
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Standards Conformance
Reference Manual

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc., a wholly
owned subsidiary of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. All other product
names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xiii

1. A Look at Some Standards Organizations 1

Institute of Electrical and Electronics Engineers (IEEE) and POSIX 1

X/Open . 2

National Institute of Standards and Technology (NIST). 3

International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC) 3

UniForum . 3

American National Standards Institute (ANSI) 4

2. UNIX System V Release
4-Based (SVR4) Specifications . 5

UNIX System V Release 4 (SVR4) . 5

Application Binary Interface . 6

SunOS Compliance With the ABI Specification 6

ABI Specifications and Related Publications 7

System V Interface Definition (SVID) . 8

iv Standards Conformance Reference Manual—August 1994

SunOS Compliance With SVID3 . 8

SVID Specification . 9

Device Driver Interface/Driver-Kernel Interface (DDI/DKI) . 9

SunOS Compliance with the Specification 9

DDI/DKI and DKI Specifications and Related Publications 9

Data Link Provider Interface (DLPI) . 10

SunOS Compliance With DLPI . 10

DLPI Specification . 10

Transport Provider Interface . 11

SunOS Compliance with TPI . 11

OPEN LOOK . 11

Solaris Compliance With OPEN LOOK 13

OPEN LOOK Specification and Related References 14

Licensing the OPEN LOOK Trademark 14

3. X11, PostScript and Sun Microsystems’ OpenWindows 15

X Window System, Version 11 (X11) . 15

PostScript Language . 16

Solaris Compliance With X11 . 17

Solaris Compliance with PostScript 17

X11 Specification and Related Publications 17

4. X/Open and XPG3 . 19

The X/Open Portability Guide, Issue 3 19

The X/Open Brand Trademark . 20

The X/Open Conformance Statement for Solaris 22

Contents v

X/Open Conformance Statement . 22

X/Open Specification and Related Publications 55

5. X/Open and XPG4 . 57

The X/Open Portability Guide, Issue 4 57

The X/Open Brand Trademark . 57

The X/Open Conformance Statement for Solaris 59

X/Open Conformance Statement . 59

6. POSIX.1. 83

Portable Operating System Interface for Computer Environments
(POSIX.1). 83

Amending POSIX.1: The IEEE Standard 1003.1b. 83

Scope . 84

C Standard Compliance . 84

Audience . 84

Notation Used in the Remainder of this Chapter 85

Implementation-Defined Areas of POSIX.1 85

POSIX.1 Section 1, General . 85

1.3.1 Implementation Conformance . 85

POSIX.1 Section 2, Terminology and General Requirements . . 86

2.2.2 General Terms . 86

2.3 General Concepts. 88

2.4 Error Numbers . 88

2.5 Primitive System Data Types . 90

2.6 Environment Description . 90

vi Standards Conformance Reference Manual—August 1994

2.7 C Language Definitions . 90

2.8 Numerical Limits . 91

2.9 Symbolic Constants . 93

POSIX.1 Section 3, Process Primitives . 94

3.1.1.2 Process Creation: Description. 94

3.1.1.4 Errors . 94

3.1.2.2 Execute a File: Description . 95

3.1.2.4 Execute a File: Errors . 96

3.2.1.2 Wait for Process Termination: Description 97

3.2.2.2 Terminate a Process: Description 97

3.3.1.1 Signal Names . 97

3.3.1.2 Signal Generation and Delivery. 98

3.3.1.3 Signal Actions. 99

3.3.2.2 Send a Signal to a Process: Description. 100

3.3.3.4 Manipulate Signal Sets: Errors 100

3.3.4.2 Examine and Change Signal Action: Description . . 100

3.3.6.4 Examine Pending Signals: Errors. 100

POSIX.1 Section 4, Process Environment 101

4.2.4.4 Get User Name: Errors . 101

4.4.1.2 Get System Name: Description 101

4.5.1.4 Get System Time: Errors . 101

4.6.1.4 Environment Variables: Errors 101

4.7.1.4 Generate Terminal Pathname: Errors 102

4.7.2.4 Determine Terminal Device Name: Errors 102

Contents vii

POSIX.1 Section 5, Files and Directories 102

5.1.1 Format of Directory Entries . 102

5.1.2.4 Directory Operations: Errors 102

5.2.2.4 Get Working Directory Pathname: Errors. 103

5.3.1.2 Open a File: Description . 104

5.3.3.2 Set File Creation Mask: Description 104

5.3.4.2 Link to a File: Description. 104

5.4.1.2 Make a Directory: Description 105

5.4.2.2 Make a FIFO Special File: Description 105

5.5.1.2 Remove Directory Entries: Description. 106

5.5.1.4 Remove Directory Entries: Errors 106

5.5.2.2 Remove a Directory: Description. 106

5.5.2.4 Remove a Directory: Errors . 107

5.5.3.2 Rename a File: Description . 107

5.5.3.4 Rename a File: Errors. 107

5.6.1.2 File Characteristics: File Modes 108

5.6.2.2 Get File Status: Description . 108

5.6.3.4 Check File Accessibility: Errors 108

5.6.4.2 Change File Modes: Description 108

5.6.5.2 Change Owner and Group of a File: Description . . 109

5.6.5.4 Change Owner and Group of a File: Errors 109

5.7.1.4 Get Configurable Pathname Variables: Errors 109

POSIX.1 Section 6, Input and Output Primitives 110

6.3.1.2 Close a File: Description . 110

viii Standards Conformance Reference Manual—August 1994

6.4.1.2 Read from a File: Description. 111

6.4.2.2 Write to a File: Description . 111

6.5.2.2 File Control: Description. 112

6.5.3.2 Reposition Read/Write File Offset: Description . . . 112

6.6 File Synchronization . 112

6.6.1.2 Synchronize a File’s State: Description 112

6.7.1.1 Data Definitions for Asynchronous Input and Output:
Asynchronous I/O Control Block 113

6.7.7.2 Cancel Asynchronous I/O Request: Description. . . 113

POSIX.1 Section 7, Device- and Class-Specific Functions 113

7.1 General Terminal Interface . 113

7.1.1.3 The Controlling Terminal . 114

7.1.1.5 Input Processing and Reading Data 114

7.1.1.6 Canonical Mode Input Processing 114

7.1.1.7 Noncanonical Mode Input Processing 115

7.1.1.8 Writing Data and Output Processing 115

7.1.1.9 Special Characters . 115

7.1.2.2 Input Modes . 116

7.1.2.3 Output Modes . 117

7.1.2.4 Control Modes . 118

7.1.2.5 Local Modes . 118

7.1.2.6 Special Control Characters . 119

7.1.3.4 Baud Rate Functions: Errors . 119

7.2.1.2 Get and Set State: Description 119

Contents ix

7.2.2.2 Line Control Functions: Description 119

POSIX.1 Section 8, Language-Specific Services for the C
Programming Language . 120

8.1.1 Referenced C Language Routines, Extensions to Time
Functions . 120

8.1.2.2 Extensions to setlocale(): Description 120

8.2.2.4 Open a Stream on a File Descriptor: Errors 121

8.2.3 Interactions of Other File-Type C Functions 121

8.3.2.2 Set Time Zones: Description . 121

POSIX.1 Section 9, System Databases . 122

9.1 System Databases. 122

9.2.1.4 Group Database Access: Errors 122

9.2.2.4 User Database Access: Errors 122

POSIX.1 Section 10, Data Interchange Format 123

10.1 Archive/Interchange File Format 123

10.1.1 Extended tar Format. 123

10.1.2.1 Header. 123

10.1.2.2 File Name . 124

10.1.3 Multiple Volumes . 124

POSIX.1 Section 11, Synchronization. 124

11.2.3.2 Initialize/Open a Named Semaphore: Description 124

POSIX.1 Section 12, Memory Management 125

12.1.1.2 Lock/Unlock a Process’s Address Space: Description
125

12.1.1.4 Lock/Unlock a Process’s Address Space: Errors . . 125

x Standards Conformance Reference Manual—August 1994

12.1.2.4 Lock/Unlock a Range of Process Address Space: Errors
126

12.2.1.2 Map Process Addresses to a Memory Object:
Description . 126

12.3.1.2 Open a Shared Memory Object: Description 126

12.4.1.1.1 Process Memory Locking: Models 126

POSIX.1 Section 13, Execution Scheduling 127

13.2 Scheduling Policies . 127

13.2.3 Scheduling Policies: SCHED_OTHER 127

13.3.1.2 Set Scheduling Parameters: Description 127

13.3.3.2 Set Scheduling Policy and Scheduling Parameters:
Description . 128

POSIX.1 Section 14, Clocks and Timers. 128

14.2.1.2 Clock and Timer Functions: Description. 128

14.2.2.2 Create a Per-Process Timer: Description 129

14.2.4.2 Per-Process Timers: Description. 129

POSIX.1 Section 15, Message Passing . 129

15.1.1. Data Definitions for Message Queues: Data Structures
129

15.2.1.2 Open a Message Queue: Description. 130

7. De Jure Standards . 131

ANSI C Programming Language . 131

Compliance With the ANSI C Standard 132

ANSI C Specification and Related Publications. 132

ANSI/IEEE 754 . 132

Compliance With ANSI/IEEE 754. 132

Contents xi

ANSI/IEEE 754-1985 Specification and Related Publications 133

International Standards Organization (ISO) 8859-1. 133

Compliance With ISO 8859-1 . 133

ISO 8859 Standard . 133

Federal Information Processing Standard (FIPS) 151 134

Compliance With FIPS 151 . 134

FIPS 151 Specification . 134

Federal Information Processing Standard (FIPS) 158 134

Compliance With FIPS 158 . 135

FIPS 158 Specification and Related Publications 135

The Application Binary Interface (ABI) 135

Compliance With the ABI . 136

ABI Publication . 136

SPARC Compliance Definition (SCD) . 136

Compliance With the SCD . 136

SPARC Compliance Definition Specification 136

xii Standards Conformance Reference Manual—August 1994

xiii

Preface

Solaris™ is Sun Microsystem’s integrated computing environment that
includes the SunOS™ operating system, OpenWindows™ and numerous
bundled utilities. SunOS is compliant with the System V Interface Definition,
Issue 3 from UNIX® System Laboratories.

This book is part of the Solaris documentation set. It discusses the compliance
of Solaris 2.4 and the SunOS 5.4 operating system to the following
specifications and standards:

• Application Binary Interface (ABI)
• System V Interface Definition, Issue 3 (SVID)
• Device Driver Interface/Driver-Kernel Interface (DDI/DKI)
• Data Link Provider Interface (DLPI)
• Transport Provider Interface (TPI)
• OPEN LOOK® Graphical User Interface (GUI)
• X Window System™ Protocol, Version 11 (X11)
• X/Open™ XPG3 BASE
• X/Open XPG4 BASE
• ANSI/IEEE Standard 1003.1–1990 – (POSIX.1)
• ANSI C Programming Language
• International Standards Organization (ISO) 8859-1
• Federal Information Processing Standard 151 (FIPS 151)
• Federal Information Processing Standard 158 (FIPS 158)
• ANSI/IEEE Standard 754
• SPARC Compliance Definition 2.1 (SCD 2.1)

xiv Standards Conformance Reference Manual—August 1994

Chapter 1 of this book introduces the organizations responsible for the
specifications and standards covered in this guide. Chapters 2 through 7
discuss the specifications and standards; a brief account of each specification or
standard is followed by a statement of compliance with it.

1

A Look at Some Standards
Organizations 1

This chapter briefly discusses the histories of organizations responsible for the
specifications and standards discussed in this guide. SunSoft recognizes the
importance of compliance with existing and evolving standards and is firmly
committed to support and participate in ongoing efforts toward
standardization.

Institute of Electrical and Electronics Engineers (IEEE) and POSIX
A group of UNIX systems users, /usr/group, established a committee with the
objective of proposing a set of standards for application level interfaces. After
publishing the 1984 /usr/group Standard, the group decided to seek
international status for the standard. In early 1984, the /usr/group Standards
Committee closed its activities in its own name and its members were
encouraged to become involved in the IEEE POSIX committee so that the work
could become the basis for an official international standard.

The first externally visible result of this initiative was the publication of the
IEEE Trial-Use Standard in March 1986. Formal approval followed in August
1988 of IEEE Standard 1003.1-1988, a “Portable Operating System Interface for
Computer Environments” (POSIX), which became the first step toward a truly
portable operating system standard.

Although originally planned to refer to the IEEE Standard 1003.1-1988, the
name POSIX has come to refer to the whole family of related standards and
parts of the International Standard ISO/IEC 9945. POSIX.1 has emerged as the
preferred reference to IEEE Standard 1003.1-1990. An update to the 1988

2 Standards Conformance Reference Manual—August 1994

1

standard, IEEE Standard 1003.1-1990, was also adopted as International
Standard ISO/IEC 9945-1:1990 by the International Organization for
Standardization (ISO) and by the International Electrotechnical Commission
(IEC).

Chapter 6 of this guide discusses the compliance of Solaris software with IEEE
Standard 1003.1-1990.

Note – Use of an IEEE standard is voluntary.

X/Open
Founded in 1984, X/Open™ is a worldwide consortium of system vendors,
ISVs and users, organized to adopt existing standards and adapt them into a
consistent environment called the Common Applications Environment (CAE).
Through establishment of the CAE and awarding of the X/Open brand
trademark to products that comply with the X/Open definitions, X/Open aims
to ensure portability and connectivity of applications. Where there is no official
standard, it is X/Open policy to work closely with standards bodies to
encourage the emergence of common standards.

Many of the world’s major hardware suppliers, including Sun Microsystems,
are X/Open members. Most of X/Open’s technical work is accomplished by
personnel from its member companies.

X/Open publishes its specifications in the X/Open Portability Guide (XPG).
XPG defines the interfaces identified as components of the Common
Applications Environment. It contains an evolving portfolio of practical
applications programming interfaces (APIs), which enhance portability of
application programs at the source code level. The interfaces are supported by
an extensive set of conformance tests and the distinct X/Open brand
trademark. The X/Open Portability Guide Version 3 (XPG3) encompasses the
IEEE POSIX.1 operating system interface and numerous extensions. Version 4
includes POSIX.2.

Chapter 4 of this guide discusses the compliance of Solaris to the programming
interface specifications presented in the X/Open Portability Guide, Issue 3.

Chapter 5 of this guide discusses the compliance of Solaris to the programming
interface specifications presented in the X/Open Portability Guide, Issue 4.

A Look at Some Standards Organizations 3

1

National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology, (formerly the National
Bureau of Standards), is a federal government agency that issues Federal
Information Processing Standards Publications (FIPS PUBS). Standards are first
approved by the Secretary of Commerce according to Section 111(d) of the
Federal Property and Administrative Services Act of 1949, as amended by the
Computer Security Act of 1987, Public Law 100-235.

International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC)

The International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) together form a system for worldwide
standardization. National bodies that are members of ISO or IEC participate in
the development of international standards through technical committees
established by ISO and IEC to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest.
Other governmental and nongovernmental international organizations also
take part in the work.

UniForum
UniForum, formerly /usr/group, is an association of individuals, corporations
and institutions with an interest in open systems. This organization provides
input to POSIX and other standards committees and consortia to aid in the
development of independent industry-driven standards. UniForum has more
than 10,000 members representing a cross-section of the UNIX system
community. The membership includes hardware manufacturers, vendors of
operating systems and software development tools, software designers,
consultants, academics, authors and applications programmers, among others.

4 Standards Conformance Reference Manual—August 1994

1

American National Standards Institute (ANSI)
The American National Standards Institute (ANSI) verifies that requirements
for due process, consensus and other criteria for approval have been met by
the standards developer before it grants a standard approval as an American
National Standard.

Consensus is established when the ANSI Board of Standards Review
determines that the criteria for standards approval has been met by the
standards development organizations. Consensus requires that all views and
objections be considered and that a concerted effort be made toward their
resolution.

ANSI does not develop standards, nor does it interpret any American National
Standards.

Note – Use of an American National Standard is voluntary.

5

UNIX System V Release
4-Based (SVR4) Specifications 2

This chapter provides an introduction to UNIX System V Release 4 (SVR4),
discusses related specifications and identifies how the SunOS operating system
and OpenWindows conform to those specifications.

UNIX System V Release 4 (SVR4)
The UNIX operating system was developed by Ritchie and Thompson at Bell
Laboratories in the early 1970s. From 1977 to 1982, Bell Laboratories combined
several variants of the UNIX system devised by American Telephone and
Telegraph (AT&T), into a single system, known commercially as UNIX System
III. Bell Laboratories later added several features to UNIX System III, calling
the new product UNIX System V, and AT&T announced official support for
System V in January 1983.

UNIX System V Release 4 (SVR4), the result of a cooperative venture entered
into by Sun Microsystems and AT&T, was announced in November of 1989.
SVR4 is a synthesis of the best functionality of AT&T’s UNIX System V Release
3, Berkeley Software Distribution 4.3, Sun’s SunOS releases and Microsoft’s
XENIX®. SVR4 provides the notions of a consistent Application Programming
Interface (API) and a single Application Binary Interface (ABI) for each
hardware platform. It offers scalability that allows users, depending on their
needs, to move to larger or smaller machines while still using the same
environment.

6 Standards Conformance Reference Manual—August 1994

2

Application Binary Interface
The System V Application Binary Interface (ABI) defines a standard binary
interface for compiled applications on systems that implement UNIX System V
Release 4 or other operating systems that comply with the System V Interface
Definition, Third Edition.1

The ABI defines a binary interface for application programs that are compiled
and packaged for System V implementations on different hardware
architectures. Because a binary specification must include information
particular to the computer processor architecture for which it is intended, it is
not possible for a single document to specify the interface for all possible
System V implementations. Therefore, the System V ABI is a family of
specifications.

The System V ABI is composed of two basic parts: a generic part that is a
source-level interface which describes those aspects that remain constant across
all hardware implementations of System V, and a processor-specific part that
provides a complete binary interface for specific CPU architectures. Together,
the generic ABI and the processor-specific supplement for a single hardware
architecture provide a complete interface specification for compiled application
programs on systems that share a common hardware architecture.

Software that is ABI-compliant for a particular architecture runs unchanged in
its binary form on any ABI-compliant machine of that architecture. Also, this
software is source compatible with any other ABI-compliant system and runs
unchanged after compilation on the target system.

SunOS Compliance With the ABI Specification

The SunOS operating system is compliant with both the generic ABI as defined
in the AT&T System V Application Binary Interface: Generic ABI (ISBN 0-13-
100439-5) and the processor-specific part of the ABI as defined in the
Application Binary Interface SPARC Processor Supplement (ISBN 0-13-104696-9) or
the Application Binary Interface Intel 386 Processor Supplement (ISBN 0-13-104670-
5) , depending on the underlying hardware architecture.

1. The System V Interface Definition, Third Edition is also referred to as SVID89 and SVID3.

UNIX System V Release 4-Based (SVR4) Specifications 7

2

ABI Specifications and Related Publications

The following documents comprise the ABI specification for the SunOS
operating system:

• AT&T System V Application Binary Interface: Generic ABI

• AT&T System V Application Binary Interface SPARC Processor Supplement

• AT&T System V Application Binary Interface Intel 386 Processor Supplement

The documents listed above refer to other specifications and standards, some
of which are identified below:

• The System V Interface Definition, Third Edition

• The IEEE Std. 1003.1-1990 Portable Operating System Interface (POSIX.1)-
Part 1: System Application Program Interface [C Language]

• The IEEE Std 754-1985 Floating Point Processing Specification

• The X/Open Portability Guide, Issue 3

• The X/Open Portability Guide, Issue 4

• The ANSI Std. X3.159-1989 C Language Specification

• The X11 X Window System Graphical User Interface Specification

• The SPARC Architecture Manual, Version 8

• i486 MICROPROCESSOR Programmer’s Reference Manual

• 80386 Programmer’s Reference Manual

• 80387 Programmer’s Reference Manual

 These specifications and standards are discussed elsewhere in this manual.

8 Standards Conformance Reference Manual—August 1994

2

System V Interface Definition (SVID)
The System V Interface Definition (SVID), first published by AT&T in 1985,
represented a major standards initiative. AT&T was a prominent member of
/usr/group and the influence of /usr/group is evident in the SVID.

The SVID specifies an operating system environment that allows users to
create applications software that is independent of any particular computer
hardware. It specifies the operating system components available to both end-
users and application programs and defines the functionality, but not the
implementation, of components. The SVID specifies the source code interfaces
of each operating system component, as well as the runtime behavior seen by
an application program or an end-user.

The SVID is compliant with IEEE Std. 1003.1-1990 (POSIX.1) and will continue
to evolve towards compliance with other appropriate industry standards as
they are approved.

An application using only components defined in the SVID will be compatible
with and portable to any computer that supports the SVID. The SVID is
organized into a Base System Definition with a series of Extension Definitions.
The Base System Definition specifies the components that all System V
operating systems must provide. The extensions to the Base System are not
required.

All conforming systems must support the source-code interfaces and runtime
behavior of all the components of the Base System. A system may conform to
none or some extensions. All of the required components must be present for a
system to meet the requirements of the extension.

SunOS Compliance With SVID3

The SunOS operating system is compatible with the Base System of the System
V Interface Definition, Third Edition. Writing to SVID3 ensures that your
applications will be source compatible. Applications that are SVID3 compliant
will compile and run on the SunOS operating system.

The SunOS operating system meets all SVID requirements for the following:
Base System, Basic Utilities, Kernel, Network Services, Terminal Interface
Extensions, Advanced Utilities, and Software Development Extensions.

UNIX System V Release 4-Based (SVR4) Specifications 9

2

SVID Specification

System V Interface Definition, Third Edition, Volumes 1-4, AT&T

Device Driver Interface/Driver-Kernel Interface (DDI/DKI)
The Solaris 2.4 DDI, Device Driver Interface and DKI, Driver-Kernel Interface,
comprise a set of standard interfaces for device drivers. SVR4 requires that
each vendor provide and document a hardware-specific DDI. The Solaris 2.4
DDI is a set of device driver interfaces defined by SunSoft that meets that
requirement. The DKI is intrinsic to System V, Release 4 (SVR4). The DKI is
divided into two parts: the set of interfaces called DDI/DKI that will continue
to be supported in future release of System V and the set of interfaces called
DKI only that may not be supported in the future.

SunOS Compliance with the Specification

The SunOS implementation of the DDI/DKI and DKI-only interfaces for device
drivers is compliant with the specification described in the UNIX System V
Release 4 Device Driver Interface/Driver-Kernel Interface (DDI/DKI) Reference
Manual.

DDI/DKI and DKI Specifications and Related Publications

The following manuals describe the DDI and DKI interfaces.

• DDI interfaces are described in the Writing Device Drivers.

• For detailed information on how to write device drivers to these interfaces,
see Writing Device Drivers.

• The DKI interfaces are specified in The UNIX System V Release 4 Device
Driver Interface/Driver-Kernel Interface (DDI/DKI) Reference Manual.

10 Standards Conformance Reference Manual—August 1994

2

Data Link Provider Interface (DLPI)
The SVR4 STREAMS-based Data Link Provider Interface (DLPI) is a kernel-
level interface that supports the services of the Data Link Layer for both
connection-mode and connectionless-mode services. The specification, A
STREAMS-Based Data Link Provider Interface, Version 2, designates the format
for a set of messages between the data link provider and the data link user. The
DLPI header, <dlpi.h >, is part of SVR4 and is included with this SunOS
release.

DLPI enables a data link service user to access and use any of a variety of
conforming data link service providers without special knowledge of the
provider’s protocol. Specifically, the interface is intended to support X.25,
LAPB, BX.25 level 2, SDLC, ISDN, LAPD, Ethernet™, CSMA/CD, token ring,
token bus, Bisync, FDDI, and other data link protocols.

SunOS Compliance With DLPI

The SunOS operating system is compliant with the DLPI specification, Version
2, 1991, revised by the Open Systems Interconnection Working Group
(OSIWG), a working group within UNIX International (UI). The version 2
<dlpi.h > header is delivered with SunOS.

DLPI Specification

The following specification is based on the DLPI specification and includes
version 2 of the <dlpi.h > header.

A STREAMS-Based Data Link Provider Interface -Version 2, UNIX International

UNIX System V Release 4-Based (SVR4) Specifications 11

2

Transport Provider Interface
The Transport Provider Interface (TPI) consists of the kernel components of the
Transport Level Interface. TPI specifies the transport service interface in terms
of STREAMS messages. The TPI structure is described in the TPI specification
for System V Release 4.0.

SunOS Compliance with TPI

The SunOS operating system is entirely compliant with the Transport Provider
Interface and intends to remain compliant as TPI continues to evolve. The
X/Open Transport Interface (XTI), which was based on and evolved from the
Transport Level Interface (TLI), will influence the evolution of TPI. (It is the
intention of SunSoft to be compliant with XTI in the near future.)

OPEN LOOK
The OPEN LOOK Graphical User Interface (GUI) was developed by Sun
Microsystems in partnership with AT&T. In July 1988, Sun and AT&T
distributed more than 1000 copies of the OPEN LOOK specification draft to
UNIX system users for review. The comments received from the industry were
used to create the final version of the OPEN LOOK specification.

OPEN LOOK is a specification for a user interface within a window
environment based on the pioneering work done on graphical user interfaces
at Xerox PARC in the 1970s. A graphical user interface standard describes how
applications appear on the screen and their behavior in relation to the user. The
OPEN LOOK GUI was designed to provide a simple, consistent and efficient
interface.

The OPEN LOOK GUI uses windows and menus with common graphic
symbols instead of typed system commands to provide an intuitive
environment with a consistent screen layout that can be used across various
platforms and operating systems. OPEN LOOK has become the standard look
and feel for bit-mapped displays under UNIX System V Release 4.

OPEN LOOK compliance has two components: toolkit compliance and
environment compliance. There are three types of software that fit within these
two categories: toolkits, applications, and environments. Because most
applications are built using toolkits, they usually assume the level of

12 Standards Conformance Reference Manual—August 1994

2

compliance characteristic of the toolkit used to create them. Toolkits,
applications and environments as understood in OPEN LOOK parlance are
described below:

• Toolkits. A toolkit is a set of programming components used to build OPEN
LOOK GUI applications. It consists of a high-level programming interface
that provides the elements required to build a user interface. Toolkits
provide a set of routines that implement the various interface elements as
defined by the specification. The application developer uses the routines
provided by the toolkit to create and position the interface elements as
needed. The toolkit makes application development easier and ensures that
the user interface remains consistent by using the same building blocks.
Toolkits help developers create user-interface prototypes by providing a
simple and easy-to-use programming interface.

• Applications. An application is a program or set of programs designed to
perform a specific task. Applications are built using a user-interface toolkit
or other developer tools. While it is possible for the application developer to
implement the OPEN LOOK User Interface (UI) without a toolkit, the usual
approach is to use a toolkit written for a specific windowing platform.
Together, applications and their use of the toolkit define the way programs
look and feel to users.

• Environments. An environment is a program or set of programs that effect
the design and operation of an OPEN LOOK GUI implementation. An
OPEN LOOK compliant environment consists of an OPEN LOOK User
Interface (UI) window manager, file manager, workspace properties window
and other utility programs.

To guarantee an OPEN LOOK GUI-compliant application, the developer must
write the application with an OPEN LOOK GUI compliant toolkit and run the
application in a compliant OPEN LOOK GUI environment.

Trademark licensing is available for the following three levels of OPEN LOOK
certification:

• Level 1: This level contains all the essential components of a complete user
interface. It delineates the minimum features required to certify an
implementation as OPEN LOOK GUI compliant. Among the features
covered in Level 1 are window types and properties, menu formats, and
mouse and keyboard.

UNIX System V Release 4-Based (SVR4) Specifications 13

2

• Level 2: Compliance with Level 2 requires the presence of all of the features
comprising Level 1 and additional features mandatory for Level 2. These
include abbreviated buttons, nonstandard window types, scrollbars and
icon settings for color implementations.

• Level 3: Level 3 is a superset of Level 2. This level requires that an
application contain certain specialized features and a process manager for
extending the functionality of the OPEN LOOK GUI.

For a complete list of the required features for each level, see “Appendix A,
Certification” in the OPEN LOOK Graphical User Interface Functional
Specification.

Solaris Compliance With OPEN LOOK

The Sun GUI is a superset of OPEN LOOK and includes Sun value-added
features. In moving toward full support of the Sun GUI, all required OPEN
LOOK features will be supported by Sun at all levels.

OpenWindows implements the OPEN LOOK GUI standard. OpenWindows
implements both the 2-D and 3-D OPEN LOOK GUI standard.

OpenWindows is a component of Solaris 2.4. The OPEN LOOK components
indicated below implement the OPEN LOOK GUI.

• OPEN LOOK Intrinsics Toolkit (OLIT): The OPEN LOOK Intrinsics Toolkit
was created by building a set of widgets for the X Toolkit Intrinsics (Xt) that
conform to the OPEN LOOK GUI specification. The OPEN LOOK Intrinsics
Toolkit API matches the X11 Release 4 Xt Intrinsics programming interface.
For Solaris 2.4, OLIT is Level 2 compliant with certain exceptions.

• XView 3.3 Toolkit (X11-based Visual/Integrated Environment for
Workstations): XView is an X11 toolkit for building applications. The XView
API is is based upon Xlib, the lowest level of programming available to the
X window system programmer. XView implements the OPEN LOOK GUI.
For Solaris 2.4, XView is Level 2 compliant with certain exceptions.

• OpenWindows DeskSet: OpenWindows includes a set of OPEN LOOK
applications that are collectively known as the DeskSet environment. All of
the DeskSet applications support the OPEN LOOK model of dragging and
dropping objects. The File Manager DeskSet tool is required by the OPEN

14 Standards Conformance Reference Manual—August 1994

2

LOOK standard for Level 2 compliance; it represents files (including
directories and applications) with glyphs. The OpenWindows DeskSet File
Manager program fulfills the Level 2 compliance requirement.

OPEN LOOK Specification and Related References

The specifications listed below address OPEN LOOK. They are published by
Addison-Wesley.

• OPEN LOOK Graphical User Interface Functional Specification (ISBN 0-201-
52365-5)

• OPEN LOOK Graphical User Interface Application Style Guidelines (ISBN 0-201-
52364-7)

Licensing the OPEN LOOK Trademark

OPEN LOOK is a trademark of UNIX System Laboratories (USL), a wholly
owned subsidiary of Novell, Inc. The Trademark License Agreement is the
contract entered into by OPEN LOOK trademark applicants and USL. As a
developer of OPEN LOOK applications, you may wish to license the OPEN
LOOK trademark. USL has developed a trademark agreement as a formality to
protect the trademark. To obtain the use of the OPEN LOOK trademark, follow
the recommendations described below; no payment is required.

• For information on how to develop an OPEN LOOK application, refer to the
OPEN LOOK Graphical User Interface Functional Specification that is delivered
with OpenWindows.

• To receive your “OPEN LOOK Graphical User Interface Trademark License
Agreement” forms, call 1 (800) 828-UNIX. If you are a UNIX system licensee,
ask for your account representative. Otherwise, a sales associate will handle
your request. After an authorized representative of your company signs the
agreement, send it to USL at the following address:

UNIX System Laboratories
Attention: Sales Associate (or the name of your account representative)

PO Box 25000
Greensboro, NC 27420-5000.

Within 30 days, USL will send you an executed agreement authorizing you
to use the OPEN LOOK trademark on your software.

15

X11, PostScript and Sun
Microsystems’ OpenWindows 3

This chapter discusses the X Window System, Version 11 (X11) and the parts of
OpenWindows 3.4 that implement aspects of X11.

X Window System, Version 11 (X11)
The X Window System, Version 11 (X11), developed by the Massachusetts
Institute of Technology (MIT) X Consortium includes the following
specifications: the Xlib C Language Interface (Xlib), the X Toolkit Intrinsics C
Language Interface (Xt), and the Bitmap Distribution Format 2.1 (BDF).

X11 is a network-based protocol. A client application can run on the same or
different system from the server that controls the display. In this server-client
model, the application (which may run on one machine) is referred to as the
window client. The system on which the user-interface is displayed may be a
different machine and is referred to as the display host or window server.

Window systems are usually based on a pixel imaging model or a stencil/paint
imaging model. The imaging model layer of the windows architecture controls
how the window system accesses the display. X11 uses a pixel-based (raster)
model in which images are viewed as rectangular areas of device-dependent
pixels.

The Xlib library routines communicate with the X11 server via the X protocol.
Xlib is the lowest-level C language application programming interface (API) to
the X protocol.

16 Standards Conformance Reference Manual—August 1994

3

The main task of Xlib is to translate C data structures and procedures into X
protocol events; it sends them off and receives protocol packets in return that
are unpacked into C data structures. Xlib provides full access to the capabilities
of the X protocol but does little to make programming easier. It handles the
interface between an application and the network and includes some
optimizations that encourage efficient network usage.

Because application development at the Xlib level can be tedious, MIT
developed the X toolkit, Xt. The designers of Xt were aware that the toolkit
would need to support a variety of graphical user interface standards. For this
reason, Xt was divided into two portions. The first portion is a prebuilt set of
user interface components known as widgets. The second portion is the
programmer interface for manipulating widgets, known as intrinsics.

Although it is device-independent, X11 allows an application to tailor itself to
the hardware on which it is run.

PostScript Language
The PostScript™ language, from Adobe Systems Inc., is the modern standard
for electronic printing. The first edition of the PostScript Language Reference
Manual, published in 1985 by Addison and Wesley, established PostScript Level
One. Today, PostScript is supported as a standard by all major computer,
printer and imagesetter vendors.

Numerous extensions were requested by the industry, so, in 1990, the second
edition of the reference manual was published. It describes three major
extensions to PostScript Level One: (1) An extension to deal with color output,
(2) A composite font model, mainly used for very large fonts (for example,
Asian languages) and (3) A set of extensions for screen output, called the
Display PostScript™ system, or DPS. DPS displays graphical information on
the computer screen with the same imaging model and PostScript language
that are the standards for printers and typesetters.

These major extensions and a large number of minor ones comprise PostScript
Level Two, often referred to as PS2 or PSL2.

X11, PostScript and Sun Microsystems’ OpenWindows 17

3

Solaris Compliance With X11

OpenWindows consists of the OpenWindows server, the Display PostScript™
(DPS) extension support, the OpenFonts™ Technology, the OPEN LOOK
window manager (olwm), the XView Toolkit, the OPEN LOOK Intrinsics
Toolkit (OLIT), the DeskSet™ tools, and demonstration applications.

The OpenWindows server and the associated X libraries, which include Xlib
and Xt, are compliant with X11, Release 5.

The OPEN LOOK Intrinsics Toolkit API is an implementation of MIT’s Xt
toolkit with an OPEN LOOK widget set. AT&T created the OPEN LOOK
Intrinsics Toolkit by building a set of widgets for Xt that conform to the OPEN
LOOK GUI specification.

The XView toolkit (X Window System-based Visual/Integrated Environment
for Workstations) is a C-language toolkit providing a rich set of components
for building applications. Like the Intrinsics, XView is built on Xlib. SunSoft
has made the source code to the XView Toolkit freely available. It is shipped as
part of the standard MIT X distribution and with UNIX System V Release 4.

OpenWindows, through the OPEN LOOK window manager, fully supports the
X11 Inter-Client Communications Conventions (ICCC) as defined in X11
Release 5. The ICCC manual provides basic policy intentionally omitted from X
itself, such as rules for transferring data between applications, transfer of
keyboard focus, layout schemes, colormap installation and other features.

Solaris Compliance with PostScript

The OpenWindows server is a complete implementation of PostScript Level
Two. The Display PostScript system is implemented as an extension to the X
Window System and includes the following enhancements:

• Support for F3 Latin and Asian fonts

• Support for obtaining prescaled bitmap font formats from X11 font code

X11 Specification and Related Publications

The first publication listed below defines the X11 protocol specification; it is
also defined in subsequent supplements supplied with X11 Release 5.

• X Window System Third Edition, Schiefler & Gettys, Digital Press, 1992

18 Standards Conformance Reference Manual—August 1994

3

• XView Programming Manual, O’Reilly & Associates, Inc., 1989

• XView Reference Manual, O’Reilly & Associates, Inc.

• PostScript Language Reference Manual, Second Edition, Addison-Wesley

• XView Developer’s Notes, Sun Microsystems, Inc.

• OpenWindows Reference Manual, Sun Microsystems, Inc.

• Desktop Integration Guide, Sun Microsystems, Inc.

19

X/Open and XPG3 4

The X/Open consortium was established to make multivendor open systems a
practical reality. X/Open takes existing standard interfaces and adapts them to
the specifics of open systems. These interfaces comprise what is known as the
Common Applications Environment (CAE) and are documented in the
X/Open Portability Guide.

This chapter discusses the compliance of Solaris 2.4 to the programming
interface specifications detailed in the X/Open Portability Guide, Issue 3
(XPG3).

The X/Open Portability Guide, Issue 3

 In 1988, X/Open published the X/Open Portability Guide Issue 3, commonly
referred to as “XPG3”. It is a collection of seven volumes that includes the
interfaces specified in the IEEE 1003.1-1988 POSIX standard.

Adherence to the programming interface specifications contained in XPG3
ensures application portability at the source code level. Compliance with these
interfaces is determined through an extensive set of conformance tests and is
assured through the X/Open branding process which entitles a product to bear
the X/Open trademark.

Note – In 1992, X/Open published Issue 4 of the Portability Guide, (XPG4). It
retains compliance to the IEEE 1003.1-1988 standard but is extended to the
ISO/IEC updated POSIX.1 standard and the ISO/IEC C language standard.

20 Standards Conformance Reference Manual—August 1994

4

While XPG3 is still available and systems and components can still be branded
to XPG3, XPG4 offers significant additional capability. For more information on
XPG4, see Chapter 5,“X/Open and XPG4”.

This chapter identifies Solaris 2.4 as a conforming implementation of XPG3,
and displays the XPG3 Base brand trademark. It also presents the X/Open
Conformance Statement, which documents Solaris’ compliance to the
programming interface specifications of the X/Open Portability Guide, Issue 3.

The X/Open Brand Trademark

X/Open provides a verification and branding program that developers can use
to show that their products are X/Open compliant. Sun Microsystems has been
a strong supporter of the X/Open branding process since its inception.

Components of the Common Applications Environment are categorized into
three levels: BASE, PLUS, and OPTIONS. A system that provides all of the
BASE components is awarded an XPG3 BASE profile trademark. A system that
implements all of the BASE and PLUS components may bear the XPG3 PLUS
profile trademark.

Figure 4-1 The XPG3 Base Brand Logo

Solaris has earned the XPG3 BASE brand. Solaris products and software
products from independent software vendors that have received XPG3
branding are described below:

• Window Management (OpenWindows)—The Solaris window system,
which supports the OPEN LOOK Graphical User Interface, has earned the
XPG3 brand by implementing the programmer’s interface to the X Window
System. OpenWindows supports the Window Management component of
the X/Open PLUS level.

• Commands and Utilities—X/Open’s specification of standard interfaces for
utilities allows for portable shell scripts. Solaris meets the Commands and
Utilities component requirements of the BASE system.

X/Open and XPG3 21

4

• ProCompiler™ C 2.0.1— The ProCompiler for Solaris for x86 is fully
conformant with the ANSI/ISO Standard for C. It has passed X/Open
verification test suite VSX3 and meets the C Language component
requirements of the BASE level.

• SPARCompiler C 2.0.1—The SPARCompiler for the C programming
language based on Common Usage C has passed X/Open verification test
suite VSX4.2.4 and meets the C Language component requirements of the
BASE level.

• Sun FORTRAN 3.0—Sun’s compiler for the FORTRAN programming
language is fully compliant with the definition in the American National
Standards Institute (ANSI) document and carries the XPG3 brand when run
on Solaris.

• Sun Pascal 3.0.1—Sun’s compiler for the Pascal programming language is
fully compliant with the ISO standard and carries the XPG3 brand when run
on Solaris.

• Magnetic Media (Source Code Transfer)—Sun conforms to X/Open’s
specifications for transferring source code between machines with
compatible media and facilitating the transfer of source code in machine-
readable form. Solaris supports the Source Code Transfer component of the
X/Open OPTIONS level.

• Inter-Process Communication—Sun supports X/Open’s specifications for
interfaces providing message queue, semaphore and shared memory
facilities for communication and synchronization between processes. The
SunOS operating system fulfills the requirements of the Inter-Process
Communications component of the X/Open OPTIONS level.

• Terminal Interfaces (XSI Curses Interface)—The XSI Curses Interface meets
X/Open’s specifications for providing a generic terminal interface that is
independent of terminal hardware or connection methods for updating
screens on character-oriented and block-oriented terminals. Solaris systems
fulfill the requirements of the Terminal Interfaces component of the X/Open
OPTIONS level.

22 Standards Conformance Reference Manual—August 1994

4

The X/Open Conformance Statement for Solaris
The remaining pages of this chapter feature the X/Open Conformance
Statement for Solaris.

X/Open Conformance Statement

X/OPEN Conformance Statement Questionnaire

Chapter 2: INTERNATIONALIZED SYSTEM CALLS AND
HEADERS

PRODUCT IDENTIFICATION

Product Identification Solaris

Version/Release No. 2.4

If you do not supply this component yourself, please identify below the
supplier you reference.

CONFORMANCE REFERENCE

Indicator of Compliance

VSX Test Suite Release VSX 4.3.2

Testing Agency Name SunSoft, A Sun Microsystems, Inc. Business

Address 2550 Garcia Avenue
Mountain View CA 94043

ENVIRONMENT SPECIFICATION

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behaviour and
any test results to be reproduced.

X/Open and XPG3 23

4

SPARC

SPARC running Solaris 2.4. Installation procedures are provided in
SPARC: Installing Solaris Software

To reproduce the test environment, do these steps:

1. Edit the /etc/saf/zsmon/_pmtab file to turn off the ttysoftcarrier
detect:

Change the ttya and ttyb fields from :y: to :n: . (The colons (:) act as
field separators).

2. Verify that the ttymodes settings in the /kernel/drv/options.conf file
are set to:

2502:1805:bd:8a3b:3:1c:7f:15:4:0:0:0:11:13:la:19:12:f:17:16

3. Disable ypbind to allow rebooting of the system:

a. cd /usr/lib/netsvc/yp

b. mv ypbind ypbind-

4. Set the eeprom variables that affect the tty :

a. On the keyboard, hit STOP-A to display the prom prompt.

b. At the prompt, execute the following steps:

setenv ttya-ignore-cd false
setenv ttyb-ignore-cd false
setenv ttya-rts-dtr-off false
setenv ttyb-rts-dtr-off false

5. Reboot the system

Note – When installing Solaris, set the time zone by selecting a time zone
format that conforms to the POSIX.1 format for TZ defined on Page 152 and
Page 153 of the IEEE Std. 1003.1–1990.

24 Standards Conformance Reference Manual—August 1994

4

x86

x86 running Solaris 2.4. Installation procedures are provided in x86: Installing
Solaris Software.

To reproduce the test environment, do these steps:

1. Become root .

2. Ensure the correct serial port links:

• /dev/ttya should be a link to /devices/isa/asy@3f8,0:a
• /dev/term/a should be a link to /devices/isa/asy@3f8,0:a
• /dev/tty00 should be a link to /devices/isa/asy@3f8,0:a
• /dev/ttyb should be a link to /devices/isa/asy@2f8,0:a
• /dev/term/b should be a link to /devices/isa/asy@2f8,0:a
• /dev/tty01 should be a link to /devices/isa/asy@2f8,0:b

a. If the /dev/tty01 link is missing, perform the following:

• Edit /kernel/drv/asy.conf and uncomment the COM2 entry
• # touch /reconfigure

3. Set the correct serial port permissions:

• # chmod 666 /devices/eisa/asy*

4. Turn off the ttysoftcarrier detect:
Using an editor such as vi , in the /etc/saf/zsmon/_pmtab file, change
the next to last field for both the ttya entry and the ttyb entry from y to n
(the colon (:) acts as the field separator):

• # vi /etc/saf/zsmon/_pmtab

5. Reboot the system.

Note – When installing Solaris, set the time zone by selecting a time zone
format that conforms to the POSIX.1 format for TZ defined on Page 152 and
Page 153 of the IEEE Std. 1003.1–1990.

X/Open and XPG3 25

4

TEMPORARY WAIVERS

List below references to any temporary waivers granted by X/Open in respect
of minor errors in the product referenced above. This should include the
X/Open reference and the waiver expiration date. The waivers as granted shall
be made available with this document on request.

There are no temporary waivers.

Section 2.1: GENERAL ATTRIBUTES

2.1.1 POSIX.1 SUPPORTED FEATURES

Question 1: Which of the following options, specified in the <unistd.h > header
file are available on the system?

Answer:

Macro Name Meaning Provided

_POSIX_CHOWN_RESTRICTED The use of chown() Variable
is restricted

_POSIX_JOB_CONTROL Job Control option Yes

_POSIX_NO_TRUNC Long pathname Variable
components generate
an error

_POSIX_SAVED_IDS Effective user and group Yes
IDs are saved

_POSIX_VDISABLE Terminal special Variable
characters can be disabled

When native SunOS file systems and terminal drivers are used,
_POSIX_CHOWN_RESTRICTED is supported, _POSIX_NO_TRUNC is supported,
and _POSIX_VDISABLE has the value ‘0’, or ‘\0’ in C language source. When
other file system types are used, such as through NFS, or terminal drivers from
third party vendors, the results may vary and can be queried using
pathconf() and fpathconf() .

26 Standards Conformance Reference Manual—August 1994

4

Rationale
For an X/Open conforming implementation, the _POSIX_SAVED_IDS option
must be provided. The other options may or may not be provided. The
provision of the file system-related options can vary within a system. For
example, a system which has traditionally supported both System V and BSD
type file systems may provide a mechanism whereby the option is enforced for
certain files or processes but not for others. This technique can be used to
achieve a degree of backwards compatibility that would not otherwise be
possible.

Reference
 XPG3 Volume 2, Page 579

2.1.2 C STANDARD

Question 2: Does the implementation only support Common Usage C or also support
ANSI C Standard interface definitions?

Answer:
Both Common Usage C and ANSI C are provided.

Rationale
The POSIX.1 standard allows for a conforming system to support either
Common Usage C or ANSI C Standard interface definitions. The XPG is based
on a Common Usage C definition but does not prohibit an ANSI C
implementation. A Common Usage C definition must provide function
declarations for the C language functions in the XPG as well as providing
function semantics that conform to the XPG. An ANSI C Standard interface
must provide function prototypes and ANSI C semantics as well as providing
XPG semantics. There are no known areas of contradiction between the ANSI C
and the XPG semantics.

Reference
XPG3 Volume 2, Page 12 - The Compilation Environment

X/Open and XPG3 27

4

2.1.3 LIMIT VALUES

Question 3: What are the values associated with the following limits specified in the
<limits.h> header file?

Answer:

Macro Name Meaning Minimum Maximum

ARG_MAX Max length of argument 4096 1048320
list and environment data

CHILD_MAX Max number of processes per 6 See note
user ID

LINK_MAX Max number of links to a 8 32767
single file

MAX_CANON Max bytes in a terminal 255 256
canonical input line

MAX_INPUT Max bytes in a terminal 255 512
input queue

NAME_MAX Max characters in a filename 14 See note

OPEN_MAX Max number of files open 16 See note
in a process

PASS_MAX Max significant characters 8 8
in a password

PATH_MAX Max characters in a pathname 255 See note

PIPE_BUF Max bytes in an atomic write 512 5120
to a pipe

NGROUPS_MAX Max number of 0 16
supplementary group IDs

TMP_MAX Max number of unique 17576 17576
temporary file names

Notes:
CHILD_MAX depends on how the system kernel is configured.

28 Standards Conformance Reference Manual—August 1994

4

The maximum values for NAME_MAX and PATH_MAX vary depending on the file
system type, but always provide at least the minimum requirement. The most
common values are 255 for NAME_MAX and 1024 for PATH_MAX. Values for a
specific path are available using pathconf() .

OPEN_MAX defaults to 64, but users can increase or decrease this value using
routines not specified by POSIX.1 or XPG3.

Rationale
Each of these limits can vary within bounds set by the X/Open Portability
Guide. The minimum value that a limit can take on any X/Open conforming
system is given in the corresponding _POSIX_ value. A specific conforming
implementation may provide a higher minimum value than this and the
maximum value that it provides can differ from the minimum. Some
conforming implementations may provide a potentially infinite value as the
maximum, in which case the value is considered to be indeterminate. The
minimum value must always be definitive since the _POSIX_ value provides a
known lower bound for the range of possible values.

Reference
 XPG3 Volume 2 Page 538 - <limits.h>

Question 4: What are the values associated with the following constants specified
in the <limits.h> header file?

Answer:

Macro Name Meaning Value

CHAR_BIT Number of bits in a char 8

LONG_BIT Number of bits in a long 32

WORD_BIT Number of bits in a word 32

DBL_DIG Digits of precision of a double 15

DBL_MAX Maximum decimal value 1.7976931348623157E+308
of a double

FLT_DIG Digits of precision of a float 6

FLT_MAX Maximum decimal value 3.40282347E+38
of a float

X/Open and XPG3 29

4

Rationale
This set of constants provides useful information regarding the underlying
architecture of the implementation.

Reference
XPG3 Volume 2 Page 537 - <limits.h>

2.1.4 ERROR CONDITIONS

Question 5: Which of the following optional errors listed in the XPG are detected in the
circumstances specified?

Answer:

Function Error Detected

access() EINVAL † Yes

ETXTBSY No

atof() ERANGE Yes

atoi() ERANGE Yes

atol() ERANGE Yes

cfsetispeed() EINVAL No

cfsetospeed() EINVAL No

chmod() EINVAL No

chown() EINVAL † Yes

closedir() EBADF † Yes

exec ENOMEM† Yes

ETXTBSY No

fcntl() EDEADLK † Yes

fdopen() EBADF No

EINVAL No

feof() EBADF No

ferror() EBADF No

30 Standards Conformance Reference Manual—August 1994

4

(continued)

Function Error Detected

fileno() EBADF No

fopen() EINVAL No

ETXTBSY No

freopen() EINVAL No

ETXTBSY No

fork() ENOMEM Yes

fseek() EINVAL Yes

ftw() EINVAL No

getcwd() EACCES† Yes

isatty() EBADF No

ENOTTY No

open() EINVAL No

ETXTBSY No

opendir() EMFILE† Yes

ENFILE† Yes

pathconf() EACCES † Yes

EINVAL† Yes

ENAMETOOLONG† Yes

ENOENT† Yes

ENOTDIR† Yes

fpathconf() EBADF † Yes

EINVAL† Yes

printf() EINVAL No

readdir() EBADF † Yes

rename() ETXTBSY No

scanf() EINVAL No

X/Open and XPG3 31

4

(continued)

Function Error Detected

setvbuf() EBADF No

sigaddset() EINVAL† Yes

sigdelset() EINVAL† Yes

sigismember() EINVAL† Yes

strcoll() EINVAL No

strerror() EINVAL No

strtol() EINVAL Yes

ERANGE Yes

strxfrm() EINVAL No

unlink() ETXTBSY No

Rationale
Each of the above error conditions is marked as optional in the XPG and an
implementation may return this error in the circumstances specified or may not
provide the error indication. Those items marked with a † are also considered
to be optional error conditions in POSIX.1. The EINVAL error condition for the
three functions sigaddset() , sigdelset() , and sigismember() are
mandated in the XPG but are considered optional in POSIX.1. An X/Open
conforming implementation will always produce these errors, but a POSIX.1
conforming implementation may not.

2.1.5 MATHEMATICAL INTERFACES

Question 6: What format of floating point numbers are supported by this
implementation?

Answer:
IEEE floating point format is supported.

32 Standards Conformance Reference Manual—August 1994

4

Rationale
Most implementations support IEEE floating point format either in hardware
or software. Some implementations support other formats with different
exponent and mantissa accuracy. These differences need to be defined.

Question 7: Is long double form supported and what precision is associated with this
form?

Answer:
Long double uses 16 bytes. The low order 112 bits are used to hold the
mantissa, the next 15 bits hold the exponent, and the high order bit is used as
the sign bit.

Rationale
The long double format can vary both in length and precision. If it is
supported, other than as a synonym for double, the format needs to be
described.

Reference
XPG3 Volume 2, Page 328 - printf()
XPG3 Volume 2, Page 362 - scanf()

2.1.6 DATA ENCRYPTION

Question 8: Are the optional data encryption interfaces provided?

Answer:

crypt() Yes

encrypt() Yes (Decryption capabilities not provided to areas restricted by
U.S Export Law.)

setkey() Yes

Rationale
Normally an implementation will either provide all three of these routines or
will provide none of them at all. If the routines are not provided, then the
implementation must provide a dummy interface which always raises an
ENOSYS error condition.

X/Open and XPG3 33

4

It is also possible that the implementation of the encrypt() function may be
affected by export restrictions, in which case, the restrictions should be
documented here.

For example, historical implementations have supplied all three of the routines
outside the USA, but due to export restrictions on the decoding algorithm, a
dummy version of encrypt() is provided that does encoding, but not
decoding. The decoding routine is not provided outside the United States.

Reference
XPG3 Volume 2 Page 3 - Status of Interfaces

Section 2.2: PROCESS HANDLING

2.2.1 PROCESS GENERATION

Question 9: Which file types (regular, directory, FIFO, special etc.) are considered to be
executable?

Answer:
Only regular files may be executed.

Rationale
The EACCES error associated with exec functions occurs in circumstances
when the implementation does not support execution of files of the type
specified. A list of these file types needs to be provided.

Reference
XPG3 Volume 2 Page 129 - exec

2.2.2 PROCESS TERMINATION

Question 10: Is the SIGCHLD signal sent to the parent process when a child exits?

Answer:
Yes

Rationale
Some systems support the sending of SIGCHLD in these circumstances. This is
mandatory if job control is supported.

Reference
 XPG3 Volume 2 Page 132 - exit ()

34 Standards Conformance Reference Manual—August 1994

4

2.2.3 PROCESS ENVIRONMENT

Question 11: Is the setpgid() interface provided?

Answer:
Yes

Rationale
This interface is mandatory on systems which support job control and may be
provided on other systems.

Reference
 XPG3 Volume 2 Page 3 - Status of Interfaces

Section 2.3: FILE HANDLING

2.3.1 ACCESS CONTROL

Question 12: What file access control mechanisms does the implementation provide?

Answer:
See POSIX.1 Conformance Statement in Chapter Five of the Standards
Conformance Guide.

Rationale
The XPG (and POSIX) allow an implementation to provide either additional or
alternate file access control mechanisms other than the standard access control
mechanism. The document should either describe or provide a reference to the
details of alternate or additional access mechanisms. In particular, the method
by which an application can execute using standard file access control should
be explained and details of the changes required to utilize the alternate or
additional access mechanisms should be given.

Reference
 XPG3 Volume 2 Page 16 - File Access Permissions

2.3.2 FILES AND DIRECTORIES

Question 13: Are any extended security controls implemented that could cause
fstat() or stat() to fail?

X/Open and XPG3 35

4

Answer:
No

Rationale
The XPG notes that there could be an interaction between extended security
controls and the success of fstat() and stat() . This would suggest that an
implementation can allow access to a file but not allow the process to gain
information about the status of the file.

Reference
 XPG3 Volume 2 Page 478 - tempnam()

2.3.3 FORMATTING INTERFACES

Question 14: Is the L modifier to printf() and scanf() supported on this
implementation?

Answer:
Yes

Rationale
The XPG notes that the L modifier, which is exactly equivalent to the l modifier
when the implementation does not differentiate between double and long
double, is not supported on all systems and is only included for compatibility
with ANSI C.

Reference
XPG3 Volume 2 Page 328 - printf()
XPG3 Volume 2 Page 362 - scanf()

Question 15: Does the printf() function produce character string representations for
Infinity and NaN to represent the respective special double precision values?

Answer:
Yes

Rationale
This behaviour is often provided on systems with mathematical functions that
produce these results.

36 Standards Conformance Reference Manual—August 1994

4

Reference
XPG3 Volume 2 Page 331 - printf()

Section 2.4: GENERAL TERMINAL INTERFACE

2.4.1 INTERFACES SUPPORTED

Question 16: Are the following terminal control interfaces provided?

tcgetpgrp() tcsetpgrp()

Answer:
Yes

Rationale
These interfaces are mandatory for implementations that support job control.
Implementations that do not support job control may either always return the
error indication [ENOSYS] or may provide the interface with the behaviour
specified for an implementation that supports job control. This later case is
useful for implementations that support only part of the job control
specifications.

Reference
XPG3 Volume 2 Page 471 - tcgetpgrp
XPG3 Volume 2 Page 475 - tcsetpgrp

Section 2.5: INTERNATIONALIZED SYSTEM INTERFACES

2.5.1 CODESETS

Question 17: Does the implementation support the ISO 8859-1:1987 codeset for data
transmission?

Answer:
Yes

Rationale
The XPG defines the ISO 8859-1:1987 as the major Western European
transmission codeset and also recommends its use as the corresponding
internal codeset.

X/Open and XPG3 37

4

Reference
XPG3 Volume 3 Page 19 - Character Codesets and Text Transfer

Question 18: Does the implementation use the ISO 8859-1:1987 as its internal codeset?

Answer:
Yes

Rationale
The XPG defines the ISO 8859-1:1987 as the major Western European
transmission codeset and also recommends its use as the corresponding
internal codeset.

Reference
XPG3 Volume 3 Page 19 - Character Codesets and Text Transfer

2.5.2 REGULAR EXPRESSION INTERFACES

Question 19: What form of regular expression syntax is supported by the regexp()

interface?

Answer:
Simple regular expression

Rationale
The regexp() interface may support either the simple regular expression or
the simple internationalized regular expression syntax as defined in the XPG3
Volume 3 - Supplementary Definitions.

Reference
XPG3 Volume 3 Pages 49-51 - Regular Expressions

See POSIX.1 Conformance Statement in Chapter Five of the Standards
Conformance Guide.

38 Standards Conformance Reference Manual—August 1994

4

Chapter 3: COMMANDS AND UTILITIES

PRODUCT IDENTIFICATION

Product Identification Solaris

Version/Release No. 2.4

If you do not supply this component yourself, please identify below the
supplier you reference.

CONFORMANCE REFERENCE

Indicator of Compliance

None

ENVIRONMENT SPECIFICATION

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behaviour and
any test results to be reproduced.

SPARC and x86, running Solaris. Installation procedures are
provided in SPARC: Installing Solaris Software or x86: Installing
Solaris Software.

CONFORMANCE EXPECTATIONS

Volume 1 of XPG3 recognizes that convergence of implementations towards a
common specification for commands and utilities is not yet complete and
therefore does not require a vendor to supply all of the commands and utilities
(and individual options) specified in XPG3.

This chapter explicitly identifies those commands and utilities not supplied by
the vendor and any supplied that do not conform to the published
specification. (Reference: XPG3 Volume 1 Page 1.)

X/Open and XPG3 39

4

Section 3.1: BASIC UTILITIES

3.1.1 SUPPORTED COMMANDS

Question 1: Which of the basic utilities (non-development utilities) defined in the XPG
are not provided with the implementation?

Answer:
All the defined utilities are provided.

Rationale
The XPG Volume 1 states that “this volume in its current form is useful only as
a guide to portability, but it is not possible to precisely define or test
conformance to it.” This question determines whether or not the
implementation provides a command of the name specified in the XPG; it does
not attempt to determine whether it supports the semantics of that command.
The (optional) development utilities are excluded from this question and are
dealt with in the next section of the questionnaire.

Reference
XPG3 Volume 1 Page 1 - Introduction

3.1.2 COMMAND BEHAVIOUR

Question 2: In what ways do the commands provided by the implementation behave
differently from the specifications contained in the XPG?

Answer:
The -n option to ps is not supported.

Rationale
This question provides a greater degree of granularity than the previous
question, requiring the semantic differences associated with the commands to
be specified. Again, the question relates to the basic utilities rather than the
development utilities. The question only relates to the semantics of the options
specified within the XPG; implementation specific extensions should not be
documented.

40 Standards Conformance Reference Manual—August 1994

4

Section 3.2: DEVELOPMENT UTILITIES

3.2.1 SUPPORTED COMMANDS

Question 3: Which of the development utilities defined in the XPG are not provided with
the implementation?

Answer:
The sdb utility is not provided.

Rationale
The XPG Volume 1 states that “The development utilities might not be present
in all X/Open compliant systems; in designated (DEVELOPMENT) systems all
of the development utilities must be present and must conform to the
published definition.”

Reference
XPG3 Volume 1 Page 2 - Status of Interfaces

3.2.2 COMMAND BEHAVIOUR

Question 4: In what ways do the development utilities provided by the implementation
behave differently from the specifications contained in the XPG?

Answer:
The make utility looks for sccs s.files are in the directory ./SCCS instead of in
the current directory.

Rationale
This question provides a greater degree of granularity than the previous
question, requiring the semantic differences associated with the development
utilities to be specified. The question only relates to the semantics of the
options specified within the XPG; implementation-specific extensions should
not be documented.

X/Open and XPG3 41

4

Section 3.3: INTERNATIONALIZATION OPTION

3.3.1 COMMANDS AND UTILITIES

Question 5: Is an internationalized environment, reflecting changes in the locale setting
as described in XPG Volume 1- XSI Commands and Utilities, supported?

Answer:

Command Behaviour Specified in XPG3 Supported

ar LC_TIME affects date format Yes

awk LC_COLLATE, LC_CTYPE affect No
regular expression matching

LC_COLLATE affects the behaviour No
of string comparisons

LC_NUMERIC affects the behaviour No
of the radix character

comm LC_COLLATE affects sorting sequence No

cp ,ln ,mv LANG affects yes string Yes

cpio LC_COLLATE , LC_CTYPE affect No
filename pattern matching

LC_TIME affects date format Yes

date LC_TIME affects date formatting options Yes

ed ,red LC_COLLATE, LC_CTYPE affect regular No
expression matching

LC_CTYPE is used to determine whether Yes
characters are printable

egrep LC_COLLATE, LC_CTYPE affect No
regular expression matching

LC_CTYPE is used to determine Yes
character classification
(alphabetic, upper case, lower case)

expr LC_COLLATE, LC_CTYPE affect regular No
expression matching

42 Standards Conformance Reference Manual—August 1994

4

(continued)

Command Behaviour Specified in XPG3 Supported

LC_COLLATE affects the behaviour of No
 relational operators

fgrep LC_CTYPE is used to determine character Yes
classification
(alphabetic, upper-case, lower case)

find LANG affects yes string No

LC_COLLATE, LC_CTYPE affect No
filename pattern matching

grep LC_COLLATE, LC_CTYPE affect regular No
expression matching

LC_CTYPE is used to determine character Yes
 classification
(alphabetic, upper-case, lower case)

join LC_COLLATE affects sorting sequence No

lpstat LC_TIME affects date format Yes

ls LC_COLLATE affects sorting sequence Yes

LC_CTYPE is used to determine Yes
whether a character is printable

LC_TIME affects date format Yes

mail LC_TIME affects date format Yes

mailx LC_COLLATE , LC_CTYPE affect No
filename pattern matching

LC_TIME affects date format Yes

pg LC_COLLATE, LC_CTYPE affect No
 filename pattern matching

pr LC_TIME affects date format Yes

LC_CTYPE is used to determine Yes
whether a character is printable

ps LC_TIME affects date format Yes

X/Open and XPG3 43

4

(continued)

Command Behaviour Specified in XPG3 Supported

rm,rmdir LANG affects yes string No

sed LC_COLLATE, LC_CTYPE affect No
regular expression matching

LC_CTYPE is used to determine Yes
whether a character is printable

sh LC_COLLATE, LC_CTYPE affect No
 filename pattern matching

LC_CTYPE is used to determine No
whether a character is alphabetic

sort LC_COLLATE affects sorting sequence No

LC_CTYPE affects character classification Yes
(alphabetic, upper case, printing)

LC_NUMERIC affects the determination No
 of the radix character

tar LC_TIME affects date format No

LANG affects yes string No

tr LC_COLLATE , LC_CTYPE affect No
bracketed expressions

LC_CTYPE affects the definition of No
 the character universe

uniq LC_COLLATE affects sorting sequence No

uucp LC_TIME affects date format No

uustat LC_TIME affects date format No

wc LC_CTYPE is used to determine Yes
white-space characters

who LC_TIME affects date format Yes

yacc LC_CTYPE is used to determine Yes
character classification

44 Standards Conformance Reference Manual—August 1994

4

Rationale
This behaviour is collectively optional, that is, it should be provided for all
commands listed (subject to sections 3.1 and 3.2, which identify those
commands not supplied by the vendor and those which do not fully support
the X/Open specification).

Reference
XPG3 Volume 1 Pages 4-5 - Status of Interfaces.

3.3.2 REGULAR EXPRESSIONS IN COMMANDS

Question 6: Which form of regular expression syntax is supported by those commands
which use regular expressions?

Answer:

Command Regular Expression Syntax Supported

awk Extended

csplit Simple

ed Simple

egrep Extended

ex Simple

expr Simple

grep Simple

lex Extended

pg Simple

sdb sdb is not supported

sed Simple

vi Simple

Rationale
The XPG Volume 3 - XSI Supplementary Definitions requires that an
internationalized set of commands will provide regular expression syntax for

X/Open and XPG3 45

4

the above commands in one of the forms specified for that command. The XPG
encourages the implementation of internationalized regular expressions for all
of the above utilities. It should be noted that the sdb command is an optional
development utility and may not be available on all XPG conforming systems.

Reference
 XPG3 Volume 3 Pages 49-51 - Regular Expressions

Chapter 4: C LANGUAGE

SPARC

PRODUCT IDENTIFICATION

Product Identification SPARCompiler C

Version/Release No. 2.0.1

If you do not supply this component yourself, please identify below the
supplier you reference.

CONFORMANCE REFERENCE

Indicator of Compliance

VSX Test Suite Release VSX 4.3.2

Testing Agency Name SunSoft, A Sun Microsystems, Inc. Business

Address 2550 Garcia Avenue
Mountain View CA 94043

x86

PRODUCT IDENTIFICATION

Product Identification ProCompiler C

Version/Release No. 2.0.1

46 Standards Conformance Reference Manual—August 1994

4

If you do not supply this component yourself, please identify below the
supplier you reference.

CONFORMANCE REFERENCE

Indicator of Compliance

VSX Test Suite Release VSX 3.205

Testing Agency Name SunSoft, A Sun Microsystems, Inc. Business

Address 2550 Garcia Avenue
Mountain View CA 94043

ENVIRONMENT SPECIFICATION

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behaviour and
any test results to be reproduced.

SPARC and x86, running Solaris. Installation procedures are
provided in SPARC: Installing Solaris Software or x86: Installing
Solaris Software.

TEMPORARY WAIVERS

List below references to any temporary waivers granted by X/Open in respect
of minor errors in the product referenced above. This should include the
X/Open reference and the waiver expiration date. The waivers as granted shall
be made available with this document on request.

No temporary waivers needed.

4.1 IMPLEMENTATION LIMITS

Question 1: What limits does the implementation impose on the significant part of an
identifier?

Answer:

X/Open and XPG3 47

4

External identifiers No limits; all characters
 are significant

Non-External identifiers No limits; all characters are
significant

Rationale
The XPG states that, while there is no limit to the length of an identifier, only a
certain number of characters are significant. The XPG points out that there
must be at least eight characters for a non-external name, but may be less for
external names.

Reference
XPG 3 Volume 4 Page 3 - Lexical Conventions

4.2 GENERAL

Question 2: What truncation rules are applied when a floating value is converted to an
integral value?

Answer:
Truncation of floating point values is always towards zero.

 Rationale
The XPG states that such conversions are machine dependent. In particular, the
XPG points out the differences related to the truncation of negative numbers.

Reference
 XPG Volume 4 Page 10 - Conversions

Question 3: What truncation rules are applied when using the division operator and
either of the operands is negative?

Answer:
Truncation towards zero

Rationale:
The XPG states that such truncations are machine dependent.

Reference
 XPG Volume 4 Page 16 - Expressions

48 Standards Conformance Reference Manual—August 1994

4

Chapter 11: TERMINAL INTERFACES

PRODUCT IDENTIFICATION

Product Identification Solaris

Version/Release No. 2.4

If you do not supply this component yourself, please identify below the
supplier you reference.

CONFORMANCE REFERENCE

Indicator of Compliance

None

ENVIRONMENT SPECIFICATION

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behaviour and
any test results to be reproduced.

SPARC and x86, running Solaris. Installation procedures are given
in SPARC: Installing Solaris Software or x86: Installing Solaris
Software.

TEMPORARY WAIVERS

List below references to any temporary waivers granted by X/Open in respect
of minor errors in the product referenced above. This should include the
X/Open reference and the waiver expiration date. The waivers as granted shall
be made available with this document on request.

There are no temporary waivers.

X/Open and XPG3 49

4

Chapter 12: WINDOW MANAGEMENT

PRODUCT IDENTIFICATION

Product Identification OpenWindows

Version/Release No. 3.0 and subsequent releases

If you do not supply this component yourself, please identify below the
supplier you reference.

CONFORMANCE REFERENCE

Indicator of Compliance

None

ENVIRONMENT SPECIFICATION

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behaviour and
any test results to be reproduced.

SPARC and x86, running Solaris. Installation procedures are
provided in SPARC: Installing Solaris Software or x86: Installing
Solaris Software.

TEMPORARY WAIVERS

List below references to any temporary waivers granted by X/Open in respect
of minor errors in the product referenced above. This should include the
X/Open reference and the waiver expiration date. The waivers as granted shall
be made available with this document on request.

There are no temporary waivers.

50 Standards Conformance Reference Manual—August 1994

4

Chapter 14: INTER-PROCESS COMMUNICATION

PRODUCT IDENTIFICATION

Product Identification Solaris

Version/Release No. 2.4

If you do not supply this component yourself, please identify below the
supplier you reference.

CONFORMANCE REFERENCE

Indicator of Compliance

None

ENVIRONMENT SPECIFICATION

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behaviour and
any test results to be reproduced.

SPARC and x86, running Solaris. Installation procedures are
provided in SPARC: Installing Solaris Software or x86: Installing
Solaris Software.

TEMPORARY WAIVERS

List below references to any temporary waivers granted by X/Open in respect
of minor errors in the product referenced above. This should include the
X/Open reference and the waiver expiration date. The waivers as granted shall
be made available with this document on request.

There are no temporary waivers.

X/Open and XPG3 51

4

Chapter 15: SOURCE CODE TRANSFER
15.1 UTILITIES

PRODUCT IDENTIFICATION

Product Identification Solaris

Version/Release No. 2.4

If you do not supply this component yourself, please identify below the
supplier you reference.

CONFORMANCE REFERENCE

Indicator of Compliance

None

ENVIRONMENT SPECIFICATION

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behaviour and
any test results to be reproduced.

SPARC and x86, running Solaris. Installation procedures are
provided in SPARC: Installing Solaris Software or x86: Installing
Solaris Software.

SPARC

For floppy disk hardware:

SPARCstation with external or internal floppy disk drive (part number X554H)

For magnetic tape hardware:

SPARC Office Servers (SPARCsystem 330 or SPARCsystem 470) with 1/2-inch
tape drive subsystem (part number 680A), and
SPARC Data Center Servers (SPARCserver 390 or SPARCserver 490) with 1/2-
inch tape drive subsystem (part numbers 682A or 683A)

52 Standards Conformance Reference Manual—August 1994

4

x86

For Source Code Transfer software:

x86, running Solaris 2.4. Installation procedures are given in the Solaris System
Configuration and Installation Guide.

For floppy disk hardware:

x86 machine, with external or internal floppy disk drive

TEMPORARY WAIVERS

List below references to any temporary waivers granted by X/Open in respect
of minor errors in the product referenced above. This should include the
X/Open reference and the waiver expiration date. The waivers as granted shall
be made available with this document on request.

There are no temporary waivers.

FORMATS

Question 1: Which exchange media format(s) may be written by the system?

Answer:

80 track floppy disk Yes

40 track floppy disk No

1600 bpi PE magnetic tape Yes

Rationale
XPG3 states that standards are referenced for transfer of floppy discs and
magnetic tapes between machines. Because of the different nature of X/Open
conformant systems, it is not possible to define a single portable medium
which is supported across the whole range of systems.

Reference
XPG3 Volume 3, Chapters 15, 16 and 17

X/Open and XPG3 53

4

Question 2: Which exchange media format(s) may be read by the system?

80 track floppy disk Yes

40 track floppy disk No

1600 bpi PE magnetic tape Yes

Rationale
XPG3 states that standards are referenced for transfer of floppy discs and
magnetic tapes between machines. Because of the different nature of X/Open
conformant systems, it is not possible to define a single portable medium
which is supported across the whole range of systems. In addition, some
systems can read a wider range of formats that they can write.

Reference
XPG3 Volume 3, Chapters 15, 16 and 17

UTILITIES

Question 3: Which utilities are used to create and read the archive formats specified in
XPG Volume 3-XSI Supplementary Definitions?

Answer:

Format Creating Reading

Extended tar cpio -H USTAR cpio -H USTAR

cpio cpio -H odc cpio -H odc

Options
A definition of the commands used to create and read these formats. If a
special option is required to produce the specified format this must be detailed.

Rationale
There is no explicit definition as to the commands that must be used to create
and retrieve these archives. On most systems this will be achieved by the tar
and cpio commands. There are other commands available which produce
these archives. On some implementations the command may need a special

54 Standards Conformance Reference Manual—August 1994

4

option to enable reading of the specified formats with the “standard”’ option
being to create archives which are backwards compatible with previous
versions of the command.

Reference
XPG3 Volume 3, Page 151-2 – Utilities

INVALID FILE NAMES

Question 4: What file name is used to contain data from the archive in the case that the
file name on the archive is invalid for the system on which the file hierarchy is being
created?

Answer:

Format File Name

Extended tar All legal file names in a USTAR archive are legal in the
filesystem.

cpio All legal file names in a cpio archive are legal in the
filesystem.

Rationale
Because an archive can contain non-portable file names it is necessary for an
archive reading utility to be able to generate a file and store the data associated
with a non-portable file name when this is encountered on the archive. There
may be a need to generate a number of such file names in the same directory
and the specification should detail the algorithm used to generate these file
names.

Reference
 XPG3 Volume 3, Page 151– Utilities

X/Open and XPG3 55

4

MULTIVOLUME ARCHIVES

Question 5: How does the archive reading utility determine which file to read as the next
volume when an end-of-media condition is encountered?

Answer:

Format Method

Extended tar The tar utility prompts the user for the pathname of the
next file in the archive. (The path need not name a device.)

Cpio The cpio utility prompts the user for the pathname of the
next file in the archive. (The path need not name a device.)

Rationale
In many cases the utility will prompt the user for the path name of the device
to use for the next volume. There may be extensions to the utility syntax that
allow the definition of alternate addresses for subsequent volumes.

Reference
 XPG3 Volume 3, Page 151-2 – Utilities.

X/Open Specification and Related Publications
The X/Open Portability Guide is published by Prentice-Hall in the United
States. The set is comprised of the seven volumes listed below; the ISBN
number follows the volume title:

• Volume 1: XSI Commands and Utilities, 0-13-68555835-X

• Volume 2: XSI System Interface and Headers, 0-13-685843-0

• Volume 3: XSI Supplementary Definitions, 0-13-685850-3

• Volume 4: Programming Languages, 0-13-685868-6

• Volume 5: Data Management, 0-13-685876-7

• Volume 6: Window Management, 0-13-685884-8

• Volume 7: Networking Services, 0-13-685892-9

56 Standards Conformance Reference Manual—August 1994

4

57

X/Open and XPG4 5

This chapter discusses the compliance of Solaris 2.4 to the programming
interface specifications contained in the X/Open Portability Guide Issue 4,
(XPG4).

The X/Open Portability Guide, Issue 4

In 1992, X/Open published the X/Open Portability Guide, Issue 4. XPG4
retains compliance to the POSIX.1–1988 standard but is extended to the
ISO/IEC updated POSIX.1 standard and the ISO/IEC C language standard.
The X/Open Portability Guide Issue 3 remains available and system and
components can still be branded to XPG3, but XPG4 branding offers significant
additional capability.

This chapter identifies Solaris 2.4 as a conforming implementation of XPG4,
and displays the XPG4 Base brand trademark. It also presents the X/Open
Conformance Statement, which documents Solaris’ compliance to the
programming interface specifications of the X/Open Portability Guide, Issue 4.

The X/Open Brand Trademark

X/Open provides a verification and branding program that developers can use
to show that their products are X/Open compliant. Sun Microsystems has been
a strong supporter of the X/Open branding process since its inception.

58 Standards Conformance Reference Manual—August 1994

5

Figure 5-1 The XPG4 Base Brand Logo

Because it is a comforming implementation of XPG3 and meets the
requirements of the System Interfaces and Headers component of XPG4,
Solaris has earned the XPG4 BASE brand. Solaris products and software
products from independent software vendors that have received XPG4
branding are described below:

• Window Management (OpenWindows)—The Solaris window system,
which supports the OPEN LOOK Graphical User Interface, has earned the
XPG4 brand by implementing the programmer’s interface to the X Window
System. OpenWindows supports the Window Management component of
the X/Open BASE level.

• Commands and Utilities—X/Open’s specification of standard interfaces for
utilities allows for portable shell scripts. Solaris meets the Commands and
Utilities component requirements of the BASE system.

• ProCompiler™ C 2.0.1— The ProCompiler for Solaris for x86 is fully
conformant with the ANSI/ISO Standard for C. It has passed X/Open
verification test suite VSX3 and meets the C Language component
requirements of the BASE level.

• SPARCompiler C 2.0.1—The SPARCompiler for the C programming
language based on Common Usage C has passed X/Open verification test
suite VSX4.2.4 and meets the C Language component requirements of the
BASE level.

• Sun FORTRAN 3.0—Sun’s compiler for the FORTRAN programming
language is fully compliant with the definition in the American National
Standards Institute (ANSI) document.

• Sun Pascal 3.0.1—Sun’s compiler for the Pascal programming language is
fully compliant with the ISO standard.

X P G 4
B A S E P R O F I L E

X/Open and XPG4 59

5

• Magnetic Media (Source Code Transfer)—Sun conforms to X/Open’s
specifications for transferring source code between machines with
compatible media and facilitating the transfer of source code in machine-
readable form. Solaris supports the Source Code Transfer component of the
X/Open BASE level.

• Inter-Process Communication—Sun supports X/Open’s specifications for
interfaces providing message queue, semaphore and shared memory
facilities for communication and synchronization between processes. The
SunOS operating system fulfills the requirements of the Inter-Process
Communications component of the X/Open BASE level.

• Terminal Interfaces (XSI Curses Interface)—The XSI Curses Interface meets
X/Open’s specifications for providing a generic terminal interface that is
independent of terminal hardware or connection methods for updating
screens on character-oriented and block-oriented terminals. Solaris systems
fulfill the requirements of the Terminal Interfaces component of the X/Open
BASE level.

The X/Open Conformance Statement for Solaris
The remaining pages of this chapter feature the X/Open Conformance
Statement for Solaris.

X/Open Conformance Statement

X/OPEN Conformance Statement Questionnaire

Section 1: INTERNATIONALIZED SYSTEM CALLS AND
LIBRARIES

PRODUCT IDENTIFICATION

Product Identification Solaris

Version/Release No. 2.4

If you do not supply this component yourself, please identify below the
supplier you reference.

60 Standards Conformance Reference Manual—August 1994

5

INDICATOR OF COMPLIANCE

VSX Test Suite Release VSX 4.3.2

Testing Agency Name SunSoft, A Sun Microsystems, Inc. Business

Address 2550 Garcia Avenue
Mountain View CA 94043

ENVIRONMENT SPECIFICATION

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behaviour and
any test results to be reproduced.

SPARC

SPARC running Solaris 2.4. Installation procedures are provided in SPARC:
Installing Solaris Software

To reproduce the test environment, do these steps:

1. Edit the /etc/saf/zsmon/_pmtab file to turn off the ttysoftcarrier
detect:

Change the ttya and ttyb fields from :y: to :n: . (The colons (:) act as
field separators).

2. Verify that the ttymodes settings in the /kernel/drv/options.conf file
are set to:

2502:1805:bd:8a3b:3:1c:7f:15:4:0:0:0:11:13:la:19:12:f:17:16

3. Disable ypbind to allow rebooting of the system:

a. cd /usr/lib/netsvc/yp

b. mv ypbind ypbind-

4. Set the eeprom variables that affect the tty :

a. On the keyboard, hit STOP-A to display the prom prompt.

b. At the prompt, execute the following steps:

X/Open and XPG4 61

5

setenv ttya-ignore-cd false
setenv ttyb-ignore-cd false
setenv ttya-rts-dtr-off false
setenv ttyb-rts-dtr-off false

5. Reboot the system

Note – When installing Solaris, set the time zone by selecting a time zone
format that conforms to the POSIX.1 format for TZ defined on Page 152 and
Page 153 of the IEEE Std. 1003.1–1990.

Note – The following option must be added to any compiler line:
-D_XOPEN_VERSION=4

Note – The following must be added to any link/load line:
/usr/ccs/lib/values_scpg4.0

x86

x86 running Solaris 2.4. Installation procedures are provided in x86: Installing
Solaris Software.

To reproduce the test environment, do these steps:

1. Become root .

2. Ensure the correct serial port links:

• /dev/ttya should be a link to /devices/isa/asy@3f8,0:a
• /dev/term/a should be a link to /devices/isa/asy@3f8,0:a
• /dev/tty00 should be a link to /devices/isa/asy@3f8,0:a
• /dev/ttyb should be a link to /devices/isa/asy@2f8,0:a
• /dev/term/b should be a link to /devices/isa/asy@2f8,0:a
• /dev/tty01 should be a link to /devices/isa/asy@2f8,0:b

a. If the /dev/tty01 link is missing, perform the following:

• Edit /kernel/drv/asy.conf and uncomment the COM2 entry
• # touch /reconfigure

62 Standards Conformance Reference Manual—August 1994

5

3. Set the correct serial port permissions:

• # chmod 666 /devices/eisa/asy*

4. Turn off the ttysoftcarrier detect:
Using an editor such as vi , in the /etc/saf/zsmon/_pmtab file, change
the next to last field for both the ttya entry and the ttyb entry from y to n
(the colon (:) acts as the field separator):

• # vi /etc/saf/zsmon/_pmtab

5. Reboot the system.

Note – When installing Solaris, set the time zone by selecting a time zone
format that conforms to the POSIX.1 format for TZ defined on Page 152 and
Page 153 of the IEEE Std. 1003.1–1990.

Note – The following option must be added to any compiler line:
-D_XOPEN_VERSION=4

Note – The following must be added to any link/load line:
/usr/ccs/lib/values_scpg4.0

TEMPORARY WAIVERS

List below references to any temporary waivers granted by X/Open in respect
of minor errors in the product referenced above. This should include the
X/Open reference and the waiver expiration date. The waivers as granted shall
be made available with this document on request.

There are no temporary waivers.

Section 1.1: GENERAL ATTRIBUTES

1.1.1 XPG4 FEATURE GROUPS

Question 1: Which of the following feature groups are supported by the
implementation?

Answer: Solaris 2.4 supports the Shared Memory, Encryption and Enhanced
Internationalization feature groups.

X/Open and XPG4 63

5

Rationale
System Interfaces and Headers, Issue 4 states that the system may provide one
or more of the Feature Groups listed.

Reference
X/Open CAE Specification, System Interfaces and Headers, Issue 4, Section 1.2,
Conformance and Section 1.3, Feature Groups.

1.1.2 POSIX.1 SUPPORTED FEATURES

Question 2: Which of the following options, specified in the <unistd.h > header
file are available on the system?

Answer:

Macro Name Meaning Provided

_POSIX_CHOWN_RESTRICTED The use of chown() Yes
is restricted

_POSIX_JOB_CONTROL Job Control option Yes

_POSIX_NO_TRUNC Long pathname Yes
components generate
an error

_POSIX_SAVED_IDS Effective user and group Yes
IDs are saved

_POSIX_VDISABLE Terminal special Yes
characters can be disabled

Rationale
For an X/Open conforming implementation, all of these POSIX features must
be provided. In some cases the feature need not be provided for all files or
devices supported by the implementation.

Reference
X/Open CAE Specfication, System Interfaces and Headers, Issue 4, Chapter 4,
Headers, <unistd.h >.

64 Standards Conformance Reference Manual—August 1994

5

1.1.3 FLOAT, STDIO AND LIMIT VALUES

Question 3: What are the values associated with the following constants specified in
the <float.h > header file?

Answer:

Macro Name Meaning Value

FLT_RADIX Radix of the exponent representation. 2

FLT_MANT_DIG Number of base-FLT_RADIX digits 24
in the float significand.

DBL_MANT_DIG Number of base-FLT_RADIX digits 53
in the double significand.

LDBL_MANT_DIG Number of base_FLT_RADIX digits 64
in the long double significand.

FLT_DIG Number of decimal digits, q, such that 6
any floating point number with q digits
can be rounded into a float representation
and back again without change to the
q digits.

DBL_DIG Number of decimal digits, q, such that 15
any floating point number with q digits
can be rounded into a long double repre-
sentation and back again without change to
the q digits.

LDBL_DIG Number of decimal digits, q, such that 18
any floating point number with q digits
can be rounded into a double representation
and back again without change to the
q digits.

FLT_MIN_EXP Minimum negative integer such that -125
FLT_RADIX raised to that power minus
1 is a normalised float.

DBL_MIN_EXP Minimum negative integer such that -1024
FLT_RADIX raised to that power minus
1 is a normalized double.

X/Open and XPG4 65

5

(continued)

Macro Name Meaning Value

LDBL_MIN_EXP Minimum negative integer such that -16381
FLT_RADIX raised to that power minus
1 is a normalized long double.

FLT_MIN_10_EXP Minimum negative integer such that 10 -125
raised to that power is in the range of
normalized floats.

DBL_MIN_10_EXP Minimum negative integer such that 10 -307
raised to that power is in the range of
normalized doubles.

LDBL_MIN_10_EXP Minimum negative integer such that 10 -4931
raised to that power is in the range of
normalized long doubles.

FLT_MAX_EXP Maximum integer such that FLT_RADIX 128
raised to that power minus 1 is a
representable finite float.

DBL_MAX_EXP Maximum integer such that FLT_RADIX 1024
raised to that power minus 1 is a
representable finite double.

LDBL_MAX_EXP Maximum integer such that FLT_RADIX 16384
raised to that power minus 1 is a
representable finite long double.

FLT_MAX_10_EXP Maximum integer such that 10 raised to 38
that power is in the range of
representable finite floats.

DBL_MAX_10_EXP Maximum integer such that 10 raised to 308
that power is in the range of
representable finite doubles.

LDBL_MAX_10_EXP Maximum integer such that 10 raised to 4932
that power is in the range of
representable finite long doubles.

FLT_MAX Maximum representable finite float. 3.402823466E+38F

DBL_MAX Maximum representable finite 1.7976931348623157E+308

double.

66 Standards Conformance Reference Manual—August 1994

5

(continued)

Macro Name Meaning Value

LDBL_MAX Maximum representable 1.189731495357231765085759326628007016E+4932L

finite long double.

FLT_EPSILON Difference between 1.0 and the least 1.192092896E-07F
value greater than 1.0 that is
representable as a float.

DBL_EPSILON Difference between 1.0 and the least 2.2204460492503131E-16

value greater than 1.0 that is
representable as a double.

LDBL_EPSILON Difference between 1.0 1.925929944387235853055977942584927319E-34L

and the least value greater
than 1.0 that is
representable as a long double.

FLT_MIN Minimum normalized postive float. 1.175494351E-38F

DBL_MIN Minimum normalized positive double. 2.2250738585072014E-308

LDBL_MIN Minimum normalized 3.3621031431120935062626778173217522603E-4932L

positive long double.

Rationale
This set of constants provides useful information regarding the underlying
architecture of the implementation.

Reference
X/Open CAE Specification, System Interfaces and Headers, Issue 4, Chapter 4,
Headers, <float.h >.

Question 4: What are the values associated with the following constants
(optionally specified in the <limits.h> header file)?

Answer:

X/Open and XPG4 67

5

Macro Name Meaning Minimum Maximum

ARG_MAX Max. length of argument to the 4096 1048320
exec functions and environment
data.

CHILD_MAX Max. number of processes per 6 See note
user ID.

LINK_MAX Max. number of links to a 8 32767
single file.

MAX_CANON Max. bytes in a terminal 255 256
canonical input line.

NAME_MAX Max. number of bytes allowed in 14 See note
a terminal input queue.

OPEN_MAX Max. number of files open 16 See note
in a process.

PATH_MAX Max. number bytes in a pathname. 255 See note

PIPE_BUF Max. number of bytes guaranteed 512 5120
to be atomic in a write to a pipe.

STREAM_MAX Number of streams one process 8 8
can have open at one time.

TZ_NAME_MAX Max. number number of bytes 3 3
supported for a time zone name.

Notes:
CHILD_MAX depends on how the system kernel is configured.

The maximum values for NAME_MAX and PATH_MAX vary depending on the file
system type, but always provide at least the minimum requirement. The most
common values are 255 for NAME_MAX and 1024 for PATH_MAX. Values for a
specific path are available using pathconf() .

OPEN_MAX defaults to 64, but users can increase or decrease this value using
routines not specified by POSIX.1 or XPG4.

Rationale
Each of these limits can vary within bounds set by the Systems Interfaces and
Headers, Issue 4. The minimum value that a limit can take on any X/Open

68 Standards Conformance Reference Manual—August 1994

5

conforming system is given in the corresponding _POSIX_ value. A specific
conforming implementation may provide a higher minimum value than this
and the maximum value that it provides can differ from the minimum. Some
conforming implementations may provide a potentially infinite value as the
maximum, in which case the value is considered to be indeterminate. The
minimum value must always be definitive since the _POSIX_ value provides a
known lower bound for the range of possible values.

Reference
X/Open CAE Specification, System Interfaces and Headers, Issue 4, Chapter 4,
Headers, <limits.h>

Question 5: What are the values associated with the following constants specified
in the <limits.h> header file?

Answer:

Macro Name Meaning Min. Maximum

BC_BASE_MAX Max. ibase and obase values 99 32767 (SHRT_MAX)
allowed by the bc utility.

BC_DIM_MAX Max. number of elements 2048 32768 (SHRT_MAX+1)
permitted in an array by the
bc utility.

BC_SCALE_MAX Max. scale value allowed by 99 32767 (SHRT_MAX)
the bc utility.

BC_STRING_MAX Max. length of a string constant 1000 2048 (LINE_MAX)
accepted by the bc utility.

COLL_WEIGHTS_MAXMax. number of weights that can 2 4
be assigned to an entry of the
LC_COLLATE order keyword in
the local definition file.

EXPR_NEST_MAX Max. number of expressions that 32 32
can be nested within parentheses
by the expr utility.

LINE_MAX Max. length in bytes including the 2048 2048
trailing newline of a utility’s input
line when the utility is described
as processing text files.

X/Open and XPG4 69

5

(continued)

Macro Name Meaning Min. Maximum

NGROUPS_MAX Max. number of simultaneous 16 16
supplementary group IDs per
process.

RE_DUP_MAX Max. number of repeated 255 255
occurrence of a regular expression
permitted when using interval
notation.

Rationale
Each of these limits can vary within bounds set by the System Interfaces and
Headers, Issue 4. The minimum value that a limit can take on any X/Open
conforming system is given in the corresponding _POSIX_ or POSIX2_ value.
A specific conforming implementation may provide a higher minimum value
than this and the maximum value that it provides can differ from the
minimum. Some conforming implementations may provide a potentially
infinite value as the maximum, in which case the value is considered to be
indeterminate. The miminum value must always be definitive since the
POSIX or _POSIX2_ value provides a known lower bound for the range of
possible values.

Reference
X/Open CAE Specification, System Interfaces and Headers, Issue 4, Chapter 4,
Headers, <limits.h>

Question 6: What are the values associated with the following numerical constants
specified in the <limits.h > header file?

Answer:

Macro Name Meaning Value

CHAR_BIT Number of bits in a char. 8

CHAR_MAX Max. value of a char. 127

INT_MAX Max. value of an int. 2147483647

LONG_BIT Number of bits in a long int. 32

70 Standards Conformance Reference Manual—August 1994

5

(continued)

Macro Name Meaning Value

LONG_MAX Max. value of a long int. 2147483647L

MB_LEN_MAX Max. number of bytes in a 5
character, for any supported
locale.

SCHAR_MAX Max. value of a signed char. 127

SHRT_MAX Max. value of a short. 32767

SSIZE_MAX Max. value of an object of type 2147483647
ssize_t .

UCHAR_MAX Max. value of an unsigned char. 255

UINT_MAX Maximum value of an unsigned 4294967295U
int.

ULONG_MAX Max. value of an unsigned long 4294967295UL
int.

USHRT_MAX Max. value of an unsigned 65535
short int.

WORD_BIT Number of bits in a word 32
or int.

Rationale
This set of constants provides useful information regarding the underlying
architecture of the implementation.

Reference
X/Open CAE Specification, System Interfaces and Headers, Issue 4, Chapter 4,
Headers, <limits.h>.

X/Open and XPG4 71

5

Question 7: What are the values associated with the following numerical constants
specified in the <stdio.h > header file?

Answer:

Macro Name Meaning Value

FOPEN_MAX Number of streams which 20 (SPARC)
the implementation guarantees 60 (x86)
can be open simultaneously.

L_tmpnam Max. size of character array 25
to hold tmpnam() output.

TMP_MAX Minimum number of unique 17567
filenames generated by tmpnam(),
which is the maximum number
of times an application can call
tmpnam() reliably.

Rationale
This set of constants provide useful information about the implementation.

Reference
X/Open CAE Specification, System Interfaces and Headers, Issue 4, Chapter 4,
Headers, <stdio.h>

1.1.4 ERROR CONDITIONS

Question 8: Which of the following option errors listed in the System Interfaces and
Headers, Issue 4 are detected in the circumstances specified?

Answer:

Function Error Detected

access() EINVAL Yes
ETXTBSY No

acos() EDOM Yes

asin() EDOM Yes
ERANGE No

72 Standards Conformance Reference Manual—August 1994

5

(continued)

Function Error Detected

atan() EDOM Yes
ERANGE No

atan2() EDOM Yes
ERANGE Yes

catclose() EBADF No
EINTR No

catgets() EBADF No
EINTR No

catopen() EACCES Yes
EMFILE Yes
ENAMETOOLONG Yes
ENFILE Yes
ENOENT Yes
ENOMEM Yes
ENOTDIR Yes

ceil() EDOM Yes

cfsetispeed() EINVAL No

cfsetospeed () EINVAL No

chmod() EINVAL No

chown() EINVAL Yes

closedir() EBADF Yes
EINTR No

cos() EDOM Yes
ERANGE No

cosh() EDOM Yes

erf() EDOM Yes
ERANGE No

erfc() EDOM Yes
ERANGE No

X/Open and XPG4 73

5

(continued)

Function Error Detected

exec() ENOMEM Yes
ETXTBSY No

exp() EDOM No
ERANGE Yes

fabs() EDOM Yes
ERANGE No

fcntl() EDEADLK Yes

fdopen() EBADF No
EINVAL No
EMFILE Yes
ENOMEM Yes

fgetc() ENOMEM Yes
ENXIO Yes

fgetwc() ENOMEM Yes
ENXIO Yes
EILSEQ Yes

fileno() EBADF No

floor() EDOM Yes

fmod() EDOM Yes
ERANGE No

fopen() EINVAL No
EMFILE Yes
ENOMEN Yes
ETXTBSY No

fork() ENOMEM Yes

fpathconf() EBADF Yes
EINVAL Yes

fprintf() EINVAL Yes
EILSEQ Yes

74 Standards Conformance Reference Manual—August 1994

5

(continued)

Function Error Detected

fputc() ENOMEM Yes
ENXIO Yes

fputwc() ENOMEM Yes
ENXIO Yes
EILSEQ Yes

freopen() EINVAL No
ENOMEM No
ETXTBSY No

frexp() EDOM Yes

fseek() EINVAL Yes
EPIPE No

ftw() EINVAL No

getcwd() EACCES Yes
ENOMEM Yes

getgrgid() EIO Yes
EINTR No
EMFILE Yes
ENFILE Yes

getgrnam() EIO Yes
EINTR No
EMFILE Yes
ENFILE Yes

getlogin() EMFILE Yes
ENFILE Yes
ENXIO Yes

getpass() EINTR No
EIO No
EMFILE Yes
ENFILE No
ENXIO No

X/Open and XPG4 75

5

(continued)

Function Error Detected

getpwnam() EIO Yes
EINTR No
EMFILE Yes
ENFILE Yes

getpwuid() EIO Yes
EINTR Yes
EMFILE Yes

hsearch() ENOMEM Yes

hypot() EDOM Yes
ERANGE No

iconv() EBADF Yes

iconv_close() EBADF Yes

iconv_open() EMFILE Yes
ENFILE Yes
ENOMEM Yes
EINVAL Yes

isatty() EBADF No
ENOTTY No

j0() EDOM No
ERANGE Yes

j1() EDOM No
ERANGE Yes

jn() EDOM No
ERANGE Yes

ldexp() EDOM Yes
ERANGE No

lgamma() EDOM No
ERANGE Yes

link() EPERM Yes
EXDEV Yes

76 Standards Conformance Reference Manual—August 1994

5

(continued)

Function Error Detected

log() EDOM Yes
ERANGE No

log10() EDOM Yes
ERANGE No

mblen() EILSEQ Yes

mbstowcs() EILSEQ Yes

mbtowc() EILSEQ Yes

modf() EDOM Yes
ERANGE No

open() EINVAL No
ETXTBSY No

opendir() EMFILE Yes
ENFILE Yes

pathconf() EACCES Yes
EINVAL Yes
ENAMETOOLONG Yes
ENOENT Yes
ENOTDIR Yes

pow() EDOM Yes
ERANGE No

putenv() ENOMEM Yes

read() ENXIO Yes

readdir() EBADF Yes

rename() ETXTBSY No

setvbuf() EBADF No

sigaction() EINVAL Yes

sigaddset() EINVAL Yes

sigdelset() EINVAL Yes

X/Open and XPG4 77

5

(continued)

Function Error Detected

sigismember() EINVAL Yes

signal() EINVAL Yes

sin() EDOM No
ERANGE Yes

sinh() EDOM No
ERANGE Yes

sqrt() EDOM Yes

strcoll() EINVAL No

strerror() EINVAL No

strxfrm() EINVAL No

tan() EDOM Yes
ERANGE No

tanh() EDOM Yes
ERANGE No

tcdrain() EIO Yes

tcflush() EIO Yes

tcsendbreak() EIO Yes

tcsetattr() EIO Yes

tmpfile() EMFILE Yes
ENOMEM Yes

ttyname() EBADF Yes
ENOTTY Yes

ungetwc() EILSEQ Yes

unlink() ETXTBSY No

wcscoll() EINVAL Yes

wcstombs() EILSEQ Yes

wcsxfrm() EINVAL Yes

78 Standards Conformance Reference Manual—August 1994

5

(continued)

Function Error Detected

write() ENXIO Yes

y0() EDOM Yes
ERANGE No

y1() EDOM Yes
ERANGE No

yn() EDOM Yes
ERANGE No

Rationale
Each of the above error conditions is marked as optional in System Interfaces
and Headers, Issue 4 and an implementation may return this error in the
circumstances specified or may not provide the error indication.

Reference
X/Open CAE Specification, System Interfaces and Headers, Issue 4, Section 2.3,
Error Numbers.

1.1.5 Mathmatical Interfaces

Question 9: What format of floating-point numbers is supported by this implementation?

Answer:
IEEE floating point format.

Rationale
Most implementations support IEEE floating point format either in hardware
or software. Some implementations support other formats with different
exponent and mantissa accuracy. These differences need to be defined.

Reference
X/Open CAE Specification, System Interfaces and Headers, Issue 4, Section 1.6,
Relationship to Formal Standards.

X/Open and XPG4 79

5

1.1.6 DATA ENCRYPTION

Question 10: Are the optional data encryption interfaces provided?

Answer:

Function Provided

crypt() Yes

encrypt() Yes (Decryption capabilities not provided to
 areas restricted by U.S. export law.)

setkey() Yes

Rationale
Normally, an implementation will either provide all three of these routines or
will provide none of them at all. If the routines are not provided, then the
implementation must provide a dummy interface which always raises an
ENOSYS error condition.

It is also possible that the implementation of the encrypt () function may be
affected by export restrictions, in which case, the restrictions should be
documented here.

For example, historical implementations have supplied all three of these
routines outside the U.S.A., but due to export restrictions on the decoding
algorithm, a dummy version of encrypt () is provided that does encoding but
no decoding.

Reference
X/Open CAE Specification, System Interfaces and Headers, Issue 4, Section 1.2,
Conformance.

80 Standards Conformance Reference Manual—August 1994

5

Section 1.2: PROCESS HANDLING

1.2.1 PROCESS GENERATION

Question 11: Which files types (regular, directory, FIFO, special, and so on) are
considered to be executable?

Answer:
Only regular file types may be executed.

Rationale
The [EACCES] error associated with exec functions occurs in circumstances
when the implementation does not support execution of files of the type
specified. A list of these file types needs to be provided.

Reference
 X/Open CAE Specification, System Interfaces and Headers, Issue 4, Chapter 3,
Functions, exec .

Section 1.3: FILE HANDLING

1.3.1 ACCESS CONTROL

Question 12: What file access control mechanisms does the implementation provide?

Answer: There is no additional or optional file access control mechanism.

Rationale
System Interfaces and Headers, Issue 4 notes that implementations may
provide additional or alternate file access control mechanisms, or both.

Reference
X/Open CAE Specification, System Interfaces Definitions, Issue 4, Chapter 2,
Glossary, file access permissions.

1.3.2 FILES AND DIRECTORIES

Question 13: Are any additional or alternate file access control mechanisms implemented
that could cause fstat() or stat() to fail?

Answer:
 There is no additional or optional file access control mechanism.

X/Open and XPG4 81

5

Rationale
System Interfaces and Headers, Issue 4 notes that there could be an interaction
between additional and alternate access controls and the success of fstat()
and stat() . This would suggest that an implementation can allow access to a
file but not allow the process to gain information about the status of the file.

Reference
X/Open CAE Specification, System Interfaces Definitions, Issue 4, Chapter 3,
Functions, fstat() and stat() .

1.3.3 FORMATTING INTERFACES

Question 14: Does the printf() function produce character string representations for
Infinity and NaN to represent the respective values?

Answer:
Yes.

Rationale
This behaviour is ofter provided on systems with mathematical functions that
produce these results.

Reference
X/Open CAE Specification, System Interfaces Definitions, Issue 4, Chapter 3,
Functions, fprintf() .

Section 1.4: INTERNATIONALIZED SYSTEM INTERFACES

1.4.1 CODED CHARACTER SETS

Question 15: What coded character sets are supported by the implementation?

Answer:
Solaris 2.4 supports the following coded character sets:

ASCII
ISO 8859-1
JIS X0201
JIS X0208
KS C 5601-87
GB 2312-80
CNS 11643-1986

82 Standards Conformance Reference Manual—August 1994

5

Rationale
System Interface Definitions, Issue 4 states that conforming implementations
support one or more coded character sets, and that each of these includes
the portable character set.

Reference
X/Open CAE Specification, System Interfaces Definitions, Issue 4, Chapter 4,
Character Set.

Question 16: What is the implementation’s underlying internal codeset?

Answer:
ISO 8859-1:1987

Rationale
It is useful to be aware of the underlying codeset of the implementation.

Reference
X/Open CAE Specification, System Interfaces Definitions, Issue 4, Chapter 4,
Character Set.

83

POSIX.1 6

PortableOperatingSystemInterface forComputerEnvironments (POSIX.1)
The IEEE Std 1003.1-1990 Portable Operating System Interface Part 1
(POSIX .1) is part of the POSIX series of standards for applications and user
interfaces to open systems. POSIX.1 has also been adopted as international
standard ISO/IEC 9945-1: 1990 by the International Organization for
Standardization/International Electrotechnical Commission. It defines the
applications interface to basic system services for input/output, file system
access and process management, using the C programming language, which
establishes standard semantics and syntax. Because this interface enables
application writers to write portable applications, it has been named POSIX, an
acronym for Portable Operating System Interface. POSIX.1 is based on the
UNIX operating system and is derived from efforts of the /usr/group
Standards Committee. Within this chapter the POSIX.1 standard is referred to
in places as “the standard.”

Amending POSIX.1: The IEEE Standard 1003.1b

IEEE Std 1003.1b–1993 is a standard that amends POSIX.1 to include extensions
in support of realtime applications. (In earlier versions of this guide, IEEE Std
1003.1b was referred to as IEEE Std 1003.4 or POSIX.4. IEEE Std 1003.1b is now
the preferred reference to this standard.) These extensions were ratified by the
IEEE in September 1993. The functionality of SunOS 5.4 is intended to provide
compliance and support of POSIX.1 as amended by IEEE Std 1003.1b–1993.

84 Standards Conformance Reference Manual—August 1994

6

Scope
To comply with Section 1.3.1.2 (Documentation), this chapter describes the
behavior of features in the SunOS 5.4 operating system which are described in
the standard as implementation-defined or for which it is stated that
implementations may vary. It does not describe any extensions or
enhancements outside the scope of the standard.

Note – Section 2.2.1.2 of the standard defines the term implementation-defined as
follows: “An indication that the implementation shall define and document the
requirements for correct program constructs and correct data of a value or
behavior.”

The information contained within this chapter does not replace the standard;
rather, it serves as an adjunct to the standard for supplying the technical
information needed by application developers to write source code within the
SunOS 5.4 operating system framework.

CStandardCompliance
The SunOS 5.4 operating system conforms to POSIX.1. The C language
compiler and libraries conform to ANSI C.

Audience
This explication is for the experienced C programmer who, when writing an
applications program designed to conform to the standard, needs to know the
specific behavior of the implementation-defined features mentioned in the
standard.

Each subsection is prefaced by the appropriate section taken directly from the
standard and has the corresponding section number attached to the title.

Note – For maximum portability, applications should not depend upon any
particular behavior that is implementation-defined.

POSIX.1 85

6

NotationUsed in theRemainderof thisChapter
The following format is used to identify which passage of text is quoted from
the standard and which passage of text describes how the SunOS 5.4 operating
system implements that area.

• P. stands for POSIX.

• S. stands for SunOS 5.4.

Section numbers cited in the remainder of this chapter correspond to those of
the standard. When creating an application program, this format will help you
to quickly locate additional information that you need from the standard.

Implementation-DefinedAreasofPOSIX.1

POSIX.1Section1,General

1.3.1 Implementation Conformance

1.3.1.1 Requirements
P. The conformance document shall define an environment in which an
application can be run with the behavior specified by the standard.

S. To configure Solaris to run with the behavior specified by the standard,
execute the following steps:

1. Edit the /etc/saf/zsmon/_pmtab file to turn off the ttysoftcarrier
detect by changing the ttya and ttyb fields from :y: to :n: . (The colons
(:) act as field separators).

2. In the last line of the /kernel/drv/options.conf file, revise the :bd:
entry to :cbd: (The colons (:) act as field separators).

3. Disable ypbind to allow rebooting of the system:

a. cd /usr/lib/netsvc/yp

b. mv ypbind ypbind-

4. Set the eeprom variables that affect the tty :

a. On the keyboard, hit STOP-A to display the prom prompt.

86 Standards Conformance Reference Manual—August 1994

6

b. At the prompt, execute the following steps:

setenv ttya-ignore-cd false
setenv ttyb-ignore-cd false
setenv ttya-rts-dtr-off false
setenv ttyb-rts-dtr-off false

5. Reboot the system

1.3.1.2 Documentation
P. The conformance document shall contain a statement that indicates the full
name, number, and date of the standard that applies.

S. The SunOS 5.4 operating system is a conforming implementation as defined
in Section 1.3.1.2 (Documentation) of the IEEE Std 1003.1-1990 Portable Operating
System Interface (POSIX)-Part 1: System Application Program Interface
[C Language].

P. The conformance document may also list international software standards
that are available for use by a Conforming POSIX.1 Application.

S. The ANSI X3.159-1989 C Language Standard.

1.3.3.2 C Standard Language Dependent System Support
P. Implementors shall meet the requirements of Section 8 using for reference
the C Standard {2}. Implementors shall clearly document the version of the C
Standard {2} referenced in fulfilling the requirements of Section 8.

S. The system provides an ANSI C Standard Language Binding as specified by
X3.159-1989. This language binding is accessed by specifying either -Xa or
-Xc on the cc command line.

POSIX.1Section2,TerminologyandGeneralRequirements

2.2.2 General Terms

2.2.2.4: appropriate privileges
P. An implementation-defined means of associating privileges with a process with
regard to the function calls and function call options defined in the standard
that need special privileges. There may be zero or more such means.

POSIX.1 87

6

S. Appropriate privileges depend on file permissions and the user ID that
executed the process; logging in as root or any user with a UID equal to zero;
issuing the su command to change the UID to root or any user with UID equal
to zero; successful execution of a file with the S_ISUID bit set and UID equal to
zero.

2.2.2.9: character special file
P. One specific type of character special file is a terminal device file, whose
access is defined in 7.1. Other character special files have no structure defined
by this part of ISO/IEC 9945, and their use is unspecified by this part of
ISO/IEC 9945.

S. In addition to terminal device files, the /dev/ksyms character special file is
available. The /dev/ksyms structure is described in the ksyms (7) man page.

2.2.2.55: parent process ID
P. The parent process ID of a process is the process ID of its creator, for the
lifetime of the creator. After the creator’s lifetime has ended, the parent process
ID is the process ID of an implementation-defined system process.

S. If a child process continues to exist after its creator process ceases to exist,
the child process is inherited by init . The init process ID is 1.

2.2.2.57: pathname
P. A pathname that begins with two successive slashes may be interpreted in an
implementation-defined manner.

S. Multiple successive slashes are considered the same as one slash.

2.2.2.68: process lifetime
P. When another process executes a wait() or waitpid() function for an
inactive process, the remaining resources are returned to the system.

S. All resources except the session ID, the process ID and the process group ID
are returned to the system.

2.2.2.69: read-only file system
P. A file system that has implementation-defined characteristics restricting
modifications.

S. A read-only file system does not allow for modification of its files or
directories.

88 Standards Conformance Reference Manual—August 1994

6

2.2.2.83: supplementary group ID
P. Whether a process’s effective group ID is included in or omitted from its list
of supplementary group IDs is unspecified.

S. A process’s effective group ID is included in its list of supplementary group
IDs.

2.3 General Concepts

2.3.1: extended security controls
P. The access control and privilege mechanisms have been defined to allow
implementation-defined extended security controls.

S. No extended security controls are supported.

2.3.2: file access permissions
P. Implementations may provide additional or alternate file access control
mechanisms, or both.

S. There is no additional or optional file access control mechanism.

2.3.5: file times update
P. An implementation may update fields that are marked for update
immediately, or may update such fields periodically.

S. The UFS file system updates periodically.

2.4 Error Numbers

P. Implementations may support additional errors not included in this clause,
may generate errors included in this clause under circumstances other than
those described in this clause or may contain extensions or limitations that
prevent some errors from occurring.

POSIX.1 89

6

S. In addition to the errors listed in this clause, Solaris supports the following
errors:

[EFAULT]
P. The reliable detection of this error is implementation-defined; however,
implementations that do detect this condition shall use this value.

S. The functions listed below reliably detect a bad address and return EFAULT
when the address is not in a page mapped into the process.

access chdir chmod
chown clock_settime clock_getres
creat execl execle
execlp execv execve
execvp fcntl fstat
getgroups link mkdir
nanosleep open read
rmdir rename sigpending
sigprocmask sigsuspend sigaction
sigwaitinfo sigtimedwait sigqueue
stat tcgetattr tcsetattr
timer_create timer_gettime timer_settime
times uname unlink
utime write

[EFBIG]
P. The size of a file would exceed an implementation-defined maximum file size.

Error Error Code Condition

EBADMSG 77 Message waiting to be read on a data
stream is unreadable.

EMULTIHOP 74 Components of path require hopping to
multiple remote machines and the file
system does not allow it.

ENOLINK 67 Path points to remote machine; link to
that machine has been severed or is no
longer active.

ENOSR 63 Insufficient streams memory resources
available in the system.

EOVERFLOW 79 Value too large to be stored in data type.

90 Standards Conformance Reference Manual—August 1994

6

S. The maximum file size is defined by the setrlimit() function and can be
retrieved by the getrlimit() function.

2.5 Primitive System Data Types

<sys/types.h>
P. Some data types used by the various system functions are not defined as part
of this standard, but are defined by the implementation.

S. Additional fundamental data types are:

uchar_t ushort_t o_mode_t
uint_t ulong_t o_dev_t
caddr_t daddr_t o_uid_t
major_t minor_t o_gid_t
key_t o_nlink_t hostid_t
addr_t cnt_t o_ino_t
label_t paddr_t use_t
sysid_t index_t lock_t
boolean_t k_sigset_t k_fltset_t
id_t o_pid_t clock_t
wchar_t

2.6 Environment Description

P. Environment variable names used or created by an application should
consist solely of characters from the portable filename character set. Other
characters may be permitted by an implementation; applications shall tolerate
the presence of such names.

S. Any character except NULL and “=” is permitted; however applications
should restrict characters to that of the portable filename character set to
ensure portability.

2.7 C Language Definitions

2.7.2. POSIX.1 Symbols
P. Implementations, future versions of this part of ISO/IEC 9945, and other
standards may define additional feature test macros.

POSIX.1 91

6

S. Additional defined feature test macros: _XOPEN_SOURCE,
_POSIX_C_SOURCE, __REENTRANT and _KERNEL. Use of these macros is
described in the X/Open Portability Guide Issue 3 and IEEE Std 1003.1b–1993.

2.8 Numerical Limits

P. The conformance document shall describe the limit values found in the
<limits.h > header, stating values, the conditions under which those values
may change, and the limits of those variations, if any.

S. <limits.h > contains the following magnitude limitations:

Name Value Comments

AIO_LISTIO_MAX Undefined. Value may Maximum number of I/O operations
be configurable in future. in a single list I/O call supported by

the implementation.
AIO_MAX Undefined. Value may Maximum number of outstanding

be configurable in future. asynchronous I/O operations
supported by the implementaton.

AIO_PRIO_DELTA_MAXUndefined. Value may The maximum amount by which a
be configurable in future. process can decrease its asynchro-

nous I/O priority level from its own
scheduling priority.

ARG_MAX 1048320 Maximum length of arguments for
the exec functions, in bytes,
including environment data.

CHILD_MAX Configurable with Maximum number of simultaneous
minimum value 25. processes per real user ID.

DELAYTIMER_MAX Undefined. Value may Maximum number of timer
be configurable in future. expiration overruns.

LINK_MAX 32767 Maximum value of a files link count.
MAX_CANON 256 Maximum number of bytes in a

terminal canonical input line.
MAX_INPUT 512 Minimum number of bytes for which

space will be available in a terminal
input queue; therefore, the maximum
number of bytes a portable
application may require to be typed.

MQ_OPEN_MAX Undefined. Value may The maximum number of open
be configurable in future. message queue descriptors a

process may hold.

92 Standards Conformance Reference Manual—August 1994

6

MQ_PRIO_MAX Undefined. Value may The maximum number of
be configurable in future. message priorities supported

by the implementation.
NAME_MAX Undefined. Depends on Maximum number of bytes in a

underlying file system file name (not a string length; count
type. excludes a terminating null).

NGROUPS_MAX 16 Maximum number of simultaneous
supplementary groups IDs per
process.

OPEN_MAX Default maximum 64 can Maximum number of files that one
be raised or lowered by process can have open at one time.
calling setrlimit () .

PAGESIZE Undefined. Depends on Granularity in bytes of memory
system hardware. mapping and process memory

locking.
PATH_MAX 1024 Maximum number of bytes in a

pathname (not a string length; count
excludes a terminating null).

PIPE_BUF 5120 Maximum number of bytes that can
be written atomically when writing
to a pipe.

RTSIG_MAX Undefined. Value may Maximum number of realtime
be configurable in future. signals reserved for application

use in this implementation.
SEM_NSEMS_MAX Undefined. Value may Maximum number of semaphores

be configurable in future. that a process may have.
SEM_VALUE_MAX Undefined. Value may Maximum value a semaphore

be configurable in future. may have.
SIGQUEUE_MAX Undefined. Value may Maximum number of queued signals

be configurable in future. that a process may send and have
pending at the receiver(s) at any
time.

STREAM_MAX Not defined. Depends on The number of streams that one
OPEN_MAXand number of process can have open at one time.
files open not using If defined, it shall have the same
fopen () . value as {FOPEN_MAX} from the C

Standard {2}.
SSIZE_MAX 2147483647 The maximum value that can be

stored in an object of type ssize_t.
TIMER_MAX Undefined. Value may Maximum number of timers per

be configurable in future. process supported by the
implementation.

POSIX.1 93

6

TZNAME_MAX Undefined. Time zone Maximum number of bytes suppor-
name length is limited only ted for the name of a time zone.
by address space. (Not of the TZ variable).

2.9 Symbolic Constants

P. The conformance document shall describe the limit values found in the
<unistd.h > header, stating values, the conditions under which those values
may change, and the limits of those variations, if any.

S. <unistd.h > contains the following values:

Name Value Comments

_POSIX_CHOWN_RESTRICTED* Not defined. The us e of the chown () function is
Depends on under- restricted to a process with
lying file system appropriate privileges, and to
type. changing the group ID of a file

only to the effective group ID
of the process or to one of its
supplementary group IDS.

_POSIX_FSYNC 1 fsync () is supported.
_POSIX_JOB_CONTROL 1 Job control is supported.
_POSIX_MAPPED_FILES 1 Mapped files are supported.
_POSIX_MEMLOCK 1 Memory locking is supported.
_POSIX_MEMLOCK_RANGE 1 Memory range locking

is supported.
_POSIX_MEMORY_PROTECTION1 Memory protection is supported.
_POSIX_NO_TRUNC* Not defined. Pathname components longer than

Depends on under- NAME_MAX generate an error.
lying file system
type.

_POSIX_REALTIME_SIGNALS 1 Realtime signal extension is
supported.

_POSIX_SAVED_IDS 1 Saved IDs is supported.
_POSIX_SYNCHRONIZED_IO 1 Synchronized I/O is provided.
_POSIX_TIMERS 1 Clocks and timers are

supported.
_POSIX_VERSION 199309L Solaris conforms to IEEE

Standard 1003.1-1990, as amended
by the IEEE Standard for Realtime
Extensions approved Sept. 1993.

94 Standards Conformance Reference Manual—August 1994

6

_POSIX_VDISABLE* 0 Terminal special characters can
be disabled using this character
value.

* _POSIX_CHOWN_RESTRICTED and _POSIX_NO_TRUNC apply to all files on a native SunOS filesystem. _POSIX_VDISABLE

applies to terminal files.

POSIX.1Section3,ProcessPrimitives

3.1.1.2 Process Creation: Description

P. For the SCHED_FIFOand SCHED_RRscheduling policies, the child process
shall inherit the policy and priority settings of the parent process during a
fork() function. For other scheduling policies, the policy and priority settings
on fork() are implementation-defined.

S. All new child processes inherit the parent’s scheduling policy and
parameters.

P. The child process has its own copy of the parent’s open directory streams.
Each open directory stream in the child process may share directory stream
positioning with the corresponding directory stream of the parent.

S. Each open directory stream in the child process does not share directory
stream positioning with the corresponding directory stream of the parent.

3.1.1.4 Errors

P. For each of the following conditions, if the condition is detected, the fork()
function shall return -1 and set errno to the corresponding value:

[ENOMEM] The process requires more space than the system
is able to supply.

S. The fork() function detects the conditions and returns the corresponding
errno value for [ENOMEM].

POSIX.1 95

6

3.1.2.2 Execute a File: Description

P. The argument file is used to construct a pathname that identifies the new
process image file. If the file argument contains a slash character, the file
argument shall be used as the pathname for this file. Otherwise, the path prefix
for this file is obtained by a search of the directories passed as the environment
variable PATH(see 2.6). If this environment variable is not present, the results
of the search are implementation-defined.

S. When PATHis not set, SunOS 5.4 supplies a default search path:

/usr/sbin:/usr/bin (if the real or effective UID is root.)

/usr/bin: (if neither the real nor the effective UID is that of root.)

P. The number of bytes available for the new process’s combined argument and
environment lists is {ARG_MAX}. The implementation shall specify in the system
documentation whether any combination of null terminators, pointers, or
alignment bytes are included in this total.

S. {ARG_MAX} is retrieved using the sysconf() function. This value includes
the total number of bytes available for a new process’ arguments, environment,
and stack. {ARG_MAX} also includes initial pointers into the argument and
environment vectors.

The space required for the arguments, environment and stack by an execve()
call is determined by the following formula:

space = (((na + 4) * bpw) + nc) + click

space is then rounded up to the next click boundary. A click is the number of
bytes that the system’s memory-management facilities treats as a single unit.
For all machines on which the SunOS 5.4 operating system is supported, one
click equals 4096 bytes.

na is the count of arguments and environment variables. bpw is the number of
bytes per word: 4 on all Sun systems. nc is the count of bytes in the argument
and the environment vectors, including null terminators, and rounded up to
the next word boundary.

P. For the SCHED_FIFOand SCHED_RRscheduling policies, the policy and
priority settings shall not be changed by a call to an exec function. For other
scheduling policies, the policy and priority settings on exec are implementation-
defined.

96 Standards Conformance Reference Manual—August 1994

6

S. For all scheduling policies, the policy and scheduling parameters are not
changed by a call to an exec function.

P. Any outstanding asynchronous I/O operations may be canceled.Those
asynchronous I/O operations which are not canceled shall complete as if the
exec function had not yet occurred, but any associated signal notifications
shall be suppressed. It is unspecified whether the exec function itself blocks
awaiting such I/O completion. In no event, however, shall the new process
image created by the exec function be affected by the presence of outstanding
asynchronous I/O operations at the time the exec function is called. Whether
any I/O is canceled, and which I/O may be canceled upon exec is
implementation-defined.

S. Any cancelable asynchronous I/O operations are canceled.

3.1.2.4 Execute a File: Errors

P. If any of the following conditions occur, the exec functions shall return -1
and set errno to the corresponding value:

[EACCES] Search permission is denied for a directory
listed in the path prefix of the new process
image file, or the new process image file denies
execution permission, or the new process image
file is not a regular file and the implementation
does not support execution of files of its type.

S. Only regular files are supported by the exec function.

P. For each of the following conditions, if the condition is detected, the exec
functions shall return -1 and return the corresponding value to errno :

[ENOMEM] The new process image requires more memory
than is allowed by the hardware or system-
imposed memory management constraints.

S. The exec functions detect the conditions and return the corresponding errno
value for [ENOMEM].

POSIX.1 97

6

3.2.1.2 Wait for Process Termination: Description

wait()
P. An implementation may define additional circumstances under which wait()
or waitpid() reports status. In these cases the interpretation of the reported
status is implementation-defined.

S. A child that is being traced stops because it has reached a break point.
WIFSTOPPED(status) will be true and WSTOPSIG(status) will yield the
signal that caused the process to stop.

If a child that was formerly stopped by Job Control was continued,
WIFCONTINUED(status) will be true.

The above will not be true unless the process is tracing a child. See the
proc(4) man page for more information.

3.2.2.2 Terminate a Process: Description

exit()
P. Children of a terminated process shall be assigned a new parent process ID,
corresponding to an implementation-defined system process.

S. The child’s parent process ID becomes 1 which is the process ID of the init
process.

P. Any outstanding cancelable asynchronous I/O operations may be canceled.
Those asynchronous I/O operations which are not canceled shall complete as if
the _exit() operation had not yet occurred, but any associated signal
notifications shall be suppressed. The _exit() operation itself may or may not
block awaiting such I/O completion. Whether any I/O is canceled, and which
I/O may be canceled upon _exit() , is implementation-defined.

S. Any cancelable asynchronous I/O operations are canceled.

3.3.1.1 Signal Names

<signal.h>
P. An implementation may define additional signals that may occur in the system.

S. The additional signals generated are:

98 Standards Conformance Reference Manual—August 1994

6

SIGILL SIGTRAP
SIGEMT SIGBUS
SIGSYS SIGPWR
SIGWINCH SIGURG
SIGPOLL SIGVTALRM
SIGPROF SIGXCPU
SIGXFSZ SIGIOT
SIGLOST SIGIO
SIGFREEZE SIGTHAW

P. It is implementation-defined whether the realtime signal behavior specified in
this section-specifically, the queueing of signals and the passing of application
defined values-is supported for the signals defined in Table 3-1, Table 3-2 or
Table 3-3 [of the standard].

S. The passing of application-defined values is supported for all signals. The
queueing of signals is supported for all signals generated via sigqueue() or
requested via a sigevent.sigev_notify value of SIGEV_SIGNAL.

3.3.1.2 Signal Generation and Delivery

Signals
P. If a subsequent occurrence of a pending signal is generated, it is
implementation-defined as to whether the signal is delivered more than once.

S. Subsequent occurrences of signals are delivered more than once if the
subsequent signal was generated via sigqueue() or requested via a
sigevent.sigev_notify value of SIGEV_SIGNAL.

P. An implementation shall document any conditions not specified by this
standard under which the implementation generates signals.

S. Conditions under which these additional signals are generated are:

Signal Condition

SIGTRAP Trace/breakpoint Trap
SIGWINCH Window size change
SIGEMT Emulation trap
SIGURG Urgent socket condition
SIGPOLL Pollable event
SIGBUS Bus error
SIGVTALRM Virtual timer expired

POSIX.1 99

6

SIGILL Illegal instruction
SIGSYS Bad system call
SIGPROF Profiling timer expired
SIGXCPU CPUtime limit exceeded
SIGPWR Power fail/restart
SIGXFSZ File size limit exceeded
SIGIO On asynchronous I/O
SIGLOST When a lock is broken. (See lockd(8))
SIGFREEZE Checkpoint freeze
SIGTHAW Checkpoint thaw

3.3.1.3 Signal Actions

P. The following values are defined for si_code :

SI_USER The signal was sent by the kill() function. The
implementation may set si_code to SI_USER if
the signal was sent by the raise() or abort()
functions defined in the C Standard {2} or any
similar functions provided as implementation
extensions.

SI_QUEUE The signal was sent by the sigqueue() function.

SI_TIMER The signal was generated by the expiration of a
timer set by timer_settime() .

SI_ASYNCIO The signal was generated by the completion of an
asynchronous I/O request.

SI_MESGQ The signal was generated by the arrival of a
message on an empty message queue.

If the signal was not generated by one of the functions or events listed above,
the si_code shall be set to an implementation-defined value that is not equal to
any of the values defined above.

S. SunOS defines other values of si_code for particular signals. Symbols for
these values are described in the siginfo (5) manual pages. Due to
compilation namespace requirements, these symbols are not defined in the
POSIX compilation environment, and hence are not available to Strictly
Conforming Applications. Aliases for the values of of si_code that begin with
“SI” are not currently available.

100 Standards Conformance Reference Manual—August 1994

6

3.3.2.2 Send a Signal to a Process: Description

kill()
P. An implementation that provides extended security controls may impose
further implementation-defined restrictions on the sending of signals, including
the null signal.

S. Extended security controls that impose further restrictions on the sending of
signals are not provided.

3.3.3.4 Manipulate Signal Sets: Errors

P. For each of the following conditions, if the condition is detected, the
sigaddset() , sigdelset() , and sigismember() functions shall return -1
and set errno to the corresponding value:

[EINVAL] The value of the signo argument is an invalid
or unsupported signal number.

S. The sigaddset() , sigdelset() , and sigismember() functions all detect
[EINVAL].

3.3.4.2 Examine and Change Signal Action: Description

P. If SA_SIGINFO is not set in sa_flags , then the disposition of subsequent
occurrences of sig when it is already pending is implementation-defined; and the
signal-catching function shall be invoked with a single argument.

S. If SA_SIGINFO is not set in sa_flags , subsequent occurrences of sig ,
when it is already pending and queued, are quietly discarded.

3.3.6.4 Examine Pending Signals: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the sigpending() function. Some errors may be
detected under conditions that are unspecified by this part of ISO/IEC 9945.

S. The sigpending() function detects [EFAULT].

POSIX.1 101

6

POSIX.1Section4,ProcessEnvironment

4.2.4.4 Get User Name: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the getlogin() function. Some errors may be
detected under conditions that are unspecified by this part of ISO/IEC 9945.

S. The system detects no errors for getlogin() .

4.4.1.2 Get System Name: Description

<sys/utsname.h>
P. The structure utsname is defined in the header <sys/utsname.h>, and
contains at least the members shown in Table 4-1 of the standard. (Refer to the
standard for the table members.)

Each of these data items is a null-terminated character array. The format of
each member is implementation-defined.

S. The format of the members found in <sys/utsname.h> for utsname is
type char [257].

4.5.1.4 Get System Time: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the time() function. Some errors may be detected
under conditions that are unspecified by this part of ISO/IEC 9945.

S. No additional errors are detected for the time() function.

4.6.1.4 Environment Variables: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the getenv() function. Some errors may be
detected under conditions that are unspecified by this part of ISO/IEC 9945.

S. No error conditions are detected for the getenv() function.

102 Standards Conformance Reference Manual—August 1994

6

4.7.1.4 Generate Terminal Pathname: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the ctermid() function. Some errors may be
detected under conditions that are unspecified by this part of ISO/IEC 9945.

S. No error conditions are detected for the ctermid() function.

4.7.2.4 Determine Terminal Device Name: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the ttyname() or isatty() functions. Some
errors may be detected under conditions that are unspecified by this part of
ISO/IEC 9945.

S. No error conditions are detected for the ttyname() or isatty() functions.

POSIX.1Section5,Files andDirectories

5.1.1 Format of Directory Entries

P. The internal format of directories is unspecified.

S. For each directory a link count is maintained. This is the total number of
directories that are listed in the directory, including “.” and “..”.

5.1.2.4 Directory Operations: Errors

P. For each of the following conditions, when the condition is detected, the
opendir() function shall return a value of NULL and set errno to the
corresponding value:

[EMFILE] Too many file descriptors are currently open for
the process.

[ENFILE] Too many file descriptors are currently open in
the system.

S. The opendir() function detects the conditions and returns the
corresponding errno values for both [EMFILE] and [ENFILE].

POSIX.1 103

6

P. For each of the following conditions, when the condition is detected, the
readdir() function shall return a value of NULL and set errno to the
corresponding value:

[EBADF] The dirp argument does not refer to an open
directory system.

S. If the dirp argument passed to readdir() does not point to an open
directory stream, Solaris returns a NULL pointer and set errno to [EBADF].

P. For each of the following conditions, when the condition is detected, the
closedir() function shall return a value of -1 and set errno to the
corresponding value:

[EBADF] The dirp argument does not refer to an open
directory stream.

S. For the closedir() function, Solaris may detect the condition and set
errno value to [EBADF].

5.2.2.4 Get Working Directory Pathname: Errors

P. For each of the following conditions, if the condition is detected, the
getcwd() function shall return a value of NULL and set errno to the
corresponding value:

[EACCES] Read or search permission was denied for a
component of the pathname.

S. For the getcwd() function, Solaris detects the conditions and returns the
corresponding errno value for [EACCES].

104 Standards Conformance Reference Manual—August 1994

6

5.3.1.2 Open a File: Description

O_CREAT
P. The file’s group ID shall be set to the group ID of the directory in which the
file is being created or to the effective group ID of the process.

S. When O_CREAT is set in oflag and bits in mode other than the file
permission bits are set, the files group ID is set to the group ID of the parent
directory if the S_ISGID bit is set in the directory in which the file is being
created. If the S_ISGID bit is set in the parent directory, the group ID of the file is
inherited from the parent directory; otherwise it is set to the group ID of the
calling process.

O_TRUNC
P. If the file exists and is a regular file, and the file is successfully opened
O_RDWRor O_WRONLY, it shall be truncated to zero length and the mode and
owner shall be unchanged by this function call. O_TRUNCshall have no effect
on FIFO special files or directories. Its effect on other file types is
implementation-defined. The result of using O_TRUNCwith O_RDONLYis
undefined.

S. O_TRUNChas no effect on other file types.

5.3.3.2 Set File Creation Mask: Description

umask()
P. The umask() routine sets the process’s file mode creation mask to cmask
and returns the previous value of the mask. Only the file permission bits of
cmask are used; the meaning of the other bits is implementation-defined.

S. The implementation ignores all but the file permission bits.

5.3.4.2 Link to a File: Description

P. The existing argument shall not name a directory unless the user has
appropriate privileges and the implementation supports using link() on
directories.

S. Linking of directories is supported if the user has appropriate privileges.

POSIX.1 105

6

P. The implementation may require that the calling process has permission to
access the existing file.

S. Solaris does not require that the calling process have permission to access the
existing file when linking files.

5.4.1.2 Make a Directory: Description

mkdir()
P. When bits in mode other than the file permission bits are set, the meaning of
these additional bits is implementation-defined.

S. The implementation ignores all but the file permission bits.

P. The directory’s group ID shall be set to the group ID of the directory in
which the directory is being created or to the effective group ID of the process.

S. A new directory’s group ID is set to the group ID of the parent directory when
the S_ISGID bit is set in the parent directory; otherwise it is set to the group ID
of the calling process. The newly created directory inherits the S_ISGID bit.

5.4.2.2 Make a FIFO Special File: Description

mkfifo()
P. When bits in mode other than the file permission bits are set, the meaning of
these additional bits is implementation-defined.

S. The implementation ignores all but the file permission bits.

P. The group ID of the FIFO shall be set to the group ID of the directory in
which the FIFO is being created or to the effective group ID of the process.

S. If the S_ISGID bit is set in the parent directory, the group ID of the FIFO is
inherited from the parent directory; otherwise it is set to the group ID of the
calling process.

106 Standards Conformance Reference Manual—August 1994

6

5.5.1.2 Remove Directory Entries: Description

P. The path argument shall not name a directory unless the process has
appropriate privileges and the implementation supports using unlink() on
directories.

S. unlink() is supported if the user has the appropriate privileges.

5.5.1.4 Remove Directory Entries: Errors

P. If any of the following conditions occur, the unlink() function shall return
-1 and set errno to the corresponding value:

[EBUSY] The directory named by the path argument cannot
be unlinked because it is being used by the system
or another process and the implementation
considers this to be an error.

S. unlink() supports detection of [EBUSY].

5.5.2.2 Remove a Directory: Description

rmdir()
P. If the named directory is the root directory or the current working directory
of any process, it is unspecified whether the function succeeds or whether it
fails and sets errno to [EBUSY].

S. If the directory indicated in the call to rmdir() is a mount point for a
mounted file system, rmdir() sets errno to [EBUSY] and returns -1.

POSIX.1 107

6

5.5.2.4 Remove a Directory: Errors

P. If any of the following conditions occur, the rmdir() function shall return -
1 and set errno to the corresponding value:

[EBUSY] The directory named by the path argument cannot
be removed because it is being used by another
process and the implementation considers this to
be an error.

S. If the directory indicated in the call to rmdir() is a mount point for a
mounted file system, rmdir() sets errno to [EBUSY] and returns -1.

5.5.3.2 Rename a File: Description

P. Write access permission is required for the directory containing old and the
directory containing new. If the old argument points to the pathname of a
directory, write access permission may be required for the directory named by
old, and, if it exists, the directory named by new.

S. In a call to rename() , if the old argument points to the pathname of a
directory, write access permission is not required for the directory named by old
and if it exists, for the directory named by new.

5.5.3.4 Rename a File: Errors

P. If any of the following conditions occur, the rename() function shall return
-1 and set errno to the corresponding value:

[EBUSY] The directory named by old or new cannot
be renamed because it is being used by the
system or another process and
the implementation considers this to be an error.

S. [EBUSY] is returned only if the new directory is a mount point for a mounted
file system.

108 Standards Conformance Reference Manual—August 1994

6

5.6.1.2 File Characteristics: File Modes

<sys/stat.h>
P. Implementations may ORother implementation-defined bits into S_IRWXU,
S_IRWXG, and S_IRWXO, but they shall not overlap any of the other bits
defined in this standard.

S. The implementation also provides a bit identified by S_ISVTX. For a
directory, this bit determines whether or not an unprivileged user may delete
or rename another user’s files from that directory (refer to chmod(2) for other
files types).

5.6.2.2 Get File Status: Description

stat() , fstat()
P. An implementation that provides additional or alternate file access control
mechanisms may, under implementation-defined conditions, cause the stat()
and fstat() functions to fail.

S. No other conditions cause these functions to fail.

5.6.3.4 Check File Accessibility: Errors

P. For each of the following conditions, if the condition is detected, the
access() function shall return -1 and set errno to the corresponding value:

[EINVAL] An invalid value was specified for amode.

S. For the access() function, Solaris detects the condition and returns the
corresponding errno value for [EINVAL].

5.6.4.2 Change File Modes: Description

P. Additional implementation-defined restrictions may cause the S_ISUID and
S_ISGID bits in mode to be ignored.

S. If the process has access permissions, there are no implementation-defined
conditions under which this would be denied.

POSIX.1 109

6

P. The effect on file descriptors for files open at the time of the chmod() or
fchmod() function is implementation-defined.

S. Access permissions for open file descriptors that refer to files on local (UFS)
mounted file systems are not affected by chmod() or fchmod() . Access
permissions for descriptors referring to files on other file systems may change
as a result of a successful chmod() or fchmod() call.

5.6.5.2 Change Owner and Group of a File: Description

chown()
P. If the path argument refers to a regular file, the set-user-ID (S_ISUID) and set-
group-ID (S_ISGID) bits of the file mode shall be cleared upon successful
return from chown(), unless the call is made by a process with appropriate
privileges, in which case it is implementation-defined whether those bits are
altered.

S. The S_ISUID and S_ISGID bits of the file mode remain unaltered when a call
is made by a process with the appropriate privilege.

5.6.5.4 Change Owner and Group of a File: Errors

P. For each of the following conditions, if the condition is detected, the
chown() function shall return -1 and set errno to the corresponding value:

[EINVAL] The owner of group ID supplied is invalid and not
supported by the implementation.

S. The chown() function does not detect [EINVAL].

5.7.1.4 Get Configurable Pathname Variables: Errors

P. If any of the following conditions occur, the pathconf() function shall
return -1 and set errno to the corresponding value:

[EINVAL] The value of name is invalid.

S. For the pathconf() function, Solaris does detect the condition and returns
the corresponding errno value for [EINVAL].

110 Standards Conformance Reference Manual—August 1994

6

P. For each of the following conditions, if the condition is detected, the
pathconf() function shall return -1 and set errno to the corresponding
value:

[EACCES] Search permission is denied for a component of the
path prefix.

[ENAMETOOLONG] The length of the path argument exceeds
{PATH_MAX}, or a pathname component is longer
than {NAME_MAX} while {_POSIX_NO_TRUNC}
is in effect.

[ENOENT] The named file does not exist, or the path
argument points to an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

S. For the pathconf() function, Solaris detects the conditions and returns the
corresponding errno value for [EACCES], [ENAMETOOLONG], [ENOENT]
and [ENOTDIR].

P. For each of the following conditions, if the condition is detected, the
fpathconf() function shall return -1 and set errno to the corresponding
value:

[EBADF] The fildes argument is not a valid file descriptor.
[EINVAL] The implementation does not support an

association of the variable name with the specified
file.

S. For the fpathconf() function, Solaris detects the conditions and returns the
corresponding errno value for [EBADF] and [EINVAL].

POSIX.1Section6, InputandOutputPrimitives

6.3.1.2 Close a File: Description

P. When there is an outstanding cancelable asynchronous I/O operation against
fildes when close() is called, that I/O operation may be canceled. An I/O
operation which is not canceled completes as if the close() operation had not
yet occurred. All operations which are not canceled shall complete as if the
close() blocked until the operations completed. The close() operation itself

POSIX.1 111

6

need not block awaiting such I/O completion. Whether any I/O operation is
canceled, and which I/O operation may be canceled upon close() , is
implementation-defined.

S.The Asynchronous Input and Output option is not supported in Solaris 2.4;
hence, there is no implementation-specific behavior.

6.4.1.2 Read from a File: Description

read()
P. If a read() is interrupted by a signal after it has successfully read some
data, either it shall return -1 with errno set to [EINTR], or it shall return the
number of bytes read.

S. If a read() is interrupted by a signal after is has successfully read some data,
it returns the number of bytes read.

P. If the file refers to a device special file, the result of subsequent read()
requests after a read() has returned an EOF indication, is implementation-
defined.

S. The result of this request is device dependent for standard tty devices. See
Section 4 of the SunOS 5.4 Reference Manual for more information.

P. If the value of nbyte is greater than {SSIZE_MAX} , the result is
implementation-defined.

S. Given a valid buffer, nbyte bytes will be transferred.

6.4.2.2 Write to a File: Description

write()
P. If write() is interrupted by a signal after it successfully writes some data,
either it shall return -1 with errno set to [EINTR], or it shall return the number
of bytes written.

S. If write() is interrupted by a signal after it successfully writes some data,
it returns the number of bytes read.

P. If the value of nbyte is greater than {SSIZE_MAX} , the result is
implementation-defined.

S. The write will not succeed; it returns –1 and sets errno to [EINVAL].

112 Standards Conformance Reference Manual—August 1994

6

6.5.2.2 File Control: Description

P. If the system detects that sleeping until a locked region is unlocked would
cause a deadlock, the fcntl() function shall fail with an [EDEADLK] error.

S. The fcntl() function detects [EDEADLK].

6.5.3.2 Reposition Read/Write File Offset: Description

lseek()
P. Some devices are incapable of seeking. The behavior of the lseek()
function on such devices is implementation-defined.

S. On such devices, lseek() returns -1 with errno set to [EINVAL].

6.6 File Synchronization

P. The hardware characteristics upon which the implementation relies to assure
that data successfully transferred for synchronized I/O operations are
implementation-defined.

S. The data is considered to be successfully transferred when the device driver
operation completes successfully.

6.6.1.2 Synchronize a File’s State: Description

P. The fsync() function can be used by the application to indicate that all data
for the open file description named by fildes is to be transferred to the storage
device associated with the file described by fildes, in an implementation-defined
manner.

The conformance document shall include sufficient information for the user to
determine whether it is possible to configure an application and installation to
ensure that the data is stored with the degree of required stability for the
intended use.

S. For files in a ufs filesystem, the physical transfer to the underlying device
must successfully complete.

POSIX.1 113

6

6.7.1.1 Data Definitions for Asynchronous Input and Output: Asynchronous
I/O Control Block

P. Under implementation-defined circumstances, such as operation on a
multiprocessor or when requests of differing priorities are submitted at the
same time, the ordering restriction may be relaxed; the implementation shall
document under what circumstances the ordering restriction may be relaxed.

S. The Asynchronous Input and Output option is not supplied in Solaris;
hence, there is no implementation-specific behavior.

P. The relative priority of asynchronous I/O and synchronous I/O is
implementation-defined. If POSIX_PRIORITIZED is defined, the implementation
shall define for which files I/O prioritization is supported.

S. The Asynchronous Input and Output option is not supplied in Solaris;
hence, there is no implementation-specific behavior.

6.7.7.2 Cancel Asynchronous I/O Request: Description

aio_cancel()
P. It is implementation-defined which operations are cancelable.

S. The Asynchronous Input and Output option is not supplied in Solaris;
hence, there is no implementation-specific behavior.

POSIX.1Section7,Device- andClass-SpecificFunctions

7.1 General Terminal Interface

terminal interface
P. It is implementation-defined whether this interface supports network
connections or synchronous ports or both. The conformance document shall
describe which device types are supported by these interfaces.

S. SunSoft supports these interfaces for terminal devices, terminal multiplexers,
and terminal pseudo-devices.

114 Standards Conformance Reference Manual—August 1994

6

7.1.1.3 The Controlling Terminal

controlling terminal
P. The controlling terminal for a session is allocated by the session leader in an
implementation-defined manner. If a session leader has no controlling terminal,
and opens a terminal device file that is not already associated with a session
without using the O_NOCTTYoption, it is implementation-defined whether the
terminal becomes the controlling terminal of the session leader.

S. If a session leader has no controlling terminal and opens a terminal device
file that is not already associated with a session without using the O_NOCTTY
option, the terminal then becomes the controlling terminal of the session leader.

7.1.1.5 Input Processing and Reading Data

input queue
P. The system may impose a limit, {MAX_INPUT}, on the number of bytes that
may be stored in the input queue. The behavior of the system when this limit
is exceeded is implementation-defined.

S. If the data in the driver’s input queue exceeds {MAX_INPUT}, all the
characters saved in the stream up to that point are discarded without notice.
However, if IMAXBEL is set and the data in the driver input queue exceeds
{MAX_INPUT}, the ASCII BEL character is echoed. Further input will not be
stored, and any input already present in the input stream is not disturbed.

7.1.1.6 Canonical Mode Input Processing

{MAX_CANON}
P. If {MAX_CANON}is defined for this terminal device, it is a limit on the

number of bytes in a line. The behavior of the system when this limit is
exceeded is implementation-defined.

S. If the data in the line discipline buffer exceeds {MAX_CANON}in the
canonical mode and IMAXBEL is not set, all the characters saved in the buffer
up to that point are discarded without any notice. However, if IMAXBEL is set
and the data in the line discipline buffer exceeds {MAX_CANON}, the ASCII
BEL character is echoed. Further input will not be stored, and any input
already present in the input stream is not disturbed.

POSIX.1 115

6

7.1.1.7 Noncanonical Mode Input Processing

MIN
P. If MIN is greater than {MAX_INPUT}, the response to the request is
implementation-defined.

S. The maximum value that can be stored for MIN in c_cc [VMIN] is 255,
which is less than {MAX_INPUT} (512). The MIN value can never exceed
{MAX_INPUT} .

7.1.1.8 Writing Data and Output Processing

P. The implementation may provide a buffering mechanism; as such, when a call
to write() completes, all of the bytes written have been scheduled for
transmission to the device, but the transmission will not necessarily have
completed.

S. Solaris provides a buffering mechanism for a write() to a teminal device.
The write() system call may complete and return a value to the user
program, but the data sent downstream may flow control on one or more
streams modules. To ensure that the data has been transmitted entirely, make a
call to tcdrain() . On return from tcdrain() , the written data will be
transmitted.

7.1.1.9 Special Characters

START, STOP
P. It is implementation-defined whether the STARTand STOPcharacters can be
changed.

S. The STARTand STOPcharacters can be changed.

116 Standards Conformance Reference Manual—August 1994

6

IEXTEN
P. A special character is recognized not only by its value, but also by its context;
for example, an implementation may define multi-byte sequences that have a
meaning different from the meaning of bytes when considered individually.
Implementations may also define additional single-byte functions. These
implementation-defined multibyte or single byte functions are recognized only if
the IEXTEN flag is set; otherwise, data is received without interpretation,
except as required to recognize the special characters defined in the subclass
(7.1.1.9).

S. SunOS 5.4 does not recognize any multibyte input control sequences. The
following single-byte special characters are recognized when IEXTEN is set:

WERASE Erase last word typed
REPRINT Reprint the current input
DISCARD Discard output
LNEXT Ignore any special meaning of the next character typed

7.1.2.2 Input Modes

c_iflag
P. In contexts other than asynchronous serial data transmission the definition of
a break condition is implementation-defined.

S. The break condition is not defined for contexts other than asynchronous
serial data.

P. The precise conditions under which STOPand STARTcharacters are
transmitted are implementation-defined.

S. A STOPcharacter is transmitted when the input data exceeds the high water
mark of the queue. A STARTcharacter is transmitted when the input data falls
below the low water mark of the queue. If it is not a STREAMS device, the
results are device-dependent.

P. The initial input control value after open() is implementation-defined.

S. The initial setting of the input mode flag is configurable. For more
information, see the termio(7) man page.

POSIX.1 117

6

7.1.2.3 Output Modes

P. If OPOSTis set, output data is processed in an implementation-defined fashion
so that lines of text are modified to appear appropriately on the terminal
device, otherwise characters are transmitted without change.

S. The SunOS 5.4 operating system supports the following output control mode
masks which are enabled by OPOST:

OLCUC Map lower case to upper case on output.
ONLCR Map NL to CR-NL on output.
OCRNL Map CR to NL on output.
ONOCR No CR output at column 0.
ONLRET NL performs CR function.
OFILL Use fill characters for delay.
OFDEL Fill is DEL, else NUL.
NLDLY Select new line delays:

NL0 No new line delay.
NL1

CRDLY Select carriage-return delays:
CR0 No carriage return delay.
CR1
CR2
CR3

TABDLY Select horizontal-tab delays or expansion:
TAB0 No horizontal tab delay.
TAB1
TAB2
TAB3

XTABS Expand tabs to spaces.
BSDLY Select backspace delays:

BS0 No backspace delay.
BS1

VTDLY Select vertical-tab delays:
VT0 No vertical tab delay.
VT1

FFDLY Select form-feed delays:
FF0 No form feed delay.
FF1

118 Standards Conformance Reference Manual—August 1994

6

open()
P. The initial output control value after open() is implementation-defined.

S. The initial setting for the output control flag oflag is configurable. For more
information, see the termio(7) man page.

7.1.2.4 Control Modes

open()
P. The initial hardware control value after open() is implementation-defined.

S. The initial hardware control value after open() is configurable. For more
information, see the termio(7) man page.

7.1.2.5 Local Modes

IEXTEN
P. If IEXTEN is set, implementation-defined functions shall be recognized from the
input data.

S. If IEXTEN and ICANONare set, the WERASE, REPRINT, DISCARD, and LNEXT
functions are recognized from the input data.

P. It is implementation-defined how IEXTEN being set interacts with ICANON,
ISIG,IXON, or IXOFF. If IEXTEN is not set, then implementation-defined
functions shall not be recognized, and the corresponding input characters shall
be processed as described for ICANON, ISIG , IXON, and IXOFF.

S. IXON, ISIG , and IXOFF flags are processed as they are defined in the
standard, when IEXTEN is on or off.

In addition to the local mode masks listed in the standard, the SunOS 5.4
operating system supports the following functions:

XCASE Canonical upper/lower presentation
ECHOCTL Echo control characters as ‘^ C’, delete character as ‘^? ’.
ECHOPRT Echo erase character as character erased.
ECHOKE BSSP_BS erase entire line on line kill.
FLUSHO Output is being flushed.
PENDIN Retype pending input at next read or input character.

POSIX.1 119

6

P. The initial control value after open() is implementation-defined.

S. The initial setting for the local mode flag lflag is configurable. For more
information, see the termio(7) man page.

7.1.2.6 Special Control Characters

P. The initial values of all control characters are implementation-defined.

S. The initial values of control characters are configurable and are set when the
system boots. See the termio(7) man page for more information.

7.1.3.4 Baud Rate Functions: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the cfgetispeed() , cfgetospeed()
cfsetispeed() or cfsetospeed() functions. Some errors may be detected
under conditions that are unspecified by this part of ISO/IEC 9945.

S. The cfgetispeed() , cfgetospeed() cfsetispeed() and
cfsetospeed() functions do not return any additional errors.

7.2.1.2 Get and Set State: Description

P. If the input and output baud rates differ and are a combination that is not
supported, neither baud rate is changed.

S. Differing input and output baud rates are not supported.

7.2.2.2 Line Control Functions: Description

tcsendbreak() , tcdrain() , tcflush() , tcflow()
P. If the terminal is not using asynchronous serial data transmission, it is
implementation-defined whether the tcsendbreak() function sends data to
generate a break condition (as defined by the implementation) or returns without
taking any action.

S. On non-asynchronous transmissions, tcsendbreak() does not send a
break; it simply returns.

120 Standards Conformance Reference Manual—August 1994

6

tcsendbreak()
P. If duration is not zero, it shall send zero-valued bits for an implementation-
defined period of time.

S. For a delay of n ≠ 0, tcsendbreak() is equivalent to tcdrain() .

POSIX.1Section8,Language-SpecificServices for theCProgrammingLanguage

8.1.1 Referenced C Language Routines, Extensions to Time Functions

TZ
P. If TZ is of the first format (i.e., if the first character is a colon), the characters
following the colon are handled in an implementation-defined manner.

S. The string following the colon refers to the file
/usr/share/lib/zoneinfo/ <string>. This file contains a timezone
specification.

8.1.2.2 Extensions to setlocale () : Description

setlocale()
P. In addition to the value for “category” specified in the standard, the
implementation may define additional categories.

S. In addition to the categories (environment variables) described in the
standard, the SunOS 5.4 operating system supports the following:

LC_MESSAGES Allows for display of alternate message texts

P. If no nonnull environment variable ($LC_ALL, $LANG, or the environment
variable corresponding to the category being set) is present to supply a value
for “locale” it is implementation-defined whether setlocale() sets the specified
locale category to a systemwide default value or to “C or to POSIX”.

S. The default locale is “C”.

POSIX.1 121

6

P. The possible actual values of the environment variables are implementation-
defined and should appear in the system documentation.

S. The supported locales are “C”,“POSIX”, “de”,“fr”,“it”, “ja”, “japanese” and
“sv”. The locale name “iso_8859_1” contains only the LC_CTYPEcategory, and
is not an appropriate value for LC_ALL or the LANGenvironment variable.
Other locale names may be available due to the addition of further Sun or
third-party packages.

8.2.2.4 Open a Stream on a File Descriptor: Errors

P. This part of ISO/IEC does not specify any error conditions that are required
to be detected for the fdopen() function. Some errors may be detected under
conditions that are unspecified by this part of ISO/IEC 9945.

S. The fdopen() function detects no errors.

8.2.3 Interactions of Other File-Type C Functions

P. (5) Implementations shall assure that an application, even one consisting of
several processes, shall yield correct results (no data is lost or duplicated when
writing, all data is written in order, except as requested by seeks) when the
rules above are followed, regardless of the sequence of handles used. When
these rules are followed, it is implementation-defined whether, and under what
conditions, all input is seen exactly once.

S. When applications follow the rules specified, all input is seen exactly once.

8.3.2.2 Set Time Zones: Description

tzset()
P. If TZ is absent from the environment, implementation-defined default time zone
information shall be used.

S. If TZ is absent from the environment, then time zone information behaves as
though TZ were set to localtime .

122 Standards Conformance Reference Manual—August 1994

6

POSIX.1Section9,SystemDatabases

9.1 System Databases

/etc/passwd
P. If the initial user program field is null, the system default is used.

S. If the user program field is null, the default program is /usr/bin/sh .

P. If the initial working directory field is null, the interpretation of that field is
implementation-defined.

S. If the field is empty, the login fails.

9.2.1.4 Group Database Access: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the getgrgid() or getgrnam() functions. Some
errors may be detected under conditions that are unspecified by this part of
ISO/IEC 9945.

S. No error conditions are detected for the getgrgid() or getgrnam()
functions.

9.2.2.4 User Database Access: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the getpwuid() or getpwnam() functions. Some
errors may be detected under conditions that are unspecified by this part of
ISO/IEC 9945.

S. No errors conditions are detected for the getpwuid() or getpwnam()
functions.

POSIX.1 123

6

POSIX.1Section10,Data InterchangeFormat

10.1 Archive/Interchange File Format

P. The format-creating utility is used to translate from the file system to the
formats defined in this clause. The format-reading utility is used to translate
from the formats defined in this clause to a file system. The interface to these
utilities, including their name or names, is implementation-defined.

S. The cpio utility, when used with certain options, can be used to create and
read these formats. For more information, see the cpio man page.

10.1.1 Extended tar Format

P. If an implementation supports the use of characters outside the portable
filename character set in names for files, users, and groups, one or more
implementation-defined encodings of these characters shall be provided for
interchange purposes.

S. The use of all 8-bit characters is supported (except NULL and ‘/ ’) in names
for files, and all 8-bit characters (except NULL and colon) in names for users
and/or groups. Characters are used in filenames exactly as they are read from
the archive.

P. If a file name is found on the medium that would create an invalid file name,
the implementation shall define if the data from the file is stored on the file
hierarchy and under what name it is stored.

S. Any name that can be stored in a tar archive is interpreted as a valid file
name, with the following exception: names with an embedded NULL will be
truncated at the NULL.

10.1.2.1 Header

P. c_rdev shall contain implementation-defined information for character or
block special files.

S. The c_rdev field contains devmajor/devminor device numbers. It is a 6-
digit octal number and calculated as the major device number left-shifted by 8
ORed with the minor device number.

124 Standards Conformance Reference Manual—August 1994

6

10.1.2.2 File Name

P. If a file name is found on the medium that would create an invalid
pathname, the implementation shall define if the data from the file is stored on the
file hierarchy and under what name it is stored.

S. All names will be legal in the file hierarchy.

P. If an implementation supports the use of characters outside the portable
filename character set in names for files, users, and groups, one or more
implementation-defined encodings of these characters shall be provided for
interchange purposes.

S. The use of all 8-bit characters is supported (except NULL and ‘/ ’) in names
for files, and all 8-bit characters (except NULL and colon) in names for users
and/or groups. Characters are used in file names exactly as they are read from
the archive.

10.1.3 Multiple Volumes

archive/interchange file format
P. The format-reading utility shall, in an implementation-defined manner,
determine what file to read as the next file.

S. The format reading utility opens /dev/tty and prompts the user for the
next volume when an EOF is encountered.

POSIX.1Section11,Synchronization

11.2.3.2 Initialize/Open a Named Semaphore: Description

P. If name does not begin with the slash character, the effect is implementation-
defined. The interpretation of slash characters other than the leading slash
character in name is implementation-defined.

S. The Semaphore option is not supplied in Solaris 2.4; hence, there is no
implementation-specific behavior.

POSIX.1 125

6

POSIX.1Section12,MemoryManagement
P. Memory locking guarantees the residence of portions of the address space. It
is implementation-defined whether locking memory guarantees fixed translation
between virtual addresses (as seen by the process) and physical addresses.

S. Memory-locking does not lock in translation.

12.1.1.2 Lock/Unlock a Process’s Address Space: Description

P. If MCL_FUTUREis specified, and the automatic locking of future mappings
eventually causes the amount of locked memory to exceed the amount of
available physical memory or any other implementation-defined limit, the
behavior is implementation-defined. The manner in which the implementation
informs the application of these situations is implementation-defined.

S. The mmap() function will return an error code of [EAGAIN] when resources
do not permit the memory to be locked. If the mapping is an attempt to grow
the stack, a SIGSEGV signal is sent to the process.

12.1.1.4 Lock/Unlock a Process’s Address Space: Errors

P. For each of the following conditions, if the condition is detected, the
mlockall() function shall return -1 and set errno to the corresponding
value:

[ENOMEM] Locking all of the pages currently mapped into
the process’s address space would exceed an
implementation-defined limit on the amount of
memory that the process may lock.

S. There is no per-process limit on how much memory may be locked.

126 Standards Conformance Reference Manual—August 1994

6

12.1.2.4 Lock/Unlock a Range of Process Address Space: Errors

P. For each of the following conditions, if the condition is detected, the
mlock() function shall return -1 and set errno to the corresponding value:

[ENOMEM] Locking the pages currently mapped by
the specified range would exceed an
implementation-defined limit on the amount of
memory that the process may lock.

S. There is no per-process limit on how much memory may be locked.

12.2.1.2 Map Process Addresses to a Memory Object: Description

P. MAP_FIXEDinforms the system that the value of pa shall be addr exactly. It
is implementation-defined whether MAP_FIXEDis supported.

S. Solaris 2.4 supports MAP_FIXED; however, its use is discouraged.

P. When MAP_FIXEDis not set, the system uses addr in an implementation-
defined manner to arrive at pa .

S. The value of addr is ignored. An unmapped part of the address is allocated.

12.3.1.2 Open a Shared Memory Object: Description

P. If name does not begin with the slash character, the effect is implementation-
defined. The interpretation of slash characters other than the leading slash
character in name is implementation-defined.

S. The Shared Memory Objects option is not supported in Solaris 2.4; hence,
there is no implementation-specific behavior.

12.4.1.1.1 Process Memory Locking: Models

P. The page size is implementation-defined and is available to applications as a
compile time symbolic constant or at run-time via sysconf() .

S. The page size is dependent on the underlying hardware.

POSIX.1 127

6

POSIX.1Section13,ExecutionScheduling

13.2 Scheduling Policies

P. Three scheduling policies are specifically required; others may be
implementation-defined.

S. No other policies are defined by the implementation.

13.2.3 Scheduling Policies: SCHED_OTHER

P. Conforming implementations shall include one scheduling policy identified
as SCHED_OTHER(which may execute identically with either the FIFO or round
robin scheduling policy). Conforming implementations shall document the
behavior of this policy as described in the definition of scheduling policy. The
effect of scheduling processes with the SCHED_OTHERpolicy in a system in
which other processes are executing under SCHED_FIFOor SCHED_RRshall
thus be implementation-defined.

S. The Priority Scheduling Option is not supported in Solaris 2.4, hence, there
is no implementation-specific behavior.

13.3.1.2 Set Scheduling Parameters: Description

P. The conditions under which one process has permission to change another
process’s scheduling parameters are implementation-defined.

S. If the target process has a SCHED_FIFOor SCHED_RRpolicy, the calling
process must have a SCHED_FIFOor SCHED_RRpolicy or must have a UID of
zero. If the target process has a SCHED_OTHERpolicy, the calling process must
have either the same effective and real user ID as the target process’s real or
saved user ID or must have a UID of zero.

P. If the current scheduling policy for the process specified by pid is not
SCHED_FIFOor SCHED_RR, including SCHED_OTHER, the result is
implementation-defined.

S. If the target process has the SCHED_OTHERpolicy, the time-sharing
scheduling parameters are set for the target process from the sched_param
structure.

128 Standards Conformance Reference Manual—August 1994

6

13.3.3.2 Set Scheduling Policy and Scheduling Parameters: Description

P. The conditions under which one process has the appropriate privilege to
change another process’s scheduling parameters are implementation-defined.

S. If the target process has a SCHED_FIFOor SCHED_RRpolicy, the calling
process must have a SCHED_FIFOor SCHED_RRpolicy or must have a UID of
zero. If the target process has a SCHED_OTHERpolicy, the calling process must
have either the same effective and real user ID as the target process’s real or
saved user ID or must have a UID of zero.

P. Implementations may require that the requesting process have permission to
set its own scheduling parameters or those of another process. Additionally,
implementation-defined restrictions may apply as to the appropriate privileges
required to set a process’s own scheduling policy, or another process’s
scheduling policy, to a particular value.

S. If the target process has the SCHED_OTHERpolicy, the time-sharing
scheduling parameters are set for the target process from the sched_param
structure.

POSIX.1Section14,ClocksandTimers

14.2.1.2 Clock and Timer Functions: Description

P. The resolution of any clock can be obtained by calling clock_getres() .
Clock resolutions are implementation-defined and are not settable by a process.

S. The clock resolution depends on the underlying hardware.

P. The effect of setting a clock via clock_settime() on armed pre-process
timers associated with that clock is implementation-defined.

S. The timer expires at the same moment it would have expired had the clock
not been changed.

P. The appropriate privilege to set a particular clock is implementation-defined.

S. Only a process with UID zero can set the clock CLOCK_REALTIME.

POSIX.1 129

6

14.2.2.2 Create a Per-Process Timer: Description

P. The behavior for any other value of sigev_notify is implementation-defined.

S. No other value of sigev_notify is supported.

P. If clock_id specifies the CLOCK_REALTIMEsystem clock, then the default
signal, when evp is NULL shall be SIGALRM. For any other clock, the default
signal number is implementation-defined.

S. No other clocks are supported.

14.2.4.2 Per-Process Timers: Description

P. The overrun count returned shall contain the number of extra timer
expirations which occurred between the time the signal was generated
(queued) and when it was delivered, up to but not including an implementation-
defined maximum of {DELAYTIMER_MAX}.

S. The maximum overrun count is INT_MAX.

POSIX.1Section15,MessagePassing

15.1.1. Data Definitions for Message Queues: Data Structures

P. The header <mqueue.h > shall define the following implementation-defined
types:

mqd_t Used for message queue descriptors

S. The type mqd_t is declared:

typedef void *mqd_t;

130 Standards Conformance Reference Manual—August 1994

6

P. The header <mqueue.h > defines the following implementation-defined
structures:

struct sigevent As specified in 3.3.1

S. struct sigevent {
int sigev_notify ; /*notification mode */
int sigev_signo ; /*signal number */
union sigval sigev_value ; /* signal value */

};

15.2.1.2 Open a Message Queue: Description

P. The interpretation of slash characters other than the leading slash character
in name is implementation-defined.

S. The Message Passing Option is not supported in Solaris 2.4; hence, there is
no implementation-specific behavior.

O_CREAT
P. The “file permission bits” shall be set to the value of mode. When bits in
mode other than file permission bits are set, the effect is implementation-defined.

S. The Message Passing Option is not supported in Solaris 2.4; hence, there is
no implementation-specific behavior.

P. If attr is NULL, the message queue is created with implementation-defined
default message queue attributes.

S. The Message Passing Option is not supported in Solaris 2.4; hence, there is
no implementation-specific behavior

131

De Jure Standards 7

This chapter discusses the conformance of Solaris to prevailing standards.

ANSI C Programming Language
The need for a single clearly defined C standard arose as use of the C
programming language expanded rapidly and a variety of differing translator
implementations were being developed. The American National Standard
Programming Language C addressed the problems this need posed to the
developer and the implementor by specifying the C language precisely.

The ANSI C standard specifies the syntax and semantics of programs written
in the C programming language. It specifies the C program’s interaction with
the execution environment through input and output data. It also specifies
restrictions and limits imposed upon conforming implementations of C
language translators.

The standard was developed by the X3J11 Technical Committee on the C
Programming Language under project 381-D by the American National
Standards Committee on Computers and Information Processing (X3). The
work of X3J11 began in the summer of 1983, based on several documents that
were made available to the Committee. The Committee divided the effort into
three pieces: the environment, the language and the library, and each of these
areas is addressed in the standard.

Note – The use of American National Standards is completely voluntary.

132 Standards Conformance Reference Manual—August 1994

7

Compliance With the ANSI C Standard

Sun ANSI C is fully compliant with the ANSI C standard.

ANSI C Specification and Related Publications

The first manual listed below is the ANSI C standard specification. The second
and third manuals listed are part of the Solaris documentation set. The
SPARCompiler C Transition Guide describes techniques for writing new and
upgrading existing C code to comply with the ANSI C language specification.

• American National Standard for Information Systems Programming Language C,
American National Standards Institute

• SPARCompiler C 3.0.1 Transition Guide for SPARC Systems–Sun Microsystems

• SPARCompiler C 3.0.1 User’s Guide–Sun Microsystems

ANSI/IEEE 754
The ANSI/IEEE 754-1985 Standard for Binary Floating-Point Arithmetic is a
product of the Floating-Point Working Group of the Microprocessor Standards
Subcommittee of the IEEE Computer Society. The standard defines a family of
commercially feasible ways for systems to perform binary floating-point
arithmetic. The issues of retrofitting were not considered when the standard
was defined; instead, the interests of the user community were placed above
the goal of industrial continuity at that time.

There are three major aspects to the standard: the format of data types, the
arithmetic and the exception handling. The objective of the standard is that an
implementation of a floating-point system conforming to it could be realized
entirely in software, entirely in hardware, or in any combination of hardware
and software.

Compliance With ANSI/IEEE 754

Sun FORTRAN 2.0.1 conforms to ANSI/IEEE Std. 754-1985.

De Jure Standards 133

7

ANSI/IEEE 754-1985 Specification and Related Publications

The first document listed below is the IEEE 754 Standard. It is followed by a
Sun publication that discusses the standard.

• IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985.

• Numerical Computation Guide, Sun Microsystems, Inc., 1991

• A Proposed Standard for Binary Floating-Point Arithmetic, IEEE COMPUTER,
March 1981

International Standards Organization (ISO) 8859-1
ISO 8859 consists of several parts, each of which specifies a set of up to 191
graphic characters and the coded representation of each of these characters by
means of a single 8-bit byte. Each set is intended for use for a group of
languages.

ISO 8859, Part 1 specifies a set of 191 graphic characters identified as Latin
alphabet No. 1. The set of graphic characters comprising Latin alphabet No. 1
is intended for use in data processing and text applications and may also be
used for information interchange.

A set of graphic characters is considered in conformance with ISO 8859 if it
comprises all graphic characters declared in the specification to the exclusion
of any other, and if their coded representations are those specified by ISO 8859.

Compliance With ISO 8859-1

Solaris is entirely compliant with the ISO 8859-1 standard.

ISO 8859 Standard
• International Standard ISO 8859-1

134 Standards Conformance Reference Manual—August 1994

7

Federal Information Processing Standard (FIPS) 151
Federal Information Processing Standards Publications (FIPS PUBS) are issued
by the National Institute of Standards and Technology (NIST) after approval by
the Secretary of Commerce.

The FIPS 151 standard is called the Kernel Operations Component of the
Applications Portability Profile (APP). FIPS 151 is part of a series of FIPS for
the APP.

FIPS 151-2, which corresponds to IEEE Std. 1003.1 - 1990 was ratified by NIST
on October 15, 1993. It supersedes FIPS 151-1 (which corresponded to
IEEE Std. 1003.1 - 1988) in its entirety as the POSIX.1 reference standard.

Compliance With FIPS 151

Solaris 2.4 conforms to FIPS 151-2 on several SPARC and x86 platforms.

FIPS 151 Specification
• The Federal Information Processing Standards Publication, National Institute of

Standards and Technology

Federal Information Processing Standard (FIPS) 158
The FIPS 158 standard is called the User Interface Component of the
Applications Portability Profile (APP).

The functional components of FIPS 158 constitute a toolbox of standard
elements that can be used to develop and maintain portable applications. FIPS
158 is the first step in responding to a need within the federal community for a
set of tools to develop standard user interfaces. FIPS 158 is based upon the X
Window System developed by the X Consortium. The X Window System
assumes a client/server model of distributed computing and user interface
applications based upon bit-mapped graphic displays.

The FIPS 158 standard adopts the specifications for X Version 11, Release 3
(X11R3). These specifications consist of the documents for the X Window
System Protocol, X Version 11: the Xlib-C language X Interface (Xlib), the X

De Jure Standards 135

7

Toolkit Intrinsics-C Language Interface (Xt) and the Bitmap Distribution
Format 2.1. The interfaces specified in FIPS 158 represent the consensus of the
industry for lower-level X Window System interfaces.

Compliance With FIPS 158

OpenWindows, the Solaris windowing environment, conforms to FIPS 158 by
fully implementing X11 (Xlib) and the X11 protocol.

The OpenWindows OPEN LOOK Intrinsics Toolkit (OLIT) API is an
implementation of MIT’s Xt toolkit (Xt intrinsics, Version R5) with an OPEN
LOOK widget set. OLIT is composed of prebuilt components that fit into
intrinsics applications. OLIT conforms with the Xt intrinsics toolkit; because
X11, Release 5 is backwardly compatible with X11, Release 4, OLIT conforms to
X11, Release 4.

OpenWindows fully supports ICCCM, which provides basic policy on rules for
transferring data between applications, transfer of keyboard focus, layout
schemes and colormap installation.

FIPS 158 Specification and Related Publications
• The Federal Information Processing Standards Publication; The User Interface

Component of the Applications Portability Profile, issued by the National
Institute of Standards and Technology, October, 1992.

• Solaris OpenWindows User’s Guide, SunSoft Press

The Application Binary Interface (ABI)
The Application Binary Interface (ABI) defines the binary system interface
between compiled applications and the operating system on which they run.
The ABI provides binary portability across UNIX System V Release 4 platforms
sharing the same CPU architecture.

The System V Application Binary Interface continues to evolve to address new
technology and market requirements and is reissued at intervals of
approximately three years. Each new edition of the specification is likely to
contain extensions and additions that will increase the potential capabilities of
applications that are written to conform with the ABI.

136 Standards Conformance Reference Manual—August 1994

7

Compliance With the ABI

It is the intention of SunSoft to comply with the ABI as it evolves.

ABI Publication
• AT&T System V Application Binary Interface: Generic ABI and Application

Binary Interface SPARC Processor Supplement - Prentice-Hall.

• AT&T System V Application Binary Interface Intel 386 Processor Supplement

SPARC Compliance Definition (SCD)
The SPARC Compliance Definition (SCD) is a formal specification of the
system hardware and software to be met by manufacturers of SPARC systems
to ensure that those systems run compliant applications. The SCD also details
specific interfaces that can be safely used by an application with assurance that
the application binary will run on all compliant SPARC hardware platforms.

The SCD specification was developed by members of SPARC International (SI).
SI is now responsible for administering usage of the SPARC trademark to
compliant systems.

Sun Microsystems and SunSoft worked with SI to develop SCD 2.1 which is
closely connected to SVR4 and the SPARC ABI specification.

Compliance With the SCD

Systems produced by Sun Microsystems and SunSoft are fully compliant with
SCD 2.1.

SPARC Compliance Definition Specification
• SPARC Compliance Definition 2.1 - SPARC International

137

Index

Symbols
/usr/group, 1, 3, 8, 83

A
American National Standards Institute

(ANSI), 4, 84, 131
ANSI/IEEE 754-1985, 132 to 133

Floating-Point Working Group, 132
three major aspects of, 132

Application Binary Interface (ABI), 5, 6 to
7, 135

C
Common Applications Environment

(CAE), 2, 19
BASE level/label, 20
OPTIONS level/label, 20
PLUS level/label, 20

D
Data Link Provider Interface (DLPI), 10
DeskSet tools, 17
Device Driver Interface/Driver-Kernel

Interface, 9
AT&T DKI, 9
Sun DDI, 9

F
Federal Information Processing Standard

(FIPS), 134 to 135

I
IEEE Standard 1003.1-1988, 1, 19
IEEE Standard 1003.1-1990

see POSIX.1
implementation, 135
Inter-Client Communications Conventions

Manual (ICCCM), 17
International Electrotechnical Commission

(IEC), 2, 3
International Standards Organization

(ISO), 2, 3, 133
ISO 8859, 133

ISO/IEX C Language Standard, 19

N
National Bureau of Standards

see National Institute of Standards
and Technology

National Institute of Standards and
Technology (NIST), 3

138 Standards Conformance Reference Manual—August 1994

O
OPEN LOOK Graphical User Interface

(GUI), 11 to 14, 17, 20, 58
applications, 12
certification levels, 12
environments, 12
trademark licensing, 12

OPEN LOOK Intrinsics Toolkit
(OLIT), 13, 17, 135

OPEN LOOK window manager
(olwm), 17

OpenWindows, 13, 14, 17, 20

P
POSIX.1, 1, 7, 8, 83 to 130
PostScript, 16, 18

S
SPARC Compliance Definition, 136

and the SVR4/SPARC ABI
specification, 136

SPARC International (SI), 136
STREAMS, 10, 11
Sun FORTRAN, 132
System V Interface Definition (SVID), 6 to

9
and SunOS 5.0 compliance with, 8
Base System Definition, 8
Extension Definitions, 8

System V Release 4 (SVR4), 5, 9

T
toolkits, 12
Transport Level Interface (TLI), 11
Transport Provider Interface (TPI), 11

U
UniForum Technical Committee, 3
UNIX System V, 11

X
X Window Intrinsics C Language Interface

(Xt), 15
X Window System Version 11 (X11), 7, 15

to 16
X/Open, 2, 19 to 55
X/Open Conformance Statement

(XPG3), 20 to 55
X/Open Conformance Statement

(XPG4), 57, 59 to 82
X/Open Portability Guide, 2, 7
X/Open Portability Guide, Issue 3

(XPG3), 19 to 55, 57
X/Open Portability Guide, Issue 4

(XPG4), 19, 57 to 82
X3J11 Technical Committee on the C

Programming Language, 131
Xerox PARC, 11
XPG3 branding

Commands and Utilities, 20
Inter-Process Communication, 21
OpenWindows, 20
Source Code Transfer, 21
SPARCompiler C 2.0.1, 21
Sun FORTRAN, 21
Sun Pascal, 21
SunPro Compiler C, 21
XSI Curses Interface, 21

XPG4 branding
Commands and Utilities, 58
Inter-Process Communication, 59
OpenWindows, 58
Source Code Transfer, 59
SPARCompiler C, 58
SPARCompiler C 2.0.1, 58
Sun FORTRAN, 58
Sun Pascal, 58
XSI Curses Interface, 59

Xt toolkit, 17
XView toolkit, 13, 17

