst->getOrigin(&dst_x_origin, &dst_y_origin);

I
/I get destination’s memory storage
XilMemoryStorageByte *byte_storage;
byte_storage = (XilMemoryStorageByte *)dst->getMemoryStorage();
if (byte_storage==NULL) {
/I we could flag an error here, but the core will re-try with
[/l atomic operators
return XIL_FAILURE;
}
Xil_unsigned8 *dst_base_addr = (Xil_unsigned8 *)byte_storage->data;
unsigned long dst_next_pixel = byte_storage->pixel_stride;

246 XIL Device Porting and Extensibility Guide—August 1994

>
1]

Code Example A-1 Rescalel6Convert16yo8.cc (5 of 6)

unsigned long dst_next_scan = byte_storage->scanline_stride;

1
/I get the list of intersected ROIs between source and destination
I
XilRoi* roi;
XilRoiList* roi_list= XiliGetRoiList(&roi,dst,src);
if (roi_list==NULL) {
/I we could flag an error here, but the core will re-try with
/I atomic operators
return XIL_FAILURE;

}

1

/I Now that we've intersected to determine the pixels that will
/I be touched in the destination, set the pixelsTouchedRoi on
/I the image.

1

dst->setPixelsTouchedRoi(roi);
dst->setPixelsTouchedRoi_flag(TRUE);

I

/I operate on each ROI, all ROI's are guaranteed not to go outside images
I

long X, Y;

unsigned int x_size, y_size;
float scale = scale_value[0];
float offset = offset_value[0];
while (roi_list->next(&x,&y,&x_size,&y_size)) {
Xil_signed16 *src_scanline = src_base_addr +
((y + src_y_origin) * src_next_scan) +
((x + src_x_origin) * src_next_pixel);
Xil_signed16 *src_pixel;
Xil_unsigned8 *dst_scanline = dst_base_addr +
((y + dst_y_origin) * dst_next_scan) +
((x + dst_x_origin) * dst_next_pixel);
Xil_unsigned8 *dst_pixel;

I

/I loop over each scanline in the ROI
I

do {

Sample Molecule 247

248

Code Example A-1 Rescalel6Convertl16yo8.cc

(6 of 6)

}

I point to the first pixel of the scanline
src_pixel = src_scanline;
dst_pixel = dst_scanline;

/I do the rescale-cast for each pixel in the scanline
int pixel_count = x_size;
Xil_signed16 result;
do {
float tmp = ((float)(*src_pixel) * scale) + offset;

ROUND_16(tmp, result);

*dst_pixel = (Xil_unsigned8) result;
src_pixel += src_next_pixel;
dst_pixel += dst_next_pixel;

} while (--pixel_count);

/I move to next scanline
src_scanline += src_next_scan;
dst_scanline += dst_next_scan;

} while (--y_size);

/I delete the intersected roilist

/I (the roi stored in dest “pixelsTouchedRoi”
// will be destroyed by the xil core)
roi_list->destroy();

/I molecule successfully completed
return XIL_SUCCESS;

XIL Device Porting and Extensibility Guide—August 1994

XIL Atomic Functions B

Table B-1 lists the XIL atomic functions. The first column gives the name of the
function that must be supplied in the XILCONFIG header comment in order to
associate an implemented function with an API call. The second column gives
the name of the API binding call associated with the atomic name. Further

description of these API functions can be found in the XIL Reference Manual.pf

Table B-1 XIL Atomic Functions (1 of 12)

Atomic Function What It Does

absolutel16 xil_absolute for 16-bit images

add1l xil_add for 1-bit images

add16 xil_add for 16-bit images

add8 xil_add for 8-bit images

addconstl xil_add_const for 1-bit images

addconst16 xil_add_const for 16-bit images

addconst8 xil_add_const for 8-bit images

affinel6bicubic xil_affine for 16-bit images, bicubic interpolation
affinel6bilinear xil_affine for 16-bit images, bilinear interpolation
affinel6general xil_affine for 16-bit images, general interpolation
affinel6nearest xil_affine for 16-bit images, nearest neighbor

affinelbicubic

interpolation

xil_affine for 1-bit images, bicubic interpolation

249

250

Table B-1 XIL Atomic Functions (2 of 12)

Atomic Function What It Does

affinelbilinear xil_affine for 1-bit images, bilinear interpolation

affinelgeneral xil_affine for 1-bit images, general interpolation

affinelnearest xil_affine for 1-bit images, nearest neighbor
interpolation

affine8bicubic xil_affine for 8-bit images, bicubic interpolation

affine8bilinear xil_affine for 8-bit images, bilinear interpolation

affine8general xil_affine for 8-bit images, general interpolation

affine8nearest xil_affine for 8-bit images, nearest neighbor
interpolation

andl xil_and for 1-bit images

and16 xil_and for 16-bit images

and8 xil_and for 8-bit images

andconstl xil_and_const for 1-bit images

andconst16 xil_and_const for 16-bit images

andconst8 xil_and_const for 8-bit images

bandCombinel xil_band_combine for 1-bit images

bandCombinel6 xil_band_combine for 16-bit images

bandCombine8 xil_band_combine for 8-bit images

blackgeneration16 xil_black_generation for 16-bit images

blackgeneration8 xil_black_generation for 8-bit images

blend16al
blend16a16
blend16a8
blendlal
blendlal6
blend1a8
blend8al
blend8al6

xil_blend for 16-bit images with 1-bit alpha
xil_blend for 16-bit images with 16-bit alpha
xil_blend for 16-bit images with 8-bit alpha
xil_blend for 1-bit images with 1-bit alpha
xil_blend for 1-bit images with 16-bit alpha
xil_blend for 1-bit images with 8-bit alpha
xil_blend for 8-bit images with 1-bit alpha
xil_blend for 8-bit images with 16-bit alpha

XIL Device Porting and Extensibility Guide—August 1994

w
1]

Table B-1 XIL Atomic Functions (3 of 12)

Atomic Function What It Does

blend8a8 xil_blend for 8-bit images with 8-bit alpha
chooseColormap8 xil_choose_colormap for 8-bit images
colorconvert xil_color_convert

convertl6 1 xil_cast for 16-bit source, 1-bit destination
convertl6_8 xil_cast for 16-bit source, 8-bit destination
convertl 16 xil_cast for 1-bit source, 16-bit destination
convertl_8 xil_cast for 1-bit source, 8-bit destination
convert8_1 xil_cast for 8-bit source, 1-bit destination
convert8_16 xil_cast for 8-bit source, 16-bit destination
convolvel xil_convolve for 1-bit images

convolvel6 xil_convolve for 16-bit images

convolve8 xil_convolve for 8-bit images

copyl xil_copy for 1-bit images

copyl6 xil_copy for 16-bit images

copy8 xil_copy for 8-bit images
copy_with_planemaskl1 xil_copy_with_planemask for 1-bit images
copy_with_planemask16 xil_copy_with_planemask for 16-bit images
copy_with_planemask8 xil_copy_with_planemask for 8-bit images
copypatternl xil_copy_pattern for 1-bit images
copypatternl6 xil_copy_pattern for 16-bit images
copypattern8 xil_copy_pattern for 8-bit images

dilatel xil_dilate for 1-bit images

dilate16 xil_dilate for 16-bit images

dilate8 xil_dilate for 8-bit images

dividel xil_divide for 1-bit images

divide16 xil_divide for 16-bit images

divide8 xil_divide for 8-bit images

XIL Atomic Functions 251

252

Table B-1 XIL Atomic Functions (4 of 12)

Atomic Function What It Does

divideintoconstl xil_divide_into_const for 1-bit images

divideintoconst16 xil_divide_into_const for 16-bit images

divideintoconst8 xil_divide_into_const for 8-bit images

edge_detect_sobell xil_edge_detection for 1-bit images

edge_detect_sobell6 xil_edge_detection for 16-bit images

edge_detect_sobel8 xil_edge_detection for 8-bit images

erodel xil_erode for 1-bit images

erodel6 xil_erode for 16-bit images

erode8 Xil_erode for 8-bit images

errordiffusion16_1 xil_error_diffusion for 16-bit source, 1-bit
destination

errordiffusion16_16 xil_error_diffusion for 16-bit source, 16-bit
destination

errordiffusion16_8 xil_error_diffusion for 16-bit source, 8-bit
destination

errordiffusionl_1 xil_error_diffusion for 1-bit source, 1-bit
destination

errordiffusion1_16 xil_error_diffusion for 1-bit source, 16-bit
destination

errordiffusion1_8 xil_error_diffusion for 1-bit source, 8-bit
destination

errordiffusion8_1 xil_error_diffusion for 8-bit source, 1-bit
destination

errordiffusion8_16 xil_error_diffusion for 8-bit source, 16-bit
destination

errordiffusion8_8 xil_error_diffusion for 8-bit source, 8-bit
destination

extremal Xil_extrema for 1-bit images

extremal6 Xil_extrema for 16-bit images

extrema8 xil_extrema for 8-bit images

XIL Device Porting and Extensibility Guide—August 1994

w
1]

Table B-1 XIL Atomic Functions (5 of 12)

Atomic Function What It Does

filll xil_fill for 1-bit images

fillL6 xil_fill for 16-bit images

fillg xil_fill for 8-bit images

histogram1 xil_histogram for 1-bit images

histogram16 xil_histogram for 16-bit images

histogram8 xil_histogram for 8-bit images

lookupl16_1 xil_lookup for 16-bit source, 1-bit destination

lookupl16_16 xil_lookup for 16-bit source, 16-bit destination

lookupl16_8 xil_lookup for 16-bit source, 8-bit destination

lookupl_1 xil_lookup for 1-bit source, 1-bit destination

lookup1_16 xil_lookup for 1-bit source, 16-bit destination

lookupl_8 xil_lookup for 1-bit source, 8-bit destination

lookup8_1 xil_lookup for 8-bit source, 1-bit destination

lookup8_16 xil_lookup for 8-bit source, 16-bit destination

lookup8_8 xil_lookup for 8-bit source, 8-bit destination

max16 xil_max for 16-bit images

max8 xil_max for 8-bit images

minl6 xil_min for 16-bit images

min8 xil_min for 8-bit images

multiplyl xil_multiply for 1-bit images

multiply16 xil_multiply for 16-bit images

multiply8 xil_multiply for 8-bit images

multiplyconstl xil_multiply_const for 1-bit images

multiplyconst16 xil_multiply_const for 16-bit images

multiplyconst8 xil_multiply_const for 8-bit images

nearestcolorl6_1 xil_nearest_color for 16-bit source, 1-bit
destination

XIL Atomic Functions

253

i
oW

Table B-1 XIL Atomic Functions (6 of 12)

Atomic Function What It Does

nearestcolorl6_16 xil_nearest_color for 16-bit source, 16-bit
destination

nearestcolorl6_8 xil_nearest_color for 16-bit source, 8-bit
destination

nearestcolorl_1 xil_nearest_color for 1-bit source, 1-bit
destination

nearestcolorl_16 xil_nearest_color for 1-bit source, 16-bit
destination

nearestcolorl_8 xil_nearest_color for 1-bit source, 8-bit
destination

nearestcolor8_1 xil_nearest_color for 8-bit source, 1-bit
destination

nearestcolor8_16 xil_nearest_color for 8-bit source, 16-bit
destination

nearestcolor8_8 xil_nearest_color for 8-bit source, 8-bit
destination

notl xil_not for 1-bit images

notl6 xil_not for 16-bit images

not8 xil_not for 8-bit images

orl xil_or for 1-bit images

orl6 xil_or for 16-bit images

or8 xil_or for 8-bit images

orconstl xil_or_const for 1-bit images

orconst16 xil_or_const for 16-bit images

orconst8 xil_or_const for 8-bit images

orderedditherl6_1 xil_ordered_dither for 16-bit source, 1-bit
destination

orderedditherl6_16 xil_ordered_dither for 16-bit source, 16-bit
destination

orderedditherl6_8 xil_ordered_dither for 16-bit source, 8-bit
destination

254 XIL Device Porting and Extensibility Guide—August 1994

w
1]

Table B-1 XIL Atomic Functions (7 of 12)

Atomic Function

What It Does

orderedditherl_1

orderedditherl_16

orderedditherl_8

ordereddither8_1

ordereddither8_16

ordereddither8_8

paintl

paintl16

paint8

rescalel
rescalel6
rescale8
rotate16bicubic
rotate16bilinear
rotatel6general

rotatel6nearest

rotatelbicubic
rotatelbilinear
rotatelgeneral

rotatelnearest

rotate8bicubic

rotate8bilinear

xil_ordered_dither
destination

xil_ordered_dither
destination

xil_ordered_dither
destination

for 1-bit source, 1-bit

for 1-bit source, 16-bit

for 1-bit source, 8-bit

xil_ordered_dither
destination

xil_ordered_dither
destination

xil_ordered_dither
destination

xil_paint
xil_paint
xil_paint
xil_rescale
xil_rescale
xil_rescale
xil_rotate
xil_rotate
xil_rotate

xil_rotate

for 8-bit source, 1-bit

for 8-bit source, 16-bit

for 8-bit source, 8-bit

for 1-bit images
for 16-bit images
for 8-bit images
for 1-bit images
for 16-bit images
for 8-bit images
for 16-bit images, bicubic interpolation
for 16-bit images, bilinear interpolation
for 16-bit images, general interpolation

for 16-bit images, nearest neighbor

interpolation

Xil_rotate
xil_rotate
xil_rotate

xil_rotate

for 1-bit images, bicubic interpolation
for 1-bit images, bilinear interpolation
for 1-bit images, general interpolation

for 1-bit images, nearest neighbor

interpolation

Xil_rotate

xil_rotate

for 8-bit images, bicubic interpolation

for 8-bit images, bilinear interpolation

XIL Atomic Functions

255

Table B-1 XIL Atomic Functions (8 of 12)

Atomic Function What It Does

rotate8general xil_rotate for 8-bit images, general interpolation

rotate8nearest xil_rotate for 8-bit images, nearest neighbor
interpolation

scalel6bicubic xil_scale for 16-bit images, bicubic interpolation

scalel6bilinear xil_scale for 16-bit images, bilinear interpolation

scalel6general

scalel6nearest

scalelbicubic
scalelbilinear
scalelgeneral

scalelnearest

scale8bicubic

scale8bilinear

xil_scale for 16-bit images, general interpolation

xil_scale for 16-bit images, nearest neighbor
interpolation
xil_scale for 1-bit images, bicubic interpolation
xil_scale for 1-bit images, bilinear interpolation
xil_scale for 1-bit images, general interpolation
xil_scale for 1-bit images, nearest neighbor
interpolation
xil_scale for 8-bit images, bicubic interpolation
xil_scale for 8-bit images, bilinear interpolation

scale8general xil_scale for 8-bit images, general interpolation

scale8nearest xil_scale for 8-bit images, nearest neighbor
interpolation

setvaluel xil_set_value for 1-bit images

setvaluel6 xil_set value for 16-bit images

setvalue8 xil_set_value for 8-bit images

softfilll xil_soft_fill for 1-bit images

softfill16 xil_soft_fill for 16-bit images

softfill8 xil_soft_fill for 8-bit images

squeezerangel xil_squeeze_range for 1-bit images

squeezerangel6 Xil_squeeze_range for 16-bit images

squeezerange8 xil_squeeze_range for 8-bit images

subsamplel 8 xil_subsample_binary_to_gray 8-bit destination

subsampleAdaptivel xil_subsample_adaptive for 1-bit images

256 XIL Device Porting and Extensibility Guide—August 1994

w
1]

Table B-1 XIL Atomic Functions (9 of 12)

Atomic Function

What It Does

subsampleAdaptive16
subsampleAdaptive8
subtractl

subtract16

subtract8
subtractfromconstl
subtractfromconst16
subtractfromconst8

tablewarpl6bicubic

tablewarpl6bilinear

tablewarpl6general

tablewarpl6nearest

tablewarpZlbicubic

tablewarplbilinear

tablewarplgeneral

tablewarplnearest

tablewarp8bicubic

tablewarp8bilinear

tablewarp8general

xil_subsample_adaptive

xil_subsample_adaptive

Xil_subtract
xil_subtract

xil_subtract

xil_subtract_from_const
xil_subtract_from_const

xil_subtract_from_const

xil_tablewarp
interpolation

xil_tablewarp
interpolation

xil_tablewarp
interpolation

xil_tablewarp
interpolation

xil_tablewarp
interpolation

xil_tablewarp
interpolation

xil_tablewarp
interpolation

xil_tablewarp
interpolation

xil_tablewarp
interpolation

xil_tablewarp
interpolation

xil_tablewarp
interpolation

for 16-bit images

for 8-bit images

for 1-bit images
for 16-bit images

for 8-bit images

for 1-bit images
for 16-bit images
for 8-bit images

for 16-bit images, bicubic

for 16-bit images, bilinear

for 16-bit images, general

for 16-bit images, nearest neighbor

for 1-bit images, bicubic

for 1-bit images, bilinear

for 1-bit images, general

for 1-bit images, nearest neighbor

for 8-bit images, bicubic

for 8-bit images, bilinear

for 8-bit images, general

XIL Atomic Functions

257

i
oW

Table B-1 XIL Atomic Functions (10 of 12)

Atomic Function What It Does

tablewarp8nearest xil_tablewarp for 8-bit images, nearest neighbor
interpolation

tablewarph16bicubic xil_tablewarp_horizontal for 16-bit images,
bicubic interpolation

tablewarphl6bilinear xil_tablewarp_horizontal for 16-bit images,
bilinear interpolation

tablewarphl6general xil_tablewarp_horizontal for 16-bit images,
general interpolation

tablewarphl6nearest xil_tablewarp_horizontal for 16-bit images,
nearest neighbor interpolation

tablewarphlbicubic xil_tablewarp_horizontal for 1-bit images,
bicubic interpolation

tablewarphibilinear xil_tablewarp_horizontal for 1-bit images,
bilinear interpolation

tablewarphlgeneral xil_tablewarp_horizontal for 1-bit images,
general interpolation

tablewarphlnearest xil_tablewarp_horizontal for 1-bit images,
nearest neighbor interpolation

tablewarph8bicubic xil_tablewarp_horizontal for 8-bit images,
bicubic interpolation

tablewarph8bilinear xil_tablewarp_horizontal for 8-bit images,
bilinear interpolation

tablewarph8general xil_tablewarp_horizontal for 8-bit images,
general interpolation

tablewarph8nearest xil_tablewarp_horizontal for 8-bit images,
nearest neighbor interpolation

tablewarpv16bicubic xil_tablewarp_vertical for 16-bit images,
bicubic interpolation

tablewarpvl16bilinear xil_tablewarp_vertical for 16-bit images,
bilinear interpolation

tablewarpvl6general xil_tablewarp_vertical for 16-bit images,
general interpolation

258 XIL Device Porting and Extensibility Guide—August 1994

w
1]

Table B-1 XIL Atomic Functions (11 of 12)

Atomic Function What It Does

tablewarpvl6nearest xil_tablewarp_vertical for 16-bit images, nearest
neighbor interpolation

tablewarpvlbicubic xil_tablewarp_vertical for 1-bit images, bicubic
interpolation

tablewarpvlbilinear xil_tablewarp_vertical for 1-bit images,
bilinear interpolation

tablewarpvlgeneral xil_tablewarp_vertical for 1-bit images, general
interpolation

tablewarpvlnearest xil_tablewarp_vertical for 1-bit images, nearest
neighbor interpolation

tablewarpv8bicubic xil_tablewarp_vertical for 8-bit images, bicubic
interpolation

tablewarpv8bilinear xil_tablewarp_vertical for 8-bit images,
bilinear interpolation

tablewarpv8general xil_tablewarp_vertical for 8-bit images, general
interpolation

tablewarpv8nearest xil_tablewarp_vertical for 8-bit images, nearest
neighbor interpolation

thresholdl xil_threshold for 1-bit images

threshold16 xil_threshold for 16-bit images

threshold8 xil_threshold for 8-bit images

translate16bicubic xil_translate for 16-bit images, bicubic
interpolation

translate16bilinear xil_translate for 16-bit images, bilinear
interpolation

translatel6general xil_translate for 16-bit images, general interpolation

translatel6nearest xil_translate for 16-bit images, nearest neighbor

interpolation

translatelbicubic xil_translate for 1-bit images, bicubic
interpolation

translatelbilinear xil_translate for 1-bit images, bilinear
interpolation

XIL Atomic Functions 259

260

Table B-1 XIL Atomic Functions (12 of 12)

Atomic Function

What It Does

translatelgeneral

translatelnearest

translate8bicubic

translate8bilinear

translate8general

translate8nearest

transposel
transposel6
transpose8
xorl

Xorl6

xor8
xorconstl
xorconst16

xorconst8

xil_translate for 1-bit images, general interpolation

xil_translate
interpolation

xil_translate
interpolation

xil_translate
interpolation

xil_translate
interpolation

xil_translate
interpolation

Xil_transpose
xil_transpose

Xil_transpose

for 1-bit images, nearest neighbor

for 8-bit images, bicubic

for 8-bit images, bilinear

for 8-bit images, general

for 8-bit images, nearest neighbor

for 1-bit images
for 16-bit images

for 8-bit images

xil_xor for 1-bit images

xil_xor for 16-bit images

xil_xor for 8-bit images

xil_xor_const
xil_xor_const

xil_xor_const

for 1-bit images
for 16-bit images

for 8-bit images

XIL Device Porting and Extensibility Guide—August 1994

XilOp Object C

This appendix lists the number of image sources supported by an XIL function
and the XilOp member functions that you must use to extract the image
sources and to extract an XIL function’s parameters from the XilOp object. You
must know this information anytime you implement XIL atomic functions,
such as when you write a compute device handler. For more information about
the XilOp class, see Chapter 1, “Overview.” For more information about
compute devices, see Chapter 4, “Compute Devices.”

XIL Function XilOp Member Function Parameter
absolute getSrcl srcl
add getSrcl srcl
getSrc2 src2
addconst getSrcl srcl
getPtrParam(1) const_array
affine getSrcl srcl
getPtrParam(1) matrix
getObjParam(3) horiz_inter_tbl
getObjParam(4) vert_inter_tbl
and getSrcl srcl
getSrc2 src2
andconst getSrcl srcl
getPtrParam(1) const_array

261

262

XIL Function XilOp Member Function Parameter
blackgeneration getSrcl srcl
getFloatParam(1) black
getFloatParam(2) undercolor
bandCombine getSrcl srcl
getObjParam(1) matrix
blend getSrcl srcl
getSrc2 src2
getSrc3 scr3
chooseColormap getPtrParam(1) lut_p
getLongParam(2) size
colorconvert getSrcl srcl
getObjParam(1) src_colorspace
getObjParam(2) dst_colorspace
compress getSrcl srcl
getLongParam(1) write_frame
convert getSrcl srcl
convolve getSrcl srcl
getObjParam(1) kernel
getLongParam(2) edge_condition
copy getSrcl srcl
copypattern getSrcl srcl
copy_with_planemask getSrcl srcl
getPtrParam(1) const_array
decompress getLongParam(1) read_frame
dilate getSrcl srcl
getObjParam(1) sel
divide getSrcl srcl
getSrc2 src2
divideintoconst getSrcl srcl
getPtrParam(1) const_array
edge_detection_sobel getSrcl srcl
erode getSrcl srcl
getObjParam(1) sel

XIL Device Porting and Extensibility Guide—August 1994

O
1]

XIL Function XilOp Member Function Parameter

errorDiffusion getSrcl srcl
getObjParam(1) colormap
getObjParam(2) distribution

extrema getSrcl srcl
getPtrParam(1) max
getPtrParam(2) min

fill getSrcl srcl
getFloatParam(1) xseed
getFloatParam(2) yseed
getPtrParam(3) boundary
getPtrParam(4) fill

histogram getSrcl srcl
getObjParam(1) histogram
getLongParam(2) skip_x
getLongParam(3) skip_y

lookup getSrcl srcl
getObjParam(1) lut

max getSrcl srcl
getSrc2 src2

min getSrcl srcl
getSrc2 src2

multiply getSrcl srcl
getSrc2 src2

multiplyconst getSrcl srcl
getPtrParam(1) const_array

nearestcolor getSrcl srcl
getObjParam(1) cmap

not getSrcl srcl

or getSrcl srcl
getSrc2 src2

orconst getSrcl srcl
getPtrParam(1) const_array

ordereddither getSrcl srcl
getObjParam(1) colormap
getObjParam(2) dithermask

XilOp Object

263

264

XIL Function XilOp Member Function Parameter
paint getSrcl srcl
getPtrParam(1) color
getObjParam(2) brush
getLongParam(3) count
getPtrParam(4) points
rescale getSrcl srcl
getPtrParam(1) scale_array
getPtrParam(2) offset_array
rotate getSrcl srcl
getFloatParam(1) angle
getObjParam(3) horiz
getObjParam(4) vertical
scale getSrcl srcl
getFloatParam(1) xfactor
getFloatParam(2) yfactor
getObjParam(3) horiz
getObjParam(4) vertical
setvalue getPtrParam(1) const_array
softfill getSrcl srcl
getFloatParam(1) xseed
getFloatParam(2) yseed
getPtrParam(3) fg
getLongParam(4) num_bgcolor
getPtrParam(5) bg
getPtrParam(6) fill
squeezerange getPtrParam(1) lut_p
subsamplel_8 getSrcl srcl
getFloatParam(1) xfactor
getFloatParam(2) yfactor
subsampleAdaptive getSrcl srcl
getFloatParam(1) xfactor
getFloatParam(2) yfactor
subtract getSrcl srcl
getSrc2 src2
subtractfromconst getSrcl srcl
getPtrParam(1) const_array

XIL Device Porting and Extensibility Guide—August 1994

O
1]

XIL Function XilOp Member Function Parameter

tablewarp getSrcl srcl
getSrc2 warp_table image
getObjParam(3) horiz table
getObjParam(4) vert table

tablewarph getSrcl srcl
getSrc2 warp_table image
getObjParam(3) horiz table
getObjParam(4) vert table

tablewarpv getSrcl srcl
getSrc2 warp_table image
getObjParam(3) horiz table
getObjParam(4) vert table

threshold getSrcl srcl
getPtrParam(1) low
getPtrParam(2) high
getPtrParam(3) map

translate getSrcl srcl
getFloatParam(1) xoff
getFloatParam(2) yoff
getObjParam(3) horiz
getObjParam(4) vertical

transpose getSrcl srcl
getLongParam(1) fliptype

xor getSrcl srcl
getSrc2 src2

xorconst getSrcl srcl
getPtrParam(1) const_array

XilOp Object

265

266

XIL Device Porting and Extensibility Guide—August 1994

Index

A

addByte() , 191

addBytes() , 191

adding a new compression method, 209
adding compression hardware, 211
adding data to a CIS bitstream, 196
adding molecules, 130

addShort() , 191

addShorts() , 191

addToLastFrame() , 207

adjust start frame within buffer lists, 206
adjust the start of a CIS, 184
adjustStart() , 184, 206

after a frame is decompressed, 198

API binding call, 249

API layer, 3

API level classes, 12
base class, 12
XilAttribute , 41
XilCis , 31
XilColorspace , 37
XilDitherMask , 40

XilError , 34

XilHistogram , 37

Xillmage , 14

XillmageType , 13
XillnterpolationTable , 42

XilKernel , 22

XilLookup , 28

XilRoi , 22

XilSel , 39
API level object

version number, 9
array index, 28
atomic functions, 249 to 260
attemptRecovery() , 185
attributes of a frame

ID, 194

pointer, 194

type, 194

B

base classes, 5
XilDebugObject , 5
XilDevice , 11
XilDeviceType , 10
XilGlobalState , 5
XilObject |, 9
XilSystemState , 6

blend operators, 22

burnFrames() , 184, 188

C

capture() , 73

267

268

captureOpNumber() , 74
CIs, 31
adding data to, 196
determine read position, 183
CIS Buffer Manager, 189

classes
XilAttribute , 3,41
XilCis , 4,31
XilCisBuffer , 189
XilCisBufferManager , 192

XilColorspace , 4,37
XilDebugObject , 3,5
XilDevice , 11,55

XilDeviceCompression , 55,177
XilDeviceCompressionType , 55,
175
XilDeviceComputeType , 55
XilDevicelnputOutput , 55,70
XilDevicelnputOutputType , 55,
68
XilDeviceStorage , 55,150
XilDeviceStorageType , 55,148

XilDeviceType , 10,55
XilDitherMask , 4,40
XilError , 4,34
XilGlobalState , 3,5
XilHistogram , 4,37
Xillmage , 4,14
XillmageType , 4,13
XillnterpolationTable , 3,42
XilKernel , 4,22
XilLookup , 4,28
XilObject , 3,9

XilOp , 44, 49,122
XilOpTreeNode , 49,53

XilRoi , 4,22
XilRoiList , 23
XilSel , 4,39

XilSystemState , 3,6
color spaces, 38
compressed image sequence, see CIS
compressedFrame() , 197

compression, 31,173
implementation of, 173

compression devices, 56
compression method
adding, 209
compression types with ordinal
numbering, 184
compute devices, 55, 121
adding, 124
capabilities, 53
error handling, 124
global function, 121
loading, 129
multiple routines in same file, 126
constructor
XilCisBufferManager , 195
XilDeviceCompressionType , 176
XilSystemState , 6
core layer, 43
core layer classes, 49
XilOp , 44,49, 122
XilOpTreeNode , 49,53
createDeviceCompression() , 175
createlmageType() , 14

D

DAG, 44

debugging, 5
decompressedFrame() , 188, 198
decompressHeader() , 182

decompression, 173
default installation point, 62

deferred execution, 43

rules for, 46

unusual effects, 48
deriveOutputType() , 182, 187
destroy() , 181
determine the CIS read position, 183
development environment, 60
device compression with out-of-order

frames, 206

device handlers, 57
error reporting, 62
flow of creating, 58

XIL Device Porting and Extensibility Guide—August 1994

installing, 62
version control, 65
device-independent classes, 3
XilAttribute , 3,41
XilCis , 4,31
XilColorspace , 4,37
XilDebugObject , 3,5
XilDevice , 11
XilDeviceType , 10
XilDitherMask , 4, 40
XilError , 4,34
XilGlobalState , 3,5
XilHistogram , 4,37
Xillmage , 4,14
XillmageType , 4,13
Xillnterpolation , 42
XillnterpolationTable , 3
XilKernel , 4,22
XilLookkup , 4
XilLookup , 28
XilObject , 3,9

XilRoi , 4,22

XilSel , 4,39

XilSystemState |, 3,6
devices

common information, 10

implementing, 57

setting attributes, 41
display() , 73
displayOpNumber() , 74
dither mask, 40
doneBufferSpace() , 198

E

environment variables
XIL_DEBUG 6, 61
XILHOME 62
error handling and recovery, 208
errors, 34
extract images of an operation, 49, 261

=
findNextFrameBoundary() , 188

Index

floating point values, 22

flush() , 182
foundNextFrameBoundary() , 202
frame buffers, 68

G
general interpolation, 42
generateError() , 185

get maximum frame size, 196
get number of frames per buffer, 196
getAttribute() , 181
getBits() , 207
getBitsPtr() , 184
getCis() , 181
getCisBufferManager() , 181
getCompressionType , 180
getCompressor() , 180
getDeviceAttribute() , 72
getDst() , 49
getDstCis() , 49
getFloatParam() , 50, 262
getFrameSize() , 196
getFramesToCompress() , 181
getimageSpaceROI() , 24
getinputType() , 181
getLongParam() , 50, 262
getMaxFrameSize() , 188
getMemoryStorage() , 15
getNextByte() , 202
getNextBytes() , 202
getNumFramesPerBuffer() , 196
getObjParam() , 50, 261
getOp1() , 51
getOp2() , 51
getOp3() , 51
getOutputType() , 181
getOutputTypeHoldTheDerivation(
), 181
getPixel() , 73,152
getPtrParam() , 50, 261

270

getRandomAccess() , 181
getRBuffer() , 207
getReadFrame() , 181
getRectList() , 23
getSrcl() , 49,261
getSrc2() , 49,261
getSrc3() , 49, 262
getSrcCis() , 49
getStartFrame() , 181
getStorage() , 14
getWriteFrame() , 181

global function
XilCreateCompressionType() ,

175
XilCreateComputeType() , 121
XilCreatelnputOuputType() , 58
XilCreateStorageType() , 148

GPI layer, 54

GPI level classes, 55
XilDevice , 55
XilDeviceCompression , 55,177
XilDeviceCompressionType , 55,
175
XilDeviceComputeType , 55
XilDevicelnputOutput , 55,70
XilDevicelnputOutputType , 55,
68
XilDeviceStorage , 55
XilDeviceStorageType , 55
XilDeviceType , 55
graph evaluation, 45
guarantee a complete frame for the codec
to decompress, 198

H

hasData() , 184
hasFrame() , 185
histogram, 37

1/0 devices, 55, 67
adding, 75

and molecules, 133
device-specific information, 70
handling multiple devices, 69
name of loadable library, 75

image convolution, 22

image type, 13

imageType() , 73

implementing an XIL function, 122
initValues() , 186

interpret image data, 28

ioctl call, 68

K
key frames, 205

L

loading handlers, 65
lookup table, 28

M

manipulating molecules, 132
maximum frame size
get, 196
set, 196
molecules, 45 to 51
adding, 130
and 170 devices, 133
common entry point, 125
manipulating, 132
multiple branch, 130
sample, 243
single branch, 130
moveEndStartOneBuffer() , 207
multiband lookups, 28
multidimensional histogram, 37
multiple branch molecules, 130

N
next() , 23
nextBuffer() , 196

XIL Device Porting and Extensibility Guide—August 1994

nextBufferSpace() , 197
nextFrame() , 188, 198

noise, 40
notifyError() , 124
number of frames per buffer
get, 196
set, 196

numberOfFrames() , 184

O
ok() , 195
op, 50, 122

op_count , 50, 122

opcodes and associated color spaces, 38
out-of-order frames, 206

over-read bytes, 203

P

pixel neighborhood, 39
pixels touched, 15

porting a device, 54

ports that are not possible, 64
ports that are possible, 63

propagateDeviceStorage() , 149
putBits() , 185

putBitsPtr() , 185

R

read frame, 195

readable() , 74

region of interest, see ROI
requestStorage() , 15
requestStoragelnfo() , 152
reset the codec, 196

reset() , 186, 196

retrieval of image attributes, 14
ROI

intersected, 16, 24
processing, 23

Index

S

seek a frame within a CIS, 203
seek() , 183,203
seekBackToFrameType() , 206
set maximum frame size, 196
set number of frames per buffer, 196
setAttribute() , 181
setDeviceAttribute() , 12
setFrameSize() , 196
setFramesToCompress() , 181
setinMolecule() , 181
setlnputType() , 181, 187
setNumFramesPerBuffer() , 196
setPixel() , 73,152
setPixelsTouchedRoi() , 15
setPixelsTouchedRoi_flag() , 15
setSeekToStartFrameFlag() , 205
setting attributes of devices, 41
single branch molecules, 130
Solaris Graphics Architecture, 1
start frame, 195
storage devices, 56, 147

adding, 153

global function, 148
storage of image attributes, 14
storage type, 15
structuring element, 39

T

two-dimensional array of floating point
values, 22

U

ungetBytes() , 203

Vv

version control, 65
version number, 9

271

272

w

write frame, 195
writeable() , 74

X

XIL
API layer, 3
API level classes, 12
atomic functions, 249 to 260
base classes, 5
core layer, 43
device handlers, 57
error reporting, 62
flow of creating, 58
installing, 62
version control, 65
function
implementing, 122
GPI layer, 54
library
division of function, 2
errors, 34
object hierarchy, 4
xil.compute file, 62
xil.po file, 62
XIL_CIS_ANY_FRAME_TYPE 204
XIL_DEBUGenvironment variable, 6, 61
xil_dilate() , 39
xil_erode() , 39
XIL_ERRORmMacro, 124
XilAttribute class, 3,41
XilBandMemoryDefines.h , 155
XilCis class, 4,31
definition, 31
XilCisBuffer class, 189
definition, 190
member functions
addByte() , 191
addBytes() , 191
addShort() , 191
addShorts() , 191
XilCisBufferManager class, 192

adjust start frame within buffer
lists, 206

attributes of a frame, 194

constructor, 195

decompressedFrame() , 198

definition, 192

device compression with out-of-order

frames, 206

error handling and recovery, 208

member functions
addToLastFrame() , 207
adjustStart() , 206
compressedFrame() , 197
doneBufferSpace() , 198
foundNextFrameBoundary() ,

202
getFrameSize() , 196
getNextByte() , 202
getNextBytes() , 202
getNumFramesPerBuffer() ,
196

getRBuffer() , 207
moveEndStartOneBuffer() ,

207
nextBuffer() , 196
nextBufferSpace() , 197
ok() , 195
reset() , 196
seek() , 203
seekBackToFrameType() , 20
6

setFrameSize() , 196
setNumFramesPerBuffer() ,
196
setSeekToStartFrameFlag(
), 205
ungetBytes() , 203
nextFrame() , 198
over-read bytes, 203
read frame, 195
reset the codec, 196
seek a specific frame, 203
start frame, 195
write frame, 195

XilColorspace class, 4,37

XIL Device Porting and Extensibility Guide—August 1994

definition, 39
xilcompdesc program, 53
XILCONFIG, 126, 249
XilCreateComputeType() , 121
XilCreatelnputOutputType() , 58
XilDebugObject class, 3,5
definition, 5
XilDevice class, 11,55
definition, 12
XilDeviceCompression class, 55,177
adjust the start of a CIS, 184
base class implementation, 180
compression types with ordinal
numbering, 184
definition, 178
determine the CIS read position, 183
error recovery, 185
error reporting, 185
functions that must be
implemented, 186
member functions

adjustStart() , 184

attemptRecovery() , 185

burnFrames() , 184, 188

decompressHeader() , 182

deriveOutputType() , 182,
187

destroy() , 181

findNextFrameBoundary() ,
188

flush() , 182

generateError() , 185

getAttribute() , 181

getBitsPtr() , 184

getCis() , 181

getCisBufferManager() , 18
1

getCompressionType() , 180

getCompressor() , 180

getFramesToCompress() , 18
1

getinputType() , 181

getMaxFrameSize() , 188

getOutputType() , 181

Index

getOutputTypeHoldTheDeri
vation() , 181

getRandomAccess() , 181
getReadFrame() , 181
getStartFrame() , 181
getWriteFrame() , 181
hasData() , 184
hasFrame() , 185
numberOfFrames() , 184
putBits() , 185

putBitsPtr() , 185

reset() , 186

seek() , 183

setAttribute() , 181
setFramesToCompress , 181
setinMolecule() , 181

setinputType() , 181
no action for default
implementation, 182
sufficient default
implementation, 181
XilDeviceCompressionType class, 55,
175
constructor, 176
definition, 175
global function, 175
member functions
createDeviceCompression(
), 175

XilDeviceComputeType class, 55
global function, 121
XilDevicelnputOutput class, 55, 70

definition, 70

device attribute member
functions, 72

image type functions, 73

op number functions, 74

parent function, 73

read- and write-only functions, 74

XilDevicelnputOutputType class, 55,
68
definition, 68
XilDeviceStorage class, 55, 150
definition, 150
XilDeviceStorageType class, 55, 148
273

274

definition, 148
global function, 148
XilDeviceStorageTypeBandMemory.
cc, 156
XilDeviceType class, 10, 55, 57
classes derived from, 10
definition, 11
virtual destructor, 10
XilDitherMask class, 4,40
definition, 41
XilError class, 4,34
definition, 35
XilError.h , 124
XilGlobalState class, 3,5
definition, 6
XilHistogram class, 4,37
definition, 37
XILHOMEenvironment variable, 62
XiliGetRoiList() , 15,25
Xillmage class, 4, 14
definition, 17
member functions
getMemoryStorage() , 15
getStorage() , 14
requestStorage() , 15
setPixelsTouchedRoi() , 15
setPixelsTouchedRoi_
flag() , 15
XillmageType class, 4,13
definition, 14
XillnterpolationTable class, 3,42
definition, 43
XilKernel class, 4, 22
definition, 22
XilLookup class, 4,28
definition, 28
XilLookupOpNumber() , 74,125
XilObject class, 3,9
definition, 9
member functions
getVersion() . 9
newVersion() , 9
XilOp class, 44,49, 122

definition, 51
member functions
getDst() , 49
getDstCis() , 49
getFloatParam() , 50
getLongParam() , 50
getObjParam() , 50
getOp1() , 51
getOp2() , 51
getOp3() , 51
getPtrParam() , 50
getSrcl() , 49
getSrc2() , 49
getSrc3() , 49
getSrcCis() , 49
XilOp object, 261
XilOpTreeNode class, 49, 53
definition, 54
XilRoi class, 4,22
definition, 25
member functions
getRectList() , 23
XilRoiList class, 23
member functions

next() , 23
XilSel class, 4,39
definition, 40

XilSystemState class, 3,6
constructor, 6
definition, 7

XIL Device Porting and Extensibility Guide—August 1994

