
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

SPARC Assembly Language
Reference Manual

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, Solaris, the Sun Microsystems Computer
Corporation logo, SunSoft, the SunSoft logo, SunSoft, SunSoft logo, ProWorks, ProWorks/TeamWare, ProCompiler, Sun-4,
SunOS, Solaris, ONC, ONC+, NFS, OpenWindows, DeskSet, ToolTalk, SunView, XView, X11/NeWS, AnswerBook, and
Magnify Help are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX
is a registered trademark of Novell, Inc., in the United States and other countries; X/Open Company, Ltd., is the exclusive
licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript and Display PostScript are
trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler licensed exclusively
to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOKand Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. SPARC Assembler for SunOS 5.x . 1

Introduction . 1

Operating Environment . 1

SPARC Assembler for SunOS 4.1 Versus SunOS 5.x 2

New Labeling Format . 2

New Object File Format . 2

Pseudo-Operations . 2

New Command Line Options . 4

Other References . 5

2. Assembler Syntax . 7

Syntax Notation . 7

Assembler File Syntax . 7

Lines Syntax . 8

Statement Syntax . 8

Lexical Features . 8

iv SPARC Assembly Language Reference Manual—August 1994

Case Distinction . 8

Comments. 8

Labels . 8

Numbers . 9

Strings . 9

Symbol Names . 10

Special Symbols . 11

Operators and Expressions. 13

Assembler Error Messages . 14

3. Extensible and Linking Format . 15

ELF Header. 16

Sections . 17

Section Header . 18

Predefined User Sections . 22

Predefined Non-User Sections . 24

Locations . 25

Addresses . 25

Relocation Tables . 25

Symbol Tables. 25

String Tables . 27

Assembler Directives. 28

Section Control Directives . 28

Symbol Attribute Directives . 28

Assignment Directive . 29

Contents v

Data Generating Directives . 29

4. Converting Files to the New Format . 31

Introduction . 31

Conversion Instructions . 31

Examples. 32

5. Instruction-Set Mapping . 33

Table Notation . 33

Integer Instructions . 36

Floating-Point Instruction. 47

Coprocessor Instructions . 49

Synthetic Instructions . 50

A. Pseudo-Operations . 55

Alphabetized Listing with Descriptions 55

B. Examples of Pseudo-Operations . 65

C. Using the Assembler Command Line . 69

Assembler Command Line . 69

Assembler Command Line Options . 70

Disassembling Object Code . 72

D. An Example Language Program . 73

Index . 79

vi SPARC Assembly Language Reference Manual—August 1994

vii

Tables

Table 2-1 Escape Codes Recognized in Strings . 10

Table 2-2 Special Symbol Names . 11

Table 2-3 Operators Recognized in Constant Expressions. 13

Table 3-1 Reserved Object File Types . 17

Table 3-2 Section Attribute Flags . 19

Table 3-3 Section Types . 20

Table 3-4 Predefined User Sections . 22

Table 3-5 Predefined Non-User Sections. 24

Table 3-6 Symbol Types. 26

Table 3-7 Symbol Bindings . 27

Table 5-1 Notations Used to Describe Instruction Sets 34

Table 5-2 Commonly Suffixed Notations . 36

Table 5-3 SPARC to Assembly Language Mapping 37

Table 5-4 Floating-Point Instructions. 47

Table 5-5 Coprocessor-Operate Instructions . 49

Table 5-6 Synthetic Instruction to Hardware Instruction Mapping 50

viii SPARC Assembly Language Reference Manual—August 1994

1

SPARC Assembler for SunOS 5.x 1

Introduction
This chapter discusses the features of the SunOS 5.x™ SPARC® assembler. This
document is distributed by SunSoft, Inc. as part of SunSoft’s developer
documentation set with every SunOS operating system release.

This document is also distributed with the on-line documentation set for the
convenience of SPARCworks™ and SPARCompiler™ 3.0.1 users who have
products that run on the SunOS 5.x operating system. It is included as part of
the SPARCworks/SPARCompiler 3.0.1 Common Tools and Related Material
AnswerBook, which is the on-line information retrieval system.

Operating Environment
The SunOS SPARC assembler runs under SunOS 5.x operating system or the
Solaris™ 2.x operating environment. SunOS 5.x refers to SunOS 5.2 and later
releases. Solaris 2.x refers to Solaris 2.2 and later releases.

The current release is SunOS 5.3.2 or Solaris 2.3.2. In the context of the
SPARCworks and SPARCompiler products from SunSoft, the release refers to
the current SPARCworks and SPARCompiler 3.0.1 products that run on SunOS
5.2 or Solaris 2.2 and later releases respectively.

2 SPARC Assembly Language Reference Manual—August 1994

1

SPARC Assembler for SunOS 4.1 Versus SunOS 5.x
This section describes the differences between the SunOS 4.1 SPARC assembler
and the SunOS 5.x SPARC assembler.

New Labeling Format
• Symbol names beginning with a dot (.) are assumed to be local symbols.

• Names beginning with an underscore (_) are reserved by ANSI C.

New Object File Format

The type of object files created by the SPARC assembler are now ELF
(Extensible and Linking Format) files. These relocatable object files hold code and
data suitable for linking with other object files to create an executable file or a
shared object file, and are the assembler normal output.

Pseudo-Operations

See Appendix A, “Pseudo-Operations,” for a detailed description of the
pseudo-operations (pseudo-ops) listed in this section.

New Pseudo-Ops
.file

Specifies the name of the source file associated with the object file.

.local

Declares each symbol in the list to be local.

.nonvolatile

Defines the end of a block of instructions which should not be modified at
optimization time. This is the companion to .volatile pseudo-op.

.popsection

Makes the previous section the new current section.

.pushsection

Makes the named section the current section.

SPARC Assembler for SunOS 5.x 3

1

.section

Specifies information about the object file, including program and control
information.

.size

Declares the symbol size in bytes.

.type

Declares the type of symbol.

.uahalf

Generates a (sequence of) 16-bit value(s).

.uaword

Generates a (sequence of) 32-bit value(s).

.version

Identifies the minimum assembler version necessary to assemble the input
file.

.volatile

Defines the beginning of a block of instructions which should not be
modified at optimization time. This is the companion to .nonvolatile
pseudo-op.

.weak

Declares each symbol in the list to be defined as a “weak” global symbol.

Changed Pseudo-Ops
.common

Currently, only ".bss" (uninitialized data segments) is supported for the
section name. (".data" is not currently supported.)

.global

Does not need to occur before a definition, or tentative definition, of the
specified symbol.

4 SPARC Assembly Language Reference Manual—August 1994

1

.seg

The SunOS 4.1 SPARC assembler directive ".seg" :
.seg "test", .seg "data" .seg "data1", .seg "bss" ,
would be interpreted as the following in the SunOS 5.x SPARC assembler:
.section ".text, .section ".data",

.section ".data1", .section ".bss" .

Note – This pseudo-op is being maintained for compatibility with existing
SunOS 4.1 SPARC assembly language programs only. The suggested usage for
the SunOS 5.x SPARC assembler is .section.

New Command Line Options

See Appendix C, “Using the Assembler Command Line,” for a detailed
description of the new command line options listed in this section.

-K PIC

Generates position-independent code. This option has the same
functionality as the -k option under the SunOS 4.1 SPARC assembler.

-m

Runs m4 macro preprocessing on input.

-Q

Produces information about the object file.

-q

Causes the assembler to perform a quick assembly by disabling
context-dependent error checking.

-b

Generates SPARCworks SourceBrowser information.

-T

This is a migration option so that SunOS 4.1 assembly files can be assembled
to run on a SunOS 5.x system.

-V

Writes the assembler version information on the standard error output.

SPARC Assembler for SunOS 5.x 5

1

Other References
You should also become familiar with the following:

• Manual pages: as(1) , ld(1) , cpp(1, elf(3f) , dis(1) , a.out(1)

• SPARC Architecture Manual

• ELF-related sections of the Programming Utilities Guide manual

• SPARC Applications Binary Interface (ABI)

6 SPARC Assembly Language Reference Manual—August 1994

1

7

Assembler Syntax 2

The SunOS 5.x SPARC assembler takes assembly language programs, as
specified in this document, and produces relocatable object files for processing
by the SunOS 5.x SPARC link editor. The assembly language described in this
document corresponds to the SPARC instruction set defined in the SPARC
Architecture Manual and is intended for use on machines that use the SPARC
architecture.

Syntax Notation
In the descriptions of assembly language syntax in this chapter:

• Brackets ([]) enclose optional items.

• Asterisks (*) indicate items to be repeated zero or more times.

• Braces ({ }) enclose alternate item choices, which are separated from each
other by vertical bars (|).

• Wherever blanks are allowed, arbitrary numbers of blanks and horizontal
tabs may be used. Newline characters are not allowed in place of blanks.

Assembler File Syntax
The syntax of assembly language files is:

[line]*

8 SPARC Assembly Language Reference Manual—August 1994

2

Lines Syntax

The syntax of assembly language lines is:

[statement [; statemen t]*] [! comment]

Statement Syntax

The syntax of an assembly language statement is:

[label :] [instruction]

where:
label is a symbol name.

instruction is an encoded pseudo-op, synthetic instruction, or instruction.

Lexical Features
This section describes the lexical features of the assembler syntax.

Case Distinction

Uppercase and lowercase letters are distinct everywhere except in the names of
special symbols. Special symbol names have no case distinction.

Comments

A comment is preceded by an exclamation mark character (!); the exclamation
mark character and all following characters up to the end of the line are
ignored. C language-style comments (‘‘/*…*/ ’’) are also permitted and may
span multiple lines.

Labels

A label is either a symbol or a single decimal digit n (0…9). A label is
immediately followed by a colon (:).

Numeric labels may be defined repeatedly in an assembly file; normal
symbolic labels may be defined only once.

Assembler Syntax 9

2

A numeric label n is referenced after its definition (backward reference) as nb,
and before its definition (forward reference) as nf .

Numbers

Decimal, hexadecimal, and octal numeric constants are recognized and are
written as in the C language. However, integer suffixes (such as L) are not
recognized.

For floating-point pseudo-operations, floating-point constants are written with
0r or 0R (where r or R means REAL) followed by a string acceptable to
atof(3) ; that is, an optional sign followed by a non-empty string of digits
with optional decimal point and optional exponent.

The special names 0rnan and 0rinf represent the special floating-point
values Not-A-Number (NaN) and INFinity. Negative Not-A-Number and Negative
INFinity are specified as 0r-nan and 0r-inf .

Note – The names of these floating-point constants begin with the digit zero,
not the letter “O.”

Strings

A string is a sequence of characters quoted with either double-quote mark (")
or single-quote mark (’) characters. The sequence must not include a newline
character. When used in an expression, the numeric value of a string is the
numeric value of the ASCII representation of its first character.

The suggested style is to use single quote mark characters for the ASCII value of
a single character, and double quote mark characters for quoted-string operands
such as used by pseudo-ops. An example of assembly code in the suggested
style is:

add %g1,’a’-’A’,%g1 ! g1 + (’a’ - ’A’) --> g1

The escape codes described in Table 2-1, derived from ANSI C, are recognized
in strings.

10 SPARC Assembly Language Reference Manual—August 1994

2

Symbol Names

The syntax for a symbol name is:

In the above syntax:

• Uppercase and lowercase letters are distinct; the underscore (_), dollar sign
($), and dot (.) are treated as alphabetic characters.

• Symbol names that begin with a dot (.) are assumed to be local symbols. To
simplify debugging, avoid using this type of symbol name in hand-coded
assembly language routines.

• The symbol dot (.) is predefined and always refers to the address of the
beginning of the current assembly language statement.

Table 2-1 Escape Codes Recognized in Strings

Escape Code Description

\a Alert

\b Backspace

\f Form feed

\n Newline (line feed)

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ nnn Octal value nnn

\x nn... Hexadecimal value nn...

{ letter | _ | $ | . } { letter | _ | $ | . | digit }*

Assembler Syntax 11

2

• External variable names beginning with the underscore character are
reserved by the ANSI C Standard. Do not begin these names with the
underscore; otherwise, the program will not conform to ANSI C and
unpredictable behavior may result.

Special Symbols

Special symbol names begin with a percentage sign (%) to avoid conflict with
user symbols. Table 2-2 lists these special symbol names.

Table 2-2 Special Symbol Names

Symbol Object Name Comment

General-purpose registers

General-purpose global registers

General-purpose out registers

General-purpose local registers

General-purpose in registers

%r0 … %r31

%g0 … %g7

%o0 … %o7

%l0 … %l7

%i0 … %i7

Same as %r0 … %r7

Same as %r8 … %r15

Same as %r16 … %r23

Same as %r24 … %r31

Stack-pointer register

Frame-pointer register

%sp

%fp

(%sp = %o6 = %r14)

(%fp = %i6 = %r30)

Floating-point registers

Floating-point status register

Front of floating-point queue

Coprocessor registers

Coprocessor status register

Coprocessor queue

%f0 … %f31

%fsr

%fq

%c0 … %c31

%csr

%cq

Program status register

Trap vector base address register

Window invalid mask

Y register

%psr

%tbr

%wim

%y

12 SPARC Assembly Language Reference Manual—August 1994

2

There is no case distinction in special symbols; for example,

%PSR

is equivalent to

%psr

The suggested style is to use lowercase letters.

The lack of case distinction allows for the use of non-recursive preprocessor
substitutions, for example:

#define psr %PSR

The special symbols %hi and %lo are true unary operators which can be used
in any expression and, as other unary operators, have higher precedence than
binary operations. For example:

To avoid ambiguity, enclose operands of the %hi or %lo operators in
parentheses. For example:

%hi(a) + b

Unary operators %lo

%hi

%r_disp32

%r_plt32

Extracts least significant 10 bits

Extracts most significant 22 bits

Used only in Sun
compiler-generated code.

Used only in Sun
compiler-generated code.

Ancillary state registers %asr1 … %asr31

Table 2-2 Special Symbol Names (Continued)

Symbol Object Name Comment

%hi a+b = (%hi a)+b
%lo a+b = (%lo a)+b

Assembler Syntax 13

2

Operators and Expressions

The operators described in Table 2-3 are recognized in constant expressions.

Since these operators have the same precedence as in the C language, put
expressions in parentheses to avoid ambiguity.

To avoid confusion with register names or with the %hi,%lo , %r_disp32 , or
%r_plt32 operators, the modulo operator % must not be immediately
followed by a letter or digit. The modulo operator is typically followed by a
space or left parenthesis character.

Table 2-3 Operators Recognized in Constant Expressions

Binary Operators Unary Operators

+ Integer addition + (No effect)

– Integer subtraction – 2's Complement

* Integer multiplication ~ 1's Complement

/ Integer division %lo Extract least significant 10 bits

% Modulo %hi Extract most significant 22 bits

^ Exclusive OR %r_disp32 Used in Sun compiler-generated
code only to instruct the
assembler to generate specific
relocation information for the
given expression.

<< Left shift %r_plt32 Used in Sun compiler-generated
code only to instruct the
assembler to generate specific
relocation information for the
given expression.

>> Right shift

& Bitwise AND

| Bitwise OR

14 SPARC Assembly Language Reference Manual—August 1994

2

Assembler Error Messages
Messages generated by the assembler are generally self-explanatory and give
sufficient information to allow correction of a problem.

Certain conditions will cause the assembler to issue warnings associated with
delay slots following Control Transfer Instructions (CTI). These warnings are:

• Set synthetic instructions in delay slots

• Labels in delay slots

• Segments that end in control transfer instructions

These warnings point to places where a problem could exist. If you have
intentionally written code this way, you can insert an .empty
pseudo-operation immediately after the control transfer instruction.

The .empty pseudo-operation in a delay slot tells the assembler that the delay
slot can be empty or can contain whatever follows because you have verified
that either the code is correct or the content of the delay slot does not matter.

15

Extensible and Linking Format 3

The type of object files created by the SPARC assembler version for SunOS 5.x
are now Extensible and Linking Format (ELF) files. These relocatable ELF files
hold code and data suitable for linking with other object files to create an
executable or a shared object file, and are the assembler normal output. The
assembler may also write information to standard output (for example, under
the -S option) and to standard error (for example, under the -V option). The
SPARC assembler creates a default output file when standard input or multiple
files are used.

The ELF object file format consists of:

• Header

• Sections

• Locations

• Addresses

• Relocation tables

• Symbol tables

• String tables

For more information, see Chapter 4, “Object Files,” in the System V Application
Binary Interface (SPARC™ Processor Supplement) manual.

16 SPARC Assembly Language Reference Manual—August 1994

3

ELF Header
The ELF header is always located at the beginning of the ELF file. It describes
the ELF file organization and contains the actual sizes of the object file control
structures. The initial bytes of an ELF header specify how the file is to be
interpreted.

The ELF header contains the following information:

ehsize – ELF header size in bytes.

entry – Virtual address at which the process is to start. A value of 0 indicates
no associated entry point.

flag – Processor-specific flags associated with the file.

ident – Marks the file as an object file and provides machine-independent
data to decode and interpret the file contents.

machine – Specifies the required architecture for an individual file. A value
of 2 specifies SPARC.

phentsize – Size in bytes of entries in the program header table. All entries
are the same size.

phnum – Number of entries in program header table. A value of 0 indicates
the file has no program header table.

phoff – Program header table file offset in bytes. The value of 0 indicates no
program header.

shentsize – Size in bytes of the section header. A section header is one entry
in the section header table; all entries are the same size.

shnum – Number of entries in section header table. A value of 0 indicates the
file has no section header table.

shoff – Section header table file offset in bytes. The value of 0 indicates no
section header.

shstrndx – Section header table index of the entry associated with the section
name string table. A value of SHN_UNDEF indicates the file does not have a
section name string table.

Extensible and Linking Format 17

3

type – Identifies the object file type. Table 3-1 describes the reserved object
file types.

version – Identifies the object file version.

Sections
A section is the smallest unit of an object that can be relocated. The following
sections are commonly present in an ELF file:

• Section header

• Executable text

• Read-only data

• Read-write data

• Read-write uninitialized data (section header only)

Sections do not need to be specified in any particular order. The current section
is the section to which code is generated.

Table 3-1 Reserved Object File Types

Type Value Description

none 0 No file type

rel 1 Relocatable file

exec 2 Executable file

dyn 3 Shared object file

core 4 Core file

loproc 0xff0
0

Processor-specific

hiproc 0xfff
f

Processor-specific

18 SPARC Assembly Language Reference Manual—August 1994

3

These sections contain all other information in an object file and satisfy several
conditions.

1. Every section must have one section header describing the section.
However, a section header does not need to be followed by a section.

2. Each section occupies one contiguous sequence of bytes within a file. The
section may be empty (that is, of zero-length).

3. A byte in a file can reside in only one section. Sections in a file cannot
overlap.

4. An object file may have inactive space. The contents of the data in the
inactive space are unspecified.

Sections can be added for multiple text or data segments, shared data, user-
defined sections, or information in the object file for debugging.

Note – Not all of the sections need to be present.

Section Header

The section header allows you to locate all of the file sections. An entry in a
section header table contains information characterizing the data in a section.

The section header contains the following information:

addr – Address at which the first byte resides if the section appears in the
memory image of a process; the default value is 0.

addralign – Aligns the address if a section has an address alignment
constraint; for example, if a section contains a double-word, the entire
section must be ensured double-word alignment. Only 0 and positive
integral powers of 2 are currently allowed. A value of 0 or 1 indicates no
address alignment constraints.

entsize – Size in bytes for entries in fixed-size tables such as the symbol table.

flags – One-bit descriptions of section attributes. Table 3-2 describes the
section attribute flags.

Extensible and Linking Format 19

3

info – Extra information. The interpretation of this information depends on
the section type, as described in Table 3-3.

link – Section header table index link. The interpretation of this information
depends on the section type, as described in Table 3-3.

name – Specifies the section name. An index into the section header string
table section specifies the location of a null-terminated string.

offset – Specifies the byte offset from the beginning of the file to the first byte
in the section.

Note – If the section type is SHT_NOBITS, offset specifies the conceptual
placement of the file.

size – Specifies the size of the section in bytes.

Note – If the section type is SHT_NOBITS, size may be non-zero; however, the
section still occupies no space in the file.

type – Categorizes the section contents and semantics. Table 3-3 describes the
section types.

Table 3-2 Section Attribute Flags

Flag Default Value Description

SHF_WRITE 0x1 Contains data that is writable during process execution.

SHF_ALLOC 0x2 Occupies memory during process execution. This
attribute is off if a control section does not reside in the
memory image of the object file.

SHF_EXECINSTR 0x4 Contains executable machine instructions.

SHF_MASKPROC 0xf0000000 Reserved for processor-specific semantics.

20 SPARC Assembly Language Reference Manual—August 1994

3

Table 3-3 Section Types

Name Value Description

Interpretation by

info link

null 0 Marks section header as inactive.

progbit
s

1 Contains information defined
explicitly by the program.

symtab 2 Contains a symbol table for link
editing. This table may also be
used for dynamic linking;
however, it may contain many
unnecessary symbols.

Note: Only one section of this type
is allowed in a file

One greater than the
symbol table index
of the last local
symbol.

The section header
index of the
associated string
table.

strtab 3 Contains a string table. A file
may have multiple string table
sections.

rela 4 Contains relocation entries with
explicit addends. A file may
have multiple relocation
sections.

The section header
index of the section
to which the
relocation applies.

The section header
index of the
associated symbol
table.

hash 5 Contains a symbol rehash table.

Note: Only one section of this type
is allowed in a file

0 The section header
index of the symbol
table to which the
hash table applies.

dynamic 6 Contains dynamic linking
information.

Note: Only one section of this type
is allowed in a file

0 The section header
index of the string
table used by
entries in the section.

note 7 Contains information that marks
the file.

Extensible and Linking Format 21

3

Note – Some section header table indexes are reserved and the object file will
not contain sections for these special indexes.

nobits 8 Contains information defined
explicitly by the program;
however, a section of this type
does not occupy any space in the
file.

rel 9 Contains relocation entries
without explicit addends. A file
may have multiple relocation
sections.

The section header
index of the section
to which the
relocation applies.

The section header
index of the
associated symbol
table.

shlib 10 Reserved.

dynsym 11 Contains a symbol table with a
minimal set of symbols for
dynamic linking.

Note: Only one section of this type
is allowed in a file

One greater than the
symbol table index
of the last local
symbol.

The section header
index of the
associated string
table.

loproc

hiproc

0x7000000
0

0x7fffffff

Lower and upper bound of range
reserved for processor-specific
semantics.

louser

hiuser

0x8000000
0

0xffffffff

Lower and upper bound of range
reserved for application
programs.

Note: Section types in this range
may be used by an application
without conflicting with
system-defined section types.

Table 3-3 Section Types (Continued)

Name Value Description

Interpretation by

info link

22 SPARC Assembly Language Reference Manual—August 1994

3

Predefined User Sections

A section that can be manipulated by the section control directives is known as
a user section. You can use the section control directives to change the user
section in which code or data is generated. Table 3-4 lists the predefined user
sections that can be named in the section control directives.

Table 3-4 Predefined User Sections

Section Name Description

".bss" Section contains uninitialized read-write data.

".comment" Comment section.

".data" &
".data1"

Section contains initialized read-write data.

".debug" Section contains debugging information.

".fini" Section contains runtime finalization
instructions.

".init" Section contains runtime initialization
instructions.

".rodata" &
".rodata1"

Section contains read-only data.

".text" Section contains executable text.

".line" Section contains line # info for symbolic
debugging.

".note" Section contains note information.

Extensible and Linking Format 23

3

Creating an .init Section in an Object File

The .init sections contain codes that are to be executed before the the main
program is executed. To create an .init section in an object file, use the
assembler pseudo-ops shown in Code Example 3-1.

Code Example 3-1 Creating an .init Section

At link time, the .init sections in a sequence of .o files are concatenated into
an .init section in the linker output file. The code in the .init section are
executed before the main program is executed.

Note – The codes are executed inside a stack frame of 96 bytes. Do not
reference or store to locations that are greater than %sp+96 in the .init
section.

Creating a .fini Section in an Object File

.fini sections contain codes that are to be executed after the the main
program is executed. To create an .fini section in an object file, use the
assembler pseudo-ops shown in Code Example 3-2.

Code Example 3-2 Creating an .fini Section

At link time, the .fini sections in a sequence of .o files are concatenated into
a .fini section in the linker output file. The codes in the .fini section are
executed after the main program is executed.

.section ".init"

.align 4
<instructions>

.section ".fini"

.align 4
<instructions>

24 SPARC Assembly Language Reference Manual—August 1994

3

Note – The codes are executed inside a stack frame of 96 bytes. Do not
reference or store to locations that are greater than %sp+96 in the .fini
section.

Predefined Non-User Sections

Table 3-5 lists sections that are predefined but cannot not be named in the
section control directives because they are not under user control.

Table 3-5 Predefined Non-User Sections

Section Name Description

".dynamic " Section contains dynamic linking information.

".dynstr Section contains strings needed for dynamic
linking.

".dynsym " Section contains the dynamic linking symbol
table.

".got " Section contains the global offset table.

".hash " Section contains a symbol hash table.

".interp Section contains the path name of a program
interpreter.

".plt " Section contains the procedure linking table.

"relname &
.relaname "

Section containing relocation information.
name is the section to which the relocations
apply.
e.g. ".rel.text ", ".rela.text ".

".shstrtab " String table for the section header table names.

".strtab " Section contains the string table.

".symtab " Section contains a symbol table.

Extensible and Linking Format 25

3

Locations
A location is a specific position within a section. Each location is identified by a
section and a byte offset from the beginning of the section. The current location
is the location within the current section where code is generated.

A location counter tracks the current offset within each section where code or
data is being generated. When a section control directive (for example,
.section pseudo-op) is processed, the location information from the location
counter associated with the new section is assigned to and stored with the
name and value of the current location.

The current location is updated at the end of processing each statement, but
can be updated during processing of data-generating assembler directives (for
example, the .word pseudo-op).

Note – Each section has one location counter; if more than one section is
present, only one location can be current at any time.

Addresses
Locations represent addresses in memory if a section is allocatable; that is, its
contents are to be placed in memory at program runtime. Symbolic references
to these locations must be changed to addresses by the SPARC link editor.

Relocation Tables
The assembler produces a companion relocation table for each relocatable
section. The table contains a list of relocations (that is, adjustments to data in
the section) to be performed by the link editor.

Symbol Tables
A symbol table contains information to locate and relocate symbolic definitions
and references. The SPARC assembler creates a symbol table section for the
object file. It makes an entry in the symbol table for each symbol that is defined
or referenced in the input file and is needed during linking. The symbol table is
then used by the SPARC link editor during relocation. The section header
contains the symbol table index for the first non-local symbol.

26 SPARC Assembly Language Reference Manual—August 1994

3

A symbol table contains the following information:

name – Index into the object file symbol string table. A value of zero
indicates the symbol table entry has no name; otherwise, the value
represents the string table index that gives the symbol name.

value – Value of the associated symbol. This value is dependent on the
context; for example, it may be an address, or it may be an absolute value.

size – Size of symbol. A value of 0 indicates that the symbol has either no
size or an unknown size.

info – Specifies the symbol type and binding attributes. Table 3-6 and
Table 3-7 describes these values.

other – Undefined meaning. Current value is 0.

shndx – Contains the section header table index to another relevant section,
if specified. As a section moves during relocation, references to the symbol
will continue to point to the same location because the value of the symbol
will change as well.

Table 3-6 Symbol Types

Value Type Description

0 notype Type not specified.

1 object Symbol is associated with a data object; for example, a variable or
an array.

2 func Symbol is associated with a function or other executable code.
When another object file references a function from a shared
object, the link editor automatically creates a procedure linkage
table entry for the referenced symbol.

3 section Symbol is associated with a section. These types of symbols are
primarily used for relocation.

4 file Gives the name of the source file associated with the object file.

13

15

locproc

hiproc

Values reserved for processor-specific semantics.

Extensible and Linking Format 27

3

String Tables
A string table is a section which contains null-terminated variable-length
character sequences, or strings, in the object file; for example, symbol names
and file names. The strings are referenced in the section header as indexes into
the string table section.

• A string table index may refer to any byte in the section.
• Empty string table sections are permitted; however, the index referencing

this section must contain zero.

A string may appear multiple times and may also be referenced multiple times.
References to substrings may exist, and unreferenced strings are allowed.

Table 3-7 Symbol Bindings

Value Binding Description

0 local Symbol is defined in the object file and not accessible in other files.
Local symbols of the same name may exist in multiple files.

1 global Symbol is either defined externally or defined in the object file and
accessible in other files.

2 weak Symbol is either defined externally or defined in the object file and
accessible in other files; however, these definitions have a lower
precedence than globally defined symbols.

13

15

loproc

hiproc

Values reserved for processor-specific semantics.

28 SPARC Assembly Language Reference Manual—August 1994

3

Assembler Directives
Assembler directives, or pseudo-operations (pseudo-ops), are commands to the
assembler that may or may not result in the generation of code. The different
types of assembler directives are:

• Section Control Directives

• Symbol Attribute Directives

• Assignment Directives

• Data Generating Directives

• Optimizer Directives

See Appendix A, “Pseudo-Operations,” for a complete description of the
pseudo-ops supported by the SPARC assembler.

Section Control Directives

When a section is created, a section header is generated and entered in the ELF
object file section header table. The section control pseudo-ops allow you to make
entries in this table. Sections that can be manipulated with the section control
directives are known as user sections. You can also use the section control
directives to change the user section in which code or data is generated.

Note – The symbol table, relocation table, and string table sections are created
implicitly. The section control pseudo-ops cannot be used to manipulate these
sections.

The section control directives also create a section symbol which is associated
with the location at the beginning of each created section. The section symbol
has an offset value of zero.

Symbol Attribute Directives

The symbol attribute pseudo-ops declare the symbol type and size and whether
it is local or global.

Extensible and Linking Format 29

3

Assignment Directive

The assignment directive associates the value and type of expression with the
symbol and creates a symbol table entry for the symbol. This directive
constitutes a definition of the symbol and, therefore, must be the only definition
of the symbol.

Data Generating Directives

The data generating directives are used for allocating storage and loading
values.

30 SPARC Assembly Language Reference Manual—August 1994

3

31

Converting Files to the New Format 4

Introduction
This chapter discusses how to convert existing SunOS 4.1 SPARC assembly
files to the SunOS 5.x SPARC assembly file format.

Conversion Instructions
• Remove the leading underscore (_) from symbol names.

The Solaris 2.x SPARCompilers do not prepend a leading underscore to
symbol names in the users’ programs, like the SPARCompilers that ran
under SunOS 4.1.

• Prefix local symbol names ,with a dot (.) .
Local symbol names in the SunOS 5.x SPARC assembly language begin with
a dot (.) so that they will not conflict with user programs’ symbol names.

• Change the usage of the pseudo-op .seg to .section

e.g. Change .seg "data " to .section ".data". See Appendix A,
“Pseudo-Operations,” for more information.

Note – The above conversions can be automatically achieved by passing the
-T option to the assembler.

32 SPARC Assembly Language Reference Manual—August 1994

4

Examples
Figure 4-1 shows how to convert an existing 4.1 file to the new format. The
lines that are different in the new format are marked with change bars.

Figure 4-1 Converting a 4.x File to the New Format

.seg "data1"

.align 4
L16:

.ascii "hello world\n"

.seg "text"

.proc 04

.global _main

.align 4
_main:

!#PROLOGUE# 0
sethi %hi(LF12),%g1
add %g1,%lo(LF12),%g1
save %sp,%g1,%sp
!#PROLOGUE# 1

L14:
.seg "text"
set L16,%o0
call _printf,1
nop

LE12:
ret
restore
.optim "-O~Q~R~S"
LF12 = -96
LP12 = 96
LST12 = 96
LT12 = 96

.section ".data1"

.align 4
.L16:

.ascii "hello world\n"

.section ".text"

.proc 04

.global main

.align 4
main:

!#PROLOGUE# 0
sethi %hi(.LF12),%g1
add %g1,%lo(.LF12),%g1
save %sp,%g1,%sp
!#PROLOGUE# 1

.L14:
.section ".text"
set .L16,%o0
call printf,1
nop

.LE12:
ret
restore
.optim "-O~Q~R~S"
.LF12 = -96
.LP12 = 96
.LST12 = 96
.LT12 = 96

Example 4.x File Converted to the New Format

33

Instruction-Set Mapping 5

The tables in this chapter describe the relationship between hardware
instructions of the SPARC architecture, as defined in the SPARC Processor
Architecture Manual, and the assembly language instruction set recognized by
the SunOS 5.x SPARC assembler.

Table Notation
Table 5-1 describes the notation used in the tables in this chapter to describe
the instruction set of the assembler. The following notations are commonly
suffixed to assembler mnemonics (uppercase letters refer to SPARC
architecture instruction names):

34 SPARC Assembly Language Reference Manual—August 1994

5

Table 5-1 Notations Used to Describe Instruction Sets

Notations Describes Comment

address reg rs1 + reg rs2

reg rs1 + const13

reg rs1 – const13

const13 + reg rs1

const13

Address formed from register contents, immediate
constant, or both.

asi Alternate address space identifier; an unsigned 8-bit
value. It can be the result of the evaluation of a
symbol expression.

const13 A signed constant which fits in 13 bits. It can be the
result of the evaluation of a symbol expression.

const22 A constant which fits in 22 bits. It can be the result
of the evaluation of a symbol expression.

creg %c0 ... %c31 Coprocessor registers.

freg %f0 ... %f31 Floating-point registers.

imm7 A signed or unsigned constant that can be
represented in 7 bits (it is in the range -64 ... 127). It
can be the result of the evaluation of a symbol
expression.

reg %r0 ... %r31

%g0 ... %g7

%o0 ... %o7

%l0 ... %l7

%i0 ... %i7

General purpose registers.

Same as %r0 ... %r7 (Globals)

Same as %r8 ... %r15 (Outs)

Same as %r16 ... %r23 (Locals)

Same as %r24 ... %r31 (Ins)

reg rd Destination register.

reg rs1 , reg rs2 Source register 1, source register 2.

Instruction-Set Mapping 35

5

reg_or_imm reg rs2

const13

Value from either a single register, or an immediate
constant.

regaddr reg rs1

reg rs1 + reg rs2

Address formed with register contents only.

Software_trap_number reg rs1 + reg rs2
reg rs1 + imm7
reg rs1 - imm7
uimm7
imm7 + reg rs1

A value formed from register contents, immediate
constant, or both. The resulting value must be in the
range 0.....127, inclusive.

uimm7 An unsigned constant that can be represented in 7
bits (it is in the range 0 ... 127). It can be the result of
the evaluation of a symbol expression.

Table 5-1 Notations Used to Describe Instruction Sets

Notations Describes Comment

36 SPARC Assembly Language Reference Manual—August 1994

5

Integer Instructions
The notations described in Table 5-2 are commonly suffixed to assembler
mnemonics (uppercase letters for architecture instruction names).

Table 5-3 outlines the correspondence between SPARC hardware integer
instructions and SPARC assembly language instructions.

The syntax of individual instructions is designed so that a destination operand
(if any), which may be either a register or a reference to a memory location, is
always the last operand in a statement.

Table 5-2 Commonly Suffixed Notations

Notation Description

a Instructions that deal with alternate space

b Byte instructions

c Reference to coprocessor registers

d Doubleword instructions

f Reference to floating-point registers

h Halfword instructions

q Quadword instructions

sr Status register

Instruction-Set Mapping 37

5

Note – In Table 5-3,
• Braces ({ }) indicate optional arguments.

Braces are not literally coded.

• Brackets ([]) indicate indirection: the contents of the addressed memory
location are being read from or written to.
Brackets are coded literally in the assembly language.
Note that the usage of brackets described in Chapter 2, “Assembler Syntax”
differ from the usage of these brackets.

• All Bicc and Bfcc instructions described may indicate that the annul bit is
to be set by appending ",a" to the opcode mnemonic; for example,

"bgeu,a label"

Table 5-3 SPARC to Assembly Language Mapping

SPARC Mnemonic Argument List Name Comments

ADD

ADDcc

ADDX

ADDXcc

add

addcc

addx

addxcc

re grs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

Add

Add and modify icc

Add with carry

AND

ANDcc

ANDN

ANDNcc

and

andcc

andn

andncc

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

And

38 SPARC Assembly Language Reference Manual—August 1994

5

Bicc bn{, a}

bne {, a}

be{, a}

bg{, a}

ble {, a}

bge {, a}

bl {, a}

bgu {, a}

bleu {, a}

bcc {, a}

bcs {, a}

bpos {, a}

bneg {, a}

bvc {, a}

bvs {, a}

ba{, a}

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

Branch on integer
condition codes

branch never

synonym: bnz

synonym: bz

synonym:
bgeu

synonym: blu

synonym: b

CALL call label
label{,n}

Call subprogram n = # of out
registers used
as arguments

Table 5-3 SPARC to Assembly Language Mapping (Continued)

SPARC Mnemonic Argument List Name Comments

Instruction-Set Mapping 39

5

CBccc cbn{,a}
cb3{,a}

cb2{,a}

cb23{,a}

cb1{,a}

cb13{,eo
}

cb12{,a}

cb123{,a
}

cb0{,a}

cb03{,a}

cb02{,a}

cb023{,a
}

cb01{,a}

cb013{,a
}

cb012{,a
}

cba{,a}

label
label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

Branch on
coprocessor
condition codes

branch never

Table 5-3 SPARC to Assembly Language Mapping (Continued)

SPARC Mnemonic Argument List Name Comments

40 SPARC Assembly Language Reference Manual—August 1994

5

FBfcc fbn{,a}

fbu{,a}

fbg{,a}

fbug{,a}

fbl{,a}

fbul{,a}

fblg{,a}

fbne{,a}

fbe{,a}

fbue{,a}

fbge{,a}

fbuge{,a
}

fble{,a}

fbule{,a
}

fbo{,a}

fba{,a}

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

Branch on
floating-point
condition codes

branch never

synonym:
fbnz

synonym: fbz

FLUSH flush address Instruction cache
flush

JMPL jmpl address, reg rd Jump and link

Table 5-3 SPARC to Assembly Language Mapping (Continued)

SPARC Mnemonic Argument List Name Comments

Instruction-Set Mapping 41

5

LDSB

LDSH

LDSTUB

LDUB

LDUH

LD

LDD

LDF

LDFSR

LDDF

LDC

LDCSR

LDDC

ldsb

ldsh

ldstub

ldub

lduh

ld

ldd

ld

ld

ldd

ld

ld

ldd

[address], reg rd

[address], reg rd

[address], reg rd

[address], reg rd

[address], reg rd

[address], reg rd

[address], reg rd

[address], freg rd

[address], %fsr

[address], freg rd

[address], creg rd

[address], %csr

[address], creg rd

Load signed byte

Load signed halfword

Load-store unsigned
byte

Load unsigned byte

Load unsigned
halfword

Load word

Load double word

Load floating-point
register

Load double
floating-point

Load coprocessor

Load double
coprocessor

regrd must be
even

fregrd must be
even

LDSBA

LDSHA

LDUBA

LDUHA

LDA

LDDA

ldsba

ldsha

lduba

lduha

lda

ldda

[regaddr]asi, reg rd

[regaddr]asi, reg rd

[regaddr]asi, reg rd

[regaddr]asi, reg rd

[regaddr]asi, reg rd

[regaddr]asi, reg rd

Load signed byte
from alternate space

regrd must be
even

LDSTUBA ldstuba [regaddr]asi, reg rd

Table 5-3 SPARC to Assembly Language Mapping (Continued)

SPARC Mnemonic Argument List Name Comments

42 SPARC Assembly Language Reference Manual—August 1994

5

MULScc mulscc reg rs1 , reg_or_imm, reg rd Multiply step (and
modify icc)

NOP nop No operation

OR

ORcc

ORN

ORNcc

or

orcc

orn

orncc

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

Inclusive or

RDASR

RDY

RDPSR

RDWIM

RDTBR

rd

rd

rd

rd

rd

%asrnrs1 , reg rd

%y, reg rd

%psr , reg rd

%wim, reg rd

%tbr , reg rd

1≤n≤31

See synthetic
instructions

See synthetic
instructions

See synthetic
instructions

See synthetic
instructions

RESTORE restore reg rs1 , reg_or_imm, reg rd See synthetic
instructions

RETT rett address Return from trap

SAVE save reg rs1 , reg_or_imm, reg rd See synthetic
instructions

SDIV

SDIVcc

sdiv

sdivcc

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

Signed divide

Signed divide and
modify icc

Table 5-3 SPARC to Assembly Language Mapping (Continued)

SPARC Mnemonic Argument List Name Comments

Instruction-Set Mapping 43

5

SMUL

SMULcc

smul

smulcc

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

Signed multiply

Signed multiply and
modify icc

SETHI sethi

sethi

const22, reg rd

%hi (value), reg rd

Set high 22 bits of
register

See synthetic
instructions

SLL

SRL

SRA

sll

srl

sra

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

Shift left logical

Shift right logical

Shift right arithmetic

STB

STH

ST

STD

STF

STDF

STFSR

STDFQ

STC

stb

sth

st

std

st

std

st

std

st

reg rd , [address]

reg rd , [address]

reg rd , [address]

reg rd , [address]

freg rd , [address]

freg rd , [address]

%fsr , [address]

%fq, [address]

creg rd , [address]

Store byte

Store half-word

Store floating-point
status register

Store double floating-
point

Store coprocessor

Synonyms:
stub , stsb

Synonyms:
stuh , stsh

reg rd Must be even

fregrd Must be even

STDC

STCSR

STDCQ

std

st

std

creg rd , [address]

%csr , [address]

%cq, [address] Store double
coprocessor

cregrd Must be even

Table 5-3 SPARC to Assembly Language Mapping (Continued)

SPARC Mnemonic Argument List Name Comments

44 SPARC Assembly Language Reference Manual—August 1994

5

STBA

STHA

STA

STDA

stba

stha

sta

stda

reg rd [regaddr]asi

reg rd [regaddr]asi

reg rd , [regaddr]asi

reg rd , [regaddr]asi

Store byte into
alternate space

Synonyms:
stuba ,
stsba

Synonyms:
stuha ,
stsha

reg rd Must be even

SUB

SUBcc

SUBX

SUBXcc

sub

subcc

subx

subxcc

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

Subtract

Subtract and modify
icc

Subtract with carry

SWAP

SWAPA

swap

swapa

[address], reg rd

[regaddr]asi, reg rd

Swap memory word

with register

Table 5-3 SPARC to Assembly Language Mapping (Continued)

SPARC Mnemonic Argument List Name Comments

Instruction-Set Mapping 45

5

Ticc tn

tne

te

tg

tle

tge

tl

tgu

tleu

tlu

tgeu

tpos

tneg

tvc

tvs

ta

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

Trap on integer
condition code

Note: Trap numbers
16-31 are reserved for
the user. Currently-
defined trap numbers
are those defined in
/usr/include/sys/trap.h

Trap never

Synonym:
tnz

Synonym: tz

Synonym:
tcs

Synonym:
tcc

Synonym: t

Table 5-3 SPARC to Assembly Language Mapping (Continued)

SPARC Mnemonic Argument List Name Comments

46 SPARC Assembly Language Reference Manual—August 1994

5

TADDcc

TSUBcc

TADDccT
V

TSUBccT
V

taddcc

tsubcc

taddcctv

tsubcctv

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

Tagged add and
modify icc

Tagged add and
modify icc and trap
on overflow

UDIV

UDIVcc

udiv

udivcc

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

Unsigned divide

Unsigned divide and
modify icc

UMUL umul reg rs1 , reg_or_imm, reg rd Unsigned multiply

UMULcc umulcc reg rs1 , reg_or_imm, reg rd Unsigned multiply
and modify icc

UNIMP unimp const22 Illegal instruction

WRASR

WRY

WRPSR

WRWIM

WRTBR

wr

wr

wr

wr

wr

reg_or_imm, %asr nrs1

reg rs1 , reg_or_imm, %y

reg rs1 , reg_or_imm, %psr

reg rs1 , reg_or_imm, %wim

reg rs1 , reg_or_imm, %tbr

1≤n≤31

See synthetic
instructions

See synthetic
instructions

See synthetic
instructions

See synthetic
instructions

XNOR

XNORcc

xnor

xnorcc

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

Exclusive nor

XOR

XORcc

xor

xorcc

reg rs1 , reg_or_imm, reg rd

reg rs1 , reg_or_imm, reg rd

Exclusive or

Table 5-3 SPARC to Assembly Language Mapping (Continued)

SPARC Mnemonic Argument List Name Comments

Instruction-Set Mapping 47

5

Floating-Point Instruction
Table 5-4 shows floating-point instructions. In cases where more than numeric
type is involved, each instruction in a group is described; otherwise, only the
first member of a group is described.

Table 5-4 Floating-Point Instructions

SPARC Mnemonic* Argument List Description

FiTOs

FiTOd

FiTOq

fitos

fitod

fitoq

freg rs2 , freg rd

freg rs2 , freg rd

freg rs2 , freg rd

Convert integer to single

Convert integer to double

Convert integer to quad

FsTOi

FdTOi

FqTOi

fstoi

fdtoi

fqtoi

freg rs2 , freg rd

freg rs2 , freg rd

freg rs2 , freg rd

Convert single to integer

Convert double to integer

Convert quad to integer

FsTOd

FsTOq

fstod

fstoq

freg rs2 , freg rd

freg rs2 , freg rd

Convert single to double

Convert single to quad

FdTOs

FdTOq

fdtos

fdtoq

freg rs2 , freg rd

freg rs2 , freg rd

Convert double to single

Convert double to quad

FqTOd

FqTOs

fqtod

fqtos

freg rs2 , freg rd

freg rs2 , freg rd

Convert quad to double

Convert quad to single

FMOVs

FNEGs

FABSs

fmovs

fnegs

fabss

freg rs2 , freg rd

freg rs2 , freg rd

freg rs2 , freg rd

Move

Negate

Absolute value

* Types of Operands are denoted by the following lower-case letters:

i integer
s single
d double
q quad

48 SPARC Assembly Language Reference Manual—August 1994

5

FSQRTs

FSQRTd

FSQRTq

fsqrts

fsqrtd

fsqrtq

freg rs2 , freg rd

freg rs2 , freg rd

freg rs2 , freg rd

Square root

FADDs

FADDd

FADDq

fadds

faddd

faddq

freg rs1 , freg rs2 , freg rd

freg rs1 , freg rs2 , freg rd

freg rs1 , freg rs2 , freg rd

Add

FSUBs

FSUBd

FSUBq

fsubs

fsubd

fsubx

freg rs1 , freg rs2 , freg rd

freg rs1 , freg rs2 , freg rd

freg rs1 , freg rs2 , freg rd

Subtract

FMULs

FMULd

FMULq

fmuls

fmuld

fmulq

freg rs1 , freg rs2 , freg rd

freg rs1 , freg rs2 , freg rd

freg rs1 , freg rs2 , freg rd

Multiply

FdMULq

FsMULd

fmulq

fsmuld

freg rs1 , freg rs2 , freg rd

freg rs1 , freg rs2 , freg rd

Multiply double to quad

Multiply single to double

FDIVs

FDIVd

FDIVq

fdivs

fdivd

fdivq

freg rs1 , freg rs2 , freg rd

freg rs1 , freg rs2 , freg rd

freg rs1 , freg rs2 , freg rd

Divide

Table 5-4 Floating-Point Instructions (Continued)

SPARC Mnemonic* Argument List Description

* Types of Operands are denoted by the following lower-case letters:

i integer
s single
d double
q quad

Instruction-Set Mapping 49

5

Coprocessor Instructions
All coprocessor-operate (cpopn) instructions take all operands from and return
all results to coprocessor registers. The data types supported by the
coprocessor are coprocessor-dependent. Operand alignment is also
coprocessor-dependent. Coprocessor-operate instructions are described in
Table 5-5.

If the EC (PSR_enable_coprocessor) field of the processor state register (PSR) is
0, or if a coprocessor is not present, a cpopn instruction causes a cp_disabled
trap.

The conditions that cause a cp_exception trap are coprocessor-dependent.

FCMPs

FCMPd

FCMPq

FCMPEs

FCMPEd

FCMPEq

fcmps

fcmpd

fcmpq

fcmpes

fcmped

fcmpeq

freg rs1 , freg rs2

freg rs1 , freg rs2

freg rs1 , freg rs2

freg rs1 , freg rs2

freg rs1 , freg rs2

freg rs1 , freg rs2

Compare

Compare, generate exception
if not ordered

Table 5-5 Coprocessor-Operate Instructions

SPARC Mnemonic Argument List Name Comments

CPop1 cpop1 opc, reg rs1 ,
reg rs2 , reg rd

Coprocessor operation

CPop2 cpop2 opc, reg rs1 ,
reg rs2 , reg rd

Coprocessor operation May modify ccc

Table 5-4 Floating-Point Instructions (Continued)

SPARC Mnemonic* Argument List Description

* Types of Operands are denoted by the following lower-case letters:

i integer
s single
d double
q quad

50 SPARC Assembly Language Reference Manual—August 1994

5

Synthetic Instructions
Table 5-6 describes the mapping of synthetic instructions to hardware
instructions.

Table 5-6 Synthetic Instruction to Hardware Instruction Mapping

Synthetic Instruction Hardware Equivalent(s) Comment

btst

bset

bclr

btog

reg_or_imm, reg rs1

reg_or_imm, reg rd

reg_or_imm, reg rd

reg_or_imm, reg rd

andcc

or

andn

xor

reg rs1 , reg_or_imm, %g0

reg rd , reg_or_imm, reg rd

reg rd , reg_or_imm, reg rd

reg rd , reg_or_imm, reg rd

Bit test

Bit set

Bit clear

Bit toggle

call reg_or_imm jmpl reg_or_imm, %o7

clr

clrb

clrh

clr

reg rd

[address]

[address]

[address]

or

stb

sth

st

%g0, %g0 , reg rd

%g0, [address]

%g0, [address]

%g0, [address]

Clear (zero)
register

Clear byte

Clear halfword

Clear word

cmp reg, reg_or_imm subcc reg rs1 , reg_or_imm, %g0 Compare

Instruction-Set Mapping 51

5

dec

dec

deccc

deccc

reg rd

const13, reg rd

reg rd

const13, reg rd

sub

sub

subcc

subcc

reg rd , 1, reg rd

reg rd , const13, reg rd

reg rd , 1, reg rd

reg rd , const13, reg rd

Decrement by 1

Decrement by
const13

Decrement by 1
and set icc

Decrement by
const13 and
set icc

dec

dec

deccc

deccc

reg rd

const13, reg rd

reg rd

const13, reg rd

sub

sub

subcc

subcc

reg rd , 1, reg rd

reg rd , const13, reg rd

reg rd , 1, reg rd

reg rd , const13, reg rd

Decrement by 1

Decrement by
const13

Decrement by 1
and set icc

Decrement by
const13 and
set icc

inc

inc

inccc

inccc

reg rd

const13, reg rd

reg rd

const13, reg rd

add

add

addcc

addcc

reg rd , 1, reg rd

reg rd , const13, reg rd

reg rd , 1, reg rd

reg rd , const13, reg rd

Increment by 1

Increment by
const13

Increment by 1
and set icc

Increment by
const13 and
set icc

jmp address jmpl address, %g0

Table 5-6 Synthetic Instruction to Hardware Instruction Mapping (Continued)

Synthetic Instruction Hardware Equivalent(s) Comment

52 SPARC Assembly Language Reference Manual—August 1994

5

mov

mov

mov

mov

mov

mov

mov

mov

mov

reg_or_imm,reg rd

%y, reg rs1

%psr , reg rs1

%wim, reg rs1

%tbr , reg rs1

reg_or_imm, %y

reg_or_imm, %psr

reg_or_imm, %wim

reg_or_imm, %tbr

or

rd

rd

rd

rd

wr

wr

wr

wr

%g0, reg_or_imm, reg rd

%y, reg rs1

%psr , reg rs1

%wim, reg rs1

%tbr , reg rs1

%g0,reg_or_imm, %y

%g0,reg_or_imm, %psr

%g0,reg_or_imm, %wim

%g0,reg_or_imm, %tbr

not

not

neg

neg

reg rs1 , reg rd

reg rd

reg rs1 , reg rd

reg rd

xnor

xnor

sub

sub

reg rs1 , %g0 , reg rd

reg rd , %g0 , reg rd

%g0, reg rs2 , reg rd

%g0, reg rd , reg rd

one's complement

one's complement

two's complement

two's complement

restore restore %g0 , %g0 , %g0 trivial restore

ret

retl

jmpl

jmpl

%i7+8 , %g0

%o7+8, %g0

return from
subroutine

return from leaf
subroutine

save save %g0 , %g0 , %g0 trivial save

Warning – trivial
save should only be
used in supervisor
code!

Table 5-6 Synthetic Instruction to Hardware Instruction Mapping (Continued)

Synthetic Instruction Hardware Equivalent(s) Comment

Instruction-Set Mapping 53

5

set

set

set

value,reg rd

value,reg rd

value,reg rd

or

sethi

sethi
or

%g0, value, reg rd

%hi (value), reg rd

%hi (value), reg rd ;
reg rd , %lo (value), reg rd

if -4096 ≤ value ≤ 4095

if ((value & 0x3ff) == 0)

otherwise

Warning – Do not
use the set synthetic
instruction in an
instruction delay
slot.

skipz

skipnz

bnz,a .+8

bz,a .+8

if z is set, ignores
next instruction

if z is not set,
ignores next
instruction

tst reg orcc reg rs1 , %g0 , %g0 test

Table 5-6 Synthetic Instruction to Hardware Instruction Mapping (Continued)

Synthetic Instruction Hardware Equivalent(s) Comment

54 SPARC Assembly Language Reference Manual—August 1994

5

55

Pseudo-Operations A

The pseudo-operations listed in this appendix are supported by the SPARC
assembler.

Alphabetized Listing with Descriptions

.alias

Turns off the effect of the preceding .noalias pseudo-op.
(Compiler-generated only.)

.align boundary

Aligns the location counter on a boundary where ((“location counter”
mod boundary)==0); boundary may be any power of 2.

.ascii "string" [, "string"]*

Generates the given sequence(s) of ASCII characters.

.asciz "string" [, "string"]*

Generates the given sequence(s) of ASCII characters. This pseudo-op appends
a null (zero) byte to each string.

56 SPARC Assembly Language Reference Manual—August 1994

A

.byte 8bitval [, 8bitval]*

Generates (a sequence of) initialized bytes in the current segment.

.common symbol, size [, "sect_name"] [, alignment]

Provides a tentative definition of symbol. Size bytes are allocated for the object
represented by symbol.

• If the symbol is not defined in the input file and is declared to be local to the
file, the symbol is allocated in sect_name and its location is optionally
aligned to a multiple of alignment. If sect_name is not given, the symbol is
allocated in the uninitialized data section (bss). Currently, only ".bss" is
supported for the section name.

• If the symbol is not defined in the input file and is declared to be global, the
SPARC link editor allocates storage for the symbol, depending on the
definition of symbol_name in other files. Global is the default binding for
common symbols.

• If the symbol is defined in the input file, the definition specifies the location
of the symbol and the tentative definition is overridden.

.double 0r floatval [, 0r floatval]*

Generates (a sequence of) initialized double-precision floating-point values in
the current segment. floatval is a string acceptable to atof(3) ; that is, an
optional sign followed by a non-empty string of digits with optional decimal
point and optional exponent.

.empty

Suppresses assembler complaints about the next instruction presence in a delay
slot when used in the delay slot of a Control Transfer Instruction (CTI).

Some instructions should not be in the delay slot of a CTI. See the SPARC
Architecture Manual for details.

Pseudo-Operations 57

A

.file "string"

Creates a symbol table entry where string is the symbol name and STT_FILE is
the symbol table type. string specifies the name of the source file associated
with the object file.

.global symbol [, symbol]*

.globl symbol [, symbol]*

Declares each symbol in the list to be global; that is, each symbol is either
defined externally or defined in the input file and accessible in other files;
default bindings for the symbol are overridden.

• A global symbol definition in one file will satisfy an undefined reference to
the same global symbol in another file.

• Multiple definitions of a defined global symbol is not allowed. If a defined
global symbol has more than one definition, an error will occur.

Note – This pseudo-op by itself does not define the symbol.

.half 16bitval [, 16bitval]*

Generates (a sequence of) initialized halfwords in the current segment. The
location counter must already be aligned on a halfword boundary (use
.align 2).

.ident "string"

Generates the null terminated string in a comment section. This operation is
equivalent to:

.pushsection ".comment"

.asciz " string"

.popsection

58 SPARC Assembly Language Reference Manual—August 1994

A

.local symbol [, symbol]*

Declares each symbol in the list to be local; that is, each symbol is defined in the
input file and not accessible in other files; default bindings for the symbol are
overridden. These symbols take precedence over weak and global symbols.

Since local symbols are not accessible to other files, local symbols of the same
name may exist in multiple files.

Note – This pseudo-op by itself does not define the symbol.

.noalias %reg1, %reg2

%reg1 and %reg2 will not alias each other (that is, point to the same
destination) until a .alias pseudo-op is issued. (Compiler-generated only.)

.nonvolatile

Defines the end of a block of instruction. The instructions in the block may not
be permuted. This pseudo-op has no effect if:

• The block of instruction has been previously terminated by a Control
Transfer Instruction (CTI) or a label

• There is no preceding .volatile pseudo-op

.optim "string"

This pseudo-op changes the optimization level of a particular function.
(Compiler-generated only.)

.popsection

Removes the top section from the section stack. The new section on the top of
the stack becomes the current section. This pseudo-op and its corresponding
.pushsection command allow you to switch back and forth between the
named sections.

Pseudo-Operations 59

A

.proc n

Signals the beginning of a procedure (that is, a unit of optimization) to the
peephole optimizer in the SPARC assembler; n specifies which registers will
contain the return value upon return from the procedure. (Compiler-generated
only.)

.pushsection "sect_name" [, attributes]

Moves the named section to the top of the section stack. This new top section
then becomes the current section. This pseudo-op and its corresponding
.popsection command allow you to switch back and forth between the
named sections.

.quad 0r floatval [, 0r floatval]*

Generates (a sequence of) initialized quad-precision floating-point values in
the current segment. floatval is a string acceptable to atof(3) ; that is, an
optional sign followed by a non-empty string of digits with optional decimal
point and optional exponent.

Note – The .quad command currently generates quad-precision values with
only double-precision significance.

.reserve symbol, size [, "sect_name" [, alignment]]

Defines symbol, and reserves size bytes of space for it in the sect_name. This
operation is equivalent to:

If a section is not specified, space is reserved in the current segment.

.pushsection " sect_name"

.align alignment
symbol:

.skip size

.popsection

60 SPARC Assembly Language Reference Manual—August 1994

A

.section "section_name" [, attributes]

Makes the specified section the current section.

The assembler maintains a section stack which is manipulated by the section
control directives. The current section is the section that is currently on top of
the stack. This pseudo-op changes the top of the section stack.

• If section_name does not exist, a new section with the specified name and
attributes is created.

• If section_name is a non-reserved section, attributes must be included the first
time it is specified by the .section directive.

See the sections “Predefined User Sections” and “Predefined Non-User
Sections” in Chapter 3, “Extensible and Linking Format,” for a detailed
description of the reserved sections. See Table 3-2 in Chapter 3, “Extensible and
Linking Format,” for a detailed description of the section attribute flags.

Attributes can be:

#write | #alloc | #execinstr

.seg "section_name"

Note – This pseudo-op is currently supported for compatibility with existing
SunOS 4.1 SPARC assembly language programs. This pseudo-op has been
replaced by the .section pseudo-op.

Changes the current section to one of the predefined user sections. The
assembler will interpret the following SunOS 4.1 SPARC assembly directive:
.seg "text", .seg "data", .seg "data1", .seg "bss" ,

to be the same as the following SunOS 5.x SPARC assembly directive:
.section ".text", .section ".data", .section ".data1",

.section ".bss" .

Note – Predefined user section names are changed in SunOS 5.x.

Pseudo-Operations 61

A

.single 0r floatval [, 0rfloatval]*

Generates (a sequence of) initialized single-precision floating-point values in
the current segment.

Note – This operation does not align automatically.

.size symbol, expr

Declares the symbol size to be expr. expr must be an absolute expression.

.skip n

Increments the location counter by n, which allocates n bytes of empty space in
the current segment.

.stabn <various parameters>

The pseudo-op is used by Solaris 2.x SPARCompilers only to pass debugging
information to the symbolic debuggers.

.stabs <various parameters>

The pseudo-op is used by Solaris 2.x SPARCompilers only to pass debugging
information to the symbolic debuggers.

.type symbol, type

Declares the type of symbol, where type can be:

#object
#function
#no_type

See Table 3-6 in Chapter 3, “Extensible and Linking Format,” for detailed
information on symbols.

62 SPARC Assembly Language Reference Manual—August 1994

A

.uahalf 16bitval [, 16bitval]*

Generates a (sequence of) 16-bit value(s).

Note – This operation does not align automatically.

.uaword 32bitval [, 32bitval]*

Generates a (sequence of) 32-bit value(s).

Note – This operation does not align automatically.

.version "string"

Identifies the minimum assembler version necessary to assemble the input file.
You can use this pseudo-op to ensure assembler-compiler compatibility. If
string indicates a newer version of the assembler than this version of the
assembler, a fatal error message is displayed and the SPARC assembler exits.

.volatile

Defines the beginning of a block of instruction. The instructions in the section
may not be changed. The block of instruction should end at a .nonvolatile
pseudo-op and should not contain any Control Transfer Instructions (CTI) or
labels. The volatile block of instructions is terminated after the last instruction
preceding a CTI or label.

.weak symbol [, symbol]

Declares each symbol in the list to be defined either externally, or in the input
file and accessible to other files; default bindings of the symbol are overridden
by this directive.

Note the following:

• A weak symbol definition in one file will satisfy an undefined reference to a
global symbol of the same name in another file.

Pseudo-Operations 63

A

• Unresolved weak symbols have a default value of zero; the link editor does
not resolve these symbols.

• If a weak symbol has the same name as a defined global symbol, the weak
symbol is ignored and no error results.

Note – This pseudo-op does not itself define the symbol.

.word 32bitval [, 32bitval]*

Generates (a sequence of) initialized words in the current segment.

Note – This operation does not align automatically.

.xstabs <various parameters>

The pseudo-op is used by Solaris 2.x SPARCompilers only to pass debugging
information to the symbolic debuggers.

symbol =expr

Assigns the value of expr to symbol.

64 SPARC Assembly Language Reference Manual—August 1994

A

65

Examples of Pseudo-Operations B

This chapter shows some examples of ways to use various pseudo-ops.

Example 1

This example shows how to use the following pseudo-ops to specify the
bindings of variables in C:

common, .global , .local , .weak

The following C definitions/declarations for example:

can be translated into the following assembly code:

int foo1 = 1;

#pragma weak foo2 = foo1

static int foo3;

static int foo4 = 2;

.pushsection ".data"

.global foo1 ! int foo1 = 1

.align 4

66 SPARC Assembly Language Reference Manual—August 1994

B

Example 2

This example illustrates how to use the pseudo-op .ident to generate a string
in the .comment section of the object file for identification purposes.

foo1:

.word 0x1

.type foo1,#object ! foo1 is of type data object,

.size foo1,4 ! with size = 4 bytes

.weak foo2 ! #pragma weak foo2 = foo1

foo2 = foo1

.local foo3 ! static int foo3

.common foo3,4,4

.align 4 ! static int foo4 = 2

foo4:

.word 0x2

.type foo4,#object

.size foo4,4

.popsection

.ident"acomp: (CDS) SPARCompilers 2.0 alpha4 12 Aug 1991"

Examples of Pseudo-Operations 67

B

Example 3

The pseudo-ops illustrated in this example are .align , .global , .type , and
.size .

The following C subroutine for example:

 can be translated into the following assembly code:

int sum(a, b)

int a, b;

{

return(a + b);

}

.section ".text"

.global sum

.align 4

sum:

retl

add %o0,%o1,%o0 ! (a + b) is done in the
! delay slot of retl

.type sum,#function ! sum is of type function

.size sum,.-sum ! size of sum is the diff
! of current location
! counter and the initial
! definition of sum

68 SPARC Assembly Language Reference Manual—August 1994

B

Example 4

The pseudo-ops illustrated in this example are .section , .ascii , and
.align . The example calls the printf function to output the string
"hello world" .

Example 5

This example illustrates how to use the .volatile and .nonvolatile
pseudo-ops to protect a section of handwritten asembly code from peephole
optimization.

.section ".data1"

.align 4

.L16:

.ascii "hello world\n\0"

.section ".text"

.global main

main:

save %sp,-96,%sp

set .L16,%o0

call printf,1

nop

restore

.volatile

t 0x24

std %g2, [%o0]

retl

nop

.nonvolatile

69

Usingthe Assembler Command Line C

Assembler Command Line
Invoke the assembler command line as follows:

Note – The language drivers (such as cc and f77) invoke the assembler
command line with the fbe command. You can use either the as or fbe
command to invoke the assembler command line.

The as command translates the assembly language source files, inputfile, into
an executable object file, objfile. The SPARC assembler recognizes the filename
argument hyphen (-) as the standard input. It accepts more than one file name
on the command line. The input file is the concatenation of all the specified
files. If an invalid option is given or the command line contains a syntax error,
the SPARC assembler prints the error (including a synopsis of the command
line syntax and options) to standard error output, and then terminates.

The SPARC assembler supports macros, #include files, and symbolic
substitution through use of the C preprocessor cpp . The assembler invokes the
preprocessor before assembly begins if it has been specified from the command
line as an option. (See the -P option.)

as [options] [inputfile] ...

70 SPARC Assembly Language Reference Manual—August 1994

C

Assembler Command Line Options

- b

This new option generates extra symbol table information for the source
code browser.

• If the as command line option -P is set, the cpp preprocessor also collects
browser information.

• If the as command line option -m is set, this option is ignored as the m4
macro processor does not generate browser data.

For more information about the SPARCworks SourceBrowser, see the
Browsing Source Code manual.

-Dname
-Dname=def

When the -P option is in effect, these options are passed to the cpp
preprocessor without interpretation by the as command; otherwise, they are
ignored.

-Ipath

When the -P option is in effect, this option is passed to the cpp
preprocessor without interpretation by the as command; otherwise, it is
ignored.

-K PIC

This new option generates position-independent code.

Note – -K PIC and -K pic are equivalent.

-L

Saves all symbols, including temporary labels that are normally discarded to
save space, in the ELF symbol table.

Using the Assembler Command Line 71

C

-m

This new option runs m4 macro preprocessing on input. The m4
preprocessor is more powerful than the C preprocessor (invoked by the -P
option), so it is more useful for complex preprocessing. See the SunOS
Reference Manual for a detailed description of the m4 macro-processor.

-o outfile

Takes the next argument as the name of the output file to be produced. By
default, the .s suffix, if present, is removed from the input file and the .o
suffix is appended to form the ouput file name.

-P

Run cpp , the C preprocessor, on the files being assembled. The preprocessor
is run separately on each input file, not on their concatenation. The
preprocessor output is passed to the assembler.

-Q{y|n}

This new option produces the “assembler version” information in the
comment section of the output object file if the y option is specified; if the n
option is specified, the information is suppressed.

-q

This new option causes the assembler to perform a quick assembly. When
the -q option is used, the node list is not built and the assembler simply
emits instructions as they are read.

Note – This option disables many error checks. It is recommended that you do
not use this option to assemble handwritten assembly language.

-S[a|C]

Produces a disassembly of the emitted code to the standard output.

72 SPARC Assembly Language Reference Manual—August 1994

C

• Adding the character a to the option appends a comment line to each
assembly code which indicates its relative address in its own section.

• Adding the character C to the option prevents comment lines from
appearing in the output.

-s

This new option places all stabs in the ".stabs " section. By default, stabs
are placed in "stabs.excl " sections, which are stripped out by the static
linker ld during final execution. When the -s option is used, stabs remain in
the final executable because ".stab" sections are not stripped out by the static
linker ld.

-T

This is a migration option for SunOS 4.1 assembly files to be assembled on
SunOS 5.x systems. With this option, the symbol names in SunOS 4.1
assembly files will be interpreted as SunOS 5.x symbol names. This option
can be used in conjunction with the - S option to convert SunOS 4.1
assembly files to their corresponding SunOS 5.x versions.

-Uname

When the -P option is in effect, this option is passed to the cpp
preprocessor without interpretation by the as command; otherwise, it is
ignored.

-V

This option writes the version information on the standard error output.

Disassembling Object Code
The dis program is the object code disassembler for ELF. It produces an
assembly language listing of the object file. For detailed information about this
function, see the man page dis(1).

73

An Example Language Program D

The following code shows an example C language program; the second
example code shows the corresponding assembly code generated by
SPARCompiler C 2.0.1 that runs on Solaris 2.x. Comments have been added to
the asembly code to show the correspondence to the C code.

Figure D-1 A C Program that Computes the First n Fibonacci Numbers

/* a simple program computing the first n Fibonacci numbers */

extern unsigned * fibonacci();

#define MAX_FIB_REPRESENTABLE 49

/* compute the first n Fibonacci numbers */
unsigned * fibonacci(n)
 int n;
{
 static unsigned fib_array[MAX_FIB_REPRESENTABLE] = {0,1};
 unsigned prev_number = 0;
 unsigned curr_number = 1;
 int i;

 if (n >= MAX_FIB_REPRESENTABLE) {
 printf("Fibonacci(%d) cannot be represented in a 32 bit word\n", n);
 exit(1);
 }

 for (i = 2; i < n; i++) {

74 SPARC Assembly Language Reference Manual—August 1994

D

Figure D-2 Assembler Progam Output by C SPARCompiler (annotated)

 fib_array[i] = prev_number + curr_number;
 prev_number = curr_number;
 curr_number = fib_array[i];
 }

 return(fib_array);
}

main()
{
 int n, i;
 unsigned * result;

 printf("Fibonacci(n):, please enter n:\n");
 scanf("%d", &n);

 result = fibonacci(n);
 for (i = 1; i <= n; i++)
 printf("Fibonacci (%d) is %u\n", i, *result++);
}

!
! a simple program computing the first n Fibonacci numbers,
! showing various pseudo-operations, sparc instructions, synthetic instructions
!
! pseudo-operations: .align, .ascii, .file, .global, .ident, .proc, .section,
! .size, .skip, .type, .word
! sparc instructions: add, bg, bge, bl, ble, ld, or, restore, save, sethi, st
! synthetic instructions: call, cmp, inc, mov, ret
!

.file "fibonacci.c" ! the original source file name

.section ".text" ! text section (executable instructions)

.proc 79 ! subroutine fibonacci, it's return
! value will be in %i0

.global fibonacci ! fibonacci() can be referenced
! outside this file

.align 4 ! align the beginning of this section
! to word boundary

fibonacci:
save %sp,-96,%sp ! create new stack frame and register

! window for this subroutine
/* if (n >= MAX_FIB_REPRESENTABLE) { */

! note, C style comment strings are

An Example Language Program 75

D

! also permitted
cmp %i0,49 ! n >= MAX_FIB_REPRESENTABLE ?

! note, n, the 1st parameter to
! fibonacci(), is stored in %i0 upon
! entry

bl .L77003
mov 0,%i2 ! initialization of variable

! prev_number is executed in the
! delay slot

/* printf("Fibonacci(%d) cannot be represented in a 32 bits word\n", n); */
sethi %hi(.L20),%o0 ! if branch not taken, call printf(),
or %o0,%lo(.L20),%o0 ! set up 1st, 2nd argument in %o0, %o1;
call printf,2 ! the ",2" means there are 2 out
mov %i0,%o1 ! registers used as arguments

/* exit(1); */
call exit,1
mov 1,%o0

.L77003: ! initialize variables before the loop
/* for (i = 2; i < n; i++) { */

mov 1,%i4 ! curr_number = 1
mov 2,%i3 ! i = 2
cmp %i3,%i0 ! i <= n?
bge .L77006 ! if not, return
sethi %hi(.L16+8),%o0 ! use %i5 to store &fib_array[i]
add %o0,%lo(.L16+8),%i5

.LY1: ! loop body
/* fib_array[i] = prev_number + curr_number; */

add %i2,%i4,%i2 ! fib_array[i] = prev_number+curr_number
st %i2,[%i5]

/* prev_number = curr_number; */
mov %i4,%i2 ! prev_number = curr_number

/* curr_number = fib_array[i]; */
ld [%i5],%i4 ! curr_number = fib_array[i]
inc %i3 ! i++
cmp %i3,%i0 ! i <= n?
bl .LY1 ! if yes, repeat loop
inc 4,%i5 ! increment ptr to fib_array[]

.L77006:
/* return(fib_array); */

sethi %hi(.L16),%o0 ! return fib_array in %i0
add %o0,%lo(.L16),%i0
ret
restore ! destroy stack frame and register

! window
.type fibonacci,#function ! fibonacci() is of type function
.size fibonacci,(.-fibonacci) ! size of function:

! current location counter minus
! beginning definition of function

.proc 18 ! main program

.global main

.align 4

76 SPARC Assembly Language Reference Manual—August 1994

D

main:
save %sp,-104,%sp ! create stack frame for main()

/* printf("Fibonacci(n):, please input n:\n"); */
sethi %hi(.L31),%o0 ! call printf, with 1st arg in %o0
call printf,1
or %o0,%lo(.L31),%o0

/* scanf("%d", &n); */
sethi %hi(.L33),%o0 ! call scanf, with 1st arg, in %o0
or %o0,%lo(.L33),%o0 ! move 2nd arg. to %o1, in delay slot
call scanf,2
add %fp,-4,%o1

/* result = fibonacci(n); */
call fibonacci,1
ld [%fp-4],%o0

! some initializations before the for-
! loop, put the variables in registers

/* for (i = 1; i <= n; i++) */
mov 1,%i5 ! %i5 <-- i
mov %o0,%i4 ! %i4 <-- result
sethi %hi(.L38),%o0 ! %i2 <-- format string for printf
add %o0,%lo(.L38),%i2
ld [%fp-4],%o0 ! test if (i <= n) ?
cmp %i5,%o0 ! note, n is stored in [%fp-4]
bg .LE27
nop

.LY2: ! loop body
/* printf("Fibonacci (%d) is %u\n", i, *result++); */

ld [%i4],%o2 ! call printf, with (*result) in %o2,
mov %i5,%o1 ! i in %o1, format string in %o0
call printf,3
mov %i2,%o0
inc %i5 ! i++
ld [%fp-4],%o0 ! i <= n?
cmp %i5,%o0
ble .LY2
inc 4,%i4 ! result++

.LE27:
ret
restore
.type main,#function ! type and size of main
.size main,(.-main)

.section ".data" ! switch to data section
! (contains initialized data)

.align 4
.L16:
/* static unsigned fib_array[MAX_FIB_REPRESENTABLE] = {0,1}; */

.align 4 ! initialization of first 2 elements

.word 0 ! of fib_array[]

.align 4

.word 1

An Example Language Program 77

D

.skip 188

.type .L16,#object ! storage allocation for the rest of
! fib_array[]

.section ".data1" ! the ascii string data are entered
! into the .data1 section;
! #alloc: memory would be allocated
! for this section during run time
! #write: the section contains data
! that is writeable during process
! execution

.align 4
.L20: ! ascii strings used in the printf stmts

.ascii "Fibonacci(%d) cannot be represented in a 32 bit w"

.ascii "ord\n\0"

.align 4 ! align the next ascii string to word
! boundary

.L31:
.ascii "Fibonacci(n):, please enter n:\n\0"
.align 4

.L33:
.ascii "%d\0"
.align 4

.L38:
.ascii "Fibonacci (%d) is %u\n\0"
.ident "acomp: (CDS) SPARCompilers 2.0 05 Jun 1991"

! an idenitfication string produced
! by the compiler to be entered into
! the .comment section

78 SPARC Assembly Language Reference Manual—August 1994

D

79

Index

A
addresses, 25
.alias , 55
.align , 55
as command, 69
.ascii , 55
.asciz , 55
assembler command line, 69
assembler command line options, 70
assembler directives, 28

types, 28
assembly language, 7

lines, 8
statements, 8
syntax notation, 7

assignment directive, 29
atof (3), 9, 56, 59

B
binary operations, 12
.byte , 56

C
case distinction, 8
case distinction, in special symbols, 12

cc language driver, 69
comment lines, 8
comment lines, multiple, 8
.common , 56
constants, 9

decimal, 9
floating-point, 9
hexadecimal, 9
octal numeric, 9

Control Transfer Instructions (CTI), 14
converting existing object files, 31
coprocessor instruction, 49
cp_disabled trap, 49
cp_exception trap, 49
current location, 25
current section, 17

D
-D option, 70
data generating directives, 29
default output file, 15
dis program, 72
disassembling object code, 72
.double , 56

80 SPARC Assembly Language Reference Manual—August 1994

E
.empty , 56
.empty pseudo-operation, 14
error messages, 14
escape codes, in strings, 9
Executable and Linking Format (ELF)

files, 2, 15
expressions, 13

F
f77 language driver, 69
fbe command, 69
features, lexical, 8
.file , 57
file syntax, 7
floating-point instructions, 47
floating-point pseudo-operations, 9

G
.global , 57
.globl , 57

H
.half , 57
hardware instructions

SPARC architecture, 33
hardware integer

assembly language instructions, 36
hyphen (-), 69

I
-I option, 70
.ident , 57
instruction set, used by assembler, 33
instructions

assembly language, 36
hardware integer, 36

integer instructions, 36
integer suffixes, 9

invoking, as command, 69

K
-K option, 70

L
-L option, 70
labeling format, 2
labels, 8
language drivers, 69
lexical features, 8
lines syntax, 8
.local , 58
location counter, 25
locations, 25

M
-m option, 71
multiple comment lines, 8
multiple files, on as command line, 69
multiple sections, 18
multiple strings

in string table, 27

N
.noalias , 58
.noalias pseudo-op , 55
.nonvolatile , 58
numbers, 9
numeric labels, 8

O
-o option, 71
object file format, 2
object files

type, 2, 15
operators, 13
.optim , 58
options

Index 81

command line, 4

P
-P option, 71
percentage sign (%), 11
.popsection , 58
predefined non-user sections, 24
predefined user sections, 22
.proc , 59
pseudo-operations, 55
pseudo-ops, 2, 3

examples of, 65
.pushsection , 59

Q
-Q option, 71
-q option, 71
.quad , 59

R
references, 5
relocatable files, 2, 15
relocation tables, 25
.reserve , 59

S
-S option, 71
-s option, 72
-sb option, 70
.section , 60
section control directives, 28
section control pseudo-ops, 28
section header, 18
sections, 17
.seg , 60
.single , 61
.size , 61
.skip , 61
special floating-point values, 9

special names, floating point values, 9
special symbols, 11
.stabn , 61
.stabs , 61
statement syntax, 8
string tables, 27
strings, 9

multiple in string table, 27
multiple references in string table, 27
suggested style, 9
unreferenced in string table, 27

sub-strings in string table
references to, 27

symbol , 63
symbol attribute directives, 28
symbol names, 10
symbol tables, 25
syntax notation, 7
synthetic instructions, 50

T
-T option, 72
table notation, 33
trap numbers, reserved, 45
.type , 61

U
-U option, 72
.uahalf , 62
.uaword , 62
unary operators, 12
user sections, 28
/usr/include/sys/trap.h , 45

V
-V option, 72
.version , 62
.volatile , 62

82 SPARC Assembly Language Reference Manual—August 1994

W
.weak , 62
.word , 63

X
.xstabs , 63

