
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Loadable Interfaces Version 4.0

XGL Device Pipeline Porting Guide

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, NFS, and XGL are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries;
X/Open Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc.
PostScript and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the
trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xxi

New Features . xxv

1. Introduction to XGL Loadable Interfaces 1

Introduction to the XGL Product . 1

Solaris Dynamic Linking . 2

XGL Loadable Interfaces. 2

Loadable Interface 1 (LI-1) . 3

Loadable Interface 2 (LI-2) . 3

Loadable Interface 3 (LI-3) . 3

2. Getting Started . 7

Before You Begin . 8

Requirements . 8

OpenWindows and XGL. 9

Device Support for Multiple XGL Contexts 9

Device Support for Backing Store . 10

iv XGL Device Pipeline Porting Guide—August 1994

XGL Architecture from the Pipeline Point of View 11

More on Device Pipelines . 11

Services the XGL Core Provides the Device Pipeline 12

Porting Task . 14

Choosing a Loadable Interface Level 14

A Quick Look at Implementing an LI-1 Primitive. 16

Testing Your Implementation. 20

Calling the Software Pipeline . 20

Device Pipeline Options to Rendering Calls 20

What Else You Should Know . 21

Accessing External Files at Runtime 21

Directory Structure for the XGL DDK. 22

Error Reporting for XGL Device Pipelines 23

3. Pipeline Framework . 29

Overview of the Pipeline Framework . 30

Setting Up the Pipeline Framework . 32

Defining xgl_create_PipeLib() . 32

Defining the Device Pipeline Library Class 33

Defining the Device Pipeline Manager Class 36

Defining the Device Pipeline Device Class. 38

Defining the Device Pipeline-Context Class. 43

Naming Your Device Pipeline . 51

Optional Functions in Device-Dependent Classes. 52

Overridable Functions in DpDev.h . 52

Contents v

Overridable Functions in DpDevRaster.h. 53

Overridable Functions in DpDevWinRas.h 54

Overridable Functions in DpDevMemRas.h 56

What Else You Should Know . 58

How a Device Pipeline Is Loaded . 58

Device Pipeline Objects for Multiple Processes 59

Adding Member Data to a Pipeline Class 61

Versioning. 63

Backing Store Support in the Pipeline Classes. 65

Quick Reference Chart of Overridable Functions 68

4. Internal Data Storage . 73

Internal Data Types . 74

Accessing Data at the LI-1 Layer . 75

Accessing Application Data . 75

Accessing Facet Data . 76

Point Lists with Data Mapping Values 77

Data Access for DMA Devices . 78

How Data Is Stored by the Software Pipeline 79

Data Storage in the XglLevel Object 80

LI-2 Point Data . 82

Accessing Data at the LI-2 Layer . 82

Pipeline Interfaces to XglPrimData and XglLevel Data . . . 84

Conic and Rectangle Data. 85

Accessing Rectangle Data from XglRectData 85

vi XGL Device Pipeline Porting Guide—August 1994

Accessing Conic Data from XglConicData 86

Pipeline Interfaces to XglConicData and XglRectData 88

Pixel Data . 89

Using PixRects . 90

PixRect Interfaces. 91

5. Handling Changes to Object State. 95

State Changes and the Device Pipeline . 96

Getting Attribute Values from the Context Object. 96

When the Device Associated with a Context Is Changed . 98

Getting Attribute Values from Objects Other Than the Context 99

Handling Derived Data Changes. 105

Getting Stroke Attribute Values from the Stroke Group Object 106

Example of Device Pipeline Use of Stroke Groups 107

Rendering Multipolylines. 109

Flag Mask and Expected Flag Value 111

DC Offset . 112

Design Issues . 114

Deciding to Reject a Primitive . 114

Handling Context Switches . 115

Handling Changes in LI Levels . 116

Partial Rendering of a Primitive . 117

6. Getting Information from XGL Objects 119

What You Should Know About XGL Attribute Values 120

Naming Conventions for Internal Attributes. 121

Contents vii

Context Attributes and LI Layers . 122

Getting Attribute Values from the Context. 123

Getting Attribute Values from Other Objects 123

Getting Information from a Transform Object 125

Getting Attribute Values From the Stroke Group Object 125

Non-API Interfaces Provided in API Objects 127

Context Interfaces . 127

Context 2D Interfaces . 128

Context 3D Interfaces . 129

Data Map Texture Interfaces . 130

Device Interfaces . 131

Light Interfaces . 132

Line Pattern Interfaces . 132

Marker Interfaces. 133

MipMap Texture Interfaces. 133

Raster Interfaces. 134

Texture Map Interfaces . 134

Window Raster Interfaces. 135

Memory Raster Interfaces. 135

Stroke Font Interfaces . 136

Transform Interfaces and Flags . 137

Getting Information From the Device Object 145

Color Map Interfaces. 145

7. View Model Derived Data. 149

viii XGL Device Pipeline Porting Guide—August 1994

Overview of View Model Derived Data 150

Design Goals of Derived Data . 151

Derived Data Items . 154

 Coordinate Systems and Transforms 154

 Other Derived Items. 156

Overview of Derived Data’s Implementation 157

Accessing Derived Data . 158

Registration of Concerns. 159

Bit Definitions for the View Flag . 161

Determining Whether Derived Items Have Changed. 163

Messages . 163

The Composite . 164

Detecting Changes With the Composite 164

Setting the Composite . 165

Clearing the Composite . 165

Detecting Changes to Individual Derived Items 166

Getting Derived Items . 168

 Getting Derived Transforms . 169

 Getting Boundaries. 170

 Getting 3D Viewing Flags . 171

 Getting Lights . 172

 Getting Eye Positions or Vectors. 173

 Getting Model Clip Planes. 174

 Getting Depth Cue Reference Planes 175

Contents ix

Example of Detecting Changes and Getting Derived Items. . . 175

Current Coordinate System . 180

8. Window System Interactions . 183

Overview of the XglDrawable . 184

Services Provided by XglDrawable Class 185

A Typical Scenario of Drawable Creation and Use 186

What You Should Know About Locking the Window 187

Drawable Interfaces for the Pipeline . 189

Obtaining Information During Pipeline Initialization 190

Accessing Dynamic Information Through the Drawable . . 191

Managing Window System Resources 195

Managing Software Cursors. 196

Description of Drawable Interfaces . 197

XglDrawable Functions for the Device Pipeline 197

XglDrawable Functions Used by the XGL Core Only 203

Window System Dependencies . 205

9. Writing Loadable Interfaces . 207

What You Need to Know about the Loadable Interfaces 208

Overview List of Loadable Pipeline Interfaces 209

Deciding Which Interfaces to Implement 211

Input Data for LI-2 and LI-3 . 214

Picking. 214

Hints for Rendering Transparent 3D Surfaces 215

Calling the Software Pipeline for Texture Mapping 216

x XGL Device Pipeline Porting Guide—August 1994

Antialiasing and Dithering. 218

Mapping of API Primitive Calls to LI-1 Functions 218

What You Should Know about the Software Pipeline. 220

Software Pipeline Multiplexing . 220

Software Pipeline Backing Store . 221

Surface Color in the Software Pipeline 221

Texture Mapping in the Software Pipeline 222

LI-1 Functions. 223

 About the LI-1 Layer . 223

LI-1 Operations in the Software Pipeline 223

 Mapping of LI-1 to LI-2 Functions in the Software Pipeline 224

LI-1 Attributes . 226

li1AnnotationText() - 2D/3D . 227

li1DisplayGcache() - 2D/3D. 229

li1MultiArc() - 2D . 250

li1MultiArc() - 3D . 252

li1MultiCircle() - 2D. 254

li1MultiCircle() - 3D. 256

li1MultiEllipticalArc() - 3D. 258

li1MultiMarker() - 2D . 260

li1MultiMarker() - 3D . 261

li1MultiPolyline() - 2D . 263

li1MultiPolyline() - 3D . 264

li1MultiRectangle() - 2D . 266

Contents xi

li1MultiRectangle() - 3D . 267

li1MultiSimplePolygon() - 2D . 269

li1MultiSimplePolygon() - 3D . 270

li1NurbsCurve() - 2D. 272

li1NurbsCurve() - 3D. 274

li1NurbsSurf() - 3D . 276

li1Polygon() - 2D . 278

li1Polygon() - 3D . 280

li1QuadrilateralMesh() - 3D . 282

li1StrokeText() - 2D/3D. 283

li1TriangleList() - 3D . 285

li1TriangleStrip() - 3D . 288

li1Accumulate() - 3D . 290

li1ClearAccumulation() - 3D . 292

li1CopyBuffer() - 2D/3D. 293

li1Flush() - 2D/3D . 297

li1GetPixel() - 2D/3D . 298

li1Image() - 2D/3D . 299

li1NewFrame() - 2D/3D . 301

li1PickBufferFlush() - 2D/3D . 303

li1SetMultiPixel() . 305

li1SetPixel() - 2D/3D . 306

li1SetPixelRow() - 2D/3D . 307

LI2 Functions . 308

xii XGL Device Pipeline Porting Guide—August 1994

About the LI-2 Layer . 308

LI-2 Surface Attributes . 308

Mapping of LI-2 Functions to LI-3 Functions in the Software
Pipeline . 310

li2GeneralPolygon() - 2D/3D. 312

li2MultiDot() - 2D/3D. 313

li2MultiEllipse() - 2D. 314

li2MultiEllipticalArc() - 2D. 315

li2MultiPolyline() - 2D . 316

li2MultiPolyline() - 3D . 318

li2MultiRect() - 2D . 320

li2MultiSimplePolygon() - 2D . 321

li2MultiSimplePolygon() - 3D . 322

li2TriangleList() - 3D . 323

li2TriangleStrip() - 3D . 324

LI-3 Functions. 325

About the LI-3 Layer . 325

Notes on Implementing LI-3 Functions 326

li3Begin() and li3End() - 2D/3D. 328

li3CopyFromDpBuffer() - 2D/3D . 329

li3CopyToDpBuffer() - 2D. 330

li3CopyToDpBuffer() - 3D. 331

li3MultiDot() - 2D . 333

li3MultiDot() - 3D . 334

Contents xiii

li3Vector() - 2D . 336

li3Vector() - 3D . 338

li3MultiSpan() - 2D . 341

li3MultiSpan() - 3D . 343

10. Utilities . 347

RefDpCtx . 348

Using RefDpCtx . 349

RefDpCtx Interfaces . 351

3D Utilities . 352

Bounding Box Utilities . 397

Copy Buffer Utilities . 399

Polygon Classification Utilities . 403

Polygon Decomposition Utilities . 405

A. Performance Tuning . 409

Finding the Performance Critical Paths 410

At-a-Glance Comparison of Performance Tools 412

Recommendations for Performance Tools 413

Selecting Good Benchmarks . 413

Tuning Performance Critical Paths . 415

Locating the Central Body of Code . 415

Changing the Underlying Algorithm 415

Tuning at the Assembly Language Level 416

Tips and Techniques for Faster Code. 416

B. Changes to the XGL Graphics Porting Interface 439

xiv XGL Device Pipeline Porting Guide—August 1994

Changes in Rendering Architecture . 439

Changes in State Handling . 442

Application Data Passed Directly to Pipelines. 443

C. Accelerating NURBS Primitives. 445

Index . 447

xv

Figures

Figure 1-1 XGL Loadable Interface Layers . 4

Figure 2-1 Basic View of XGL Architecture . 11

Figure 2-2 High-Level View of the XGL Primitive Call Processing 13

Figure 2-3 XGL DDK Directory Structure. 22

Figure 3-1 Device Pipeline Framework Classes. 31

Figure 3-2 Pipeline Objects for a Single Application. 59

Figure 3-3 Pipeline Objects for an Application on Multiple Frame Buffers 60

Figure 3-4 Pipeline Objects for Two Applications. 60

Figure 3-5 Pipeline Objects for Applications on Multiple Frame Buffers 61

Figure 4-1 Flow of Application Data Through the LI-1 Primitive. 75

Figure 4-2 Level Objects Created by Software Pipeline Processing 79

Figure 4-3 Flow of Point Data Through XglPrimData and XglLevel 80

Figure 4-4 Base/Offset Data Storage in XglLevel . 80

Figure 4-5 Base/Offset Data When the Point Data Has Changed 81

Figure 4-6 XglPixRect Class Hierarchy . 90

Figure 5-1 Attribute Processing Using the Stroke Group. 108

xvi XGL Device Pipeline Porting Guide—August 1994

Figure 6-1 DI and Dp Object Relationships . 120

Figure 6-2 Device Pipeline and Layered Attributes 122

xvii

Tables

Table 3-1 Device-Dependent Overridable Functions 41

Table 3-2 Summary of Optional and Required Pipeline Functions 68

Table 4-1 XglPrimData Interfaces. 84

Table 4-2 XglLevel . 84

Table 4-3 XglConicData Interfaces . 88

Table 4-4 XglConicList2d Interfaces . 88

Table 4-5 XglRectList2d and XglRectList3d . 89

Table 4-6 XglPixRect Interfaces . 92

Table 4-7 XglPixRectMem Interfaces . 93

Table 4-8 XglPixRectMemAllocated Interfaces . 93

Table 4-9 XglPixRectMemAssigned Interfaces. 94

Table 5-1 Object Messages. 100

Table 5-2 Stroke Table Flag Mask and Expected Flag Mask Values 111

Table 5-3 Stroke Group DC Offset Values . 113

Table 6-1 Getting Information from Xgl Objects . 124

Table 6-2 XGLI_TRANS_SINGULAR . 137

xviii XGL Device Pipeline Porting Guide—August 1994

Table 7-1 Derived Data 2D Coordinate Systems . 155

Table 7-2 Derived Data 3D Coordinate Systems . 155

Table 7-3 Other Items in Derived Data . 156

Table 7-4 View Model Derived Data Classes . 157

Table 7-5 Bits for the View Flag . 163

Table 7-6 Functions to Return the Change Status of Derived Items 167

Table 7-7 Functions for Getting Derived Transforms 170

Table 7-8 Functions for Getting Boundaries . 170

Table 8-1 Drawable Subclasses . 184

Table 8-2 Drawable Interfaces Used During Pipeline Initialization 190

Table 8-3 Drawable Interfaces Used During Rendering. 193

Table 8-4 Drawable Interfaces Used for Allocating Resources 195

Table 9-1 List of Loadable Pipeline Interfaces . 209

Table 9-2 LI1 to LI2 Dependencies . 212

Table 9-3 LI-2 to LI-3 Dependencies . 213

Table 9-4 Mapping of 2D Primitives to 2D LI-1 Functions. 218

Table 9-5 Mapping of 3D API Primitives to 3D LI-1 Functions. 219

Table 9-6 Mapping of API Utility Functions to LI-1 Functions 220

Table 9-7 Mapping of 2D LI-1 Functions to LI-1 and LI-2 Functions . . . 224

Table 9-8 Mapping of 3D LI-1 Functions to LI-1 or LI-2Functions 225

Table 9-9 Gcache Interfaces . 244

Table 9-10 Surface Attributes at LI-2 . 309

Table 9-11 Mapping of 2D LI-2 Functions to LI-2 or LI-3 Functions. 310

Table 9-12 Mapping of 3D LI-2 Functions to LI-2 and LI-3 Functions . . . 310

Table 9-13 LI-3 Primitive Functions . 325

Tables xix

Table A-1 Comparing Applications Used to Gather Profile Information 412

Table A-2 Compiler Options . 437

Table B-1 Changed Utilities for XGL 3.1 . 443

xx XGL Device Pipeline Porting Guide—August 1994

xxi

Preface

The XGL Device Pipeline Porting Guide documents the interfaces and concepts
required to write graphics device handlers (otherwise known as loadable device
pipelines) for XGL™. These dynamically loadable modules enable applications
running on XGL to exploit fully the capabilities of graphics accelerators present
at runtime.

Who Should Use This Book
This document is intended for implementors of XGL device pipelines. It is
assumed that the reader is familiar with the C and C++ language and with the
ideas of classes and class inheritance in C++.

How This Book Is Organized
This manual is organized into 10 chapters and several appendixes.

Chapter 1, “Introduction to XGL Loadable Interfaces” presents an
introduction to the XGL product and an overview of the three levels of the
XGL graphics porting interface.

Chapter 2, “Getting Started” provides an overview of the porting process.

Chapter 3, “Pipeline Framework” presents information on the objects that
connect XGL device-independent code with the device pipeline code.

xxii XGL Device Pipeline Porting Guide—August 1994

Chapter 4, “Internal Data Storage” discusses the data structures used to
represent internal data in XGL.

Chapter 5, “Handling Changes to Object State” describes how a device
pipeline gets information about changes to XGL state.

Chapter 6, “Getting Information from XGL Objects” describes how a device
pipeline gets information on XGL state.

Chapter 7, “View Model Derived Data” describes how a device pipeline gets
information about changes to view model data.

Chapter 8, “Window System Interactions” provides information on the
relationship between XGL, DGA, the window system, and the device pipelines,
and discusses the mechanism by which XGL communicates with the window
system.

Chapter 9, “Writing Loadable Interfaces” describes the the complete set of
loadable interfaces.

Chapter 10, “Utilities” provides information on the XGL utilities.

Appendix A, “Performance Tuning” provides information on how to tune
your code for optimum performance.

Appendix B, “Changes to the XGL Graphics Porting Interface” provides
information on changes in the graphics porting interface between the previous
release and the current release.

Appendix C, “Accelerating NURBS Primitives” provides references for XGL
NURBS algorithms.

Related Books
For information on the XGL architecture and the object-oriented design of the
loadable pipelines, see the following document:

• XGL Architecture Guide, part number 801-6675-10.

For information on the XGL test suite, see:

• XGL Test Suite User’s Guide part number 801-6762-10.

Preface xxiii

For information on the XGL product, see the following documents:

• XGL Programmer’s Guide, part number 801-6670-10.

• XGL Reference Manual, part number 801-6671-10.

What Typographic Changes and Symbols Mean
Table P-1 describes the type changes and symbols used in this book.

XGL Sample Device Handler Usage Rights and Restrictions
The sample device handler code provided with the current XGL DDK package
and the source code excerpts presented in this documentation are intended to
help you create an XGL loadable pipeline for your product. You can copy,
duplicate, or modify any section of the source code, and redistribute object
code, as long as its usage is to create a loadable pipeline for XGL. This excludes
authorization to redistribute source code created by using the source code
information provided by SunSoft. Any other use is therefore prohibited and
requires explicit agreements with SunSoft.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

xxiv XGL Device Pipeline Porting Guide—August 1994

xxv

New Features

This section lists new features in the XGL 3.1 version of the graphics porting
interface.

Optimization of Device-Independent Operations
The XGL 3.1 release of the graphics porting interface (GPI) includes a number
of changes aimed at improving XGL’s low batching factor performance. The
two main goals for the optimization effort were to minimize the device-
independent overhead for each graphics primitive call and to simplify the
interface between the device pipelines and the device-independent code.

XGL’s architecture was changed to implement the performance improvements.
The new architecture differs from the previous architecture in two major ways:

• Device-independent code uses function pointers to call the device pipeline
renderers directly from the API wrapper rather than through the interface
manager. The functionality provided by the interface manager in the
previous releases is implemented in other ways at this release, and the
interface manager object is no longer present.

• Device-independent code notifies the device pipeline of Context attribute
changes immediately (non-lazily) except for transform changes (which are
still lazy evaluated). As a result, the update table objects are no longer
present.

xxvi XGL Device Pipeline Porting Guide—August 1994

As a result of the changes to the XGL architecture, existing XGL device
pipelines need to be modified. For detailed information on required updates to
the pipelines, see Appendix B, “Changes to the XGL Graphics Porting
Interface”.

1

Introduction to XGL Loadable
Interfaces 1

Introduction to the XGL Product
The XGL product is a foundation graphics library that provides geometry
graphics support for Solaris®-based applications. The XGL library has two sets
of interfaces: an application programming interface (API) and a graphics
porting interface (GPI).

The XGL API provides application developers with immediate-mode
rendering, a rich set of graphics primitives, view and modeling transforms,
and separate, complete 2D and 3D rendering pipelines. Standard features
include 2D and 3D primitive support; depth cueing, lighting, and shading;
non-uniform B-spline curve and surface support; and direct and indirect color
model support. Advanced features include transparency, antialiasing, texture
mapping, stereo, and accumulation buffer for motion blur and other special
effects. Application developers and developers of other graphics APIs can port
their applications to XGL and take advantage of Solaris dynamic linking to
provide portable shrink-wrapped applications that run on any graphics device
supported in the Solaris environment. The XGL API is provided as part of the
Solaris Developer’s Kit; for more information on the XGL API, see the XGL
Reference Manual and the XGL Programmer’s Guide.

The XGL GPI is a device-level interface that defines the mapping of XGL
device handlers to underlying hardware. Hardware vendors that write XGL
device handlers can build graphics devices that support any binary XGL
application. The XGL architecture provides open, well-defined interfaces that
facilitate the task of implementing device handlers.

2 XGL Device Pipeline Porting Guide—August 1994

1

Solaris Dynamic Linking

The Solaris 2.x operating system includes support for dynamic linking of
shared libraries. A shared library is a library that can be dynamically linked
during the running of the application. Under dynamic linking, the contents of
the shared library are mapped into the application’s virtual address space at
runtime. References by the application to the functions in the shared library are
resolved as the program executes.

The Solaris environment provides mechanisms to dynamically load both kernel
device drivers and user process shared libraries. These facilities allow a
hardware vendor to incorporate a new graphics accelerator into the Solaris
environment by providing a dynamically loadable kernel device driver and an
XGL device handler.

XGL Loadable Interfaces
The XGL GPI consists of three layers of device pipeline interfaces. Each layer
defines a set of rendering tasks that must be accomplished before proceeding
to the next layer in the pipeline. More complex operations, such as
transformations, lighting, and clipping, are performed in the uppermost layer;
less complex operations, such as scan conversion, are performed in the lower
layers. You can implement GPI functions at varying layers to tailor a port for
your device.

The XGL GPI includes a complete software implementation of the top two
layers of the pipeline for most primitives. The lowest layer, which is
responsible for writing pixels to the device, is device dependent and has not
been included in the software implementation.

You can choose a layer for your device handler based on the functionality of
your device and let the XGL software implementation handle the rendering of
functionality not accelerated by the device. The selection of the interface layer
to port to can be made for each graphics primitive. Before each layer calls the
layer below it, a device handler has the opportunity to either interpose its own
code for a particular primitive or let the XGL-supplied software
implementation perform the rendering tasks. Thus, for each primitive, a device
handler can be called at the layer for which it is best adapted.

Introduction to XGL Loadable Interfaces 3

1

The functions comprising the software implementation and the device-
dependent functions that replace them are grouped into separate dynamically
loadable libraries. The set of device-dependent functions is called the device
pipeline. The complete software implementation is called the software
pipeline. At runtime, when an application program calls a primitive, the XGL
device-independent code decides whether to render using the software
pipeline or the device pipeline. This decision depends on the capabilities of the
hardware and on the current XGL primitive and the current graphics state as
defined by XGL’s attributes.

Loadable Interface 1 (LI-1)

The topmost layer is called Loadable Interface 1, or LI-1. This layer is directly
below the XGL API. An LI-1 device handler is responsible for all aspects of
drawing an XGL primitive, including transformation, clipping (view and
model), lighting, and depth cueing. Devices that port to this layer for some or
all of the XGL primitives are responsible for all operations required for
rendering, including scan conversion and rendering of pixels. Although this is
the most difficult layer to port to, a port to LI-1 enables full acceleration on a
graphics device.

Loadable Interface 2 (LI-2)

The second layer, LI-2, is responsible primarily for scan converting more
complex primitives like polygons and polylines. Porting to this layer assumes
some responsibility for rendering (especially if the hardware supports scan-
conversion of primitives) but leaves the processing of the geometry
(transformation, clipping, and so on) to the XGL software version of the layer
above.

Loadable Interface 3 (LI-3)

The lowest layer in the device pipeline, LI-3, is responsible for rendering pixels
and vectors individually, or in spans. If you port to this layer, you need only
implement vectors, span, and dot renderers. All other operations needed to
process an API primitive and reduce it to this level are provided by XGL’s
default software implementation.

4 XGL Device Pipeline Porting Guide—August 1994

1

Because writing pixels to the frame buffer is device dependent, the software
pipeline does not implement the LI-3 layer. Device handlers for new devices
must implement LI-3 functions. To assist you with an LI-3 port, XGL provides
utilities that perform pixel operations. You can call these utilities in place of
writing a device-specific LI-3 layer.

Figure 1-1 illustrates the layers of the device pipeline and software pipeline as
well as some of the components of the XGL device-independent code.

Figure 1-1 XGL Loadable Interface Layers

As mentioned above, the decision as to which layer to port to can be made on
a per-primitive basis. For example, if a particular hardware device can render
polylines but not polygons, a device handler for that device might implement
the polyline primitive at LI-1 and let the XGL software pipeline render the
polygons. At any time, a device handler can override the default software

XGL Core Library

LI-1 Software Pipeline

LI-2 Software Pipeline

Display Device

LI-1 Layer

LI-2 Layer

LI-3 Layer

XGL Core API to Pipeline Layer

Utilities

DI
Objects

LI-3 Device Pipeline

LI
-2

D
ev

ic
e

P
ip

el
in

e

LI
-1

 D
ev

ic
e

P
ip

el
in

e

Application

Introduction to XGL Loadable Interfaces 5

1

interface provided by XGL. This choice is dynamic and is flexible enough to
permit a variety of hardware devices to fully utilize their capabilities to draw
XGL primitives.

Note – Currently, the XGL graphics porting interface is unstable. It is possible
that this interface could change in the future in ways that could require
changes in device pipelines.

6 XGL Device Pipeline Porting Guide—August 1994

1

7

Getting Started 2

This chapter presents information that you will need as you write your device
handler. The following topics are covered:

• Issues that you need to consider before beginning your port

• Brief description of the XGL architecture as it relates to the device handler

• Information on the porting task, including a summary of how to write an
LI-1 device pipeline

• Information on calling the XGL software pipeline from a device handler

• Directions on how to add error processing to a device handler

8 XGL Device Pipeline Porting Guide—August 1994

2

Before You Begin
Before beginning your device pipeline, check the requirements described
below and plan how you will implement support for multiple XGL Context
objects. You will also need to determine whether your device will support
backing store.

Requirements

When porting a device to XGL and the Sun platform, you must provide
support for the operating system kernel and the window system in addition to
providing the XGL loadable pipeline for the hardware. Thus, with your device
pipeline, you must supply the following:

• A hardware interface from your device to the host platform using the
system bus and a boot PROM to identify and initialize the device. For
SPARCstation™ and SPARC-compatible systems, the hardware interface is
the SBus. For information on writing an SBus interface, see Writing FCode
Programs and the OpenBoot Command Reference Manual.

• A kernel device driver for the device. For information on developing a
device driver, see Writing Device Drivers.

• A DDX handler for the X11 server for the graphics accelerator. Depending
on your hardware, you may also need to port the device-dependent portions
of Sun’s Direct Graphics Access (DGA) mechanism to your hardware. For
information, see the OpenWindows Server Device Developer’s Guide.

This documentation and the XGL graphics porting interface is part of the
Solaris Driver Developer’s Kit (DDK). The Solaris DDK describes the interfaces
between the Solaris environment and the hardware platform. The DDK
includes information on the Solaris VISUAL environment, Solaris graphics and
imaging foundation libraries, the Solaris X11 server, kernel device drivers for
graphics and imaging devices, and the physical connections between graphics
devices and Solaris platforms. The DDK also includes header files and sample
code to help you develop a graphics accelerator and integrate it into the Solaris
environment.

Getting Started 9

2

OpenWindows and XGL

The OpenWindows™ environment includes Sun’s Direct Graphics Access
(DGA) technology, which arbitrates access to the display screen between XGL
and the window system. DGA defines a protocol between the client application
(XGL in this case) and the X11 window server that enables both the application
and server to share the underlying graphics hardware. When the application is
running on the same machine as the OpenWindows server and the hardware
has DGA support, XGL uses DGA to synchronize on-screen drawing with the
server. For local rendering, DGA allows XGL to send commands directly to the
accelerator or frame buffer, substantially improving performance. When the
XGL client program is running remotely, XGL uses Xlib or PEXlib to do all
rendering.

As part of your port of the OpenWindows server to your device, you may need
to port DGA as well. Your device-specific version of DGA enables XGL to
render directly to your device.

Device Support for Multiple XGL Contexts

A hardware device can be used by many different graphics rendering
processes at once. At a minimum, the device will be used by the display server
and one XGL client, and there may be other libraries or additional XGL clients
using the device as well. Each task will maintain a current state or context, such
as line color. Since the device is being shared by multiple users, the state must
be current for each user before drawing can take place. Thus, your hardware
resources must be able to support multiple contexts.

The term context refers to a set of state information that controls an executing
entity. The use of this term can become confusing at times because it can refer
to any one of the following:

Hardware context State information that defines rendering characteristics
on graphics accelerators, for example line color or
raster operation register values.

Process context State information that controls a UNIX process, such as
the program counter, the signal mask, or file
descriptors. This state also includes memory mapping
information for devices.

10 XGL Device Pipeline Porting Guide—August 1994

2

XGL Context State information that defines the rendering of XGL
primitives, such as line color or transforms.

Because graphics hardware support for context switching is device dependent,
state changes resulting from intraprocess switching of XGL Contexts must be
managed within the device pipeline. Thus, early in the device pipeline design
phase, you should consider how your device pipeline will support multiple
XGL Contexts within a single process.

Also, multiple processes can access your hardware simultaneously. It is
important to define how your device will allocate and share its resources
among different processes and different windows within a process. Efficient
sharing of hardware resources will enable your pipeline to make better use of
the XGL architecture.

Device Support for Backing Store

Backing store is a mechanism that saves the obscured portions of a window so
that the window can be refreshed quickly when it becomes visible again. A
backing store is off-screen memory that reflects the contents of the display
buffer. This memory is used by the server to automatically restore previously
obscured areas of the display during an expose event. Backing store can be
handled by your graphics device or by XGL.

If you can use your graphics device to implement backing store, the device
must be able to render into off-screen memory, and in your implementation of
the OpenWindows server, you need to enable the backing store feature. A
request for backing store support from the server will then allocate backing
store memory from your hardware.

If your device does not support backing store, you can request that the server
and XGL handle it instead. To use XGL for backing store support, you must
implement a small set of device-dependent functions in the pipeline. If your
device has a software Z-buffer or accumulation buffer, then the contents of
these buffers must be shared with the backing store to keep the buffers and
their backing store counterparts synchronized, since the server only repairs
damage to the display buffer. See page 65 for more information on using XGL
to support backing store, and see the XGL Architecture Guide for information on
the architecture of backing store.

Getting Started 11

2

XGL Architecture from the Pipeline Point of View
The XGL architecture defines two basic components: the device-independent
core and the device-dependent loadable device pipelines. The XGL core
functions as the interface between the application program and the device
pipelines. The pipelines turn geometric primitives and their state attributes
into pixel data that is displayed on a graphics hardware device or written into
memory. Figure 2-1 illustrates these basic components:

Figure 2-1 Basic View of XGL Architecture

A device pipeline can also be thought of as having two components: a set of
objects that constitute the abstract XGL Device, and the loadable interfaces that
send the application data to the hardware. The set of device objects link the
loadable device pipeline with the XGL core and serve as a framework
connecting the device-independent code with the device pipeline rendering
code.

More on Device Pipelines

Graphics applications perform operations in particular coordinate systems.
These operations include clipping, lighting, projection, depth cueing, and
mapping to a viewport. A device pipeline consists of a series of
transformations from coordinate system to coordinate system.

The conceptual pipeline, which is independent of the implementation across
graphics platforms, is the sequence of transformations and operations for a
graphics primitive. The actual implementation within a device pipeline for a
particular device may reorder the operations to enhance performance while
preserving a representation of the final geometric description. However, the
device may only be capable of increasing the performance under certain
conditions. For other conditions, the device pipeline calls the XGL software
pipeline, which can handle any valid combination of conditions.

XGL Device

Device

Core Pipelines
Graphics

Application

12 XGL Device Pipeline Porting Guide—August 1994

2

A device pipeline can be written at three layers, LI-1, LI-2, and LI-3. Chapter 1,
“Introduction to XGL Loadable Interfaces” briefly describes these layers. A
graphics device with a high degree of functionality may choose to implement a
complete primitive at the LI-1 level, in effect bypassing the lower levels. For
example, a device may implement the triangle strip primitive at the LI-1 level
by executing all of the operations of the rendering pipeline on the device.
When a device is unable to handle some situations, for example, dithering with
a color cube, it can fall back to the software pipeline for the function specific to
the situation.

If you have a simple frame buffer and want to do a minimal amount of work to
write a device handler for the device, you would choose to port to the LI-3
level. The pipeline for a simple frame buffer relies on the software pipeline
geometric and rendering functions to feed the pixel-level interface at the LI-3
level of the device pipeline.

Services the XGL Core Provides the Device Pipeline

The XGL device-independent core provides the device pipeline with many
services. For example, the XGL core can perform generic error checking,
backing store, and deferral mode handling. The core also keeps track of XGL
Context state and provides interfaces that allow the device pipeline to get
information on attribute settings. In addition, the XGL core provides the device
pipeline with:

• A quick test to determine whether any view model or coordinate system
attributes have changed.

• Utilities that the device pipeline can use in rendering.

A simple view of the XGL core and a device pipeline that has implemented a
complete LI-1 loadable interface for the API primitive xgl_multipolyline()
looks like Figure 2-2 on page 13.

Getting Started 13

2

Figure 2-2 High-Level View of the XGL Primitive Call Processing

For more information on the XGL architecture and for illustrations on the
architecture of the device pipeline, see the XGL Architecture Guide.

XGL core

XGL API

Device

Device

xgl_multipolyline()

 Error checking (On)

 Deferral=ASAP

li1MultiPolyline()Pipeline loadable interface
pipeline

 Backing Store (On)

14 XGL Device Pipeline Porting Guide—August 1994

2

Porting Task
During the initial design phase for a device pipeline, you must choose the
primary interface level (either LI-1, LI-2, or LI-3) for the port. This section
presents some guidelines for choosing an interface level and, as an example,
provides a brief overview of the steps involved in porting at the LI-1 level.

Choosing a Loadable Interface Level

An important decision when you begin your port is to determine which
loadable interface level to begin implementing first. Depending on your goals
and your hardware, you may want to begin with LI-1 functions, LI-2 functions,
or LI-3 functions. You can also focus on either 2D rendering or 3D rendering, as
these are different paths. In some cases, the hardware will determine the
loadable interface level that you port to, as follows:

• Consider an LI-1 port if your hardware provides a high level of graphics
rendering capability, such as transforms, clipping, lighting, or accelerated
scan conversion. Points are input to an LI-1 pipeline in model coordinates,
and it is the device pipeline’s responsibility to perform all rendering
operations, including transforming the point data to device coordinates.

• Plan on an LI-2 port if your hardware is capable of rendering device
coordinate primitives but is not capable of performing higher level
operations such as depth cueing, transformations, lighting, or clipping. The
LI-2 layer is provided for devices that can draw primitives if the device
coordinates and color of the object are given and no further processing is
required.

• Port to LI-3 if your device is a frame buffer that provides pixel-based
operations and that does not provide graphics acceleration. The input to
LI-3 is pixel data, and the frame buffer renders in device coordinates.

If you are writing a pipeline for a high-level graphics device, you may begin by
implementing the basic put-pixel and get-pixel interfaces at the LI-3 level or by
implementing one or more accelerated pipelines at the LI-1 level. There is no
particular layer that you must begin with, but there are some performance
trade-offs that you may want to consider.

Getting Started 15

2

Starting With an LI-3 Level Port

A good way to begin, even for an LI-1 port, might be to start work on the LI-3
level using the LI-3 utility object RefDpCtx (Reference Device Pipeline
Context). To implement the LI-3 layer with this object, you simply write
functions to store the value of a pixel (set-pixel) and to retrieve the value of a
pixel (get-pixel). Then, you can call the LI-3 interfaces using the RefDpCtx
utility. XGL will only use your LI-3 device pipeline port at the end of a
rendering operation. The XGL software pipeline will handle all other
operations required for rendering.

Using RefDpCtx to implement LI-3 is the simplest, quickest route for porting
XGL to your hardware. With the LI-3 level implemented in this way, you can
begin working on window system interactions with DGA and on verifying
your port using the Denizen test suite. (See the XGL Test Suite User’s Guide for
information on the Denizen test suite.)

Porting to the LI-3 level provides breadth of functionality rather than
performance. This is the approach to take if your primary goal is to port XGL
quickly to see your device running an XGL application. An LI-3 port is
advantageous during the early states of implementing a device pipeline
because it produces full XGL functionality with a minimal amount of effort by
the porting team. Then, to improve performance, you can concentrate on the
primitives that you decide are most important and rewrite their
implementation at the LI-1 or LI-2 interface level.

Starting with an LI-1 Level Port

An alternate approach is to focus on accelerated rendering and begin with LI-1
primitives. For example, if your hardware is designed to render triangles at
high speed, it will be more advantageous to implement triangle renderers and
the LI-1 triangle primitives than to implement a pixel interface at LI-3.

Writing a set of LI-1 level interfaces is not a simple task and can require
significant time and resources. If you are new to programming in C++, it will
take even longer. Optimizing the code for maximum performance will require
even more development time. One way to organize work at the LI-1 level is to
focus on a single area of acceleration, for example polylines, and implement
the LI-1 level primitive for that area. With this approach, you can identify

16 XGL Device Pipeline Porting Guide—August 1994

2

design problems early. Once the LI-1 primitive is performing well, you can
implement more LI-1 primitives using the design that you have developed for
the first primitive.

Starting with an LI-2 Level Port

If you are writing loadable interfaces for a device that renders in device
coordinates only, you will implement LI-2 and LI-3 level interfaces and will not
need to implement interfaces at the LI-1 level. In this case, you can choose
whether to begin with the LI-2 layer or the LI-3 layer. As mentioned above,
implementing LI-3 through RefDpCtx provides complete functionality in a
relatively short time.

A Quick Look at Implementing an LI-1 Primitive

Implementing an LI-1 level device handler is a large project consisting of
several general steps. These steps are summarized in this section. While this
section may make the task of writing an LI-1 level port seem simpler than it
actually is, it is meant to help you divide the porting task into manageable
subtasks or concepts. Each step includes references to later chapters that
include the information needed to complete the task.

▼ Decide which XGL primitives and attributes your hardware can
accelerate.

To determine which of the primitives and attributes your hardware can
accelerate, consider the capabilities of your hardware and examine the scope of
XGL functionality in the XGL Reference Manual and in Chapter 9, “Writing
Loadable Interfaces”, of this book. Most likely you cannot implement all the
XGL functionality on your device. Instead, you may want to focus on
implementing only those features that your hardware can accelerate.

For those primitive-attribute combinations that your pipeline cannot handle,
you can call the software pipeline for processing. To decide which primitives to
implement in your pipeline, consider the kind of applications you are targeting
with your device and the features that should be accelerated for those
applications. Early identification of what to implement in your device pipeline
will facilitate the process of porting XGL to your device.

Getting Started 17

2

▼ Write the xgl_create_PipeLib() routine.

Each pipeline must include a routine that creates an instance of the XGL device
pipeline library object corresponding to the pipeline. This routine.
xgl_create_PipeLib() , is called through dlsym() after the device pipeline
is dynamically loaded. See Chapter 3, “Pipeline Framework”, for information
on this routine and for information on naming your pipeline so that XGL
device initialization functions can load the pipeline at runtime.

▼ Subclass the set of classes that provide the device pipeline
framework.

XGL provides a set of classes that, when initialized, provide a framework
linking the device pipeline to the XGL core. You need to subclass from these
classes for your device. Briefly, the XGL-provided classes are:

• XglDpLib – Maps to the shared library for your device.

• XglDpMgr – Maintains information about the physical device. You may
want to put your device initialization routines in this class.

• XglDpDev – Constitutes the device-dependent part of the XGL Device
object.

• XglDpCtx2d and XglDpCtx3d – Constitute the device-dependent part of the
XGL Context object. Contain the loadable interfaces that the device
implements.

These classes have a number of functions that you are required to implement
as well as optional functions, such as the LI-1 and LI-2 loadable interfaces. For
a summary of the required and optional functions in the device pipeline
classes, see page 68. For detailed information on creating the device pipeline
classes and objects, see Chapter 3, “Pipeline Framework”. For information and
useful illustrations on the architecture of the device pipeline, see the XGL
Architecture Guide.

You also need to consider your approach to implementing DGA. When you
have implemented DGA and the skeleton for the XGL device pipeline classes,
you will be able to create an X window and open an XGL Device on it.

18 XGL Device Pipeline Porting Guide—August 1994

2

▼ Choose a simple LI-1 primitive and implement geometry
processing.

Once a window is available to render to, you can choose a primitive, such as
xgl_multipolyline() to implement. The goal for this step is to render a
simple piece of geometry, such as a line, on your hardware. To do this, you
need to process the geometry data, converting it to a format appropriate for
your hardware. You may also need to work out a way to initialize your
hardware for each primitive.

Note that some window information, in particular the window clip list, is
critical data. This means that it cannot be modified by another process while
XGL is using it. Thus, the device pipeline must lock critical window data
structures before rendering and unlock them when rendering is complete. This
prevents the server from making changes to these data structures while an
XGL rendering operation is taking place. See Chapter 8, “Window System
Interactions” for more information on XGL’s interface to the window system.

Once you have succeeded in rendering geometry on your device, you have
completed the important milestone of getting XGL to communicate with your
hardware.

▼ Determine how to handle attribute processing.

Each XGL primitive has a set of attributes that affect it. The set of attributes for
each primitive is noted in Chapter 9, “Writing Loadable Interfaces”. Your
pipeline can get the attribute settings that it needs from the Context object and
process the attribute changes using your pipeline objectSet() function.

Refer to Chapter 5, “Handling Changes to Object State” for information on
design issues to consider as you implement attribute handling in your pipeline.
When handling attribute changes, be aware that techniques that work for a
simple primitive, such as multipolyline, may not work for more complex
primitives, such as surface primitives.

At this time, you will also want to consider how to handle view model changes
and coordinate system changes. XGL provides the view model derived data
facility to assist you in implementing view model operations. Using derived
data, you can set up objects that track the derived items important to your
pipeline. See Chapter 7, “View Model Derived Data” for information on the
processing of viewing and coordinate system changes.

Getting Started 19

2

Note that you may have to map the XGL attributes to attributes specific to
your hardware so that the appropriate rendering occurs. Once you have
determined what attributes you need to handle and how to handle them, you
should think about how to structure the pipeline for performance. How you do
this will depend on how your hardware saves Context state values. If you
determine that your device cannot handle the current attribute setting for a
primitive, you can fall back to the software pipeline for rendering.

▼ Implement a design for falling back to the software pipeline.

At each rendering call, the device pipeline must determine whether it can
proceed. If it cannot, it can pass control to the software pipeline. See page 20
for information on falling back to the software pipeline.

Your pipeline must also manage state changes that may result when the
application changes the Context it is using to render. Chapter 5, “Handling
Changes to Object State” provides a brief discussion on context switching and
hardware state updating. This chapter also provides information on handling
the updating of state when the pipeline switches between interface layers.
There are several pitfalls that you may encounter when switching loadable
interface layers. Solving these design problems early in the porting process will
simplify your overall task.

When you reach this point, you have worked through most of the porting
process for a geometry operator. You should be familiar with problems that
you need to resolve. At this point, you can look into implementing other types
of functions, including functions that XGL does not provide, such as the
xgl_context_new_frame() operator.

▼ Implement xgl_context_new_frame() and a raster operator.

There is a small subset of device-dependent operators that XGL does not
implement in the software pipeline. The xgl_context_new_frame()
operator is one of these operators. The new frame operator clears the screen
and may be required each time rendering occurs. You may want to implement
xgl_context_new_frame() early in your development schedule.

The next step might be to implement a pixel or raster operator, such as
xgl_context_copy_buffer() , which is another operator that the device
pipeline must provide. Implementing a pixel operator after a geometry
primitive will help you understand the range of possible functions that you

20 XGL Device Pipeline Porting Guide—August 1994

2

must handle. When you have implemented a complete geometry primitive and
a pixel operator, you have a good idea of the complete task of writing an LI-1
device pipeline.

Testing Your Implementation

To verify that your device pipeline produces images that conform to XGL’s
reference images, run the Denizen Test Suite, which is supplied with the XGL
DDK. The Denizen Test Suite is a group of shell scripts and C programs
designed to use the XGL library to render objects and evaluate results. Denizen
contains approximately 580 test programs that test every XGL function and the
major internal components of the XGL library.

Your device handler should produce Denizen pass rates similar to those
measured for Sun’s reference frame buffers (8- and 24-bit nonaccelerated frame
buffers). The Denizen Test Suite is not intended to be a debugging tool, but it is
intended to provide a verification tool so that you can ensure the accuracy of
your implementation. For information on using the Denizen Test Suite, see the
XGL Test Suite User’s Guide.

Calling the Software Pipeline
When the device pipeline is called, if it can render the geometry, in most cases
it will take control and render to the hardware at that point. If the device
pipeline cannot perform the LI-1 or LI-2 processing, the device pipeline must
call the software pipeline to process the primitive.

The software pipeline may also call the device pipeline. For example, if your
device pipeline has not implemented a stroke text primitive, it can call the
software pipeline LI-1 stroke text function. The software pipeline will tessellate
the text into lines and then call the device pipeline multipolyline function to
render the lines.

Device Pipeline Options to Rendering Calls

In response to a rendering call, the device pipeline has several options:

• The device pipeline can fully render the primitive.

Getting Started 21

2

• The device pipeline can select its loadable interface function with the
opsVec[] function array. The opsVec[] array is a dynamic array of
loadable interface function pointers. It is the device pipeline’s responsibility
to set the entries in the opsVec[] array to point to the appropriate
functions. For more information about the opsVec[] array, refer to
“Defining the Device Pipeline-Context Class” on page 43 and the XGL
Architecture Guide.

• The device pipeline can call the software pipeline for components of
primitives that the hardware cannot render. For example, the software
pipeline can render a subset of the primitive data, as in the case of a
polygon that the device pipeline cannot handle in a
xgl_multi_simple_polygon() call.

• The device pipeline can fall back on the software pipeline for the entire
primitive as in the case of a clipped polygon that the device pipeline cannot
handle in a xgl_polygon() call.

What Else You Should Know

Accessing External Files at Runtime

The XGL system may require a number of external files during the execution of
an XGL application. For example, the device pipelines are dynamically loaded
shared object files that must exist in a directory tree in a location known to
XGL so that XGL can load them. The XGL library also requires external files for
the software pipeline, error messages, stroke fonts, and configuration
information. These external files exist within the directory tree that is created
when the XGL files are installed. The top of this directory tree is pointed to by
the XGLHOME environment variable. The value of XGLHOME is used internally
by XGL when it searches for any of the external files.

To retrieve the value of XGLHOME from the XGL core, use the static function
XglGlobalState::getXglHome() as shown below.

const char* xgl_home;
xgl_home = XglGlobalState::getXglHome();

22 XGL Device Pipeline Porting Guide—August 1994

2

Directory Structure for the XGL DDK

Figure 2-3 illustrates the current XGL DDK directory structure. The XGL DDK
package includes sample source code for the XGL reference loadable device
pipelines.

Figure 2-3 XGL DDK Directory Structure

/$BASEDIR/SUNWddk/xgl

lib /

cfb/doc /

XGL Makefile

Makefile

Sample source

/

mk_cc_defs.include

mo.script

cg6 /

*.mk

mem/

header files

color pipeline

*.cc

include /

*.h

Makefile

Makefile

Sample source

buffer pipeline

*.cc

include /

*.h

*.IL

Makefile

Makefile

Sample source

raster pipeline

*.cc

include /

*.h

include /

xgli /

*.h

File with sample
build instructions
README.ddk

src /

locale /

en_US/

LC_MESSAGES/

pipelines/Files included by
pipeline Makefile

Used if pipelines are
built with sample Makefile

Script used to build
error message files

test_suite/

Makefile

denizen/

*.hinternal

 for simple for GX frame for memory

cgm/

Makefile

Makefile

Sample source

pipeline

*.cc

include /

*.h

 for CGM

Getting Started 23

2

Error Reporting for XGL Device Pipelines

XGL provides an error-reporting mechanism that is used when an error is
detected during the execution of an XGL application. In order for an error to be
reported to the application, you must explicitly add code to handle error
conditions. The easiest way to call the error notification function is with the use
of error-reporting macros that are described in the following section.

Error Reporting Macros

The recommended method to call the XGL error-handling function from within
the pipeline code is to use one of two error-reporting macros that are defined
in the file <xgl_dirs>/src/include/xgli/ErrorMacros.h . The macros
are XGLI_ERROR and XGLI_DI_ERROR. Their interfaces are defined as follows:

XGLI_ERROR(sys_state, type, category, error_id, object, op1, op2)
 XglSysState* sys_state Pointer to current system

state; can be NULL; if NULL,
then internalfunction will
first get system state pointer
from global state

 Xgl_error_type type Error type for the particular
error

 Xgl_error_categorycategory Error category for the error
 char* error_id Identification string for the

error
 Xgl_obj_type object Object type of currently active

object
 char* op1 Optional operand for this error
 char* op2 Optional operand for this error

24 XGL Device Pipeline Porting Guide—August 1994

2

The default error notification function prints internationalized error messages
that are retrieved from error message files stored in the directory
{path}/{LANG}/LC_MESSAGES/filename.mo , where {path} is
$XGLHOME/lib/locale if $XGLHOME is set, or /opt/SUNWits/Graphics-
sw/xgl/lib/locale if $XGLHOME is not set. More than one error message file
may exist in this directory.

The error message files are binary encoded. The file xgl.mo contains error
messages for errors that could occur in either the device-independent XGL
code (libxgl.so) or the device-dependent XGL code (the pipelines). The
other *.mo files, named xgl <company abbrev><pipeline abbrev>.mo , contain
error messages for errors that can only occur within a specific pipeline.

The XGLI_ERROR macro can be used to call the error-reporting function for
errors that are defined in either xgl.mo or in the pipeline *.mo files.
XGLI_DI_ERROR, however, is used only to report errors defined in xgl.mo .

The specific error message used by the error-handling function is identified by
the error_id parameter passed to these macros. The error_id is a character string
of one of the following forms, where ## is the error number specified in the
error message file:

1. di-## – For error messages from the xgl.mo (device-independent) error
file

2. <pipeline abbrev>-##– For error messages from pipeline .mo files associated
with the originally supported SunSoft/SMCC frame buffers

XGLI_DI_ERROR(sys_state, error_id, object, op1, op2)
 XglSysState* sys_state Pointer to current system state;

can be NULL; if NULL, then internal
function will first get system
state pointer from global state

 char* error_id Identification string for this
error

 Xgl_obj_type object Object type of currently
active object

 char* op1 Optional operand for this error
 char* op2 Optional operand for this error

Getting Started 25

2

3. xgl <company abbrev><pipeline abbrev>-##– For error messages from
independent hardware vendor (IHV) pipeline .mo files

In order to determine what error messages exist in the error files, English clear-
text (ASCII) versions of the files are located in the following directories:

• For xgl.mo - {path}/include/xgl/xgl_errors_di.po

• For pipeline error message files -
{path}/src /<pipeline>/include/xgl_errors_ <pipeline>.po

The *.po files are of the form:

msgid“Key String” (same as the error_id string)

msgstr“Translatable error message string”

The UNIX utility msgfmt encodes the *.po ASCII files to create the *.mo
binary-encoded versions, which must be placed in the locale directory
described above.

Other parameters passed to the error macros are self-explanatory. For more
information on error types and categories, see “Error Handling” in the XGL
Architecture Guide. The operand values may be used to add useful
noninternationalized information (such as numbers or XGL attribute names) to
the error report.

Note – The macros XGLI_ERROR and XGLI_DI_ERROR use the current
operator set by the XGL core wrappers during error reporting. A device
pipeline should never set the current operator in the pipeline.

26 XGL Device Pipeline Porting Guide—August 1994

2

Example of Error Reporting Using the Error Macros

Suppose you want to check for a malloc error in your pipeline code. The
following steps describe how this is done.

1. Search the ASCII clear-text version of the device-independent and pipeline
error files for an error message corresponding to the error condition for
which you are checking. In this case, the following error message is defined
in xgl_errors_di.po :

msgid “di-1”

msgstr “malloc or new failed: out of memory”

2. Add the following #include to your source code module:

#include “xgli/SysState.h”

3. Add a call to one of the two error-reporting macros where you detect the
error in your code:

 if (!(pts = (Foo *)malloc(bar * sizeof(Foo)))) {
 XGLI_DI_ERROR (system_state, “di-1”, XGL_3D_CTX, NULL, NULL);
 return (-1);
 }

If the handle to the System State object is not known, you can call the macro
using a NULL value for the System State parameter as shown below:

XGLI_DI_ERROR ((XglSysState *)NULL, “di-1”, XGL_3D_CTX,
NULL, NULL);

The error-handling function gets the error file, finds the proper error message
string corresponding to the error_id passed by the user, assigns values to
internal error attributes, and calls an error notification function (either the
default or one set by the XGL application). The default error notification
function prints an error message to stderr . For example, in the case of the
malloc error above, the following message is printed:

Error number di-1: malloc or new failed: out of memory
Operator: xgl_polygon
Object: XGL_3D_CTX

Getting Started 27

2

Creating a Pipeline Error Message File

As described in the previous section, two types of error message files are
delivered with XGL. You can create a new error message file for your pipeline
and add error messages to it. Error messages in this file must be specific to the
pipeline and should not duplicate error messages that are already available in
the device-independent error message file.

Follow these steps to create a new error message file:

1. Use the template named xgl_errors_template.po in
$XGLHOME/src/sample_dp/include .

2. Change all occurrences of <company abbrev> and <pipeline abbrev> so that
they correspond to your company abbreviation and pipeline (device)
abbreviation.

3. Add error messages at the end of the file. Two lines are required for each
error message: a msgid line and a msgstr line. See the description in the
template file or examine the xgl_errors_di.po file for more information.

4. Add the following lines to your Makefile in the directory where the clear-
text version (the .po file) of the error message file is located:

xgl<company abbrev><pipeline abbrev>.mo: xgl_errors_<pipeline abbrev>.po
msgfmt xgl_errors_<pipeline abbrev>.po

You may add new error messages to the end of the error file once it has been
created. Then, use the XGLI_ERROR macro described above to call the error
handler with the error messages you define in your .po file.

28 XGL Device Pipeline Porting Guide—August 1994

2

29

Pipeline Framework 3

This chapter presents information on the classes and objects that connect XGL
device-independent code with the device pipeline. The following topics are
covered:

• Creating the required device pipeline classes

• Providing renderers optimized for performance-critical primitives

• Description of required and optional device-dependent functions

• Pipeline naming conventions and versioning

• Using the XGL core for backing store support

Note that in XGL the term device refers to both the physical hardware device
and the XGL API Device object. The API Device object is an abstraction of the
graphics display device. Internally, it consists of two objects: a device-
independent object and a device-dependent object. For more information on
the internal components of the API Device object, see the XGL Architecture
Guide.

As you read this chapter, you will find it helpful to have access to the header
files for the device pipeline classes. These files are:

• PipeLib.h and DpLib.h
• DpMgr.h
• DpDev.h, DpDevRaster.h , DpDevWinRas.h , and DpDevMemRas.h
• DpCtx2d.h and DpCtx3d.h

.h

30 XGL Device Pipeline Porting Guide—August 1994

3

Overview of the Pipeline Framework
The XGL architecture has a device-independent component (XGL core) and a
device-dependent component. The device-dependent component consists of
interfaces to the pipeline code. Because the device-independent component of
XGL must interact smoothly with the device pipeline, XGL provides a set of
classes that, when subclassed by the device pipeline, creates a framework that
allows XGL to pass information to and from the device pipeline. Setting up the
basic pipeline framework is one of the primary tasks in writing a device
pipeline.

A pipeline implementation needs to derive classes from four different class
hierarchies. This means that for your pipeline, you must subclass at least one
pipeline class from each of the pipeline class hierarchies. Objects instantiated
from the pipeline subclasses provide the functionality that the XGL device-
independent code requires. The four pipeline class hierarchies are:

• Device pipeline library (DpLib)

• Device pipeline manager (DpMgr)

• Device pipeline device (DpDev)

• Pipeline-context (DpCtx2d and DpCtx3d)

At a minimum, your implementation must define five derived classes (one
each from the device pipeline library, the device pipeline manager, and the
device pipeline device hierarchies, and two from the device pipeline-context
hierarchy) that form the basic framework of a device pipeline. Figure 3-1 on
page 31 shows the XGL-supplied class header files, header files subclassed by
the pipeline implementation, and the objects that are instantiated.

Each of the device pipeline derived classes contains functions that you must
implement. In some cases, the functions simply create the next level of the
hierarchy; in other cases, there are API-level functions or attributes that you
must support. Several classes also include optional functions for operations
that depend on the hardware.

Pipeline Framework 31

3

Figure 3-1 Device Pipeline Framework Classes

In addition to providing the required classes and functionality, you must
include in your library a function called xgl_create_PipeLib() , which
creates an object that represents the pipeline library. You must also name your
pipeline appropriately so that XGL can load the pipeline object.

To summarize, this is what you must do to set up the framework for your
pipeline:

1. Define the xgl_create_PipeLib() routine.

2. Define an XglDpLib class for your pipeline and implement the required
functions.

3. Define an XglDpMgr class for your pipeline and implement the required
functions.

4. Define an XglDpDev class for your pipeline and implement the required
functions. Implement any of the optional functions that you need for your
hardware.

5. Define two XglDpCtx classes for your pipeline, one for 3D and another for
2D. These classes contain an array of function pointers to primitives.

6. Name your pipeline according to the conventions noted on page 51.

XglDpLib.h XglDpLibFb.h

XGL Supplied Header Files Pipeline Subclassed Files

XglDpMgr.h XglDpMgrFb.h

XglDpDev.h XglDpDevFb.h

XglDpCtx2d.h XglDpCtx2dFb.h

XglDpCtx3d.h XglDpCtx3dFb.h

Pipeline Objects

XglDpLibFb

XglDpMgrFb

XglDpDevFb

XglDpCtx2dFb

XglDpCtx3dFb

32 XGL Device Pipeline Porting Guide—August 1994

3

These steps are discussed in the following sections. For information on how the
XGL core instantiates the pipeline objects and loads the pipeline during device
creation, and for illustrations showing how these classes are associated at
runtime, see the XGL Architecture Guide.

Note that this chapter contains a number of source code examples. You can
copy or modify these examples as long as the resulting code is used to create a
loadable pipeline for XGL.

Setting Up the Pipeline Framework

Defining xgl_create_PipeLib()

As a first step in writing a device pipeline, you must write a routine that
creates an instance of the XGL device pipeline object corresponding to your
device pipeline. This routine is named xgl_create_PipeLib() , and it must
be included with each pipeline. The routine is called by the XGL core through
dlsym() (an interface routine in the Solaris dynamic linking mechanism) after
the device pipeline is loaded. This function is declared as follows:

extern “C” XglPipeLib* xgl_create_PipeLib()

Below is a basic implementation of this function, where XglDpLibSampDp
represents the name of the XglPipeLib subclass that the device pipeline creates.

Note that the extern “C” declaration is needed to disable the C++ name
mangling on the function name.

XglPipeLib* xgl_create_PipeLib()
{
 return new XglDpLibSampDp;
}

Pipeline Framework 33

3

Defining the Device Pipeline Library Class

Next, you must subclass from the device pipeline library class hierarchy to
create your device pipeline library (XglDpLib) class. An object from this class
does the following:

• Represents a loaded device pipeline and maps to the .so shared object for
that pipeline. For each pipeline that is loaded into the XGL environment,
there is an XglDpLib object created by the pipeline function
xgl_create_PipeLib() .

• Provides for the creation, management, and destruction of device pipeline
manager objects and allows more than one device pipeline manager object
to share hardware or software resources.

• Provides a location for you to place for data relevant to your pipeline library
as a whole.

The base class of the device pipeline library hierarchy is XglPipeLib. This class
derives to the more specific device pipeline library and software pipeline
library classes XglDpLib and XglSwpLib. Your individual device pipeline
implementation will derive from XglDpLib. See the files PipeLib.h and
DpLib.h for the definition of these classes. A minimal definition of a pipeline
library class is shown here. You can copy or modify the source code samples in
this chapter as long as the resulting code is used to create a loadable pipeline
for XGL.

#include “xgl/xgl.h”
#include “xgli/DpLib.h”
#include “DpMgrSampDp.h”

class XglDrawable;

extern “C” XglPipeLib* xgl_create_PipeLib();

class XglDpLibSampDp : public XglDpLib {
 friend XglPipeLib* xgl_create_PipeLib();
private:
 XglDpLibSampDp() { dpMgr = NULL; }
 ~XglDpLibSampDp();
 //
 // Device-pipelines Dependent Functions -
 // Redefine in Device Pipelines

34 XGL Device Pipeline Porting Guide—August 1994

3

Note that if there are two frame buffers on a system and both are of the same
type, such as GX, there is one XglDpLib object. If the two frame buffers are
different types, such as one GX and one IHV-provided frame buffer, there are
two XglDpLib objects, one for each device pipeline. The Global State object in
the XGL core keeps a list of XglDpLib objects so that it can destroy them when
XGL is closed. See the XGL Architecture Guide for information on the Global
State object.

Note – If the device pipeline needs to establish exclusive control of any device-
dependent behavior for client applications, this control is handled by the
device pipeline objects, as the XGL core does not handle device-specific control
of applications. If the control is needed for all clients of the same type of frame
buffer (regardless of the number of frame buffers), then the XglDpLib object
should maintain the control. If the control is required for each frame buffer (if
there is more than one), then the XglDpMgr object should handle the control.

XglDpLib Functions That You Must Override

The XglDpLib class contains one virtual function that you must override for
your pipeline implementation:

getDpMgr(Xgl_obj_type, XglDrawable* drawable)

This function is called by the XGL core’s device creation routine when it
creates a new XglDpMgr object. The drawable parameter enables the device
pipeline to distinguish between different physical frame buffers of the same
type. Note that this pointer is transient and should not be cached. The
Xgl_obj_type parameter is currently ignored; in future releases, it may be
used to allow a pipeline to create more than one type of Device object.

For implementations that handle multiple frame buffers, the XglDpLib object
may keep a list of previously created XglDpMgr objects. In this case, the
getDpMgr() function should check the list for an existing XglDpMgr object
associated with the Device type and Drawable object and retrieve the
XglDpMgr object if it exists.

 virtual XglDpMgr* getDpMgr(Xgl_obj_type,
XglDrawable* drawable=NULL);

 XglDpMgrSampDp* dpMgr;// I only have one dpMgr
};

Pipeline Framework 35

3

Since the number of device pipeline manager objects your pipeline needs
depends on the capabilities of your hardware, the creation, managment, and
destruction of XglDpMgr objects is left to your individual device pipeline
implementation. Depending on the functions performed by an XglDpMgr
object, one XglDpMgr can be created for each frame buffer, or one XglDpMgr
can be created for all frame buffers of the same type. Typically, the device
pipeline provides one XglDpMgr object for each frame buffer, but the pipeline
can manage XglDpMgr objects in other ways as well. Note that the destruction
of the XglDpMgr objects should be handled in the XglDpLib destructor
function, which the XGL core invokes during xgl_close() .

Systems with multiple frame buffers can have frame buffers of either the same
type or different types. If the frame buffers are of the same type, the XglDpMgr
objects are created by the unique XglDpLib object for that pipeline. If the frame
buffers are different types, each XglDpMgr object is created by the XglDpLib
object corresponding to the device pipeline for that frame buffer.

For device pipelines that only need one XglDpMgr, such as a memory raster
pipeline, the getDpMgr() function will return the same XglDpMgr object
every time it is needed. A sample implementation of getDpMgr() is shown
below.

Note – Although you can initialize your hardware in any of the framework
classes, a good place to initialize the hardware is in your XglDpMgr
constructor, since this is where the frame buffer is first notified that XGL is
going to use it.

XglDpMgr* XglDpLibSampDp::getDpMgr(Xgl_obj_type,
XglDrawable* drawable)

{
XglDpMgr* dpMgr;

dpMgr = dpMgrList.getDpMgr(drawable->getDevFd());
if (dpMgr == NULL) {
dpMgr = new XglDpMgrSampDp(drawable->getDevFd());
dpMgrList.addDpMgr(dpMgr);
}
return dpMgr;

}

36 XGL Device Pipeline Porting Guide—August 1994

3

Defining the Device Pipeline Manager Class

The next step in setting up the pipeline framework is to define the device
pipeline manager (XglDpMgr) class. An object from this class does the
following:

• Provides for the creation of the device pipeline device objects. This class
allows multiple device pipeline device objects to share the physical
resources of a device.

• Maintains information about the physical hardware device. If there are
multiple frame buffers of the same type on a system, there are either
multiple XglDpMgr objects, or the XglDpLib object handles the multiplicity
in some other way. If the frame buffers are of different types, for example,
one GX and one Cg3 (color frame buffer), there are two XglDpMgr objects:
one XglDpMgrGx object and one XglDpMgrCfb object.

See the file DpMgr.h for the definition of this class. A minimal definition of a
device pipeline manager class is shown here as XglDpMgrSampDp.

To limit the number of XglDpMgr objects, you can deny the creation of new
XglDpMgr objects by returning NULL from XglDpLibYourFb::getDpMgr() .
You can also limit the creation of a new XglDpDev object by returning NULL
from XglDpMgrYourFb::createDpDev() . Recoverable errors from the XGL
core result in those situations.

class XglDevice;
class XglDpDev;
class XglDrawable;

class XglDpMgrSampDp : public XglDbgObject {
public:
 virtual ~XglDpMgr();
private:
 //
 // Device-pipelines Functions - Redefine in Device Pipelines
 //
 virtual XglDpDev* createDpDev(XglDevice*,

Xgl_obj_desc* bkstore_desc = NULL);
 virtual void inquire(XglDrawable*, Xgl_inquire*);
};

Pipeline Framework 37

3

XglDpMgr Functions That You Must Override

XglDpMgr includes the following virtual functions that you must override:

XglDpDev* createDpDev(XglDevice*, Xgl_obj_desc*)

Invokes the creation of the device-dependent part of the XGL Device object.
The XglDevice argument is cast to a pointer to the type of Device being
created, such as XglRasterWin or XglRasterMem. The Xgl_obj_desc argument
is a pointer to a structure containing additional information about the XGL
Device object. The XGL core uses the information in this structure, and the
device pipeline normally does not need it. However, when backing store is
enabled, this argument provides information about the parent device that
the backing-store device can use or ignore.

A sample implementation of the createDpDev() function to create a
window raster device is shown below. Note that:
• XglDpMgrSampDp represents the name of the device type, for example

XglDpMgrG x.
• XglDpDevSampDp represents the name of the XglDpDev subclass that

this device pipeline creates, for example XglDpDevGx .

void inquire(XglDrawable*, Xgl_inquire*)

An API-level function that returns information on the acceleration features
of your device.

For an implementation of the inquire() function, see the sample LI-1 port
provided as part of this product. Note that inquire() might be called
before the XglDpDev object is created. The inquire() function should use
its XglDrawable* parameter to fill the contents of the Xgl_inquire structure
whose address is passed. Note also that the XglDrawable pointer passed
into the inquire() function is transient and is destroyed afterward. For
more information on the inquire() function, see the xgl_inquire()
reference page in the XGL Reference Manual.

XglDpDev* XglDpMgrSampDp::createDpDev (XglDevice* device,
Xgl_obj_desc*)

{
 return new XglDpDevSampDp(this,(XglRasterWin*)device);
}

38 XGL Device Pipeline Porting Guide—August 1994

3

Defining the Device Pipeline Device Class

Next, you must subclass from the device pipeline device hierarchy. An object
from this hierarchy contains the device-dependent elements of an XGL Device
object and is linked to the device-independent part of the Device object. An
object instantiated from the XglDpDev class does the following:

• Creates the device pipeline-context objects

• Provides a device pipeline with the opportunity to exchange device
information with XGL core via get() and set() functions

• Provides a storage location for data relevant to the window

In the case of a single XGL application with multiple windows, each XglDpDev
object maps to a single window on the screen. If the application has multiple
windows using the same underlying frame buffer, the XglDpMgr object for
that frame buffer creates all the XglDpDev objects that the application needs. If
the application runs on a system with more than one physical frame buffer,
and the application creates multiple windows on each frame buffer, each
XglDpDev object is created by the XglDpMgr object that corresponds to the
frame buffer.

Although the XglDpMgr object creates multiple XglDpDev objects, it is not
designed to keep track of these objects. Instead, for each XGL API-level Device
object that is created, a pointer to the XglDpDev object is returned to the
device-independent XglRasterWin object, and a pointer to the XglRasterWin
object is stored in the XglSysState object list of existing Device objects. For
more information on how pipeline objects are instantiated, see the XGL
Architecture Guide.

The base class of the device-dependent device hierarchy is XglDpDev, which
derives to XglDpDevRaster and then to XglDpDevWinRas, XglDpDevMemRas,
or XglDpDevStream. Depending on the type of the device you are porting,
your device pipeline will subclass from either XglDpDevWinRas (for window
rasters), XglDpDevMemRas (for memory rasters), or XglDpDevStream (for
stream devices). See the header files DpDev.h , DpDevRaster.h ,
DpDevWinRas.h , DpDevMemRas.h., and DpDevStream.h for the device-
dependent hierarchy. Sample code for a minimal definition of a device pipeline
device class for a window raster is shown below.

Pipeline Framework 39

3

Note – When XglDpDevWinRas is created, a device pipeline should call
XglRasterWin:setDgaCmapPutFunc() to register the callback function that
updates the hardware color map. See page 135 for information on
setDgaCmapPutFunc() .

XglDpDev Functions That You Must Override

A minimal implementation of the XglDpDev class includes several functions
that you must override:

virtual XglDpCtx{2/3}d*
createDpCtx(XglContext{2/3}d*)

A virtual function to create the XglDpCtx objects. Two of these functions
must be created, one for 2D and one for 3D. These functions must be
implemented in the pipeline, or an error is returned.

class XglDpDevSampDp : public XglDpDevWinRas {
 friend XglDpMgrSampDp;
private:
 XglDpDevSampDp(XglDevice* device) : XglDpDevWinRas(device) {}
 //
 // Device-pipelines Dependent Functions -
 // Redefine in Device Pipelines
 //
 virtual XglDpCtx3d* createDpCtx(XglContext3d*);
 virtual XglDpCtx2d* createDpCtx(XglContext2d*);

 virtual int copyBuffer(
 XglContext3d*, //3D Context associated with dst mem_ras
 Xgl_bounds_i2d*, //Rectangle
 Xgl_pt_i2d*); //Position

 virtual int copyBuffer(
 XglContext2d*, //2D Context associated with dst mem_ras
 Xgl_bounds_i2d*, //Rectangle
 Xgl_pt_i2d*); //Position
};

40 XGL Device Pipeline Porting Guide—August 1994

3

virtual int
copyBuffer(XglContext{2/3}d*,Xgl_bounds_i2d*,Xgl_pt_i2d*)

Two virtual functions, one for 2D and one for 3D, where the destination
device is the memory raster associated with the Context parameter and
the source device is the pipeline XglDpDev object.

A minimal implementation of createDpCtx() that instantiates a pipeline-
context object is shown below. In this example, XglDpCtx3dSampDp
represents the name of the XglDpCtx3d subclass that the device pipeline
creates.

XglDpDev Optionally Overridable Functions

The XglDpDev class and its subclasses include a number of functions that you
can override to perform operations specific to your device. These function
declarations, along with their default actions, are defined in the header files for
the XglDpDev classes and are listed in Table 3-1 on page 41. If the default
behavior of your hardware matches the defaults that XGL has defined for these
functions, it is not necessary to override these functions.

Note that this may be an incomplete list; for the most current list, check the
header files. Information on default and return values is also available in the
header files. See the descriptions beginning on page 52 for more detail on these
functions.

XglDpCtx3d* XglDpDevSampDp::createDpCtx(XglContext3d* context)
{
 return new XglDpCtx3dSampDp(context);
}

Pipeline Framework 41

3

Table 3-1 Device-Dependent Overridable Functions

Class Function Name

XglDpDev Xgl_vdc_orientation getDcOrientation()
float getMaxZ()
float getGammaValue()

XglDpDevRaster void setRectList(const Xgl_irect[])
void setRectNum(Xgl_usgn32)
void setSourceBuffer(Xgl_buffer_sel)
void setSwZBuffer(XglPixRectMem*)
void setSwAccumBuffer(XglPixRectMem*)
void syncRtnDevice(XglRasterWin*)

XglDpDevWinRas Xgl_accum_depth getAccumBufferDepth()
Xgl_usgn32 getDepth()
Xgl_color_type getRealColorType()
XglPixRectMem* getSwZBuffer()
XglPixRectMem* getSwAccumBuffer()
Xgl_boolean needRtnDevice()
void resize()
void setBackingStore(Xgl_boolean)
void setBufDisplay(Xgl_usgn32)
void setBufDraw(Xgl_usgn32)
void setBufMinDelay(Xgl_usgn32)
Xgl_usgn32 setBuffersRequested(Xgl_usgn32)
void setCmap(XglCmap*)
void setPixelMapping(const Xgl_usgn32)
void setStereoMode(Xgl_stereo_mode)

XglDpDevMemRas void setCmap(XglCmap*)
void setImageBufferAddr(Xgl_usgn32*)
void setZBufferAddr(Xgl_usgn32*)
void setLineBytes(Xgl_usgn32)
Xgl_accum_depth getAccumBufferDepth()
XglPixRectMem* getAccumBufferPixRect()
XglPixRectMem* getImageBufferPixRect()
XglPixRectMem* getZBufferPixRect()

42 XGL Device Pipeline Porting Guide—August 1994

3

Device Object Initialization

It is important to be aware that XGL’s API-level Device object consists of two
internal objects: the device-dependent device object that is created by the
device pipeline XglDpMgr object, and a device-independent object, such as
XglRasterWin, that is created by the XGL core System State object. These two
internal Device objects are linked by a pointer from the device-dependent
object to the device-independent object. The API Device object was designed
with separate device-independent and device-dependent components to isolate
the device-dependent operations. This design allows you to define specific
operations for your device.

When the XGL core asks the device pipeline to create an XglDpDev object, it
passes a handle to the device-independent Device object:

XglDpDev* XglDpMgrYourFb::createDpDev(XglDevice* device)

At creation time, the XglDpDev object gets from the XglDevice object all the
information it needs about the device-independent attributes. The device-
independent values are valid at this time. Most of the set...() functions are
called later when the application changes device-dependent parameters
through the API.

After getting the pointer to the XglDpDev object, the XglRasterWin object calls
the device-dependent object’s get...() functions (which you should override
if the default behavior is incorrect for your device) to complete its own
initialization. You should not expect these device-dependent attributes, which
provide information such as the DC orientation or the device color type, to be
meaningful during the XglDpDev object creation. Later in the process of
pipeline initialization, XglRasterWin will call set...() functions that allow
the XglDpDev object to complete its initialization with the correct device-
dependent data.

Pipeline Framework 43

3

Defining the Device Pipeline-Context Class

The final step in creating your pipeline framework classes is to subclass from
the device pipeline-context hierarchy. There is one device pipeline-context
object per Device-Context pair. If your pipeline supports applications that
render in 2D and 3D, then two subclasses are needed, one descending from
XglDpCtx2d and the other from XglDpCtx3d.

The two XglDpCtx classes contain the interfaces for the 2D and 3D LI-1, LI-2,
and LI-3 primitive layers. The LI-1 and LI-2 interfaces are member functions
that you can override in your device pipeline if you choose. If the LI-1 and LI-2
primitives are not implemented by the pipeline, the device pipeline-context
object automatically uses the software pipeline. Thus, for LI-1 and LI-2
primitives, the device pipeline does not need to override any functions that the
hardware does not support. The LI-3 functions are defined in the XglDpCtx
classes and must be implemented by the device pipeline.

An XglDpCtx class for a 3D pipeline in which only multipolylines are
implemented might look like the following sample code.

class XglDpCtx3dSampDp : public XglDpCtx3d {
 friend XglDpDevSampDp;
private:
 XglDpCtx3dSampDp(XglContext3d* context) :
 XglDpCtx3d(context) {

opsVec[XGLI_LI1_MULTIPOLYLINE] =
 XGLI_OPS(XglDpCtx3dSampDp::li1MultiPolyline);

opsVec[XGLI_LI_OBJ_SET] =
 XGLI_OPS(XglDpCtx3dSampDp::objectSet);

opsVec[XGLI_LI_MXG_RCV] =
 XGLI_OPS(XglDpCtx3dSampDp::messageReceive);

}
 //
 // Device-pipeline Dependent Functions
 //
 void li1MultiPolyline(Xgl_bbox*, Xgl_usgn32, Xgl_pt_list*);

 // Function to handle ctx related changes
 void objectSet (const Xgl_attribute*);

//Function to draw the line through the hardware
void drawLine (Xgl_usgn32, Xgl_pt_list*);

};

44 XGL Device Pipeline Porting Guide—August 1994

3

The LI functions are described in Chapter 9, “Writing Loadable Interfaces”.
For more information on switching between the device pipeline and the
software pipeline, see page 20.

Rendering through the XglDpCtx Object

When a primitive is called, the XGL core maps the API call to an internal C++
call in a wrapper function. The wrapper passes the primitive call directly to the
device pipeline through the opsVec[] array. The opsVec[] is a dynamic
array of function pointers to LI functions. It is defined by the XGL core and
maintained by the device pipeline. The array is defined as shown below.
XGLI_OPS is defined as (void(XglDpCtx::*)()) in DpCtx.h .

XglDpCtx3d::XglDpCtx3d(XglDevice* dev,
 XglContext3d* context) : XglPipeCtx3d(context)
{
 //
 // Initialize DI opsVec[]
 //
 opsVec[XGLI_LI1_NEW_FRAME] =

XGLI_OPS(XglDpCtx3d::li1NewFrame);
 opsVec[XGLI_LI1_GET_PIXEL] =

XGLI_OPS(XglDpCtx3d::li1GetPixel);
 opsVec[XGLI_LI1_SET_PIXEL] =

XGLI_OPS(XglDpCtx3d::li1SetPixel);
 opsVec[XGLI_LI1_SET_MULTI_PIXEL] =

XGLI_OPS(XglDpCtx3d::li1SetMultiPixel);
 opsVec[XGLI_LI1_SET_PIXEL_ROW] =

XGLI_OPS(XglDpCtx3d::li1SetPixelRow);
 opsVec[XGLI_LI1_COPY_BUFFER] =

XGLI_OPS(XglDpCtx3d::li1CopyBuffer);
 opsVec[XGLI_LI1_ACCUMULATE] =

XGLI_OPS(XglDpCtx3d::li1Accumulate);
 opsVec[XGLI_LI1_CLEAR_ACCUMULATION] =

XGLI_OPS(XglDpCtx3d::li1ClearAccumulation);
 :
 :
 :
}

Pipeline Framework 45

3

When the application calls a primitive, the wrapper forwards the API function
call to the device pipeline, as shown in the following sample wrapper function:

Note – At LI-1, API geometry data is passed to the device pipeline unchanged.

Required Initialization of the opsVec[] Function Array

The XGL core initializes the opsVec[] array to a set of default function
pointers that point to the software pipeline LI-1 primitives. It is the device
pipeline’s responsibility to override the entries in the opsVec[] array to
functions that the device pipeline has implemented. This can occur at
initialization of the pipeline XglDpCtx object (when the Device is set on the
Context) or during program execution. In deciding how to set up your
pipeline’s opsVec[] array, you have three cases to consider:

• Primitives that the pipeline does not implement

• Primitives that are not critical to performance

• Primitives that are critical to performance

Designing the opsVec[] array to handle these cases is discussed below.

void xgl_multipolyline(Xgl_ctx ctx,
 Xgl_bbox* bounding_box,
 Xgl_usgn32 num_pt_lists,
 Xgl_pt_list* pl)
{
 XglDpCtx* dp = ((XglCtxObject*)ctx)->getDp(); //get dp pointer

 (dp->*(//call dp function pointed to by mpline array entry
 (void(XglDpCtx::*)(Xgl_bbox*,Xgl_usgn32,Xgl_pt_list*))
 (dp->currOpsVec[XGLI_LI1_MULTIPOLYLINE])
)
)(bounding_box,num_pt_lists,pl); // function called with API
 // args
}

46 XGL Device Pipeline Porting Guide—August 1994

3

Using the Default Software Pipeline Renderer
If your device pipeline has not implemented a particular LI-1 or LI-2 primitive,
you can use the default opsVec[] array entry. The opsVec[] entries are
loaded with calls to the software pipeline at LI-1 or LI-2 by default. The
XglDpCtx3d default call to the software pipeline looks like this:

In this case, you do not need to change the opsVec[] array. Your XglDpCtx
object will inherit the default software pipeline calls.

Implementing a Generic Renderer
If your pipeline implements a primitive, but the primitive’s performance is not
critical, the pipeline can load a pointer to its primitive function when the
Device is set on the Context and not reset it later. This function will be called
whenever the application calls a primitive.

To provide a renderer, declare the function as a member of your pipeline
XglDpCtx, and in the XglDpCtx’s constructor, put a pointer to the function in
the appropriate entry of the opsVec[] array. A list of opsVec[] array indices
can be found in DpCtx.h .

An example of initializing the opsVec[] array for a device pipeline LI-1
multipolyline is shown below:

void XglDpCtx3d::li1MultiPolyline(Xgl_bbox* bounding_box,
 Xgl_usgn32 num_pt_lists,
 Xgl_pt_list* pl)
{
 if (error_checking) {
 do_error_checking()
 }
 swp->li1MultiPolyline(bounding_box, num_pt_lists, pl);
}

//
// Install multipolyline
//
opsVec[XGLI_LI1_MULTIPOLYLINE] =
 XGLI_OPS(XglDpCtx3dExampleDp::li1MultiPolyline);

Pipeline Framework 47

3

Implementing a Performance-Critical Renderer
If your device pipeline implements a primitive whose performance is critical,
you may want to create a set of renderers for this primitive, including:

1. A single generic renderer that does error checking and handles point type
changes, attribute changes, and transform changes.

2. A set of fast renderers that do not need to handle point type changes, etc.
and that are tuned to specific combinations of attributes.

A generic renderer might look something like this:

//
// Get and return clip changed status.
//
// Result OR’ed and saved in “clipChanged” since
// drawable->clipChanged() does not retain clip status.
//
#define GX_CLIP_CHANGED(drawable) (clipChanged |= \
 (drawable)->clipChanged())
XglDpCtx3dGx::GenericMpline(Xgl_bbox* bounding_box,
 Xgl_usgn32 num_pt_lists,
 Xgl_pt_list* pl)
{
 if (error_checking) {
 do_error_checking()
 }
 if (ctx != last_ctx) {
 // handle context change
 }
 if (pt_type != last_pt_type) {
 // handle point type change
 }
 if (prim != last_prim) {
 // handle primitive type change
 }
 if (GX_CLIP_CHANGED(drawable)) {
 // handle window type change
 }
 if (xforms_changed) {
 // handle transform changes
 }
 // Figure out which fast line renderer to use and set
 // opsVec[XGLI_LI1_MULTIPOLYLINE] to this line renderer.

48 XGL Device Pipeline Porting Guide—August 1994

3

A fast renderer might look something like this:

A device pipeline rendering function can override opsVec[] entries at any
time. You can design a renderer to support a particular set of attributes and
install that renderer during program execution. This frees some renderers from
having to test the attributes in each primitive call, and thus provides improved
acceleration.

If a device decides to set an opsVec[] entry back to its default value, the
opsVecDiDefault[] array can be used:

 // window locking
 // model clipping

// Draw the multipolyline with the fast renderer you just set.
 (this->*((void(XglDpCtx3dGx::*)
 (Xgl_bbox*, Xgl_usgn32, Xgl_pt_list*, Xgl_boolean)
)(opsVec[XGLI_LI1_MULTIPOLYLINE])
)
)(bounding_box, num_pt_lists, pl, FALSE);

 // If nothing changes, this fast renderer will be
 // called directly the next time.

 // window unlocking
}

XglDpCtx3dGx::FastMPline()
{
 //state changes that require re-evaluation before renderering
 if (ctx!=last_ctx || pt_type!=last_pt_type ||
 prim!=last_prim || GX_CLIP_CHANGED(drawable)) {
 GenericMpline();
 } return;
 // send the points to the hardware to render
}

//
// Set opsVec[] back to default
//
opsVec[XGLI_LI1_MULTIPOLYLINE] =
 opsVecDiDefault[XGLI_LI1_MULTIPOLYLINE];

Pipeline Framework 49

3

Note – In order for backing store to work correctly, the device pipeline must
pass the parameter gen_punt = FALSE when it calls any XglDpCtx function
through the opsVec[] array.

Calling the Software Pipeline

If a device pipeline cannot accelerate the API arguments or the Context state
(for example, API attributes, point type, or facet flags), the pipeline can call the
software pipeline directly, as shown in this example:

When a device pipeline can only render part of a primitive, it can fall back to
the software pipeline for partial rendering of the primitive. For example, to
handle a complex polygon in an xgl_multi_simple_polygon() call, the
device pipeline can do the following:

void XglDpCtx3dSampDp::li1MultiPolyline(
 Xgl_bbox* bounding_box,
 Xgl_usgn32 num_pt_lists,
 Xgl_pt_list* pl)

{
 const XglStrokeGroup3d* cur_stroke = ctx->getCurrentStroke();

 // Check if I can render with the current attrs
 // e.g. If dp can handle only line style solid then
 // dp must call software pipeline
 if (cur_stroke->getStyle() != XGL_LINE_SOLID) {
 swp->li1MultiPolyline(bounding_box, num_pt_lists, pl);
 } return;

 // Draw the polyline
drawLine(num_pt_lists, pl);

}

//
// Second version of a fast renderer.
//
// Get and return clip changed status.
//
// Result OR’ed and saved in “clipChanged” since
// drawable->clipChanged() does not retain clip status.
//

50 XGL Device Pipeline Porting Guide—August 1994

3

#define GX_CLIP_CHANGED(drawable) (clipChanged |= \
 (drawable)->clipChanged())

XglDpCtx3dGx::li1FastMsp(Xgl_facet_flags api_facet_flags,
 Xgl_facet_list *api_facet_list,
 Xgl_bbox *api_bbox,
 Xgl_usgn32 api_num_pt_lists,
 Xgl_pt_list *api_pt_list)
{
 //
 // API arguments that can’t be handled by the device pipeline.
 //
 if (api_pt_list->pt_type & XGL__HOM) { // Homogeneous point
 // type
 swp->li1MultiSimplePolygon(api_facet_flags,
 api_facet_list,
 api_bbox, api_num_pt_lists,
 api_pt_list);
 return;
 }

 //
 // State changes that require re-evaluation before
 // renderering.
 //
 if (ctx != dp_saved_last_ctx_ptr ||
 api_pt_list->pt_type != dp_saved_last_pt_type ||
 api_facet_flags != dp_saved_last_facet_flags ||
 api_facet_list->facet_type != dp_saved_last_facet_type ||
 dp_saved_prim != dp_saved_last_prim ||
 GX_CLIP_CHANGED(drawable)) {

 li1MultiSimplePolygon(api_facet_flags, api_facet_list,
 api_bbox,api_num_pt_lists, api_pt_list);
 return;
 }
 Xgl_pt_list *pl = api_pt_list;
 for(Xgl_usgn32 i = 0; i < api_num_pt_lists; pl++) { // for
 each polygon
 if (api_facet_flags & XGL_FACET_FLAG_SHAPE_CONVEX)
 //
 // if convex

 // send the points to the hardware
 //
 else

Pipeline Framework 51

3

Naming Your Device Pipeline

An XGL device pipeline must be named according to the following convention:

xgl<COMPANY NAME><device name>.so.<major version>

 where:

• <COMPANY NAME> is a 4-letter capitalized abbreviation for the company
that implements the device pipeline.

• <device name> is the abbreviated name of the device, which should be an
abbreviated form of the name of the corresponding kernel device driver
located in the /dev directory.

• <major version> is the major release number of the DDK associated with the
particular release of XGL that is compatible with this device pipeline. The
DDK major version number can be found in the header file
xgli/DdkVersion.h .

For example, a Sun Microsystems Cg6 device pipeline with a major version
number of 4 is named xglSUNWcg6.so.4 . See page 63 for more information
on version numbers.

The name of the pipeline is defined in the Makefile located in the device
pipeline build area. The Makefile macro LIB_NAME must be set to the
pipeline name.

When XGL attempts to load a pipeline, it issues a system call that returns the
pipeline name, as defined above, for the active device. See page 58 for more
information on how XGL loads a device pipeline.

 //
 // Parts of the primitive that can’t be handled
 //

 swp->li1Polygon(api_facet_list->facet_type,
 api_facet_list->facets,

 api_bbox,
 1,

 pl);
 }
}

52 XGL Device Pipeline Porting Guide—August 1994

3

Optional Functions in Device-Dependent Classes
This section provides a brief description of the optional device-dependent
operations provided in the XglDpDev class hierarchy. Many of these functions
have a corresponding API attribute; in those cases, you can find more
information about the attribute in the XGL Reference Manual.

Overridable Functions in DpDev.h

virtual Xgl_vdc_orientation getDcOrientation()
Returns a value for the orientation of DC for the hardware device. The
default value is XGL_Y_DOWN_Z_AWAY. Override this function if your device
has a different orientation. This function is called by the XGL core as part of
the Device object initialization.

virtual float getMaxZ()
Returns a value for the hardware device’s maximum Z coordinate value.
The default value is XGLI_DEFAULT_MAX_DEPTH, which is a constant
defined as 224-1. Override this function if your device has a different
maximum Z value. This function is called by the XGL core as part of the
Device object initialization.

virtual float getGammaValue()
The default implementation of this function returns a value of 2.22. The
function also checks the environment variable XGL_AA_GAMMA_VALUE and
returns the value that the environment variable is set to, if it is set. See
Appendix B, “Software Rendering Characteristics” in the XGL Programmer’s
Guide for information on this environment variable.

The value returned by this function is used as the gamma value to build
gamma and inverse gamma look-up tables. These tables are built by
buildGammaTables() , which is called by the constructors for objects like
XglRasterWin and XglRasterMem. The gamma and inverse gamma tables
are only used for manipulating the colors of antialiased stroke and dot
primitives. If a device implements antialiasing in hardware, then these
tables, and hence the getGammaValue() function have no effect. However,
if the device expects stroke or dot antialiasing to be done by the software
pipeline, there are two possible cases. First, if the device does its own
gamma correction, the function needs to return the value 1.0. Otherwise, the
device can choose to not implement this function or to implement it to
return a gamma value that is more suitable.

Pipeline Framework 53

3

Note that this function might not be present in future releases of XGL; check
the current header files for the most up-to-date list of optional functions.

Overridable Functions in DpDevRaster.h

virtual void setRectList(const Xgl_irect[])
Sets the list of clip rectangles in the application-specified clip list. The input
argument is an Xgl_irect array of rectangles that defines the clip region. This
function maps to the API attribute XGL_RAS_RECT_LIST and is used by the
XGL core to inform the pipeline when the clip list changes. The default is no
operation. See the XGL_RAS_RECT_LIST reference page for more
information.

virtual void setRectNum(Xgl_usgn32)
Sets the number of clip rectangles in the application-specified clip list. The
input argument is an unsigned 32-bit integer. This function maps to the API
attribute XGL_RAS_RECT_NUM and is used by the XGL core to inform the
pipeline when the clip list changes. The default is no operation. See the
XGL_RAS_RECT_NUM reference page for more information.

virtual void setSourceBuffer(Xgl_buffer_sel)
Specifies the buffer used as the source buffer during raster operations. The
input argument is a macro value from the Xgl_buffer_sel typedef . This
function maps to the API attribute XGL_RAS_SOURCE_BUFFER and is used
by the XGL core to inform the pipeline when the source buffer for raster
operations changes. The default is no operation. See the
XGL_RAS_SOURCE_BUFFER reference page for more information.

virtual void setSwZBuffer(XglPixRectMem*)
Specifies that if the device uses a software Z-buffer, it should share it with
the base device in the backing store device by getting the memory address
and linebytes from the Z-buffer and reassigning them as its own. This
function is called by the XGL core when the device is a backing store device,
so the device pipelines do not need to check for it. The default is no
operation.

virtual void setSwAccumBuffer(XglPixRectMem*)
Specifies that if the device uses a software accumulation buffer, it should
share the same software accumulation buffer with the base device in the
backing store device by getting the memory address and linebytes from the

54 XGL Device Pipeline Porting Guide—August 1994

3

accumulation buffer and reassigning them as its own. The XGL core calls
this function when the device is a backing store device, so the device
pipelines do not need to check for it. The default is no operation.

virtual void syncRtnDevice(XglRasterWin*)
Synchronizes any device-dependent attributes, if needed, for backing store
devices. The default is no operation.

Overridable Functions in DpDevWinRas.h

virtual Xgl_usgn32 getDepth()
Returns the number of bits required to store the color of one pixel in the
image buffer of this hardware device. The default behavior is to query the
Drawable object for the depth of the frame buffer image buffer.

virtual Xgl_accum_depth getAccumBufferDepth()
Returns the accumulation buffer depth supported by the device. Called by
the XGL core during the creation of the XglDpDev object. This function is
currently only used by the software pipeline when doing accumulation.

virtual Xgl_color_type getRealColorType()
Returns the real color type of the device. The default behavior is to query
the Drawable object for the real color type of the frame buffer.

virtual void resize()
Called by the XGL core when the pipeline’s window is resized. The default
is no operation.

virtual void setBackingStore(Xgl_boolean)
Requests backing store support from the device. No device pipeline
operation is needed if the device relies on the XGL core to handle backing
store manipulation. The input argument is a Boolean that indicates the
on/off setting for backing store. This function maps to the API attribute
XGL_WIN_RAS_BACKING_STORE; see the XGL_WIN_RAS_BACKING_STORE
reference page for more information.

virtual Xgl_usgn32 setBuffersRequested(Xgl_usgn32)
Defines the number of buffers requested by the application. This function
maps to the API attribute XGL_WIN_RAS_BUFFERS_REQUESTED and is used
by the XGL core to request single or double buffering for the device. The
default return value is one buffer.

Pipeline Framework 55

3

virtual void setBufDraw(Xgl_usgn32)
Specifies the current draw buffer. This function maps to the API attribute
XGL_WIN_RAS_BUF_DRAW and is used by the XGL core to set the current
draw buffer. The default is no operation. See the XGL_WIN_RAS_BUF_DRAW
reference page for more information.

virtual void setBufDisplay(Xgl_usgn32)
Specifies the current display buffer. This function maps to the API attribute
XGL_WIN_RAS_BUF_DISPLAY and is used by the XGL core to set the
current display buffer for the device. The default is no operation. See the
XGL_WIN_RAS_BUF_DISPLAY for more information.

virtual void setBufMinDelay(Xgl_usgn32)
Defines the minimum time delay between buffer switches for this device.
This function maps to the API attribute XGL_WIN_RAS_BUF_MIN_DELAY.
The default is no operation. See the XGL_WIN_RAS_BUF_MIN_DELAY
reference page for more information.

virtual void setCmap(XglCmap*)
Sets the color map. This function maps to the API attribute
XGL_DEV_COLOR_MAP and is used by the XGL core to inform the pipeline
when the XGL Color Map object changes. The input argument is a pointer to
a Color Map object. The default is no operation.

When the contents of the Color Map change,
XglDpDevWinRas::setCmap() is called. The device pipeline
messageReceive() is called for object type XGL_WIN_RAS with message
flag XGLI_MSG_DEV_COLOR. This message tells the device pipeline to
handle the appropriate plane mask and color map changes.

virtual void setPixelMapping(conxt Xgl_usgn32[])
Sets the pixel mapping from the application’s color indexes to the device
color indexes. This function maps to the API attribute
XGL_WIN_RAS_PIXEL_MAPPING and is used by the XGL core to inform the
device when the pixel mapping changes. The input argument is an array of
color values. The default is no operation. See the
XGL_WIN_RAS_PIXEL_MAPPING reference page for more information.

56 XGL Device Pipeline Porting Guide—August 1994

3

virtual void setStereoMode(Xgl_stereo_mode)
Requests stereo mode support from the device. The input argument is an
Xgl_stereo_mode enumerated value for the stereo setting. This function
maps to the API attribute XGL_WIN_RAS_STEREO_MODE and is used by the
XGL core to set the stereo mode on the device. The default is no operation.
See the XGL_WIN_RAS_STEREO_MODE reference page for more information.

virtual XglPixRectMem* getSwZBuffer()
Returns a pointer to the XglPixRectMem object that represents the software
Z-buffer. This function should be overridden by all devices that have a
software implementation of the Z-buffer. The default return is NULL,
meaning that if the device has a hardware Z-buffer, it does not need to
override this function.

virtual XglPixRectMem* getSwAccumBuffer()
Returns a pointer to the XglPixRectMem object that represents the software
accumulation buffer. This function should be overridden by all devices that
have a software implementation of the accumulation buffer. The default
return is NULL, meaning that if the device has a hardware accumulation
buffer, it does not need to override this function.

virtual Xgl_boolean needRtnDevice()
Returns TRUE if the base device needs a shadow device for backing store.
Device pipelines that provide for backing-store support in hardware will
override this function, as will Xlib or PEXlib pipelines that use backing-store
support in the server.

Overridable Functions in DpDevMemRas.h

Note – For all practical purposes, there is only one Memory Raster pipeline,
which is provided by XGL. The device pipeline does not need to override the
functions in DpDevMemRas.h, as they are overridden in XGL’s Memory Raster
pipeline.

virtual XglPixRectMem* getImageBufferPixRect()
Returns a pointer to the XglPixRectMem object that represents the image
buffer for the memory raster. The default return is NULL.

Pipeline Framework 57

3

virtual XglPixRectMem* getZBufferPixRect()
Returns a pointer to the XglPixRectMem object that represents the Z-buffer
for the memory raster. The default return is NULL.

virtual XglPixRectMem* getAccumBufferPixRect()
Returns a pointer to the XglPixRectMem object that represents the
accumulation buffer for the Memory Raster. The default return is NULL.

virtual Xgl_accum_depth getAccumBufferDepth()
Returns a value for the depth of the accumulation buffer. The default return
value is XGL_ACCUM_DEPTH_2X.

virtual void setCmap(XglCmap*)
Sets the color map. This function maps to the API attribute
XGL_DEV_COLOR_MAP and is used by the XGL core to inform the pipeline
when the XGL Color Map object changes. The input argument is a pointer to
the Color Map object.

virtual void setImageBufferAddr(Xgl_usgn32*)
Specifies the array of pixels used in an XGL Memory Raster. This function
maps to the API attribute XGL_MEM_RAS_IMAGE_BUFFER_ADDR. See the
XGL_MEM_RAS_IMAGE_BUFFER_ADDR reference page for more information.

virtual void setZBufferAddr(Xgl_usgn32*)
Sets the starting address of the block of memory for the Z-buffer of a
Memory Raster. This function maps to the API attribute
XGL_MEM_RAS_Z_BUFFER_ADDR. See the XGL_MEM_RAS_Z_BUFFER_ADDR
reference page.

virtual void setLineBytes(Xgl_usgn32)
Sets the linebytes value when the memory raster is set up to access
memory for retained windows. linebytes is the number of bytes that
separates one line in a raster, in other words, the number of bytes from (x,y)
to (x,y+1).

58 XGL Device Pipeline Porting Guide—August 1994

3

What Else You Should Know
This section provides additional information about the pipeline framework
classes that you might need to know as you set up your device pipeline.

How a Device Pipeline Is Loaded

A device pipeline is loaded when the application calls xgl_inquire() or
calls xgl_object_create() to create a Device object for the first time. With
the device object creation call, the application passes in the device type and the
descriptor containing the X window identifying information. The XGL core
then proceeds to create the objects needed for the pipeline. The pipeline
loading part of this process is as follows:

1. When the application requests a Device object with
xgl_object_create() , the System State object initiates the creation of the
device-independent part of the Device object. In the case of a window raster,
XglRasterWin is created.

2. When XglRasterWin is created, it calls XglDrawable ::grabDrawable() to
obtain an XglDrawable object of the appropriate type for the XGL device.

3. During the creation process of XglRasterWin, the Device object asks the
XglGlobalState object to create its device-dependent part.

4. In the process of creating the device-dependent part of the Device object, the
XglGlobalState object does the following:

a. It gets the name of the pipeline shared object file by calling the Window
Raster’s XglDrawable::getPipeName() routine. This routine issues a
system call to the kernel device driver, using the VIS_GETIDENTIFIER
ioctl() , to get a string specifying the name of the device when the
device is a frame buffer. This string can then be used to create the
pipeline name, which is of the form:

xgl<COMPANY NAME><device name>.so.<major version>

b. The XglGlobalState::getDpLib() routine then traverses the Global
State’s XglDpLibList object list to determine if an object for the pipeline
library already exists. If so, it returns.

Pipeline Framework 59

3

If XglGlobalState does not find a match in its XglDpLibList,
XglGlobalState::loadPipeLib() loads the pipeline using
dlopen() , which is an interface routine in the Solaris dynamic linking
mechanism. dlopen() gives XGL runtime access to the device pipeline
shared object file and binds it to XGL’s process address space.

c. XglGlobalState::loadPipeLib() then creates the XglDpLib object
for the pipeline by calling the device pipeline’s
xgl_create_PipeLib() routine, which is defined in the pipeline and
accessed through dlsym() . xgl_create_PipeLib() first checks the
DDK major and minor version numbers to ensure that the pipeline is
compatible with the core XGL library that is attempting to load it. If this
check succeeds, xgl_create_PipeLib() creates an instance of the
pipeline-derived XglDpLib class and returns a pointer to the object. This
pointer is appended to the XglGlobalState’s XglDpLibList object for
future reference. The XglDpLib object represents a single pipeline.

At this point, the process of pipeline object creation continues with the
instantiation of the pipeline XglDpMgr object and the pipeline XglDpDev
object. For detailed information on the complete set of steps that occur during
pipeline creation, see the XGL Architecture Guide.

Device Pipeline Objects for Multiple Processes

The device pipeline objects in Figure 3-2 are created when a pipeline is
instantiated on a single frame buffer from a single application.

Figure 3-2 Pipeline Objects for a Single Application

When a single application opens windows on a two-headed system in which
the frame buffers are the same type, there is one XglDpLib object, an
XglDpMgr for each frame buffer, and an XglDpDev object for each window.
The single application program is one UNIX process. A diagram of a single
application opening one window on each of two identical frame buffers would
look like Figure 3-3 on page 60.

XglDpLibFb XglDpMgrFb XglDpDevFb➪
Application
 Process 1

60 XGL Device Pipeline Porting Guide—August 1994

3

Figure 3-3 Pipeline Objects for an Application on Multiple Frame Buffers

When there is more than one application program using XGL, there is a UNIX
process for each application. If there are two application programs, there are
two UNIX processes. In this case, there is an XglDpLib object for each process,
an XglDpMgr object corresponding to each XglDpLib, and an XglDpDev object
for each window. Figure 3-4 shows the pipeline objects that are created for two
application programs running on one frame buffer. The second application
opens two windows.

Figure 3-4 Pipeline Objects for Two Applications

The XGL/DGA system does not describe how an accelerator accommodates
two or more application processes. DGA is basically a concurrency control
mechanism; it will serialize concurrent accesses, but it does not mandate how
the accelerator handles state information for different processes. You must
coordinate the interaction between the XglDpLib objects for each process.

If the application programs run on a two-headed system with frame buffers of
different types, for example, your frame buffer and a GX frame buffer, the
pipeline objects that are created might look like Figure 3-5 on page 61.

XglDpLibFb XglDpMgrFb XglDpDevFb➪

XglDpMgrFb XglDpDevFb

Application
 Process 1

XglDpLibFb XglDpMgrFb XglDpDevFb

XglDpLibFb XglDpMgrFb XglDpDevFb

Application

XglDpDevFb

➪

➪

Application
 Process 2

 Process 1

Pipeline Framework 61

3

Figure 3-5 Pipeline Objects for Applications on Multiple Frame Buffers

Adding Member Data to a Pipeline Class

When creating subclassed pipeline classes, you can add member data
whenever needed. The following example illustrates a way to add and
initialize a pointer to the device manager as member data in the XglDpDev
and XglDpCtx subclasses.

1. First, add a device pipeline manager pointer as member data and a device
pipeline manager parameter to the constructors of XglDpDevSampDp and
XglDpCtx[2/3]dSampDp :

class XglDpDevSampDp : public XglDpDevWinRas {
 friend XglDpLibSampDp;
private:
 // call base class constructor with device,
 // assign device manager pointer (dev_mgr)
 // to member data dpMgr
 XglDpDevSampDp(XglDevice* device, XglDpMgrSampDp* dev_mgr)
 : XglDpDevWinRas(device), dpMgr(dev_mgr) { }

 XglDpMgrSampDp* dpMgr; // device manager pointer
 // other declarations
};

class XglDpCtx3dSampDp : public XglDpCtx3d {
 friend XglDpDevSampDp;
private:
 // call base class constructor with context,
 // assign device manager pointer (dev_mgr)

XglDpLibFb XglDpMgrFb XglDpDevFb

XglDpDevGx

➪

➪ XglDpLibFb XglDpMgrFb XglDpDevFb

XglDpLibGx XglDpMgrGx➪

Application

Application
 Process 2

Process 1

62 XGL Device Pipeline Porting Guide—August 1994

3

2. Modify the object-creation functions to pass the device manager pointer to
the constructors:

 // to member data dpMgr
 XglDpCtx3dSampDp(XglContext3d* context, XglDpMgrSampDp*
 dev_mgr)
 : XglDpCtx3d(context), dpMgr(dev_mgr)
 {
 opsVec[XGLI_LI1_MULTIPOLYLINE] =
 XGLI_OPS(XglDpCtx3dSampDp::li1MultiPolyline);

 // Attribute changes
 opsVec[XGLI_LI_OBJ_SET] =
 XGLI_OPS(XglDpCtx3dSampDp::objectSet);

 // Message handler
 opsVec[XGLI_LI_MSG_RCV] =
 XGLI_OPS(XglDpCtx3dSampDp::messageReceive);
 }
 XglDpMgrSampDp* dpMgr; // device manager pointer
 // other declarations
};

XglDpDev* XglDpMgrSampDp::createDpDev(XglDevice* device)
{
 // “this” is the device manager (XglDpMgrSampDp) itself
 return new XglDpDevSampDp(device,this);
}

XglDpCtx3d* XglDpDevSampDp::createDpCtx(XglContext3d* context)
{
 // here dpMgr is a member data of XglDpDevSampDp
 return new XglDpCtx3dSampDp(context,dpMgr);
}

class XglDpDevSampDp : public XglDpDevWinRas {

Pipeline Framework 63

3

Versioning

The XGL core library (libxgl.so) dynamically loads device pipeline modules
at runtime; therefore, a versioning scheme is required to ensure that the core
library and the pipeline that it loads are compatible. The versioning scheme is
implemented both as part of the XGL core library and as part of the Driver
Developer Kit (DDK).

The DDK contains header files that define the interfaces between the core XGL
library and the dynamically loaded pipeline modules. The core library and the
DDK have a version number that is called the DDK version number. This
version number, which contains both major and minor parts, is defined by two
macro definitions in the file xgli/DdkVersion.h . The macro definitions for
the current release are:

#define XGLI_DDK_MAJOR_VERSION 4

#define XGLI_DDK_MINOR_VERSION 0

Every XGL device pipeline must include the DdkVersion.h header file in
order to use the versioning information.

Versioning Rules

Each release of XGL is accompanied by a corresponding release of the DDK
containing files used to build the core XGL library and the reference device
pipelines. Independent Hardware Vendors (IHV’s) use the DDK to build a
device handler that is compatible with the core XGL library in that release.

The DDK version number is unrelated to the XGL API library version number.
For example, the 3 in libxgl.so.3 is the version number of the XGL API
release. It is not related to the internal DDK majorVersion number. IHV’s
supplying XGL device pipelines must conform to the following versioning
rules:

1. The DDK majorVersion (defined in xgli/DdkVersion.h) used to build
the device pipeline is stamped in the file name of the device pipeline, such
as, xglSUNWcg6.so.4 , where the 4 is the same as majorVersion . The
convention used to name the device pipelines is:

 xgl<COMPANY NAME><device name>.so.<majorVersion>

64 XGL Device Pipeline Porting Guide—August 1994

3

2. The core XGL library is stamped internally with both the DDK major and
minor version numbers of the DDK used to build it. The core XGL library
will never load a pipeline with a DDK majorVersion greater than its own.
For example, libxgl.so with DDK internal version number 3 will not load
a pipeline named xglSUNWcg6.so.4 .

3. The core XGL library will load a device pipeline with a DDK
majorVersion less than its own DDK majorVersion only if the XGL core
library has explicitly decided to emulate that lesser majorVersion
interface. Every time a new version of XGL and the XGL DDK are released,
this DDK document will specify which, if any, DDK major versions are
emulated by the core XGL library.

For this release of the DDK (major version 4, minor version 0), no prior
versions are emulated.

4. The core XGL library will always attempt to dynamically load a device
pipeline that has the same DDK majorVersion as itself. If the device
pipeline depends on functionality that was added in a particular
minorVersion of the DDK, your pipeline must check for the existence of
that functionality by checking the core library’s DDK version number.

A device pipeline can provide its own workaround if the functionality does
not exist, or it can fail with an appropriate error message indicating the core
library version that is required.

The functionality differences between minorVersion releases of the DDK
will be documented in the DDK documentation. A device pipeline can check
the core library’s DDK version number by calling the global library function
xglGetDdkVersion() from within its xgl_create_PipeLib() function,
as declared in xgli/DdkVersion.h .

Pipeline Framework 65

3

There is also an XGLI_PIPELINE_CHECK_VERSION() macro in the
DdkVersion.h file which shows a sample implementation. A device
pipeline is free to use it or implement its handling in the
xgl_create_PipeLib() routine as long as it adheres to the versioning
rules stated above.

Backing Store Support in the Pipeline Classes

The XGL core is responsible for handling XGL backing store device creation
and use. The device pipeline needs only to implement a small set of device-
dependent functions in certain cases. This section summarizes the functions
that the device pipeline needs to implement. For more information on how the
XGL core handles backing store, see the XGL Architecture Guide.

Backing Store Clipping Status Values

If the device pipeline can determine whether a primitive is clipped, it can
notify the device-independent layer with the setPrimClipStatus () function
to indicate the current status. The following argument values are defined in
DpCtx.h :

XGLI_DP_STATUS_FAIL The primitive could not be
rendered.

XGLI_DP_STATUS_SUCCESS The primitive was successfully
rendered and may or may not have
been clipped.

XGLI_DP_STATUS_FULLY_RENDERED The primitive was successfully
rendered without being clipped.

#include “xgli/DdkVersion.h”

//
// Interface routine called after pipeline loading
//

XglPipeLib* xgl_create_PipeLib()
{
 XGLI_PIPELINE_CHECK_VERSION(XglDpLibSampDp);
}

66 XGL Device Pipeline Porting Guide—August 1994

3

You can use the value XGLI_DP_STATUS_FULLY_RENDERED for all the
primitives at the LI-1 level.

The XGLI_DP_STATUS_FULLY_RENDERED value means that the primitive was
successfully rendered, and that the primitive was fully rendered into the
window without any clipping. This argument value is optional and applies
only to synchronous accelerators (those without queues). If the graphics device
cannot determine whether the primitive is clipped, it is not necessary to call
setPrimClipStatus ().

The XGLI_DP_STATUS_FULLY_RENDERED value is an optimization to improve
the performance of applications using backing store when the window is
partially covered. If a device pipeline can set this status, performance is
increased if there is a backing-store device and if the window is partially
covered. This optimization does not apply to accelerators that cannot
determine the clip status.

Note – The device pipeline should never set the value
XGLI_DP_STATUS_UNCLIPPED (defined in DpCtx.h). This value is for
internal use only.

Backing Store in Window Raster Pipelines

The following functions in XglDpDevWinRas.h should be overridden by all
devices that provide Z-buffers or accumulation buffers in software. See page 54
for information on these functions.

• virtual XglPixRectMem* getSwZBuffer()

• virtual XglPixRectMem* getSwAccumBuffer()

Device pipelines that can handle backing store in hardware or the X11 server
(for example, the PEXlib pipeline) will override the following function. A
pipeline that returns FALSE can ignore the remainder of the functions in this
section.

• virtual Xgl_boolean needRtnDevice()

Pipeline Framework 67

3

Backing Store Support for Backing Store Devices

Devices that provide backing store support, such as Memory Raster devices or
a hardware device with a cache for backing-store memory, will override these
functions in XglDpDevRaster.h . See page 53 for information.

• virtual void setSwZBuffer(XglPixRectMem*)

• virtual void setSwAccumBuffer(XglPixRectMem*)

• virtual void syncRtnDevice(XglRasterWin*)

Backing Store Support in the Dp Manager

The device pipeline manager object provides an object descriptor for the
backing store device:

XglDpDev* XglDpMgrFb::createDpDev(XglDevice*,
 Xgl_obj_desc* bkstore_desc=NULL);

When the XGL core creates a backing store device, the descriptor is passed in
as follows:

bkstore_desc.win_ras.type = XGL_WIN_RAS_BACKING_STORE;
bkstore_desc.win_ras.desc = (pointer to the parent device);

A device pipeline can ignore this parameter if appropriate.

Note – The XGL API cannot support backing store and double buffering at the
same time. Even if your device can support both, there are issues regarding the
synchronization of double buffering and backing store with the X11 server that
are not resolved in the current release of the server. Therefore, an application
backing store request is denied by the XGL core when double buffering is
enabled. Thus, even if your pipeline supports both double buffering and
backing store, the pipeline will not be called for backing store when double
buffering is enabled. See the XGL_WIN_RAS_BACKING_STORE reference page
for details.

68 XGL Device Pipeline Porting Guide—August 1994

3

Quick Reference Chart of Overridable Functions

In the device pipeline classes there are some functions that your device
pipeline must override and other functions that are optional. Whenever
possible, XGL provided defaults for functions; however, you will probably
want to override XGL’s version of these functions if your device can accelerate
the functionality. Required functions are completely device dependent.

Table 3-2 provides a quick reference summary of all the pipeline functions;
those marked “Required” must be overridden by the device pipeline, or an
error will be returned. For information on input arguments and return values
for the functions in the device pipeline classes, see page 52. For information on
the LI-1, LI-2, and LI-3 loadable interfaces, see Chapter 9, “Writing Loadable
Interfaces”..

Table 3-2 Summary of Optional and Required Pipeline Functions

Class Function Name Status

Device pipeline .so file xgl_create_PipeLib() Required

XglDpLib getDpMgr() Required

XglDpMgr createDpDev()
inquire()

Required
Required

XglDpDev createDpCtx() for 2D
createDpCtx() for 3D
copyBuffer() for 2D
copyBuffer() for 3D

getDcOrientation()
getMaxZ()
getGammaValue()

Required
Required
Required
Required

Optional
Optional
Optional

XglDpDevRaster setRectList()
setRectNum()
setSourceBuffer()
setSwZBuffer()
setSwAccumBuffer()
syncRtnDevice()

All
optional

Pipeline Framework 69

3

XglDpDevWinRas getDepth()
getAccumBufferDepth()
getRealColorType()
resize()
setBackingStore()
setBufDisplay()
setBufDraw()
setBufMinDelay()
setCmap()
setPixelMapping()
setStereoMode()
setBuffersRequested()
getSwZBuffer()
getSwAccumBuffer()
needRtnDevice()

All
optional

XglDpDevMemRas getImageBufferPixRect()
getZBufferPixRect()
getAccumBufferPixRect()
getAccumBufferDepth()
setCmap()
setImageBufferAddr()
setZBufferAddr()
setLineBytes()

All
optional

XglDpCtx2d
LI-1 Primitives li1AnnotationText()

li1DisplayGcache()
li1MultiArc()
li1MultiCircle()
li1MultiMarker()
li1MultiPolyline()
li1MultiRectangle()
li1MultiSimplePolygon()
li1NurbsCurve()
li1Polygon()
li1StrokeText()

All
optional

Table 3-2 Summary of Optional and Required Pipeline Functions (Continued)

Class Function Name Status

70 XGL Device Pipeline Porting Guide—August 1994

3

Pixel and Raster
Operators

li1NewFrame
li1CopyBuffer()
li1GetPixel()
li1Image()
li1SetMultiPixel()
li1SetPixel()
li1SetPixelRow()
li1Flush()
li1PickBufferFlush()

Required
Required
Required
Optional
Optional
Required
Optional
Optional
Optional

LI-2 Functions li2GeneralPolygon
li2MultiDot()
li2MultiEllipse()
li2MultiEllipticalArc()
li2MultiPolyline()
li2MultiRect()
li2MultiSimplePolygon()

All
optional

LI-3 Functions li3Begin()
li3End()
li3MultiDot()
li3Vector()
li3MultiSpan()
li3CopyFromDpBuffer()
li3CopyToDpBuffer()

All
required

State Changes objectSet() Required

Message Passing messageReceive() Required

XglDpCtx3d
LI-1 Primitives All 2D primitives and the following:

li1MultiEllipticalArc()
li1NurbsSurf()
li1QuadrilateralMesh()
li1TriangleList()
li1TriangleStrip()

All
optional

Pixel and Raster
Operators

All 2D pixel and raster functions and the
following:
li1Accumulate()
li1ClearAccumulation()

Optional
Optional

Table 3-2 Summary of Optional and Required Pipeline Functions (Continued)

Class Function Name Status

Pipeline Framework 71

3

LI-2 Functions li2GeneralPolygon()
li2MultiDot()
li2MultiPolyline()
li2MultiSimplePolygon()
li2TriangleList()
li2TriangleStrip()

All
optional

LI-3 Functions li3Begin()
li3End()
li3MultiDot()
li3Vector()
li3MultiSpan()
li3CopyFromDpBuffer()
li3CopyToDpBuffer()

All
required

State Changes objectSet() Required

Message Passing messageReceive() Required

Table 3-2 Summary of Optional and Required Pipeline Functions (Continued)

Class Function Name Status

72 XGL Device Pipeline Porting Guide—August 1994

3

73

Internal Data Storage 4

This chapter describes the internal data types that XGL uses to transfer
information from one part of the pipeline to another. It explains how the data
types are constructed and shows some examples of their use. The chapter
includes information on the following topics:

• Data storage in the XglPrimData object

• Accessing partially processed geometry data in XglPrimData at the LI-2
level

• Conic and rectangle data storage in the XglConicData2d, XglConicData3D,
XglRectData2d, and XglRectData3d objects

• Accessing pixel data in the PixRect object.

As you read this chapter, you will find it helpful to have access to the
following header files:

• PrimData.h
• RectData2d.h and RectData3d.h
• ConicData2d.h and ConicData3d.h
• PixRect.h , PixRect2d.h , and PixRect3d.h

.h

74 XGL Device Pipeline Porting Guide—August 1994

4

Internal Data Types
The XGL API offers a wide variety of point types that applications can use to
pass data to XGL. Although varied, these point types do not contain all the
information that a device pipeline might need to efficiently display the data. To
solve this problem, XGL designed a number of internal data types that the
pipeline can reference to get application data. These internal data types contain
both the application geometry and some useful information about the
geometry.

At the LI-1 layer, the API parameters are passed directly to the device pipeline.
For more information on the LI-1 API arguments, refer to the XGL Reference
Manual.

Most geometry in XGL that is passed to and between loadable interface layer 2
is stored under the control of a C++ class called XglPrimData. This class
contains pointers to the original API data (essentially the arguments to the API
primitive), together with a framework that is used internally by the software
pipeline. XglPrimData is used to handle both 2D and 3D point and facet types;
the same structures are used in both cases.

Although XglPrimData is the input to many of the rendering functions in LI-2,
it is not used for rendering conics (circles, arcs, ellipses, or elliptical arcs) or
rectangles. Conic data is stored in either the XglConicData2d object or the
XglConicData3d object. Similarly, rectangle data is stored in the XglRectData2d
object or the XglRectData3d object. These objects are similar to XglPrimData.
The sections that follow discuss accessing data from these objects and from
XglPrimData.

At the LI-3 layer, a different set of data structures is used for point data. These
data structures, along with the LI-3 functions that use them, are described in
Chapter 9, “Writing Loadable Interfaces”. To help you implement the LI-3
layer, XGL provides a set of utilities that render to a device via the PixRect
object. A PixRect is an abstraction of a rectangular array of pixels that
represents the underlying frame buffer. Information on the PixRect object and
its interfaces is provided in this chapter on page 89.

Internal Data Storage 75

4

Accessing Data at the LI-1 Layer
To access data at the LI-1 layer, the device pipeline receives the API data
directly from the application. Figure 4-1 illustrates the flow of data through the
LI-1 primitive.

Figure 4-1 Flow of Application Data Through the LI-1 Primitive

This section presents several code samples for accessing application data. You
can copy or modify these source code samples and the other source code
samples in this chapter as long as the resulting code is used to create a loadable
pipeline for XGL.

Accessing Application Data

The example below shows how a fictitious device might access data from the
application to draw a simple 2D multipolyline.

void XglDpCtx2dExample::li1MultiPolyline(
Xgl_bbox* bounding box,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list *pl);

{
//
// NOTE: This example assumes a point type of Xgl_pt_f2d
//
Xgl_pt_f2d*pt;
int num_pts;

//
// Loop through the point lists.
//

Application
data

Application

Backing Store

XGL Core DeviceDevice Pipeline

 Renderer
Error Checking

Deferral=ASAP

or

or

76 XGL Device Pipeline Porting Guide—August 1994

4

Accessing Facet Data

This example shows how to access facet data for 3D surfaces, as well as how to
access other data. This example assumes that
xgl_multi_simple_polygon() has been called with facet colors and that
lighting is enabled. This requires that the fictitious device send down a color
for each facet, as well as a normal for each vertex.

for (; num_pt_lists>0 ; num_pt_lists--, pl++) {

//
// Check for at least 2 vertices per point list
//
if ((num_pts = pl->num_pts) < 2)

continue;

//
// Send all vertices to hardware
//
for (pt=pl->pts.f2d ; num_pts>0 ; num_pts--, pt++) {

send_xcoord_to_hardware(pt->x);
send_ycoord_to_hardware(pt->y);

}
}

}

void XglDpCtx3dExample::li1MultiSimplePolygon(
Xgl_facet_flags flags,
Xgl_facet_list *facets,
Xgl_bbox *bbox,
Xg_usgn32 num_pt_lists,
Xgl_pt_list pl);

{
//
// NOTE: This example assumes a point type of
// Xgl_pt_normal_f3d and a facet type of Xgl_color_facet
//

int num_pts;
Xgl_color *fc=facets->facet.color_facets;

//
// Loop through all the point lists

Internal Data Storage 77

4

Point Lists with Data Mapping Values

When data-mapping values are present in the point list, the point size is equal
to the sum of the sizes of all of the fields as mentioned above, but only one of
the data values is accounted for. For instance, if the point type is
Xgl_pt_data_f3d, and there are three data values per point, then the point size is
16 (x,y,z = 12 bytes, plus 4 bytes for the first data value). To calculate the
correct point size the following equation must be used:

true_point_size = point_size + (num_data_values - 1)*sizeof(float)

//
for (; num_pt_lists>0 ; num_pt_lists--, pl++ , fc++) {

//
// Check for at least 3 vertices per point list
//
if ((num_pts = pl->num_pts) < 3)

continue;

//
// Set the color for the next facet.
//
send_rcolor_to_hardware(fc->color.rgb.r);
send_gcolor_to_hardware(fc->color.rgb.g);
send_bcolor_to_hardware(fc->color.rgb.b);

//
// Send all vertices and normals to hardware
//
for (pt=pl->pts.normal_f3d ; num_pts>0 ; num_pts--,

 pt++) {

send_xnorm_to_hardware(pt->normal.x);
send_ynorm_to_hardware(pt->normal.y);
send_znorm_to_hardware(pt->normal.z);

send_xcoord_to_hardware(pt->x);
send_ycoord_to_hardware(pt->y);
send_zcoord_to_hardware(pt->z);

}
}

}

78 XGL Device Pipeline Porting Guide—August 1994

4

The number of data values is recorded in a field of Xgl_pt_list. The reason this
extra calculation is necessary is that some primitives (like multisimple
polygon) take an array of point lists as an argument. The number of data
values per vertex in each list can be different; thus, the point size can be
different for each list.

Data Access for DMA Devices

The next example shows how a device that uses direct memory access (DMA)
might access data. Devices that use DMA to transfer data require only a
starting point from which to copy the data and the size of the data block
(together, perhaps, with some header block that describes the type of data).

The geometric information pointed to by the Xgl_pt_list structure is guaranteed
to always be contiguous. This is true even if a device pipeline is being called
back by the software pipeline. This means that this interface is appropriate for
devices that use DMA to communicate data to their hardware or copy it across
from the host as do the two previous examples.

void XglDpCtx2dDmaExample::li1MultiPolyline(
Xgl_bbox* bbox,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list* pl);

{
// NOTE: This example assumes a point type of Xgl_pt_f2d
//
// Loop through the point lists
//
for (; num_pt_lists>0 ; num_pt_lists--, pl++) {

//
// Check for at least 2 vertices per point list
//
if (pl->num_pts < 2)

continue;
// Send all vertices to hardware
//
wait_for_outstanding_dma_to_finish();
send_dma_ptlist_to_hardware(pl->pts.f2d,

pl->num_pts*sizeof(Xgl_pt_f2d));
}

}

Internal Data Storage 79

4

How Data Is Stored by the Software Pipeline
The XglPrimData class includes a subclass called XglLevel. This class is used
by the software pipeline to store the results of processing the original API data.
A level is a memory area for storing primitive data. Each time the data is
modified, as it would be after transformations, clipping, lighting, depth cueing,
shading, or texture mapping, a new level is started. This allows the software
pipeline to move data around as it processes data and provides it with access
to previous stages of the pipeline. It also allows a device pipeline to refer back
to an earlier version of the data. Figure 4-2 illustrates the XglLevel objects that
would be created for a hypothetical software pipeline that transformed,
clipped, and lit the geometry data; level 0 contains the original API data.

Figure 4-2 Level Objects Created by Software Pipeline Processing

The XglPrimData class maintains an array of XglLevel objects. This is
effectively a stack, with each object representing the data in various stages of
processing. The bottommost XglLevel object, level 0, contains the API data,
while the topmost object contains the processed geometry. In an LI-2 renderer
the data to be used is read out from this topmost object. Figure 4-3 on page 80
illustrates the flow of data from the application to a device pipeline that is
ported at the LI-2 layer.

Transformation Clipping LightingSoftware pipeline

Level 3Level 1 Level 2Level 0

called

80 XGL Device Pipeline Porting Guide—August 1994

4

Figure 4-3 Flow of Point Data Through XglPrimData and XglLevel

Data Storage in the XglLevel Object

The XglLevel class stores data in a noncontiguous format. This is done by
specifying a base-pointer and step-size pair for each field in the point that is
being processed. The base pointer points to the field for the first point in the
list. The step size indicates how many bytes to increment the pointer to get to
the field in the second point (and so on).

Initially, the base pointers all point to the beginning of the API data, and the
step sizes are all the same, in other words, equal to the point size. Graphically,
this would look something like Figure 4-4, assuming a point type that
contained geometry, colors, and normals.

Figure 4-4 Base/Offset Data Storage in XglLevel

Thus, to get to the color field of the second point, the color base pointer would
be incremented by the point size.

Application

data

Application
XglPrimData

Device
Device Pipeline

LI-2 Renderer

getCurrentLevelData()

Software Pipeline

level 3

level 2

level 1

level 0

step sizes = point size

xyz color normal

Geometry base pointer

Normal base pointer

Color base pointer

xyz color normal

Internal Data Storage 81

4

During normal operation of a software LI-1 routine, one or more of these
pointers is replaced by a pointer to a different area of memory, local to XGL.
The step sizes are adjusted accordingly. For instance, starting from the sets of
pointers and step sizes pictured above, the geometry values may be
transformed, and the results stored to a different area of memory. This would
change the picture to something like Figure 4-5.

Figure 4-5 Base/Offset Data When the Point Data Has Changed

The geometry base pointer no longer points to the API data, but rather to an
array of points local to the pipeline. Since the transformation did not affect the
colors or the normals, their pointers still point to the API data. The new
geometry step size will be equal to the size of [x,y,z] since the array contains no
other information. This technique allows the software pipeline to process data
efficiently, since only that data which is actually modified is copied.
Unmodified data is left in its original form in the user’s space.

In order to hold both the separate pointers and step sizes, an internal point list
structure, Xgli_point_list, is used. This structure contains the data outlined
above, in addition to some flags that control rendering, such as a close flag for
polylines that joins the first and last vertices, and an indication of whether a 3D
surface is front facing or back facing. See XglPrimData.h for the structures
that make up XglLevel.

step sizes = point size

Geometry base pointer

xyz color normal

Normal base pointer

Color base pointer

xyz color normal

xyz’ xyz’ xyz’

82 XGL Device Pipeline Porting Guide—August 1994

4

LI-2 Point Data
LI-2 point data is stored internally under the control of the XglPrimData object.
The information relevant to the device pipeline is stored in an object called
XglLevel within the XglPrimData object. XglLevel contains point list
information that is created when the data moves down through the software
pipeline. For example, the first level, level 0, is created when the LI-1 software
pipeline is called. If points are transformed, the transformed points are stored
at a different level than the original points. Level objects are used extensively
by the software pipeline and are the device pipeline LI-2 layer interface to the
processed geometry.

Accessing Data at the LI-2 Layer

Since the software pipeline makes use of the XglLevel structures in its LI-1
processing, any device pipeline LI-2 functions must extract data in XglLevel
format from these structures. Level format means that all the point and facet
lists have been broken down into base-pointer/step-size format, as shown in
Figure 4-4 and Figure 4-5.

The methods for extracting data in level format use the XglPrimData method
getCurrentLevelData() . This method provides offset and step-size
information that is available from the structure directly which does not have to
be computed.

The following code fragment is an example of how a device pipeline might
implement an LI-2 polyline renderer.

XglDpCtx2dExample::li2MultiPolyline(XglPrimData *pd)
{

//
// First get the XglLevel structure.This method gets the
// current level, that is the one that contains the most
// up-to-date data.
//
level = pd->getCurrentLevelData();

//
// Get the number of point lists, and the point lists
// themselves.
//
num_pl = level->getNumPointLists();

Internal Data Storage 83

4

Note – The lighting_coeffA_ptr, lighting_coeffB_ptr, and use_lighting_coeffs fields
in the Xgli_point_list and Xgli_facet_list structures used by XglLevel store the
lighting coefficients on a per-vertex and per-facet basis when lighting is on and
texturing is on. See Chapter 9, “Writing Loadable Interfaces” for more
information on texture mapping.

pl = level->getPointLists();

//
// See if we have to close the polylines. If this routine is
// being called to draw a hollow polygon, for instance, then
// the first and last points need to be connected.
//
close_flag = pd->getProcessFlags() & XGLI_CLOSE_FLAG;

//
// Loop on the point lists.
//
for (i = 0; i < num_pl; i++) {

pt = (Xgl_pt_i2d*) pl->geom_ptr.base_ptr;

//
// Loop on the points in each point list.
//
for (j = 0; j < pl->current_num_points; j++) {

send_to_hardware(pt->x);
send_to_hardware(pt->y);
XGLI_INCR(pt, Xgl_pt_i2d*, pl->geom_ptr.step_size);

 }

//
// Optionally close the polyline - send down the 1st pt
// again.
//
if (close_flag) {

pt = (Xgl_pt_i2d*) pl->geom_ptr.base_ptr;
send_to_hardware(pt->x);
send_to_hardware(pt->y);

}
}

}

84 XGL Device Pipeline Porting Guide—August 1994

4

Pipeline Interfaces to XglPrimData and XglLevel Data

Table 4-1 lists XglPrimData interfaces that the device pipeline can use to get
point data and to get information about point data.

Table 4-2 lists useful interfaces from the XglLevel subclass of XglPrimData.

Table 4-1 XglPrimData Interfaces

Function Description

getLevelData() Returns the data for a specified level.

getCurrentLevel()
getCurrentLevelData()

Return the data for the current level.

getProcessFlags() Returns a value indicating which software
pipeline processing steps (such as clipping or
lighting) need to be done.

Table 4-2 XglLevel

Function Description

getPointLists() Returns the API data point lists.

getFacetList() Returns the API data facet lists.

getNumPointLists() Returns the number of point lists.

getRenderFlags() Returns API rendering flags.

getFaceAttrs() Returns the front facing and back facing
attributes.

Internal Data Storage 85

4

Conic and Rectangle Data
The conic and rectangle data at the LI-1 layer is defined at the API level. This
section discusses the conic and rectangle data at the LI-2 layer.

The XglConicData{2,3}d and XglRectData{2,3}d data structures are used to hold
information for rendering conics and rectangles. These data structures are
based on XglPrimData in that they organize the data into levels and use a base-
pointer/step-size technique. They differ from XglPrimData in that the level
structures are used at LI-2.

The level data in XglConicData is contained in an array of objects of type
XglConicList{2,3}d rather than an array of XglLevel objects. Each XglConicList
object is a level for a stage of the software pipeline for the conic. The object
contains pointers to a list of conic data for each of the items describing a circle,
arc, or other conic geometry, as well as information on the number of conics.
The API data is referenced at level 0.

Similarly, the level data in XglRectData is contained in an array of objects of
type XglRectList{2,3}d. XglRectList has pointers to a list of rectangles specified
in Xgl_rect_list as a base and offset. The base points to the first rectangle in the
list and the offset specifies the step size to access the next rectangle. The
XglRectList object also contains a value for the number of rectangles.

The following examples illustrate how the pipeline can retrieve information
from these objects.

Accessing Rectangle Data from XglRectData

This example shows how to access data from an XglRectData2d object.

void XglDpCtx2dExample::li2MultiRect(XglRectData2d* rd)
{

XglRectList2d* rlist;
Xgl_usgn32 num_rects; // number of rectangles
Xgl_rect_i2d* rectangle;

//
// Extract the list of rectangles from the data structure.
//
rlist = rd->getCurrentLevelData();
num_rects = rlist->getNumRects();

86 XGL Device Pipeline Porting Guide—August 1994

4

Accessing Conic Data from XglConicData

This example shows how to access data from an XglConicData2d object.

rectangle = (Xgl_rect_i2d *)(rlist
 ->cornerPoints.base_ptr);

//
// Loop through the list of rectangles.
//
for (long i = 0; i < num_rects; i++, rectangle++) {

send_to_hardware(rectangle->corner_min.x);
send_to_hardware(rectangle->corner_min.y);
send_to_hardware(rectangle->corner_max.x);
send_to_hardware(rectangle->corner_max.y);

}
}

void XglDpCtx2dExample::li2MultiEllipse(XglConicData2d* cd)
{

XglConicList2d* conic_list;
Xgl_usgn32 num_ells; // number of ellipses
Xgl_pt_flag_f2d* center;
Xgl_usgn32* major_axis;
Xgl_usgn32*minor_axis;
float* rot_angle;
Xgl_usgn32 center_step, major_axis_step,

minor_axis_step, rot_angle_step;
Xgli_pointer*ptr;

// Get conic data.
conic_list = cd->getCurrentLevelData();
num_ells = conic_list->getNumConics();

// Get rotation angle and step increment size.
ptr = conic_list->getRotAnglePtr();
rot_angle = (float *)ptr->base_ptr;
rot_angle_step = ptr->step_size;

//
// This device pipeline cannot handle rotated ellipses.
// Punt to software pipeline if rotation angle is not 0 or
// pi/2.
//
if (! (XGLI_EQUAL_ZERO(*rot_angle,

 XGLI_ANGULAR_TOLERANCE)

Internal Data Storage 87

4

 || XGLI_EQUAL_ZERO((*rot_angle) - M_PI_2,
 XGLI_ANGULAR_TOLERANCE))) {

swp->li2MultiEllipse(cd);
return;

}

// Get center and step increment size.
ptr = conic_list->getCenterPtr();
center = (Xgl_pt_flag_f2d *)ptr->base_ptr;
center_step = ptr->step_size;

// Get major axis and step increment size.
ptr = conic_list->getMajorAxisPtr();
major_axis = (Xgl_usgn32 *)ptr->base_ptr;
major_axis_step = ptr->step_size;

// Get minor axis and step increment size.
ptr = conic_list->getMinorAxisPtr();
minor_axis = (Xgl_usgn32 *)ptr->base_ptr;
minor_axis_step = ptr->step_size;

//
// Loop through the list of ellipses.
//
for (long i = 0; i < num_ells; i++) {

if (XGLI_EQUAL_ZERO(*rot_angle,
 XGLI_ANGULAR_TOLERANCE)) {

send_to_hardware_x(center->x - (*major_axis));
send_to_hardware_y(center->y - (*minor_axis));
send_to_hardware_w(2 * (*major_axis));
send_to_hardware_h(2 * (*minor_axis));
else {

send_to_hardware_x(center->x - (*minor_axis));
send_to_hardware_y(center->y - (*major_axis));
send_to_hardware_w(2 * (*minor_axis));
send_to_hardware_h(2 * (*major_axis));

}
XGLI_INCR(center, Xgl_pt_flag_f2d*, center_step);
XGLI_INCR(major_axis, Xgl_usgn32*, major_axis_step);
XGLI_INCR(minor_axis, Xgl_usgn32*, major_axis_step);
XGLI_INCR(rot_angle, float*, rot_angle_step);

}
}

88 XGL Device Pipeline Porting Guide—August 1994

4

Pipeline Interfaces to XglConicData and XglRectData

The following functions are provided by the XglConicData2d, XglConicData3d,
XglRectData2d, and XglRectData3d classes. These interfaces enable the device
pipeline to retrieve conic and rectangle level data for the current level or for a
different level. Table 4-3 lists interfaces provided by XglConicData.

Table 4-4 lists interfaces provided by XglConicList2d.

Table 4-3 XglConicData Interfaces

Function Description

getCurrentLevel() Gets the current level number. The API data is
level 0.

getLevelData() Gets data for a specified level.

getCurrentLevelData() Gets data for the current level.

Table 4-4 XglConicList2d Interfaces

Function Description

getNumConics()
setNumConics()

Get or set the number of conics in this level.

getConicType() Gets the conic type, which is one of
XGLI_CONIC_CIRCLE or XGLI_CONIC_ARC.

getConicDataType() Gets the conic data type.

getBbox() Gets the bounding box enclosing all conics of this
level.

getCenterPtr() Gets the pointer to the list of conic centers.

getFlagPtr() Gets the pointer to the list of flags.

getRadiusPtr() Gets the pointer to the list of radii.

getMajorAxisPtr() Gets the pointer to the list of major axes of ellipses
or elliptical arcs.

getMinorAxisPtr() Gets the pointer to the list of minor axes of
ellipses or elliptical arcs.

getRotAnglePtr() Gets the pointer to the list of rotation angles of
ellipses or elliptical arcs.

getStartAnglePtr() Gets the pointer to the list of start angles of arcs.

Internal Data Storage 89

4

Table 4-5 lists interfaces provided by the XglRectData classes.

Pixel Data
PixRects are objects that provide a uniform way of accessing and managing a
2D array of pixels. PixRects are used by the XGL core for Memory Rasters,
Context fill patterns, and accumulation buffers. Device pipelines use PixRects
in two ways:

• If the device pipeline uses RefDpCtx for LI-3 rendering, the pipeline will use
PixRects to represent the image buffer for 2D and to represent the image
buffer, Z-buffer, and accumulation buffer for 3D. See “RefDpCtx” on
page 348 for information on using RefDpCtx to implement LI-3 functions.

• PixRects are used as the raster image for copy buffer operations. See
page 293 in Chapter 9, “Writing Loadable Interfaces” and the section
beginning on page 38 in Chapter 3, “Pipeline Framework” for information
on copy buffer functions.

Pixel values in PixRects are unsigned and can be 1, 4, 8, 16, 32, or 48 bits in
depth. A pixel value can be specified by an (x,y) location, and you can get or
set a value at that location.

getStopAnglePtr() Get the pointer to the list of stop angles of arcs.

getStartPointPtr() Get the pointer to the list of start points of arcs.

getStopPointPtr() Get the pointer to the list of stop points of arcs.

Table 4-5 XglRectList2d and XglRectList3d

Function Description

getNumRects()
setNumRects()

Get or set the number of rectangles in this level.

Table 4-4 XglConicList2d Interfaces (Continued)

Function Description

90 XGL Device Pipeline Porting Guide—August 1994

4

Using PixRects

XglPixRect is the base class of the hierarchy that provides methods for using
PixRects. If your device’s buffers are memory mappable, the XglPixRect class
has several subclasses that memory-mapped frame buffers can use to declare
PixRect objects. If your device is not memory mappable or if your memory-
mapped device does not correspond to Sun’s memory format (see the XGL
Reference Manual page for the format of Sun Memory Rasters), you need to
subclass from XglPixRect for your frame buffer. The XglPixRect class hierarchy
looks like Figure 4-6.

Figure 4-6 XglPixRect Class Hierarchy

Memory-Based PixRects

The XglPixRectMem class is a specialized version of PixRect in which the
underlying pixels can be addressed as memory. In this class, memory-mapped
frame buffers and memory allocated via malloc are treated the same way. If
your device is a memory-mapped frame buffer and it corresponds to the Sun
memory layout, you can declare a PixRect object using one of the subclasses of
XglPixRectMem.

The XglPixRectMemAssigned class sets up PixRect data structures to point to
an existing piece of memory. An object of type XglPixRectMemAssigned is
based on a memory-mapped frame buffer, memory allocated via malloc , or on
an existing XglPixRectMemAllocated object. To create a PixRectMemAssigned
object, declare the PixRect, allocate the memory, and assign the memory to the
PixRect.

XglPixRectMem

XglPixRectMemAssigned XglPixRectMemAllocated

XglPixRect

XglPixRectYourFB

Internal Data Storage 91

4

An object of type XglPixRectMemAllocated dynamically allocates memory
itself to create a PixRect of a given width, height, and depth. To create an object
of this type, declare the object and then call its reallocate() function to
allocate the memory.

Subclassing a PixRect for a Non-Memory-Based Frame Buffer

If neither the image part of the buffers nor the Z-buffer is direct memory
mappable or if only one of the buffers can be accessed at a time, the device
pipeline must subclass its own PixRect implementation from PixRect.h . An
example of this is the case where the pixel values you want to read are not
memory based but are in a register or a set of registers.

In your device PixRect class, you can do whatever you need to do to access the
frame buffer. The RefDpCtx implementation requires separate PixRect objects
for the image buffer and the Z-buffer, so you might need two objects, one for
the image buffer and one for the Z-buffer, that are connected to manage the
registers between them.

PixRect Interfaces

Table 4-6 lists interfaces provided by XglPixRect and common to its subclasses.
These functions describe the basic interface to a PixRect. Note that the color
values are stored in xBGR format, where for a 24-bit RGB pixel, the physical
amount of memory is actually 32 bits in which the high-order byte is unused,
the next byte is blue, followed by one byte each of green and red intensity
values.

92 XGL Device Pipeline Porting Guide—August 1994

4

Table 4-6 XglPixRect Interfaces

Function Description

getValue()
setValue()

Return the value of a pixel or sets the value of a
pixel at the given coordinates. The PixRect must
have a depth less than 32 bits, where the depth
refers to the physical size rather than the layout of
the pixel (in other words, a 32-bit PixRect may
hold only 24 bits of information for RGB).
Undefined if the coordinate values are out of
bounds or the pixel is obscured. These functions
must be supplied by the subclasses.

getWidth()
getHeight()
getDepth()

Return the size of the PixRect.

isMemory() Returns TRUE if the PixRect can be accessed as
pure memory, as when the PixRect is in memory
or is a memory-mapped frame buffer, and the
pixel layout corresponds to the Sun standard pixel
format. See the man pages for XGL Memory
Rasters for information on the Sun standard pixel
format.

getWrapOriginX()
getWrapOriginY()
setWrapOriginX()
setWrapOriginY()

Set and get wrap values are used for stipple filling
where the pattern repeats itself. The origin
specifies a position in the PixRect, and the get
wrap value takes an (x,y) value and does a
modulus operation on the value with the width
and height, and returns the value at that modulus
position. This is used for filling where the fill
pattern is represented as a PixRect.

getWrappedValue() Subtracts wrapOrigin from the point, wraps at the
edge of the PixRect, and returns the value.

fillRectangle() Sets a rectanglar region with a given value.

getValueByPointer()
setValueByPointer()

Handle very large PixRects. Specifically, these
functions handle 48-bit deep PixRects, which are
used by the accumulation operation.

Internal Data Storage 93

4

Table 4-7 lists the interfaces provided by the XglPixRectMem class.

Table 4-8 lists the interfaces provided by the XglPixRectMemAllocated class.

Table 4-7 XglPixRectMem Interfaces

Function Description

getLineBytes() Returns the number of bytes per scan line,
including any possible padding at the end of the
PixRect.

getMemoryAddress() Given an (x,y) location, this function returns a
pointer to the address of the pixel at that location.

getMemoryAddress1()
getMemoryAddress4()
getMemoryAddress8()
getMemoryAddress16()
getMemoryAddress32()
getMemoryAddress48()

Inline versions of getMemoryAddress() .

getValue1()
getValue4()
getValue8()
getValue16()
getValue32()
setValue1()
setValue4()
setValue8()
setValue16()
setValue32()

Inline versions of getValue() and setValue() .

Table 4-8 XglPixRectMemAllocated Interfaces

Function Description

reallocate() Returns the address of the newly allocated
memory raster. NULL if allocation fails.

deallocate() Frees memory used for the PixRect.

94 XGL Device Pipeline Porting Guide—August 1994

4

Table 4-9 lists the interfaces provided by XglPixRectMemAssigned.

Table 4-9 XglPixRectMemAssigned Interfaces

Function Description

reassign() Creates a PixRect on existing memory.

95

Handling Changes to Object State 5

This chapter describes how a device pipeline gets information about changes to
XGL state. The chapter includes information on the following topics:

• Changes to Context state and changes to objects associated with the Context

• Changes to Device state

• Design issues to think about when implementing state handling in a device
pipeline

As you read this chapter, you will find it helpful to have access to the header
files for the stroke groups and the header file defining the messages. These are:

• StrokeGroup.h and StrokeGroup3d.h

• Msg.h

.h

96 XGL Device Pipeline Porting Guide—August 1994

5

State Changes and the Device Pipeline
The device pipelines are notified directly of Context attribute changes by the
objectSet() and messageReceive() functions through the opsVec[]
function array. Information about XGL object state is contained in the
following device-independent objects:

• Context and Context 3D objects store information about Context state.

• Stroke group objects store information about certain multipolyline attributes
and store the attribute value for these attributes as well.

• The Context’s view cache object stores information about items derived
from the Context’s view model attributes.

• The set of Device objects store information about Device state.

The process of determining what attributes have changed and getting updated
attribute values is described in the following sections.

Getting Attribute Values from the Context Object
The device pipelines are notified of Context attribute changes as soon as the
application sets new attributes on the Context. Each xgl_object_set() calls
the pipeline version of objectSet() through the XGLI_LI_OBJ_SET entry of
the opsVec[] array. When the application calls the API object set function, the
following events occur:

1. The device-independent wrapper updates the Context object, and the entire
list of attribute types is processed.

2. The current device pipeline is determined from the Context object.

3. The wrapper calls the pipeline XglDpCtx opsVec[XGLI_LI_OBJ_SET]
entry with the list of attribute types. The attribute values are not passed to
the pipeline in this list.

The pipeline objectSet() function gets the NULL-terminated list of attribute
types forwarded by the device-independent core. To provide an objectSet()
function, declare the function as a member of your pipeline XglDpCtx, and in
the XglDpCtx’s constructor, put a pointer to the function in the
XGLI_LI_OBJ_SET entry of the opsVec[] array, as follows:

opsVec[XGLI_LI_OBJ_SET] = XGLI_OPS(XglDpCtx3dFb::objectSet);

Handling Changes to Object State 97

5

The objectSet() function is called when the application sets a Context
attribute value. This function will provide a switch statement for the attributes
the pipeline is interested in.The switch statement can ignore attribute types
that the pipeline isn’t interested in and can combine attribute types that can be
handled in the same way. The pipeline can either update the hardware context
immediately from within objectSet() or note that changes have occurred
and update the hardware at a later time.

The following sample code shows a pipeline objectSet() :

See Context.h for the Context interfaces the pipeline can use to get Context
attribute values. Note that if the device pipeline does not implement
objectSet() , it will have to check the Context attributes at rendering time.

//
// Example for the generic DP set function
//
XglDpCtx3dGx::objectSet(const Xgl_attribute *attr_type)
{
 for(; *attr_type; attr_type++) {
 switch (*attr_type) {

 case XGL_CTX_LINE_COLOR: // set line color in DP
 {
 Xgl_color *line_color =

ctx->getCurrentStroke()->getColor();
 // send line color to hardware
 ...
 }
 break;

case ATTR_A: // combine attributes
case ATTR_B:
case ATTR_C:

do_something();
 ...

 case default:
 // ignore attribute
 break;
 }
 }
}

98 XGL Device Pipeline Porting Guide—August 1994

5

This might be an appropriate design for an LI-3 pipeline that is concerned with
a small subset of attributes. However, implementing objectSet() is
advisable for most pipelines for performance reasons.

When the Device Associated with a Context Is Changed

When the device-independent code calls the device pipeline’s objectSet() to
connect a Context to a Device, the device pipeline will receive only
XGL_CTX_DEVICE in the attribute list. In this case, it is the device pipeline’s
responsibility to update all concerned Context attributes. To do this, the device
pipeline can use the Context utility function getAttrTypeListAll() , which
returns a pointer to a static list of all XGL Context attributes. The Context
attribute list contains both 2D and 3D attributes.

An example of how a device pipeline can handle the objectSet() case for
XGL_CTX_DEVICE is shown in the code fragment below.

Since getAttrTypeListAll() returns a list of all 2D and 3D Context
attributes, it is recommended that the device pipeline create its own separate
2D and 3D Context attribute lists for optimum performance. The device
pipeline could create static lists in its XglDpCtx[2,3]d pipeline classes.

XglDpCtx3dGx::objectSet(const Xgl_attribute *attr_type)
{
 for(; *attr_type; attr_type++) {
 switch (*attr_type) {

 case XGL_CTX_DEVICE: // new context attached
 objectSet(ctx->getAttrTypeListAll());
 break;

 case...
 ...
 }
 }
}

Handling Changes to Object State 99

5

If XGL_CTX_DEVICE is embedded in an xgl_object_set() call, as shown in
the API call below, all Context attributes are updated with the API data
included in the call before the device pipeline objectSet() is called. Thus,
all device-independent Context attributes are up-to-date when a device
pipeline receives XGL_CTX_DEVICE.

Getting Attribute Values from Objects Other Than the Context
The device pipeline is notified immediately of changes to objects other than the
Context by the message passing mechanism. In XGL, when objects are
instantiated, other objects can register interest in the new objects and become
users of the objects. During program execution, when the used object’s
attributes change, the object sends a message to its users informing them of the
change. For example, the Context becomes a user of the Line Pattern, Stroke
Font, and Marker objects. When the Line Pattern changes, it sends a message
about the change to the Context. When the Context receives an object message,,
it updates its data and forwards the message to the device pipeline by calling
the XglDpCtx messageReceive() function through the opsVec[]
XGLI_LI_MSG_RCV entry.

The pipeline messageReceive() function gets a pointer to an XGL object
type and a message of type XglMsg . To provide a messageReceive()
function, declare the function as a member of your pipeline XglDpCtx, and in
the XglDpCtx’s constructor, put a pointer to the function in the
XGLI_LI_MSG_RCV entry of the opsVec[] array, as follows:

opsVec[XGLI_LI_MSG_RCV] = XGLI_OPS(XglDpCtx3dFb::messageReceive);

When you have done this, the messageReceive() function will always be
called when there is a message for the XglDpCtx. The messageReceive()
function will check the object type and message, and respond appropriately.

The pipeline can use the messageReceive() function to adjust to object
changes. For example, if the hardware caches colors, the XglDpCtx can update
the cached colors when messageReceive() receives a message that the color
map changed. If the device caches a line pattern or light in its hardware, a

xgl_object_set(ctx, XGL_CTX_LINE_COLOR, my_line_color,
 XGL_CTX_DEVICE, my_ras,
 XGL_CTX_NEW_FRAME_ACTION, my_new_frame_action,
 XGL_CTX_PLANE_MASK, -1,
 0);

100 XGL Device Pipeline Porting Guide—August 1994

5

message about these objects indicates that the hardware context may need
updating. The function can ignore messages that the pipeline is not concerned
with.

The objects and messages are listed in Table 5-1. The default message,
XGLI_MSG_STANDARD, simply indicates that an object has changed; it does not
provide information about what changed or about what attribute caused the
change. For the standard message type, the device pipeline can check
individual attributes relevant to the object or reload the entire object into the
hardware. See page 105 for more information on using the view group
messages.

Table 5-1 Object Messages

Object-Message Description

XGL_2D_CTX / XGL_3D_CTX

 XGLI_MSG_VIEW_COORD_SYS View group coordinate system changed, or push or pop of the
current coordinate system. You should check derived data.

 XGLI_MSG_VIEW_CTX_ATTR View group Context attribute changes. This message corresponds to
an API attribute that modifies derived data. You should check
derived data.

XGL_LIGHT

 XGLI_MSG_STANDARD The Light object has changed. You may need to check derived data.
Update cached information regarding this Context attribute.

XGL_3D_CTX_LIGHT

XGL_LPAT

XGLI_MSG_STANDARD The line pattern or edge pattern has changed. Update cached
information regarding these Context attributes.

XGL_CTX_LINE_PATTERN
XGL_CTX_EDGE_PATTERN

XGL_MARKER

 XGLI_MSG_STANDARD The user-defined marker has changed. Update cached information
regarding this Context attribute.

XGL_CTX_MARKER

Handling Changes to Object State 101

5

XGL_MEM_RAS
 XGLI_MSG_STANDARD Front or back surface fill pattern memory raster has changed.

Update cached information regarding these Context attributes.
XGL_CTX_RASTER_FPAT
XGL_CTX_SURF_FRONT_FPAT
XGL_3D_CTX_SURF_BACK_FPAT

XGL_SFONT_n

 XGLI_MSG_STANDARD Stroke Font object has changed. Update cached information
regarding this Context attribute.

XGL_CTX_SFONT_n

XGL_TMAP

 XGLI_MSG_STANDARD

XGLI_MSG_TEXTURE_DESC

Front or back Texture Map object has changed. Update cached
information regarding these Context attributes.
 XGL_3D_CTX_SURF_FRONT_TMAP
 XGL_3D_CTX_SURF_BACK_TMAP

Texture Map descriptor has changed, and possibly the MipMap
Texture object has changed. You may need to recache the MIP map.

XGL_TRANS

 XGLI_MSG_STANDARD Global model transform, local model transform, or view transform
has changed. Check derived data. Update cached information
regarding these Context attributes.
 XGL_CTX_GLOBAL_TRANS
 XGL_CTX_LOCAL_MODEL_TRANS
 XGL_CTX_VIEW_TRANS
In the 3D Context, the normal transform has changed. Check this
attribute.
 XGL_3D_CTX_NORMAL_TRANS

XGL_WIN_RAS

 XGLI_MSG_DEV_MULTIBUFFER Multibuffering has been set on the device. Update cached
information regarding this Raster attribute.

XGL_WIN_RAS_MULTIBUFFER

Table 5-1 Object Messages

Object-Message Description

102 XGL Device Pipeline Porting Guide—August 1994

5

The following sample code shows a pipeline messageReceive() function.
This routine notes object changes, creates an attribute type list with attributes it
is interested in, and sends the attribute type list to the pipeline objectSet()
function. The pipeline objectSet() updates the hardware. This routine also
sets a transformChanged flag so that it can point the opsVec renderer to the
generic renderer. The generic renderer will check the transformChanged flag,
and, if necessary, it will check the view group using
viewGrpItf->changedComposite(viewConcern) to see what changed in
derived data. An alternate design for messageReceive() would be to update
the hardware from within the function.

XGL_WIN_RAS / XGL_MEM_RAS
 XGLI_MSG_DEV_COLOR Color map has or depth pixel mapping has changed. Update

cached information regarding these Context attributes.
 XGL_CTX_PLANE_MASK
 XGL_CTX_MARKER_COLOR
 XGL_CTX_LINE_COLOR
 XGL_CTX_LINE_ALT_COLOR
 XGL_CTX_SURF_FRONT_COLOR
 XGL_CTX_SURF_BACK_COLOR
 XGL_CTX_BACKGROUND_COLOR
Note that a message is sent both when the device is assigned a new
color map and when a change is made to an existing color map.

 XGLI_MSG_DEV_DIM Window width or height has changed, window raster has been
resized, or rect list has changed. You should check derived data.

 XGLI_MSG_DEV_OTHER Changes in image buffer address, Z buffer address, source buffer,
buffer display, buffer draw, buffer minimum delay, double buffer
draw, number of buffers allocated, stereo mode. See the man pages
for the Device attributes.

 XGLI_MSG_RAS_CLIP Rect list has changed. Update cached information regarding this
Raster attribute.

XGL_RAS_RECT_LIST

Table 5-1 Object Messages

Object-Message Description

Handling Changes to Object State 103

5

void XglDpCtx2dGx::messageReceive(XglObject* obj,
const XglMsg& msg)

{
 switch (obj->getObjType()) {

 case XGL_2D_CTX:
 case XGL_3D_CTX:
 if (msg.flag & (XGLI_MSG_VIEW_COORD_SYS |

 XGLI_MSG_VIEW_CTX_ATTR)) {
transformChanged = TRUE;
// Set generic renderers.

 }
 break;

 case XGL_WIN_RAS:
 if (obj == device) {
 if (msg.flag & XGLI_MSG_DEV_COLOR) {
 //
 // Update cached colors and plane mask changes.
 //

attrTypeList[0] = XGL_CTX_MARKER_COLOR;
attrTypeList[1] = XGL_CTX_LINE_COLOR;
attrTypeList[2] = XGL_CTX_LINE_ALT_COLOR;
attrTypeList[3] = XGL_CTX_SURF_FRONT_COLOR;
attrTypeList[4] = XGL_CTX_BACKGROUND_COLOR;
attrTypeList[5] = XGL_CTX_PLANE_MASK;
attrTypeList[6] = XGL_UNUSED;
objectSet((const Xgl_attribute*) attrTypeList);

 }

 if (msg.flag & XGLI_MSG_DEV_DIM) {
transformChanged = TRUE;
// Set generic renderers.

 }

 if (msg.flag & XGLI_MSG_DEV_OTHER) {
// Re-evaluate the number of buffers to render to
// based on bufferAllocated and XGL_CTX_RENDER_BUFFER

attrTypeList[0] = XGL_CTX_RENDER_BUFFER;
attrTypeList[1] = XGL_UNUSED;
objectSet((const Xgl_attribute*) attrTypeList);

104 XGL Device Pipeline Porting Guide—August 1994

5

For additional information on object relationships, see the XGL Architecture
Guide.

More on Device State Changes

In addition to passing device state changes to the pipeline via the message
passing mechanism, the device-independent code notifies the device pipeline
of device changes by calling the set...() functions defined in the XglDpDev
class hierarchy. The XglDpDev functions enable the device to make device-

// Set generic renderers.
 }
 }
 break;

 case XGL_LPAT:
 if (obj == ctx->getLinePattern() ||

obj == ctx->getEdgePattern()) {
attrTypeList[0] = XGL_CTX_LINE_PATTERN;
attrTypeList[1] = XGL_UNUSED;
objectSet((const Xgl_attribute*) attrTypeList);

 }
 break;

 case XGL_MARKER:
 if (obj == (XglObject*)ctx->getMarker()) {

attrTypeList[0] = XGL_CTX_MARKER;
attrTypeList[1] = XGL_UNUSED;
objectSet((const Xgl_attribute*) attrTypeList);

}
 break;

 case XGL_TRANS:
 if (obj == (XglObject*)ctx->getGlobalModelTrans() ||
 obj == (XglObject*)ctx->getLocalModelTrans() ||
 obj == (XglObject*)ctx->getViewTrans()) {

transformChanged = TRUE;
// Set generic renderers.

}
 break;
}

Handling Changes to Object State 105

5

specific changes. For example, in addition to the color map change message
that is sent to the XglDpCtx, there are two virtual XglDpDev functions that are
called when the color map or pixel mapping changes.

virtual void setCmap(XglCmap*);

virtual void setPixelMapping(const Xgl_usgn32[]);

See page 52 for information on the XglDpDev optional functions.

Handling Derived Data Changes

While objectSet() and messageReceive() enable the pipeline to keep
track of the state of API attributes, the derived data facility is used to maintain
data that are derived from the API attributes. The device pipeline is notified
when derived data (view interface) changes by the message mechanism. When
a derived data change occurs, the view object sends a message to the device
pipeline by calling the XGLI_LI_MSG_RCV entry of the opsVec[] array, with
the Context as the object type, and a message bitfield indicating what in
derived data has changed.

Derived data changes that generate messages are set coordinate system, pop
coordinate system, and any API Context attribute that could affect derived
data. Device pipeline implementers may want to ignore the message flags and
use checkchangedComposite() to see if any updating needs to be done
whenever they receive a Context object message. The message flags for derived
data changes are shown in Table 5-1 on page 100.

The device pipeline will set the view interface message in its
messageReceive() function when the object type is XGL_2D_CTX or
XGL_3D_CTX. Some example code to do this is shown below.

// DP’s receive message function. XGLI_LI_MSG_RCV slot
// in ops vector points to this:

void XglDpCtx2dGX::messageReceive(XglObject *obj,
const XglMsg& msg)

{
 switch (obj->getObjType()) {
 XGL_2D_CTX:
 if (msg.flag & (XGLI_MSG_VIEW_CTX_ATTR |
 XGLI_MSG_VIEW_COORD_SYS)) {
 // update DP’s dervied data,
 // check viewGrpItf->changedComposite(<view concerns>)

106 XGL Device Pipeline Porting Guide—August 1994

5

Information about derived data changes is computed in a lazy manner at a
pipeline’s request. See Chapter 7, “View Model Derived Data” for information
on derived data.

Getting Stroke Attribute Values from the Stroke Group Object
The stroke group is the source from which the pipeline obtains the values for
the line attributes, such as line color, during a multiPolyline() call. The
idea behind the stroke group is to make the drawing of different strokes types
as transparent as possible to a device pipeline that doesn’t support all stroke
primitives.

The primitives that may be rendered as multipolylines are lines, markers, text,
edges, and hollow polygons. These primitives are considered to be stroke types.
Since the same set of attributes (but different attribute values) applies to each
of the stroke types when rendered as lines, the Context object maintains a
stroke group object for each of the stroke types. For 2D, the stroke groups are
line, marker, text, edge, and front surface. For 3D, the stroke groups are the 2D
groups and the back surface group.

The stroke group object contains the actual attribute values for the stroke
attributes. The stroke attributes are:

• Antialiasing blend equation
• Antialiasing filter width
• Antialiasing filter shape
• Alternate color
• Cap
• Color
• Color selector
• Join
• Miter limit
• Pattern
• Style

 }
 break;

 ... //other message processing
 }
}

// DP’s receive message function. XGLI_LI_MSG_RCV slot

Handling Changes to Object State 107

5

• Width scale factor
• Flag mask
• Expected flag mask

Most of the stroke attributes map to API attributes. However, flag mask and
expected flag mask in StrokeGroup.h are specific to the stroke group object
and depend on the stroke type; they are not API attributes and have no
corresponding attribute type. For 3D rendering, the stroke group object is
extended to include values for color interpolation and DC offset. Like flag
mask and expected flag mask, DC offset in StrokeGroup3d.h does not map
directly to an API attribute. See page 111 for information on flag mask and DC
offset.

Example of Device Pipeline Use of Stroke Groups

Let’s consider a device pipeline that cannot render text in hardware. In this
situation, the text primitive will go through the software pipeline where it is
tessellated into polylines. Before the polylines are handed to the device
pipeline’s LI-1 polyline renderer, the Context is told to activate the text stroke
group. This activation sets the current stroke to the text stroke group and
informs the device pipeline which stroke attributes have changed1. When the
device pipeline reads the changed attributes out of the current stroke group, it
gets the text attributes. For example, if the current line color is blue but the text
color is green, the device pipeline will get the color green from the current
stroke group. Figure 5-1 on page 108 illustrates this concept.

1. Only attributes that have actually changed betwee the old and new stroke groups will be sent to the device
pipeline. For example, if the old stroke group was polylines and the line width was 1.0, changing the stroke
group to text (whose line width is always 1.0) will not cause the line width attribute to be sent to the device
pipeline.

108 XGL Device Pipeline Porting Guide—August 1994

5

Figure 5-1 Attribute Processing Using the Stroke Group

As long as text continues to be rendered, the text stroke group will remain the
current stroke group. The current stroke group will change when either
polylines are rendered, or another non-text stroke primitive falls back to the
software pipeline for rendering.

Changes to stroke attributes are transmitted directly to the device pipeline.
The only difference is that the device pipeline will see twice as many stroke
attributes when anything other than the polyline stroke group is active. Thus, a
device pipeline that fully accelerates text at LI-1 would see that
XGL_CTX_STEXT_COLOR has changed, and a device pipeline that does not
accelerate text at LI-1 would see that both XGL_CTX_STEXT_COLOR and
XGL_CTX_LINE_COLOR have changed. It is necessary to pass the
XGL_CTX_STEXT_COLOR attribute so that device pipelines which support text
at LI-1 in some circumstances have a consistent view of the Context state.

See StrokeGroup.h and StrokeGroup3d.h for the interfaces a pipeline uses
to obtain attribute values from the stroke group.

Text

li1MultiPolyline()

when tessellated as lines

stroke color = green
Markers

stroke color = red
Lines

stroke color = blue

Case 1: if text is rendered multipolylines are rendered in green

Case 2: if lines are rendered multipolylines are rendered in blue

Handling Changes to Object State 109

5

Rendering Multipolylines

Rendering polylines involves getting a pointer to the current stroke group and
obtaining the attribute values that have changed from the stroke group. To
indicate which stroke group will be used for rendering, the Context object
provides a current stroke pointer that points to one of the stroke group objects.
When the device pipeline receives a request to render a multipolyline, it gets
the pointer to the current stroke group using the Context interface
getCurrentStroke() :

cur_stroke = ctx->getCurrentStroke()

Procedure for Getting Attribute Values for xgl_multipolyline()

For most primitives, new attribute values are obtained from the Context object.
However, the difference between the attribute processing for an
xgl_multipolyline() call and for other primitive rendering calls is that the
values for the stroke attributes are obtained from the stroke group pointed to
by the Context’s current stroke pointer.

The steps for obtaining attribute values when rendering multipolylines are
listed below.

1. The pipeline gets the current stroke pointer using the Context interface
cur_stroke = ctx->getCurrentStroke() .

2. The pipeline obtains the attribute values from the stroke group for changes
in the line attributes. To get the line color, for example, the pipeline requests
the line color with cur_stroke->getColor() . Values for attributes not in
the stroke group are obtained from the Context, as in
ctx->getDepthCueMode() .

3. The pipeline loads the new values into hardware.

110 XGL Device Pipeline Porting Guide—August 1994

5

Note – The stroke group is designed to hide the actual type of stroke it is
rendering from the pipeline. Normally, a device pipeline should get line group
attributes from the XglStrokeGroup object for all multipolyline rendering
unless the device pipeline can accelerate all primitives completely at LI-1 and
will never call the software pipeline for tessellation. If a device pipeline does
accelerate a stroke primitive (for example, it implements li1StrokeText()),
the device pipeline can obtain the text attributes from the Context rather than
from the stroke group. If you are absolutely sure that your pipeline does not
fall back on the software pipeline for any of the stroke primitives (edges, text,
markers, and hollow polygons) and that there is no chance of the stroke group
being anything other than lineStrokeGroup, then your pipeline can get line
group attributes directly from the Context. For primitives other than
multiPolyline() that depend on the line attributes, the values for the line
changes can be retrieved from the Context.

Procedure for Getting Attribute Values That Have Changed

The assignCurStrokeAs<prim>() functions are used by the software
pipeline to change the current stroke group, and to call the device pipeline
objectSet() function to inform the pipeline that certain stroke group
attributes have changed.

Currently, when assignCurStrokeAs<prim>() is called, the device pipeline
objectSet() function is also called notifying the pipeline of all changed line
attributes. This means the device pipeline should load the current stroke
attribute list for lines.

These objectSet() calls occurs in two different circumstances.

• assignCurStrokeAs<prim>() is called by pipelines, changing the current
stroke group (currentStrokeGroup).

• Attributes corresponding to the current stroke group setting are changed by
an objectSet() call. For example, if a text attribute, such as text color,
changes while the current stroke group is pointing to the text group,
objectSet() will be called after calling the software pipeline. This will call
objectSet() through the XGLI_LI_OBJ_SET entry of the opsVec[]
array sending the changed text attribute(s) as line attributes. In this

Handling Changes to Object State 111

5

scenario, the device pipeline would receive an objectSet() call with a list
of attribute types sent from the API, indicating which stroke attributes must
be updated from the strokeGroup object.

If the device pipeline never needs stroke groups, it can process all the
attributes directly from the Context and ignore the stroke group object. An
intermediate approach is possible, since stroke groups only happen if the
device pipeline calls the software pipeline for a particular case (stroke text, for
example). In these cases, only the stroke groups still used by the device
pipeline will generate an objectSet() .

Flag Mask and Expected Flag Value

In XGL an application can provide flag information at each point of a
primitive. This flag information determines whether specific line segments
within the polyline are drawn. The stroke group flag mask and expected flag
mask attributes are useful when the point type of the multipolyline being
rendered has flag information.

If the point type has flag information, the pipeline ANDs the flag information
in the vertex data with the flagMask from the stroke group and compares it to
the expectedFlagValue from the stroke group. If they are equal, the line
should be drawn; otherwise, the line should not be drawn.

Table 5-2 shows the flag information for the different stroke types.

Table 5-2 Stroke Table Flag Mask and Expected Flag Mask Values

Stroke Group Flag Mask Expected Flag Mask

Line stroke group XGL_DRAW_EDGE XGL_DRAW_EDGE

Edge stroke group XGL_DRAW_EDGE |
XGL_EDGE_IS_INTERNAL

XGL_DRAW_EDGE

Marker stroke group No bits set No bits set

Front surface stroke group XGL_EDGE_IS_INTERNAL No bits set

Back surface stroke group XGL_EDGE_IS_INTERNAL No bits set

Text stroke group No bits set No bits set

112 XGL Device Pipeline Porting Guide—August 1994

5

For example, the flag information for lines is XGL_DRAW_EDGE, whereas the
flag information for edges could be XGL_DRAW_EDGE and/or
XGL_EDGE_IS_INTERNAL. In the case of lines, the pipeline needs to determine
whether XGL_DRAW_EDGE is set in the flag information before rendering the
line. In the case of edges, the pipeline draws the edge when the
XGL_DRAW_EDGE bit is set but not when XGL_EDGE_INTERNAL is set. Thus,
when different stroke types are rendered as lines, the stroke group object
provides getFlagMask() and getExpectedFlagValue() to make the
dissimilarity in flags transparent to the device pipeline.

Example pseudocode to use these flags might be:

Note – At LI-1, since the point type can have flag data only when rendering
lines (text and markers when rendered as lines cannot have point type with
flag data), it is correct to assume that flagMask and expectedFlagValue are
always the same (XGL_DRAW_EDGE) for li1MultiPolyline() .

DC Offset

Some stroke types need to have the Z value adjusted either to ensure visual
correctness or to respond to the setting of the API attribute
XGL_3D_CTX_SURF_DC_OFFSET. The DC offset attribute is provided in
StrokeGroup3d.h so that this is handled by the device pipeline. It
determines if the Z of a line should be closer, unchanged, or farther than the
original Z value of the line. The DC offset attribute can take on these
enumerated values:

• XGLI_DC_OFFSET_NONE – The DC offset attribute is set to this value for the
line, marker, and text stroke groups. The pipeline does not need to adjust
the Z value.

Xgl_pt_flag_f3d pt;
if (pt_type has flag) {

if ((pt.flag & cur_stroke->getFlagMask()) ==
cur_stroke->getExpectedFlagValue()) {

// Draw the line
}

Handling Changes to Object State 113

5

• XGLI_DC_OFFSET_FRONT – The DC offset is set to this value when
rendering edges as lines. It ensures that the edges appear on top of the
polygon. The pipeline should subtract an offset from the Z component of
each vertex of the multipolyline so that the line appears to be in front.

• XGLI_DC_OFFSET_BACK – Used when hollow polygons are drawn as lines.
This maps to the XGL API attribute XGL_3D_CTX_SURF_DC_OFFSET.

The DC offset values for the stroke groups are listed in Table 5-3.

Thus, a pipeline adjusts the Z value according to value returned by the
getDcOffset() function in the stroke group object. Note that the DC offset
attribute is relevant only when Z-buffering is enabled.

Note – The software pipeline does not set the current stroke group to the edge
stroke group, front-surface stroke group, or back-surface stroke group at the
LI-1 layer. But, if a device falls back to software for text and markers, the
current stroke can be either text/markers or line. But since the DC offset is not
used by text/markers or line stroke groups, you can ignore the DC offset at
li1MultiPolyline() .

Table 5-3 Stroke Group DC Offset Values

Stroke Group DC Offset Value

Line stroke group XGLI_DC_OFFSET_NONE

Edge stroke group XGLI_DC_OFFSET_FRONT

Marker stroke group XGLI_DC_OFFSET_NONE

Front surface stroke group XGLI_DC_OFFSET_BACK if
XGL_3D_CTX_SURF_DC_OFFSET is TRUE
XGLI_DC_OFFSET_NONE if
XGL_3D_CTX_SURF_DC_OFFSET is FALSE

Back surface stroke group XGLI_DC_OFFSET_NONE

Text stroke group XGLI_DC_OFFSET_NONE

114 XGL Device Pipeline Porting Guide—August 1994

5

Design Issues
There are several issues that you may want to consider when implementing the
processing of state changes. At the most elementary level, a pipeline must do
the following when rendering a primitive:

1. Decide whether it can render the primitive and call the software pipeline if
it cannot render the primitive.

2. Map XGL Context state into the hardware state.

3. Render.

Within this scheme, the pipeline must be able to handle changes in Context
state and API data, changes in the LI level of the primitive, and changes in the
XGL Context being used to render.

Deciding to Reject a Primitive

The decision on whether the pipeline can render a primitive depends in part
on the values of the attributes for the primitive. This means that the pipeline
must process state information before it can conclude whether it can render the
primitive.

A pipeline has two choices when evaluating attributes. It can abort processing
if it finds an attribute it cannot accelerate (for example, if line width is greater
than some value) or if the API information cannot be accelerated (for example,
if the point type is homogeneous). The code fragment below shows an example
of a pipeline calling the software pipeline to process wide lines.

Handling Changes to Object State 115

5

Handling Context Switches

An application may be using any number of XGL Contexts. For example, it
may use a different Context for each view of the geometry that it wants to
display, or it may use different Contexts for areas of the window. It is the
responsibility of the pipeline to update hardware state when the application
switches the XGL Context that it is using to render.

One way to implement this might be to check which Context is being used to
render when the primitive is entered. If the current Context is the same as the
last Context, the function can continue other processing. If the Context is
different from the last Context used, then the function should assume that the
hardware state is invalid and take appropriate action. For example:

void DpCtx3dExampleDp::li1MultiPolyline(Xgl_bbox* api_bbox,
 Xgl_usgn32 api_num_plists,
 Xgl_pt_list* api_pt_list)
{
 const XglStrokeGroup3d* cur_stroke = ctx->getCurrentStroke();
 if (cur_stroke->getWidthScaleFactor() >= 2.0) {

swp->li1MultiPolyline(api_bbox, api_num_plists,
 api_pt_list);

return;
 }
 // Continue with li1MultiPolyline...
}

116 XGL Device Pipeline Porting Guide—August 1994

5

How you handle updating your hardware after Context switches is an
implementation decision left to you. Note that you may have to invalidate
your hardware state when the Context changes only if you map all XGL
Contexts to a single hardware context.

Handling Changes in LI Levels

The way that a pipeline processes state information must be handled carefully
to account for switching of loadable interface levels. The possible problem that
you might want to consider is at different loadable interface levels, the list of
attributes that the pipeline must handle is not the same. This problem occurs
when the device pipeline rejects a primitive outright at LI-1 (as when it hasn’t
implemented the primitive at the LI-1 level) but is called to render at the LI-2
or LI-3 level. For example, consider the case when, before a multipolyline call,
the user changes both the line width and the line color. Assume also that the
user sets the line width to be greater than 1 (wide line). The device pipeline
cannot handle wide lines, so it falls back to the software pipeline at LI-2 and
renders the wide lines at LI-3. At LI-3, the pipeline gets the value of the line
color.

if (dp_last_xgl_ctx != ctx) {
//
// Update derived data.
//
viewGrpItf->setComposite();

//
// Update all context attributes.
//
// All relevant attributes must be updated. The device

 // pipelines objectSet() may be used.
//
objectSet(ctx->getAttrTypeListAll()); // DI utility list.

dp_last_xgl_ctx = ctx;
}

Handling Changes to Object State 117

5

Partial Rendering of a Primitive

For the case in which a device pipeline calls the software pipeline to render
some of the primitive’s geometry and continues processing the rest of the
primitive on its own, it is the device pipeline’s responsibility to restore the
hardware to the correct state before rendering the rest of the primitive. In other
words, during the time that the software pipeline is processing its part of the
geometry, the state of the hardware may change, and the device pipeline
cannot rely on objectSet() to notify the pipeline of this change.

For example, during a multiSimplePolygon() call, if a device pipeline
cannot render a complex polygon, it calls the software pipeline. At LI-2 or LI-3,
the device pipeline must disable some attributes, such as model clipping or
MC to DC transformations, which are already done by the software pipeline at
LI-1. When the control returns to the device pipeline to render the remaining
simple polygons, the device pipeline may need to set up the hardware to
render the polygons at LI-1 because the state of the hardware has changed. The
device pipeline now needs the hardware to do model clipping and other
operations, and has to set up the hardware accordingly.

118 XGL Device Pipeline Porting Guide—August 1994

5

119

Getting Information from XGL
Objects 6

This chapter describes how a device pipeline gets information from XGL
objects and uses object interfaces. The chapter includes information on the
following topics:

• Getting information from the Context and from objects associated with the
Context

• Getting information from the Device and Color Map

As you read this chapter, you will find it helpful to have access to the
following header files:

• Context.h , Context2d.h , and Context3d.h
• Cmap.h
• Device.h,Raster.h , RasterWin.h , and RasterMem.h
• DmapTexture.h
• Light.h
• LinePattern.h
• Marker.h
• MipMapTexture.h
• Sfont.h
• Tmap.h
• Transform.h

.h

120 XGL Device Pipeline Porting Guide—August 1994

6

What You Should Know About XGL Attribute Values
The values of XGL attributes are stored in the Context object and in API objects
associated with the Context object, such as the Light object and the Transform
object. At rendering time, the device pipeline often needs to get information on
various attributes from within its XglDpCtx and XglDpDev objects.

The pipeline is linked to a specific Context and a specific Device through its
XglDpCtx object; from the XglDpCtx, the pipeline can get to the Context
attributes it needs and to the attributes of objects associated with the Context.
Similarly, the pipeline is linked to the Device object through its XglDpDev
object, and it can get information on the device-independent Device object and
the Color Map object through the XglDpDev. Figure 6-1 shows the architecture
of the device-independent objects and their relationship to pipeline objects. In
this illustration, the filled arrows denote a permanent relationship; for
example, the XglDpCtx object is always linked to a unique Context object and
unique Device object. The unfilled arrows show possibly transitory API
relationships.

Figure 6-1 DI and Dp Object Relationships

Pipelines access API attribute data via public methods in the public interface of
the API object classes; the data itself is not exposed in the public interface or
accessible to the pipeline. To see the interface for an object, look at the class
hierarchy for the object.

XglDpCtx XglDpDev

DI DeviceDI Context

Marker

Transform

ColorMap

Light

LinePattern
StrokeFont

DmapTexture

MipMapTexture

Device Pipeline

XGL Core TextureMap

Getting Information from XGL Objects 121

6

Part of the public interface implements the XGL API. Thus, in the API object
classes, there are two categories of functions: functions that correspond closely
to API attributes and other functions that are for internal uses, including the
device pipeline (flagged with XGL_INTERNAL). A third category is reserved for
the XGL core and is inaccessible to the device pipelines (flagged with
XGL_CORE). In the public interface, you will notice a number of set...()
functions; for the most part, these implement the API set functions and are not
meant to be used by the pipeline. An exception to this is the pipeline use of
device->setBufDisplay() and device->setBufDraw() from within its
XglDpCtx li1NewFrame() primitive.

Naming Conventions for Internal Attributes

The mapping of an API attribute name to its corresponding C++ method is
handled in a standard way. For example, in Light.h , you will see the function
getColor() . This function gets the light color and corresponds to the API
attribute XGL_LIGHT_COLOR. The naming conventions for internal attributes,
such as a hypothetical API attribute XGL_CLASS_ATTRIBUTE_HAS_WORDS, are
as follows:

• The internal method to get the attribute is getAttributeHasWords().

• The method is declared in the XglClass class in the Class.h header file.

Here are some examples:

• For the Context attribute XGL_CTX_MARKER_COLOR, the function
getMarkerColor() is declared in the XglContext class in Context.h .

• For the Context attribute XGL_3D_CTX_SURF_FRONT_ILLUMINATION, the
function getSurfFrontIllumination() is declared in the XglContext3d
class in Context3d.h .

• For the Device attribute XGL_DEV_COLOR_MAP, the function getCmap() is
declared in the XglDevice class in Device.h .

Note – In some cases, although an attribute may be present in the parent class,
it might actually be defined in a descendant class. Note also that the
corresponding set/get functions might be in a descendant class when the
action depends on the descendant class.

122 XGL Device Pipeline Porting Guide—August 1994

6

Context Attributes and LI Layers

The Context attributes that the pipeline needs to check at rendering time vary
depending on the pipeline layer. A pipeline written at the LI-1 layer needs to
implement the complete set of XGL attributes, or at least account for them. At
the LI-2 layer, the device pipeline is using the software pipeline to handle some
of the processing; therefore, the device pipeline has a smaller subset of
attributes that it is accountable for. At the LI-3 layer, the number of attributes
that a device pipeline must handle is even smaller. For example, an LI-1 port
must handle back surface attributes and transforms, but at the LI-2 level these
attributes have been processed by the software pipeline, and the device
pipeline no longer needs to concern itself with them. This concept is illustrated
in Figure 6-2.

Figure 6-2 Device Pipeline and Layered Attributes

See Chapter 9, “Writing Loadable Interfaces” for information on the attributes
used by each LI function.

Note that you will probably want to make use of the objectSet() function to
optimize Context state retrieval. The objectSet() function notifies the device
pipeline about changes to Context attributes. If a change occurred, the pipeline
must get the new value of the attribute and reload the state into the hardware.
In addition, the pipeline uses the stroke tables to get the values of attributes for
primitives multiplexed on the multipolyline primitive. See Chapter 5,
“Handling Changes to Object State” for information on the objectSet()
function and stroke groups.

LI-1 Device
Pipeline Port LI-2 Device

Pipeline Port LI-3 Device
Pipeline Port

LI-3 attributes

LI-2 attributes

LI-1 attributes

Getting Information from XGL Objects 123

6

Getting Attribute Values from the Context
From the XglDpCtx object, you can get Context attribute values and values for
objects associated with the Context. The XglDpCtx object is provided with a
pointer to the Context object. This pointer is named ctx and is an XglDpCtx
protected member data. Note that ctx already points to a Context of the right
dimension. In other words, in XglDpCtx2d, ctx is already of type
XglContext2d* , and in XglDpCtx3d, ctx is already of type XglContext3d* ,
so you don’t have to cast the pointer to the correct type. Using the Context
pointer, you can get an attribute using ctx- >get Attribute().

Example code for a pipeline getting depth cue attributes from a 3D Context
might be:

Getting Attribute Values from Other Objects
To render line patterns, markers, and other application-definable data, the
device pipeline needs to get information from the objects that the application
has associated with the Context. In most cases, handles for these objects are
retrieved from the Context object using ctx->get Object(). In the following
cases, however, the pipeline does not retrieve the object handle for an object
from the Context, even though these objects are associated with the Context at
the API-level:

• The object handle for the Transform object is retrieved from the view group
interface object. See “Getting Information from a Transform Object” on
page 125.

Xgl_depth_cue_mode dc_mode = ctx->getDepthCueMode();

if (dc_mode != XGL_DEPTH_CUE_OFF) {
float scale_front; // Scale factors to use
float scale_back;

if (dc_mode == XGL_DEPTH_CUE_SCALED) {
float scale_factors[2]; // XGL DC scale factors
ctx->getDepthCueScaleFactors(scale_factors);
scale_front = scale_factors[0];
scale_back = scale_factors[1];

}
else { // continue

124 XGL Device Pipeline Porting Guide—August 1994

6

• The pipeline is provided with pointers to the Device object in several places.
See “Getting Information From the Device Object” on page 145.

• From within li1/2MultiPolyline() , the line pattern handle is retrieved
from the stroke group. For more information, see “Getting Attribute Values
From the Stroke Group Object” on page 125.

Table 6-1 shows the objects that the application can associate with the Context
and the get...() functions used to retrieve data from them.

Using the object handle, the pipeline can retrieve attribute data through the
public interfaces of the DI object classes.

The following example shows a pipeline accessing a Marker via the Context,
using a Marker interface, and getting a Marker attribute from the Context.

Table 6-1 Getting Information from Xgl Objects

Object Function

Data Map Texture object (3D only) getDmapTexture()

Device object See page 145.

Light object (3D only) getLight()

Line Pattern object getLinePattern()

Marker object getMarker()

Stipple pattern Memory Raster object getRasterFpat()

Stroke Font object getSfont()

Texture Map object (3D only) getTmap()

Transform object See page 125.

const XglMarker* marker;
const XglPrimData* mdata;
float scale;

marker = ctx->getMarker();
mdata = marker->getActualDescription();
scale = ctx->getMarkerScaleFactor()

Getting Information from XGL Objects 125

6

Getting Information from a Transform Object
To access member functions of the Transform object, the pipeline gets a handle
to the Transform object through the view group interface object. The pipeline is
provided with a view group interface object and a pointer to the object named
viewGrpItf in the XglPipeCtx{2,3}d parent class. The pointer to the view
group interface object is of type XglViewGrp2dItf* or XglViewGrp3dItf* ,
depending on the Context.

To access the Transform, use the pointer to the view group interface object and
then access the Transform’s interfaces using the handle to the Transform. The
following example shows a pipeline using the Transform interface
getMatrixFloat() from a Transform associated with a 2D Context.

See “Transform Interfaces and Flags” on page 137 in this chapter for
information on Transform interfaces, and see Chapter 7, “View Model Derived
Data” for information on the view group interface object. Note that if the
pipeline is not using the derived data facility, it can get Transforms from the
Context; see page 150 for more information.

Getting Attribute Values From the Stroke Group Object
For primitives that are multiplexed on the multipolyline primitive, the XGL
core provides a generic group, the stroke group, that holds the necessary
attribute information. The stroke group is the source from which the pipeline
obtains the values for the line attributes, such as line color, during an
li1/2MultiPolyline() call. The stroke group attributes that map to API
attributes are:

• Antialiasing blend equation
• Antialiasing filter width
• Antialiasing filter shape
• Alternate color

XglTransform* xform;
const Xgli_matrix_f3x3* matrix;

// Load the MC-to-DC transform matrix
xform = (XglTransform*) viewGrpItf->getMcToDc();
matrix = (const Xgli_matrix_f3x3*) xform->getMatrixFloat();

126 XGL Device Pipeline Porting Guide—August 1994

6

• Cap
• Color
• Color selector
• Join
• Miter limit
• Pattern
• Style
• Width scale factor

The Context object provides a current stroke pointer to indicate which stroke
group will be used for rendering. The current stroke pointer points to one of
the stroke group objects. When the device pipeline receives a request to render
a multipolyline, it gets the pointer to the current stroke group using the
Context interface getCurrentStroke() :

cur_stroke = ctx->getCurrentStroke()

The pipeline can then get the attribute values for the attributes from the
current stroke group. For example, to get the current value for color, the
pipeline calls the stroke group’s getColor() interface:

cur_stroke->getColor()

From within curves (for example, li1MultiArc()), the pipeline can use
ctx->getLinePattern() or
ctx->getCurrentStroke()->getPattern() . See Chapter 5, “Handling
Changes to Object State” for more information on getting attribute information
through the stroke group.

Getting Information from XGL Objects 127

6

Non-API Interfaces Provided in API Objects
The API attributes are documented in the XGL Reference Manual; therefore, the
interfaces the pipeline can use to retrieve API attribute values are not
documented here. However, the device-independent classes provide internal
methods to support the pipeline, and these methods are briefly described in
this chapter.

Context Interfaces

See Context.h for the get...() interfaces you can use to retrieve state
values from the Context. The XglContext class provides the following internal
interfaces.

const Xgli_surf_face_attr*
const getSurfFrontFaceAttr() const

const Xgli_surf_attr_2d* const getSurfAttr() const

Functions that enable the pipeline to get general surface attributes within a
single structure. These functions can facilitate device pipeline manipulation
of surface attributes. See Context.h for the structure definitions.

Xgl_render_mode getRealRenderBuffer() const

This function takes into account the number of buffers allocated (in the case
of the Window Raster) and if the Z-buffer is enabled, determines which
buffers the pipeline should render into.

Xgl_usgn32 getRealPlaneMask() const

The real plane mask is the XGL_CTX_PLANE_MASK diminished by the bits,
which should not be touched in relation to the X color map.

Xgl_usgn32 getNewFramePlaneMask()

Since the real plane mask prevents regular rendering from changing the bits
that XGL does not own in the X pixels, new frame must prepare those bits
(in other words, write them once per frame).

void
addPickToBuffer(Xgl_usgn32 pick_id1, Xgl_usgn32 pick_id2)

Adds a pick event to the device-independent pick buffer.

.h

128 XGL Device Pipeline Porting Guide—August 1994

6

Xgl_boolean checkLastPick() const

Compares the last recorded pick IDs with the current pick IDs. Returns
TRUE if identical.

Xgl_attribute* getAttrTypeListAll() const

Returns a list of all 2D and 3D Context attributes.

virtual void receive(XglObject* obj, const XglMsg& msg)

Used by XGL core only.

Context 2D Interfaces

See Context2d.h for the get...() interfaces you can use to retrieve state
values from the Context2d class.The XglContext2D class includes the following
internal interfaces:

const XglStrokeGroup* getCurrentStroke() const

Returns a pointer to the current stroke group.

XglDpCtx2d* getDp() {return dp;}

Used by XGL core only.

XglSwpCtx2d* getSwp() const

Used by XGL core only.

void assignCurStrokeAsLine()
void assignCurStrokeAsText()
void assignCurStrokeAsEdge()
void assignCurStrokeAsMarker()
void assignCurStrokeAsSurfFront()

Sets the Context current stroke pointer to the requested stroke group. For
example, assignCurStrokeAsLine() causes the Context current stroke
pointer to point to the line stroke group.

XglViewGrp2dItf* getViewGrp() const

Used by XGL core only. The pipeline should not use this function but
should use instead the pointer to its own view group interface object in its
XglDpCtx object.

.h

Getting Information from XGL Objects 129

6

Context 3D Interfaces

See Context3d.h for the get...() interfaces you can use to retrieve state
values from the 3D Context.The XglContext3d class includes the following
internal interfaces:

const Xgli_surf_face_attr_3d* const
getSurfFrontFaceAttr3d() const

const Xgli_surf_face_attr* const
getSurfBackFaceAttr() const

const Xgli_surf_face_attr_3d* const
getSurfBackFaceAttr3d() const

const Xgli_surf_attr_3d* const getSurfFrontAttr3d() const
const Xgli_surf_attr_3d* const getSurfBackAttr3d() const

Functions that allow the pipeline to get a number of 3D surface attributes
within a single structure. These functions can facilitate device pipeline
manipulation of 3D surface attributes. At LI-2, face determination has
already taken place. A pipeline can set up the surface attribute pointer
based on the facing in the renderer and do all the attribute processing
without referring to the actual facing. See Context3d.h for the structure
definitions.

const XglStrokeGroup3d* getCurrentStroke() const

Returns a pointer to the current stroke group.

void assignCurStrokeAsLine()
void assignCurStrokeAsText()
void assignCurStrokeAsEdge()
void assignCurStrokeAsMarker()
void assignCurStrokeAsSurfFront()
void assignCurStrokeAsSurfBack()

Points the Context current stroke pointer to the requested stroke group. For
example, assignCurStrokeAsLine() causes the Context current stroke
pointer to point to the line stroke group.

Xgl_boolean getFrontTexturing() const

Returns an Xgl_boolean value, which is TRUE if the color type is RGB, if front
fill style is other than hollow or empty, and there is at least one active front
Data Map Texture object in the Context.

.h

130 XGL Device Pipeline Porting Guide—August 1994

6

Xgl_boolean getBackTexturing() const

Returns an Xgl_boolean value, which is TRUE if the color type is RGB, if back
fill style is other than hollow or empty, and there is at least one active back
Data Map Texture object in the Context.

Xgl_boolean getTlistEdgeFlag() const

If NURBS edge flags are on and the device pipeline calls the software
pipeline to render a NURBS surface, the software pipeline calls the device
pipeline li1QuadrilateralMesh() or li1TriangleStrip() . The
software pipeline uses ctx->setTlistEdgeFlag() to inform the pipeline
primitives whether they should show the edges of tesselated triangle lists.
The functions li1QuadrilateralMesh() or li1TriangleStrip() can
access tlistEdgeFlag by calling ctx->getTlistEdgeFlag() . The
default value is FALSE.

virtual void receive(XglObject* obj, const XglMsg& msg)

Used by XGL core only.

Data Map Texture Interfaces

See DmapTexture.h for the get...() interfaces you can use to retrieve state
values from the Data Map Texture object.The XglDmapTexture class includes
the following internal functions:

Xgl_texture_desc* const* getDescriptors() const

Returns a pointer to the texture descriptors (that are read-only) in a Data
Map Texture object. This is similar to the function
getDescriptors(Xgl_texture_desc[]) , except that in this case the
device pipeline has to allocate space for the texture descriptors and a copy
of the texture descriptors is returned as opposed to a pointer.

virtual void receive(XglObject* obj, const XglMsg& msg)

Used by XGL core only.

.h

Getting Information from XGL Objects 131

6

Device Interfaces

See Device.h for the get...() interfaces you can use to retrieve state values
from the Device object. The XglDevice class includes the following internal
functions.

Xgl_vdc_orientation getDcOrientation() const

Used by XGL core only.

XglDpDev* getDpDev() const

Returns a pointer to the XglDpDev object.

XglDrawable* getDrawable() const

Returns the drawable associated with the Device.

float getGammaValue() const

Returns the gamma value of the device needed by the software pipeline to
implement gamma correction for antialiased stroke primitives.

float* getGammaPowerTable() const

Returns a pointer to the gammaPowerTable. The ith entry of the table is the
value i/255.0 raised to the power of the gamma value. The size of the table
is 256 entries.

float* getGammaInversePowerTable() const

Returns a pointer to the gammaInversePower Table. The ith entry of the
table is the value i/255.0 raised to the power of the reciprocal of the gamma
value. The size of the table is 256 entries.

.h

132 XGL Device Pipeline Porting Guide—August 1994

6

Light Interfaces

See Light.h for the get...() interfaces you can use to retrieve state values
from the Light object. The XglLight class includes the following internal
functions:

const Xgl_pt_f3d& getNegDirection() const

For lights of type directional (XGL_LIGHT_DIRECTIONAL) and spot
(XGL_LIGHT_SPOT), this function returns the vector opposite to the
direction of propagation for directional lights, or opposite to the light ray on
the central axis for spot lights, in other words, the negative of
XGL_LIGHT_DIRECTIONAL, or pointing toward the light source.

float getCosAngle2() const

For lights of type XGL_LIGHT_SPOT, this function returns the cosine of half
the spot angle, in other words, the angle between the central axis of the spot
light and any ray at the boundary of the cone of illumination.

Line Pattern Interfaces

See LinePattern.h for the get...() interfaces you can use to retrieve state
values from the Line Pattern object. The XglLinePattern class includes the
following internal functions.

Note – In most cases, you will get to Line Pattern data via the stroke group. For
example, use ctx->getCurrentStroke()->getPattern() .

void getActualData (float*) const

Copies the actual line pattern data. The actual data differs from the API data
in that it is always float , and it includes the odd-length processing.

const float* getActualData() const

Returns a pointer to the actual line pattern data, including the odd-length
processing.

Xgl_usgn32 getActualDataSize() const

Returns the size of the actual line pattern data.

.h

.h

Getting Information from XGL Objects 133

6

float getActualOffset() const

Returns the offset in the actual line pattern data.

float getLength() const

Returns the total length of the line pattern in actual data.

Xgl_usgn32 getStartSeg() const

Returns the segment in actual data where the offset is.

float getStartSegRemain() const

Returns the remaining length in the segment in actual data at the offset
location.

Marker Interfaces

See Marker.h for the get...() interfaces you can use to retrieve state values
from the Marker object. The XglMarker class includes the following internal
function:

const XglPrimData* getActualDescription() const

Returns a pointer to the XglPrimData description of the marker.

MipMap Texture Interfaces

See MipMapTexture.h for the get...() interfaces you can use to retrieve
state values from the MipMap Texture object. The XglMipMapTexture class
includes the following internal function:

Xgl_usgn8 getElement(Xgl_usgn32 level,Xgl_usgn32
channel_num,Xgl_usgn32 x,Xgl_usgn32 y)

Returns the contents of the channel channel_num at position (x,y) from the
level level in the MipMap.

.h

.h

134 XGL Device Pipeline Porting Guide—August 1994

6

Raster Interfaces

See Raster.h for the get...() interfaces you can use to retrieve state values
from the Raster object. The XglRaster class includes the following internal
interfaces:

void setDoPixelMapping (Xgl_boolean b)

Used by the Memory Raster device pipeline only. Differentiates between a
“real” Memory Raster device (b is FALSE) and a backing store Memory
Raster (b is TRUE).

Xgl_boolean getDoPixelMapping() const

Used by RefDpCtx, a Memory Raster, and the software pipeline to
determine if DoPixelMapping has been set.

Texture Map Interfaces

See Tmap.h for the get...() interfaces you can use to retrieve state values
from the Texture Map object.The XglTmap class includes the following internal
functions:

Xgl_texture_general_desc* const* getDescriptors() const

Returns a pointer to the texture descriptors (that are read-only) in a Texture
Map object. This is similar to the function
getDescriptors(Xgl_texture_general_desc[]) , except that in this
case the device pipeline has to allocate space for the texture descriptors and
a copy of the texture descriptors is returned as opposed to a pointer.

virtual void receive(XglObject* obj, const XglMsg& msg)

Used by XGL core only.

.h

.h

Getting Information from XGL Objects 135

6

Window Raster Interfaces

See RasterWin.h for the get...() interfaces you can use to retrieve state
values from the Window Raster object. The XglRasterWin class includes the
following internal functions:

void setDgaCmapPutFunc(void(*PutFunc)(Dga_cmap dga_cmap,
int inden, int count, u_char* red,
u_char* green, u_char* blue)

Provided by the XGL core so that a device pipeline can register a callback
function to update the hardware color map. For more information on
PutFunc , see the documentation for dga_cm_write() in the OpenWindows
Server Device Developer’s Guide.

XglPixRectMem* getSwZBuffer() const

Returns a pointer to the XglPixRectMem object that represents the software
Z-buffer.

XglPixRectMem* getSwAccumBuffer() const

Returns a pointer to the XglPixRectMem object that represents the software
accumulation buffer.

virtual void receive(XglObject* obj, const XglMsg& msg)

Used by XGL core only.

Memory Raster Interfaces

See RasterMem.h for the get...() interfaces you can use to retrieve state
values from the Memory Raster object. The XglRasterMem class provides the
following internal functions:

XglPixRectMem* getImageBufferPixRect() const

Returns a pointer to the XglPixRectMem object that represents the image
buffer for the memory raster.

XglPixRectMem* getZBufferPixRect() const

Returns a pointer to the XglPixRectMem object that represents the Z-buffer
for the memory raster.

.h

.h

136 XGL Device Pipeline Porting Guide—August 1994

6

XglPixRectMem* getAccumBufferPixRect() const

Returns a pointer to the XglPixRectMem object that represents the
accumulation buffer for the memory raster.

Xgl_usgn32 getImgBufLineBytes() const

Gets the value for linebytes for the image buffer when the memory raster
is set up to access memory for retained windows. linebytes is the number
of bytes that separates one line in a raster, in other words, the number of
bytes from (x,y) to (x,y+1).

void syncRtnDevice(XglRasterWin*)

Used by the XGL core only.

virtual void receive(XglObject* obj, const XglMsg& msg)

Used by XGL core only.

Stroke Font Interfaces

See Sfont.h for the get...() interfaces you can use to retrieve state values
from the Stroke Font object. The XglSfont class includes the following internal
functions:

Xgl_boolean getIsFontLoaded() const

Returns a Boolean value that indicates whether the font file is actually
loaded.

Xgl_sfont_data* getSfontData()

Loads the font file and returns a pointer to the data.

Sfont_inst* getSfontInst()

Returns a pointer to the actual strokes that define an entire font.

.h

Getting Information from XGL Objects 137

6

Transform Interfaces and Flags

Transform Flag

The Transform object maintains a member datum called flag that contains
internal information for the XglTransform class. The pipeline can get the flag
information by calling the getFlag() function. The flag consists of the values
in the enumerated type Xgli_trans_flag. Most of the flag bits are used to keep
track of the state of the Transform, but two of the bits,
XGLI_TRANS_SINGULAR and XGLI_TRANS_INVERSE_VALID, may be of use
to the device pipeline.

If the XGLI_TRANS_SINGULAR bit is set, this indicates that the matrix is
singular and that the application, the XGL core, or the device pipeline has
attempted to invert it. However, if the bit is not set, this does not necessarily
mean that the matrix is nonsingular but may simply mean there has not been
an attempt to take the inverse of the matrix. The
XGLI_TRANS_INVERSE_VALID bit works similarly. Table 6-2 shows the
relationship between these two bits and what the bit settings mean.

Transform Member Records

The Transform member datum memberRecord defines the matrix groups to
which a matrix is a member. If the application has specified the membership of
a matrix to a matrix group with xgl_transform_write_specific() or the
application constructs its Transforms with XGL’s transform utilities, such as
xgl_transform_scale() , the device pipeline can use the

Table 6-2 XGLI_TRANS_SINGULAR

SINGULAR INVERSE VALID Meaning

0 0 The inverse of the matrix has not been
taken, so information on its singularity is
not available.

1 0 Singular matrix.

0 1 Nonsingular matrix.

1 1 Not possible.

138 XGL Device Pipeline Porting Guide—August 1994

6

getMemberRecord() function to determine which groups the matrix belongs
to and take advantage of that information to speed up the processing of
transformations.

The member datum memberRecord holds combinations of the macros
XGL_TRANS_GROUP_xx defined in xgl.h . The groups are:

/* Transform groups */
typedef Xgl_usgn32 Xgl_trans_group;
#define XGL_TRANS_GROUP_IDENTITY 0x001
#define XGL_TRANS_GROUP_TRANSLATION 0x002
#define XGL_TRANS_GROUP_SCALE 0x004
#define XGL_TRANS_GROUP_ROTATION 0x008
#define XGL_TRANS_GROUP_WINDOW 0x010
#define XGL_TRANS_GROUP_SHEAR_SCALE 0x020
#define XGL_TRANS_GROUP_LENGTH_PRESERV 0x040
#define XGL_TRANS_GROUP_ANGLE_PRESERV 0x080
#define XGL_TRANS_GROUP_AFFINE 0x100
#define XGL_TRANS_GROUP_LIM_PERSPECTIVE 0x200

Each group has special properties. XGL takes advantage of these for more
efficient operations, including inversion and multiplication of two matrices,
multiplication of a matrix by points, and multiplication of a matrix by normal
vectors. The device pipeline can use the groups to classify a matrix in order to
apply optimized operations during rendering.

Applications can specify the member record using the Transform operator
xgl_transform_write_specific() to write a matrix into a Transform.
This operator takes a parameter of type Xgl_trans_member, which is defined in
xgl.h and which specifies the groups the matrix belongs to. In addition, XGL
maintains the member record when applications use XGL’s utilities for
constructing Transforms. If applications use their own utilities for constructing
matrices, and they do not specify the member record when they write a matrix
into a Transform, the member record is not maintained because analyzing the
matrix is time-consuming. For information on the member groups, see the XGL
Reference Manual page on xgl_transform_write_specific ().

Getting Information from XGL Objects 139

6

The device pipeline can test the member flags by calling the
getMemberRecord() function of the Transform object, as in the following
pseudocode example. Note that in this example, the application has not
supplied the w value.

It is the device pipeline’s responsibility to check the membership record from
the Transform object. Derived data calculates the correct matrix, but a device
pipeline may or may not be able to use that matrix in certain circumstances.
The device pipeline can take advantage of knowing that certain flag bits are
set.

Example: Checking a Member Record for Identity
One example of using a member record is to determine whether a transform is
identity, as shown in this code sample:

const XglTransform* mc_to_cc = viewGrpItf->getMcToCc();

if (mc_to_cc->getMemberRecord() & XGL_TRANS_GROUP_IDENTITY) {
// transform is identity

}
else {

// transform is not identity
}

Xgl_trans_group group = transform->getMemberRecord();
const Xgl_matrix_f3d*mat = (const Xgl_matrix_f3d*)

transform->getMatrixFloat();

if (group & XGL_TRANS_GROUP_IDENTITY) {
// identity
 x1 = x ; y1 = y ; z1 = z ; w1 = 1 ;

}
else if (group & XGL_TRANS_GROUP_TRANSLATION) {
// translation
 x1 = x + (*mat)[3][0] ;
 y1 = y + (*mat)[3][2] ;
 z1 = z + (*mat)[3][2]; w1 = 1 ;
}

140 XGL Device Pipeline Porting Guide—August 1994

6

Example: Checking a Member Record to Do Lighting
A device may implement lighting in Model Coordinates (MC) for improved
performance over World Coordinates (WC) and Lighting Coordinates (LC)
because the normal vectors do not need to be transformed to do lighting in MC
(see Chapter 7, “View Model Derived Data” for a description of coordinate
systems). Lighting can be performed correctly in MC only if the Model
Transform preserves angles. The reason is that lighting is specified in WC in
the conceptual view model so lighting must be performed in a coordinate
system related to WC by an angle-preserving matrix; otherwise, the dot
products in lighting calculations do not equal those in WC. You must check the
member record of the Model Transform as discussed below before you attempt
to perform lighting calculations in Model Coordinates.

The membership record of the Model Transform can give additional
information relevant to lighting calculations. The Model Transform may have
the following properties:

1. Length-preserving

2. Angle-preserving

3. Affine with anisotropic scaling

4. Perspective

5. Singular

The order of these properties for lighting is from easiest to hardest, which is
the sequence that you should apply to testing the Model Transform. The
testing needs to be performed at least once whenever the Model Transform
changes. The view group interface can assist detection of these changes; see
Chapter 7, “View Model Derived Data” for information on the view group
interface.

When the Model Transform preserves lengths (and angles), you can perform
lighting in MC. However, if the device always performs lighting in WC or LC,
then the device would transform normal vectors as column vectors by the 3×3
upper-left submatrix of the WC-to-MC or LC-to-MC Transform respectively.
Lighting calculations generally require unit length vectors, so XGL requires
applications to supply unit length normal vectors in MC. If the Model
Transform preserves lengths, then the normal vectors in WC and LC have unit
length, so you do not have to readjust their lengths after transformation. To

Getting Information from XGL Objects 141

6

determine whether the Model Transform preserves lengths, you can check the
membership record to see if the XGL_TRANS_GROUP_LENGTH_PRESERV bit is
set.

When the Model Transform preserves angles, you can perform lighting in MC.
However, if the device always performs lighting in WC or LC, you can
transform normal vectors the same way as for the length-preserving case. Unit
normal vectors in MC transformed in this manner by an angle-preserving
matrix always have the same length after transformation. This length is the
isotropic scale factor, which can be obtained with getIsotropicScale() . If
you need a unit vector after transformation by an angle-preserving matrix, just
divide the transformed vector by the isotropic scale factor. If you have several
vectors that you want to transform by an angle-preserving matrix and you
need unit length vectors after the transformation, then you can divide all the
elements of the matrix by the isotropic scale factor, and the unit length vectors
transformed by this matrix will yield unit length vectors. This saves you from
dividing all the vectors by the isotropic scale factor. To determine whether the
Model Transform preserves angles, you can check the membership record to
see if the XGL_TRANS_GROUP_ANGLE_PRESERV bit is set.

When the Model Transform is affine and does not preserve angles, you must
perform lighting in WC or LC. In this case, the Model Transform scales
geometry anisotropically, and the amount of scaling depends on the direction.
After transforming a unit vector by an affine matrix with anisotropic scaling,
you need to calculate the length of the transformed vector and divide the
vector by its length. Calculation of the length usually requires a square root,
but a lookup table may be faster and accurate enough. To determine whether
the Model Transform is affine and does not preserve angles, you can check the
membership record to see if the XGL_TRANS_GROUP_AFFINE bit is set after
checking that the XGL_TRANS_GROUP_ANGLE_PRESERV bit is not set.

When a Model Transform has perspective, lighting calculations are correct only
in WC or LC. The calculation of transformed normal vectors is difficult, and
most applications do not use Model Transforms with perspective. You can
assume that this situation never occurs. If it does occur, treat it as if the Model
Transform is affine with anisotropic scaling. XGL has the limitation that the
Model Transform cannot have perspective.

When a Model Transform is singular, lighting calculations cannot be performed
except for ambient lighting. In MC, the light positions and eye position or
vector cannot be calculated. In WC or LC, the normal vectors cannot be

142 XGL Device Pipeline Porting Guide—August 1994

6

calculated uniquely. Therefore, you should only do ambient lighting. To
determine whether the Model Transform is singular, get its flag as described on
page 137.

Transform Internal Interfaces

See Transform.h for the get...() interfaces you can use to retrieve state
values from the Transform object. The XglTransform class includes the
following internal functions.

Note – The pipeline can access transforms and view group attributes via the
Context object if the pipeline never falls back on the software pipeline. If the
device pipeline never uses the software pipeline, it can access the Local Model
Transform using XglTransform* mt = ctx->getModelTrans() .
Even in this case, however, it is a good idea for pipelines to use derived data so
that they work consistently with other pipelines. So the preferred way to access
the Local Model Transform is to use derived data, as in
mt = (XglTransform*) viewGrpItf->getMcToWc() . Then, to get to the
interfaces for the Transform, use mt->get xx.

Xgli_trans_flags getFlag()

Returns the transform flag described on page 137.

Xgl_trans_group getMemberRecord()

Returns a word containing the matrix groups. See page 137 for information
on the internal flag memberRecord and see the
xgl_transform_write_specific() man page for information on the
member groups.

const float* getMatrixFloat()

Returns a floating-point representation of a single-precision matrix. Note
that when an application uses xgl_transform_write_specific() to
write a matrix, it passes a pointer to a matrix type defined in xgl.h .
However, the internal matrix types defined in Transform.h are the actual
representations of the matrix data that the application will get. Although the
API documentation states that 2D matrices are 3×2 and in xgl.h the matrix

.h

Getting Information from XGL Objects 143

6

type Xgl_matrix_f2d is defined as a float 3×2 matrix, internally the 2D
matrices are 3×3 matrices of type Xgli_matrix_i3x3, Xgli_matrix_f3x3, or
Xgli_matrix_d3x3.

Note that XGL does calculations in double-precision format and only
converts to single-precision format when the application or pipeline
requests it by calling getMatrixFloat() .

const float* getMatrix()

Equivalent to getMatrixFloat() ; however, getMatrixFloat() is the
recommended version.

const double* getMatrixDouble()

Returns a double-precision matrix.

const Xgl_sgn32* getMatrixInt()

Returns a 32-bit integer version of the matrix.

double getIsotropicScale()

Returns a value that indicates how much scaling the matrix does when it
scales isotropically. This is valid only when the
XGL_TRANS_GROUP_ANGLE_PRESERV bit is set in the member record.

double getNorm()

Returns the mathematical norm of a matrix.

double getNormInverse()

Returns the reciprocal of the norm of a matrix.

copyConvert()

Used internally by getMatrixInt() .

void transPt(const Xgli_pt*, Xgli_pt*)

Transforms a single point of type Xgli_pt (defined in Transform.h) and
stores it in a different block of memory. This is different than the API
xgl_transform_point() function, which transforms a point and
overwrites the original block of memory.

144 XGL Device Pipeline Porting Guide—August 1994

6

void transPtList(const Xgli_pt_list*, Xgli_pt_list*)

Transforms a point list of type Xgli_pt_list (defined in Transform.h) and
stores it in a different block of memory. This is different than the API
xgl_transform_point_list() function.

void transNormal(const Xgl_pt_f3d* src, xgl_pt_f3d* dest)

Transforms a normal of type Xgl_pt_f3d and returns a normal of the same
type.

void
transUnitNormal(const Xgl_pt_f3d* src, Xgl_pt_f3d* dest)

Transforms a unit normal of type Xgl_pt_f3d and returns a unit normal of
the same type.

void
transUnitNormalDouble(const Xgl_pt_d3d* src,

Xgl_pt_d3d* dest)

Transforms a unit normal of type Xgl_pt_d3d and returns a unit normal of
the same type.

Getting Information from XGL Objects 145

6

Getting Information From the Device Object
The device pipeline may need to get information from the device-independent
Device object, from the Drawable associated with the Device, or from a Color
Map object that the application has associated with the Device. Pointers to the
Device object are available as follows:

• The XglDpDev object has a member data device that holds a pointer to the
device-independent Device object. Note that device already points to a
Device of the right type. In other words, in an XglDpDevWinRas object,
device is already XglRasterWin* , in an XglDpDevMemRas object,
device is already XglRasterMem* , and in an XglDpDevStream object,
device is already XglStream* .

• The XglDpCtx object has a member data device that holds a pointer to the
device-independent Device object.

A pointer to the Drawable object is available in the XglDpCtx object. Your
pipeline XglDpCtx can use the drawable pointer rather than using
getDevice()->getDrawable() . Note that the device and drawable
pointers are fixed at XglDpDev creation and do not change for the life of the
XglDpDev object.

To get a handle to the Color Map object, use the inline function getCmap() , as
in device->getCmap() . The getCmap() function is defined in Device.h .

If you frequently use some object pointers (or even data itself), you can cache
the object pointers, provided that you use the objectSet() function correctly
to stay synchronized with Context state changes. A good example of this is
caching a pointer to the color map object. If you think frequent use of
device->getCmap() is too time consuming, save the return value in a
member data of your own XglDpCtx.

Color Map Interfaces

Because the Color Map object is set on the Device, its interfaces are available
through the Device object. With a handle to the Color Map object, the pipeline
can access the Color Map’s interfaces as follows:

device->getCmap()->getColorMapper()

146 XGL Device Pipeline Porting Guide—August 1994

6

Note that the application can change the color map by setting a new Color
Map object on the Device or by changing an existing color map. The pipeline is
notified of color map changes by the message passing mechanism (see page 99)
and by a direct dpDev->setCmap(cmap) call from the Context to the pipeline
XglDpDev object (see page 54). Although the color map can change during
program execution, applications are not allowed to change the device’s color
type after the device has been created.

See Cmap.h for the get...() interfaces you can use to retrieve state values
from the Color Map object. The XglCmap class includes the following internal
functions.

Xgl_usgn32 getPlaneMaskMask() const

Returns an Xgl_usgn32 value in which the bits set indicate the knowledge
XGL has of the bits where rendering is allowed, with regard to the XGL and
X colormaps.

Xgl_color* getColorTable() const

This function returns a pointer to the first color of the color table.

XglCmapDrawable* getCmapDrawable() const

Used by XGL core only.

Xgl_usgn32 lookUpDitherValue(Xgl_usgn32, Xgl_usgn32)

Returns the dither matrix value at the given position.

Xgl_sgn32 lookUpInternalDitherValue(Xgl_usgn32, Xgl_usgn32)

Returns the value of the internal dither matrix at the given position. The
internal dither matrix is the transpose of the regular dither matrix in
“fract24” (s7.24) format, and it is divided by 255 (so the renderer need not
divide). The internal dither matrix is valid only when the dither matrix is
8×8. It is the transpose of the regular matrix to allow scanline access.

Xgl_sgn32*
lookUpInternalDitherAddress(Xgl_usgn32, Xgl_usgn32)

Returns the address of the value of the internal dither matrix at the given
position.

.h

Getting Information from XGL Objects 147

6

Xgl_boolean getMapperHasBeenSet() const

Indicates whether color mapper has been set. Used by the XGL core only.

Xgl_boolean getInverseMapperHasBeenSet() const

Indicates whether the inverse color mapper has been set. Used by the XGL
core only.

148 XGL Device Pipeline Porting Guide—August 1994

6

149

View Model Derived Data 7

This chapter describes how a device pipeline gets data for implementing the
view model. The chapter includes information on the following topics:

• Overview of view model derived data

• A summary of how derived data is implemented

• Information on how pipelines access derived data information

As you read this chapter, you will find it helpful to have access to the header
files for the derived data mechanism. These are:

• ViewCache.h , ViewCache2d.h , and ViewCache3d.h
• ViewConcern2d.h and ViewConcern3d.h
• ViewGrp2d.h and ViewGrp3d.h
• ViewGrp2dItf.h and ViewGrp3dItf.h
• ViewGrp2dConfig and.h and ViewGrp3dConfig.h

.h

150 XGL Device Pipeline Porting Guide—August 1994

7

Overview of View Model Derived Data
XGL defines a conceptual view model consisting of a number of coordinate
systems in which an application can specify certain operations. These
coordinate systems are Model Coordinates (MC), World Coordinates (WC),
Virtual Device Coordinates (VDC), and Device Coordinates (DC). Examples of
the usage of coordinate systems in the 3D view model include specification of
geometry in MC, lights and model clip planes in WC, view clip planes and
depth cue reference planes in VDC, and the pick aperture in DC. The
coordinate systems are related by a sequence of transformations. The Local
Model and Global Model Transforms are concatenated to form the Model
Transform, which maps geometry from MC to WC. The View Transform maps
geometry from WC to VDC. The VDC map, VDC orientation, VDC window,
DC orientation, DC viewport, and jitter offset collectively define a mapping
between VDC and DC. This view model is conceptual because an application
can think of an operation as occurring in the coordinate system where it is
specified, but a pipeline actually may implement the operation in another
coordinate system for improved performance as long as the results are
equivalent.

XGL provides a facility to assist pipelines with implementation of the view
model’s operations. The facility is named view model derived data or simply
derived data. Derived data maintains a cache of items derived from a Context’s
view model attributes. The derived items include Transforms for mapping
geometry between coordinate systems as well as items in various coordinate
systems such as the view clip bounds, lights, eye positions or eye vectors,
model clip planes, and depth cue reference planes. For example, derived data
calculates the VDC-to-DC Transform from the Context attributes for the VDC
map, VDC orientation, VDC window, DC viewport, and jitter offset, and the
Device attribute for DC orientation. In turn, the MC-to-DC Transform is the
concatenation of the Model, View, and VDC-to-DC Transforms. This illustrates
that a derived item can depend on only API attributes, on only derived items,
or on a combination of both.

Note – Pipelines have the option of not using the derived data facility if and
only if the pipeline never falls back on the software pipeline. If the pipeline
does fall back on the software pipeline, for example for the processing of
annotation text, markers, 2D circles and arcs, or NURBS curves and surfaces, it
must use derived data. See “Entry of Geometry from Multiple Coordinate
Systems” on page 152 for information.

View Model Derived Data 151

7

Derived data implements a large collection of items. The items were selected
by analyzing the requirements of a theoretical pipeline and by looking at the
needs of several graphics devices. The theoretical pipeline employs two
coordinate systems that are not exposed at the API level: Lighting Coordinates
(LC)1 and Clipping Coordinates (CC). It also performs operations in several
coordinate systems; for example, model clipping operations occur in four
coordinate systems so the clip planes are needed in each of these.

Derived data is efficient and easy for device pipelines to use. In particular,
derived data is designed for hardware devices that retain the state of the view
model such as matrices and clip planes. These device pipelines need to know
when a derived item has changed so that the pipeline can reload the item into
the device. The calculations are transparent to pipelines, and the design avoids
redundancies and extraneous evaluation of derived data items.

The XGL software pipeline also uses derived data. The only difference between
many device pipelines and the software pipeline is that the latter does not
retain state so it does not need to be informed of changes to derived items. The
software pipeline simply gets a derived item as needed, but this does not
necessarily cause re-evaluation since the item may be valid already.

Design Goals of Derived Data

The design goals of derived data are:

1. Support geometry entering LI-1 from other coordinate systems (in addition
to Model Coordinates) with a simple interface for pipelines.

2. Provide a fast test to inform a pipeline of changes to derived items of
concern to that pipeline and minimize data transfer to devices that retain
state.

3. Defer calculation of a derived item until a pipeline requests that item, and
avoid redundant calculations.

1. For information on Lighting Coordinates, see Salim S. Abi-Ezzi and Michael J. Wozny, “Factoring a
Homogeneous Transformation for a More Efficient Graphics Pipeline,” Computer Graphics Forum, North-
Holland, Vol. 9, 1990, pp. 245-255.

152 XGL Device Pipeline Porting Guide—August 1994

7

Entry of Geometry from Multiple Coordinate Systems

The need to support entry of geometry to LI-1 primitives from coordinate
systems other than Model Coordinates greatly complicates the design of
derived data. As an example, consider the NURBS surface code in the software
pipeline. The software pipeline’s 3D LI-1 NURBS surface primitive takes
control points and knots in MC and produces polylines, triangles, and
quadrilateral meshes in LC, CC, and DC. Then this geometry enters the LI-1
primitives of a number of devices. Rather than force device pipeline developers
to produce an LI-1 primitive for each coordinate system from which geometry
can enter, derived data “fools” pipelines into “thinking” that they are always
getting geometry in MC, even when geometry enters from another coordinate
system. But this could be expensive if it isn’t done carefully.

Consider a simple example of 2D annotation text in the software pipeline. The
application passes a character string and a reference point to XGL at the API
level. If the device pipeline cannot handle annotation text at LI-1, the software
pipeline transforms the reference point from MC to VDC, checks that the point
is within the view clip bounds, and constructs a polyline description of the text
based on information stored in font files. Derived data provides functions so
that a primitive can push the current coordinate system onto a stack and set it
to another: VDC in the case of annotation text. Then the primitive can call LI-1
multipolyline. When the multipolyline function requests a transform, for
example the MC-to-CC Transform, derived data returns the appropriate
transform for the current coordinate system: in this case, the VDC-to-CC
Transform. The LI-1 multipolyline primitive doesn’t need to be aware that the
current coordinate system is VDC instead of MC. When control returns from
the LI-1 polyline primitive to the software pipeline’s LI-1 annotation text
primitive, the latter can pop the coordinate system to restore the original one
(which should be MC).

For certain primitives, the software pipeline uses derived data to transform the
geometry through part of the pipeline before changing the coordinate system
and passing the partially processed geometry on to another LI-1 primitive. An
important corollary is that if a device pipeline ever falls back on the software
pipeline, the device pipeline must use derived data. If a device pipeline never
falls back on the software pipeline, then the device pipeline has the option of
using or not using derived data.

View Model Derived Data 153

7

Changes to Derived Items

Derived data has a fast test to allow pipelines to determine when at least one
derived item has changed since the last time that the pipeline accessed any
item. This test especially benefits pipelines whose devices retain view model
state. A pipeline can express concern about changes to a specified set of items.
This allows pipelines to filter out irrelevant changes, which is important
because derived data consists of a large number of items and pipelines
typically need only a few items.

A derived item can change as a result of an application changing a view model
attribute. A derived item may depend directly or indirectly on that attribute.
An attribute change invalidates some previously calculated items.

A change to a derived item can also be the result of a change in the current
coordinate system. In the annotation text example in the previous section,
derived data returns the VDC-to-CC Transform when the current coordinate
system is VDC and the pipeline requests the MC-to-CC Transform. If the
previous coordinate system was MC when the pipeline requested the MC-to-
CC Transform, the actual MC-to-CC matrix would have been loaded into the
device. The change in coordinate system from MC to VDC means that the
pipeline needs to load a difference matrix to achieve the MC-to-CC mapping.
Hence, a change in the current coordinate system results in changes to derived
items even though no items have been invalidated, as in the case of API
attribute changes. A pipeline does not need to be aware of the reason for a
change in an item. Derived data simply informs the pipeline when an item
must be reloaded into a device that retains state.

In addition to the fast test for the whole set of specified items, derived data has
a test for each individual item. If the fast test is positive, then at least one of the
specified items has changed. The pipeline then needs to check each of the
specified items for changes. The pipeline should get a changed item from
derived data and reload that state into the device.

The fast test never misses a change to a derived item resulting from a change to
an API view model attribute or a change in the current coordinate system.
However, the test may be falsely positive because changes to items resulting
from changes in the coordinate system cannot be determined quickly with
complete accuracy. Hence, the test is overly cautious. Fortunately, the tests for
the individual items are quick and completely accurate so derived data
eliminates extraneous transfers of state to devices. Since pipelines typically
need only a few items, the overhead is not large.

154 XGL Device Pipeline Porting Guide—August 1994

7

Deferred Calculation

Derived data defers calculations until a pipeline requests a particular item.
Each item is a node in an acyclic directed graph of dependencies with API
view model attributes at the bottom. When a pipeline requests a particular
item, derived data descends the graph until it finds valid items (API view
model attributes are always valid) and ascends the graph as it performs
calculations until it reaches the requested item. Consequently, if that item is
already valid, then no calculation is required. A pipeline’s request for a
particular item is the trigger for any necessary calculations.

Deferred evaluation has the advantage of eliminating unnecessary calculations.
Derived data calculates an item only when a pipeline explicitly requests that
item (or one that depends on it) and that item needs to be reloaded into a
device because of a change to a relevant API attribute or a change in the
current coordinate system. A pipeline is not penalized with expensive
calculations if it does not use derived data.

Derived Data Items
Derived data maintains transformations between coordinate systems and
maintains a variety of other items that change when Context or Device
attributes change.

 Coordinate Systems and Transforms

The majority of items in derived data are Transforms for mapping geometry
between pairs of coordinate systems. Each Transform has a name of the form
“AcToBc” for transforming points from the “A” coordinate system to the “B”
coordinate system. For 3D, the “AcToBc” Transform can be used to transform
normal and direction vectors from BC to AC by applying these vectors as 3×1
column vectors to the 3×3 upper-left submatrix of AcToBc’s 4×4 matrix.

View Model Derived Data 155

7

Table 7-1 lists the coordinate systems that derived data supports in 2D.

Table 7-2 lists the coordinate systems that derived data supports in 3D.

Note – GMC is the coordinate system after the Local Model Transform and
before the Global Model Transform.

In 3D the view-clipping volume in Clipping Coordinates has the boundaries
[-1,1] × [-1,1] × [-1,1] with the clip planes at the boundaries. The x-, y-, and z-
axes are parallel to those in VDC and DC. The orientation always has the x-axis
pointing right, the y-axis pointing up, and the z-axis pointing toward. This is
independent of the orientations of VDC (specified by the application) and DC
(specified by the device). 2D is similar except that there is no z-axis.

Table 7-1 Derived Data 2D Coordinate Systems

Mnemonic Name

MC Model Coordinates

GMC Global Model Coordinates

WC World Coordinates

VDC Virtual Device Coordinates

CC Clipping Coordinates

DC Device Coordinates

Table 7-2 Derived Data 3D Coordinate Systems

Mnemonic Name

MC Model Coordinates

GMC Global Model Coordinates

WC World Coordinates

LC Lighting Coordinates

IC Intermediate Coordinates

VDC Virtual Device Coordinates

CC Clipping Coordinates

DC Device Coordinates

156 XGL Device Pipeline Porting Guide—August 1994

7

In 3D the View Transform often can be factored into the following form:

V = EQG

where E is Euclidean (meaning that it preserves the distances between points
and the angle between direction vectors), and Q and G are sparse. See the
paper by Abi-Ezzi and Wozny for a full description of the decomposition and
properties of the coordinate systems. The coordinate system between E and Q
is called Lighting Coordinates, and the one between Q and G is called
Intermediate Coordinates. The software pipeline NURBS primitives use these
coordinate systems, and device pipelines may benefit from them as well.

 Other Derived Items

Derived data maintains a number of items other than Transforms. The view
clip bounds in MC, VDC, CC, and DC, and the viewport in DC are available to
both 2D and 3D pipelines. 3D pipelines can also access the lights in MC and
LC, the eye vector or position in MC, LC, VDC, and CC, a flag indicating when
the view projection is parallel as opposed to perspective, the model-clip planes
in MC, LC, CC, and DC, the depth cue planes in CC and DC, and a flag
indicating when the View Transform can be factored. Table 7-3 lists the items
other than Transforms that derived data maintains.

Table 7-3 Other Items in Derived Data

Mnemonic Name

VclipBoundsMC View-clip bounds in MC

VclipBoundsVdc View-clip bounds in VDC

VclipBoundsCc View-clip bounds in CC

VclipBoundsDc View-clip bounds in DC

ViewportDc Viewport in DC

LightsMc Lights in MC

LightsLc Lights in LC

EyeMc Eye vector or point in MC

EyeLc Eye vector or point in LC

EyeVdc Eye vector or point in VDC

EyeCc Eye vector or point in CC

View Model Derived Data 157

7

Overview of Derived Data’s Implementation
The view model derived data facility consists of a set of four classes for each of
2D and 3D. Table 7-4 lists the class names.

A view cache object consists of derived items and functions for deferred
evaluation of the items. Each Context has a pointer to its own view cache
object, which maintains the derived items specific to that Context.

A view group configuration object holds the static configuration information
for each coordinate system from which geometry can enter LI-1. Each view
cache has an array of view group configuration objects, one for each coordinate
system that the view cache supports. A 2D view cache supports MC, VDC, CC,
and DC. A 3D view cache supports these four as well as LC. The configuration
information is static: it is invariant once initialized and is common to all view
caches of a particular dimension.

ParallelProj Parallel projection flag

MclipPlanesMc Model-clip planes in MC

MclipPlanesLc Model-clip planes in LC

MclipPlanesCc Model-clip planes in CC

MclipPlanesDc Model-clip planes in DC

DcuePlanesCc Depth cue planes in CC

DcuePlanesDc Depth cue planes in DC

ViewCanonical View canonical flag

Table 7-4 View Model Derived Data Classes

Generic Name 2D C++ Class Name 3D C++ Class Name

View cache XglViewCache2d XglViewCache3d

View group configuration XglViewGrp2dConfig XglViewGrp3dConfig

View group interface XglViewGrp2dItf XglViewGrp3dItf

View concern XglViewConcern2d XglViewConcern3d

Table 7-3 Other Items in Derived Data (Continued)

Mnemonic Name

158 XGL Device Pipeline Porting Guide—August 1994

7

A view group interface object is a pipeline’s interface to the view model
derived data. This object informs a pipeline when derived items have changed
as a result of either the application changing a view model attribute or a
pipeline changing the coordinate system from which geometry enters the next
LI-1 primitive. The view group interface also maintains functions for returning
the items appropriate to the current coordinate system.

A view concern object is a description of all the derived items whose changes a
pipeline is concerned with. This object is a parameter of the view group
interface’s fast test for changes to derived items.

Each pipeline has a pointer to a view group interface object. The view group
interface has functions for creating and destroying view concern objects. A
pipeline may create as many view concern objects as it needs. For example, it
can have one for stroke primitives and one for surface primitives. The view
cache and view group configuration objects are inaccessible to pipelines so
their interfaces are not described in this document; see XGL Architecture Guide
or the appropriate header files for more information.

Accessing Derived Data
The pipeline has access to member functions of the view group interface object.
Each pipeline is provided with a pointer to its view group interface object by
the pipeline context classes. The 2D pipeline context class, XglPipeCtx2d, has a
member datum of type XglViewGrp2dItf* called viewGrpItf . Likewise,
XglPipeCtx3d has a member datum of type XglViewGrp3dItf* called
viewGrpItf . The constructors of XglPipeCtx2d and XglPipeCtx3d create a
new view group interface object for each Context. In general, the software
pipeline and device pipeline access member functions of the view group
interface with viewGrpItf-> as a prefix, as in the following example.

xform = viewGrpItf->getMcToDc();

View Model Derived Data 159

7

Note – The pipeline can access transforms and view model attributes via the
Context object if the pipeline never falls back on the software pipeline. If, in
fact, the pipeline never uses the software pipeline, it can access the Local
Model Transform using XglTransform* mt = ctx->getModelTrans() .
Even in this case, however, it is a good idea for pipelines to use derived data so
that they work consistently with other pipelines. So the preferred way to access
the Local Model Transform is to use derived data, as in
mt = viewGrpItf->getMcToWc .

Registration of Concerns
A device pipeline for a device that retains view model state can create view
concern objects to keep track of the derived items that the pipeline is
concerned about. Typically, a pipeline’s concerns vary from primitive to
primitive. Surfaces are more complex than stroked primitives such as polylines
and markers, so a pipeline might have more concerns for surfaces. A pipeline
can create its view concern objects in its constructors.

The following example shows the constructor and destructor of the 3D device
pipeline for a sample pipeline (SampDp). The constructor creates view concern
objects for the stroke and surface primitives. Registration of the concerns
consists of two steps:

1. Define the view flag by combining bits corresponding to the derived items
that the device pipeline loads into the device for a particular primitive or
group of primitives.

2. Create a view concern object from the view flag.

Note that the pipeline needs only a few items from among the large selection
available in derived data. This is typical for many devices. Those devices that
accelerate more functionality usually need to keep track of more derived items.

#include “xgli/Context3d.h”
#include “xgli/DpCtx3d.h”
#include “xgli/ViewGrp3dItf.h”
#include “DpCtx3dSampDp.h”
#include “DpDevSampDp.h”

XglDpCtx3dSampDp::XglDpCtx3dSampDp(XglContext3d* ctx,
XglDpDevSampDp* dp_dev) :

160 XGL Device Pipeline Porting Guide—August 1994

7

XglDpCtx3d(ctx),
XglDpCtxSampDp((XglContext*)context), dp_dev)

{
// Define view flag for polylines and markers.
// Xgli_view_flag_3d XglDpCtx3dSampDp::strokeViewFlag;
//
strokeViewFlag.a =XGLI_VIEW_A_MC_TO_CC |

XGLI_VIEW_A_CC_TO_DC;
strokeViewFlag.b = NULL;
strokeViewFlag.c = XGLI_VIEW_C_PARALLEL_PROJ;

// Create a view concern object for polylines and markers.
// XglViewConcern3d* XglDpCtx3dSampDp::strokeConcern;
// XglViewGrp3dItf* XglPipeCtx3d::viewGrpItf;
//
strokeConcern = viewGrpItf-

>createViewConcern(strokeViewFlag);

// Define view flag for surfaces.
// Xgli_view_flag_3d XglDpCtx3dSampDp::surfViewFlag;
//
surfViewFlag.a = strokeConcernBits.a | XGLI_VIEW_A_MC_TO_WC;
surfViewFlag.b =strokeConcernBits.b |

 XGLI_VIEW_B_MC_TO_LC |
 XGLI_VIEW_B_LC_TO_MC |
 XGLI_VIEW_B_LC_TO_CC;

surfViewFlag.c = strokeConcernBits.c |
 XGLI_VIEW_C_LIGHTS_MC |
 XGLI_VIEW_C_EYE_MC |
 XGLI_VIEW_C_LIGHTS_LC |

 XGLI_VIEW_C_EYE_LC;

 // Create a view concern object for surfaces.
// XglViewConcern3d* XglDpCtx3dSampDp::surfConcern;
//
surfConcern = viewGrpItf->createViewConcern(surfViewFlag);

// Set this context as the last one used for rendering to the
// device.
// XglContext3d* XglDpCtx3dSampDp::lastXglCtx;
//
lastXglCtx = ctx;

// Assume that we last performed lighting in MC.

View Model Derived Data 161

7

Bit Definitions for the View Flag

The bit definitions for the view flag have the prefixes XGLI_VIEW_A_,
XGLI_VIEW_B_, and XGLI_VIEW_C_. The bits with the prefix XGLI_VIEW_A_
correspond to items common to both 2D and 3D. The bits with the prefixes
XGLI_VIEW_B_ and XGLI_VIEW_C_ are available only for 3D.

In 2D, the view flag has the type Xgl_usgn32, and any combination of the bits
with the prefix XGLI_VIEW_A_ can be stored in the view flag. In 3D, the view
flag has the type Xgli_view_flag_3d:

The 3D view flag consists of three parts: a, b, and c. Any combination of bits
with the prefix XGLI_VIEW_A_ can be stored in part “a” of the view flag;
likewise for XGLI_VIEW_B_ in part “b” and for XGLI_VIEW_C_ in part “c”.

In addition to being created, a view concern can be set with a new view flag,
and it can be destroyed when a pipeline no longer needs it. The 2D view group
interface functions for view concerns are:

 // Xgli_sam_light_coord_sys
XglDpCtx3dSampDp::lastLightCoordSys;

//
lastLightCoordSys = SAMPDP_LIGHT_MC;

}

XglDpCtx3dSampDp::~XglDpCtx3dSampDp()
{

// Destroy view concern objects.
//
viewGrpItf->destroyViewConcern(strokeConcern);
viewGrpItf->destroyViewConcern(surfConcern);

}

typedef struct {
 Xgl_usgn32 a; // Part “a” for XGLI_VIEW_A_...
 Xgl_usgn32 b; // Part “b” for XGLI_VIEW_B_...
 Xgl_usgn32 c; // Part “c” for XGLI_VIEW_C_...
} Xgli_view_flag_3d;

162 XGL Device Pipeline Porting Guide—August 1994

7

The 3D view group interface functions for view concerns are:

Note – Setting a view concern frequently is inadvisable because the process for
“compiling” a view flag into a view concern is time-consuming.

XglViewConcern2d* createViewConcern (const Xgl_usgn32);
void setViewConcern (XglViewConcern2d*,
 const Xgl_usgn32);
void destroyViewConcern (XglViewConcern2d*);

XglViewConcern3d* createViewConcern (const
Xgli_view_flag_3d&);
void setViewConcern (XglViewConcern3d*,
 const Xgli_view_flag_3d&);
void destroyViewConcern (XglViewConcern3d*);

View Model Derived Data 163

7

Table 7-5 lists the bits that a pipeline can define in the view flag.

Determining Whether Derived Items Have Changed
A device pipeline can detect changes to derived items with a sequence of tests
at three levels: messages, the composite, and the individual item. In general, a
device pipeline needs to know quickly when no changes have occurred so that
it can proceed directly to sending geometry to the device. Accordingly, each
successive level of detection involves more effort to gain more accuracy.

Messages

Derived items can change when the application changes a view model
attribute or a pipeline changes the current coordinate system. Each type of
event causes a message to be sent to the device pipeline at the time of the
event; notification is not deferred. The message types are

Table 7-5 Bits for the View Flag

View Flag Masks for 2D/3D Part a View Flag Masks for 3D Part b View Flag Masks for 3D Part c

XGLI_VIEW_A_MC_TO_DC
XGLI_VIEW_A_MC_TO_CC
XGLI_VIEW_A_CC_TO_DC
XGLI_VIEW_A_MC_TO_WC
XGLI_VIEW_A_VDC_TO_CC
XGLI_VIEW_A_CC_TO_VDC
XGLI_VIEW_A_WC_TO_CC
XGLI_VIEW_A_VDC_TO_DC
XGLI_VIEW_A_DC_TO_VDC
XGLI_VIEW_A_WC_TO_DC
XGLI_VIEW_A_DC_TO_CC
XGLI_VIEW_A_MC_TO_VDC
XGLI_VIEW_A_DC_TO_MC
XGLI_VIEW_A_MC_TO_GMC
XGLI_VIEW_A_GMC_TO_WC
XGLI_VIEW_A_WC_TO_VDC
XGLI_VIEW_A_VCLIP_BOUNDS_VDC
 XGLI_VIEW_A_VCLIP_BOUNDS_CC
XGLI_VIEW_A_VCLIP_BOUNDS_DC
XGLI_VIEW_A_VCLIP_BOUNDS_MC
XGLI_VIEW_A_VIEWPORT_DC

XGLI_VIEW_B_LC_TO_VDC
XGLI_VIEW_B_VDC_TO_LC
XGLI_VIEW_B_CC_TO_LC
XGLI_VIEW_B_LC_TO_DC
XGLI_VIEW_B_MC_TO_LC
XGLI_VIEW_B_LC_TO_MC
XGLI_VIEW_B_LC_TO_CC
XGLI_VIEW_B_WC_TO_MC
XGLI_VIEW_B_WC_TO_LC
XGLI_VIEW_B_LC_TO_IC
XGLI_VIEW_B_IC_TO_VDC
XGLI_VIEW_B_VDC_TO_WC
XGLI_VIEW_B_CC_TO_WC
XGLI_VIEW_B_DC_TO_LC
XGLI_VIEW_B_DC_TO_WC
XGLI_VIEW_B_LC_TO_WC
XGLI_VIEW_B_CC_TO_MC

XGLI_VIEW_C_LIGHTS_MC
XGLI_VIEW_C_LIGHTS_LC
XGLI_VIEW_C_EYE_MC
XGLI_VIEW_C_EYE_LC
XGLI_VIEW_C_EYE_VDC
XGLI_VIEW_C_EYE_CC
XGLI_VIEW_C_PARALLEL_PROJ
XGLI_VIEW_C_MCLIP_PLANES_MC
XGLI_VIEW_C_MCLIP_PLANES_LC
XGLI_VIEW_C_MCLIP_PLANES_CC
XGLI_VIEW_C_MCLIP_PLANES_DC
XGLI_VIEW_C_DCUE_PLANES_CC
XGLI_VIEW_C_DCUE_PLANES_DC
XGLI_VIEW_C_VIEW_CANONICAL

164 XGL Device Pipeline Porting Guide—August 1994

7

XGLI_MSG_VIEW_CTX_ATTR and XGLI_MSG_VIEW_COORD_SYS for context
attribute changes and current coordinate system changes, respectively. See
“Handling Derived Data Changes” on page 105 for additional information on
messages. Messages of the two types above give advance warning that the next
primitive may need to get derived items. A pipeline may choose to deal with
the messages simply by setting its own flag at the time of the notification, then
deferring action until the next primitive when it would need to interrogate the
composite at the next level.

The Composite

If a message reports that a change has occurred, a device pipeline can test for
changes to the derived items about which it is concerned by checking the
composite. The composite records the state changes of all derived items. The
changes could be caused either by the application changing view model
attributes or by a pipeline changing the current coordinate system. The
composite can be thought of as all the separate derived items joined into a
single unit.

Detecting Changes With the Composite

The function that checks the composite has the following definition:

Xgl_boolean changedComposite(const XglViewConcern{2,3}d*);

This function is the fast test described in “Changes to Derived Items” on
page 153. The view group interface tests the composite to detect changes to
derived items of concern to the device pipeline.

The view concern acts as a filter on the composite so that
changedComposite() returns TRUE only when an item of interest to the
pipeline has changed. If the test is TRUE, the pipeline needs to check each of
the individual items for changes. The tests for individual items comprise the
third level, and they are described in the section “Detecting Changes to
Individual Derived Items” on page 166.

Recall that changedComposite() sometimes errs on the cautious side so that
changedComposite() can be fast. It never misses a change in state caused by
invalidation of relevant view model attributes or changes in the current
coordinate system, but it may incorrectly return TRUE after a change to the
current coordinate system. The tests at the third level for detecting changes to

View Model Derived Data 165

7

individual items are fast and accurate, so extraneous reloading of view model
state to a device would not occur even if changedComposite() incorrectly
returns TRUE.

A device pipeline should call changedComposite() whenever one of its
primitives regains control from the application. Typically, this is at the
beginning of an LI-1 primitive. If a primitive changes the coordinate system
and calls a secondary LI-1 primitive, then the original primitive should restore
the original coordinate system when the secondary returns, and the original
should call changedComposite() .

Setting the Composite

The view group interface can notify a device pipeline when its concerns have
changed, but it cannot detect context switches. A context switch occurs when
an application renders to a device with an XGL Context after having
previously rendered to the same device with a different XGL Context. If a
device has only one hardware context, a context switch requires the retained
state to be updated with the corresponding information of the new XGL
Context. If a device has multiple hardware contexts, a device pipeline may be
implemented so that an XGL Context has a one-to-one mapping with a
hardware context such that a context switch does not result in reloading of
retained state. Since each device handles of context switches in its own way,
the view group interface does not react automatically to context switches.
Instead, the view group interface provides a function to set the composite:

void setComposite();

When a context switch occurs, a device pipeline can call setComposite() to
force the next call to changedComposite() and each of the tests for changes
to individual items to be TRUE. Consequently, a device pipeline would reload
its derived items into the device.

Clearing the Composite

In certain situations a device pipeline may want to ignore changes to its
concerns. The view group interface provides a function to clear the composite.
For 2D and 3D, this function is:

void clearComposite(const XglViewConcern{2,3}d*);

166 XGL Device Pipeline Porting Guide—August 1994

7

This function forces the next call to changedComposite() to return FALSE if
there have been no further changes to the API view model attributes or to the
current coordinate system. A pipeline may gain performance with this function
because it allows primitives to ignore changes deemed to be irrelevant. But it
should be used with great caution because it clears the record of
inconsistencies between the state stored in the device and the actual state,
which may cause a pipeline to miss a change when it becomes relevant. It
should be called after changedComposite() .

Detecting Changes to Individual Derived Items

If changedComposite() returns TRUE, a device pipeline needs to check for
changes to individual items. The view group interface provides a function for
each item to return the change status of that item. These functions should be
called only after calling changedComposite() . After doing so, a pipeline
may call any change function for individual items, even those that are not
registered as concerns. Calling these functions does not reset the flags stored in
the composite. These functions return the correct change status of individual
items even when changedComposite() errs on the cautious side.

See the sections “Coordinate Systems and Transforms” and “Other Derived
Items” for naming conventions.

View Model Derived Data 167

7

Table 7-6 lists the functions to check individual items for 2D and 3D.

Table 7-6 Functions to Return the Change Status of Derived Items

2D and 3D 3D only

Xgl_boolean changedMcToDc()
Xgl_boolean changedMcToCc()
Xgl_boolean changedCcToDc()
Xgl_boolean changedMcToWc()
Xgl_boolean changedVdcToCc()
Xgl_boolean changedCcToVdc()
Xgl_boolean changedWcToCc()
Xgl_boolean changedVdcToDc()
Xgl_boolean changedDcToVdc()
Xgl_boolean changedWcToDc()
Xgl_boolean changedDcToCc()
Xgl_boolean changedMcToVdc()
Xgl_boolean changedDcToMc()
Xgl_boolean changedMcToGmc()
Xgl_boolean changedGmcToWc()
Xgl_boolean changedWcToVdc()
Xgl_boolean changedVclipBoundsVdc()
Xgl_boolean changedVclipBoundsCc()
Xgl_boolean changedVclipBoundsDc()
Xgl_boolean changedVclipBoundsMc()
Xgl_boolean changedViewportDc()

Xgl_boolean changedLctoVdc()
Xgl_boolean changedVdcToLc()
Xgl_boolean changedCcToLc()
Xgl_boolean changedLcToDc()
Xgl_boolean changedMcToLc()
Xgl_boolean changedLcToMc()
Xgl_boolean changedLcToCc()
Xgl_boolean changedWcToMc()
Xgl_boolean changedWcToLc()
Xgl_boolean changedLcToIc()
Xgl_boolean changedIcToVdc()
Xgl_boolean changedVdcToWc()
Xgl_boolean changedCcToWc()
Xgl_boolean changedDcToLc()
Xgl_boolean changedDcToWc()
Xgl_boolean changedLcToWc()
Xgl_boolean changedCcToMc()
Xgl_boolean changedLightsMc()
Xgl_boolean changedLightsLc()
Xgl_boolean changedEyeMc()
Xgl_boolean changedEyeLc()
Xgl_boolean changedEyeVdc()
Xgl_boolean changedEyeCc()
Xgl_boolean changedParallelProj()
Xgl_boolean changedMclipPlanesMc()
Xgl_boolean changedMclipPlanesLc()
Xgl_boolean changedMclipPlanesCc()
Xgl_boolean changedMclipPlanesDc()
Xgl_boolean changedDcuePlanesCc()
Xgl_boolean changedDcuePlanesDc()
Xgl_boolean changedViewCanonical()

168 XGL Device Pipeline Porting Guide—August 1994

7

Getting Derived Items
If an individual derived item has changed as reported by the corresponding
function, a device pipeline should get the item and reload the state into the
hardware. The view group interface provides a function for each item to get
that item. Calling one of these functions triggers any deferred calculations that
may be necessary to bring the item up to date. Therefore, a pipeline should not
retain a pointer to a derived item after a primitive has finished execution
because accessing the derived item with the pointer without calling the
function for getting the item means that the item will not be evaluated if
necessary.

The view group interface returns the requested item that is appropriate to the
current coordinate system. For example, if the current coordinate system is LC
and the pipeline requests the McToCc Transform, then getMcToCc() returns
the LcToCc Transform because the geometry is in LC. A device pipeline does
not need to be aware of the current coordinate system. An LI-1 primitive can
be written as if geometry always enters from MC as long as it uses derived
data. If a pipeline is using derived data, it must get all its Transforms from the
view group interface instead of the Context. For example, a pipeline should
use viewGrpItf->getMcToGmc() instead of
ctx->getLocalModelTrans() . The only exception is when a pipeline wants
to get the actual Transform visible at the API level with the knowledge that it
may not be applicable to the current coordinate system maintained by derived
data. A change in the current coordinate system is another reason that a
pipeline should not retain a pointer to a derived item after a primitive has
finished execution: the item returned by the view group interface may differ
between primitive calls when the current coordinate system changes.

When a pipeline calls a function for getting an item, that function clears the bit
in the composite that corresponds to the item. If a pipeline gets all the items
that have changed, then changedComposite() returns FALSE until the
pipeline’s concerns change again. A pipeline can clear bits in the composite
without getting changed items by calling clearComposite() .

Pipelines that do not retain state (such as the software pipeline) can get
derived items without checking the composite or any of the individual items.
While this is true of any pipeline, even those that retain state, checking the
composite and individual items eliminates unnecessary loading of data into
the device.

View Model Derived Data 169

7

Note that if a pipeline uses derived data, it can ignore most Context view
model attributes. For example, it can ignore the value of the Context attribute
XGL_CTX_VDC_MAP because derived data takes into account the value of the
VDC map when it calculates the VDC-to-DC Transform. Consequently, all
Transforms derived from the VDC-to-DC Transform have the VDC mapping
taken into account.

 Getting Derived Transforms

The view group interface allows pipelines to access numerous Transforms for
mapping points forward (toward DC) and backward (toward MC); for brevity,
we call these point-forward and point-backward Transforms, respectively. The
point-backward Transforms can be used to map normal and direction vectors
forward. Thus, the point-backward Transforms are normal-forward
Transforms, and the point-forward Transforms are normal-backward
Transforms.

The view cache computes the normal-forward Transforms by inverting point-
forward Transforms. If an application specifies a singular1 Local Model, Global
Model, or View Transform, the view cache cannot compute unique normal-
forward Transforms and certain derived items such as eye positions or vectors,
model clip planes, and lights. Derived data currently does not claim to support
singular Transforms so it is the application’s responsibility to avoid singular
Transforms. However, if a pipeline needs to determine if a normal-forward
Transform obtained from the view group interface is valid, it should get the
McToWc, LcToVdc, and VdcToDc Transforms after getting the normal-forward
Transform and confirm that all three are nonsingular.

The view cache in 3D automatically adjusts for the effect of
XGL_3D_CTX_JITTER_OFFSET so pipelines using derived data do not need to
take this into account.

See Chapter 6, “Getting Information from XGL Objects” for information on
getting data from Transform objects.

1. A singular matrix has no unique inverse.

170 XGL Device Pipeline Porting Guide—August 1994

7

Table 7-7 lists the functions for getting derived transforms for 2D and 3D.

 Getting Boundaries

The view group interface offers the functions listed in Table 7-8 for getting the
DC viewport and the view clip bounds in MC, VDC, CC, and DC.

Table 7-7 Functions for Getting Derived Transforms

2D and 3D 3D only

XglTransform* getMcToDc()
XglTransform* getMcToCc()
XglTransform* getCcToDc()
XglTransform* getMcToWc()
XglTransform* getVdcToCc()
XglTransform* getCcToVdc()
XglTransform* getWcToCc()
XglTransform* getVdcToDc()
XglTransform* getDcToVdc()
XglTransform* getWcToDc();
XglTransform* getDcToCc()
XglTransform* getMcToVdc()
XglTransform* getDcToMc()
XglTransform* getMcToGmc()
XglTransform* getGmcToWc()
XglTransform* getWcToVdc()

XglTransform* getLctoVdc()
XglTransform* getVdcToLc()
XglTransform* getCcToLc()
XglTransform* getLcToDc()
XglTransform* getMcToLc()
XglTransform* getLcToMc()
XglTransform* getLcToCc()
XglTransform* getWcToMc()
XglTransform* getWcToLc()
XglTransform* getLcToIc()
XglTransform* getIcToVdc()
XglTransform* getVdcToWc()
XglTransform* getCcToWc()
XglTransform* getDcToLc()
XglTransform* getDcToWc()
XglTransform* getLcToWc()
XglTransform* getCcToMc()

Table 7-8 Functions for Getting Boundaries

Dimension Function

2D const Xgl_bounds_d2d& getViewportDc()
const Xgl_bounds_d2d& getVclipBoundsMc()
const Xgl_bounds_d2d& getVclipBoundsVdc()
const Xgl_bounds_d2d& getVclipBoundsCc()
const Xgl_bounds_d2d& getVclipBoundsDc()

3D const Xgl_bounds_d3d& getViewportDc()
const Xgl_bounds_d3d& getVclipBoundsMc()
const Xgl_bounds_d3d& getVclipBoundsVdc()
const Xgl_bounds_d3d& getVclipBoundsCc()
const Xgl_bounds_d3d& getVclipBoundsDc()

View Model Derived Data 171

7

See the man page for XGL_CTX_DC_VIEWPORT for a description of the DC
viewport. A pipeline should not use the DC viewport for view clipping;
instead, it should use the view clip bounds in DC.

The view clip bounds in VDC may differ from the value of
XGL_CTX_VIEW_CLIP_BOUNDS as specified by the application. The view cache
ensures that the view clip bounds are entirely within the value of
XGL_CTX_VDC_WINDOW in VDC and the viewport in DC. The view clip bounds
in CC is always [-1,1] × [-1,1] in 2D and [-1,1] × [-1,1] × [-1,1] in 3D. A pipeline
should ensure that geometry never extends outside the view clip bounds.

The value of the view clip bounds in MC is the smallest rectangular
parallelepiped whose edges are parallel to the coordinate axes of MC such that
the parallelepiped contains the actual view clip bounds transformed into MC.
This is a useful form for fast bounding-box checking in MC, but it is not
particularly useful for view clipping.

If the current coordinate system is LC, getVclipBoundsMc() returns an
incorrect value because the view cache currently has no function for evaluating
the view clip bounds in LC.

 Getting 3D Viewing Flags

The 3D view group interface has two functions for getting more information
about the WcToVdc Transform. These functions are:

Xgl_boolean getParallelProj()
Xgl_boolean getViewCanonical()

A pipeline can determine if the WcToVdc Transform is configured for parallel
projection by calling getParallelProj() , which returns TRUE for parallel
projection and FALSE for perspective projection.

A pipeline can call getViewCanonical() to determine if the view cache
successfully factored the View Transform to extract Lighting Coordinates. The
function returns TRUE when the decomposition is successful and FALSE for
unsuccessful. For the unsuccessful case, LC is the same as WC and IC is the
same as VDC.

172 XGL Device Pipeline Porting Guide—August 1994

7

 Getting Lights

The 3D view group interface has two functions for getting lights in MC and
LC. These functions are:

const XglLight* const *getLightsMc();
const XglLight* const *getLightsLc();

A pipeline should get the number of lights from the Context (see
XGL_3D_CTX_LIGHT_NUM(3)) to access the array of XglLight pointers.

A pipeline can always perform lighting calculations in WC and LC to obtain
correct results. Performing lighting calculations in MC may be faster because
normal vectors do not need to be transformed, but lighting calculations in MC
are correct only when the McToWc Transform preserves angles. The reason is
that dot products in MC are different than those in WC when the McToWc
Transform does not preserves angles. See the Transform section in Chapter 6,
“Getting Information from XGL Objects” for information on how to determine
whether a Transform preserves angles.

The view cache calculates the lights in MC by inverting the McToWc
Transform. If the application has specified a singular matrix for the Local or
Global Model Transforms, then the view cache is unable to calculate the lights
in MC. A pipeline can determine if the lights in MC are valid by getting the
McToWc Transform after getting the lights, then checking if it is nonsingular.

If the current coordinate system is VDC, CC, or DC, then getLightsMc() and
getLightsLc() return incorrect results because the view cache currently has
no functions for calculating the lights in VDC, CC, and DC. In general, lighting
calculations would not be correct in these coordinate systems because the
Transform from WC to VDC, CC, or DC often involves anisotropic scaling and
perspective, which do not preserve angles.

See the Light section in Chapter 6, “Getting Information from XGL Objects” for
information on getting data from Light objects.

View Model Derived Data 173

7

 Getting Eye Positions or Vectors

The 3D view group interface has four functions for getting eye positions or
vectors in MC, LC, VDC, and CC. These functions are:

const Xgl_pt_d3d& getEyeMc()
const Xgl_pt_d3d& getEyeLc()
const Xgl_pt_d3d& getEyeVdc()
const Xgl_pt_d3d& getEyeCc()

Eye points or vectors may be used for facet orientation and lighting. Eye
vectors point from eye to object along the line of sight, and the eye is located
infinitely far away. Eye vectors returned by these functions have unit length.

The eyes in VDC and CC are always vectors. A pipeline can determine whether
the eyes in MC and LC are positions or vectors by calling
getParallelProj() ; a parallel projection means that the eyes are vectors,
while perspective means the eye are positions.

The view cache calculates eyes by inverting various Transforms. If the
application has specified a singular matrix, then the view cache is unable to
calculate some eyes. A pipeline can determine if the eyes in VDC and CC are
valid by getting the VdcToDc Transform after getting the eyes, then checking if
it is nonsingular (see the Transform section in Chapter 6, “Getting Information
from XGL Objects”). For the eye in LC, a pipeline needs to check the LcToVdc
and VdcToDc Transforms for nonsingularity. For the eye in MC, a pipeline
needs to check the McToWc, LcToVdc, and VdcToDc Transforms for
nonsingularity.

If the current coordinate system is DC, then these four functions return
incorrect values because the view cache currently has no function for
calculating the eye in DC. However, the value of the eye vector in DC is always
(0, 0, 1).

174 XGL Device Pipeline Porting Guide—August 1994

7

 Getting Model Clip Planes

The 3D view group interface has four functions for getting the model clip
planes in MC, LC, CC, and DC.

const Xgli_plane* getMclipPlanesMc()
const Xgli_plane* getMclipPlanesLc()
const Xgli_plane* getMclipPlanesCc()
const Xgli_plane* getMclipPlanesDc()

A pipeline should get the number of model clip planes from the Context (see
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM(3)) to access the array of Xgli_plane.
The structure definition is:

struct Xgli_plane {
Xgl_pt_d3d pt;
Xgl_pt_d3d normal;
double p_dot_n;

};

The value of pt is a point on the plane. The normal vectors point in the
direction of accepted geometry (see XGL_3D_CTX_MODEL_CLIP_PLANES(3)).
Normal vectors have unit length as long as the application specifies model clip
planes in WC with unit normal vectors. The value of p_dot_n is the dot product
of pt and normal.

The view cache calculates model clip planes by inverting various Transforms.
If the application has specified a singular matrix, then the view cache will be
unable to calculate some or all model clip planes. A pipeline can determine if
the model clip planes in MC are valid by getting the McToWc Transform after
getting the model clip planes, then checking if it is nonsingular. For the model
clip planes in CC and DC, a pipeline needs to check the LcToVdc and VdcToDc
Transforms for nonsingularity.

If the current coordinate system is VDC, then getMclipPlanesMc() and
getMclipPlanesLc() return incorrect values because the view cache
currently has no function for calculating the model clip planes in VDC.

View Model Derived Data 175

7

 Getting Depth Cue Reference Planes

The 3D view group interface has two functions for getting the depth cue
reference planes in CC and DC.

void getDcuePlanesCc(double [])

void getDcuePlanesDc(double [])

Pipelines should pass an array of 2 doubles to these functions. The value at
index 0 is the front depth cue reference plane’s Z-value; the value at index 1 is
the back depth cue reference plane’s Z-value. See
XGL_3D_CTX_DEPTH_CUE_REF_PLANES.

Example of Detecting Changes and Getting Derived Items
In this example of a device pipeline for li1TriangleStrip() , the pipeline
determines whether any Context attributes or derived items have changed by
checking the flag that the pipeline sets upon receiving a message of the types
XGLI_MSG_VIEW_CTX_ATTR or XGLI_MSG_VIEW_COORD_SYS. If the flag is
set, the pipeline determines whether any derived items have changed by
calling viewGrpItf->changedComposite(surfConcern) . The parameter
is an XglViewConcern3d*, which was created in the example constructor on
page 159. If changedComposite() indicates that derived data items have
changed, the pipeline checks whether individual items have changed, and if so,
it gets them from the view group interface object and loads them into the
device.

You can copy or modify this source code sample as long as the resulting code
is used to create a loadable pipeline for XGL.

#include “xgli/Context3d.h”
#include “xgli/DpCtx3d.h”
#include “xgli/Transform.h”
#include “xgli/ViewGrp3dItf.h”
#include “DpCtx3dSampDp.h”

XglDpCtx3dSampDp::li1TriangleStrip(XglPrimData* pd)
{
 // Check for context switch
 //
 if (lastXglCtx != ctx) {
 // Force reloading of attributes and derived items
 //

176 XGL Device Pipeline Porting Guide—August 1994

7

 udTable.setAllGroupsAsChanged();
 viewGrpItf->setComposite();
 lastXglCtx = ctx;
 }

// Check if any view-change messages have been received
//
if (viewMsgReceived) {

// Clear flag
viewMsgReceived = FALSE;

 // Check composite for changes to surface concerns
 if (viewGrpItf->changedComposite(surfConcern)) {

if (viewGrpItf->changedMcToCc()) {
XglTransform* trans;
const Xgli_matrix_f4x4* matrix;

trans = viewGrpItf->getMcToCc();
matrix = (const Xgli_matrix_f4x4*)

 trans->getMatrixFloat();

// Write the matrix into the device
SAMPDP_WRITE_MC_TO_CC(matrix);
}

if (viewGrpItf->changedCcToDc()) {
 XglTransform* trans;
 const Xgli_matrix_f4x4* matrix;

 trans = viewGrpItf->getCcToDc();
 matrix = (const Xgli_matrix_f4x4*)

trans->getMatrixFloat();

 // Write the matrix into the device
 SAMPDP_WRITE_CC_TO_DC(matrix);
 }

if (viewGrpItf->changedParallelProj()) {
 // Write the flag into the device
 SAMPDP_WRITE_PARALLEL_PROJ

(viewGrpItf->getParallelProj());
 }

if (viewGrpItf->changedEyeMc()) {

View Model Derived Data 177

7

 // Write the eye into the device
 SAMPDP_WRITE_EYE_MC(viewGrpItf->getEyeMc());
 }

 if (lastLightCoordSys == SAMPDP_LIGHT_MC) {
 // We performed lighting in MC last time
 if (viewGrpItf->changedMcToWc()) {

 if (viewGrpItf->getMcToWc()->getMemberRecord() &
XGL_TRANS_GROUP_ANGLE_PRESERV) {

// McToWc changed, but it still preserves
// angles so we can continue to
// perform lighting in MC.

const XglLight* const * lights;
lights = viewGrpItf->getLightsMc();
// Write the lights into the device
Xgl_usgn32 num;
num = ctx->getLightNum();
SAMPDP_WRITE_LIGHTS(num, lights);

 }
 else {

// McToWc changed and it doesn’t preserve
// angles so we have to switch to performing
// lighting in LC.

const XglLight* const * lights;
lights = viewGrpItf->getLightsLc();
// Write the lights into the device
Xgl_usgn32 num;
num = ctx->getLightNum();
SAMPDP_WRITE_LIGHTS(num, lights);

// Switch lighting coordinate system
 SAMPDP_WRITE_LIGHT_COORD_SYS(SAMPDP_LIGHT_LC);
lastLightCoordSys = SAMPDP_LIGHT_LC;
}

 }
 else {

// McToWc didn’t change, but the lights
// may have changed.
//
if (viewGrpItf-changedLightsMc() {
const XglLight* const * lights;

178 XGL Device Pipeline Porting Guide—August 1994

7

lights = viewGrpItf->getLightsMc();

// Write the lights into the device
Xgl_usgn32 num;
num = ctx->getLightNum();
SAMPDP_WRITE_LIGHTS(num, lights);
}

 }
 }
 else {
 // We performed lighting in LC last time
 if (viewGrpItf->changedMcToWc()) {

if (viewGrpItf->getMcToWc()->getMemberRecord() &
XGL_TRANS_GROUP_ANGLE_PRESERV) {

// McToWc changed and it preserves angles so
// we can switch to performing lighting in MC.
const XglLight* const * lights;
lights = viewGrpItf->getLightsMc();
// Write the lights into the device
Xgl_usgn32 num;
num = ctx->getLightNum();
SAMPDP_WRITE_LIGHTS(num, lights);

// Switch lighting coordinate system
 SAMPDP_WRITE_LIGHT_COORD_SYS(SAMPDP_LIGHT_MC);
lastLightCoordSys = SAMPDP_LIGHT_MC;

 }
else {
// McToWc changed, but it still doesn’t
// preserve angles so we have to
// continue lighting in LC.
const XglLight* const * lights;
lights = viewGrpItf->getLightsLc();
// Write the lights into the device
Xgl_usgn32 num;
num = ctx->getLightNum();
SAMPDP_WRITE_LIGHTS(num, lights);

 }
 }
 else {

// McToWc didn’t change, but the lights may have
// changed.
if (viewGrpItf-changedLightsLc() {

View Model Derived Data 179

7

const XglLight* const * lights;
lights = viewGrpItf->getLightsLc();
// Write the lights into the device
Xgl_usgn32 num;
num = ctx->getLightNum();
SAMPDP_WRITE_LIGHTS(num, lights);
}

 }
 }

 if (lastLightCoordSys == SAMPDP_LIGHT_LC) {

 // We have to perform lighting in LC so we need to
 // write some additional items into the device.

 if (viewGrpItf->changedMcToLc()) {
 XglTransform* trans;
 const Xgli_matrix_f4x4* matrix;

 trans = viewGrpItf->getMcToLc();
 matrix = (const Xgli_matrix_f4x4*)

trans->getMatrixFloat();

 // Write the matrix into the device
 SAMPDP_WRITE_MC_TO_LC(matrix);
 }

 if (viewGrpItf->changedLcToMc()) {
 XglTransform* trans;
 const Xgli_matrix_f4x4* matrix;

 trans = viewGrpItf->getLcToMc();
 matrix = (const Xgli_matrix_f4x4*)

trans->getMatrixFloat();

 // Write the matrix into the device
 SAMPDP_WRITE_LC_TO_MC(matrix);
 }

if (viewGrpItf->changedLcToCc()) {
 XglTransform* trans;
 const Xgli_matrix_f4x4* matrix;

 trans = viewGrpItf->getLcToCc();
 matrix = (const Xgli_matrix_f4x4*)

180 XGL Device Pipeline Porting Guide—August 1994

7

Current Coordinate System
A pipeline can get and set the current coordinate system. The current
coordinate system is a member datum of the view cache, which maintains a
stack exclusively for tracking the current coordinate systems of LI-1 primitives
pending completion of execution. Pushing the current coordinate system onto
the stack does not change the value of the member datum. Popping the top
element from the stack changes the current coordinate system to that element;
the value returned is the popped value.

The view group interface provides functions for manipulating the current
coordinate system. For 2D, these functions are:

where Xgli_li1_2d_coord_sys is defined as:

trans->getMatrixFloat();

 // Write the matrix into the device
 SAMPDP_WRITE_LC_TO_CC(matrix);
 }

 if (viewGrpItf->changedEyeLc()) {
 // Write the eye into the device
 SAMPDP_WRITE_EYE_LC(viewGrpItf->getEyeMc());
 }
 }
 }
 }

 // Ready to send geometry to device
 //
 return sendLi1TriangleStrip(pd);
}

Xgli_li1_2d_coord_sysgetCurCoordSys() const
void setCurCoordSys(Xgli_li1_2d_coord_sys)
void pushCurCoordSys()
Xgli_li1_2d_coord_syspopCurCoordSys()

enum Xgli_li1_2d_coord_sys {
XGLI_LI1_2D_COORD_SYS_MC = 0,
XGLI_LI1_2D_COORD_SYS_VDC,

View Model Derived Data 181

7

For 3D, these functions are:

where Xgli_li1_3d_coord_sys is defined as:

This example from the software pipeline’s 2D annotation text primitive shows
how a device pipeline can handle changes in the coordinate system. The
software pipeline produces annotation text in VDC, so it pushes the current
coordinate system (which is MC), sets the current coordinate system to VDC,
calls the li1MultiPolyline() function (will render the strokes for the
annotation text), and then pops the coordinate system to restore the previous
one.

XGLI_LI1_2D_COORD_SYS_CC,
XGLI_LI1_2D_COORD_SYS_DC

};

Xgli_li1_3d_coord_sysgetCurCoordSys() const
void setCurCoordSys(Xgli_li1_3d_coord_sys)
void pushCurCoordSys()
Xgli_li1_3d_coord_syspopCurCoordSys()

enum Xgli_li1_3d_coord_sys {
XGLI_LI1_3D_COORD_SYS_MC = 0,
XGLI_LI1_3D_COORD_SYS_LC,
XGLI_LI1_3D_COORD_SYS_VDC,
XGLI_LI1_3D_COORD_SYS_CC,
XGLI_LI1_3D_COORD_SYS_DC

};

viewGrpItf->pushCurCoordSys();
viewGrpItf->setCurCoordSys(XGLI_LI1_2D_COORD_SYS_VDC);
itfMgr->li1MultiPolyline(&pd, FALSE, do_retained);
viewGrpItf->popCurCoordSys();

enum Xgli_li1_2d_coord_sys {

182 XGL Device Pipeline Porting Guide—August 1994

7

183

Window System Interactions 8

This chapter discusses the relationship between XGL and the window system.
It includes information on the following topics:

• Discussion of the mechanism by which XGL communicates with the
window system

• Scenario of how the XglDrawable object is created by XGL core and
typically used by the device pipeline

• Overview of the functionality provided by the XglDrawable interfaces

• Detailed description of the XglDrawable interfaces

As you read this chapter, you will find it helpful to have access to the
Drawable.h file..h

184 XGL Device Pipeline Porting Guide—August 1994

8

Overview of the XglDrawable
The XglDrawable object conceptualizes the sharing of a device with another
entity, most often the window system, but possibly also a Memory Raster
device or a Stream device. In the case of the window system, it also makes
transparent to the pipeline whether it is running in an X client (using the DGA
mechanism, PEXlib, or Xlib) or in a PEX server.

Because there are so many different ways to access target devices, the
XglDrawable object was designed to encapsulate the various access
mechanisms. Ideally, device pipelines do not need to be aware of the
underlying mechanism. For example, a device pipeline can be used to render
to an X window as a DGA client, within the server, or in a backing store.

XglDrawable objects are created by the XGL core in response to an
xgl_object_create() call with a Device type, such as XGL_WIN_RAS. XGL
creates the appropriate XglDrawable object, establishes a connection to the
window system, creates the Device object, and links the XglDrawable object to
the Device object. There is a one-to-one correspondence between the Device
object and the XglDrawable object for that Device.

There are several subclasses to the XglDrawable object, each of which manages
a different kind of target device. Table 8-1 lists these subclasses.

Table 8-1 Drawable Subclasses

Subclass Target Device

XglDrawableDgaCView X11 window. This class encapsulates the DGA
library.

XglDrawableMem Memory Raster

XglDrawableDgaRtn Backing-store device

XglDrawableXpex PEXlib and Xlib device

XglDrawableDgaBase Multibuffer in system memory

XglDrawableDgaCached Multibuffer cached in hardware memory

XglDrawableStream Stream device

Window System Interactions 185

8

Note – The device pipelines should interact with the XglDrawable object
through the interfaces in Drawable.h , which contains the public interface for
the XglDrawable hierarchy. Do not use the interfaces in the XglDrawable
subclasses.

Services Provided by XglDrawable Class

The XglDrawable class was designed to provide information and services to
both the XGL core and the device pipeline. In particular, it provides the device
pipeline with a way to get current clip lists and to lock out clip list changes
while rendering is in progress.

Services provided by XglDrawable for the XGL core include:

• Establishing the connection with the window system and creating the
XglDrawable object – grabDrawable()

• Terminating the connection with the window system and destroying the
XglDrawable object – unGrabDrawable()

Services provided by the XglDrawable for the device pipelines include:

• Locking clip lists, thereby preventing the window system from changing
them during rendering – winLock()

• Unlocking clip lists – winUnLock()

• Indicating whether clip lists have changed – clipChanged()

• Providing information about window geometry – getWindowWidth() ,
getWindowHeight() , getWindowX() , getWindowY() ,
getWindowDepth()

• Providing access to the clip list – getMergeClipList()

A more extensive discussion of the services provided for the pipelines by the
XglDrawable begins on page 189.

186 XGL Device Pipeline Porting Guide—August 1994

8

A Typical Scenario of Drawable Creation and Use
The creation of the XglDrawable object is handled automatically by the XGL
core. The typical sequence of operations when a window raster is created is
this:

1. A client (application) program maps a window and then creates an XGL API
Device object.

2. The XGL core calls XglDrawable::grabDrawable() with the descriptor
provided by the application. grabDrawable() uses the window descriptor
information included in the request to determine the kind of Drawable
required. This depends on the raster type (memory or window), the window
type specified by the application, and whether the window system accepts
the connection. grabDrawable() returns an XglDrawable object.

3. The XGL core calls drawable->getPipeName() to get the name of the
appropriate rendering pipeline. If not already loaded, that pipeline is then
loaded. The XGL core calls dp_lib->getDpMgr() to retrieve or create (if it
doesn’t exist) a DpMgr object to manage the physical device, and then calls
dp_mgr->createDpDev() to create a DpDev object to manage the
window. getDpMgr() and createDpDev() may call various XglDrawable
functions to get information required for handling the device.

4. The pipeline should call XglDrawable::setCursorRopFunc() to register
a function that will remove a software cursor from the window if necessary.
Even pipelines for frame buffers with hardware cursors should call this
function, as the window system may be displaying a cursor that is too big
for the device’s hardware cursor registers.

When the device pipeline is called on to render, it typically performs the
following operations:

1. The pipeline calls drawable->winLock() to lock the clip lists.

2. The pipeline calls drawable->windowIsObscured() to determine
whether the window is obscured. If drawable->windowIsObscured()
returns TRUE, there is nothing to render, so the pipeline calls drawable-
>winUnLock() and returns.

Window System Interactions 187

8

3. The pipeline calls drawable->clipChanged() to determine whether the
clip list changed since the last rendering operation. If
drawable->clipChanged() returns TRUE, there is a new clip list. The
pipeline proceeds as follows:

a. It calls drawable->getWindowWidth() ,
drawable->getWindowHeight() , drawable->getWindowX() , and
drawable->getWindowY() to get the new window geometry.

b. It then calls drawable->getMergeClipListCount() to determine
how many rectangles are in the clip list. Note that MergeClipList is a
combination of the window system clip list and the XGL settable user
clip list.

c. It calls drawable->getMergeClipList() to get the clip list. It loads
this clip list into device hardware if applicable.

4. The pipeline renders to the frame buffer.

5. The pipeline calls drawable->winUnLock() to unlock the clip lists.

Note that after winLock() is called, OpenWindows and other applications
must wait until winUnLock() is called before rendering to that window. For
this reason, keeping a window locked for more than about 0.1 second is
discouraged. Therefore, the winLock() and winUnLock() functions have
been made as lightweight as possible. Holding on to a lock for more than a
fraction of a second may result in poor window-system interaction; after three
seconds, the window system will forcefully break the lock, which may result in
incorrect rendering on the screen.

What You Should Know About Locking the Window
The interface to DGA provides macros that serve to prevent the window clip
list from changing during rendering. Locking the window also prevents other
processes from rendering to the same window at the same time. All rendering
pipelines should use the macros WIN_LOCK() and WIN_UNLOCK() (or the
equivalent function calls winLock() and winUnLock()) around any
operation that could alter the screen, or any time the pipeline needs a valid clip
list. (The clip list may not be considered valid outside of a lock.) The pipeline
uses these calls to explicitly lock and unlock the window unless the device
supports concurrent access by multiple UNIX processes.

188 XGL Device Pipeline Porting Guide—August 1994

8

In the case of immediate-rendering hardware, a pipeline would use
winLock() and winUnLock() around the actual rendering code:

Note that operations which do not depend on the clip list or change the
contents of the screen do not need to be performed inside a lock. This can
include things like changing rendering attributes and transformation matrices
(except that the final viewport-to-screen coordinates transform depends on the
size of the destination window, and thus must be done within a lock).

In the case of an asynchronous device (for example, a display-list device), the
pipeline does not need to maintain the lock until rendering is complete. In this
case, the pipeline needs only to hold the lock until the host has completed its
access to the device. It is the responsibility of the window system and the
hardware device to set up whatever synchronization protocol allows coherent
rendering between them. This synchronization protocol, which is independent
of XGL, most often relies on the window system requesting the accelerator to
flush all its pending operations.

 WIN_LOCK(drawable) ;// cliplist is now valid
 if(drawable->clipChanged())

// cliplist has changed since last lock
 {

// retrieve new cliplist from drawable
 }
 // render
 WIN_UNLOCK(drawable) ;// done, cliplist no longer valid

Window System Interactions 189

8

On a display-list device, the rendering code would look something like this:

See “Accessing Dynamic Information Through the Drawable” on page 191 for
more information on locking and unlocking the window at rendering time.

Drawable Interfaces for the Pipeline
The XglDrawable object provides a number of interfaces that allow you to:

• Obtain information about the frame buffer or the window

• Access dynamic information, such as window dimensions

• Manage window system resources

These general categories of functions are discussed in the sections that follow.
For detailed descriptions of the XglDrawable pipeline interfaces, see page 197.

WIN_LOCK(drawable) ;// cliplist is now valid and stable
if(drawable->clipChanged())

// clip list has changed since last lock
{

 // retrieve new cliplist from drawable
 // and download to device.

}

// download display list to device.
// initiate rendering.
WIN_UNLOCK(drawable) ;// done

// Window system will maintain stable clip list until
// rendering is complete.

190 XGL Device Pipeline Porting Guide—August 1994

8

Obtaining Information During Pipeline Initialization

Several XglDrawable functions allow you to get information that you may
need about the frame buffer during device creation. Table 8-2 lists these
functions.

For example, as part of your getDpMgr() function, you will probably first
want to determine whether an XglDpMgr object for this frame buffer has
already been created. One way of doing this is provided in the utility functions
of the XglListOfDpMgr class. This class provides two functions: one to retrieve
an existing DpMgr matching a file descriptor, and another to create a new
DpMgr for the device.

XglDpMgr* XglListOfDpMgr::getDpMgr(int fildes)

void XglListOfDpMgr::addDpMgr(int fildes, XglDpMgr* mgr)

The code fragment below shows an example of how the pipeline can use these
utility functions.

Table 8-2 Drawable Interfaces Used During Pipeline Initialization

Function Description

getDevFd() Returns the device file descriptor.

getDeviceName() Returns a pointer to the frame buffer device
name, such as /dev/fb .

getWindowDepth() Returns the depth of the window.

XglDpMgr* XglDpLibSampDp::getDpMgr(Xgl_obj_type,
XglDrawable* drawable)

{
 XglDpMgr* dpMgr;

 dpMgr = dpMgrList.getDpMgr(drawable->getDevFd());
 if (dpMgr == NULL) {
 dpMgr = new XglDpMgrSampDp(drawable->getDevFd());

 dpMgrList.addDpMgr(drawable->getDevFd(), dpMgr);
 }
 return dpMgr;
}

Window System Interactions 191

8

Accessing Dynamic Information Through the Drawable

The primary service provided by the Drawable is to provide a mechanism to
lock the window clip list during rendering. Since the window system updates
the clip list and other window attributes in response to changes in the window,
the XglDrawable object synchronizes access to the window information via a
lock and release mechanism. Once the coordination between the client (XGL)
and the server has been established, the client can draw directly to the window
using the lock and release routines. Since the server can continue to update the
window in response to changes in the window’s characteristics, the client must
lock the window clip list before drawing and unlock it when drawing is
complete.

The lock function does the following:

• Locks the clip list so that the server cannot change it during a rendering
operation

• Examines the clip list to see if it has changed since the last lock, and, if it has
changed, the function updates the global copy of the clip list

• Merges the system clip list and the user clip list

The unlock function releases the lock on the clip list. At that point, the server
can change the window at any time, and the clip lists are invalid until the next
lock.

There are three kinds of clip lists that the XglDrawable object manages:

• Window system clip list. This is the clip list that is set by the window
system.

• User clip list. This is the clip list that is set by the XGL application.

• Merged clip list. This clip list is obtained when the lock function merges the
window system clip list and the user clip list.

Most device pipelines should use the merged clip list at all times. However,
devices on which the window system sets up hardware window clipping in
advance should use the user clip list.

192 XGL Device Pipeline Porting Guide—August 1994

8

Guidelines for Using the Window Lock Macros or Function Calls

To lock and unlock the window, the XglDrawable object provides the pipeline
with a pair of macros and a pair of function calls.

If performance is an issue, you should use the WIN_LOCK(drawable) inline
macro to lock the window, and after rendering, use the
WIN_UNLOCK(drawable) macro to unlock the window. Both WIN_LOCK()
and WIN_UNLOCK() are designed to be as lightweight as possible; in other
words, no function calls are made unless the window has changed.

If performance is not critical, the drawable->winLock() and
drawable->winUnLock() inline functions can be used instead. These result
in function calls for XglDrawable objects that actually need locking, so they are
not quite as lightweight as the macros but result in less generated code.

Between Lock and Unlock Calls

All rendering occurs between lock and unlock calls. In addition to rendering
during locks, the device pipeline may need other information, such as the
current dimensions of the window. Once the window is locked, you can ask the
XglDrawable object for the information that you need. In general, any
hardware access that depends on the state of the window should be bracketed
by lock and unlock calls.

Lock Unlock

Inline macros WIN_LOCK(drawable) WIN_UNLOCK(drawable)

Function calls drawable->winLock() drawable->winUnLock()

Window System Interactions 193

8

The following code example shows a pipeline checking the state of the window
and the status of the clip list. The clip list changes when the window moves,
changes size, or is partially covered.

Table 8-3 lists functions that are only meaningful inside lock and unlock calls
because, in general, the information that they return is valid only when the
window information is locked.

*drawable = device->getDrawable() ;

WIN_LOCK(drawable) ;
if(drawable->windowIsObscured()) {

//window is covered or closed
WIN_UNLOCK(drawable) ;
return 1 ; // window is obscured; don’t render

}

if(drawable->clipChanged())
{

// load new clip list into hardware
// recompute view transformation matrices

}
// render
WIN_UNLOCK(drawable);

Table 8-3 Drawable Interfaces Used During Rendering

Function Description

clipChanged() Returns TRUE if the clip list has changed since the
last time this function was called.

getClipMask() Returns the clip mask.

getClipStat() Returns one of DGA_VIS_UNOBSCURED,
DGA_VIS_PARTIALLY_OBSCURED, or
DGA_VIS_FULLY_OBSCURED.
DGA_VIS_UNOBSCURED means that the window is
completely exposed.
DGA_VIS_PARTIALLY_OBSCURED means the
window is partially clipped.
DGA_VIS_FULLY_OBSCURED means that the
window is completely hidden.

getMergeClipList() Returns the clip list.

194 XGL Device Pipeline Porting Guide—August 1994

8

Xpex and Memory Raster Pipelines

Note that for some drawable types, such as XglDrawableDgaRtn and
XglDrawableMem, the concept of window locking has no meaning. However,
in most cases the pipeline should call these functions as described anyway.
Clip list inquiry functions will simply return the user’s clip list.

getMergeClipListCount() Returns the number of Xgl_irect structures in the
clip list.

getWindowDepth() Returns the depth of the window.

getWindowWidth()
getWindowHeight()

Return the height or width of the window.

getWindowX()
getWindowY()

Return coordinates of the window.

getWsClipList() Returns the window clip list.

getWsClipListCount() Returns the number of Xgl_irect structures in the
window clip list.

windowIsClipped() Returns TRUE if the window is partially clipped.

windowIsFullyExposed() Returns TRUE if the window is completely
exposed.

windowIsObscured() Returns TRUE if the window is completely
obscured.

Table 8-3 Drawable Interfaces Used During Rendering (Continued)

Function Description

Window System Interactions 195

8

Managing Window System Resources

Some frame buffers have special characteristics, such as hardware double
buffering, Z-buffers, or stereo imaging. These attributes are a limited resource
and are assigned by the window system. Table 8-4 lists functions that you can
use to manage resources.

Table 8-4 Drawable Interfaces Used for Allocating Resources

Function Description

grabWids() Returns a block of window IDs from the server.
Use with getWid() to return the IDs just allocated.

grabZbuf() Communicates to the server a client request for a
Z-buffer.

grabFCS() Requests to allocate fast clear plane set.

grabStereo() Requests stereo planes.

dbGrab() Requests double buffering on the drawable.

dbUnGrab() Terminates double buffering on the drawable.

getWid() Returns the window IDs for the window, if
applicable.

setWriteBuffer() Sets the buffer to be written.

setReadBuffer() Sets the buffer to be read.

setDisplayBuffer() Sets the buffer to be displayed.

dbDisplayComplete() Called after setDisplayBuffer() ; returns 1 if
the new buffer is now visible.

dbDisplayWait() Waits for the double-buffering interval (one
frame) to expire.

dbGetWid() Returns the window ID for the double-buffering
window.

196 XGL Device Pipeline Porting Guide—August 1994

8

As an example, during your device initialization, you may want to request a
Z-buffer and specify hardware double buffering, since your hardware supports
multiple buffers. A minimal implementation of these calls might be:

When the device pipeline is using double buffering, it is the pipeline’s
responsibility to inform the server/DGA of the buffer switch. To do this, use
the relevant XglDrawable functions. See page 197 for a more complete
description of the XglDrawable interfaces.

Managing Software Cursors

For frame buffers with software cursors, the XglDrawable object must be able
to erase the cursor before drawing. The setCursorRopFunc() passes the
Drawable a pointer to a device pipeline function that erases the cursor
whenever necessary. Although XGL does not include a user-defined cursor, the
pipeline should define the setCursorRopFunc() so that DGA can call it to
copy the image under the software cursor (as passed in by a parameter to the
cursor rop function) when the cursor is on top of the display window.

XglDrawable* drawable = device->getDrawable();
if (!drawable->grabZbuf(1)) { //request the Z buffer

return error;
}
if (drawable->dbGrab(2, (void(*)())vrtfunc, cpage)

{ //request double buffering
 //set up hardware
} else { //server didn’t comply with request
return 1;

}

Window System Interactions 197

8

Description of Drawable Interfaces
The following is an alphabetized list of the XglDrawable operators. This list
provides the syntax and description for each function. It also provides you
with hints about how you can best optimize XglDrawable accesses within a
pipeline. The hints are in the form of the following codes:

[E] The function is time consuming to call; in other words, the
subroutine call has many tasks to perform.

[M] The function is moderately time-consuming; the subroutine call does
very little.

[L] The function is lightweight because it is inline code.

[L2] The function is basically a lightweight function that is only time
consuming if there has been a clip list change.

Note – The XglDrawable interface and any DGA interfaces mentioned in this
chapter are uncommitted and subject to change.

XglDrawable Functions for the Device Pipeline

void winLock()

This function locks the raster’s clip list and other information in the shared
memory data structure, making it possible to render. All rendering must be
between winLock() and winUnLock() calls.

This is an inline function for efficiency. In the noncontested case, it is very
fast. winLock() and winUnLock() calls should be run fairly frequently so
that the cursor and other updates on the screen are fast. Under no
circumstances should XGL hold onto a lock for more than three seconds,
since this can cause a timeout. [L2]

void winUnLock()

Unlock the shared-memory data structure. [L2]

WIN_LOCK(d)

Lock the window. This macro is more efficient than using winLock() , but it
expands to more code. [L2]

198 XGL Device Pipeline Porting Guide—August 1994

8

WIN_UNLOCK(d)

Unlock the window. [L2]

Xgl_boolean clipChanged()

Returns TRUE if the clip list has changed since the last time this function
was called. Only valid inside a lock. [L]

int dbDisplayComplete(int waitflag)

Returns 1 if the new displayed buffer is now visible. If the new buffer is not
yet displayed, and waitflag is zero, returns 0. If waitflag is set,
dbDisplayComplete() waits for the display to be visible if necessary and
always returns 1. [E]

void dbDisplayWait()

Waits for the double-buffering interval (one frame) to expire. [E]

u_int dbGetWid()

Returns the window ID for the double-buffering window. Meaningful only
for frame buffers that use window IDs for double buffering. See also
“Window System Dependencies”. [M]

Xgli_ClipStat getClipStat()

Returns one of DRW_EXPOSED, DRW_CLIPPED, DRW_OBSCURED. Only valid
inside a lock. [L]

int getDevFd()

Returns the device file descriptor for the frame buffer on which the grabbed
window is displayed. [M]

XglDevice* getDevice()

Returns the back pointer to the corresponding Device object, which may be
XglRasterWin, XglRasterMem, and so on.

const char * getDeviceName()

Returns a pointer to the device name of the frame buffer on which the
grabbed window is displayed, for example /dev/cgsix0 . Note that the
device has already been opened. [M]

Window System Interactions 199

8

const Xgl_irect_list& getMergeClipList()

Returns the clip list. Only valid inside a lock. [L2]

Xgl_sgn32 getMergeClipListCount()

Returns the number of Xgl_irect structures in the clip list. Only valid inside
a lock. [L2]

XglPixRectMem* getMergeClipMask()

Returns a bitmap representing the visible portion of the window.

Xgl_color_type getRealColorType()

Returns the actual color type of the underlying hardware, which can be one
of XGL_COLOR_INDEX or XGL_COLOR_RGB.

void getWid(int &nwid, int &start_wid, int &cur_wid)

Returns the window IDs for the window, if applicable. nwid is the number
of window IDs, start_wid is the first window ID, and cur_wid is the
current window ID. [M]

Xgl_sgn32 getWindowDepth()

Get window depth. [E]

Xgl_sgn32 getWindowWidth()
Xgl_sgn32 getWindowHeight()

Return overall window geometry, including parts that may be clipped. Only
valid inside a lock. [L]

Xgl_sgn32 getWindowX()
Xgl_sgn32 getWindowY()

Return overall window geometry, including parts that may be clipped. Only
valid inside a lock. [L]

Xgl_sgn32 getWsClipListCount()

Returns the number of Xgl_irect structures in the window clip list. Only
valid inside a lock. [L]

200 XGL Device Pipeline Porting Guide—August 1994

8

const Xgl_irect_list& getWsClipList()

Returns the window clip list. Only valid inside a lock. [L]

Xgl_sgn32 getUserClipListCount()

Returns the number of Xgl_irect structures in the user clip list. [L]

const Xgl_irect_list& getUserClipList()

Returns the user clip list. [L]

Xgl_boolean dbGrab(int nbuffers,
 void(*vrtfunc)(Dga_window), u_int* vrtcounterp)

Requests double buffering on this Drawable with nbuffers . Both vrtfunc
and vrtcounterp are supplied by the device pipeline. For more
information on the implementation of this function, see dga_db_grab() in
the OpenWindows Server Device Developer’s Guide. Returns TRUE for success
and FALSE for failure. [E]

Xgl_boolean grabFCS(int nfcs)

Grabs nfcs fast clear sets. Releases fast clear sets by setting nfcs to zero.
Returns FALSE for failure and TRUE for success. Currently only succeeds for
OpenWindows windows and only when supported by the hardware. Fast
clear set information is stored in an device-dependent manner. See
“Window System Dependencies”. [E]

Xgl_boolean grabWids(int nwids)

Grabs nwids window IDs. Returns FALSE on failure. [E]

Xgl_boolean grabZbuf(int nzbuftype)

Grabs or releases the Z-buffer where 1 means grab and 0 means release.
Returns FALSE for failure, TRUE for success. Currently only succeeds for
OpenWindows windows and only when supported by hardware. Z-buffer
information is stored in a device-dependent manner. See “Window System
Dependencies”. [E]

Window System Interactions 201

8

Xgl_boolean grabStereo(int st_mode)

Grab or release the stereo planes; 1 means grab, 0 means release. Returns
FALSE for failure, TRUE for success. Currently only succeeds for
OpenWindows windows and only when supported by hardware. Stereo
plane information is stored in an undocumented device-dependent manner.
See “Window System Dependencies”. [E]

void setCursorRopFunc(void * my_rop_func,caddr_t client)

Sets the function that is used to remove the cursor from the screen.
my_rop_func is a function provided by the pipeline. This function is called
by DGA to copy the image under the software cursor as passed in through
the caddr_t memptr parameter to the cursor rop function when the cursor
is on top of the display window. The function should look like this :

void
my_rop_func(XglDevice *dev, int x, int y, int width, int height,

int depth, int linebytes, caddr_t memptr,
caddr_t client)

This function is called from within WIN_LOCK() whenever the cursor needs
to be taken down. Its purpose is to copy a block of pixels onto the frame
buffer, thus undrawing the cursor. The dev pointer is the XGL Device of the
window for which the cursor is being undrawn; to retrieve the DpDev, get
the XglDpDev object with device->getDpDev() . The arguments
x,y,w,h,depth describe the region of the screen to be replaced.
linebytes and memptr describe the source for the pixels. client is the
arbitrary client data provided to setCursorRopFunc() . memptr points to
the (0,0) pixel address of the image. The format is a row-column order with
each row starting linebytes after the previous row. Note that no XGL
attribute (that is the ROP and the plane mask) is relevant within this
function.

All pipelines should provide this function if it is at all possible for a
software cursor to intersect this drawable. [M]

void setDisplayBuffer(int buffer, int (*displayfunc)(),
caddr_t data)

Sets the buffer to be displayed. displayfunc is a function that you provide
in the form:

int displayfunc(caddr_t data, Dga_window clientp, int buffer)

202 XGL Device Pipeline Porting Guide—August 1994

8

where data is the data provided, clientp is the client info pointer
described in the OpenWindows DDK documentation, and buffer is the
buffer to be written. Your displayfunc function is device dependent and
is responsible for setting the hardware to display to the specified buffer. [M]

void setReadBuffer(int buffer, int (*readfunc)(),
caddr_t data)

Sets the buffer to be read. readfunc is a function that you provide in the
form:

int readfunc(caddr_t data, Dga_window clientp, int buffer)

where data is the data provided, clientp is the client info pointer
described in the OpenWindows DDK documentation, and buffer is the
buffer to be written. Your readfunc function is device-dependent and is
responsible for setting the hardware to read from the specified buffer. [M]

void setWriteBuffer(int buffer, int (*writefunc)(),
caddr_t data)

Sets the buffer to be written. writefunc is a function that you provide in
the form:

int writefunc(caddr_t data, Dga_window clientp, int buffer)

where data is the data provided, clientp is the client info pointer
described in the OpenWindows DDK documentation, and buffer is the
buffer to be written. Your writefunc function is device-dependent and is
responsible for setting the hardware to write to the specified buffer. [M]

Xgl_boolean windowIsClipped()

Returns TRUE if window is partially exposed. Only valid inside a lock. [L]

Xgl_boolean windowIsFullyExposed()

Returns TRUE if window is completely exposed. Only valid inside a lock. [L]

Xgl_boolean windowIsObscured()

Returns TRUE if window is completely obscured. Only valid inside a lock.
Data does not need to be sent to the hardware if windowIsObscured() is
TRUE. If backing store is enabled and handled by the device pipeline, the

Window System Interactions 203

8

pipeline should check the X window system’s backing store attribute to
determine whether it is WhenMapped or Always to decide whether to
render to the backing store if windowIsObscured() is TRUE. [L]

Xgl_boolean dbUnGrab()

Terminates double buffering on this drawable. Returns TRUE on success,
FALSE on failure. [E]

XglDrawable Functions Used by the XGL Core Only

Xgli_DrawClass getClass()

Returns one of DRW_WIN_RAS, DRW_MEM_RAS, or DRW_CGM. These identify
the kind of raster that this Drawable was created for. [L]

void getDescriptor(void *)

Returns the original descriptor passed to xgl_object_create() . [M]

DrawableLockType getLockType()

This function is not normally relevant to device pipelines. It describes what
action will be taken by winLock() , which can be one of DR_LK_NONE,
DR_LK_FUNC, or DR_LK_MACRO.

cont char* getPipeName()

Used by the XGL core to determine the proper rendering pipeline for this
window.

Xgl_window_type getType()

Returns the Xgl_window_type from xgl.h for DRW_WIN_RAS. [L]

Xgl_boolean grabRetainedWindow()

Grabs a window for backing store. Returns an XglDrawable object on
success and connects the new object to the existing XglDrawable object.
Returns NULL on failure. Note that the retained window is actually a file in
/tmp .

204 XGL Device Pipeline Porting Guide—August 1994

8

static XglDrawable *grabDrawable(Xgl_obj_desc *,
Xgl_device *)

Grabs the window. Returns an XglDrawable object on success, NULL on
failure. Initializes most of the fields in the XglDrawableClient object. [E]

Xgl_boolean matchDesc(Xgl_obj_desc *)

Returns TRUE if the given descriptor matches this XglDrawable object. [E]

Xgl_boolean possible(Xgl_X_window *)

Determines whether DGA is possible on this window. If DGA is possible,
the function returns TRUE. If DGA is not possible, returns FALSE. In the
latter case, PEXlib or Xlib must be used for rendering. [E]

void resize()

Used to inform the XglDrawable object that the window has been resized.
Note that this function is used only by the XglDrawableXpex subclass, since
it has no other way of determining whether the window has been resized.

void setRectList(Xgl_irect rect_list[])
void setRectNum(Xgl_usgn32)

Sets the user clip list. [E]

Xgl_boolean unGrabRetainedWindow()

Terminates access to the backing-store window. The XglDrawable object and
its resources are freed.

void ungrabDrawable()

Used by the XGL core to terminate access to a window. The XglDrawable
and all of its resources are freed.

Window System Interactions 205

8

Window System Dependencies

Unfortunately, some DGA information, such as fast clear sets, is not formally
defined in OpenWindows DGA. Currently, the information is simply stored in
the OpenWindows DGA shared page in a device-dependent manner.

Pipelines that need access to the double-buffering information or the
bounding-box information in shared memory should use the following
functions:

caddr_t winBboxinfop()

Returns a pointer to the bounding-box information structure within shared
memory. This structure is:

struct {

int xleft, xtop;
int width, height;

}

Returns NULL if not running under OpenWindows. [L]

Dga_dbinfo *winDbInfop()

Returns a pointer to the double-buffering information area within shared
memory, as defined in <dga/dga.h >. Returns NULL if not running under
OpenWindows. [L]

206 XGL Device Pipeline Porting Guide—August 1994

8

207

Writing Loadable Interfaces 9

This chapter describes the XGL loadable interfaces. Each interface description
includes information about a function’s syntax, arguments, and attributes, and
the software pipeline implementation. Also provided are the mappings of API
functions to LI-1 functions and the mappings of LI functions at one level to
those at another level.

As you read this chapter, you will find it helpful to have access to the
following header files:

• XglDpCtx2d.h and XglDpCtx3d.h . These files contain the loadable
interfaces for the device pipeline.

• XglSwpCtx2d.h and XglSwpCtx3d.h . These files contain the loadable
interfaces for the software pipeline.

• Li3Structs.h , Li3Structs2d.h , and Li3Structs3d.h , and
RefDpCtx.h , RefDpCtx2d.h , and RefDpCtx3d.h contain information on
LI-3 functions and data structures.

Note – The interfaces mentioned in this chapter are unstable and subject to
change.

.h

208 XGL Device Pipeline Porting Guide—August 1994

9

What You Need to Know about the Loadable Interfaces
The XGL architecture provides considerable flexibility in implementing a
device pipeline. You can implement pipelines at the LI-1 level for every XGL
primitive, or you can choose to implement some primitives at the LI-1 level
and some at the LI-2 level and use the software pipeline for the remaining
primitives. You can also use the software pipeline for LI-1 processing, and
implement some of the LI-2 interfaces and the LI-3 interfaces. Your decision
will depend on the capabilities of your hardware.

The software pipeline includes a set of support routines that can fill in
functionality that a pipeline cannot handle. It is likely that even pipeline ports
that fully accelerate most XGL functionality will fall back to the software
pipeline for some features. In general, the software pipeline will be used for
devices that:

• Accelerate most XGL functionality, including transformations, clipping,
lighting, and scan conversion, but may not implement particular primitives
or support some combinations of XGL attributes. Device pipelines for these
devices can fall back to the software pipeline for unimplemented primitives
or unaccelerated features.

• Partially accelerate functionality at a particular level, such as Xlib devices or
simple color frame buffer devices. For example, an Xlib device may render
vectors and polygons using Xlib routines. This pipeline will use the XGL
software pipeline for LI-1 operations such as transformations, clipping.
lighting, and depth cueing, and will perform scan conversion at the LI-2
level in the server after the device pipeline issues an Xlib call. A simple
color frame buffer may use the software pipeline LI-1 and LI-2 functions
and implement only LI-3 functions to write pixel values into the hardware.

The software pipeline provides a generic implementation of what is expected
of the device pipeline at each loadable interface level. By examining the
software pipeline implementation, you can get a global view of what the
device pipeline needs to do.

Writing Loadable Interfaces 209

9

Overview List of Loadable Pipeline Interfaces

Table 9-1 lists the set of interfaces for the device pipeline. Some of these
interfaces must be implemented by every device pipeline; others are optional.
The table describes the interfaces at each layer and shows whether the
interfaces are implemented by the software pipeline. Note that functions that
require direct pixel access or immediate interaction with the device pipeline are
not simulated in software.

Table 9-1 List of Loadable Pipeline Interfaces

LI Function 2D 3D Description Swp Dp

LI-1 li1AnnotationText() ✓ ✓ Renders text in a plane parallel to the
display surface.

✓ Optional

li1DisplayGcache() ✓ ✓ Displays the contents of the Gcache object. ✓ Optional

li1MultiArc() ✓ ✓ Renders a set of arcs. ✓ Optional

li1MultiCircle() ✓ ✓ Renders a set of circles. ✓ Optional

li1MultiEllipticalArc() ✓ Renders a set of 3D elliptical arcs. ✓ Optional

li1MultiMarker() ✓ ✓ Renders a set of markers. ✓ Optional

li1MultiPolyline() ✓ ✓ Renders a set of polylines. ✓ Optional

li1MultiRectangle() ✓ ✓ Renders a set of rectangles. ✓ Optional

li1MultiSimplePolygon() ✓ ✓ Renders a set of single-bounded polygons. ✓ Optional

li1NurbsCurve() ✓ ✓ Renders a NURBS curve. ✓ Optional

li1NurbsSurf() ✓ Renders a NURBS surface. ✓ Optional

li1Polygon() ✓ ✓ Renders a single planar polygon. ✓ Optional

li1QuadrilateralMesh() ✓ Renders a set of connected quadrilateral
polygons.

✓ Optional

li1StrokeText() ✓ ✓ Renders stroke text. ✓ Optional

li1TriangleList() ✓ Renders a set of triangles arranged as a
triangle strip, a triangle star, or
unconnected triangles.

✓ Optional

li1TriangleStrip() ✓ Renders a set of connected triangular
polygons.

✓ Optional

210 XGL Device Pipeline Porting Guide—August 1994

9

li1Accumulate() ✓ Accumulates images from the draw buffer
of the raster to a specified accumulation
buffer.

✓ Optional

li1ClearAccumulation() ✓ Clears the accumulation buffer. ✓ Optional

li1CopyBuffer() ✓ ✓ Copies a block of pixels from one buffer to
another.

Required

li1Flush() ✓ ✓ Causes pending processing to complete. Required

li1GetPixel() ✓ ✓ Gets the color value of a pixel. Required

li1Image() ✓ ✓ Displays a block of pixels. ✓ Optional

li1NewFrame() ✓ ✓ Clears the DC viewport to the background
color.

Required

li1PickBufferFlush() ✓ ✓ Synchronizes the device’s pick buffer and
the XGL core pick buffer.

Required

li1SetMultiPixel() ✓ ✓ Sets the color values for a list of pixels. ✓ Optional

li1SetPixel() ✓ ✓ Sets the color value of a specified pixel. Required

li1SetPixelRow() ✓ ✓ Sets the color value for a row of pixels. ✓ Optional

LI-2 li2GeneralPolygon() ✓ ✓ Scan converts polygons to span lines. ✓ Optional

li2MultiDot() ✓ ✓ Calls li3MultiDot() . ✓ Optional

li2MultiEllipse() ✓ Scan converts ellipses to span lines. ✓ Optional

li2MultiEllipticalArc() ✓ Scan converts elliptical arcs to span lines. ✓ Optional

li2MultiPolyline() ✓ ✓ For thin lines, calls li3Vector() ; scan
converts wide lines to span lines.

✓ Optional

li2MultiRect() ✓ Scan converts rectangles to span lines. ✓ Optional

li2MultiSimplePolygon() ✓ ✓ Scan converts polygons to span lines. ✓ Optional

li2TriangleList() ✓ Takes a triangle list, breaks it into
individual triangles and scan converts the
triangles.

✓ Optional

li2TriangleStrip() ✓ Takes a triangle list, breaks it into
individual triangles and scan converts the
triangles.

✓ Optional

Table 9-1 List of Loadable Pipeline Interfaces (Continued)

LI Function 2D 3D Description Swp Dp

Writing Loadable Interfaces 211

9

Deciding Which Interfaces to Implement

Table 9-2 shows the LI-1, LI-2, and LI-3 functions that are called by the
software pipeline LI-1 functions. If you decide to implement one of the
interfaces listed in the left column, you may also want to implement some or
all of the checked functions listed to the right. You can think of the functions to
the right as being downstream from the LI-1 function that calls them. In this

LI-3 li3Begin() ✓ ✓ Specifies the beginning of a sequence of LI-
3 primitives. Required

li3End() ✓ ✓ Specifies the end of a sequence of LI-3
primitives. Required

li3CopyFromDpBuffer() ✓ ✓ Copies pixel data from a hardware buffer
into memory. Required

li3CopyToDpBuffer() ✓ ✓ Copies pixel data from memory into the
specified hardware buffer. Required

li3MultiDot() ✓ ✓ Draws a list of dots at a specified x,y
location. Required

li3MultiSpan() ✓ ✓ Draws a list of spans. Required

li3Vector() ✓ ✓ Draws a vector. Required

li3GetDotControl()
li3GetVectorControl()
li3GetSpanControl()

✓
✓

✓
✓
✓

Get control functions for LI-3 dots,
vectors, and spans.

Required

li3SetDotControl()
li3SetVectorControl()
li3SetSpanControl()

✓
✓

✓
✓
✓

Set control functions for LI-3 dots, vectors,
and spans.

Required

Table 9-1 List of Loadable Pipeline Interfaces (Continued)

LI Function 2D 3D Description Swp Dp

212 XGL Device Pipeline Porting Guide—August 1994

9

table, “D” indicates a function that the pipeline calls directly; “I” indicates to a
function that is called indirectly by a function downstream from the LI-1
function.

Table 9-2 LI1 to LI2 Dependencies

li
1M

u
lt

iP
ol

yl
in

e

li
1P

ol
yg

on

li
1M

u
lt

iS
im

p
le

P
ol

yg
on

li
1M

u
lt

iM
ar

k
er

li
1T

ri
an

gl
eL

is
t

li
1T

ri
an

gl
eS

tr
ip

li
1Q

u
ad

ri
la

te
ra

lM
es

h

li
2M

u
lt

iP
ol

yl
in

e

li
2M

u
lt

iD
ot

li
2M

u
lt

iS
im

p
le

P
ol

yg
on

li
2G

en
er

al
P

ol
yg

on

li
2M

u
lt

iE
ll

ip
ti

ca
lA

rc

li
2M

u
lt

iE
ll

ip
se

li
2T

ri
an

gl
eL

is
t

li
2T

ri
an

gl
eS

tr
ip

li
3M

u
lt

iS
p

an

li
3M

u
lt

iD
ot

li
3V

ec
to

r

li1AnnotationText - 2D/3D D I I

li1MultiArc - 2D D D I I D I I

li1MultiArc - 3D D I D D D I I

li1MultiCircle - 2D D I D I

li1MultiCircle - 3D I D D I

li1MultiEllipticalArc - 3D D I D D D I I

li1MultiMarker - 2D/3D D I D I I I

li1MultiPolyline - 2D/3D D I I

li1MultiRectangle - 2D I D I I

li1MultiRectangle - 3D I D D I

li1MultiSimplePolygon - 2D D I I

li1MultiSimplePolygon - 3D D D I I

li1NurbsCurve - 2D/3D D D I I I I

li1NurbsSurf - 3D D D D D I I I I I I

li1Polygon - 2D/3D D I I

li1QuadrilateralMesh - 3D D I I

li1StrokeText - 2D/3D D I I I

li1TriangleList - 3D D D D I

li1TriangleStrip - 3D D D I

Writing Loadable Interfaces 213

9

Note that, depending on the geometry in the Gcache, 2D
li1DisplayGcache() calls the following LI-1 primitives:

• li1Marker()
• li1MultiPolyline()
• li1MultiSimplePolygon()
• li1Polygon()
• li1NurbsCurve()

 For 3D, li1DisplayGcache() calls all of the above and

• li1NurbsSurf()
• li1TriangleStrip() .

Table 9-3 shows which LI-2 and LI-3 functions are called by each of the LI-2
functions. If you decide to replace one of the functions listed in the left column,
you may also want to replace the functions listed to the right.

Table 9-3 LI-2 to LI-3 Dependencies
li

2M
u

lt
ip

ol
yl

in
e

li
2G

en
er

al
P

ol
yg

on

li
2T

ri
an

gl
eL

is
t

li
2M

u
lt

iS
im

p
le

p
ol

yg
on

li
3M

u
lt

is
p

an

li
3M

u
lt

D
ot

li
3V

ec
to

r
li2GeneralPolygon D D I

li2MultiEllipse D D

li2MultiEllipticalArc D D D D

li2MultiDot D

li2MultiPolyline - 2D D D

li2MultiPolyline - 3D D I D

li2MultiRect D D I

li2MultiSimplePolygon - 2D D D I

li2MultiSimplePolygon - 3D I D I I

li2TriangleList D D I

li2TriangleStrip D D I

214 XGL Device Pipeline Porting Guide—August 1994

9

Input Data for LI-2 and LI-3

All input data to LI-2 or LI-3 functions are in device coordinates unless
otherwise noted.

Picking

It is the responsibility of the LI-1 primitive functions to handle picking, if
picking is enabled. If a particular device pipeline can do picking with its
hardware, then the pipeline can either cache pick hits as they occur, or it can
immediately write them into the XGL core pick buffer. In the former case, if the
XGL core pick buffer requires synchronization (because a software function is
about to be used to pick a particular primitive, or the API has called
xgl_pick_get_identifiers), then the LI-1 li1PickBufferFlush()
function is called to transfer the cached hardware pick information (if any). For
example, if the device pipeline picks an object, and then the software pipeline
is called to pick another object with the same pick ID, the
li1PickBufferFlush() function is called, and only one pick is placed in the
pick buffer. The XGL core merges device pipeline LI-1 pick events and LI-3
pick events.

If Z-buffering is enabled, the geometry is passed to LI-2, which will examine
the current attributes and scan convert wide lines. The geometry is then passed
down to LI-3 functions. LI-1 and LI-2 will have already pruned the geometric
data to be inside the pick aperture; LI-3 functions must test if the geometry is
visible based upon the Z comparison method. The 3D LI-3 primitive functions
return a Boolean parameter picked. This parameter returns TRUE if the primitive
was picked via Z-buffer-based picking (if Z-buffering is on and picking is on).

Note – LI-3 functions are only called to do picking if Z-buffering is enabled.

Writing Loadable Interfaces 215

9

Hints for Rendering Transparent 3D Surfaces

The device pipeline can optimize the rendering of transparent surfaces or let
the software pipeline handle the rendering of transparent surfaces. To handle
transparency, the pipeline must first determine whether the surface is
transparent, and then it can decide whether to optimize the rendering of the
surface. Transparency is available for 3D surfaces only. Follow these steps:

1. After face distinguishing has been done, determine whether the surface is
transparent or opaque. You can use the XgliUtIsTransparent utilities to
determine this; see Chapter 10, “Utilities” for information on these utilities.

2. Determine what action to take based on the XGL attribute
XGL_3D_CTX_BLEND_DRAW_MODE. Optimized surface rendering will use
the device’s accelerated pipeline to draw the interior of opaque surfaces
and/or edges. Add the following lines of code to your LI-1 implementation
of each 3D surface primitive. Add the code after front and back
distinguishing and after determining whether the surface is opaque or
transparent.

if (surface is not transparent /* returned by the util */){
 if (blend draw mode == XGL_BLEND_DRAW_NOT_BLENDED){
 // draw opaque surface but not the edges
 if (XGL_CTX_SURF_EDGE_FLAG is TRUE){
 // you may do this by setting edges to off and
 // then restoring the edge flag later
 // set things up so that only INTERIOR is drawn,
 // edges are NOT drawn
 // continue drawing the interior
 } else if (blend draw mode == XGL_BLEND_DRAW_BLENDED) {
 // draw nothing or draw edges only if edges are on
 // if (XGL_CTX_SURF_EDGE_FLAG is TRUE) {
 // you may do this by setting the interior to
 // empty and later restoring the fill style
 // set things up so that only EDGES are drawn,
 } else {
 return 1; // nothing needs to be drawn
 }
 }
 } else // surface is transparent {
 if (blend draw mode == XGL_BLEND_DRAW_NOT_BLENDED)
 return 1; // nothing needs to be drawn
 call the software pipeline
 }

216 XGL Device Pipeline Porting Guide—August 1994

9

To let the software pipeline handle all rendering of the surfaces, add the
following lines of code to your implementation of each 3D surface primitive.
Add the code after front and back face distinguishing and after determining
whether the surface is opaque or transparent.

If a device does face distinguishing and face culling in hardware, it can
optimize code that calls the software pipeline for transparency. You can use an
algorithm similar to that shown in the next section on texture mapping.

Calling the Software Pipeline for Texture Mapping

The application can enable texture mapping for front or back surfaces. Two
conditions must be met for texture mapping to be enabled: the application
must provide texture mapping objects using the RGB window raster, and the
input point type must be a data point type if the texture coordinate source is
DATA. If a device has not implemented texture mapping, it can call the software
pipeline to do texturing.

The device pipeline can optimize its call to the software pipeline for texture
mapping by determining whether the application has requested texture
mapping for only front surfaces or only back surfaces. In either of those cases,
the device pipeline can determine whether the surface is textured and call the
software pipeline only if texture mapping is required. The following code
sample provides an example.

if (surface is not transparent) {
 if (blend draw mode != XGL_BLEND_DRAW_ALL) {
 call the software pipeline
 }
 } else // surface is transparent {
 if (blend draw mode == XGL_BLEND_DRAW_NOT_BLENDED)
 return 1; // nothing needs to be drawn
 call the software pipeline
 }

if (!ctx->getSurfFaceDistinguish()){
 if (ctx->getFrontTexturing())
 // call the software pipeline
}
else {
 if (ctx->getSurfFaceCull() == XGL_CULL_BACK) {
 if (&& ctx->getFrontTexturing())

Writing Loadable Interfaces 217

9

In this code sample, the device pipeline first determines whether face
distinguishing is enabled. If it is not, it checks whether texture mapping objects
are present for texturing front faces. If so, the device pipeline calls the software
pipeline. If face distinguishing is enabled, the code determines whether back
faces are culled and front texture mapping is on. If so, the front surfaces can be
sent to the software pipeline for texture mapping. Similarly, if front faces are
culled and texture mapping is on for back surfaces, then the back surfaces can
be sent to the software pipeline. Finally, if face culling is not enabled and either
front or back texture mapping is enabled, the device pipeline can send all the
surfaces to the software pipeline for texture mapping.

At the LI-2 level, face distinguishing has already taken place, so it is sufficient
to determine whether texture mapping is enabled for front or back surfaces
(based on the front flag in the PrimData level 0 field):

LI-1 stores the w component for 3D surface primitives. The w values are passed
to LI-2 as part of the point list for 3D surface primitives.

 // call the software pipeline
 }
 else if (ctx->getSurfFaceCull() == XGL_CULL_FRONT) {
 if (&& ctx->getBackTexturing())
 // call the software pipeline
 }
 else { // No culling
 if (&& (ctx->getFrontTexturing() ||
 ctx->getBackTexturing()))
 // call the software pipeline
 }
}

 if (ctx->get{Front,Back}Texturing())
 // fall back to the software pipeline

218 XGL Device Pipeline Porting Guide—August 1994

9

Antialiasing and Dithering

If your device does not perform antialiasing or dithering in hardware, your
pipeline can use the software pipeline. For software pipeline dithering, check
for the following attribute values and then call the software pipeline.

For software pipeline antialiasing, check for the value of these attributes.

For 3D markers:

For 3D strokes:

Mapping of API Primitive Calls to LI-1 Functions

Table 9-4 shows the mapping of the 2D API primitives to the 2D LI-1 functions.

if ((device->getColorType() == XGL_COLOR_RGB) &&
(device->getRealColorType() != XGL_COLOR_INDEX)

// if hw doesn’t perform dithering, fall back to the software pipe
swp->Li1{primitive}();

if (ctx->getMarkerAaBlendEq() != XGL_BLEND_NONE ||
ctx->getMarkerAaFilterWidth() > 1)

// fall back to swp if hw doesn’t handle antialiasing of dots
swp->li1MultiMarker(pl);

if (curr_stroke->getAaBlendEq()) != XGL_BLEND_NONE ||
curr_stroke->curr_stroke->getAaFilterWidth() > 1)

// fall back to swp if hw doesn’t handle antialiasing of strokes
swp->li1MultiPolyline(bbox, num_lists, pl);

Table 9-4 Mapping of 2D Primitives to 2D LI-1 Functions

API Function LI-1 Functions

xgl_annotation_text() li1AnnotationText()

xgl_context_display_gcache() li1DisplayGcache()

xgl_multiarc() li1MultiArc()

xgl_multicircle() li1MultiCircle()

xgl_multimarker() li1MultiMarker()

Writing Loadable Interfaces 219

9

Table 9-5 shows the mapping of the 3D API primitives to the 3D LI-1 functions.

xgl_multipolyline() li1MultiPolyline()

xgl_multirectangle() li1MultiRectangle()

xgl_multi_simple_polygon() li1MultiSimplePolygon()

xgl_nurbs_curve() li1NurbsCurve()

xgl_polygon() li1Polygon()

xgl_stroke_text() li1StrokeText()

Table 9-5 Mapping of 3D API Primitives to 3D LI-1 Functions

API Function LI-1 Function

xgl_annotation_text() li1AnnotationText()

xgl_context_display_gcache() li1DisplayGcache()

xgl_multiarc() li1MultiArc()

xgl_multicircle() li1MultiCircle()

xgl_multi_elliptical_arc() li1MultiEllipticalArc()

xgl_multimarker() li1MultiMarker()

xgl_multipolyline() li1MultiPolyline()

xgl_multirectangle() li1MultiRectangle()

xgl_multi_simple_polygon() li1MultiSimplePolygon()

xgl_nurbs_curve() li1NurbsCurve()

xgl_nurbs_surface() li1NurbsSurf()

xgl_polygon() li1Polygon()

xgl_quadrilateral_mesh() li1QuadrilateralMesh()

xgl_stroke_text() li1StrokeText()

xgl_triangle_list() li1TriangleList()

xgl_triangle_strip() li1TriangleStrip()

Table 9-4 Mapping of 2D Primitives to 2D LI-1 Functions

API Function LI-1 Functions

220 XGL Device Pipeline Porting Guide—August 1994

9

Table 9-6 shows the mapping of the API raster and pixel operators to the LI-1
functions.

What You Should Know about the Software Pipeline

Software Pipeline Multiplexing

The software pipeline at a particular level can call other functions for
processing at the same level or at a lower level. It does this through the
opsVec array. For example, the software pipeline LI-1 multipolyline function
calls the LI-2 layer multipolyline function with the following call:

(dp->*((void(XglDpCtx3d::*)(XglPrimData*))

 (dp->opsVec[XGLI_LI2_MULTIPOLYLINE])

))(pd);

If the device pipeline has implemented multipolyline functionality at the LI-2
layer, it will assume control at this point; otherwise, the ops_vector setting
will forward the rendering call directly back to the software pipeline.

Table 9-6 Mapping of API Utility Functions to LI-1 Functions

API Function LI-1 Function

xgl_context_accumulate() li1Accumulate()

xgl_context_clear_accumulation() li1ClearAccumulation()

xgl_context_new_frame() li1NewFrame()

xgl_context_copy_buffer() li1CopyBuffer()

xgl_context_flush() li1Flush()

xgl_context_get_pick_identifiers() li1PickBufferFlush()

xgl_context_get_pixel() li1GetPixel()

xgl_image() li1Image()

xgl_context_set_multi_pixel() li1SetMultiPixel()

xgl_context_set_pixel() li1SetPixel()

xgl_context_set_pixel_row() li1SetPixelRow()

Writing Loadable Interfaces 221

9

Some software pipeline functions call other LI-1 functions to perform
operations. For example, the software pipeline stroke text li1StrokeText()
function calls the device pipeline LI-1 multipolyline function through the
opsVec to display a string of text as multipolylines. As another example, the
software pipeline li1DisplayGcache() function calls the LI-1 primitive that
corresponds to the type of geometry in the Gcache. The software pipeline calls
back the device pipeline through the opsVec array; the array pointer for that
primitive determines whether the device pipeline or the software pipeline will
render the primitive.

Software Pipeline Backing Store

The software pipeline functions include a flag for backing store control. This
flag, do_retained , is set by XGL core and passed to the software pipeline.
However, this flag does not exist in device pipeline functions, and the device
pipeline does not need to include it in calls to the software pipeline functions.

Surface Color in the Software Pipeline

Surface color selection is handled as follows for software pipeline LI-1 and LI-2
functions:

• At LI-1, if lighting is on, color selection is applied before lighting. If there is
no lighting, color selection is done at LI-2.

• At LI-1, if depth cueing is on and depth cue interpolation is on, then depth
cueing is done at each vertex, and the depth cued color is stored at the
vertices of the output point list.

If depth cue interpolation is off, and if incoming point list has vertex color
(as a part of the point type or due to vertex lighting), then depth cueing is
done at each vertex, and the output color is stored at the vertices of the
output point list. However, if the incoming point list has facet color or if the
color is obtained from the Context object, then depth cueing is done only
once per facet, and the depth-cued color is stored in the first vertex of each
point list.

• Color selection is performed at LI-2, if there is no lighting or depth cueing,

• If texture mapping is on, no color selection is done at LI-1, and all color
selection is done at LI-2.

222 XGL Device Pipeline Porting Guide—August 1994

9

Texture Mapping in the Software Pipeline

If texture mapping is enabled (the application must have defined at least one
Data Map Texture object or Texture Map object), the software pipeline
processing of surface primitives changes.

Texture Mapping at LI-1

At LI-1, if texturing is enabled, the surface primitive is not lit, since the diffuse
color for lighting is not known until LI-3 when texturing takes place. Therefore,
lighting coefficients are computed at LI-1 and stored in the XglPrimData object.
In addition, depth cueing is deferred until LI-3.

Texture Mapping at LI-2

At LI-2, the following steps occur:

1. The (u,v) values for the span are computed using hyperbolic interpolation
and are passed to LI-3 using the class XgliUvSpanInfo3d.

2. The lighting coefficients, if present are also computed at the spans and
passed to LI-3 using XgliUvSpanInfo3d.

3. The MipMap level in which the start of the span is located and the delta is
computed and passed to LI-3 using XgliUvSpanInfo3d.

See the section beginning on page 343 for information on XgliUvSpanInfo3d.

Texture Mapping at LI-3

At LI-3, the (u,v) value and the lighting coefficient at a pixel are determined.
The (u,v) value is used to look up the texture map to obtain the texture value
(texel). Depending on the control parameters present in the Texture Map object,
the texel is combined with the pixel color to obtain the final textured pixel
(lighting and depth cueing are done as applicable). Note that there may be
more than one texture active, and the final textured pixel is the result after
applying all active textures. See page 343 for more information.

Note that the device pipeline must implement texture mapping at LI-3 or use
RefDpCtx. RefDpCtx performs all operations for rendering at the LI-3 level.

Writing Loadable Interfaces 223

9

LI-1 Functions

 About the LI-1 Layer

The LI-1 layer specifies the loadable interface that lies just below the XGL API.
An XGL loadable pipeline writer for a high-end graphics platform that
supports a broad range of functionality would probably choose the LI-1
interface as the basis for an XGL port. Functions within the LI-1 layer
implement the geometry pipeline for each primitive; that is, for graphics
primitive operations, the functions take as an argument the points defining the
primitive, and transform, light (for the 3D case), clip, and depth cue (for the 3D
case) in preparation for the rendering operations performed in LI-2 and LI-3.

LI-1 Operations in the Software Pipeline

Processing within the LI-1 layer transforms and clips points to device
coordinates that can be used for rendering. The following operations are
performed within the software pipeline LI-1 layer:

1. Model clip.

2. Transform vertices from model coordinates to world coordinates.

3. Process face culling and face distinguishing.

4. Light vertices (if necessary).

5. Transform vertices from world coordinates to device coordinates.

6. View clip. If necessary, perform rational w-clip (object is clipped to two
planes w = +- epsilon) and divide by w.

7. Pick the primitive.

8. Divide by w.

9. Depth cue.

Thus, an LI-1 device pipeline implementation of a primitive will incorporate
these operations, although the order of the operations may differ.

224 XGL Device Pipeline Porting Guide—August 1994

9

 Mapping of LI-1 to LI-2 Functions in the Software Pipeline

While the LI-1 interface has a nearly one-to-one mapping of functions defined
at the XGL API, at LI-2 there is a more limited set of functions. Complex LI-1
primitives, such as stroke text, do not have a corresponding interface at LI-2;
instead, these primitives must be converted to a mix of simpler, component
primitives before rendering.

Table 9-7 shows the mapping of the 2D LI-1 primitives to the LI-1 or LI-2
functions that they call. A hardware port of a given primitive at the LI-1 layer
is free to ignore the layers below it and call whatever functions it wishes.

Table 9-7 Mapping of 2D LI-1 Functions to LI-1 and LI-2 Functions

LI-1 Function LI-1 or LI-2 Function

li1AnnotationText li1MultiPolyline

li1MultiArc li2MultiEllipticalArc
li1MultiPolyline
li1Polygon

li1MultiCircle li2MultiEllipse
li1Polygon

li1MultiMarker li1MultiPolyline
li2MultiDot

li1MultiPolyline li2MultiPolyline

li1MultiRectangle li1MultiSimplePolygon

li1MultiSimplePolygon li1Polygon

li1NurbsCurve li1MultiMarker
li1MultiPolyline

li1Polygon li2GeneralPolygon

li1StrokeText li1MultiPolyline

Writing Loadable Interfaces 225

9

Table 9-8 shows the mapping of the 3D LI-1 primitives to LI-1 or LI-2 functions.

Table 9-8 Mapping of 3D LI-1 Functions to LI-1 or LI-2Functions

LI-1 Function LI Function

li1AnnotationText li1MultiPolyline

li1MultiArc - regular arcs

li1MultiArc - annotation arcs

(open)li1MultiPolyline
(closed)li1MultiSimplePolygon

(open)li2MultiPolyline
(closed)li2GeneralPolygon

li1MultiCircle - regular circles

li1MultiCircle - annotation circles

li1MultiSimplePolygon

li2GeneralPolygon

li1MultiEllipticalArc - regular
arcs

li1MultiEllipticalArc - annotation
elliptical arcs

(open)li1MultiPolyline
(closed)li1MultiSimplePolygon

(open)li2MultiPolyline
(closed)li2GeneralPolygon

li1MultiMarker li1MultiPolyline
li2MultiDot

li1MultiPolyline li2MultiPolyline

li1MultiRectangle - regular
rectangles

li1MultiRectangle - annotation
rectangles

li1MultiSimplePolygon

li2GeneralPolygon

li1MultiSimplePolygon li1Polygon
li2MultiSimplePolygon

li1NurbsCurve li1MultiMarker
li1MultiPolyline

li1NurbsSurf li1MultiMarker
li1TriangleList
li1QuadrilateralMesh
li1MultiPolyline

li1Polygon li2GeneralPolygon

li1QuadrilateralMesh li2TriangleStrip

226 XGL Device Pipeline Porting Guide—August 1994

9

LI-1 Attributes

The following sections provide information on the attributes that each LI-1
primitive must handle. For more information on the attributes that a particular
primitive must handle, see the man page for the primitive.

li1StrokeText li1MultiPolyline

li1TriangleList li2TriangleStrip
li2TriangleList
li2GeneralPolygon

li1TriangleStrip li2GeneralPolygon
li2TriangleStrip

Table 9-8 Mapping of 3D LI-1 Functions to LI-1 or LI-2Functions (Continued)

LI-1 Function LI Function

Writing Loadable Interfaces 227

9

li1AnnotationText() - 2D/3D

Overview
li1AnnotationText() renders text on a plane parallel to the display surface.
See the xgl_annotation_text man page for information on functionality
that the device pipeline needs to handle.

Syntax
[2D]void XglDpCtx2d::li1AnnotationText(

void* string,
Xgl_pt_f2d* ref_pos,
Xgl_pt_f2d* ann_pos);

[3D]void XglDpCtx3d::li1AnnotationText(
void* string,
Xgl_pt_f3d* ref_pos,
Xgl_pt_f3d* ann_pos);

Input Parameters
string A NULL-terminated C-style list of characters if the character

encoding is single-string encoding, or a pointer to a
Xgl_mono_text_list structure if the character encoding is
multi-string encoding.

ref_pos The reference point for the text string.

ann_pos ann_pos is added to the transformed reference position to
obtain the annotation point.

Attributes That the Device Pipeline Needs to Handle
The device pipeline must account for some or all of the attributes listed in the
xgl_annotation_text man page.

Description of the Software Pipeline li1AnnotationText Function
The software pipeline li1AnnotationText() function takes as input a single
point, which is the reference position for the starting point of the string. The
reference point is clipped against the window boundaries, and if it is outside
the window boundaries, no text is drawn, even if part of the string would be
visible.

228 XGL Device Pipeline Porting Guide—August 1994

9

If the reference point is inside the window boundaries, the function sets up the
viewing matrices and translates the string input into points in a multipolyline
point list. The multiplyline is set up to draw the text at ann_pos at the
appropriate scale. The function provides API arguments for input to the
multipolyline interface and calls li1MultiPolyline() .

If the device pipeline falls back to the software pipeline to render
li1AnnotationText() , the device pipeline li1MultiPolyline() function
is called.

Writing Loadable Interfaces 229

9

li1DisplayGcache() - 2D/3D

Overview
The li1DisplayGcache() function renders the geometry stored in the XGL
device-indepedent Gcache object. The li1DisplayGcache() operator is
different from other LI-1 functions because the Gcache object is an object that
can contain any of a number of different primitives. See the Solaris XGL
Reference Manual for information on Gcache functions and attributes.

The main parameter to li1DisplayGcache() is a pointer to an XGL Gcache
object. This object is the implementation of the API Gcache functions, so it has
member functions for getting and setting attributes and functions for caching
incoming primitives. The pipeline does not need to use these functions.

The pipeline’s task is to determine what type of primitive the Gcache contains,
and then access the data for that primitive and display it. However, there is
relatively little advantage for a pipeline to supply its own
li1DisplayGcache() function because the software pipeline handles all the
work of determining the primitive, casting the data structures to the correct
primitive, and calling the LI-1 function for that primitive. For example, if a text
string is stored in a Gcache, the text is converted into polylines; then, when
xgl_display_gcache() is called, the XGL core ensures that the cached
polyline is rendered with the correct stroke attributes, and the software
pipeline li1DisplayGcache() function accesses the data for the polylines
and calls the li1MultiPolyline() function (which may or may not be
supported by the device pipeline). Note that the software pipeline calls LI-1
functions for each of the Gcache primitives.

A device pipeline would want to implement li1DisplayGcache() for one of
two reasons:

1. If for some reason the performance gain is such that the device pipeline can
access the stored data faster than the XGL core can, and if the applications
that the device pipeline implementor wants to capture will be using Gcaches
extensively, it may be worth the effort to implement
li1DisplayGcache() .

2. The XGL architecture provides a mechanism for the device pipeline to store
device-dependent data within the Gcache. The device pipeline may be able
to access the device-dependent data more efficiently than if device-

230 XGL Device Pipeline Porting Guide—August 1994

9

independent Gcache data is used. Alternately, the device pipeline may
choose to store the data on the device and then keep a pointer to the data in
the Gcache; this approach would cut down on data transport to the device.

Information on implementing li1DisplayGcache() and the mechanism for
storing device-dependent data in the Gcache is provided below.

Syntax
Xgl_cache_display XglDpCtx{2,3d}::li1DisplayGcache(

XglGcache* gcache
Xgl_boolean test,
Xgl_boolean display);

Input Parameters
gcache Pointer to an XGL Gcache object.

test Boolean value that determines whether the saved state of
the Gcache (attribute settings) is compared with the current
state in the Context. See the
xgl_context_display_gcache man page for more
information.

display Boolean value that determines whether the Gcache is
rendered. See the xgl_context_display_gcache man
page for more information.

Attributes That the Device Pipeline Needs to Handle
A device pipeline implementation of li1DisplayGcache() must handle the
attributes for each primitive that may be called to render the geometry in the
Gcache.

What You Need to Know to Implement li1DisplayGcache()
If the device pipeline supplies an implementation of the
li1DisplayGcache() function, it will have to use the Gcache object in
XglGcache.h as well as any one of a number of other objects that are defined
as XglGcachePrim objects in XglGcachePrim*.h . The Gcache primitive
objects are:

Writing Loadable Interfaces 231

9

XGL_GCACHE_PRIM_MARKER Markers
XGL_GCACHE_PRIM_MPLINE Multipolylines
XGL_GCACHE_PRIM_TEXT Stroke text
XGL_GCACHE_PRIM_PGON Polygons
XGL_GCACHE_PRIM_MSPG Multisimple polygons
XGL_GCACHE_PRIM_TSTRIP Triangle strips
XGL_GCACHE_PRIM_NURBS_CURVE NURBS curves
XGL_GCACHE_PRIM_NURBS_SURF NURBS surfaces
XGL_GCACHE_PRIM_MELLA Multi elliptical arcs

The li1DisplayGcache() function does the following: First, it processes the
arguments test and display appropriately. Secondly, it calls the Gcache object
getOrigPrimType() function, and then, depending on the original primitive
type, the li1DisplayGcache() function uses the Gcache object
getGcachePrim() function to get a pointer to the object representing the
cached geometry. The pointer must be cast to the object for that primitive type.

The following code from the software pipeline li1DisplayGcache() function
illustrates the sequence of events in rendering for each of the Gcache primitive
types. You can copy or modify this source code sample as long as the resulting
code is used to create a loadable pipeline for XGL.

XglSwpCtx3dDef::li1DisplayGcache(Xgl_gcache gcache_obj,
 Xgl_boolean test,
 Xgl_boolean display,
 Xgl_boolean do_retained)
{
 XglGcache* gcache;
 XglGcachePrim* prim;
 Xgl_cache_display ret_val;
 Xgl_boolean do_display;
 Xgl_usgn32 num_model_clip_planes;

 gcache = (XglGcache*) gcache_obj;

 prim = gcache->getGcachePrim();
 if (prim == NULL) {
 return (XGL_CACHE_NOT_CHECKED);
 }

 if ((prim->getDisplayPrimType() != XGL_PRIM_NONE) &&
 !prim->getSavedCtxIs3d()) {
 return(XGL_CACHE_NOT_CHECKED); /* ctx dims don’t match;
 best fit */

232 XGL Device Pipeline Porting Guide—August 1994

9

 }

 if (test) {
 if ((prim->getDisplayPrimType() != XGL_PRIM_NONE) &&
 (prim->validate(ctx))) {
 do_display = display;
 ret_val = XGL_CACHE_DISPLAY_OK;
 }
 else {
 do_display = FALSE;
 ret_val = XGL_CACHE_ATTR_STATE_DIFFERENT;
 }
 }
 else {
 do_display = display;
 ret_val = XGL_CACHE_NOT_CHECKED;
 }
 if ((prim->getDisplayPrimType() == XGL_PRIM_NONE) ||
 !do_display)
 return ret_val;

 if (prim->wasModelClipped() &&
 ((ret_val == XGL_CACHE_DISPLAY_OK) ||
 gcache->getBypassModelClip())) {
 num_model_clip_planes = ctx->getModelClipPlaneNum();
 xgl_object_set(ctx, XGL_3D_CTX_MODEL_CLIP_PLANE_NUM,0,0);
 }
 else
 num_model_clip_planes = 0;

 switch (gcache->getOrigPrimType()) {
 case XGL_PRIM_STROKE_TEXT:

{
 XglGcachePrimText*gp_text = (XglGcachePrimText *)

 gcache->getGcachePrim();
 Xgl_geom_status status;

 if (gp_text->getDisplayPtListList()->num_pt_lists < 1)
return ret_val;

 xgl_context_check_bbox(ctx,XGL_PRIM_MULTIPOLYLINE,
 gp_text->getPlm()->get_pll_bbox(),&status);

 if ((status & XGL_GEOM_STATUS_VIEW_REJECT) ||
(status & XGL_GEOM_STATUS_MODEL_REJECT)) return ret_val;

Writing Loadable Interfaces 233

9

 XGLI_3D_DP(void, XGLI_LI1_MULTIPOLYLINE,
 (Xgl_bbox*,Xgl_usgn32,Xgl_pt_list*,
 Xgl_boolean),
 (NULL, gp_text->getDisplayPtListList()
 ->num_pt_lists,
 gp_text->getDisplayPtListList()->pt_lists,
 FALSE))

}
break;

 case XGL_PRIM_NURBS_SURFACE:
{
 XglGcachePrimNSurf*gp_nsurf = (XglGcachePrimNSurf*)

 gcache->getGcachePrim();

 void* cache_data = gp_nsurf->getCacheData();
 if(cache_data == NULL){

XglNurbsSurfData* apiData = gp_nsurf->getApiData();
if(apiData->surface->order_u == 1 ||

apiData->surface->order_v == 1) {
Xgl_pt_list plist;

plist.pt_type = apiData->surface->ctrl_pts.pt_type;
plist.num_pts = apiData->surface->ctrl_pts.num_pts;
plist.bbox = NULL;
plist.pts.f3d = apiData->surface->ctrl_pts.pts.f3d;

ctx->assignCurStrokeAsMarker();

 XGLI_3D_DP(void, XGLI_LI1_MULTIMARKER,
 (Xgl_pt_list*, Xgl_boolean),
 (&plist, FALSE))

 ctx->assignCurStrokeAsLine();
break;

}
else {

XglSwpNurbs nurbs(ctx, viewGrpItf, TRUE);

cache_data = nurbs.setUsrData(gp_nsurf->getApiData(),
gp_nsurf->getGcacheMode(), TRUE);
gp_nsurf->setCacheData(cache_data);
}

 }

234 XGL Device Pipeline Porting Guide—August 1994

9

 XGLI_3D_DP(void, XGLI_LI1_NURBS_SURFACE,
 (Xgl_nurbs_surf*, Xgl_trim_loop_list*,
 Xgl_nurbs_surf_simple_geom*,
 Xgl_surf_color_spline*,
 Xgl_surf_data_spline_list*, void*,
 Xgl_boolean),
 (NULL, NULL, NULL, NULL, NULL, cache_data,
 FALSE))

}
break;

 case XGL_PRIM_NURBS_CURVE:
{

 XglGcachePrimNCurve*gp_ncurve =
(XglGcachePrimNCurve *)gcache->getGcachePrim();

 void* cache_data = gp_ncurve->getCacheData();
 if(cache_data == NULL){
 XglNurbsCurveData* apiData = gp_ncurve
 ->getApiData();
 if(apiData->curve->order == 1) {

Xgl_pt_list plist;

 plist.pt_type = apiData->curve->ctrl_pts.pt_type;
 plist.num_pts = apiData->curve->ctrl_pts.num_pts;
 plist.bbox = NULL;

 plist.pts.f3d = apiData->curve->ctrl_pts.pts.f3d;

ctx->assignCurStrokeAsMarker();

 XGLI_3D_DP(void, XGLI_LI1_MULTIMARKER,
 (Xgl_pt_list*, Xgl_boolean),
 (&plist, FALSE))

 ctx->assignCurStrokeAsLine();
break;

 }
 else {
 XglSwpNurbs nurbs(ctx, viewGrpItf, TRUE);

 cache_data = nurbs.setUsrData
(gp_ncurve->getApiData(),
gp_ncurve->getGcacheMode(), TRUE);

 gp_ncurve->setCacheData(cache_data);
}

Writing Loadable Interfaces 235

9

 }
 ctx->assignCurStrokeAsLine();

 XGLI_3D_DP(void, XGLI_LI1_NURBS_CURVE,
 (Xgl_nurbs_curve*, Xgl_bounds_f1d*,
 Xgl_curve_color_spline*, void*,
 Xgl_boolean),
 (NULL, NULL, NULL, cache_data, FALSE))

}
break;

 case XGL_PRIM_TRIANGLE_STRIP:
{

 XglGcachePrimTstrip*gp_tstrip =
 (XglGcachePrimTstrip*)gcache->getGcachePrim();

 register int i;
 register Xgl_pt_list_list*display_pll =

 gp_tstrip->getDisplayPtListList();
 register Xgl_facet_list_list*display_fll =

 gp_tstrip->getDisplayFacetListList();

 for (i = 0; i < display_pll->num_pt_lists; i++) {
 XGLI_3D_DP(void, XGLI_LI1_TRIANGLE_LIST,
 (Xgl_facet_list*, Xgl_pt_list*,

Xgl_tlist_flags,
 Xgl_boolean),
 (NULL, &(display_pll->pt_lists[i]),
 XGL_TLIST_FLAG_USE_VTX_FLAGS, FALSE))
 }

else
for (i = 0; i < display_fll->num_facet_lists; i++) {

 XGLI_3D_DP(void, XGLI_LI1_TRIANGLE_STRIP,
 (Xgl_facet_list*, Xgl_pt_list*,
 Xgl_boolean),
 (&(display_fll->facet_lists[i]),
 &(display_pll->pt_lists[i]), FALSE))

}
}
break;

 case XGL_PRIM_POLYGON:
{

 Xgl_boolean do_orig_pgon;

236 XGL Device Pipeline Porting Guide—August 1994

9

 Xgl_boolean edges;
 XglGcachePrimPgon*gp_pgon = (XglGcachePrimPgon*)

 gcache->getGcachePrim();
 do_orig_pgon = FALSE;

 if ((gcache->getDisplayPrimType() ==
 XGL_PRIM_MULTI_SIMPLE_POLYGON) &&

(gcache->getDoPolygonDecomp())) {

/* The pgon has been decomposed */
/* into a list of triangle stars */
Xgl_surf_fill_stylefill_style;
Xgl_pt_list_list*decomp_pll;
Xgl_pt_list_list*display_pll;
Xgl_facet_list*decomp_fl;
Xgl_boolean front_facing = TRUE;
Xgl_pt_f3d* normal;
Xgl_booleando_silhouette = FALSE;
Xgl_boolean use_front_attributes,

 use_back_attributes;
Xgl_surf_fill_style front_style;
Xgl_surf_fill_style back_style;
Xgl_boolean distinguish;
Xgl_surf_cull_mode cull_mode;

decomp_pll = gp_pgon->getDecompPtListList();
display_pll = gp_pgon->getDisplayPtListList();
decomp_fl = gp_pgon->getDecompFacetList();

front_style = ctx->getSurfFrontFillStyle();
back_style = ctx->getSurfBackFillStyle();
cull_mode = ctx->getSurfFaceCull();
distinguish = ctx->getSurfFaceDistinguish();

/* find out what attributes will be used */
if (distinguish) {

switch (cull_mode) {
case XGL_CULL_OFF:

use_front_attributes = TRUE;
use_back_attributes = TRUE;

break;

case XGL_CULL_BACK:

Writing Loadable Interfaces 237

9

use_front_attributes = TRUE;
use_back_attributes = FALSE;

break;

 case XGL_CULL_FRONT:
use_front_attributes = FALSE;
use_back_attributes = TRUE;
break;
}

}
else {
 use_front_attributes = TRUE;
 use_back_attributes = FALSE;
}

if (use_front_attributes)
 fill_style = front_style;
else
 fill_style = back_style;

/* see if orig pgon data must be used to avoid seeing */
/* the tessalation */
if (distinguish) {
 if (cull_mode == XGL_CULL_FRONT &&

back_style == XGL_SURF_FILL_HOLLOW)
do_orig_pgon = TRUE;

 else if (cull_mode == XGL_CULL_BACK &&
 front_style == XGL_SURF_FILL_HOLLOW)
do_orig_pgon = TRUE;

}
else if (front_style == XGL_SURF_FILL_HOLLOW)
 do_orig_pgon = TRUE;

/* now the biggie - see if we need to determine the pgon */
/* facing */
if (!do_orig_pgon &&
 use_front_attributes && use_back_attributes &&
 front_style != back_style &&
 (front_style == XGL_SURF_FILL_HOLLOW ||
 back_style == XGL_SURF_FILL_HOLLOW)) {

 /* determine if pgon is front or back facing */
 switch (decomp_fl->facet_type) {
 case XGL_FACET_NORMAL:

normal = &(decomp_fl->facets.normal_facets->normal);

238 XGL Device Pipeline Porting Guide—August 1994

9

break;

 case XGL_FACET_COLOR_NORMAL:
normal = &(decomp_fl->facets.color_normal_facets

 ->normal);
break;

 }

 /* if culled were done */
 front_facing = (XgliUtFaceDistinguish(ctx, normal,

display_pll->pt_lists->pts.f3d, viewGrpItf) ==
 ctx->getSurfFrontAttr3d());

 if (front_facing && (cull_mode == XGL_CULL_FRONT))
return ret_val;

 if (!front_facing && (cull_mode == XGL_CULL_BACK))
return ret_val ;

 if (front_facing)
fill_style = front_style;

 else
fill_style = back_style;

}
do_silhouette = ctx->getSurfSilhouetteEdgeFlag();

if (!gcache->getShowDecompEdges() &&
 !(do_silhouette &&
 fill_style == XGL_SURF_FILL_EMPTY &&
 ctx->getSurfEdgeFlag() == FALSE) &&
 fill_style == XGL_SURF_FILL_HOLLOW)
 do_orig_pgon = TRUE;

if (!do_orig_pgon) {
 if (gp_pgon->getPgonConvex()) {

 XGLI_3D_DP(void, XGLI_LI1_MULTI_SIMPLE_POLYGON,
 (Xgl_facet_flags, Xgl_facet_list*, Xgl_bbox*,
 Xgl_usgn32, Xgl_pt_list*, Xgl_boolean),
 (gp_pgon->getMspgFlags(), decomp_fl,
 display_pll->bbox, 1,
 display_pll->pt_lists, FALSE))

 }
 else {

edges = ctx->getSurfEdgeFlag();

if (edges && !gcache->getShowDecompEdges())

Writing Loadable Interfaces 239

9

 ctx->setSurfEdgeFlag(FALSE);

/* pgon was decomposed into an msp list */
decomp_pll = gp_pgon->getDecompPtListList();

if(decomp_pll->num_pt_lists){
 XGLI_3D_DP(void, XGLI_LI1_MULTI_SIMPLE_POLYGON,
 (Xgl_facet_flags, Xgl_facet_list*,
 Xgl_bbox*, Xgl_usgn32, Xgl_pt_list*,
 Xgl_boolean),(gp_pgon->getMspgFlags(),
 gp_pgon->getDisplayFacetListList()
 ->facet_lists,decomp_pll->bbox,
 decomp_pll->num_pt_lists,
 decomp_pll->pt_lists, FALSE))

}
 }

 /* turn edges on and render orig polygon as empty */
 if (edges && !gcache->getShowDecompEdges() && !gp_pgon

 ->getPgonConvex()) {
ctx->setSurfEdgeFlag(TRUE);
if (front_facing)
ctx->setSurfFrontFillStyle(XGL_SURF_FILL_EMPTY);
else
ctx->setSurfBackFillStyle(XGL_SURF_FILL_EMPTY);

Xgl_pt_list_list*pgon_pll = gp_pgon
 ->getPgonPtListList();

if (pgon_pll->num_pt_lists == 0) {
return ret_val;

}

if(pgon_pll->num_pt_lists){
 XGLI_3D_DP(void, XGLI_LI1_POLYGON,
 (Xgl_facet_type, Xgl_facet*, Xgl_bbox*,
 Xgl_usgn32, Xgl_pt_list*,
 Xgl_boolean),
 (gp_pgon->getPgonFacetType(),
 gp_pgon->getPgonFacetPtr(),
 pgon_pll->bbox,
 pgon_pll->num_pt_lists,
 pgon_pll->pt_lists, FALSE))

}

240 XGL Device Pipeline Porting Guide—August 1994

9

/* restore fill style */
if (front_facing)
 ctx->setSurfFrontFillStyle(fill_style);
else
 ctx->setSurfBackFillStyle(fill_style);

 }
}
 }

 if (gcache->getDisplayPrimType() == XGL_PRIM_POLYGON ||
 do_orig_pgon) {

if (gcache->getUseApplGeom()) {
 Xgl_pt_list_list*appl_pll = gp_pgon

 ->getApplPtListList();

 if(appl_pll->num_pt_lists == 0)
return ret_val;

 XGLI_3D_DP(void, XGLI_LI1_POLYGON,
 (Xgl_facet_type, Xgl_facet*,
 Xgl_bbox*, Xgl_usgn32,
 Xgl_pt_list*, Xgl_boolean),
 (gp_pgon->getPgonFacetType(),
 gp_pgon->getPgonFacetPtr(),
 appl_pll->bbox,
 appl_pll->num_pt_lists,
 appl_pll->pt_lists, FALSE))

}
else {
 Xgl_pt_list_list*pgon_pll = gp_pgon

 ->getPgonPtListList();

 if (pgon_pll->num_pt_lists == 0) {
return ret_val;

 }
 XGLI_3D_DP(void, XGLI_LI1_POLYGON,
 (Xgl_facet_type, Xgl_facet*,
 Xgl_bbox*, Xgl_usgn32,
 Xgl_pt_list*, Xgl_boolean),
 (gp_pgon->getPgonFacetType(),
 gp_pgon->getPgonFacetPtr(),
 pgon_pll->bbox,
 pgon_pll->num_pt_lists,
 pgon_pll->pt_lists, FALSE))

}
 }

Writing Loadable Interfaces 241

9

}
break;

 case XGL_PRIM_ELLIPTICAL_ARC:
{
 XglGcachePrimMella*gp_mella = (XglGcachePrimMella

 *)gcache->getGcachePrim();

 if(gp_mella->getDisplayPtListList()->num_pt_lists < 1)
 return ret_val;

 if (gcache->getDisplayPrimType() ==
 XGL_PRIM_MULTIPOLYLINE) {
 XGLI_3D_DP(void, XGLI_LI1_MULTIPOLYLINE,
 (Xgl_bbox*,Xgl_usgn32,Xgl_pt_list*,
 Xgl_boolean),
 (NULL, gp_mella->getDisplayPtListList()
 ->num_pt_lists,
 gp_mella->getDisplayPtListList()
 ->pt_lists, FALSE))

 }
 else if (gcache->getDisplayPrimType() ==

 XGL_PRIM_MULTI_SIMPLE_POLYGON) {
 XGLI_3D_DP(void, XGLI_LI1_MULTI_SIMPLE_POLYGON,
 (Xgl_facet_flags, Xgl_facet_list*,
 Xgl_bbox*,
 Xgl_usgn32, Xgl_pt_list*,
 Xgl_boolean),
 (XGL_FACET_FLAG_SHAPE_CONVEX,
 gp_mella->getDisplayFacetListList()
 ->facet_lists,
 NULL,
 gp_mella->getDisplayPtListList()
 ->num_pt_lists,
 gp_mella->getDisplayPtListList()
 ->pt_lists,
 FALSE))

 }
}
break;

 case XGL_PRIM_MULTI_SIMPLE_POLYGON:
{
 Xgl_boolean do_orig_pgon;
 Xgl_boolean edges;

242 XGL Device Pipeline Porting Guide—August 1994

9

 XglGcachePrimMspg*gp_mspg = (XglGcachePrimMspg *)
 gcache->getGcachePrim();
 Xgl_pt_list_list* pll;
 Xgl_facet_list_list* fll;
 Xgl_usgn32 mspg_flags;

 Xgl_usgn32npl;

 do_orig_pgon = FALSE;
 edges = ctx->getSurfEdgeFlag();

 Xgl_surf_fill_style front_style;
 Xgl_surf_fill_style back_style;
 Xgl_boolean distinguish;
 Xgl_surf_cull_mode cull_mode;

 front_style = ctx->getSurfFrontFillStyle();
 back_style = ctx->getSurfBackFillStyle();
 cull_mode = ctx->getSurfFaceCull();
 distinguish = ctx->getSurfFaceDistinguish();

 if (!distinguish && front_style == XGL_SURF_FILL_HOLLOW)
do_orig_pgon = TRUE;
 else if (cull_mode == XGL_CULL_OFF &&
 (front_style == XGL_SURF_FILL_HOLLOW ||
 (back_style == XGL_SURF_FILL_HOLLOW && distinguish)))
do_orig_pgon = TRUE;
 else if (cull_mode == XGL_CULL_FRONT &&
 (distinguish && back_style == XGL_SURF_FILL_HOLLOW))
do_orig_pgon = TRUE;
 else if (cull_mode == XGL_CULL_BACK &&
 front_style == XGL_SURF_FILL_HOLLOW)
do_orig_pgon = TRUE;

 if (do_orig_pgon || edges) {
if (gcache->getUseApplGeom()) {
 if(npl = gp_mspg->getApplPtListList()->num_pt_lists) {

 mspg_flags = gp_mspg->getApplMspgFlags();
 pll = gp_mspg->getApplPtListList();
 fll = gp_mspg->getApplFacetListList();
 }

}
else {
 if(npl = gp_mspg->getDisplayPtListList()->num_pt_lists) {

 mspg_flags = gp_mspg->getApplMspgFlags();

Writing Loadable Interfaces 243

9

 pll = gp_mspg->getDisplayPtListList();
 fll = gp_mspg->getDisplayFacetListList();
 }

}
 }
 else {
if(npl = gp_mspg->getDisplayPtListList()->num_pt_lists) {

 mspg_flags = gp_mspg->getMspgFlags();
 pll = gp_mspg->getDisplayPtListList();
 fll = gp_mspg->getDisplayFacetListList();
 }

 }

 if(npl) {
 XGLI_3D_DP(void, XGLI_LI1_MULTI_SIMPLE_POLYGON,
 (Xgl_facet_flags, Xgl_facet_list*,
 Xgl_bbox*,
 Xgl_usgn32, Xgl_pt_list*,
 Xgl_boolean),
 (mspg_flags, fll->facet_lists, NULL, npl,
 pll->pt_lists, FALSE))
 }

}
break;

 case XGL_PRIM_MULTIMARKER:
{
 XglGcachePrimMarker*gp_marker = (XglGcachePrimMarker

 *)gcache->getGcachePrim();
 Xgl_pt_list_list* pll = gp_marker

 ->getDisplayPtListList();

 if (pll->num_pt_lists < 1)
 return ret_val;

 XGLI_3D_DP(void, XGLI_LI1_MULTIMARKER,
 (Xgl_pt_list*, Xgl_boolean),
 (pll->pt_lists, FALSE))

}
break;

 case XGL_PRIM_MULTIPOLYLINE:
{
 XglGcachePrimMpline*gp_mpline = (XglGcachePrimMpline

 *)gcache->getGcachePrim();

244 XGL Device Pipeline Porting Guide—August 1994

9

XglGcache Functions Relevant to the Pipeline
The device pipeline does not need to use many of the functions in
XglGcache.h . The functions relevant to the pipeline are listed in Table 9-9.

 Xgl_pt_list_list* pll = gp_mpline
 ->getDisplayPtListList();

 if (pll->num_pt_lists < 1)
 return ret_val;

 XGLI_3D_DP(void, XGLI_LI1_MULTIPOLYLINE,
 (Xgl_bbox*,Xgl_usgn32,Xgl_pt_list*,
 Xgl_boolean),
 (NULL, pll->num_pt_lists, pll->pt_lists,
 FALSE))

}

 default:
break;

 } /* end switch */

 if (num_model_clip_planes > 0)
 ctx->setModelClipPlaneNum(num_model_clip_planes);

 return ret_val;
}

Table 9-9 Gcache Interfaces

Function Description

getOrigPrimType() Returns the type of theoriginal primitive.

getGcachePrim() Returns the type of the cached primitive.

getPlm() Returns a point list manager object. See
PlManager.h .

getFlm() Returns a facet list manager object. See
FlManager.h .

Writing Loadable Interfaces 245

9

Implementing a Device-Dependent Gcache
The device-dependent (DD) Gcache facility allows the device pipeline to store
device-dependent information with the Gcache. This device-dependent
information may allow the device pipeline to render the Gcache more
efficiently than the XGL core; however, the device-independent part of the
Gcache remains, and it is available for the device to use. This allows the device
to fall back to the software pipeline for the display of the Gcache.

The API interface to the Gcache object does not change. The application will
not know about the DD part of a Gcache. The validation of a Gcache is still be
done by the the XGL core; only the display of the Gcache is device dependent.

The approach for device-dependent Gcache information is that the device
pipeline translates the DI Gcache primitive information into its own format.
The device pipeline then associates this translation with the DI Gcache. There
is a protocol between the DI Gcache and the device pipeline to manage the life
cycle of the translation.

Semantics of Device-Dependent Gcache
There is no explicit function to create a DD Gcache. When the device pipeline’s
li1DisplayGcache() function is called, it can implicitly create a DD
translation. It is then up to the device pipeline to associate this translation with
the DI Gcache. Once the association is made, the DI Gcache and the device
must tell each other to remove the DD translation for the DI Gcache. The
following actions will cause the DD translation to be removed from the DI
Gcache:

1. The device is destroyed (where device is one of DpCtx, DpDev, DpMgr, or
DpLib).

2. The device decides the translation is no longer valid (e.g. out of resource,
attributes changed, etc).

3. The DI Gcache is destroyed.

4. The DI Gcache gets a new primitive.

The DI Gcache and the device use a translation identifier to refer to the DD
translation. This ID must be an address so it is unique within the XGL system;
we suggest that it be the address of a DpCtx, DpDev, DpMgr, or DpLib object.
This allows the device to choose the scope of the DD translation; that is, the

246 XGL Device Pipeline Porting Guide—August 1994

9

translation could be valid for just a DpCtx or for all DpCtx’s associated with a
DpMgr. Thus, the ID is the address of an object already under the control of the
device pipeline.

The same ID is used for all Gcaches. Thus, for example, for every Gcache, the
pipeline can use the address of the DpCtx object as the identifier to show that
this DD translation belongs to this DpCtx object. The ID of a DD translation is
the same for all the translations under the control of the device pipeline.
(Remember that for each unique Context and Device pair, there is a unique
DpCtx object, so if there are two Contexts associated with a Device, there is a
unique DpCtx object for each Context.)

XglGcache Functions for Managing a DD Translation
In the XglGcache.h class, the following functions allow a device to manage a
DD translation.

Xgl_boolean
addDdTranslation(XgliDdGcacheTranslation* dd_trans)

The device pipeline tells the DI Gcache to add a new translation. The new
object is added to the DI Gcache’s store of translations. TRUE is returned if
the operation was successful, and FALSE is returned otherwise. It is up to
the device pipeline to delete dd_trans if the addition fails.

Note that it is not guaranteed that a DI Gcache will accept a DD translation.
The device must ask the Gcache object whether it will accept the translation.
Therefore, code should be written to anticipate the case in which a DD
translation is not accepted. In the current implementation, a Gcache can
store only one DD translation. If more than one DD translation is added, the
second translation is not be allowed. In the future, more than one DD
translation per device/context pair may be allowed.

XgliDdGcacheTranslation*
lookUpTranslation(void* dd_trans_id,

Xgl_boolean* room_for_more)

The device pipeline uses this function to look up a dd_trans_id to see if this
Gcache has a dd_trans for this pipeline. If the look up fails, NULL is returned.
In this case, the room_for_more boolean indicates if the DI Gcache will accept
new translations. If it is FALSE, the the pipeline should not bother building
a new translation and calling addDdTranslation() .

Writing Loadable Interfaces 247

9

void
removeDdTranslation(void* dd_trans_id)

This function is invoked by the pipeline to tell the DI Gcache to remove the
DD translation with the given ID. The XGL core does not delete the
translation. This function enables the device to clean up its database of DD
translations before deleting the DD translation object. This is easier to do
with an explicit destroy function (which is only called by the DI Gcache)
than by having the XGL core delete the translation. The DI Gcache will call
the destroy function, and then the DD code should clean up the translation
and delete the object.

DD Translation Object
The class XgliDdGcacheTranslation in the file DdGcacheTranslation.h acts
as a wrapper for the DD translation. This class provides a standard way of
handling DD translations. Devices should subclass this class for their own use.
When the pipeline subclasses this class, it can then add its own data for the DD
Gcache.

Thus, to create a DD translation object, the pipeline subclasses the
XgliDdGcacheTranslation class, creates an object of the subclass, and returns a
pointer to the object and casts the pointer as an XgliDdGcacheTranslation
pointer.

Example for Device-Dependent Gcache
The following pseudo-code is an example device pipeline
li1DisplayGcache() function. The example shows how the Gcache object
functions are used to manage the DD translations. You can copy or modify this
source code sample as long as the resulting code is used to create a loadable
pipeline for XGL.

In this example, the call to lookUpDdTranslation() returns a pointer to the
DD translation object, thus getting the ID for the DD translation. In addition, a
pointer to a Boolean value that indicates whether there is room for a
translation is returned. If dd_trans is NULL and room_for_more is TRUE, then a

248 XGL Device Pipeline Porting Guide—August 1994

9

DD Gcache object does not already exist, so the pipeline can build its own.
When the DD Gcache is built, the function addDdTranslation() stores it in
the Gcache, and it can then be displayed.

It is up to the device pipeline to determine whether dd_trans is valid for one
context, one device, one particular DpMgr object (which would include all
windows on a frame buffer), etc. This is a device-dependent decision. Most
applications use one context and one device.

Whenever the device pipeline object that is managing the DD Gcache is
destroyed, as part of the clean up sequence, the device pipeline must destroy
the DD translations.

// DpCtx Li1DisplayGcache
// This is where dd translations are build.
//

DpCtx::Li1DisplayGcache(.., di_gcache, ..)
{

Xgl_boolean room_for_more;
XgliDdGcacheTranslation* dd_tran;

dd_tran = di_gcache->lookUpDdTranslation(tran_id,
 &room_for_more);

if ((dd_tran == NULL) && room_for_more) {
// build dd_tran

dd_tran = build_my_dd_gcache();
if (di_gcache->addDdTranslation(dd_tran) == FALSE) {

delete dd_tran;
 dd_tran = NULL;

 }
}

if (dd_tran != NULL) {
my_display_dd_gcache(dd_tran);

}
}

//
// Dp Object (DpCtx, DpDev, DpMgr, DpLib) which has Gcache
// translation is destroyed:

Dp::destroy_translations()

Writing Loadable Interfaces 249

9

{
// DI Gcache removes translations given translation ID
 // assuming that the pipeline has a list of device-
 // dependent translations
 // if one translation is destroyed, manage the list

 foreach dd_trans in list of translations {
 dd_trans->getDiGcache()->removeDdTranslation(trans_id);

 // clean up next/prev pointers
delete dd_trans;
}

}

//
// Sample XgliDdGcacheTranlation destroy function
void
XgliDdGcacheTranlation::destroy()
{

// unlink this dd translation from lists
// does device-dependent operations to release resources
// and clean up data structures

delete this;
}

250 XGL Device Pipeline Porting Guide—August 1994

9

li1MultiArc() - 2D

Overview
This function draws a list of arcs in the plane of the view surface. See the
xgl_multiarc() man page for a description of the input data structure and
for a description of the functionality that the device pipeline needs to handle.

Syntax
void XglDpCtx2d::li1MultiArc(

Xgl_arc_list *arc_list);

Input Parameters
arc_list A pointer to the list of arcs to draw.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_multiarc() man page.

Description of the Software Pipeline 2D li1MultiArc Function
The software pipeline 2D li1MultiArc() function first constructs an
XglConicData2d object called arc_data using the argument arc_list and then
transforms the geometry to device coordinates. The behavior of a circle under
transformation determines the shape of an arc in DC. A general 2D matrix can
transform a circle into an ellipse with an arbitrary orientation of the major and
minor axes. For a single call to this function, the MC-to-DC matrix is invariant.
This matrix is the only entity that determines the eccentricity and orientation of
all MC circles when they are transformed into DC. This function calculates
these quantities once for a unit radius circle in MC. Circular arcs in MC become
elliptical arcs in DC. For each arc, the center in MC maps to the center in DC
via the MC-to-DC matrix; this is also true for the start and stop points. The
radius determines the size of the elliptical arc in DC. The start and stop angles
in DC (with the x-axis to the right and the y-axis down) increase in the counter-
clockwise sense, and both angles are in the range [0, 2*pi]. The arc includes the
locus on the ellipse from the start point to the stop point when moving
counter-clockwise.

Writing Loadable Interfaces 251

9

For clip checking, this function calculates the bounding box of the ellipse in DC
corresponding to a unit radius circle in MC. Then, for each arc in MC, the
function translates and scales the unit circle’s bounding box in DC to give the
bounds of the current ellipse in DC. The bounding box is reduced further by
examining the start and stop points, as well as the center point if the arc fill
style is sector. There are two trivial clip checking cases. If the specific DC
bounding box is completely outside the view clip bounds in DC, then the
function skips to the next arc. If the DC bounding box is completely inside the
view clip bounds, the arc’s center, major axis, minor axis, start angle, stop
angle, start point, stop point, rotation angle, and edge flag are stored in a list,
which is level 1 of arc_data. 1

If the DC bounding box is partly inside the view clip bounds, the function
flushes the current list of elliptical arcs by calling the device pipeline
li2MultiEllipticalArc() function with the current level of arc_data set to
level 1, which contains the list of arcs in DC. Then it decomposes the current
arc into a point list with a utility, sets the current coordinate system in the view
group interface to DC, and calls li1Polygon() or li1MultiPolyline() so
that the polygon or polyline clipper handles the clipping depending on the
whether the arc is filled or open, respectively. (An elliptical arc clipper would
be desirable so that clipped elliptical arcs are converted into simpler elliptical
arcs instead of polygons, but this is not implemented in the software pipelines
of XGL 3.0.1.) After all arcs have been processed, the remaining buffered arcs
(if any) are flushed by calling the device pipeline
li2MultiEllipticalArc() function.

If picking is enabled, the function falls back on the polygon or polyline picker.

1. The calculated rotation angle is in the range [-pi/2, pi/2]. It’s sense is right-handed. Since DC is oriented
with the x-axis to the right and the y-axis down, angles increase in the clockwise sense..

252 XGL Device Pipeline Porting Guide—August 1994

9

li1MultiArc() - 3D

Overview
This function draws a list of arcs in the plane described by two direction
vectors provided with the arc. See the xgl_multiarc() man page for a
description of the input data structure and for a description of the functionality
that the device pipeline needs to handle.

Syntax
void XglDpCtx3d::li1MultiArc(

Xgl_arc_list *arc_list);

Input Parameters
arc_list Pointer to the list of arcs to draw.

Attributes That the Device Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_multiarc() man page.

Description of the Software Pipeline 3D li1MultiArc Function
The li1MultiArc() function processes regular 3D arcs and 3D annotation
arcs. Processing is slightly different for annotated arcs.

If the data type of the input parameter arc_list is XGL_MULTIARC_F3D or
XGL_MULTIARC_D3D (the arcs are not annotated), this function evaluates the
number of points necessary to tessellate each of the arcs in arc_list and
computes the unit circle. It then tessellates each of the arcs by projecting the arc
onto the plane in MC described by the two direction vectors provided with the
arc. If the multiarcs are open arcs, then the function calls
li1MultiPolyline() to draw the tessellated arcs; otherwise, it calls
li1MultiSimplePolygon() to draw the tessellated arcs.

If the data type of the input parameter arc_list is XGL_MULTIARC_AF3D or
XGL_MULTIARC_AD3D (the arcs are annotated), the function determines
whether there is a bounding box provided for the entire multiarc data. If so,
the function determines whether the bounding box is completely clipped by
the model clipping or by the view clipping. If it is completely clipped, the
function stops processing and returns control to the caller. Otherwise, the

Writing Loadable Interfaces 253

9

function evaluates the number of points to be used to tessellate each of the arcs
specified in arc_list and computes the unit circle. Subsequently, the function
model clips the reference points (center points) of the multiarcs and transforms
the center points of the multiarcs from MC to DC. From each of the center
points of the multiarcs and the corresponding radius, start angle, and stop
angle, the function will tessellate the arc in DC, and view transform and clip
the arc.

Finally, if picking is enabled, the function performs the picking operation for
the arc. Otherwise, if the multiarcs are open arcs, the function will depth cue
the open arcs and call li2MultiPolyline() to draw the open arcs. If the
multiarcs are closed arcs, the function will depth cue the closed arcs and call
li2GeneralPolygon() to draw the closed arcs.

254 XGL Device Pipeline Porting Guide—August 1994

9

li1MultiCircle() - 2D

Overview
This function draws a list of circles in the plane of the view surface. See the
xgl_multicircle () man page for a description of the input data structure
and a description of the functionality that the device pipeline needs to handle.

Syntax
void XglDpCtx2d::li1MultiCircle(

Xgl_circle_list *circle_list);

Input Parameters
circle_list Pointer to the list of circles to render.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_multicircle() man page.

Description of the Software Pipeline li1MultiCircle Function
The software pipeline li1MultiCircle() function first constructs an
XglConicData2d object called circle_data using the argument circle_list and then
transforms the geometry to DC. A general 2D matrix can transform a circle into
an ellipse with an arbitrary orientation of the major and minor axes. For a
single call to this function, the MC-to-DC matrix is invariant. This matrix is
the only entity that determines the eccentricity and orientation of all MC circles
when they are transformed into DC. This function calculates these quantities
once for a unit radius circle in MC. For each circle, the center in MC maps to
the center in DC via the MC-to-DC matrix. The radius determines the size of
the ellipse in DC.

For clip checking, this function calculates the bounding box of the ellipse in DC
corresponding to a unit radius circle in MC. Then for each circle in MC, it
translates and scales the unit circle’s bounding box in DC to give the bounds of
the current ellipse in DC. There are two trivial clip checking cases. If the
specific DC bounding box is completely outside the view clip bounds in DC,

Writing Loadable Interfaces 255

9

then the function skips to the next circle. If the DC bounding box is completely
inside the view clip bounds, the ellipse’s center, major axis, minor axis, rotation
angle, and edge flags are stored in a list, which is level 1 of circle_data. 1

If the DC bounding box is partly inside the view clip bounds, the function
flushes the current list of ellipses by calling li2MultiEllipse() with the
current level of circle_data set to level 1, which contains the list of ellipses in
DC. Then it decomposes the current ellipse into a polygon with a utility, sets
the current coordinate system in the view group interface to DC, and calls
li1Polygon() so that the polygon clipper handles the clipping of the ellipse.
(An ellipse clipper would be desirable so that ellipses are converted into
elliptical arcs instead of polygons, but this is not implemented in the software
pipelines of XGL 3.0.1.) After all ellipses have been processed, the remaining
buffered ellipses (if any) are flushed by calling li2MultiEllipse() .

If picking is enabled, the function performs picking in MC because geometry is
always a circle whereas the conic could be a rotated ellipse in DC, making
picking more difficult to do quickly. The pick aperture is clipped to the view
clip bounds in DC. If the aperture is at least partly inside, the corners of the
clipped aperture are transformed to MC. The circle picking implementation is
fast, but approximate. Some picks may be missed if the circle is smaller than
the aperture and the aperture covers less than half of the circle.

1. The calculated rotation angle is in the range [-pi/2, pi/2]. It’s sense is right-handed. Since DC is oriented
with the x-axis to the right and the y-axis down, angles increase in the clockwise sense..

256 XGL Device Pipeline Porting Guide—August 1994

9

li1MultiCircle() - 3D

Overview
This function draws a list of circles in the plane described by two direction
vectors provided with each circle. See the xgl_multicircle() man page for
a description of the input data structure and a description of the functionality
that the device pipeline needs to handle.

Syntax
void XglDpCtx3d::li1MultiCircle(

Xgl_circle_list *circle_list);

Input Parameters
circle_list Pointer to a list of circles to render.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_multicircle() man page.

Description of the Software Pipeline li1MultiCircle Function
The li1MultiCircle() function processes regular 3D circles and 3D
annotation circles. Processing is slightly different for annotated circles.

If the data type of the input parameter circle_list is XGL_MULTICIRCLE_F3D or
XGL_MULTICIRCLE_D3D (the circles are not annotated), this function evaluates
the number of points to be used to tessellate each of the circles specified in
circle_list and computes the unit circle with the correct precision. The function
then tessellates each of the circles specified in circle_list by projecting the circle
onto the plane in MC described by the two direction vectors provided with the
circle, using the correct radius. Finally, it calls li1MultiSimplePolygon() to
draw the tessellated circles.

If the data type of the input parameter circle_list is XGL_MULTICIRCLE_AF3D
or XGL_MULTICIRCLE_AD3D (the circles are annotated), the function
determines whether there is a bounding box provided for the entire multicircle
data. Is so, the function determines whether the bounding box is completely
clipped by the model clipping or by the view clipping. If it is completely
clipped, the function will stop processing and return control to the caller.

Writing Loadable Interfaces 257

9

Otherwise, the function evaluates the number of points to be used to tessellate
each of the circles specified in circle_list and computes the unit circle with the
correct precision. It then model clips the reference points (center points) of the
multicircles and transforms the center points of the multicircles from MC to
DC. From each of the center points of the multicircles and the corresponding
radius, the function will tessellate the circle in DC, and view transform and
clip the circle. If picking is enabled, the function will perform the picking
operation for the circle. Otherwise, it will depth cue the circle and call
li2GeneralPolygon() to draw the circle.

258 XGL Device Pipeline Porting Guide—August 1994

9

li1MultiEllipticalArc() - 3D

Overview
This function draws a list of 3D elliptical arcs in the plane described by two
direction vectors provided with each arc. See the
xgl_multi_elliptical_arc() man page for a description of the input data
structure and a description of the functionality that the device pipeline needs
to handle.

Syntax
void XglDpCtx3d::li1MultiEllipticalArc(

Xgl_ell_list *ell_list);

Input Parameters
ell_list Pointer to a list of elliptical arcs.

Attributes That the Device Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_multi_elliptical_arc() man page.

Description of the Software Pipeline li1MultiEllipticalArc Function
The li1MultiEllipticalArc() function processes regular 3D elliptical arcs
and 3D annotation elliptical arcs. Processing is slightly different for annotated
arcs.

If the data type of the input parameter ell_list is XGL_MULTIELLARC_F3D or
XGL_MULTIELLARC_D3D (the elliptical arcs are not annotated), this function
evaluates the number of points to be used to tessellate each of the arcs
specified in ell_list and computes the unit circle with the correct precision. It
then tessellates each of the arcs specified in ell_list by projecting the arc onto
the plane in MC described by the two direction vectors provided with the arc.
If the multielliptical arcs are open arcs, the function calls
li1MultiPolyline() to draw the tessellated arcs; otherwise, it calls
li1MultiSimplePolygon() to draw the tessellated arcs.

If the data type of the input parameter ell_list is XGL_MULTIELLARC_AF3D or
XGL_MULTIELLARC_AD3D (the arcs are annotated), this function determines
whether there is a bounding box provided for the entire multielliptical arc

Writing Loadable Interfaces 259

9

data. If so, the function determines whether the bounding box is completely
clipped by the model clipping or by the view clipping. If it is completely
clipped, the function stops processing and return control to the caller.
Otherwise, the function evaluates the number of points to be used to tessellate
each of the arcs specified in ell_list and computes the unit circle with the
correct precision. The function model clips the reference points (center points)
of the multielliptical arcs and transforms the center points of the multielliptical
arcs from MC to DC. From each of the center points of the multielliptical arcs
and the corresponding axes, start angle, and stop angle, and rotation angle, the
function tessellates the arc in DC and view transforms and clips the arc.

If picking is enabled, the function performs the picking operation for the arc.
Otherwise, if the multielliptical arcs are open arcs, it will depth cue the open
arcs and call li2MultiPolyline() to draw the open arcs. If the
multielliptical arcs are closed arcs, the function will depth cue the closed arcs
and call li2GeneralPolygon() to draw the closed arcs.

260 XGL Device Pipeline Porting Guide—August 1994

9

li1MultiMarker() - 2D

Overview
This function draws a marker at each point in a list of points. See the
xgl_multimarker() man page for a description of the input data structure
and a description of the functionality that the device pipeline needs to handle.

Syntax
void XglDpCtx2d::li1MultiMarker(

Xgl_pt_list *point_list);

Input Parameters
point_list Pointer to a list of points.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_multimarker() man page.

Description of the Software Pipeline 2D li1MultiMarker Function
The software pipeline routine takes a list of points, optionally with colors
associated, transforms the points to DC, and clips them against the viewing
planes.

If picking is enabled, the points are checked against the pick aperture. If a pick
hit is detected, the function records the information and immediately returns;
otherwise, the function returns after all the points have been checked. If
picking is not enabled, markers are rendered according to the following rules:

• If the current marker type is xgl_marker_dot , then the list of clipped
points is passed to li2MultiDot() for rendering.

• For all other marker types (predefined or user-defined), a point list is
constructed that describes the marker as a series of strokes centered on each
of the clipped points. The marker routine overwrites the current line
attributes with the marker attributes and sets the MC-to-DC transform to
the identity. (Note that the polyline routine need not be aware that it is
being overwritten.) The point lists are passed to li1MultiPolyline() for
rendering. After the marker function has completed processing the list, the
polyline attributes and transforms are reset.

Writing Loadable Interfaces 261

9

li1MultiMarker() - 3D

Overview
This function draws a marker at each point in a list of points. See the
xgl_multimarker() man page for a description of the input data structure
and a description of the functionality that the device pipeline needs to handle.

Syntax
void XglSwpCtx3dDef::li1MultiMarker(

Xgl_point_list *point_list);

Input Parameters
point_list Pointer to a list of 3D points, optionally with colors

(normals are ignored).

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_multimarker() man page.

Description of the Software Pipeline 3D li1MultiMarker Function
The software pipeline first clips the input list of points against the current set
of model clipping planes (if no clipping planes are defined, this step is
ignored). The points are then transformed to clip coordinates (CC) where they
are clip-checked against the CC viewing volume. Those points that are found
to be “inside” are transformed from CC to DC and are saved for the next step
in the pipeline.

If picking is enabled and Z-buffering is not enabled, the points are checked
against the pick volume, and the routine returns after determining whether the
pick was successful.

If both picking and Z-buffering are enabled, then simply comparing the points
to the pick volume is not sufficient. Points that are inside the pick volume are
passed to i2MultiDot() to do Z comparisons to confirm a pick hit.

If picking is not enabled, then the marker points are optionally depth cued,
and rendered according to the following rules.

262 XGL Device Pipeline Porting Guide—August 1994

9

• If the current marker type is xgl_marker_dot , then the list of clipped
points is passed to li2MultiDot() for rendering.

• For all other marker types (predefined or user-defined), a point list is
constructed that describes the marker as a series of strokes centered on each
of the clipped points. The marker routine overwrites the current line
attributes with the marker attributes and sets the MC-to-DC transform to
the identity. (The polyline routine need not be aware that it is being
overwritten.) These point lists are then passed to li1MultiPolyline()
for rendering. After the marker function has completed processing the list,
the attributes and transforms are reset.

Writing Loadable Interfaces 263

9

li1MultiPolyline() - 2D

Overview
This function draws a list of unconnected polylines. See the man page
xgl_multipolyline() for a description of the input data structures and a
description of the functionality that the device pipeline needs to handle.

Syntax
void XglDpCtx2d::li1MultiPolyline(

Xgl_bbox *bounding_box,
Xgl_usgn32 num_pt_lists,
Xgl_point_list *point_list);

Input Parameters
bounding_box Pointer to a bounding box structure that defines a

bounding box for all the points in each polyline.

num_pt_lists The number of point lists passed to the primitive.

point_list Pointer to an array of point lists.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_multipolyline() man page.

Description of the Software Pipeline 2D li1MultiPolyline Function
The software pipeline li1MultiPolyline() function transforms the input
array of point lists to DC and clips them against the view planes if necessary.
There may be colors and/or flags associated with the points, and the line
width may be greater than 1, although these factors do not effect the geometric
processing that is performed by this function. Note that line patterning is done
after view clipping, so a view-clipped line may be drawn with a different
pattern offset than a non-view clipped line.

If picking is enabled, then each vector is checked to see if it passes through the
pick aperture. The multipolyline function either returns as soon as a pick hit is
found, or returns after checking the list of vectors. If picking is not enabled,
li2MultiPolyline() is called to render the polylines.

264 XGL Device Pipeline Porting Guide—August 1994

9

li1MultiPolyline() - 3D

Overview
This function draws a list of unconnected polylines from an input array of
point lists. See the xgl_multipolyline() man page for a description of the
input data structures and a description of the functionality that the device
pipeline needs to handle.

Syntax
void XglDpCtx2d::li1MultiPolyline(

Xgl_bbox *bounding_box,
Xgl_usgn32 num_pt_lists,
Xgl_point_list *point_list);

Input Parameters
bounding_box Pointer to a bounding box structure that defines a

bounding box for all the points in each polyline.

num_pt_lists The number of point lists passed to the primitive.

point_list Pointer to an array of point lists.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_multipolyline() man page.

Description of the Software Pipeline li1MultiPolyline Function
The software pipeline 3D li1MultiPolyline() function optionally model
clips the polylines, if necessary (see li1MultiMarker() above), then
transforms them to clip coordinates (CC) and clip-checks them against the
viewing volume. The points are then transformed to DC for further processing.

If picking is enabled and Z-buffering is enabled, then the polylines are passed
down to li2MultiPolyline() , from which Z-buffer comparisons can be
made to confirm any pick hits.

Writing Loadable Interfaces 265

9

If picking is enabled and Z-buffering is not enabled, the polylines are picked
by determining whether they pass through the 3D pick volume. If any single
piece of any of the polylines meets this criteria, then the entire list is deemed to
have been picked, and the routine returns.

If picking is not enabled, the polylines are depth cued (if depth cueing is
turned on), and li2MultiPolyline() is called to render them. These
operations are applied regardless of the width of the line or the data that is
present at the vertices (flags, colors, etc.).

Note that line patterning is done after view clipping, so a view-clipped line
may be drawn with a different pattern offset than a non-view clipped line.

266 XGL Device Pipeline Porting Guide—August 1994

9

li1MultiRectangle() - 2D

Overview
This function draws a list of rectangles. See the xgl_multirectangle() man
page for a description of the input data structure and a description of the
functionality that the device pipeline needs to handle.

Syntax
void XglDpCtx2d::li1MultiRectangle(

Xgl_rect_list *rect_list);

Input Parameters
rect_list Pointer to a list of rectangles.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_multirectangle() man page.

Description of the Software Pipeline li1MultiRectangle Function
The point information in the Xgl_rect_list structure is copied into a Xgl_pt_list
structure as a list of 4-sided polygons. The function then calls
li1MultiSimplePolygon() with the facet flags set to 4-sided and convex.

Writing Loadable Interfaces 267

9

li1MultiRectangle() - 3D

Overview
This function draws a list of rectangles. See the xgl_multirectangle() man
page for a description of the input data structure and a description of the
functionality that the device pipeline needs to handle.

Syntax
void XglDpCtx3d::li1MultiRectangle(

Xgl_rect_list *rect_list);

Input Parameters
rect_list Pointer to a list of rectangles.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_multirectangle() man page.

Description of the Software Pipeline li1MultiRectangle Function
The li1MultiRectangle() function processes regular 3D rectangles and 3D
annotation rectangles. Processing is slightly different for annotated rectangles.

If the data type of the input parameter rect_list is XGL_MULTIRECT_F3D or
XGL_MULTIRECT_D3D (the rectangles are not annotated), this function projects
each of the rectangles specified in rect_list onto the plane in MC described by
the two direction vectors provided with the rectangle and calls
li1MultiSimplePolygon() to draw the rectangles.

If the data type of the input parameter rect_list is XGL_MULTIRECT_AF3D or
XGL_MULTIRECT_AD3D (the rectangles are annotated), this function first
determines whether there is a bounding box provided for the entire
multirectangle data. If so, the function determines whether the bounding box is
completely clipped by the model clipping or by the view clipping. If it is
completely clipped, the function will stop processing and return control to the
caller. Otherwise, the function model clips the reference points of the
multirectangles and transforms the reference points of the multirectangles from

268 XGL Device Pipeline Porting Guide—August 1994

9

MC to DC. From each of the reference points of the multirectangles and the
corresponding corner max point, the function will build a rectangle in DC and
view transform and clip the rectangle.

Finally, if picking is enabled, the function performs picking operation for the
rectangle. Otherwise, it depth cues the rectangle and calls
li2GeneralPolygon() to draw the rectangle.

Writing Loadable Interfaces 269

9

li1MultiSimplePolygon() - 2D

Overview
This function draws a list of separate, single-bounded polygons. The polygons
can be self-intersecting. See the xgl_multi_simple_polygon() man page
for a description of the input data structures and a description of the
functionality that the device pipeline needs to handle.

Syntax
void XglDpCtx2d::li1MultiSimplePolygon(

Xgl_facet_flags flags,
Xgl_facet_list *facets,
Xgl_bbox *bounding_box,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list *point_list);

Input Parameters
flags Structure specifying the kind of polygons being rendered.

facets Pointer to a structure defining facet data for the polygons.

bounding_box Pointer to a bounding box structure that defines a
bounding box for all the points in the point list.

num_pt_lists The number of point lists.

point_list Pointer to an array of point lists for the polygons.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_multi_simple_polygon() man page.

Description of the Software Pipeline 2d li1MultiSimplePolygon Function
The software pipeline 2D li1MultiSimplePolygon() function calls the
more general li1Polygon() routine to process each polygon in the list of
polygons. This is expected to change in future releases by optimizing the code
in this routine to process the polygons.

270 XGL Device Pipeline Porting Guide—August 1994

9

li1MultiSimplePolygon() - 3D

Overview
This function draws a list of separate, single-bounded polygons. See the
xgl_multi_simple_polygon() man page for a description of the input data
structures and a description of the functionality that the device pipeline needs
to handle.

Syntax
void XglDpCtx2d::li1MultiSimplePolygon(

Xgl_facet_flags flags,
Xgl_facet_list *facets,
Xgl_bbox *bounding_box,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list *point_list);

Input Parameters
flags Structure specifying the kind of polygons being rendered.

facets Pointer to a structure defining facet data for the polygons.

bounding_box Pointer to a bounding box structure that defines a
bounding box for all the points in the point list.

num_pt_lists The number of point lists.

point_list Pointer to an array of point lists for the polygons.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_multi_simple_polygon() man page.

Description of the Software Pipeline li1MultiSimplePolygon Function
The software pipeline li1MultiSimplePolygon() function takes the input
lists of points and transforms them to DC, clipping the polygons if necessary.
Since clipping may introduce internal edges, a list of flags is introduced to
indicate edges that should not be drawn later. The first step in processing the
polygon is to determine whether it can be culled (this is an optional step that is
only done if culling is enabled). If so, then the function immediately returns.

Writing Loadable Interfaces 271

9

If the polygon passes the culling test, then it is model clipped if model clipping
planes have been supplied by the user. After model clipping, the polygon is
transformed and clip-checked in a manner analogous to markers and polylines.
If lighting is set to per_vertex then the vertices are lit before clipping. This is
only done for boundaries that are found to be inside the view-volume, or for
boundaries that require clipping. Bounds that are outside the volume are not
lit.

The final stage in polygon processing is to optionally depth cue the vertices.
Once this is done, and if picking is not enabled, the polygon is passed down to
li2MultiSimplePolygon() for rendering.

li1MultiSimplePolygon() does not render edges; this is the responsibility
of li2MultiSimplePolygon() . In addition, li1MultiSimplePolygon()
does not treat hollow or empty interior styles any differently than solid fills.

Notes
Performance is optimized if the facet flags are set before calling
li1MultiSimplePolygon() to be either 3 sided or 4 sided and convex, and
there is no picking, no model clipping, and no silhoutte edges, and the view
clip is only done for plus w values. If one or more of these conditions are not
satisfied (for example, picking is enabled), then li1Polygon() is called in a
loop for each polygon.

272 XGL Device Pipeline Porting Guide—August 1994

9

li1NurbsCurve() - 2D

Overview
This function draws a NURBS curve of a specified order based on the list of
knots in parameter space, the list of control points, and the parameteric range.
See the xgl_nurbs_curve() man page for a description of the input data
structures and a description of the functionality that the device pipeline must
handle.

Note – For information on how the software pipeline implements NURBS, see
the list of references in Appendix C, “Accelerating NURBS Primitives”.

Syntax
void XglDpCtx2d::li1NurbsCurve(

Xgl_nurbs_curve *curve,
Xgl_bounds_f1d *range,
Xgl_curve_color_spline *color_spline,
void *gcache_rep);

Input Parameters
curve Pointer to a structure defining the geometry of the curve.

range Pointer to a structure defining the parametric limits of the
curve.

color_spline Pointer to a structure defining the color distribution of the
curve’s geometry. This argument is ignored in 2D.

gcache_rep An optional pointer to the device-dependent Gcache
representation.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_nurbs_curve() man page.

Writing Loadable Interfaces 273

9

Description of the Software Pipeline li1NurbsCurve Function
The software pipeline li1NurbsCurve() function is a common entry point
for both the regular NURBS curve primitive and the Gcache’d NURBS curve.
For the regular NURBS primitive, the void* is set to NULL. If the Gcache
contains a NURBS curve, then li1DisplayGcache() calls
li1NurbsCurve() (if the order of the API geometry is greater then 1) with
the void pointer set to the device-dependent Gcache storage, and the other
three arguments are ignored. See page 229 for a description of device-
dependent Gcache. A device pipeline can choose to support both the regular
and the Gcache primitives in the same li1NurbsCurve() function, or support
the regular primitive only and let the li1DisplayGcache() handle Gcache
cases, or call the software pipeline in both cases.

If the order of the geometry data is 1, the Context current stroke is set to
markers, and li1MultiMarker() is called with the list of control points.
Otherwise, the routine takes the geometry data and tessellates it to a list of
points in DC. Then, li1MultiPolyline() is called with the current
coordinate system set to DC.

If the input is from a Gcache, a list of points is generated in MC. In the case of
COMBINED and STATIC Gcaches, li1MultiPolyline() is called. In the case
of a DYNAMIC Gcache, the points are generated in DC, and the push/pop
coordinate system will be done like a regular 2D NURBS curve primitive.

274 XGL Device Pipeline Porting Guide—August 1994

9

li1NurbsCurve() - 3D

Overview
This function draws a NURBS curve of a specified order based on the list of
knots in parameter space, the list of control points, and the parameteric range.
See the xgl_nurbs_curve () man page for a description of the input data
structures and a description of the functionality that the device pipeline needs
to handle.

Note – For more information on how the software pipeline implements
NURBS, see the list of references in Appendix C, “Accelerating NURBS
Primitives”.

Syntax
void XglDpCtx2d::li1NurbsCurve(

Xgl_nurbs_curve *curve,
Xgl_bounds_f1d *range,
Xgl_curve_color_spline *color_spline,
void *gcache_rep);

Input Parameters
curve Pointer to a structure defining the geometry of the curve.

range Pointer to a structure defining the parametric limits of the
curve.

color_spline Pointer to a structure defining the color distribution of the
curve’s geometry. This argument is only supported in 3D.

gcache_rep An optional pointer to the device-dependent Gcache
representation.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_nurbs_curve() man page.

Writing Loadable Interfaces 275

9

Description of the Software Pipeline li1NurbsCurve Function
The software pipeline li1NurbsCurve() function is a common entry point
for both the regular NURBS curve primitive and the Gcache’d NURBS curve.
For the regular NURBS primitive, the void* is set to NULL. If the Gcache
contains a NURBS curve, then li1DisplayGcache() calls
li1NurbsCurve() (if the order of the API geometry is greater then 1) with
the void pointer set to the device-dependent Gcache storage, and the other
three arguments are ignored. See page 229 for a description of device-
dependent Gcache. A device pipeline can choose to support both the regular
and the Gcache primitives in the same li1NurbsCurve() function, or support
the regular primitive only and let the li1DisplayGcache() handle Gcache
cases, or call the software pipeline in both cases.

If the order of the geometry data is 1, the current stroke is set to marker, and
li1MultiMarker() is called with the list of control points. Otherwise, the
routine takes the geometry data and tessellates to a list of points in LC
(Lighting Coordinates). Then li1MultiPolyline() is called with current
coordinate system set to LC, and reset back when it returns. Vertex colors will
be attached if a color spline is present.

If the input is from a Gcache, then in the case of COMBINED and STATIC
Gcache, a list of points will be generated in MC. Then li1MultiPolyline()
is called. In the case of a DYNAMIC Gcache, the points will be generated in LC,
the push/pop of the coordinates will be done like a regular NURBS curve
primitive.

276 XGL Device Pipeline Porting Guide—August 1994

9

li1NurbsSurf() - 3D

Overview
This function draws a NURBS surface of a specified order based on the list of
knots in parameter space, the list of control points, and the trimming
information. See the xgl_nurbs_surface() man page for a description of
the input data structures and a description of the functionality that the device
pipeline needs to handle.

Note – For more information on how the software pipeline implements
NURBS, see the list of references in Appendix C, “Accelerating NURBS
Primitives”.

Syntax
void XglDpCtx3d::li1NurbsSurf(

Xgl_nurbs_surf *surface,
Xgl_trim_loop_list *trim_list,
Xgl_nurbs_surf_simple_geom *hints,
Xgl_surf_color_spline *color_spline,
Xgl_surf_data_spline_list *data_splines,
void *gcache_rep);

Input Parameters
nurbs_surf Pointer to a structure defining the geometry of the surface.

trim_list Pointer to a structure defining the trimmed portion of the
surface.

hints Pointer to a structure containing hints about the shape of
the surface.

color_spline Pointer to a structure describing the color distribution over
the surface.

data_splines Not currently implemented.

gcache_rep An optional pointer to the device-specific Gcache
representation.

Writing Loadable Interfaces 277

9

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_nurbs_surface() man page.

Description of the Software Pipeline li1NurbsSurf Function
The software pipeline li1NurbsSurf() function is a common entry point for
both the regular NURBS curve primitive and the Gcache’d NURBS curve. For
the regular NURBS primitive, the void* is set to NULL. If the Gcache contains
a NURBS surface, then li1DisplayGcache() calls li1NurbsSurf() (if the
order of the API geometry is greater then 1) with the void pointer set to the
device-dependent Gcache storage, and the other three arguments are ignored.
See page 229 for a description of device-dependent Gcache. A device pipeline
can choose to support both the regular and the Gcache primitives in the same
li1NurbsSurf() function, or support the regular primitive only and let the
li1DisplayGcache() handle Gcache cases, or call the software pipeline in
both cases.

If the order of the geometry data is 1, the current stroke is set to marker, and
li1MultiMarker() is called with the list of control points. Otherwise, the
routine takes the geometry data and tessellates it to triangle lists, quadmeshes,
or polylines (if an isoparameteric curve is present). For the regular NURBS
surface, vertices will be generated in LC (Lighting Coordinates). Then
li1TriangleList() , li1QuadrilateralMesh() , or
li1MultiPolyline() is called with current coordinate system set to LC.
Vertex colors will be attached for triangle lists and quad meshes if a color
spline is present.)

If the input is from a Gcache, in the case of COMBINED and STATIC Gcache, a
list of points will be generated in MC, then li1TriangleList() ,
li1QuadrilateralMesh() , or li1MultiPolyline() is called. If it is a
DYNAMIC Gcache, the points will be generated in LC, the push/pop of the
coordinate systems will be done like a regular NURBS surface primitive.

278 XGL Device Pipeline Porting Guide—August 1994

9

li1Polygon() - 2D

Overview
This function draws a single polygon polygon that may, optionally, have
several bounds. See the xgl_polygon() man page for a description of the
input data structures and a description of the functionality that the device
pipeline needs to handle.

Syntax
void XglDpCtx2d::li1Polygon(

Xgl_facet_type facet_type,
Xgl_facet *facet,
Xgl_bbox *bounding_box,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list *point_list);

Input Parameters
facet_type Data type of the facets in the list.

facet Pointer to a structure defining the facet data.

bounding_box Pointer to a structure defining the bounding box around all
the points in the array of point lists.

num_pt_lists Number of point lists in the array of point lists.

point_list Pointer to an array of point lists.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_polygon() man page.

Description of the Software Pipeline li1Polygon Function
The software pipeline li1Polygon() function takes as input an array of point
lists, each describing a boundary of a possibly multi-bounded polygon (in
other words, “holes” are permitted). The lists of points are first transformed to
DC and clipped if necessary. Since clipping may introduce internal edges, a list
of flags is introduced to indicate edges that should not be drawn later.

Writing Loadable Interfaces 279

9

If picking is enabled, then the resulting polygon is checked against the pick
aperture, and the routine exits. If picking is not enabled,
li2GeneralPolygon() is called to render the polygon. li1Polygon() does
not render edges (edge rendering is the responsibility of
li2GeneralPolygon()). In addition, it does not treat hollow or empty
interior styles any differently than solid fills.

280 XGL Device Pipeline Porting Guide—August 1994

9

li1Polygon() - 3D

Overview
This function draws a single polygon polygon that may, optionally, have
several bounds. See the xgl_polygon() man page for a description of the
functionality that the device pipeline needs to handle

Syntax
void XglDpCtx2d::li1Polygon(

Xgl_facet_type facet_type,
Xgl_facet *facet,
Xgl_bbox *bounding_box,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list *point_list);

Input Parameters
facet_type Data type of the facets in the list.

facet Pointer to a structure defining the facet data.

bounding_box Pointer to a structure defining the bounding box around all
the points in the array of point lists.

num_pt_lists Number of point lists in the array of point lists.

point_list Pointer to an array of point lists.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_polygon() man page.

Description of the Software Pipeline li1Polygon Function
The software pipeline 3D li1Polygon() routine is the general case 3D
polygon renderer. The input is an array of point lists, each defining a boundary
of the polygon. The first step in processing the polygon is to determine
whether it can be culled (this is an optional step that is only done if culling is
enabled). If so, then the function immediately returns.

Writing Loadable Interfaces 281

9

If the polygon passes the culling test, then it is model clipped if model clipping
planes have been supplied by the user. After model clipping, the polygon is
transformed and clip-checked in a manner analogous to markers and polylines.
If lighting is set to “per_vertex” then the vertices are lit before clipping. This is
only done for boundaries that are found to be inside the view-volume, or for
boundaries that require clipping. Bounds that are outside the volume are not
lit.

If picking is enabled (which means that rendering is disabled), it is done in a
manner similar to markers and polylines. If Z-buffering is enabled,
li2GeneralPolygon() is called to perform the Z comparisons necessary to
verify a pick hit; otherwise, the boundaries are checked to determine whether
any of them pass through the pick volume.

The final stage in polygon processing is to optionally depth cue the vertices.
Once this is done, the polygon is passed down to li2GeneralPolygon() for
rendering.

282 XGL Device Pipeline Porting Guide—August 1994

9

li1QuadrilateralMesh() - 3D

Overview
This function draws a quadrilateral mesh. See the man page
xgl_quadrilateral_mesh() for a description on the input data structures
and for information on functionality that the device pipeline needs to handle.

Syntax
void XglDpCtx3d::li1QuadrilateralMesh(

Xgl_usgn32 row_dim,
Xgl_usgn32 col_dim,
Xgl_facet_list *facet_list,
Xgl_point_list *point_list);

Input Parameters
row_dim The number of rows of points defining the mesh.

col_dim The number of columns of points defining the mesh.

facet_list Pointer to a structure defining the facets.

point_list Pointer to geometry data for the quad mesh.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_quadrilateral_mesh() man page.

Description of the Software Pipeline li1QuadrilateralMesh Function
The software LI-1 quadrilateral mesh function breaks up the input quad mesh
into triangle strips, one for each row of the original mesh. The
li1TriangleStrip() routine is called for each triangle strip.

The points that are passed to li1TriangleStrip() are identical to those
input to the quad mesh function with the exception that flags are introduced to
mark edges that fall along the diagonals of each quad (see page 130). If the
interior style is “hollow”, or if edges are enabled, then these diagonals should
not be drawn. Quad mesh edges are drawn by the li2TriangleStrip()
function. The edge pattern is restarted for every new row of the mesh.

Writing Loadable Interfaces 283

9

li1StrokeText() - 2D/3D

Overview
li1StrokeText() renders characters defined as a collection of lines. See the
xgl_stroke_text() man page for information on functionality that the
device pipeline needs to handle.

Syntax
[2D]void XglDpCtx2d::li1StrokeText(

void *string,
Xgl_pt_f2d *pos,
Xgl_pt_f3d *dir);

[3D]void XglDpCtx3d::li1StrokeText(
void *string,
Xgl_pt_f3d *pos,
Xgl_pt_f3d *dir);

Input Parameters
string A NULL-terminated C-style list of characters if the character

encoding is single-string encoding, or a pointer to a
Xgl_mono_text_list structure if the character encoding is
multi-string encoding.

pos The reference point for the position of the string and the
origin of the text plane.

dir An array containing the two direction vectors used for the
orientation of the 2D plane on which the text sits. Used for
3D Contexts only.

Attributes That the Pipeline Needs to Handle
The device pipeline must account for some or all of the attributes listed in the
xgl_stroke_text() man page.

284 XGL Device Pipeline Porting Guide—August 1994

9

Description of the Software Pipeline li1StrokeText Function
The software pipeline li1StrokeText() function takes as input a single
point, which is the starting position for the string. This point is clipped against
the window boundaries, and if it is outside the window boundaries, no text is
drawn, even if part of the string would be visible.

If the point is inside the window boundaries, this function takes the string and
converts it to multipolylines. It then sets the current stroke to text, sets up the
viewing matrices, and calls li1MultiPolyline() .

Writing Loadable Interfaces 285

9

li1TriangleList() - 3D

Overview
This function draws a triangle list, which is a set of points that form a triangle
strip, a triangle star, or a group of unconnected triangles. See the
xgl_triangle_list() man page for a description of the input data
structures and for information on functionality that the device pipeline needs
to handle.

Syntax
void XglDpCtx3d::li1TriangleList(

Xgl_facet_list *facet_list,
Xgl_pt_list *point_list,
Xgl_tlist_flags flags);

Input Parameters
facet_list Pointer to a structure defining the facet information for the

triangle list.

point_list Pointer to the point list defining the vertices of the
triangles in the triangle list.

flags A word containing information on the overall
characteristics of the triangle list.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_triangle_list() man page.

Description of the Software Pipeline li1TriangleList Function
The software pipeline function provides general purpose triangle rendering. It
is more flexible than the li1TriangleStrip() primitive because it allows for
the rendering of triangle stars and independent triangles in addition to triangle
strips. However, the operations performed by this LI-1 call are similar to the
li1TriangleStrip() function.

286 XGL Device Pipeline Porting Guide—August 1994

9

The first step is to branch to one of four different internal routines based on the
value of the global triangle list flags parameter (part of the API call). This
parameter specifies whether the input point list describes a triangle strip, a
triangle list, a set of independent triangles, or a set of triangles that is
composed of a combination of strips, stars and independent triangles. The
points in the point list are interpreted differently based on whether the triangle
list defines a triangle star, strip, or set of independent triangles. The triangle
list function always tries to keep together runs of points in a point list that
define one particular type of triangle; thus, a set of points defining a set of
independent triangles, for instance, will be handled as one point list.

Within each of these four routines, the processing steps are similar. The first
step is to model clip the triangles if model clipping is requested. Model
clipping is done before culling because it may cause the triangle list to be
separated into smaller sub-strips which can be processed more easily as
separate entities.

Next, face culling is performed on the triangle list (if enabled by the user). This
involves traversing the triangle list and skipping over those facets that are
culled. This effectively breaks the triangle list down into smaller sub-lists of
non-culled faces. Each of these sub-lists is then processed separately as is done
for model-clipping. (The difference is that the normal-direction information
calculated by this stage can be reused later on in the pipeline.) There are
separate routines for culling the different kinds of triangle lists.

When the original triangle list has been broken down into sublists that are
visible in MC, the vertices are transformed to clip coordinates (CC) and clip-
checked in the same manner as the other 3D primitives described earlier. If
lighting is enabled, the vertices that are found to be inside the clip volume, or
those that require clipping, are lit in MC, and the new color is stored with the
transformed points. Finally, the transformed points are depth cued, if depth
cueing is enabled.

Once processing is complete on a sublist, it is ready to either be picked, or
rendered. If picking is enabled and Z-buffering is enabled,
li2TriangleStrip() or li2TriangleList() is called for Z-buffered
picking. For non-Z-buffered picking, a simple geometry test is performed on
the points to see if they lie within the pick aperture. If picking is not enabled,
the points are passed down to either li2TriangleStrip() or
li2TriangleList() for rendering.

Writing Loadable Interfaces 287

9

Edges are drawn on triangle lists by calling the li2MultiPolyline()
function for each triangle separately. This means that the edge pattern is
restarted for each new triangle.

Note – If a triangle within the list requires clipping, then
li2GeneralPolygon() is called to render it. This is because
li2TriangleStrip() and li2TriangleList() require points that are in
strip or list format. A clipped triangle may not necessarily still be in this
format.

288 XGL Device Pipeline Porting Guide—August 1994

9

li1TriangleStrip() - 3D

Overview
This function draws a triangle strip. See the xgl_triangle_strip() man
page for a description of the input data structures and for information on
functionality that the device pipeline needs to handle.

Syntax
void XglDpCtx3d::li1TriangleStrip(

Xgl_facet_list *facet_list,
Xgl_pt_list *point_list);

Input Parameters
facet_list Pointer to a structure containing facet information for the

triangle strip.

point_list Pointer to a structure defining the point list.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_triangle_strip() man page.

Description of the Software Pipeline li1TriangleStrip Function
This function operates like li1Polygon() , except for the added complexity of
multiple facets being derived from a one point list. The input to this routine is
a single point list defining the vertices of the triangles in the strip. A facet list
that defines facet normals and/or colors for the triangles can also be passed to
this function.

The first step in processing the triangle strip is to optionally model clip it. This
is done first, rather than face culling, because the model clipping utility may
separate the strip into smaller sub-strips, and it is easier to process each of the
sub-strips separately than as a group.

Next, face culling is performed on the strip (if enabled by the user). This
involves traversing the strip and skipping over those facets that are
determined to be culled. This effectively breaks the strip down into smaller
sub-strips of non-culled faces. Each of these sub-strips is then processed

Writing Loadable Interfaces 289

9

separately. (The difference between this and the separate processing of model
clipping is that the normal-direction information calculated by this stage can
be reused later in the pipeline.)

When the original strip has been broken down into sub-strips that are visible in
MC, the vertices are transformed to clip coordinates (CC) and clip-checked in
the same manner as other 3D primitives. As with li1Polygon() , if lighting is
enabled, the vertices that are found to be inside the clip volume, or those that
require clipping, are lit in MC, and the new color is stored with the
transformed points. Finally, the transformed points are depth cued, if depth
cueing is enabled.

Once processing is complete on a sub-strip, it is ready to either be picked, or
rendered. If picking is enabled, then either li2TriangleStrip() is called for
Z buffered picking, or a simple geometry test is performed on the points to see
if they lie within the aperture. If picking is not enabled, the points are passed
to li2TriangleStrip() for rendering.

Edges are drawn on triangle strip by calling the li2MultiPolyline()
function for each triangle separately. This means that the pattern is restarted
for each new triangle.

Note – If a triangle within the strip requires clipping, then
li2GeneralPolygon() is called to render it. This is because
li2TriangleStrip() requires points that are in “strip format”. A clipped
triangle may not necessarily still be in this format.

290 XGL Device Pipeline Porting Guide—August 1994

9

li1Accumulate() - 3D

Overview
This function accumulates from one buffer to another. See the
xgl_context_accumulate() man page for information on functionality that
the device pipeline needs to handle.

Syntax
void XglDpCtx3d::li1Accumulate(

Xgl_bounds_i2d* rectangle,
Xgl_pt_i2d* position,
float src_wt,
float accum_wt,
Xgl_buffer_set copy_buf);

Input Parameters
rectangle Source area of the draw buffer of the raster. If rectangle is

NULL, the maximum area of the source buffer is assigned to
the value by the XGL core

position The position in the destination buffer to be used as the
starting position. If position is NULL, the top left corner of
the destination buffer is assigned to the value by the XGL
core.

src_wt The weight to be used as the source weight in the
accumulation calculation.

accum_wt The weight to be used as the accumulation weight in the
accumulation calculation.

copy_buf The buffer to copy the accumulated image to.

Note – Note that although the application can specify NULL values for rectangle
and postion, the XGL core assigns valid values to these parameters before
passing them to the device pipeline; thus, the pipeline does not have to test for
this but can assume the values for these parameters are valid.

Writing Loadable Interfaces 291

9

Attributes That the Pipeline Needs to Handle
The device pipeline must handle the attributes listed in the
xgl_context_accumulate() man page.

What You Need to Know to Implement li1Accumulate
Accumulation buffers must be either 32- or 48-bits. Indexed colors are not
supported. The accumulation buffer must be BBGGRR or XBGR.

Description of the Software Pipeline li1Accumulate Function
The software pipeline li1Accumulate() function accumulates the rectangle
(rect) from the draw buffer to the accumulation buffer starting at pos . If
copy_buf is not XGL_BUFFER_SEL_NONE, the accumulated area is also copied
to rect in copy_buf . If rect is NULL, it is assumed to be the entire raster. If
pos is NULL, it is assumed to be (0,0). If either rect or pos are out of bounds,
they are both clipped accordingly.

If the weight for a buffer is zero, that buffer is not read. If the source weight is
0.0 and the destination (accumulation) weight is 1.0, the accumulation and
copy-back steps are omitted (the copy to copy_buf is still performed,
however). There is no substantial optimization at this time if the source weight
is 1.0 and the destination weight is 0.0.

292 XGL Device Pipeline Porting Guide—August 1994

9

li1ClearAccumulation() - 3D

Overview
This function clears the accumulation buffer. See the
xgl_context_clear_accumulation() man page for information on
functionality that the device pipeline needs to handle.

Syntax
void XglDpCtx3d::li1ClearAccumulation(

Xgl_color* color);

Input Parameters
color Color value.

Attributes that the Pipeline Needs to Handle
The device pipeline must handle the attribute listed in the
xgl_context_clear_accumulation() man page.

What You Need to Know to Implement li1ClearAccumulation
Accumulation buffers must be either 32- or 48-bits. Indexed colors are not
supported. Format XBGR pixels are accessed as words. BBGGRR pixels are
normally accessed as arrays of three Xgl_usgn16 structures, but because the
SPARC architecture is big-endian, the BBGGRR pixels are stored a word at a
time as well. This software implementation is for the SPARC architecture only.
The implementation will be changed to run on both the x86 architecture and
the SPARC architecture for the 10/93 release.

Description of the Software Pipeline li1ClearAccumulation Function
The software pipeline li1ClearAccumulation() function sets the entire
buffer specified by XGL_3D_CTX_ACCUM_OP_DEST to the specified color. The
accumulation buffer is either BBGGRR or XBGR.

Writing Loadable Interfaces 293

9

li1CopyBuffer() - 2D/3D

Overview
This function copies a block of pixels from one buffer to another. See the
xgl_context_copy_buffer() man page for information on functionality
that the device pipeline needs to handle.

Syntax
[2D and 3D]
void XglDpCtx{2,3}d::li1CopyBuffer(

Xgl_bounds_i2d* rectangle,
Xgl_pt_i2d* position,
XglRaster* source_ras);

Input Parameters
rectangle Area that is copied in the source buffer. If rectangle is NULL,

the maximum area of the source buffer is assigned to the
value by the XGL core. The source rectangle cannot have
negative components; that is, xmin, xmax, ymin, and ymax
cannot be less than zero, and xmin and ymin cannot be
greater than xmax and ymax respectively.

position Position in the destination buffer where the copy begins. If
position is NULL, the top left corner is assigned to the value
by the XGL core.

source_ras The buffer to be used as the source for the copy.

Note – Note that although the application can specify NULL values for rectangle
and postion, the XGL core assigns valid values to these parameters before
passing them to the device pipeline; thus, the pipeline does not have to test for
this but can assume the values for these parameters are valid.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_context_copy_buffer() man page.

294 XGL Device Pipeline Porting Guide—August 1994

9

What You Need to Know to Implement li1CopyBuffer
Copy buffer copies a block of pixels from a buffer in system memory to the
frame buffer or from the frame buffer to system memory. The direction of the
copy (i.e. memory to frame buffer or vice versa) is reflected in the XGL core as
follows:

• If the copy is from a memory raster to the frame buffer, li1CopyBuffer()
is used for the copy operation. In this case, a memory raster is the source
buffer, and the device associated with the Context in the
xgl_context_copy_buffer() call is a window raster device.

• If the copy is from the frame buffer to a memory raster, the source buffer is
a window raster device, and the device associated with the Context in the
xgl_context_copy_buffer() call is a memory raster. In this case, the
XglDpDev::copyBuffer() function is called to do the copy operation.
Note that when copying from device to memory, the device object must
perform the copy between winLock() and winUnLock() calls.

The XGL core determines what type of device the application is requesting for
the source raster and the destination raster, and then calls the appropriate copy
buffer routine.

For the case of copying from memory to a window raster, if the pipeline
chooses to implement li1CopyBuffer() , it must take into account different
color models and different underlying representations of memory. The memory
raster can be indexed or RGB color type. However, XGL makes a distinction
between the real color type, which is the actual memory organization for the
data in the device, and the color type of the XGL Device that the application
works with. For copying from memory to a window raster, the
li1CopyBuffer() function must take into account all the cases of the various
combinations of Device color type and real color type, although the pipeline
may want to optimize some cases, such as the straight-forward copy from an
indexed memory raster to an indexed device.

Since the XglDpDev copy buffer function is device-dependent and since the
software pipeline does not currently implement li1CopyBuffer() , both copy
buffer functions must be implemented by the device pipeline. However in
CopyBuffer.h , XGL provides utility functions that perform copy operations
with all the color conversion and fill styles.

Writing Loadable Interfaces 295

9

CopyBuffer.h defines the data structures and interfaces for the copy buffer
utility functions. It provides two utility functions: XgliUtCopyBuffer() and
XgliUtFbToMemCopyBuffer() . XgliUtCopyBuffer() is a general routine
that copies from one buffer to another; it can be used for either the memory to
frame buffer copy or the frame buffer to memory copy.
XgliUtFbToMemCopyBuffer() is a wrapper on XgliUtCopyBuffer() that
is easier to use for the frame buffer to memory copy. These copy buffer utilities
use the PixRect object to represent the raster memory for the copy. See
Chapter 4, “Internal Data Storage” for information on PixRects.

XgliUtCopyBuffer() has pointers to the following structures, which can be
NULL if the pipeline doesn’t need them:

• Destination foreground color dest_fg_color and background color
dest_bg_color can be NULL if the fill style is such that they are not needed.

• Destination clip mask dest_clip_mask and source clip mask src_clip_mask can
be NULL if there is no per-pixel clip mask or if the whole area of window or
memory is visible so that the pipeline does not need to do a per-pixel clip.

• The copy buffer color information structure color_info needs to be filled out.
This structure specifies the color space of the data. Color Map objects are
needed to do the copy and color conversion.

• The rop_info structure can be NULL if mask and rop mode do not apply or
the device does not want plane mask or raster operations to be done in
software.

• If the raster fill style is XGL_RAS_FILL_COPY (see the reference page for
XGL_CTX_RASTER_FILL_STYLE), the fill_info structure must be filled in
with the fill style; otherwise, the fill_info structure can be NULL. If there is a
raster fill pattern or a stipple raster, then the PixRect needs to be supplied,
and the stipple position and color must be supplied.

• Note that the z_buffer_info structure is not required for copy buffer, but if
this utility is used for xgl_image() , this structure would need to be filled
in.

The RefDpCtx utility also provides an li1CopyBufferMemToFB() function
that the pipeline can use to implement the memory to frame buffer case of
copy buffer. Note that none of the XGL-provided utilites for copying buffers
are optimized, so it may advisable for the pipeline to implement at least the
more straight-forward copy operations.

In summary, here’s what you need to do to implement copy buffer:

296 XGL Device Pipeline Porting Guide—August 1994

9

1. Implement li1CopyBuffer() . You can use the RefDpCtx utility
li1CopyBufferMemToFB to do this.

2. Implement XglDpDev::CopyBuffer() using
XgliUtFbToMemCopyBuffer() .

Note – You must also implement the LI-3 versions of copying to and from
buffers, but you can use the RefDpCtx utilities li3CopyToDpBuffer() and
li3CopyFromDpBuffer() . See page 329 through page 331 for more
information on LI-3 copy buffer functions.

Description of the Software Pipeline li1CopyBuffer Function
The software pipeline does not implement this function.

Writing Loadable Interfaces 297

9

li1Flush() - 2D/3D

Overview
This function causes pending or asynchronous processing to complete. See the
xgl_context_flush() man page for information on functionality that the
device pipeline needs to handle.

Syntax
void XglDpCtx{2,3}d::li1Flush(

Xgl_usgn32 flush_action);

Input Parameters
flush_action The type of flushing that the function performs. See the

man page for the options.

Attributes that the Pipeline Needs to Handle
The device pipeline must handle the attributes listed in the
xgl_context_flush() man page.

Description of the Software Pipeline li1Flush Function
The software pipeline does not implement this function.

298 XGL Device Pipeline Porting Guide—August 1994

9

li1GetPixel() - 2D/3D

Overview
This function gets the color value of a specified pixel. See the
xgl_context_get_pixel() man page for information on functionality that
the device pipeline needs to handle.

Syntax
[2D and 3D]
void XglDpCtx{2,3}d::li1GetPixel(

Xgl_pt_i2d* position,
Xgl_color* value,
Xgl_boolean* obscured);

Input Parameters
position Location of the pixel.

value Location where the retrieved color value is stored.

obscured TRUE if the window is covered at that pixel position.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_context_get_pixel() man page.

Description of the Software Pipeline li1GetPixel Function
This function is not implemented by the software pipeline.

Writing Loadable Interfaces 299

9

li1Image() - 2D/3D

Overview
This function displays a block of pixels from a raster. See the xgl_image()
man page for information on functionality that the device pipeline needs to
handle.

Syntax
[2D] void XglDpCtx::li1Image(

Xgl_pt_f2d* position,
Xgl_bounds_i2d* image,
XglRaster* src_ras);

[3D] void XglDpCtx::li1Image(
Xgl_pt_f3d* position,
Xgl_bounds_i2d* image,
XglRaster* src_ras);

Input Parameters
position The position in the destination Context where the copy

starts. The position must be a valid point in the Context’s
model space.

image The rectangular area in the source raster to be copied. If
image is NULL, the maximum area of the source Raster is
assigned to the value by the XGL core

src_ras The source memory raster.

Note – Note that although the application can specify a NULL value for image,
the XGL core assigns a valid value to this parameter before passing it to the
device pipeline; thus, the pipeline does not have to test for this but can assume
the value is valid.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_image() man page.

300 XGL Device Pipeline Porting Guide—August 1994

9

Description of the Software Pipeline li1Image Function
The software pipeline li1Image() function first verifies that rectangle is
within the source raster’s boundaries. For 3D images, the function then does
model clipping if necessary. Then, for both 2D and 3D image copying, the
function transforms the position point from model coordinates to device
coordinates and verifies that the position in DC is not clipped; if the position
point is clipped, the image is not copied. The function then clips the rectangle
against the src_ras boundaries and the DC bounds, verifies that the render
buffer is the draw buffer, sets up the copy information, and calls
li3CopyToDpBuffer() to do the copying.

Writing Loadable Interfaces 301

9

li1NewFrame() - 2D/3D

Overview
This function clears the device coordinate viewport and possibly the Z-buffer.
See the xgl_context_new_frame() man page for information on
functionality that the device pipeline needs to handle.

Syntax
[2D and 3D]
void XglDpCtx{2,3}d::li1NewFrame();

Input Parameters
None

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_context_new_frame() man page.

What the You Need to Know to Implement li1NewFrame
In the case of indexed color, the plane mask during a new frame operation is
different from the plane mask used for rendering. The new frame plane mask
prepares the surface based on a pixel mapping offset. To simplify the
processing of the new frame plane mask, the XGL core provides the inline
function getNewFramePlaneMask() . This function can be called regardless of
the color type of the device. The following example shows the use of
getNewFramePlaneMask() .

if (action & XGL_CTX_NEW_FRAME_CLEAR) {
Xgl_booleanchange_flag = FALSE;

Xgl_usgn32new_frame_plane_mask;
new_frame_plane_mask = baseCtx->getNewFramePlaneMask();
if (cached_plane_mask != new_frame_plane_mask) {
 change_flag = TRUE;
 //set the new frame plane mask
}

// Perform the clear operation
if (change_flag) {

302 XGL Device Pipeline Porting Guide—August 1994

9

Description of the Software Pipeline li1NewFrame Function
The software pipeline does not implement this function.

 // Restore the original plane mask
}

}

Writing Loadable Interfaces 303

9

li1PickBufferFlush() - 2D/3D

Overview
This function requires a device pipeline to empty its device pick buffer, if any,
into the XGL core pick buffer. This is useful for asynchronous devices that
buffer pick events. The function is called when the API function
xgl_get_pick_identifiers is called. It also is called to synchronize the
device’s pick buffer and the XGL core pick buffer before each call to the
software picking code. See the xgl_get_pick_identifiers() man page for
information on functionality.

Syntax
void XglDpCtx{2,3}d::li1PickBufferFlush();

Input Parameters
None

Attributes that the Pipeline Needs to Handle
None

What You Need to Know to Implement li1PickBufferFlush
The purpose of this function is to allow synchronization between a device’s
pick buffer and the pick buffer maintained by XGL’s device-independent code.
The device-independent picking routines call this function whenever the
software pipeline detects a pick (if a pipeline has fallen back to the software
pipeline to pick a particular primitive, for instance) and when the application
explicitly requests to see the contents of the pick buffer (via
xgl_pick_get_identifiers()).

To implement this function, device pipelines check the hardware pick buffer (if
applicable) and then add the identifiers of the pick events to the XGL core pick
buffer using the DI function ctx->addPickToBuffer(Xgl_usgn32
pick_id1, Xgl_usgn32 pick_id2) . If a device does not support picking,
then this function need not be implemented.

The Context class includes another function that compares the last recorded
pick IDs with the current pick IDs and returns TRUE if they are identical. This
function is checkLastPick() . This function is an optimization to allows the

304 XGL Device Pipeline Porting Guide—August 1994

9

device pipeline to return to the application immediately if nothing new has
been picked. Note that for devices caching pick events checkLastPick()
does not call li1PickBuffer Flush() . This means that the last recorded
pick event might not be the last actual pick event if the pipeline’s cached pick
events have not been flushed in the XGL core pick buffer.

li1PickBufferFlush() takes no arguments and is only called by the
software pipeline and the XGL core. A device pipeline need not call this
function itself.

Description of the Software Pipeline li1PickBufferFlush Function
The software pipeline does not implement this function.

Writing Loadable Interfaces 305

9

li1SetMultiPixel()

Overview
This function sets the color values for a list of pixel locations. See the
xgl_context_set_multi_pixel() man page for information on the
functionality that the device pipeline needs to handle.

Syntax
[2D and 3D]
void XglDpCtx{2,3}d::li1SetMultiPixel(

Xgl_usgn32 count,
Xgl_pt_i2d *pt,
Xgl_color *color);

Input Parameters
count Number of pixels to write.

pt Array of screen locations to write to.

color Array of pixel colors to write (in one-to-one
correspondence with the location array).

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_context_set_multi_pixel() man page.

Description of the Software Pipeline li1SetMultiPixel Function
The software pipeline li1SetMultiPixel() function writes a set of count
pixels into the locations specified by the pt array argument. The first pixel is
written to (pt[0].x, pt[0].y), the next pixel is written to (pt[1].x, pt[1].y), etc.
There should be at least count valid entries in the pt argument. Since this
routine operates on individual pixels, rather than geometry, all coordinates are
device coordinates, and the 2D and 3D versions of this routine are identical.

Each pixel color is determined by taking sucessive values from the color
argument, which should contain an array of colors, one color for each pixel.
The color[0] entry specifies the color for the pixel located at (pt[0].x,pt[0].y),
color[1] for (pt[1].x, pt[1].y), etc. The count argument specifies the number
of pixels to write. The color argument array should have at least count entries.

306 XGL Device Pipeline Porting Guide—August 1994

9

li1SetPixel() - 2D/3D

Overview
This function sets the color value for a specified pixel. See the
xgl_context_set_pixel() man page for information on functionality that
the device pipeline needs to handle.

Syntax
[2D and 3D]
void XglDpCtx{2,3}d::li1SetPixel(

Xgl_pt_i2d *position,
Xgl_color *color);

Input Parameters
position Location of the pixel value to be set.

color The color value of the pixel that is set.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_context_set_pixel() man page.

Description of the Software Pipeline li1SetPixel Function
The software pipeline does not implement this function.

Writing Loadable Interfaces 307

9

li1SetPixelRow() - 2D/3D

Overview
This function sets the color value for a row of pixels. See the
xgl_context_set_pixel_row() man page for information on functionality.

Syntax
[2D and 3D]
void XglDpCtx{2,3}d::li1SetPixelRow(

Xgl_usgn32 start_col,
Xgl_usgn32 row,
Xgl_usgn32 count,
Xgl_color *color);

Input
start_col First x-coordinate of pixel row.

row y-coordinate of all pixels in pixel row.

count Number of pixels to write.

color Array of pixel colors to write.

Attributes That the Pipeline Needs to Handle
The device pipeline must handle some or all of the attributes listed in the
xgl_context_set_pixel_row() man page.

Description of the Software Pipeline li1SetPixelRow Function
The software pipeline li1SetPixelRow() function writes a series of count
contiguous, horizontal pixels along the y-position supplied by row, starting at
the x-position start_col and continuing in the direction of increasing x values.
Since this routine operates on individual pixels, rather than geometry, all
coordinates are device coordinates, and the 2D and 3D versions of the routine
are identical. The pixel colors along the row are determined by taking
sucessive values from the color argument, which should contain an array of
colors, one color corresponding to to each pixel in the row. The color[0]
entry specifies the color for the left-most pixel located at (start_col ,row),
color[1] for (start_col + 1, row), etc. The count argument specifies the number
of pixels to write. The color argument array should have at least count entries.

308 XGL Device Pipeline Porting Guide—August 1994

9

LI2 Functions

About the LI-2 Layer

Conceptually, the LI-2 layer lies below the transformation and clipping of the
LI-1 layer. While the LI-1 functions implement and make decisions regarding
the geometry pipeline for each primitive, the LI-2 functions are more
concerned with rendering. The LI-2 layer was designed to provide support for
hardware that might not be able to perform transformations and clipping but
that can still accelerate DC primitives. The LI-2 layer provides a porting layer
that is simpler to port to than LI-1 but that renders faster than the dot/span
layer LI-3.

In general, the LI-2 renderers are passed an internal data structure containing a
list of points or a list of point lists in device coordinates. These points have
already been view clipped, and, in the case where the canvas is completely
exposed (window rasters only), the points have been window clipped as well.
The calling function is responsible for setting the attributes in the Context to be
used by the LI-2 routine: for example, when rendering a hollow polygon using
the polyline renderer, the line color attribute should be set to reflect the
polygon color.

For 3D Contexts, the LI-2 renderers are similar to the 2D case. The calling LI-1
function should perform any applicable lighting and depth cueing; however, if
depth cueing is enabled, 3D LI-2 functions must handle DC offset and
interpolate colors.

LI-2 Surface Attributes

Table 9-10 lists the attributes that must be accounted for by the LI-2 surface
primitives. Note that Context.h and Context3d. h provide interfaces for the
pipeline to get a number of 3D surface attributes within a single structure.
These functions can facilitate device pipeline manipulation of 3D surface
attributes. At LI-2, face determination has already taken place. Using these
interfaces, a pipeline can set up the surface attribute pointer based on the

Writing Loadable Interfaces 309

9

facing in the renderer and do all the attribute processing without referring to
the actual facing. See page 127 and page 129 for information on these
interfaces.

Table 9-10 Surface Attributes at LI-2

Attributes

2D and 3D getSurfFrontColor()
getSurfFrontColorSelector()
getSurfFrontFpat()
getSurfFrontFpatPosition()
getSurfFrontFillStyle()

getEdgeAltColor()
getEdgeCap()
getEdgeColor()
getEdgeJoin()
getEdgeMiterLimit()
getEdgePattern()
getEdgeStyle()
getEdgeWidthScaleFactor()

getSurfEdgeFlag()
getSurfInteriorRule()

getRop()

3D only getSurfBackColor()
getSurfBackColorSelector()
getSurfBackFillStyle()
getSurfBackFpat()
getSurfBackFpatPosition()

getHlhsrMode()

getSurfDcOffset()

getDepthCueMode()
getDepthCueInterp()

310 XGL Device Pipeline Porting Guide—August 1994

9

Mapping of LI-2 Functions to LI-3 Functions in the Software Pipeline

Table 9-11 shows the mapping of the 2D LI-2 functions to LI-3 functions or
other LI-2 functions.

Table 9-12 shows the mapping of the 2D LI-2 functions to LI-3 functions and
other LI-2 functions.

Table 9-11 Mapping of 2D LI-2 Functions to LI-2 or LI-3 Functions

LI-2 Function LI-2 Function

li2GeneralPolygon() li3MultiSpan()
li2MultiPolyline() (hollow polygons or edges on)

li2MultiDot() li3MultiDot()

li2MultiEllipse() li3MultiSpan()
li2GeneralPolygon() (rotation angles)

li2MultiEllipticalArc() li3Vector() (straight lines of sectors or chords)
li3MultiSpan()
li2MultiPolyline() (rotation angles - open)
li2GeneralPolygon() (rotation angles - closed)

li2MultiPolyline() li3Vector() (thin lines)
li3MultiSpan() (wide lines)

li2MultiRect() li3MultiSpan()
li2MultiPolyline() (hollow rects or edges on)

li2MultiSimplePolygon() li3MultiSpan()
li2MultiPolyline() (hollow polygons or edges on)

Table 9-12 Mapping of 3D LI-2 Functions to LI-2 and LI-3 Functions

LI-2 Function Li-2 Function

li2GeneralPolygon() li3MultiSpan()
li2MultiPolyline() (hollow polygons or edges on)

li2MultiDot() li3MultiDot()

li2MultiPolyline() li3Vector() (thin lines)
li2TriangleList() (wide lines)

Writing Loadable Interfaces 311

9

li2MultiSimplePolygon() li2GeneralPolygon()

li2TriangleList() li3MultiSpan() (filled surfaces)
li2MultiPolyline() (hollow triangles or edges on)

li2TriangleStrip() li3MultiSpan() (filled surfaces)
li2MultiPolyline() (hollow triangles or edges on)

Table 9-12 Mapping of 3D LI-2 Functions to LI-2 and LI-3 Functions

LI-2 Function Li-2 Function

312 XGL Device Pipeline Porting Guide—August 1994

9

li2GeneralPolygon() - 2D/3D

Overview
This function scan converts a polygon to span lines. A general polygon routine
supports geometry that cannot be easily tesselated (such as multi-bounded
polygons) and provides an opportunity for hardware to handle such cases. The
li2GeneralPolygon() function is expected to support different interior
styles and fill rules (even-odd only), and to handle edges.

Syntax
void XglDpCtx{2,3}d::li2GeneralPolygon(

XglPrimData* pd);

Input Parameters
pd Pointer to an XglPrimData object containing a list of point

lists specifying a single (possibly multi-bounded) polygon.

Attributes That the Device Pipeline Needs to Handle
See Table 9-10 on page 309 for a list of attributes that this function must handle.

Description of the Software Pipeline li2GeneralPolygon
To render filled surfaces, li2GeneralPolygon() scan converts the polygon
to a list of span lines and calls the device pipeline li3MultiSpan() function
to draw the list of spans. For 3D polygons, the function handles texture
mapping, adds the surface DC offsets to the Z value, and calls the pipeline
li3MultiSpan() function.

To render hollow surfaces or edges, the function converts the point list into
point lists for multipolylines, sets the current stroke to hollow or edge, and
calls the device pipeline li2MultiPolyline() function.

Writing Loadable Interfaces 313

9

li2MultiDot() - 2D/3D

Overview
A multi-dot routine at the LI-2 level provides the opportunity for hardware to
accelerate dot markers.

Syntax
[2D and 3D}
void XglDpCtx{2,3}d::li2MultiDot(

XglPrimData* pd);

Input Parameters
pd Pointer to an XglPrimData object containing a list of

marker positions in device coordinates.

Attributes That the Device Pipeline Needs to Handle
A device pipeline must handle the following attributes.

XglContext::getMarkerColorSelector()
XglContext::getMarkerColor()

Description of the Software Pipeline li2MultiDot Function
The software pipeline li2MultiDot() function determines the marker color
based on the marker color selector, the input point type, or in the 3D case, the
depth cueing mode. It then calls the device pipeline li3MultiDot() function
to draw the markers.

314 XGL Device Pipeline Porting Guide—August 1994

9

li2MultiEllipse() - 2D

Overview
This function scan converts ellipses to span lines. Although there is no ellipse
in the 2D API, XGL provides li2MultiEllipse() to support hardware that
can accelerate a regular circle or a circle with uneven scale in DC. This function
is expected to handle different interior fill styles and edges.

Syntax
void XglDpCtx2d::li2MultiEllipse(

XglConicData2d*ellipses);

Input Parameter
ellipses Pointer to an XglConicData2d object containing a list of

ellipses, with each ellipse specified with a center point, and
a major and minor axis in DC.

Attributes
See Table 9-10 on page 309 for a list of attributes that this function must handle.

Description of the Software Pipeline li2MultiEllipse Function
For ellipses without rotation angles, the software pipeline converts each ellipse
to a list of span lines and calls li3MultiSpan() to draw the spans.

For ellipses with rotation angles, the ellipse is tessellated to a list of points, and
the pipeline li2GeneralPolygon() is called to draw the geometry.

Writing Loadable Interfaces 315

9

li2MultiEllipticalArc() - 2D

Overview
This function scan converts elliptical arcs to span lines. Although there is no
ellipse in the 2D API, XGL provides li2MultiEllipticalArc() to support
hardware that can accelerate a circular arc with uneven scale in DC. You may
want to implement li2MultiEllipticalArc() if your hardware can
accelerate arcs or elliptical arcs. The function is expected to handle different
interior fill styles and edges, and different arc fill styles.

Syntax
void XglDpCtx2d::li2MultiEllipticalArc(

XglConicData2d*arcs);

Input Parameters
arcs Pointer to an XglConicData2d object containing a list of

partial ellipses, with each ellipse specified with a center
point, major and minor axes, and a start and stop angle in
DC.

Attributes
A device pipeline must handle the following attribute in addition to the
surface attributes listed in Table 9-10 on page 309.

XglContext::getArcFillStyle()

Description of the Software Pipeline li2MultiEllipticalArc Function
For elliptical arcs without rotation angles, the software pipeline scan converts
the interior and arc borders to a list of span lines and calls i3MultiSpan() to
draw the spans. If the arcs have a fill style (XGL_CTX_ARC_FILL_STYLE) of
XGL_ARC_SECTOR or XGL_ARC_CHORD and have thin lines for the line
segments, the device pipeline LI-3 function li3Vector() is called to draw the
lines. The line segments of arcs with a fill style of XGL_ARC_SECTOR or
XGL_ARC_CHORD and with thick lines for the line segments are drawn with
li3MultiSpan() . For ellipses with rotation angles, if the arc fill style is open,
the arc is tessellated to a list of points, and li2MultiPolyline() is called. If
the arc is closed, li2GeneralPolygon() is called.

316 XGL Device Pipeline Porting Guide—August 1994

9

li2MultiPolyline() - 2D

Overview
This function is expected to handle wide lines and wide patterned lines as well
as thin lines and thin patterned lines.

The li2MultiPolyline routine is the most multiplexed of the LI-2 functions.
Since this routine is called by the other stroke primitives, the polyline
attributes (color, style, width, etc.) are read from the current stroke group in the
Context object. It is the responsibility of the calling routine to set the stroke
group appropriately for the original primitive; it is the responsibility of the
LI-2 multipolyline function to get the polyline attributes from the current
stroke group. See page 106 for information on the stroke group.

Syntax
void XglDpCtx::li2MultiPolyline(

XglPrimData* pd);

Input Parameters
pd Pointer to an XglPrimData object containing point lists

describing multiple, disjoint polylines. A flag that specifies
whether each polyline is closed is also included.

Attributes
A device pipeline must handle the following attributes.

XglContext::getRop()
XglContext::getCurrentStroke()
XglStrokeGroup::getAaBlendEq()
XglStrokeGroup::getAaFilterWidth()
XglStrokeGroup::getAaFilterShape()
XglStrokeGroup::getAltColor()
XglStrokeGroup::getCap()
XglStrokeGroup::getColor()
XglStrokeGroup::getColorSelector()
XglStrokeGroup::getJoin()
XglStrokeGroup::getMiterLimit()
XglStrokeGroup::getPattern()
XglStrokeGroup::getStyle()

Writing Loadable Interfaces 317

9

XglStrokeGroup::getWidthScaleFactor()
XglStrokeGroup::getExpectedFlagValue()
XglStrokeGroup::getFlagMask()

What You Should Know to Implement li2MultiPolyline
There is a flag in li3Vector() that determines whether the last pixel of a line
segment is drawn. To prevent drawing the shared pixel twice for consecutive
lines, set the draw_last_pixel flag for li3Vector() to FALSE. Then, set it to
TRUE for the last segment in the polyline.

In addition, when the point type has flag information, the device pipeline must
check the stroke group flag mask and expected flag value to determine
whether individual segments of the line should be drawn. For more
information, see “Flag Mask and Expected Flag Value” on page 111.

Description of the Software Pipeline 2D li2MultiPolyline Function
For thin lines and thin patterned lines, the software pipeline 2D
li2MultiPolyline() function calls li3SetVectorControl to set the
attributes for the LI-3 line renderers and calls li3Vector() function to draw
the lines.

To render wide lines as well as caps and joins, the software implementation
creates a list of span lines. The span lines are sorted, and clipped if necessary,
for certain ROP modes so that correct rendering will occur with span lines
overlap. The list of spans is drawn with the li3MultiSpan() function.

318 XGL Device Pipeline Porting Guide—August 1994

9

li2MultiPolyline() - 3D

Overview
This function is expected to handle wide lines and wide patterned lines as well
as thin lines and thin patterned lines. Device pipelines that call
li2MultiPolyline() for wide lines may also want to implement
li2TriangleList() for triangle stars if the device can accelerate triangles.

The li2MultiPolyline routine is the most multiplexed of the LI-2 functions.
Since this routine is called by the other stroke primitives, the polyline
attributes (color, style, width, etc.) are read from the current stroke group in the
Context object. It is the responsibility of the calling routine to set the stroke
group appropriately for the original primitive; it is the responsibility of the
LI-2 function to get the stroke attributes from the current stroke group. See
page 106 for information on the stroke group.

Syntax
void XglDpCtx3d::li2MultiPolyline(

XglPrimData *pd);

Input Parameters
pd Pointer to an XglPrimData object containing point lists of

vertex coordinates of the lines in device coordinates.

Attributes
A device pipeline must handle the following attributes.

XglContext::getRop()
XglContext3d::getHlhsrMode()
XglContext::getCurrentStroke()
XglStrokeGroup::getAaBlendEq()
XglStrokeGroup::getAaFilterWidth()
XglStrokeGroup::getAaFilterShape()
XglStrokeGroup::getAltColor()
XglStrokeGroup::getCap()
XglStrokeGroup::getColor()
XglStrokeGroup::getColorSelector()
XglStrokeGroup::getJoin()
XglStrokeGroup::getMiterLimit()

Writing Loadable Interfaces 319

9

XglStrokeGroup::getPattern()
XglStrokeGroup::getStyle()
XglStrokeGroup::getWidthScaleFactor()
XglStrokeGroup::getExpectedFlagValue()
XglStrokeGroup::getFlagMask()
XglStrokeGroup3d::getDcOffset()
XglStrokeGroup3d::getColorInterp()

Description of the Software Pipeline li2MultiPolyline Function
The software pipeline 3D li2MultiPolyline() function breaks lines into
line segments and sends the segments individually to either li3Vector() or
li2TriangeList() .

If the value of the width scale factor attribute for the line is less than 2.0, the
function creates individual line segments, puts each line segment into an
Xgli_vector_3d structure, and then calls li3Vector() for rendering.

Wide lines and relevant caps and joins are converted to triangle stars.
Specifically, if the line width scale factor is equal to or greater than 2.0, the
function creates rectangular line segments, converts each segment into triangle
stars, and calls li2TriangleList() for rendering. Patterned wide lines are
broken down at each pattern boundary, so only solid triangle stars are sent to
li2TriangleList() .

320 XGL Device Pipeline Porting Guide—August 1994

9

li2MultiRect() - 2D

Overview
This function scan converts rectangles to span lines and is expected to handle
different interior fill styles and edges. It is provided for hardware that can
accelerate rectangles and provides an opportunity to reduce the amount of
data copied (2 corners versus 4 points if a polygon routine is used.)

Syntax
void XglDpCtx2d::li2MultiRect(

XglRectData2d* rects);

Input Parameters
rects Pointer to an XglRectData2d object containing a list of

rectangles specified by their corners.

Attributes
See Table 9-10 on page 309 for a list of attributes that this function must handle.

Description of the Software Pipeline li2MultiRect Function
If the interior style of the surface is solid, stippled, opaque-stippled, or
patterned, the software pipeline li2MultiRect() function scan converts the
polygon to a list of span lines and calls li3MultiSpan() to draw the spans. If
the interior style of the surface is hollow or if the edge flag is on,
li2MultiPolyline() is called with the stroke group set to hollow or edge
accordingly.

This function is not currently used by any LI-1 functions in the software
pipeline. In the future, li2MultiRect() may be called from the
li1MultiRect angle() function if the MC-to-DC transform does not contain
any rotations.

Writing Loadable Interfaces 321

9

li2MultiSimplePolygon() - 2D

Overview
This function scan converts polygons to span lines. It is expected to handle
different fill styles and edges. This function is provided for hardware that can
accelerate single-bounded polygons.

Syntax
void XglDpCtx2d::li2MultiSimplePolygon(

XglPrimData* pd);

Input Parameters
pd Pointer to an XglPrimData object containing a list of point

lists in device coordinates, each describing a single,
bounded polygon.

Attributes
See Table 9-10 on page 309 for a list of attributes that this function must handle.

Description of the Software Pipeline li2MultiSimplePolygon Function
To render filled surfaces, the software pipeline scan converts the polygon to a
list of span lines and calls li3MultiSpan() to draw the spans.

To render hollow surfaces or edges, the software pipeline sets the stroke group
to hollow or edge and calls li2MultiPolyline() .

This function is not currently used by any LI-1 functions in the software
pipeline. In the future, li2MultiSimplePolygon() may be called from
li1MultiSimplePolygon() .

322 XGL Device Pipeline Porting Guide—August 1994

9

li2MultiSimplePolygon() - 3D

Overview
This function scan converts polygons to span lines and provides support for
single-bounded polygons. This function is expected to handle different fill
styles and edges.

Syntax
void XglDpCtx3d::li2MultiSimplePolygon(

XglPrimData*pd);

Input Parameters
pd Pointer to an XglPrimData object containing a list of

polygons.

Attributes
See Table 9-10 on page 309 for a list of attributes that this function must handle.

Description of the Software Pipeline li2MultiSimplePolygon Function
The software pipeline li2MultiSimplePolygon() function calls
li2GeneralPolygon() in a loop for each simple polygon. In future releases,
the software pipeline may provide optimized code to process the polygons.

Writing Loadable Interfaces 323

9

li2TriangleList() - 3D

Overview
This function renders single-facing, non-mixed triangle lists in the form of
triangle strips, triangle stars, or unconnected triangles in device coordinates.

Syntax
void XglDpCtx3d::li2TriangleList(

XglPrimData*pd);

Input Parameters
pd Pointer to an XglPrimData object containing point lists of

either single-facing triangle strips, triangle stars, or
unconnected triangles based on the value of the triangle
list render flags. The triangle point list cannot be mixed.
All surfaces must be single facing.

Attributes
A device pipeline must handle the following attribute in addition to the
surface attributes listed in Table 9-10 on page 309.

XglLevel::getRenderFlags()
XglContext3d::getDepthCueInterp()
XglContext3d::getDepthCueMode()
XglContext3d::getHlhsrMode()

Description of the Software Pipeline li2TriangleList Function
To render triangle strips, the software pipeline function checks the level data
rendering flags and calls li2TriangleStrip() . To render filled surfaces, the
function scan converts triangle stars and independent triangles into lists of
spans. It handles color selection and texture mapping, adds the corresponding
surface DC offsets to the Z value, and calls li3MultiSpan() . See page 216 for
information on texture mapping. To render hollow triangles or edges, the
function converts the triangle point list into point lists for multipolylines,
assigns the current stroke, and calls the device pipeline li2MultiPolyline()
function.

324 XGL Device Pipeline Porting Guide—August 1994

9

li2TriangleStrip() - 3D

Overview
This function handles single-facing triangle strips.

Syntax
void XglDpCtx3d::li2TriangleStrip(

XglPrimData*pd);

Input Parameters
pd An XglPrimData object containing point lists of single-

facing triangle strips in device coordinates.

Attributes
A device pipeline must handle the following attributes in addition to the
surface attributes listed in Table 9-10 on page 309.

XglLevel::getRenderFlags()
XglContext3d::getDepthCueInterp()
XglContext3d::getDepthCueMode()
XglContext3d::getHlhsrMode()

Description of the Software Pipeline li2TriangleStrip Function
The software pipeline li2TriangleStrip() function first processes the
input point lists into separate triangles. Then, for filled surfaces, the function
scan converts the triangle strips into lists of spans. It handles color selection
and texture mapping, adds the corresponding DC offsets to the Z value, and
calls li3MultiSpan() . See page 216 for information on texture mapping.

To render hollow surfaces or edges, the function converts the triangle point list
into lists of points for multipolyline, handles color selection, assigns the
current stroke, and calls li2MultiPolyline() .

Writing Loadable Interfaces 325

9

LI-3 Functions

About the LI-3 Layer

The LI-3 layer is the lowest level of the XGL interface hierarchy. The LI-3 layer
consists of control functions, primitive functions, and begin/end batching
functions. It also includes functions that copy pixel data to and from buffers
managed by the device pipeline. The primitive functions are listed in
Table 9-13.

The control functions set the attributes for LI-3 primitives. The begin/end
batching functions are used to indicate that a series of the same LI-3 primitives
will be sent and that the state will not change between successive calls. This
allows the device pipeline some opportunities for optimization when
implementing LI-3.

There is no software pipeline implementation of the LI-3 functions; therefore,
each device pipeline must implement all of the LI-3 operators for 2D and 3D
primitives. However, to help you with this task, there is a set of utilities called
RefDpCtx (Reference Device Pipeline Context), which implements the LI-3
layer. RefDpCtx is built on a simple get-pixel and put-pixel interface; it is not
meant to provide fast performance but to enable the device pipeline to get XGL
running relatively quickly. See “RefDpCtx” on page 348 for more details on
using RefDpCtx to implement the LI-3 layer.

Note that although the 2D versions of the primitive functions are
straightforward, the 3D versions are more complicated because they must
support antialiasing, shading, and texture mapping. The 3D version of LI-3 is
perhaps more complex than it should be; however, you can use RefDpCtx to
implement the difficult cases.

Table 9-13 LI-3 Primitive Functions

Function Description

li3MultiDot() Draws a list of dots.

li3MultiSpan() Draws a list of horizontal spans.

li3Vector() Draws a single vector.

326 XGL Device Pipeline Porting Guide—August 1994

9

Notes on Implementing LI-3 Functions

The main caller of LI-3 functions is the software pipeline LI-2 layer (the device
pipeline could call its own LI-3 functions, but that is not very likely). The
calling sequence from the software pipeline LI-2 layer to the device pipeline
LI-3 layer is:

set Context attributes (if needed)

li3Set<Prim>Control (if needed)

li3Begin(<Prim>)

li3<Prim> (called as many times as needed)

li3End(<Prim>)

where <Prim> is one of the LI-3 primitive functions. All device pipeline LI-3
primitives called by the software pipeline are surrounded by li3Begin() and
li3End() calls. Within the li3Begin() /li3End() pair, only the primitive
type specified in the li3Begin() function can be called, and no other Context
or primitive functions can be called. Within a begin/end, neither the Context
nor the LI-3 state will change, and the device pipeline can continue to render.
li3Begin() returns a Boolean value: TRUE means that the LI-3 primitive will
be visible when rendered; FALSE means that the LI-3 primitive function will
not draw anything because the window is obscured, so the device pipeline
may not want to call the primitive function.

The LI-3 implementation must take into account the color type of the Device
and the color type specified by the XGL API. To do this, the LI-3
implementation may want to get the following information from the Device.

XglRaster::getDoPixelMapping()

XglDevice::getColorType()

XglDevice::getRealColorType()

XglDevice::getCmap()

XglDevice::getDrawable()

The LI-3 implemenation also must be aware of the rendering buffer as
specificed by:

XglContext::getRenderBuffer()

Writing Loadable Interfaces 327

9

All LI-3 2D functions receive geometry data in 2D integer Device Coordinates.
The geometry will be within the bounds of the Device, but it is up to the LI-3
implementation to clip the primitives to the window clip list. All 3D LI-3
geometric coordinates are specified in floating 3D Device coordinates and, as
such, may have fractional components for the coordinate values.

Attributes relevant to the LI-3 functions are listed on the page for each function
description.

Note – As in the other LI layers, LI-3 requires that window locking be done
around each LI-3 rendering call.

Picking at LI-3

The 3D LI-3 primitive functions return a Boolean parameter picked. This
parameter returns TRUE if the primitive was picked via Z-buffer-based picking
(if Z-buffering is on and picking is on). LI-1 and LI-2 will have already pruned
the geometric data to be inside the pick aperture; LI-3 functions must test if the
geometry is visible based upon the Z comparison method.

The picked return value is an optimization for LI-2. If the return value is TRUE,
then LI-2 can stop sending primitives. The software pipeline LI-2 function
which calls LI-3 will update the pick buffer. It is allowable, however, for LI-3 to
always return FALSE, but in this case, the LI-3 function must update the pick
buffer by using the XglContext function ctx->addPickToBuffer
(Xgl_usgn32 pick_id1, Xgl_usgn32 pick_id2). The device pipeline code need
only fill in the picked parameter if picking is enbled. If picking is disabled, it
can be ignored.

Note – LI-3 functions are only called to do picking if Z-buffering is enabled.

Where to Look for More Information

For more information on LI-3 data structures and functions, refer to the header
files Li3Structs.h , Li3Structs2d.h , and Li3Structs3d.h . If you are
planning on using RefDpCtx, refer to RefDpCtx.h , RefDpCtx2d.h , and
RefDpCtx3d.h .

.h

328 XGL Device Pipeline Porting Guide—August 1994

9

li3Begin() and li3End() - 2D/3D

Syntax
[2D]
Xgl_boolean XglDpCtx2d::li3Begin(

Xgli_layer_prim_2d prim_type);

void XglDpCtx2d::li3End(
Xgli_layer_prim_2d prim_type);

[3D]
Xgl_boolean XglDpCtx3d::li3Begin(

Xgli_layer_prim_3d prim_type);

void XglDpCtx::li3End(
Xgli_layer_prim_3d prim_type);

Input Parameters
prim_type The type of primitive that is called between the LI-3

Begin/End calls.

Attributes That the Device Pipeline Needs to Handle
There are no specific attributes used by these functions.

What You Need to Know to Implement li3Begin and li3End
li3Begin() specifies the beginning of a sequence of LI-3 primitives of type
prim_type; li3End() indicates the end of the sequence. In between the
Begin/End pair, only the specified LI-3 primitive function will be called, there
will not be any calls to other LI-3 functions or calls to the Context. It is
permissible for the implementation of li3Begin() to call WIN_LOCK and to
hold the lock until li3End() is called. However, the implementation must be
sure that the lock does not time out; that is, the implementation may have to
release and then reaquire the lock before li3End() is called.

li3Begin() returns TRUE if the primitive will be visible when rendered and
FALSE if it will not be. For example, the primitive would not be visible if the
window were completely covered.

Writing Loadable Interfaces 329

9

li3CopyFromDpBuffer() - 2D/3D

Syntax
[2D and 3D]
void XglDpCtx2d::li3CopyFromDpBuffer(

const Xgl_bounds_i2d* src_rect,
const Xgl_pt_i2d* dest_pos,
Xgl_buffer_sel sel,
XglPixRectMem* buf);

Input Parameters
src_rect A rectangle in the device pipeline’s coordinates (relative to

the origin of the window).

dest_pos The position to copy to (relative to the origin of buf).

sel Selects an image buffer in the pipeline, when the pipeline is
multi-buffering, to copy out of.

buf The PixRect buffer where the data is copied into.

Attributes That the Device Pipeline Needs to Handle
There are no specific attributes used by this function.

What You Need to Know to Implement li3CopyFromDpBuffer
This function copies pixel data from the device pipeline’s frame buffer into
memory. The memory is represent by a PixRectMem object (see PixRect.h
and PixRectMem.h). The PixRect is the same depth as the framebuffer.

Note – Currently, 2D li3CopyFromDpBuffer() is not called by the software
pipeline.

330 XGL Device Pipeline Porting Guide—August 1994

9

li3CopyToDpBuffer() - 2D

Syntax
void XglDpCtx2d::li3CopyToDpBuffer(

const Xgl_bounds_i2d* src_rect,
const Xgl_pt_i2d* dest_pos,
Xgl_buffer_sel sel,
const XglPixRectMem* buf,
Xgli_copy_to_dp_info* copy_info);

Input Parameters
src_rect A rectangle in buf’s coordinates.

dest_pos The position to copy to (relative to origin of the window).

sel An image buffer in the device pipeline, when the device
pipeline is multi-buffering, to copy into.

buf The PixRect buffer where the data is copied from.

copy_info Contains information about the incoming data such as the
color map and color type of the data.

Attributes That the Device Pipeline Needs to Handle
The Context attributes used by this function are:

XglContext::getRealPlaneMask()
XglContext::getRop()

What You Need to Know to Implement li3CopyToDpBuffer
This function copies pixel data to the device pipeline’s framebuffer out of
memory. The memory is represent by a PixRectMem object (see PixRect.h
and PixRectMem.h). The PixRect is the same depth as the frame buffer.

This function may be used to implement xgl_copy_buffer() in the future;
review the comments in the definition of Xgli_copy_to_dp_info in the file
Li3Structs.h .

Writing Loadable Interfaces 331

9

li3CopyToDpBuffer() - 3D

Syntax
void XglDpCtx3d::li3CopyToDpBuffer(

const Xgl_bounds_i2d* src_rect,
const Xgl_pt_i2d* dest_pos,
Xgl_buffer_sel sel,
const XglPixRectMem* buf,
Xgli_copy_to_dp_info* copy_info);

Input Parameters
src_rect A rectangle in buf’s coordinates.

dest_pos The position to copy to (relative to origin of the window).

sel An image buffer in the device pipeline, when the device
pipeline is multi-buffering, to copy into.

buf The PixRect buffer where the data is copied from.

copy_info Contains information about the incoming data such as the
color map and color type of the data. See Li2Structs.h .

Attributes That the Device Pipeline Needs to Handle
The Context attributes used by this function are:

XglContext::getBackgroundColor()
XglContext::getRealPlaneMask()
XglContext::getRop()
XglContext::getSurfFrontColor()

What You Need to Know to Implement 3D li3CopyToDpBuffer
This function copies pixel data to the device pipeline’s frame buffer out of
memory. The memory is represent by a PixRectMem object (see PixRect.h
and PixRectMem.h). The PixRect is the same depth as the frame buffer. If the
copy_info pointer is NULL, the implementation of li3CopyToDpBuffer()
operates as if a structure was given with copy_info->do_zbuffer set to
FALSE and copy_info->do_fill_style set to FALSE.

332 XGL Device Pipeline Porting Guide—August 1994

9

The Xgli_copy_to_dp_info structure is used to provide information for
li3CopyToDpBuffer() . The structure contains color map information for the
source PixRect or raster; the pipeline needs to process this information. The
structure also contains a flag to control whether the copy uses the Z-buffer.
This flag will be FALSE for 2D Contexts but may be TRUE for 3D Contexts. In
addition, the structure includes a flag for implementing fill style, but currently
this flag will always be FALSE. See Li3Structs.h for comments in the
definition of Xgli_copy_to_dp_info.

This function may be used to implement xgl_copy_buffer() in the future.
Currently, for 3D, li3CopyToDpBuffer() is used by the accumulation
operation and by xgl_image() .

Writing Loadable Interfaces 333

9

li3MultiDot() - 2D

Syntax
void XglDpCtx2d::li3MultiDot(

const XglPrimData* pd,
const Xgl_color* color);

Input Parameters
pd An XglPrimData object containing a list of point locations

for the marker positions.

color The color value for the marker, if applicable.

Attributes That the Device Pipeline Needs to Handle
The Context attributes used by this function are:

XglContext::getRealPlaneMask()
XglContext::getRop()

What You Need to Know to Implement li3MultiDot
This function draws a list of dots (i.e pixels) at the X,Y locations given in pd. If
color is not NULL, then all of the dots are draw in that color. If it is NULL, then
each dot is drawn in the color given by the per vertex color in pd.

334 XGL Device Pipeline Porting Guide—August 1994

9

li3MultiDot() - 3D

Syntax
void XglDpCtx3d::li3MultiDot(

const XglPrimData* pd,
const Xgl_color* color,
Xgl_boolean* picked);

Input Parameters
pd Locations of the rendered dots.

color Color of the dots.

Output Parameter
picked TRUE if the primitive has been picked by Z-buffer-based

picking.

Related Data Structures
const Xgli_dot_control_3d& li3GetDotControl() const;

void li3SetDotControl(const Xgli_dot_control_3d&);

typedef struct {
 Xgl_boolean do_aa;

 // This is ignored if do_aa is FALSE.
 Xgli_aa_info aa_info;

 Xgl_usgn32 unused[4];
} Xgli_dot_control_3d;

Attributes That the Device Pipeline Needs to Handle
The Context attributes used by this function are:

XglContext::getPickEnable()
XglContext::addPickToBuffer
XglContext::getPickId1()
XglContext::getPickId2()
XglContext::getBackgroundColor()
XglContext::getRealPlaneMask()

Writing Loadable Interfaces 335

9

XglContext::getRenderBuffer()
XglContext::getRop()
XglContext3d::getBlendFreezeZBuffer()
XglContext3d::getHlhsrData()
XglContext3d::getHlhsrMode()
XglContext3d::getZBufferCompMethod()
XglContext3d::getZBufferWriteMask()

What You Need to Know to Implement 3D li3MultiDot
This function draws a list of dots at the X,Y locations given in pd. If color is not
NULL, then all of the dots are draw in that color. If color is NULL, the each dot is
drawn in the color given by the per vertex color in pd.

The control structure specifies if dots are antialiased. If they are, then a dot will
touch more than one pixel.

336 XGL Device Pipeline Porting Guide—August 1994

9

li3Vector() - 2D

Syntax
Xgl_usgn32 XglDpCtx2d::li3Vector(

const Xgli_vector_2d* vector,
const Xgl_color* color);

Input Parameters
vector Pointer to a structure defining the vector. Refer to the

structure Xgli_vector_2d below.

color Color of the vector.

Related Data Structures
const Xgli_vector_control_2d& li3GetVectorControl() const;

void li3SetVectorControl(
const Xgli_vector_control_2d&);

typedef struct {
 Xgl_line_style line_style;// style for vector
 const XglLinePattern* pattern;// pattern to use

// for PATTERNED
// or ALT_PATTERNED

 const Xgl_color* alt_color;// ALT_PATTERNED color
} Xgli_line_style_info;

typedef struct {
 Xgli_line_style_info line_style_info;
 Xgl_usgn32 unused[4];
} Xgli_vector_control_2d;

typedef struct {
 Xgl_pt_i2d* p1; // end point 1
 Xgl_pt_i2d* p2; // end point 2
 Xgl_boolean draw_last_pixel; // controls whether last
 // pixel is drawn.
 // the following is used for PATTERNED or ALT_PATTERNED vectors;
 Xgl_usgn32 pat_offset; // pattern offset
} Xgli_vector_2d;

Writing Loadable Interfaces 337

9

Attributes That the Device Pipeline Needs to Handle
The Context attributes used by this function are:

XglContext::getRealPlaneMask()
XglContext::getRop()

What You Need to Know to Implement li3Begin and li3End
The li3Vector() function draws a vector from vector->p1 to
vector->p2 . The function returns the number of pixels that will be drawn for
the vector if it is not window clipped. This information is used by the software
pipeline LI-2 to manage the pattern information for a polyline. If the flag
vector->draw_last_pixel is TRUE, the whole vector is drawn, if it is FALSE, then
the last pixel in the vector is not drawn.

The parameter color gives the color for the line and for the foreground pixels in
an alt-patterned vector. The line_style_info argument controls whether the
vector is solid, patterned or alt patterned. The line_style_info->pattern argument
gives the pattern information.

338 XGL Device Pipeline Porting Guide—August 1994

9

li3Vector() - 3D

Syntax
Xgl_usgn32 XglDpCtx3d::li3Vector(

const Xgli_vector_3d* vector,
const Xgl_color* color,
Xgl_boolean* picked);

Input Parameters
vector Pointer to a structure defining the vector. Refer to the

structure Xgli_vector_3d below.

color Color of the vector.

Output Parameter
picked TRUE if the primitive has been picked by Z-buffer-based

picking.

Related Data Structures
const Xgli_vector_control_3d& li3GetVectorControl() const;

void li3SetVectorControl(const Xgli_vector_control_3d&);

typedef struct {
 Xgli_line_style_info line_style_info;
 Xgli_blend_type blend_type;
 union {
 Xgli_transp_info transp_info; // if a vector is

// used to draw hollow;
// it could be transparent.

 Xgli_aa_info aa_info;
 } blend_info;
 Xgl_usgn32 unused[4];
} Xgli_vector_control_3d;

Writing Loadable Interfaces 339

9

typedef struct {
 Xgl_pt_f3d* p1; // end point 1
 Xgl_pt_f3d* p2; // end point2
 Xgl_color* p1_color;
 Xgl_color* p2_color;
 Xgl_color* p1_alt_color; // alt color for
 // alt patterning
 Xgl_color* p2_alt_color;
 Xgl_boolean draw_last_pixel; // controls if last pixel
 // is drawn.
 // the following is used for patterned vectors
 Xgl_usgn32 pat_offset; // pattern offset
 Xgl_usgn32 unused[8];
} Xgli_vector_3d;

Attributes That the Device Pipeline Needs to Handle
The Context attributes used by this function are:

XglContext::getPickEnable()
XglContext::addPickToBuffer
XglContext::getPickId1()
XglContext::getPickId2()
XglContext::getBackgroundColor()
XglContext::getRealPlaneMask()
XglContext::getRenderBuffer()
XglContext::getRop()
XglContext3d::getBlendFreezeZBuffer()
XglContext3d::getHlhsrData()
XglContext3d::getHlhsrMode()
XglContext3d::getZBufferCompMethod()
XglContext3d::getZBufferWriteMask()

What You Need to Know to Implement 3D Li3Vector
This function draws a vector from vector->p1 to vector->p2. The function returns
the number of pixels would be drawn for the vector if it is not window
clipped. This information is used by the software pipeline LI-2 to manage the
pattern information for a polyline. If the flag vector->draw_last_pixel is TRUE,
the whole vector is drawn; if it is FALSE, then the last pixel in the vector is not
drawn.

340 XGL Device Pipeline Porting Guide—August 1994

9

The parameter color gives the color for the line and for the foreground pixels
in an alternate patterned vector. If color is NULL, then vector->p1_color and
vector->p2_color values are interpolated.

The line_style_info controls if the vector is solid, patterned or alt patterned.
line_style_info->pattern gives the pattern information.

If the line style is alt-patterned and vector->pt1_alt_color and
vector->pt2_alt_color are not NULL, then these colors are interpolated, and the
interpolated color is used as the alternate pattern color. It is possible to
interpolate the primary colors for the vector and use a constant alt color. In this
case, vector->pt1_alt_color and vector->pt2_alt_color will be NULL, and the
line_style_info.alt_color will be used.

The control structure allows for using vectors to implement transparent,
hollow polygon edges, but we do not support this in XGL 3.0.1.

Vectors may be antialiased. The rule for determining if a vector is antialiased
is:

// For now blending is only done when apiColorType is RGB
control.do_blend = ((vecCtrl.blend_info.aa_info.blend_eq !=
 XGL_BLEND_NONE)

&& (vecCtrl.blend_info.aa_info.filter_width > 1)
&& (vecCtrl.blend_type == XGLI_BLEND_TYPE_AA)
&& (apiColorType == XGL_COLOR_RGB));

Writing Loadable Interfaces 341

9

li3MultiSpan() - 2D

Syntax
void XglDpCtx2d::li3MultiSpan(

const Xgli_span_list_2d* span_list,
const Xgl_color* color);

Input Parameters
span_list Pointer to a structure defining the list of spans to be

rendered. Refer to the structure Xgli_span_list_2d below.

color Controls the color of the spans in the list.

Related Data Structures
const Xgli_span_control_2d&li3GetSpanControl() const;
void li3SetSpanControl(const Xgli_span_control_2d&);

typedef struct {
 Xgl_surf_fill_style fill_style;
 const XglRasterMem* fill_raster;
 Xgl_pt_i2d offset; // DC coord offset for
 // realizing Fpat
 // position attribute.
} Xgli_fill_style_info;

typedef struct {
 Xgli_fill_style_info fill_style_info;
 Xgl_usgn32 unused[4];
} Xgli_span_control_2d;

typedef struct {
 Xgl_usgn32 num_x;
 Xgl_usgn32 y_start;
 Xgl_usgn32 x_start;
 Xgl_sgn32 x_delta; // either +1 or -1
 Xgl_color* color;
} Xgli_span_2d;

typedef struct {
 Xgl_usgn32 num_spans;
 Xgli_span_2d *spans;
} Xgli_span_list_2d;

342 XGL Device Pipeline Porting Guide—August 1994

9

Attributes That the Device Pipeline Needs to Handle
The Context attributes used by this function are:

XglContext::getRealPlaneMask()
XglContext::getRop()
XglContext::getBackgroundColor() (for opaque stipple filled
patterns)

What You Need to Know to Implement li3MultiDot
This function draws a list of spans. A span is a horizontal run of pixels given
by a starting X and Y location and the number of pixels to draw in the X
direction. The X direction may be either to the left or to the right of the starting
location.

The color parameter controls if all of the spans are drawn in the same color
(then this parameter is not NULL) or if the color field in the span structure
specifies the color for each span (then this parameter is NULL).

Spans can be filled with a pattern. The fill_style_info control fields specify the
fill style for the spans and give the raster pattern to use for patterned spans.

Writing Loadable Interfaces 343

9

li3MultiSpan() - 3D

Syntax
void XglDpCtx3d::li3MultiSpan(

const Xgli_span_list_3d* span_list,
const Xgl_color* color,
Xgl_boolean* picked);

Input Parameters
span_list Pointer to a structure defining the list of spans to be

rendered. Refer to the structure Xgli_span_list_3d below.

color Controls the color of the spans in the list.

Output Parameter
picked TRUE if the primitive has been picked by Z-buffer-based

picking.

Related Data Structures
const Xgli_span_control_3d&li3GetSpanControl() const;

void li3SetSpanControl(const Xgli_span_control_3d&);

typedef struct {
 Xgli_fill_style_info fill_style_info;

 Xgli_blend_type blend_type; // only NONE,
 // SCREEN_DOOR,
 // or TRANSP
 Xgli_transp_info transp_info;

 Xgl_boolean do_texturing;
 Xgl_boolean do_lighting;
 Xgl_usgn32 unused[4];
} Xgli_span_control_3d;

typedef struct {
 Xgl_usgn32 num_x;

 Xgl_usgn32 y_start; // Y start value
 Xgl_usgn32 x_start; // X start value

344 XGL Device Pipeline Porting Guide—August 1994

9

 Xgl_sgn32 x_delta; // either +1 or -1
 Xgli_fixed_z z_start; // Z start
 Xgli_fixed_z z_delta; // Z increment
 double w_start;
 double w_delta;

 /* These colors use Xgli_fixed_xy representation for indexed
 colors. The colors are interpolated in fixed point and LI3
 then truncates to an integer.
 */
 Xgl_color color_start;
 Xgl_color color_delta;

 XgliUvSpanInfo3d uv_info;
 Xgl_usgn32 unused[8];
} Xgli_span_3d;

typedef struct {
 Xgl_usgn32 num_spans;
 Xgli_span_3d *spans;

 Xgl_usgn32 unused[4];
} Xgli_span_list_3d;

Attributes That the Device Pipeline Needs to Handle
The Context attributes used by this function are:

XglContext::getPickEnable()
XglContext::addPickToBuffer
XglContext::getPickId1()
XglContext::getPickId2()
XglContext::getBackgroundColor()
XglContext::getRealPlaneMask()
XglContext::getRenderBuffer()
XglContext::getRop()
XglContext3d::getBlendFreezeZBuffer()
XglContext3d::getHlhsrData()
XglContext3d::getHlhsrMode()
XglContext3d::getZBufferCompMethod()
XglContext3d::getZBufferWriteMask()
XglContext3d::getDepthCueMode() (for texture mapping)

Writing Loadable Interfaces 345

9

What You Need to Know to Implement 3D li3MultiSpan
This function draws a list of spans. A span is a horizontal run of pixels given
by a starting X and Y location and the number of pixels to draw in the X
direction. The X direction may be either to the left or to the right of the starting
location.

The color parameters controls if all of the spans are drawn in the same color
(then this parameter is not NULL) or if the color field in the span structure
specifies the color for each span (then this parameter is NULL). If the color is
given per span, then the color is interpolated using the color_start and
color_delta fields.

When the color type is indexed and interpolation is being done, the colors in
Xgli_span_3d are treated as fixed point numbers (Xgli_fixed_xy in
FixedPoint.h). As an example, in Xgli_span_3d, color_start.index should be
cast to a Xgli_fixed_xy.

 Spans can also be filled with a pattern. The fill_style_info control fields specifies
the fill style for the spans and gives the raster pattern to use for patterned
spans.

Spans can be rendered with transparency value and a transparency mode
(either screen door or blended transparency); the field blend_type in the the
control structure manages blending.

In addition, spans can be filled with a texture-mapped pattern. If the
do_texturing field in Xgli_span_control_3d is TRUE, spans are rendered with a
texture-mapped pattern. The information needed to texture a span is passed
from LI-2 in the uv_info field of the Xgli_Span_3d structure. Texture mapping is
implemented in RefDpCtx. If you choose not to use RefDpCtx but want to
implement texture mapping, you can call the utility XgliUtCalcTexturedColor.
See Chapter 10, “Utilities”.

XGL uses hyperbolic interpolation to arrive at an intermediate (u,v) in a span.
The class XgliUvSpanInfo3d encapsulates the Data Map Texture object (u,v)
numerator, denominator, (u,v) deltas, the start MipMap level, and the delta for
the span. In addition, it has the lighting coefficients that are used if lighting is
applicable.

XgliUtUvSpanInfo3d provides functions to retrieve this information and
increment the information as the span is traversed. The interfaces provided by
this class are:

346 XGL Device Pipeline Porting Guide—August 1994

9

void setNumInfo(Xgl_usgn32 n)

This function sets the number of of texture coordinates (u,v) and related
information that needs to be stored in the class. (This corresponds to the
number of data maps that are active). This function allocates the neccesary
space for the storage.

Xgl_usgn32getNumInfo() const

This function returns the number of sets of texture coordinate ({u,v}) values.

Xgli_light_and_uv_info* getLightAndUvInfo()

This function returns a structure that contains the {u,v} related fields such as
numerator and delta (for hyperbolic interpolation), the start mipmap level
and delta for the span as well as lighting coefficients and delta for the span.
The function is called when various fields need to be filled in.

void getPixelDataInfo(Xgli_pixel_data_info*) const

This function takes the current value of texture coordinates ({u,v}) and light
coefficients at a pixel location, does a perspective divide, and returns the
values. The value returned is the texture coordinate ({u,v}) that is used to
look up in the texture map, and the lighting coefficients used to light the
pixel. Note that since there can be multiple data maps(and several textures
within a data map) that are active. The structure has an array of {u,v}
corresponding to the number of data map objects that are active.

void incrementLightAndUvInfo()

This function increments the pixel information as it proceeds along the span.
Typically, for each pixel the caller uses getPixelDataInfo() to get the
{u,v} and lighting values for that pixel and then increments the pixel
information to reflect the correct values for the next pixel in the span.

347

Utilities 10

This chapter provides information on XGL utilities. XGL utilities are designed
to perform specific operations and are useful for special case processing. Utility
classes have Ut in the name, for example XgliUtFooBar. The utilities are part of
the core XGL library; they are not in a separately loaded library.

Most XGL utilities are found in these header files:

• RefDpCtx.h,RefDpCtx2d.h , and RefDpCtx3d.h

• CheckBbox.h

• CopyBuffer.h

• PgonClass.h

• Utils3d.h

• utils.h

.h

348 XGL Device Pipeline Porting Guide—August 1994

10

RefDpCtx
RefDpCtx (Reference Device Pipeline Context) is a utility object that provides a
non-optimized implementation of LI-3 functions and several LI-1 pixel
functions for the device pipeline. Each device pipeline must implement the
LI-3 functions on its device. However, the pipeline can choose to use the
RefDpCtx LI-3 implementation of the LI-3 functions.

The way a device is described to the RefDpCtx object is through a number of
PixRect objects. These PixRect objects are abstractions of the buffers managed
by the device, for example, the image buffer, Z-buffer, and accumulation buffer.
The RefDpCtx object performs all operations for rendering at the LI-3 level,
including texture mapping, blending, and transparency. RefDpCtx uses the
methods of the PixRect object to read and write pixels.

Before you use RefDpCtx, you should consider the following design issues:

• Because RefDpCtx accesses the hardware via PixRect objects, the pipeline
must bracket calls to RefDpCtx with WIN_LOCK() and WIN_UNLOCK() calls.
It is up to the pipeline to manage window locking around a RefDpCtx call.

• The pipeline must communicate certain attribute changes to RefDpCtx. The
device pipeline itself receives information about attribute changes through
the device pipeline context object (objectSet()) at the various LI layers,
and it handles those changes internally. However, the RefDpCtx is a
separate utility object for the pipeline; therefore, the pipeline needs to pass
along information about attribute changes to this object as follows:
• The pipeline can determine itself whether specific attributes have changed

or whether the Device’s color map object changed. If either of these
changed, the pipeline can call RefDpCtx interfaces
generalGroupChanged() or cmapChanged() to tell RefDpCtx that
changes have occurred.

• RefDpCtx uses PixRects to represent the buffers of the device. PixRects
provide subclasses to handle memory-mapped buffers. If your device’s
buffers are not memory-mappable, you will have to create your own
subclass of PixRect to communicate with your device. See Chapter 4,
“Internal Data Storage” for information on PixRect objects.

Utilities 349

10

Using RefDpCtx

To use RefDpCtx for 2D, the pipeline needs a PixRect object to represent the
image buffer (or the current image buffer if multibuffering is in effect). For 3D,
the pipeline needs PixRect objects to represent the image buffer, the Z-buffer,
and the accumulation buffer.

To make the PixRects available to the RefDpCtx object, users of RefDpCtx2d
will call:

setImagePixRect() Assigns a PixRect for the image buffer.

setClipMaskPixRect() Assigns a Pixrect for the clip mask.

Users of RefDpCtx3d will call the above functions and the following:

setZbufferPixRect() Assigns a PixRect for the Z-buffer.

setAccumBufferPixRect() Assigns a PixRect for the accumulation buffer.

The example code below shows how a 3D pipeline might create RefDpCtx
object in its XglDpCtx class.

Once the PixRects are assigned to the RefDpCtx, the pipeline can use them to
render LI-3 functions. There is data associated with the RefDpCtx object, such
as plane mask, ROP, and Z-buffer compare method; therefore, the pipeline
must check the relevant state and update the RefDpCtx object if necessary.

XglDpCtx3dCfb::XglDpCtx3dCfb(XglDpDevCfb* dD,
 XglContext3d* ctx) :
 XglDpCtx3d(ctx),
 refDpCtx((XglRaster*)dD->getDevice(), ctx)
{
 dpDev = dD;
 drawable = dpDev->getDevice()->getDrawable();

 // the following XglDpDev functions are device-dependent
functions

// that return pointers to PixRects
refDpCtx.setImagePixRect(dpDev->getWinPixRect());

 refDpCtx.setZbufferPixRect(dpDev->getZbufferPixRect());
 refDpCtx.setAccumBufferPixRect(dpDev-
>getAccumBufferPixRect());
}

350 XGL Device Pipeline Porting Guide—August 1994

10

The example code below shows a 3D pipeline implementing LI-3 using
RefDpCtx LI-3 calls. Note that the calls to RefDpCtx rendering functions must
be bracketed by calls to lock and unlock the clip list. RefDpCtx calls the
PixRect functions getValue() and setValue() to modify the pixel values.
You can copy or modify this source code sample as long as the resulting code
is used to create a loadable pipeline for XGL.

const Xgli_span_control_3d&
XglDpCtx3dCfb::li3GetSpanControl() const
{
 return refDpCtx.li3GetSpanControl();
}

void XglDpCtx3dCfb::li3SetSpanControl(const
Xgli_span_control_3d&

sc)
{
 refDpCtx.li3SetSpanControl(sc);
}

void XglDpCtx3dCfb::li3MultiSpan(
const Xgli_span_list_3d* span_list,
const Xgl_color*color,
int* picked)

{
// Update RefDpCtx with attribute changes

WIN_LOCK(drawable);

// Handle window obscured or moved

refDpCtx.li3MultiSpan(span_list, color, picked);

WIN_UNLOCK(drawable);
}

Utilities 351

10

RefDpCtx Interfaces

The RefDpCtx classes include LI-1 and LI-3 functions; documentation on those
functions is provided in Chapter 9, “Writing Loadable Interfaces”. See the
header files RefDpCtx.h , RefDpCtx2d.h , and RefDpCtx3d.h for a complete
list of RefDpCtx interfaces.

The following functions are unique to RefDpCtx and its subclasses.

void setImagePixRect(XglPixRect*)

Sets the PixRect that represents the image buffer to draw into. If single
buffering is being used, this PixRect will be set once; if multi-buffering is
used, this PixRect will be changed.

void setClipMaskPixRect(XglPixRectMem* i,
Xgl_boolean no_need_to_clip)

Call when the clip list changes. The PixRect for the clip area is a 1-bit deep
pixrect that represents the mask for the clip area. This PixRect comes from
the XglDrawable function getMergeClipMask() .

void syncClipMask()

Gets the current clip mask from the Drawable. In the current
implementation, synclipMask() is called internally to ensure that the
current clip mask is always up to date.

void setDoMaskAndRop(Xgl_boolean)

Controls whether RefDpCtx does the plane mask and rop. If it returns TRUE,
the current plane mask and rop are used in calculating the pixel value. If it
returns FALSE, then the plane mask and rop are not applied.

void cmapChanged()

When XGL_CTX_DEVICE is passed through objectSet() , the device
pipeline should call this function to inform RefDpCtx that the Device’s
Color Map object has changed.

.h

352 XGL Device Pipeline Porting Guide—August 1994

10

void generalGroupChanged()

When XGL_CTX_PLANE_MASK (2D and 3D), XGL_CTX_ROP (2D and 3D),
and XGL_3D_CTX_Z_BUFFER_COMP_METHOD (3D only) are passed through
objectSet() , the device pipeline should call this function to inform
RefDpCtx that changes have occurred in plane mask, ROP, or Z-buffer
compare method.

void setZbufferPixRect(XglPixRect* z)

Sets the PixRect that represents the Z-buffer to hold Z values.

void setAccumBufferPixRect(XglPixRect* a)

Used by copy buffer during the accumulation operation.

3D Utilities
XGL utilities for 3D operations are in the header file Utils3d.h .

XgliUtAccumulate
void XgliUtAccumulate(

const XglPixRectMem* src_buf ,
const Xgl_bounds_i2d* rect ,
float src_wt ,
float dst_wt ,
XglPixRectMem* dst_buf ,
const Xgl_pt_i2d* dst_pos)

Accumulates from the source buffer src_buf to the destination buffer dst_buf.
rect and src_wt apply to the source buffer. pos and dst_wt apply to the
destination buffer.

Input Parameters
src_buf The source buffer used in the accumulation operation. The

source buffer should be a 32-bit pixrect.

rect The rectangle in the source buffer that needs to be
accumulated.

src_wt The source weight in the accumulation operation.

dst_wt The destination weight in the accumulation operation.

Utilities 353

10

dst_pos The position in the destination buffer to be used as starting
position.

Output Parameter
dst_buf The destination buffer in the accumulation operation. The

destination buffer is either a 32-bit or 48-bit Pixrect.

XgliUtCdAnnCircleApprox
Xgl_sgn32 XgliUtCdAnnCircleApprox(

XglContext3d * ctx ,
XglConicList3d * circle_list)

Evaluates the number of points to be used to approximate an annotation circle
when the value of the attribute XGL_CTX_NURBS_CURVE_APPROX is one of the
following:

XGL_CURVE_METRIC_WC
XGL_CURVE_METRIC_VDC
XGL_CURVE_METRIC_DC
XGL_CURVE_CHORDAL_DEVIATION_WC
XGL_CURVE_CHORDAL_DEVIATION_VDC
XGL_CURVE_CHORDAL_DEVIATION_DC

Input Parameters
ctx Pointer to a 3D Context.

circle_list Pointer to an XglConicList3d object containing a list of
circles or circular arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an annotation circle.

354 XGL Device Pipeline Porting Guide—August 1994

10

XgliUtAnnCircleApprox
Xgl_sgn32 XgliUtAnnCircleApprox(

XglContext3d * ctx ,
Xgl_circle_list * circle_list)

See XgliUtCdAnnCircleApprox for a description of the functionality.

Input Parameters
ctx Pointer to a 3D Context.

circle_list Pointer to a list of circles.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an annotation circle.

XgliUtAnnArcApprox
Xgl_sgn32 XgliUtAnnArcApprox(

XglContext3d * ctx ,
Xgl_arc_list * arc_list)

See XgliUtAnnArcApprox for a description of the functionality.

Input Parameters
ctx Pointer to a 3D Context.

arc_list Pointer to a list of arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an annotation arc.

Utilities 355

10

XgliUtCdAnnEllArcApprox
Xgl_sgn32 XgliUtCdAnnEllArcApprox(

XglContext3d * ctx ,
XglConicList3d * ell_list)

Evaluates the number of points to be used to approximate an annotation ellipse
when the value of the attribute XGL_CTX_NURBS_CURVE_APPROX is one of the
following:

XGL_CURVE_METRIC_WC
XGL_CURVE_METRIC_VDC
XGL_CURVE_METRIC_DC
XGL_CURVE_CHORDAL_DEVIATION_WC
XGL_CURVE_CHORDAL_DEVIATION_VDC
XGL_CURVE_CHORDAL_DEVIATION_DC

Input Parameters
ctx Pointer to a 3D context.

ell_list Pointer to an XglConicList3d object containing a list of
elliptical arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an annotation ellipse.

XgliUtAnnEllArcApprox
Xgl_sgn32 XgliUtAnnEllArcApprox(

XglContext3d * ctx ,
Xgl_ell_list * ell_list)

See XgliUtAnnEllArcApprox for a description of the functionality.

Input Parameters
ctx Pointer to a 3D context.

ell_list Pointer to a list of ellipses.

356 XGL Device Pipeline Porting Guide—August 1994

10

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an annotation ellipse.

XgliUtCalcDcueIndex
void XgliUtCalcDcueIndex(

XglContext3d* ctx3d ,
XglViewGrp3dItf* view_itf ,
Xgl_color* color_in ,
float z ,
Xgl_color* color_out)

Used when the color type is XGL_COLOR_INDEX and thus expects colors in the
INDEX format. The function depth cues a input color color_in given the Z (in
DC) value at which to depth cue the color.

Input Parameters
ctx3d The Context used in rendering the primitive.

view_itf The view group interface from which the depth cue planes
in DC and the DC viewport is used in calculating the depth
cue color.

color_in The color to be depth cued

z The Z value (in DC) at which to depth cue.

Output Parameter
color_out The depth cued color

Utilities 357

10

XgliUtCalcDcueRgb
void XgliUtCalcDcueRgb(

XglContext3d* ctx3d ,
XglViewGrp3dItf* view_itf ,
Xgl_color* color_in ,
float z,
Xgl_color* color_out)

Used when the color type is XGL_COLOR_RGB and thus expects colors in the
RGB format. The function depth cues a input color color_in given the Z (in DC)
value at which to depth cue the color.

Input Parameters
ctx3d The Context used in rendering the primitive.

view_itf The view group interface from which the depth cue planes
in DC and the DC viewport is used in calculating the depth
cue color.

color_in The color to be depth cued.

z The Z value in DC at which to depth cue.

Output Parameter
color_out The depth cued color

XgliUtCalcDoubleCircle
void XgliUtCalcDoubleCircle(

float * mem,
Xgl_sgn32 n_steps ,
float d_angle)

Calculates the points (x, y) on the unit circle which subdivides the unit circle
into (n_steps - 1) segments. The calculated points (x,y) are stored twice in
the array mem. The first copy of the points (x,y) is stored in:

(mem[0], mem[2*n_steps]), (mem[1], mem[2*n_steps+1]), ... ,
(mem[n_steps-2],mem[3*n_steps-2]),(mem[n_steps-1],mem[3*n_steps -1])

358 XGL Device Pipeline Porting Guide—August 1994

10

The second copy of the points is stored in:

(mem[n_steps], mem[3*n_steps]), (mem[n_steps+1], mem[3*n_steps+1]),... ,
(mem[2*n_steps-2], mem[4*n_steps-2]), (mem[2*n_steps-1], mem[4*n_steps-1])

Input Parameters
n_steps An integer indicating that the unit circle is subdivided into

(n_steps - 1) segments.

d_angle The angle in radian formed by two consecutive subdivision
points on the unit circle with the center of the unit circle.

Output Parameter
mem An array of floats allocated by the caller. The size of the

array is 4*n_steps . This array will hold the points
calculated by this utility.

XgliUtCalcLightingCompRgb
void XgliUtCalcLightingCompRgb(
 XglContext3d* ctx ,
 XglViewGrp3dItf* view_itf ,
 Xgl_pt_f3d* normal ,
 Xgl_pt_f3d* point ,
 const Xgli_surf_attr_3d* surf ,
 Xgl_boolean front_flag ,
 Xgl_color* comp_A,
 Xgl_color* comp_B)

This routine takes an input point and normal and calculates the two color
components necessary for texture mapping at that point. Consult the texture
mapping documentation for more details regarding the color components and
their use. This routine can only be used if the XGL color type is
XGL_COLOR_RGB.

Input Parameters
ctx Context containing light sources and lighting parameters.

view_itf View group interface used to obtain transformed light
positions/directions.

Utilities 359

10

normal Input facet or vertex normal (depending on whether the
illumination is per_vertex, or per_facet, respectively).

point Input 3D point.

surf Surface attributes, either front or back.

front_flag Flag indicating whether the normal is front facing.

Output Parameters
comp_A; comp_B Lighting components to be used during scan conversion by

the texture mapping code. comp_A is the color scale factor,
while comp_B is the offset.

XgliUtCalcLightingRgb and XgliUtCalcLightingIndex
void XgliUtCalcLighting{Rgb,Index}(
 XglContext3d* ctx ,
 XglViewGrp3dItf* view_itf ,
 Xgl_color* color_in ,
 Xgl_pt_f3d* normal ,
 Xgl_pt_f3d* point ,
 const Xgli_surf_attr_3d* surf ,
 Xgl_boolean front_flag ,
 Xgl_color* color_out)

These routines apply the current light sources and lighting parameters to the
input color, normal, and 3D point and returns a new, calculated color.
XgliUtCalcLightingRgb can only be used if the XGL color type is
XGL_COLOR_RGB. The corresponding utility XgliUtCalcLightingIndex is
used in the case of XGL_COLOR_INDEX.

Input Parameters
ctx XGL Context containing light sources and lighting

parameters.

view_itf View group interface used to obtain transformed light
positions/directions.

color_in Input color.

normal Input facet or vertex normal (depending on whether the
illumination is per_vertex, or per_facet, respectively).

point Input 3D point.

360 XGL Device Pipeline Porting Guide—August 1994

10

surf Surface attributes, either front or back.

front_flag Flag indicating whether the normal is front facing.

Output Parameter
color_out The output color, adjusted for the Context lighting values.

XgliUtCalcSingleCircle
void XgliUtCalcSingleCircle(

float * mem,
Xgl_sgn32 n_steps)

Calculates the points (x,y) on the unit circle which subdivides the unit circle
into (n_steps - 1) equal segments. The calculated points (x,y) are stored in
the array mem in the following way:

(mem[0], mem[n_steps]), (mem[1], mem[n_steps+1]), ...,
(mem[n_steps-2],mem[2*n_steps-2]),(mem[n_steps-1],mem[2*n_steps-1])

Input Parameters
n_steps An integer indicating that the unit circle is subdivided into

(n_steps - 1) segments.

Output Parameter
 mem An array of floats allocated by the caller. The size of the

array is 2*n_steps . This array will hold the points
calculated by this utility.

Utilities 361

10

XgliUtCalcTexturedColor
void XgliUtCalcTexturedColor(
 XglContext3d* ctx ,
 const XgliUvSpanInfo3d* data_info ,
 Xgl_color* obj_clr ,
 Xgl_boolean do_lighting ,
 Xgl_usgn32 z,
 Xgl_color* color_out)

Applies the texture maps in the current ctx. does lighting and depth cueing
and returns the textured pixel. The caller passes as input the texture coordinate
(u, v) of the pixel and the lighting components at the pixel (these are
encapsulated in data_info). Thus, this utility does texture lookup and
interpolation based on the (u, v) value, followed by color composition of the
texel with the object color obj_clr to obtain the textured color. It also does
lighting and depth cueing if applicable.

Input Parameters
ctx Context whose textures are applied.

data_info Contains the texture coordinate (u, v) (before the divide by
1/w) as well as the lighting components at that pixel.

obj_clr Pixel color before the texturing operation. This is the
intrinsic color of the pixel.

do_lighting If TRUE, lighting is performed.

z Z value in DC of the pixel, used when performing depth
cueing.

Output Parameter
color_out The output color after textures have been applied and

lighting and depth cueing have been performed.

362 XGL Device Pipeline Porting Guide—August 1994

10

XgliUtCalc3dTriOrientation
int XgliUtCalc3dTriOrientation(

Xgl_pt_f3d* v1 ,
Xgl_pt_f3d* v2 ,
Xgl_pt_f3d* v3 ,
Xgl_pt_f3d* fn)

Provides the winding of the points of a triangle given its three vertices and the
facet normal.

Input Parameters
v1 Coordinates of vertex 1.

v2 Coordinates of vertex 2.

v3 Coordinates of vertex 3.

fn Facet normal of the face.

Output Parameter
None.

Return Value
Returns the orientation, which can be either XGLI_PGON_ORIENT_CW or
XGLI_PGON_ORIENT_CCW.

XgliUtComputeColorComp
void XgliUtComputeColorComp(

Xgli_acolor* tex_clr ,
Xgl_color* obj_clr ,
Xgl_texture_desc* tex_desc ,
Xgl_color* out_clr)

Takes an incoming color obj_clr and combines it with the texel tex_clr in a
manner described in the tex_desc. The result of this color composing is returned
in out_clr.

Utilities 363

10

Input Parameters
tex_clr The texel value that should be used in color composition.

obj_clr The object color that should be combined with the texel.

tex_desc The texture descriptor that contains the color composition
method to use.

Output Parameter
out_clr The output color after color composition.

XgliUtComputeColorInterp
void XgliUtComputeColorInterp(

Xgli_pt_uv_info* pdata ,
Xgl_texture_desc* tex_desc ,
Xgli_acolor* texel)

Takes as input the texture coordinate (u, v) and the MipMap level (in which
this pixel is located) encapsulated in pdata and the texture descriptor tex_desc
that should be used to do the texture lookup and interpolation to obtain the
texture value.

Input Parameters
pdata Contains the texture coordinate (u, v) and the MipMap

level of the pixel.

tex_desc The texture descriptor that should be used for lookup and
interpolation.

Output Parameter
texel The output color after applying lookup and interpolation.

Note that the type is Xgli_acolor, thus the returned value
will have an alpha value as well.

364 XGL Device Pipeline Porting Guide—August 1994

10

XgliUtComputeDiffuseColor
void XgliUtComputeDiffuseColor(

Xgli_pixel_data_info* pdata ,
Xgl_color* in_clr ,
Xgl_color* out_clr)

Takes the intrinsic color in_clr and applies the texture maps that apply to the
diffuse component. This involves texture lookup and interpolation to obtain
the texture value, composing the in_clr with the texture color to obtain the
out_clr.

Input Parameters
pdata This structure contains the texture maps that are active and

the associated texture coordinates (u, v).

in_clr Pixel color before the texturing operation. This is the
intrinsic color of the pixel.

Output Parameter
out_clr The output color (diffuse color) after applying the textures

that affect the diffuse component of the rendering pipeline.

XgliUtComputeFinalColor
void XgliUtComputeFinalColor(

Xgli_pixel_data_info* pdata ,
Xgl_color* in_clr ,
Xgl_color* out_clr)

Takes the depth cued color in_clr and applies the texture maps that apply to
the final (after depth cueing) component. This involves texture lookup and
interpolation to obtain the texture value, composing the in_clr with the texture
color to obtain the out_clr.

Input Parameters
pdata Contains the texture maps that are active and the

associated texture coordinates (u, v).

in_clr Pixel color before the texturing operation. This is the depth
cued color of the pixel.

Utilities 365

10

Output Parameter
out_clr The output color after applying the textures that affect the

final component of the rendering pipeline.

XgliUtComputeFn
int XgliUtComputeFn(

Xgl_operator op,
Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_usgn32 row_dim ,
Xgl_usgn32 col_dim ,
Xgl_usgn32 num_pt_lists ,
Xgl_pt_list* pl ,
Xgl_pt_f3d* facet_normal)

Computes the facet normal and returns the normals. For surfaces other than
quadmesh, the row_dim and col_dim are ignored. The utility provides the
option for normalizing.

Input Parameters
op Type of operator

geom_normal Geometry normal format as defined by the API attribute
XGL_3D_CTX_SURF_GEOM_NORMAL.

normalize If TRUE, normalizes the normal.

row_dim Number of rows when op is
XGL_OP_XGL_QUADRILATERAL_MESH. This parameter is
ignored for other ops.

col_dim Number of columns when op is
XGL_OP_XGL_QUADRILATERAL_MESH. This parameter is
ignored for other ops.

num_pt_lists Number of point lists in pl. For triangle strip and
quadmesh, num_pt_lists is assumed to be 1, so its value is
ignored.

pl Geometry information describing the primitive.

366 XGL Device Pipeline Porting Guide—August 1994

10

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated by the caller depends
on the primitive:

Multisimple polygon = num_pt_lists *
sizeof(Xgl_pt_f3d)

Triangle strip = (pl[0].num_pts - 2)
*sizeof(Xgl_pt_f3d)

Quadmesh = (row_dim - 1)*(col_dim-1) *
sizeof(Xgl_pt_f3d)

Polygon = sizeof(Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

XgliUtComputeFnReverse
int XgliUtComputeFnReverse(

Xgl_facet_list* fl ,
Xgl_usgn32 num_facets ,
Xgl_pt_f3d* fn)

Reverses the facet normals using the normals in fl.

Input Parameters
fl Input from which the facet normals should be reversed.

num_facets Number of facets or number of facet normals.

Output Parameter
fn Caller allocated structure in which to return the facet

normals. The memory to be allocated is:
num_facets * sizeof (Xgl_pt_f3d)

Return Value
Returns a 1 if the function is successful; otherwise, returns a 0.

Utilities 367

10

XgliUtComputeIndepTriFn
int XgliUtComputeIndepTriFn(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_pt_list* pl ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the facets in a set of independent triangles (a subset
of the triangle list primitive) from the point list and returns the computed
normals.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL

normalize If TRUE, normalizes the normal.

pl Data from which the normal should be calculated.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is:
(pl[0].num_pts - 2) * sizeof (Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

XgliUtComputeIndepTriFnPl
int XgliUtComputeIndepTriFnPl(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_pt_list* pl ,
Xgl_tlist_flags tlist_flags ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the facets in a set of independent triangles (a subset
of the triangle list primitive) from an input point list provided by the user and
returns the computed normals.

368 XGL Device Pipeline Porting Guide—August 1994

10

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL.

normalize If TRUE, normalizes the normal.

pl Vertex data.

tlist_flags Global triangle list flags which were passed into the
xgl_triangle_list() primitive.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is:
(pl[0].num_pts - 2) * sizeof (Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

XgliUtComputeMspFn
int XgliUtComputeMspFn(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_usgn32 num_pt_lists ,
Xgl_pt_list* point_list ,
Xgl_pt_f3d* facet_normal)

Computes the normals of the simple polygon in a multisimple polygon call
from the point_list and returns the computed normal.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL.

normalize If TRUE, normalizes the normal.

num_pt_lists Number of point lists in point_list.

point_list Data from which the normal should be calculated.

Utilities 369

10

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is:
num_pt_lists * sizeof (Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

XgliUtComputePolygonFn
int XgliUtComputePolygonFn(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_usgn32 num_pt_lists ,
Xgl_pt_list* point_list ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the polygon from the point list. The first non-
degenerate boundary of the polygon is used in the normal computation.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL

normalize If TRUE, normalizes the normal.

num_pt_lists Number of point lists in point_list.

point_list Data from which the normal is calculated.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is
sizeof (Xgl_pt_f3d) .

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

370 XGL Device Pipeline Porting Guide—August 1994

10

XgliUtComputeQuadMeshFn
int XgliUtComputeQuadMeshFn(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_usgn32 row_dim ,
Xgl_usgn32 col_dim ,
Xgl_pt_list* point_list ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the facets in the quadrilateral mesh from the point
data in point_list and returns the computed normals.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL.

normalize If TRUE, normalizes the normal

point_list Data from which the normal is calculated.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is: (row_dim - 1)
* (col_dim - 1) * sizeof(Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

XgliUtComputeReflectedColor
void XgliUtComputeReflectedColor(

Xgli_pixel_data_info* pdata ,
Xgl_color* in_clr ,
Xgl_color* out_clr)

Takes the diffuse color in_clr and applies the texture maps that apply to the
reflected component (after lighting). Applying the texture maps involves
texture lookup and interpolation to obtain the texture value, composing the
in_clr with the texture color to obtain the out_clr.

Utilities 371

10

Input Parameters
pdata Contains the texture maps that are active and the

associated texture coordinates (u, v).

in_clr Pixel color before the texturing operation. This is the lit
color of the pixel.

Output Parameter
out_clr The output color after applying the textures that affect the

reflected component of the rendering pipeline.

XgliUtComputeTstripFn
int XgliUtComputeTstripFn(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_pt_list* point_list ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the facets in the triangle strip.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL

normalize If TRUE, normalizes the normal.

point_list Data from which the normal is calculated.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is:
(pl[0].num_pts - 2) * sizeof (Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

372 XGL Device Pipeline Porting Guide—August 1994

10

XgliUtComputeTstripFnPl
int XgliUtComputeTstripFnPl(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_pt_list* point_list ,
Xgl_tlist_flags tlist_flags ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the facets in a triangle strip from an input point list
and returns the computed normals.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL

normalize If TRUE, normalizes the normal.

point_list Vertex data.

tlist_flags Global triangle list flags that were passed into the
xgl_triangle_list() primitive.

 Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is:
(pl[0].num_pts - 2) * sizeof (Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

Utilities 373

10

XgliUtComputeTstarFn
int XgliUtComputeTstarFn(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_pt_list* point_list ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the facets in the triangle star from the point_list and
returns the computed normals.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL

normalize If TRUE, normalizes the normal.

point_list Data from which the normal is calculated.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is:
(pl[0].num_pts - 2) * sizeof(Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

XgliUtComputeTstarFnPl
int XgliUtComputeTstarFnPl(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_pt_list* point_list ,
Xgl_pt_list* saved_pl ,
Xgl_tlist_flags tlist_flags ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the facets in a triangle star (a subset of the triangle
list primitive) from two input point lists provided by the user and returns the
computed normals. Two input point lists are necessary in case the triangle star

374 XGL Device Pipeline Porting Guide—August 1994

10

vertex data is non-contiguous. The first vertex in the saved_pl point list points
to the first vertex in the triangle star. All other vertices in the triangle star are
in point_list beginning with the second location in point_list.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL.

normalize If TRUE, normalizes the normal.

point_list Vertex data for the second point through the last points in
the triangle star.

saved_pl Vertex data for the first point in the triangle star.

tlist_flags Global triangle list flags that were passed into the
xgl_triangle_list() primitive.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is:
(pl[0].num_pts - 2) * sizeof (Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

XgliUtComputeVnReverse
int XgliUtComputeVnReverse(

Xgl_usgn32 num_pt_lists ,
Xgl_pt_list* point_list ,
Xgl_pt_f3d* vn)

This utility reverses the vertex normals in point_list.

Input Parameters
num_pt_lists Number of point lists in point_list.

point_list Input from which the vertex normals should be reversed. .

Utilities 375

10

Output Parameter
vn Caller allocated structure in which to return the reversed

vertex normals. The memory to be allocated is:
tot_num_pts * sizeof(Xgl_pt_f3d)

where tot_num_pts is initially zero and for each point in
the list tot_num_pts += pl[i].num_pts

Return Value
Returns a 1 if the function is successful; otherwise, returns a 0.

XgliUtComputeZTolerance
void XgliUtComputeZTolerance(

const Xgli_point_list* pl ,
float* z_offset)

Computes the z_offset using the input point list pl. Used either when drawing
edges or when the API attribute XGL_3D_CTX_SURF_DC_OFFSET is TRUE. The
output value is added to the Z values of the points when drawing edges so
that edges appear on top of the rendered surface. This value is also subtracted
from the points of a surface primitive if the API attribute
XGL_3D_CTX_SURF_DC_OFFSET is TRUE.

Input Parameters
pl Point list from which to calculate the Z offset.

Output Parameter
z_offset The value of the computed Z offset.

XgliUtCdDcCircleApprox
Xgl_sgn32 XgliUtCdDcCircleApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
XglConicList3d * circle_list)

Evaluates the number of points to be used to approximate a circle when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_DC or XGL_CURVE_CHORDAL_DEVIATION_DC.

376 XGL Device Pipeline Porting Guide—August 1994

10

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

circle_list Pointer to an XglConicList3d object containing a list of
circles or circular arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate a circle.

XgliUtDcCircleApprox
Xgl_sgn32 XgliUtDcCircleApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_circle_list * circle_list)

Evaluates the number of points to be used to approximate a circle when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_DC or XGL_CURVE_CHORDAL_DEVIATION_DC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

circle_list Pointer to a list of circles or circular arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate a circle.

Utilities 377

10

XgliUtDcArcApprox
Xgl_sgn32 XgliUtDcArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_arc_list * arc_list)

Evaluates the number of points to be used to approximate an arc when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_DC or XGL_CURVE_CHORDAL_DEVIATION_DC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

arc_list Pointer to a list of circular arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an arc.

XgliUtCdDcEllArcApprox
Xgl_sgn32 XgliUtCdDcEllArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
XglConicList3d * ell_list)

Evaluates the number of points to be used to approximate an ellipse when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_DC or XGL_CURVE_CHORDAL_DEVIATION_DC.

Input Parameters
ctx Pointer to a 3D context.

viewGrpItf Pointer to a 3D view group interface.

ell_list Pointer to an XglConicList3d object containing a list of
elliptical arcs.

378 XGL Device Pipeline Porting Guide—August 1994

10

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an ellipse.

XgliUtDcEllArcApprox
Xgl_sgn32 XgliUtDcEllArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_ell_list * ell_list)

Evaluates the number of points to be used to approximate an ellipse when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_DC or XGL_CURVE_CHORDAL_DEVIATION_DC.

Input Parameters
ctx Pointer to a 3D context.

viewGrpItf Pointer to a 3D view group interface.

ell_list Pointer to a list of elliptical arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an ellipse.

XgliUtFaceDistinguish
const Xgli_surf_attr_3d* XgliUtFaceDistinguish(

XglContext3d* ctx ,
Xgl_pt_f3d* normal ,
Xgl_pt_f3d* pt ,
XglViewGrp3dItf* view_itf)

Identifies a face to be either front-facing or back-facing.

Utilities 379

10

Input Parameters
ctx Context used in rendering the primitive.

normal The facet normal of the face that is being distinguished.

pt A point on the face that is being distinguished.

view_itf The view group from which the eye vector is used in
determining front versus back facing.

Output Parameter
None

Return Value
Returns either the front or back face attributes as a pointer to the
Xgli_surf_attr_3d structure.

XgliUtGetZCompFunc
void XgliUtGetZCompFunc(

Xgl_z_comp_method method ,
Xgl_boolean (** func)(Xgl_usgn32, Xgl_usgn32))

Returns the Z-comparision function func based on the Z-comparision method.

Input Parameter
method Z-comparison method for the function.

Output Parameter
func The Z-comparison function.

380 XGL Device Pipeline Porting Guide—August 1994

10

XgliUtIsScreenDoor
Xgl_boolean XgliUtIsScreenDoorTransparent(

XglContext3d * ctx ,
Xgl_boolean front)

Determines whether a surface is screen door transparent; ignores the blending
attributes.

Input Parameters
ctx Context from which attributes are obtained.

front If front is TRUE, the surface front attributes are checked;
otherwise, the back attributes are checked.

Output Parameter
None

Return Value
Returns TRUE if the surface is transparent and FALSE otherwise.

XgliUtIsScreenDoorTransparent
Xgl_boolean XgliUtIsScreenDoorTransparent(

XglContext3d * ctx ,
Xgl_boolean front)

Determines whether the surface has blended transparency.

Input Parameters
ctx Context from which attributes are obtained.

front If front is TRUE, the surface front attributes are checked;
otherwise, the back attributes are checked.

Output Parameter
None

Return Value
Returns TRUE if the surface is transparent and FALSE otherwise.

Utilities 381

10

XgliUtIsTransparent
Xgl_boolean XgliUtIsTransparent(

XglContext3d * ctx ,
Xgl_boolean front)

Determines whether a surface is transparent.

Input Parameters
ctx Context from which the attributes are obtained.

front If front is TRUE, the surface front attributes are checked;
otherwise, the back attributes are checked.

Output Parameter
None

Return Value
Returns TRUE if the surface is transparent and FALSE otherwise.

XgliUtIsTransparent
Xgl_boolean XgliUtIsTransparent(

float transparency ,
Xgl_transp_method transp_method ,
Xgl_blend_eq blend_eq)

This function is similar to the other XgliUtIsTransparent utility except that
it gets the API transparency attributes as arguments to the function.

Input Parameters
transparency Value of the attribute XGL_3D_CTX_FRONT_TRANSP or

XGL_3D_CTX_BACK_TRANSP. If face distinguishing is
FALSE, then transparency is front.

transp_method Value of XGL_3D_CTX_SURF_TRANSP_METHOD.

blend_eq Value of XGL_3D_CTX_SURF_TRANSP_BLEND_EQ.

Output Parameter
None

382 XGL Device Pipeline Porting Guide—August 1994

10

Return Value
Returns TRUE if the surface is transparent and FALSE otherwise.

XgliUtMeanWg
void XgliUtMeanWg(

Xgli_acolor* vector ,
Xgl_usgn32 siz ,
float* wg,
Xgl_usgn32 num_channel ,
Xgli_acolor* out_clr)

Accumulates the result of the product of the individual fields of vector array
with the corresponding entries in the wg array for as many entries as given by
siz. The number of channels in the vector array (and therefore in the out_clr) is
specified by num_channel.

Input Parameters
vector The vector array that is weighted and accumulated.

siz Number of entries in the vector array.

wg The weights by which the vector array should be
multiplied.

num_channel Number of channels of useful information (maximum of 4)
in the vector array.

Output Parameter
out_clr Output color.

XgliUtMellaToPline
Xgl_sgn32 XgliUtMellaToPline(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_ell_list * ell_list ,
Xgl_pt_list ** point_list ,
Xgl_facet_list ** facet_list)

Tessellates the 3D multielliptical arcs stored in ell_list.

Utilities 383

10

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

ell_list Pointer to a list of elliptical arcs.

Output Parameters
point_list Point lists of the tessellated elliptical arcs. Any space that is

required for the point lists is allocated by this routine.

facet_list Facet list of the tessellated elliptical arcs. Any space that is
required for the facet list is allocated by this routine. The
value of *facet_list on return will always be NULL if
XGL_CTX_ARC_FILL_STYLE is XGL_ARC_OPEN.

Return Value
Returns 1 if the elliptical arcs are successfully tessellated; otherwise, returns 0.

XgliUtModelClipMarker
Xgl_sgn32 XgliUtModelClipMarker(

XglContext3d* ctx ,
XglViewGrp3dItf* view_grp ,
Xgl_pt_list* pl_in ,
Xgl_pt_list** pl_out)

Takes a single point list stored in pl_in and model clips the points against the
current model clipping planes. Note that only the center points of the markers
are clipped – the individual marker shapes themselves are not.

Input Parameters
ctx Context from which attributes are obtained.

view_itf View group from which model clip planes are obtained.

pl_in Input point list. This argument is the point list passed to
li1MultiPolyline() .

Output Parameter
pl_out List of points containing only those that are within the

clipping planes.

384 XGL Device Pipeline Porting Guide—August 1994

10

Return Value
Returns the number of points in the output list. It is the responsibility of the
caller to free the memory that this routine allocates to hold the clipped points.

XgliUtModelClipMpline
Xgl_sgn32 XgliUtModelClipMpline(

XglContext3d* ctx ,
XglViewGrp3dItf* view_itf ,
Xgl_usgn32 num_plines ,
Xgl_pt_list* pl_in ,
Xgl_pt_list** pl_out)

Model clips a list of polylines against the current model clipping planes.

Input Parameters
ctx Context from which attributes are obtained.

view_itf View group from which model clip planes are obtained.

num_plines Number of point lists in pl_in.

pl_in Input point lists. This argument is the point list passed to
li1MultiPolyline() .

Output Parameter
pl_out Clipped output polyline(s). Any space that is required for

the polylines is allocated by this routine. It is the
responsibility of the caller to free any memory allocated by
this routine.

Return Value
Returns the number of point lists in the output. A return value of 0 indicates
that the entire multipolyline was trivially rejected.

Utilities 385

10

XgliUtModelClipMspg
Xgl_sgn32 XgliUtModelClipMspg(

XglContext3d* ctx ,
XglViewGrp3dItf* view_grp ,
Xgl_sgn32 num_pl ,
Xgl_pt_list* pl_in ,
Xgl_pt_list** pl_out ,
Xgl_facet_list* fl_in ,
Xgl_facet_list** fl_clipped)

This function is used to model clip lists of individual polygons, such as might
be specified by a call to xgl_multi_simple_polygon() . The function
handles multiple facets correctly, removing from the output list those that
correspond to polygons that are trivially rejected.

Input Parameters
ctx Context from which attributes are obtained.

view_itf View group from which model clip planes are obtained.

num_pl Number of point lists in pl_in.

pl_in Input point lists. This argument is the point list passed to
li1MultiPolyline() .

fl_in Input facet list.

Output Parameters
pl_out A list of point lists defining the clipped polygon.

fl_clipped Facet list for the clipped polygon.

Return Value
Returns the number of clipped bounds. The number of output bounds is
always less than or equal to the number of input bounds – extra point lists are
not introduced. The caller must free any memory allocated by this routine.

386 XGL Device Pipeline Porting Guide—August 1994

10

XgliUtModelClipPgon
Xgl_sgn32 XgliUtModelClipPgon(

XglContext3d* ctx ,
XglViewGrp3dItf* view_grp ,
Xgl_sgn32 num_pl ,
Xgl_pl_list* pl_in ,
Xgl_pl_list* * pl_out)

Model-clips an optionally multi-bounded polygon specified as a list of point
lists in the pl_in structure, against the current model clipping planes.

Note – This function is only appropriate for individual polygons. If more than
one point list is passed in then it is assumed that the polygon is multi-
bounded. Calling this routine with multi, separate bounded polygons may
result in incorrect data.

Input Parameters
ctx Context from which attributes are obtained.

view_itf View group from which model clip planes are obtained.

num_pl Number of point lists in pl_in.

pl_in Input point lists. This argument is the point list passed to
li1MultiPolyline() .

Output Parameter
pl_out A list of point lists defining the clipped polygon.

Return Value
Returns the number of clipped bounds. The number of output bounds is
always less than or equal to the number of input bounds – extra point lists are
not introduced. The caller must free any memory allocated by this routine.

Utilities 387

10

XgliUtModelClipPoint
Xgl_boolean XgliUtModelClipPoint(
 XglContext3d* ctx ,
 XglViewGrp3dItf* view_grp ,
 Xgl_pt_f3d* pt)

Model clips the 3D model-coordinate point pt against the current model
clipping planes specified by the Context and the view group interface object.

Input Parameters
ctx Context from which attributes are obtained.

view_grp View group from which model clip planes are obtained.

pt Point to be model clipped.

Output Parameter
None

Return Value
If the point is determined to be inside the clipping planes, then the function
returns TRUE, otherwise it returns FALSE.

XgliUtModelClipTstrip
Xgl_sgn32 XgliUtModelClipTstrip(
 XglContext3d* ctx ,
 XglViewGrp3dItf* view_grp ,
 Xgl_pt_list* pl_in ,
 Xgl_facet_list* fl_in ,
 Xgl_pt_list** pl_out ,
 Xgl_facet_list** fl_out)

Takes as input a single point list, and optionally a facet list, and model clips
them against the current model clipping planes. The output is a list of point
lists defining triangle strips that may have been created by model clipping the
original input list. In practice there is usually only one such list as the clipper
makes every attempt to keep everything together in one piece by introducing
degenerate triangles where appropriate to link strips together. It is not

388 XGL Device Pipeline Porting Guide—August 1994

10

impossible, however, for there to be more than one list under some
circumstances, so applications that use this utility are advised to assume that
there can multiple output strips.

Input Parameters
ctx Context from which attributes are obtained.

view_itf View group from which model clip planes are obtained.

pl_in Input point list. This argument is the point list passed to
li1MultiPolyline() .

fl_in Input facet list.

Output Parameters
pl_out A list of point lists defining triangle strips that may have

been created by model clipping the original input list.

fl_out Facet list for pl_out.

Return Value
Returns the number of triangle strips in the clipped output. The caller must
free any memory allocated by this routine.

XgliUtPixRect48to32
void XgliUtPixRect48to32(

XglPixRectMem* dst_buf ,
const Xgl_bounds_i2d* rect ,
const XglPixRectMem* src_buf ,
const Xgl_pt_i2d* pos)

Copies a region of a 48-bit PixRect src_buf to a 32-bit PixRect dst_buf. The
function is designed to do the copy-back of the accumulation buffer to an
image buffer. rect applies to the source buffer and pos to the destination buffer.

Input Parameters
src_buf The source buffer used in the copy operation. The source

buffer should be a 48-bit pixrect.

rect The rectangle in the source buffer that should be copied.

Utilities 389

10

pos The position in the destination buffer to be used as starting
position.

Output Parameter
dst_buf The destination buffer in the copy operation. The

destination buffer is a 32-bit PixRect.

XgliUtVertexFrontFacing
Xgl_boolean XgliUtVertexFrontFacing(

Xgl_pt_f3d* position ,
Xgl_pt_f3d* normal ,
XglViewGrp3dItf* viewGrp ,
Xgl_boolean flipNormal)

Determines if a given vertex is front facing. See the
XGL_3D_CTX_SURF_NORMAL_FLIP man page.

Input Parameters
position Vertex position in MC.

normal Normal at vertex

viewGrp View group interface object

flipNormal Value of the Context attribute
XGL_3D_CTX_SURF_NORMAL_FLIP.

Output Parameter
None

Return Value
Returns TRUE if the vertex is front facing and FALSE otherwise.

390 XGL Device Pipeline Porting Guide—August 1994

10

XgliUtVertexOrientation
Xgl_boolean XgliUtVertexOrientation(

Xgl_pt_list* pl ,
XglViewGrp3dItf* viewGrp ,
Xgl_boolean* vrtxFrontFacing ,
Xgl_boolean flipNormal)

Determines, for each point in a given point list, if it is front or back facing. It
also determines whether the point list contains a silhouette edge. See the
XGL_3D_CTX_SURF_NORMAL_FLIP man page.

Input Parameters
pl Point list

viewGrp View group interface object

flipNormal Context attribute XGL_3D_CTX_SURF_NORMAL_FLIP

Output Parameter
vrtxFrontFacing For each array index i , TRUE if point i of the point list is

front facing and FALSE if it is back facing.

Return Value
Returns TRUE if the point list contains a silhouette edge and FALSE otherwise.

XgliUtCdVdcCircleApprox
Xgl_sgn32 XgliUtCdVdcCircleApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
XglConicList3d * circle_list)

Evaluates the number of points to be used to approximate a circle when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_VDC or XGL_CURVE_CHORDAL_DEVIATION_VDC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

Utilities 391

10

circle_list Pointer to an XglConicList3d object containing a list of
circles or circular arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate a circle.

XgliUtVdcCircleApprox
Xgl_sgn32 XgliUtVdcCircleApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_circle_list * circle_list)

Evaluates the number of points to be used to approximate a circle when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_VDC or XGL_CURVE_CHORDAL_DEVIATION_VDC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

circle_list Pointer to a list of circles.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate a circle.

392 XGL Device Pipeline Porting Guide—August 1994

10

XgliUtVdcArcApprox
Xgl_sgn32 XgliUtVdcArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_arc_list * arc_list)

Evaluates the number of points to be used to approximate an arc when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_VDC or XGL_CURVE_CHORDAL_DEVIATION_VDC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

arc_list Pointer to a list of circular arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an arc.

XgliUtCdVdcEllArcApprox
Xgl_sgn32 XgliUtCdVdcEllArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
XglConicList3d * ell_list)

Evaluates the number of points to be used to approximate an ellipse when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_VDC or XGL_CURVE_CHORDAL_DEVIATION_VDC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

ell_list Pointer to an XglConicList3d object containing a list of
elliptical arcs.

Utilities 393

10

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an ellipse.

XgliUtVdcEllArcApprox
Xgl_sgn32 XgliUtVdcEllArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_ell_list * ell_list)

Evaluates the number of points to be used to approximate an ellipse when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_VDC or XGL_CURVE_CHORDAL_DEVIATION_VDC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

ell_list Pointer to a list of elliptical arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an ellipse.

XgliUtCdWcCircleApprox
Xgl_sgn32 XgliUtCdWcCircleApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
XglConicList3d * circle_list)

Evaluates the number of points to be used to approximate a circle when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_WC or XGL_CURVE_CHORDAL_DEVIATION_WC.

394 XGL Device Pipeline Porting Guide—August 1994

10

Input Parameters
ctx Pointer to a 3D context.

viewGrpItf Pointer to a 3D view group interface.

circle_list Pointer to an XglConicList3d object containing a list of
circles or circular arcs.

Output Parameter
 None

Return Value
Returns the number of points to be used to approximate a circle.

XgliUtWcCircleApprox
Xgl_sgn32 XgliUtWcCircleApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_circle_list * circle_list)

Evaluates the number of points to be used to approximate a circle when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_WC or XGL_CURVE_CHORDAL_DEVIATION_WC.

Input Parameters
ctx Pointer to a 3D context.

viewGrpItf Pointer to a 3D view group interface.

circle_list Pointer to a list of circles.

Output Parameter
 None

Return Value
Returns the number of points to be used to approximate a circle.

Utilities 395

10

XgliUtWcArcApprox
Xgl_sgn32 XgliUtWcArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_arc_list * arc_list)

Evaluates the number of points to be used to approximate an arc when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_WC or XGL_CURVE_CHORDAL_DEVIATION_WC.

Input Parameters
ctx Pointer to a 3D context.

viewGrpItf Pointer to a 3D view group interface.

arc_list Pointer to a list of circular arcs.

Output Parameter
 None

Return Value
Returns the number of points to be used to approximate an arc.

XgliUtCdWcEllArcApprox
Xgl_sgn32 XgliUtCdWcEllArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
XglConicList3d * ell_list)

Evaluates the number of points to be used to approximate an ellipse when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_WC or XGL_CURVE_CHORDAL_DEVIATION_WC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

ell_list Pointer to an XglConicList3d object containing a list of
elliptical arcs.

396 XGL Device Pipeline Porting Guide—August 1994

10

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an ellipse.

XgliUtWcEllArcApprox
Xgl_sgn32 XgliUtWcEllArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_ell_list * ell_list)

Evaluates the number of points to be used to approximate an ellipse when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_WC or XGL_CURVE_CHORDAL_DEVIATION_WC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

ell_list Pointer to a list of elliptical arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an ellipse.

Utilities 397

10

Bounding Box Utilities
XGL utilities for checking for bounding boxes are in the file CheckBbox.h .

XgliUt2dCheckBbox
Xgl_geom_status XgliUt2dCheckBbox(

XglContext2d* ctx ,
Xgl_primitive_type prim_type ,
Xgl_bbox* bbox ,
XglViewGrp2dItf* view_grp_itf)

Performs a bounding box check against the 2D clip volume and returns the
geometry status of the bounding box. For more information, see the man page
for xgl_context_check_bbox() .

Input Parameters
ctx Pointer to a 2D Context.

prim_type The bounding box primitive type.

bbox Pointer to a bounding box which can be an Xgl_bbox_i2d,
Xgl_bbox_f2d, or Xgl_bbox_d2d structure.

 view_grp_itf Pointer to a 2D view group interface.

Output Parameter
None

Return Value
This utility returns a geometry status which is either
XGL_GEOM_STATUS_VIEW_REJECT (outside the clipping volume) or 0
(clipped).

398 XGL Device Pipeline Porting Guide—August 1994

10

XgliUt3dCheckBbox
Xgl_geom_status XgliUt3dCheckBbox(

XglContext3d* ctx ,
Xgl_primitive_type prim_type ,
Xgl_bbox* bbox ,
XglViewGrp3dItf* view_grp_itf)

Performs a bounding box check against the 3D clip volume and returns the
geometry status of the bounding box. For more information, see the man page
for xgl_context_check_bbox() .

Input Parameters
ctx Pointer to a 3D Context.

prim_type The bounding box primitive type.

bbox Pointer to a bounding box which can be an Xgl_bbox_f3d or
Xgl_bbox_d3d structure.

view_grp_itf Pointer to a 3D view group interface.

Output Parameter
None

Return Value
Returns a geometry status which is a combination of the following flags:

XGL_GEOM_STATUS_VIEW_ACCEPT
XGL_GEOM_STATUS_VIEW_REJECT
XGL_GEOM_STATUS_VIEW_SMALL
XGL_GEOM_STATUS_MODEL_ACCEPT
XGL_GEOM_STATUS_MODEL_REJECT

Utilities 399

10

Copy Buffer Utilities
XGL utilities for copy buffer operations are in the file CopyBuffer.h .

XgliUtAdjustRectPos
extern int XgliUtAdjustRectPos(

XglRaster* src_dev ,
Xgl_bounds_i2d* src_rect ,
Xgl_bounds_i2d* adj_src_rect ,
XglRaster* dest_dev ,
Xgl_pt_i2d* dest_pos ,
Xgl_pt_i2d* adj_dest_pos);

Computes a new rectangle and position whose coordinates are valid as input
to the XgliUtCopyBuffer utility. The new or adjusted rectangle and position
are based upon the original rectangle and position and the size of the source
and destination device.

Input Parameters
src_dev Source device.

src_rect Source rectangle in src_dev’s coordinate space.

adj_src_rect Adjusted source rectangle; the new, valid rectangle.

dest_dev Destination device.

dest_pos Destination position in dest_dev’s coordinate space.

adj_dest_pos Adjusted destination position.

Output Parameter
None

Return Value
Returns 1 if successful or 0 if the input data is inconsistent.

400 XGL Device Pipeline Porting Guide—August 1994

10

XgliUtCopyBuffer
extern int XgliUtCopyBuffer(

XglPixRect* dest_pr ,
const Xgl_pt_i2d* dest_pos ,
const Xgl_color* dest_fg_color ,
const Xgl_color* dest_bg_color ,
XglPixRectMem* dest_clip_mask ,
XglPixRect* src_pr ,
const Xgl_bounds_i2d* src_rect ,
XglPixRectMem* src_clip_mask ,
Xgli_cb_color_info* color_info ,
Xgli_cb_mask_and_rop_info* rop_info ,
Xgli_cb_fill_info* fill_info ,
Xgli_cb_z_buffer_info* z_buffer_info)

Implements the xgl_copy_buffer() function. It copies a rectangular block
of pixels from a source raster to a destination raster and, in addition, may
convert from one color type to another, clip, fill with a pattern, or perform the
copy based upon Z-buffer values. The caller must ensure that the device is
locked (in other words, call WIN_LOCK if necessary).

Input Parameters
dest_pr PixRect representing the destination raster.

dest_pos Destination position.

dest_fg_color Foreground color from destination Context.

dest_bg_color Background color from destination Context.

dest_clip_mask Per-pixel clip mask represented as a PixRect for the
destination.

src_pr PixRect representing the source raster.

src_rect Rectangle of pixels which get copied to destination.

src_clip_mask Per-pixel clip mask represented as a PixRect for the source.

color_info Color info for source and destination raster; may be NULL if
copy does not involve color.

rop_info Plane mask and rop function; may be NULL if not doing
ROP or masking.

Utilities 401

10

fill_info Information from destination Context for filling with
patterns or stipples; may be NULL if not using patterned
fill.

z_buffer_info Information for copying from one Z-buffer to another;
should be NULL if not copying Z-buffer data.

Output Parameter
None

Return Value
Returns 1 if the function succeeds or 0 for nonsuccess.

XgliUtFbToMemCopyBuffer
int XgliUtFbToMemCopyBuffer(

XglContext* dest_ctx ,
Xgl_bounds_i2d* rect ,
Xgl_pt_i2d* pos ,
XglRaster* src_dev ,
XglPixRect* src_image_pr ,
XglPixRect* src_zbuffer_pr ,
XglPixRectMem* src_clip_mask);

A high-level utility that implements xgl_copy_buffer() when copying from
a Device’s frame buffer to a Memory Raster. This function calls
XgliUtCopyBuffer(). The caller must ensure that the device is locked (in other
words, WIN_LOCK is called if needed).

Input Parameters
dest_ctx Destination Context object

rect Rectangle from API

pos Position from API

src_dev Source device

src_image_pr PixRect for source device’s image buffer.

src_zbuffer_pr PixRect for source device’s Z buffer

src_clip_mask PixRect for source device’s clip mask

402 XGL Device Pipeline Porting Guide—August 1994

10

Output Parameter
None

Return Value
Returns 1 if the function succeeds or 0 for nonsuccess.

XgliUtGetMaskAndRopFunc
extern void XgliUtGetMaskAndRopFunc(

Xgl_rop_mode rop ,
Xgl_usgn32 (** func)(Xgl_usgn32 s, Xgl_usgn32 d, Xgl_usgn32 p))

Returns a pointer to a function that implements the given ROP value.

Input Parameter
rop ROP mode that is implemented by the returned function.

Output Parameter
func Pointer to a function which returns the ROP’ed and

masked pixel; it takes the following parameters: the source
pixel s, the destination pixel, d, and the plane mask p.

Utilities 403

10

Polygon Classification Utilities
XGL utilities for polygon classification are in the file PgonClass.h .

XgliUtClassifyMsp
int XgliUtClassifyMsp(

Xgl_usgn32 num_pt_list s
Xgl_pt_list* point_list
Xgl_pt_f3d* points
Xgli_polygon_class* pgon_class

Classifies polygons sent to the primitive xgl_multi_simple_polygon() .
The classification consists of checking the number of points in each polygon
and testing for convexity. The information obtained can be used to decrease
rendering time. For example, if a classified polygon has the
XGL_PGON_TRISTAR bit set then a triangle star renderer can be used rather
than a generic polygon scan converter.

Input Parameters
num_pt_lists Number of point lists in point_list.

point_list Pointer to the data to be classified.

points Pointer to the polygon’s facet normal list. This list must be
of type XGL_FACET_NORMAL or
XGL_FACET_COLOR_NORMAL. If calling with a 2D point list,
this parameter is ignored.

Output Parameter
pgon_class A pointer to a bit vector. The bit vector must be allocated in

the calling routine to num_pt_lists in size. The bit vector
array is returned with at least one of the bits set. See the
return value for XgliUtClassifyPgon for the possible
values.

Return Value
Returns 0 if the classification finished successfully and 1 if the classification
was aborted. An attempt is made to classify a 3D multisimple polygon list
without the facet normal list.

404 XGL Device Pipeline Porting Guide—August 1994

10

XgliUtClassifyPgon
Xgli_polygon_class XgliUtClassifyPgon(

Xgl_usgn32 num_pt_lists
Xgl_pt_list* pl
Xgl_pt_f3d* facet_normal)

Classifies polygons sent to the primitive xgl_polygon() . The classification
consists of checking the number of points in the polygon, checking the number
of bounds, and testing for convexity. The information obtained can be used to
decrease rendering time. For example, if a classified polygon has the
XGL_PGON_TRISTAR bit set, a triangle star renderer can be used rather than a
generic polygon scan converter.

Input Parameters
num_pt_lists Number of point lists in pl.

pl Pointer to the data to be classified.

facet_normal Pointer to the polygon’s facet normal. This must point to a
facet of type Xgl_normal_facet or Xgl_color_normal_facet. If
calling with a 2D point list, this parameter is ignored.

Output Parameter
None

Return Value
Returns a bit vector with at least one of the following set:

• XGL_PGON_DEGENERATE – The polygon has less than three points in its
point list.

• XGL_PGON_SIDES_ARE_3 – The polygon has three points in its point list.
No testing is done for degenerate data.

• XGL_PGON_SIDES_ARE_4 – The polygon has four points in its point list. No
testing is done for degenerate or self-intersecting data.

• XGL_PGON_SIDES_UNSPECIFIED – The polygon has more than four points
in its point list. No testing is done for degenerate data nor for a self
intersecting point list.

Utilities 405

10

• XGL_PGON_TRISTAR – The polygon can be rendered using a triangle star
starting from the first vertex in the point list.

• XGL_PGON_CONV_ONEBOUND – The polygon is convex (can be rendered as a
triangle star from any vertex) and is single bounded (there are no holes in
the polygon).

• XGL_PGON_COMPLEX – No information was found about the polygon.

Polygon Decomposition Utilities
XGL provides utilities to decompose polygons into triangles in the file
utils.h .

XgliUtDecomposePgon
int XgliUtDecomposePgon(

Xgl_facet_type facet_type ,
Xgl_facet* facet ,
Xgl_usgn32 num_in_pt_lists ,
Xgl_pt_list* in_pl ,
Xgl_usgn32* num_out_pt_lists ,
Xgl_pt_list** out_pl ,
Xgl_color_type color_type ,
Xgl_pt_f3d* d_c_normal ,
Xgl_geom_normal geom_normal_type ,
Xgl_boolean normal_flip);

Decomposes one complex polygon facet into strips of triangle stars, which are
returned via the output parameter out_pl. The utility allocates the memory for
the output point lists of triangle stars, so it’s the caller’s responsibility to free
the memory when the output point lists are no longer needed.

Input Parameters
facet_type Facet type of input polygon

facet Facet information

num_in_pt_lists Number of point lists (i.e. bounds) in input polygon.

in_pl Array of point lists for input polygon.

color_type Color type (index or RGB).

d_c_normal Normalized facet normal of input polygon.

406 XGL Device Pipeline Porting Guide—August 1994

10

geom_normal_type Geometry normal format as defined by the API attribute
XGL_3D_CTX_SURF_GEOM_NORMAL.

normal_flip Specifies whether vertex and facet normals are flipped, as
defined by the attribute
XGL_3D_CTX_SURF_NORMAL_FLIP.

Output Parameters
num_out_pt_lists Number of output point lists of triangle stars.

out_pl Pointer to output point lists of triangle stars.

Return Value
Returns 1 if the polygon is successfully decomposed and 0 if memory
allocation fails.

XgliUtDecomposeNsiPgon
int XgliUtDecomposeNsiPgon(

Xgl_facet_type facet_type ,
Xgl_facet* facet ,
Xgl_usgn32 num_in_pt_lists ,
Xgl_pt_list* in_pl ,
Xgl_usgn32* num_out_pt_lists ,
Xgl_pt_list** out_pl ,
Xgl_color_type color_type ,
Xgl_pt_f3d* d_c_normal ,
Xgl_geom_normal geom_normal_type ,
Xgl_boolean normal_flip);

Decomposes one non-self-intersecting polygon facet into strips of triangle
stars, which are returned via the output parameter out_pl. The utility allocates
the memory for the output point lists of triangle stars, so it’s the caller’s
responsibility to free the memory when the output point lists are no longer
needed.

Input Parameters
facet_type Facet type of input polygon.

facet Facet information.

num_in_pt_lists Number of point lists (i.e. bounds) in input polygon.

Utilities 407

10

in_pl Array of point lists for input polygon.

color_type Color type (index or RGB).

d_c_normal Normalized facet normal of input polygon.

geom_normal_type Geometry normal format as defined by the API attribute
XGL_3D_CTX_SURF_GEOM_NORMAL.

normal_flip Specifies whether vertex and facet normals are flipped, as
defined by the API attribute
XGL_3D_CTX_SURF_NORMAL_FLIP.

Output Parameters
num_out_pt_lists Number of output point lists of triangle stars.

out_pl Pointer to output point lists of triangle stars.

Return Value
Returns 1 if the polygon is successfully decomposed and 0 if memory
allocation fails.

408 XGL Device Pipeline Porting Guide—August 1994

10

409

Performance Tuning A

This appendix presents information about performance tuning. Tuning code
for performance can be broken down into two distinct parts: finding the
performance critical paths and tuning those paths.

This appendix details methodologies for finding performance hot spots and
describes both high-level and low-level techniques for alleviating them. The
following topics are covered:

• Finding the performance critical paths

• Selecting good benchmarks

• Tuning the performance critical paths

• Tips and techniques for faster code

410 XGL Device Pipeline Porting Guide—August 1994

A

Finding the Performance Critical Paths
Being able to find the performance critical paths is as important as tuning
them. However, finding these paths is not always easy. Your intuition about
where the performance problems lie can mislead you. Unless you are
personally familiar with a particular section of code, it is best to approach this
process with no preconceptions and to gather profile information from an
application to direct your investigation.

There are currently three ways you can gather profile information. These
methods are introduced here and described more fully in “Tuning Performance
Critical Paths” on page 415.

1. Build profile libraries.

Libraries built with the -pg option produce gprof output. This output
gives you a very close approximation of how much time was spent in each
function of the library, an exact count of how many times each function was
executed, and a function call graph.

The disadvantages of profile libraries are that they must be compiled using
special flags, they must be built statically (this restriction may be removed at
a later time), they don’t measure system time, they require re-linking the
application with -pg , and they don’t provide any information about the
memory system (for example, page faults).

Although profile libraries have disadvantages, they are currently the only
standard mechanism capable of providing function call counts and the
function call graph. These capabilities make profile libraries a very attractive
analysis tool for in-depth performance tuning.

2. Use the performance collector and analyzer tools included ProWorks.

The collector is used from the debugger to gather information about a
program while it is running, and the analyzer is a user interface that sorts
and displays that information in various ways.

This tool has the benefit of being able to measure any code that hasn’t been
stripped. No special compile flags are needed, and it doesn’t matter whether
libraries are dynamically or statically linked or even dlopen ’d. It also is
aware of page faults.

Performance Tuning 411

A

One attractive feature of the analyzer is that it shows you the total amount
of time spent in each shared library. This is useful for doing a overall
analysis of your program. For example, if you’re spending a lot of time in
libc, you are probably doing a lot of malloc ,free , or signal handling. Even
though the analyzer can’t show you what routine is calling these routines,
you as a library developer may immediately know where to start looking.

However, this tool is not able to show the function call graphs or counts on
the number of times a function was executed.

3. Use the Shared Library Interposer.

The Shared Library Interposer (SLI) installs hooks to trap function calls,
which is a Sun OS 5.x special feature. However, it can’t catch C++ virtual
functions or static functions. The SLI can work on any number of shared
libraries at the same time.

A disadvantage of SLI is that it requires additional interposing libraries to
work. If you’re just interested in measuring the performance of your API
without the details of the code underneath, then these interposing libraries
can be constructed once and easily be referenced later on. If you want the
details of all the internal functions that were called, then you need to point
SLI at your source tree and construct a new interposing library any time
functions are created, destroyed or renamed (but not if just the body of
functions were changed). This rebuilding takes approximately ten minutes
for large libraries.

Unlike all of the above options, SLI gets exact time for each function. It does
this by bracketing each function call with gethrtime() . All the other
schemes interrupt the process every 10 milliseconds or so and note which
function they are in. Therefore, all of the non-SLI schemes only generate
statistical approximations to how much time was spent in each function.
Assuming your application runs for at least a few seconds, this statistical
approximation is quite close to reality. SLI does not work with static
libraries or applications, nor does it know about the memory system.

SLI has a GUI to allow easy interpretation of the gathered data. SLI also has
the ability to log all the API calls and their arguments made during a session
for later playback. The functionality has to be coded into SLI; therefore, it
only works on a small number of libraries.

412 XGL Device Pipeline Porting Guide—August 1994

A

At-a-Glance Comparison of Performance Tools

Table A-1 compares the different performance tools used to gather profile
information.

1. If functions are created/destroyed/renamed, then the new interposing libraries need to be created for SLI.
This does not take a tremendous amount of time, but it is an additional step.

2. Only a handful of libraries support this feature.

Table A-1 Comparing Applications Used to Gather Profile Information

Features -pg Collector SLI

Time spent in each function Y Y Y

Call counts for each function Y Y

Function call graph Y Y

Measures system time Y

Page fault aware Y

Library can be dynamic Y Y

Library can be static Y Y

Handles multiple libraries Y Y Y

Does not need special compile flags Y Y

No recompilation/linking of application
needed

Y Y

Works on dlopen() ’d libraries Y Y

Has a GUI for display Y Y

Needs no additional libraries Y Y

Internal library functions measured Y Y Y1

Virtual/static functions profiled Y Y

Supports playback of library calls Y2

Performance Tuning 413

A

Recommendations for Performance Tools

Choosing a performance analysis method is a matter of individual preference.
This section provides recommendations, and you can determine which
methods you are most comfortable with.

If you are interested in giving one or two areas a boost in performance, but the
areas are not critical, use the collector and see if it can give you the information
you need. If you’re going to be spending a lot of time tuning code or if the
collector does not meet your needs, then it’s worth the effort to build a profile
library.

SLI is not recommended for library developers because SLI’s strength is in
logging the library API calls for statistical analysis of how the library is used.
As such, it is more useful for tuning the application to use the library more
efficiently than it is for tuning the library itself.

For serious performance tuning, the profile library is recommended over the
collector tool. This is because the collector does not produce the function call
graphs or function call counts which are crucial for finding and tuning your
critical paths.

All of the above schemes work at a functional level. If you are interested in
finding out how many times a line of code is executed within a function, see
the tcov man pages.

Selecting Good Benchmarks
When searching for performance bottlenecks, it is important to use the right
benchmarks. It is often easy to find and fix a bottleneck that makes benchmarks
run faster, while the performance of real customer applications remains
unchanged. In an ideal world, all performance tuning would be guided by real
customer workload. In our less than ideal world, we must use approximations
to real customer workload.

It is becoming more and more of a requirement for vendors to run a customer’s
application as part of the sales process. Improving your marketing-oriented
benchmarks undoubtedly catches the customer’s eye. However, improving
your customer-oriented benchmarks will help close the sale and generate
future business from your satisfied customers. In today’s market, both types of

414 XGL Device Pipeline Porting Guide—August 1994

A

benchmarks need to be used to maximize your company’s profit. The
advantages and disadvantages of the three types of benchmarks are discussed
below.

• Shared Library Interposer – Customer oriented

The Shared Library Interposer (SLI) is an excellent tool for logging and
playing back library calls from real customer applications. Not only will SLI
help you find exactly what needs to be tuned for a given application, it will
allow you to give feedback to the application writers on how to use your
library more effectively. Unfortunately, there is currently no industry
standard way of reporting performance of real customer applications.

• Raw primitive benchmarks – Marketing oriented

Be cautious about using raw primitive benchmarks to guide tuning efforts.
Although these benchmarks are good tools to measure peak performance,
they produce results that are the least likely to match real customer
workloads. However, reporting peak performance numbers is still the most
common way for vendors to market their products. These benchmarks are
well-suited for tuning the inner loops of a particular primitive’s rendering
code, and they can help identify library overhead for poorly-batched
primitives (like single vector polylines).

• GPC Picture Level Benchmark – Customer and marketing oriented

The GPC Picture Level Benchmark’s (PLB) exploits the strengths of real
customer applications and raw primitive benchmarks. It is currently the
closest industry standard benchmark to real customer applications. Because
it’s a standard, it allows you to compare your product against the
competition. Improved results will translate well to customer-visible
performance improvements.

Performance Tuning 415

A

Tuning Performance Critical Paths
Performance tuning can be considered as occurring on three different levels.
The first level involves looking for a central body of code, in which the
application spends most of its time. The second level of performance tuning
consists of algorithmic improvement, and the third level involves tuning
assembly language.

Locating the Central Body of Code

The first level of performance tuning involves looking at your profile output
and checking for any obvious problems. For example, there might be a
transform evaluation on every primitive, or new and delete might be called
for every primitive. Fixing these types of problems usually requires little work.
A simple yet extremely useful performance technique for this is to cache values
in software for later use. You may also need to add an if test in several places
and restructure the code, but the basic algorithm can remain intact. The
difficult part in fixing these bugs is finding them. If a lot of time is spent in
some functions that you know shouldn’t be called frequently, then the collector
will point you to the problem. If this isn’t the case, then you may need to use
the profile libraries so that you get the count and call graph information.
Finally, gprof output may show you that you are calling a function many
more times than you expected.

Changing the Underlying Algorithm

The next level of performance tuning involves changing the underlying
algorithm. Some examples of this are speeding up the special cases of a general
algorithm, using fixed point arithmetic instead of floating point, using software
caching schemes, and reducing the number of malloc /free calls from many
to one. This type of tuning is frequently needed when a feature of the library
that was previously deemed unimportant turns out to be useful to customers.
Because the feature had a low priority, not much time was originally spent
implementing it efficiently. Now it’s necessary to go back and perform an in-
depth analysis to make it run fast.

Coming up with a new algorithm requires designers to have a clear
understanding of what is fast and what is slow on the current hardware. Some
performance techniques are widely known (square root is slower than
addition, hash tables speed up linked list searches, multiplication is faster than

416 XGL Device Pipeline Porting Guide—August 1994

A

division, and so on), but there are dozens of techniques that you can used to
make algorithms more efficient. See “Tips and Techniques for Faster Code” for
a discussion of these techniques.

Tuning at the Assembly Language Level

To really tune a chunk of code well, you must look at the assembly language
output of the compiler1. At some point, the algorithm you’re working on must
turned into machine readable format. You need to ensure that all the effort
you’ve put into avoiding expensive operations isn’t being overshadowed by
some unintelligent process the compiler is doing. This type of tuning should be
reserved for your performance critical paths. Spending time tuning your code
to produce near-optimal assembly output isn’t free. Reality dictates that you
spend your time using the most cost-effective philosophy. It is good practice to
frequently look at the assembly output. As you gain experience, looking at this
information can become part of your development process, and it becomes a
good way to verify your design.

Tips and Techniques for Faster Code
As you read through the suggested techniques in this section, you will note
that a knowledge of assembly language can be useful. Many of the techniques
presented here can be applied without inspecting the assembly output, but a
knowledge of assembly language becomes more essential as you progress
through the tuning techniques suggested here.

Tune the Innermost Loops First

Once you have identified your performance critical paths, you need a starting
point to begin your tuning. The way to get the most cost-effective performance
is to tune the innermost loops first. These loops are executed many times
(potentially hundreds of times) for every iteration of an outer loop. Once the

1. There is a big difference between reading the assembly output from the compiler and writing assembly
language routines. It’s very similar to being able to read a foreign language versus being able to speak it. If
you’re not totally familiar with a particular instruction, you can make an educated guess at what it is or look
it up in a manual. This is much easier than creating an assembly language routine from scratch.

Performance Tuning 417

A

absolute innermost loop has been tuned, start expanding your view outward to
the next innermost loops. Time permitting, continue out to your library entry
points.

By tuning your innermost loops first, you can substantially increase the
performance of your moderately and highly batched cases. The performance of
your poorly batched cases may improve slightly, but not by much. The
performance of poorly batched cases tend to be limited by start up costs and
has little to do with the inner loops. Improving the performance of poorly
batched cases is a more difficult task than tuning highly batched performance,
and it requires applying virtually all of the tips in this appendix. If you are
interested in tuning for poorly batched cases, assume that every loop is
executed once and start counting CPU cycles in your assembler output. You
will need to look all the way from your library entry point down to the lowest
level function.

A simple source code transformation to improve inner loops is moving loop
invariant code outward. Suppose you want to construct the vertices of a
sphere. The straightforward implementation of this is as follows:

This could easily be changed to:

for (theta=0.0 ; theta<2.0*PI ; theta+=theta_step) {
for (omega=-0.5*PI ; omega<0.5*PI ; omega+=omega_step) {

pt->x = cos(theta)*cos(omega);
pt->y = sin(theta)*cos(omega);
pt->z = sin(omega);
pt++;

}
}

for (theta=0.0 ; theta<2.0*PI ; theta+=theta_step) {
cos_theta = cos(theta);
sin_theta = sin(theta);
for (omega=-0.5*PI ; omega<0.5*PI ; omega+=omega_step) {

cos_omega = cos(omega);
pt->x = cos_theta*cos_omega;
pt->y = sin_theta*cos_omega;
pt->z = sin(omega);
pt++;

}
}

418 XGL Device Pipeline Porting Guide—August 1994

A

You have reduced the number of calls to cos() and sin() in our inner loop from
5 to 2. Assuming that omega_step is small enough that the inner loop
executes a large number of times relative to the outer loop, you should see a
performance increase by a factor of 2.5. You could try exploiting the
relationship cos2 + sin2 = 1, but that would depend on the relative speeds of
cos /sin and sqrt . If the hardware supports sqrt , use it.

The above example was a fairly simple one. Less obvious cases are more
prevalent. Below is an example for copying one string to another. Assume the
string structure has a length field and a character array with sufficient space to
hold the string:

Since you are operating through pointers, the compiler cannot assume that
src->length isn’t changed during each iteration of the loop. To get around
this, keep the string length in a local variable as shown below:

On SPARC, the upper loop takes six instructions per iteration while the bottom
loop takes four instructions. This simple example shows us the most important
lesson that can be learned about performance tuning and that is, don’t trust the
compiler. No matter how efficient the compiler gets, it cannot surpass a
knowledgeable programmer.

As you move loop invariant code outward, you’ll notice a proliferation of local
variables. This is perfectly acceptable. These local variables can be thought of
as a cache of values created by the programmer. While there are cases where
too many local variables hurt performance, they are rare and their penalties are
low in comparison to the much more likely gains they offer. It is quite common
for local variables to map directly to hardware registers and never get stored to
memory. One way to help the compiler to realize this is to declare local
variables within the smallest scope they will be used in.

dest->length = src->length;
for (i=0 ; i<src->length ; i++) {

dest->string[i] = src->string[i];
}

length = dest->length = src->length;
for (; length>=0 ; length--) {

 dest->string[length] = src->string[length];
}

Performance Tuning 419

A

Don’t Optimize Uncommon Cases at the Expense of Common Cases

Although this rule is intuitively obvious, it is perhaps the easiest to forget. It is
often quite tempting to add code that makes a seldom used operation run
faster. At times you will need to add a little logic someplace else to make this
optimization work. Note how this affects your common cases, and if it does,
make sure that the performance trade-offs you are making are good ones.

This rule could also be called a “keep it simple” rule. To a first approximation,
the more complicated and convoluted the code, the slower it will run. If you’re
just getting started in performance tuning, then go for simplicity. After you’ve
had a chance to get familiar with the types of trade-offs that are made in the
name of performance, you’ll be in a better position to estimate the
consequences of additional complexity.

Special-Case the Common Cases

Most libraries have a set of attributes that can be changed by the user. Libraries
will need to switch on the attribute or employ a hierarchical set of if tests to
decode the attribute. In either case, it can be worthwhile to special case a small
number of the most frequently set attributes (like line color). By having an if
test that succeeds most of the time, you can decrease the average amount of
time spent setting attributes for most applications. Certainly an application
that never sets the line color will run slower, but the difference is likely to be
quite small since attributes will have to go through the full decode cycle.

Choose Your Software Layers Carefully

You need to define software layers that don’t limit performance. An example is
when A calls B(X). The function A knows some property of X which B does
not, so B spends time checking for the property, or it simply does things more
generally (and less efficiently). Either A and B should be in the same software
layer, or perhaps a special case version of B can be written which assumes the
knowledge of the properties for X.

An example is memcpy() , which assumes only character-aligned data. If you
are copying word-aligned data (or double-word aligned data), you can copy
faster than memcpy() with a simple loop.

420 XGL Device Pipeline Porting Guide—August 1994

A

Move If Tests Outward

Although if tests are certainly necessary for programming, it is advantageous
to remove as many of them as possible from your performance critical paths. In
today’s high clock rate, super-scalar RISC chips, each branch in the code carries
along with it the possibility of dozens of wasted CPU cycles.

Removing if tests can often mean replicating code. A simple example of this is
shown below for drawing a polyline on a hardware device where the first
vertex must be handled differently from all subsequent vertices:

This code can be restructured as:

By replicating the code which sends the vertex information to the hardware, an
if test on every vertex was removed.

The above example was a simple one because it dealt with a very small and
manageable portion of code. As you expand your focus outward from the
innermost loops, it gets more and more difficult to replicate code. You start to

first_vertex = 1;
for (i=0 ; i<num_pts ; i++) {

vertex_registers[X_OFFSET] = pt->x;
vertex_registers[Y_OFFSET] = pt->y;
vertex_registers[Z_OFFSET] = pt->z;
pt++;
if (!first_vertex) {

// wait for DRAW operation to finish
while(vertex_registers[DRAW_STATUS] != ALL_DONE) ;

}
first_vertex = 0;

}

vertex_registers[X_OFFSET] = pt->x;
vertex_registers[Y_OFFSET] = pt->y;
vertex_registers[Z_OFFSET] = pt->z;
for (i=1 ; i<num_pts ; i++) {

pt++;
vertex_registers[X_OFFSET] = pt->x;
vertex_registers[Y_OFFSET] = pt->y;
vertex_registers[Z_OFFSET] = pt->z;
// wait for DRAW operation to finish
while(vertex_registers[DRAW_STATUS] != ALL_DONE) ;

}

Performance Tuning 421

A

have huge chunks of code, each of which does basically the same thing. This
becomes a maintenance problem. One technique for overcoming this is to have
source code files with #ifdefs that are included by other files. Suppose you
wanted to augment the above line renderer to handle polylines with color at
each vertex. The straightforward way to do this is with an if test inside the
inner loop:

This keeps your maintenance costs down but at the expense of performance. If
things like line patterning, homogeneous coordinates, or vertex flags are
added, you will end up with a large number of if tests performed for every
vertex. Fortunately, you can keep the maintenance costs down and still have
optimal performance by keeping the code below in a separate file called
PolylinesProto.h :

vertex_registers[X_OFFSET] = pt->x;
vertex_registers[Y_OFFSET] = pt->y;
vertex_registers[Z_OFFSET] = pt->z;
for (i=1 ; i<num_pts ; i++) {

pt++;
vertex_registers[X_OFFSET] = pt->x;
vertex_registers[Y_OFFSET] = pt->y;
vertex_registers[Z_OFFSET] = pt->z;
if (pt_type & VERTEX_COLOR) {

vertex_registers[R_OFFSET] = pt->color.r;
vertex_registers[G_OFFSET] = pt->color.g;
vertex_registers[B_OFFSET] = pt->color.b;

}
// wait for DRAW operation to finish
while(vertex_registers[DRAW_STATUS] != ALL_DONE);

}

422 XGL Device Pipeline Porting Guide—August 1994

A

The PolylinesProto.h file is included in another file as shown below:

Thus, whenever a bug is filed, you fix it once for all polyline renderers. Unlike
embedding if(constant_expression)’s in a macro definition, this
technique allows the debugger to step through the #include ’d code. This
technique was used for the Sun XGL GX pipeline, which has nearly one
hundred special purpose polyline renderers.

{
// setup code here (probably with #ifdef’s in it)

vertex_registers[X_OFFSET] = pt->x;
vertex_registers[Y_OFFSET] = pt->y;
vertex_registers[Z_OFFSET] = pt->z;
for (i=1 ; i<num_pts ; i++) {

pt++;
vertex_registers[X_OFFSET] = pt->x;
vertex_registers[Y_OFFSET] = pt->y;
vertex_registers[Z_OFFSET] = pt->z;

ifdef(VERTEX_COLOR)
 vertex_registers[R_OFFSET] = pt->color.r;
 vertex_registers[G_OFFSET] = pt->color.g;
 vertex_registers[B_OFFSET] = pt->color.b;

endif
// wait for DRAW operation to finish
while(vertex_registers[DRAW_STATUS] != ALL_DONE) ;
}

}

#define FUNCNAME PolylinesXyz
#undef VERTEX_COLOR
#include PolylinesProto.h
#undef FUNCNAME

#define FUNCNAME PolylinesXyzRgb
#define VERTEX_COLOR
#include PolylinesProto.h
#undef FUNCNAME

Performance Tuning 423

A

Unroll Loops Where Appropriate

It was shown above that it is worthwhile to minimize the number of if tests
on your performance critical paths. This rule applies to loops as well. If you
have some knowledge about how your loop is going to be used, then you can
exploit that knowledge to reduce the number of branches in your code along
with your loop overhead. Just like the examples in the preceding section, this
means replicating code. Unlike the preceding section, loop unrolling is only
effective inside loop constructs and, therefore, is really only applicable in your
innermost loops.

One example of where this can be used is in an
xgl_multi_simple_polygon() rendering routine. You could have a
specialized renderer which handles the case where the SIDES_ARE_3 flag is
set. Instead of having an outer loop for each polygon and an inner loop for
each vertex, the inner loop can be completely unrolled to send down three
vertices at a time. This way, you have reduced the number of if tests per
polygon from four to one and saved other per loop-iteration overhead such as
incrementing loop variables. A similar optimization could be used for
SIDES_ARE_4 (possibly be used in conjunction with
XGL_FACET_FLAG_SHAPE_CONVEX).

Another common area for loop unrolling is in memory copy operations. The
canonical copy operation shown below takes six instructions to copy each
word of data when compiled at -O2 on SPARC (-O4 does some loop unrolling
for you). Of these six instructions, only two are actually useful (the loading of
the src value and the storing of that value to dst). The other four instructions
are purely loop overhead (testing size, incrementing dst , incrementing src ,
and decreasing size).

By unrolling the loop once, you can get the loop to use nine instructions to
copy two words of data. The example of unrolling the loop once is as follows:

for (; size>0 ; size--) {
*dst++ = *src++;

}

424 XGL Device Pipeline Porting Guide—August 1994

A

Unrolling the loop again produces 13 instructions to handle four words of
data. Remembering that two instructions per word is the least possible, the
efficiency has improved from 33% (2/6) to 61% (8/13). The example of
unrolling the loop again is as follows:

for (; size>1 ; size-=2) {
dst[0] = src[0];
dst[1] = src[1];
dst += 2;
src += 2;

}
if (size) {

*dst = *src; // in case “size” is odd
}

for (; size>3 ; size-=4) {
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst += 4;
src += 4;

}
if (size<2) {

if (size==1) {
dst[0] = src[0];

}
} else {

if (size==2) {
dst[0] = src[0];
dst[1] = src[1];

} else {
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];

}
}

Performance Tuning 425

A

Unfortunately, as the loop gets more and more unrolled, the cleanup code after
the loop gets more and more complicated. For massively unrolled loops, the
cleanup code might best be handled with a switch statement:

You will need to keep in mind just how the code will be used. If you plan to
copy large amounts of data (like on the order of Kwords), then it’s perfectly
reasonable to unroll your loops 16 or 32 times. If you plan to only copy a
handful of words, then extreme loop unrolling can actually hurt your
performance. The loop should only be unrolled to the extent that a typical
use will execute at least a few iterations.

Reduce the Cost of Multiple Clause If Tests

In C/C++, if tests treat the logical operations && and || specially when
performing expression evaluation. The compiler produces code that will only
continue to evaluate the expression as long as the result is not known. For
example, the code below tests for b==3 which will only occur if a==1 . If a!=1 ,
then the expression cannot possibly be true regardless of what b is.

for (; size>15 ; size-=16) {
dst[0] = src[0];
dst[1] = src[1];
...
dst[15] = src[15];
dst += 16;
src += 16;

}
switch(size) {

case 15: dst[14] = src[14];
case 14: dst[13] = src[13];
...
case 1: dst[0] = src[0];

}

if ((a==1) && (b==3)) {
/* do something */

}

426 XGL Device Pipeline Porting Guide—August 1994

A

To the compiler, the code above looks like:

Likewise, the following code:

looks to the compiler as follows:

So when using &&, you should put the sub-expression most likely to fail at the
beginning of the expression. When using || , put the sub-expression most
likely to succeed at the beginning. This will reduce the average number of if
tests your code executes.

Sometimes you will have a long list of && separated == expressions which you
think will frequently succeed. This commonly happens when you are checking
current state versus cached state. By avoiding the use of &&, you can reduce the
number of if tests by using integer math. For example, the following code:

if ((v1->a == v2->a) && (v1->b == v2->b) && ...)

can be transformed to:

if (!((v1->a - v2->a) | (v1->b - v2->b) | ...))

It’s worth noting that the recommended code will be slower than the original
code if, for example, v1->a != v2->a . This technique should only be used
when all clauses are expected to frequently be true.

Similar techniques can be used with || separated if tests. For example, the
following code:

if ((v1->a != v2->a) || (v1->b != v2->b) || ...)

if (a==1) {
if (b==3) {

/* do something */
}

}

if ((a==1) || (b==3)) {
/* do something */

}

if (a==1) {
/* do something */

} else if (b==3) {
/* do something */

}

Performance Tuning 427

A

can be transformed to:

if ((v1->a - v2->a) | (v1->b - v2->b) | ...)

Using fast greater-than or less-than operators takes a bit more effort but is still
useful. For example, the following code:

if ((x>=xmin) && (x<=xmax) && (y>=ymin) && (y<=ymax))

can be transformed to:

This takes advantage of the sign bit from the subtractions to do branch free
comparisons. Again, these techniques should only be used when all clauses of
an if test are likely to be evaluated.

Avoid Using Malloc/Free and New/Delete

Allocating and freeing memory is an expensive operation. If a section of code
on a performance critical path requires its own temporary space, try to either
allocate it on the stack or cache it somewhere.

Allocating space on the stack is easiest when you know in advance how much
space you will need and the amount is reasonably small (like space for a
handful of 4x4 transforms). If you don’t know how much space you will need
at compile time, but you do know that it’s small, you can try using alloca()
instead of malloc() . The alloca() function gives you an amount of memory
by bumping the stack pointer. This method of memory allocation should be
used with caution since it will fail if you exceed the stack limit1. Since this
method of allocation uses the stack, there is an implicit free when you leave the
calling function.

1. Not only is alloca()’s behavior on failure undefined, the man page strongly discourages its use.

if (!(((x-xmin) |
(xmax-x) |
(y-ymin) |
(ymax-y)) >> 31))

or:
if (!(((x-xmin) |

(xmax-x) |
(y-ymin) |
(ymax-y)) & 0x80000000))

428 XGL Device Pipeline Porting Guide—August 1994

A

If you need to malloc /new space, try to cache a pointer to that space in
whatever structure is both handy and likely to be around the next time
through the code. You will need to check each time that you have enough
space (and if you don’t, free the old space and allocate a bigger chunk), but this
is very cheap when compared to the costs of memory allocation.

Sometimes neither of these schemes is appropriate. If this is the case, try to
minimize the number of allocations you do. Calculate the total size you will
need, allocate one big chunk, and set your pointers to the appropriate offsets.
It’s worth noting that this performance recommendation is in direct opposition
with object-oriented design principles. You will need to decide before you
begin which is more important to you.

Cache Whatever You Need

Another basic technique is caching values that you need. If you think it’s likely
for the same path to be taken through the code many times in a row, then look
for calculated or constructed values that can be cached for future use. This
applies particularly to requests that involve context switching (for example,
system calls or Xlib inquires). Although caching is a useful technique, you need
to keep in mind the complexity of invalidating your caches. Don’t leave this
crucial aspect out of your design phase.

Preserve Batching

When a library is handed data from the application, it is almost always a bad
idea for the library to break it into smaller pieces. Not only does breaking up
data make the library code more complicated and harder to understand, it is
virtually guaranteed to reduce performance1. The only way to increase the
batching factor beyond what the application gives you is to go through a copy
operation. A low-level routine should not have to perform a copy just because
a high-level routine broke up data.

1. An exception to this rule is if you have a multiprocessor system. In this case, it may be best to hand
whatever data you’ve got to an idle processor. Even in cases such as this, before and after measurements
should take place to ensure that the performance does actually go up.

Performance Tuning 429

A

Keep Parallelism As High As Possible

In an immediate mode accelerated graphics environment, it is critical to
consider the parallelism between the CPU and the accelerator to get anywhere
near maximum performance. Some accelerator attributes will require the
hardware pipeline to be empty while other attributes will not. You must look
closely at the attributes that require the pipeline to be empty. As soon as one of
these attributes come down, flush any outstanding data to the accelerator.
Attempt to delay sending the attribute as long as possible. That may mean you
should return to the application after setting some state to indicate that an
attribute change is pending. On the next call to your library, wait for the
accelerator to become idle, send the attribute, and finally process whatever the
current call was.

Avoid Using Global Variables

Because this is the age of dynamic libraries, all code must be relocatable. This
also applies to global variables (local variables are kept on the stack and are
therefore easy to locate). This need forces global variables to be referenced via
a table indirection. Depending on whether your library is compiled -pic or -
PIC , this will either be a single level or double level indirection. In a multi-
threaded environment, global variables have the additional overhead of
needing protection via locks. If you must use global variables, minimize their
usage by creating local variables that point to the globals. The following code:

would run faster as:

int pt_size = global_data.pt_size;
...
float *pt = global_data.pt;
 ...
float *colors = global_data.vertex_colors;

gd *lgd = &global_data;
int pt_size = lgd->pt_size;
...
float *pt = lgd->pt;
...
float *colors = lgd->vertex_colors;

430 XGL Device Pipeline Porting Guide—August 1994

A

In the second case, the indirection is only performed once per function instead
of every time the global data is referenced.

Reduce Function Call Depth

Depending on your hardware, function calls can be relatively cheap or
expensive. Regardless, they are never free. An effort should be made to keep
the function call depth to a reasonable limit. Not only can this result in less
instructions executed, but it will reduce the number of code pages you touch so
that your working set will be smaller. However, it is not recommended that
you have complicated functions in order to reduce the number of code pages.
As you are designing your code, just bear in mind the cost of function calls.

SPARC is optimized around register windows. Programs that are well-behaved
in their function call depth will benefit from this and those that are not will
suffer when their register windows frequently spill to memory.

x86 has relatively expensive function calls. Even ignoring the issues of pushing
and popping parameters from the stack, the instructions call , leave , and
ret take 3, 5, and 5 cycles, respectively on a 486 (the cycles are 7, 4 and 10
on a 386).1

Use Fixed Point Arithmetic

Depending on the following listed criteria, it may be advantageous to convert
your floating point data to fixed point. These criteria are as follows:

• Relative speeds of integer and floating point code on your hardware

• Whether your hardware uses super-scalar technology

• How much precision you need

This is particularly true if you are walking scanlines and you would like to
avoid a floating point to integer cast for every pixel. Addition and subtraction
are the two most common operations on fixed point numbers (since floating
point multiplication/division is usually faster than integer
multiplication/division).

1. Cycle counts from Microsoft’s 80386/80486 Programming Guide, Ross P. Nelson, 1991.

Performance Tuning 431

A

Exploit the Math That Your Hardware Does Well

If you know which specific platform your code will be running on, you can
exploit the hardware to its fullest. If your code needs to run well on a variety
of hardware, you may be forced to use the lowest common denominator. If this
is the case, avoid using square root, integer
multiplication/division/remainder, and to a lesser extent, floating point
division. It is safe to assume that you will have fast addition and subtraction of
both integer and floating point data. In addition, floating point multiplication
is fast.

Some examples of things you can do are the following:

• Avoid using square root if you don’t need to. For example, don’t normalize
vectors if you only need them for backface culling. Put an if test in your
vector code to normalize only when necessary.

• If a variable will be used to divide two or more other variables, calculate its
reciprocal once and use that to multiply with the other variables. Sometimes
you can avoid both integer and floating point division of variables by
multiplying other variables. For example:

if (a/10 >= b) and if (a/10.0 >= b)

can be replaced with:

if (a >= b*10) and if (a >= b*10.0)

Notice that the integer technique works with “>=” but not with “>”.

• If you know something about one of the operands of an integer
multiplication, you may be able to use shifts and adds to get the result. For
example, if you know that one operand will always be between 0 and 15,
then use a switch with 16 cases that multiplies the other operand by a
constant. Be sure to check to make sure the compiler turns this into a series
of shifts and adds.

• The only kind of fast integer division and remainder is when the divisor is a
power of 2. If you have such a divisor, then code using either shifts and
ands, or verify that the compiler is smart enough to notice.

432 XGL Device Pipeline Porting Guide—August 1994

A

Use Single Precision Floating Point Constants

ANSI C/C++ dictates that floating point constants by default are double
precision. This affects your code in several ways:

• Two words of data are loaded from memory instead of one for every
floating point constant.

• Variables and temporary values may undergo a conversion to double
precision (for example, more instructions).

• Fewer floating point registers are available because you have double
precision copies of single precision data.

• Expression evaluation is done using double precision instructions, which are
potentially slower than single precision instructions.

Fortunately ANSI allows you to keep all your floating point constants in single
precision by adding an f suffix. For example, change:

if (val < 0.0)

to:

if (val < 0.0f)

to get 0.0 to be single precision. Note that if you are using cc , you will also
need to apply the -fsingle compile line option to get single precision
expression evaluation. You can think of the f suffix as merely registering with
the compiler that the constant’s data type is float and not double .

Avoid Careless Use of the Stack

Use the stack sparingly. RISC CPUs tend to have an abundance of general
purpose registers that are quite effective in increasing performance. Keeping
your function’s local variables in these registers can dramatically increase the
speed of your code. On SPARC, look for references to the frame pointer (%fp)
in your performance critical functions. Pay close attention to the references
inside your inner loops. For the most performance-critical functions, it is an
achievable goal to have absolutely no references to %fp .

Performance Tuning 433

A

Removing references to %fp is not easy. You may find that you need to break
up a function into many smaller, specialized functions. Frequently, however,
you will be able to tune the code so that it can be easily processed by the
compiler. Creating new local variables can be used to move %fp references
outside of a loop.

Be advised that declaring variables to be of type register does not guarantee
that they will actually be in a register. The register keyword is only a hint to
the compiler. Different compilers (and even different versions of the same
compiler) will consider this keyword differently. It is perfectly legal for a
compiler to completely ignore this hint.

Experiment with changing the code to see just what it is that your compiler
needs. This level of tuning requires looking at the assembly output of your
compiler. Every compiler has its quirks, and your task is to figure out these
quirks.

Optimized Leaf Functions

CPUs with register windows typically have a much lower function call cost
than CPUs that don’t have register windows. Above and beyond this, register
windows support an even faster kind of mini-function called an optimized leaf
function. The idea is that if a function only uses windowed out registers (no
local or floating point registers, and no stack or frame pointers), and calls no
other functions, then the function can operate using the caller’s register
window and stack frame. The benefits of optimized leaf procedures is a
savings of one or two instructions per call plus the possibility of not
overflowing the register windows.

Try to Minimize Loads

On high-clock rate RISC machines, loads are much more expensive than stores.
This is because loads require a round trip message. First, the request is made
by the CPU for some data, and at some later time the data is given to the CPU.
Stores are faster because the CPU simply issues a request for the data to be
stored, and the memory subsystem worries about the rest. Loads can also be
slower because they may have to wait for the store buffer to drain (see “Cluster
Loads and Cluster Stores” on page 434). CPU caches exist to alleviate the
problems associated with loads, but the cache will never get a 100% hit rate,

434 XGL Device Pipeline Porting Guide—August 1994

A

nor will it help with uncachable data like a device’s registers. The penalty for a
cache miss is high enough to factor it into a design. As CPU speed continues to
go up, this penalty will get higher.

Techniques for minimizing loads have already been brought up, but it is worth
repeating here. Make sure that loops have local variables that directly reference
the data you are interested in. Don’t have code like:

This should be changed as follows:

Also keep pointers to global variables around if possible. Look for stack
references and minimize their number. Loading data from across a bus is
particularly expensive, so you should try to limit this process as much as
possible.

Cluster Loads and Cluster Stores

Current RISC hardware handles back-to-back loads and back-to-back stores
well, but does not handle load-store-load-stores well. This is partly due to the
cache. Every time you store a new value into the cache, you run the risk of
invalidating some data that you’re about to load. As caches get more
associative, this risk goes down, but it never goes away.

Most processors also have what is known as a store buffer. This is typically a
small FIFO queue that fills up with data to store if the memory subsystem is
busy. A CPU may need to wait for the store buffer to empty before a load can
be issued. The problem here is basically parallelism. The ideal is to have your
CPU and memory subsystem doing productive work at all times.

for (i=0 ; i<size ; i++) {
...
sum += a->b[i];
...

}

bptr = a->b;
for (i=0 ; i<size ; i++) {

...
sum += bptr[i];
...

}

Performance Tuning 435

A

If you were to rewrite the body of the 4-way unrolled copy loop below:

to cluster loads and cluster stores, it would look like:

This compiles to the same number of assembly instructions, but the loads and
stores are handled in blocks rather than interleaved for every word copied. As
tends to happen, this code uses more local variables (and also more registers)
to force the compiler to do what you want in the order you want. Even though
you are programming in C, the source code compiles almost line for line to
assembly code, and the local variables tend to map one to one with hardware
registers.

Use Double Word Loads and Stores

SPARC supports the concept of 64-bit quantities through C and C++. This can
be advantageous for setting and moving blocks of data. Each double word
load/store instruction takes the place of two single word load/stores.
Depending on the characteristics of the memory subsystem, you may be able to
achieve an almost perfect 2:1 speedup (going over an I/O bus is such a case).

for (; size>3 ; size-=4) {
 dst[0] = src[0];
 dst[1] = src[1];
 dst[2] = src[2];
 dst[3] = src[3];
 dst += 4;
 src += 4;

}

for (; size>3 ; size-=4) {
t0 = src[0];
t1 = src[1];
t2 = src[2];
t3 = src[3];
dst[0] = t0;
dst[1] = t1;
dst[2] = t2;
dst[3] = t3;
dst += 4;
src += 4;

}

436 XGL Device Pipeline Porting Guide—August 1994

A

Double word load/stores can only be used on double word-aligned data. For
setting or clearing a block of data, this is easily handled by testing the starting
address and possibly writing out a single word of data before entering the
main double word loop. For copy operations, there is the additional
complexity of the source address being double-aligned, but the destination
address is not (and vice versa). In general, there is no way in C to exploit
double word load/stores in this situation. You would need to have an
assembly language routine to do it. However, if you are writing data to a
device input buffer, you may be able to write a one word NO_OP directive to
get the source and destination address alignments synchronized.

To convert the body of our unrolled loop to use double word load/stores
requires casting things properly, as shown below:

Of course, you should have your src and dst declared to be double (or long)
to improve the code readability. Also, the ProWorks compiler needs to have the
-dalign flag to use double word load/stores.

Be Cache-Aware

Certain types of algorithms need to take into account the hardware caches
present in the systems they will run on. If you are writing code that accesses
large amounts of data (memory rasters, Z-buffers, texture maps), you should
bear in mind how the hardware cache will affect the performance of your code.
Try to keep your data references bounded within small local regions. Also,
when allocating space for data structures, try to keep adjacent data from
mapping to the same cache line. For example, if you need 1024-byte scanlines,
allocate 1152 bytes per scanline so that pixel X,Y doesn’t map to the same cache
line as pixel X,Y+1.

for (; size>3 ; size-=4) {
d0 = *(double*)(src+0);
d1 = *(double*)(src+2);
(double)(dst+0) = d0;
(double)(dst+2) = d1;
dst += 4;
src += 4;

}

Performance Tuning 437

A

Compiler Options

A general recommendation is to know the optimizations that your compiler
supports. Although compiler options will vary depending on your code and
the system, some possible options are listed below. Check your reference pages
for more information.

Table A-2 Compiler Options

cc CC

-xcgXX -cgXX

-dalign -dalign

-fast -fast

-fsingle

-ispace vs -ispeed

-xlibmil -libmil

-native -native

-xO -O

-K pic vs -K PIC -pic vs -PIC

-Qoption fbe -cgXX

-xunroll

438 XGL Device Pipeline Porting Guide—August 1994

A

439

Changes to the XGL Graphics
Porting Interface B

This appendix provides information on the differences between the previous
XGL graphics porting interface (GPI) and the current XGL GPI. It lists and
briefly describes additions, changes, and deletions to the GPI. For more
information in the device-independent changes, see the XGL Architecture Guide.
For current information on XGL operators, attributes, and data structures, see
the XGL Reference Manual.

Changes in Rendering Architecture
This section lists changes to the rendering architecture.

Interface Manager Removed

To simplify the interactions between the device pipeline and the device-
independent code, the interface manager object has been removed from the
XGL architecture. Pipeline renderers are now called via function pointers in the
opsVec[] array, which is defined in the XglDpCtx object. The pipeline must
set up a pipeline-specific version of the opsVec[] array to point to the
rendering functions for the primitives that it accelerates. If the device pipeline
does not implement a function, the opsVec[] value for that function will call
the software pipeline by default. See page 44 in Chapter 3, “Pipeline
Framework” for information on setting up the opsVec[] array. Be sure to
remove the interface manager header files from your pipelines.

440 XGL Device Pipeline Porting Guide—August 1994

B

Because the interface manager has been removed, the device pipelines no
longer call the the interface manager to access other primitives from within a
given primitive. Therefore, note the following about calling the software
pipeline or another LI primitive.

• Device pipelines call the software pipeline directly. Previously, the device
pipeline called the software pipeline through the interface manager in these
cases:
• If the device pipeline had not implemented a renderer, it returned a value

of 0 to a rendering call.
• The device pipeline could call the interface manager with a return value of

0 in certain cases within an implemented primitive.
• The device pipeline could call the software pipeline for partial processing

of data by calling the interface manager LI function with the software
override flag set to TRUE.

A pipeline return value of 0 or a pipeline call to the interface manager with
the software override flag set to TRUE caused the interface manager to call
the software pipeline.

At this release, the device pipeline is responsible for calling the software
pipeline directly, as:

swp->li1MultiPolyline(api_bbox, api_num_plists, api_pt_list);

• Device pipelines call other LI functions through the opsVec[] array, or they
can call their own renderers directly. Previously, if a pipeline created a
Gcache from within li1MultiSimplePolygon() to handle certain
polygon cases, the pipeline called itfMgr->li1DisplayGcache(gcache)
to render the polygons. Now, any call of itfMgr->{primitiveCall}
should be changed to a call through the opsVec[] array or a direct call.

In general, you would want to use the opsVec[] array to call other
primitives, since this architecture has been set up to be advantageous to
subsequent primitive calls. In some device-dependent cases, calling a
primitive directly might be faster. For example, for rendering polygons with
edges, calling li1MultiPolyline() directly to draw the edges may be
faster for some devices than using the opsVec[] array.

Note that when calling another XglDpCtx primitive through the opsVec[]
array, the call should include an extra parameter, gen_punt = FALSE , in
order for backing store to work correctly.

Changes to the XGL Graphics Porting Interface 441

B

For instructions on setting opsVec pointers in the XglDpCtx object, see
Chapter 3, “Pipeline Framework”.

Primitive Return Types Changed

At this release, primitives are no longer virtual functions, and LI-1 and LI-2
primitive calls no longer return values. Thus, for example,

virtual int XglDpCtx3d::li1MultiArc(XglConicData* arc_data)

has become:

void XglDpCtx3d::li1MultiArc(Xgl_arc_list* arc_list)

Note that LI-3 functions have not changed.

Primitive Arguments Changed at LI-1

The arguments to LI-1 primitives have been changed to pass the API data
directly to the device pipeline rather than through the XglPrimData object.
Each primitive function is called directly with the application data. For
example, the application calls xgl_multipolyline() as:

xgl_multipolyline(Xgl_ctx ctx, Xgl_bbox* bbox,
Xgl_usgn32 numPtLists,Xgl_pt_list pl[])

The corresponding call to the device pipeline was previously:

li1MultiPolyline(XglPrimData *pd);

It now is this:

li1MultiPolyline(Xgl_bbox* bbox, Xgl_usgn32 numPtLists,
 Xgl_pt_list* pl)

See Chapter 3, “Pipeline Framework” for the current LI-1 primitive arguments.

Constructor Change

The XglDpCtx constructor calling parameters have changed. Previously, its
calling parameters were:

XglDpCtx{2,3}d(context)

At this release, the calling parameters are:

XglDpCtx{2,3}d(dp_dev->getDevice(), context)

442 XGL Device Pipeline Porting Guide—August 1994

B

Changes in State Handling
As with the interface manager object, the update tables have been removed to
optimize the internal architecture. In place of the update tables, the pipeline
should create the following two functions and insert pointers to them in the
opsVec[] array:

• objectSet() – Function that passes information on Context attribute
changes to the device pipeline when changes occur.

• messageReceive() – Function that passes the device pipeline information
on attributes changes in objects other than the Context.

You can copy these functions from the GX sample pipeline and update the XGL
Context types in the switch statement with the Context types appropriate for
your hardware.

As an alternative, the pipeline can retrieve Context attributes every time it
renders. However, for optimized performance, the objectSet() architecture
is recommended for LI-1 primitives.

Be sure to remove the update table header files from your existing renderers. In
addition, remove all references to update table masks. For information on
Context state handling at this release, see Chapter 5, “Handling Changes to
Object State”.

Derived Data Change

Derived data has the same interface at this release except for the
updateTableChanged() function. Previously, a device pipeline called the
udTable.updateTableChanged() function to determine whether changes to
derived data occurred. Because the update tables have been removed, the view
group function changedComposite() has been modified to incorporate the
quick test for derived data changes that the update table provided. Therefore,
viewGrpItf->changedComposite() is now the first indication that derived
data may have changed. For information on the derived data mechanism, see
Chapter 7, “View Model Derived Data”.

Changes to the XGL Graphics Porting Interface 443

B

Application Data Passed Directly to Pipelines
As mentioned above, the XglPrimData object is no longer used to process data
from the application at LI-1. LI-1 primitive functions now receive actual API
data instead of the preformatted data in the XglPrimData objects. Because of
this, arguments for LI-1 primitive functions have changed. Be sure to remove
all references to XglPrimData from LI-1 primitives.

Utility Arguments Changed

The calling arguments for the utilities that took XglPrimData objects as an
argument have changed. Table B-1 lists the changed utilities. These utilities
now take the API data in place of XglPrimData object data.

Table B-1 Changed Utilities for XGL 3.1

Changed Utilities

XgliUtComputeFn

XgliUtComputeFnReverse

XgliUtComputeIndepTriFn

XgliUtComputeIndepTriFnPl

XgliUtComputeMspFn

XgliUtComputePolygonFn

XgliUtComputeQuadMeshFn

XgliUtComputeTstripFn

XgliUtComputeTstripFnPl

XgliUtComputeTstarFn

XgliUtComputeTstarFnPl

XgliUtComputeVnReverse

XgliUtMellaToPline

XgliUtModelClipMarker

XgliUtModelClipMpline

XgliUtModelClipMspg

XgliUtPdModelClipPgon

444 XGL Device Pipeline Porting Guide—August 1994

B

XgliUtModelClipTstrip

XgliUtVertexOrientation

XgliUtClassifyMsp

XgliUtClassifyPgon

Table B-1 Changed Utilities for XGL 3.1

Changed Utilities

445

Accelerating NURBS Primitives C

If there is interest in accelerating part of the NURBS curve or surface, or in the
algorithms, refer to the following papers. Be aware that the coordinate system
changes in different situations.

• Abi-Ezzi, Salim. “The Graphical Processing of B-splines in a Highly
Dynamic Environment,” Rensselaer Polytechnic Institute, RDRC-TR 89001,
Troy, New York, May 1989.

• Abi-Ezzi, Salim and Leon Shirman. “The Tessellation of Curved Surfaces
Under Highly Varying Transformations,” in Proc. Eurographics 1991, F. H.
Post and W. Barth, eds., Eurographics Association, Elsevier Science
Publishers B.V. North Holland, 1991.

• Abi-Ezzi, Salim and Leon Shirman. “The Scaling Behavior of a Viewing
Transformation,” accepted for publication in IEEE Computer Graphics and
Applications, 1992.

• Abi-Ezzi, Salim and Michael Wozny. “Factoring a Homogeneous
Transformation for a More Efficient Graphics Pipeline,” in Computer Graphics
Forum, Vol. 9, 1990.

• Abi-Ezzi, Salim, and Srikanth Subramaniam. “Compilation for Fast
Dynamic Tesselation of Trimmed NURBS Surfaces,” Unpublished, 1993.

• Farin, Gerald. Curves and Surfaces for Computer Aided Geometric Design,
Second Edition, Academic Press, Inc., San Diego, CA, 1990.

• Garey, M., D. Johnson, F. Preparata, and R. Tarjan. “Triangulating a Simple
Polygon,” in Information Processing Letters, Vol. 7, No. 4, June 1978.

446 XGL Device Pipeline Porting Guide—August 1994

C

• International Standard ISO/IEC 9592-4, Information Processing Systems –
Computer Graphics – Programmer’s Hierarchical Interactive Graphics
System (PHIGS), Part 4 – Plus Lumiere Und Surfaces, February 1991.

• Solaris XGL 3.0.1 Programmer’s Guide, part number 801-4120-10, Sun
Microsystems, Inc.

• Rockwood, Alyn, Kurt Heaton, and Tom Davis. “Real-Time Rendering of
Trimmed Surfaces,” in Computer Graphics. Proceedings of Siggraph 1989, Vol.
23, No. 3, July 1989.

• Shirman, Leon and Salim Abi-Ezzi. “The Cone of Normals for Fast
Processing of Curved Patches,” Submitted for publication, 1992.

447

Index

A
accumulation buffer, 53, 56
addPickToBuffer(), 127
assignCurStrokeAsEdge(), 128
assignCurStrokeAsLine(), 128
assignCurStrokeAsMarker(), 128
assignCurStrokeAsSurfBack(), 129
assignCurStrokeAsSurfFront(), 128
assignCurStrokeAsText(), 128

B
backing store

and double buffering, 67
device pipeline support, 65
overview, 10

C
changedComposite(), 164
checkLastPick(), 128
clearComposite(), 165
clip lists, 186, 191
clipChanged(), 198
Color Map object

object interfaces, 146
Context object

getting attribute values, 123
object interfaces, 127

context switching, 9, 115
coordinate systems, 154, 168, 180

See also derived data
copyBuffer(), 40
copyConvert(), 143
createDpCtx(), 39
createDpDev(), 37
current coordinate system, 180
current stroke pointer, 109

D
data storage

accessing data at LI-1, 75
accessing data at LI-2, 82
conic data, 85 to 89
facet data, 76
in the software pipeline, 79
level data, 80
overview, 74
pixel data, 89 to 94
point data, 82 to 84
rectangle data, 85 to 89

dbDisplayComplete(), 198
dbDisplayWait(), 198
dbGetWid(), 198

448 XGL Device Pipeline Porting Guide—August 1994

dbUnGrab(), 203
DC offset values, 112
DDK (Device Driver’s Kit), 8
deallocate(), 93
Denizen test suite, 20
depth cue reference planes, 175
derived data

changes of derived items, 164
coordinate systems, 154
design goals, 151
eye vector, 156
getting boundaries, 170
getting eye vector, 173
getting lights, 172
getting model clip planes, 174
getting transforms, 169
lights, 156, 172
transforms, 154
view cache object, 157
view clip bounds, 156
view concern object, 158
view group configuration object, 157
view group interface object, 158
view model, 150

Device Driver’s Kit (DDK), 8
Device object, 29

initialization, 42
object interfaces, 131

device orientation, 52
device pipeline

accessing point data at LI-1, 75
accessing point data at LI-2, 82
adding member data to a class, 61
error reporting, 23 to 27
getting attribute values, 120
getting model clip planes, 174
getting transforms, 169
getting view clip bounds, 170
locking the window for

rendering, 186, 192
managing clip list changes, 186
managing window system

resources, 195
multiple frame buffers, 34

multiple windows, 38
naming conventions, 51
pipeline context class (XglDpCtx), 43

to 66
pipeline device class (XglDpDev), 38

to 42, 52 to 57
pipeline initialization, 42, 190
pipeline library class (XglDpLib), 33

to 35
pipeline loading, 58
pipeline manager class

(XglDpMgr), 36 to 37
required classes, 30
return values, 66
summary of functions, 68
xgl_create_PipeLib(), 32

DGA, 9, 184
winBboxinfop(), 205
winDbInfop(), 205

dithering
lookUpDitherValue(), 146
lookUpInternalDitherAddress(), 146
lookUpInternalDitherValue(), 146

dlsym(), 32
DMA devices, 78
double buffering, in hardware, 195
dynamic linking, 2

dlsym(), 32

E
error reporting, 23 to 27
external files, 21
eye vector, 156
eye vectors, 173

F
fast clear sets, 200
fillRectangle(), 92
fonts

stroke font object interfaces, 136
frame buffers, multiple, 34, 36

Index 449

G
gamma values, 131
getAccumBufferDepth(), 54
getAccumBufferPixRect(), 136
getActualData(), 132
getActualDataSize(), 132
getActualDescription(), 133
getActualOffset(), 133
getApiData(), 75
getBackTexturing(), 130
getBbox(), 88
getCenterPtr(), 88
getClass(), 203
getClipStat(), 198
getCmap(), 145
getCmapDrawable(), 146
getColorTable(), 146
getConicDataType(), 88
getConicType(), 88
getCosAngle2(), 132
getCurCoordSys(), 180
getCurrentLevel(), 84, 88
getCurrentLevelData(), 84, 88
getCurrentStroke(), 128, 129
getDcOrientation(), 52, 131
getDepth()

in XglDpDevWinRas, 54
in XglPixRect, 92

getDescriptor(), 203
getDescriptors(), 130, 134
getDevFd(), 198
getDevice(), 198
getDeviceName(), 198
getDoPixelMapping(), 134
getDpDev(), 131
getDpMgr(), 34
getDrawable(), 131
getElement(), 133
getExpectedFlagValue(), 112
getFaceAttrs(), 84

getFacetList(), 84
getFlag(), 137, 142
getFlagMask(), 112
getFlagPtr(), 88
getFrontTexturing(), 129
getGammaInversePowerTable(), 131
getGammaPowerTable(), 131
getGammaValue(), 52, 131
getHeight(), 92
getImageBufferPixRect(), 135
getImgBufLineBytes(), 136
getInverseMapperHasBeenSet(), 147
getIsFontLoaded(), 136
getIsotropicScale(), 143
getLength(), 133
getLevelData(), 84, 88
getLineBytes(), 93
getLockType(), 203
getMajorAxisPtr(), 88
getMapperHasBeenSet(), 147
getMatrix(), 143
getMatrixDouble(), 143
getMatrixFloat(), 142
getMatrixInt(), 143
getMaxZ(), 52
getMemberRecord(), 138, 142
getMemoryAddress(), 93
getMergeClipList(), 199
getMergeClipListCount(), 199
getMergeClipMask(), 199
getMinorAxisPtr(), 88
getNegDirection(), 132
getNewFramePlaneMask(), 127
getNorm(), 143
getNormInverse(), 143
getNumConics(), 88
getNumPointLists(), 84
getNumRects(), 89
getParallelProj(), 171
getPipeName(), 203

450 XGL Device Pipeline Porting Guide—August 1994

getPlaneMaskMask(), 146
getPointLists(), 84
getProcessFlags(), 84
getRadiusPtr(), 88
getRealColorType(), 54, 199
getRealPlaneMask(), 127
getRealRenderBuffer(), 127
getRenderFlags(), 84
getRotAnglePtr(), 88
getSfontData(), 136
getSfontInst(), 136
getStartAnglePtr(), 88
getStartPointPtr(), 89
getStartSeg(), 133
getStartSegRemain(), 133
getStopAnglePtr(), 89
getStopPointPtr(), 89
getSurfAttr(), 127
getSurfBackAttr3d(), 129
getSurfBackFaceAttr(), 129
getSurfBackFaceAttr3d(), 129
getSurfFrontAttr3d(), 129
getSurfFrontFaceAttr(), 127
getSurfFrontFaceAttr3d(), 129
getSwAccumBuffer(), 56, 135
getSwp(), 128
getSwZBuffer(), 56, 135
getType(), 203
getUserClipList(), 200
getUserClipListCount(), 200
getValue(), 92
getValueByPointer(), 92
getViewCanonical(), 171
getViewGrp(), 128
getWid(), 199
getWidth(), 92
getWindowDepth(), 199
getWindowHeight(), 199
getWindowWidth(), 199
getWindowX(), 199

getWindowY(), 199
getWrapOriginX(), 92
getWrapOriginY(), 92
getWrappedValue(), 92
getWsClipList(), 200
getWsClipListCount(), 199
getZBufferPixRect(), 135
global state object, 34, 58
grabDrawable(), 204
grabFCS(), 200
grabRetainedWindow(), 203
grabStereo(), 201
grabWids(), 200
grabZbuf(), 200

I
inquire(), 37
isMemory(), 92

L
lights, 156, 172
line patterns, 132
line-specific attributes, 106
linking, dynamic, 2
lock functions, 191
lookUpDitherValue(), 146
lookUpInternalDitherAddress(), 146
lookUpInternalDitherValue(), 146

M
markers, 133
matchDesc(), 204
matrices

getMatrix(), 143
getMatrixDouble(), 143
getMatrixFloat(), 142
getMatrixInt(), 143

messageReceive(), 105
model clip planes, 174
multipolylines

Index 451

expected flag value, 111
flag mask, 111
primitives rendering as, 106
stroke types, 106

N
naming conventions, 51
naming conventions for internal

attributes, 121
needRtnDevice(), 56
normals, 143

O
objectSet(), 70, 110, 122
ops_vector function array, 21, 44, 45
opsVecDiDefault function array, 48

P
performance tuning

different performance tools, 412
find the performance critical

paths, 410
selecting good benchmarks, 413
suggested techniques for faster

code, 416
tuning the performance critical

paths, 415
picking

addPickToBuffer(), 127
checkLastPick(), 128

pipeline, See device pipeline or software
pipeline

pixel data, 89
XglPixRect, 90

popCurCoordSys(), 180
porting

choosing an interface layer, 14
implementing an LI-1 primitive, 16
testing the implementation, 20

possible(), 204
pushCurCoordSys(), 180

R
reallocate(), 93
reassign(), 94
receive(), 128
resize()

in XglDpDevWinRas, 54
in XglDrawble, 204

S
setBackingStore(), 54
setBufDisplay(), 55
setBufDraw(), 55
setBuffersRequested(), 54
setBufMinDelay(), 55
setCmap()

in XglDpDevMemRas, 57
in XglDpDevWinRas, 55

setComposite(), 165
setCurCoordSys(), 180
setCursorRopFunc(), 201
setDisplayBuffer(), 201
setDoPixelMapping(), 134
setImageBufferAddr(), 57
setLineBytes(), 57
setNumConics(), 88
setNumRects(), 89
setPixelMapping(), 55
setReadBuffer(), 202
setRectList(), 53, 204
setRectNum(), 53, 204
setSourceBuffer(), 53
setStereoMode(), 56
setSwAccumBuffer(), 53
setSwZBuffer(), 53
setValue(), 92
setValueByPointer(), 92
setWrapOriginX(), 92
setWrapOriginY(), 92
setWriteBuffer(), 202
setZBufferAddr(), 57

452 XGL Device Pipeline Porting Guide—August 1994

shared memory, 191, 205
software cursors, 196, 201
software pipeline

derived data, 150
level data, 79

state changes
overview, 96
stroke groups, 106

stereo imaging, 195
stroke attributes, 110
stroke group, 106

DC offset, 112
example, 109
expected flag value, 111
flag mask, 111

stroke group attributes, 125
syncRtnDevice(), 54, 136

T
texture mapping

lighting coefficients, 83
object interfaces, 130, 134

Transform object
flag data, 137
getting object handle, 125
matrices, 143
member record, 137
object interfaces, 142

transforms, 154, 169
See also derived data

transNormal(), 144
transPt(), 143
transPtList(), 144
transUnitNormal(), 144
transUnitNormalDouble(), 144

U
unGrabDrawable(), 204
unGrabRetainedWindow(), 204
update table

design issues, 114
stroke groups, 106

V
view clip bounds, 156, 170
view concern objects, 159
view model, 150

See also derived data
VIS_GETIDENTIFIER, 58

W
WIN_LOCK(), 187, 192, 197
WIN_UNLOCK(), 192, 198
winBboxinfop(), 205
winDbInfop(), 205
window locking, 187

asynchronous devices, 188
immediate-rendering hardware, 188
performance implications, 192

window system
See also XglDrawable
clip list, 191
clip list updates, 191
creation of the XglDrawable, 186
fast clear sets, 205
locking the window, 186, 187
window ID, 198, 199

windowIsClipped(), 202
windowIsObscured(), 202
winLock(), 187, 197
winUnLock(), 197

X
XGL architecture

and the device pipelines, 11
overview, 11

xgl_create_PipeLib(), 32
XglCmap

getColorTable(), 146
getPlaneMaskMask(), 146
lookUpDitherValue(), 146
lookUpInternalDitherAddress(), 146

XglConicData, 85 to 89
getCurrentLevel(), 88

Index 453

getCurrentLevelData(), 88
getLevelData(), 88

XglContext
addPickToBuffer(), 127
checkLastPick(), 128
getNewFramePlaneMask(), 127
getRealPlaneMask(), 127
getRealRenderBuffer(), 127
getSurfAttr(), 127
getSurfFrontFaceAttr(), 127

XglContext2d
assignCurStrokeAs...(), 128
getCurrentStroke(), 128
getViewGrp(), 128

XglContext3d
assignCurStrokeAs...(), 129
getBackTexturing(), 130
getCurrentStroke(), 129
getFrontTexturing(), 129
getSurfBackFaceAttr(), 129
getSurfBackFaceAttr3d(), 129
getSurfFrontFaceAttr3d(), 129

XglDevice
getCmap(), 145
getDpDev(), 131
getDrawable(), 131
getGammaInversePowerTable(), 131
getGammaPowerTable(), 131
getGammaValue(), 131

XglDmapTexture
getDescriptors(), 130, 134

XglDpCtx, 43 to 66
getting Context attribute values, 123
summary of interfaces, 68

XglDpDev, 38 to 42
accessing the Device object, 145
and the XglDrawable, 186
copyBuffer(), 39
createDpCtx(), 39
getDcOrientation(), 52
getGammaValue(), 52
getMaxZ(), 52
summary of interfaces, 68

XglDpDevMemRas

getAccumBufferDepth(), 57
getAccumBufferPixRect(), 57
getImageBufferPixRect(), 56
getZBufferPixRect(), 57
setCmap(), 57
setImageBufferAddr(), 57
setLineBytes(), 57
setZBufferAddr(), 57

XglDpDevRaster
setRectList(), 53
setRectNum(), 53
setSourceBuffer(), 53
setSwAccumBuffer(), 53
setSwZBuffer(), 53
syncRtnDevice(), 54

XglDpDevWinRas
getAccumBufferDepth(), 54
getDepth(), 54
getRealColorType(), 54
getSwAccumBuffer(), 56
getSwZBuffer(), 56
need RtnDevice(), 56
resize(), 54
setBackingStore(), 54
setBufDisplay(), 55
setBufDraw(), 55
setBuffersRequested(), 54
setBufMinDelay(), 55
setCmap(), 55
setPixelMapping(), 55
setStereoMode(), 56

XglDpLib, 33 to 35
getDpMgr(), 34

XglDpMgr, 36 to 37
and the XglDrawable, 186
createDpDev(), 37
inquire(), 37

XglDrawable
clipChanged(), 198
creation, 186
dbDisplayComplete(), 198
dbGetWid(), 198
dbUnGrab(), 203
dpDisplayWait(), 198
getClass(), 203

454 XGL Device Pipeline Porting Guide—August 1994

getClipStat(), 198
getDescriptor(), 203
getDevFd(), 198
getDevice(), 198
getDeviceName(), 198
getLockType(), 203
getMergeClipList(), 199
getMergeClipListCount(), 199
getMergeClipMask(), 199
getPipeName(), 203
getRealColorType(), 199
getType(), 203
getUserClipList(), 200
getUserClipListCount(), 200
getWid(), 199
getWindowDepth(), 199
getWindowHeight(), 199
getWindowWidth(), 199
getWindowX(), 199
getWindowY(), 199
getWsClipList(), 200
getWsClipListCount(), 199
grabDrawable(), 204
grabFCS(), 200
grabRetainedWindow(), 203
grabStereo(), 201
grabWids, 200
grabZbuf(), 200
matchDesc(), 204
possible(), 204
rendering, 186
resize(), 204
services provided, 185
setCursorRopFunc(), 201
setDisplayBuffer(), 201
setReadBuffer(), 202
setRectList(), 204
setRectNum(), 204
setWriteBuffer(), 202
software cursors, 196
subclasses, 184
synchonizing window access, 191
unGrabDrawable(), 204
unGrabRetainedWindow(), 204
WIN_LOCK(), 197
WIN_UNLOCK(), 198

windowIsClipped(), 202
windowIsObscured(), 202
winLock(), 197
winUnLock(), 197

XGLHOME environment variable, 21
XGLI_DC_OFFSET_BACK, 113
XGLI_DC_OFFSET_FRONT, 113
XGLI_DC_OFFSET_NONE, 112
XGLI_PIPELINE_CHECK_

VERSION(), 65
XGLI_TRANS_INVERSE_VALID, 137
XGLI_TRANS_SINGULAR, 137
XglLevel, 79 to 83

getFaceAttrs(), 84
getFacetList(), 84
getNumPointLists(), 84
getPointLists(), 84
getRenderFlags(), 84

XglLight
getCosAngle2, 132
getNegDirection(), 132

XglLinePattern
getActualData(), 132
getActualDataSize(), 132
getActualOffset(), 133
getLength(), 133
getStartSeg(), 133
getStartSegRemain(), 133

XglListOfDpMgr, 190
XglMarker

getActualDescription(), 133
XglMipMapTexture

getElement(), 133
XglPixRect, 89 to 94
XglPrimData, 82 to 84

getApiData(), 75
getCurrentLevel(), 84
getCurrentLevelData(), 84
getLevelData(), 84
getProcessFlags(), 84

XglRaster
getDoPixelMapping(), 134
setDoPixelMapping(), 134

Index 455

XglRasterWin
getSwAccumBuffer(), 135
getSwZBuffer(), 135

XglRectData, 85 to 89
XglSfont

getIsFontLoaded(), 136
getSfontData(), 136
getSfontInst(), 136

XglTransform
getFlag(), 142
getIsoTropicScale(), 143
getMatrix(), 143
getMatrixDouble(), 143
getMatrixFloat(), 142
getMatrixInt(), 143
getMemberRecord(), 142
getNorm(), 143
getNormInverse(), 143
transNormal(), 144
transPt(), 143
transPtList(), 144
transUnitNormal(), 144
transUnitNormalDouble(), 144

XglViewCache2d, 157
XglViewCache3d, 157
XglViewConcern2d, 157
XglViewConcern3d, 157
XglViewGrp2dConfig, 157
XglViewGrp2dItf, 157
XglViewGrp3dConfig, 157
XglViewGrp3dItf, 157

Z
Z-buffers, hardware, 195

456 XGL Device Pipeline Porting Guide—August 1994

