
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Multithreaded Programming Guide

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open
Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript
and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks
of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. Covering Multithreading Basics . 1

Defining Multithreading Terms . 2

Defining Concurrency and Parallelism. 2

Benefiting From Multithreading . 3

Improve Application Responsiveness. 3

Use Multiprocessors Efficiently . 3

Improve Program Structure . 3

Use Fewer System Resources . 3

Combine Threads and RPC . 4

Improve Performance . 4

Looking At Multithreading Structure . 5

User-level Threads. 6

Lightweight Processes. 8

Unbound Threads . 9

Bound Threads . 9

iv Multithreaded Programming Guide—August 1994

Meeting Multithreading Standards . 10

2. Programming With Threads . 11

The Threads Library . 11

Create a Thread—the Basics . 12

Get the Thread Identifier . 14

Yield Thread Execution. 14

Suspend or Continue Thread Execution 15

Send a Signal to a Thread . 16

Access the Signal Mask of the Calling Thread 16

Terminate a Thread . 17

Wait for Thread Termination . 19

A Simple Threads Example . 21

Maintain Thread-Specific Data. 22

Create a Thread—Advanced Features 27

Get the Minimal Stack Size. 32

Get and Set Thread Concurrency Level 33

Get and Set Thread Priority . 34

Scheduling and the Threads Library 35

3. Programming With Synchronization Objects 37

Mutual Exclusion Locks . 38

Initialize a Mutual Exclusion Lock . 39

Lock a Mutex . 40

Lock With a Nonblocking Mutex. 40

Unlock a Mutex . 41

Contents v

Destroy Mutex State . 42

Mutex Lock Code Example. 43

Nested Locking With a Singly Linked List 46

Nested Locking With a Circular Linked List 47

Condition Variables . 48

Initialize a Condition Variable . 49

Block on a Condition Variable . 50

Unblock a Specific Thread . 51

Block Until a Specified Event . 52

Unblock All Threads . 54

Destroy Condition Variable State. 55

The Lost Wake-Up Problem . 56

The Producer/Consumer Problem . 56

Multiple-Readers, Single-Writer Locks 60

Initialize a Readers/Writer Lock . 61

Acquire a Read Lock . 62

Try to Acquire a Read Lock . 62

Acquire a Write Lock. 63

Try to Acquire a Write Lock . 64

Unlock a Readers/Writer Lock . 64

Destroy Readers/Writer Lock State. 65

 Semaphores . 66

Counting Semaphores . 68

Initialize a Semaphore. 69

vi Multithreaded Programming Guide—August 1994

Increment a Semaphore. 70

Block on a Semaphore Count . 70

Decrement a Semaphore Count . 71

Destroy the Semaphore State . 72

The Producer/Consumer Problem, Using Semaphores . . . 73

Synchronization Across Process Boundaries 75

Comparing Primitives . 77

4. Programming With the Operating System 79

Processes—Changes for Multithreading. 79

Duplicating Parent Threads . 79

Executing Files and Terminating Processes 81

Alarms, Interval Timers, and Profiling . 81

Nonlocal Goto—setjmp (3C) and longjmp (3C). 82

Resource Limits . 82

LWPs and Scheduling Classes . 82

Timeshare Scheduling . 83

Realtime Scheduling . 84

LWP Scheduling and Thread Binding. 84

SIGWAITING—Creating LWPs for Waiting Threads 85

Aging LWPs . 85

Extending Traditional Signals . 86

Synchronous Signals . 87

Asynchronous Signals. 87

Continuation Semantics . 88

Contents vii

New Operations on Signals . 89

Thread-Directed Signals . 90

Completion Semantics . 92

Signal Handlers and Async Safety . 93

Interrupted Waits on Condition Variables 94

I/O Issues . 96

I/O as a Remote Procedure Call . 96

Tamed Asynchrony . 96

Asynchronous I/O. 97

Shared I/O and New I/O System Calls 98

Alternatives to getc (3S) and putc (3S) 99

5. Safe and Unsafe Interfaces . 101

Thread Safety . 101

MT Interface Safety Levels . 103

Reentrant Functions for Unsafe Interfaces 104

Async-Safe Functions . 105

MT Safety Levels for Libraries . 105

Unsafe Libraries . 106

6. Compiling And Debugging . 107

Compiling a Multithreaded Application 107

Using The C Compiler . 107

Compiling With the _REENTRANT Flag. 108

Using libthread . 108

Using Non-C Compilers . 109

viii Multithreaded Programming Guide—August 1994

Debugging Multithreaded Programs . 109

Common Oversights . 109

Using adb . 110

Using dbx . 111

7. Programming Guidelines . 113

Rethinking Global Variables . 114

Providing For Static Local Variables . 115

Synchronizing Threads . 115

Single-Threaded Strategy . 116

Reentrance . 116

Avoiding Deadlock . 119

Scheduling Deadlocks . 120

Locking Guidelines . 120

Following Some Basic Guidelines . 121

Creating Threads . 122

Working With Multiprocessors . 124

The Underlying Architecture . 124

Summary. 130

A. Sample Application Code. 131

File Copy. 131

Matrix Multiplication . 133

RPC Program . 135

Window System Server . 141

B. MT Safety Levels: Library Interfaces . 145

Contents ix

Index . 163

x Multithreaded Programming Guide—August 1994

xi

Tables

Table 1-1 Thread Creation Times . 4

Table 1-2 Thread Synchronization Times . 5

Table 3-1 Routines for Mutual Exclusion Locks. 38

Table 3-2 Routines for Condition Variables . 48

Table 3-3 Routines for Readers/Writer Locks . 60

Table 3-4 Routines for Semaphores . 68

Table 5-1 Reentrant Functions . 104

Table 5-2 Some MT-Safe Libraries . 105

Table 6-1 Compiling With and Without the _REENTRANT Flag 108

Table 6-2 MT adb commands . 110

Table 6-3 dbx Options for MT Programs . 111

xii Multithreaded Programming Guide—August 1994

xiii

Code Samples

Code Example 2-1 A Simple Threads Program . 21

Code Example 2-2 Thread-Specific Data—Global but Private 24

Code Example 2-3 Turning Global References Into Private References . 25

Code Example 2-4 Initializing the Thread-Specific Data 26

Code Example 2-5 thr_create () Creates Thread With New Signal Mask 31

Code Example 3-1 Mutex Lock Example . 43

Code Example 3-2 Deadlock. 44

Code Example 3-3 Conditional Locking . 45

Code Example 3-4 Singly Linked List Structure . 46

Code Example 3-5 Singly Linked List with Nested Locking 47

Code Example 3-6 Circular Linked List Structure. 47

Code Example 3-7 Circular Linked List With Nested Locking 48

Code Example 3-8 Example Using cond_wait (3T) and cond_signal (3T) 52

Code Example 3-9 Timed Condition Wait . 53

Code Example 3-10 Condition Variable Broadcast . 54

Code Example 3-11 The Producer/Consumer Problem and Condition
Variables . 57

xiv Multithreaded Programming Guide—August 1994

Code Example 3-12 The Producer/Consumer Problem—the Producer . . 58

Code Example 3-13 The Producer/Consumer Problem—the Consumer . 59

Code Example 3-14 Read/Write Bank Account . 66

Code Example 3-15 The Producer/Consumer Problem With Semaphores 73

Code Example 3-16 The Producer/Consumer Problem—the Producer . . 74

Code Example 3-17 The Producer/Consumer Problem—the Consumer . 74

Code Example 3-18 The Producer/Consumer Problem, Using
USYNC_PROCESS . 76

Code Example 4-1 Continuation Semantics . 88

Code Example 4-2 Asynchronous Signals and sigwait (2) 91

Code Example 4-3 Completion Semantics . 92

Code Example 4-4 Condition Variables and Interrupted Waits 95

Code Example 5-1 Degrees of Thread Safety . 102

Code Example 7-1 Global Variables and errno . 114

Code Example 7-2 The gethostbyname () Problem 115

Code Example 7-3 The printf () Problem. 116

Code Example 7-4 Testing the Invariant With assert (3X) 118

Code Example 7-5 The Producer/Consumer Problem—Shared Memory
Multiprocessors . 126

Code Example 7-6 Mutual Exclusion for Two Threads? 128

Code Example 7-7 Multithreaded Cooperation (Barrier Synchronization) 129

Code Example A-1 File Copy Example With a Semaphore 132

Code Example A-2 Matrix Multiplication . 133

Code Example A-3 RPC rstat Program With Multithreaded Client . . . 137

Code Example A-4 Window Server . 142

xv

Preface

The Multithreaded Programming Guide describes the multithreaded
programming interfaces for the Solaris™ 2.4 system. This guide shows
application programmers how to create new multithreaded programs and how
to add multithreading to existing programs.

To understand this guide, a reader must be familiar with

• A UNIX® SVR4 system—preferably the Solaris 2.4 system

• The C programming language—multithreading is implemented through the
libthread library

How This Guide Is Organized
Chapter 1, “Covering Multithreading Basics,” gives a structural overview of
the Solaris threads implementation.

Chapter 2, “Programming With Threads,” discusses the general threads
library routines.

Chapter 3, “Programming With Synchronization Objects,” covers the threads
library synchronization routines.

Chapter 4, “Programming With the Operating System,” discusses changes to
the operating system to support multithreading.

Chapter 5, “Safe and Unsafe Interfaces,” covers multithreading safety issues.

xvi Multithreaded Programming Guide—August 1994

Chapter 6, “Compiling And Debugging,” covers the basics of compiling and
debugging.

Chapter 7, “Programming Guidelines,” discusses issues that affect
programmers writing multithreaded applications.

Appendix A, “Sample Application Code,” provides code examples you can
refer to for clarification and practice.

Appendix B, “MT Safety Levels: Library Interfaces,” is a table listing routines
that are safe to use in multithreaded programs.

What Typographic Changes and Symbols Mean
Table P-1 describes the type changes and symbols used in this guide.

Sections of program code in the main text are enclosed in boxes:

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 Commands, files, directories,
and C functions; code examples

The fork1 () function is new.
Use ls -a to list all files.

AaBbCc123 Variables, titles, and emphasized
words

The stack_size value is set by...
You must specify a zero value.

AaBbCc123 What you type, contrasted with
on-screen computer output

system% cc prog.c

page (#) The man page name and section
in the Solaris Reference Manual

See thr_create (3T).

nt test (100);

main()
{

register int a, b, c, d, e, f;

test(a) = b & test(c & 0x1) & test(d & 0x1);

1

Covering Multithreading Basics 1

The word multithreading can be translated as many threads of control. While a
traditional UNIX process always has contained and still does contain a single
thread of control, multithreading (MT) separates a process into many execution
threads, each of which runs independently.

Read this chapter to understand the multithreading basics.

Because each thread runs independently, multithreading your code can:

• Improve application responsiveness
• Use multiprocessors more efficiently
• Improve your program structure
• Use fewer system resources
• Improve performance

Defining Multithreading Terms page 2

Benefiting From Multithreading page 3

Looking At Multithreading Structure page 5

Meeting Multithreading Standards page 10

2 Multithreaded Programming Guide—August 1994

1

Defining Multithreading Terms
The following terms are used in this chapter to describe multithreading
concepts.

Defining Concurrency and Parallelism

Concurrency exists when at least two threads are in progress at the same time.
Parallelism arises when at least two threads are executing simultaneously.

In a multithreaded process on a single processor, the processor can switch
execution resources between threads, resulting in concurrent execution. In the
same multithreaded process on a shared-memory multiprocessor, each thread
in the process can run on a separate processor at the same time, resulting in
parallel execution.

When the process has as many threads as, or fewer threads than, there are
processors, the threads support system and the operating system ensure that
each thread runs on a different processor. For example, in a matrix
multiplication with m processors and m threads, each thread computes a row
of the result.

Thread A sequence of instructions executed within the context of
a process

Single-threaded Restricting access to a single thread

Multithreaded Allowing access to two or more threads

User-level or
Application-level
threads

Threads managed by the threads library routines in user
(as opposed to kernel) space

Lightweight processes Threads in the kernel that execute kernel code and system
calls (also called LWPs)

Bound threads Threads that are permanently bound to LWPs

Unbound threads Threads that attach and detach from among the LWP pool

Counting semaphore A memory-based synchronization mechanism

Covering Multithreading Basics 3

1

Benefiting From Multithreading

Improve Application Responsiveness

Any program in which many activities are not dependent upon each other
can be redesigned so that each activity is fired off as a thread. For example,
a GUI in which you are performing one activity while starting up another
will show improved performance when implemented with threads.

Use Multiprocessors Efficiently

Typically, applications that express concurrency requirements with threads
need not take into account the number of available processors. The
performance of the application improves transparently with additional
processors.

Numerical algorithms and applications with a high degree of parallelism,
such as matrix multiplications, can run much faster when implemented with
threads on a multiprocessor.

Improve Program Structure

Many programs are more efficiently structured as multiple independent or
semi-independent units of execution instead of as a single, monolithic
thread. Multithreaded programs can be more adaptive to variations in user
demands than are single threaded programs.

Use Fewer System Resources

Programs that use two or more processes that access common data through
shared memory are applying more than one thread of control. However,
each process has a full address space and operating systems state. The cost
of creating and maintaining this large amount of state makes each process
much more expensive than a thread in both time and space. In addition, the
inherent separation between processes can require a major effort by the
programmer to communicate between the threads in different processes or
to synchronize their actions.

4 Multithreaded Programming Guide—August 1994

1

Combine Threads and RPC

By combining threads and a remote procedure call (RPC) package, you can
exploit nonshared-memory multiprocessors (such as a collection of
workstations). This combination distributes your application relatively easily
and treats the collection of workstations as a multiprocessor.

For example, one thread might create child threads. Each of these children
could then place a remote procedure call, invoking a procedure on another
workstation. Although the original thread has merely created a number of
threads that are now running in parallel, this parallelism involves other
computers.

Improve Performance

The performance numbers in this section were obtained on a SPARCstation™ 2
(Sun 4/75). The measurements were made using the built-in microsecond
resolution timer.

Thread Creation Time

Table 1-1 shows the time consumed to create a thread using a default stack that
is cached by the threads package. The measured time includes only the actual
creation time. It does not include the time for the initial context switch to the
thread. The ratio column gives the ratio of the creation time in that row to the
creation time in the previous row.

These data show that threads are inexpensive. The operation of creating a new
process is over 30 times as expensive as creating an unbound thread, and about
5 times the cost of creating a bound thread consisting of both a thread and an
LWP.

Table 1-1 Thread Creation Times

Operation Microseconds Ratio

Create unbound thread 52 -

Create bound thread 350 6.7

fork () 1700 32.7

Covering Multithreading Basics 5

1

Thread Synchronization Times

Table 1-2 shows the time it takes for two threads to synchronize with each
other using two p and v semaphores.

Looking At Multithreading Structure
Traditional UNIX already supports the concept of threads—each process
contains a single thread, so programming with multiple processes is
programming with multiple threads. But a process is also an address space,
and creating a process involves creating a new address space.

Because of this, creating a process is expensive, while creating a thread within
an existing process is cheap. The time it takes to create a thread is on the order
of a thousand times less than the time it takes to create a process, partly
because switching between threads does not involve switching between
address spaces.

Communicating between the threads of one process is simple because the
threads share everything—address space, in particular. So, data produced by
one thread is immediately available to all the other threads.

The interface to multithreading support is through a subroutine library,
libthread . Multithreading provides flexibility by decoupling kernel-level
and user-level resources.

Table 1-2 Thread Synchronization Times

Operation Microseconds Ratio

Unbound thread 66 -

Bound thread 390 5.9

Between processes 200 3

6 Multithreaded Programming Guide—August 1994

1

User-level Threads1

Threads are visible only from within the process, where they share all process
resources like address space, open files, and so on. The following state is
unique to each thread.

• Thread ID

• Register state (including PC and stack pointer)

• Stack

• Signal mask

• Priority

• Thread-private storage

Because threads share the process instructions and most of its data, a change in
shared data by one thread can be seen by the other threads in the process.
When a thread needs to interact with other threads in the same process, it can
do so without involving the operating system.

Threads are the primary programming interface in multithreaded
programming. User-level threads are handled in user space and so can avoid
kernel context switching penalties. An application can have thousands of
threads and still not consume many kernel resources. How many kernel
resources the application uses is largely determined by the application.

By default, threads are very lightweight. But, to get more control over a thread
(for instance, to control scheduling policy more), the application can bind the
thread. When an application binds threads to execution resources, the threads
become kernel resources (see “Bound Threads” on page 9 for more
information).

1. User-level threads are so named to distinguish them from kernel-level threads, which are the concern of
systems programmers, only. Because this book is for application programmers, kernel-level threads are not
discussed here.

Covering Multithreading Basics 7

1

To summarize, Solaris user-level threads are:

• Inexpensive to create because they are bits of virtual memory that are
allocated from your address space at run time

• Fast to synchronize because synchronization is done at the application level,
not at the kernel level

• Easily managed by the threads library, libthread

Figure 1-1 Multithreaded System Architecture

Proc 1

User

Proc 2 Proc 3 Proc 4 Proc 5

Traditional
process

Kernel

Hardware

= Processor= Thread = LWP

8 Multithreaded Programming Guide—August 1994

1

Lightweight Processes

The threads library uses underlying threads of control called lightweight
processes that are supported by the kernel. You can think of an LWP as a virtual
CPU that executes code or system calls.

Most programmers use threads without thinking about LWPs. All the
information here about LWPs is provided so you can understand the
differences between bound and unbound threads, described on page 9.

Note – The LWPs in Solaris 2.x are not the same as the LWPs in the
SunOS™ 4.0 LWP library, which are not supported in Solaris 2.x.

Much as the stdio library routines such as fopen (3S) and fread (3S) use the
open (2) and read (2) functions, the thread interface uses the LWP interface,
and for many of the same reasons.

Lightweight processes (LWPs) bridge the user level and the kernel level. Each
process contains one or more LWPs, each of which runs one or more user
threads. The creation of a thread usually involves just the creation of some user
context, but not the creation of an LWP.

The user-level threads library, with help from the programmer and the
operating system, ensures that the number of LWPs available is adequate for
the currently active user-level threads. However, there is no one-to-one
mapping between user threads and LWPs, and user-level threads can freely
migrate from one LWP to another.

The programmer can tell the threads library how many threads should be
“running” at the same time. For example, if the programmer says that up to
three threads should run at the same time, then at least three LWPs should be
available. If there are three available processors, the threads run in parallel. If
there is only one processor, then the operating system multiplexes the three
LWPs on that one processor. If all the LWPs block, the threads library adds
another LWP to the pool.

When a user thread blocks due to synchronization, its LWP transfers to another
runnable thread. This transfer is done with a coroutine linkage and not with a
system call.

Covering Multithreading Basics 9

1

The operating system decides which LWP should run on which processor and
when. It has no knowledge about what user threads are or how many are
active in each process. The kernel schedules LWPs onto CPU resources
according to their scheduling classes and priorities. The threads library
schedules threads on the process pool of LWPs in much the same way. Each
LWP is independently dispatched by the kernel, performs independent system
calls, incurs independent page faults, and runs in parallel on a multiprocessor
system.

An LWP has some capabilities that are not exported directly to threads, such as
a special scheduling class.

Unbound Threads

Threads that are scheduled on the LWP pool are called unbound threads. You
will usually want your threads to be unbound, allowing them to float among
the LWPs.

The library invokes LWPs as needed and assigns them to execute runnable
threads. The LWP assumes the state of the thread and executes its instructions.
If the thread becomes blocked on a synchronization mechanism, or if another
thread should be run, the thread state is saved in process memory and the
threads library assigns another thread to the LWP to run.

Bound Threads

If needed, you can permanently bind a thread to an LWP.

For example, you can bind a thread to:

• Have the thread scheduled globally (such as realtime)
• Give the thread an alternate signal stack
• Give the thread a unique alarm or timer

Sometimes having more threads than LWPs, as can happen with unbound
threads, is a disadvantage.

For example, a parallel array computation divides the rows of its arrays among
different threads. If there is one LWP for each processor, but multiple threads
for each LWP, each processor spends time switching between threads. In this
case, it is better to have one thread for each LWP, divide the rows among a
smaller number of threads, and reduce the number of thread switches.

10 Multithreaded Programming Guide—August 1994

1

A mixture of threads that are permanently bound to LWPs and unbound
threads is also appropriate for some applications.

An example of this is a realtime application that wants some threads to have
system-wide priority and realtime scheduling, while other threads attend to
background computations. Another example is a window system with
unbound threads for most operations and a mouse serviced by a high-priority,
bound, realtime thread.

When a user-level thread issues a system call, the LWP running the thread calls
into the kernel and remains attached to the thread at least until the system call
completes.

Meeting Multithreading Standards
The history of multithreaded programming goes back to at least the 1960s. Its
development on UNIX systems goes back to the mid-1980s. Perhaps
surprisingly, there is fair agreement about the features necessary to support
multithreaded programming. Even so, several different thread packages are
available today, each with a different interface.

However, for several years a group known as POSIX 1003.4a has been working
on a standard for multithreaded programming. When the standard is finalized,
most vendors of systems supporting multithreaded programming will support
the POSIX interface. This will have the important benefit of allowing
multithreaded programs to be portable.

There are no fundamental differences between Solaris threads and POSIX
1003.4a. Certainly the interfaces differ, but there is nothing that is expressible
with one interface that cannot be expressed relatively easily with the other.
There are no incompatibilities between the two, so, at least on Solaris systems,
there will be one underlying implementation with two interfaces. Even within
a single application, you will be able to use both interfaces.

Another reason for using Solaris threads is the collection of support tools
supplied with it, such as the multithreaded debugger. truss , which traces a
program’s system calls and signals, has been extended to report on the
activities of a program’s threads as well.

11

Programming With Threads 2

The Threads Library
User-level multithreading is implemented through the threads library,
libthread (see section 3T in the man Pages(3): Library Routines). The threads
library supports signals, schedules runnable entities, and handles multiple
tasks simultaneously.

This chapter discusses some of the general libthread routines, starting with
the basic ways to create threads and becoming more advanced.

Create a Thread—the Basics thr_create(3T) page 12

Get the Thread Identifier thr_self(3T) page 14

Yield Thread Execution thr_yield(3T) page 14

Suspend or Continue Thread Execution thr_suspend(3T) page 15

thr_continue(3T) page 15

Send a Signal to a Thread thr_kill(3T) page 16

Access the Signal Mask of the Calling Thread thr_sigsetmask(3T) page 16

Terminate a Thread thr_exit(3T) page 17

Wait for Thread Termination thr_join(3T) page 19

Maintain Thread-Specific Data thr_keycreate(3T) page 22

thr_setspecific(3T) page 23

thr_getspecific(3T) page 24

Create a Thread—Advanced Features thr_create(3T) page 27

12 Multithreaded Programming Guide—August 1994

2

Create a Thread—the Basics

The thr_create (3T) routine is the most elaborate of all the threads library
routines. The explanations in this section are for those cases when you can use
the default values for the thr_create () arguments.

More advanced thr_create () use, including explanations of nondefault
argument values, is covered toward the end of this chapter in “Create a
Thread—Advanced Features” on page 27.

thr_create (3T)

Use thr_create () to add a new thread of control to the current process. Note
that the new thread does not inherit pending signals, but is does inherit
priority and signal masks.

stack_base — Contains the address for the stack that the new thread uses. If
stack_base is NULL then thr_create () allocates a stack for the new thread with
at least stack_size bytes.

stack_size — Contains the size, in number of bytes, for the stack that the new
thread uses. If stack_size is zero, a default size is used. In most cases, a zero
value works best.

Get the Minimal Stack Size thr_min_stack(3T) page 32

Get and Set Thread Concurrency Level thr_getconcurrency(3T) page 33

thr_setconcurrency(3T) page 33

Get and Set Thread Priority thr_getprio(3T) page 34

thr_setprio(3T) page 35

#include <thread.h>

int thr_create(void * stack_base, size_t stack_size,
 void *(* start_routine) (void *), void * arg, long flags,
 thread_t * new_thread);

size_t thr_min_stack(void);

Programming With Threads 13

2

There is no general need to allocate stack space for threads. The threads library
allocates one megabyte of virtual memory for each thread’s stack with no swap
space reserved. (The library uses the MAP_NORESERVE option of mmap(2) to
make the allocations.)

start_routine — Contains the function with which the new thread begins
execution. If start_routine returns, the thread exits with the exit status set to the
value returned by start_routine (see thr_exit (3T)).

flags — Specifies attributes for the created thread. In most cases a zero value
works best.

The value in flags is constructed from the bitwise inclusive OR of the following.
(The last four flags are explained more fully in “Create a Thread—Advanced
Features” on page 27.)

THR_DETACHED Detaches the new thread so that its thread ID and other
resources can by reused as soon as the thread terminates. Set this when you
do not want to wait for the thread to terminate.

When there is no explicit synchronization to prevent it, an unsuspended,
detached thread can die and have its thread ID reassigned to another new
thread before its creator returns from thr_create ().

THR_SUSPENDED Suspends the new thread and does not execute
start_routine until the thread is started by thr_continue ().

THR_BOUND Permanently binds the new thread to an LWP (the new thread
is a bound thread).

THR_NEW_LWP Increases the concurrency level for unbound threads by one.

THR_DAEMON Marks the new thread as a daemon.

new_thread — Points to a location (when new_thread is not NULL) where the ID
of the new thread is stored. In most cases a zero value works best.

Return Values — thr_create () returns a zero and exits when it completes
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions are detected, thr_create () fails and returns
the corresponding value.

EAGAIN A system limit is exceeded, such as when too many LWPs have
been created.

14 Multithreaded Programming Guide—August 1994

2

ENOMEM Not enough memory was available to create the new thread.

EINVAL stack_base is not NULL and stack_size is less than the value
returned by thr_minstack ().

Get the Thread Identifier

thr_self (3T)

Use thr_self (3T) to get the ID of the calling thread..

Return Values — thr_self () returns the ID of the calling thread.

Yield Thread Execution

thr_yield (3T)

thr_yield () causes the current thread to yield its execution in favor of
another thread with the same or greater priority.

#include <thread.h>

thread_t thr_self(void)

#include <thread.h>

void thr_yield(void);

Programming With Threads 15

2

Suspend or Continue Thread Execution

thr_suspend (3T)

thr_suspend () suspends thread execution.

thr_suspend () immediately suspends the execution of the thread specified by
target_thread . On successful return from thr_suspend (), the suspended
thread is no longer executing. Once a thread is suspended, subsequent calls to
thr_suspend () have no effect.

Return Values — thr_suspend() returns zero after completing successfully.
Any other returned value indicates that an error occurred. When the following
condition occurs, thr_suspend () fails and returns the corresponding value.

ESRCH target_thread cannot be found in the current process.

thr_continue (3T)

thr_continue () resumes the execution of a suspended thread. Once a
suspended thread is continued, subsequent calls to thr_continue () have no
effect.

A suspended thread will not be awakened by a signal. The signal stays
pending until the execution of the thread is resumed by thr_continue ().

Return Values — thr_continue() returns zero after completing successfully.
Any other returned value indicates that an error occurred. When the following
condition occurs, thr_continue () fails and returns the corresponding value.

ESRCH target_thread cannot be found in the current process.

#include <thread.h>

int thr_suspend(thread_t target_thread);

#include <thread.h>

int thr_continue(thread_t target_thread);

16 Multithreaded Programming Guide—August 1994

2

Send a Signal to a Thread

thr_kill (3T)

thr_kill () sends a signal to a thread.

thr_kill () sends the signal sig to the thread specified by target_thread.
target_thread must be a thread within the same process as the calling thread.
The sig argument must be from the list given in signal (5).

When sig is zero, error checking is performed but no signal is actually sent.
This can be used to check the validity of target_thread.

Return Values — thr_kill() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When any of the
following conditions occur, thr_kill () fails and returns the corresponding
value.

EINVAL sig is not a valid signal number.

ESRCH target_thread cannot be found in the current process.

Access the Signal Mask of the Calling Thread

thr_sigsetmask (3T)

Use thr_sigsetmask () to change or examine the signal mask of the calling
thread.

#include <thread.h>
#include <signal.h>

int thr_kill(thread_t target_thread, int sig);

#include <thread.h>
#include <signal.h>

int thr_sigsetmask(int how, const sigset_t * set, sigset_t * oset);

Programming With Threads 17

2

The how argument determines how the signal set is changed and can have one
of the following values.

SIG_BLOCK — Add set to the current signal mask, where set indicates the set
of signals to block.

SIG_UNBLOCK — Delete set from the current signal mask, where set
indicates the set of signals to unblock.

SIG_SETMASK — Replace the current signal mask with set, where set
indicates the new signal mask.

When the value of set is NULL, the value of how is not significant and the
signal mask of the thread is unchanged. So, to inquire about currently
blocked signals, assign a NULL value to the set argument.

When the oset argument is not NULL, it points to the space where the previous
signal mask is stored.

Return Values — thr_sigsetmask () returns a zero when it completes
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions are detected, thr_sigsetmask () fails and
returns the corresponding value.

EINVAL The value of set is not NULL and the value of how is not defined.

EFAULT Either set or oset is not a valid address.

Terminate a Thread

thr_exit (3T)

Use thr_exit () to terminate a thread.

#include <thread.h>

void thr_exit(void *status);

18 Multithreaded Programming Guide—August 1994

2

The thr_exit () function terminates the calling thread. All thread-specific data
bindings are released. If the calling thread is not detached, then the thread’s ID
and the exit status specified by status are retained until the thread is waited for.
Otherwise, status is ignored and the thread’s ID can be reclaimed immediately.

Return Values — When the calling thread is the last nondaemon thread in the
process, the process terminates with a status of zero. When the initial thread
returns from main () the process exits with a status equal to the return value.

Finishing Up

A thread can terminate its execution in two ways. The first is simply to return
from its first (outermost) procedure. The second is to call thr_exit (),
supplying an exit code. What happens next depends upon how the flags
parameter was set when the thread was created.

The default behavior of a thread (which happens when the appropriate bit in
the flags parameter is left as zero) is to remain until some other thread has
acknowledged its demise by “joining” with it. The result of the join is that the
joining thread picks up the exit code of the dying thread and the dying thread
vanishes. You can set a bit in the flags parameter, by ORing into it
THR_DETACHED, to make the thread disappear immediately after it calls
thr_exit () or after it returns from its first procedure. In this case, the exit
code is not picked up by any thread.

An important special case arises when the main thread, the one that existed
initially, returns from the main procedure or calls exit (). This action causes
the entire process to be terminated, along with all its threads. So take care to
ensure that the main thread does not return from main prematurely.

Note that when the main thread merely calls thr_exit (), it terminates only
itself—the other threads in the process, as well as the process, continue to exist.
(The process terminates when all threads terminate.)

Note also that if a thread is non-detached, then it is very important that some
thread join with it after it terminates—otherwise the resources of that thread
are not released for use by new threads. So when you do not want a thread to
be joined, create it as a detached thread.

Programming With Threads 19

2

An additional flags argument to thr_create () is THR_DAEMON. Threads
created with this flag, daemon threads, are automatically terminated when all
non-daemon threads have terminated. These daemon threads are especially
useful within libraries.

Daemon threads can be created within library routines—as daemon threads
they are effectively invisible to the rest of the program. When all other threads
in the program (the threads you were aware of creating) terminate, these
daemon threads automatically terminate. If they were not daemon threads,
they would not terminate when the other threads do, and the process would
not exit.

Wait for Thread Termination

thr_join (3T)

Use the thr_join () function to wait for a thread to terminate.

The thr_join () function blocks the calling thread until the thread specified by
wait_for terminates. The specified thread must be in the current process and
must not be detached. When wait_for is (thread_t)0 , then thr_join () waits
for any undetached thread in the process to terminate. In other words, when
no thread identifier is specified, any undetached thread that exits causes
thr_join () to return.

When departed is not NULL, it points to a location that is set to the ID of the
terminated thread when thr_join () returns successfully. When status is not
NULL, it points to a location that is set to the exit status of the terminated
thread when thr_join () returns successfully.

When a stack was specified when the thread was created, the stack can be
reclaimed when thr_join () returns. The thread identifier returned by a
successful thr_join () can then be used by thr_create ().

#include <thread.h>

int thr_join(thread_t wait_for, thread_t * departed,
 void ** status);

20 Multithreaded Programming Guide—August 1994

2

Multiple threads cannot wait for the same thread to terminate. If they try to,
one thread returns successfully and the others fail with an error of ESRCH.

Return Values — thr_join () returns a zero when it completes successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions are detected, thr_join () fails and returns the
corresponding value.

ESRCH wait_for is not a valid, undetached thread in the current process.

EDEADLK wait_for specifies the calling thread.

Final Steps

The thr_join () routine takes three arguments, giving you some flexibility in
its use. When you want the caller to wait until a specific (nondetached) thread
terminates, supply that thread’s ID as the first argument. When you want the
caller to wait until any nondetached thread terminates, supply a zero for the
first argument.

When the caller wants to find out who the terminated thread is, the second
argument should be the address of storage into which the defunct thread’s ID
will be placed.

Otherwise, supply a zero for this argument. Finally, if you are interested in the
exit code of the defunct thread, supply the address of an area to receive it.

A thread can wait until all nondaemon threads have terminated by executing
the following:

while(thr_join(0, 0, 0) == 0)

;

The declaration for the third parameter of thr_join (), void **, might look
strange. The corresponding argument of thr_exit () is void *. The intent is that
you pass an arbitrary 4-byte item as the exit code. The C for “arbitrary 4-byte
argument” cannot be void , because that means that there is no argument. So it
is void *. Because the third parameter of thr_join () is an output parameter
that must point to whatever is supplied by thr_exit() , its type is necessarily
void **.

Programming With Threads 21

2

Remember that thr_join () works only for target threads that are
nondetached. When there is no reason to synchronize with the termination of a
particular thread, then that thread should be detached.

Think of a detached thread as being the usual sort of thread and reserve
nondetached threads for only those situations that require them.

A Simple Threads Example

In Code Example 2-1, one thread executes the procedure at the top, creating a
helper thread that executes the procedure fetch , which involves a
complicated database lookup and might take a while. The mainline thread
wants the results of the lookup but has other work to do in the meantime. So it
does those other things and then waits for its helper to complete its job by
executing thr_join ().

The result is passed as a stack parameter, which can be done here because the
main thread waits for the spun-off thread to terminate. In general, though, it is
better to malloc (3C) storage from the heap instead of passing an address to
thread stack storage.

Code Example 2-1 A Simple Threads Program

 void mainline (...) {
 char int result;
 thread_t helper;
 int status;

 thr_create(0,0, fetch, &result,0, &helper);

 /* do something else for a while */

 thr_join(helper, 0, &status);
 /* it’s now safe to use result */
 }

 void fetch(int *result) {

 /* fetch value from a database */

 *result = value;
 thr_exit(0);
 }

22 Multithreaded Programming Guide—August 1994

2

Maintain Thread-Specific Data

Single-threaded C programs have two basic classes of data—local data and
global data. For multithreaded C programs a third class is added—thread-
specific data (TSD). This is very much like global data, except that it is private
to a thread.

Thread-specific data is maintained on a per-thread basis. TSD is the only way
to define and refer to data that is private to a thread. Each thread-specific data
item is associated with a key that is global to all threads in the process. Using
the key, a thread can access a pointer (void *) that is maintained per-thread.

Maintain thread-specific data with the following three functions.

• thr_keycreate () — Create a key specific to the process threads.

• thr_setspecific () — Bind a thread value to the key.

• thr_getspecific () — Store the value in a specific location.

thr_keycreate (3T)

thr_keycreate () allocates a key that is used to identify thread-specific data
in a process. The key is global to all threads in the process, and all threads
initially have the value NULL associated with the key when it is created.

Once a key has been created, each thread can bind a value to the key. The
values are specific to the binding thread and are maintained for each thread
independently.

When thr_keycreate () returns successfully, the allocated key is stored in the
location pointed to by keyp. The caller must ensure that the storage and access
to this key are properly synchronized.

#include <thread.h>

int thr_keycreate(thread_key_t * keyp,
 void (* destructor) (void * value);

Programming With Threads 23

2

An optional destructor function, destructor, can be associated with each key.
When a key has a non-NULL destructor function and the thread has a non-
NULL value associated with that key, the destructor function is called with the
current associated value when the thread exits. The order in which the
destructor functions are called for all the allocated keys is unspecified.

Return Values — thr_keycreate() returns zero after completing
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions occur, thr_keycreate () fails and returns the
corresponding value.

EAGAIN The key name space is exhausted.

ENOMEM Not enough memory is available.

thr_setspecific (3T)

thr_setspecific () binds value to the thread-specific data key, key, for the
calling thread.

Return Values — thr_setspecific() returns zero after completing
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions occur, thr_setspecific () fails and returns
the corresponding value.

ENOMEM Not enough memory is available.

EINVAL key is invalid.

#include <thread.h>

int thr_setspecific(thread_key_t key, void * value);

24 Multithreaded Programming Guide—August 1994

2

thr_getspecific (3T)

thr_getspecific () stores the current value bound to key for the calling
thread into the location pointed to by valuep.

Return Values — thr_getspecific() returns zero after completing
successfully. Any other returned value indicates that an error occurred. When
the following condition occurs, thr_getspecific () fails and returns the
corresponding value.

EINVAL key is invalid.

Global and Private Thread-Specific Data

Code Example 2-2 shows an excerpt from a multithreaded program. This code
is executed by any number of threads, but it has references to two global
variables, errno and mywindow, that really should be references to items
private to each thread.

#include <thread.h>

int thr_getspecific(thread_key_t key, void ** valuep);

Code Example 2-2 Thread-Specific Data—Global but Private

body() {
 ...

 while (write(fd, buffer, size) == -1) {
 if (errno != EINTR) {
 fprintf(mywindow, “%s\n”, strerror(errno));
 exit(1);
 }
 }

 ...

}

Programming With Threads 25

2

References to errno should get the system error code from the system call
called by this thread, not by some other thread. So, references to errno by one
thread refer to a different storage location than references to errno by other
threads.

The mywindow variable is intended to refer to a stdio stream connected to a
window that is private to the referring thread. So, as with errno , references to
mywindow by one thread should refer to a different storage location (and,
ultimately, a different window) than references to mywindow by other threads.
The only difference here is that the threads library takes care of errno , but the
programmer must somehow make this work for mywindow.

The next example shows how the references to mywindow work. The
preprocessor converts references to mywindow into invocations of the
_mywindow procedure.

This routine in turn invokes thr_getspecific (), passing it the
mywindow_key global variable (it really is a global variable) and an output
parameter, win , which receives the identity of this thread’s window.

Code Example 2-3 Turning Global References Into Private References

#define mywindow _mywindow()

thread_key_t mywindow_key;

FILE *_mywindow(void) {
 FILE *win;

 thr_getspecific(mywindow_key, &win);
 return(win);
}

void thread_start(...) {
 ...
 make_mywindow();
 ...
}

26 Multithreaded Programming Guide—August 1994

2

The mywindow_key variable identifies a class of variables for which each
thread has its own private copy; that is, these variables are thread-specific data.
Each thread calls make_mywindow () to initialize its window and to arrange for
its instance of mywindow to refer to it.

Once this routine is called, the thread can safely refer to mywindow and, after
_mywindow , the thread gets the reference to its private window. So, references
to mywindow behave as if they were direct references to data private to the
thread.

Code Example 2-4 shows how to set this up.

First, get a unique value for the key, mywindow_key . This key is used to
identify the thread-specific class of data. So, the first thread to call
make_mywindow calls thr_keycreate (), which assigns to its first argument a
unique key. The second argument is a destructor function that is used to
deallocate a thread’s instance of this thread-specific data item once the thread
terminates.

Code Example 2-4 Initializing the Thread-Specific Data

void make_mywindow(void) {
 FILE **win;
 static int once = 0;
 static mutex_t lock;

 mutex_lock(&lock);
 if (!once) {
 once = 1;
 thr_keycreate(&mywindow_key, free_key);
 }
 mutex_unlock(&lock);

 win = malloc(sizeof(*win));
 create_window(win, ...);

 thr_setspecific(mywindow_key, win);
}

void free_key(void *win) {
 free(win);
}

Programming With Threads 27

2

The next step is to allocate the storage for the caller’s instance of this thread-
specific data item. Having allocated the storage, a call is made to the
create_window routine, which somehow sets up a window for the thread
and sets the storage pointed to by win to refer to it. Finally, a call is made to
thr_setspecific (), which associates the value contained in win (that is, the
location of the storage containing the reference to the window) with the key.

After this, whenever this thread calls thr_getspecific (), passing the global
key, it gets the value that was associated with this key by this thread when it
called thr_setspecific ().

When a thread terminates, calls are made to the destructor functions that were
set up in thr_keycreate (). Each destructor function is called only if the
terminating thread established a value for the key by calling
thr_setspecific ().

Create a Thread—Advanced Features

thr_create (3T)

stack_base—Contains the address for the stack that the new thread uses. When
stack_base is NULL then thr_create () allocates a stack for the new thread with
at least stack_size bytes.

stack_size—Contains the size, in number of bytes, for the stack that the new
thread uses. If stack_size is zero, a default size is used. If stack_size is not zero, it
must be greater than the value returned by thr_min_stack ().

A stack of minimum size might not accomodate the stack frame for
start_routine, so if a stack size is specified it must provide for the minimum
requirement plus room for the start_routine requirements and for the functions
that start_routine calls.

#include <thread.h>

int thr_create(void * stack_base, size_t stack_size,
 void *(* start_routine) (void *), void * arg, long flags,
 thread_t * new_thread);

size_t thr_min_stack(void);

28 Multithreaded Programming Guide—August 1994

2

Typically, thread stacks allocated by thr_create () begin on page boundaries
and any specified size is rounded up to the next page boundary. A page with
no access permission is appended to the top of the stack so that most stack
over-flows result in sending a SIGSEGV signal to the offending thread. Thread
stacks allocated by the caller are used as is.

When the caller passes in a pre-allocated stack, that stack cannot be freed until
the thr_join () call for that thread has returned, even when the thread is
known to have exited. Then the process exits with a status equal to the return
value.

Generally, you do not need to allocate stack space for threads. The threads
library allocates one megabyte of virtual memory for each thread’s stack with
no swap space reserved. (The library uses the MAP_NORESERVE option of
mmap(2) to make the allocations.)

Each thread stack created by the threads library has a red zone. The library
creates the red zone by appending a page to the top of a stack to catch stack
overflows. This page is invalid and causes a memory fault if it is accessed. Red
zones are appended to all automatically allocated stacks whether the size is
specified by the application or the default size is used.

Specify stacks or their sizes to thr_create () only when you’re absolutely
certain you know that they are correct. There are very few occasions when it is
sensible to specify a stack, its size, or both to thr_create (). It is difficult even
for an expert to know if the right size was specified. This is because even an
ABI-compliant program can’t determine its stack size statically. Its size is
dependent on the needs of the particular runtime environment in which it
executes.

Building Your Own Stack
When you specify the size of a thread stack, be sure to account for the
allocations needed by the invoked function and by each function called. The
accounting should include calling sequence needs, local variables, and
information structures.

Occasionally you want a stack that is a bit different from the default stack. An
obvious situation is when the thread needs more than one megabyte of stack
space. A less obvious situation is when the default stack is too large. You might

Programming With Threads 29

2

be creating thousands of threads and just not have the virtual memory
necessary to handle the several gigabytes of stack space that this many default
stacks require.

The limits on the maximum size of a stack are often obvious, but what about
the limits on its minimum size? There must be enough stack space to handle all
of the stack frames that are pushed onto the stack, along with their local
variables and so on.

You can get the absolute minimum on stack size by calling thr_min_stack (),
which returns the amount of stack space required for a thread that executes a
null procedure. Useful threads need more than this, so be very careful when
reducing the stack size.

You can specify a custom stack in two ways. The first is to supply a NULL for
the stack location, thereby asking the runtime library to allocate the space for
the stack, but to supply the desired size in the stack-size parameter to
thr_create ().

The other approach is to take overall aspects of stack management and supply
a pointer to the stack to thr_create (). This means that you are responsible
not only for stack allocation but also for stack deallocation—when the thread
terminates, you must arrange for the disposal of its stack.

When you allocate your own stack, be sure to append a red zone to its end by
calling mprotect (2).

start_routine — Contains the function with which the new thread begins
execution. When start_routine returns, the thread exits with the exit status set to
the value returned by start_routine (see thr_exit (3T)).

Note that you can supply only one argument. To get your procedure to take
multiple arguments, encode them as one (such as by putting them in a
structure). This argument can be anything that is described by void , which is
typically any 4-byte value. Anything larger must be passed indirectly by
having the argument point to it.

30 Multithreaded Programming Guide—August 1994

2

flags — Specifies attributes for the created thread. In most cases you want to
supply a zero to the flags argument.

The value in flags is constructed from the bitwise inclusive OR of the following.

THR_SUSPENDED — Suspends the new thread and does not execute
start_routine until the thread is started by thr_continue (). Use this to
operate on the thread (such as changing its priority) before you run it. The
termination of a detached thread is ignored.

THR_DETACHED — Detaches the new thread so that its thread ID and other
resources can by reused as soon as the thread terminates. Set this when you
do not want to wait for the thread to terminate.

When there is no explicit synchronization to prevent it, an unsuspended,
detached thread can die and have its thread ID re-assigned to another new
thread before its creator returns from thr_create ().

THR_BOUND — Permanently binds the new thread to an LWP (the new
thread is a bound thread).

THR_NEW_LWP — Increases the concurrency level for unbound threads by
one. The effect is similar to incrementing concurrency by one with
thr_setconcurrency (3T), although this does not affect the level set
through the thr_setconcurrency () function. Typically, THR_NEW_LWP
adds a new LWP to the pool of LWPs running unbound threads.

When you specify both THR_BOUND and THR_NEW_LWP, two LWPs are
typically created—one for the bound thread and another for the pool of
LWPs running unbound threads.

THR_DAEMON — Marks the new thread as a daemon. The process exits
when all nondaemon threads exit. Daemon threads do not affect the process
exit status and are ignored when counting the number of thread exits.

A process can exit either by calling exit (2) or by having every thread in the
process that was not created with the THR_DAEMON flag call thr_exit (3T).
An application, or a library it calls, can create one or more threads that
should be ignored (not counted) in the decision of whether to exit. The
THR_DAEMON flag identifies threads that are not counted in the process exit
criterion.

Programming With Threads 31

2

new_thread — Points to a location (when new_thread is not NULL) where the ID
of the new thread is stored when thr_create () is successful. The caller is
responsible for supplying the storage this argument points to. The ID is valid
only within the calling process.

If you are not interested in this identifier, supply a zero value to new_thread().

Return Values — thr_create () returns a zero and exits when it completes
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions are detected, thr_create () fails and returns
the corresponding value.

EAGAIN A system limit is exceeded, such as when too many LWPs have
been created.

ENOMEM Not enough memory was available to create the new thread.

EINVAL stack_base is not NULL and stack_size is less than the value
returned by thr_minstack ().

thr_create (3T) Example — Code Example 2-5 shows how to create a default
thread with a new signal mask (new_mask) that is assumed to have a different
value than the creator’s signal mask (orig_mask).

In the example, new_mask is set to block all signals except for SIGINT . Then
the creator’s signal mask is changed so that the new thread inherits a different
mask, and is restored to its original value after thr_create () returns.

This example assumes that SIGINT is also unmasked in the creator. When it is
masked by the creator, then unmasking the signal opens the creator up to this
signal. The other alternative is to have the new thread set its own signal mask
in its start routine.

Code Example 2-5 thr_create () Creates Thread With New Signal Mask

thread_t tid;
sigset_t new_mask, orig_mask;
int error;

(void)sigfillset(&new_mask);
(void)sigdelset(&new_mask, SIGINT);
(void)thr_sigsetmask(SIGSETMASK, &new_mask, &orig_mask):
error = thr_create(NULL, 0, dofunc, NULL, 0, &tid);
(void)thr_sigsetmask(SIGSETMASK, NULL, &orig_mask);

32 Multithreaded Programming Guide—August 1994

2

Get the Minimal Stack Size

thr_min_stack (3T)

Use thr_min_stack (3T) to get the minimum stack size for a thread.

thr_min_stack () returns the amount of space needed to execute a null thread
(a null thread is a thread that is created to execute a null procedure).

A thread that does more than execute a null procedure should allocate a stack
size greater than the size of thr_min_stack ().

When a thread is created with a user-supplied stack, the user must reserve
enough space to run the thread. In a dynamically linked execution
environment, it is difficult to know what the thread minimal stack
requirements are.

Most users should not create threads with user-supplied stacks. User-supplied
stacks exist only to support applications wanting complete control over their
execution environments.

Instead, users should let the threads library manage stack allocation. The
threads library provides default stacks that should meet the requirements of
any created thread.

#include <thread.h>

size_t thr_min_stack(void);

Programming With Threads 33

2

Get and Set Thread Concurrency Level

thr_getconcurrency (3T)

Use thr_getconcurrency () to get the current value of the desired
concurrency level. Note that the actual number of simultaneously active
threads can be larger or smaller than this number.

Return Values — thr_getconcurrency () always returns the current value
for the desired concurrency level.

thr_setconcurrency (3T)

Use thr_setconcurrency () to set the desired concurrency level.

Unbound threads in a process might or might not be required to be
simultaneously active. To conserve system resources, the threads system
ensures by default that enough threads are active for the process to make
progress and to ensure that the process will not deadlock through a lack of
concurrency.

Because this might not produce the most effective level of concurrency,
thr_setconcurrency () permits the application to give the threads system a
hint, specified by new_level, for the desired level of concurrency.

The actual number of simultaneously active threads can be larger or smaller
than new_level.

Note that an application with multiple compute-bound threads can fail to
schedule all the runnable threads if thr_setconcurrency () has not been
called to adjust the level of execution resources.

#include <thread.h>

int thr_getconcurrency(void)

#include <thread.h>

int thr_setconcurrency (new_level)

34 Multithreaded Programming Guide—August 1994

2

You can also affect the value for the desired concurrency level by setting the
THR_NEW_LWP flag in thr_create ().

Return Values — thr_setconcurrency () returns a zero when it completes
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions are detected, thr_setconcurrency () fails
and returns the corresponding value.

EAGAIN The specified concurrency level would cause a system resource to
be exceeded.

EINVAL The value for new_level is negative.

Get and Set Thread Priority

An unbound thread is usually scheduled only with respect to other threads in
the process using simple priority levels with no adjustments and no kernel
involvement. Its system priority is usually uniform and is inherited from the
creating process.

thr_getprio (3T)

Use thr_getprio () to get the current priority for the thread.

Each thread inherits a priority from its creator. thr_getprio () stores the
current priority, target_thread, in the location pointed to by pri.

Return Values — thr_getprio() returns zero after completing successfully.
Any other returned value indicates that an error occurred. When the following
condition occurs, thr_getprio () fails and returns the corresponding value.

ESRCH target_thread cannot be found in the current process.

#include <thread.h>

int thr_getprio(thread_t target_thread , int * pri)

Programming With Threads 35

2

thr_setprio (3T)

Use thr_setprio () to change the priority of the thread.

thr_setprio () changes the priority of the thread, specified by target_thread,
within the current process to the priority specified by pri. By default, threads
are scheduled based on fixed priorities that range from zero, the least
significant, to the largest integer. The target_thread will preempt lower priority
threads, and will yield to higher priority threads.

Return Values — thr_setprio() returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, thr_setprio () fails and returns the
corresponding value.

ESRCH target_thread cannot be found in the current process.

EINVAL The value of pri makes no sense for the scheduling class
associated with the target_thread.

Scheduling and the Threads Library

The following libthread routines affect thread scheduling.

• thr_setprio () and thr_getprio ()

These routines alter and retrieve the priority of the target_thread, which is
the priority used by the scheduler in the user-level threads library, and not
the priority used by the operating system to schedule LWPs.

This priority affects the assignment of threads to LWPs—when there are
more runnable threads than there are LWPs, the higher-priority threads are
given LWPs. The scheduling of threads is preemptive, meaning that when a
thread becomes runnable and its priority is higher than that of some thread
currently assigned to an LWP, and there are no other available LWPs, then
the lower-priority thread must relinquish its LWP to the higher-priority
thread.

#include <thread.h>

int thr_setprio(thread_t target_thread , int pri)

36 Multithreaded Programming Guide—August 1994

2

• thr_suspend () and thr_continue ()

These routines control whether a thread is allowed to run. By calling
thr_suspend (), you put a thread into the suspended state, meaning that it
is set aside and will not be granted an LWP even if one is available. The
thread is taken out of this state when some other thread calls
thr_continue () with the suspended thread as the target. These two
routines should be used with care—their effects can be dangerous. For
example, the thread being suspended might be holding a lock on a mutex,
and suspending it could result in a deadlock.

A thread can be created in the suspended state by including the
THR_SUSPENDED flag in the flags parameter of thr_create ().

• thr_yield ()

The thr_yield () routine causes the calling thread to relinquish its LWP
when a thread of equal priority is runnable and not suspended. (There
cannot be a runnable thread of higher priority that is not running, since it
would have taken the LWP by preemption.) This routine is of particular
importance because there is no time-slicing of threads on LWPs (although,
of course, the operating system time-slices the execution of LWPs).

Finally, note that priocntl (2) also affects thread scheduling. See “LWPs and
Scheduling Classes” on page 82 for more information.

37

Programming With
Synchronization Objects 3

This chapter describes the four synchronization types available with threads
and discusses synchronization concerns.

Synchronization objects are variables in memory that you access just like data.
Threads in different processes can synchronize with each other through
synchronization variables placed in shared memory, even though the threads
in different processes are generally invisible to each other.

Synchronization variables can also be placed in files and can have lifetimes
beyond that of the creating process.

The types of synchronization objects are:

• Mutex Locks
• Condition Variables
• Readers/Writer Locks
• Semaphores

Mutual Exclusion Locks page 38

Condition Variables page 48

Multiple-Readers, Single-Writer Locks page 60

Semaphores page 66

Synchronization Across Process Boundaries page 75

Comparing Primitives page 77

38 Multithreaded Programming Guide—August 1994

3

Here are some multithreading situations in which synchronization is
important.

• Threads in two or more processes can use a single synchronization variable
jointly. Note that the synchronization variable should be initialized by only
one of the cooperating processes, as reinitializing a synchronization variable
sets it to the unlocked state.

• Synchronization is the only way to ensure consistency of shared data.

• A process can map a file and have a thread in this process get a record’s
lock. When the modification is done, the thread releases the lock and
unmaps the file. Once the lock is acquired, any other thread in any process
mapping the file that tries to acquire the lock is blocked until the lock is
released.

• Synchronization can ensure the safety of mutable data.

• Synchronization can be important even when accessing a single primitive
variable, such as an integer. On machines where the integer is not aligned to
the bus data width or is larger than the data width, a single memory load
can use more than one memory cycle. While this cannot happen on the
SPARC® architecture, portable programs cannot rely on this.

Mutual Exclusion Locks
Use mutual exclusion locks (mutexes) to serialize thread execution. Mutual
exclusion locks synchronize threads, usually by ensuring that only one thread
at a time executes a critical section of code. Mutex locks can also preserve
single-threaded code.

Table 3-1 Routines for Mutual Exclusion Locks

Routine Operation Page

mutex_init(3T) Initialize a Mutual Exclusion Lock page 39

mutex_lock(3T) Lock a Mutex page 40

mutex_trylock(3T) Lock With a Nonblocking Mutex page 40

mutex_unlock(3T) Unlock a Mutex page 41

mutex_destroy(3T) Destroy Mutex State page 42

Programming With Synchronization Objects 39

3

Mutexes can be used to synchronize threads in this process and other processes
when they are allocated in memory that is writable and shared among the
cooperating processes (see mmap(2)) and if they have been initialized for this
behavior.

Mutexes must be initialized before use.

Note that there is no defined order of acquisition when multiple threads are
waiting for a mutex.

Initialize a Mutual Exclusion Lock

mutex_init (3T)

Use mutex_init () to initialize the mutex pointed to by mp. The type can be
one of the following (note that arg is currently ignored).

USYNC_PROCESS The mutex can be used to synchronize threads in this and
other processes.

USYNC_THREAD The mutex can be used to synchronize threads in this
process, only.

Mutexes can also be initialized by allocation in zeroed memory, in which case a
type of USYNC_THREAD is assumed.

Multiple threads must not initialize the same mutex simultaneously. A mutex
lock must not be reinitialized while other threads might be using it.

Return Values — mutex_init () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT mp or arg points to an illegal address.

#include <synch.h> (or #include <thread.h >)

int mutex_init(mutex_t * mp, int type, void * arg);

40 Multithreaded Programming Guide—August 1994

3

Lock a Mutex

mutex_lock (3T)

Use mutex_lock () to lock the mutex pointed to by mp. When the mutex is
already locked, the calling thread blocks until the mutex becomes available
(blocked threads wait on a prioritized queue). When mutex_lock () returns,
the mutex is locked and the calling thread is the owner.

Return Values — mutex_lock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT mp points to an illegal address.

Lock With a Nonblocking Mutex

mutex_trylock (3T)

Use mutex_trylock () to attempt to lock the mutex pointed to by mp. This
function is a nonblocking version of mutex_lock (). When the mutex is already
locked, this call returns with an error. Otherwise, the mutex is locked and the
calling thread is the owner.

#include <synch.h> (or #include <thread.h >)

int mutex_lock(mutex_t * mp);

#include <synch.h> (or #include <thread.h >)

int mutex_trylock(mutex_t * mp);

Programming With Synchronization Objects 41

3

Return Values — mutex_trylock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT mp points to an illegal address.

EBUSY The mutex pointed to by mp was already locked.

Unlock a Mutex

mutex_unlock (3T)

Use mutex_unlock () to unlock the mutex pointed to by mp. The mutex must
be locked and the calling thread must be the one that last locked the mutex (the
owner). When any other threads are waiting for the mutex to become available,
the thread at the head of the queue is unblocked.

Return Values — mutex_unlock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT mp points to an illegal address.

#include <synch.h> (or #include <thread.h >)

int mutex_unlock(mutex_t * mp);

42 Multithreaded Programming Guide—August 1994

3

Destroy Mutex State

mutex_destroy (3T)

Use mutex_destroy () to destroy any state associated with the mutex pointed
to by mp. Note that the space for storing the mutex is not freed.

Return Values — mutex_destroy () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT mp points to an illegal address.

#include <synch.h> (or #include <thread.h >)

int mutex_destroy(mutex_t * mp);

Programming With Synchronization Objects 43

3

Mutex Lock Code Example
Code Example 3-1 Mutex Lock Example

The two functions in Code Example 3-1use the mutex lock for different
purposes. increment_count () uses the mutex lock simply to assure an
atomic1 update of the shared variable. get_count () uses the mutex lock to
guarantee that memory is synchronized when it refers to count .

Using Locking Hierarchies

You will occasionally want to access two resources at once. Perhaps you are
using one of the resources, and then discover that the other resource is needed
as well. As shown in Code Example 3-2, there could be a problem if two
threads attempt to claim both resources but lock the associated mutexes in

1. An atomic operation cannot be divided into smaller operations.

mutex_t count_mutex;
int count;

increment_count()
{

mutex_lock(&count_mutex);
count = count + 1;
mutex_unlock(&count_mutex);

}

int
get_count()
{

int c;

mutex_lock(&count_mutex);
c = count;
mutex_unlock(&count_mutex);
return (c);

}

44 Multithreaded Programming Guide—August 1994

3

different orders. In this example, if the two threads lock mutexes 1 and 2
respectively, then a deadlock occurs when each attempts to lock the other
mutex.

The best way to avoid this problem is to make sure that whenever threads lock
multiple mutexes, they do so in the same order. This technique is known as lock
hierarchies: order the mutexes by logically assigning numbers to them.

Also, honor the restriction that you cannot take a mutex that is assigned i when
you are holding any mutex assigned a number greater than i.

Note – The lock_lint tool can detect the sort of deadlock problem shown in
this example. The best way to avoid such deadlock problems is to use lock
hierarchies: when locks are always taken in a prescribed order, deadlock
cannot occur.

Code Example 3-2 Deadlock

Thread 1 Thread 2

 mutex_lock(&m1);

 /* use resource 1 */

 mutex_lock(&m2);

 /* use resources
 1 and 2 */

 mutex_unlock(&m2);
 mutex_unlock(&m1);

mutex_lock(&m2);

 /* use resource 2 */

 mutex_lock(&m1);

 /* use resources
 1 and 2 */

 mutex_unlock(&m1);
 mutex_unlock(&m2);

Programming With Synchronization Objects 45

3

However, this technique cannot always be used—sometimes you must take the
mutexes in an order other than the prescribed one. To prevent deadlock in such
a situation, one thread must release the mutexes it currently holds if it
discovers that deadlock would otherwise be inevitable. Code Example 3-3
shows how this is done.

In this example, thread 1 is locking the mutexes in the prescribed order, but
thread 2 is taking them out of order. To make certain that there is no deadlock,
thread 2 has to take mutex 1 very carefully: if it were to block waiting for the
mutex to be released, it is likely to have just entered into a deadlock with
thread 1.

To make sure this does not happen, thread 2 calls mutex_trylock , which
takes the mutex if it is available. If it is not, thread 2 returns immediately,
reporting failure. At this point, thread 2 must release mutex 2, so that thread 1
can lock it, then release both mutex 1 and mutex 2.

Code Example 3-3 Conditional Locking

Thread 1 Thread 2

mutex_lock(&m1);
 mutex_lock(&m2);

 mutex_unlock(&m2);

 mutex_unlock(&m1);

for (;;) {
 mutex_lock(&m2);
 if (mutex_trylock(&m1)
 ==0)
 /* got it! */
 break;

 /* didn’t get it */
 mutex_unlock(&m1);
 }
 mutex_unlock(&m1);
 mutex_unlock(&m2);

46 Multithreaded Programming Guide—August 1994

3

Nested Locking With a Singly Linked List

Code Example 3-4 takes three locks at once, but prevents deadlock by taking
the locks in a prescribed order.

This example uses a singly linked list structure with each node containing a
mutex. To remove a node from the list, first search the list starting at ListHead
(which itself is never removed) until the desired node is found.

To protect this search from the effects of concurrent deletions, lock each node
before any of its contents can be accessed. Because all searches start at
ListHead , there is never a deadlock because the locks are always taken in list
order.

When the desired node is found, lock both the node and its predecessor
because the change involves both nodes. Because the predecessor’s lock is
always taken first, you are again protected from deadlock.

Code Example 3-4 Singly Linked List Structure

 typedef struct node1 {
 int value;
 struct node1 *link;
 mutex_t lock;
 } node1_t;

node1_t ListHead;

Programming With Synchronization Objects 47

3

Here is the C code to remove an item from a singly linked list.

Nested Locking With a Circular Linked List

Code Example 3-6 modifies the previous list structure by converting it into a
circular list. There is no longer a distinguished head node; now a thread might
be associated with a particular node and might perform operations on that
node and its neighbor. Note that lock hierarchies do not work easily here
because the obvious hierarchy (following the links) is circular.

Code Example 3-5 Singly Linked List with Nested Locking

node1_t *delete(int value) {
 node1_t *prev, *curent;

 prev = &ListHead;
 mutex_lock(&prev->lock);
 while ((current = prev->link) != NULL) {
 mutex_lock(¤t->lock);
 if (current->value == value) {
 prev->link = current->link;
 mutex_unlock(¤t->lock);
 mutex_unlock(&prev->lock);
 current->link = NULL;
 return(current);
 }
 mutex_unlock(&prev->lock);
 prev = current;
 }
 mutex_unlock(&prev->lock);
 return(NULL);
}

Code Example 3-6 Circular Linked List Structure

typedef struct node2 {
 int value;
 struct node2 *link;
 mutex_t lock;
} node2_t;

48 Multithreaded Programming Guide—August 1994

3

Here is the C code that acquires the locks on two nodes and performs an
operation involving both of them.

Condition Variables
Use condition variables to atomically block threads until a particular condition
is true. Always use condition variables together with a mutex lock.

With a condition variable, a thread can atomically block until a condition is
satisfied. The condition is tested under the protection of a mutual exclusion
lock (mutex).

Code Example 3-7 Circular Linked List With Nested Locking

void Hit Neighbor(node2_t *me) {
 while (1) {
 mutex_lock(&me->lock);
 if (mutex_lock(&me->link->lock)) {
 /* failed to get lock */
 mutex_unlock(&me->lock);
 continue;
 }
 break;
 }
 me->link->value += me->value;
 me->value /=2;
 mutex_unlock(&me->link->lock);
 mutex_unlock(&me->lock);
}

Table 3-2 Routines for Condition Variables

Routine Operation Page

cond_init(3T) Initialize a Condition Variable page 49

cond_wait(3T) Block on a Condition Variable page 50

cond_signal(3T) Unblock a Specific Thread page 51

cond_timedwait(3T) Block Until a Specified Event page 52

cond_broadcast(3T) Unblock All Threads page 54

cond_destroy(3T) Destroy Condition Variable State page 55

Programming With Synchronization Objects 49

3

When the condition is false, a thread usually blocks on a condition variable
and atomically releases the mutex waiting for the condition to change. When
another thread changes the condition, it can signal the associated condition
variable to cause one or more waiting threads to wake up, reacquire the mutex,
and re-evaluate the condition.

Condition variables can be used to synchronize threads among processes when
they are allocated in memory that is writable and shared by the cooperating
processes.

Always initialize condition variables before using them. Also, note that there is
no defined order of unblocking when multiple threads are waiting for a
condition variable.

Initialize a Condition Variable

cond_init (3T)

Use cond_init () to initialize the condition variable pointed to by cvp. The type
can be one of the following (note that arg is currently ignored).

USYNC_PROCESS The condition variable can be used to synchronize
threads in this and other processes. arg is ignored.

USYNC_THREAD The condition variable can be used to synchronize threads
in this process, only. arg is ignored.

Condition variables can also be initialized by allocation in zeroed memory, in
which case a type of USYNC_THREAD is assumed.

Multiple threads must not initialize the same condition variable
simultaneously. A condition variable must not be reinitialized while other
threads might be using it.

#include <synch.h> (or #include <thread.h >)

int cond_init(cond_t * cvp, int type, int arg);

50 Multithreaded Programming Guide—August 1994

3

Return Values — cond_init () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL type is not a recognized type.

EFAULT cvp or arg points to an illegal address.

Block on a Condition Variable

cond_wait (3T)

Use cond_wait () to atomically release the mutex pointed to by mp and to
cause the calling thread to block on the condition variable pointed to by cvp.
The blocked thread can be awakened by cond_signal (), cond_broadcast (),
or when interrupted by delivery of a signal or a fork ().

Any change in the value of a condition associated with the condition variable
cannot be inferred by the return of cond_wait () and any such condition must
be re-evaluated.

cond_wait () always returns with the mutex locked and owned by the calling
thread even when returning an error.

The function blocks until the condition is signaled. It atomically releases the
associated mutex lock before blocking, and atomically reacquires it before
returning.

In typical use, a condition expression is evaluated under the protection of a
mutex lock. When the condition expression is false, the thread blocks on the
condition variable. The condition variable is then signaled by another thread
when it changes the condition value. This causes one or all of the threads
waiting on the condition to unblock and to try to reacquire the mutex lock.

#include <synch.h> (or #include <thread.h >)

int cond_wait(cond_t * cvp, mutex_t * mp);

Programming With Synchronization Objects 51

3

Because the condition can change before an awakened thread returns from
cond_wait() , the condition that caused the wait must be retested before the
mutex lock is acquired. The recommended test method is to write the condition
check as a while loop that calls cond_wait ().

No specific order of acquisition is guaranteed when more than one thread
blocks on the condition variable.

Return Values — cond_wait () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EFAULT cvp points to an illegal address.

EINTR The wait was interrupted by a signal or a fork ().

Unblock a Specific Thread

cond_signal (3T)

Use cond_signal () to unblock one thread that is blocked on the condition
variable pointed to by cvp. Call cond_ signal() under the protection of the same
mutex used with the condition variable being signaled. Otherwise, the
condition variable could be signaled between the test of the associated
condition and blocking in cond_wait (), which can cause an infinite wait.

When no threads are blocked on the condition variable, then cond_signal ()
has no effect.

 mutex_lock();
 while(condition_is_false)
 cond_wait();
 mutex_unlock();

#include <synch.h> (or #include <thread.h >)

int cond_signal(cond_t * cvp);

52 Multithreaded Programming Guide—August 1994

3

Return Values — cond_signal () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When the following
condition occurs, the function fails and returns the corresponding value.

EFAULT cvp points to an illegal address.

Code Example 3-8 Example Using cond_wait (3T) and cond_signal (3T)

Block Until a Specified Event

cond_timedwait (3T)

Use cond_timedwait () as you would use cond_wait (), except that
cond_timedwait () does not block past the time of day specified by abstime.

mutex_t count_lock;
cond_t count_nonzero;
unsigned int count;

decrement_count()
{

mutex_lock(&count_lock);
while (count == 0)

cond_wait(&count_nonzero, &count_lock);
count = count - 1;
mutex_unlock(&count_lock);

}
increment_count()
{

mutex_lock(&count_lock);
if (count == 0)

cond_signal(&count_nonzero);
count = count + 1;
mutex_unlock(&count_lock);

}

#include <synch.h> (or #include <thread.h >)

int cond_timedwait(cond_t * cvp, mutex_t * mp,
 timestruc_t * abstime);

Programming With Synchronization Objects 53

3

cond_timedwait () always returns with the mutex locked and owned by the
calling thread even when returning an error.

The cond_timedwait () function blocks until the condition is signaled or until
the time of day specified by the last argument has passed. The time-out is
specified as a time of day so the condition can be retested efficiently without
recomputing the time-out value, as shown in Code Example 3-9.

Return Values — cond_timedwait () returns zero after completing
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions occur, the function fails and returns the
corresponding value.

EINVAL The specified number of seconds in abstime is greater than the
start time of the application plus 50,000,000, or the number of nanoseconds
is greater than or equal to 1,000,000,000.

EFAULT cvp or abstime points to an illegal address.

EINTR The wait was interrupted by a signal or a fork ().

ETIME The time specified by abstime has passed.

Code Example 3-9 Timed Condition Wait

timestruc_t to;
mutex_t m;
cond_t c;
...
mutex_lock(&m);
to.tv_sec = time(NULL) + TIMEOUT;
to.tv_nsec = 0;
while (cond == FALSE) {

err = cond_timedwait(&c, &m, &to);
if (err == ETIME) {

/* timeout, do something */
break;

}
}
mutex_unlock(&m);

54 Multithreaded Programming Guide—August 1994

3

Unblock All Threads

cond_broadcast (3T)

Use cond_broadcast () to unblock all threads that are blocked on the
condition variable pointed to by cvp. When no threads are blocked on the
condition variable then cond_broadcast () has no effect.

This function wakes all the threads blocked in cond_wait (). Since
cond_broadcast () causes all threads blocked on the condition to contend
again for the mutex lock, use it with care.

For example, use cond_broadcast () to allow threads to contend for variable
resource amounts when resources are freed, as shown in Code Example 3-10.

Code Example 3-10 Condition Variable Broadcast

#include <synch.h> (or #include <thread.h >)

int cond_wait(cond_t * cvp);

mutex_t rsrc_lock;
cond_t rsrc_add;
unsigned int resources;

get_resources(int amount)
{

mutex_lock(&rsrc_lock);
while (resources < amount) {

cond_wait(&rsrc_add, &rsrc_lock);
}
resources -= amount;
mutex_unlock(&rsrc_lock);

}

add_resources(int amount)
{

mutex_lock(&rsrc_lock);
resources += amount;
cond_broadcast(&rsrc_add);
mutex_unlock(&rsrc_lock);

}

Programming With Synchronization Objects 55

3

Note that in add_resources () it does not matter whether resources is
updated first or cond_broadcast () is called first inside the mutex lock.

Return Values — cond_ broadcast() returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EFAULT cvp points to an illegal address.

Call cond_broadcast () under the protection of the same mutex used with the
condition variable being signaled. Otherwise, the condition variable could be
signaled between the test of the associated condition and blocking in
cond_wait (), which can cause an infinite wait.

Destroy Condition Variable State

cond_destroy (3T)

Use cond_destroy () to destroy any state associated with the condition
variable pointed to by cvp. The space for storing the condition variable is not
freed.

Return Values — cond_destroy () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When the following
condition occurs, the function fails and returns the corresponding value.

EFAULT cvp points to an illegal address.

#include <synch.h> (or #include <thread.h >)

int cond_destroy(cond_t * cvp);

56 Multithreaded Programming Guide—August 1994

3

The Lost Wake-Up Problem

Calling cond_signal () or cond_broadcast () when the thread does not hold
the mutex lock associated with the condition can lead to lost wake-up bugs. A
lost wake up occurs when a signal or broadcast has been sent but a thread is
waiting on the condition variable even though the condition is true. This
happens when the thread that calls cond_signal () does not hold the mutex
locally.

If the thread calls cond_signal () when another thread is between the test of
the condition and the call to cond_wait (), there are no waiting threads and
the signal has no effect.

The Producer/Consumer Problem

This problem is one of the small collection of standard, well-known problems
in concurrent programming: a finite-size buffer and two classes of threads,
producers and consumers, put items into the buffer (producers) and take items
out of the buffer (consumers).

A producer must wait until the buffer has space before it can put something in,
and a consumer must wait until something is in the buffer before it can take
something out.

A condition variable represents a queue of threads waiting for some condition
to be signaled.

Code Example 3-11 has two such queues, one (less) for producers waiting for
a slot in the buffer, and the other (more) for consumers waiting for a buffer slot
containing information. The example also has a mutex, as the data structure
describing the buffer must be accessed by only one thread at a time.

Programming With Synchronization Objects 57

3

This is the code for the buffer data structure.

As Code Example 3-12 shows, the producer thread takes the mutex protecting
the buffer data structure and then makes certain that space is available for
the item being produced. If not, it calls cond_wait (), which causes it to join
the queue of threads waiting for the condition less , representing there is room
in the buffer, to be signaled.

At the same time, as part of the call to cond_wait (), the thread releases its lock
on the mutex. The waiting producer threads depend on consumer threads to
signal when the condition is true (as shown in Code Example 3-12). When the
condition is signaled, the first thread waiting on less is awakened. However,
before the thread can return from cond_wait (), it must reacquire the lock on
the mutex.

This ensures that it again has mutually exclusive access to the buffer data
structure. The thread then must check that there really is room available in the
buffer; if so, it puts its item into the next available slot.

At the same time, consumer threads might be waiting for items to appear in
the buffer. These threads are waiting on the condition variable more . A
producer thread, having just deposited something in the buffer, calls
cond_signal () to wake up the next waiting consumer. (If there are no waiting
consumers, this call has no effect.) Finally, the producer thread unlocks the
mutex, allowing other threads to operate on the buffer data structure.

Code Example 3-11 The Producer/Consumer Problem and Condition Variables

typedef struct {
 char buf[BSIZE];
 int occupied;
 int nextin;
 int nextout;
 mutex_t mutex;
 cond_t more;
 cond_t less;
} buffer_t;

buffer_t buffer;

58 Multithreaded Programming Guide—August 1994

3

Code Example 3-12 The Producer/Consumer Problem—the Producer

Note the use of the assert () statement; unless the code is compiled with
NDEBUG defined, assert () does nothing when its argument evaluates to true
(that is, nonzero), but causes the program to abort if the argument evaluates to
false (zero).

Such assertions are especially useful in multithreaded programs—they
immediately point out runtime problems if they fail, and they have the
additional effect of being useful comments.

The code comment a few lines later could better be expressed as an assertion,
but it is too complicated to say as a Boolean-valued expression and so is said
here in English.

Both the assertion and the comments are examples of invariants. These are
logical statements that should not be falsified by the execution of the program,
except during brief moments when a thread is modifying some of the program
variables mentioned in the invariant. (An assertion, of course, should be true
whenever any thread executes it.)

void producer(buffer_t *b, char item) {
 mutex_lock(&b->mutex);

 while (b->occupied >= BSIZE)
 cond_wait(&b->less, &b->mutex);

 assert(b->occupied < BSIZE);

 b->buf[b->nextin++] = item;

 b->nextin %= BSIZE;
 b->occupied++;

 /* now: either b->occupied < BSIZE and b->nextin is the index
 of the next empty slot in the buffer, or
 b->occupied == BSIZE and b->nextin is the index of the
 next (occupied) slot that will be emptied by a consumer
 (such as b-> == b->nextout) */

 cond_signal(&b->more);

 mutex_unlock(&b->mutex);
}

Programming With Synchronization Objects 59

3

Using invariants is an extremely useful technique. Even when they are not
stated in the program text, think in terms of invariants when you analyze a
program.

The invariant in the producer code that is expressed as a comment is always
true whenever a thread is in the part of the code where the comment appears.
If you move this comment to just after the mutex_unlock (), this does not
necessarily remain true. If you move this comment to just after the assert ,
this is still true.

The point is that this invariant expresses a property that is true at all times,
except when either a producer or a consumer is changing the state of the
buffer. While a thread is operating on the buffer (under the protection of a
mutex), it might temporarily falsify the invariant. However, once the thread is
finished, the invariant should be true again.

Code Example 3-13 shows the code for the consumer. Its flow is symmetric
with that of the producer.

Code Example 3-13 The Producer/Consumer Problem—the Consumer

char consumer(buffer_t *b) {
 char item;
 mutex_lock(&b->mutex);
 while(b->occupied <= 0)
 cond_wait(&b->more, &b->mutex);

 assert(b->occupied > 0);

 item = b->buf[b->nextout++];
 b->nextout %= BSIZE;
 b->occupied--;

 /* now: either b->occupied > 0 and b->nextout is the index
 of the next occupied slot in the buffer, or
 b->occupied == 0 and b->nextout is the index of the next
 (empty) slot that will be filled by a producer (such as
 b->nextout == b->nextin) */

 cond_signal(&b->less);
 mutex_unlock(&b->mutex);

 return(item);
}

60 Multithreaded Programming Guide—August 1994

3

Multiple-Readers, Single-Writer Locks
Readers/Writer locks allow simultaneous read access by many threads while
restricting write access to only one thread at a time.

When any thread holds the lock for reading, other threads can also acquire the
lock for reading but must wait to acquire the lock for writing. If one thread
holds the lock for writing, or is waiting to acquire the lock for writing, other
threads must wait to acquire the lock for either reading or writing.

Readers/Writer locks are slower than mutexes, but can improve performance
when they protect data that are not frequently written but that are read by
many concurrent threads.

Use readers/writer locks to synchronize threads in this process and other
processes by allocating them in memory that is writable and shared among the
cooperating processes (see mmap(2)) and by initializing them for this behavior.

By default, the acquisition order is not defined when multiple threads are
waiting for a readers/writer lock. However, to avoid writer starvation, the
Solaris threads package tends to favor writers over readers.

Readers/Writer locks must be initialized before use.

Table 3-3 Routines for Readers/Writer Locks

Routine Operation Page

rwlock_init(3T) Initialize a Readers/Writer Lock page 61

rw_rdlock(3T) Acquire a Read Lock page 62

rw_tryrdlock(3T) Try to Acquire a Read Lock page 62

rw_wrlock(3T) Acquire a Write Lock page 63

rw_trywrlock(3T) Try to Acquire a Write Lock page 64

rw_unlock(3T) Unlock a Readers/Writer Lock page 64

rwlock_destroy(3T) Destroy Readers/Writer Lock State page 65

Programming With Synchronization Objects 61

3

Initialize a Readers/Writer Lock

rwlock_init (3T)

Use rwlock_init () to initialize the readers/writer lock pointed to by rwlp
and to set the lock state to unlocked. type can be one of the following (note that
arg is currently ignored).

USYNC_PROCESS The readers/writer lock can be used to synchronize
threads in this process and other processes. arg is ignored.

USYNC_THREAD The readers/writer lock can be used to synchronize
threads in this process, only. arg is ignored.

Multiple threads must not initialize the same readers/writer lock
simultaneously. Readers/Writer locks can also be initialized by allocation in
zeroed memory, in which case a type of USYNC_THREAD is assumed. A
readers/writer lock must not be reinitialized while other threads might be
using it.

Return Values — rwlock_init () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument

EFAULT rwlp or arg points to an illegal address.

#include <synch.h> (or #include <thread.h>)

int rwlock_init(rwlock_t * rwlp, int type, void * arg);

62 Multithreaded Programming Guide—August 1994

3

Acquire a Read Lock

rw_rdlock (3T)

Use rw_rdlock () to acquire a read lock on the readers/writer lock pointed to
by rwlp. When the readers/writer lock is already locked for writing, the calling
thread blocks until the write lock is released. Otherwise, the read lock is
acquired.

Return Values — rw_rdlock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT rwlp points to an illegal address.

Try to Acquire a Read Lock

rw_tryrdlock (3T)

Use rw_tryrdlock () to attempt to acquire a read lock on the readers/writer
lock pointed to by rwlp. When the readers/writer lock is already locked for
writing, it returns an error. Otherwise, the read lock is acquired.

Return Values — rw_tryrdlock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

#include <synch.h> (or #include <thread.h>)

int rw_rdlock(rwlock_t * rwlp);

#include <synch.h> (or #include <thread.h>)

int rw_tryrdlock(rwlock_t * rwlp);

Programming With Synchronization Objects 63

3

EINVAL Invalid argument.

EFAULT rwlp points to an illegal address.

EBUSY The readers/writer lock pointed to by rwlp was already locked.

Acquire a Write Lock

rw_wrlock (3T)

Use rw_wrlock () to acquire a write lock on the readers/writer lock pointed to
by rwlp. When the readers/writer lock is already locked for reading or writing,
the calling thread blocks until all the read locks and write locks are released.
Only one thread at a time can hold a write lock on a readers/writer lock.

Return Values — rw_wrlock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT rwlp points to an illegal address.

#include <synch.h> (or #include <thread.h>)

int rw_wrlock(rwlock_t * rwlp);

64 Multithreaded Programming Guide—August 1994

3

Try to Acquire a Write Lock

rw_trywrlock (3T)

Use rw_trywrlock () to attempt to acquire a write lock on the readers/writer
lock pointed to by rwlp. When the readers/writer lock is already locked for
reading or writing, it returns an error.

Return Values — rw_trywrlock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT rwlp points to an illegal address.

EBUSY The readers/writer lock pointed to by rwlp was already locked.

Unlock a Readers/Writer Lock

rw_unlock (3T)

Use rw_unlock () to unlock a readers/writer lock pointed to by rwlp. The
readers/writer lock must be locked and the calling thread must hold the lock
either for reading or writing. When any other threads are waiting for the
readers/writer lock to become available, one of them is unblocked.

#include <synch.h> (or #include <thread.h>)

int rw_trywrlock(rwlock_t * rwlp);

#include <synch.h> (or #include <thread.h>)

int rwlock_tryrdlock(rwlock_t * rwlp);

Programming With Synchronization Objects 65

3

Return Values — rw_unlock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT rwlp points to an illegal address.

Destroy Readers/Writer Lock State

rwlock_destroy (3T)

Use rwlock_destroy () to destroy any state associated with the
readers/writer lock pointed to by rlwp. The space for storing the
readers/writer lock is not freed.

Return Values — rwlock_destroy () returns zero after completing
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions occur, the function fails and returns the
corresponding value.

EINVAL Invalid argument.

EFAULT rwlp points to an illegal address.

#include <synch.h> (or #include <thread.h>)

int rwlock_destroy(rwlock_t * rwlp);

66 Multithreaded Programming Guide—August 1994

3

Code Example 3-14 uses a bank account to demonstrate readers/writer locks.
While the program could allow multiple threads to have concurrent read-only
access to the account balance, only a single writer is allowed. Note that the
get_balance () function needs the lock to ensure that the addition of the
checking and saving balances occurs atomically.

Code Example 3-14 Read/Write Bank Account

 Semaphores
Semaphores are a programming construct designed by E. W. Dijkstra in the late
1960s. Dijkstra’s model was the operation of railroads: consider a stretch of
railroad in which there is a single track over which only one train at a time is
allowed.

rwlock_t account_lock;
float checking_balance = 100.0;
float saving_balance = 100.0;
...
rwlock_init(&account_lock, 0, NULL);
...
float
get_balance() {

float bal;

rw_rdlock(&account_lock);
bal = checking_balance + saving_balance;
rw_unlock(&account_lock);
return(bal);

}

void
transfer_checking_to_savings(float amount) {

rw_wrlock(&account_lock);
checking_balance = checking_balance - amount;
savings_balance = savings_balance + amount;
rw_unlock(&account_lock);

}

Programming With Synchronization Objects 67

3

Guarding this track is a semaphore. A train must wait before entering the
single track until the semaphore is in a state that permits travel. When the train
enters the track, the semaphore changes state to prevent other trains from
entering the track. A train that is leaving this section of track must again
change the state of the semaphore to allow another train to enter.

In the computer version, a semaphore appears to be a simple integer. A thread
waits for permission to proceed and then signals that it has proceeded by
performing a P operation on the semaphore.

The semantics of the operation are such that the thread must wait until the
semaphore’s value is positive, then change the semaphore’s value by
subtracting one from it. When it is finished, the thread performs a V operation,
which changes the semaphore’s value by adding one to it. It is crucial that
these operations take place atomically—they cannot be subdivided into pieces
between which other actions on the semaphore can take place. In the P
operation, the semaphore’s value must be positive just before it is decremented
(resulting in a value that is guaranteed to be nonnegative and one less than
what it was before it was decremented).

In both P and V operations, the arithmetic must take place without
interference. If two V operations are performed simultaneously on the same
semaphore, the net effect should be that the semaphore’s new value is two
greater than it was.

The mnemonic significance of P and V is lost on most of the world, as Dijkstra
is Dutch. However, in the interest of true scholarship: P stands for prolagen, a
made-up word derived from proberen te verlagen, which means try to decrease. V
stands for verhogen, which means increase. This is discussed in one of Dijkstra’s
technical notes, EWD 74.

sema_wait (3T) and sema_post (3T) correspond to Dijkstra’s P and V
operations. sema_trywait (3T) is a conditional form of the P operation: if the
calling thread cannot decrement the value of the semaphore without waiting,
the call returns immediately with a nonzero value.

There are two basic sorts of semaphores: binary semaphores, which never take
on values other than zero or one, and counting semaphores, which can take on
arbitrary nonnegative values. A binary semaphore is logically just like a mutex.

However, although it is not enforced, mutexes should be unlocked only by the
thread holding the lock. There is no notion of “the thread holding the
semaphore,” so any thread can perform a V (or sema_post (3T)) operation.

68 Multithreaded Programming Guide—August 1994

3

Counting semaphores are about as powerful as conditional variables (used in
conjunction with mutexes). In many cases, the code might be simpler when it is
implemented with counting semaphores rather than with condition variables
(as shown in the next few examples).

However, when a mutex is used with condition variables, there is an implied
bracketing—it is clear which part of the program is being protected. This is not
necessarily the case for a semaphore, which might be called the go to of
concurrent programming—it is powerful but too easy to use in an
unstructured, unfathomable way.

Counting Semaphores

Conceptually, a semaphore is a non-negative integer count. Semaphores are
typically used to coordinate access to resources, with the semaphore count
initialized to the number of free resources. Threads then atomically increment
the count when resources are added and atomically decrement the count when
resources are removed.

When the semaphore count becomes zero, indicating that no more resources
are present, threads trying to decrement the semaphore block until the count
becomes greater than zero.

Table 3-4 Routines for Semaphores

Because semaphores need not be acquired and released by the same thread,
they can be used for asynchronous event notification (such as in signal
handlers). And, because semaphores contain state, they can be used
asynchronously without acquiring a mutex lock as is required by condition
variables. However, semaphores are not as efficient as mutex locks.

By default, there is no defined order of unblocking if multiple threads are
waiting for a semaphore.

Routine Operation Page

sema_init(3T) Initialize a Semaphore page 69

sema_post(3T) Increment a Semaphore page 70

sema_wait(3T) Block on a Semaphore Count page 70

sema_trywait(3T) Decrement a Semaphore Count page 71

sema_destroy(3T) Destroy the Semaphore State page 72

Programming With Synchronization Objects 69

3

Semaphores must be initialized before use.

Initialize a Semaphore

sema_init (3T)

Use sema_init () to initialize the semaphore variable pointed to by sp by count
amount. type can be one of the following (note that arg is currently ignored).

USYNC_PROCESS The semaphore can be used to synchronize threads in
this process and other processes. Only one process should initialize the
semaphore. arg is ignored.

USYNC_THREAD The semaphore can be used to synchronize threads in this
process, only. arg is ignored.

Multiple threads must not initialize the same semaphore simultaneously. A
semaphore must not be reinitialized while other threads may be using it.

Return Values — sema_init () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT sp or arg points to an illegal address.

#include <synch.h> (or #include <thread.h>)

int sema_init(sema_t * sp, unsigned int count,int type, void * arg);

70 Multithreaded Programming Guide—August 1994

3

Increment a Semaphore

sema_post (3T)

Use sema_post () to atomically increment the semaphore pointed to by sp.
When any threads are blocked on the semaphore, one is unblocked.

Return Values — sema_post () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT sp points to an illegal address.

Block on a Semaphore Count

sema_wait (3T)

Use sema_wait () to block the calling thread until the count in the semaphore
pointed to by sp becomes greater than zero, then atomically decrement it.

#include <synch.h> (or #include <thread.h>)

int sema_destroy(sema_t * sp)

#include <synch.h> (or #include <thread.h>)

int sema_destroy(sema_t * sp)

Programming With Synchronization Objects 71

3

Return Values — sema_wait () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT sp points to an illegal address.

EINTR The wait was interrupted by a signal or a fork ().

Decrement a Semaphore Count

sema_trywait (3T)

Use sema_trywait () to atomically decrement the count in the semaphore
pointed to by sp when the count is greater than zero. This function is a
nonblocking version of sema_wait ().

Return Values — sema_trywait () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT sp points to an illegal address.

EBUSY The semaphore pointed to by sp has a zero count.

#include <synch.h> (or #include <thread.h>)

int sema_destroy(sema_t * sp)

72 Multithreaded Programming Guide—August 1994

3

Destroy the Semaphore State

sema_destroy (3T)

Use sema_destroy () to destroy any state associated with the semaphore
pointed to by sp. The space for storing the semaphore is not freed.

Return Values — sema_destroy () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT sp points to an illegal address.

#include <synch.h> (or #include <thread.h>)

int sema_destroy(sema_t * sp)

Programming With Synchronization Objects 73

3

The Producer/Consumer Problem, Using Semaphores

The data structure in Code Example 3-15 is similar to that used for the solution
with condition variables; two semaphores represent the number of full and
empty buffers and ensure that producers wait until there are empty buffers
and that consumers wait until there are full buffers.

Another pair of (binary) semaphores plays the same role as mutexes,
controlling access to the buffer when there are multiple producers and multiple
empty buffer slots, and when there are multiple consumers and multiple full
buffer slots. Mutexes would work better here, but would not provide as good
an example of semaphore use.

Code Example 3-15 The Producer/Consumer Problem With Semaphores

typedef struct {
 char buf[BSIZE];
 sema_t occupied;
 sema_t empty;
 int nextin;
 int nextout;
 sema_t pmut;
 sema_t cmut;
} buffer_t;

buffer_t buffer;

sema_init(&buffer.occupied, 0, USYNC_THREAD, 0);
sema_init(&buffer.empty, BSIZE, USYNC_THREAD, 0);
sema_init(&buffer.pmut, 1, USYNC_THREAD, 0);
sema_init(&buffer.cmut, 1, USYNC_THREAD, 0);
buffer.nextin = buffer.nextout = 0;

74 Multithreaded Programming Guide—August 1994

3

Code Example 3-16 The Producer/Consumer Problem—the Producer

void producer(buffer_t *b, char item) {
 sema_wait(&b->empty);

 sema_wait(&b->pmut);

 b->buf[b->nextin] = item;
 b->nextin++;
 b->nextin %= BSIZE;

 sema_post(&b->pmut);

 sema_post(&b->occupied);
}

Code Example 3-17 The Producer/Consumer Problem—the Consumer

char consumer(buffer_t *b) {
 char item;

 sema_wait(&b->occupied);

 sema_wait(&b->cmut);

 item = b->buf[b->nextout];
 b->nextout++;
 b->nextout %= BSIZE;

 sema_post(&b->cmut);

 sema_post(&b->empty);

 return(item);
}

Programming With Synchronization Objects 75

3

Synchronization Across Process Boundaries
Each of the four synchronization primitives can be set up to be used across
process boundaries. This is done quite simply by ensuring that the
synchronization variable is located in a shared memory segment and by calling
the appropriate init routine with type set to USYNC_PROCESS. If this has been
done, then the operations on the synchronization variables work just as they
do when type is USYNC_THREAD.

Code Example 3-18 shows the producer/consumer problem with the producer
and consumer in separate processes. The main routine maps zero-filled
memory (that it shares with its child process) into its address space. Note that
mutex_init () and cond_init () must be called because the type of the
synchronization variables is USYNC_PROCESS.

A child process is created that runs the consumer. The parent runs the
producer.

This example also shows the drivers for the producer and consumer. The
producer_driver () simply reads characters from stdin and calls
producer (). The consumer_driver () gets characters by calling consumer ()
and writes them to stdout .

mutex_init(&m, USYNC_PROCESS, 0);

rwlock_init(&rw, USYNC_PROCESS, 0);

cond_init(&cv, USYNC_PROCESS, 0);

sema_init(&s, count, USYNC_PROCESS, 0);

76 Multithreaded Programming Guide—August 1994

3

Code Example 3-18 The Producer/Consumer Problem, Using USYNC_PROCESS

A child process is created to run the consumer; the parent runs the producer.

main() {
 int zfd;
 buffer_t *buffer;

 zfd = open(“/dev/zero”, O_RDWR);
 buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),
 PROT_READ|PROT_WRITE, MAP_SHARED, zfd, 0);
 buffer->occupied = buffer->nextin = buffer->nextout = 0;

 mutex_init(&buffer->lock, USYNC_PROCESS, 0);
 cond_init(&buffer->less, USYNC_PROCESS, 0);
 cond_init(&buffer->more, USYNC_PROCESS, 0);
 if (fork() == 0)
 consumer_driver(buffer);
 else
 producer_driver(buffer);
}

void producer_driver(buffer_t *b) {
 int item;

 while (1) {
 item = getchar();
 if (item == EOF) {
 producer(b, ‘\0’);
 break;
 } else
 producer(b, (char)item);
 }
}

void consumer_driver(buffer_t *b) {
 char item;

 while (1) {
 if ((item = consumer(b)) == ’\0’)
 break;
 putchar(item);
 }
}

Programming With Synchronization Objects 77

3

Comparing Primitives
The most basic synchronization primitive in Solaris threads is the mutual
exclusion lock. So, it is the most efficient mechanism in both memory use and
execution time. The basic use of a mutual exclusion lock is to serialize access to
a resource.

The next most efficient primitive in Solaris threads is the condition variable.
The basic use of a condition variable is to block on a change of state.
Remember that a mutex lock must be acquired before blocking on a condition
variable and must be unlocked after returning from cond_wait () and after
changing the state of the variable.

The semaphore uses more memory than the condition variable. It is easier to
use in some circumstances because a semaphore variable functions on state
rather than on control. Unlike a lock, a semaphore does not have an owner.
Any thread can increment a semaphore that has blocked.

The readers/writer lock is the most complex Solaris threads synchronization
mechanism. This means that the readers/writer lock is most efficiently used
with a much coarser granularity than is effective with the other
synchronization primitives. A readers/writer lock is basically used with a
resource whose contents are searched more often than they are changed.

78 Multithreaded Programming Guide—August 1994

3

79

Programming With the Operating
System 4

This chapter describes how multithreading interacts with the Solaris operating
system and how the operating system has changed to support multithreading.

Processes—Changes for Multithreading

Duplicating Parent Threads

fork (2)

With the fork (2) and fork1 (2) functions, you can choose between duplicating
all parent threads in the child or only one parent thread in the child.

The fork () function duplicates the address space and all the threads (and
LWPs) in the child. This is useful, for example, when the child process never
calls exec (2) but does use its copy of the parent address space.

Processes—Changes for Multithreading page 79

Alarms, Interval Timers, and Profiling page 81

Nonlocal Goto—setjmp(3C) and longjmp(3C) page 82

Resource Limits page 82

LWPs and Scheduling Classes page 82

Extending Traditional Signals page 86

I/O Issues page 96

80 Multithreaded Programming Guide—August 1994

4

To illustrate, think about a thread in the parent process—other than the one
that called fork ()—that has locked a mutex. This mutex is copied into the
child process in its locked state, but no thread is copied over to unlock the
mutex. So, any thread in the child that tries to lock the mutex waits forever. To
avoid this sort of situation, use fork () to duplicate all the threads in the
process.

Note that when one thread in a process calls fork (), threads blocked in an
interruptible system call will return EINTR.

fork1 (2)

The fork1 (2)1 function duplicates the complete address space in the child but
duplicates only the thread that called fork1 (). This is useful when the child
process immediately calls exec (), which is what happens after most calls to
fork (). In this case, the child process does not need a duplicate of any thread
other than the one that called fork (2).

Do not call any library functions after calling fork1 () and before calling
exec ()—one of the library functions might use a lock that is held by more than
one thread.

Cautions for Both fork (2) and fork1 (2)

For both fork () and fork1 (), be careful when you use global state after a call
to either.

For example, when one thread reads a file serially and another thread in the
process successfully calls fork (), each process then contains a thread that is
reading the file. Because the seek pointer for a file descriptor is shared after a
fork (), the thread in the parent gets some data while the thread in the child
gets the rest.

1. Terminology will probably change when POSIX 1003.4a is adopted. What is currently called fork (2) will be
called forkall (), and what is called fork1 (2) will be called fork (). Also added in POSIX is the idea of the
“fork cleanup handler”— you can call pthread_atfork () to register three functions to be called,
respectively, just before the fork () takes place, and just after the fork () in both the parent and the child
processes. These routines are to clean up locks and so on, although this is necessary only with the version of
fork () that creates only one thread in the child process.

Programming With the Operating System 81

4

Also for both fork () and fork1 (), be careful not to create locks that are held
by both the parent and child processes. This can happen when locks are
allocated in memory that is sharable (that is mmap(2)’ed with the MAP_SHARED
flag).

vfork (2)

vfork (2) is like fork 1() in that only the calling thread is copied in the child
process. As in nonthreaded implementations, vfork () does not copy the
address space for the child process.

Be careful that the thread in the child process does not change memory before
it calls exec (2). Remember that vfork () gives the parent address space to the
child. The parent gets its address space back after the child calls exec () or
exits. It is important that the child not change the state of the parent.

For example, it is dangerous to create new threads between the call to vfork ()
and the call to exec ().

Executing Files and Terminating Processes

exec (2) and exit (2)

Both the exec (2) and exit (2) system calls work as they do in single-thread
processes except that they destroy all the threads in the address space. Both
calls block until all the execution resources (and so all active threads) are
destroyed.

When exec () rebuilds the process, it creates a single LWP. The process startup
code builds the initial thread. As usual, if the initial thread returns it calls
exit () and the process is destroyed.

When all the threads in a process exit, the process itself exits with a status of
zero.

Alarms, Interval Timers, and Profiling
Each LWP has a unique realtime interval timer and alarm that a thread bound
to the LWP can use. The timer or alarm delivers one signal to the thread when
the timer or alarm expires.

82 Multithreaded Programming Guide—August 1994

4

Each LWP also has a virtual time or profile interval timer that a thread bound
to the LWP can use. When the interval timer expires, either SIGVTALRM or
SIGPROF, as appropriate, is sent to the LWP that owns the interval timer.

You can profile each LWP with profil (2), giving each LWP its own buffer or
sharing buffers between LWPs. Profiling data is updated at each clock tick in
LWP user time. The profile state is inherited from the creating LWP.

Nonlocal Goto—setjmp (3C) and longjmp (3C)
The scope of setjmp () and longjmp () is limited to one thread, which is fine
most of the time. However, this does mean that a thread that handles a signal
can longjmp () only when setjmp () is performed in the same thread.

Resource Limits
Resource limits are set on the entire process and are determined by adding the
resource use of all threads in the process. When a soft resource limit is
exceeded, the offending thread is sent the appropriate signal. The sum of the
resource use in the process is available through getrusage (3B).

LWPs and Scheduling Classes
The Solaris kernel has three classes of process scheduling. The highest priority
scheduling class is realtime (RT). The middle priority scheduling class is
system . The system scheduling class cannot be applied to a user process. The
lowest priority scheduling class is timeshare (TS), which is also the default
class.

Scheduling class is maintained for each LWP. When a process is created, the
initial LWP inherits the scheduling class and priority of the parent process. As
more LWPs are created to run unbound threads, they also inherit this
scheduling class and priority. All unbound threads in a process have the same
scheduling class and priority.

Each scheduling class maps the priority of the LWP it is scheduling to an
overall dispatching priority according to the configurable priority of the
scheduling class.

Programming With the Operating System 83

4

Bound threads have the scheduling class and priority of their underlying
LWPs. Each bound thread in a process can have a unique scheduling class and
priority that is visible to the kernel. Bound threads are scheduled with respect
to all other LWPs in the system.

The scheduling class is set by priocntl (2). How you specify the first two
arguments determines whether just the calling LWP or all the LWPs of one or
more processes are affected. The third argument of priocntl () is the
command, which can be one of the following.

• PC_GETCID—Get the class ID and class attributes for a specific class.

• PC_GETCLINFO—Get the class name and class attributes for a specific class.

• PC_GETPARMS—Get the class identifier and the class-specific scheduling
parameters of a process, an LWP with a process, or a group of processes.

• PC_SETPARMS—Set the class identifier and the class-specific scheduling
parameters of a process, an LWP with a process, or a group of processes.

Use priocntl () only on bound threads. To affect the priority of unbound
threads, use thr_setprio (3T).

Timeshare Scheduling

Timeshare scheduling fairly distributes the processing resource to the set of
processes. Other parts of the kernel can monopolize the processor for short
intervals without degrading response time as seen by the user.

The priocntl (2) call sets the nice (2) level of one or more processes.
priocntl () affects the nice () level of all the timesharing class LWPs in the
process. The nice () level ranges from 0 to +20 normally and from -20 to +20
for processes with superuser privilege. The lower the value, the higher the
priority.

The dispatch priority of time-shared LWPs is calculated from the instantaneous
CPU use rate of the LWP and from its nice () level. The nice () level indicates
the relative priority of the processes to the timeshare scheduler. LWPs with a
greater nice () value get a smaller, but nonzero, share of the total processing.
An LWP that has received a larger amount of processing is given lower priority
than one that has received little or no processing.

84 Multithreaded Programming Guide—August 1994

4

Realtime Scheduling

The realtime class (RT) can be applied to a whole process or to one or more
LWPs in a process. This requires superuser privilege. Unlike the nice (2) level
of the timeshare class, LWPs that are classified realtime can be assigned
priorities either individually or jointly. A priocntl (2) call affects the
attributes of all the realtime LWPs in the process.

The scheduler always dispatches the highest-priority realtime LWP. It preempts
a lower-priority LWP when a higher-priority LWP becomes runnable. A
preempted LWP is placed at the head of its level queue. A realtime LWP retains
control of a processor until it is preempted, it suspends, or its realtime priority
is changed. LWPs in the RT class have absolute priority over processes in the
TS class.

A new LWP inherits the scheduling class of the parent process or LWP. An RT
class LWP inherits the parent’s time slice, whether finite or infinite. An LWP
with a finite time slice runs until it terminates, blocks (for example, to wait for
an I/O event), is preempted by a higher-priority runnable realtime process, or
the time slice expires. An LWP with an infinite time slice ceases execution only
when it terminates, blocks, or is preempted.

LWP Scheduling and Thread Binding

The threads library automatically adjusts the number of LWPs in the pool used
to run unbound threads. Its objectives are:

• To prevent the program from being blocked by a lack of unblocked LWPs

For example, if there are more runnable unbound threads than LWPs and all
the active threads block in the kernel in indefinite waits (such as reading a
tty), the process cannot progress until a waiting thread returns.

• To make efficient use of LWPs

For example, if the library creates one LWP for each thread, many LWPs will
usually be idle and the operating system is overloaded by the resource
requirements of the unused LWPs.

Keep in mind that LWPs are time-sliced, not threads. This means that when
there is only one LWP there is no time slicing within the process—threads run
on the LWP until they block (through interthread synchronization), are
preempted, or terminate.

Programming With the Operating System 85

4

You can assign priorities to threads with thr_setprio (3T): lower-priority
unbound threads are assigned to LWPs only when no higher-priority unbound
threads are available. Bound threads, of course, do not compete for LWPs
because they have their own.

Bind threads to your LWPs to get precise control over whatever is being
scheduled. This control is not possible when many unbound threads compete
for an LWP.

Realtime threads are useful for getting a quick response to external stimuli.
Consider a thread used for mouse tracking that must respond instantly to
mouse clicks. By binding the thread to an LWP, you guarantee that there is an
LWP available when it is needed. By assigning the LWP to the realtime
scheduling class, you ensure that the LWP is scheduled quickly in response to
mouse clicks.

SIGWAITING—Creating LWPs for Waiting Threads

The library usually ensures that there are enough LWPs in its pool for a
program to proceed. When all the LWPs in the process are blocked in indefinite
waits (such as blocked reading from a tty or network), the operating system
sends the new signal, SIGWAITING, to the process. This signal is handled by
the threads library. When the process contains a thread that is waiting to run, a
new LWP is created and the appropriate waiting thread is assigned to it for
execution.

The SIGWAITING mechanism does not ensure that an additional LWP is
created when one or more threads are compute bound and another thread
becomes runnable. A compute-bound thread can prevent multiple runnable
threads from being started because of a shortage of LWPs. This can be
prevented by calling thr_setconcurrency (3T) or by using THR_NEW_LWP in
calls to thr_create (3T).

Aging LWPs

When the number of active threads is reduced, some of the LWPs in the pool
are no longer needed. When there are more LWPs than active threads, the
threads library destroys the unneeded ones. The library ages LWPs—they are
deleted when they are unused for a “long” time, currently set at five minutes.

86 Multithreaded Programming Guide—August 1994

4

Extending Traditional Signals
The traditional UNIX signal model is extended to threads in a fairly natural
way. The disposition of signals is established process-wide, using the
traditional mechanisms (signal (2), sigaction (2), and so on).

When a signal handler is marked SIG_DFL or SIG_IGN , the action on receipt
of the signal (exit, core dump, stop, continue, or ignore) is performed on the
entire receiving process, affecting all threads in the process. See signal (5) for
basic information about signals.

Each thread has its own signal mask. This lets a thread block some signals
while it uses memory or other state that is also used by a signal handler. All
threads in a process share the set of signal handlers set up by sigaction (2)
and its variants, as usual.

A thread in one process cannot send a signal to a specific thread in another
process. A signal sent by kill (2) or sigsend (2) is to a process and is handled
by any one of the receptive threads in the process.

Unbound threads cannot use alternate signal stacks. A bound thread can use
an alternate stack because the state is associated with the execution resource.
An alternate stack must be enabled for the signal through sigaction (2), and
declared and enabled through sigaltstack (2).

An application can have per-thread signal handlers based on the per-process
signal handlers. One way is for the process-wide signal handler to use the
identifier of the thread handling the signal as an index into a table of per-
thread handlers. Note that there is no thread zero.

Signals are divided into two categories: traps and exceptions (synchronous
signals) and interrupts (asynchronous signals).

As in traditional UNIX, if a signal is pending, additional occurrences of that
signal have no additional effect—a pending signal is represented by a bit, not a
counter.

As is the case with single-threaded processes, when a thread receives a signal
while blocked in a system call, the thread might return early, either with the
EINTR error code, or, in the case of I/O calls, with fewer bytes transferred than
requested.

Programming With the Operating System 87

4

Of particular importance to multithreaded programs is the effect of signals on
cond_wait (3T). This call usually returns in response to a cond_signal (3T) or
a cond_broadcast (3T), but, if the waiting thread receives a UNIX signal, it
returns with the error code EINTR. See “Interrupted Waits on Condition
Variables” on page 94 for more information.

Synchronous Signals

Traps (such as SIGILL , SIGFPE, SIGSEGV) result from something a thread
does to itself, such as dividing by zero or explicitly sending itself a signal. A
trap is handled only by the thread that caused it. Several threads in a process
can generate and handle the same type of trap simultaneously.

Extending the idea of signals to individual threads is easy for synchronous
signals—the signal is dealt with by the thread that caused the problem.
However, if the thread has not chosen to deal with the problem, such as by
establishing a signal handler with sigaction (2), the entire process is
terminated.

Because such a synchronous signal usually means that something is seriously
wrong with the whole process, and not just with a thread, terminating the
process is often a good choice.

Asynchronous Signals

Interrupts (such as SIGINT and SIGIO) are asynchronous with any thread and
result from some action outside the process. They might be signals sent
explicitly by other threads, or they might represent external actions such as a
user typing Control-c. Dealing with asynchronous signals is more complicated
than dealing with synchronous signals.

An interrupt can be handled by any thread whose signal mask allows it. When
more than one thread is able to receive the interrupt, only one is chosen.

When multiple occurrences of the same signal are sent to a process, then each
occurrence can be handled by a separate thread, as long as threads are
available that do not have it masked. When all threads have the signal masked,
then the signal is marked pending and the first thread to unmask the signal
handles it.

88 Multithreaded Programming Guide—August 1994

4

Continuation Semantics

Continuation semantics are the traditional way to deal with signals. The idea is
that when a signal handler returns, control resumes where it was at the time of
the interruption. This is well suited for asynchronous signals in single-
threaded processes, as shown in Code Example 4-1. This is also used as the
exception-handling mechanism in some programming languages, such as
PL/1.

Code Example 4-1 Continuation Semantics

unsigned int nestcount;

unsigned int A(int i, int j) {
 nestcount++;

 if (i==0)
 return(j+1)
 else if (j==0)
 return(A(i-1, 1));
 else
 return(A(i-1, A(i, j-1)));
}

void sig(int i) {
 printf(“nestcount = %d\n”, nestcount);
}

main() {
 sigset(SIGINT, sig);
 A(4,4);
}

Programming With the Operating System 89

4

New Operations on Signals

Several new signal operations for multithreaded programming have been
added to the operating system.

thr_sigsetmask (3T)

thr_sigsetmask (3T) does for a thread what sigprocmask (2) does for a
process—it sets the (thread’s) signal mask. When a new thread is created, its
initial mask is inherited from its creator.

Avoid using sigprocmask () in multithreaded programs because it sets the
signal mask of the underlying LWP, and the thread that is affected by this can
change over time.

Unlike sigprocmask (), thr_sigsetmask () is relatively inexpensive to call
because it does not generally cause a system call, as does sigprocmask ().

thr_kill (3T)

thr_kill (3T) is the thread analog of kill (2)—it sends a signal to a specific
thread.

This, of course, is different from sending a signal to a process. When a signal is
sent to a process, the signal can be handled by any thread in the process. A
signal sent by thr_kill () can be handled only by the specified thread.

Note than you can use thr_kill () to send signals only to threads in the
current process. This is because the thread identifier (type thread_t) is local
in scope—it is not possible to name a thread in any process but your own.

sigwait (2)

sigwait (2) causes the calling thread to wait until any signal identified by its
set argument is delivered to the thread. While the thread is waiting, signals
identified by the set argument are unmasked, but the original mask is restored
when the call returns.

Use sigwait () to separate threads from asynchronous signals. You can create
one thread that is listening for asynchronous signals while your other threads
are created to block any asynchronous signals that might be set to this process.

90 Multithreaded Programming Guide—August 1994

4

When the signal is delivered, sigwait () clears the pending signal and returns
its number. Many threads can call sigwait () at the same time, but only one
thread returns for each signal that is received.

With sigwait () you can treat asynchronous signals synchronously—a thread
that deals with such signals simply calls sigwait () and returns as soon as a
signal arrives. By ensuring that all threads (including the caller of sigwait ())
have such signals masked, you can be sure that signals are handled only by the
intended handler and that they are handled safely.

Usually, you use sigwait () to create one or more threads that wait for signals.
Because sigwait () can retrieve even masked signals, be sure to block the
signals of interest in all other threads so they are not accidentally delivered.
When the signals arrive, a thread returns from sigwait (), handles the signal,
and waits for more signals. The signal-handling thread is not restricted to
using Async-Safe functions and can synchronize with other threads in the
usual way. (The Async-Safe category is defined in “MT Interface Safety Levels”
on page 103.)

Note – sigwait () should never be used with synchronous signals.

sigtimedwait (2)

sigtimedwait (2) is similar to sigwait (2) except that it fails and returns an
error when a signal is not received in the indicated amount of time.

Thread-Directed Signals

The UNIX signal mechanism is extended with the idea of thread-directed signals.
These are just like ordinary asynchronous signals, except that they are sent to a
particular thread instead of to a process.

Waiting for asynchronous signals in a separate thread can be safer and easier
than installing a signal handler and processing the signals there.

Programming With the Operating System 91

4

A better way to deal with asynchronous signals is to treat them synchronously.
By calling sigwait (2), discussed on page 89, a thread can wait until a signal
occurs.

This example modifies the code of Code Example 4-1: the main routine masks
the SIGINT signal, creates a child thread that calls the function A of the
previous example, and finally issues sigwait s to handle the SIGINT signal.

Note that the signal is masked in the compute thread because the compute
thread inherits its signal mask from the main thread. The main thread is
protected from SIGINT while, and only while, it is not blocked inside of
sigwait ().

Also, note that there is never any danger of having system calls interrupted
when you use sigwait ().

Code Example 4-2 Asynchronous Signals and sigwait (2)

main() {
 sigset_t set;
 void runA(void);

 sigemptyset(&set);
 sigaddset(&set, SIGINT);
 thr_sigsetmask(SIG_BLOCK, &set, NULL);
 thr_create(NULL, 0, runA, NULL, THR_DETACHED, NULL);

 while (1) {
 sigwait(&set);
 printf(“nestcount = %d\n”, nestcount);
 }
}

void runA() {
 A(4,4);
 exit(0);
}

92 Multithreaded Programming Guide—August 1994

4

Completion Semantics

Another way to deal with signals is with completion semantics. Use completion
semantics when a signal indicates that something so catastrophic has happened
that there is no reason to continue executing the current code block. The signal
handler runs instead of the remainder of the block that had the problem. In
other words, the signal handler completes the block.

In Code Example 4-3, the block in question is the body of the then part of the
if statement. The call to setjmp (3C) saves the current register state of the
program in jbuf and returns 0—thereby executing the block.

If a SIGFPE (a floating-point exception) occurs, the signal handler is invoked.

The signal handler calls siglongjmp (3C), which restores the register state
saved in jbuf , causing the program to return from sigsetjmp () again (among
the registers saved are the program counter and the stack pointer).

Code Example 4-3 Completion Semantics

sigjmp_buf jbuf;
void mult_divide(void) {
 int a, b, c, d;
 void problem();

 sigset(SIGFPE, problem);
 while (1) {
 if (sigsetjmp(&jbuf) == 0) {
 printf(“Three numbers, please:\n”);
 scanf(“%d %d %d”, &a, &b, &c);
 d = a*b/c;
 printf(“%d*%d/%d = %d\n”, a, b, c, d);
 }
 }
}

void problem(int sig) {
 printf(“Couldn’t deal with them, try again\n”);
 siglongjmp(&jbuf, 1);
}

Programming With the Operating System 93

4

This time, however, sigsetjmp (3C) returns the second argument of
siglongjmp (), which is 1. Notice that the block is skipped over, only to be
executed during the next iteration of the while loop.

Note that you can use sigsetjmp (3C) and siglongjmp (3C) in multithreaded
programs, but be careful that a thread never does a siglongjmp () using the
results of another thread’s sigsetjmp() . Also, sigsetjmp () and
siglongjmp () save and restore the signal mask, but setjmp (3C) and
longjmp (3C) do not. It is best to use sigsetjmp () and siglongjmp () when
you work with signal handlers.

Completion semantics are often used to deal with exceptions. In particular, the
Ada® programming language uses this model.

Note – Remember, sigwait (2) should never be used with synchronous signals.

Signal Handlers and Async Safety

A concept similar to thread safety is async safety. Async-Safe operations are
guaranteed not to interfere with operations being interrupted.

The problem of async safety arises when the actions of a signal handler can
interfere with the operation being interrupted. For example, suppose a
program is in the middle of a call to printf (3S) and a signal occurs whose
handler itself calls printf (): the output of the two printf () statements would
be intertwined. To avoid this, the handler should not call printf () itself when
printf () might be interrupted by a signal.

This problem cannot be solved by using synchronization primitives because
any attempted synchronization between the signal handler and the operation
being synchronized would produce immediate deadlock.

For example, suppose that printf () is to protect itself by using a mutex. Now
suppose that a thread that is in a call to printf (), and so holds the lock on the
mutex, is interrupted by a signal. If the handler (being called by the thread that
is still inside of printf ()) itself calls printf (), the thread that holds the lock
on the mutex will attempt to take it again, resulting in an instant deadlock.

To avoid interference between the handler and the operation, either ensure that
the situation never arises (perhaps by masking off signals at critical moments)
or invoke only Async-Safe operations from inside signal handlers.

94 Multithreaded Programming Guide—August 1994

4

Because setting a thread’s mask is an inexpensive user-level operation, you can
inexpensively make functions or sections of code fit in the Async-Safe category.

Interrupted Waits on Condition Variables

When a signal is delivered to a thread while the thread is waiting on a
condition variable, the old convention (assuming that the process is not
terminated) is that interrupted calls return EINTR.

The ideal new condition would be that when cond_wait (3T) and
cond_timedwait (3T) return, the lock has been retaken on the mutex.

This is what is done in Solaris threads: when a thread is blocked in
cond_wait () or cond_timedwait () and an unmasked, caught signal is
delivered to the thread, the handler is invoked and the call to cond_wait () or
cond_timedwait () returns EINTR with the mutex locked.

This implies that the mutex is locked in the signal handler because the handler
might have to clean up after the thread.

Programming With the Operating System 95

4

This is illustrated by Code Example 4-4.

Assume that the SIGINT signal is blocked in all threads on entry to
sig_catcher () and that hdlr () has been established (with a call to
sigaction (2)) as the handler for the SIGINT signal.

When an unmasked and caught instance of the SIGINT signal is delivered to
the thread while it is in cond_wait (), the thread first reacquires the lock on the
mutex, then calls hdlr (), and then returns EINTR from cond_wait ().

Note that whether SA_RESTART has been specified as a flag to sigaction ()
has no effect here—cond_wait (3T) is not a system call and is not
automatically restarted. When a caught signal occurs while a thread is blocked
in cond_wait (), the call always returns EINTR.

Code Example 4-4 Condition Variables and Interrupted Waits

int sig_catcher() {
 sigset_t set;
 void hdlr();

 mutex_lock(&mut);

 sigemptyset(&set);
 sigaddset(&set, SIGINT);
 thr_sigsetmask(SIG_UNBLOCK, &set, 0);

 if (cond_wait(&cond, &mut) == EINTR) {
 /* signal occurred and lock is held */
 cleanup();
 mutex_unlock(&mut);
 return(0);
 }
 normal_processing();
 mutex_unlock(&mut);
 return(1);
}

void hdlr() {
 /* lock is held in the handler */
 ...
}

96 Multithreaded Programming Guide—August 1994

4

I/O Issues
One of the attractions of multithreaded programming is I/O performance. The
traditional UNIX API gave the programmer little assistance in this area—you
either used the facilities of the file system or bypassed the file system entirely.

This section shows how to use threads to get more flexibility through I/O
concurrency and multibuffering. This section also discusses the differences and
similarities between the approaches of synchronous I/O (with threads) and
asynchronous I/O (with and without threads).

I/O as a Remote Procedure Call

In the traditional UNIX model, I/O appears to be synchronous, as if you were
placing a remote procedure call to the I/O device. Once the call returns, then
the I/O has completed (or at least it appears to have completed—a write
request, for example, might merely result in the transfer of the data to a buffer
in the operating system).

The advantage of this model is that it is easy to understand because
programmers are very familiar with the concept of procedure calls.

An alternative approach not found in traditional UNIX systems is the
asynchronous model, in which an I/O request merely starts an operation. The
program must somehow discover when the operation completes.

This approach is not as simple as the synchronous model, but it has the
advantage of allowing concurrent I/O and processing in traditional, single-
threaded UNIX processes.

Tamed Asynchrony

You can get most of the benefits of asynchronous I/O by using synchronous
I/O in a multithreaded program. Where, with asynchronous I/O, you would
issue a request and check later to determine when it completes, you can
instead have a separate thread perform the I/O synchronously. The main
thread can then check (perhaps by calling thr_join (3T)) for the completion of
the operation at some later time.

Programming With the Operating System 97

4

Asynchronous I/O

In most situations there is no need for asynchronous I/O, since its effects can
be achieved with the use of threads, each doing synchronous I/O. However, in
a few situations, threads cannot achieve what asynchronous I/O can.

The most straightforward example is writing to a tape drive to make the tape
drive stream. This technique prevents the tape drive from stopping while it is
being written to and moves the tape forward at high speed while supplying a
constant stream of data that it writes to tape.

To do this, the tape driver in the kernel must issue a queued write request
when the tape driver responds to an interrupt indicating that the previous
tape-write operation has completed.

Threads cannot guarantee that asynchronous writes will be ordered because
the order in which threads execute is indeterminate. Trying to order a write to
a tape, for example, is not possible.

Asynchronous I/O Operations

aioread (3) and aiowrite (3) are similar in form to pread (2) and pwrite (2),
except for the addition of the last argument. Calls to aioread () and
aiowrite () result in the initiation (or queueing) of an I/O operation.

#include <sys/asynch.h>

int aioread(int fildes, char *bufp, int bufs, off_t offset,
 int whence, aio_result_t *resultp);

int aiowrite(int filedes, const char *bufp, int bufs,
 off_t offset, int whence, aio_result_t *resultp);

aio_result_t *aiowait(const struct timeval *timeout);

int aiocancel(aio_result_t *resultp);

98 Multithreaded Programming Guide—August 1994

4

The call returns without blocking, and the status of the call is returned in the
structure pointed to by resultp . This is an item of type aio_result_t that
contains

When a call fails immediately, the failure code can be found in aio_errno .
Otherwise, this field contains AIO_INPROGRESS, meaning that the operation
has been successfully queued.

You can wait for an outstanding asynchronous I/O operation to complete by
calling aiowait (3). This returns a pointer to the aio_result_t structure
supplied with the original aioread (3) or aiowrite (3) call. This time
aio_result contains whatever read (2) or write (2) would have returned if it
had been called instead of the asynchronous versions, and aio_errno
contains the error code, if any.

aiowait () takes a timeout argument, which indicates how long the caller is
willing to wait. As usual, a NULL pointer here means that the caller is willing
to wait indefinitely, and a pointer to a structure containing a zero value means
that the caller is unwilling to wait at all.

You might start an asynchronous I/O operation, do some work, then call
aiowait () to wait for the request to complete. Or you can use SIGIO to be
notified, asynchronously, when the operation completes.

Finally, a pending asynchronous I/O operation can be cancelled by calling
aiocancel (). This routine is called with the address of the result area as an
argument. This result area identifies which operation is being cancelled.

Shared I/O and New I/O System Calls

When multiple threads are performing I/O operations at the same time with
the same file descriptor, you might discover that the traditional UNIX I/O
interface is not thread-safe. The problem occurs with nonsequential I/O. This
uses the lseek (2) system call to set the file offset, which is then used in the
next read (2) or write (2) call to indicate where in the file the operation should
start. When two or more threads are issuing lseek (2)’s to the same file
descriptor, a conflict results.

int aio_return;
int aio_errno;

Programming With the Operating System 99

4

To avoid this conflict, use the new pread (2) and pwrite (2) system calls.

These behave just like read (2) and write (2) except that they take an
additional argument, the file offset. With this argument, you specify the offset
without using lseek (2), so multiple threads can use these routines safely for
I/O on the same file descriptor.

Alternatives to getc (3S) and putc (3S)

An additional problem occurs with standard I/O. Programmers are
accustomed to routines such as getc (3S) and putc (3S) being very quick—they
are implemented as macros. Because of this, they can be used within the inner
loop of a program with no concerns about efficiency.

However, when they are made thread safe they suddenly become more
expensive—they now require (at least) two internal subroutine calls, to lock
and unlock a mutex. To get around this problem, alternative versions of these
routines are supplied—getc_unlocked (3S) and putc_unlocked (3S).

These do not acquire locks on a mutex and so are as quick as the originals,
nonthread-safe versions of getc (3S) and putc (3S). However, to use them in a
thread-safe way, you must explicitly lock and release the mutexes that protect
the standard I/O streams, using flockfile (3S) and funlockfile (3S). The
calls to these latter routines are placed outside the loop, and the calls to
getc_unlocked () or putc_unlocked () are placed inside the loop.

#include <sys/types.h>
#include <unistd.h>

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

ssize_t pwrite(int filedes, void *buf, size_t nbyte,
 off_t offset);

100 Multithreaded Programming Guide—August 1994

4

101

Safe and Unsafe Interfaces 5

This chapter defines MT-safety levels for functions and libraries.

Thread Safety
Thread safety is the avoidance of data races—situations in which data are set to
either correct or incorrect values depending upon the order in which multiple
threads access and modify the data.

When no sharing is intended, give each thread a private copy of the data.
When sharing is important, provide explicit synchronization to make certain
that the program behaves deterministically.

A procedure is thread safe when it is logically correct when executed
simultaneously by several threads. At a practical level, it is convenient to
recognize three levels of safety.

• Unsafe
• Thread safe—Serializable
• Thread safe—MT-safe

Thread Safety page 101

MT Interface Safety Levels page 103

Async-Safe Functions page 105

MT Safety Levels for Libraries page 105

102 Multithreaded Programming Guide—August 1994

5

An unsafe procedure can be made serializable by surrounding it with
statements locking and unlocking a mutex. Code Example 5-1 shows first a
nonthread-safe implementation of a simplified fputs ().

Next is a serializable version of this routine with a single mutex protecting the
procedure from concurrent execution problems. Actually, this is stronger
synchronization than is necessary in this case. When two threads are calling
fputs () to print to different files, one need not wait for the other—both can
safely print at the same time.

The last version of the routine is MT-safe. It uses one lock for each file, allowing
two threads to print to different files at the same time. So, a routine is MT-safe
when it is thread safe and its execution does not negatively affect performance.

Code Example 5-1 Degrees of Thread Safety

/* not thread-safe */
fputs(const char *s, FILE *stream) {
 char *p;
 for (p=s; *p; p++)
 putc((int)*p, stream);
 }

/* serializable */
fputs(const char *s, FILE *stream) {
 static mutex_t mut;
 char *p;
 mutex_lock(&m);
 for (p=s; *p; p++)
 putc((int)*p, stream);

 mutex_unlock(&m);
}

/* MT-Safe */
mutex_t m[NFILE];
fputs(const char *s, FILE *stream) {
 static mutex_t mut;
 char *p;
 mutex_lock(&m[fileno(stream)]);
 for (p=s; *p; p++)
 putc((int)*p, stream);
 mutex_unlock(&m[fileno(stream)]0;
}

Safe and Unsafe Interfaces 103

5

MT Interface Safety Levels
The man Pages(3): Library Routines use the following categories to describe how
well an interface supports threads (these categories are explained more fully in
the Intro (3) man page).

See the table in Appendix B, “MT Safety Levels: Library Interfaces,” for a list of
safe interfaces from the man Pages(3): Library Routines. If an interface from
Section 3 is not in this table, it is probably unsafe (this does not include the
Source Compatibility Library). Check the man page to be sure.

All functions described in the man Pages(2): System Calls are MT-Safe except for
vfork (2).

Some functions have purposely not been made safe for the following reasons.

• Making the function MT-Safe would have negatively affected the
performance of single-threaded applications.

• The function has an Unsafe interface. For example, a function might return a
pointer to a buffer in the stack. You can use reentrant counterparts for some
of these functions. The reentrant function name is the original function
name with “_r ” appended.

Safe This code can be called from a multithreaded application.

Safe with
exceptions

See the NOTES sections of these pages for a description of the
exceptions.

Unsafe This interface is not safe to use with multithreaded applications
unless the application arranges for only one thread at a time to
execute within the library.

MT-Safe This interface is fully prepared for multithreaded access in that it
is both safe and it supports some concurrency.

MT-Safe with
exceptions

See the NOTES sections of these pages in the man Pages(3): Library
Routines for descriptions of the exceptions.

Async-Safe This routine can safely be called from a signal handler. A thread
that is executing an Async-Safe routine does not deadlock with
itself when interrupted by a signal.

104 Multithreaded Programming Guide—August 1994

5

Caution – There is no way to be certain that a function whose name does not
end in “_r ” is MT-Safe other than by checking its reference manual page. Use
of a function identified as not MT-Safe must be protected by a synchronizing
device or restricted to the initial thread.

Reentrant Functions for Unsafe Interfaces

For most functions with Unsafe interfaces, an MT-Safe version of the routine
exists. The name of the new MT-Safe routine is always the name of the old
Unsafe routine with “_r ” appended. The following “_r ” routines are supplied
in the Solaris system:

Table 5-1 Reentrant Functions

asctime_r (3C) ctermid_r (3S) ctime_r (3C)

fgetgrent_r (3C) fgetpwent_r (3C) fgetspent_r (3C)

gamma_r(3M) getgrgid_r (3C) getgrnam_r (3C)

getlogin_r (3C) getpwnam_r (3C) getpwuid_r (3C)

getgrent_r (3C) gethostbyaddr_r (3N) gethostbyname_r (3N)

gethostent_r (3N) getnetbyaddr_r (3N) getnetbyname_r (3N)

getnetent_r (3N) getprotobyname_r (3N) getprotobynumber_r (3N)

getprotoent_r (3N) getpwent_r (3C) getrpcbyname_r (3N)

getrpcbynumber_r (3N) getrpcent_r (3N) getservbyname_r (3N)

getservbyport_r (3N) getservent_r (3N) getspent_r (3C)

getspnam_r(3C) gmtime_r (3C) lgamma_r(3M)

localtime_(3C)r nis_sperror_r(3N) rand_r(3C)

readdir_r (3C) strtok_r (3C) tmpnam_r(3C)

ttyname_r (3C)

Safe and Unsafe Interfaces 105

5

Async-Safe Functions
Functions that can safely be called from signal handlers are Async-Safe. The
POSIX standard defines and lists Async-Safe functions (IEEE Std 1003.1-1990,
3.3.1.3 (3)(f), page 55). In addition to the POSIX Async-Safe functions, the
following three functions from the threads library are also async safe.

• sema_post (3T)
• thr_sigsetmask (3T)
• thr_kill (3T)

MT Safety Levels for Libraries
All routines that can potentially be called by a thread from a multithreaded
program should be MT-Safe.

This means that two or more activations of a routine must be able to correctly
execute concurrently. So, every library interface that a multithreaded program
uses must be MT-Safe.

Not all libraries are now MT-Safe. The commonly used libraries that are MT-
Safe are listed in Table 5-2. Additional libraries will eventually be modified to
be MT-Safe.

Table 5-2 Some MT-Safe Libraries

Library Comments

lib/libc get XXby YY interfaces (such as gethostbyname (3N)) are
MT-Safe

lib/libdl_stubs (To support static switch compiling)

lib/libintl

lib/libm MT-Safe only when compiled for the shared library, but
not MT-Safe when linked with the archived library

lib/libmalloc

lib/libmapmalloc

lib/libnsl Including the TLI interface, XDR, RPC clients and servers,
netdir , and netselect . get XXby YY interfaces are not
safe, but have thread-safe interfaces of the form
getXXbyYY_r

106 Multithreaded Programming Guide—August 1994

5

Unsafe Libraries

Routines in libraries that are not guaranteed to be MT-Safe can safely be called
by multithreaded programs only when such calls are single-threaded.

lib/libresolv (Thread-specific errno support)

lib/libsocket

lib/libw

lib/nametoaddr

lib/nsswitch

libX11

libC (Not part of the Solaris system; can be purchased
separately).

Table 5-2 Some MT-Safe Libraries

Library Comments

107

Compiling And Debugging 6

This chapter describes how to compile and debug your multithreaded
programs.

Compiling a Multithreaded Application

Using The C Compiler

Make sure the following software is available so you can successfully compile
and link a multithreaded program.

• Include files:
• thread.h
• errno.h

• The standard C compiler

• The standard Solaris linker

• The threads library (libthread)

• MT-safe libraries (libc , libm , libw , libintl , libmalloc ,
libmapmalloc , libnsl , and so on)

Compiling a Multithreaded Application page 107

Debugging Multithreaded Programs page 109

108 Multithreaded Programming Guide—August 1994

6

Compiling With the _REENTRANT Flag

Compile multithread programs with the -D _REENTRANT flag.

This applies to every module of a new application. When the -D_REENTRANT
flag is not present, the old definitions for errno , stdio , and so on, are used.
To compile a single-threaded application, make sure that the _REENTRANT flag
is undefined.

Link Old With New Carefully

Table 6-1 shows that multithreaded object modules should be linked with old
object modules only with great caution.

Using libthread

To use libthread , specify –lthread before –lc on the ld command line, or
last on the cc command line.

All calls to libthread are no-ops if the application does not link libthread .

libc has defined libthread stubs that are null procedures. True procedures
are interposed by libthread when the application links both libc and
libthread .

1. Include tiuser.h to get the TLI global error variable.

Table 6-1 Compiling With and Without the _REENTRANT Flag

The File Type Compiled Reference And Return

Old object files
(non-threaded)
and new object
files

Without the
_REENTRANT flag

Static storage The traditional
errno

New object files With the
_REENTRANT flag

__errno , the new
binary entry point

The address of the
thread’s definition
of errno

Programs using
TLI in libnsl 1

With the
_REENTRANT flag
(required)

__t_errno , a
new entry point

The address of the
thread’s definition
of t_errno .

Compiling And Debugging 109

6

The behavior of the C library is undefined if a program is constructed with an
ld command line that includes the fragment:

.o’s ... -lc -lthread ...

Do not link a single-threaded program with -lthread . Doing so establishes
multithreading mechanisms at link time that are initiated at run time. These
waste resources and produce misleading results when you debug your code.

Using Non-C Compilers

The threads library uses the following items from libc .

• System call wrappers

• Something (usually printf ()) to display error messages

• Runtime linking support to resolve symbols (because the library is
dynamically linked)

You can eliminate these dependencies by writing both your own system call
wrappers and your own printf () function, and by having the linker resolve
all libthread symbols at link time rather than at runtime.

The threads library does not use dynamically allocated memory when the
threads are created with application-supplied stacks. The thr_create (3T)
routine lets the application specify its own stacks.

Debugging Multithreaded Programs

Common Oversights

The following list points out some of the more frequent oversights that can
cause bugs in multithreaded programming.

• Using a local or global variable for passing an argument to a new thread

• Accessing global memory (shared changeable state) without the protection
of a synchronization mechanism

• Creating deadlocks caused by two threads trying to acquire rights to the
same pair of global resources in alternate order (so that one thread controls
the first resource and the other controls the second resource and neither can
proceed until the other gives up)

110 Multithreaded Programming Guide—August 1994

6

• Creating a hidden gap in synchronization protection. This is caused when a
code segment protected by a synchronization mechanism contains a call to a
function that frees and then reacquires the synchronization mechanism
before it returns to the caller. The result is that it appears to the caller that
the global data has been protected when it actually has not.

• Making deeply nested, recursive calls and using large automatic arrays can
cause problems because multithreaded programs have a more limited stack
size than single-threaded programs.

• Specifying an inadequate stack size

• Providing stack other than through the thread library calls

And, note that multithreaded programs (especially buggy ones) often behave
differently in two successive runs given identical inputs because of differences
in the thread scheduling order.

In general, multithreading bugs are statistical instead of deterministic in
character. Tracing is usually more effective in finding problems in the order of
execution than is breakpoint-based debugging.

Using adb

When you bind all threads in a multithreaded program, a thread and an LWP
are synonymous. Then you can access each thread with the following adb
commands that support multithreaded programming.

Table 6-2 MT adb commands

pid:A Attaches to process # pid. This stops the process and all its LWPs.

:R Detaches from process. This resumes the process and all its LWPs.

$L Lists all active LWPs in the (stopped) process.

n:l Switches focus to LWP # n

$l Shows the LWP currently focused

num:i Ignores signal number num

Compiling And Debugging 111

6

Using dbx

With the dbx utility you can debug and execute source programs written in
C++, ANSI C, FORTRAN, and Pascal. dbx accepts the same commands as the
SPARCworks™ Debugger but uses a standard terminal (tty) interface. Both
dbx and the SPARCworks Debugger now support debugging multithreaded
programs.

For a full overview of dbx and Debugger features see the SunPro dbx (1) man
page and the Debugging a Program user’s guide.

The following dbx options support multithreaded programs.

Table 6-3 dbx Options for MT Programs

cont at line [sig signo id] Continues execution at line line with signal signo. See continue for dbx command
language loop control. The id, if present, specifies which thread or LWP to
continue. Default value is all.

lwp Displays current LWP. Switches to given LWP [lwpid].

lwps Lists all LWPs in the current process.

next ... tid Steps the given thread. When a function call is skipped, all LWPs are implicitly
resumed for the duration of that function call. Nonactive threads cannot be
stepped.

next ... lid Steps the given LWP. Does not implicitly resume all LWPs when skipping a
function. The LWP on which the given thread is active. Does not implicitly
resume all LWP when skipping a function.

step... tid Steps the given thread. When a function call is skipped, all LWPs are implicitly
resumed for the duration of that function call. Nonactive threads cannot be
stepped.

step... lid Steps the given LWP. Does not implicitly resume all LWPs when skipping a
function.

stepi... lid The given LWP.

stepi... tid The LWP on which the given thread is active.

thread Displays current thread. Switches to thread tid. In all the following variations, an
optional tid implies the current thread.

thread -info [tid] Prints everything known about the given thread.

thread -locks [tid] Prints all locks held by the given thread.

thread -suspend [tid] Puts the given thread into suspended state.

112 Multithreaded Programming Guide—August 1994

6

thread -continue [tid] Unsuspends the given thread.

thread -hide [tid] Hides the given (or current) thread. It will not show up in the generic threads
listing.

thread -unhide [tid] Unhides the given (or current) thread.

allthread-unhide Unhides all threads.

threads Prints the list of all known threads.

threads-all Prints threads that are not usually printed (zombies).

all|filterthreads-mode Controls whether threads prints all threads or filters them by default.

auto|manualthreads-mode Enables automatic updating of the thread listing in the Thread Inspector of the
GUI interface (SPARCworks Debugger).

threads-mode Echoes the current modes. Any of the previous forms can be followed by a
thread or LWP ID to get the traceback for the specified entity.

Table 6-3 dbx Options for MT Programs

113

Programming Guidelines 7

This chapter gives some pointers on programming with threads. Differences
between single-threaded thinking and multithreaded thinking are emphasized.

Historically, most code has been designed for single-threaded programs. This is
especially true for most of the library routines called from C programs. The
following implicit assumptions were made for single-threaded code:

• When you write into a global variable and then, a moment later, read from
it, what you read is exactly what you just wrote.

• This is also true for nonglobal, static storage.

• You do not need synchronization because there is nothing to synchronize
with.

The next few examples discuss some of the problems that arise in
multithreaded programs because of these assumptions, and how you can deal
with them.

Rethinking Global Variables page 114

Providing For Static Local Variables page 115

Synchronizing Threads page 115

Avoiding Deadlock page 119

Following Some Basic Guidelines page 121

Working With Multiprocessors page 124

114 Multithreaded Programming Guide—August 1994

7

Rethinking Global Variables
Traditional, single-threaded C and UNIX have a convention for handling errors
detected in system calls. System calls can return anything as a functional value
(for example, write () returns the number of bytes that were transferred).
However, the value -1 is reserved to indicate that something went wrong. So,
when a system call returns -1, you know that it failed.

Rather than return the actual error code (which could be confused with normal
return values), the error code is placed into the global variable errno . When
the system call fails, you can look in errno to find what went wrong.

Now consider what happens in a multithreaded environment when two
threads fail at about the same time, but with different errors. Both expect to
find their error codes in errno , but one copy of errno cannot hold both
values. This global variable approach simply does not work for multithreaded
programs.

The Solaris threads package solves this problem through a conceptually new
storage class—thread-specific data. This storage is similar to global storage in
that it can be accessed from any procedure in which a thread might be running.
However, it is private to the thread—when two threads refer to the thread-
specific data location of the same name, they are referring to two different
areas of storage.

So, when using threads, each reference to errno is thread specific because each
thread has a private copy of errno .

Code Example 7-1 Global Variables and errno

extern int errno;
...
if (write(file_desc, buffer, size) == -1) {
 /* the system call failed */
 fprintf(stderr, “something went wrong, “
 “error code = %d\n”, errno);
 exit(1);
}
...

Programming Guidelines 115

7

Providing For Static Local Variables
Code Example 7-2 shows a problem similar to the errno problem, but
involving static storage instead of global storage. The function
gethostbyname(3N) is called with the computer name as its argument. The
return value is a pointer to a structure containing the required information for
contacting the computer through network communications.

Returning a pointer to an automatic local variable is generally not a good idea,
although it works in this case because the variable is static. However, when
two threads call this variable at once with different computer names, the use of
static storage conflicts.

Thread-specific data could be used on a replacement for static storage, as in the
errno problem, but this involves dynamic allocation of storage and adds to
the expense of the call.

A better way to handle this kind of problem is to make the caller of
gethostbyname () supply the storage for the result of the call. This is done by
having the caller supply an additional argument, an output argument, to the
routine. This requires a new interface to gethostbyname ().

This technique is used in Solaris threads to fix many of these problems. In most
cases, the name of the new interface is the old name with “_r ” appended, as in
gethostbyname_r (3N).

Synchronizing Threads
The threads in an application must cooperate and synchronize when sharing
the data and the resources of the process.

A problem arises when multiple threads call something that manipulates an
object. In a single-threaded world, synchronizing access to such objects is not a
problem, but as Code Example 7-3 illustrates, this is a concern with

Code Example 7-2 The gethostbyname () Problem

struct hostent *gethostbyname(char *name) {
 static struct hostent result;
 /* Lookup name in hosts database */
 /* Put answer in result */
 return(&result);
}

116 Multithreaded Programming Guide—August 1994

7

multithreaded code. (Note that the Solaris printf (3S) is safe to call for a
multithreaded program; this example illustrates what could happen if
printf () were not safe.)

Single-Threaded Strategy

One strategy is to have a single, application-wide mutex lock that is acquired
whenever any thread in the application is running and is released before it
must block. Since only one thread can be accessing shared data at any one
time, each thread has a consistent view of memory.

Because this is effectively a single-threaded program, very little is gained by
this strategy.

Reentrance

A better approach is to take advantage of the principles of modularity and data
encapsulation. A reentrant function is one that behaves correctly if it is called
simultaneously by several threads. Writing a reentrant function is a matter of
understanding just what behaves correctly means for this particular function.

Functions that are callable by several threads must be made reentrant. This
might require changes to the function interface or to the implementation.

Functions that access global state, like memory or files, have reentrance
problems. These functions need to protect their use of global state with the
appropriate synchronization mechanisms provided by Solaris threads.

Code Example 7-3 The printf () Problem

/* thread 1: */
 printf("go to statement reached");

/* thread 2: */
 printf("hello world");

printed on display:
 go to hello

Programming Guidelines 117

7

The two basic strategies for making functions in modules reentrant are code
locking and data locking.

Code Locking

Code locking is done at the function call level and guarantees that a function
executes entirely under the protection of a lock. The assumption is that all
access to data is done through functions. Functions that share data should
execute under the same lock.

Some parallel programming languages provide a construct called a monitor
that implicitly does code locking for functions that are defined within the
scope of the monitor. A monitor can also be implemented by a mutex lock.

Functions under the protection of the same mutex lock or within the same
monitor are guaranteed to execute atomically with respect to each other.

Data Locking

Data locking guarantees that access to a collection of data is maintained
consistently. For data locking, the concept of locking code is still there, but
code locking is around references to shared (global) data, only. For a mutual
exclusion locking protocol, only one thread can be in the critical section for
each collection of data.

Alternatively, in a multiple readers, single writer protocol, several readers can
be allowed for each collection of data or one writer. Multiple threads can
execute in a single module when they operate on different data collections and
do not conflict on a single collection for the multiple readers, single writer
protocol. So, data locking typically allows more concurrency than does code
locking.

What strategy should you use when using locks (whether implemented with
mutexes, condition variables, or semaphores) in a program? Should you try to
achieve maximum parallelism by locking only when necessary and unlocking
as soon as possible (fine-grained locking)? Or should you hold locks for long
periods to minimize the overhead of taking and releasing them (coarse-grained
locking)?

118 Multithreaded Programming Guide—August 1994

7

The granularity of the lock depends on the amount of data it protects. A very
coarse-grained lock might be a single lock to protect all data. Dividing how the
data is protected by the appropriate number of locks is very important. Too
fine a grain of locking can degrade performance. The small cost associated
with acquiring and releasing locks can add up when there are too many locks.

The common wisdom is to start with a coarse-grained approach, identify
bottlenecks, and add finer-grained locking where necessary to alleviate the
bottlenecks. This is reasonably sound advice, but use your own judgment
about taking it to the extreme.

Invariants

For both code locking and data locking, invariants are important to control
locking complexity. An invariant is a condition or relation that is always true.

The definition is modified somewhat for concurrent execution: an invariant is a
condition or relation that is true when the associated lock is being set. Once the
lock is set, the invariant can be false. However, the code holding the lock must
reestablish the invariant before releasing the lock.

An invariant can also be a condition or relation that is true when a lock is
being set. Conditional variables can be thought of as having an invariant that is
the condition.

Code Example 7-4 Testing the Invariant With assert (3X)

The assert () statement is testing the invariant. The cond_wait () function
does not preserve the invariant, which is why the invariant must be re-
evaluated when the thread returns.

 mutex_lock(&lock);
 while(condition)
 cond_wait(&cv);
 assert((condition)==TRUE);
 .
 .
 .
 mutex_unlock();

Programming Guidelines 119

7

Another example is a module that manages a doubly linked list of elements.
For each item on the list a good invariant is the forward pointer of the previous
item on the list that should also point to the same thing as the backward
pointer of the forward item.

Assume this module uses code-based locking and therefore is protected by a
single global mutex lock. When an item is deleted or added the mutex lock is
acquired, the correct manipulation of the pointers is made, and the mutex lock
is released. Obviously, at some point in the manipulation of the pointers the
invariant is false, but the invariant is reestablished before the mutex lock is
released.

Avoiding Deadlock
Deadlock is a permanent blocking of a set of threads that are competing for a
set of resources. Just because some thread can make progress does not mean
that there is not a deadlock somewhere else.

The most common error causing deadlock is self deadlock or recursive deadlock: a
thread tries to acquire a lock it is already holding. Recursive deadlock is very
easy to program by mistake.

For example, if a code monitor has every module function grabbing the mutex
lock for the duration of the call, then any call between the functions within the
module protected by the mutex lock immediately deadlocks. If a function calls
some code outside the module which, through some circuitous path, calls back
into any method protected by the same mutex lock, then it will deadlock too.

The solution for this kind of deadlock is to avoid calling functions outside the
module when you don’t know whether they will call back into the module
without reestablishing invariants and dropping all module locks before
making the call. Of course, after the call completes and the locks are
reacquired, the state must be verified to be sure the intended operation is still
valid.

An example of another kind of deadlock is when two threads, thread 1 and
thread 2, each acquires a mutex lock, A and B, respectively. Suppose that
thread 1 tries to acquire mutex lock B and thread 2 tries to acquire mutex lock
A. Thread 1 cannot proceed and it is blocked waiting for mutex lock B. Thread
2 cannot proceed and it is blocked waiting for mutex lock A. Nothing can
change, so this is a permanent blocking of the threads, and a deadlock.

120 Multithreaded Programming Guide—August 1994

7

This kind of deadlock is avoided by establishing an order in which locks are
acquired (a lock hierarchy). When all threads always acquire locks in the
specified order, this deadlock is avoided.

Adhering to a strict order of lock acquisition is not always optimal. When
thread 2 has many assumptions about the state of the module while holding
mutex lock B, giving up mutex lock B to acquire mutex lock A and then
reacquiring mutex lock B in order would cause it to discard its assumptions
and reevaluate the state of the module.

The blocking synchronization primitives usually have variants that attempt to
get a lock and fail if they cannot, such as mutex_trylock (). This allows
threads to violate the lock hierarchy when there is no contention. When there is
contention, the held locks must usually be discarded and the locks reacquired
in order.

Scheduling Deadlocks

Because there is no guaranteed order in which locks are acquired, a common
problem in threaded programs is that a particular thread never acquires a lock
(usually a condition variable), even though it seems that it should.

This usually happens when the thread that holds the lock releases it, lets a
small amount of time pass, and then reacquires it. Because the lock was
released, it might seem that the other thread should acquire the lock. But,
because nothing blocks the thread holding the lock, it continues to run from
the time it releases the lock until it reacquires the lock, and so no other thread
is run.

You can usually solve this type of problem by calling thr_yield (3T) just
before the call to reacquire the lock. This allows other threads to run and to
acquire the lock.

Because the time-slice requirements of applications are so variable, the threads
library does not impose any. Use calls to thr_yield () to make threads share
time as you require.

Locking Guidelines

Here are some simple guidelines for locking.

Programming Guidelines 121

7

• Try not to hold locks across long operations like I/O where performance can
be adversely affected.

• Don’t hold locks when calling a function that is outside the module and that
might reenter the module.

• Don’t try for excessive processor concurrency. Without intervening system
calls or I/O operation, locks are usually held for short amounts of time and
contention is rare. Fix only those locks that have measured contention.

• When using multiple locks, avoid deadlocks by making sure that all threads
acquire the locks in the same order.

Following Some Basic Guidelines
• Know what you are importing and whether it is safe.

A threaded program cannot arbitrarily enter nonthreaded code.

• Threaded code can safely refer to unsafe code only from the initial thread.

This ensures that the static storage associated with the initial thread is used
only by that thread.

• Sun-supplied libraries are defined to be safe unless explicitly documented as
unsafe.

If a reference manual entry does not say whether a function is MT-Safe, it is
safe. All MT-unsafe functions are identified explicitly in the manual page.

• Use compilation flags to manage binary incompatible source changes.

Either specify -D_REENTRANT when compiling or be sure that _REENTRANT
is defined before any header file is included.

• When making a library safe for multithreaded use, do not thread global
process operations.

Do not change global operations (or actions with global side effects) to
behave in a threaded manner. For example, if file I/O is changed to per-
thread operation, threads cannot cooperate in accessing files.

For thread-specific behavior, or thread cognizant behavior, use thread
facilities. For example, when the termination of main() should terminate
only the thread that is exiting main() , the end of main() should be:

 thr_exit();
 /*NOTREACHED*/

122 Multithreaded Programming Guide—August 1994

7

Creating Threads

The Solaris threads package caches the threads data structure, stacks, and
LWPs so that the repetitive creation of unbound threads can be inexpensive.

Unbound thread creation is very inexpensive when compared to process
creation or even to bound thread creation. In fact, the cost is similar to
unbound thread synchronization when you include the context switches to
stop one thread and start another.

So, creating and destroying threads as they are required is usually better than
attempting to manage a pool of threads that wait for independent work.

A good example of this is an RPC server that creates a thread for each request
and destroys it when the reply is delivered, instead of trying to maintain a pool
of threads to service requests.

While thread creation is relatively inexpensive when compared to process
creation, it is not inexpensive when compared to the cost of a few instructions.
Create threads for processing that lasts at least a couple of thousand machine
instructions.

Thread Concurrency

By default, Solaris threads attempts to adjust the system execution resources
(LWPs) used to run unbound threads to match the real number of active
threads. While the Solaris threads package cannot make perfect decisions, it at
least ensures that the process continues to make progress.

When you have some idea of the number of unbound threads that should be
simultaneously active (executing code or system calls), tell the library through
thr_setconcurrency (3T).

For example:

• A database server that has a thread for each user should tell Solaris threads
the expected number of simultaneously active users.

• A window server that has one thread for each client should tell Solaris
threads the expected number of simultaneously active clients.

• A file copy program that has one reader thread and one writer thread
should tell Solaris threads that the desired concurrency level is two.

Programming Guidelines 123

7

Alternatively, the concurrency level can be incremented by one through the
THR_NEW_LWP flag as each thread is created.

Include unbound threads blocked on interprocess (USYNC_PROCESS)
synchronization variables as active when you compute thread concurrency.
Exclude bound threads—they do not require concurrency support from Solaris
threads because they are equivalent to LWPs.

Efficiency

A new thread is created with thr_create (3T) in less time than an existing
thread can be restarted. This means that it is more efficient to create a new
thread when one is needed and have it call thr_exit (3T) when it has
completed its task than it would be to stockpile an idle thread and restart it.

Bound Threads

Bound threads are more expensive than unbound threads. Because bound
threads can change the attributes of the underlying LWP, the LWPs are not
cached when the bound threads exit. Instead, the operating system provides a
new LWP when a bound thread is created and destroys it when the bound
thread exits.

Use bound threads only when a thread needs resources that are available only
through the underlying LWP, such as a virtual time interval timer or an
alternate stack, or when the thread must be visible to the kernel to be
scheduled with respect to all other active threads in the system, as in realtime
scheduling.

Use unbound threads even when you expect all threads to be active
simultaneously. This allows Solaris threads to efficiently cache LWP and thread
resources so that thread creation and destruction are fast.

Thread Creation Guidelines

Here are some simple guidelines for using threads.

• Use threads for independent activities that must do a meaningful amount of
work.

• Use threads to take advantage of CPU concurrency.

124 Multithreaded Programming Guide—August 1994

7

• Use bound threads only when absolutely necessary, that is, when some
facility of the underlying LWP is required.

Use thr_setconcurrency (3T) to tell Solaris threads how many threads you
expect to be simultaneously active.

Working With Multiprocessors
The Solaris threads package lets you take advantage of multiprocessors. In
many cases, programmers must be concerned with whether the multithreaded
application runs on a uniprocessor or a multiprocessor.

One such case involves the memory model of the multiprocessor. You cannot
always assume that changes made to memory by one processor are
immediately reflected in the other processors’ views of that memory.

Another multiprocessor issue is efficient synchronization when threads must
wait until all have reached a common point in their execution.

Note – The issues discussed here are not important when the threads
synchronization primitives are always used to access shared memory locations.

The Underlying Architecture

When threads synchronize access to shared storage locations using the Solaris
threads synchronization routines, the effect of running a program on a shared-
memory multiprocessor is identical to the effect of running the program on a
uniprocessor.

However, in many situations a programmer might be tempted to take
advantage of the multiprocessor and use “tricks” to avoid the synchronization
routines. As Code Example 7-5 and Code Example 7-6 show, such tricks can be
dangerous.

Understanding the memory models supported by common multiprocessor
architectures helps to understand the dangers.

The major multiprocessor components are:

• The processors themselves

• Store buffers, which connect the processors to their caches

Programming Guidelines 125

7

• Caches, which hold the contents of recently accessed or modified storage
locations

• memory, which is the primary storage (and is shared by all processors).

In the simple traditional model, the multiprocessor behaves as if the processors
are connected directly to memory: when one processor stores into a location
and another immediately loads from the same location, the second processor
loads what was stored by the first. Caches can be used to speed the average
memory access, and the desired semantics can be achieved when the caches are
kept consistent with one another.

A problem with this simple approach is that the processor must often be
delayed to make certain that the desired semantics are achieved. Many modern
multiprocessors use various techniques to prevent such delays, which,
unfortunately, change the semantics of the memory model. Two of these
techniques and their effects are explained in the next two examples.

126 Multithreaded Programming Guide—August 1994

7

“Shared-Memory” Multiprocessors

Consider the purported solution to the producer/consumer problem shown in
Code Example 7-5. Although this program works on current SPARC-based
multiprocessors, it assumes that all multiprocessors have strongly ordered
memory. This program is therefore not portable.

When this program has exactly one producer and exactly one consumer and is
run on a shared-memory multiprocessor, it appears to be correct. The
difference between in and out is the number of items in the buffer. The
producer waits (by repeatedly computing this difference) until there is room
for a new item, and the consumer waits until there is an item in the buffer.

For memory that is strongly ordered (for instance, a modification to memory on
one processor is immediately available to the other processors), this solution is
correct (it is correct even taking into account that in and out will eventually
overflow, as long as BSIZE is less than the largest integer that can be
represented in a word).

Shared-memory multiprocessors do not necessarily have strongly ordered
memory. A change to memory by one processor is not necessarily available
immediately to the other processors. When two changes to different memory

Code Example 7-5 The Producer/Consumer Problem—Shared Memory
Multiprocessors

 char buffer[BSIZE];
 unsigned int in = 0;
 unsigned int out = 0;

void char
producer(char item) { consumer(void) {
 char item;
 do
 ;/* nothing */ do
 while ;/* nothing */
 (in - out == BSIZE); while
 (in - out == 0);
 buffer[in%BSIZE] = item; item = buffer[out%BSIZE];
 in++; out++;
} }

Programming Guidelines 127

7

locations are made by one processor, the other processors do not necessarily
see the changes in the order in which they were made because changes to
memory don’t happen immediately.

First the changes are stored in store buffers that are not visible to the cache. The
processor looks at these store buffers to ensure that a program has a consistent
view, but because store buffers are not visible to other processors, a write by
one processor doesn’t become visible until it is written to cache.

The Solaris synchronization primitives (see Chapter 3, “Programming With
Synchronization Objects”) use special instructions that flush the store buffers to
cache. So, using locks around your shared data ensures memory consistency.

When memory ordering is very relaxed, Code Example 7-5 has a problem
because the consumer might see that in has been incremented by the producer
before it sees the change to the corresponding buffer slot. This is called weak
ordering because stores made by one processor can appear to happen out of
order by another processor (memory, however, is always consistent from the
same processor). To fix this, the code should use mutexes to flush the cache.

The trend is toward relaxing memory order. Because of this, programmers are
becoming increasingly careful to use locks around all global or shared data. As
demonstrated by Code Example 7-5 and Code Example 7-6, locking is essential.

Peterson’s Algorithm

The code in Code Example 7-6 is an implementation of Peterson’s Algorithm,
which handles mutual exclusion between two threads. This code tries to
guarantee that there is never more than one thread in the critical section and
that, when a thread calls mut_excl (), it enters the critical section sometime
“soon.”

128 Multithreaded Programming Guide—August 1994

7

An assumption here is that a thread exits fairly quickly after entering the
critical section.

This algorithm works some of the time when it is assumed that the
multiprocessor has strongly ordered memory.

Some multiprocessors, including some SPARC-based multiprocessors, have
store buffers. When a thread issues a store instruction, the data is put into a
store buffer. The buffer contents are eventually sent to the cache, but not
necessarily right away. (Note that the caches on each of the processors
maintain a consistent view of memory, but modified data does not reach the
cache right away.)

When multiple memory locations are stored into, the changes reach the cache
(and memory) in the correct order, but possibly after a delay. SPARC-based
multiprocessors with this property are said to have total store order (TSO).

When one processor stores into location A and then loads from location B, and
another processor stores into location B and loads from location A, the
expectation is that either the first processor fetches the newly modified value in
location B or the second processor fetches the newly modified value in location
A, or both, but that the case in which both processors load the old values
simply cannot happen.

However, with the delays caused by load and store buffers, the “impossible
case” can happen.

Code Example 7-6 Mutual Exclusion for Two Threads?

void mut_excl(int me /* 0 or 1 */) {
 static int loser;
 static int interested[2] = {0, 0};
 int other; /* local variable */

 other = 1 - me;
 interested[me] = 1;
 loser = me;
 while (loser == me && interested[other])
 ;

 /* critical section */
 interested[me] = 0;
}

Programming Guidelines 129

7

What could happen with Peterson’s algorithm is that two threads running on
separate processors each stores into its own slot of the interested array and
then loads from the other slot. They both see the old values (0), assume that the
other party is not present, and both enter the critical section. (Note that this is
the sort of problem that might not show up when you test a program, but only
much later.)

This problem is avoided when you use the threads synchronization primitives,
whose implementations issue special instructions to force the writing of the
store buffers to the cache.

Parallelizing a Loop on a Shared-Memory Parallel Computer

In many applications, and especially numerical applications, while part of the
algorithm can be parallelized, other parts are inherently sequential (as shown
in Code Example 7-7).

For example, you might produce a set of matrices with a strictly linear
computation, then perform operations on the matrices using a parallel
algorithm, then use the results of these operations to produce another set of
matrices, then operate on them in parallel, and so on.

The nature of the parallel algorithms for such a computation is that little
synchronization is required during the computation, but synchronization of all
the threads employed is required at the end to ensure that all have finished.

When the time spent executing the parallel algorithm is large compared to the
time required to create and synchronize the threads, the cost of thread creation
and synchronization is no problem. But if the time required for the
computation is not so large, then the thread-creation and synchronization times
become very important.

Code Example 7-7 Multithreaded Cooperation (Barrier Synchronization)

while(a_great_many_iterations) {

 sequential_computation

 parallel_computation
}

130 Multithreaded Programming Guide—August 1994

7

Summary

This guide has covered basic threads programming issues. Look in
Appendix A, “Sample Application Code” for program examples that use many
of the features and styles that have been discussed.

Further Reading

For more information related to the subjects in this guide, see the following
books:

• Algorithms for Mutual Exclusion by Michel Raynal (MIT Press, 1986)

• Concurrent Programming by Alan Burns & Geoff Davies
(Addison-Wesley, 1993)

• Distributed Algorithms and Protocols by Michel Raynal (Wiley, 1988)

• Operating System Concepts by Silberschatz, Peterson, & Galvin
(Addison-Wesley, 1991)

• Principles of Concurrent Programming by M. Ben-Ari (Prentice-Hall, 1982)

131

 Sample Application Code A

The following sample programs give you an idea of how to use multithreading
in a variety of ways.

File Copy
Generating several I/O requests at once so that the I/O access time can be
overlapped is often advantageous. A simple example of this is file copying. If
the input and output files are on different devices, the read access for the next
block can be overlapped with the write access for the last block.
Code Example A-1 shows some of the code.

The main routine creates two threads: one to read the input, and one to write
the output.

The reader thread reads from the input and places the data in a double buffer.
The writer thread gets the data from the buffer and continuously writes it out.
The threads synchronize using two counting semaphores; one that counts the
number of buffers emptied by the writer and one that counts the number of
buffers filled by the reader.

File Copy page 131

Matrix Multiplication page 133

RPC Program page 135

Window System Server page 141

132 Multithreaded Programming Guide—August 1994

A

Note that the reader thread initializes semaphore emptybuf_sem because it
needs a nonzero initial value. The writer thread need not explicitly initialize
semaphore fullbuf_sem because it is allocated in zeroed memory.

Code Example A-1 File Copy Example With a Semaphore

sema_t emptybuf_sem, fullbuf_sem;

/* double buffer */
struct {

char data[BSIZE];
int size;

} buf[2];

reader()
{

int i = 0;

sema_init(&emptybuf_sem, 2, 0, NULL);
while (1) {
sema_wait(&emptybuf_sem);
buf[i].size = read(0, buf[i].data, BSIZE);
sema_post(&fullbuf_sem);
if (buf[i].size <= 0)

break;
i ^= 1;
}

}

writer()
{

int i = 0;

while (1) {
sema_wait(&fullbuf_sem);
if (buf[i].size <= 0)

break;

write(1, buf[i].data, buf[i].size);
sema_post(&emptybuf_sem);
i ^= 1;
}

}

main()
{

Sample Application Code 133

A

The example is a bit contrived because the system already generates
asynchronous read-ahead and write-behind requests when accessing regular
files. The example is still useful when the files to be copied are raw devices,
since raw-device access is synchronous.

Matrix Multiplication
Computationally intensive applications benefit from the use of all available
processors. Matrix multiplication is a good example of this.

When the matrix multiplication function is called, it acquires a mutex lock to
ensure that only one matrix multiplication is in progress. This relies on mutex
locks that are statically initialized to zero. The requesting thread checks
whether its worker threads have been created. If not, it creates one for each
CPU.

Once the worker threads are created, the requesting thread sets up a counter of
work to do and signals the workers with a condition variable. Each worker
selects a row and column from the input matrices, then updates the row and
column variables so that the next worker will get the next row or column or
both.

It then releases the mutex lock so that computing the vector product can
proceed in parallel. When the results are ready, the worker reacquires the
mutex lock and updates the counter of work completed. The worker that
completes the last bit of work signals the requesting thread.

Code Example A-2 Matrix Multiplication

thread_t twriter;

(void)thr_create(NULL, NULL, reader, NULL, THR_DETACHED, NULL)
(void)thr_create(NULL, NULL, writer, NULL, , &twriter, NULL);
thr_join(twriter, NULL, NULL);

}

struct {
mutex_t lock;
cond_t start_cond, done_cond;
int (*m1)[SZ][SZ], (*m2)[SZ][SZ], (*m3)[SZ][SZ];
int row, col;
int todo, notdone, workers;

} work;
mutex_t mul_lock;

134 Multithreaded Programming Guide—August 1994

A

void *
matmul(int (*m1)[SZ][SZ], int (*m2)[SZ][SZ], int (*m3)[SZ][SZ]);
{

int i;

mutex_lock(&mul_lock);
mutex_lock(&work.lock);
if (work.workers == 0) {
work.workers = sysconf (_SC_NPROCESSORS_ONLN);
for (i = 0; i < work.workers; i++) {

(void)thr_create (NULL, NULL, worker, (void *)NULL,
 THR_NEW_LWP|THR_DETACHED, NULL);

}
}

work.m1=m1; work.m2=m2; work.m3=m3;
work.row = work.col = 0;
work.todo = work.notdone = SZ*SZ;
cond_broadcast(&work.start_cond);
while (work.notdone)
cond_wait(&work.done_cond, &work.lock);
mutex_unlock(&work.lock);
mutex_unlock(&mul_lock);

}
void *
worker()
{

int (*m1)[SZ][SZ], (*m2)[SZ][SZ], (*m3)[SZ][SZ];
int row, col, i, result;

while (1) {
mutex_lock(&work.lock);
while (work.todo == 0)

cond_wait(&work.start_cond, &work.lock);
work.todo--;
m1=work.m1; m2=work.m2; m3=work.m3;
row = work.row; col = work.col;
work.col++;
if (work.col == SZ) {

work.col = 0;
work.row++;
if (work.row == SZ)

work.row = 0;
}

Sample Application Code 135

A

Note that each iteration computed the results of one entry in the result matrix.

In some cases the amount of work is not sufficient to justify the overhead of
synchronizing. In these cases it is better to give each worker more work per
synchronization. For example, each worker could compute an entire row of the
output matrix.

RPC Program
In a multithreaded client program, a thread can be created to issue each RPC
request. When multiple threads share the same client handle, only one thread
at a time can make a RPC request. The other threads must wait until the
outstanding request is complete.

However, when multiple threads make RPC requests using unique client
handles, the requests are carried out concurrently. The following diagram
illustrates a possible timing of a multithreaded client implementation
consisting of two client threads using different client handles.

mutex_unlock(&work.lock);
result = 0;
for (i = 0; i < SZ; i++)

result += (*m1)[row][i] * (*m2)[i][col];
(*m3)[row][col] = result;
mutex_lock(&work.lock);
work.notdone--;
if (work.notdone == 0)

cond_signal(&work.done_cond);
mutex_unlock(&work.lock);
}

}

136 Multithreaded Programming Guide—August 1994

A

Figure A-1 Two Client Threads Using Different Client Handles (Realtime)

Client thread 1

Time

Client thread 2

HOST A

Server Daemon

HOST B

Server Daemon

HOST B

Client 1 thread continues

Client 2 thread continues

Request
completed

Service
executes

Service
executes

Return
answer

Return
answer

Request
completed

Invoke
service

Invoke
service

Sample Application Code 137

A

Code Example A-3 shows the implementation of an rstat program with a
multithreaded client and single-threaded servers. The client program creates a
thread for each host. Each thread creates its own client handle and makes
various RPC calls to a specified host. Because each client thread uses its own
handle to make the RPC calls, the threads can carry out the RPC calls
concurrently.

You can compile and run this program with:

Code Example A-3 RPC rstat Program With Multithreaded Client

% cc -D_REENTRANT -o example example.c -lnsl -lrpcsvc -lthread
% example host1 host2 host3...

/* @(#)rstat.c2.3 88/11/30 4.0 RPCSRC */
/*
 * Simple program that prints the status of a remote host, in a
 * format similar to that used by the ’w’ command.
 */

#include <thread.h>
#include <synch.h>
#include <stdio.h>
#include <sys/param.h>
#include <rpc/rpc.h>
#include <rpcsvc/rstat.h>
#include <errno.h>

mutex_t tty;/* control of tty for printf’s */
cond_t cv_finish;
int count = 0;
int nthreads = 0;

main(argc, argv)
int argc;
char **argv;

{
int i;
thread_t tid;
void *do_rstat();

if (argc < 2) {
fprintf(stderr, “usage: %s \”host\” [...]\n”, argv[0]);
exit(1);

138 Multithreaded Programming Guide—August 1994

A

}

mutex_lock(&tty);

for (i = 1; i < argc; i++) {
if (thr_create(NULL, 0, do_rstat, argv[i], 0, &tid) != 0) {

fprintf(stderr, “thr_create failed: %d\n”, i);
exit(1);

} else
fprintf(stderr, “tid: %d\n”, tid);

}
nthreads = argc - 1;

while (count < nthreads) {
printf(“argc = %d, count = %d\n”, nthreads, count);
cond_wait(&cv_finish, &tty);

}

exit(0);
}

bool_t rstatproc_stats();

void *
do_rstat(host)

char *host;
{

CLIENT *rstat_clnt;
statstime host_stat;
bool_t rval;
struct tm *tmp_time;
struct tm host_time;
struct tm host_uptime;
char days_buf[16];
char hours_buf[16];

mutex_lock(&tty);
printf(“%s: starting\n”, host);
mutex_unlock(&tty);

/* client handle to rstat */
rstat_clnt = clnt_create(host, RSTATPROG, RSTATVERS_TIME,

“udp”);
if (rstat_clnt == NULL) {
mutex_lock(&tty);/* get control of tty */

Sample Application Code 139

A

clnt_pcreateerror(host);
count++;
cond_signal(&cv_finish);
mutex_unlock(&tty);/* release control of tty */

thr_exit(0);

}

rval = rstatproc_stats(NULL, &host_stat, rstat_clnt);
if (!rval) {
mutex_lock(&tty);/* get control of tty */
clnt_perror(rstat_clnt, host);
count++;
cond_signal(&cv_finish);
mutex_unlock(&tty);/* release control of tty */

thr_exit(0);

}

tmp_time = localtime_r(&host_stat.curtime.tv_sec,
&host_time);

host_stat.curtime.tv_sec -= host_stat.boottime.tv_sec;

tmp_time = gmtime_r(&host_stat.curtime.tv_sec,
&host_uptime);

if (host_uptime.tm_yday != 0)
sprintf(days_buf, “%d day%s, “, host_uptime.tm_yday,
(host_uptime.tm_yday > 1) ? “s” : ““);
else
days_buf[0] = ’\0’;

if (host_uptime.tm_hour != 0)
sprintf(hours_buf, “%2d:%02d,”,

host_uptime.tm_hour, host_uptime.tm_min);

else if (host_uptime.tm_min != 0)
sprintf(hours_buf, “%2d mins,”, host_uptime.tm_min);
else

hours_buf[0] = ’\0’;

140 Multithreaded Programming Guide—August 1994

A

mutex_lock(&tty);/* get control of tty */
printf(“%s: “, host);
printf(“ %2d:%02d%cm up %s%s load average: %.2f %.2f %.2f\n”,
(host_time.tm_hour > 12) ? host_time.tm_hour - 12

: host_time.tm_hour,
host_time.tm_min,
(host_time.tm_hour >= 12) ? ’p’
: ’a’,
days_buf,
hours_buf,
(double)host_stat.avenrun[0]/FSCALE,
(double)host_stat.avenrun[1]/FSCALE,
(double)host_stat.avenrun[2]/FSCALE);
count++;
cond_signal(&cv_finish);
mutex_unlock(&tty);/* release control of tty */
clnt_destroy(rstat_clnt);

sleep(10);
thr_exit(0);

}

/*
Client side implementation of MT rstat program
*/

/* Default timeout can be changed using clnt_control() */
static struct timeval TIMEOUT = { 25, 0 };

bool_t
rstatproc_stats(argp, clnt_resp, clnt)

void *argp;
statstime *clnt_resp;
CLIENT *clnt;

{

memset((char *)clnt_resp, 0, sizeof (statstime));
if (clnt_call(clnt, RSTATPROC_STATS,
(xdrproc_t) xdr_void, (caddr_t) argp,
(xdrproc_t) xdr_statstime, (caddr_t) clnt_resp,
TIMEOUT) != RPC_SUCCESS) {
return (FALSE);

Sample Application Code 141

A

Window System Server
A networked window system server tries to handle each client application as
independently as possible. Each application should get a fair share of the
machine resources, and any blocking on I/O should affect only the connection
that caused it.

You could assure that each application gets a fair share of machine resources
by allocating a bound thread for each client application. While this would
work, it is wasteful since more than a small subset of the clients are rarely
active at any one time.

Allocating an LWP for each connection ties up large amounts of kernel
resources basically for waiting. On a busy desktop, this can be several dozen
LWPs. (A window system server designed to run with a single-level threads
model would have different considerations about kernel resources and could
be designed quite differently.)

The code shown in Code Example A-4 takes a different approach. It allocates
two unbound threads for each client connection, one to process display
requests and one to write out results.

This approach allows further input to be processed while the results are being
sent, yet it maintains strict serialization within the connection. A single control
thread looks for requests on the network. The relationship between threads is
shown in Figure A-2

Figure A-2 Window Server Threads

With this arrangement, an LWP is used for the control thread and whatever
threads happen to be active concurrently. The threads synchronize with
queues. Each queue has its own mutex lock to maintain serialization, and a
condition variable to inform waiting threads when something is placed on the
queue. A bound thread processes mouse events to provide a quick response to
inputs.

}
return (TRUE);

}

142 Multithreaded Programming Guide—August 1994

A

Code Example A-4 Window Server

main ()
{

/* set up server and listen port */
for(;;) {
poll(&fds, nfds, 0);
for (i = 0; i < nfds; i++) {

if (fds[i].revents & POLLIN)
checkfd(fds[i].fd)

}
}

}

checkfd (int fd)
{

struct connection *connp;

if (fd == listenfd) {
/* new connection request */
connp = create_new_connection();
(void)thread_create (NULL, NULL, svc_requests, connp,

THR_DETACHED, NULL);
(void) thread_create (NULL, NULL, send_replies, connp,

 THR_DETACHED, NULL);
} else {
requestp = new_msg();

Display

Connection Mouse

Sample Application Code 143

A

requestp->len =
t_rcv (fd, requestp->data, BUFSZ, &flags);

connp = find_connection (fd);
put_q (connp->input_q, requestp);
}

}

send_replies (struct connection *connp)
{

struct msg *replyp;

while (1) {
replyp = get_q (connp->output_q);
t_snd (connp->fd, replyp->data, replyp->len, &flags);
}

}

svc_requests (struct connection *connp)
{

struct msg *requestp, *replyp;

while (1) {
requestp = get_q (connp->input_q);
replyp = do_request (requestp);
if (replyp)

put_q (connp->output_q, replyp);
}

}

put_q (struct queue *qp, struct msg *msgp)
{

mutex_lock (&qp->lock);
if (list_empty (qp->list))
cond_signal (&qp->notempty_cond);
add_to_tail (msgp, &qp->list);
mutex_unlock (&qp->lock);

}

struct msg *
get_q struct queue *qp)
{

struct msg *msgp;

mutex_lock (&qp->lock);

144 Multithreaded Programming Guide—August 1994

A

while (list_empty (qp->list))
cond_wait (&qp->notempty_cond, &qp->lock);
msgp = get_from_head (&qp->list);
mutex_unlock (&qp->lock);
return (msgp);

}

145

MT Safety Levels: Library Interfaces B

Table B-1 lists the interfaces from Section 3 of the man Pages(3): Library Routines
belonging to one of the safe categories. If an interface from Section 3 (not
including the Source Compatibility library) is not in this table, it is probably
unsafe (See “MT Interface Safety Levels” on page 103 for explanations of the
safety categories.).

Table B-1 MT Safety Levels of Library Interfaces

Interface (Man Page) Category

_tolower (conv(3C)) MT-Safe with exceptions

_toupper (conv(3C)) MT-Safe with exceptions

a64l (a64l(3C)) MT-Safe

abort (abort(3C)) Safe

abs (abs(3C)) MT-Safe

acos (trig(3M)) MT-Safe

acosh (hyperbolic(3M)) MT-Safe

addseverity (addseverity(3C)) Safe

alloca (malloc(3C)) Safe

ascftime (strftime(3C)) Unsafe

asin (trig(3M)) MT-Safe

asinh (hyperbolic(3M)) MT-Safe

146 Multithreaded Programming Guide—August 1994

B

assert (assert(3X)) Safe

atan2 (trig(3M)) MT-Safe

atan (trig(3M)) MT-Safe

atanh (hyperbolic(3M)) MT-Safe

atexit (atexit(3C)) Safe

atof (strtod(3C)) MT-Safe

atoi (strtol(3C)) MT-Safe

atol (strtol(3C)) MT-Safe

atoll (strtol(3C)) MT-Safe

bessel (bessel(3M)) MT-Safe

bindtextdomain (gettext(3I)) Safe with exceptions

bsearch (bsearch(3C)) Safe

calloc (malloc(3C)) Safe

calloc (malloc(3X)) Safe

calloc (mapmalloc(3X)) Safe

catclose (catopen(3C)) MT-Safe

catgets (catgets(3C)) MT-Safe

catopen (catopen(3C)) MT-Safe

cbrt (sqrt(3M)) MT-Safe

ceil (floor(3M)) MT-Safe

cfgetispeed (termios(3)) MT-Safe

cfgetospeed (termios(3)) MT-Safe

cfree (mapmalloc(3X)) Safe

cfsetispeed (termios(3)) MT-Safe

cfsetospeed (termios(3)) MT-Safe

cftime (strftime(3C)) Unsafe

clearerr (ferror(3S)) MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

MT Safety Levels: Library Interfaces 147

B

clock (clock(3C)) MT-Safe

closedir (directory(3C)) Safe

closelog (syslog(3)) Safe

conv (conv(3C)) MT-Safe with exceptions

cos (trig(3M)) MT-Safe

cosh (hyperbolic(3M)) MT-Safe

crypt (crypt(3C)) Safe

csetcol (cset(3I)) MT-Safe with exceptions

cset (cset(3I)) MT-Safe with exceptions

csetlen (cset(3I)) MT-Safe with exceptions

csetno (cset(3I)) MT-Safe with exceptions

ctermid (ctermid(3S)) Unsafe

ctype (ctype(3C)) MT-Safe with exceptions

cuserid (cuserid(3S)) MT-Safe

decimal_to_quadruple
(decimal_to_floating(3))

MT-Safe

decimal_to_single
(decimal_to_floating(3))

MT-Safe

dgettext (gettext(3I)) Safe with exceptions

directory (directory(3C)) Safe

div (div(3C)) MT-Safe

dlclose (dlclose(3X)) MT-Safe

dlerror (dlerror(3X)) MT-Safe

dlopen (dlopen(3X)) MT-Safe

dlsym (dlsym(3X)) MT-Safe

double_to_decimal
(floating_to_decimal(3))

MT-Safe

drand48 (drand48(3C)) Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

148 Multithreaded Programming Guide—August 1994

B

econvert (econvert(3)) MT-Safe

encrypt (crypt(3C)) Unsafe

erand48 (drand48(3C)) Safe

erfc (erf(3M)) MT-Safe

erf (erf(3M)) MT-Safe

euccol (euclen(3I)) Safe

euclen (euclen(3I)) Safe

eucscol (euclen(3I)) Safe

exit (exit(3C)) Safe

exp (exp(3M)) MT-Safe

extended_to_decimal
(floating_to_decimal(3))

Mt-safe

fabs (ieee_functions(3M)) MT-Safe

fattach (fattach(3C)) MT-Safe

fclose (fclose(3S)) MT-Safe

fconvert (econvert(3)) MT-Safe

fdopen (fopen(3S)) MT-Safe

feof (ferror(3S)) MT-Safe

ferror (ferror(3S)) MT-Safe

fflush (fclose(3S)) MT-Safe

ffs (ffs(3C)) MT-Safe

fgetc (getc(3S)) MT-Safe

fgetpos (fsetpos(3C)) MT-Safe

fgets (gets(3S)) MT-Safe

fgetwc (getwc(3I)) MT-Safe

fgetws (getws(3I)) MT-Safe

fileno (ferror(3S)) MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

MT Safety Levels: Library Interfaces 149

B

file_to_decimal
(string_to_decimal(3))

MT-Safe

finite (isnan(3C)) MT-Safe

floor (floor(3M)) MT-Safe

fmod (ieee_functions(3M)) MT-Safe

fmtmsg (fmtmsg(3C)) Safe

fopen (fopen(3S)) MT-Safe

fpclass (isnan(3C)) MT-Safe

fpgetmask (fpgetround(3C)) MT-Safe

fpgetround (fpgetround(3C)) MT-Safe

fpgetsticky (fpgetround(3C)) MT-Safe

fprintf (printf(3S)) MT-Safe, Async-Safe

fpsetmask (fpgetround(3C)) MT-Safe

fpsetround (fpgetround(3C)) MT-Safe

fpsetsticky (fpgetround(3C)) MT-Safe

fputc (putc(3S)) MT-Safe

fputs (puts(3S)) MT-Safe

fputwc (putwc(3I)) MT-Safe

fputws (putws(3I)) MT-Safe

fread (fread(3S)) MT-Safe

free (malloc(3C)) Safe

free (malloc(3X)) Safe

free (mapmalloc(3X)) Safe

freopen (fopen(3S)) MT-Safe

frexp (frexp(3C)) MT-Safe

fscanf (scanf(3S)) MT-Safe

fseek (fseek(3S)) MT-Safe

fsetpos (fsetpos(3C)) MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

150 Multithreaded Programming Guide—August 1994

B

ftell (fseek(3S)) MT-Safe

ftok (stdipc(3C)) MT-Safe

ftruncate (truncate(3C)) MT-Safe

ftw (ftw(3C)) Safe

func_to_decimal
(string_to_decimal(3))

MT-Safe

fwrite (fread(3S)) MT-Safe

gconvert (econvert(3)) MT-Safe

getc (getc(3S)) MT-Safe

getchar (getc(3S)) MT-Safe

getchar_unlocked (getc(3S)) Unsafe

getc_unlocked (getc(3S)) Unsafe

getcwd (getcwd(3C)) Safe

getenv (getenv(3C)) Safe

getlogin (getlogin(3C)) Unsafe

getmntany (getmntent(3C)) Safe

getmntent (getmntent(3C)) Safe

getpw (getpw(3C)) Safe

gets (gets(3S)) MT-Safe

getsubopt (getsubopt(3C)) MT-Safe

gettext (gettext(3I)) Safe with exceptions

gettimeofday (gettimeofday(3C)) MT-Safe

gettxt (gettxt(3C)) Safe with exceptions

getvfsany (getvfsent(3C)) Safe

getvfsent (getvfsent(3C)) Safe

getvfsfile (getvfsent(3C)) Safe

getvfsspec (getvfsent(3C)) Safe

getwc (getwc(3I)) MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

MT Safety Levels: Library Interfaces 151

B

getwchar (getwc(3I)) MT-Safe

getw (getc(3S)) MT-Safe

getwidth (getwidth(3I)) MT-Safe with exceptions

getws (getws(3I)) MT-Safe

grantpt (grantpt(3C)) Safe

gsignal (ssignal(3C)) Unsafe

hasmntopt (getmntent(3C)) Safe

hcreate (hsearch(3C)) Safe

hdestroy (hsearch(3C)) Safe

hsearch (hsearch(3C)) Safe

hyperbolic (hyperbolic(3M)) MT-Safe

hypot (hypot(3M)) MT-Safe

ieee_functions
(ieee_functions(3M))

MT-Safe

ieee_test (ieee_test(3M)) MT-Safe

isalnum (ctype(3C)) MT-Safe with exceptions

isalpha (ctype(3C)) MT-Safe with exceptions

isascii (ctype(3C)) MT-Safe with exceptions

isastream (isastream(3C)) MT-Safe

iscntrl (ctype(3C)) MT-Safe with exceptions

isdigit (ctype(3C)) MT-Safe with exceptions

isenglish (wctype(3I)) MT-Safe with exceptions

isgraph (ctype(3C)) MT-Safe with exceptions

isideogram (wctype(3I)) MT-Safe with exceptions

islower (ctype(3C)) MT-Safe with exceptions

isnand (isnan(3C)) MT-Safe

isnan (ieee_functions(3M)) MT-Safe

isnan (isnan(3C)) MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

152 Multithreaded Programming Guide—August 1994

B

isnanf (isnan(3C)) MT-Safe

isnumber (wctype(3I)) MT-Safe with exceptions

isphonogram (wctype(3I)) MT-Safe with exceptions

isprint (ctype(3C)) MT-Safe with exceptions

ispunct (ctype(3C)) MT-Safe with exceptions

isspace (ctype(3C)) MT-Safe with exceptions

isspecial (wctype(3I)) MT-Safe with exceptions

isupper (ctype(3C)) MT-Safe with exceptions

iswalnum (wctype(3I)) MT-Safe with exceptions

iswalpha (wctype(3I)) MT-Safe with exceptions

iswascii (wctype(3I)) MT-Safe with exceptions

iswcntrl (wctype(3I)) MT-Safe with exceptions

iswdigit (wctype(3I)) MT-Safe with exceptions

iswgraph (wctype(3I)) MT-Safe with exceptions

iswlower (wctype(3I)) MT-Safe with exceptions

iswprint (wctype(3I)) MT-Safe with exceptions

iswpunct (wctype(3I)) MT-Safe with exceptions

iswspace (wctype(3I)) MT-Safe with exceptions

iswupper (wctype(3I)) MT-Safe with exceptions

iswxdigit (wctype(3I)) MT-Safe with exceptions

isxdigit (ctype(3C)) MT-Safe with exceptions

jrand48 (drand48(3C)) Safe

j0 (bessel(3M)) MT-Safe

j1 (bessel(3M)) MT-Safe

jn (bessel(3M)) MT-Safe

jrand48 (drand48(3C)) Safe

l64a (a64l(3C)) MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

MT Safety Levels: Library Interfaces 153

B

labs (abs(3C)) MT-Safe

lckpwdf (lckpwdf(3C)) MT-Safe

lcong48 (drand48(3C)) Safe

ldexp (frexp(3C)) MT-Safe

ldiv (div(3C)) MT-Safe

lfind (lsearch(3C)) Safe

llabs (abs(3C)) MT-Safe

lldiv (div(3C)) MT-Safe

lltostr (strtol(3C)) MT-Safe

localeconv (localeconv(3C)) Safe with exceptions

lockf (lockf(3C)) MT-Safe

log (exp(3M)) MT-Safe

log10 (exp(3M)) MT-Safe

logb (frexp(3C)) MT-Safe

logb (ieee_test(3M)) MT-Safe

lrand48 (drand48(3C)) Safe

lsearch (lsearch(3C)) Safe

madvise (madvise(3)) MT-Safe

major (makedev(3C)) MT-Safe

makecontext (makecontext(3C)) MT-Safe

makedev (makedev(3C)) MT-Safe

mallinfo (malloc(3X)) Safe

malloc (malloc(3C)) Safe

malloc (malloc(3X)) Safe

mallopt (malloc(3X)) Safe

mapmalloc (mapmalloc(3X)) Safe

matherr (matherr(3M)) MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

154 Multithreaded Programming Guide—August 1994

B

mbchar (mbchar(3C)) MT-Safe with exceptions

mblen (mbchar(3C)) MT-Safe with exceptions

mbstowcs (mbstring(3C)) MT-Safe with exceptions

mbstring (mbstring(3C)) MT-Safe with exceptions

mbtowc (mbchar(3C)) MT-Safe with exceptions

memalign (malloc(3C)) Safe

memccpy (memory(3C)) MT-Safe

memchr (memory(3C)) MT-Safe

memcmp (memory(3C)) MT-Safe

memcntl (memcntl(3)) MT-Safe

memcpy (memory(3C)) MT-Safe

memmove (memory(3C)) MT-Safe

memory (memory(3C)) MT-Safe

memset (memory(3C)) MT-Safe

minor (makedev(3C)) MT-Safe

mkfifo (mkfifo(3C)) MT-Safe

mktemp (mktemp(3C)) Safe

mlockall (mlockall(3C)) MT-Safe

mlock (mlock(3C)) MT-Safe

modf (frexp(3C)) MT-Safe

modff (frexp(3C)) MT-Safe

monitor (monitor(3C)) Safe

mrand48 (drand48(3C)) Safe

msync (msync(3C)) MT-Safe

munlockall (mlockall(3C)) MT-Safe

munlock (mlock(3C)) MT-Safe

nextafter (frexp(3C)) MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

MT Safety Levels: Library Interfaces 155

B

nextafter (ieee_functions(3M)) MT-Safe

nftw (ftw(3C)) Safe with exceptions

nl_langinfo (nl_langinfo(3C)) Safe with exceptions

nlist (nlist(3E)) Safe

nrand48 (drand48(3C)) Safe

offsetof (offsetof(3C)) MT-Safe

opendir (directory(3C)) Safe

openlog (syslog(3)) Safe

perror (perror(3C)) MT-Safe

pow (exp(3M)) MT-Safe

printf (printf(3S)) MT-Safe, Async-Safe

psiginfo (psignal(3C)) Safe

psignal (psignal(3C)) Safe

ptsname (ptsname(3C)) Safe

putc (putc(3S)) MT-Safe

putchar (putc(3S)) MT-Safe

putenv (putenv(3C)) Safe

putmntent (getmntent(3C)) Safe

puts (puts(3S)) MT-Safe

putwc (putwc(3I)) MT-Safe

putwchar (putwc(3I)) MT-Safe

putw (putc(3S)) MT-Safe

putws (putws(3I)) MT-Safe

qsort (qsort(3C)) Safe

quadruple_to_decimal
(floating_to_decimal(3))

MT-Safe

raise (raise(3C)) MT-Safe

readdir (directory(3C)) Unsafe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

156 Multithreaded Programming Guide—August 1994

B

realloc (malloc(3C)) Safe

realloc (malloc(3X)) Safe

realpath (realpath(3C)) MT-Safe

remainder (ieee_functions(3M)) MT-Safe

remove (remove(3C)) MT-Safe

rewinddir (directory(3C)) Safe

rewind (fseek(3S)) MT-Safe

scalb (frexp(3C)) MT-Safe

scalb (ieee_test(3M)) MT-Safe

scanf (scanf(3S)) MT-Safe

seconvert (econvert(3)) MT-Safe

seed48 (drand48(3C)) Safe

seekdir (directory(3C)) Safe

select (select(3C)) MT-Safe

setbuf (setbuf(3S)) MT-Safe

setkey (crypt(3C)) Safe

setlocale (setlocale(3C)) Safe with exceptions

setlogmask (syslog(3)) Safe

settimeofday (gettimeofday(3C)) MT-Safe

setvbuf (setbuf(3S)) MT-Safe

sfconvert (econvert(3)) MT-Safe

sgconvert (econvert(3)) MT-Safe

sigaddset (sigsetops(3C)) MT-Safe

sigdelset (sigsetops(3C)) MT-Safe

sigemptyset (sigsetops(3C)) MT-Safe

sigfillset (sigsetops(3C)) MT-Safe

sigismember (sigsetops(3C)) MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

MT Safety Levels: Library Interfaces 157

B

significand (ieee_test(3M)) MT-Safe

sigsetops (sigsetops(3C)) MT-Safe

sin (trig(3M)) MT-Safe

single_to_decimal
(floating_to_decimal(3))

MT-Safe

sinh (hyperbolic(3M)) MT-Safe

sleep (sleep(3C)) Safe

sprintf (printf(3S)) MT-Safe

sqrt (sqrt(3M)) MT-Safe

srand48 (drand48(3C)) Safe

sscanf (scanf(3S)) MT-Safe

ssignal (ssignal(3C)) Unsafe

strcasecmp (string(3C)) MT-Safe

strcat (string(3C)) MT-Safe

strchr (string(3C)) MT-Safe

strcmp (string(3C)) MT-Safe

strcoll (strcoll(3C)) Safe with exceptions

strcpy (string(3C)) MT-Safe

strcspn (string(3C)) MT-Safe

strdup (string(3C)) MT-Safe

strerror (strerror(3C)) Safe

strftime (strftime(3C)) Unsafe

string (string(3C)) MT-Safe

string_to_decimal
(string_to_decimal(3))

MT-Safe

strlen (string(3C)) MT-Safe

strncasecmp (string(3C)) MT-Safe

strncat (string(3C)) MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

158 Multithreaded Programming Guide—August 1994

B

strncmp (string(3C)) MT-Safe

strncpy (string(3C)) MT-Safe

strpbrk (string(3C)) MT-Safe

strrchr (string(3C)) MT-Safe

strsignal (strsignal(3C)) Safe

strspn (string(3C)) MT-Safe

strstr (string(3C)) MT-Safe

strtod (strtod(3C)) MT-Safe

strtok (string(3C)) Unsafe

strtol (strtol(3C)) MT-Safe

strtoll (strtol(3C)) MT-Safe

strtoul (strtol(3C)) MT-Safe

strtoull (strtol(3C)) MT-Safe

strxfrm (strxfrm(3C)) Safe with exceptions

swab (swab(3C)) MT-Safe

swapcontext (makecontext(3C)) MT-Safe

sysconf (sysconf(3C)) Safe

syslog (syslog(3)) Safe

system (system(3S)) MT-Safe

t_accept (t_accept(3N)) MT-Safe

t_alloc (t_alloc(3N)) MT-Safe

t_bind (t_bind(3N)) MT-Safe

t_close (t_close(3N)) MT-Safe

t_connect (t_connect(3N)) MT-Safe

t_error (t_error(3N)) MT-Safe

t_free (t_free(3N)) MT-Safe

t_getinfo (t_getinfo(3N)) MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

MT Safety Levels: Library Interfaces 159

B

t_getstate (t_getstate(3N)) MT-Safe

t_listen (t_listen(3N)) MT-Safe

t_look (t_look(3N)) MT-Safe

t_open (t_open(3N)) MT-Safe

t_optmgmt (t_optmgmt(3N)) MT-Safe

t_rcvconnect (t_rcvconnect(3N)) MT-Safe

t_rcvdis (t_rcvdis(3N)) MT-Safe

t_rcv (t_rcv(3N)) MT-Safe

t_rcvrel (t_rcvrel(3N)) MT-Safe

t_rcvudata (t_rcvudata(3N)) MT-Safe

t_rcvuderr (t_rcvuderr(3N)) MT-Safe

t_snddis (t_snddis(3N)) MT-Safe

t_snd (t_snd(3N)) MT-Safe

t_sndrel (t_sndrel(3N)) MT-Safe

t_sndudata (t_sndudata(3N)) MT-Safe

t_sync (t_sync(3N)) MT-Safe

t_unbind (t_unbind(3N)) MT-Safe

tan (trig(3M)) MT-Safe

tanh (hyperbolic(3M)) MT-Safe

tcdrain (termios(3)) MT-Safe

tcflow (termios(3)) MT-Safe

tcflush (termios(3)) MT-Safe

tcgetattr (termios(3)) MT-Safe

tcgetpgrp (termios(3)) MT-Safe

tcgetsid (termios(3)) MT-Safe

tcsendbreak (termios(3)) MT-Safe

tcsetattr (termios(3)) MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

160 Multithreaded Programming Guide—August 1994

B

tcsetpgrp (tcsetpgrp(3C)) MT-Safe

tcsetpgrp (termios(3)) MT-Safe

tdelete (tsearch(3C)) Safe

tempnam (tmpnam(3S)) Safe

telldir (directory(3C)) Safe

termios (termios(3)) MT-Safe

textdomain (gettext(3I)) Safe with exceptions

tfind (tsearch(3C)) Safe

tmpfile (tmpfile(3S)) Safe

tmpnam (tmpnam(3S)) Unsafe

toascii (conv(3C)) MT-Safe with exceptions

tolower (conv(3C)) MT-Safe with exceptions

toupper (conv(3C)) MT-Safe with exceptions

towlower (wconv(3I)) MT-Safe with exceptions

towupper (wconv(3I)) MT-Safe with exceptions

trig (trig(3M)) MT-Safe

truncate (truncate(3C)) MT-Safe

tsearch (tsearch(3C)) Safe

ttyslot (ttyslot(3C)) Safe

twalk (tsearch(3C)) Safe

ulckpwdf (lckpwdf(3C)) MT-Safe

ulltostr (strtol(3C)) MT-Safe

ungetc (ungetc(3S)) MT-Safe

ungetwc (ungetwc(3I) MT-Safe

unlockpt (unlockpt(3C)) Safe

unordered (isnan(3C)) MT-Safe

valloc (malloc(3C)) Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

MT Safety Levels: Library Interfaces 161

B

vfprintf (vprintf(3S)) MT-Safe

vprintf (vprintf(3S)) Async-Safe

vsprintf (vprintf(3S)) Async-Safe

vsyslog (vsyslog(3)) Safe

watof (wstod(3I)) MT-Safe

watoi (wstol(3I)) MT-Safe

watol (wstol(3I)) MT-Safe

watoll (wstol(3I)) MT-Safe

wconv (wconv(3I)) MT-Safe with exceptions

wcsetno (cset(3I)) MT-Safe with exceptions

wcstombs (mbstring(3C)) MT-Safe with exceptions

wctomb (mbchar(3C)) MT-Safe with exceptions

wctype (wctype(3I)) MT-Safe with exceptions

windex (wstring(3I)) MT-Safe

wrindex (wstring(3I)) MT-Safe

wscat (wstring(3I)) MT-Safe

wschr (wstring(3I)) MT-Safe

wscmp (wstring(3I)) MT-Safe

wscol (wstring(3I)) MT-Safe

wscoll (wscoll(3I)) Safe with exceptions

wscpy (wstring(3I)) MT-Safe

wscspn (wstring(3I)) MT-Safe

wsdup (wstring(3I)) MT-Safe

wslen (wstring(3I)) MT-Safe

wsncat (wstring(3I)) MT-Safe

wsncmp (wstring(3I)) MT-Safe

wsncpy (wstring(3I)) MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

162 Multithreaded Programming Guide—August 1994

B

wspbrk (wstring(3I)) MT-Safe

wsprintf (wsprintf(3I)) MT-Safe

wsrchr (wstring(3I)) MT-Safe

wsscanf (wsscanf(3I)) MT-Safe

wsspn (wstring(3I)) MT-Safe

wstod (wstod(3I)) MT-Safe

wstok (wstring(3I)) MT-Safe

wstol (wstol(3I)) MT-Safe

wstring (wstring(3I)) MT-Safe

wsxfrm (wsxfrm(3I)) Safe with exceptions

y0 (bessel(3M)) MT-Safe

y1 (bessel(3M)) MT-Safe

yn (bessel(3M)) MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category

163

Index

Symbols
__errno , 108
__t_errno , 108
_r , 115
_REENTRANT, 108, 137

managing incompatibilities, 121

A
Ada, 93
adb , 110
adding

to LWP pool, 30
signals to mask, 17

aio_errno , 98
AIO_INPROGRESS, 98
aio_result_t , 97, 98
aiocancel(3) , 97, 98
aioread(3) , 97, 98
aiowait(3) , 98
aiowrite(3) , 97, 98
alarm, 9, 81
algorithms

faster with MT, 3
parallel, 129
sequential, 129

alternate signal stacks, 9, 86

ANSI C, 111
application-level threads

See user-level threads
architecture

MT system, 7
multiprocessor, 124
SPARC, 38, 126, 128

assert statement, 58, 118
assert(3X) , 146
asynchronous

event notification, 68
I/O, 96, 97, 98
semaphore use, 68
signals, 86 to 91

Async-Safe
category, 103
functions, 90, 105
and signal handlers, 93

atomic, defined, 43
automatic

arrays, problems, 110
local variable, 115
LWP number adjustments, 84
stack allocation, 28
termination, daemon threads, 19

164 Multithreaded Programming Guide—August 1994

B
barrier synchronization, 129
benefits, multithreading, 1, 3
binary semaphores, 67
binding

See also bound threads
reasons to bind, 9, 85, 123, 124
threads to LWPs, 30
values to keys, 22, 23

bound threads, 6, 9, 10, 85
See also binding
alternate signal stacks, 86
concurrency, 123
defined, 2
mixing with unbound threads, 10
no LWP caching, 123
priority, 83
realtime timer and alarm, 81
reasons to bind, 9, 85, 123, 124
scheduling class, 83
and THR_BOUND, 13
and timers, 82

C
C++, 111
cache, defined, 125
caching

not for bound thread LWPs, 123
threads data structure, 122

changing the signal mask, 16
coarse-grained locking, 117
code lock, 117, 118
code monitor, 117, 119
completion semantics, 92
concurrency, 2, 117, 121, 122, 123

excessive, 121
level, 30
unbound threads, 33

cond_broadcast(3T) , 50, 54, 56, 87
example, 54

cond_destroy(3T) , 55
cond_init(3T) , 49, 75

cond_signal(3T) , 50, 51, 56, 57, 87
example, 52

cond_timedwait(3T) , 52, 53, 94
example, 53

cond_wait(3T) , 50, 56, 57, 87, 94, 95
example, 52

condition variables, 37, 48 to 59, 94
coroutine linkage, 8
counting semaphores See semaphores
creating

new signal mask (example), 31
stacks, 12, 28, 29
threads, 12 to 14, 27 to 31, 123
thread-specific keys, 22, 23, 24, 27

critical section, 127
custom stack, 28, 29, 32

D
-D _REENTRANT, 108, 121
daemon threads, 19, 30
data

global, 22
local, 22
lock, 117, 118
profile, 82
races, 101
shared, 6, 127
thread specific, See thread-specific

data
dbx , 111
deadlock, 109, 119
debugging, 10, 109 to 112

adb , 110
dbx , 111

definitions of MT terms, 2
deleting signals from mask, 17
destructor function, 23, 27
detached threads, 18, 21, 30
Dijkstra, E. W., 66

Index 165

E
EAGAIN, 13, 23, 31, 34
EBUSY, 63, 64, 71
EDEADLK, 20
EFAULT, 17, 39 to 42, 50 to 52, 53, 55, 61, 62

to 65, 69 to 72
EINTR, 51, 53, 71, 80, 86, 87, 94, 95
EINVAL, 14, 16, 17, 23, 24, 31, 34, 35, 39 to

42, 50, 53, 61 to 65, 69 to 72
ENOMEM, 14, 23, 31
errno , 25, 108, 114
errno.h , 107
error checking, 16
ESRCH, 15, 16, 20, 34, 35
ETIME, 53
event notification, 68
examining the signal mask, 16
exec(2) , 79, 80, 81
execution resources, 33, 122
exit(2) , 18, 30, 81

F
finding

minimum stack size, 32
thread concurrency level, 33
thread priority, 34

fine-grained locking, 117
flockfile(3S) , 99
fork cleanup handler, 80
fork(2) , 50, 53, 79, 80, 81
fork1(2) , 79, 80, 81
FORTRAN, 111
funlockfile(3S) , 99

G
getc(3S) , 99
getc_unlocked(3S) , 99
gethostbyname(3N) , 115
gethostbyname_r(3N) , 115
getrusage(3B) , 82

global
data, 117
memory, 109
state, 116
thread scheduling, 9
variables, 24, 25, 109, 113, 114

H
heap, malloc(3C) storage from, 21
hreads, 11

I
I/O

asynchronous, 96, 97
nonsequential, 98
standard, 99
synchronous, 96

inheriting priority, 12
interrupt, 86
interval timer, 81, 82, 123
invariants, 58, 118

J
joining threads, 18, 19

K
kernel context switching, 6
kernel-level threads, 6
keys

bind value to key, 23
destructor function, 23
get specific key, 24
global into private, 26
storing value of, 22, 24
for TSD, 22

kill(2) , 86, 89

L
-lc , 108, 109
ld , 108, 109

166 Multithreaded Programming Guide—August 1994

libC , 106
libc , 105, 107, 108, 109
libdl_stubs , 105
libintl , 105, 107
libm , 105, 107
libmalloc , 105, 107
libmapmalloc , 105, 107
libnsl , 105, 107, 108
library

C routines, 113
threads, 7, ?? to 77, 107
threads<$startrange.>, 11

libresolv , 106
libsocket , 106
libthread , 5, 7, 11, 107, 108
libw , 106, 107
libX11 , 106
lightweight processes, 8, 9, 82 to 85, 89

adding an LWP, 30
creation, 9
debugging, 110
defined, 2
independence, 9
multiplexing, 8
no time-slicing of threads, 36
not supported, 8
profile state, 82
shortage, 85
special capabilities, 9
in SunOS 4.0, 8
and system calls, 10
and thread scheduling, 35

limits, resources, 82
linking, 107
local variable, 109, 115
lock hierarchy, 120
lock_lint , 44
locking

See also locks
coarse grained, 117
code, 117
data, 117
fine-grained, 117

guidelines, 120
invariants, 118

locks
See also locking
mutual exclusion, 37 to 48, 80, 94
readers/writer, 37, 60 to 66

longjmp(3C) , 82, 93
lseek(2) , 99
-lthread , 108, 109
LWPs, See lightweight processes

M
main() , 121
maintaining thread-specific data, 22
malloc(3C) , 21
MAP_NORESERVE, 28
MAP_SHARED, 81
memory

global, 109
ordering, relaxed, 127
strongly ordered, 126

mmap(2) , 28, 39, 81
monitor, code, 117, 119
mprotect(2) , 29
MT-Safe libraries, 105
multiple-readers, single-writer locks, 60

to 66, 77
multiplexing with LWPs, 8
multiprocessors, 124 to 129
multithreading

See also threads
benefits, 1
defined, 2

mutex See mutual exclusion locks
mutex_destroy(3T) , 42
mutex_init(3T) , 39, 75
mutex_lock(3T) , 40

example, 43, 45, 47, 48
mutex_trylock(3T) , 40, 45, 120
mutex_unlock(3T) , 41

example, 43, 45, 47, 48

Index 167

mutual exclusion locks, 37 to 48, 80, 94

N
nametoaddr , 106
NDEBUG, 58
netdir , 105
netselect , 105
nice(2) , 83, 84

nondetached threads, 18 to 21
nonsequential I/O, 98
nsswitch , 106
null

procedures, 108
threads, 29, 32

P
P operation, 67
parallel

algorithms, 129
array computation, 9

parallelism, defined, 2
Pascal, 111
PC, 6
PC_GETCID, 83
PC_GETCLINFO, 83
PC_GETPARMS, 83
PC_SETPARMS, 83
performance times, 4
per-process signal handler, 86
per-thread signal handler, 86
Peterson’s Algorithm, 127
PL/1, 88
portability, 38
POSIX 1003.4a, 10, 80
pread(2) , 97, 99
printf problem, 115
printf(3S) , 93
priocntl(2) , 36, 83, 84

priority, 6, 9, 82, 83, 84
finding for a thread, 34
inheritance, 12, 34
and priocntl(2) , 36
range, 35
and scheduling, 34, 35
setting for a thread, 35

process
terminating, 18
traditional UNIX, 1

producer/consumer problem, 75, 126
profil(2) , 82

profile, 82
profiling an LWP, 82
programmer-allocated stack, 28, 29, 32,

109
prolagen, 67
pthread_atfork() , 80
putc(3S) , 99
putc_unlocked(3S) , 99
pwrite(2) , 97, 99

R
raw device, 133
read(2) , 98, 99
readers/writer locks, 37, 60 to 66, 77
realtime, 10

schedule threads globally, 9
scheduling, 82, 84

red zone, 28, 29
reentrant, 117

See also _REENTRANT
described, 116
functions, 103, 104
strategies for making, 117

register state, 6
relaxed memory ordering, 127
remote procedure call See RPC
replacing signal mask, 17
RPC, 4, 105, 122
RT, See realtime
rw_rdlock(3T) , 62

168 Multithreaded Programming Guide—August 1994

rw_tryrdlock(3T) , 62
rw_trywrlock(3T) , 64
rw_unlock(3T) , 64
rw_wrlock(3T) , 63
rwlock_destroy(3T) , 65
rwlock_init(3T) , 61, 75

S
SA_RESTART, 95
safety, threads interfaces, 101 to 106
scheduling

class, 82 to 85
compute-bound threads, 33
globally for threads, 9
libthread routines, 35
preemptive, 35
priorities, 34
realtime, 82, 84
system class, 82
timeshare, 82, 83

sema_destroy(3T) , 72
sema_init(3T) , 69, 75

example, 73
sema_post(3T) , 67, 70, 105

example, 74
sema_trywait(3T) , 67, 71
sema_wait(3T) , 70

example, 74
semaphores, 37, 66 to 77

binary, 67
counting, defined, 2

sending signal to thread, 16
sequential algorithms, 129
setjmp(3C) , 82, 92, 93
setting

thread concurrency level, 33
thread priority, 34

shared data, 6, 117
shared-memory multiprocessor, 126
SIG_BLOCK, 17
SIG_DFL, 86
SIG_IGN , 86

SIG_SETMASK, 17
SIG_UNBLOCK, 17
sigaction(2) , 86, 87, 95
sigaltstack(2) , 86
SIGFPE, 87, 92
SIGILL , 87
SIGINT , 31, 87, 91, 95
SIGIO , 87, 98
siglongjmp(3C) , 92, 93
signal(2) , 86
signal(5) , 86
signal.h , 16
signals

access mask, 16
add to mask, 17
asynchronous, 86 to 91
create new mask (example), 31
delete from mask, 17
handler, 86, 90
inheritance, 12
masks, 6
pending, 12
replace current mask, 17
send to thread, 16
SIG_BLOCK, 17
SIG_SETMASK, 17
SIG_UNBLOCK, 17
SIGSEGV, 28
stack, 9, 86
unmasked and caught, 94

sigprocmask(2) , 89
SIGPROF, 82
SIGSEGV, 28, 87
sigsend(2) , 86
sigsetjmp(3C) , 93
sigtimedwait(2) , 90
SIGVTALRM, 82
sigwait(2) , 89, 90, 91, 93
SIGWAITING, 85
single-threaded

assumptions, 113
code, 38
defined, 2

Index 169

single-threaded (continued)
processes, 81

size of stack, 12, 27, 29, 32
stack, 122, 123

address, 12, 27
boundaries, 28
creation, 12
custom, 29
deallocation, 29
minimum size, 29, 32
overflows, 28
parameters, 21
pointer, 6
programmer-allocated, 27, 28, 29, 109
reclaiming, 19
red zone, 28, 29
returning a pointer to, 103
size, 12, 27, 29, 32

stack_base , 12, 27
stack_size , 12, 27
standard I/O, 99
standards, 10, 80
start_routine , 13, 29
static storage, 108, 113
stdio , 25, 108
store buffer, 128
storing thread key value, 22, 24
streaming a tape drive, 97
strongly ordered memory, 126
suspending a new thread, 30, 36
swap space, 28
synchronization objects, 37 to 77

condition variables, 37, 48 to 59
mutex locks, 37 to 48
readers/writer locks, 60 to 66
semaphores, 37, 66 to 76

synchronous I/O, 96, 97
system calls

handling errors, 114
and LWPs, 10

system scheduling class, 82

T
tape drive, streaming, 97
terminating

a process, 18
threads, 20

terms, defined, 2
THR_BOUND, 30
thr_continue(3T) , 30, 36
thr_create(3T) , 12, 24, 27, 29, 36, 85
THR_DAEMON, 19, 30
THR_DETACHED, 18, 30
thr_exit(3T) , 17, 18, 20, 30
thr_getconcurrency(3T) , 33
thr_getprio(3T) , 34, 35
thr_getspecific(3T) , 22, 24, 25, 27
thr_join(3T) , 19, 20, 28, 96
thr_keycreate(3T) , 22, 26, 27

example, 26
thr_kill(3T) , 89, 105
thr_min_stack(3T) , 27, 29
THR_NEW_LWP, 30, 34, 85, 123
thr_self(3T) , 14
thr_setconcurrency(3T) , 30, 33, 85,

122, 124
thr_setprio(3T) , 35, 83, 85
thr_setspecific(3T) , 22, 23, 27

example, 26
thr_sigsetmask(3T) , 31, 89, 105
thr_suspend(3T) , 15, 36
THR_SUSPENDED, 13, 30, 36
thr_yield(3T) , 14, 36, 120
thread.h , 107
thread-directed signal, 90
thread-private storage, 6
threads

binding See bound threads
bound See bound threads
compute-bound, 33
concurrency See concurrency
creating, 12 to 14, 27 to 31, 123
daemon, 19, 30

170 Multithreaded Programming Guide—August 1994

threads (continued)
defined, 2
detached, 18, 21, 30
exit codes, 20
identifiers, 14, 18 to 20, 30, 31
initial, 18
joining, 18, 19
kernel-level, 6
keys See keys
library, 7, 11 to 77, 107
lightweight processes See lightweight

processes
maintaining TSD, 22
nondetached, 18 to 21
null, 29, 32
priority See priority
private data, 22
safety, 101 to 106
signals See signals
stacks See stack, 103
suspending, 30, 36
synchronizing, 37 to 77
terminating, 17 to 20
thread-specific data See thread-

specific data, 114
unbound See unbound threads
user-level, 2, 5, 6

thread-specific data, 22 to 26
global, 24, 25, 27
global into private, 25
maintaining, 22
new storage class, 114
private, 24

time slicing, 84
time-out, 53
timer, 9, 81
times, performance, 4
timeshare scheduling class, 82, 83, 84
tiuser.h , 108
TLI, 105, 108
tools

adb , 110
dbx , 111
debugger, 10, 111

tools (continued)
lock_lint , 44
truss , 10

total store order, 128
trap, 86
truss , 10
TS, See timeshare scheduling class
TSD, See thread-specific data

U
unbound threads, 82

alternate signal stacks, 86
caching, 122
concurrency, 33, 123
defined, 2, 9
disadvantage, 9
floating, 9
mixing with bound threads, 10
priorities, 34, 82
reasons not to bind, 122, 123
and scheduling, 82, 84, 85
and THR_NEW_LWP, 13
and thr_setconcurrency(3T) ,122
and thr_setprio(3T) , 83, 85

UNIX, 1, 5, 10, 87, 96, 98, 114
user space, 6
user-level threads, 2, 5, 6
USYNC_PROCESS, 39, 49, 61, 69, 75, 123
USYNC_THREAD, 39, 49, 61, 69, 75

V
V operation, 67
variables

condition, 37, 48 to 66, 77
global, 109, 114
local, 109
primitive, 38

verhogen, 67
vfork(2) , 81

Index 171

W
write(2) , 98, 99

X
XDR, 105

172 Multithreaded Programming Guide—August 1994

