
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Writing Device Drivers

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open
Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript
and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks
of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. Overview of the SunOS Kernel . 1

What is the Kernel? . 1

Multithreading . 2

Virtual Memory . 2

Virtual Addresses . 2

Address Spaces . 2

Special Files . 3

Dynamic Loading of Kernel Modules . 3

Overview of the Solaris 2.x DDI/DKI . 3

Device Tree . 5

Example Device Tree . 6

2. Hardware Overview . 9

SPARC Processor Issues . 9

Data Alignment . 9

Structure Member Alignment . 10

iv Writing Device Drivers—August, 1994

Byte Ordering. 10

Register Windows . 10

Floating Point Operations. 11

 Multiply and Divide Instructions . 11

SPARC Architecture Manual . 11

x86 Processor Issues. 11

Data Alignment . 11

Structure Member Alignment . 11

Byte Ordering. 12

Floating Point Operations. 12

x86 Architecture Manuals . 12

System Memory Model . 12

Store Buffers . 12

SPARC Memory Model . 13

Bus Architectures . 14

Device Identification . 14

Device Addressing. 15

Interrupts . 15

Bus Specifics . 16

SBus . 16

VMEbus . 18

x86 Buses. 21

MCA Bus. 24

Device Issues . 24

v

Timing-Critical Sections . 24

Delays . 25

Internal Sequencing Logic . 25

Interrupt Issues . 25

Byte Ordering. 26

The PROM on SPARC Machines . 26

Open Boot PROM 2.x . 27

Reading and Writing . 32

The Sun Monitor . 34

3. Overview of SunOS Device Drivers . 41

What is a Device Driver?. 41

Types of Device Drivers . 42

Block Device Drivers . 42

Standard Character Device Drivers. 42

STREAMS Drivers . 44

Device Issues . 44

Accessing Device Registers . 44

Example Device Registers. 45

Device Register Structure . 46

Driver Interfaces . 48

Entry Points . 48

Callback functions . 51

Interrupt Handling . 52

Driver Context . 52

vi Writing Device Drivers—August, 1994

Printing Messages . 53

Dynamic Memory Allocation . 54

Software State Management . 55

State Structure . 55

State Management Routines. 56

Properties . 57

Driver Layout . 60

Header Files . 60

The C Language and Compiler Modes . 65

Compiler Modes . 66

Function Prototypes . 66

New Keywords . 66

4. Multithreading . 71

Threads . 71

User Threads . 71

Kernel Threads . 72

Multiprocessing Changes Since SunOS 4.x. 73

Locking Primitives. 74

Storage Classes of Driver Data. 74

State Structure . 75

Mutual-Exclusion Locks . 75

Readers/Writer Locks . 77

Semaphores . 77

Thread Synchronization . 77

vii

Condition Variables . 77

cv_timedwait() . 81

cv_wait_sig() . 82

cv_timedwait_sig() . 82

Choosing a Locking Scheme. 83

5. Autoconfiguration. 85

Overview. 85

State Structure . 85

Data Structures. 86

modlinkag e() . 87

modldrv() . 87

dev_ops() . 87

cb_ops . 88

Loadable Driver Interface. 89

Device Configuration . 91

identify() . 91

probe() . 93

attach() . 95

detach() . 100

getinf o() . 102

6. Interrupt Handlers . 105

Overview. 105

Interrupt Specification. 106

Interrupt Number . 106

viii Writing Device Drivers—August, 1994

Bus-Interrupt Levels . 106

High-Level Interrupts . 107

Types of Interrupts. 107

Vectored Interrupts . 107

Polled Interrupts . 108

Software Interrupts . 108

Registering Interrupts . 109

Responsibilities of an Interrupt Handler 111

State Structure . 113

Handling High-Level Interrupts . 113

Example . 114

7. DMA . 119

The DMA Model . 119

Types of Device DMA . 122

DMA and DVMA. 122

Handles, Windows, Segments and Cookies 123

DMA Operations . 124

Device limitations . 126

Object Locking . 131

Allocating DMA Resources . 131

Burst Sizes. 135

Programming the DMA Engine . 136

Freeing the DMA Resources . 137

Cancelling DMA Callbacks. 138

ix

Synchronizing Memory Objects . 140

Cache . 140

ddi_dma_sync() . 142

Allocating Private DMA Buffers . 143

ddi_iopb_alloc() . 143

ddi_mem_alloc() . 144

ddi_dma_devalign() . 145

8. Drivers for Character Devices. 147

Entry Points . 147

Autoconfiguration . 148

Controlling Device Access . 149

I/O Request Handling . 151

User Addresses . 151

Vectored I/O. 152

Driver Operations . 154

Mapping Device Memory . 159

Multiplexing I/O on File Descriptors . 162

Miscellaneous I/O Control . 165

9. Drivers for Block Devices . 169

File I/O . 169

State Structure . 170

Entry Points . 170

Autoconfiguration . 171

Controlling Device Access . 173

x Writing Device Drivers—August, 1994

Data Transfers. 176

strategy() . 176

The buf Structure . 176

Synchronous Data Transfers . 178

Asynchronous Data Transfers . 182

Miscellaneous Entry Points . 186

dump() . 186

print() . 188

10. SCSI Target Drivers . 189

Overview. 189

Reference Documents . 190

Sun Common SCSI Architecture Overview 191

General Flow of Control . 192

SCSA Functions . 194

SCSA Compatibility Functions. 195

SCSI Target Drivers . 195

Hardware Configuration File . 195

Declarations and Data Structures . 196

Autoconfiguration . 199

Resource Allocation. 205

Building and Transporting a Command 208

Building a Command . 208

Transporting a Command. 209

Command Completion . 210

xi

11. Device Context Management . 213

What Is A Device Context? . 213

Context Management Model . 213

Multiprocessor Considerations . 215

Context Management Operation . 216

State Structure . 216

Declarations and Data Structures . 217

Associating Devices with User Mappings 217

Managing Mapping Accesses. 219

Device Context Management Entry Points. 220

12. Loading and Unloading Drivers. 225

Preparing for Installation . 225

Module Naming. 225

Compile and Link the Driver . 226

Write a Hardware Configuration File 226

Installing and Removing Drivers. 227

Copy the Driver to a Module Directory 227

Run add_drv (1M). 227

Removing the Driver . 228

Loading Drivers . 228

Getting the Driver Module’s ID . 228

Unloading Drivers . 229

13. Debugging . 231

Machine Configuration . 231

xii Writing Device Drivers—August, 1994

Setting Up a tip (1) Connection. 231

Preparing for the Worst. 233

Coding Hints . 236

Process Layout . 237

System Support . 237

Conditional Compilation and Variables 239

The Optimizer and volatile . 241

Using Existing Drivers . 241

Debugging Tools . 243

/etc/system . 243

modload and modunload . 244

Saving System Core Dumps . 245

adb and kadb . 246

Example: adb on a Core Dump . 257

Example: kadb on a Deadlocked Thread 260

Testing . 263

Configuration Testing . 263

Functionality Testing. 264

Error Handling. 264

Stress, Performance, and Interoperability Testing 265

DDI/DKI Compliance Testing . 265

Installation and Packaging Testing . 266

Testing Specific Types of Drivers . 266

A. Converting a Device Driver to SunOS 5.4 269

xiii

Before Starting the Conversion . 269

Review Existing Functionality . 269

Read the Manual . 269

ANSI C . 270

Development Environment . 270

DDI/DKI. 270

Things to Avoid . 270

System V Release 4 . 271

Development Tools . 271

Debugging Tools . 272

ANSI C . 272

Header Files . 273

Overview of Changes . 273

Autoconfiguration . 273

/devices . 274

/dev . 275

Multithreading . 275

Locking . 276

Interrupts . 280

DMA . 281

Conversion Notes . 282

SunOS 4.1.x to SunOS 5.4 Differences 287

B. Advanced Topics . 295

Multithreading . 295

xiv Writing Device Drivers—August, 1994

Lock Granularity . 295

Avoiding Unnecessary Locks . 296

Locking Order . 296

Scope of a Lock. 297

Potential Panics . 298

Sun Disk Device Drivers . 299

Disk I/O Controls . 299

Disk Performance . 300

SCSA . 301

Global Data Definitions. 301

Tagged Queueing. 302

Untagged Queueing . 303

Auto-Request-Sense Mode . 303

C. Summary of Solaris 2.4 DDI/DKI Services 307

buf (9S) Handling. 308

Copying Data . 311

Device Access . 312

Device Configuration . 313

Device Information . 314

DMA Handling . 315

Flow of Control . 322

Interrupt Handling . 322

Kernel Statistics . 324

Memory Allocation . 326

xv

Polling . 327

Printing System Messages . 327

Process Signaling . 328

Properties . 329

Register and Memory Mapping . 331

I/O Port Access . 333

SCSI and SCSA . 334

Soft State Management . 341

String Manipulation . 342

System Information . 344

Thread Synchronization . 344

Timing . 349

uio (9S) Handling. 350

Utility Functions . 350

D. Sample Driver Source Code Listings. 355

Index . 357

xvi Writing Device Drivers—August, 1994

xvii

Figures

Figure 1-1 Possible device tree configurations. 5

Figure 1-2 Example device trees. 7

Figure 2-1 Sun-4 architecture VMEbus address spaces 20

Figure 2-2 Sun-4 architecture address mapping . 35

Figure 4-1 Threads and lightweight processes. 72

Figure 4-2 SunOS 4.x kernels on a multiprocessor 73

Figure 4-3 SunOS 5.x on a multiprocessor . 74

Figure 5-1 Autoconfiguration Data Structures. 86

Figure 7-1 The DMA Model . 121

Figure 7-2 Caches . 141

Figure 10-1 SCSA Block Diagram. 191

Figure 11-1 Device context management . 214

Figure 11-2 Device context switched to user process A 215

xviii Writing Device Drivers—August, 1994

xix

Tables

Table 2-1 Physical space in the SPARCstation 1 and SPARCstation 1+. 16

Table 2-2 SPARCstation 1 SBus address bits . 17

Table 2-3 Generic VMEbus (full set) . 18

Table 2-4 Page table types for the Sun-4 . 19

Table 2-5 ISA bus address space. 22

Table 2-6 EISA bus address space . 23

Table 2-7 MCA address space. 24

Table 2-8 SBus physical addresses . 31

Table 2-9 PTE masks. 37

Table 4-1 Mutex routines . 75

Table 4-2 Condition variable routines . 78

Table 5-1 Possible node types . 99

Table 5-2 Example of functions with callbacks that can be cancelled. . . 101

Table 7-1 DMA Resource Allocation Interfaces . 132

Table 8-1 Character Driver Entry Points . 147

Table 9-1 Block Driver Entry Points. 170

xx Writing Device Drivers—August, 1994

Table 10-1 Standard SCSA Functions . 194

Table 10-2 SCSA Compatibility Functions . 195

Table A-1 SunOS 4.1.x and SunOS 5.4 Kernel Support Routines 287

Table B-1 Mandatory Sun Disk I/O Controls . 299

Table B-2 Optional Sun Disk Ioctls. 299

Table B-3 SCSA Options. 301

Table D-1 Sample driver source code listings . 355

xxi

Preface

Writing Device Drivers describes how to develop device drivers for character-
oriented devices, block-oriented devices, and Small Computer System Interface
(SCSI) target devices.

Who Should Read This Book
The audience for this book is UNIX programmers familiar with UNIX device
drivers. Several overview chapters at the beginning of the book provide
background information for the detailed technical chapters that follow, but
they are not intended as a general tutorial or text on device drivers.

How This Book Is Organized
This book discusses the development of a dynamically loadable and
unloadable, multithreaded reentrant device driver applicable to all
architectures that conform to the Solaris 2.x DDI/DKI.

Chapter Overview
• Chapter 1, “Overview of the SunOS Kernel,” provides general background

information about the SunOS kernel and the interfaces provided for device
drivers.

• Chapter 2, “Hardware Overview,” discusses hardware issues related to
device drivers.

xxii Writing Device Drivers—August, 1994

• Chapter 3, “Overview of SunOS Device Drivers,” gives an outline of the
kinds of device drivers and their basic structure.

• Chapter 4, “Multithreading,” describes the mechanisms of the SunOS
multithreaded kernel that are of interest to driver writers.

• Chapter 5, “Autoconfiguration,” describes the support a driver must
provide for autoconfiguration.

• Chapter 6, “Interrupt Handlers,” describes the interrupt handling
mechanisms. These include registering, servicing, and removing interrupts.

• Chapter 7, “DMA,” describes direct memory access (DMA) and the DMA
interfaces.

• Chapter 8, “Drivers for Character Devices,” describes the structure and
functions of a driver for a character-oriented device.

• Chapter 9, “Drivers for Block Devices,” describes the structure and
functions of a driver for a block-oriented device.

• Chapter 10, “SCSI Target Drivers,” outlines the Sun Common SCSI
Architecture and describes the additional requirements of SCSI target
drivers.

• Chapter 11, “Device Context Management” describes the set of interfaces
that allow device drivers to manage the context of user processes accessing
a device.

• Chapter 12, “Loading and Unloading Drivers,” shows the steps for
compiling and linking a driver, and for installing it in the system.

• Chapter 13, “Debugging,” gives coding suggestions, debugging hints, a
simple adb/kadb tutorial, and some hints on testing the driver.

• Appendix A, “Converting a Device Driver to SunOS 5.4,” gives hints on
converting SunOS 4.x drivers to SunOS 5.x.

• Appendix B, “Advanced Topics,” presents a collection of optional topics.

• Appendix C, “Summary of Solaris 2.4 DDI/DKI Services,” summarizes, by
topic, the kernel functions device driver can use.

• Appendix D, “Sample Driver Source Code Listings” displays a list of
sample drivers, and the location of the sample code in the DDK.

xxiii

Related Books
For information about writing STREAMS device drivers and modules, see the
STREAMS Programmer’s Guide. For more detailed reference information about
the device driver interfaces, see sections 9, 9E (entry points), 9F (functions),
and 9S (structures) of the Solaris 2.4 Reference Manual AnswerBook.

Typographic Conventions
The following table describes the meanings of the typefaces used in this book:

Typographic Conventions

Typeface Meaning Example

constant width C language
symbol or UNIX
command

ddi_add_intr()
registers a device
interrupt with the
system.
add_drv adds a
driver to the
system.

italic Placeholder for a
value that the
driver must supply

inumber is the
number of the
interrupt to
register.

italic Book title, a new
word or term, or
an emphasized
word

See chapter 9 of the
STREAMS
Programmer’s
Guide.
A mutual exclusion
lock is...
Any device
interrupts must be
registered with the
system.

xxiv Writing Device Drivers—August, 1994

1

Overview of the SunOS Kernel 1

This chapter provides an overview of the SunOS kernel. It covers concepts of
particular importance to device driver writers, including general kernel
structure and function, kernel and user threads, relevant aspects of the virtual
memory (VM) system, and the Solaris 2.x DDI/DKI.

What is the Kernel?
The SunOS kernel is a program that manages system resources. It insulates
applications from the hardware, and provides them with essential system
services such as input/output (I/O) management, virtual memory and
scheduling. The kernel consists of object modules that are dynamically loaded
into memory when needed. The main part of the kernel is contained in the file
/kernel/unix .

The kernel provides a set of interfaces for applications to use called system calls.
System calls are documented in the Solaris 2.4 Reference Manual AnswerBook (see
Intro (2)). The function of some system calls is to invoke a device driver to
perform I/O.

Device drivers are kernel modules, which normally reside in the hierarchy
/kernel or /usr/kernel . See Chapter 12, “Loading and Unloading
Drivers,” for the details of compiling and installing device drivers.

2 Writing Device Drivers—August, 1994

1

Multithreading
In most UNIX systems, the process is the unit of execution. In SunOS 5.x, a
thread is the unit of execution. A thread is a sequence of instructions executed
within a program. A process consists of one or more threads. There are two
types of threads: application threads, which run in user space, and kernel
threads, which run in kernel space.

The kernel is multithreaded (MT). Many kernel threads can be running kernel
code, and may be doing so concurrently on a multiprocessor (MP) machine.
Kernel threads may also be preempted by other kernel threads at any time.
This is a departure from the traditional UNIX model where only one process
can be running kernel code at any one time, and that process is not
preemptable (though it is interruptible).

The multithreading of the kernel imposes some additional restrictions on the
device drivers. For more information on multithreading considerations, see
Chapter 4, “Multithreading” and Appendix B, “Advanced Topics.”

Virtual Memory
A complete overview of the SunOS virtual memory (VM) system is far beyond
the scope of this book, but two virtual memory terms of special importance are
used when discussing device drivers: virtual addresses and address spaces.

Virtual Addresses

A virtual address is an address that is mapped by the memory management unit
(MMU) to a physical hardware address. All addresses accessed directly by the
driver are kernel virtual addresses; they refer to the kernel address space.

Address Spaces

An address space is a set of virtual address segments, each of which is a
contiguous range of virtual addresses. Each user process has an address space
called the user address space. The kernel has its own address space called the
kernel address space.

Overview of the SunOS Kernel 3

1

Special Files
In UNIX, devices are treated as files. They are represented in the file system by
special files. These files are advertised by the device driver and maintained by
the drvconfig (1M) program. Special files commonly reside in the /devices
directory hierarchy.

Special files may be of type block or character. The type indicates which kind of
device driver operates the device.

Associated with each special file is a device number. This consists of a major
number and a minor number. The major number identifies the device driver
associated with the special file. The minor number is created and used by the
device driver to further identify the special file. Usually, the minor number is
an encoding that identifies the device the driver should access and the type of
access to perform. The minor number, for example, could identify a tape device
requiring backup and also specify whether the tape needs to be rewound when
the backup operation completes.

Dynamic Loading of Kernel Modules
Kernel modules are loaded dynamically as references are made to them. For
example, when a device special file is opened (see open (2)), the corresponding
driver is loaded if it is not already in memory. Device drivers must provide
support for dynamic loading. See Chapter 5, “Autoconfiguration,” for more
details about the loadable module interface.

Overview of the Solaris 2.x DDI/DKI
In System V Release 4 (SVR4), the interface between device drivers and the rest
of the UNIX kernel has been standardized and documented in Section 9 of the
of the Solaris 2.4 Reference Manual AnswerBook. The reference manual
documents driver entry points, driver-callable functions and kernel data
structures used by device drivers. These interfaces, known collectively as the
Solaris 2.x Device Driver Interface/Driver-Kernel Interface (Solaris 2.x
DDI/DKI), are divided into the following subdivisions:

• Device Driver Interface/Driver Kernel Interface (DDI/DKI)

Includes architecture-independent interfaces supported on all
implementations of System V Release 4 (SVR4).

4 Writing Device Drivers—August, 1994

1

• Solaris DDI

Includes architecture-independent interfaces specific to Solaris.

• Solaris SPARC DDI

Includes SPARC Instruction Set Architecture (ISA) interfaces specific to
Solaris.

• Solaris x86 DDI

Includes x86 Instruction Set Architecture (ISA) interfaces specific to Solaris.

• Device Kernel Interface (DKI).

Includes DKI-only architecture-independent interfaces specific to SVR4.
These interfaces may not be supported in future releases of System V. Only
two interfaces belong to this group: segmap(9E) and hat_getkpfnum (9F).

The Solaris 2.x DDI/DKI, like its SVR4 counterpart, is intended to standardize
and document all interfaces between device drivers and the kernel. In addition,
the Solaris 2.x DDI/DKI is designed to allow source compatibility for drivers
on any SunOS 5.x-based machine, regardless of the processor architecture
(such as SPARC or x86). It is also intended to provide binary compatibility for
drivers running on any SunOS 5.x-based processor, regardless of the specific
platform architecture (sun4, sun4c, sun4d, sun4e, Sun4m, i86pc). Drivers using
only kernel facilities that are part of the Solaris 2.x DDI/DKI are known as
Solaris 2.x DDI/DKI-compliant device drivers.

The Solaris 2.x DDI/DKI allows platform-independent device drivers to be
written for SunOS 5.x based machines. These “shrink-wrapped” (binary
compatible) drivers allow third-party hardware and software to be more easily
integrated into SunOS 5.x based machines. The Solaris 2.x DDI/DKI is
designed to be architecture independent and allow the same driver to work
across a diverse set of machine architectures.

Platform independence is accomplished in the design of DDI portions of the
Solaris 2.x DDI/DKI. The following main areas are addressed:

• Interrupt handling.
• Accessing the device space from the kernel or a user process (register

mapping and memory mapping).
• Accessing kernel or user process space from the device (DMA services).
• Managing device properties.

Overview of the SunOS Kernel 5

1

Device Tree

Architectural independence is achieved in the Solaris 2.x DDI/DKI through a
layered approach implemented as a tree structure. Each node in the tree
structure is described by a device-information structure. Standard device
drivers and their devices are associated with leaf nodes. These drivers are
called leaf drivers. Bus drivers are associated with bus nexus nodes and are
called bus nexus drivers. This book documents writing leaf drivers only.
Figure 1-1 illustrates possible device tree configurations.

Figure 1-1 Possible device tree configurations

root node

sbus
bus nexus node

vmebus adapter
bus nexus node

onboard uart
leaf node

xyz device
leaf node root node

vme bus
bus nexus node

onboard uart
leaf node

xyz device
leaf node

6 Writing Device Drivers—August, 1994

1

The topmost node in the device tree is called the root node. The tree structure
creates a parent-child relationship between nodes. This parent-child
relationship is the key to architectural independence. When a leaf or bus nexus
driver requires a service that is architecturally dependent in nature, it requests
its parent to provide the service.

The intermediate nodes in the tree are generally associated with buses, such as
the SBus, SCSI, and EISA busses. These nodes are called bus nexus nodes and
the drivers associated with them are called bus nexus drivers. Bus nexus drivers
encapsulate the architectural dependencies associated with a particular bus.
This manual does not document writing bus nexus drivers.

This approach allows drivers to function regardless of the architecture of the
machine or the processor. In all of the architectural configurations in
Figure 1-1, the xyz driver can be source compatible and it can be binary
compatible if the system uses the same Instruction Set Architecture.

Additionally, in Figure 1-1, the bus nexus driver associated with the SBus-to-
VMEbus adapter card handles all of the architectural dependencies of the
interface. The xyz driver only needs to know that it is connected to a VMEbus.

Example Device Tree

In this example, the system builds a tree structure that contains information
about the devices connected to the machine at boot time. The system uses this
information to build a node for each device and to create a dependency tree.

Overview of the SunOS Kernel 7

1

Figure 1-2 illustrates two device trees that might be created for particular
SPARCstation and x86 machines.

Figure 1-2 Example device trees

Each node is given a name by the kernel internally, which is not necessarily the
same name that applications use.

Associated with each leaf or bus nexus node may be a driver. Each device
driver has associated with it a device operations structure (see dev_ops (9S))
that defines the operations that the device driver can perform. The device

cmtp

mm

isapseudo

i86pc

aha asysmc

cmdk

sd

sbus

Sun 4/60

esp ledma

sd

cgthree

zs zs fd audio

8 Writing Device Drivers—August, 1994

1

operations structure contains function pointers for generic operations such as
identify (9E) and attach (9E). It also contains a pointer to operations specific
to bus nexus drivers and a pointer to operations specific to leaf drivers.

The SPARCstation in Figure 1-2 has several on-board devices and a number of
SBus devices. On-board, it has some serial chips (zs), a floppy drive (fd) and an
audio device. These on-board devices are children of the root node. On the
SBus, it has a frame buffer (cgthree), an ethernet interface (le) and a SCSI host
adapter (esp). These devices are represented as children of the SBus node.
Finally, there are two disk devices (sd) connected to the SCSI host adapter, and
these are represented as leaf nodes on the SCSI host adapter.

The x86 device tree has an ISA bus, which has a network device (smc), an
asynchronous communication device (asy) and a SCSI host adapter (aha). As in
the SPARCstation example, these devices are represented as children of their
physical parent, which in this case is the ISA bus node. The SCSI host adapter
also has two children, a disk (cmdk) and a tape (cmtp).

The x86 device tree also shows the pseudo bus nexus node. This node is the
parent of all pseudo device drivers (drivers without hardware).

The prtconf (1M) and sysdef (1M) commands display the internal device
tree. The /devices hierarchy is the external representation of the device tree;
ls (1) can be used to view it.

9

Hardware Overview 2

This chapter discusses some general issues about the hardware that SunOS 5.x
runs on. This includes issues related to the processor, bus architectures, and
memory models supported by Solaris 2.x, various device issues, and the PROM
used in Sun platforms.

Note – The information presented here is for informational purposes only and
may be of help during driver debugging. However, the Solaris 2.x DDI/DKI
hides many of these implementation details from device drivers.

SPARC Processor Issues
This section describes a number of SPARC processor-specific topics including
data alignment, byte ordering, register windows, and availability of floating
point instructions.

Data Alignment

All quantities must be aligned on their natural boundaries. Using standard C
data types:

• short integers are aligned on 16-bit boundaries.
• long integers are aligned on 32-bit boundaries.
• long long integers are aligned on 64-bit boundaries.

10 Writing Device Drivers—August, 1994

2

Usually, alignment issues are handled by the compiler. Driver writers are more
likely to be concerned about alignment as they must use the proper data types
to access their device. Since device registers are commonly accessed through a
pointer reference, drivers must ensure that pointers are properly aligned when
accessing the device. See “Device Issues” on page 44 for more information
about accessing device registers.

Structure Member Alignment

Because of the data alignment restrictions imposed by the SPARC processor, C
structures also have alignment requirements. Structure alignment requirements
are imposed by the most strictly-aligned structure component. For example, a
structure containing only characters has no alignment restrictions, while a
structure containing a long long member must be constructed to guarantee
that this member falls on a 64-bit boundary. See “Structure Padding” on
page 47 for more information on how this relates to device drivers.

Byte Ordering

The SPARC processor uses big endian byte ordering; in other words, the most
significant byte of an integer is stored at the lowest address of the integer.

Register Windows

SPARC processors use register windows. Each register window is comprised of
8 in registers, 8 local registers, and 8 out registers (which are the in registers of
the next window). There are also 8 global registers. The number of register
windows ranges from 2 to 32 depending on the processor implementation.

Because drivers are normally written in C, the fact that register windows are
used is usually hidden by the compiler. However, it may be necessary to use
them when debugging the driver. See “Debugging Tools” on page 243 for more
information on how register windows are used when debugging. Also see the
SPARC Assembly Language Reference Manual for more information.

Byte 0 Byte 1 Byte 2 Byte 3

MSB LSB

Hardware Overview 11

2

Floating Point Operations

Drivers should not perform floating point operations, since they are not
supported in the kernel.

 Multiply and Divide Instructions

The Version 7 SPARC processors do not have multiply or divide instructions.
These instructions are emulated in software and should be avoided. Since a
driver cannot tell whether it is running on a Version 7 or Version 8 processor,
intensive integer multiplication and division should be avoided if possible.
Instead, use bitwise left and right shifts to multiply and divide by powers of
two.

SPARC Architecture Manual

The SPARC Architecture Manual, Version 8, contains more specific information
on the SPARC CPU.

x86 Processor Issues
This section describes a number of x86 processor-specific topics including data
alignment, byte ordering and floating point instructions.

Data Alignment

There are no alignment restrictions on data types. However, extra memory
cycles may be required for the x86 processor to properly handle misaligned
data transfers.

Structure Member Alignment

See “Structure Padding” on page 47 for more information on how this relates
to device drivers.

12 Writing Device Drivers—August, 1994

2

Byte Ordering

The x86 processor uses little endian byte ordering. The least significant byte of
an integer is stored at the lowest address of the integer.

Floating Point Operations

Drivers should not perform floating point operations, since they are not
supported in the kernel.

x86 Architecture Manuals

Intel Corporation publishes a number of books on the x86 family of processors.

80386 Programmer’s Reference Manual, Intel Corporation, 1986. ISBN 1-55512-
022-9.

i486 Microprocessor Hardware Reference Manual, Intel Corporation, 1990. ISBN 1-
55512-112-8.

Pentium Processor User’s Manual - Volume 3: Architecture and Programming
Manual, Intel corporation, 1993. ISBN 1-55512-195-0.

System Memory Model
This section describes memory model implications for device drivers.

Store Buffers

To improve performance, the system hardware may buffer data written to
device memory. This may affect the synchronization of device I/O operations.
Writes to device registers may pass through several system I/O buffers before
reaching the registers. The driver needs to take explicit steps to make sure that
writes to registers complete at the proper time.

Byte 0 Byte 1 Byte 2 Byte 3

LSB MSB

Hardware Overview 13

2

For example, when acknowledging an interrupt, the driver usually sets or
clears a bit in a device control register. The driver must ensure that the write to
the control register has reached the device before the interrupt handler returns.
Similarly, if the device requires a delay (the driver busy-waits) after writing a
command to the control register, the driver must ensure that the write has
reached the device before delaying.

If the device registers can be read without undesirable side effects, verification
of a write can be as simple as reading the register immediately after writing to
it. If that particular register cannot be read without undesirable side effects,
another device register in the same register set can be used (see
ddi_map_regs (9F)).

If no device register in the set can be read without undesirable side effects, one
of the ddi_poke (9F) routines may be used, as a last resort, to write to the
registers. When these routines return, they guarantee that the write has
reached the device.

Note – Future hardware platform implementations may not permit the
ddi_poke (9F) routines to guarantee that a write has reached a device. Drivers
should avoid the use of ddi_poke (9F) for this purpose whenever possible.

SPARC Memory Model
The SPARC memory model defines the semantics of memory operations such
as load and store and specifies how the order in which these operations are
issued by a processor is related to the order in which they reach memory. The
memory model applies to both uniprocessors and shared-memory
multiprocessors. Two memory models are supported by the SPARC processor:
Total Store Ordering (TSO) and Partial Store Ordering (PSO). All SPARC
processors must support TSO.

TSO guarantees that the store, FLUSH, and atomic load-store instructions of all
processors appear to be executed by memory serially in a single order called
the memory order. Furthermore, the sequence of store, FLUSH, and atomic
load-store instructions in the memory order for a given processor is identical to
the sequence in which they were issued by the processor.

14 Writing Device Drivers—August, 1994

2

Like the TSO memory model, PSO guarantees that the store, FLUSH, and
atomic load-store instructions of all processors appear to be executed by
memory serially in a single order called the memory order. However, the
memory order of store, FLUSH, and atomic load-store instructions for a given
processor is, in general, not the same as the order in which the instructions
were issued by that processor. Conformance between issuing order and memory
order is provided by the STBAR instruction: if two of the above instructions are
separated by an STBAR in the issuing order of a processor, or if they reference
the same location, then the memory order of the two instructions is the same as
the issuing order.

See Chapter 6, Appendix J, and Appendix K of The SPARC Architecture Manual,
Version 8 for more details on the SPARC memory model.

Bus Architectures
This section describes a number of bus-specific topics including device
identification, device addressing, and interrupts.

Device Identification

Device identification is the process of determining which devices are present in
the system.

Self-Identifying Devices

Some devices are self-identifying—the device itself provides information to the
system so that it can identify the device driver that needs to be used. The
device usually provides additional information to the system in the form of
name-value pairs that can be retrieved using the property interfaces. See
“Properties” on page 57 for more information on properties.

SBus devices are examples of self-identifying devices. The information is
usually derived from a small FORTH program stored in the FCode PROM on
the device. See sbus (4) for more information.

Hardware Overview 15

2

Non-Self-Identifying Devices

Devices that do not provide information to the system to identify themselves
are called non-self-identifying devices. Drivers for these devices must have a
probe (9E) routine which determines whether the device is really there. In
addition, information about the device must be provided in a hardware
configuration file (see driver.conf (4)), so that the system can provide
probe (9E) with the information it needs to contact the device. See “probe()”
on page 93 for more information.

VMEbus, ISA, EISA, and MicroChannel devices are examples of non-self-
identifying devices. SCSI target devices and pseudo devices are also non-self-
identifying devices. See vme(4), isa(4) , scsi (4), and pseudo (4) for more
information.

Device Addressing

Device addressing is different on the buses that SunOS currently supports.

The SBus is geographically addressed; each SBus slot exists at a fixed physical
address in the system. An SBus card has a different address depending on
which slot it is plugged into. Moving an SBus device to a new slot causes the
system to treat it as a new device. See “Persistent Instances” on page 93 for
more information.

On other buses, such as the VMEbus, each card has its own address, possibly
configurable by jumpers. A VMEbus card has the same address no matter
which slot it is plugged into. Changing the address of a VME card causes the
system to treat it as a new device.

Interrupts

SunOS supports polling interrupts and vectored interrupts.

The SBus uses polling interrupts. When an SBus device interrupts, the system
only knows which of several devices might have issued the interrupt. The
system interrupt handler must ask the driver for each device whether it is
responsible for the interrupt.

16 Writing Device Drivers—August, 1994

2

The VMEbus uses vectored interrupts. When a VMEbus device interrupts, the
system can identify which device is interrupting and call the correct device
driver directly.

The Solaris 2.x DDI/DKI interrupt model is the same for both types of devices.
See Chapter 6, “Interrupt Handlers,” for more information about interrupt
handling.

Bus Specifics
This section covers addressing and device configuration issues specific to the
buses that SunOS supports.

SBus

Typical SBus systems consist of a motherboard (containing the CPU and SBus
interface logic), a number of SBus devices on the motherboard itself, and a
number of SBus expansion slots. An SBus can also be connected to other types
of buses through an appropriate bus bridge.

Following is a discussion of how the SBus is implemented in the
SPARCstation 1 and SPARCstation 1+.

Physical Address Space

The physical address space layout of the SPARCstation 1 and SPARCstation 1+
is shown in Table 2-1.

Table 2-1 Physical space in the SPARCstation 1 and SPARCstation 1+

Space Range Usage

Main Memory 0x00000000 - 0xEFFFFFFF Main Memory

I/O Devices 0xF0000000 - 0xF7FFFFFF
0xF8000000 - 0xF9FFFFFF
0xFA000000 - 0XFBFFFFFF
0xFC000000 - 0xFDFFFFFF
0xFE000000 - 0xFFFFFFFF

Sun I/O Devices
SBus Slot 0
SBus Slot 1
SBus Slot 2
SBus Slot 3

Hardware Overview 17

2

Physical SBus Addresses

The address bus of the SPARC CPU has 32 bits. The SBus has 28 address bits,
as described in the SBus Specification.

In the SPARCstation 1, the address bits are used as described in Table 2-2:

This addressing scheme yields the SPARCstation 1 and SPARCstation 1+
addresses shown earlier in Table 2-1. Other implementations may use a
different number of address bits.

SBus Slots

SBus systems have several SBus slots. The number of slots is system-specific.

The SPARCstation 1 has four SBus slots, numbered 0 through 3. Slot 0 is
reserved; slots 1, 2 and 3 are available for SBus cards. The slots are used in the
following way:

• Slot 0 is not a physical slot, but refers to the on-board DMA, SCSI, and
Ethernet controllers. For convenience, these are viewed as being plugged
into Slot 0.

• Slots 1 and 2 are physical slots that have DMA-master capability.

• Slot 3 is a slave-only physical slot that does not support boards that operate
as DMA masters.

Table 2-2 SPARCstation 1 SBus address bits

Bits Description

0 - 24 These bits are the SBus address lines used by a SBus card to
address the contents of the card.

25 - 26 Used by the CPU to select one of the SBus slots. These bits
generate the SlaveSelect lines.

27 Used by the CPU to distinguish between SBus devices and
devices resident on the CPU board. A one (1) indicates an SBus
device, and a zero (0) indicates an on-board device.

28 - 31 Not used. For compatibility with Sun-4 architecture
conventions, these bits are assumed to be all ones.

18 Writing Device Drivers—August, 1994

2

On other systems, for example the SPARCstation 10, slot 15 (slot 0xf) is the on-
board slot, and slots 0-3 are available for SBus cards. Slots 4-14 are reserved.

Because some SBus systems (such as the SPARCstation 1) may not allow some
slots to perform DMA, drivers that require DMA capability should use
ddi_slaveonly (9F) to determine if their device is in a DMA-capable slot. For
an example use of this function, see “attach()” on page 95.

Hardware Configuration Files

Hardware configuration files should be unnecessary for SBus devices.
However, on some occasions drivers for SBus devices may need to use
hardware configuration files to augment the information provided by the SBus
card. See driver.conf (4) and sbus (4) for further details.

VMEbus

The VMEbus supports multiple address spaces. An appropriate entry in the
driver.conf (4) file should be made for the address space used by the device
(generally, this is not under control of the driver). For DMA devices, the
address space that the board uses for its DMA transfers must be known by the
driver (this is usually a 32- or 24-bit space).

Address Spaces

Sun-4 architecture machines that use a VMEbus are all based on the full 32-bit
VMEbus. Table 2-3 contains a listing of the VMEbus address types supported
by the generic VMEbus.

Table 2-3 Generic VMEbus (full set)

VMEbus Space
Name

Address
Size

Data Transfer
Size

Physical Address
Range

vme32d16 32 bits 16 bits 0x0 – 0xFFFFFFFF

vme24d16 24 bits 16 bits 0x0 – 0xFFFFFF

vme16d16 16 bits 16 bits 0x0 – 0xFFFF

Hardware Overview 19

2

Not all of these address spaces are commonly used; nevertheless, they are all
supported on Sun-4 architecture systems. Table 2-4 indicates their sizes and
physical address mappings.

The type is a field in the page table entry used by the Sun4 MMU to implement
the virtual memory subsystem. It indicates the type of memory referenced:

• Type 0 - main memory
• Type 1 - on-board I/O
• Type 2 - VMEbus memory, 16 bit data
• Type 3 - VMEbus memory, 32 bit data

Other Sun machines, such as the SPARCServer 600 series, have a different
format for page table entries.

vme32d32 32 bits 32 bits 0x0 – 0xFFFFFFFF

vme24d32 24 bits 32 bits 0x0 – 0xFFFFFF

vme16d32 16 bits 32 bits 0x0 – 0xFFFF

Table 2-4 Page table types for the Sun-4

Type Address Space Name Address Range

0 On-board Memory 0x0 – 0xFFFFFFFF

1 On-board I/O 0x0 – 0xFFFFFF

2 vme32d16 0x0 – 0xFEFFFFFF

3 vme32d32 0x0 – 0xFEFFFFFF

2 vme24d16 —Stolen from top 16M of vme32d16 0x0 - 0xFEFFFF

2 vme16d16 —Stolen from top 64K of vme24d16 0x0 - 0xFFFF

3 vme24d32 —Stolen from top 16M of vme32d32 0x0 - 0xFEFFFF

3 vme16d32 —Stolen from top 64K of vme24d32 0x0 - 0xFFFF

Table 2-3 Generic VMEbus (full set)

VMEbus Space
Name

Address
Size

Data Transfer
Size

Physical Address
Range

20 Writing Device Drivers—August, 1994

2

When a smaller VME space overlays a larger VME space, it steals memory
from the larger space and is considered by the MMU to be part of the larger
address space. There is no way to physically access VMEbus addresses above
0xFF000000 in 32-bit VMEbus space, or above 0x00FF0000 in 24-bit
VMEbus space.

Figure 2-1 illustrates the overlaying of VMEbus address apaces.

Figure 2-1 Sun-4 architecture VMEbus address spaces

Caution – There are restrictions on device addressing. The lower ranges of the
32-bit and 24-bit VME space are reserved for DMA. For example, on the Sun-4
architecture, devices must not be present in the low megabyte of VME address

vme24d32

vme16d16

vme24d16

vme16d32

OnBoard
Memory

OnBoard
I/O

MMUCPU

vme32d32
32 bits

vme32d16
32 bits

24 bits

32 bits

32 bits

2 bits

Type

32

bits

Virtual
Address

(CPU or DVMA)

Physical
Address

Hardware Overview 21

2

space or the system will not boot. In addition, there may be devices on the bus
with addresses that conflict. These can be determined by examining the
hardware configuration files.

Hardware Configuration Files

Most VME devices require hardware configuration files to inform the system
that the device hardware may be present. The configuration file must specify
the device addresses on the VMEbus and any interrupt capabilities that the
device has.

Configuration files for VMEbus devices should identify the parent bus driver
implicitly using the class key word and specifying class “vme.” This removes
the dependency on the name of the particular bus driver involved since the
driver may be named differently on different platforms. See driver.conf (4)
and vme(4) for further details.

x86 Buses

Currently, there are three buses supported on the x86 platform:

• ISA - Industry Standard Architecture

• EISA - Extended Industry Standard Architecture

• MCA - MicroChannel Architecture

22 Writing Device Drivers—August, 1994

2

ISA Bus

Memory and I/O Space

Two address spaces are provided: memory address space and I/O address
space. Depending on the device, registers may appear in one or both of these
address spaces.

Registers can be mapped in memory address space and used by the driver as
normal memory (see “Memory-mapped Access” on page 44).

Registers in I/O space are accessed through I/O port numbers using separate
kernel routines. See “I/O Port Access” on page 45 for more information.

Hardware Configuration Files

ISA bus devices require hardware configuration files to inform the system that
the hardware may be present. The configuration file must specify any device
I/O port addresses, any interrupt capabilities that the device may have, and
any memory-mapped addresses it may occupy.

Configuration files for these devices should normally identify the parent bus
driver as “isa”. However, since the EISA bus is a super set of the ISA bus, all
ISA devices can also be configured to run in the EISA bus slot. In this case,
instead of implicitly specifying a particular parent in the configuration file,
driver writers can use the class key word and specify the class as “sysbus.”
This removes the dependency on the name of a particular bus driver. See
driver.conf (4) and isa (4) for further details.

Table 2-5 ISA bus address space

ISA Space
Name

Address
Size

Data Transfer
Size

Physical Address
Range

Main Memory 24 16 0x0-0xffffff

I/O — 8/16 0x0-0xfff

Hardware Overview 23

2

EISA Bus

Memory and I/O Space

Two address spaces are provided: memory address space and I/O address
space. Depending on the device, registers may appear in one or both of these
address spaces.

Registers can be mapped in memory address space and used by the driver as
normal memory (see “Memory-mapped Access” on page 44).

Registers in I/O space are accessed through I/O port numbers using separate
kernel routines. See “I/O Port Access” on page 45) for more information.

Hardware Configuration Files

EISA bus devices require hardware configuration files to inform the system
that the hardware may be present. The configuration file must specify any
device I/O port addresses, any interrupt capabilities that the device may have,
and any memory-mapped addresses it may occupy.

Configuration files for these devices should normally identify the parent bus
driver as “eisa ”. See driver.conf (4) and eisa (4) for further details.

Table 2-6 EISA bus address space

EISA Space
Name

Address
Size

Data Transfer
Size

Physical Address
Range

Main Memory 32 32 0x0-0xffffffff

I/O — 8/16/32 0x0-0xffff

24 Writing Device Drivers—August, 1994

2

MCA Bus

Memory and I/O Space

Two address spaces are provided: memory address space and I/O address
space. Depending on the device, registers may appear in one or both of these
address spaces.

Registers can be mapped in memory address space and used by the driver as
normal memory (see “Memory-mapped Access” on page 44).

Registers in I/O space are accessed through I/O port numbers using separate
kernel routines. See “I/O Port Access” on page 45) for more information.

Hardware Configuration Files

MCA bus devices require hardware configuration files to inform the system
that the hardware may be present. The configuration file must specify any
device I/O port addresses, any interrupt capabilities that the device may have,
and any memory-mapped addresses it may occupy.

Configuration files for these devices should normally identify the parent bus
driver as “mca”. See driver.conf (4) and mca(4) for further details.

Device Issues

Timing-Critical Sections

While most driver operations can be performed without synchronization and
protection mechanisms beyond those provided by the locking primitives
described in “Locking Primitives” on page 74, some devices require that a
sequence of events happen in order without interruption. In conjunction with

Table 2-7 MCA address space

MCA Space
Name

Address
Size

Data Transfer
Size

Physical Address
Range

Main Memory 32 32 0x0-0xffffffff

I/O — 8/16/32 0x0-0xfff

Hardware Overview 25

2

the locking primitives, the function ddi_enter_critical (9F) asks the
system to guarantee, to the best of its ability, that the current thread will
neither be preempted nor interrupted. This stays in effect until a closing call to
ddi_exit_critical (9F) is made. See ddi_enter_critical (9F) for details.

Delays

Many chips specify that they can be accessed only at specified intervals. For
example, the Zilog Z8530 SCC has a “write recovery time” of 1.6 microseconds.
This means that a delay must be enforced with drv_usecwait (9F) when
writing characters with an 8530. In some instances, it is unclear what delays are
needed; in such cases, they must be determined empirically.

Internal Sequencing Logic

Devices with internal sequencing logic map multiple internal registers to the
same external address. There are various kinds of internal sequencing logic:

• The Intel 8251A and the Signetics 2651 alternate the same external register
between two internal mode registers. Writing to the first internal register is
accomplished by writing to the external register. This write, however, has
the side effect of setting up the sequencing logic in the chip so that the next
read/write operation refers to the second internal register.

• The NEC PD7201 PCC has multiple internal data registers. To write a byte
into a particular register, two steps must be performed. The first step is to
write into register zero the number of the register into which the following
byte of data will go. The data is then written to the specified data register.
The sequencing logic automatically sets up the chip so that the next byte
sent will go into data register zero.

• The AMD 9513 timer has a data pointer register that points at the data
register into which a data byte will go. When sending a byte to the data
register, the pointer is incremented. The current value of the pointer register
cannot be read.

Interrupt Issues

The following are some common interrupt-related issues:

26 Writing Device Drivers—August, 1994

2

• A controller interrupt does not necessarily indicate that both the controller
and one of its slave devices are ready. For some controllers, an interrupt may
indicate that either the controller is ready or one of its devices is ready, but
not both.

• Not all devices power up with interrupts disabled and then start
interrupting only when told to do so.

• Some devices do not provide a way to determine that the board has
generated an interrupt.

• Not all interrupting boards shut off interrupts when told to do so or after a
bus reset.

Byte Ordering

Peripheral devices can contain chips that use a byte-ordering convention
different from that used by the system on which they are installed. The Intel
82586, for example, supports little-endian byte-ordering conventions, making it
compatible with Multibus-based, but not VMEbus-based, machines. Drivers for
such peripheral devices must swap bytes without inadvertently reordering the
bits in any control fields greater than 16 bits in length. See swab(9F) for more
information.

The PROM on SPARC Machines
Some platforms have a PROM monitor that provides support for debugging a
device without an operating system. This section describes how to use the
PROM on SPARC machines to map device registers so that they can be
accessed. Usually, the device can be exercised enough with PROM commands
to determine if the device is working correctly.

Two separate boot PROMs are briefly discussed here: the Open Boot PROM
version 2 (OBP), used on machines with an SBus, and the PROM Monitor
(SunMon) available on Sun-4 machines.

The PROM has several purposes; it serves to:

• Bring the machine up from power on, or from a hard reset (OBP reset
command, or SunMon k2 command).

• Provide an interactive tool for examining and setting memory, device
registers, and memory mappings.

Hardware Overview 27

2

• Boot SunOS or the kernel debugger kadb (1M).

Simply powering up the computer and attempting to use its PROM to examine
device registers will likely fail. While the device may be correctly installed,
those mappings are SunOS specific and do not become active until SunOS is
booted. Upon power up, the PROM maps essential system devices, such as the
keyboard.

Examples in this section use a bwtwo (monochrome) frame buffer on a
SPARCstation IPC. Using PROM commands to modify video memory on this
frame buffer provides a visual indication that something is happening when
PROM commands are executed.

Open Boot PROM 2.x

For complete documentation on the Open Boot PROM, see the Open Boot
PROM Toolkit User’s Guide and monitor (1M). The examples in this section
refer to a Sun-4c; other architectures may require new commands to map
memory, among other things.

The Open Boot PROM is currently used on Sun machines with an SBus. It is
more powerful than the older SunMon (“The Sun Monitor” on page 34). The
Open Boot PROM uses an “ok ” prompt rather than the “>” prompt used by
SunMon. However, many Open Boot PROM machines present the old-style
interface by default. The ‘n’ command switches an OBP from the old mode to
the new mode.

Note – If the PROM is in secure mode (the security-mode parameter is not set
to none) the PROM password may be required (set in the security-
password parameter).

Type b (boot), c (continue), or n (new command mode)
>n
Type help for more information
ok

28 Writing Device Drivers—August, 1994

2

To make the machine come up in new mode by default, set the environment
variable sunmon-compat? to false.

The printenv command displays all parameters and their values.

Help

Help is available with the help command.

History

EMACS-style command-line history is available. Use Control-N (next) and
Control-P (previous) to walk the history list.

Forth Commands

The Open Boot PROM uses the Forth programming language. This is a stack-
based language; arguments must be pushed on the stack before running the
desired command (called a word), and the result is left on the stack.

To place a number on the stack, type its value.

To add the two top values on the stack, use the + operator.

The result is left on the stack. The stack is shown with the .s word.

ok setenv sunmon-compat? false
sunmon-compat? = false

ok 57
ok 68

ok +

ok .s
bf

Hardware Overview 29

2

The default base is hexadecimal. The hex and decimal words can be used to
switch bases.

See the Forth User’s Guide for more information.

Walking the PROMs Device Tree

The SunOS-like commands pwd, cd , and ls walk the PROM device tree to get
to the device. The cd command must be used to establish a position in the tree
before pwd will work. This example is from a SPARCstation IPC.

To see the devices attached to the current node in the tree, use ls .

ok decimal
ok .s
191

ok cd /

ok ls
ffec8760 options
ffec5ce0 fd@1,f7200000
ffebab64 virtual-memory@0,0
ffeba958 memory@0,0
ffeb9084 sbus@1,f8000000
ffeb9020 auxiliary-io@1,f7400003
ffeb8fb8 interrupt-enable@1,f5000000
ffeb8f54 memory-error@1,f4000000
ffeb8ed0 counter-timer@1,f3000000
ffeb8e5c eeprom@1,f2000000
ffeb8de8 audio@1,f7201000
ffeb8cf8 zs@1,f0000000
ffeb8c54 zs@1,f1000000
ffeb8c04 openprom
ffeb7b5c packages

30 Writing Device Drivers—August, 1994

2

The full node name can be used:

Rather than using the full node name in the previous example, you could have
used an abbreviation. The abbreviated command line entry looks like this:

The name is actually device@slot,offset (for SBus devices). The bwtwo device is in
slot 3 and starts at offset 0. If an SBus device shows up in this tree, the device
has been recognized by the PROM.

The .attributes command displays the PROM properties of a device. These
can be examined to determine what properties the device exports (this is useful
later to ensure that the driver is looking for the correct hardware properties).
These are the same properties that can be retrieved with ddi_getprop(9F) .
See sbus(4) and “Properties” on page 57 for related information.

The reg property defines an array of register description structures, containing
the following fields:

u_int bustype; /* cookie for related bus type*/
u_int addr; /* address of reg relative to bus */
u_int size; /* size of this register set */

For the bwtwo example, the address is 0.

ok cd sbus@1,f8000000
ok ls
ffecd450 bwtwo@3,0
ffecc2f0 le@0,c00000
ffec9b38 esp@0,800000
ffec9af4 dma@0,400000

ok cd sbus

ok cd bwtwo
ok .attributes
monitor-sense 00 00 00 03
intr 00 00 00 07 00 00 00 00
reg 00 00 00 03 00 00 00 00 01 00 00 00
device_type display
model SUNW,501-1561
...

Hardware Overview 31

2

Mapping the Device

To test the device, it must be mapped into memory. The PROM can then be
used to verify proper operation of the device by using data-transfer commands
to transfer bytes, words, and long words. If the device can be operated from
the PROM, even in a limited way, the driver should also be able to operate the
device.

To set up the device for initial testing perform the following three steps:

1. Determine the physical address of the SBus slot the device is in. Table 2-8
displays the physical addresses of various SBus slots on a SPARCstation 1
and SPARCstation 1+:

In this example, the bwtwo device is located in slot 3. Consequently, the
physical address space for the device is 0x6000000.

2. Determine the offset within the physical address space used by the device.

The offset used is specific to the device. In the bwtwo example, the video
memory happens to start at offset 0x800000 within the bwtwo space. As a
result, the actual offset to be mapped is 0x6800000.

3. Use the map-sbus word to map the device in.

The map-sbus word takes an offset and a size as arguments to map. Like the
offset, the size of the byte transfer is specific to the device. In the bwtwo
example, the size is set to 20000 bytes.

Table 2-8 SBus physical addresses

SBus Slot Number Physical Address Space

SBus slot #0 0 (internal slot)

SBus slot #1 0x2000000

SBus slot #2 0x4000000

SBus slot #3 0x6000000

32 Writing Device Drivers—August, 1994

2

In the code example below, the offset and size values for the frame buffer are
displayed as arguments to the map-sbus word. Notice that the virtual
address to use is left on top of the stack. The stack is then shown using the .s
word. It can be assigned a name with the constant operation.

Reading and Writing
The PROM provides a variety of 8-bit, 16-bit, and 32-bit operations. In general,
a c (character) prefix indicates an 8-bit (one byte) operation; a w (word) prefix
indicates a 16-bit (two byte) operation; and an L (longword) prefix indicates a
32-bit (four byte) operation.

A suffix of ! is used to indicate a write operation. The write operation takes the
first two items off the stack; the first item is the address, and the second item is
the value.

A suffix of @ is used to indicate a read operation. The read operation takes one
argument (the address) the off the stack. .

A suffix of ? is used to display the value, without affecting the stack.

ok 6800000 20000 map-sbus
ok .s
ffe7f000
ok constant fb

ok 55 ffe8000 c!

ok ffe80000 c@
ok .s
77

ok ffe80000 c?
77

Hardware Overview 33

2

Be careful when trying to query the device. If the mappings are not set up
correctly, trying to read or write could cause errors. There are special words
provided to handle these cases. cprobe , wprobe , and lprobe , for example,
read from the given address but return zero if the location does not respond, or
nonzero if it does.

A region of memory can be shown with the dump word. This takes an address
and a length, and displays the contents of the memory region in bytes.

In the following example the fill word is used to fill video memory with a
pattern. fill takes the address, the number of bytes to fill, and the byte to use
(there is also a wfill and an Lfill for words and longwords). This causes the
bwtwo to display simple patterns based on the byte passed.

Interrupts

Certain machine-specific interrupt levels are ignored when the Open Boot
PROM controls the machine.

ok ffee0000 c@
Data Access Exception
ok ffee0000 cprobe
ok .s
0
ok ffe80000 cprobe
ok .s
0 ffffffff

ok 6800000 20000 map-sbus
ok constant fb
ok fb 20000 ff fill
ok fb 20000 0 fill
ok fb 18000 55 fill
ok fb 15000 3 fill
ok fb 10000 5 fill
ok fb 5000 f9 fill

34 Writing Device Drivers—August, 1994

2

The Sun Monitor

Normally, the Sun Monitor is used on Sun-4 architectures with a VMEbus. For
complete documentation on SunMon, see the PROM User’s Guide.

Mapping the Device

To test the device, it must be mapped into memory. The PROM can then be
used to verify proper operation by using data-transfer commands to transfer
bytes, words, and long words. If the device can be made to operate from the
PROM, even in a limited way, the driver should also be able to operate the
device.

To set up the device for initial testing:

1. Select an appropriate virtual address for the testing of the device.

2. Determine the physical address of the device, as well as the address space
that it occupies.

3. Use the monitor to map the system’s virtual address to the device’s physical
address.

Selecting a Virtual Address
When mapping a virtual address to a physical address, the MMU is actually
mapping to a page of physical memory and an offset within that page. The
low-order bits of a virtual address, those that specify the offset, are not mapped.
See Figure 2-2 on page 35.

The mapping mechanism is essentially the same for all systems, though the
details of the address size and page mapping differ.

Hardware Overview 35

2

Figure 2-2 Sun-4 architecture address mapping

The easiest way to select a virtual address for testing is to use one between
0x4000 and 0x100000. Addresses in this range are unused by the PROM in Sun-
4 architecture machines and are available. Be aware that these addresses, while
convenient for testing, are not those that the kernel chooses when the driver is
finally installed.

It is most convenient to select a virtual address that has only zeros in its low-
order bits. This way, the first address in a virtual page is selected. The low-
order bits in the chosen address remain unchanged. With ‘X’ representing the
unmapped low-order bits (13 on an 8K page Sun-4) the test address 0x4000 is,
in binary:

0000 0000 0000 0000 010X XXXX XXXX XXXX

Finding a Physical Address
The device may be preconfigured to some address. If it is, then that address
should be used unless it conflicts with the address of an already installed
device. If it conflicts, an unused physical address must be found. To do so,
examine the hardware configuration files in /kernel/drv and
/usr/kernel/drv on the test system. See driver.conf(4) for more
information on hardware configuration files and vme(4) for specific
information on configuration files for VMEbus devices.

MMU

Physical
Address

Virtual
Address

Input Output

low

32 bits high 32 bits

13

19
high
19

36 Writing Device Drivers—August, 1994

2

Creating a Page Table Entry
The link between the virtual and physical address is the MMU. The MMU
contains a page table to keep track of which virtual pages map to which
physical pages. Entries in this table are called page table entries (PTE). To
create a mapping, a page table entry must be constructed. On a Sun-4, PTEs are
32-bit numbers with the following structure:

Note – This discussion is for informational and debugging use only. Device
drivers must not manipulate page table entries.

The following is a “template” bit mask that can be used to construct standard
PTEs. An acceptable mask assumes values as follows:

V (valid) = 1
w/s (write ok/supervisor only) = 11
c (don’t cache) = 1
(a/m) accessed/modified = 00
unused = 00000

A one in the don’t cache position only disables caching if the type is zero, since
other types of pages are never cached. Substituting the above values, the
template looks like this:

a mV w s c Physical Page Number (19)Unused

Type

0 01 1 1 1 0 0 0 0 0 Physical Page Number (19)

Type

Hardware Overview 37

2

This results in a mask of 0xF0000000 (assuming that the type field is 00). Thus,
the four masks for the four types of memory are:

To determine the value to be plugged into the PTE, the appropriate mask is
added to the physical page number, resulting in the full 32-bit PTE. Following
are some rules for generating PTEs with the correct template, based on the
address space the device is in and assuming an 8K page size:

If the device is in vme16d16, vme24d16, or vme32d16
 Use Type-2 Template

If the device is in vme16d32, vme24d32, or vme32d16
 Use Type-3 Template

If the device is in vme32d16 or vme32d32
 Physical Page Number = Physical Address >> 13

If the device is in vme24d16 or vme24d32
 Physical Page Number = (Physical Address + 0xFF000000) >> 13

If the device is in vme16d16 or vme16d32
 Physical Page Number = (Physical Address + 0xFFFF0000) >> 13

Example One
A device is attached at physical address 0x280008 in bus type vme24d16, which
will be mapped into virtual memory at address 0xE000000. What is the
corresponding PTE?

Table 2-9 PTE masks

Type Description Mask

0 On Board Memory 0xF0000000

1 On Board I/O Space 0xF4000000

2 vme16d16 0xF8000000

2 vme24d16 0xF8000000

2 vme32d16 0xF8000000

3 vme16d32 0xFC000000

3 vme24d32 0xFC000000

3 vme32d32 0xFC000000

38 Writing Device Drivers—August, 1994

2

Answer: 0xF807F940

Explanation: Because the device is being mapped into vme24d16, 0xF8000000 is
used as the template. Adding the physical address to 0xFF000000 yields
0xFF280008. In binary, this is:

1111 1111 0010 1000 0000 0000 0000 1000

Shifting this right by 13 yields:

XXXX XXXX XXXX X111 1111 1001 0100 0000

Adding the 0xF8000000 template results in values for the 13 bits that are
undefined from the shift. The PTE is:

1111 1000 0000 0111 1111 1001 0100 0000

In hexadecimal, this is 0xF807F940.

The resulting PTE maps the virtual page beginning at 0xE000000 to the
physical page containing 0x280008. To get the virtual address to access the
device, it is necessary to take the lower 13 bits of the physical installation
address—the bits that are just passed through the MMU— and add them to
virtual address 0xE000000. The lower 13 bits of physical address 0x280008 are
0008; adding them to 0xE000000 yields 0xE000008, the virtual address by which
the device can be accessed.

Example Two
A device at physical address 0xEE48 on bus type vme16d32 will be mapped to
virtual address 0xE000000. What is the PTE?

Answer: 0xFC07FFFF

Explanation: Because the device is being mapped into vme16d32, 0xFC000000
is used as the template. Adding the physical address to 0xFFFF0000 yields
0xFFFFEE48. In binary, this is:

1111 1111 1111 1111 1110 1110 0100 1000

Shifting this right by 13 yields:

XXXX XXXX XXXX X111 1111 1111 1111 1111

Adding the 0xFC000000 template results in values for the 13 bits that are
undefined from the shift. The PTE is:

1111 1100 0000 0111 1111 1111 1111 1111

Hardware Overview 39

2

This is 0xFC07FFFF in hexadecimal.

To get the virtual address to access the device at physical address 0xEE48, add
its lower 13 bits, 0xE48, to 0xE000000. This yields 0xE000E48.

Sun 4/110 Considerations
The Sun-4/110 MMU does not store bits 28-31. For the VMEbus, which uses 32
bits of physical addressing, bits 28-31 are generated by sign-extending bit 27.
When the PTE is read back, these upper bits are always set to zero. This
essentially creates a hole in the address space that is not addressable.

When entering page table entries on a Sun-4/110 to test hardware from the
PROM, use a virtual address less than 0x800000. Virtual addresses at or above
0x800000 are not set up by the PROM for use.

When mapping the device to vme16, vme24, or the top half of the vme32
address space, after entering the PTE the top five bits of the physical page
number are zero because the Sun-4/110 physical address space is split with 128
megabytes at the bottom and 128 megabytes at the top. Whenever the physical
address goes above 128 megabytes, the high bit is sign extended so that the
address lies within the top 128 megabytes. Sign extending the high bit into the
next five bits should result in the previously calculated physical page number.

In this example, instead of using 0xE000000 as the starting address, the value
0xE0000 could be used successfully.

Mapping Commands

1. Issue the PROM command that puts the CPU into supervisor data state:

2. Calculate the PTE appropriate to the chosen physical address.

3. Map the virtual address to the device. The PROM p command will do this,
given a virtual address:

> s B

> p F32000

40 Writing Device Drivers—August, 1994

2

This command takes the virtual address 0xF32000 as its argument and
displays the PTE for it. It also displays a ?, which indicates that a new value
may be typed in to replace the one displayed. Note that all virtual addresses
within a page select the same PTE. Type any non-hexadecimal character to
stop.

4. Repeat step 3 for each page to map.

Reading and Writing

The format of the data transfer commands are

command [address] [value]

Valid commands are:

o open a byte
e open a word (4 bytes)
l open a longword (4 bytes)

When using the o, e, or l commands to open a location, the monitor reads the
present contents of that location and displays it before giving the option to
rewrite it. To do the write without the read (because the device does something
else when the read occurs), pass a value after the address argument; this is
known as a blind write.

43

Overview of SunOS Device Drivers 3

This chapter gives an overview of SunOS device drivers. It discusses what a
device driver is and the types of device drivers that SunOS supports. It also
provides a general discussion of the routines that device drivers must
implement and points out compiler-related issues.

What is a Device Driver?
A device driver is a kernel module containing subroutines and data responsible
for managing low-level I/O operations for a particular hardware device.
Device drivers can also be software-only, emulating a device such as a RAM
disk or a pseudo-terminal that only exists in software. Such device drivers are
called pseudo device drivers and cannot perform functions requiring hardware
(such as DMA).

A device driver contains all the device-specific code necessary to communicate
with a device and provides a standard I/O interface to the rest of the system.
This interface protects the kernel from device specifics just as the system call
interface protects application programs from platform specifics. Application
programs and the rest of the kernel need little (if any) device-specific code to
address the device. In this way, device drivers make the system more portable
and easier to maintain.

44 Writing Device Drivers—August, 1994

3

Types of Device Drivers
There are several kinds of device drivers, each handling a different kind of
I/O. Block device drivers manage devices with physically addressable storage
media, such as disks. All other devices are considered character devices. There
are two types of character device drivers: standard character device drivers
and STREAMS device drivers.

Block Device Drivers

Devices that support a file system are known as block devices. Drivers written
for these devices are known as block device drivers. Block device drivers take
a file system request (in the form of a buf (9S) structure) and make the device
transfer the specified block. The main interface to the file system is the
strategy (9E) routine. See Chapter 9, “Drivers for Block Devices” for more
information.

Block device drivers can also provide a character driver interface that allows
utility programs to bypass the file system and access the device directly. This
device access is commonly referred to as the raw interface to a block device.

Standard Character Device Drivers

Character device drivers normally perform I/O in a byte stream. They can also
provide additional interfaces not present in block drivers, such as I/O control
(ioctl (9E)) commands, memory mapping, and device polling. See Chapter 8,
“Drivers for Character Devices” for more information.

Byte-Stream I/O

The main job of any device driver is to perform I/O, and many character
device drivers do what is called bytestream or character I/O. The driver
transfers data to and from the device without using a specific device address.
This is in contrast to block device drivers, where part of the file system request
identifies a specific location on the device.

The read (9E) and write (9E) entry points handle bytestream I/O for standard
character drivers. See “I/O Request Handling” on page 153 for more
information.

Overview of SunOS Device Drivers 45

3

I/O Control

Many devices have characteristics and behaviors that can be configured or
tuned. The ioctl (2) system call and the ioctl (9E) driver entry point provide
a mechanism for application programs to change and determine the status of a
driver’s configurable characteristics. The baud rate of a serial communications
port, for example, is usually configurable in this way.

The I/O control interface is open ended, allowing device drivers to define
special commands for the device. The definition of the commands is entirely
up to the driver and is restricted only by the requirements of the application
programs using the device and the device itself.

Certain classes of devices such as frame buffers or disks must support standard
sets of I/O control requests. These standard I/O control interfaces are
documented in the Solaris 2.4 Reference Manual AnswerBook. For example,
fbio (7) documents the I/O controls that frame buffers must support, and
dkio (7) documents standard disk I/O controls. See “Miscellaneous I/O
Control” on page 165 for more information on I/O control.

Note – The I/O control commands in section 7 are not part of the Solaris 2.x
DDI/DKI.

Memory Mapping

For certain devices, such as frame buffers, it is more efficient for application
programs to have direct access to device memory. Applications can map device
memory into their address spaces using the mmap(2) system call. To support
memory mapping, device drivers implement segmap(9E) and mmap(9E) entry
points. See Chapter 11, “Device Context Management” for details.

Drivers that define an mmap(9E) entry point usually do not define read (9E)
and write (9E) entry points, since application programs perform I/O directly
to the devices after calling mmap(2). See Chapter 11, “Device Context
Management”, for more information on I/O control.

46 Writing Device Drivers—August, 1994

3

Device Polling

The poll (2) system call allows application programs to monitor or poll a set of
file descriptors for certain conditions or events. poll (2) is used to find out
whether data are available to be read from the file descriptors or whether data
may be written to the file descriptors without delay. Drivers referred to by
these file descriptors must provide support for the poll (2) system call by
implementing a chpoll (9E) entry point.

Drivers for communication devices such as serial ports should support polling
since they are used by applications that require synchronous notification of
changes in read and write status. Many communications devices, however, are
better implemented as STREAMS drivers.

STREAMS Drivers

STREAMS is a separate programming model for writing a character device.
Devices that receive data asynchronously (such as terminal and network
devices) are suited to a STREAMS implementation. STREAMS device drivers
must provide the loading and autoconfiguration support described in
Chapter 5, “Autoconfiguration.” See the STREAMS Programmer’s Guide for
additional information on how to write STREAMS drivers.

Device Issues

Accessing Device Registers

There are two common ways of accessing device registers: through memory-
mapping and I/O ports. The preferred method depends on the device; it is not
generally software-configurable. For example, SBus and VMEbus devices do
not provide I/O ports, but some ISA, MCA, and EISA devices may provide
both access methods.

Memory-mapped Access

In memory-mapped access, device registers appear in memory address space
and are treated as normal memory. Just as the driver needs a kernel virtual
address to access physical memory, the driver also needs a virtual address to

Overview of SunOS Device Drivers 47

3

access any device registers. To get a virtual address, the driver must map the
device registers into kernel virtual memory. The Solaris 2.x DDI/DKI provides
this ability with the ddi_map_regs (9F) function.

volatile char *reg_addr;

ddi_map_regs(..., (caddr_t) ®_addr, ...);

Once the registers are successfully mapped, they can be accessed as any other
memory. The following example writes one byte to the first location mapped
(hexadecimal notation is usually used when writing bits):

*reg_addr = 0x10;

I/O Port Access

In I/O port access, the device registers appear in I/O address space. Each
addressable element of the I/O address space is called an I/O port. Device
registers are accessed through I/O port numbers, which are defined by the
hardware. These port numbers can refer to 8, 16, or 32-bit registers. Reading
from a port is accomplished with one of the inb (9F) family of routines. Writing
to a port is performed with an outb (9F) routine.

On x86 systems, device registers are typically accessed through I/O ports.
Large buffers, on the other hand, are accessed using memory mapping.

Example Device Registers

Most of the examples in this manual use a fictitious device that has an 8-bit
command/status register (csr), followed by an 8-bit data register. The
command/status register is so called because writes to it go to an internal
command register, and reads from it are directed to an internal status register.

The command register looks like this:

Clear Interrupt

Start Transfer

Enable Interrupts

48 Writing Device Drivers—August, 1994

3

The status register looks like this:

Many drivers provide macros for the various bits in their registers to make the
code more readable. The examples in this manual use the following names for
the bits in the command register:

#define ENABLE_INTERRUPTS 0x10
#define CLEAR_INTERRUPT 0x08
#define START_TRANSFER 0x04

For the bits in the status register, the following macros are used:

#define INTERRUPTS_ENABLED 0x10
#define INTERRUPTING 0x08
#define DEVICE_BUSY 0x04
#define DEVICE_ERROR 0x02
#define TRANSFER_COMPLETE 0x01

Device Register Structure

Using pointer accesses to communicate with the device results in unreadable
code. For example, the code that reads the data register when a transfer has
completed might look like this:

if (*reg_addr & TRANSFER_COMPLETE) {
data = *(reg_addr + 1); /* read data */

}

To make the code more readable, it is common to define a structure that
matches the layout of the devices registers. In this case, the structure could
look like this:

struct device_reg {
volatile u_char csr;
volatile u_char data;

};

The driver then maps the registers into memory and refers to them through a
pointer to the structure:

Interrupt Pending
Interrupts Enabled

Device Busy

Transfer Complete

Error Occurred

Overview of SunOS Device Drivers 49

3

struct device_reg *regp;

...
ddi_map_regs(..., (caddr_t) ®p, ...);
...

The code that reads the data register upon a completed transfer now looks like
this:

if (regp->csr & TRANSFER_COMPLETE)
data = regp->data;

Structure Padding

A device that has a one-byte command/status register followed by a four-byte
data register might lead to the following structure layout:

struct device_reg {
u_char csr;
u_int data;

};

The above structure is not correct, because the compiler places padding between
the two fields. For example, the SPARC processor requires each type to be on
its natural boundary, which is byte-alignment for the csr field, but four-byte
alignment for the data field. This results in three unused bytes between the
two fields. Using this structure, the driver would be three bytes off when
accessing the data register.

Finding Padding
The ANSI C offsetof (3C) macro may be used in a test program to determine
the offset of each element in the structure. Knowing the offset and the size of
each element, the location and size of any padding can be determined.

Code Example 3-1 Structure padding

#include <sys/types.h>
#include <stdio.h>
#include <stddef.h>

struct device_reg {
u_char csr;
u_int data;

};

50 Writing Device Drivers—August, 1994

3

int main(void)
{

printf("The offset of csr is %d, its size is %d.\n",
offsetof(struct device_reg, csr), sizeof (u_char));

printf("The offset of data is %d, its size is %d.\n",
offsetof(struct device_reg, data), sizeof (u_int));

return (0);
}

Here is a sample compilation with SPARCompilers 2.0.1 and a subsequent run
of the program:

Driver developers should be aware that padding is dependent not only on the
processor but also on the compiler.

Driver Interfaces
The kernel expects device drivers to provide certain routines that must
perform certain operations; these routines are called entry points. This is similar
to the requirement that application programs have a _start () entry point or
that C applications have the more familiar main () routine.

Entry Points

Each device driver defines a standard set of functions called entry points, which
are defined in the Solaris 2.4 Reference Manual AnswerBook. Drivers for different
types of devices have different sets of entry points according to the kinds of
operations the devices perform. A driver for a memory-mapped character-
oriented device, for example, supports an mmap(9E) entry point, while a block
driver does not.

Some operations are common to all drivers, such as the functions that are
required for module loading (_init (9E), _info (9E), and _fini (9E)), and the
required autoconfiguration entry points identify (9E), attach (9E), and
getinfo (9E)). Drivers may also support the optional autoconfiguration entry

test% cc -Xa c.c
test% a.out
The offset of csr is 0, its size is 1.
The offset of data is 4, its size is 4.

Overview of SunOS Device Drivers 51

3

points for probe (E) and detach (9E). All device drivers must support the
entry point getinfo (9E). Most drivers have open (9E) and close (9E) entry
points to control access to their devices. See Chapter 8, “Drivers for Character
Devices,” Chapter 9, “Drivers for Block Devices,” and Chapter 5,
“Autoconfiguration,” for details about these entry points.

Traditionally, all driver function and variable names have some prefix added to
them. Usually, this is the name of the driver, such as xxopen() for the open (9E)
routine of driver xx. In subsequent examples, xx is used as the driver prefix.

Note – In SunOS 5.x, only the loadable module routines must be visible outside
the driver object module. Everything else can have the storage class static .

Loadable Module Routines
int _init(void);

int _info(struct modinfo *modinfop);

int _fini(void);

All drivers must implement the _init (9E), _fini (9E) and _info (9E) entry
points to load, unload and report information about the driver module. The
driver is single-threaded when the kernel calls _init . No other thread will
enter a driver routine until mod_install (9F) returns success.

Any resources global to the device driver should be allocated in _init (9E)
before calling mod_install (9F) and should be released in _fini (9E) after
calling mod_remove (9F).

These routines have kernel context.

Note – Drivers must use these names, and they must not be declared static ,
unlike the other entry points where the names and storage classes are up to the
driver.

Autoconfiguration Routines
static int xxidentify(dev_info_t *dip);

static int xxprobe(dev_info_t *dip);

static int xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd);

52 Writing Device Drivers—August, 1994

3

static int xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd);

static int xxgetinfo(dev_info_t *dip,ddi_info_cmd_t infocmd,
void *arg, void **result);

The driver is single-threaded on a per-device basis when the kernel calls these
routines, with the exception of getinfo (9E). The kernel may be in a
multithreaded state when calling getinfo (9E), which can occur at any time.
No calls to attach (9E) will occur on the same device concurrently. However,
calls to attach (9E) on different devices that the driver handles may occur
concurrently.

Any per-device resources should be allocated in attach (9E) and released in
detach (9E). No resources global to the driver should be allocated in
attach (9E).

These routines have kernel context.

Block Driver Entry Points
int xxopen(dev_t *devp, int flag, int otyp, cred_t *credp);

int xxclose(dev_t dev, int flag, int otyp, cred_t *credp);

int xxstrategy(struct buf *bp);

int xxprint(dev_t dev, char *str);

int xxdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);

int xxprop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
 int mod_flags, char *name, caddr_t valuep,
 int *length);

These routines have kernel context.

Character Driver Entry Points
int xxopen(dev_t *devp, int flag, int otyp, cred_t *credp);

int xxclose(dev_t dev, int flag, int otyp, cred_t *credp);

int xxread(dev_t dev, struct uio *uiop, cred_t *credp);

int xxwrite(dev_t dev, struct uio *uiop, cred_t *credp);

int xxioctl(dev_t dev, int cmd, int arg, int mode,
cred_t *credp, int *rvalp);

int xxmmap(dev_t dev, off_t off, int prot);

Overview of SunOS Device Drivers 53

3

int xxsegmap(dev_t dev, off_t off, struct as *asp,
caddr_t *addrp, off_t len, unsigned int prot,
unsigned int maxprot, unsigned int flags,
cred_t *credp);

int xxchpoll(dev_t dev, short events, int anyyet,
short *reventsp, struct pollhead **phpp);

int xxprop_op(dev_t dev, dev_info_t *dip,
ddi_prop_op_t prop_op, int mod_flags,
char *name, caddr_t valuep, int *length);

With the exception of prop_op (9E), all these routines have user context.
prop_op (9E) has kernel context.

Callback functions
Some routines provide a callback mechanism. This is a way to schedule a
function to be called when a condition is met. Typical conditions for which
callback functions are set up include:

• When a transfer has completed

• When a resource might become available

• When a timeout period has expired

Transfer completion callbacks perform the tasks usually done in an interrupt
service routine.

In some sense, callback functions are similar to entry points. The functions that
allow callbacks expect the callback function do to certain things. In the case of
DMA routines, a callback function must return a value indicating whether the
callback function wants to be rescheduled in case of a failure.

Callback functions execute as a separate thread. They must consider all the
usual multithreading issues.

Note – All scheduled callback functions must be canceled before a device is
detached.

54 Writing Device Drivers—August, 1994

3

Interrupt Handling
The Solaris 2.x DDI/DKI addresses these aspects of device interrupt handling:

• Registering device interrupts with the system

• Removing device interrupts from the system

Interrupt information is contained in a property called interrupts (or intr on x86
platforms, see isa (4)), which is either provided by the PROM of a self-
identifying device or in a hardware configuration file. See sbus (4), vme(4),
and“Properties” on page 59 for more information.

Since the internal implementation of interrupts is an architectural detail,
special interrupt cookies are used to allow drivers to perform interrupt-related
tasks. The types of cookies for interrupts are:

• Device interrupt cookies

• Block interrupt cookies

Device-Interrupt Cookies

Defined as type ddi_idevice_cookie_t , this cookie is a data structure
containing information used by a driver to program the interrupt-request level
(or the equivalent) for a programmable device. See ddi_add_intr (9F) and
“Registering Interrupts” on page 99 for more information.

Interrupt-Block Cookies

Defined as type ddi_iblock_cookie_t this cookie is used by a driver to
initialize the mutual exclusion locks it uses to protect data. This cookie should
not be interpreted by the driver in any way.

Driver Context
There are four contexts in which driver code executes:

• user
• kernel
• interrupt
• high-level interrupt

Overview of SunOS Device Drivers 55

3

The following sections point out the context in which driver code can execute.
The driver context determines which kernel routines the driver is permitted to
call. For example, in kernel context the driver must not call copyin (9F). The
manual pages in section 9F document the allowable contexts for each function.

User Context
A driver entry point has user context if it was directly invoked because of a user
thread. The read (9E) entry point of the driver, invoked by a read (2) system
call, has user context.

Kernel Context
A driver function has kernel context if was invoked by some other part of the
kernel. In a block device driver, the strategy (9E) entry point may be called
by the pageout daemon to write pages to the device. Since the page daemon
has no relation to the current user thread, strategy (9E) has kernel context in
this case.

Interrupt Context
Interrupt context is a more restrictive form of kernel context. Driver interrupt
routines operate in interrupt context and have an interrupt level associated
with them. See Chapter 6, “Interrupt Handlers” for more information.

High-level Interrupt Context
High-level interrupt context is a more restricted form of interrupt context. If
ddi_intr_hilevel (9F) indicates that an interrupt is high-level, driver
interrupt routines added for that interrupt with ddi_add_intr (9F) run in
high-level interrupt context. See “Handling High-Level Interrupts” on
page 113 for more information.

Printing Messages
Device drivers do not usually print messages. Instead, the entry points should
return error codes so that the application can determine how to handle the
error. If the driver really needs to print a message, it can use cmn_err (9F) to
do so. This is similar to the C function printf (3S), but only prints to the
console, to the message buffer displayed by dmesg(1M), or both.

56 Writing Device Drivers—August, 1994

3

void cmn_err(int level, char *format, ...);

format is similar to the printf (3S) format string, with the addition of the
format %b which prints bit fields. level indicates what label will be printed:

CE_NOTE NOTICE: format\n
CE_WARN WARNING:format\n
CE_CONT format
CE_PANIC panic: format\n

CE_PANIC has the side-effect of crashing the system. This level should only be
used if the system is in such an unstable state that to continue would cause
more problems. It can also be used to get a system core dump when
debugging.

The first character of the format string is treated specially. See cmn_err (9F) for
more detail.

Dynamic Memory Allocation
Device drivers must be prepared to simultaneously handle all attached devices
that they claim to drive. There should be no driver limit on the number of
devices that the driver handles, and all per-device information must be
dynamically allocated.

void *kmem_alloc(size_t size, int flag);

The standard kernel memory allocation routine is kmem_alloc (9F). It is
similar to the C library routine malloc (3C), with the addition of the flag
argument. The flag argument can be either KM_SLEEP or KM_NOSLEEP,
indicating whether the caller is willing to block if the requested size is not
available. If KM_NOSLEEP is set, and memory is not available, kmem_alloc (9F)
returns NULL.

kmem_zalloc (9F) is similar to kmem_alloc (9F), but also clears the contents of
the allocated memory.

Note – Kernel memory is a limited resource, not pageable, and competes with
user applications and the rest of the kernel for physical memory. Drivers that
allocate a large amount of kernel memory may cause application performance
to degrade.

Overview of SunOS Device Drivers 57

3

void kmem_free(void *cp, size_t size);

Memory allocated by kmem_alloc (9F) or by kmem_zallo c(9F) is returned to
the system with kmem_free (9F). This is similar to the C library routine
free (3C), with the addition of the size argument. Drivers must keep track of
the size of each object they allocate in order to call kmem_free (9F) later.

Software State Management

State Structure

For each device that the driver handles, the driver must keep some state
information. At the minimum, this consists of a pointer to the dev_info node
for the device (required by getinfo (9E)). The driver can define a structure
that contains all the information needed about a single device:

struct xxstate {
dev_info_t *dip;

};

This structure will grow as the device driver evolves. Additional useful fields
might be:

• A pointer to each of the devices mapped registers

• Flags (such as busy)

The initial state structure the examples in this book use is given in
Code Example 3-2:

Code Example 3-2 Initial State Structure

struct xxstate {
dev_info_t *dip;
struct device_reg *regp;

};

Subsequent chapters may require new fields. Each chapter will list any
additions to the state structure.

58 Writing Device Drivers—August, 1994

3

State Management Routines

To assist device driver writers in allocating state structures, the Solaris 2.x
DDI/DKI provides a set of memory management routines called the software
state routines (also known as the soft state routines). These routines dynamically
allocate, retrieve, and destroy memory items of a specified size, and hide all
the details of list management in a multithreaded kernel. An item number is
used to identify the desired memory item; this can be (and usually is) the
instance number assigned by the system.

The driver must provide a state pointer, which is used by the soft state system
to create the list of memory items:

static void *statep;

Routines are provided to:

• Initialize the provided state pointer - ddi_soft_state_init (9F)

• Allocate space for a certain item - ddi_soft_state_zalloc (9F)

• Retrieve a pointer to the indicated item - ddi_get_soft_state (9F)

• Free the memory item - ddi_soft_state_free (9F)

• Finish using the state pointer - ddi_soft_state_fini (9F)

When the module is loaded, the driver calls ddi_soft_state_init (9F) to
initialize the driver state pointer, passing a hint indicating how many items to
pre-allocate. If more items are needed, they will be allocated as necessary. The
driver must call ddi_soft_state_fini (9F) when the driver is unloaded.

To allocate an instance of the soft state structure, the driver calls
ddi_soft_state_zalloc (9F), then ddi_get_soft_state (9F) to retrieve a
pointer to the allocated structure. This is usually performed when the device is
attached, and the inverse operation, ddi_soft_state_free (9F), is
performed when the device is detached.

Once the item is allocated, the driver only needs to call
ddi_get_soft_state (9F) to retrieve the pointer.

See “Loadable Driver Interface” on page 89 for an example use of these
routines.

Overview of SunOS Device Drivers 59

3

Properties
Properties define arbitrary characteristics of the device or device driver.
Properties may be defined by the FCode of a self-identifying device, by a
hardware configuration file (see driver.conf (4)), or by the driver itself using
ddi_prop_create (9F).

A property is a name-value pair. The name is a string that identifies the
property, and the value is an array of bytes. Examples of properties are the
height and width of a frame buffer, or the number of blocks in a partition of a
block device. The value of a property may be one of three types:

• A boolean property, which has no length; it either exists or does not exist.

• An integer property, which has length four and has an integer value

• A long property, which has an arbitrary length, and whose value is a series
of bytes

Note – Strictly speaking, ddi software property names are not restricted in any
way; however, there are certain recommended uses. As defined in IEEE 1275-
1994, (the Standard for Boot Firmware) a property "is a human readable text
string consisting of one to thirty-one printable characters. Property names shall
not contain upper case characters or the characters "/", "\", ":", "[", "]" and "@".
Property names beginning with the character "+" are reserved for use by future
revisions of IEEE 1275-1994." By convention, underscores are not used in
property names; use a hyphen (-) instead. Also by convention, property names
ending with the question mark character (auto-boot?) contain values that
are strings, typically true or false.

A driver can request a property from its parent, which in turn may ask its
parent. The driver can control whether the request can go higher than its
parent.

60 Writing Device Drivers—August, 1994

3

For example, the “esp” driver maintains an integer-sized property called
target X-sync-speed. The prtconf (1M) command in its verbose mode
displays driver properties. The following example shows a partial listing for
the “esp” driver:

 The property interface can be used to:

• Create a property with ddi_prop_create (9F). This usually is performed in
attach (9E).

• Retrieve a property with ddi_prop_op (9F), or one of the following more
specific routines:
• ddi_getproplen (9F) to retrieve the length of a property
• ddi_getprop (9F) for boolean and integer properties
• ddi_getlongprop (9F) and ddi_getlongprop_buf (9F) for other

property sizes

• ddi_prop_modify (9F) – Change the value of a property

• ddi_prop_undefine (9F) - Explicitly undefine, but not remove, a property

• ddi_prop_remove (9F) – Remove a property.

• ddi_prop_remove_all (9F) - Remove all properties associated with a
device.

prop_op()

To report the values of device properties to the system, drivers must fill in the
entry point in the cb_ops (9S) structure with their own prop_op (9E) entry
point or the ddi_prop_op (9F) routine. A prop_op (9E) routine is only
necessary if more control is needed over property management. For example, if
the value of a property changes frequently, it may be more efficient for the
driver to maintain it locally, updating a variable representing the property

test% prtconf -v
...
 esp, instance #0
 Driver software properties:
 name <target2-sync-speed> length <4>
 value <0x00000fa0>.
...

Overview of SunOS Device Drivers 61

3

value whenever it changes. If a caller requests the value of the property, the
driver’s prop_op (9E) modifies the property using ddi_prop_modify (9F) and
then calls ddi_prop_op (9F) to retrieve it.

Providing a prop_op (9E) entry point does not mean that the driver must
manage all properties locally. If a property is modified dynamically, it should
be maintained by the driver in prop_op (9E). If a property is static (set only
once), it is easier for the driver to use ddi_prop_create (9F) to create it and
allow ddi_prop_op (9F) to retrieve it. The prop_op (9E) entry point would just
intercept some property requests and pass all others to ddi_prop_op (9F).
Here is the prop_op (9E) prototype:

int xxprop_op(dev_t dev, dev_info_t *dip,
ddi_prop_op_t prop_op, int flags, char *name,
caddr_t valuep, int *lengthp);

This section describes a simple implementation of the prop_op (9E) routine
that intercepts property requests then uses the existing software property
routines to update property values. For a complete description of all the
parameters to prop_op (9E), see the manual page.

In Code Example 3-3, the prop_op (9E) intercepts requests for the nblocks
property. The driver updates a variable in the state structure whenever the
property changes but only updates the property when a request is made. It
then uses the system routine ddi_prop_op (9F) to get the new value. If the
property request is not specific to a device, the driver does not intercept the
request. This is indicated when the value of the dev parameter is equal to
DDI_DEV_T_ANY (the wildcard device number).

State Structure
This section adds the following field to the state structure. See “State Structure”
on page 57 for more information.

int nblocks; /* number of blocks in block device */

Code Example 3-3 prop_op (9E) routine

static int
xxprop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp)
{

int instance;
struct xxstate *xsp;

62 Writing Device Drivers—August, 1994

3

if (dev == DDI_DEV_T_ANY)
goto skip;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (DDI_PROP_NOTFOUND);

if (strcmp(name, "nblocks") == 0) {
ddi_prop_modify(dev, dip, “nblocks”, flags,

&xsp->nblocks, sizeof(int));
}
other cases

skip:
return (ddi_prop_op(dev, dip, prop_op, flags, name,

valuep, lengthp));
}

Driver Layout
This section suggests a structure for device drivers. The following sections
describe the example driver layout in detail.

The code for a device driver is usually divided into the following files:

• headers (.h files)

• source files (.c files)

• possibly a configuration file (.conf file)

Note – This is a suggested layout only. It is not required, as only the final object
module matters to the system.

Header Files

Header files define data structures specific to the device (such as a structure
representing the device registers), data structures defined by the driver for
maintaining state information, defined constants (such as those representing
the bits of the device registers), and macros (such as those defining the static
mapping between the minor device number and the instance number).

Overview of SunOS Device Drivers 63

3

Some of this information, such as the state structure, may only be needed by
the device driver. This information should go in private headers. These header
files are only included by the device driver itself.

Any information that an application might require, such as the I/O control
commands, should be in public header files. These are included by the driver
and any applications that need information about the device.

There is no standard for naming private and public files. One possible
convention is to name the private header file xximpl.h and the public header
file xxio.h . Code Example 3-4, and Code Example 3-5 show the layout of
these headers.

Code Example 3-4 xximpl.h Header File

/*
 * xximpl.h
 */

struct device_reg {
 /* fields... */

};

/*
 * #define bits of the device registers...
 */

struct xxstate {
/* fields */

};

/*
 * related #define statements
 */

Code Example 3-5 xxio.h Header File

/*
 * xxio.h
 */

struct xxioctlreq {
/* fields */

};

/*
 * etc.
 */

64 Writing Device Drivers—August, 1994

3

#define XXIOC (‘b’ << 8)
#define XXIOCTL_1 (XXIOC | 1) /* description */
#define XXIOCTL_2 (XXIOC | 2) /* description */

xx.c Files

A.c file for a device driver contains the data declarations and the code for the
entry points of the driver. It contains the #include statements the driver
needs, declares extern references, declares local data, sets up the cb_ops and
dev_ops structures, declares and initializes the module configuration section,
makes any other necessary declarations, and defines the driver entry points.
The following sections describe these driver components. Code Example 3-6
shows the layout of an xx.c file:

Code Example 3-6 xx.c File

/*
 * xx.c
 */

#include "xximpl.h"
#include "xxio.h"
#include <sys/ddi.h> /* must include these two files */
#include <sys/sunddi.h> /* and they must be the last system */

/* includes */

/*
 * Forward declaration of entry points
 */

/*
 * static declarations of cb_ops entry point functions...
 */
static struct cb_ops xx_cb_ops = {

/*
 * set cb_ops fields
 */

};

/*
 * static declarations of dev_ops entry point functions...
 */
static struct dev_ops xx_ops = {

/*

Overview of SunOS Device Drivers 65

3

 * set dev_ops fields
 */

};

/*
 * declare and initialize the module configuration section...
 */
static struct modldrv modldrv = {

/*
 * set modldrv fields
 */

};

static struct modlinkage modlinkage = {
/*
 * set modlinkage fields
 */

};

int
_init(void)
{

/* definition */
}

int
_info(struct modinfo *modinfop)
{

/* definition */
}

int
_fini(void)
{

/* definition */
}

static int
xxidentify(dev_info_t *dip)
{

/* definition */
}

static int
xxprobe(dev_info_t *dip)
{

/* definition */
}

66 Writing Device Drivers—August, 1994

3

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

/* definition */
}

static int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

/* definition */
}

static int
xxgetinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,
 void **result)
{

/* definition */
}

static int
xxopen(dev_t *devp, int flag, int otyp, cred_t *credp)
{

/* definition */
}

static int
xxclose(dev_t dev, int flag, int otyp, cred_t *credp)
{

/* definition */
}

static int
xxstrategy(struct buf *bp)
{

/* definition */
}

/* for character-oriented devices
 */
static int
xxread(dev_t dev, struct uio *uiop, cred_t *credp)
{

/* definition */
}

static int
xxwrite(dev_t dev, struct uio *uiop, cred_t *credp)
{

/* definition */
}

Overview of SunOS Device Drivers 67

3

static int
xxioctl(dev_t dev, int cmd, int arg, int mode, cred_t *credp,
 int *rvalp)
{

/* definition */
}

/*
 * for memory-mapped character-oriented devices
 */
static int
xxmmap(dev_t dev, off_t off, int prot)
{

/* definition */
}

/*
 * for support of the poll(2) system call
 */
static int
xxchpoll(dev_t dev, short events, int anyyet, short *reventsp,
 struct pollhead **phpp)
{

/* definition */
}

/*
 * for drivers needing a xxprop_op routine
 */
static int
xxprop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
 int mod_flags, char *name, caddr_t valuep, int *lengthp)
{

/* definition */
}

/*
 * other driver routines, such as xxintr()
 */

The C Language and Compiler Modes
The SPARCworks 2.0.1 and ProWorks 2.0.1 C compilers are ANSI C compilers.
They support several compilation modes, a number of new keywords and
function prototypes.

68 Writing Device Drivers—August, 1994

3

Compiler Modes

The following compiler modes are of interest to driver writers:

-Xt (Transition Mode)

This mode accepts ANSI C and Sun C compatibility extensions. In case of a
conflict between ANSI and Sun C, a warning is issued and Sun C semantics are
used. This is the default mode.

-Xa (ANSI C Mode)

This mode accepts ANSI C and Sun C compatibility extensions. In case of a
conflict between ANSI and Sun C, the compiler issues a warning and uses
ANSI C interpretations. This will be the default mode in the future.

Function Prototypes

Function prototypes specify the following information to the compiler:

• The type returned by the function
• The number of the arguments to the function
• The type of each argument

This allows the compiler to do more type checking and also to promote the
types of the parameters to the type expected by the function. For example, if
the compiler knows a function takes a pointer, casting NULL to that pointer
type is no longer necessary. Prototypes are provided for most Solaris 2.x
DDI/DKI functions, provided the driver includes the proper header file
(documented in the manual page for the function).

New Keywords

There are a few new keywords available in ANSI C. The following keywords
are of interest to driver writers:

const

The const keyword can be used to define constants instead of using #define :

Overview of SunOS Device Drivers 69

3

const int count=5;

However, it is most useful when combined with function prototypes. Routines
that should not be modifying parameters can define the parameters as
constants, and the compiler will then give errors if the parameter is modified.
Since C passes parameters by value, most parameters don’t need to be declared
as constants. If the parameter is a pointer, though, it can be declared to point to
a constant object:

int strlen(const char *s)
{

...
}

Any attempt to change the string by strlen () is an error, and the compiler
will now catch it.

volatile

The correct use of volatile is necessary to prevent elusive bugs. It instructs
the compiler to use exact semantics for the declared objects—in particular, do
not optimize away or reorder accesses to the object. There are two instances
where device drivers must use the volatile qualifier:

1. When data refers to an external hardware device register (memory that has
side effects other than just storage)

2. When data refers to global memory that is accessible by more than one
thread, is not protected by locks, and therefore is relying on the sequencing
of memory accesses

In general, drivers should not qualify a variable as volatile if it is merely
accessible by more than one thread and protected from conflicting access by
synchronization routines.

The following is an example of the first use. There are two writes to a device
required to begin a transfer:

struct device_reg *regp;

regp->csr = ENABLE_INTERRUPTS;
regp->csr = START_TRANSFER;

70 Writing Device Drivers—August, 1994

3

A highly optimizing compiler may determine that the value of regp->csr is
not used between the first and the second assignment, and could remove the
first assignment. Such a compiler might also determine that reordering the
instructions would provide better performance, causing the device to be
programmed in the incorrect order. If the csr field is declared volatile, it is not
allowed to do so.

Following is an example of the second use of volatile. A busy flag is used to
prevent a thread from continuing while the device is busy and the flag is not
protected by a lock:

while (busy) {
do something else

}

The testing thread will continue when another thread turns off the busy flag:

busy = 0;

However, since busy is accessed frequently in the testing thread, the compiler
may optimize the test by placing the value of busy in a register, then test the
contents of the register without reading the value of busy in memory before
every test. The testing thread would never see busy change and the other
thread would only change the value of busy in memory, resulting in deadlock.
The busy flag should be declared volatile, forcing its value to be read before
each test.

Note – It would probably be preferable to use a condition variable mutex,
discussed under “Condition Variables” on page 79 instead of the busy flag in
this example.

It is also recommended that the volatile qualifier be used in such a way as
to avoid the risk of accidental omission. For example, this code

struct device_reg {
volatile u_char csr;
volatile u_char data;

};
struct device_reg *regp;

is recommended over:

Overview of SunOS Device Drivers 71

3

struct device_reg {
u_char csr;
u_char data;

};
volatile struct device_reg *regp;

Although the two examples are functionally equivalent, the second one
requires the writer to ensure that volatile is used in every declaration of
type struct device_reg . The first example results in the data being treated
as volatile in all declarations and is therefore preferred.

72 Writing Device Drivers—August, 1994

3

73

Multithreading 4

This chapter describes the locking primitives and thread synchronization
mechanisms of the SunOS multithreaded kernel.

Threads
A thread of control, or thread, is a sequence of instructions executed within a
program. A thread can share data and code with other threads and can run
concurrently with other threads. There are two kinds of threads: user threads and
kernel threads. See Multithreaded Programming Guide for more information on
threads.

User Threads

Each process in the SunOS operating system has an address space that contains
one or more lightweight processes (LWPs), each of which in turn runs one or
more user threads. Figure 4-1 shows the relationship between threads, LWPs
and processes. An LWP schedules its user threads and runs one user thread at
a time, though multiple LWPs may run concurrently. User threads are handled
in user space.

The LWP is the interface between user threads and the kernel. The LWP can be
thought of as virtual CPU that schedules user thread execution. When a user
thread issues a system call, the LWP running the thread calls into the kernel
and remains bound to the thread at least until the system call completes. When

74 Writing Device Drivers—August, 1994

4

an LWP is running in the kernel, executing a system call on behalf of a user
thread, it runs one kernel thread. Each LWP is therefore associated with exactly
one kernel thread.

Kernel Threads

There are two types of kernel threads: those bound to an LWP and those not
associated with an LWP. Threads not associated with LWPs are system threads,
such as those created to handle hardware interrupts. For those threads bound
to an LWP, there is one and only one kernel thread per LWP. On a
multiprocessor system, several kernel threads can run simultaneously. Even on
uniprocessors, running kernel threads can be preempted at any time to run
other threads. Drivers are mainly concerned with kernel threads as most device
driver routines run as kernel threads. Figure 4-1 illustrates the relationship
between threads and lightweight processes.

Figure 4-1 Threads and lightweight processes

User
Threads

Kernel

Kernel
Threads

Hardware

Threads LWP CPU

Process 1 Process 2 Process 3 Process 4

Multithreading 75

4

A multithreaded kernel requires programmers to consider two issues: locking
primitives and thread synchronization.

Multiprocessing Changes Since SunOS 4.x
Here is a simplified view of how the earlier releases of the SunOS kernel ran on
multiprocessors; only one processor could run kernel code at any one time, and
this was enforced by using a master lock around the entire kernel. When a
processor wanted to execute kernel code, it acquired the master lock, blocking
other processors from accessing kernel code. It released the lock on exiting the
kernel.

Figure 4-2 SunOS 4.x kernels on a multiprocessor

In Figure 4-2 CPU1 executes kernel code. All other processors are locked out of
the kernel; the other processors could, however, run user code.

In SunOS 5.x, instead of one master lock, there are many locks that protect
smaller regions of code or data. In the example shown in Figure 4-3, there is a
kernel lock that controls access to data structure A, and another that controls

User

Kernel

User

Kernel

User

Kernel

User

Kernel

CPU0 CPU1 CPU2 CPU3

CPU 1
Acquire master_lock;

Release master_lock;
Run code;

76 Writing Device Drivers—August, 1994

4

access to data structure B. Using these locks, only one processor at a time can
be executing code dealing with data structure A, but another could be
accessing data within structure B. This allows a greater degree of concurrency.

Figure 4-3 SunOS 5.x on a multiprocessor

In Figure 4-3 CPU1 and CPU3 are executing kernel code simultaneously.

Locking Primitives
In traditional UNIX systems, any section of kernel code runs until it explicitly
gives up the processor by calling sleep() or is interrupted by hardware. This
is not true in SunOS 5.x! A kernel thread can be preempted at any time to run
another thread. Since all kernel threads share kernel address space, and often
need to read and modify the same data, the kernel provides a number of
locking primitives to prevent threads from corrupting shared data. These
mechanisms include mutual exclusion locks, readers/writer locks and semaphores.

Storage Classes of Driver Data

The storage class of data is a guide to whether the driver may need to take
explicit steps to control access to the data.

Automatic (Stack) Data

Since every thread has a private stack, drivers never need to lock automatic
variables.

User

Kernel

User

Kernel

User

Kernel

User

Kernel

CPU0 CPU1 CPU2 CPU3

CPU 1 CPU 3
Acquire lock_A;

Modify A;
Release lock_A;

Acquire lock_B;
Modify B;

Release lock_B;

Multithreading 77

4

Global and Static Data

Global and static data can be shared by any number of threads in the driver;
the driver may need to lock this type of data at times.

Kernel Heap Data

Kernel heap data, such as data allocated by kmem_alloc (9F), may be shared
by any number of threads in the driver. If this data is shared, the driver may
need to protect it at times.

State Structure

This section adds the following field to the state structure. See “State Structure”
on page 57 for more information.

int busy; /* device busy flag */
kmutex_t mu; /* mutex to protect state structure */
kcondvar_t cv; /* threads wait for access here */

Mutual-Exclusion Locks

A mutual-exclusion lock, or mutex, is usually associated with a set of data and
regulates access to that data. Mutexes provide a way to allow only one thread
at a time access to that data.

Table 4-1 Mutex routines

Name Description

mutex_init(9F) Initialize a mutex.

mutex_destroy(9F) Release any associated storage.

mutex_enter(9F) Acquire mutex.

mutex_tryenter(9F) Acquire mutex if available; but do not block.

mutex_exit(9F) Release mutex.

mutex_owned(9F) Test if the mutex is held by the current thread. To
be used in ASSERT(9F) only.

78 Writing Device Drivers—August, 1994

4

Setting Up Mutexes

Device drivers usually allocate a mutex for each driver data structure. The
mutex is typically a field in the structure and is of type kmutex_t .
mutex_init (9F) is called to prepare the mutex for use. This is usually done at
attach (9E) time for per-device mutexes and _init (9E) time for global driver
mutexes.

For example,

struct xxstate *xsp;

...
mutex_init(&xsp->mu, “xx mutex”, MUTEX_DRIVER, NULL);
...

For a more complete example of mutex initialization see Chapter 5,
“Autoconfiguration.”

The driver must destroy the mutex with mutex_destroy(9F) before being
unloaded. This is usually done at detach (9E) time for per-device mutexes and
_fini (9E) time for global driver mutexes.

Using Mutexes

Every section of the driver code that needs to read or write the shared data
structure must do the following:

• Acquire the mutex.
• Access the data.
• Release the mutex

For example, to protect access to the busy flag in the state structure:

...
mutex_enter(&xsp->mu);
xsp->busy = 0;
mutex_exit(&xsp->mu);
....

The scope of a mutex—the data it protects—is entirely up to the programmer.
A mutex protects some particular data structure because the programmer chooses
to do so and uses it accordingly. A mutex protects a data structure only if every
code path that accesses the data structure does so while holding the mutex. For
additional guidelines on using mutexes see Appendix B, “Advanced Topics.”

Multithreading 79

4

Readers/Writer Locks

A readers/writer lock regulates access to a set of data. The readers/writer lock is
so called because many threads can hold the lock simultaneously for reading,
but only one thread can hold it for writing.

Most device drivers do not use readers/writer locks. These locks are slower
than mutexes and provide a performance gain only when protecting data that
is not frequently written but is commonly read by many concurrent threads. In
this case, contention for a mutex could become a bottleneck, so using a
readers/writer lock might be more efficient. See rwlock (9F) for more
information.

Semaphores

Counting semaphores are available as an alternative primitive for managing
threads within device drivers. See semaphore (9F) for more information.

Thread Synchronization
In addition to protecting shared data, drivers often need to synchronize
execution among multiple threads.

Condition Variables

Condition variables are a standard form of thread synchronization. They are
designed to be used with mutexes. The associated mutex is used to ensure that
a condition can be checked atomically, and that the thread can block on the
associated condition variable without missing either a change to the condition
or a signal that the condition has changed. Condition variables must be
initialized by calling cv_init (9F) and must be destroyed by calling
cv_destroy (9F).

Note – Condition variable routines are approximately equivalent to the
routines sleep() and wakeup() used in SunOS 4.x.

80 Writing Device Drivers—August, 1994

4

Table 4-2 lists the condvar (9F) interfaces. The four wait routines –
cv_wait (9F), cv_timedwait (9F), cv_wait_sig (9F), and
cv_timedwait_sig (9F) – take a pointer to a mutex as an argument.

Initializing Condition Variables

Declare a condition variable (type kcondvar_t) for each condition. Usually,
this is done in the driver’s soft-state structure. Use cv_init (9F) to initialize
each one. Similar to mutexes, condition variables are usually initialized at
attach (9E) time. For example,

...
cv_init(&xsp->cv, “xx cv”, CV_DRIVER, NULL);
...

For a more complete example of condition variable initialization see Chapter 5,
“Autoconfiguration.”

Using Condition Variables

On the code path waiting for the condition take the following steps:

• Acquire the mutex guarding the condition.
• Test the condition.

Table 4-2 Condition variable routines

Name Description

cv_init(9F) Initialize a condition variable.

cv_destroy(9F) Destroy a condition variable.

cv_wait(9F) Wait for condition.

cv_timedwait(9F) Wait for condition or timeout.

cv_wait_sig(9F) Wait for condition or return zero on receipt of a signal.

cv_timedwait_sig(9F) Wait for condition or timeout or signal.

cv_signal(9F) Signal one thread waiting on the condition variable

cv_broadcast(9F) Signal all threads waiting on the condition variable

Multithreading 81

4

• If the test results do not allow the thread to continue, use cv_wait (9F) to
block the current thread on the condition. cv_wait (9F) releases the mutex
before blocking. Upon return from cv_wait (9F) (which will reacquire the
mutex before returning), repeat the test.

• Once the test allows the thread to continue, set the condition to its new
value. For example, set a device flag to busy.

• Release the mutex.

On the code path signaling the condition take the following steps:

• Acquire the mutex guarding the condition.
• Set the condition.
• Signal the blocked thread with cv_signal (9F).
• Release the mutex.

Code Example 4-1 uses a busy flag, mutex and condition variable to force the
read (9E) routine to wait until the device is no longer busy before starting a
transfer:

Code Example 4-1 Using mutexes and condition variables

static int
xxread(dev_t dev, struct uio *uiop, cred_t *credp)
{

struct xxstate *xsp;

...

mutex_enter(&xsp->mu);
while (xsp->busy)

cv_wait(&xsp->cv, &xsp->mu);
xsp->busy = 1;
mutex_exit(&xsp->mu);

do the read

}

static u_int
xxintr(caddr_t arg);
{

struct xxstate *xsp = (caddr_t) arg;

mutex_enter(&xsp->mu);
xsp->busy = 0;
cv_broadcast(&xsp->cv);
mutex_exit(&xsp->mu);

}

82 Writing Device Drivers—August, 1994

4

In Code Example 4-1, xxintr () always calls cv_signal (9F), even if there are
no threads waiting on the condition. This extra call can be avoided by using a
want flag in the state structure. Before a thread blocks on the condition variable
(such as because the device is busy), it sets the want flag, indicating that it
wants to be signalled when the condition occurs. When the condition occurs
(the device finishes the transfer), the call to cv_broadcast (9F) is made only if
the want flag is set.

Code Example 4-2 Using a want flag

static int
xxread(dev_t dev, struct uio *uiop, cred_t *credp)
{

struct xxstate *xsp;

...

mutex_enter(&xsp->mu);
while (xsp->busy) {

xsp->want = 1;
cv_wait(&xsp->cv, &xsp->mu);

}
xsp->busy = 1;
mutex_exit(&xsp->mu);

do the read

}

static u_int
xxintr(caddr_t arg);
{

struct xxstate *xsp = (caddr_t) arg;

mutex_enter(&xsp->mu);
xsp->busy = 0;
if (xsp->want) {

xsp->want = 0;
cv_broadcast(&xsp->cv);

}
mutex_exit(&xsp->mu);

}

Multithreading 83

4

cv_timedwait()

If a thread blocks on a condition with cv_wait (9F), and that condition does
not occur, it may wait forever. One way to prevent this is to establish a callback
with timeout (9F). This callback sets a flag indicating that the condition did
not occur normally, and then unblocks the thread. The notified thread then
notices that the condition did not occur and can return an error (such as device
broken).

A better solution is to use cv_timedwait (9F). An absolute wait time is passed
to cv_timedwait (9F), which returns -1 if the time is reached and the event
has not occurred. It returns nonzero otherwise. This saves a lot of work setting
up separate timeout (9F) routines and avoids having threads get stuck in the
driver.

cv_timedwait (9F) requires an absolute wait time expressed in clock ticks
since the system was last rebooted. This can be determined by retrieving the
current value with drv_getparm (9F). The drv_getparm (9F) function takes an
address to store a value and an indicator of which kernel parameter to retrieve.
In this case, LBOLT is used to get the number of clock ticks since the last
reboot. The driver, however, usually has a maximum number of seconds or
microseconds to wait, so this value is converted to clock ticks with
drv_usectohz (9F) and added to the value from drv_getparm (9F).

Code Example 4-3 shows how to use cv_timedwait (9F) to wait up to five
seconds to access the device before returning EIO to the caller.

Code Example 4-3 Using cv_timedwait (9F)

clock_t cur_ticks, to;

mutex_enter(&xsp->mu);

while (xsp->busy) {

drv_getparm(LBOLT, &cur_ticks);
to = cur_ticks + drv_usectohz(5000000); /* 5 seconds from now */

if (cv_timedwait(&xsp->cv, &xsp->mu, to) == -1) {
/*
 * The timeout time ’to’ was reached without the
 * condition being signalled.
 */

tidy up and exit

84 Writing Device Drivers—August, 1994

4

mutex_exit(&xsp->mu);
return (EIO);

}
}

xsp->busy = 1;
mutex_exit(&xsp->mu);

cv_wait_sig()

There is always the possibility that either the driver accidentally waits for a
condition that will never occur (as described in “cv_timedwait()” on page 81),
or that the condition will not happen for a long time. In either case, the user
may want to abort the thread by sending it a signal. Whether the signal causes
the driver to wake up depends on the driver.

cv_wait_sig (9F) allows a signal to unblock the thread. This allows the user
to break out of potentially long waits by sending a signal to the thread with
kill (1) or by typing the interrupt character. cv_wait_sig (9F) returns zero if
it is returning because of a signal, or nonzero if the condition occurred.

Code Example 4-4 Using cv_wait_sig (9F)

mutex_enter(&xsp->mu);

while (xsp->busy) {
if (cv_wait_sig(&xsp->cv, &xsp->mu) == 0) {

/* Signalled while waiting for the condition. */

tidy up and exit

mutex_exit(&xsp->mu);
return (EINTR);

}
}

xsp->busy = 1;
mutex_exit(&xsp->mu);

cv_timedwait_sig()

cv_timedwait_sig (9F) is similar to cv_timedwait (9F) and
cv_wait_sig (9F), except that it returns -1 without the condition being
signaled after a timeout has been reached, or 0 if a signal (for example,
kill (2)) is sent to the thread.

Multithreading 85

4

For both cv_timedwait (9F) and cv_timedwait_sig (9F), time is measured
in absolute clock ticks since the last system reboot.

Choosing a Locking Scheme
The locking scheme for most device drivers should be kept straightforward.
Using additional locks may allow more concurrency but increase overhead.
Using fewer locks is cheaper but allows less concurrency. Generally, use one
mutex per data structure, a condition variable for each event or condition the
driver must wait for, and a mutex for each major set of data global to the
driver. Avoid holding mutexes for long periods of time.

For more information on locking schemes, see Appendix B, “Advanced
Topics”. Also see Multithreaded Programming Guide for more detail on
multithreading operations.

86 Writing Device Drivers—August, 1994

4

87

Autoconfiguration 5

This chapter describes the support a driver must provide for
autoconfiguration.

Overview
Autoconfiguration is the process of getting the driver’s code and static data
loaded into memory and registered with the system. Autoconfiguration also
involves configuring (attaching) individual device instances that are controlled
by the driver. These processes are discussed in more detail in “Loadable Driver
Interface” on page 89 and “Device Configuration” on page 93. The
autoconfiguration process begins when the device is put into use.

State Structure
This section adds the following fields to the state structure. See “State
Structure” on page 57 for more information.

int instance;
ddi_iblock_cookie_t iblock_cookie;
ddi_idevice_cookie_t idevice_cookie;

88 Writing Device Drivers—August, 1994

5

Data Structures
Figure 5-1 shows an overview of the driver data structures that are accessed
directly by the kernel for loading the driver, configuring devices, and
providing access to devices. The figure is divided into 3 sections; the first two
are discussed in this chapter. The third section is discussed in Chapter 8,
“Drivers for Character Devices” and Chapter 9, “Drivers for Block Devices”.

Figure 5-1 shows the relationship between the autoconfiguration structures and
the driver entry points.

Figure 5-1 Autoconfiguration Data Structures

The structures in this diagram must be provided and initialized correctly for
the driver to load and for its routines to be called. If an operation is not
supported by the driver, the address of the routine nodev (9F) can be used to

_init(9E)

_info(9E)

_fini(9E)

mod_driverops
Loadable driver interface

Device configuration

getinfo(9E)

identify(9E)

dev_ops(9S)
probe(9E)

attach(9E)

detach(9E)

Device access
open(9E)

close(9E)

read(9E)

write(9E)

strategy(9E) prop_op(9E)

print(9E)

chpoll(9E)

ioctl(9E)

mmap(9E)

cb_ops(9S)

modlinkage(9S)

modldrv(9S)

Autoconfiguration 89

5

fill it in. If the driver supports the entry point, but does not need to do
anything except return success, the address of the routine nulldev (9F) can be
used.

Note – These structures should be initialized at compile-time. They should not
be accessed or changed by the driver at any other time.

modlinkage()

int ml_rev;
void *ml_linkage[4];

The modlinkage (9S) structure is exported to the kernel when the driver is
loaded. The ml_rev field indicates the revision number of the loadable
module system, which should be set to MODREV_1. Drivers can only support
one module, so only the first element of ml_linkage should be set to the
address of a modldrv (9S) structure. ml_linkage[1] should be set to NULL.

modldrv()

struct mod_ops *drv_modops;
char *drv_linkinfo;
struct dev_ops *drv_dev_ops;

This structure describes the module in more detail. The drv_modops field
points to a structure describing the module operations, which is
&mod_driverops for a device driver. The drv_linkinfo field is displayed
by the modinfo (1M) command and should be an informative string
identifying the device driver. The drv_dev_ops field points to the next
structure in the chain, the dev_ops (9S) structure.

dev_ops()

int devo_rev;
int devo_refcnt;
int (*devo_getinfo)(dev_info_t *dip,ddi_info_cmd_t infocmd,

void *arg, void **result);
int (*devo_identify)(dev_info_t *dip);
int (*devo_probe)(dev_info_t *dip);
int (*devo_attach)(dev_info_t *dip, ddi_attach_cmd_t cmd);
int (*devo_detach)(dev_info_t *dip, ddi_detach_cmd_t cmd);

90 Writing Device Drivers—August, 1994

5

int (*devo_reset)(dev_info_t *dip, ddi_reset_cmd_t cmd);
struct cb_ops *devo_cb_ops;
struct bus_ops *devo_bus_ops;

The dev_ops (9S) structure allows the kernel to find the autoconfiguration
entry points of the device driver. The devo_rev field identifies the revision
number of the structure itself, and must be set to DEVO_REV. The
devo_refcnt field must be initialized to zero. The function address fields
should be filled in with the address of the appropriate driver entry point
exceptions:

• If a probe (9E) routine is not needed, use nulldev (9F).
• nodev (9F) can be used in devo_detach to prevent the driver from being

unloaded.
• devo_reset should be set to nodev (9F).

The devo_cb_ops member should contain the address of the cb_ops (9S)
structure. The devo_bus_ops field must be set to NULL.

cb_ops

int (*cb_open)(dev_t *devp, int flag, int otyp,
cred_t *credp);

int (*cb_close)(dev_t dev, int flag, int otyp,
cred_t *credp);

int (*cb_strategy)(struct buf *bp);
int (*cb_print)(dev_t dev, char *str);
int (*cb_dump)(dev_t dev, caddr_t addr, daddr_t blkno,

int nblk);
int (*cb_read)(dev_t dev, struct uio *uiop, cred_t *credp);
int (*cb_write)(dev_t dev, struct uio *uiop, cred_t *credp);
int (*cb_ioctl)(dev_t dev, int cmd, int arg, int mode,

cred_t *credp, int *rvalp);
int (*cb_devmap)();
int (*cb_mmap)(dev_t dev, off_t off, int prot);
int (*cb_segmap)(dev_t dev, off_t off, struct as *asp,

addr_t *addrp, off_t len, unsigned int prot,
unsigned int maxprot, unsigned int flags,
cred_t *credp);

int (*cb_chpoll)(dev_t dev, short events, int anyyet,
short *reventsp, struct pollhead **phpp);

int (*cb_prop_op)(dev_t dev, dev_info_t *dip,
ddi_prop_op_t prop_op, int mod_flags,

Autoconfiguration 91

5

char *name, caddr_t valuep, int *length);
struct streamtab *cb_str; /* STREAMS information */
int cb_flag;

The cb_ops (9S) structure contains the entry points for the character and block
operations of the device driver. Any entry points the driver does not support
should be initialized to nodev (9F). For example, character device drivers
should set all the block-only fields (such as cb_stategy to nodev (9F).

The cb_str field is used to determine if this is a STREAMS-based driver. The
device drivers discussed in this book are not STREAMS-based, so cb_str must
be set to NULL. The cb_flag member indicates whether the driver is safe for
multithreading (D_MP) and whether it is a new-style driver (D_NEW). All
drivers are new-style drivers, and should properly handle the multithreaded
environment, so cb_flag should be set to both (D_NEW | D_MP). If the driver
properly handles 64-bit offsets, it should also set the D_64BIT flag in the
cb_flag field. This specifies that the driver will use the uio_loffset field
of the uio (9S) structure.

Loadable Driver Interface

Device drivers must be dynamically loadable and should be unloadable to help
conserve memory resources. Drivers that can be unloaded are also easier to test
and debug.

Each device driver has a section of code that defines a loadable interface. This
code section defines a static pointer for the soft state routines, the structures
described in “Data Structures” on page 88 and the routines involved in loading
the module.

Code Example 5-1 Loadable interface section

static void *statep; /* for soft state routines */

static struct cb_ops xx_cb_ops; /* forward reference */

static struct dev_ops xx_ops = {
DEVO_REV,
0,
xxgetinfo,
xxidentify,
xxprobe,
xxattach,
xxdetach,
nodev,

92 Writing Device Drivers—August, 1994

5

&xx_cb_ops,
(struct bus_ops *) NULL

};

static struct modldrv modldrv = {
&mod_driverops,
"xx driver v1.0",
&xx_ops

};

static struct modlinkage modlinkage = {
MODREV_1,
&modldrv,
NULL

};

int
_init(void)
{

int error;

ddi_soft_state_init(&statep, sizeof (struct xxstate),
estimated number of instances);

further per-module initialization if necessary
error = mod_install(&modlinkage);
if (error) != 0 {

undo any per-module initialization done earlier
ddi_soft_state_fini(&statep);

}
return (error);

}

int
_fini(void)
{

int error;

error = mod_remove(&modlinkage);
if (error == 0) {

release per-module resources if any were allocated
ddi_soft_state_fini(&statep);

}
return (error);

}

int
_info(struct modinfo *modinfop)
{

return (mod_info(&modlinkage, modinfop));
}

Autoconfiguration 93

5

Any one-time resource allocation or data initialization should be performed
during driver loading in _init (9E). For example, any mutexes global to the
driver should be initialized here. Do not, however, use _init (9E) to allocate or
initialize anything that has to do with a particular instance of the device.
Per-instance initialization must be done in attach (9E). For example, if a
driver for a printer can drive more than one printer at the same time, allocate
resources specific to each printer instance in attach (9E).

Similarly, in _fini (9E), release only those resources allocated by _init (9E).

Note – Once _init (9E) has called mod_install (9F), none of the data
structures hanging off of the modlinkage (9S) structure should be changed by
the driver, as the system may make copies of them or change them.

Device Configuration
Each driver must provide five entry points that are used by the kernel for
device configuration. They are:

• identify (9E)
• probe (9E)
• attach (9E)
• detach (9E)
• getinfo (9E)

Every device driver must have an identify (9E), attach (9E) and
getinfo (9E) routine. probe (9E) is only required for non self-identifying
devices. For self-identifying devices an explicit probe routine may be provided
or nulldev (9F) may be specified in the dev_ops structure for the probe (9E)
entry point.

identify()

The system calls identify (9E) to find out whether the driver drives the
device specified by dip .

Code Example 5-2 identify (9E) routine

static int
xxidentify(dev_info_t *dip)
{

94 Writing Device Drivers—August, 1994

5

if (strcmp(ddi_get_name(dip), “xx”) == 0)
return (DDI_IDENTIFIED);

else
return (DDI_NOT_IDENTIFIED);

}

If the device is known by several different names, identify (9E) should check
for a match with each name before failing. The names must also have been
passed with aliases to add_drv (1M) when the driver was installed. See
Chapter 12, “Loading and Unloading Drivers.”

identify (9E) should not maintain a device count, since the system does not
guarantee that identify (9E) will be called for all device instances before
attach (9E) is called for any device instance, nor does the system make any
guarantees about the number of times identify (9E) will be called for any
given device.

Instance Numbers

In SunOS 4.x, drivers counted the calls to identify(9E) and used the current
value of this number as an instance number in a later call to attach() .
However, drivers must not do this in Solaris 2.x. The system now assigns an
instance number to each device this number is derived in an implementation-
specific manner from different properties for the different device types. The
following properties are used to derive instance numbers:

The reg property is used for SBus, VMEbus, ISA, EISA, and MCA devices.
Non-self-identifying device drivers provide this in the hardware
configuration file. See sbus (4), isa (4) and vme(4).

The target and lun properties are used for SCSI target devices. These are
provided in the hardware configuration file. See scsi (4).

The instance property is used for pseudo-devices. This is provided in the
hardware configuration file. See pseudo (4).

The driver should retrieve the particular instance number that has been
assigned by calling ddi_get_instance (9F). See Code Example 5-4 on page 95
for an example.

Autoconfiguration 95

5

Persistent Instances

Once an instance number has been assigned to a particular physical device by
the system, it stays the same even across reconfiguration and reboot. Because
of this, instance numbers seen by a driver may not appear to be in consecutive
order.

probe()

For non-self-identifying devices (see “Device Identification” on page 14) this
entry point should determine whether the hardware device is present on the
system and return:

DDI_PROBE_SUCCESS if the probe was successful

DDI_PROBE_FAILURE if the probe failed

DDI_PROBE_DONTCARE if the probe was unsuccessful, yet attach (9E)
should still be called OR

DDI_PROBE_PARTIAL if the instance is not present now, but may be
present in the future

For a given device instance, attach (9E) will not be called before probe (9E)
has succeeded at least once on that device.

It is important that probe (9E) free all the resources it allocates, because it may
be called multiple times; however, attach (9E) will not necessarily be called
even if probe (9E) succeeds.

For probe to determine whether the instance of the device is present,
probe (9E) may need to do many of the things also commonly done by
attach (9E). In particular, it may need to map the device registers.
Code Example 5-3 is an example of probe (9E).

Code Example 5-3 probe (9E) routine

static int
xxprobe(dev_info_t *dip)
{

int instance;
volatile caddr_t reg_addr;

if (ddi_dev_is_sid(dip) == DDI_SUCCESS) /* no need to probe */
return (DDI_PROBE_DONTCARE);

96 Writing Device Drivers—August, 1994

5

instance = ddi_get_instance(dip); /* assigned instance */

if (ddi_intr_hilevel(dip, inumber)) {
cmn_err(CE_CONT,

“?xx driver does not support high level interrupts.”
“ Probe failed.”);

return (DDI_PROBE_FAILURE);
}

/*
 * Map device registers and try to contact device.
 */
if (ddi_map_regs(dip, rnumber, ®_addr, offset, len) != 0)

return (DDI_PROBE_FAILURE);

if (ddi_peekc(dip, reg_addr, NULL) != DDI_SUCCESS)
goto failed;

free allocated resources

ddi_unmap_regs(dip, rnumber, ®_addr, offset, len);

if (device is present and ready for attach)
return (DDI_PROBE_SUCCESS);

else if (device is present but not ready for attach)
return (DDI_PROBE_PARTIAL);

else /* device is not present */
return (DDI_PROBE_FAILURE);

failed:
free allocated resources
ddi_unmap_regs(dip, rnumber, ®_addr, offset, len);

return (DDI_PROBE_FAILURE);
}

The string printed in the high-level interrupt case begins with a ‘?’ character.
This causes the message to be printed only if the kernel was booted with the
verbose (-v) flag (See kernel (1M)). Otherwise the message only goes into
the message log, where it can be seen by running dmesg(1M).

Probing the device registers is device-specific. The driver probably has to
perform a series of tests of the hardware to assure that the hardware is really
there. The test criteria must be rigorous enough to avoid misidentifying
devices. It may, for example, appear that the device is present when in fact it is
not, because a different device appears to behave like the expected device.

The ddi_peek (9F) and ddi_poke (9F) family of routines must be used to
access the device registers, as they cope correctly with the faults that may
occur if the access fails, for example, because the device is not there.

Autoconfiguration 97

5

attach()

The system calls attach (9E) to attach a device instance to the system. The
responsibilities of the DDI_ATTACH case of attach (9E) include:

• Optionally allocating a soft state structure for the instance
• Registering an interrupt handler
• Mapping device registers
• Initializing per- instance mutexes and condition variables
• Creating minor device nodes for the instance

Code Example 5-4 is an example of an attach (9E) routine.

Code Example 5-4 attach (9E) routine

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;
int instance;

switch (cmd) {
case DDI_ATTACH:

/*
 * get assigned instance number
 */
instance = ddi_get_instance(dip);

/*
 * this device requires DMA capability
 * make sure the bus slot allows this
 */
if (ddi_slaveonly(dip) == DDI_SUCCESS)

return(DDI_FAILURE);

if (ddi_soft_state_zalloc(statep, instance) != 0)
return (DDI_FAILURE);

xsp = ddi_get_soft_state(statep, instance);

/*
 * set up interrupt handler for the device
 */
if (ddi_add_intr(dip, inumber, &xsp->iblock_cookie,

&xsp->idevice_cookie, NULL, intr_handler, intr_handler_arg)
!= DDI_SUCCESS) {
ddi_soft_state_free(statep, instance);
return (DDI_FAILURE);

}

98 Writing Device Drivers—August, 1994

5

/*
 * map device registers
 */
if (ddi_map_regs(dip, rnumber, (caddr_t *)&xsp->regp, offset,

sizeof(struct device_reg)) != DDI_SUCCESS) {
ddi_remove_intr(dip, inumber, xsp->iblock_cookie);
ddi_soft_state_free(statep, instance);
return (DDI_FAILURE);

}
/*
 * initialize locks
 * Note that mutex_init wants a ddi_iblock_cookie,
 * not the _address_ of one, as the fourth argument.
 */
mutex_init(&xsp->mu, "xx mutex", MUTEX_DRIVER,

(void *)xsp->iblock_cookie);
cv_init(&xsp->cv, "xx cv", CV_DRIVER, NULL);

xsp->dip = dip;

initialize the rest of the software state structure;

make device quiescent; /* device-specific */

/*
 * for devices with programmable bus interrupt level
 */
program device interrupt level using xsp->idevice_cookie;

if (ddi_create_minor_node(dip, " minor name", S_IFCHR,
minor_number, node_type, 0) != DDI_SUCCESS)
goto failed;

initialize driver data, prepare for a later open of the device;/*device-specific */
ddi_report_dev(dip);
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}

failed:
free allocated resources

ddi_unmap_regs(dip, rnumber, (caddr_t *)&xsp->regp, offset,
sizeof(struct device_reg));

ddi_remove_intr(dip, inumber, xsp->iblock_cookie);
cv_destroy(&xsp->cv);
mutex_destroy(&xsp->mu);

Autoconfiguration 99

5

ddi_soft_state_free(statep, instance);
return (DDI_FAILURE);

}

attach (9E) first checks for the DDI_ATTACH command, which is the only one
it handles. Future releases may support additional commands; consequently, it
is important that drivers return DDI_FAILURE for all the commands they do
not recognize. attach (9E) then calls ddi_get_instance (9F) to get the
instance number the system has assigned to the dev_info node indicated by
dip .

Since the driver must be able to return a pointer to its dev_info node for each
instance, attach (9E) must save dip , usually in a field of a per-instance state
structure. The example also requires DMA capability, so ddi_slaveonly (9F)
is called to check if the slot is capable of DMA. The section “SBus Slots” on
page 18 discusses one example of such SBus hardware.

If any of the resource allocation routines fail, the code at the failed label
should free any resources that had already been allocated before returning
DDI_FAILURE . This can be done with a series of checks that look like this:

if (xsp->regp)
ddi_unmap_regs(dip, rnumber, (caddr_t)&xsp->regp, offset,

sizeof(struct device_reg));

There should be such a check and a deallocation operation for each allocation
operation that may have been performed.

Registering Interrupts

In the call to ddi_add_intr (9F), inumber specifies which of several possible
interrupt specifications is to be handled by intr_handler. For example, if the
device interrupts at only one level, pass 0 for inumber .The interrupt
specifications being referred to by inumber are described by the interrupts
property (see driver.conf (4), isa (4), eisa (4), mca(4), sysbus (4), vme(4),
and sbus (4)). intr_handler is a pointer to a function, in this case xxintr() , to
be called when the device issues the specified interrupt. intr_handler_arg is an
argument of type caddr_t to be passed to intr_handler. intr_handler_arg may
be a pointer to a data structure representing the device instance that issued the
interrupt. ddi_add_intr (9F) returns an interrupt block cookie in
xsp->iblock_cookie for use in calls to mutex_init (9F); it also returns a

100 Writing Device Drivers—August, 1994

5

device cookie in xsp->idevice_cookie for use with devices having
programmable bus-interrupt levels. The device cookie contains the following
fields:

u_short idev_vector;
u_short idev_priority;

The idev_priority field of the returned structure contains the bus interrupt
priority level, and the idev_vector field contains the vector number for vectored
bus architectures such as VMEbus.

Note – There is a potential race condition in attach (9E). The interrupt routine
is eligible to be called as soon as ddi_add_intr (9F) returns. This may result
in the interrupt routine being called before any mutexes have been initialized
with the interrupt block cookie. If the interrupt routine acquires the mutex
before it has been initialized, undefined behavior may result. See “Registering
Interrupts” on page 111 for a solution to this problem.

Mapping Device Drivers

In the ddi_map_regs (9F) call, dip is the dev_info pointer passed to
attach (9E). rnumber specifies which register set to map if there is more than
one. For devices with only one register set, pass 0 for rnumber.The register
specifications referred to by rnumber are described by the reg property (see
driver.conf (4), isa (4), eisa (4), mca(4), sysbus (4), vme(4) and sbus (4)).
ddi_map_regs (9F) maps a device register set (register specification) and
returns a kernel virtual address in xsp->regp . This address is offset bytes from
the base of the device register set, and the mapping extends sizeof(struct
device_reg) bytes beyond that. To map all of a register set, pass zero for
offset and the length.

Minor Device Nodes

A minor device node contains the information exported by the device that the
system uses to create a special file for the device under /devices in the
filesystem.

In the call to ddi_create_minor_node (9F), the minor name is the character
string that is the last part of the base name of the special file to be created for
this minor device number; for example, "b,raw " in

Autoconfiguration 101

5

"fd@1,f7200000:b,raw ". S_IFCHR means create a character special file.
Finally, the node type is one of the following system macros, or any string
constant that does not conflict with the values of these macros (See
ddi_create_minor_node (9F) for more information).

The node types DDI_NT_BLOCK, DDI_NT_BLOCK_CHAN, DDI_NT_CD and
DDI_NT_CD_CHAN causes disks (1M) to identify the device instance as a disk
and to create a symbolic link in the /dev/dsk or /dev/rdsk directory
pointing to the device node in the /devices directory tree.

The node type DDI_NT_TAPE causes tapes (1M) to identify the device instance
as a tape and to create a symbolic link from the /dev/rmt directory to the
device node in the /devices directory tree.

The node type DDI_NT_SERIAL causes ports (1M) to identify the device
instance as a serial port and to create symbolic links from the /dev/term and
/dev/cua directories to the device node in the /devices directory tree and to
add a new entry to /etc/inittab .

Table 5-1 Possible node types

Constant Description

DDI_NT_SERIAL Serial port

DDI_NT_SERIAL_DO Dialout ports

DDI_NT_BLOCK Hard disks

DDI_NT_BLOCK_CHAN Hard disks with channel or target numbers

DDI_NT_CD ROM drives (CDROM)

DDI_NT_CD_CHAN ROM drives with channel or target numbers

DDI_NT_FD Floppy disks

DDI_NT_TAPE Tape drives

DDI_NT_NET Network devices

DDI_NT_DISPLAY Display devices

DDI_PSEUDO General pseudo devices

102 Writing Device Drivers—August, 1994

5

Vendor supplied strings should include an identifying value to make them
unique, such as their name or stock symbol (if appropriate). The string (along
with the other node types not consumed by disks (1M), tapes (1M), or
ports (1M) can be used in conjunction with devlinks (1M) and
devlink.tab (4) to create logical names in /dev .

Deferred Attach

open (9E) might be called before attach (9E) has succeeded. open (9E) must
then return ENXIO, which will cause the system to attempt to attach the device.
If the attach succeeds, the open is retried automatically.

detach()

detach (9E) is the inverse operation to attach (9E). It is called for each device
instance, receiving a command of DDI_DETACH, when the system attempts to
unload a driver module. The system only calls the DDI_DETACH case of
detach (9E) for a device instance if the device instance is not open. No calls to
other driver entry points for that device instance occurs during detach (9E),
although interrupts and time-outs may occur.

The main purpose of detach (9E) is to free resources allocated by attach (9E)
for the specified device. For example, detach (9E) should unmap any mapped
device registers, remove any interrupts registered with the system, and free the
soft state structure for this device instance.

If the detach (9E) routine entry in the dev_ops (9S) structure is initialized to
nodev , it implies that detach (9E) always fails, and the driver will not be
unloaded. This is the simplest way to specify that a driver is not unloadable.

Code Example 5-5 detach (9E) routine

static int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

struct xxstate *xsp;
int instance;

switch (cmd) {
case DDI_DETACH:

instance = ddi_get_instance(dip);
xsp = ddi_get_soft_state(statep, instance);

Autoconfiguration 103

5

make device quiescent; /* device-specific */

ddi_remove_minor_node(dip, NULL);

ddi_unmap_regs(dip, rnumber, (caddr_t)&xsp->regp,
offset, sizeof(struct device_reg));

ddi_remove_intr(dip, inumber, xsp->iblock_cookie);

mutex_destroy(&xsp->mu);
cv_destroy(&xsp->cv);
ddi_soft_state_free(statep, instance);
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}
}

In the call to ddi_unmap_regs (9F), rnumber and offset are the same values
passed to ddi_map_regs (9F) in attach (9E). Similarly, in the call to
ddi_remove_intr (9F), inumber is the same value that was passed to
ddi_add_intr (9F).

Callbacks

The detach (9E) routine must not return DDI_SUCCESS while it has callback
functions pending. This is only critical for callbacks registered for device
instances that are not currently open, since the DDI_DETACH case is not
entered if the device is open.

There are two types of callback routines of interest: callbacks that can be
cancelled, and callbacks that must run to completion.

Callbacks that can be cancelled do not pose a problem; just remember to cancel
the callback before detach (9E) returns DDI_SUCCESS. Each of the callback
cancellation routines in Table 5-2 atomically cancels callbacks so that a callback
routine does not run while it is being cancelled.

Table 5-2 Example of functions with callbacks that can be cancelled.

Function Cancelling function

timeout (9F) untimeout (9F)

bufcall (9F) unbufcall (9F)

esbbcall (9F) unbufcall (9F)

104 Writing Device Drivers—August, 1994

5

Some callbacks cannot be cancelled—for these it is necessary to wait until the
callback has been called. In some cases, such as ddi_dma_setup (9F), the
callback must also be prevented from rescheduling itself. See “Cancelling DMA
Callbacks” on page 140 for an example.

Following is a list of some functions that may establish callbacks that cannot be
cancelled:

• esballoc (9F)
• ddi_dma_setup (9F)
• ddi_dma_addr_setup (9F)
• ddi_dma_buf_setup (9F)
• scsi_dmaget (9F)
• scsi_resalloc (9F)
• scsi_pktalloc (9F)
• scsi_init_pkt (9F)

getinfo()

The system calls getinfo(9E) to obtain configuration information that only
the driver knows. The mapping of minor numbers to device instances is
entirely under the control of the driver. The system sometimes needs to ask the
driver which device a particular dev_t represents.

getinfo (9E) is called during module loading and at other times during the
life of the driver. It can take one of two commands as its infocmd argument:
DDI_INFO_DEVT2INSTANCE, which asks for a device’s instance number, and
DDI_INFO_DEVT2DEVINFO, which asks for pointer to the device’s dev_info
structure.

In the DDI_INFO_DEVT2INSTANCE case, arg is a dev_t , and getinfo (9E)
must translate the minor number to an instance number. In the following
example, the minor number is the instance number, so it simply passes back
the minor number. In this case, the driver must not assume that a state
structure is available, since getinfo (9E) may be called before attach (9E).
The mapping the driver defines between minor device number and instance
number does not necessarily follow the mapping shown in the example. In all
cases, however, the mapping must be static.

Autoconfiguration 105

5

In the DDI_INFO_DEVT2DEVINFO case, arg is again a dev_t , so getinfo (9E)
first decodes the instance number for the device. It then passes back the
dev_info pointer saved in the driver’s soft state structure for the appropriate
device.

Code Example 5-1 getinfo (9E) routine

static int
xxgetinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
 void **result)
{

struct xxstate *xsp;
dev_t dev;
int instance, error;

switch (infocmd) {
case DDI_INFO_DEVT2INSTANCE:

dev = (dev_t) arg;
*result = (void *) getminor(dev);
error = DDI_SUCCESS;
break;

case DDI_INFO_DEVT2DEVINFO:
dev = (dev_t) arg;
instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (DDI_FAILURE);
*result = (void *) xsp->dip;
error = DDI_SUCCESS;
break;

default:
error = DDI_FAILURE;
break;

}
return (error);

}

106 Writing Device Drivers—August, 1994

5

107

Interrupt Handlers 6

This chapter describes the interrupt handling mechanisms of the Solaris 2.x
DDI/DKI. This includes registering, servicing, and removing interrupts.

Overview
An interrupt is a hardware signal from a device to the CPU. It tells the CPU
that the device needs attention, and the CPU should drop whatever it is doing
and respond to the device. If the CPU is available (it is not doing something
that is higher priority, such as servicing a higher priority interrupt) it suspends
the current thread and eventually invokes the interrupt handler for that device.
The job of the interrupt handler is to service the device, and stop it from
interrupting. Once the handler returns, the CPU resumes whatever it was
doing before the interrupt occurred.

The Solaris 2.x DDI/DKI provides a bus-architecture independent interface for
registering and servicing interrupts. Drivers must register their device
interrupts before they can receive and service interrupts.

Example

On x86 platforms, a device requests an interrupt by asserting an interrupt
request line (IRQ) on the system bus. The bus implements multiple IRQ lines,
and a particular device may be able to generate interrupts on one or more of
them. Multiple devices may share a common IRQ line.

108 Writing Device Drivers—August, 1994

6

The bus IRQ lines are connected to an interrupt controller that arbitrates
between interrupt requests. The kernel programs the interrupt controller to
select which interrupts should be enabled at any particular time. When the
interrupt controller determines that an interrupt should be delivered, it raises a
request to the CPU. If processor interrupts are enabled, the CPU acknowledges
the interrupt and causes the kernel to begin interrupt handler processing.

Interrupt Specification

An interrupt specification is the information the system needs in order to link an
interrupt handler with a given interrupt. It describes the information provided
by the hardware to the system when making an interrupt request. Interrupt
specifications typically includes a bus-interrupt level. For vectored interrupts it
includes an interrupt vector. On x86 platforms the driver.conf (4) file specifies
the relative priority of the devices interrupt. See isa(4) , eisa(4), mca(4),
sbus (4), and vme(4) for specific information on interrupt specifications for
these buses.

Interrupt Number

When registering interrupts the driver must provide the system with an
interrupt number. This identifies which interrupt specification the driver is
registering a handler for. Most devices have one interrupt, interrupt number
zero. However, there are devices that have different interrupts for different
events. A communications controller may have one interrupt for receive ready
and one for transmit ready. The device driver normally knows how many
interrupts the device has, but if the driver has to support several variations of
a controller it can call ddi_dev_nintrs (9F) to find out the number of device
interrupts. For a device with n interrupts, the interrupt numbers range from 0
to n-1.

Bus-Interrupt Levels

Buses prioritize device interrupts at one of several bus-interrupt levels. These
bus interrupt levels are then associated with different processor-interrupt
levels. For example, SBus devices that interrupt at SBus level 7 interrupt at
SPARC level 9 on SPARCstation 2 systems, but interrupt at SPARC level 13 on
SPARCstation 10 systems.

Interrupt Handlers 109

6

High-Level Interrupts

A bus-interrupt level that maps to a CPU interrupt priority level above the
scheduler priority level is called a high-level interrupt. High-level interrupts
must be handled without using system services that manipulate threads. In
particular, the only kernel routines that high-level interrupt handlers are
allowed to call are:

• mutex_enter (9F) and mutex_exit (9F) on a mutex initialized with an
interrupt block cookie associated with the high-level interrupt.

• ddi_trigger_softintr (9F).

A bus-interrupt level by itself does not determine whether a device interrupts
at high-level: a given bus-interrupt level may map to a high-level interrupt on
one platform, but map to an ordinary interrupt on another platform. The
function ddi_intr_hilevel (9F), given an interrupt number, returns a value
indicating whether the interrupt is high-level.

The driver can choose whether or not to support high-level interrupts, but it
always has to check —it cannot assume that its interrupts are not high-level. For
information on checking for high-level interrupts see “Registering Interrupts”
on page 111.

Types of Interrupts
There are two common ways to request for an interrupt: vectored and polled.
Both methods commonly specify a bus-interrupt priority level. Their only
difference is that vectored devices also specify an interrupt vector, but polled
devices do not.

Vectored Interrupts

Devices that use vectored interrupts are assigned an interrupt vector. This is a
number that identifies that particular interrupt handler. This vector may be
fixed, configurable (using jumpers or switches), or programmable. In the case
of programmable devices, an interrupt device cookie is used to program the
device interrupt vector. When the interrupt handler is registered, the kernel
saves the vector in a table.

110 Writing Device Drivers—August, 1994

6

When the device interrupts, the system enters the interrupt acknowledge cycle,
asking the interrupting device to identify itself. The device responds with its
interrupt vector. The kernel then uses this vector to find the responsible
interrupt handler.

The VMEbus supports vectored interrupts.

Polled Interrupts

In polled (or autovectored) devices, the only information the system has about a
device interrupt is its bus-interrupt priority level. When a handler is registered,
the system adds the handler to list of potential interrupt handlers for the bus-
interrupt level. When an interrupt occurs, the system must determine which
device, of all the devices at that level, actually interrupted. It does this by
calling all the interrupt handlers for that bus-interrupt level until one of them
claims the interrupt.

The SBus supports polled interrupts.

Software Interrupts

The Solaris 2.x DDI/DKI supports software interrupts, also known as soft
interrupts. Soft interrupts are not initiated by a hardware device, they are
initiated by software. Handlers for these interrupts must also be added to and
removed from the system. Soft interrupt handlers run in interrupt context and
therefore can be used to do many of the tasks that belong to an interrupt
handler.

Commonly, hardware interrupt handlers are supposed to be very quick, since
they may suspend other system activity while running (particularly in high-
level interrupt handlers). For example, they may prevent lower-priority
interrupts from occurring while they run. For this reason, hardware interrupt
handlers should do the minimum amount of work needed to service the
device.

Software interrupt handlers run at a lower priority than hardware interrupt
handlers, so they can do more work without seriously impacting the
performance of the system. Additionally, if the hardware interrupt handler is
high-level, it is severely restricted in what it can do. In this case, it is a good
idea to simply trigger a software interrupt in the high-level handler and put all
possible processing in the lower-level software interrupt handler.

Interrupt Handlers 111

6

Software interrupt handlers must not assume that they have work to do when
they run, since (like hardware interrupt handlers) they can run because some
other driver triggered a soft interrupt. For this reason, the driver must indicate
to the soft interrupt handler that it should do work before triggering the soft
interrupt.

Registering Interrupts
Before a device can receive and service interrupts, it must register them with
the system by calling ddi_add_intr (9F). This provides the system with a way
to associate an interrupt handler with an interrupt specification. This interrupt
handler is called when the device might have been responsible for the
interrupt. It is the handlers responsibility to determine if it should handle the
interrupt, and claim it if so.

The following steps are usually performed in attach (9E):

• Test for high-level interrupts.
Call ddi_intr_hilevel (9F) to find out if the interrupt specification maps
to a high-level interrupt. If it does, one possibility is to post a message to
that effect and return DDI_FAILURE . Code Example 6-1 on page 110 does
this.

• Add the interrupt.

• Initialize any associated mutexes.
There is a potential race condition between adding the interrupt handler
and initializing mutexes. The interrupt routine is eligible to be called as
soon as ddi_add_intr (9F) returns, as another device might interrupt and
cause the handler to be invoked. This may result in the interrupt routine
being called before any mutexes have been initialized with the returned
interrupt block cookie. If the interrupt routine acquires the mutex before it
has been initialized, undefined behavior may result.

The solution to this problem is to use ddi_add_intr (9F) to add an
interrupt handler that never claims the interrupt. This allows the driver to
get the interrupt block cookie for the interrupt, which it can then use to
initialize any mutexes. Once the mutexes are initialized, the temporary
interrupt handler can be removed, and the real one installed. nulldev (9F)
can be used as the temporary handler, though it needs to be cast properly.
See Code Example 6-1 for an example.

112 Writing Device Drivers—August, 1994

6

Code Example 6-1 attach (9E) routine with temporary interrupt handler

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;

if (cmd != DDI_ATTACH)
return (DDI_FAILURE);

...

if (ddi_intr_hilevel(dip, inumber) != 0){
cmn_err(CE_CONT,

“xx: high-level interrupts are not supported\n”);
return (DDI_FAILURE);

}

/*
 * The interrupt routine will grab the mutex, so a null */
 * handler is required.
 */
if (ddi_add_intr(dip, inumber, &xsp->iblock_cookie,

NULL, (u_int (*)(caddr_t))nulldev, NULL) != DDI_SUCCESS){
cmn_err(CE_WARN, "xx: cannot add interrupt handler.");
return (DDI_FAILURE);

}

mutex_init(&xsp->mu, "xx mutex", MUTEX_DRIVER,
(void *) xsp->iblock_cookie);

ddi_remove_intr(dip, inumber, xsp->iblock_cookie);

if (ddi_add_intr(dip, inumber, &xsp->iblock_cookie,
&xsp->idevice_cookie, xxintr, (caddr_t)xsp) != DDI_SUCCESS){
cmn_err(CE_WARN, "xx: cannot add interrupt handler.");
goto failed;

}
cv_init(&xsp->cv, "xx cv", CV_DRIVER, NULL);
return (DDI_SUCCESS);

failed:
remove interrupt handler if necessary, destroy mutex
return (DDI_FAILURE);

}

Interrupt Handlers 113

6

Responsibilities of an Interrupt Handler
The interrupt handler has a set of responsibilities to perform. Some are
required by the framework, and some are required by the device. All interrupt
handlers are required to do the following:

1. Possibly reject the interrupt.
The interrupt handler must first examine the device and determine if it has
issued the interrupt. If it has not, the handler must return
DDI_INTR_UNCLAIMED. This step allows the implementation of device
polling: it tells the system whether this device, among a number of devices at
the given interrupt priority level, has issued the interrupt.

2. Inform the device that it is being serviced.
This is a device-specific operation, but is required for the majority of
devices. For example, SBus devices are required to interrupt until the driver
tells them to stop. This guarantees that all SBus devices interrupting at the
same priority level will be serviced.

Most vectored devices, on the other hand, stop interrupting after the bus
interrupt acknowledge cycle; however, their internal state still indicates that
they have interrupted but have not been serviced yet.

3. Perform any I/O request related processing.
Devices interrupt for different reasons, such as transfer done or transfer error.
This step may involve reading the device’s data buffer, examining the
device’s error register, and setting the status field in a data structure
accordingly.

Interrupt dispatching and processing is relatively expensive. The following
points apply to interrupt processing:

• Do only what absolutely requires interrupt context.
• Do any additional processing that could save another interrupt, for

example, read the next data from the device.

4. Return DDI_INTR_CLAIMED.

Code Example 6-2 Interrupt routine

static u_int
xxintr(caddr_t arg)
{

114 Writing Device Drivers—August, 1994

6

struct xxstate *xsp = (struct xxstate *) arg;
u_char status, temp;

/*
 * Claim or reject the interrupt.This example assumes
 * that the device’s CSR includes this information.
 */
mutex_enter(&xsp->mu);
status = xsp->regp->csr;

if (!(status & INTERRUPTING)) {
mutex_exit(&xsp->mu);
return (DDI_INTR_UNCLAIMED);

}

/*
 * Inform the device that it is being serviced, and re-enable
 * interrupts. The example assumes that writing to the
 * CSR accomplishes this. The driver must ensure that this write
 * operation makes it to the device before the interrupt service
 * returns. For example, reading the CSR, if it does not result in
 * unwanted effects, can ensure this.
 */
xsp->regp->csr = CLEAR_INTERRUPT | ENABLE_INTERRUPTS;
temp = xsp->regp->csr;

perform any I/O related and synchronization processing

signal waiting threads (biodone(9F) or cv_signal(9F))

mutex_exit(&xsp->mu);
return (DDI_INTR_CLAIMED);

}

On an architecture that does not support vectored hardware interrupts, when
the system detects an interrupt, it calls the driver interrupt handler function for
each device that could have issued the interrupt. The interrupt handler must
determine whether the device it handles issued an interrupt. On architectures
supporting vectored interrupts, this step is unnecessary but not harmful, and it
enhances portability. The syntax and semantics of the interrupt handling
routine therefore can be the same for both vectored interrupts and polling
interrupts.

In the model presented here, the argument passed to xxintr() is a pointer to
the state structure for the device that may have issued the interrupt. This was
be set up by passing a pointer to the state structure as the intr_handler_arg
argument to ddi_add_intr (9F) in attach (9E)

Interrupt Handlers 115

6

Most of the steps performed by the interrupt routine depend on the specifics of
the device itself. Consult the hardware manual for the device to learn how to
determine the cause of the interrupt, detect error conditions, and access the
device data registers.

State Structure
This section adds the following fields to the state structure. See “State
Structure” on page 57 for more information.

ddi_iblock_cookie_t high_iblock_cookie;
ddi_idevice_cookie_t high_idevice_cookie;
kmutex_t high_mu;
int softint_running;
ddi_iblock_cookie_t low_iblock_cookie;
kmutex_t low_mu;
ddi_softintr_t id;

Handling High-Level Interrupts
High-level interrupts are those that interrupt at the level of the scheduler and
above. This level does not allow the scheduler to run, therefore high-level
interrupt handlers cannot be preempted by the scheduler, nor can they rely on
the scheduler (cannot block)—they can only use mutual exclusion locks for
locking.

Because of this, the driver must use ddi_intr_hilevel (9F) to determine if it
uses high-level interrupts. If ddi_intr_hilevel (9F) returns true, the driver
can fail to attach, or it can use a two-level scheme to handle them. Properly
handling high-level interrupts is the preferred solution.

Note – By writing the driver as if it always uses high level interrupts, a
separate case can be avoided. However, this does result in an extra (software)
interrupt for each hardware interrupt.

The suggested method is to add a high-level interrupt handler, which just
triggers a lower-priority software interrupt to handle the device. The driver
should allow more concurrency by using a separate mutex for protecting data
from the high-level handler.

116 Writing Device Drivers—August, 1994

6

High-level Mutexes

A mutex initialized with the interrupt block cookie that represents a high-level
interrupt is known as a high-level mutex. While holding a high-level mutex, the
driver is subject to the same restrictions as a high-level interrupt handler. The
only routines it can call are:

• mutex_exit (9F) to release the high-level mutex.

• ddi_trigger_softintr (9F) to trigger a soft interrupt.

Example

In the model presented here, the high-level mutex (xsp->high_mu) is only
used to protect data shared between the high-level interrupt handler and the
soft interrupt handler. This includes a queue that the high-level interrupt
handler appends data to (and the low-level handler removes data from), and a
flag that indicates the low-level handler is running. A separate low-level mutex
(xsp->low_mu) is used to protect the rest of the driver from the soft interrupt
handler.

Code Example 6-3 attach (9E) routine handling high-level interrupts

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;

...

if (ddi_intr_hilevel(dip, inumber)) {
/* add null high-level handler */
if (ddi_add_intr(dip, inumber, &xsp->high_iblock_cookie,

NULL, (u_int (*)(caddr_t))nulldev, NULL) != DDI_SUCCESS)
goto failed;

mutex_init(&xsp->high_mu, "xx high mutex", MUTEX_DRIVER,
(void *)xsp->high_iblock_cookie);

ddi_remove_intr(dip, inumber, xsp->high_iblock_cookie);

if (ddi_add_intr(dip, inumber, &xsp->high_iblock_cookie,
&xsp->high_idevice_cookie, xxhighintr, (caddr_t) xsp)
!= DDI_SUCCESS)
goto failed;

Interrupt Handlers 117

6

/* add null low-level handler */
if (ddi_add_softintr(dip, DDI_SOFTINT_HI, &xsp->id,

&xsp->low_iblock_cookie, NULL,
(u_int (*)(caddr_t))nulldev, NULL))
!= DDI_SUCCESS)
goto failed;

mutex_init(&xsp->low_mu, "xx low mutex", MUTEX_DRIVER,
(void *) xsp->low_iblock_cookie);

ddi_remove_softintr(xsp->id);

if (ddi_add_softintr(dip, DDI_SOFTINT_HI, &xsp->id,
&xsp->low_iblock_cookie, NULL,
xxlowintr, (caddr_t)xsp)) != DDI_SUCCESS)
goto failed;

} else {
add normal interrupt handler

}

cv_init(&xsp->cv, "xx condvar", CV_DRIVER, NULL);
...

return (DDI_SUCCESS);

failed:
free allocated resources, remove interrupt handlers

return (DDI_FAILURE);
}

The high-level interrupt routine services the device, and enqueues the data.
The high-level routine triggers a software interrupt if the low-level routine is
not running.

Code Example 6-4 High-level interrupt routine

static u_int
xxhighintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
u_char status, temp;
int need_softint;

mutex_enter(&xsp->high_mu);
/* read status */
status = xsp->regp->csr;

118 Writing Device Drivers—August, 1994

6

if (!(status & INTERRUPTING)) {
mutex_exit(&xsp->high_mu);
return (DDI_INTR_UNCLAIMED); /* device isn’t interrupting */

}
xsp->regp->csr = CLEAR_INTERRUPT;
/* Flush store buffers */
temp = xsp->regp->csr;

read data from device and queue the data for the low-level interrupt handler;

if (xsp->softint_running)
need_softint = 0;

else
need_softint = 1;

mutex_exit(&xsp->high_mutex);

/* read-only access to xsp->id, no mutex needed */
if (need_softint)

ddi_trigger_softintr(xsp->id);

return (DDI_INTR_CLAIMED);
}

The low-level interrupt routine is started by the high-level interrupt routine
triggering a software interrupt. Once running, it should continue to do so until
there is nothing left to process.

Code Example 6-5 Low-level interrupt routine

static u_int
xxlowintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *) arg;

....
mutex_enter(&xsp->low_mu);
mutex_enter(&xsp->high_mu);
if (queue empty || xsp->softint_running) {

mutex_exit(&xsp->high_mu);
mutex_exit(&xsp->low_mu);
return (DDI_INTR_UNCLAIMED);

}

xsp->softint_running = 1;

while (data on queue) {
ASSERT(mutex_owned(&xsp->high_mu);

dequeue data from high level queue;
mutex_exit(&xsp->high_mu);

Interrupt Handlers 119

6

normal interrupt processing

mutex_enter(&xsp->high_mu);
}

xsp->softint_running = 0;

mutex_exit(&xsp->high_mu);
mutex_exit(&xsp->low_mu);

return (DDI_INTR_CLAIMED);
}

120 Writing Device Drivers—August, 1994

6

121

DMA 7

Many devices can temporarily take control of the bus and perform data
transfers to (and from) main memory or other devices. Since the device is
doing the work without the help of the CPU, this type of data transfer is
known as a direct memory access (DMA). DMA transfers can be performed
between two devices, between a device and memory, or between memory and
memory. This chapter describes transfers between a device and memory only.

The DMA Model
The Solaris 2.x DDI/DKI provides a high-level, architecture-independent
model for DMA. This allows the framework (the DMA routines) to hide
architecture-specific details such as:

• Setting up DMA mappings
• Building scatter-gather lists.
• Ensuring I/O and CPU caches are consistent.

There are several abstractions that are used in the DDI/DKI to describe aspects
of a DMA transaction. These include:

• DMA Object

Memory that is the source or destination of a DMA transfer.

• DMA Handle

122 Writing Device Drivers—August, 1994

7

An opaque object returned from a successful DMA setup call. The DMA
handle can be used in successive DMA subroutine calls to refer to the DMA
object.

• DMA Window

A DMA window describes all or a portion of a DMA object that is ready to
accept data transfers.

• DMA Segment

A DMA segment is a contiguous portion of a DMA window that is entirely
addressable by the device.

• DMA Cookie

A ddi_dma_cookie (9S) structure (ddi_dma_cookie_t) describes a DMA
segment. It contains DMA addressing information required to program the
DMA engine.

Rather than knowing that a platform needs to map an object (typically a
memory buffer) into a special DMA area of the kernel address space, device
drivers instead allocate DMA resources for the object. The DMA routines then
perform any platform-specific operations needed to set the object up for DMA
access. The driver receives a DMA handle to identify the DMA resources
allocated for the object. This handle is opaque to the device driver; the driver
must save the handle and pass it in subsequent calls to DMA routines, but
should not interpret it in any way.

Operations are defined on a DMA handle that provide the following services:

• Manipulating DMA resources
• Synchronizing DMA objects
• Retrieving attributes of the allocated resources

Figure 7-1 shows the relationship between the DMA object, the DMA handle,
and the DMA windows, segments, and cookies.

DMA 123

7

Figure 7-1 The DMA Model

1ST
SEGMENT

DMA
HANDLE

DMA OBJECT

The DMA Model

2ND
SEGMENT

2ND
SEGMENT

NTH
SEGMENT

1ST
SEGMENT

DMA COOKIES DMA COOKIES

1ST WINDOW NTH WINDOW

C C C C C

124 Writing Device Drivers—August, 1994

7

Types of Device DMA
Devices may perform one of the following three types of DMA:

Bus Master DMA
If the device is capable of acting as a true bus master, then the driver should
program the device’s DMA registers directly. The transfer address and count is
obtained from the cookie and given to the device.

Devices on current SPARC platforms use this form of DMA exclusively.

Third-party DMA
Third-party DMA utilizes a system DMA engine resident on the main system
board, which has several DMA channels available for use by devices. The
device relies on the system’s DMA engine to perform the data transfers
between the device and memory. The driver uses DMA engine routines (see
ddi_dmae (9F)) to initialize and program the DMA engine. For each DMA data
transfer, the driver programs the DMA engine and then gives the device a
command to initiate the transfer in cooperation with that engine.

First-party DMA
Under first-party DMA, the device drives its own DMA bus cycles using a
channel from the system’s DMA engine. The ddi_dmae_1stparty (9F)
function is used to configure this channel in a cascade mode such that the
DMA engine will not interfere with the transfer.

DMA and DVMA
The platform that the device operates on may provide one of two types of
memory access: Direct Memory Access (DMA) or Direct Virtual Memory
Access (DVMA).

On platforms that support DMA, the device is provided with a physical
address by the system in order to perform transfers. In this case, one logical
transfer may actually consist of a number of physically discontiguous transfers.
An example of this occurs when an application transfers a buffer that spans
several contiguous virtual pages that map to physically discontiguous pages.
In order to deal with the discontiguous memory, devices for these platforms

DMA 125

7

usually have some kind of scatter/gather DMA capability. Typically the system
that supports x86 platforms provides physical addresses for direct memory
transfers.

On platforms that support DVMA, the device is provided with a virtual
address by the system in order to perform transfers. In this case, the
underlying platform provides some form of MMU which translates device
accesses to these virtual addresses into the proper physical addresses. The
device transfers to and from a contiguous virtual image that may be mapped to
discontiguous virtual pages. Devices that operate in these platforms don’t need
scatter/gather DMA capability. Typically the system which supports SPARC
platforms provides virtual addresses for direct memory transfers.

Handles, Windows, Segments and Cookies
A DMA handle is an opaque pointer representing an object (usually a memory
buffer or address) where a device can perform DMA transfer. The handle is
used in several different calls to DMA routines to identify the DMA resources
allocated for the object.

An object represented by a DMA handle is completely covered by one or more
DMA windows. The system uses the information in the DMA limit structure,
and the memory location and alignment of the target object, to decide how to
divide an object into multiple windows in order to fit the request within
system resource limitations. The ddi_dma_nextwin (9F) function takes a DMA
handle obtained from a DMA setup function and a previous window (or NULL
for the first window) and passes back the next (or first) window of the object.
An active DMA window may represent allocated resources, such as
intermediate buffers. The resources will be released upon the next call to
ddi_dma_nextwin (9F) or when the DMA resources are freed using
ddi_dma_free (9F).

A DMA window can span several discontiguous pages of system memory. If
the DMA engine does not have a memory map, a DMA window might have to
be broken into multiple DMA segments, each representing a contiguous piece of
memory to or from which the DMA engine can transfer data. The
ddi_dma_nextseg (9F) function takes a DMA window obtained from
ddi_dma_nextwin (9F) and a previous segment (or NULL for the first
segment) and returns the next (or first) segment in the window. A segment
represents a contiguous object that is completely addressable in one DMA
cookie.

126 Writing Device Drivers—August, 1994

7

The DMA cookie is a data structure that contains information (such as the
transfer address and count) needed to program the DMA engine (see
ddi_dma_cookie (9S)). The ddi_dma_segtocookie (9F) function takes a
DMA segment obtained from ddi_dma_nextseg (9F) and passes back a DMA
cookie for that segment.

Scatter/Gather

Some DMA engines may be able to accept more than one cookie. Such engines
can perform scatter/gather I/O without the help of the system. In this case, it
is most efficient if the driver uses ddi_dma_nextseg (9F) and
ddi_dma_segtocookie(9F) to get as many cookies as the DMA engine can
handle and program them all into the engine. The device can then be
programmed to transfer the total number of bytes covered by all these
segments combined.

DMA Operations
The steps involved in a DMA transfer are similar among the types of DMA.

Bus-master DMA
In general, here are the steps that must be followed to perform bus-master
DMA.

1. Describe the device limitations. This allows the routines to ensure that the
device will be able to access the buffer.

2. Lock the DMA objects in memory (see physio (9F).

Note – This step is not necessary in block drivers for buffers coming from the
file system, as the file system has already locked the data in memory.

3. Allocate DMA resources for the object.

4. Retrieve the next DMA window with ddi_dma_nextwin (9F).

5. Retrieve the next segment in the window with ddi_dma_nextseg (9F).

6. Get a DMA cookie for the segment with ddi_dma_segtocookie (9F).

DMA 127

7

7. Program the DMA engine on the device and start it (this is device-specific).

When the transfer is complete, continue the bus master operation:

8. Perform any required object synchronizations.

9. Transfer the rest of the window by repeating from Step 5.

10. Transfer the rest of the object by repeating from Step 4.

11. Release the DMA resources.

First-party DMA
In general, here are the steps that must be performed to perform first-party
DMA.

1. Allocate a DMA channel.

2. Configure the channel with ddi_dmae_1stparty (9F).

3. Lock the DMA objects in memory. This step is not necessary in block drivers
for buffers coming from the file system, as the file system has already locked
the data in memory.

4. Allocate DMA resources for the object.

5. Retrieve the next DMA window with ddi_dma_nextwin (9F).

6. Retrieve the next segment in the window with ddi_dma_nextseg (9F).

7. Get a DMA cookie for the segment with ddi_dma_segtocookie (9F).

Program the DMA engine and start it. When the transfer is complete, continue
the DMA operation:

8. Perform any required object synchronizations.

9. Transfer the rest of the window by repeating from Step 6.

10. Transfer the rest of the object by repeating from Step 5.

11. Release the DMA resources.

12. Deallocate the DMA channel.

128 Writing Device Drivers—August, 1994

7

Third-party DMA
In general, here are the steps that must be performed to perform third-party
DMA.

1. Allocate a DMA channel.

2. Retrieve the system’s DMA engine limitations with ddi_dmae_getlim (9F).

3. Lock the DMA objects in memory. This step is not necessary in block drivers
for buffers coming from the file system, as the file system has already locked
the data in memory.

4. Allocate DMA resources for the object.

5. Retrieve the next DMA window with ddi_dma_nextwin (9F).

6. Retrieve the next segment in the window with ddi_dma_nextseg (9F).

7. Get a DMA cookie for the segment with ddi_dma_segtocookie (9F).

8. Program the system DMA engine to perform the transfer with
ddi_dmae_prog (9F).

9. Perform any required object synchronizations.

10. Transfer the rest of the window by repeating from Step 6.

11. Transfer the rest of the object by repeating from Step 5.

12. Stop the DMA engine with ddi_dmae_stop (9F).

13. Release the DMA resources.

14. Deallocate the DMA channel.

Certain hardware platforms may restrict DMA capabilities in a bus-specific
way. Drivers should use ddi_slaveonly (9F) to determine if the device is in a
slot in which DMA is possible. For an example, see the attach() section on
page 95.

Device limitations

Device limitations describe the built-in restrictions of a DMA engine. These
limits include:

DMA 129

7

• Limits on addresses the device can access
• Maximum transfer count
• Address alignment restrictions

To ensure that DMA resources allocated by the system can be accessed by the
device’s DMA engine, device drivers must inform the system of their DMA
engine limitations using a ddi_dma_lim (9S) structure. The system may
impose additional restrictions on the device attributes, but it never removes
any of the driver-supplied restrictions.

DMA Limits

All DMA resource-allocation routines take a pointer to a DMA limit structure
as an argument (see Code Example 7-1 on page 134). This structure is currently
processor-architecture dependant.

ddi_dma_lim_sparc

The SPARC DMA limit structure contains the following members:

typedef struct ddi_dma_lim_t {
u_long dlim_addr_lo; /* lower bound of address range */
u_long dlim_addr_hi; /* inclusive upper bound of address range */
u_int dlim_minxfer; /* minimum effective DMA transfer size */
u_int dlim_cntr_max; /* inclusive upper bound of address register */
u_int dlim_burstsizes;/* bitmask encoded DMA burst sizes */
u_int dlim_dmaspeed; /* average DMA data rate (KB/s) */

} ddi_dma_lim_t;

dlim_addr_lo is the lowest address that the DMA engine can access.

dlim_addr_hi is the highest address that the DMA engine can access.

dlim_minxfer is the minimum effective transfer size the device can perform.
It also influences alignment and padding restrictions.

dlim_cntr_max is the upper bound of the DMA engine’s address register.
This is often used where the upper 8 bits of an address register are a latch
containing a segment number, and the lower 24 bits are used to address a
segment. In this case, dlim_cntr_max would be set to 0x00FFFFFF ; this
prevents the system from crossing a 24-bit segment boundary when
establishing mappings to the object.

130 Writing Device Drivers—August, 1994

7

dlim_burstsizes specifies the burst sizes that the device supports. A burst
size is the amount of data the device can transfer before relinquishing the bus.
This member is a bitmask encoding of the burst sizes. For example, if the
device is capable of doing 1, 2, 4, and 16 byte bursts, this field should be set to
0x17. The system also uses this field to determine alignment restrictions. If the
device is an SBus device and can take advantage of a 64-bit SBus, the lower 16
bits are used to specify the burst size for 32-bit transfers, and the upper 16 bits
are used to specify the burst size for 64-bit transfers.

dlim_dmaspeed is the average speed of the DMA engine in KBytes/second.
This is intended to be a hint for the resource allocation routines, but is optional
and may be zero.

ddi_dma_lim_x86
The x86 DMA limit structure contains the following members:

typedef struct ddi_dma_lim {
u_long dlim_addr_lo; /* lower bound of address range */
u_long dlim_addr_hi; /* inclusive upper bound of address range */
u_int dlim_cntr_max; /* set to 0 */
u_int dlim_burstsizes;/* set to 1 */
u_int dlim_minxfer; /* minimum DMA transfer size */
u_int dlim_dmaspeed; /* set to 0 */
u_int dlim_version; /* version number of this structure */
u_int dlim_adreg_max;/* inclusive upper bound of incrementing address */

/* register */
u_int dlim_ctreg_max;/* maximum transfer count - 1 */
u_int dlim_granular; /* granularity of transfer count */
u_int dlim_sgllen; /* length of DMA scatter/gather list */
u_int dlim_reqsize; /* maximum transfer size (bytes) of a single I/O */

} ddi_dma_lim_t;

dlim_addr_lo is the lowest address that the DMA engine can access.

dlim_addr_hi is the highest address that the DMA engine can access.

dlim_minxfer is the minimum transfer size the DMA engine can perform. It
also influences alignment and padding restrictions. It should be set to
DMA_UNIT_8, DMA_UNIT_16 , or DMA_UNIT_32 to indicate 1, 2, or 4 byte
transfers.

dlim_version specifies the version number of this structure. It should be set
to DMALIM_VER0.

DMA 131

7

dlim_adreg_max is the upper bound of the DMA engine’s address register.
This is often used where the upper 8 bits of an address register are a latch
containing a segment number, and the lower 24 bits are used to address a
segment. In this case, dlim_cntr_max would be set to 0x00FFFFFF ; this
prevents the system from crossing a 24-bit segment boundary when
establishing mappings to the object.

dlim_ctreg_max specifies the maximum transfer count that the DMA engine
can handle in one segment or cookie. The limit is expressed as the maximum
count minus one. This transfer count limitation is a per-segment limitation. It is
used as a bit mask, so it must also be one less than a power of two.

dlim_granular field describes the granularity of the device’s DMA transfer
ability, in units of bytes. This value is used to specify, for example, the sector
size of a mass storage device. DMA requests will be broken into multiples of
this value. If there is no scatter/gather capability, then the size of each DMA
transfer will be a multiple of this value. If there is scatter/gather capability,
then a single segment will not be smaller than the minimum transfer value, but
may be less than the granularity; however the total transfer length of the
scatter/gather list will be a multiple of the granularity value.

dlim_sgllen specifies the maximum number of entries in the scatter/gather
list. It is the number of segments or cookies that the DMA engine can consume
in one I/O request to the device. If the DMA engine has no scatter/gather list,
this field should be set to one.

dlim_reqsize describes the maximum number of bytes that the DMA engine
can transmit or receive in one I/O command. This limitation is only significant
if it is less than (dlim_ctreg_max +1) * dlim_sgllen . If the DMA engine
has no particular limitation, this field should be set to 0xFFFFFFFF .

Here are some examples specifying device limitations:

Example One

A DMA engine on a SPARC SBus device has the following limitations:

• It can only access addresses ranging from 0xFF000000 to 0xFFFFFFFF.
• It has a 32-bit address register.
• It supports 1, 2 and 4-byte burst sizes.
• It has a minimum effective transfer size of 1 byte.
• The system should not make optimizations related to transfer speed.

132 Writing Device Drivers—August, 1994

7

The average speed is not known, so the dlim_dmaspeed field is set to zero.
The resulting limit structure is:

static ddi_dma_lim_t limits = {
0xFF000000, /* low address */
0xFFFFFFFF, /* high address */
0xFFFFFFFF, /* address register maximum */
0x7, /* burst sizes: 0x1 | 0x2 | 0x4 */
0x1, /* minimum transfer size */
0 /* speed */

};

Example Two

A DMA engine on a SPARC VMEbus device has the following limitations:

• It can address the full 32-bit range.
• It has a 24-bit address register.
• It supports 2 to 256-byte burst sizes and all powers of 2 in between.
• It has a minimum effective transfer size of 2 bytes.
• It has an average transfer speed of 10 Mbytes per second.

The resulting limit structure is:

static ddi_dma_lim_t limits = {
0x00000000, /* low address */
0xFFFFFFFF, /* high address */
0xFFFFFF, /* address register maximum */
0x1FE, /* burst sizes */
2, /* minimum transfer size */
10240 /* speed */

};

Example Three

A DMA engine on an x86 ISA bus device has the following limitations:

• It only access the first 16 megabytes of memory.
• It can perform transfers to segments up to 32k in size.
• It can hold up to 17 scatter/gather transfers.
• It operates on units of 512 bytes.
• It has a minimum effective transfer size of 2 bytes.
• It has an average transfer speed of 10 Mbytes per second.

The resulting limit structure is:

DMA 133

7

static ddi_dma_lim_t limits = {
0x00000000, /* low address */
0x00FFFFFF, /* high address */
0, /* must be 0 */
1, /* must be 1 */
DMA_UNIT_8, /* minimum transfer size */
0 /* must be 0 */
DMALIM_VER0, /* version */
0xFFFFFF, /* address register maximum */
0x007FFF, /* maximum transfer - 1 */
512, /* granularity */
17, /* scatter/gather length */
0xFFFFFFFF /* request size */

};

Object Locking

Before allocating the DMA resources for a memory object, the object must be
prevented from moving. If it is not, the system may remove the object from
memory while the device is writing to it, causing the data transfer to fail and
possibly corrupting the system. The process of preventing memory objects
from moving during a DMA transfer is known as locking down the object.

Note – Locking objects in memory is not related to the type of locking used to
protect data.

The following object types do not require explicit locking:

• Buffers coming from the file system through strategy (9E). These buffers
are already locked by the file system.

• Kernel memory allocated within the device driver, such as that allocated by
ddi_mem_alloc (9F) or ddi_iopb_alloc (9F).

For other objects (such as buffers from user space), physio (9F) must be used
to lock down the objects. This is usually performed in the read (9E) or
write (9E) routines of a character device driver. See “DMA Transfers” on
page 158 for an example.

Allocating DMA Resources

Two interfaces are recommended for allocating DMA resources:

134 Writing Device Drivers—August, 1994

7

ddi_dma_buf_setup (9F) Recommended for use with buffer structures.

ddi_dma_addr_setup (9F) Recommended for use with virtual addresses.

Table 7-1 lists the appropriate DMA resource allocation interfaces for different
classes of DMA objects.

All resource allocation routines return a DMA handle for use in subsequent
calls to DMA-related functions. DMA resources are usually allocated in the
driver’s xxstart () routine, if it has one. See “Asynchronous Data Transfers”
on page 184 for discussion of xxstart ().

int ddi_dma_addr_setup(dev_info_t *dip,
struct as *as, caddr_t addr,
u_int len, u_int flags, int (*waitfp)(caddr_t), caddr_t arg,
ddi_dma_lim_t *lim, ddi_dma_handle_t *handlep);

int ddi_dma_buf_setup(dev_info_t *dip,
struct buf *bp,
u_int flags, int (*waitfp)(caddr_t), caddr_t arg,
ddi_dma_lim_t *lim, ddi_dma_handle_t *handlep);

ddi_dma_addr_setup (9F) and ddi_dma_buf_setup (9F) take the following
two arguments:

dip is a pointer to the device’s dev_info structure.

the object to allocate resources for

For ddi_dma_addr_setup (9F), the object is described by an address
range:

•as is a pointer to an address space structure (this must be NULL).
•addr is the base kernel address of the object.
•len is the length of the object.

Table 7-1 DMA Resource Allocation Interfaces

Type of Object Resource Allocation
Interface

Memory allocated within the driver using
ddi_mem_alloc (9F), or ddi_iopb_alloc (9F)

ddi_dma_addr_setup(9F)

Requests from the file system through
strategy (9E)

ddi_dma_buf_setup(9F)

Memory in user space that has been locked down
using physio (9F)

ddi_dma_buf_setup(9F)

DMA 135

7

For ddi_dma_buf_setup (9F), the object is described by a buf (9S)
structure:

•bp is a pointer to a buf (9S) structure.

flags is a set of flags indicating the transfer direction and other attributes.
DDI_DMA_READ indicates a data transfer from device to memory.
DDI_DMA_WRITE indicates a data transfer from memory to device. See
ddi_dma_req(9S) for a complete discussion of the allowed flags.

waitfp is the address of callback function for handling resource allocation
failures.

arg is the argument to pass to the callback function.

lim is a pointer to a ddi_dma_lim (9S) structure as described in “Device
limitations” on page 128.

handlep is a pointer to DMA handle (to store the returned handle).

Handling Resource Allocation Failures

The resource-allocation routines provide the driver several options when
handling allocation failures. The waitfp argument indicates whether the
allocation routines will block, return immediately, or schedule a callback.

State Structure

This section adds the following fields to the state structure. See “State
Structure” on page 57 for more information.

waitfp Indicated Action

DDI_DMA_DONTWAIT Driver does not wish to wait for resources to become
available.

DDI_DMA_SLEEP Driver is willing to wait indefinitely for resources to
become available.

Other values The address of a function to be called when resources
are likely to be available.

136 Writing Device Drivers—August, 1994

7

struct buf *bp; /* current transfer */
ddi_dma_handle_t handle;
struct xxiopb *iopb_array;/* for I/O Parameter Blocks */
ddi_dma_handle_t iopb_handle;

Device Register Structure

Devices that do DMA have more registers than have been used in previous
examples. This section adds the following fields to the device register structure
to support DMA-capable device examples:

volatile caddr_t dma_addr; /* starting address for DMA */
volatile u_int dma_size; /* amount of data to transfer */
volatile caddr_t iopb_addr; /* When written informs device of the next */

/* command’s parameter block address. */
/* When read after an interrupt, contains */
/* the address of the completed command. */

Callback Example

In Code Example 7-1 xxstart () is used as the callback function and the per-
device state structure is given as its argument. xxstart () attempts to start the
command. If the command cannot be started because resources are not
available, xxstart () is scheduled to be called sometime later, when resources
might be available.

Since xxstart () is used as a DMA callback, it must follow these rules
imposed on DMA callbacks:

• It must not assume that resources are available (it must try to allocate them
again).

• It must indicate to the system whether allocation succeed by returning 0 if it
fails to allocate resources (and needs to be called again later) or 1 indicating
success (so no further callback is necessary).

See ddi_dma_req (9S) for a discussion of DMA callback responsibilities.

Code Example 7-1 Allocating DMA resources

static int
xxstart(caddr_t arg)
{

DMA 137

7

struct xxstate *xsp = (struct xxstate *) arg;
struct device_reg *regp;
int flags;

mutex_enter(&xsp->mu);
if (xsp->busy) {

/* transfer in progress */
mutex_exit(&xsp->mu);
return (0);

}
xsp->busy = 1;
mutex_exit(&xsp->mu);
regp = xsp->regp;
if (transfer is a read) {

flags = DDI_DMA_READ;
} else {

flags = DDI_DMA_WRITE;
}
if (ddi_dma_buf_setup(xsp->dip, xsp->bp, flags, xxstart,

(caddr_t)xsp, & limits, &xsp->handle) != DDI_DMA_MAPPED) {
/* really should check all return values in a switch */
return (0);

}
...
program the DMA engine
...
return (1);

}

Burst Sizes

SPARC device drivers specify the burst sizes their device supports in the
dlim_burstsizes field of the ddi_dma_lim (9S) structure. This is a bitmap
of the supported burst sizes. However, when DMA resources are allocated, the
system might impose further restrictions on the burst sizes that may actually
be used by the device. The ddi_dma_burstsizes (9F) routine can be used to
obtain the allowed burst sizes. It returns the appropriate burst size bitmap for
the device. When DMA resources are allocated, a driver can ask the system for
appropriate burst sizes to use for its DMA engine.

#define BEST_BURST_SIZE 0x20 /* 32 bytes */

if (ddi_dma_buf_setup(xsp->dip, xsp->bp, flags , xxstart,
(caddr_t)xsp, & limits, &xsp->handle) != DDI_DMA_MAPPED) {

138 Writing Device Drivers—August, 1994

7

/* error handling */
return (0);

}

burst = ddi_dma_burstsizes(xsp->handle);

/* check which bit is set and choose one burstsize to program the DMA engine */
if (burst & BEST_BURST_SIZE) {

program DMA engine to use this burst size
} else {

other cases
}

Programming the DMA Engine

When the resources have been successfully allocated, the driver traverses the
returned DMA window and finds the first segment. Code Example 7-2 is a
simple example of this.

Code Example 7-2 Traversing windows and segments

ddi_dma_win_t win, nwin;
ddi_dma_seg_t seg, nseg;
int retw, rets;

for (win = NULL;
(retw = ddi_dma_nextwin(xsp->handle,win,&nwin))!=DDI_DMA_DONE;
win = nwin) {
if (retw != DDI_SUCCESS) {

/* do error handling */
} else {

for (seg = NULL;
(rets = ddi_dma_nextseg(nwin,seg,&nseg))!=DDI_DMA_DONE;
seg = nseg) {
if (rets != DDI_SUCCESS) {

/* do error handling */
} else {

ddi_dma_segtocookie(nseg, &off, &len, &cookie);
program the DMA engine

}
}

}
}

DMA 139

7

The device must then be programmed to transfer this segment. Although
programming a DMA engine is device specific, all DMA engines require a
starting address and a transfer count. Device drivers retrieve these two values
from a given segment by calling ddi_dma_segtocookie (9F).

This function takes the segment and fills in a DMA cookie and the offset and
length of the segment. A cookie is of type ddi_dma_cookie (9S) and has the
following fields:

unsigned long dmac_address; /* unsigned 32 bit address */
u_int dmac_size; /* unsigned 32 bit size */
u_int dmac_type; /* bus-specific type bits */

Upon return from ddi_dma_segtocookie (9F), the dmac_address field of
the cookie contains the DMA transfer’s starting address and dmac_size
contains the transfer count. Depending on the bus architecture, the third field
in the cookie may be required by the driver.

The exact shape of dmac_address is device specific—the driver should know
how to interpret it. There is an implementation-specific agreement on the
shape of the cookie. The driver should not perform any manipulations, such as
logical or arithmetical, on the cookie.

Freeing the DMA Resources

After a DMA transfer completes (usually in the interrupt routine), the DMA
resources may be released by calling ddi_dma_free(9F) .

As described in “Synchronizing Memory Objects” on page 142,”
ddi_dma_free (9F) calls ddi_dma_sync (9F), eliminating the need for any
explicit synchronization. After calling ddi_dma_free (9F), the DMA handle
becomes invalid, and further references to the handle have undefined results.
Code Example 7-3 shows how to use ddi_dma_free (9F).

Code Example 7-3 Freeing DMA resources

static u_int
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
u_char status, temp;

mutex_enter(&xsp->mu);
/* read status */
status = xsp->regp->csr;

140 Writing Device Drivers—August, 1994

7

if (!(status & INTERRUPTING)) {
mutex_exit(&xsp->mu);
return (DDI_INTR_UNCLAIMED);

}
xsp->regp->csr = CLEAR_INTERRUPT;

/* for store buffers */
temp = xsp->regp->csr;

ddi_dma_free(xsp->handle);
...
check for errors
...
xsp->busy = 0;
mutex_exit(&xsp->mu);

if (pending transfers) {
(void) xxstart((caddr_t) xsp);

}
return (DDI_INTR_CLAIMED);

}

The DMA resources should be released and reallocated if a different object is
used in the next transfer. However, if the same object is always used, the
resources may be allocated once and continually reused as long as there are
intervening calls to ddi_dma_sync (9F).

Cancelling DMA Callbacks
DMA callbacks cannot be cancelled. This requires some additional code in the
drivers detach (9E) routine, since it must not return DDI_SUCCESS if there are
any outstanding callbacks. When DMA callbacks occur, the detach (9E)
routine must wait for the callback to run and must prevent it from
rescheduling itself. This can be done using additional fields in the state
structure:

int cancel_callbacks; /* detach(9E) sets this to */
/* prevent callbacks from */
/* rescheduling themselves */

int callback_count; /* number of outstanding callbacks */
kmutex_t callback_mutex; /* protects callback_count and */

/* cancel_callbacks. */
kcondvar_t callback_cv; /* condition is that callback_count */

/* is zero. detach(9E) waits on it */

DMA 141

7

Code Example 7-4 Cancelling DMA callbacks

static int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

...
mutex_enter(&xsp->callback_mutex);
xsp->cancel_callbacks = 1;
while (xsp->callback_count > 0) {

cv_wait(&xsp->callback_cv, &xsp->callback_mutex);
}
mutex_exit(&xsp->callback_mutex);
...

}

static int
xxstrategy(struct buf *bp)
{

...
mutex_enter(&xsp->callback_mutex);
xsp->bp = bp;
error = ddi_dma_buf_setup(xsp->dip, xsp->bp,

flags, xxdmacallback, (caddr_t)xsp, & limits, &xsp->handle);
if (error == DDI_DMA_NORESOURCES)

xsp->callback_count++;
mutex_exit(&xsp->callback_mutex);
...

}

static int
xxdmacallback(caddr_t callbackarg)
{

struct xxstate *xsp = (struct xxstate *)callbackarg;
...
mutex_enter(&xsp->callback_mutex);
if (xsp->cancel_callbacks) {

/* do not reschedule, in process of detaching */
xsp->callback_count--;
if (xsp->callback_count == 0)

cv_signal(&xsp->callback_cv);
mutex_exit(&xsp->callback_mutex);
return (1); /* tell framework for this callback */

/* routine not to reschedule it */
}
/*
 * Presumably at this point the device is still active
 * and will not be detached until the DMA has completed.

142 Writing Device Drivers—August, 1994

7

 * A return of 0 means try again later
 */
error = ddi_dma_buf_setup(xsp->dip, xsp->bp,
 flags , DDI_DMA_DONTWAIT, NULL, & limits, &xsp->handle);
if (error == DDI_DMA_MAPPED) {

...
program the DMA engine
...
xsp->callback_count--;
mutex_exit(&xsp->callback_mutex);
return (1);

}
if (error != DDI_DMA_NORESOURCES) {

xsp->callback_count--;
mutex_exit(&xsp->callback_mutex);
return (1);

}
mutex_exit(&xsp->callback_mutex);
return (0);

}

Synchronizing Memory Objects
At various points when the memory object is accessed (including the time of
removal of the DMA resources), the driver may need to synchronize the
memory object with respect to various caches. This section gives guidelines on
when and how to synchronize memory objects.

Cache

Cache is a very high-speed memory that sits between the CPU and the
system’s main memory (CPU cache), or between a device and the system’s
main memory (I/O cache).

DMA 143

7

Figure 7-2 Caches

When an attempt is made to read data from main memory, the associated cache
first checks to see if it contains the requested data. If so, it very quickly satisfies
the request. If the cache does not have the data, it retrieves the data from main
memory, passes the data on to the requestor, and saves the data in case that
data is requested again.

Similarly, on a write cycle, the data is stored in the cache very quickly and the
CPU or device is allowed to continue executing (transferring). This takes much
less time than it otherwise would if the CPU or device had to wait for the data
to be written to memory.

An implication of this model is that after a device transfer has completed, the
data may still be in the I/O cache but not yet in main memory. If the CPU
accesses the memory, it may read the wrong data from the CPU cache. To
ensure a consistent view of the memory for the CPU, the driver must call a
synchronization routine to write the data from the I/O cache to main memory
and update the CPU cache with the new data. Similarly, a synchronization step
is required if data modified by the CPU is to be accessed by a device.

CPU

CPU Cache

I/O Device

System I/O Cache

Memory

Bus Extender
I/O Cache

144 Writing Device Drivers—August, 1994

7

There may also be additional caches and buffers in between the device and
memory, such as caches associated with bus extenders or bridges.
ddi_dma_sync (9F) is provided to synchronize all applicable caches.

ddi_dma_sync()

If a memory object has multiple mappings—such as for a device (through the
DMA handle), and for the CPU—and one mapping is used to modify the
memory object, the driver needs to call ddi_dma_sync(9F) to ensure that the
modification of the memory object is complete before accessing the object
through another mapping. ddi_dma_sync(9F) may also inform other
mappings of the object that any cached references to the object are now stale.
Additionally, ddi_dma_sync(9F) flushes or invalidates stale cache
references as necessary.

Generally, the driver has to call ddi_dma_sync(9F) when a DMA transfer
completes. The exception to this is that deallocating the DMA resources
(ddi_dma_free(9F)) does an implicit ddi_dma_sync(9F) on behalf of the
driver.

int ddi_dma_sync(ddi_dma_handle_t handle, off_t off,
u_int length, u_int type);

If the object is going to be read by the DMA engine of the device, the device’s
view of the object must be synchronized by setting type to
DDI_DMA_SYNC_FORDEV. If the DMA engine of the device has written to the
memory object, and the object is going to be read by the CPU, the CPU’s view
of the object must be synchronized by setting type to DDI_DMA_SYNC_FORCPU.

Here is an example of synchronizing a DMA object for the CPU:

if (ddi_dma_sync(xsp->handle, 0, length, DDI_DMA_SYNC_FORCPU)
== DDI_SUCCESS) {
/* the CPU can now access the transferred data */
...

} else {
error handling

}

If the only mapping that concerns the driver is one for the kernel (such as
memory allocated by ddi_mem_alloc (9F)), the flag
DDI_DMA_SYNC_FORKERNEL can be used. This is a hint to the system that if it
can synchronize the kernel’s view faster than the CPU’s view, it can do so;
otherwise, it acts the same as DDI_DMA_SYNC_FORCPU.

DMA 145

7

Allocating Private DMA Buffers
Some device drivers may need to allocate memory for DMA transfers to or
from a device, in addition to doing transfers requested by user threads and the
kernel. Examples of this are setting up shared memory for communication with
the device and allocating intermediate transfer buffers. Two interfaces are
provided for allocating memory for DMA transfers: ddi_iopb_alloc (9F) and
ddi_mem_alloc (9F).

ddi_iopb_alloc()

ddi_iopb_alloc (9F) should be used if the device accesses in a non-
sequential fashion, or if synchronization steps using ddi_dma_sync (9F)
should be as lightweight as possible (due to frequent use on small objects).
This type of access is commonly known as consistent access. I/O parameter
blocks that are used for communication between a device and the driver are set
up using ddi_iopb_alloc (9F). ddi_iopb_free (9F) is used to free the
memory allocated by ddi_iopb_alloc (9F).

On x86 systems, ddi_iopb_alloc (9F) can be used to allocate memory that is
physically contiguous as well as consistent.

Code Example 7-5 is an example of how to allocate IOPB memory and the
necessary DMA resources to access it. DMA resources must still be allocated,
and the DDI_DMA_CONSISTENT flag must be passed to the allocation function.

Code Example 7-5 Using ddi_iopb_alloc (9F)

if (ddi_iopb_alloc(xsp->dip, & limits, size, &xsp->iopb_array)
!= DDI_SUCCESS) {
error handling
goto failure;

}
if (ddi_dma_addr_setup(xsp->dip, NULL, xsp->iopb_array, size,

DDI_DMA_READ | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP,
NULL, & limits, &xsp->iopb_handle) != DDI_DMA_MAPPED) {
error handling
ddi_iopb_free(xsp->iopb_array);
goto failure;

}

146 Writing Device Drivers—August, 1994

7

ddi_mem_alloc()

ddi_mem_alloc (9F) should be used if the device is doing sequential,
unidirectional, block-sized and block-aligned transfers to or from memory. This
type of access is commonly known as streaming access.

In SPARC, ddi_mem_alloc (9F) obeys the alignment and padding constraints
specified by the dlim_minxfer and dlim_burstsizes fields in the passed
DMA limit structure to get the most effective hardware support for large
transfers. For example, if an I/O transfer can be sped up by using an I/O
cache, which at a minimum transfers (flushes) one cache line,
ddi_mem_alloc (9F) will round the size to a multiple of the cache line to avoid
data corruption.

In x86, ddi_mem_alloc (9F) obeys the alignment specified by the
dlim_minxfer fields in the passed DMA limit structure. In addition, the
physical address of the allocated memory will be within the dlim_addr_lo
and dlims_addr_hi of the DMA limit structure.

ddi_mem_free (9F) is used to free the memory allocated by
ddi_mem_alloc (9F).

Note – If the memory is not properly aligned, the transfer will succeed but the
system will pick a different (and possibly less efficient) transfer mode that
requires less restrictions. For this reason, ddi_mem_alloc (9F) is preferred
over kmem_alloc (9F) when allocating memory for the device to access.

Code Example 7-6 is an example of how to allocate memory for streaming
access.

Code Example 7-6 Using ddi_mem_alloc (9F)

if (ddi_mem_alloc(xsp->dip, & limits, size, 0,
&memp, & real_length) != DDI_SUCCESS) {
error handling
goto failure;

}
if (ddi_dma_addr_setup(xsp->dip, NULL, memp, real_length,

DDI_DMA_READ, DDI_DMA_SLEEP, NULL, & limits, & mem_handle)
!= DDI_DMA_MAPPED) {
error handling

DMA 147

7

ddi_mem_free(memp);
goto failure;

}

ddi_mem_alloc (9F) returns the actual size of the allocated memory object.
Because of padding and alignment requirements the actual size might be larger
than the requested size. ddi_dma_addr_setup (9F) requires the actual length.

ddi_dma_devalign()

After allocating DMA resources for private data buffers,
ddi_dma_devalign (9F) should be used to determine the minimum required
data alignment and minimum effective transfer size.

Although the starting address for the DMA transfer will be aligned properly,
the offset passed to ddi_dma_htoc (9F) allows the driver to start a transfer
anywhere within the object, eventually bypassing alignment restrictions. The
driver should therefore check the alignment restrictions prior to initiating a
transfer and align the offset appropriately.

The driver should also check the minimum effective transfer size. The
minimum effective transfer size indicates, for writes, how much of the mapped
object will be affected by the minimum access. For reads it indicates how much
of the mapped object will be accessed.

For memory allocated with ddi_iopb_alloc (9F), the minimum transfer size
will usually be one byte. This means that positioning randomly within the
mapped object is possible. For memory allocated with ddi_mem_alloc (9F),
the minimum transfer size is usually larger as caches might be activated that
only operate on entire cache lines (line size granularity).

Example
if (ddi_dma_devalign(xsp->handle, &align, &mineffect) ==

DDI_FAILURE) {
error handling
goto failure;

}

align = max(align, mineffect);
/* adjust offset for ddi_dma_htoc(9F) */

148 Writing Device Drivers—August, 1994

7

149

Drivers for Character Devices 8

This chapter describes the structure of a character device driver. The entry
points of a character device driver are the main focus, and the use of
physio (9F) in read (9E) and write (9E) is also explained.

Entry Points
Associated with each device driver is a dev_ops (9S) structure, which in turn
refers to a cb_ops (9S) structure. These structures contain pointers to the driver
entry points, and must be set by the driver. Table 8-1 lists the character device
driver entry points.

Table 8-1 Character Driver Entry Points

Entry Point Description

_init (9E) Initializes the loadable driver module.

_info (9E) Returns the loadable driver module information.

_fini (9E) Prepares a loadable driver module for unloading.

identify (9E) Identifies if the device driver supports a physical device.

probe (9E) Determines if a device is present.

attach (9E) Performs device-specific initialization.

detach (9E) Removes device-specific state.

getinfo (9E) Gets device driver information.

150 Writing Device Drivers—August, 1994

8

Note – Some of these entry points may be replaced by nodev (9F) or
nulldev (9F) as appropriate.

Autoconfiguration
The attach (9E) routine should perform the common initialization tasks that
all devices require. Typically, these tasks include:

• Allocating per-instance state structures
• Mapping the device’s registers
• Registering device interrupts
• Initializing mutex and condition variables
• Creating minor nodes

Character device drivers create minor nodes of type S_IFCHR. This causes a
character special file representing the node to eventually appear in the
/devices hierarchy.

Code Example 8-1 Character driver attach (9E) routine

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

open (9E) Gains access to a device.

close (9E) Relinquishes access to a device.

read (9E) Read data from device.

write (9E) Write data to device.

ioctl (9E) Perform arbitrary operation.

prop_op (9E) Manages arbitrary driver properties.

mmap(9E) Checks virtual mapping for a memory mapped device.

segmap(9E) Maps device memory into user space.

chpoll (9E) Poll device for events.

Table 8-1 Character Driver Entry Points

Entry Point Description

Drivers for Character Devices 151

8

switch (cmd) {
case DDI_ATTACH:

allocate a state structure and initialize it.
map the device’s registers.
add the device driver’s interrupt handler(s).
initialize any mutexes and condition variables.

/*
 * Create the device’s minor node. Note that the node_type
 * argument is set to DDI_NT_TAPE.
 */
if (ddi_create_minor_node(dip, “ minor_name”, S_IFCHR,

minor_number, DDI_NT_TAPE, 0) == DDI_FAILURE) {
free resources allocated so far
/* Remove any previously allocated minor nodes */
ddi_remove_minor_node(dip, NULL);

return (DDI_FAILURE);
}
...
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}
}

For a description of the autoconfiguration process see Chapter 5,
“Autoconfiguration.”

Controlling Device Access
Access to a device by one or more application programs is controlled through
the open (9E) and close (9E) entry points. The open (9E) routine of a character
driver is always called whenever an open (2) system call is issued on a special
file representing the device. For a particular minor device, open (9E) may be
called many times, but the close (9E) routine is called only when the final
reference to a device is removed. If the device is accessed through file
descriptors, this is by a call to close (2) or exit (2). If the device is accessed
through memory mapping, this could also be by a call to munmap(2).

open()

int xxopen(dev_t *devp, int flag, int otyp, cred_t *credp);

152 Writing Device Drivers—August, 1994

8

The primary function of open (9E) is to verify that the open request is allowed.

Code Example 8-2 Character driver open (9E) routine.

static int
xxopen(dev_t *devp, int flag, int otyp, cred_t *credp)
{

int instance;

if (getminor(*devp) is invalid)
return (EINVAL);

instance = getminor(*devp); /* one-to-one example mapping */

/* Is the instance attached? */
if (ddi_get_soft_state(statep, instance) == NULL)

return (ENXIO);

/* verify that otyp is appropriate */
if (otyp != OTYP_CHR)

return (EINVAL);

if ((flag & FWRITE) && drv_priv(credp) == EPERM)
return (EPERM);

return (0);
}

devp is a pointer to a device number. The open (9E) routine is passed a pointer
so that the driver can change the minor number. This allows drivers to
dynamically create minor instances of the device. An example of this might be
a pseudo-terminal driver that creates a new pseudo-terminal whenever the
driver is opened. A driver that chooses the minor number dynamically,
normally creates only one minor device node in attach (9E) with
ddi_create_minor_node (9F), then changes the minor number component of
*devp using makedevice (9F) and getmajor (9F):

*devp = makedevice(getmajor(*devp), new_minor);

The driver must keep track of available minor numbers internally.

otyp indicates how open (9E) was called. The driver must check that the value
of otyp is appropriate for the device. For character drivers, otyp should be
OTYP_CHR (see the open (9E) manual page).

flag contains bits indicating whether the device is being opened for reading
(FREAD), writing (FWRITE), or both. Threads issuing the open (2) can also
request exclusive access to the device (FEXCL) or specify that the open should

Drivers for Character Devices 153

8

not block for any reason (FNDELAY), but it is up to the driver to enforce both
cases. A driver for a write-only device such as a printer might consider an
open for reading invalid.

credp is a pointer to a credential structure containing information about the
caller, such as the user ID and group IDs. Drivers should not examine the
structure directly, but should instead use drv_priv (9F) to check for the
common case of root privileges. In this example, only root is allowed to
open the device for writing.

close()

int xxclose(dev_t dev, int flag, int otyp, cred_t *credp);

close (9E) should perform any cleanup necessary to finish using the minor
device, and prepare the device (and driver) to be opened again. For example,
the open routine might have been invoked with the exclusive access (FEXCL)
flag. A call to close (9E) would allow further opens to continue. Other
functions that close (9E) might perform are:

• Wait for I/O to drain from output buffers before returning.

• Rewind a tape (tape device).

• Hang up the phone line (modem device).

I/O Request Handling
This section gives the details of I/O request processing: from the application to
the kernel, the driver, the device, the interrupt handler, and back to the user.

User Addresses

When a thread issues a write (2) system call, it passes the address of a buffer
in user space:

char buffer[] = “python”;

count = write(fd, buffer, strlen(buffer) + 1);

154 Writing Device Drivers—August, 1994

8

The system builds a uio (9S) structure to describe this transfer by allocating an
iovec (9S) structure and setting the iov_base field to the address passed to
write (2); in this case, buffer . The uio (9S) structure is what is passed to the
driver write(9E) routine (see “Vectored I/O” for more information about the
uio (9S) structure).

A problem is that this address is in user space, not kernel space, and so is not
guaranteed to be currently in memory. It is not even guaranteed to be a valid
address. In either case, accessing a user address directly could crash the
system, so device drivers should never access user addresses directly. Instead,
they should always use one of the data transfer routines in the Solaris 2.x
DDI/DKI that transfer data into or out of the kernel; see “Copying Data” on
page 313 and “uio(9S) Handling” on page 352 for a summary of the available
routines. These routines are able to handle page faults, either by bringing the
proper user page in and continuing the copy transparently, or by returning an
error on an invalid access.

Two routines commonly used are copyout (9F) to copy data from the driver to
user space, and copyin (9F) to copy data from user space to the driver.
ddi_copyout (9F) and ddi_copyin (9F) operate similarly but are to be used in
the ioctl (9E) routine. copyin (9F) and copyout (9F) can be used on the buffer
described by each iovec (9S) structure, or uiomove (9F) can perform the entire
transfer to or from a contiguous area of driver (or device) memory.

Vectored I/O

In character drivers, transfers are described by a uio (9S) structure. The
uio (9S) structure contains information about the direction and size of the
transfer, plus an array of buffers describing one end of the transfer (the other
end is the device). Below is a list of uio (9S) structure members that are
important to character drivers.

iovec_t *uio_iov; /* base address of the iovec buffer */
/* description array */

int uio_iovcnt; /* the number of iovec structures */
off_t uio_offset; /* offset into device where data is */

/* transferred from or to */
offset_t uio_loffset/* 64-bit offset into file where data */

/* is transferred from or to. See NOTES.*/
int uio_resid; /* amount (in bytes) not transferred on */

/* completion */

Drivers for Character Devices 155

8

A uio (9S) structure is passed to the driver read (9E) and write (9E) entry
points. This structure is generalized to support what is called gather-write and
scatter-read. When writing to a device, the data buffers to be written do not
have to be contiguous in application memory. Similarly, when reading from a
device into memory, the data comes off the device in a contiguous stream but
can go into a noncontiguous area of application memory. See readv (2),
writev (2), pread (2) and pwrite (2) for more information on scatter/gather
I/O.

Each buffer is described by an iovec (9S) structure. This structure contains a
pointer to the data area and the number of bytes to be transferred.

caddr_t iov_base; /* address of buffer */
int iov_len; /* amount to transfer */

The uio structure contains a pointer to an array of iovec (9S) structures. The
base address of this array is held in uio_iov , and the number of elements is
stored in uio_iovcnt .

The uio_offset field contains the 32-bit offset into the device that the
application wants to begin the transfer at. uio_loffset is used for 64-bit file
offsets. If the device does not support the notion of an offset these fields can be
safely ignored. The driver should intrepret either uio_offset or
uio_loffset (but not both). The driver determines the offset used according
to the settings of the flags field in the cp_ops (9S) structure.

The uio_resid field starts out as the amount of data to be transferred (the
sum of all the iov_len fields in uio_iov), and must be set by the driver to
the amount of data not transferred before returning. The read (2) and write (2)
system calls use the return value from the read (9E) and write (9E) entry
points to determine if the transfer failed (and then return -1). If the return
value indicates success, the system calls return the number of bytes requested
minus uio_resid . If uio_resid is not changed by the driver, the read (2)
and write (2) calls will return 0 (indicating end-of-file), even though all the
data was transferred.

The support routines uiomove (9F) and physio (9F) update the uio (9S)
structure directly. If they are used, no driver adjustments are necessary.

156 Writing Device Drivers—August, 1994

8

Driver Operations

The read (9E) or write (9E) entry point is called when a user thread issues the
corresponding system call. It is the responsibility of these routines to perform
the desired transfer, then return an indication of success or failure.

Programmed I/O Transfers.

Programmed I/O (PIO) devices rely on the CPU to perform the data transfer.
PIO data transfers are identical to other device register read and write
operations. An assignment statement is used to move a value from one
variable or structure to another.

uiomove()

This kind of device may allow the driver to use uiomove (9F). uiomove (9F)
transfers data between the user space (defined by the uio (9S) structure) and
the kernel. uiomove (9F) can handle page faults so the memory to which data is
transferred need not be locked down. It also updates the uio_resid field in
the uio (9S) structure. The following example is one way to write the ramdisk
read (9E) routine, and relies on the following fields being present in the
ramdisk state structure:

caddr_t ram; /* base address of ramdisk */
int ramsize; /* size of the ramdisk */

Code Example 8-3 Ramdisk read (9E) routine using uiomove (9F)

static int
rd_read(dev_t dev, struct uio *uiop, cred_t *credp)
{

int instance;
rd_devstate_t *rsp;

instance = getminor(dev);
rsp = ddi_get_soft_state(rd_statep, instance);
if (rsp == NULL)

return (ENXIO);
if (uiop->uio_offset >= rsp->ramsize)

return (EINVAL);

/*
 * uiomove takes the offset into the kernel buffer,
 * the data transfer count (minimum of the requested and
 * the remaining data), the UIO_READ flag, and a pointer

Drivers for Character Devices 157

8

 * to the uio structure.
 */
return (uiomove(rsp->ram + uiop->uio_offset,

min(uiop->uio_resid, rsp->ramsize - uiop->uio_offset),
UIO_READ, uiop));

}

uwritec() and ureadc()

Another example might be a driver writing data directly to the device’s
memory, which must be performed one byte at a time. Each byte is retrieved
from the uio (9S) structure using uwritec (9F), then sent to the device.
read (9E) can use ureadc (9F) to transfer a byte from the device to the area
described by the uio (9S) structure.
Code Example 8-4 Programmed I/O write (9E) routine using uwritec (9F).

static int
xxwrite(dev_t dev, struct uio *uiop, cred_t *credp)
{

int instance;
int value;
struct xxstate *xsp;
struct device_reg *regp;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (ENXIO);

regp = xsp->regp;
while (uiop->uio_resid > 0) {

/*
 * do the PIO access
 */
value = uwritec(uiop);
if (value == -1)

return (EFAULT);
regp->data = (u_char)value;
regp->csr = START_TRANSFER;
/* this device requires a ten microsecond delay */
/* between writes */
drv_usecwait(10);

}
return (0);

}

158 Writing Device Drivers—August, 1994

8

DMA Transfers

Many character drivers (especially those with DMA capabilities) use
physio (9F) to do most of the work.

int physio(int (*strat)(struct buf *), struct buf *bp,
dev_t dev, int rw, void (*mincnt)(struct buf *),
struct uio *uio);

physio (9F) requires the driver to provide a strategy (9E) entry point (though
it does not get placed in the cb_ops (9S) structure). physio (9F) ensures that
memory space is locked down (cannot be paged out) for the duration of the
data transfer. This is necessary for DMA transfers because they cannot handle
page faults. physio (9F) also provides an automated way of breaking a larger
transfer into a series of smaller, more manageable ones.

Code Example 8-5 read (9E) and write (9E) routines using physio (9F)

static int
xxread(dev_t dev, struct uio *uiop, cred_t *credp)
{

int instance;
struct xxstate *xsp;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);

if (xsp == NULL)
return (ENXIO);

return (physio(xxstrategy, NULL, dev, B_READ, xxminphys, uiop));
}

static int
xxwrite(dev_t dev, struct uio *uiop, cred_t *credp)
{

int instance;
struct xxstate *xsp;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);

if (xsp == NULL)
return (ENXIO);

return (physio(xxstrategy, NULL, dev, B_WRITE, xxminphys,uiop));
}

Drivers for Character Devices 159

8

In the call to physio (9F), xxstrategy is a pointer to the driver strategy
routine. Passing NULL as the buf (9S) structure pointer tells physio (9F) to
allocate a buf (9S) structure. If it is necessary for the driver to provide
physio (9F) with a buf (9S) structure, getrbuf (9F) should be used to allocate
one. physio (9F) returns zero if the transfer completes successfully, or an error
number on failure. The return value of physio (9F) is determined by the
strategy (9E) routine.

minphys()

xxminphys is a pointer to a function to be called by physio (9F) to ensure that
the size of the requested transfer does not exceed a driver-imposed limit. If the
user requests a larger transfer, physio (9F) calls xxstrategy () repeatedly,
requesting no more than the imposed limit at a time. This is important for
DMA transfers because there is only finite amount of DMA resources available.
Drivers for slow devices, such as printers, should be careful because they tie
up resources for a long time.

Usually, a driver passes a pointer to the kernel function minphys (9F), but it
can define its own xxminphys () routine instead. The job of minphys (9F) is to
keep the b_bcount field of the buf (9S) structure below a driver limit. There
may be additional system limits that the driver should not circumvent, so the
driver minphys routine should call the system minphys (9F) routine before
returning.

Code Example 8-6 minphys (9F) routine

#define XXMINVAL (124 << 10)

static void
xxminphys(struct buf *bp)
{

if (bp->b_bcount > XXMINVAL)
bp->b_bcount = XXMINVAL

minphys(bp);
}

160 Writing Device Drivers—August, 1994

8

strategy()

The strategy (9E) routine originated in block drivers and is so called because
it can implement a strategy for efficient queuing of I/O requests to a block
device. A driver for a character-oriented device can also use a strategy (9E)
routine. In the character I/O model presented here, strategy (9E) does not
maintain a queue of requests, but rather services one request at a time.

In this example, the strategy (9E) routine for a character-oriented DMA
device allocates DMA resources for the data transfer and starts the command
by programming the device register (see Chapter 7, “DMA,” for a detailed
description). Note that strategy (9E) does not receive a device number
(dev_t) as a parameter, this is instead retrieved from the b_edev field of the
buf (9S) structure.

Code Example 8-7 strategy (9E) routine supporting physio (9F)

static int
xxstrategy(struct buf *bp)
{

int instance;
struct xxstate *xsp;
ddi_dma_cookie_t cookie;

instance = getminor(bp->b_edev);
xsp = ddi_get_soft_state(statep, instance);
...
set up DMA resources with ddi_dma_buf_setup(9F)

xsp->bp = bp; /* remember bp */

program DMA engine and start command

return (0);
}

Though strategy (9E) is declared to return an int , it should always return
zero. strategy (9E) indicates an error to physio (9F) by setting the B_ERROR
bit in the b_flags member of the buf (9S) structure, and placing the
appropriate error number in the b_error field. physio (9F) will then return
zero to indicate success, or the value of the b_error field if an error occurs.

Drivers for Character Devices 161

8

After calling strategy (9E), physio (9F) waits until the driver finishes with
the buf (9S) structure (the transfer fails or is complete) by calling biowait (9F).
A call to biodone (9F) must later be made by the driver or physio (9F) will
wait forever. For example, strategy (9E) must call biodone (9F) when an
error occurs.

Transfer Completion

On completion of the DMA transfer, the device generates an interrupt.
Eventually, the interrupt routine will be called. In this example, xxintr ()
receives a pointer to the state structure for the device that might have issued
the interrupt. The most important function in the interrupt routine is to notify
physio (9F) that the transfer is complete, which is accomplished by the call to
biodone (9F). If the driver does not notify physio (9F) that the transfer is
complete, physio (9F) will not return, and the thread will hang.

Code Example 8-8 Interrupt routine using physio (9F)

static u_int
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;

if (device did not interrupt) {
return (DDI_INTR_UNCLAIMED);

}

if (error) {
error handling

}

release any resources used in the transfer, such as DMA resources (ddi_dma_free(9F))

/* wake up waiting thread in physio(9F) */
biodone (xsp->bp);

return (DDI_INTR_CLAIMED);
}

Mapping Device Memory
Some devices, such as frame buffers, have memory that is directly accessible to
user threads by way of memory mapping. Drivers for these devices typically
do not support the read (9E) and write (9E) interfaces. Instead, these drivers

162 Writing Device Drivers—August, 1994

8

support memory mapping with the mmap(9E) entry point. A typical example is
a frame buffer driver that implements the mmap(9E) entry point to allow the
frame buffer to be mapped in a user thread.

segmap()

int xxsegmap(dev_t dev, off_t off, struct as *asp, caddr_t *addrp,
off_t len, unsigned int prot, unsigned int maxprot,
unsigned int flags, cred_t *credp);

segmap(9E) is the entry point responsible for actually setting up a memory
mapping requested by the system on behalf of an mmap(2) system call. Drivers
for all memory mapped devices usually use ddi_segmap (9F) as the entry
point rather than define their own segmap(9E) routine.

mmap()

int xxmmap(dev_t dev, off_t off, int prot);

This routine is called as a result of an mmap(2) system call, and also as the
result of a page fault. mmap(9E) is called to translate the device offset off to
the corresponding page frame number. Code Example 8-9 allows a user thread
to memory map the device registers.

Code Example 8-9 mmap(9E) routine

static int
xxmmap(dev_t dev, off_t off, int prot)
{

int instance;
struct xxstate *xsp;

if (prot & PROT_WRITE)
return (-1);

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (-1);

if (off is invalid)
return (-1);

return (hat_getkpfnum(xsp->regp->csr + off));
}

Drivers for Character Devices 163

8

dev is the device number and off is the offset into the device’s memory. prot
specifies the kind of access requested, such as PROT_READ and PROT_WRITE A
value of PROT_WRITE for prot would be invalid on a read-only device. See
mmap(9E) and mmap(2).

hat_getkpfnum (9F) returns the page frame number for the memory that
should be mapped. xsp->regp->csr is the kernel virtual address of the
device memory determined in attach (9E) by calling ddi_map_regs (9F) and
stored in the state structure.

In Code Example 8-9 the whole address range up to off must be mapped
using ddi_map_regs (9F). This can use a lot of system resources for devices
that have a large mappable memory area, and is a waste of resources if the
driver only needs the mapping so it can call hat_getkpfnum (9F). A better
way to get the page frame number for a given offset is to just map that
individual page, retrieve the page frame number, then unmap the page before
returning. Since the page frame number refers to a page on the device, it will
not change when the page is unmapped.

Code Example 8-10 mmap(9E) routine using less resources.

static int
xxmmap(dev_t dev, off_t off, int prot)
{

int kpfn = -1;
caddr_t kva;

...

if (ddi_map_regs(xsp->dip, rnumber, &kva, off, ptob(1)) ==
DDI_SUCCESS) {
kpfn = hat_getkpfnum(kva);
ddi_unmap_regs(xsp->dip, rnumber, &kva, off, ptob(1));

}

return (kpfn);
}

If the mappable memory of the device is physically contiguous, converting off
to the number of pages and adding it to the base page frame number will give
the same result as getting the page frame number of a mapped page. In this
case, only the first page of the device’s memory needs to be mapped:

return (hat_getkpfnum(xsp->regp->csr) + btop(off));

For an example showing how to access a memory mapped device from a user
program see “Using Existing Drivers” on page 243.

164 Writing Device Drivers—August, 1994

8

Multiplexing I/O on File Descriptors
A thread sometimes wants to handle I/O on more than one file descriptor. One
example is an application program that wants to read the temperature from a
temperature sensing device and then report the temperature to an interactive
display. If the program makes a read request and there is no data available, it
should not block waiting for the temperature before interacting with the user
again.

The poll (2) system call provides users with a mechanism for multiplexing
I/O over a set of file descriptors that reference open files. poll (2) identifies
those files on which a program can send or receive data without blocking, or
on which certain events have occurred.

To allow a program to poll a character driver, the driver must implement the
chpoll (9E) entry point.

State Structure

This section adds the following field to the state structure. See “State Structure”
on page 57 for more information.

struct pollhead pollhead; /* for chpoll(9E)/pollwakeup(9F) */

chpoll()

int xxchpoll(dev_t dev, short events, int anyyet, short *reventsp,
struct pollhead **phpp);

The system calls chpoll (9E) when a user process issues a poll (2) system call
on a file descriptor associated with the device. The chpoll (9E) entry point
routine is used by non-STREAMS character device drivers that wish to support
polling.

In chpoll (9E), the driver must follow the following rules:

• Implement the following algorithm when the chpoll (9E) entry point is
called:

if (events are satisfied now) {
*reventsp = mask of satisfied events;

} else {
*reventsp = 0;
if (!anyyet)

Drivers for Character Devices 165

8

*phpp = & local pollhead structure;
}
return (0);

xxchpoll () should check to see if certain events have occurred; see
chpoll (9E). It should then return the mask of satisfied events by setting the
return events in *reventsp .

If no events have occurred, the return field for the events is cleared. If the
anyyet field is not set, the driver must return an instance of the pollhead
structure. It is usually allocated in a state structure and should be treated as
opaque by the driver. None of its fields should be referenced.

• Call pollwakeup (9F) whenever a device condition of type events , listed in
Code Example 8-11, occurs. This function should be called only with one
event at a time. pollwakeup (9F) might be called in the interrupt routine
when the condition has occurred.

The following two examples show how to implement the polling discipline
and how to use pollwakeup (9F).

Code Example 8-11 chpoll (9E) routine

static int
xxchpoll(dev_t dev, short events, int anyyet,

short *reventsp,struct pollhead **phpp)
{

int instance;
u_char status;
short revent;
struct xxstate *xsp;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (ENXIO);

revent = 0;
/*
 * Valid events are:
 * POLLIN | POLLOUT | POLLPRI | POLLHUP | POLLERR
 * This example checks only for POLLIN and POLLERR.
 */
status = xsp->regp->csr;

166 Writing Device Drivers—August, 1994

8

if ((events & POLLIN) && data available to read) {
revent |= POLLIN;

}
if ((events & POLLERR) && (status & DEVICE_ERROR)) {

revent |= POLLERR;
}

/* if nothing has occurred */
if (revent == 0) {

if (!anyyet) {
*phpp = &xsp->pollhead;

}
}
*reventsp = revent;
return (0);

}

In this example, the driver can handle the POLLIN and POLLERR events (see
chpoll (9E) for a detailed discussion of the available events). The driver first
reads the status register to determine the current state of the device. The
parameter events specifies which conditions the driver should check. If the
appropriate conditions have occurred, the driver sets that bit in *reventsp . If
none of the conditions have occurred and anyyet is not set, the address of the
pollhead structure is returned in *phpp .

Code Example 8-12 Interrupt routine supporting chpoll (9E)

static u_int
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *) arg;
u_char status, temp;

normal interrupt processing
...
status = xsp->regp->csr;
if (status & DEVICE_ERROR) {

pollwakeup(&xsp->pollhead, POLLERR);
}
if (just completed a read) {

pollwakeup(&xsp->pollhead, POLLIN);
}
...
return (DDI_INTR_CLAIMED);

}

Drivers for Character Devices 167

8

pollwakeup (9F) is usually called in the interrupt routine when a supported
condition has occurred. The interrupt routine reads the status from the status
register and checks for the conditions. It then calls pollwakeup (9F) for each
event to possibly notify polling threads that they should check again. Note that
pollwakeup (9F) should not be called with any locks held, since it could cause
the chpoll (9E) routine to be entered, causing deadlock if that routine tries to
grab the same lock.

Miscellaneous I/O Control
The ioctl (9E) routine is called when a user thread issues an ioctl (2) system
call on a file descriptor associated with the device. The I/O control mechanism
is a catchall for getting and setting device-specific parameters. It is frequently
used to set a device specific mode, either by setting internal driver software
flags or by writing commands to the device. It can also be used to return
information to the user about the current device state. In short, it can do
whatever the application and driver need it to do.

ioctl(9E)

int xxioctl(dev_t dev, int cmd, int arg, int mode,
cred_t *credp, int *rvalp);

The cmd parameter indicates which command ioctl (9E) should perform. By
convention, I/O control commands indicate the driver they belong to in bits 8-
15 of the command (usually given by the ASCII code of a character
representing the driver), and the driver-specific command in bits 0-7. They are
usually created in the following way:

#define XXIOC (‘x’ << 8)

#define XX_GET_STATE (XXIOC | 1) /* get status register */
#define XX_SET_CMD (XXIOC | 2) /* send command */

The interpretation of arg depends on the command. I/O control commands
should be documented (in the driver documentation, or a manual page) and
defined in a public header file, so that applications know the names, what they
do, and what they accept or return as arg . Any data transfer of arg (into or
out of the driver) must be performed by the driver.

ioctl (9E) is usually a switch statement with a case for each supported
ioctl (9E) request.

168 Writing Device Drivers—August, 1994

8

Code Example 8-13 ioctl (9E) routine

static int
xxioctl(dev_t dev, int cmd, int arg, int mode,

cred_t *credp,int *rvalp)
{

int instance;
u_char csr;
struct xxstate *xsp;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL) {

return (ENXIO);
}
switch (cmd) {
case XX_GET_STATUS:

csr = xsp->regp->csr;
if (ddi_copyout(&csr, (caddr_t) arg, sizeof(u_char),

mode) != 0) {
return (EFAULT);

}
break;

case XX_SET_CMD:
if (ddi_copyin((caddr_t) arg, &csr, sizeof(u_char),

mode) != 0) {
return (EFAULT);

}
xsp->regp->csr = csr;
break;

default:
/* generic “ioctl unknown” error */
return (ENOTTY);

}
return (0);

}

The cmd variable identifies a specific device control operation. If arg contains
a user virtual address, ioctl (9E) must call ddi_copyin (9F) or
ddi_copyout (9F) to transfer data between the data structure in the
application program pointed to by arg and the driver. In Code Example 8-13,
for the case of an XX_GET_STATUS request the contents of xsp->regp->csr
is copied to the address in arg . When a request succeeds, ioctl (9E) can store
in *rvalp any integer value to be the return value of the ioctl (2) system call

Drivers for Character Devices 169

8

that made the request. Negative return values, such as -1, should be avoided,
as they usually indicate the system call failed, and many application programs
assume negative values indicate failure.

An application that uses the I/O controls above could look like the following:

Code Example 8-14 Using ioctl (2)

#include <sys/types.h>
#include “xxio.h”

int main(void)
{

u_char status;
.......
/*
 * read the device status
 */
if (ioctl(fd, XX_GET_STATUS, &status) == -1) {

/* error handling */
}
printf("device status %x\n", status);
exit(0);

}

170 Writing Device Drivers—August, 1994

8

171

Drivers for Block Devices 9

This chapter describes the structure of block device drivers. The kernel views a
block device as a set of randomly accessible logical blocks. The file system
buffers the data blocks between a block device and the user space using a list
of buf (9S) structures. Only block devices can support a file system. For
information on writing disk drivers that support SunOS disk commands (such
as format (1M)) see Appendix B, “Advanced Topics.”

File I/O
A file system is a tree-structured hierarchy of directories and files. Some file
systems, such as the UNIX File System (UFS), reside on block-oriented devices.
File systems are created by mkfs (1M) and newfs (1M).

When an application issues a read (2) or write (2) system call to an ordinary
file on the UFS file system, the file system may call the device driver
strategy (9E) entry point for the block device on which the file resides. The
file system code may call strategy (9E) several times for a single read (2) or
write (2) system call.

It is the file system code that determines the logical device address, or logical
block number, for each block and builds a block I/O request in the form of a
buf (9S) structure. The driver strategy (9E) entry point then interprets the
buf (9S) structure and completes the request.

172 Writing Device Drivers—August, 1994

9

State Structure
This chapter adds the following fields to the state structure. See “State
Structure” on page 57 for more information.

int nblocks; /* size of device */
int open; /* flag indicating device is open */
int nlayered; /* count of layered opens */
struct buf *list_head; /* head of transfer request list */
struct buf *list_tail; /* tail of transfer request list */

Entry Points
Associated with each device driver is a dev_ops (9S) structure, which in turn
refers to a cb_ops (9S) structure. See Chapter 5, “Autoconfiguration,” for
details regarding driver data structures. Table 9-1 lists the block driver entry
points.

Table 9-1 Block Driver Entry Points

Entry Point Description

_init (9E) Initialize a loadable driver module.

_info (9E) Return information on a loadable driver module.

_fini (9E) Prepare a loadable driver module for unloading.

identify (9E) Determine if the device driver supports a given physical device.

probe (9E) Determine if a device is present.

attach (9E) Perform device-specific initialization.

detach (9E) Remove device-specific state.

getinfo (9E) Get device driver information.

dump(9E) Dump memory to the device during system failure.

open (9E) Gain access to a device.

close (9E) Relinquish access to a device.

prop_op (9E) Manage arbitrary driver properties.

print (9E) Print error message on driver failure.

strategy (9E) I/O interface for block data.

Drivers for Block Devices 173

9

Note – Some of the above entry points may be replaced by nodev (9F) or
nulldev (9F) as appropriate.

Autoconfiguration
attach (9E) should perform the common initialization tasks for each instance
of a device. Typically, these tasks include:

• Allocating per-instance state structures
• Mapping the device’s registers
• Registering device interrupts
• Initializing mutex and condition variables
• Creating minor nodes

Block device drivers create minor nodes of type S_IFBLK . This causes a block
special file representing the node to eventually appear in the /devices
hierarchy.

Logical device names for block devices appear in the /dev/dsk directory, and
consist of a controller number, bus-address number, disk number, and slice
number. These names are created by the disks (1M) program if the node type
is set to DDI_NT_BLOCK or DDI_NT_BLOCK_CHAN. DDI_NT_BLOCK_CHAN
should be specified if the device communicates on a channel (a bus with an
additional level of addressability), such as SCSI disks, and causes a bus-
address field (tN) to appear in the logical name. DDI_NT_BLOCK should be
used for most other devices.

For each minor device (which corresponds to each partition on the disk), the
driver must also create an nblocks property. This is an integer property
giving the number of blocks supported by the minor device expressed in units
of DEV_BSIZE (512 bytes). The file system uses the nblocks property to
determine device limits. See “Properties” on page 59 for details.

Code Example 9-1 shows a typical attach (9E) entry point with emphasis on
creating the device’s minor node and the nblocks property.

Code Example 9-1 Block driver attach (9E) routine

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

174 Writing Device Drivers—August, 1994

9

switch (cmd) {
case DDI_ATTACH:

allocate a state structure and initialize it
map the devices registers
add the device driver’s interrupt handler(s)
initialize any mutexs and condition variables
read label information if the device is a disk

/*
 * Create the devices minor node. Note that the node_type
 * argument is set to DDI_NT_BLOCK.
 */
if (ddi_create_minor_node(dip, “ minor_name”, S_IFBLK,

minor_number, DDI_NT_BLOCK, 0) == DDI_FAILURE) {
free resources allocated so far
/* Remove any previously allocated minor nodes */
ddi_remove_minor_node(dip, NULL);
return (DDI_FAILURE);

}

/*
 * Create driver properties like “nblocks”. If the device
 * is a disk, the nblocks property is usually calculated from
 * information in the disk label.
 */
xsp->nblocks = size of device in 512 byte blocks;
if (ddi_prop_create(makedevice(DDI_MAJOR_T_UNKNOWN,

instance), dip, DDI_PROP_CANSLEEP,
“nblocks”, (caddr_t)&xsp->nblocks, sizeof (int))
!= DDI_PROP_SUCCESS) {
cmn_err(CE_CONT, “%s: cannot create nblocks property\n”,

ddi_get_name(dip));
free resources allocated so far
return (DDI_FAILURE);

}

xsp->open = 0;
xsp->nlayered = 0;

...
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}
}

Drivers for Block Devices 175

9

Properties are associated with device numbers. In Code Example 9-1,
attach (9E) builds a device number using makedevice (9F). At this point,
however, only the minor number component of the device number is known,
so it must use the special major number DDI_MAJOR_T_UNKNOWN to build the
device number.

Controlling Device Access
This section describes aspects of the open (9E) and close (9E) entry points that
are specific to block device drivers. See Chapter 8, “Drivers for Character
Devices,” for more information on open (9E) and close (9E).

open()

int xxopen(dev_t *devp, int flag, int otyp, cred_t *credp)

The open (9E) entry point is used to gain access to a given device. The open(9E)
routine of a block driver is called when a user thread issues an open (2) or
mount (2) system call on a block special file associated with the minor device,
or when a layered driver calls open(9E). See “File I/O” on page 171 for more
information.

The open (9E) entry point should make the following checks:

• The device can be opened: for example, it is on-line and ready.
• The device can be opened as requested: the device supports the operation,

and the device’s current state does not conflict with the request.
• The caller has permission to open the device.

Code Example 9-2 Block driver open (9E) routine

static int
xxopen(dev_t *devp, int flags, int otyp, cred_t *credp)
{

int instance;
struct xxstate *xsp;

instance = getminor(*devp);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (ENXIO);

176 Writing Device Drivers—August, 1994

9

mutex_enter(&xsp->mu);
/*
 * only honor FEXCL. If a regular open or a layered open
 * is still outstanding on the device, the exclusive open
 * must fail.
 */
if ((flags & FEXCL) && (xsp->open || xsp->nlayered)) {

mutex_exit(&xsp->mu);
return (EAGAIN);

}

switch (otyp) {
case OTYP_LYR:

xsp->nlayered++;
break;

case OTYP_BLK:
xsp->open = 1;
break;

default:
mutex_exit(&xsp->mu);
return (EINVAL);

}
mutex_exit(&xsp->mu);
return (0);

}

The otyp argument is used to specify the type of open on the device.
OTYP_BLK is the typical open type for a block device. A device may be opened
several times with otyp set to OTYP_BLK, though close (9E) will only be
called once the final close of type OTYP_BLK has occurred for the device. otyp
is set to OTYP_LYR if the device is being used as a layered device. For every
open of type OTYP_LYR, the layering driver issues a corresponding close of
type OTYP_LYR. The example keeps track of each type of open so the driver
can determine when the device is not being used in close (9E). See the
open (9E) manual page for more details about the otyp argument.

close()

int xxclose(dev_t dev, int flag, int otyp, cred_t *credp)

The arguments of close (9E) entry point are identical to arguments of
open (9E), except that dev is the device number, as opposed to a pointer to the
device number.

Drivers for Block Devices 177

9

The close (9E) routine should verify otyp in the same way as was described
for the open (9E) entry point. In the example, close (9E) must determine when
the device can really be closed based on the number of block opens and
layered opens.

Code Example 9-3 Block device close (9E) routine

static int
xxclose(dev_t dev, int flag, int otyp, cred_t *credp)
{

int instance;
struct xxstate *xsp;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (ENXIO);

mutex_enter(&xsp->mu);
switch (otyp) {
case OTYP_LYR:

xsp->nlayered--;
break;

case OTYP_BLK:
xsp->open = 0;
break;

default:
mutex_exit(&xsp->mu);
return (EINVAL);

}
if (xsp->open || xsp->nlayered) {

/* not done yet */
mutex_exit(&xsp->mu);
return (0);

}
/* cleanup, rewind tape, free memory */
/* wait for I/O to drain */
mutex_exit(&xsp->mu);

return (0);
}

178 Writing Device Drivers—August, 1994

9

Data Transfers

strategy()

int xxstrategy(struct buf *bp)

The strategy (9E) entry point is used to read and write data buffers to and
from a block device. The name strategy comes from the fact that this entry point
may implement some optimal strategy for ordering requests to the device.

strategy (9E) can be written to process one request at a time (synchronous
transfer), or to queue multiple requests to the device (asynchronous transfer).
When choosing a method, the abilities and limitations of the device should be
taken into account.

The strategy (9E) routine is passed a pointer to a buf (9S) structure. This
structure describes the transfer request, and contains status information on
return. buf (9S) and strategy (9E) are the focus of block device operations.

The buf Structure

Below is a list of buf structure members that are important to block drivers:

int b_flags; /* Buffer Status */
struct buf *av_forw; /* Driver work list link */
struct buf *av_back; /* Driver work lists link */
unsigned int b_bcount; /* # of bytes to transfer */
union {

caddr_t b_addr; /* Buffer’s virtual address */
} b_un;
daddr_t b_blkno; /* Block number on device */
diskaddr_t b_lblkno; /* Expanded block number on device */
unsigned int b_resid; /* # of bytes not transferred */

/* after error */
int b_error; /* Expanded error field */
void *b_private; /* “opaque” driver private area */
dev_t b_edev; /* expanded dev field */

b_flags contains status and transfer attributes of the buf structure. If B_READ
is set, the buf structure indicates a transfer from the device to memory,
otherwise it indicates a transfer from memory to the device. If the driver

Drivers for Block Devices 179

9

encounters an error during data transfer, it should set the B_ERROR field in the
b_flags member and provide a more specific error value in b_error . Drivers
should use bioerror (9F) in preference to setting B_ERROR.

Caution – Drivers should never clear b_flags .

av_forw and av_back are pointers that can be used to manage a list of buffers
by the driver. See “Asynchronous Data Transfers” on page 184 for a discussion
of the av_forw and av_back pointers.

b_bcount specifies the number of bytes to be transferred by the device.

b_un.b_addr is the virtual address of the data buffer when it is mapped into
the kernel.

b_blkno is the starting 32 bit logical block number on the device for the data
transfer, expressed in DEV_BSIZE (512 bytes) units. The driver should use
b_blkno or b_lblkno , but not both.

b_lblkno is the starting 64 bit logical block number on the device for the data
transfer, expressed in DEV_BSIZE (512 bytes) units. The driver should use
b_blkno or b_lblkno , but not both.

b_resid is set by the driver to indicate the number of bytes that were not
transferred due to an error. See Code Example 9-8 on page 185 for an example
of setting b_resid . The b_resid member is overloaded: it is also used by
disksort (9F).

b_error is set by the driver an error number when a transfer error occurs. It is
set in conjunction with the b_flags B_ERROR bit. See Intro (9E) for details
regarding error values. Drivers should use bioerror (9F) in preference to
setting b_error directly.

b_private is used exclusivly by the driver to store driver private data.

b_edev contains the device number of the device involved in the transfer.

bp_mapin()

When a buf structure pointer is passed into the device driver’s strategy (9E)
routine, the data buffer referred to by b_un.b_addr is not necessarily mapped
in the kernel’s address space. This means that the data is not directly accessible

180 Writing Device Drivers—August, 1994

9

by the driver. Most block-oriented devices have DMA capability, and therefore
do not need to access the data buffer directly. Instead, they use the DMA
mapping routines to allow the device’s DMA engine to do the data transfer.
For details about using DMA, see Chapter 7, “DMA.”

If a driver needs to directly access the data buffer (as opposed to having the
device access the data), it must first map the buffer into the kernel’s address
space using bp_mapin (9F). bp_mapout (9F) should be used when the driver no
longer needs to access the data directly.

Synchronous Data Transfers
This section discusses a simple method for performing synchronous I/O
transfers. It is assumes that the hardware is a simple disk device that can
transfer only one data buffer at a time using DMA. The device driver’s
strategy (9E) routine waits for the current request to complete before
accepting a new one. The device interrupts the CPU when the transfer
completes or when an error occurs.

1. Check for invalid buf (9S) requests

Check the buf (9S) structure passed to strategy (9E) for validity. All
drivers should check to see if:

a. The request begins at a valid block. The driver converts the b_blkno
field to the correct device offset and then determines if the offset is valid
for the device.

b. The request does not go beyond the last block on the device.

c. Device-specific requirements are met.

If an error is encountered, the driver should indicate the appropriate error
with bioerror (9F) and complete the request by calling biodone (9F).
biodone (9F) notifies the caller of strategy (9E) that the transfer is
complete (in this case, because of an error).

2. Check if the device is busy

Synchronous data transfers allow single-threaded access to the device. The
device driver enforces this by maintaining a busy flag (guarded by a mutex),
and by waiting on a condition variable with cv_wait (9F) when the device
is busy.

Drivers for Block Devices 181

9

If the device is busy, the thread waits until a cv_broadcast (9F) or
cv_signal (9F) from the interrupt handler indicates that the device is no
longer busy. See Chapter 4, “Multithreading,” for details on condition
variables.

When the device is no longer busy, the strategy (9E) routine marks it as
busy and prepares the buffer and the device for the transfer.

3. Set up the buffer for DMA

Prepare the data buffer for a DMA transfer using ddi_dma_buf_setup (9F).
See Chapter 7, “DMA,” for information on setting up DMA resources and
related data structures.

4. Begin the Transfer

At this point, a pointer to the buf (9S) structure is saved in the state
structure of the device. This is so that the interrupt routine can complete the
transfer by calling biodone (9F).

The device driver then accesses device registers to initiate a data transfer. In
most cases, the driver should protect the device registers from other threads
by using mutexes. In this case, because strategy (9E) is single-threaded,
guarding the device registers is not necessary. See Chapter 4,
“Multithreading,” for details about data locks.

Once the executing thread has started the device’s DMA engine, the driver
can return execution control to the calling routine.

Code Example 9-4 Synchronous block driver strategy (9E) routine

static int
xxstrategy(struct buf *bp)
{

struct xxstate *xsp;
struct device_reg *regp;
u_char temp;
int instance;
ddi_dma_cookie_t cookie;

instance = getminor(bp->b_edev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL) {
bioerror(bp, ENXIO);

182 Writing Device Drivers—August, 1994

9

biodone(bp);
return (0);

}

/* validate the transfer request */
if ((bp->b_blkno >= xsp->nblocks) || (bp->b_blkno < 0)) {
bioerror(bp, EINVAL);

biodone(bp);
return (0);

}

/*
 * Hold off all threads until the device is not busy.
 */
mutex_enter(&xsp->mu);
while (xsp->busy) {

cv_wait(&xsp->cv, &xsp->mu);
}
xsp->busy = 1;
mutex_exit(&xsp->mu);

set up DMA resources with ddi_dma_buf_setup(9F)
retrieve the DMA cookie from the handle returned.

xsp->bp = bp;

/* Set up device DMA engine from the cookie. */
regp = xsp->regp;
regp->dma_addr = cookie.dmac_address;
regp->dma_size = cookie.dmac_size;
regp->csr = ENABLE_INTERRUPTS | START_TRANSFER;

/* Read the csr to flush any hardware store buffers */
temp = regp->csr;

return (0);
}

5. Handle the interrupting device

When the device finishes the data transfer it generates an interrupt, which
eventually results in the interrupt routine being called. Most drivers specify
the state structure of the device as the argument to the interrupt routine
when registering interrupts (see ddi_add_intr (9F) and “Registering
Interrupts” on page 111). The interrupt routine can then access the buf (9S)
structure being transferred, plus any other information available from the
state structure.

Drivers for Block Devices 183

9

The interrupt handler should check the device’s status register to determine
if the transfer completed without error. If an error occurred, the handler
should indicate the appropriate error with bioerror (9F). The handler
should also clear the pending interrupt for the device and then complete the
transfer by calling biodone (9F).

As the final task, the handler clears the busy flag and calls cv_signal (9F)
or cv_broadcast (9F) on the condition variable, signaling that the device is
no longer busy. This allows other threads waiting for the device (in
strategy (9E)) to proceed with the next data transfer.

Code Example 9-5 Synchronous block driver interrupt routine

static u_int
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
struct buf *bp;
u_char temp, status;

mutex_enter(&xsp->mu);

status = xsp->regp->csr;
if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->mu);
return (DDI_INTR_UNCLAIMED);

}

/* Get the buf responsible for this interrupt */
bp = xsp->bp;
xsp->bp = NULL;

/*
 * This example is for a simple device which either
 * succeeds or fails the data transfer, indicated in the
 * command/status register.
 */
if (status & DEVICE_ERROR) {

/* failure */
bp->b_resid = bp->b_bcount;
bp->b_error = EIO;
bp->b_flags |= B_ERROR;

} else {
/* success */
bp->b_resid = 0;

}

184 Writing Device Drivers—August, 1994

9

xsp->regp->csr = CLEAR_INTERRUPT;
/* Read the csr to flush any hardware store buffers */
temp = xsp->regp->csr;

/* The transfer has finished, successfully or not */
biodone(bp);

release any resources used in the transfer, such as DMA resources (ddi_dma_free(9F))

/* Let the next I/O thread have access to the device */
xsp->busy = 0;
cv_signal(&xsp->cv);
mutex_exit(&xsp->mu);

return (DDI_INTR_CLAIMED);
}

Asynchronous Data Transfers
This section discusses a method for performing asynchronous I/O transfers.
The driver queues the I/O requests, and then returns control to the caller.
Again, the assumption is that the hardware is a simple disk device that allows
one transfer at a time. The device interrupts when a data transfer has
completed or when an error occurs.

1. Check for invalid buf (9S) requests

As in the synchronous case, the device driver should check the buf (9S)
structure passed to strategy (9E) for validity. See “Synchronous Data
Transfers” on page 180 for more details.

2. Enqueue the request

Unlike synchronous data transfers, the asynchronous driver does not wait for
the current data transfer to complete. Instead, it adds the request to a queue.
The head of the queue can be the current transfer, or a separate field in the
state structure can be used to hold the active request (as in this example). If the
queue was initially empty, then the hardware is not busy, and strategy (9E)
starts the transfer before returning. Otherwise, whenever a transfer completes
and the queue is non-empty, the interrupt routine begins a new transfer. This
example actually places the decision of whether to start a new transfer into a
separate routine for convenience.

The av_forw and the av_back members of the buf (9S) structure can be used
by the driver to manage a list of transfer requests. A single pointer can be used
to manage a singly linked list, or both pointers can be used together to build a

Drivers for Block Devices 185

9

doubly linked list. The driver writer can determine from a hardware
specification which type of list management (such as insertion policies) will
optimize the performance of the device. The transfer list is a per-device list, so
the head and tail of the list are stored in the state structure.

This example is designed to allow multiple threads access to the drivers shared
data, so it is extremely important to identify any such data (such as the transfer
list) and protect it with a mutex. See Chapter 4, “Multithreading,” for more
details about mutex locks.

Code Example 9-6 Asynchronous block driver strategy (9E) routine.

static int
xxstrategy(struct buf *bp)
{

struct xxstate *xsp;
int instance;

instance = getminor(bp->b_edev);
xsp = ddi_get_soft_state(statep, instance);

...
validate transfer request
...

Add the request to the end of the queue. Depending on the device, a sorting algorithm
such as disksort(9F) may be used if it improves the performance of the device.

mutex_enter(&xsp->mu);
bp->av_forw = NULL;
if (xsp->list_head) {

/* Non empty transfer list */
xsp->list_tail->av_forw = bp;
xsp->list_tail = bp;

} else {
/* Empty Transfer list */
xsp->list_head = bp;
xsp->ist_tail = bp;

}
mutex_exit(&xsp->mu);

/* Start the transfer if possible */
(void) xxstart((caddr_t) xsp);

return (0);
}

186 Writing Device Drivers—August, 1994

9

3. Start the first transfer.

Device drivers that implement queuing usually have a start () routine.
start () is so called because it is this routine that dequeues the next request
and starts the data transfer to or from the device. In this example all
requests, regardless of the state of the device (busy or free), are processed by
start ().

Note – start () must be written so that it can be called from any context, since
it can be called by both the strategy routine (in kernel context) and the
interrupt routine (in interrupt context).

start () is called by strategy () every time it queues a request so that an idle
device can be started. If the device is busy, start () returns immediately.

start () is also called by the interrupt handler before it returns from a claimed
interrupt so that a non-empty queue can be serviced. If the queue is empty,
start () returns immediately.

Since start () is a private driver routine, it can take any arguments and return
any type. The example is written as if it will also be used as a DMA callback
(though that portion is not shown), so it must take a caddr_t as an argument
and return an int . See “Handling Resource Allocation Failures” on page 135
for more information about DMA callback routines.

Code Example 9-7 Block driver start() routine.

static int
xxstart(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
struct device_reg *regp;
struct buf *bp;
u_char temp;

/* start() should never be called with the mutex held. */
/* just in case, though... */
ASSERT(!mutex_owned(&xsp->mu));

mutex_enter(&xsp->mu);

/*
 * If there is nothing more to do, or the device is */
 * busy,return.
 */

Drivers for Block Devices 187

9

if (xsp->list_head == NULL || xsp->busy) {
mutex_exit(&xsp->mu);
return (0);

}
xsp->busy = 1;

/* Get the first buffer off the transfer list */
bp = xsp->list_head;

/* Update the head and tail pointer */
xsp->list_head = xsp->list_head->av_forw;
if (xsp->list_head == NULL)

xsp->list_tail = NULL;
bp->av_forw = NULL;

mutex_exit(&xsp->mu);

set up DMA resources with ddi_dma_buf_setup(9F)

xsp->bp = bp;

/* Set up device DMA engine from the cookie. */
regp = xsp->regp;
regp->dma_addr = cookie.dmac_address;
regp->dma_size = cookie.dmac_size;
regp->csr = ENABLE_INTERRUPTS | START_TRANSFER;

/* Read the csr to flush any hardware store buffers */
temp = regp->csr;

return (0);
}

4. Handle the interrupting Device

The interrupt routine is very similar to the asynchronous version, with the
addition of the call to start () and the removal of the call to
cv_signal (9F).

Code Example 9-8 Asynchronous block driver interrupt routine.

static u_int
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
struct buf *bp;
u_char temp, status;

mutex_enter(&xsp->mu);

188 Writing Device Drivers—August, 1994

9

status = xsp->regp->csr;
if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->mu);
return (DDI_INTR_UNCLAIMED);

}

/* Get the buf responsible for this interrupt */
bp = xsp->bp;
xsp->bp = NULL;

/*
 * This example is for a simple device which either
 * succeeds or fails the data transfer, indicated in the
 * command/status register.
 */
if (status & DEVICE_ERROR) {

/* failure */
bp->b_resid = bp->b_bcount;
bioerror(bp, EIO);

} else {
/* success */
bp->b_resid = 0;

}

xsp->regp->csr = CLEAR_INTERRUPT;
/* Read the csr to flush any hardware store buffers */
temp = xsp->regp->csr;

/* The transfer has finished, successfully or not */
biodone(bp);

release any resources used in the transfer, such as DMA resources (ddi_dma_free(9F))

/* Let the next I/O thread have access to the device */
xsp->busy = 0;
mutex_exit(&xsp->mu);

(void) xxstart((caddr_t xsp);

return (DDI_INTR_CLAIMED);
}

Miscellaneous Entry Points

dump()

The dump(9E) entry point is used to dump a portion of virtual address space
directly to the specified device in the case of a system failure.

Drivers for Block Devices 189

9

int xxdump(dev_t dev, caddr_t addr,daddr_t blkno,int nblk)

dev is the device number of the device to dump to, addr is the base kernel
virtual address to start the dump at, blkno is the beginning block to dump to,
and nblk is the number of blocks to dump. The example depends on the
existing driver working properly. It creates a buf (9S) request to pass to
strategy (9E). Interrupts are not necessarily enabled at this point, so
xxdump() calls a special version of strategy (9E) (not shown) that only does
polled I/O (non-interrupt driven).

Code Example 9-9 Block driver dump(9E) routine.

static int
xxdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
{

int error;
struct buf *bp;

/* Allocate a buf structure to perform the dump */
bp = getrbuf(KM_NOSLEEP);
if (bp == NULL)

return (EIO);

/*
 * Set the appropriate fields in the buf structure.
 * This is OK since the driver knows what its strategy
 * routine will examine.
 */
bp->b_un.b_addr = addr;
bp->b_edev = dev;
bp->b_bcount = nblk * DEV_BSIZE;
bp->b_flags = B_WRITE|B_KERNBUF;
bp->b_blkno = blkno;

disable interrupts

(void) xxstrategy_poll(bp);

/*
 * Wait here until the driver performs a biodone(9F)
 * on the buffer being transferred.
 */
error = biowait(bp);
freerbuf(bp);
return (error);

}

190 Writing Device Drivers—August, 1994

9

print()

int xxprint(dev_t dev, char *str)

The print (9E) entry is called by the system to display a message about an
exception it has detected. print (9E) should call cmn_err (9F) to post the
message to the console on behalf of the system. Here is an example:

static int
xxprint(dev_t dev, char *str)
{

cmn_err(CE_CONT, “xx: %s\n”, str);
return (0);

}

191

SCSI Target Drivers 10

This chapter describes how to write a SCSI target driver using the interfaces
provided by the Sun Common SCSI Architecture (SCSA). Overviews of SCSI
and SCSA are presented, followed by the details of implementing a target
driver.

Note – Target driver developers may be interested in SCSI HBA driver
information. A SCSI HBA chapter in progress (SCSIHBA.PS) is included as a
.ps file in the DDK. It is located in this path: opt/SUNWddk/doc

Overview
The Solaris 2.4 DDI/DKI divides the software interface to SCSI devices into
two major parts: target drivers and host bus adapter (HBA) drivers. Target refers
to a driver for a device on a SCSI bus, such as a disk or a tape drive. host bus
adapter refers to the driver for the SCSI controller on the host machine, such as
the “esp” driver on a SPARCstation. SCSA defines the interface between these
two components. This chapter discusses target drivers only. See SCSI HBA
Drivers for information on host bus adapter drivers.

Note – The terms “host bus adapter” or “HBA” used in this manual are
equivalent to the phrase “host adapter” as defined in SCSI specifications.

192 Writing Device Drivers—August, 1994

10

Target drivers can be either character or block device drivers, depending on the
device. Drivers for tape drives are usually character device drivers, while disks
are handled by block device drivers. This chapter describes how to write a
SCSI target driver and discusses the additional requirements that SCSA places
on block and character drivers for SCSI target devices.

Reference Documents
The following reference documents provide supplemental information needed
by the designers of target drivers and host bus adapter drivers.

Small Computer System Interface (SCSI) Standard, ANSI X3.131-1986 American
National Standards Institute
Sales Department
1430 Broadway, New York, NY 10018
Phone (212) 642-4900)

Small Computer System Interface 2 (SCSI-2) Standard, document X3.131-1994
Global Engineering Documents
15 Inverness Way, East Englewood, CO 80112-5704
Phone: 800-854-7179 or 303-792-2181
FAX: 303-792-2192

Basics of SCSI
ANCOT Corporation
Menlo Park, California 94025
Phone (415) 322-5322
FAX: (415) 322-0455

Also, refer to the SCSI command specification for the target device, provided
by the hardware vendor.

For information on setting global SCSI options see Appendix B, “Advanced
Topics.”

For a pointer to SCSI driver sample code see Appendix D, “Sample Driver
Source Code Listings”.

SCSI Target Drivers 193

10

Sun Common SCSI Architecture Overview
The Sun Common SCSI Architecture (SCSA) is the Solaris 2.4 DDI/DKI
programming interface for the transmission of SCSI commands from a target
driver to a host bus adapter driver. This interface is independent of the type of
host bus adapter hardware, the platform, the processor architecture, and the
SCSI command that is being transported across the interface.

By conforming to the SCSA, the target driver can pass any SCSI command to a
target device without knowledge of the hardware implementation of the host
bus adapter.

The SCSA conceptually separates building the SCSI command (by the target
driver) from transporting the SCSI command and data across the SCSI bus.

The architecture defines the software interface between high-level and low-
level software components. The higher level software component consists of
one or more SCSI target drivers, which translate I/O requests into SCSI
commands appropriate for the peripheral device.

Figure 10-1 SCSA Block Diagram

Application Program 1 Application Program 2

System Calls

Sun Common SCSI Architecture (SCSA)

Target

Host Bus Adapter
Driver 1

SCSI Hardware
Interface

Driver 1
Target

Driver 2
Target

Driver 3

Host Bus Adapter
Driver 2

SCSI Hardware
Interface

Kernel

Applications

Hardware

194 Writing Device Drivers—August, 1994

10

The lower-level software component consists of a SCSA interface layer and one
or more host bus adapter drivers. The host bus adapter driver has several
responsibilities. It must:

• Manage host bus adapter hardware
• Accept SCSI commands from the SCSI target driver
• Transport the commands to the specified SCSI target device
• Perform any data transfers that the command requires
• Collect status
• Handle auto-request sense (optional)
• Inform the target driver of command completion (or failure)

The target driver is completely responsible for the generation of the proper
SCSI commands required to execute the desired function.

General Flow of Control

When transferring data to or from a user address space (using the read (9E) or
write (9E) entry points) SCSI target character device drivers must use
physio (9F) to encode the request into a buf (9S) structure and call the driver’s
strategy (9E) routine.

physio (9F) locks down the user buffer into memory before issuing a SCSI
command. The file system locks down memory for block device drivers. See
Chapter 9, “Drivers for Block Devices”, for more information on writing a
strategy (9E) entry point and Chapter 8, “Drivers for Character Devices”, for
more information on using physio (9F).

Assuming no transport errors occur, the following steps describe the general
flow of control for a read or write request starting from the call to the target
driver’s strategy routine:

1. The target driver’s strategy (9E) routine checks the request and allocates a
scsi_pkt (9S) using scsi_init_pkt (9F). The target driver initializes the
packet and sets the SCSI CDB using the makecom (9F) function. The target
driver also specifies a timeout and provides a pointer to a callback function,
which is called by the host bus adapter driver on completion of the
command. The buf (9S) pointer should be saved in the scsi packet’s target-
private space.

SCSI Target Drivers 195

10

2. The target driver submits the packet to the host bus adapter driver using
scsi_transport (9F). The target driver is then free to accept other
requests. The target driver should not access the packet while it is in
transport. If either the host bus adapter driver or the target support
queueing, new requests can be submitted while the packet is in transport.

3. As soon as the SCSI bus is free and the target not busy, the host bus adapter
driver selects the target and passes the CDB. The target executes the
command and performs the requested data transfers. The target controls the
SCSI bus phase transitions. The host bus adapter just responds to these
transitions until the command completes.

4. After the target sends completion status and disconnects, the host bus
adapter driver notifies the target driver by calling the completion function
which was specified in the scsi packet. At this time the host bus adapter
driver is no longer responsible for the packet, and the target driver has
regained ownership of the packet.

5. The SCSI packet’s completion routine analyzes the returned information and
determines whether the SCSI operation was successful. If a failure has
occurred, the target driver may retry the command by calling
scsi_transport (9F) again. If the host bus adapter driver does not support
auto request sense, the target driver must submit a request sense packet in
order to retrieve the sense data in the event of a check condition.

6. If either the command completed successfully or cannot be retried, the
target driver calls scsi_destroy_pkt (9F) which synchronizes the data
and frees the packet. If the target driver needs to access the data before
freeing the packet, it may call scsi_sync_pkt (9F)

7. Finally, the target driver notifies the application program that originally
requested the read or write that the transaction is complete, either by
returning from the read (9E) entry point in the driver (for a character
device), or indirectly through biodone (9F).

The SCSA allows the execution of many of such operations, both overlapped
and queued at various points in the process. The model places the
management of system resources on the host bus adapter driver. The software
interface allows the execution of target driver functions on host bus adapter
drivers using SCSI bus adapters of varying degrees of intelligence.

196 Writing Device Drivers—August, 1994

10

SCSA Functions
SCSA defines a number of functions, listed in Table 10-1, which manage the
allocation and freeing of resources, the sensing and setting of control states,
and the transport of SCSI commands:

Table 10-1 Standard SCSA Functions

Function Name Category

scsi_init_pkt(9F) Resource management

scsi_sync_pkt(9F)

scsi_dmafree(9F)

scsi_destroy_pkt(9F)

scsi_alloc_consistent_buf(9F)

scsi_free_consistent_buf(9F)

scsi_transport(9F) Command transport

scsi_ifgetcap(9F) Transport information and control

scsi_ifsetcap(9F)

scsi_abort(9F) Error handling

scsi_reset(9F)

scsi_poll(9F) Polled I/O

scsi_probe(9F) Probe functions

scsi_unprobe(9F)

makecom_g0(9F) CDB initialization functions

makecom_g1(9F)

makecom_g0_s(9F)

makecom_g5(9F)

SCSI Target Drivers 197

10

SCSA Compatibility Functions
The functions listed in Table 10-2 are maintained for both source and binary
compatibility with previous releases. However, new drivers should use the
new functions listed in Table 10-1.

SCSI Target Drivers

Hardware Configuration File

Since SCSI devices are not self-identifying, a hardware configuration file is
required for a target driver (see driver.conf (4) and scsi (4) for details). A
typical configuration file looks like this:

name=”xx” class=”scsi” target=2 lun=0;

The system reads the file during autoconfiguration and uses the class property
to identify the driver’s possible parent. The system then attempts to attach the
driver to any parent driver that is of class “scsi”. All host bus adapter drivers
are of this class. Using the class property rather than the parent property allows
the target driver to be attached to any host bus adapter driver that finds the
expected device at the specified target and lun ids. The target driver is
responsible for verifying this in its probe (9E) routine.

Table 10-2 SCSA Compatibility Functions

Function Name Category

scsi_resalloc(9F) Resource management

scsi_resfree(9F)

scsi_pktalloc(9F)

scsi_pktfree(9F)

scsi_dmaget(9F)

get_pktiopb(9F)

free_pktiopb(9F)

scsi_slave(9F) Probe functions

scsi_unslave(9F)

198 Writing Device Drivers—August, 1994

10

Declarations and Data Structures

Target drivers must include the header file <sys/scsi/scsi.h> .

SCSI target drivers must also include this declaration:

char _depends_on[] = ”misc/scsi”;

scsi_device Structure

The host bus adapter driver allocates and initializes a scsi_device (9S)
structure for the target driver before either the probe (9E) or attach (9E)
routine is called. This structure stores information about each SCSI logical unit,
including pointers to information areas that contain both generic and device
specific information. There is one scsi_device (9S) structure for each logical
unit attached to the system. The target driver can retrieve a pointer to this
structure by calling ddi_get_driver_private (9F).

Caution – Because the host bus adapter driver uses the private field in the
target device’s dev_info structure, target drivers should not use
ddi_set_driver_private (9F).

The scsi_device (9S) structure contains the following fields:

struct scsi_address sd_address;
dev_info_t *sd_dev;
kmutex_t sd_mutex;
struct scsi_inquiry *sd_inq;
struct scsi_extended_sense *sd_sense;
caddr_t sd_private;

sd_address is a data structure that is passed to the SCSI resource allocation
routines.

sd_de v is a pointer to the target’s dev_info structure.

sd_mutex is a mutex for use by the target driver. This is initialized by the host
bus adapter driver and can be used by the target driver as a per-device mutex.
Do not hold this mutex across a call to scsi_transport (9F) or
scsi_poll (9F). See Chapter 4, “Multithreading,” for more information on
mutexes.

SCSI Target Drivers 199

10

sd_inq is a pointer for the target device’s SCSI Inquiry data. The
scsi_probe (9F) routine allocates a buffer, fills it in, and attaches it to this
field.

sd_sense is a pointer to a buffer to contain SCSI Request Sense data from the
device. The target driver must allocate and manage this buffer itself; see
“attach()” on page 202.

sd_private is a pointer field for use by the target driver. It is commonly used
to store a pointer to a private target driver state structure.

scsi_pkt Structure

This structure contains the following fields:

struct scsi_address pkt_address;
opaque_t pkt_private;
void (*pkt_comp)(struct scsi_pkt *pkt);
long pkt_flags;
u_long pkt_time;
u_char *pkt_scbp;
u_char *pkt_cdbp;
long pkt_resid;
u_long pkt_state;
u_long pkt_statistics;
u_char pkt_reason;

pkt_address is the target device’s address set by scsi_init_pkt (9F)

pkt_private is a place to store private data for the target driver. It is
commonly used to save the buf (9S) pointer for the command.

pkt_comp is the address of the completion routine. The host bus adapter
driver calls this routine when it has transported the command. This does not
mean that the command succeeded; the target might have been busy or may
not have responded before the time-out time elapsed (see the description for
pkt_time field). The target driver must supply a valid value in this field,
though it can be NULL if the driver does not want to be notified.

200 Writing Device Drivers—August, 1994

10

Note – There are two different SCSI callback routines. The pkt_comp field
identifies a completion callback routine, called when the host bus adapter
completes its processing. There is also a resource callback routine, called when
currently unavailable resources are likely to be available (as in
scsi_init_pkt (9F)).

pkt_flags provides additional control information, for example, to transport
the command without disconnect privileges (FLAG_NODISCON) or to disable
parity (FLAG_NOPARITY). See scsi_pkt (9S) for details.

pkt_time is a timeout value (in seconds). If the command does not complete
within this time, the host bus adapter calls the completion routine with
pkt_reason set to CMD_TIMEOUT. The target driver should set this field to
longer than the maximum time the command might take. If the timeout is zero,
no timeout is requested. Timeout starts when the command is transmitted on
the SCSI bus.

pkt_scbp is a pointer to the SCSI Status completion block; this is filled in by
the host bus adapter driver.

pkt_cdbp is a pointer to the SCSI Command Descriptor Block, the actual
command to be sent to the target device. The host bus adapter driver does not
interpret this field. The target driver must fill it in with a command that the
target device understands.

pkt_resid is the residual of the operation. When allocating DMA resources
for a command (scsi_init_pkt (9F), pkt_resid indicates the number of
bytes for which DMA resources could not be allocated due to DMA hardware
scatter/gather or other device limitations. After command transport,
pkt_resid indicates the number of data bytes not transferred; this is filled in
by the host bus adapter driver before the completion routine is called.

pkt_state indicates the state of the command. The host bus adapter driver
fills in this field as the command progresses. One bit is set in this field for each
of the five following command states:

• STATE_GOT_BUS - Acquired the bus
• STATE_GOT_TARGET - Selected the target
• STATE_SENT_CMD - Sent the command
• STATE_XFERRED_DATA - Transferred data (if appropriate)
• STATE_GOT_STATUS - Received status from the device

SCSI Target Drivers 201

10

pkt_statistics contains transport-related statistics, set by the host bus
adapter driver.

pkt_reason gives the reason the completion routine was called. The main
function of the completion routine is to decode this field and take the
appropriate action. If the command completed—in other words, if there were
no transport errors—this field is set to CMD_CMPLT; other values in this field
indicate an error. After a command completes, the target driver should
examine the pkt_scbp field for a check condition status. See scsi_pkt (9S)
for more information.

State Structure

This section adds the following fields to the state structure. See “State
Structure” on page 57 for more information.

struct scsi_pkt *rqs; /* Request Sense packet */
struct buf *rqsbuf; /* buf for Request Sense */
struct scsi_pkt *pkt; /* packet for current command */
struct scsi_device *sdp; /* pointer to device’s */

/* scsi_device(9S) structure. */

rqs is a pointer to a SCSI Request Sense command scsi_pkt (9S) structure,
allocated in the attach (9E) routine. This packet is preallocated because the
Request Sense command is small and may be used in time-critical areas of the
driver (such as when handling errors).

Autoconfiguration

SCSI target drivers must implement the standard autoconfiguration routines
_init (9E), _fini (9E), _info (9E), and identify (9E). See Chapter 5,
“Autoconfiguration,” for more information.

probe (9E), attach (9E), and getinfo (9E) are also required, but they must
perform SCSI (and SCSA) specific processing.

probe()

SCSI target devices are not self-identifying, so target drivers must have a
probe (9E) routine. This routine must determine whether or not the expected
type of device is present and responding.

202 Writing Device Drivers—August, 1994

10

The general structure and return codes of the probe (9E) routine are the same
as those of other device drivers. See probe () on page 87 for more information.
SCSI target drivers must use the scsi_probe (9F) routine in their probe (9E)
entry point. scsi_probe (9F) sends a SCSI Inquiry command to the device and
returns a code indicating the result. If the SCSI Inquiry command is successful,
scsi_probe (9F) allocates a scsi_inquiry (9S) structure and fills it in with
the device’s Inquiry data. Upon return from scsi_probe (9F), the sd_inq
field of the scsi_device (9S) structure points to this scsi_inquiry (9S)
structure.

Since probe (9E) must be stateless, the target driver must call
scsi_unprobe (9F) before probe (9E) returns, even if scsi_probe (9F) fails.

Code Example 10-1 shows a typical probe (9E) routine. It uses the
ddi_getprop (9F) routine to retrieve the device’s SCSI target and logical unit
numbers so that it can print them in messages. It also retrieves its
scsi_device (9S) structure from the private field of its dev_info structure.
The probe (9E) routine then calls scsi_probe (9F) to verify that the expected
device (a printer in this case) is present.

If scsi_probe (9F) succeeds, it has attached the device’s SCSI Inquiry data in
a scsi_inquiry (9S) structure, to the sd_inq field of the scsi_device (9S)
structure. The driver can then check to see if the device type is a printer
(reported in the inq_dtype field). If it is, the type is reported with
scsi_log (9F), using scsi_dname (9F) to convert the device type into a string.

Code Example 10-1 SCSI target driver probe (9E) routine

static int
xxprobe(dev_info_t *dip)
{

struct scsi_device *sdp;
int rval, target, lun;

/*
 * Get the SCSI target/lun properties. DDI_PROP_DONTPASS
 * prevents ddi_getprop from looking beyond this node for the
 * properties.
 */
target = ddi_getprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,

 “target”, -1);
lun = ddi_getprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,

SCSI Target Drivers 203

10

“lun”, -1);
if ((target == -1) || (lun == -1))

return (DDI_FAILURE);

/*
 * Get a pointer to the scsi_device(9S) structure
 */
sdp = (struct scsi_device *) ddi_get_driver_private(dip);

/*
 * Call scsi_probe(9F) to send the Inquiry command. It will
 * fill in the sd_inq field of the scsi_device structure.
 */
switch (scsi_probe(sdp, NULL_FUNC)) {
case SCSIPROBE_FAILURE:
case SCSIPROBE_NORESP:
case SCSIPROBE_NOMEM:

/*
 * In these cases, device may be powered off,
 * in which case we may be able to successfully
 * probe it at some future time - referred to
 * as ‘deferred attach’.
 */
rval = DDI_PROBE_PARTIAL;
break;

case SCSIPROBE_NONCCS:
default:

/*
 * Device isn’t of the type we can deal with,
 * and/or it will never be useable.
 */
rval = DDI_PROBE_FAILURE;
break;

case SCSIPROBE_EXISTS:
/*
 * There is a device at the target/lun address. Check
 * inq_dtype to make sure that it is the right device
 * type. See scsi_inquiry(9S)for possible device types.
 */
switch (sdp->sd_inq->inq_dtype) {
case DTYPE_PRINTER:

scsi_log(sdp, “xx”, SCSI_DEBUG,
“found %s device at target%d, lun%d\n”,
scsi_dname((int)sdp->sd_inq->inq_dtype),
target, lun);

rval = DDI_PROBE_SUCCESS;
break;

204 Writing Device Drivers—August, 1994

10

case DTYPE_NOTPRESENT:
default:

rval = DDI_PROBE_FAILURE;
break;

}
}

scsi_unprobe(sdp);
return (rval);

}

A more thorough probe (9E) routine could also check other fields of the
scsi_inquiry (9S) structure as necessary to make sure that the device is of
the type expected by a particular driver.

attach()

After the probe (9E) routine has verified that the expected device is present,
attach (9E) is called. This routine allocates and initializes any per-instance
data and creates minor device node information. See “attach()” on page 95 for
details of this. In addition to these steps, a SCSI target driver again calls
scsi_probe (9F) to retrieve the device’s Inquiry data and also creates a SCSI
Request Sense packet. If the attach is successful, the attach function should not
call scsi_unprobe .

Three routines are used to create the Request Sense packet:
scsi_alloc_consistent_buf (9F), scsi_init_pkt (9F), and
makecom_g0(9F). scsi_alloc_consistent_buf (9F) allocates a buffer
suitable for consistent DMA and returns a pointer to a buf (9S) structure. The
advantage of a consistent buffer is that no explicit syncing of the data is
required. In other words, the target driver can access the data after the
callback. The sd_sense element of the device’s scsi_device (9S) structure
must be initialized with the address of the sense buffer. scsi_init_pkt (9F)
creates and partially initializes a scsi_pkt (9S) structure. makecom_g0(9F)
creates a SCSI Command Descriptor Block (CDB), in this case creating a SCSI
Request Sense command.

Code Example 10-2 SCSI target driver attach (9E) routine.

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;

SCSI Target Drivers 205

10

struct scsi_pkt *rqpkt = NULL;
struct scsi_device *sdp;
struct buf *bp = NULL;
int instance;

instance = ddi_get_instance(dip);

allocate a state structure and initialize it

...
xsp = ddi_get_soft_state(statep, instance);
sdp = (struct scsi_device *) ddi_get_driver_private(dip);

/*
 * Cross-link the state and scsi_device(9S) structures.
 */
sdp->sd_private = (caddr_t) xsp;
xsp->sdp = sdp;

call scsi_probe(9F) again to get and validate inquiry data

/*
 * Allocate a request sense buffer. The buf(9S) structure
 * is set to NULL to tell the routine to allocate a new
 * one. The callback function is set to NULL_FUNC to tell
 * the routine to return failure immediately if no
 * resources are available.
 */
bp = scsi_alloc_consistent_buf(&sdp->sd_address, NULL,

SENSE_LENGTH, B_READ, NULL_FUNC, NULL);
if (bp == NULL)

goto failed;

/*
 * Create a Request Sense scsi_pkt(9S) structure.
 */
rqpkt = scsi_init_pkt(&sdp->sd_address, NULL, bp,

CDB_GROUP0, 1, 0, PKT_CONSISTENT, NULL_FUNC, NULL);
if (rqpkt == NULL)

goto failed;

/*
 * scsi_alloc_consistent_buf(9F) returned a buf(9S) structure.
 * The actual buffer address is in b_un.b_addr.
 */
sdp->sd_sense = (struct scsi_extended_sense *) bp->b_un.b_addr;

206 Writing Device Drivers—August, 1994

10

/*
 * Create a Group0 CDB for the Request Sense command
 */
makecom_g0(rqpkt, devp, FLAG_NOPARITY, SCMD_REQUEST_SENSE,

0, SENSE_LENGTH);

/*
 * Fill in the rest of the scsi_pkt structure.
 * xxcallback() is the private command completion routine.
 */
rqpkt->pkt_comp = xxcallback;
rqpkt->pkt_time = 30; /* 30 second command timeout */
rqpkt->pkt_flags |= FLAG_SENSING;
xsp->rqs = rqpkt;
xsp->rqsbuf = bp;

create minor nodes, report device, and do any other initialization

xsp->open = 0;
return (DDI_SUCCESS);

failed:
if (bp)

scsi_free_consistent_buf(bp);
if (rqpkt)

scsi_destroy_pkt(rqpkt);

sdp->sd_private = (caddr_t) NULL;
sdp->sd_sense = NULL;
scsi_unprobe(sdp);

free any other resources, such as the state structure

return (DDI_FAILURE);
}

detach()

The detach (9E) entry point is the inverse of attach (9E); it must free all
resources that were allocated in attach (9E). If successful, the detach should
call scsi_unprobe .

Code Example 10-3 SCSI target driver detach (9E) routine

static int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

struct xxstate *xsp;

SCSI Target Drivers 207

10

normal detach(9E) operations, such as getting a pointer to the state structure

...
scsi_free_consistent_buf(xsp->rqsbuf);
scsi_destroy_pkt(xsp->rqs);

xsp->sdp->sd_private = (caddr_t) NULL;
xsp->sdp->sd_sense = NULL;
scsi_unprobe(xsp->sdp);

remove minor nodes
free resources, such as the state structure

return (DDI_SUCCESS);
}

getinfo ()

The getinfo (9E) routine for SCSI target drivers is much the same as for other
drivers; see “getinfo()” on page 102 for more information on
DDI_INFO_DEVT2INSTANCE case. However, in the
DDI_INFO_DEVT2DEVINFO case of the getinfo (9E) routine, the target driver
must return a pointer to its dev_info node. This can be saved in the driver
state structure or can be retrieved from the sd_dev field of the
scsi_device (9S) structure.

Code Example 10-4 Alternative SCSI target driver getinfo (9E) code fragment

...
case DDI_INFO_DEVT2DEVINFO:

dev = (dev_t) arg;
instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (DDI_FAILURE);
*result = (void *) xsp->sdp->sd_dev;
return (DDI_SUCCESS);

...

Resource Allocation

To send a SCSI command to the device, the target driver must create and
initialize a scsi_pkt (9S) structure and pass it to the host bus adapter driver.

208 Writing Device Drivers—August, 1994

10

scsi_init_pkt()

The scsi_init_pkt (9F) routine allocates and zeros a scsi_pkt (9S)
structure; it also sets pointers to pkt_private, *pkt_scbp, *pkt_cdbp .
Additionally, it provides a callback mechanism to handle the case where
resources are not available. This structure contains the following fields:

struct scsi_pkt *scsi_init_pkt(struct scsi_address *ap,
struct scsi_pkt *pktp, struct buf *bp, int cmdlen,
int statuslen, int privatelen, int flags,
int (*callback)(caddr_t), caddr_t arg)

ap is a pointer to a scsi_address structure. This is the sd_address field of
the device’s scsi_device (9S) structure.

pktp is a pointer to the scsi_pkt (9S) structure to be initialized. If this is set to
NULL, a new packet is allocated.

bp is a pointer to a buf (9S) structure. If this is non-NULL and contains a valid
byte count, DMA resources are allocated.

cmdlen is the length of the SCSI Command Descriptor Block (CDB) in bytes.

statuslen is the required length of the SCSI status completion block, in
bytes.

privatelen is the number of bytes to allocate for the pkt_private field. To
store a pointer, specify the size of the pointer here (such as sizeof(struct
xxstate *) when storing a pointer to the state structure).

flags is a set of flags. Possible bits include:
• PKT_CONSISTENT

This must be set if the DMA buffer was allocated using
scsi_alloc_consistent_buf (9F). In this case, the host bus adapter
driver guarantees that the data transfer is properly synchronized before
performing the target driver’s command completion callback.

• PKT_DMA_PARTIAL

This may be set if the driver can accept a partial DMA mapping. If set,
scsi_init_pkt (9F) allocates DMA resources with the
DDI_DMA_PARTIAL dmar_flag set. The pkt_resid (9E) field of the
scsi_pkt (9S) structure may be returned with a non-zero residual,
indicating the number of bytes for which scsi_init_pkt () was unable
to allocate DMA resources.

SCSI Target Drivers 209

10

callback specifies the action to take if resources are not available. If set to
NULL_FUNC, scsi_init_pkt (9F) returns immediately (returning NULL). If set
to SLEEP_FUNC, it does not return until resources are available. Any other
valid kernel address is interpreted as the address of a function to be called
when resources are likely to be available.

arg is the parameter to pass to the callback function.

The scsi_sync_pkt (9F) routine can be used to synchronize any cached data
after a transfer, when a target driver wants to reuse a scsi_pkt for another
command. This may be done either in the command completion routine or
before calling scsi_transport (9F) for the command a second time.

The scsi_destroy_pkt (9F) routine synchronizes any remaining cached data
associated with the packet, if necessary, and then frees the packet and
associated command, status, and target driver private data areas. This routine
should be called in the command completion routine (see scsi_pkt structure
on page 193).

scsi_alloc_consistent_buf()

For most I/O requests, the data buffer passed to the driver entry points is not
accessed directly by the driver, it is just passed on to scsi_init_pkt (9F). If a
driver sends SCSI commands which operate on buffers the driver examines
itself (such as the SCSI Request Sense command), the buffers should be DMA
consistent. The scsi_alloc_consistent_buf (9F) routine allocates a
buf (9S) structure and a data buffer suitable for DMA consistent operations.
The HBA will perform any necessary synchronization of the buffer before
performing the command completion callback.

Caution – scsi_alloc_consistent_buf (9F) uses scarce system resources; it
should be used sparingly.

scsi_free_consistent_buf (9F) releases a buf (9S) structure and the
associated data buffer allocated with scsi_alloc_consistent_buf (9F). See
“attach()” on page 202 and “detach()” on page 204 for examples.

210 Writing Device Drivers—August, 1994

10

Building and Transporting a Command
The host bus adapter driver is responsible for transmitting the command to the
device and taking care of the low-level SCSI protocol. The
scsi_transport (9F) routine hands a packet to the host bus adapter driver
for transmission. It is the target driver’s responsibility to create a valid
scsi_pkt (9S) structure.

Building a Command

The routine scsi_init_pkt (9F) allocates space for a SCSI CDB, allocates
DMA resources if necessary, and sets the pkt_flags field:

pkt = scsi_init_pkt(&sdp->sd_address, NULL, bp,
CDB_GROUP0, 1, 0, 0, SLEEP_FUNC, NULL);

This example creates a new packet and allocates DMA resources as specified in
the passed buf (9S) structure pointer. A SCSI CDB is allocated for a Group 0 (6
byte) command, the pkt_flags field is set to zero, but no space is allocated
for the pkt_private field. This call to scsi_init_pkt (9F), because of the
SLEEP_FUNC parameter, waits indefinitely for resources if none are currently
available.

The next step is to initialize the SCSI CDB, using the makecom(9F) family of
functions:

makecom_g0(pkt, sdp, flags, SCMD_READ, bp->b_blkno,
 bp->b_bcount >> DEV_BSHIFT);

This example builds a Group 0 Command Descriptor Block and fills in the
pkt_cdbp field as follows:

• The command itself (byte 0) is set from the fourth parameter (SCMD_READ).
• The target device’s logical unit number (bits 5-7 of byte 1) is set using

sd_address field of sdp .
• The pkt_flags field is set from the flags parameter.
• The address field (bits 0-4 of byte 1 and bytes 2 and 3) is set from

bp->b_blkno .
• The count field (byte 4) is set from the last parameter. In this case it is set to

bp->b_bcount >> DEV_BSHIFT , where DEV_BSHIFT is the byte count of
the transfer converted to the number of blocks.

After initializing the SCSI CDB, initialize three other fields in the packet and
store as a pointer to the packet in the state structure.

SCSI Target Drivers 211

10

pkt->pkt_private = (opaque_t) bp;
pkt->pkt_comp = xxcallback;
pkt->pkt_time = 30;
xsp->pkt = pkt;

The buf (9S) pointer is saved in the pkt_private field for later use in the
completion routine.

Transporting a Command

After creating and filling in the scsi_pkt (9S) structure, the final step is to
hand it to the host bus adapter driver:

if (scsi_transport(pkt) != TRAN_ACCEPT) {
bp->b_resid = bp->b_bcount;
bioerror(bp, EIO);
biodone(bp);

}

The other return values from scsi_transport (9F) are:

• TRAN_BUSY - There is already a command in progress for the specified
target.

• TRAN_BADPKT - The DMA count in the packet was too large.

• TRAN_BADPKT - The host adapter driver rejected this packet.

• TRAN_FATAL_ERROR- The host adapter driver is unable to accept this
packet.

Warning – The mutex sd_mutex in the scsi_device (9S) structure must not
be held across a call to scsi_transport (9F).

If scsi_transport (9F) returns TRAN_ACCEPT, the packet is the responsibility
of the host bus adapter driver and should not be accessed by the target driver
until the command completion routine is called.

212 Writing Device Drivers—August, 1994

10

Command Completion

Once the host bus adapter driver has done all it can with the command, it
invokes the packet’s completion callback routine, passing a pointer to the
scsi_pkt (9S) structure as a parameter. The completion routine decodes the
packet and takes the appropriate action. A simple completion routine is given
in Code Example 10-5.

Code Example 10-5 SCSI driver completion routine

static void
xxcallback(struct scsi_pkt *pkt)
{

struct buf *bp;
struct xxstate *xsp;
int instance;
struct scsi_status *ssp;

/*
 * Get a pointer to the buf(9S) structure for the command
 * and to the per-instance data structure.
 */
bp = (struct buf *) pkt->pkt_private;
instance = getminor(bp->b_edev);
xsp = ddi_get_soft_state(statep, instance);

/*
 * Figure out why this callback routine was called
 */
if (pkt->pkt_reason != CMP_CMPLT) {

bp->b_resid = bp->b_bcount;
bioerror(bp, EIO);
scsi_destroy_pkt(pkt); /* release resources */
biodone(bp); /* notify waiting threads */ ;

} else {
/*
 * Command completed, check status.
 * See scsi_status(9S)
 */
ssp = (struct scsi_status *) pkt->pkt_scbp;
if (ssp->sts_busy) {

error, target busy or reserved
} else if (ssp->sts_chk) {

send a request sense command
} else {

bp->b_resid = pkt->pkt_resid; /*packet completed OK */

SCSI Target Drivers 213

10

scsi_destroy_pkt(pkt);
biodone(bp);

}
}

}

This is a very simple completion callback routine. It checks to see whether the
command completed and if it did not, gives up immediately. If the target was
busy it gives up, or if it returned a “check condition” status, it sends a Request
Sense command.

Otherwise, the command succeeded. If this is the end of processing for the
command, it destroys the packet and calls biodone (9F).

This example does not attempt to retry incomplete commands. See
Appendix D, “Sample Driver Source Code Listings” for information about
sample SCSI drivers. Also see Appendix B, “Advanced Topics” for further
information.

214 Writing Device Drivers—August, 1994

10

215

Device Context Management 11

Some device drivers, such as those for graphics hardware, provide user
processes with direct access to the device. These devices often require that only
one process at a time accesses the device.

This chapter describes the set of interfaces that allow device drivers to manage
access to such devices.

What Is A Device Context?
The context of a device is the current state of the device hardware. The device
context for a process is managed by the device driver on behalf of the process.
The device driver must maintain a separate device context for each process
that accesses the device. It is the device driver’s responsibility to restore the
correct device context when a process accesses the device.

Context Management Model
An accelerated frame buffer is an example of a device that allows user
processes (such as graphics applications) to directly manipulate the control
registers of the device through memory-mapped access. Since these processes
are not using the traditional I/O system calls (read (2), write (2), and
ioctl (2)), the device driver is no longer called when a process accesses the
device. However, it is important that the device driver be notified when a
process is about to access a device so that it can restore the correct device
context and provide any needed synchronization.

216 Writing Solaris Graphics Device Drivers—August, 1994

11

To resolve this problem, the device context management interfaces allow a
device driver to be notified when a user processes accesses memory-mapped
regions of the device and to control accesses to the device’s hardware.
Synchronization and management of the various device contexts is the
responsibility of the device driver. When a user process accesses a mapping,
the device driver must restore the correct device context for that process.

A device driver will be notified whenever one of the following events occurs
on a mapping:

• Access to a mapping by a user process

• Duplication of a mapping by a user process

• Freeing of a mapping by a user process

Figure 11-1 is a snapshot of multiple user processes that have memory mapped
a device. Process B has been granted access to the device by the driver, and the
driver no longer requires notification by process B. However, the driver does
require notification if either process A or process C access the device.

Figure 11-1 Device context management

Process A Process B

Device

Current Context

User Processes

Hardware

Process C

Device Context Management 217

11

At some point in the future, process A accesses the device. The device driver is
notified of this and blocks future access to the device by process B. It then
restores the device context of process A and grants access to process A. This is
illustrated in Figure 11-2. At this point, the device driver requires notification if
either process B or process C access the device.

Figure 11-2 Device context switched to user process A

Multiprocessor Considerations

On a multiprocessor machine, multiple processes could be attempting to access
the device at the same time. This can cause thrashing. The kernel prevents this
from happening by guaranteeing that once a device driver has granted access
to a process, no other process will be allowed to request access to the same
device for at least one clock tick.

However, some devices require more time to restore a device context than
others. To prevent more CPU time from being used to restore a device context
than to actually use that device context, the time that a process needs to have
access to the device must be increased. If more time than one click tick is

Device

Current Context

Process A Process B Process CUser

Hardware

Processes

218 Writing Solaris Graphics Device Drivers—August, 1994

11

required, the driver can block new access to the device for an additional
predetermined amount of time using the standard thread synchronization
function calls. See “Thread Synchronization” on page 79 for more information.

Context Management Operation
In general, here are the steps for performing device context management:

1. Define a ddi_mapdev_ctl (9S) structure.

2. Allocate space to save device context if necessary.

3. Set up user mappings to the device and driver notifications with
ddi_mapdev (9F).

4. Manage user access to the device with ddi_mapdev_intercept (9F) and
ddi_mapdev_nointercept (9F).

5. Free the device context structure if needed.

State Structure

This section adds the following fields to the state structure. See “State
Structure” on page 51 for more information.

kmutex_t ctx_lock;
struct xxctx *current_ctx;

The structure xxctx is the driver private device context structure for the
examples used in this section. It looks like this:

struct xxctx {
ddi_mapdev_handle_t handle;
char context[XXCTX_SIZE];
struct xxstate *xsp;

};

The context field stores the actual device context. In this case, it is simply a
chunk of memory; in other cases, it may actually be a series of structure fields
corresponding to device registers.

Device Context Management 219

11

Declarations and Data Structures

Device drivers that use the device context management interfaces must include
the following declaration:

char _depends_on[] = “misc/seg_mapdev” ;

ddi_mapdev_ctl ()

The device driver must allocate and initialize a ddi_mapdev_ctl (9S) structure
to inform the system of its device context management entry point routines.

This structure contains the following fields:

struct ddi_mapdev_ctl {
int mapdev_rev;
int (*mapdev_access)(ddi_mapdev_handle_t handle,

void *private, off_t offset);
void (*mapdev_free)(ddi_mapdev_handle_t handle, void

*private);
int (*mapdev_dup)(ddi_mapdev_handle_t oldhandle,

void *oldprivate, ddi_mapdev_handle_t newhandle,
void **newprivate);

};

mapdev_rev is the version number of the ddi_mapdev_ctl (9S) structure. It
must be set to MAPDEV_REV.

mapdev_access must be set to the address of the driver’s
mapdev_access (9E) entry point.

mapdev_free must be set to the address of the driver’s mapdev_free (9E)
entry point.

mapdev_dup must be set to the address of the driver’s mapdev_dup (9E) entry
point.

Associating Devices with User Mappings

When a user process requests a mapping to a device with mmap(2), the device‘s
segmap(9E) entry point is called. The device must use ddi_mapdev (9F) when
setting up the memory mapping if it wants to manage device contexts.
Otherwise the device driver must use ddi_segmap (9F) to set up the mapping.

220 Writing Solaris Graphics Device Drivers—August, 1994

11

Unlike, ddi_segmap (9E), ddi_mapdev (9F) can not be used directly as an
entry point in the cb_ops (9S) structure. You must define a segmap(9E) entry
point to use ddi_mapdev (9F).

int ddi_mapdev(dev_t dev, off_t offset, struct as *asp,
caddr_t *addrp, off_t len, u_int prot, u_int maxprot,
u_int flags, cred_t *cred, struct ddi_mapdev_ctl *m_ops,
ddi_mapdev_handle_t *handlep, void *private_data);

ddi_mapdev (9F) is similar to ddi_segmap(9F) in that they both allow a user
to map device space. In addition to establishing a mapping, ddi_mapdev (9F)
informs the system of the ddi_mapdev_ctl (9S) entry points and creates a
handle to the mapping in *handlep . This handle can be used to invalidate and
validate the mapping translations. If the driver invalidates the mapping
translations, it will be notified of any future access to the mapping. If the
driver validates the mapping translations, it will no longer be notified of
accesses to the mapping. Mappings are always created with the mapping
translations invalidated so that the driver will be notified on first access to the
mapping.

To ensure that a device driver can distinguish between the various user
processes that have memory-mapped the device, only mappings of type
MAP_PRIVATE can be used with ddi_mapdev (9F).

The dev , offset , asp, addrp, len, prot, maxprot, flags, and cred

arguments are passed into the segmap(9E) entry point and should be passed
on to ddi_mapdev (9F) unchanged. ddi_mapdev (9F) also takes the driver-
defined structure ddi_mapdev_ctl (9S) and a pointer to device private data.
This pointer is passed into each entry point and is usually a pointer to the
device context structure.

Code Example 11-1 segmap(9E) entry point

static struct ddi_mapdev_ctl xx_mapdev_ctl = {
MAPDEV_REV,
xxmapdev_access,
xxmapdev_free,
xxmapdev_dup

};

Device Context Management 221

11

static int
xxsegmap(dev_t dev, off_t off, struct as *asp, caddr_t *addrp,

off_t len, unsigned int prot, unsigned int maxprot,
unsigned int flags, cred_t *credp)

{
int error;
int instance = getminor(dev);
struct xxstate *xsp = ddi_get_soft_state(statep, instance);
struct xxctx *newctx;

/* Create a new context for this mapping */
newctx = kmem_alloc(sizeof (struct xxctx), KM_SLEEP);
newctx->xsp = xsp;
/* Set up mapping */
error = ddi_mapdev(dev, off, asp, addrp, len, prot,

maxprot, flags, credp, &xx_mapdev_ctl, &newctx->handle,
newctx);

if (error)
kmem_free(newctx, sizeof (struct xxctx));

return (error);
}

Managing Mapping Accesses

The device driver is notified when a user process accesses an address in the
memory-mapped region that does not have valid mapping translations. When
the access event occurs, the mapping translations of the process that currently
has access to the device must be invalidated. The device context of the process
requesting access to the device must be restored, and the translations of the
mapping of the process requesting access must be validated.

The functions ddi_mapdev_intercept (9F) and
ddi_mapdev_nointercept (9F) are used to invalidate and validate mapping
translations.

int ddi_mapdev_intercept(ddi_mapdev_handle_t handle,
off_t offset, off_t len);

ddi_mapdev_intercept (9F) invalidates the mapping translations for the
pages of the mapping specified by handle , offset , and len . By invalidating
the mapping translations for these pages, the device driver is telling the system

222 Writing Solaris Graphics Device Drivers—August, 1994

11

to intercept accesses to these pages of the mapping and notify the device driver
the next time these pages of the mapping are accessed by calling the
mapdev_access (9E) entry point.

int ddi_mapdev_nointercept(ddi_mapdev_handle_t handle,
off_t offset, off_t len);

ddi_mapdev_nointercept (9F) validates the mapping translations for the
pages of the mapping specified by handle, offset , and len . By validating
the mapping translations for these pages, the driver is telling the system not to
intercept accesses to these pages of the mapping and allow accesses to proceed
without notifying the device driver.

ddi_mapdev_nointercept (9F) must be called with the offset and the handle
of the mapping that generated the access event for the access to complete. If
ddi_mapdev_nointercept (9F) is not called on this handle, the mapping
translations will not be validated and the process will receive a SIGBUS.

For both functions, requests affect the entire page containing the offset and
all the pages up to and including the entire page containing the last byte as
indicated by offset + len . The device driver must make sure that for each
page of device memory being mapped only one process has valid translations
at any one time.

Both functions return zero if they are successful. If, however, there was an error
in validating or invalidating the mapping translations, that error is returned to
the device driver. It is the device driver’s responsibility to return this error to
the system.

Device Context Management Entry Points

The following device driver entry points are used to manage device context:

mapdev_access ()
int xxmapdev_access(ddi_mapdev_handle_t handle, void *devprivate,

off_t offset);

This entry point is called when an access is made to a mapping whose
translations are invalid. Mapping translations are invalidated when the
mapping is created with ddi_mapdev (9F) in response to mmap(2), duplicated
by fork (2), or explicitly invalidated by a call to ddi_mapdev_intercept (9F).

Device Context Management 223

11

handle represents the mapping that was accessed by a user process.

devprivate is a pointer to the driver private data associated with the
mapping.

offset is the offset within the mapping that was accessed.

In general, mapdev_access (9E) should call ddi_mapdev_intercept (9F),
with the handle of the mapping that currently has access to the device, to
invalidate the translations for that mapping. This ensures that a call to
mapdev_access (9E) occurs for the current mapping the next time it is
accessed. To validate the mapping translations for the mapping that caused the
access event to occur, the driver must restore the device context for the process
requesting access and call ddi_mapdev_nointercept (9F) on the handle of
the mapping that generated the call to this entry point.

Accesses to portions of mappings that have had their mapping translations
validated by a call to ddi_mapdev_nointercept (9F) do not generate a call to
mapdev_access (9E). A subsequent call to ddi_mapdev_intercept (9F) will
invalidate the mapping translations and allows mapdev_access (9E) to be
called again.

If either ddi_mapdev_intercept (9F) or ddi_mapdev_nointercept (9F)
return an error, mapdev_access (9E) should immediately return that error. If
the device driver encounters a hardware failure while restoring a device
context, a -1 should be returned. Otherwise, after successfully handling the
access request, mapdev_access (9E) should return zero. A return of other than
zero from mapdev_access (9E) will cause a SIGBUS or SIGSEGV to be sent to
the process.

Code Example 11-2 shows how to manage a one-page device context.

Code Example 11-2 mapdev_access (9E) routine

static int
xxmapdev_access(ddi_mapdev_handle_t handle, void *devprivate,

off_t offset)
{

int error;
struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;

224 Writing Solaris Graphics Device Drivers—August, 1994

11

mutex_enter(&xsp->ctx_lock);
/* enable access callback for the current mapping */
if (xsp->current_ctx != NULL) {

if ((error = ddi_mapdev_intercept(xsp->current_ctx->handle,
offset, 0)) != 0) {

xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
return (error);

}
}

/* Switch device context - device dependent*/
if (xxctxsave(xsp->current_ctx) < 0) {

xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
return (-1);

}
if (xxctxrestore(ctxp) < 0){

xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
return (-1);

}
xsp->current_ctx = ctxp;

/* Disable access callback for handle and return */
error = ddi_mapdev_nointercept(handle, offset, 0);
if (error)

xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
return(error);

}

mapdev_free ()
void xxmapdev_free(ddi_mapdev_handle_t handle, void *devprivate);

This entry point is called when a mapping is unmapped. This can be caused by
a user process exiting or calling the munmap(2) system call. Partial unmappings
are not supported and will cause the munmap(2) system call to fail with
EINVAL.

handle is the handle of the mapping being freed.

devprivate is a pointer to the driver private data associated with the
mapping.

Device Context Management 225

11

The mapdev_free (9E) routine is expected to free any driver-private resources
that were allocated when this mapping was created, either by ddi_mapdev (9F)
or by mapdev_dup (9E).

There is no need to call ddi_mapdev_intercept (9F) on the handle of the
mapping being freed even if it is the mapping with the valid translations.
However, to prevent future problems in mapdev_access (9E), the device
driver should make sure that its representation of the current mapping is set to
“no current mapping”.

Code Example 11-3 mapdev_free (9E) routine

static void
xxmapdev_free(ddi_mapdev_handle_t handle, void *devprivate)
{

struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;

mutex_enter(&xsp->ctx_lock);
if (xsp->current_ctx == ctxp)

xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
kmem_free(ctxp, sizeof (struct xxctx));

}

mapdev_dup ()
int xxmapdev_dup(ddi_mapdev_handle_t handle, void *devprivate,

ddi_mapdev_handle_t new_handle, void **new_devprivate);

This entry point is called when a device mapping is duplicated, for example,
by a user process calling fork (2). The driver is expected to generate new
driver private data for the new mapping.

handle is a pointer to the mapping being duplicated

new_handle is a pointer to the new mapping that was duplicated

devprivate is a pointer to the driver private data associated with the
mapping being duplicated

*new_devprivate should be set to point to the new driver-private data for
the new mapping.

226 Writing Solaris Graphics Device Drivers—August, 1994

11

Mappings created with mapdev_dup (9E) will, by default, have their mapping
translations invalidated. This will force a call to the mapdev_access (9E) entry
point the first time the mapping is accessed.

Code Example 11-4 mapdev_dup (9E) routine

static int
xxmapdev_dup(ddi_mapdev_handle_t handle, void *devprivate,

ddi_mapdev_handle_t new_handle, void **new_devprivate)
{

struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;
struct xxctx *newctx;

/* Create a new context for the duplicated mapping */
newctx = kmem_alloc(sizeof (struct xxctx),KM_SLEEP);

mutex_enter(&xsp->ctx_lock);
newctx->xsp = xsp;
bcopy(ctxp->context, newctx->context, XXCTX_SIZE);
newctx->handle = new_handle;
*new_devprivate = newctx;
mutex_exit(&xsp->ctx_lock);
return(0);

}

227

Loading and Unloading Drivers 12

This chapter describes the procedure for installing a device driver in the
system, and for dynamically loading and unloading a device driver during
testing and development.

Preparing for Installation
Before the driver is actually installed, all necessary files must be prepared. The
drivers module name must either match the name of the device nodes, or the
system must be informed that other names should be managed by this driver.
The driver must then be properly compiled, and a configuration file must be
created if necessary.

Module Naming

The system maintains a one-to-one association between the name of the driver
module and the name of the dev_info node. For example, a dev_info node
for a device named "wombat" is handled by a driver module called wombat in
a subdirectory called drv (resulting in drv/wombat) found in the module
path.

If the driver should manage dev_info nodes with different names, the
add_drv (1M) utility can create aliases. The "-i" flag specifies the names of
other dev_info nodes that the driver handles.

228 Writing Device Drivers—August, 1994

12

Compile and Link the Driver

Compile each driver source file and link the resulting object files into a driver
module. For a driver called xx that has two C-language source files the
following commands are appropriate:

The _KERNEL symbol must be defined while compiling kernel (driver) code.
No other symbols (such as sun4c or sun4m) should be defined, other than
driver private symbols. DEBUG may also be defined to enable any calls to
ASSERT(9F). There is also no need to use the -I flag for the standard headers.

Once the driver is stable, optimization flags can be used. For SPARCompilers
2.0.1 and ProCompilers 2.0.1, the normal -O flag, or its equivalent -xO2 , may
be used. Note that -xO2 is the highest level of optimization device drivers
should use (see cc(1)).

Note – Running "ld -r " is necessary even if there is only one object module.

Write a Hardware Configuration File

If the device is non-self-identifying, the kernel requires a hardware
configuration file for it. If the driver is called xx, the hardware configuration
file for it should be called xx.conf . See driver.conf (4), isa(4) , pseudo (4),
sbus (4), scsi (4) and vme(4) for more information on hardware configuration
files.

Arbitrary properties can be defined in hardware configuration files by adding
entries of the form property=value, where property is the property name, and
value is its initial value. This allows devices to be configured by changing the
property values.

test% cc -D_KERNEL -c xx1.c
test% cc -D_KERNEL -c xx2.c
test% ld -r -o xx xx1.o xx2.o

Loading and Unloading Drivers 229

12

Installing and Removing Drivers
Before a driver can be used, the system must be informed that it exists. The
add_drv (1M) utility must be used to correctly install the device driver. Once
the driver is installed, it can be loaded and unloaded from memory without
using add_drv (1M) again.

Copy the Driver to a Module Directory

The driver and its configuration file must be copied to a drv directory in the
module path. Usually, this is /usr/kernel/drv :

During development, it may be convenient to add the development directory
to the module path that the kernel searches by adding a line to /etc/system :

moddir: /kernel:/usr/kernel:/ new-mod-dir

Optionally Edit /etc/devlink.tab

If the driver creates minor nodes that do not represent disks, tapes, or ports
(terminal devices), /etc/devlink.tab can be modified to cause
devlinks (1M) to create logical device names in /dev . See devlink.tab (4)
for a description of the syntax of this file.

Alternatively, logical names can be created by a program run at driver
installation time.

Run add_drv (1M)

Run add_drv (1M) to install the driver in the system. If the driver installs
successfully, add_drv (1M) will run disks (1M), tapes (1M), ports (1M), and
devlinks (1M) to create the logical names in /dev .

$ su
cp xx /usr/kernel/drv
cp xx.conf /usr/kernel/drv

add_drv xx

230 Writing Device Drivers—August, 1994

12

This is a simple case in which the device identifies itself as " xx" and the device
special files will have default ownership and permissions (0600 root sys).
add_drv(1M) also allows additional names for the device (aliases) to be
specified. See add_drv (1M) to determine how to add aliases and set file
permissions explicitly.

Note – add_drv (1M) should not be run when installing a STREAMS module.
See the STREAMS Programmer’s Guide for details.

Removing the Driver
To remove a driver from the system, use rem_drv (1M), then delete the driver
module and configuration file from the module path. The driver cannot be
used again until it is reinstalled with add_drv (1M).

Loading Drivers
Opening a special file associated with the device driver causes the driver to be
loaded. modload (1M) can also be used to load the driver into memory, but
does not call any routines in the module. Opening the device is the preferred
method.

Getting the Driver Module’s ID
Individual drivers can be unloaded by module id. To determine the module id
assigned to a driver, use modinfo (1M). Find the driver’s name in the output.
The first column of that entry is the driver’s module ID

The number in the Info field is the major number chosen for the driver.

modinfo
Id Loadaddr Size Info Rev Module Name
...
124 ff211000 1df4 101 1 xx (xx driver v1.0)

Loading and Unloading Drivers 231

12

Unloading Drivers
Normally, the system automatically unloads device drivers when they are no
longer in use. During development, it may be necessary to use
modunload (1M) to unload the driver before installing a new version. In order
for modunload (1M) to be successful, the device driver must not be active;
there must be no outstanding references to the device, such as through open (2)
or mmap(2).

Use modunload (1M) like this to unload a driver from the system:

In addition to being inactive, the driver must have working detach (9E) and
_fini(9E) routines for modunload (1M) to succeed.

To unload all currently unloadable modules, specify module ID zero:

modunload -i module_id

modunload -i 0

232 Writing Device Drivers—August, 1994

12

233

Debugging 13

This chapter describes how to debug a device driver. This includes how to set
up a tip (1) connection to the test machine, how to prepare for a crash, how to
use existing memory driver, and also some hints for coding the device driver. It
also introduces system debugging tools that are available, and gives hints on
how to test the device driver.

Note – The information presented in this chapter is specific to the release of the
operating system, and is subject to change.

Machine Configuration

Setting Up a tip (1) Connection

The serial ports on one system (the host system) can be used to connect to a
driver debugging and test machine using tip (1). This allows a window on the
host system, called a tip window, to be used as the console of the test machine.
See tip (1) for additional information.

Note – A second machine is not required to debug a SunOS device driver. It is
only required for the use of tip (1).

234 Writing Device Drivers—August, 1994

13

Using a tip window is very helpful:

• It lets the window system to assist in interactions with the boot PROM or
kadb. For example, the window can keep a log of the session, which is very
handy if the driver crashes the test system.

• It allows the test machine to be remote. It is reached by logging into a host
machine (often called a tip host) and using tip (1) to connect to the test
machine.

Setting Up the Host System

A simple setup for connecting serial port A on the host (running Solaris 2.x) to
serial port A on the test machine (a SPARC system with an Open Boot PROM)
is:

1. Connect the host system to the test machine using either serial port; the
example in this section uses port A. This connection must be made with a
null modem cable, which connects the signal Receive to Transmit, and
Ground to Ground. This cable can be constructed by the developer, or a null
modem adaptors can be found at electronics stores.

2. On the host system, make an entry in /etc/remote for the connection if it
is not already there (see remote(4)). The terminal entry must match the
serial port being used. Solaris 2.x comes with the correct entry for serial port
B, but one must be added for serial port A:

3. In a shell window on the host, run tip (1) and specify the name of the entry:

The shell window is now a tip window directed to the test machine.

debug:\
:dv=/dev/term/a:br#9600:el=^C^S^Q^U^D:ie=%$:oe=^D:

test% tip debug
connected

Debugging 235

13

Setting Up the Test System

A quick way to set up the test machine is to unplug its keyboard before
turning it on. It then automatically uses serial port A as the console. Another
way to do this is to use boot PROM commands to make serial port A the
console:

1. On the test machine, enter the boot PROM (ok prompt). Direct I/O to the
serial line, indicating the correct serial port. In this example, the test
machine is using serial port A, so the command is ttya io . Pressing Return
in the tip window should get a boot PROM prompt.

Caution – Do not use L1-A on the host machine to send a break to stop the test
machine. This actually stops the host machine. To send a break to the test
machine, type ~# in the tip window. Tilde commands such as this are
recognized only if they are the first characters on a line, so press the Return key
or Control-U first if there is no effect.

2. To make the test machine always come up with serial port A as the console,
set the environment variables input-device and output-device:

On x86 platforms, the test machine needs to set console = 1 in
/etc/system . This causes a switch to COM1 during reboot.

Preparing for the Worst

It is possible that the driver will render the system unbootable; this is most
likely if the driver is for the boot device. If a complete system reinstallation is
to be avoided, some advance work must be done to prepare for this possibility.

ok setenv input-device ttya
ok setenv output-device ttya

236 Writing Device Drivers—August, 1994

13

Boot Off a Backup Root Partition

One way to deal with this is to have another bootable root file system. Use
format (1M) to make a partition the exact size of the original, then (from
SunOS) use dd(1M) to copy it. Do this from single-user mode so that there is as
little file system activity as possible, and run fsck (1M) on the new file system
to ensure its integrity.

Later, if the system cannot boot from the original root partition, boot the
backup partition and use dd(1M) to copy the backup partition onto the original
one. If the system will not boot but the root file system is undamaged (just the
boot block or boot program was destroyed), boot off the backup partition with
the ask (-a) option, then specify the original filesystem as the root filesystem.

Boot Off the Network.

If the system is attached to a network, the test machine can be added as a client
of a server. If a problem occurs, the system can be booted off the network. The
local disks can then be mounted and fixed.

Critical System Files

There are a number of driver-related system files that are difficult, if not
impossible, to reconstruct. Files such as /etc/name_to_major could be
corrupted if the driver crashes the system during installation (see
add_drv(1M)).

To be safe, once the test machine is in the proper configuration, make a backup
copy of the root file system.

Recreating /devices and /dev

If the /devices or /dev directories are damaged (most likely if the driver
crashes during attach (9E)), they may be recreated in the following way. Boot
the system from somewhere else (another disk, an installation CD, or the
network), and run fsck (1M) to repair the damaged root filesystem. Then,
mount the root filesystem and recreate /devices by running drvconfig (1M)
and specifying the devices directory on the mounted disk. The /dev
directory can be repaired by running devlinks (1M), disks (1M), tapes (1M),
and ports (1M) on the dev directory of the mounted disk.

Debugging 237

13

For example, if the damaged disk is /dev/dsk/c0t3d0s0 , and an alternate
boot disk is /dev/disk/c0t1d0s0 , do the following:.

Caution – Fixing /devices and /dev may allow the system to boot, but other
parts of the system may still be corrupted. This may only be a temporary fix to
allow saving of information (such as system core dumps) before reinstalling
the system.

Booting an Alternate Kernel

A kernel other than /kernel/unix can be booted by specifying it as the boot
file. In fact, backup copies of all the system drivers in /kernel can be made
and used in the event the originals fail (this is probably more useful if more
than one driver is being debugged). For example:

ok boot disk1
...
Rebooting with command: disk1
Boot device: /sbus/esp@0,800000/sd@1,0 File and args:
SunOS Release 5.4 Version Generic [UNIX(R) System V Release 4.0]
Copyright (c) 1983-1994, Sun Microsystems, Inc.
...
fsck /dev/dsk/c0t3d0s0
** /dev/dsk/c0t3d0s0
** Last Mounted on /
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
1478 files, 9922 used, 29261 free(141 frags, 3640 blocks, 0.4% fragmentation)
mount /dev/dsk/c0t3d0s0 /mnt
drvconfig -r /mnt/devices
devlinks -r /mnt
disks -r /mnt
tapes -r /mnt
ports -r /mnt

cp -r /kernel /kernel.orig

238 Writing Device Drivers—August, 1994

13

To boot the original system, boot /kernel.orig/unix . By default, the first
module directory in the module directory path is the one the kernel resides in.
By booting /kernel.orig/unix , the module directory path becomes
“/kernel.orig /usr/kernel ”.

For more complete control, boot with the ask (-a) option; this allows alternate
files to be specified (such as /etc/system.orig if that is the original “clean”
system file).

Coding Hints
During development, debugging the driver should be a constant consideration.
Since the driver is operating much closer to the hardware, without the
protection of the operating system, debugging kernel code is harder than
debugging user-level code. A stray pointer access can crash the entire system.
This section provides some information that may be used to make the driver
easier to debug.

ok boot disk1 /kernel.orig/unix
...
Rebooting with command: disk1 /kernel.orig/unix
Boot device: /sbus/esp@0,800000/sd@1,0 File and args:/kernel.orig/unix
SunOS Release 5.4 Version Generic [UNIX(R) System V Release 4.0]
Copyright (c) 1983-1994, Sun Microsystems, Inc.
...

ok boot disk1 -a
...
Rebooting with command: disk1 -a
Boot device: /sbus/esp@0,800000/sd@1,0 File and args: -a
Enter filename [/kernel/unix]: /kernel.orig/unix
SunOS Release 5.4 Version Generic [UNIX(R) System V Release 4.0]
Copyright (c) 1983-1994, Sun Microsystems, Inc.
Name of system file [etc/system]: etc/system.orig
Name of default directory for modules [/kernel.orig /usr/kernel]: <CR>
root filesystem type [ufs]: <CR>
Enter physical name of root device
[/sbus@1,f8000000/esp@0,800000/sd@1,0:a]: <CR>

Debugging 239

13

Process Layout

SunOS 5.x operating system processes follow the definition given in the System
V Application Binary Interface, SPARC Processor Supplement (also known as the
ABI). A standard process looks similar to this:

The ABI specifies the system portion of a process’ virtual address space is in
the high end, and may occupy no more than 512 megabytes. In other words, all
kernel addresses will be 0xE0000000 or higher. Some implementations may
use less kernel space, and so begin at a higher address. This fact can be used
when debugging: if pointers point below the address 0xE0000000, they
probably are user addresses.

System Support

The system provides a number of routines that can aid in debugging; they are
documented in Section 9F of the man Pages(9F): DDI and DKI Kernel Functions.

cmn_err()

cmn_err (9F) is the function to use to print messages to the console from the
kernel. See cmn_err (9F) and “Printing Messages” on page 55 for more
information on its use.

0

0xFFFFFFFF

Text

Stack

System

Data

240 Writing Device Drivers—August, 1994

13

Note – Though printf() and uprintf() currently exist, they should not be
used if the driver is to be Solaris DDI-compliant.

An example from the probe (9E) routine might be to print a message if the
device is not found. Normally, probe (9E) routines should not print messages if
the device is not there.

if (ddi_pokec(dip, ®p->csr, ENABLE_INTERRUPTS) != DDI_SUCCESS) {
 cmn_err(CE_NOTE, “%s not found.”, ddi_get_name(dip));
 return (DDI_PROBE_FAILURE);
}

A handy format for printing device register bits is %b. See cmn_err (9F) for
information on how to use it.

ASSERT()

void ASSERT(int expression)

ASSERT(9F) can be used to assure that a condition is true at some point in the
program. It is a macro, and what it does depends on whether or not the symbol
DEBUG is defined (from <sys/debug.h>). If DEBUG is not defined, the macro
expands to nothing and the expression is not evaluated. If DEBUG is defined,
the expression is evaluated, and if the value is zero a message is printed and
the system panics.

For example, if at a point in the driver a pointer should be non-NULL—and if it
is not, something is seriously wrong—the following assertion could be used:

ASSERT(ptr != NULL);

If compiled with DEBUG defined, and the assertion fails, a panic occurs:

panic: assertion failed: ptr != NULL, file: driver.c, line: 56

Note – Because ASSERT(9F) uses DEBUG, it is suggested that any conditional
debugging code should also be based on DEBUG, rather than with a driver
symbol (such as MYDEBUG). Otherwise, for ASSERT(9F) to function properly,
DEBUG must be defined whenever MYDEBUG is defined.

Assertions are an extremely valuable form of active documentation.

Debugging 241

13

mutex_owned()

int mutex_owned(kmutex_t *mp);

A significant portion of driver development involves properly handling
multiple threads. Comments should always be used when a mutex is acquired,
and are even more useful when an apparently necessary mutex is not acquired.
To determine if a mutex is held by a thread, use mutex_owned (9F) within
ASSERT(9F):

void helper(void)
{

/* this routine should always be called with the mu mutex held */
ASSERT(mutex_owned(&xsp->mu));
...

}

Future releases of Solaris may only support the use of mutex_owned(9F)
within ASSERT(9F) by not defineing mutex_owned(9F) unless the
preprocessor symbol DEBUG is defined.

Conditional Compilation and Variables

There are two common ways to place debugging code in a driver: conditionally
compiling code based on a preprocessor symbol such as DEBUG, or using a
global variable. Conditional compilation has the advantage that unnecessary
code can be removed in the production driver. Using a variable allows the
amount of debugging output to be chosen at run time, such as by setting a
debugging level at run time with an I/O control or through a debugger.
Commonly, these two methods are combined.

242 Writing Device Drivers—August, 1994

13

The following example relies on the compiler to remove unreachable code (the
code following the always-false test of zero), and also provides a local variable
that can be set in /etc/system or patched by a debugger.

This method handles the fact that cmn_err (9F) has a variable number of
arguments. Another method relies on the macro having one argument, a
parenthesized argument list for cmn_err (9F), which the macro removes. It also
removes the reliance on the optimizer by expanding the macro to nothing if
DEBUG is not defined.

This can be extended in many ways, such as by having different messages from
cmn_err (9F) depending on the value of xxdebug , but be careful not to
obscure the code with too much debugging information.

Another common scheme is to write an xxlog() function, and have it use
vsprintf (9F) or vcmn_err (9F) to handle variable argument lists.

#ifdef DEBUG
comments on values of xxdebug and what they do
static int xxdebug;
#define dcmn_err if (xxdebug) cmn_err
#else
#define dcmn_err if (0) cmn_err
#endif
...

dcmn_err(CE_NOTE, “Error!\n”);

#ifdef DEBUG
comments on values of xxdebug and what they do
static int xxdebug;
#define dcmn_err(X) if (xxdebug) cmn_err X
#else
#define dcmn_err(X) /* nothing */
#endif

...
dcmn_err((CE_NOTE, “Error!”));

Debugging 243

13

The Optimizer and volatile

The volatile keyword must be used when declaring any variable that will
reference a device register, or the optimizer may optimize important accesses
away. This is very important since not using volatile can result in bugs that
are very difficult to track down. See “volatile” on page 69 for more
information.

Using Existing Drivers
Using existing drivers with a user program is a good way to see if the kernel
sees the device. This allows the device to be debugged without the need for the
device-specific driver, and separates device debugging from driver debugging.
Depending on the driver and device, mmap(2) , or read(2) and write(2)
(possibly with lseek(2)) may be used.

The “mem” and “kmem” drivers access physical memory and kernel memory,
respectively. /dev/mem is used to provide a core memory image to debuggers
such as adb (1).

To examine kernel memory from a user program, consider using the libkvm
routines (see section kvm_open (3K)) for a (slightly) portable way. Be aware
that kernel structures change frequently, so any code that examines the kernel
is likely to need changes in future releases or on other platforms.

For devices, there are two bus space drivers, “vmemem” and “sbusmem”.
These allow access to devices on the bus without a driver. After verifying that
the device is accessible through the PROM (see “The PROM on SPARC
Machines” on page 26), these drivers can verify that it is accessible by SunOS.
However, special handling requiring knowledge of the device (such as
interrupt handling and DMA) can not be performed by these drivers. Be
careful to not compromise system security (such as by giving non-root users
access to the special files for these drivers), or system integrity (by accessing
other devices).

This program opens the “sbusmem” driver for the slot the bwtwo is in and
performs the same operations that were done previously with the PROM (see
“Reading and Writing” on page 33).

Code Example 13-1 Accessing bwtwo with the “sbusmem” driver

244 Writing Device Drivers—August, 1994

13

#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

void
fill(char *base, int count, char val)
{

register int i;

for(i=0; i < count; i++)
*base++ = val;

sleep(2);
}

int
main(int argc, char *argv[])
{

int fd;
caddr_t base;
size_t fb_len = 0x20000;
off_t fb_offset = 0x800000;

fd = open(“/devices/sbus@1,f8000000/sbusmem@3,0:slot3”,
O_RDWR);

if (fd == -1) {
perror(“open /devices/sbus@1,f8000000/sbusmem@3,0:slot3”);
return (1);

}
base = mmap(NULL, fb_len, PROT_READ | PROT_WRITE, MAP_SHARED,

fd, fb_offset);
if (base == (caddr_t)-1) {

perror(“mmap of SBus slot 3”);
return (1);

}
close(fd);

fill(base, 0x20000, 0xff);
fill(base, 0x20000, 0);
fill(base, 0x18000, 0x55);
fill(base, 0x15000, 0x3);
fill(base, 0x10000, 0x5);
fill(base, 0x5000, 0xf9);

return (0);
}

Debugging 245

13

Debugging Tools
This section describes some programs and files that can be used to debug the
driver at run time.

/etc/system

The /etc/system file is read once while the kernel is booting. It is used to set
various kernel options. After modifying this file, the system must be rebooted
for the changes to take effect. If a change in the file causes the system not to
work, boot with the ask (-a) option and specify /dev/null as the system file.

The path the kernel uses when looking for modules can be set by changing the
moddir variable in the system file. If the driver module is in a working area,
such as /home/driver, the following example adds that directory to the
module path:

moddir: /kernel /usr/kernel /home/driver

Caution – Do not allow non-root users to write to the module directory.

The set command is used to set integer variables. To set module variables, the
module name must also be specified:

set module:variable=value

For example, to set the variable xxdebug in the driver “xx ”, use the following
set command:

set xx:xxdebug=1

To set a kernel integer variable, omit the module name. Other assignments are
also supported, such as bitwise ORing a value into an existing value:

set moddebug | 0x80000000

See system (4) for more information.

Note – Most kernel variables are not guaranteed to be present in subsequent
releases.

moddebug is a bit field that controls the module loading process. See
<sys/modctl.h> for all its possible values. Here are a few useful ones:

246 Writing Device Drivers—August, 1994

13

0x80000000 – Print messages to the console when loading/unloading
modules.

0x40000000 – Give more detailed error messages

0x20000000 – Print more detail when loading/unloading (such as
including the address and size).

0x00001000 – No autounloading drivers: the system will not attempt to
unload the device driver when the system resources
become low.

0x00000080 – No autounloading streams: the system will not attempt to
unload the streams module when the system resources
become low.

modload and modunload

Since the kernel automatically loads needed modules, and unloads unused
ones, these two commands are now obsolete. However, they can be used for
debugging.

modload (1M) can be used to force a module into memory. The kernel may
unload it subsequently, but modload (1M) may be used to insure that the driver
has no unresolved references when loaded.

modunload (1M) can be used to unload a module, given a module ID (which
can be determined with modinfo (1M)). Unloading a module does not
necessarily remove it from memory. To unload all unloadable modules and
forcibly remove them from memory (so that they will be reloaded from the
actual object file), use module ID zero:

Note – modload (1M) and modunload (1M) may be removed in a future release.

modunload -i 0

Debugging 247

13

Saving System Core Dumps

When the system panics, it writes the interesting portions of memory to the
dump device (which is usually the swap device). This is a system core dump,
similar to the core dumps generated by applications.

To save a core dump, there must be enough space in the swap area to contain
it. To be safe, the primary swap area should be at least the size of main
memory (all the information is in main memory, though not all of it is
dumped).

savecore (1M) is used to copy the system‘s core image to a file. Normally, the
system does not examine the swap area for core dumps when it boots. This
must be enabled in /etc/init.d/sysetup . Change the lines that read:

To:

When savecore (1M) runs, it makes a copy of the kernel that was running
(called unix.n) and dumps a core file (called vmcore.n) in the specified
directory, normally /var/crash/ machine_name. There must be enough space

##
Default is to not do a savecore
##
#if [! -d /var/crash/`uname -n`]
#then mkdir -p /var/crash/`uname -n`
#fi
echo ‘checking for crash dump...\c ‘
#savecore /var/crash/`uname -n`
echo ‘’

##
Default is to not do a savecore
##
if [! -d /var/crash/`uname -n`]
then mkdir -p /var/crash/`uname -n`
fi
 echo ‘checking for crash dump...\c ‘
savecore /var/crash/`uname -n`
 echo ‘’

248 Writing Device Drivers—August, 1994

13

in /var/crash to contain the core dump or it will be truncated. The file will
appear larger than it actually is, since it contains holes, so avoid copying it.
adb (1) can then be used on the core dump and the saved kernel.

Note – savecore (1M) can be prevented from filling the file system if there is
a file called minfree in the directory in which the dump will be saved. This
file contains a number of kilobytes to remain free after savecore (1M) has run.
However, if not enough space is available, the core file is not saved.

adb and kadb

adb (1) can be used to debug applications or the kernel, though it cannot debug
the kernel interactively (such as by setting breakpoints). To interactively debug
the kernel, use kadb (1M). Both adb (1) and kadb (1M) share a common
command set.

adb (1) is a very terse debugger. It does not normally prompt for input (though
kadb (1M) does).

Starting adb

The command for starting adb to debug a kernel core dump is:

To start adb on a live system, use (as root)::

/dev/ksyms is a special driver that provides an image of the kernel’s symbol
table. This can be used to examine the debugging information (traces) the
driver has left in the memory.

When adb (1) responds with ’physmem XXX’ , it is ready for a command.

% adb -k /var/crash/hostname/unix.n /var/crash/hostname/vmcore.n

adb -k /dev/ksyms /dev/mem

Debugging 249

13

Starting kadb

The system must be booted under kadb (1M) before kadb (1M) can be used.
From the Open Boot PROM, use:

By default, kadb (1M) boots (and debugs) /kernel/unix . It can be passed a
file name as an argument to boot a different kernel, or -d can be passed to
have kadb (1M) prompt for the kernel name. This flag also causes kadb (1M) to
provide a prompt after it has loaded the kernel, so breakpoints can be set.

At this point you can set break points or continue with the :c command.

Note – kadb (1M) passes on any kernel flags to the booted kernel. For example,
the flags -r , -s and -a can be passed to /kernel/unix with the command
boot kadb -ras .

ok boot kadb
...
Boot device: /sbus/esp@0,800000/sd@3,0 File and args: kadb
kadb: /kernel/unix
Size: 673348+182896+46008 bytes
/kernel/unix loaded - 0x125000 bytes used
SunOS Release 5.4 Version Generic [UNIX(R) System V Release 4.0]
Copyright (c) 1983-1994, Sun Microsystems, Inc.
...

ok boot kadb -d
...
Boot device: /sbus/esp@0,800000/sd@3,0 File and args: kadb -d
kadb: /kernel/unix
kadb: /kernel/unix
Size: 673348+182896+46008 bytes
/kernel/unix loaded - 0x125000 bytes used
kadb[0]:

250 Writing Device Drivers—August, 1994

13

Once the system is booted, sending a break passes control to kadb (1M). A
break is generated with L1-A, or by ~# if the console is connected through a tip
window

The number in brackets is the CPU that kadb (1M) is currently executing on;
the remaining CPUs are halted. The CPU number is zero on a uniprocessor.
Halting the system will also drop to a kadb (1M) prompt.

Warning – Before rebooting or shutting off the power, always halt the system
cleanly (with init 0 or shutdown). Buffers may not be flushed otherwise. If
the shutdown must occur from the boot PROM, make sure to flush buffers
with sync (on the OBP), or ‘g 0’ (on SunMon).

To continue back to SunOS, use :c .

Exiting

To exit either adb (1M) or kadb (1M), use $q .

kadb (1M) can be continued by typing go (on the OBP) or c (on SunMON).

...
The system is ready.

test console login: ~stopped at 0xfbd01028: ta 0x7d
kadb[0]:

kadb[0]: :c

test console login:

kadb[0]: $q
Type ‘go’ to resume
ok

Debugging 251

13

Warning – No other commands can be performed from the PROM if the
system is to be continued. PROM commands other than :c (continue) may
change system state that SunOS depends on.

Staying at the kadb (1M) prompt for too long may cause the system to lose
track of the time of day, and cause network connections to time out.

Commands

The general form of an adb (1M)/kadb (1M) command is:

[address] [,count] command [;]

If address is omitted, the current location is used (‘.’ also stands for the current
location). The address can be a kernel symbol. If count is omitted, it defaults to
1.

Commands to adb consist of a verb followed by a modifier or list of modifiers.
Verbs can be:

? Print locations starting at address in the executable.

/ Print locations starting at address in the core file.

= Print the value of address itself.

> Assign a value to a variable or register.

< Read a value from a variable or register.

RETURN Repeat the previous command with a count of 1. Increment
‘.’.

With ?, / , and =, output format specifiers can be used. Lowercase letters
normally print 2 bytes, uppercase letters print 4 bytes:

o, O Octal

d,D Decimal

x,X Hexadecimal

u,U Unsigned decimal

f,F 4,8 byte floating point

252 Writing Device Drivers—August, 1994

13

c Print the addressed character

C Print the addressed character using ^ escape notation.

s Print the addressed string.

S Print the addressed string using ^ escape notation.

i Print as machine instructions (disassemble)

a Print the value of `.’ in symbolic form.

w,W Write a 2/4 byte value

Note – Understand exactly what sizes the objects are, and what effects
changing them might have, before making any changes.

For example, to set a bit in the moddebug variable when debugging the driver,
first examine the value of moddebug, then OR in the desired bit.

Routines can be disassembled with the ‘i ’ command. This is useful when
tracing crashes, since the only information may be the program counter at the
time of the crash. The output has been formatted for readability:

kadb[0]: moddebug/X
moddebug:
moddebug: 0
kadb[0]: moddebug/W 0x80000000
moddebug: 0x0 = 0x80000000

kadb[0]: strcmp,4?i
strcmp:
strcmp: ba strcmp + 0x20

ldsb [%o1], %o5
add %o0, 0x1, %o0
orcc %g0, %o5, %g0

Debugging 253

13

To show the addresses also, specify symbolic notation with the ‘a’ command:

Register Identifiers

Machine or kadb (1M) internal registers are identified with the ‘<‘ command,
followed by the register of interest. The following register names are
recognized:

. “dot,” the current location

i0-7 input registers to current function

o0-7 output registers for current function

l0-7 local registers

g0-7 global registers

psr Processor Status Register

tbr Trap Base Register

wim Window Invalid Mask.

g7 always contains the current thread pointer. For more information on how
these registers are normally used, see The SPARC Architecture Manual, Version 8,
and the System V Application Binary Interface, SPARC Processor Supplement.

The following command displays the PSR as a 4-byte hexadecimal value:

The individual bits of the PSR are defined in <sys/psw.h> . More information
is available in The SPARC Architecture Manual, Version 8 and The SPARC
Assembly Language Reference Manual.

kadb[0]: strcmp,4?ai
strcmp: strcmp: ba strcmp + 0x20
strcmp+4: ldsb [%o1], %o5
strcmp+8: add %o0, 0x1, %o0
strcmp+0xc: orcc %g0, %o5, %g0

kadb[0]: <psr=X
 400cc3

254 Writing Device Drivers—August, 1994

13

Display and Control Commands

The following commands display and control the status of adb (1)/kadb (1M):

$b Display all breakpoints

$c Display stack trace

$d Change default radix to value of dot

$q Quit

$r Display registers

$M Display built-in macros.

‘$c ’ is very useful with crash dumps: it shows the call trace and arguments at
the time of the crash. It is also useful in kadb (1M) when a breakpoint is
reached, but is usually not useful if kadb (1M) is entered at a random time. The
number of arguments to print can be passed following the ‘$c ’ (‘$c 2 ’ for two
arguments).

Breakpoints

In kadb (1M), breakpoints can be set, which will automatically drop back into
kadb when reached. The standard form of a breakpoint command is:

addr [, count]:b [command]

addr is the address at which the program will be stopped and the debugger
will receive control, count is the number of times that the breakpoint
address occurs before stopping, and command is almost any adb (1)
command. Other breakpoint commands are:

:c continue execution

:d delete breakpoint

:s single step

:e single step, but step over function calls

:u stop after return to caller of current function

:z delete all breakpoints

Debugging 255

13

Here is an example of setting a breakpoint in a commonly used routine,
scsi_transport (9F). Upon reaching the breakpoint, ‘$c ’ is used to get a
stack trace. The top of stack is the first function printed. Note that kadb (1M)
does not know how many arguments were passed to the function; it always
prints six.

Conditional Breakpoints

Breakpoints can also be set to occur only if a certain condition is met. By
providing a command, the breakpoint will be taken only if the count is reached
or the command returns zero. For example, a breakpoint that occurs only on

kadb[0]: scsi_transport:b
kadb[0]: :c

test console login: root
Password:
breakpoint scsi_transport: save %sp, -0x60, %sp
kadb[0]: $c
scsi_transport(0xff09c400,0x3,0x3,0x1,0xff09c534,0xff0a0690)
sdstrategy(0xff0a0690,0x3,0xff09c440,0x170,0xff09c534,0xff09c400) + 3d8
bwrite(0xff0a0690,0xff1ed400,0x1,0xb,0xff0a06f0,0xf017d9d8) + bc
sbupdate(0xf00dcfe8,0xff20f400,0xff0a0690,0x400,0x0,0xff03b000)+ 9c
ufs_update(0xff034c80,0x3,0xff034cac,0xff2ac764,0xff03b000,0xf00dfe8) + 198
ufs_sync(0x0,0x10000,0xff007980,0x1e,0xf00d8e38,0xf00d8e38) + 8
fsflush(0xf00dd330,0xf00e0830,0x1af,0x2,0xf00f3ab8,0xf00b8254) + 568
kadb[0]: :s
stopped at scsi_transport+4: ld [%i0 + 0x4], %o0
kadb[0]: $b
breakpoints
count bkpt command
1 scsi_transport
kadb[0]: scsi_transport:d
kadb[0]: :c

256 Writing Device Drivers—August, 1994

13

certain I/O controls could be set in the driver’s ioctl (9E) routine. Here is an
example of breaking only in the sdioctl () routine if the DKIOGVTOC (get
volume table of contents) I/O control occurs.

Adding four to sdioctl skips to the second instruction in the routine,
bypassing the save instruction that establishes the stack. The ‘<i1 ’ refers to
the first input register, which is the second parameter to the routine (the cmd
argument of ioctl (9E)). The count of zero is impossible to reach, so it stops
only when the command returns zero, which is when ‘i1 - 0x40B ’ is true. This
means i1 contains 0x40B (the value of the ioctl command, determined by
examining the header file).

To force the breakpoint to be reached, the prtvtoc (1M) command is used. It
known to issue this I/O control:

kadb (1M) cannot always determine where the bottom of the stack is. In the
above example, the calls to Syssize and ?(?) are not part of the stack.

kadb[0]: sdioctl+4,0:b <i1-0x40B
kadb[0]: $b
breakpoints
count bkpt command
0 sdioctl+4 <i1-0x40B
kadb[0]: :c

prtvtoc /dev/rdsk/c0t3d0s0
breakpoint sdioctl+4: mov %i0, %o0
kadb[0]: $c
sdioctl(0x800018,0x40b,0xeffffc24,0x1,0xff22fa80,0xf01e9918) + 4
ioctl(0xf01e9e90,0xf01e9918,0x1,0x40b,0xff2ab380,0xff0894b4) + 1ec
syscall(0xf00c1c54) + 4d4
.syscall(0x3) +8c
?(?) + 7fffffff
Syssize(0x3,0xeffffc24,0xeffffd6c,0x5403148,0x0,0x5452ea0) + 20338
Syssize(0x3,0xefffff7c,0xeffffc24,0x80,0x3,0x0)+ fb70
Syssize(0xefffff7c,0x2000,0x1,0x1,0x1,0x3) + f51c
Syssize(0x2,0xeffffee4,0xeffffef0,0x22c00,0x0,0xffffffff) + eb8c

Debugging 257

13

Macros

adb (1) and kadb (1M) support macros. adb (1) macros are in
/usr/kvm/lib/adb , while kadb (1M)’s macros are built-in and can be
displayed with $M. Most of the existing macros are for private kernel
structures. New macros for adb can be created with adbgen (1).

Macros are used in the form:

[address] $<macroname

threadlist is a useful macro that displays the stacks of all the threads in the
system. This macro that does not take an address, and can generate a lot of
output, so be ready to use Control-S and Control-Q to start/stop if necessary
(this is another good reason to use a tip window). Control-C can be used to
abort the listing.:

kadb[0]: $<threadlist
thread_id f0141ee0

?() + 1e
data address not found

thread_id f0165ee0
?(0xf00e24e0,0xf00e24e0,0xff004000,0xc,0x0,0x4000e0) + 1e
callout_thread(0xff004090,0xf00d7d9a,0xf00e24e0,0xf00ac6c0,0x0,0xf004000) + 2c

thread_id f016bee0
?(0xf00e04d0,0xf00e04d0,0x80b5f7ff,0x1,0x0,0x4000e0) + 1e
background(0x0,0x0,0x0,0xf00e23ac,0x0,0xf00e04d0) + 64

thread_id f016eee0
?(0xf00dd884,0xf00dd884,0x80b777ff,0x1,0x0,0x4000e0) + 1e
freebs(0x0,0x0,0xf00e2388,0xff21d270,0xf00e24a0,0xf00dd884) + 2c
^C

258 Writing Device Drivers—August, 1994

13

Another useful macro is thread . Given a thread ID, it prints the
corresponding thread structure. This can be used to look at a certain thread
found with the threadlist macro, to look at the owner of a mutex, or to look
at the current thread.

Note – There is no type information kept in the kernel, so using a macro on an
inappropriate object will result in garbage output.

Macros do not necessarily output all the fields of the structures, nor is the
output necessarily in the order given in the structure definition. Occasionally,
memory may need to be dumped for certain structures, and then matched with
the structure definition in the kernel header files.

Warning – The driver should have knowledge only of headers and structures
listed in Section 9S of the man Pages(9S): DDI and DKI Data Structures, even
though interesting knowledge may be uncovered while debugging.

kadb[0]: <g7$<thread
0xf0141ee0:

link stk stksize
0 f0141ee0 ee0

0xf0141eec:
affinity affcnt bind_cpu
1 1 -1

...

Debugging 259

13

Example: adb on a Core Dump

During the development of the example ramdisk driver, the system crashes
with a data fault when running mkfs (1M).

savecore (1M) was not enabled. After enabling it (See “Saving System Core
Dumps” on page 247), the system is rebooted. The crash is then recreated by
running mkfs (1M) again. When the system comes up, it saves the kernel and
the core file, which can then be examined with adb (1):

The first step is to examine the stack to determine where the system was when
it crashed:

test# mkfs -F ufs -o nsect=8,ntrack=8,free=5 /devices/pseudo/ramdisk:0,raw 1024
BAD TRAP
mkfs: Data fault
kernel read fault at addr=0x4, pme=0x0
Sync Error Reg 80<INVALID>
pid=280, pc=0xff2f88b0, sp=0xf01fe750, psr=0xc0, context=2
g1-g7: ffffff98, 8000000, ffffff80, 0, f01fe9d8, 1, ff1d4900
Begin traceback... sp = f01fe750
Called from f0098050,fp=f01fe7b8,args=1180000 f01fe878 ff1ed280 ff1ed280 2 ff2f8884
Called from f0097d94,fp=f01fe818,args=ff24fd40 f01fe878 f01fe918 0 0 ff2c9504
Called from f0024e8c,fp=f01fe8b0,args=f01fee90 f01fe918 2 f01fe8a4 f01fee90 3241c
Called from f0005a28,fp=f01fe930,args=f00c1c54 f01fe98c 1 f00b9d58 0 3
Called from 15c9c,fp=effffca0,args=5 3241c 200 0 0 7fe00
End traceback...
panic: Data fault

cd /var/crash/test
ls
bounds unix.0 vmcore.0
adb -k unix.0 vmcore.0
physmem ac0

$c
complete_panic(0x0,0x1,0xf00b6c00,0x7d0,0xf00b6c00,0xe3) + 114
do_panic(0xf00be7ac,0xf0269750,0x4,0xb,0xb,0xf00b6c00) + 1c
die(0x9,0xf0269704,0x4,0x80,0x1,0xf00be7ac) + 5c
trap(0x9,0xf0269704,0x4,0x80,0x1,0xf02699d8) + 6b4

260 Writing Device Drivers—August, 1994

13

This stack trace is not very helpful initially, since the ramdisk routines are not
on the stack trace. However, there is a useful bit of information: the call to
trap() . The first argument to trap() is the trap type—in this case 9—which
is a T_DATA_FAULT trap (from <sys/trap.h>). See The SPARC Architecture,
Version 8 manual for more information.

The second argument to trap () is a pointer to a regs structure containing the
state of the registers at the time of the trap.

Note that the PC was ff2dd8b0 when the trap occurred. The next step is to
determine which routine that is in:

That PC corresponds to rd_write (), which is a routine in the ramdisk driver.
The bug is in the ramdisk write routine, and occurs during an ld (load)
instruction. This load instruction is dereferencing the value of o2+4 , so the
next step is to determine the value of o2 .

Note – Using the $r command to examine the registers is inappropriate
because the registers have been reused in the trap routine. Instead, examine
the value of o2 from the regs structure.

0xf0269704$<regs
0xf0269704: psr pc npc

c0 ff2dd8b0 ff2dd8b4
0xf0269710: y g1 g2 g3

e0000000 ffffff98 8000000 ffffff80
0xf0269720: g4 g5 g6 g7

0 f02699d8 1 ff22c800
0xf0269730: o0 o1 o2 o3

f02697a0 ff080000 19000 ef709000
0xf0269740: o4 o5 o6 o7

8000 0 f0269750 7fffffff

ff2dd8b0/i
rd_write+0x2c: ld [%o2 + 0x4], %o3

Debugging 261

13

o2 has the value 19000 in the regs structure. Valid kernel addresses are
constrained to be above 0xE0000000 by the ABI, so this address is probably a
user one. The ramdisk does not deal with user addresses though, so this is
something the ramdisk write routine should not be dereferencing.

Now, where this occurs in relation to the complete routine must be determined,
so that the assembly language can be matched to the C code. To do this, the
routine is disassembled up to the problem instruction, which occurs 2c bytes
into the routine. Each instruction is 4 bytes in size, so 2c/4 or 0xb additional
instructions should be displayed:

The crash occurs a few instructions after a call to getminor (9F). Examining
the ramdisk.c source file these lines stand out in rd_write :

int instance = getminor(dev);
rd_devstate_t *rsp;

if (uiop->uio_offset >= rsp->ramsize)
return (EINVAL);

Notice that rsp is never initialized. This is the problem. It is fixed by including
the correct call to ddi_get_soft_state (9F) (since the ramdisk driver uses
the soft state routines to do state management):

int instance = getminor(dev);
rd_devstate_t *rsp = ddi_get_soft_state(rd_state, instance);

if (uiop->uio_offset >= rsp->ramsize)
return (EINVAL);

rd_write,c/i
rd_write:
rd_write: sethi %hi(0xfffffc00), %g1

add %g1, 0x398, %g1 ! ffffff98
save %sp, %g1, %sp
st %i0, [%fp + 0x44]
st %i1, [%fp + 0x48]
st %i2, [%fp + 0x4c]
ld [%fp + 0x44], %o0
call getminor
nop
st %o0, [%fp - 0x4]
ld [%fp - 0x8], %o2
ld [%o2 + 0x4], %o3

262 Writing Device Drivers—August, 1994

13

Note – Most data fault panics are bad pointer references.

Example: kadb on a Deadlocked Thread

The next problem is that the system does not panic, but the mkfs (1M)
command hangs, and cannot be aborted. Though a core dump can be
forced—by sending a break and then using sync from the OBP or using ‘g 0 ’
from SunMon—in this case kadb (1M) will be used. After logging in remotely
and using ps (which indicated that only the mkfs (1M) process was hung, not
the entire system) the system is shut down and booted using kadb (1M).

After the rest of the kernel has loaded, moddebug is patched to see if loading is
the problem (since it got to rd_write () before, it is probably not the problem,
it will be checked anyway).

ok boot kadb -d
Boot device: /sbus/esp@0,800000/sd@3,0 File and args: kadb -d
kadb:/kernel/unix
Size: 673348+182896+46008 bytes
/kernel/unix loaded - 0x125000 bytes used
kadb[0]: :c
SunOS Release 5.4 Version Generic [UNIX(R) System V Release 4.0]
Copyright (c) 1983-1994, Sun Microsystems, Inc.
...

~stopped at 0xfbd01028: ta 0x7d
kadb[0]: moddebug/X
moddebug:
moddebug: 0
kadb[0]: moddebug/W 0x80000000
moddebug: 0x0 = 0x80000000
kadb[0]: :c

Debugging 263

13

modload (1M) is used to load the driver, to separate module loading from the
real access:

It loads fine, so loading is not the problem. The condition is recreated with
mkfs (1M).

It hangs. At this point, kadb (1M) is entered and the stack examined:

modload /home/driver/drv/ramdisk
load ‘/usr/kernel/drv/ramdisk’ id 61 loaded @ 0xff335000 size 3304
installing ramdisk, module id 61.

mkfs -F ufs -o nsect=8,ntrack=8,free=5 /devices/pseudo/ramdisk@0:c,raw 1024
ramdisk0: misusing 524288 bytes of memory

~stopped at 0xfbd01028: ta 0x7d
kadb[0]: $c
_end() + bc1eb40
debug_enter(0xfbd01000,0xff1a7054,0x0,0x0,0xb,0xff1a7000) + 88
zs_high_intr(0xff1a0230) + 19c
_level1(0xf0141ee0) + 404
idle(0x0,0x0,0x0,0xf0171ee0,0x0,0x1) + 28

264 Writing Device Drivers—August, 1994

13

It does not look like the current thread is the problem, so the entire thread list
is checked for hung threads:

Of all the threads, only one has a stack trace that references the ramdisk driver.
It happens to be the last one. It seems that the process running mkfs (1M) is
blocked in biowait (9F), after a call to physio (9F). biowait (9F) takes a
buf (9S) structure as a parameter, the next step is to examine the buf (9S)
structure:

kadb[0]: $<threadlist
thread_id f0141ee0

?(0xfbd01000,0xff1a7054,0x0,0x0,0xb,0xff1a7000)+ 1e
zs_high_intr(0xff1a0230) + 19c
_level1(0xf0141ee0) + 404
idle(0x0,0x0,0x0,0xf0171ee0,0x0,0x1) + 28

thread_id f0165ee0
?(?) + 1e
cv_wait(0xf00e24e0,0xf00e24e0,0xff004000,0xb,0x0,0x4000e4)
callout_thread(0xff004090,0xf00d7d9a,0xf00e24e0,0xf00ac6c0,0x0,0xff004000) + 2c

thread_id f016bee0
...

thread_id ff11c600
?(?) + 1e
biowait(0xf01886d0,0x0,0x7fe00,0x200,0xf00e085c,0x3241c)
physio(0xff196120,0xf01886d0,0xf01888a4,0x3241c,0x0,0xf0188878)+ 338
rd_write(0x1180000,0xf0188878,0xff19b680,0xff19b680,0x2,0xff335884) + 8c
rdwr(0xff1505c0,0xf0188878,0xf0188918,0x0,0x0,0xff24dd04) + 138
rw(0xf0188e90,0xf0188918,0x2,0xf01888a4,0xf0188e90,0x3241c) + 11c
syscall(0xf00c1c54) + 4d4

kadb[0]: f01886d0$<buf
0xf01886d0: flags

129
0xf01886d4: forw back av_forw av_back

ff24dd04 72616d64 69736b3a 302c7261
0xf01886e8: count bufsize error edev

512 770 0 1180000
0xf01886ec: addr blkno resid proc

3241c 3ff 0 ff26f000
0xf0188714: iodone vp pages

0 f01888a4 efffff68

Debugging 265

13

The resid field is 0, which indicates that the transfer is complete. physio (9F)
is still blocked, however. Examining the physio (9F) manual page points out
that biodone(9F) should be called to unblock biowait (9F). This is the
problem; rd_strategy () did not call biodone (9F). Adding a call to
biodone (9F) before returning fixes this problem.

Testing
Once a device driver is functional, it should be thoroughly tested before it is
distributed. In addition to the testing done to traditional UNIX device drivers,
Solaris 2.x drivers require testing of Solaris 2.x features such as dynamic
loading and unloading of drivers and multithreading.

Configuration Testing

A driver’s ability to handle multiple configurations is very important, and is a
part of the test process. Once the driver is working on a simple, or default,
configuration, additional configurations should be tested. Depending on the
device, this may be accomplished by changing jumpers or DIP switches. If the
number of possible configurations is small, all of them should be tried. If the
number is large, various classes of possible configurations should be defined,
and a sampling of configurations from each class should be tested. The
designation of such classes depends on how the different configuration
parameters might interact, which in turn depends on the device and on how
the driver was written.

For each configuration, the basic functions must be tested, which include
loading, opening, reading, writing, closing, and unloading the driver. Any
function that depends on the configuration deserves special attention. For
example, changing the base memory address of device registers is not likely to
affect the behavior of most driver functions; if the driver works well with one
address, it is likely to work as well with a different address, providing the
configuration code allows it to work at all. On the other hand, a special I/O
control call may have different effects depending on the particular device
configuration.

266 Writing Device Drivers—August, 1994

13

Loading the driver with varying configurations assures that the probe (9E) and
attach (9E) entry points can find the device at different addresses. For basic
functional testing, using regular UNIX commands such as cat (1) or dd(1M) is
usually sufficient for character devices. Mounting or booting may be required
for block devices.

Functionality Testing

After a driver has been run through configuration testing, all of its
functionality should be thoroughly tested. This requires exercising the
operation of all of the driver’s entry points. In addition to the basic functional
tests done in configuration testing, full functionality testing requires testing the
rest of the entry points and functions to obtain confidence that the driver can
correctly perform all of its functions.

Many drivers will require custom applications to test functionality, but basic
drivers for devices such as disks, tapes, or asynchronous boards can be tested
using standard system utilities. All entry points should be tested in this
process, including mmap(9E), poll (9E) and ioctl (9E), if applicable. The
ioctl (9E) tests may be quite different for each driver, and for nonstandard
devices a custom testing application will be required.

Error Handling

A driver may perform correctly in an ideal environment, but fail to handle
cases where a device encounters an error or an application specifies erroneous
operations or sends bad data to the driver. Therefore, an important part of
driver testing is the testing of its error handling.

All of a driver’s possible error conditions should be exercised, including error
conditions for actual hardware malfunctions. Some hardware error conditions
may be difficult to induce, but an effort should be made to cause them or to
simulate them if possible. It should always be assumed that all of these
conditions will be encountered in the field. Cables should be removed or
loosened, boards should be removed, and erroneous user application code
should be written to test those error paths.

Debugging 267

13

Stress, Performance, and Interoperability Testing

To help ensure that the driver performs well, it should be subjected to vigorous
stress testing. Running single threads through a driver will not test any of the
locking logic and might not test condition variable waits. Device operations
should be performed by multiple processes at once in order to cause several
threads to execute the same code simultaneously. The way this should be done
depends on the driver; some drivers will require special testing applications,
but starting several UNIX commands in the background will be suitable for
others. It depends on where the particular driver uses locks and condition
variables. Testing a driver on a multiprocessor machine is more likely to
expose problems than testing on a single processor machine.

Interoperability between drivers must also be tested, particularly because
different devices can share interrupt levels. If possible, configure another
device at the same interrupt level as the one being tested, and whether the
driver correctly claims its own interrupts and otherwise operates correctly
under the stress tests described above should be tested. Stress tests should be
run on both devices at once. Even if the devices do not share an interrupt level,
this test can still be valuable; for example, if serial communication devices start
to experience errors while a network driver is being tested, that could indicate
that the network driver is causing the rest of the system to encounter interrupt
latency problems.

Performance of a driver under these stress tests should be measured using
UNIX performance measuring tools. This can be as simple as using the time (1)
command along with commands used for stress tests.

DDI/DKI Compliance Testing

To assure compatibility with later releases and reliable support for the current
release, every driver should be Solaris 2.4 DDI/DKI compliant. One way to
determine if the driver is compliant is by inspection. The driver can be visually
inspected to ensure that only kernel routines and data structures specified in
sections 9F and 9S of the Solaris 2.4 Reference Manual AnswerBook are used.

In addition, the Solaris 2.4 Driver Developer Kit (DDK) now includes a DDI
compliance tool (DDICT) that checks device driver C source code for non-
DDI/DKI compliance and issues either error or warning messages when it
finds non-compliant code. SunSoft recommends that all drivers be written to
pass DDICT. After the DDK has been installed, the DDICT can be found in:

268 Writing Device Drivers—August, 1994

13

/opt/SUNWddk/driver_dev/bin/ddict

A new manual page describing DDICT is available in:

/opt/SUNWddk/driver_dev/ddict/man/man1/ddict.1

Installation and Packaging Testing

Drivers are delivered to customers in packages. A package can be added and
removed from the system using a standard, documented mechanism (see the
SunOS 5.4 Application Packaging and Installation Guide). Test that the driver has
been correctly packaged to ensure that the end user will be able to add it to
and remove it from a system.

In testing, the package should be installed and removed from every type of
media on which it will be released, and on several system configurations.
Packages must not make unwarranted assumptions about the directory
environment of the target system. Certain valid assumptions may be made
about where standard kernel files are kept, however. It is a good idea to test
the adding and removing of packages on newly-installed machines that have
not been modified for a development environment. It is a common packaging
error for a package to use a tool or file that exists only in a development
environment, or only on the driver writer’s own development system. For
example, no tools from Source Compatibility package, SUNWscpu, should be
used in driver installation programs.

The driver installation must be tested on a minimal Solaris system without any
of the optional packages installed.

Testing Specific Types of Drivers

Since each type of device is different, it is difficult to describe how to test them
all specifically. This section provides some information about how to test
certain types of standard devices.

Tape Drivers

Tape drivers should be tested by performing several archive and restore
operations. The cpio (1) and tar (1) commands may be used for this purpose.
The dd(1M) command can be used to write an entire disk partition to tape,
which can then be read back and written to another partition of the same size,

Debugging 269

13

and the two copies compared. The mt(1) command will exercise most of the
I/O controls that are specific to tape drivers (see mtio (7)); all of the options
should be attempted. The error handling of tape drivers can be tested by
attempting various operations with the tape removed, attempting writes with
the write protect on, and removing power during operations. Tape drivers
typically implement exclusive-access open (9E) calls, which should be tested by
having a second process try to open the device while a first process already has
it open.

Disk Drivers

Disk drivers should be tested in both the raw and block device modes. For
block device tests, a new file system should be created on the device and
mounted. Multiple file operations can be performed on the device at this time.

Note – The file system uses a page cache, so reading the same file over and
over again will not really be exercising the driver. The page cache can be forced
to retrieve data from the device by memory mapping the file (with mmap(2)),
and using msync (2) to invalidate the in-memory copies.

Another (unmounted) partition of the same size can be copied to the raw
device and then commands such as fsck (1M) can be used to verify the
correctness of the copy. The new partition can also be mounted and compared
to the old one on a file-by-file basis.

Asynchronous Communication Drivers

Asynchronous drivers can be tested at the basic level by setting up a login
line to the serial ports. A good start is if a user can log in on this line. To
sufficiently test an asynchronous driver, however, all of the I/O control
functions must be tested, and many interrupts at high speed must occur. A test
involving a loopback serial cable and high speed communication will help test
the reliability of the driver. Running uucp (1C) over the line also provides some
exercise; note, however, that uucp (1C) performs its own error handling, so it is
important to verify that the driver is not reporting excessive numbers of errors
to the uucp (1C) process.

These types of devices are usually STREAMS-based.

270 Writing Device Drivers—August, 1994

13

Network Drivers

Network drivers may be tested using standard network utilities. ftp (1) and
rcp (1) are useful because the files can be compared on each end of the
network. The driver should be tested under heavy network loading, so various
commands should be run by multiple processes. Heavy network loading
means:

• There is a lot of traffic to the test machine.
• There is heavy traffic among all machines on the network.

Network cables should be unplugged while the tests are executing, and the
driver should recover gracefully from the resulting error conditions. Another
important test is for the driver to receive multiple packets in rapid succession
(‘‘back-to-back’’ packets). In this case, a relatively fast host on a lightly-loaded
network should send multiple packets in quick succession to the machine with
the driver being tested. It should be verified that the receiving driver does not
drop the second and subsequent packets.

These types of devices are usually STREAMS-based.

271

Converting a Device Driver to
SunOS 5.4 A

This chapter is a guide to the differences between SunOS 4.x and SunOS 5.x
device drivers. Some simple drivers can be ported easily, but to properly
handle the multithreaded environment, most drivers will need to be rethought
and rewritten.

Before Starting the Conversion

Review Existing Functionality

Make sure the driver’s current functionality is well understood: the way it
manages the hardware, and the interfaces it provides to applications (ioctl (2)
states the device is put in for example). Maintain this functionality in the new
driver.

Read the Manual

This chapter is not a substitute for the rest of this book. Make sure you have
access to the SunOS 5.4 Reference Manuals.

272 Writing Device Drivers—August, 1994

A

ANSI C

The unbundled Sun C compiler is now ANSI C compliant. Most ANSI C
changes are beyond the scope of this book. There are a number of good ANSI
C books available from local bookstores. The following two books are good
references:

• Kernighan and Ritchie, The C Language, Second Edition, 1988, Prentice-Hall

• Harbison and Steele, C: A Reference Manual, Second Edition, 1987,
Prentice-Hall

Development Environment

DDI/DKI

The DDI/DKI is a new name for the routines formerly called “kernel support
routines” in the SunOS 4.x Writing Device Drivers manual, and for the “well-
known” entry points in the SunOS 4.x cdevsw and bdevsw structures. The
intent is to specify a set of interfaces for drivers that provide a binary and
source code interface. If a driver uses only kernel routines and structures
described in Section 9 of the man Pages(9): DDI and DKI Overview, it is called
Solaris 2.4 DDI/DKI-compliant. A Solaris 2.4 DDI/DKI-compliant driver is
likely to be binary compatible across Sun Solaris platforms with the same
processor (SPARC), and binary compatible with future releases of Solaris on
platforms the driver works on.

Things to Avoid

Many architecture-specific features have been hidden from driver writers
behind DDI/DKI interfaces. Specific examples are elements of the dev_info
structure, user structure, proc structure, and page tables. If the driver has
been using unadvertised interfaces, it must be changed to use DDI/DKI
interfaces that provide the required functionality. If the driver continues to use
unadvertised interfaces, it loses all the source and binary compatibility features
of the DDI/DKI. For example, previous releases had an undocumented routine
called as_fault () that could be used to lock down user pages in memory.
This routine still exists, but is not part of the DDI/DKI, so it should not be
used. The only documented way to lock down user memory is to use
physio (9F).

Converting a Device Driver to SunOS 5.4 273

A

Do not use any undocumented fields of structures. Documented fields are in
Section 9S of the man Pages(9S): DDI and DKI Data Structures. Do not use fields,
structures, variables, or macros just because they are in a header file.

Dynamically allocate structures whenever possible. If buf (9S) structure is
needed, do not declare one. Instead, declare a pointer to one, and call
getrbuf (9F) to allocate it.

Note – Even using kmem_alloc(sizeof(struct buf)) is not allowed,
since the size of a buf (9S) structure may change in future releases.

System V Release 4

SunOS 5.x is the Sun version of AT&T’s System V Release 4 (SVR4). The system
administration model is different from those in previous SunOS releases, which
were more like 4.3 BSD. Differences important to device driver writers are:

• Halting and booting the machine (see the Solaris 1.x to Solaris 2.x Transition
Guide).

• Kernel configuration (see Chapter 5, “Autoconfiguration”).
• Software packaging (see the Application Packaging Developer’s Guide).

For general SVR4 system administration information see the Solaris 1.x to
Solaris 2.x Transition Guide.

Development Tools

The only compiler that should be used to compile SunOS 5.x device drivers is
the unbundled Sun C compiler. This is either part of SPARCworks 2.0.1 (for
SPARC systems) or ProWorks 2.0.1 (for x86 systems). See Chapter 12, “Loading
and Unloading Drivers” for information on how to compile and load a driver.
Note that the compiler’s bin directory (possibly /opt/SUNWspro/bin) and
the supporting tools directory (/usr/ccs/bin) should be prepended to the
PATH. When compiling a driver, use the -Xa and -D_KERNEL options.

When building a loadable driver module from the object modules, use ld (1)
with the -r flag.

274 Writing Device Drivers—August, 1994

A

Debugging Tools

adb (1), kadb (1M), and crash (1M) are essentially the same as they were in
SunOS 4.x, though there are new macros. To debug a live kernel, use
/dev/ksyms (see ksyms (7)) instead of the kernel name (which used to be
/vmunix):

See “Debugging Tools” on page 245, for more information.

ANSI C

The unbundled Sun C compiler is now ANSI C compliant. Two important
ANSI C features device driver writers should use are the volatile keyword
and function prototyping.

volatile

volatile is a new ANSI C keyword. It is used to prevent the optimizer from
removing what it thinks are unnecessary accesses to objects. All device
registers should be declared volatile . As an example, if the device has a
control register that requires two consecutive writes to get it to do something,
the optimizer could decide that the first write is unnecessary since the value is
unused if there is no intervening read access.

Note – It is not an error to declare something volatile unnecessarily.

Function Prototypes

ANSI C provides function prototypes. This allows the compiler to check the
type and number of arguments to functions, and avoids default argument
promotions. To prototype functions, declare the type and name of each
function in the function definition. Then, provide a prototype declaration
(including at least the types) before the function is called.

Prototypes are provided for most DDI/DKI functions so many potentially fatal
errors are now caught at compile time.

adb -k /dev/ksyms /dev/mem

Converting a Device Driver to SunOS 5.4 275

A

Header Files

For Solaris 2.x DDI/DKI compliance, drivers are allowed to include only the
kernel header files listed in the synopsis sections of Section 9 of the man Pages(9):
DDI and DKI Overview. All allowed kernel header files are now located in the
/usr/include/sys directory.

New header files all drivers must include are <sys/ddi.h> and
<sys/sunddi.h> . These two headers must appear last in the list of kernel
header include files.

Overview of Changes

Autoconfiguration

Under SunOS 4.1.2 or later, the system initialized all the drivers in the system
before starting init (8). The advent of loadable module technology allowed
some device drivers to be added and removed manually at later times in the
life of the system.

SunOS 5.X extends this idea to make every driver loadable, and to allow the
system to automatically configure itself continually in response to the needs of
applications. This, plus the unification of the “mb” style and Open Boot style
autoconfiguration, has meant some significant changes to the identify (9E),
probe (9E), and attach (9E) routines, and has added detach (9E).

Because all device drivers are loadable, the kernel no longer needs to be
recompiled and relinked to add a driver. The config (8) program has been
replaced by Open Boot PROM information and supplemented by information
in hardware configuration files (see driver.conf (4)).

Changes to Routines
• The xxinit () routine for loadable modules in SunOS 4.x has been split into

three routines. The VDLOAD case has become _init (9E), the VDUNLOAD case
has become _fini (9E), and the VDSTAT case has become _info (9E).

• It is no longer guaranteed that identify (9E) is called once before
attach (9E). It may now be called any number of times, and may be called
at any time. Do not count device units. See ddi_get_instance (9F) for more
information.

276 Writing Device Drivers—August, 1994

A

• The SunOS 5.x probe (9E) is not the same as probe (9E) in SunOS 4.x. It is
called before attach (9E), and may be called any number of times, so it
must be stateless. If it allocates resources before it probes the device, it must
deallocate them before returning (regardless of success or failure).
attach (9E) will not be called unless probe (9E) succeeds.

• attach (9E) is called to allocate any resources the driver needs to operate
the device. The system now assigns the instance number (previously known
as the unit number) to the device.

The reason the rules are so stringent is that the implementation will change. If
driver routines follow these rules, they will not be affected by changes to the
implementation. If, however, they assume that the autoconfiguration routines
are called only in a certain order (first identify(9E), then probe(9E), then
attach (9E) for example), these drivers will break in some future release.

Instance Numbers

In SunOS 4.x, drivers used to count the number of devices that they found, and
assign a unit number to each (in the range 0 to the number of units found less
one). Now, these are called instance numbers, and are assigned to devices by
the system.

Instances can be thought of as a shorthand name for a particular instance of a
device (foo0 could name instance 0 of device foo). They are assigned and
remembered by the system, even after any number of reboots. This is because
at open (2) time all the system has is a dev_t . To determine which device is
needed (since it may need to be attached), the system needs to get the instance
number (which the driver retrieves from the minor number).

The mapping between instance numbers and minor numbers (see
getinfo (9E)) should be static. The driver should not require any state
information to do the translation, since that information may not be available
(the device may not be attached).

/devices

All devices in the system are represented by a data structure in the kernel
called the device tree. The /devices hierarchy is a representation of this tree
in the file system.

Converting a Device Driver to SunOS 5.4 277

A

In SunOS 4.x, special device files were created using mknod (or by an
installation script running mknod) by the administrator. Now, entries are
advertised to the kernel by device drivers calling
ddi_create_minor_node (9F) once they have determined a particular device
exists. drvconfig (1M) actually maintains the file system nodes. This results in
names that completely identify the device.

/dev

In SunOS 4.x, device special files lived (by convention) in /dev . Now that the
/devices directory is used for special files, /dev is used for logical device
names. Usually, these are symbolic links to the real names in /devices .

Logical names can be used for backwards compatibility with SunOS 4.X
applications, a shorthand for the real /devices name, or a way to identify a
device without having to know where it is in the /devices tree (/dev/fb
could refer to a cgsix , cgthree , or bwtwo framebuffer, but the application
does not need to know this).

See disks (1M), tapes (1M), ports (1M), devlinks (1M), and
/etc/devlink.tab for system supported ways of creating these links. See
Chapter 5, “Autoconfiguration” and Application Packaging Developer’s Guide for
more information.

Multithreading

SunOS 5.x supports multiple threads in the kernel, and multiple CPUs. A
thread is a sequence of instructions being executed by a program. In SunOS
5.x, there are application threads, and there are kernel threads. Kernel threads
are used to execute kernel code, and are the threads of concern to the driver
writer.

Interrupts are also handled as threads. Because of this, there is less of a
distinction between the top-half and bottom-half of a driver than there was in
SunOS 4.x. All driver code is executed by a thread, which may be running in
parallel with threads in other (or the same) part of a driver. The distinction
now is whether these threads have user context.

See Chapter 4, “Multithreading,” for more information.

278 Writing Device Drivers—August, 1994

A

Locking

Under SunOS 4.1.2 or later, only one processor can be in the kernel at any one
time. This is accomplished by using a master lock around the entire kernel.
When a processor wants to execute kernel code, it needs to acquire the lock
(this excludes other processors from running the code protected by the lock)
and then release the lock when it is through. Because of this master lock,
drivers written for uniprocessor systems did not change for multiprocessor
systems. Two processors could not execute driver code at the same time.

In SunOS 5.x, instead of one master lock, there are many smaller locks that
protect smaller regions of code. For example, there may be a kernel lock that
protects access to a particular vnode, and one that protects an inode. Only one
processor can be running code dealing with that vnode at a time, but another
could be accessing an inode. This allows a greater degree of concurrency.

However, because the kernel is multithreaded, the possibility exists that two
(or more) threads are in driver code at the same time.

1. One thread could be in an entry point, and another in the interrupt routine.
The driver had to deal with this in SunOS 4.x, but with the restriction that
the interrupt routine blocked the user context routine while it ran.

2. Two threads could be in a routine at the same time. This could not happen
in SunOS 4.x.

Both of these cases are similar to situations present in SunOS 4.x, but now
these threads could run at the same time on different CPUs. The driver must be
prepared to handle these types of occurrences.

Mutual Exclusion Locks

In SunOS 4.x, a driver had to be careful when accessing data shared between
the top-half and the interrupt routine. Since the interrupt could occur
asynchronously, the interrupt routine could corrupt data or simply hang. To
prevent this, portions of the top half of the driver would raise, using the
various spl routines, the interrupt priority level of the CPU to block the
interrupt from being handled:

s = splr(pritospl(6));
/* access shared data */
(void)splx(s);

Converting a Device Driver to SunOS 5.4 279

A

In SunOS 5.x, this no longer works. Changing the interrupt priority level of
one CPU does not necessarily prevent another CPU from handling the
interrupt. Also, two top-half routines may be running simultaneously with the
interrupt running on a third CPU.

To solve this, SunOS 5.x provides:

1. A uniform module of execution—even interrupts run as threads. This blurs
the distinction between the top-half and the bottom-half, as effectively every
routine is a bottom-half routine.

2. A number of locking mechanisms – a common mechanism is to use mutual
exclusion locks (mutexes):

mutex_enter(&mu);
/* access shared data */
mutex_exit(&mu);

A subtle difference from SunOS 4.X is that, because everything is run by kernel
threads, the interrupt routine needs to explicitly acquire and release the mutex.
In SunOS 4.x, this was implicit since the interrupt handler automatically ran at
an elevated priority.

See “Locking Primitives” on page 76 for more information on locking.

Condition Variables

In SunOS 4.X, when the driver wanted the current process to wait for
something (such as a data transfer to complete), it called sleep (), specifying
a channel and a dispatch priority. The interrupt routine then called wakeup ()
on that channel to notify all processes waiting on that channel that something
happened. Since the interrupt could occur at any time, the interrupt priority
was usually raised to ensure that the wakeup could not occur until the process
was asleep.

Code Example 13-2 SunOS 4.x synchronization method

int busy; /* global device busy flag */
int xxread(dev, uio)
dev_t dev;
struct uio *uio;
{

int s;

280 Writing Device Drivers—August, 1994

A

s = splr(pritospl(6));
while (busy)

sleep(&busy, PRIBIO + 1);
busy = 1;
(void)splx(s);
/* do the read */

}

int xxintr()
{

busy = 0;
wakeup(&busy);

}

SunOS 5.X provides similar functionality with condition variables. Threads are
blocked on condition variables until they are notified that the condition has
occurred. The driver must acquire a mutex which protects the condition
variable before blocking the thread. The mutex is then released before the
thread is blocked (similar to blocking/unblocking interrupts in SunOS 4.X)

Code Example 13-3 Synchronization in SunOS 5.x similar to SunOS 4.x

int busy; /* global device busy flag */
kmutex_t busy_mu; /* mutex protecting busy flag */
kcondvar_t busy_cv; /* condition variable for busy flag */

static int
xxread(dev_t dev, struct uio *uiop, cred_t *credp)
{

mutex_enter(&busy_mu);
while (busy)

cv_wait(&busy_cv, &busy_mu);
busy = 1;
mutex_exit(&busy_mu);
/* do the read */

}

static u_int
xxintr(caddr_t arg)
{

mutex_enter(&busy_mu);
busy = 0;
cv_broadcast(&busy_cv);
mutex_exit(&busy_mu);

}

Converting a Device Driver to SunOS 5.4 281

A

Like wakeup (), cv_broadcast (9F) unblocks all threads waiting on the
condition variable. To wake up one thread, use cv_signal (9F) (there was no
documented equivalent for cv_signal (9F) in SunOS 4.x).

Note – There is no equivalent to the dispatch priority passed to sleep ().

Though the sleep() and wakeup() calls exist, please do not use them, since
the result would be an MT-unsafe driver.

See “Thread Synchronization” on page 79 for more information.

Catching Signals

There is always the possibility that either the driver accidentally waits for an
event that will never occur, or the event will not happen for a long time. In
either case, the user may want to abort the process by sending it a signal (or
typing a character that causes a signal to be sent to the process). Whether the
signal causes the driver to wake up depends on the driver.

In SunOS 4.x, whether the sleep () was signal-interruptible depended on the
dispatch priority passed to sleep (). If the priority was greater than PZERO,
the driver was signal-interruptible, otherwise the driver would not be
awakened by a signal. Normally, a signal interrupt caused sleep () to return
back to the user, without letting the driver know the signal had occurred.
Drivers that needed to release resources before returning to the user passed the
PCATCH flag to sleep (), then looked at the return value of sleep () to
determine why they awoke:

while (busy) {
if (sleep(&busy, PCATCH | (PRIBIO + 1))) {

/* awakened because of a signal */
/* free resources */
return (EINTR);

}
}

In SunOS 5.x, the driver can use cv_wait_sig (9F) to wait on the condition
variable, but be signal interruptible. Note that cv_wait_sig (9F) returns zero
to indicate the return was due to a signal, but sleep () in SunOS 4.x returned
a nonzero value:

282 Writing Device Drivers—August, 1994

A

while (busy) {
if (cv_wait_sig(&busy_cv, &busy_mu) == 0) {

/* returned because of signal */
/* free resources */
return (EINTR);

}
}

cv_timedwait()

Another solution drivers used to avoid blocking on events that would not
occur was to set a timeout before the call to sleep. This timeout would occur far
enough in the future that the event should have happened, and if it did run it
would awaken the blocked process. The driver would then see if the timeout
function had run, and return some sort of error.

This can still be done in SunOS 5.x, but the same thing may be accomplished
with cv_timedwait (9F). An absolute time to wait for is passed to
cv_timedwait (9F), and which will return zero if the time is reached and the
event has not occurred. See Code Example 4-3 on page 81 for an example usage
of cv_timedwait (9F). Also see “cv_timedwait_sig()” on page 84 for
information on cv_timedwait_sig (9F).

Other Locks

Semaphores and readers/writers locks are also available. See semaphore (9F)
and rwlock (9F).

Lock Granularity

Generally, start with one, and add more depending on the abilities of the
device. See “Choosing a Locking Scheme” on page 85 and Appendix B,
“Advanced Topics,” for more information.

Interrupts

In SunOS 4.x, two distinct methods were used for handling interrupts.

• Polled, or autovectored, interrupts were handled by calling the xxpoll ()
routine of the device driver. This routine was responsible for checking all
drivers’ active units.

Converting a Device Driver to SunOS 5.4 283

A

• Vectored interrupt handlers were called directly in response to a particular
hardware interrupt on the basis of the interrupt vector number assigned to
the device.

In SunOS 5.x, the interrupt handler model has been unified. The device driver
registers an interrupt handler for each device instance, and the system either
polls all the handlers for the currently active interrupt level, or calls that
handler directly (if it is vectored). The driver no longer needs to care which
type of interrupt mechanism is in use (in the handler).

ddi_add_intr (9F) is used to register a handler with the system. A driver-
defined argument of type caddr_t to pass to the interrupt handler. The
address of the state structure is a good choice. The handler can then cast the
caddr_t to whatever was passed. See “Registering Interrupts” on page 111
and “Responsibilities of an Interrupt Handler” on page 113 for more
information.

DMA

In SunOS 4.x, to do a DMA transfer the driver mapped a buffer into the DMA
space, retrieved the DMA address and programed the device, did the transfer,
then freed the mapping. This was accomplished in a sequence like:

1. mb_mapalloc () - map buffer into DMA space

2. MBI_ADDR() - retrieve address from returned cookie

3. program the device and start the DMA

4. mb_mapfree () - free mapping when DMA is complete

The first three usually occurred in a start () routine, and the last in the
interrupt routine.

The SunOS 5.x DMA model is similar, but it has been extended. The goal of the
new DMA model is to abstract the platform dependent details of DMA away
from the driver. A sliding DMA window has been added for drivers that want
to do DMA to large objects, and the DMA routines can be informed of device
limitations (such as 24-bit addressing).

284 Writing Device Drivers—August, 1994

A

The normal sequence for DMA is similar to SunOS 4.x. Commit DMA
resources using one of the ddi_dma_setup (9F) routines, retrieve the DMA
address from the handle to do the DMA, then free the mapping with
ddi_dma_free (9F). The new sequence is something like this:

1. ddi_dma_buf_setup (9F) - allocate resources

2. ddi_dma_nextwin (9F) - to get the first DMA window

3. ddi_dma_nextseg (9F) - to get the first DMA segment

4. ddi_dma_segtocookie - retrieve address from the returned cookie

5. program the device and start the DMA

6. Perform the transfer.

Note – If the transfer involves several segments or windows (or both), you can
call ddi_dma_nextseg (9F) or ddi_dma_nextwin (9F) (or both) to move to
subsequent segments and windows.

7. ddi_dma_free (9F) - free mapping when DMA is complete

Additional routines have been added to synchronize any underlying caches
and buffers, and handle IOPB memory. See Chapter 7, “DMA” for details.

In addition, in SunOS 4.x, the driver had to inform the system that it might do
DMA, either through the mb_driver structure or with a call to adddma(). This
was needed because the kernel might want to block interrupts to prevent
DMA, but needed to know the highest interrupt level to block. Because the
new implementation uses mutexes, this is no longer needed.

Conversion Notes

identify()

SunOS 4.x:

int xxidentify(name)
char *name;

SunOS 5.x

int xxidentify(dev_info_t *dip)

Converting a Device Driver to SunOS 5.4 285

A

The name property is no longer passed to identify (9E). ddi_get_name (9F)
must be used to retrieve the name from the dev_info_t pointer argument.

Note – The unit counting is now handled by the framework. To get the unit
number in any routine, call ddi_get_instance (9F). Do not count units
anywhere.

identify (9E) is no longer guaranteed to be called for all units before
attach (9E) is ever called. However, identify (9E) is guaranteed be called
before attach (9E) on a per-instance basis.

probe()

SunOS 4.x:

int xxprobe(reg, unit)
caddr_t reg;
int unit;

SunOS 5.x

int xxprobe(dev_info_t *dip)

probe (9E) is still expected to determine if a device is there or not, but now it
may be called any number of times, so it must be stateless (free anything it
allocates).

attach()

SunOS 4.x: VMEbus SBus

int xxattach(md) int xxattach(devinfo)
struct mb_device *md; struct dev_info *devinfo;

SunOS 5.x

int xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)

As noted in identify (9E), drivers are not allowed to count instances
anywhere. Use ddi_get_instance (9F) to get the assigned instance number.

new_kmem_alloc () and new_kmem_zalloc () have become kmem_alloc (9F)
and kmem_zalloc (9F). In SunOS 4.x sleep flags were KMEM_SLEEP and
KMEM_NOSLEEP; now they are KM_SLEEP and KM_NOSLEEP. Consider using

286 Writing Device Drivers—August, 1994

A

KM_SLEEP only on small requests, as larger requests could deadlock the driver
if there is not (or there will not be) enough memory. Instead, use KM_NOSLEEP,
possibly shrink the request, and try again.

Any required memory should be dynamically allocated, as the driver should
handle all occurrences of its device rather than a fixed number of them (if
possible). Instead of statically allocating an array of controller state structures,
each should now be allocated dynamically.

Remember to call ddi_create_minor_node (9F) for each minor device name
that should be visible to applications.

The module loading process turns the information in any driver .conf (4) file
into properties. Information which used to pass in the config file (such as
flags) should now be passed as properties.

getinfo()

SunOS 5.x:

int xxgetinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
void *arg, void **resultp)

Make sure that the minor number to instance number and the reverse
translation is static, since getinfo (9E) may be called when the device is not
attached. For example:

#define XXINST(dev) (getminor(dev) >> 3)

This is a required entry point; it cannot be replaced with nulldev (9F) or
nodev (9F).

open()

SunOS 4.x:

int xxopen(dev, flag)
dev_t dev;
int flag;

SunOS 5.x

int xxopen(dev_t *devp, int flag, int otyp, cred_t *credp)

The first argument to open (9E) is a pointer to a dev_t . The rest of the
cb_ops (9S) routines receive a dev_t .

Converting a Device Driver to SunOS 5.4 287

A

Verify that the open type is one that the driver actually supports. This is
normally OTYP_CHR for character devices, or OTYP_BLK for block devices. This
prevents the driver from allowing future open types that it does not support.

If the driver used to check for root privileges using suser (), it should now use
driv_priv (9F) instead on the passed credential pointer.

psize()

This entry point does not exist. Instead, block devices should support the
nblocks property. This property may be created in attach (9E) if its value will
not change. A prop_op (9E) entry point may be required if the value cannot be
determined at attach time (such as if the device supports removable media).
See “Properties” on page 59 for more information.

read() and write()

SunOS 4.x:

int xxread(dev, uio)
int xxwrite(dev, uio)
dev_t dev;
struct uio *uio;

SunOS 5.x

int xxread(dev_t dev, uio_t *uiop, cred_t *credp);
int xxwrite(dev_t dev, uio_t *uiop, cred_t *credp);

physio (9F) should no longer be called with the address of a statically
allocated buf (9S) structure. Instead, pass a NULL pointer as the second
argument, which causes physio (9F) to allocate a buf structure. The address of
the allocated buf structure should always be saved in strategy (9E), since it
is needed to call biodone (9F). An alternative is to use getrbuf (9F) to allocate
the buf (9S) structure, and freerbuf (9F) to free it.

ioctl()

SunOS 4.x:

int xxioctl(dev, cmd, data, flag)
dev_t dev;
int cmd, flag;
caddr_t data;

SunOS 5.x

288 Writing Device Drivers—August, 1994

A

int xxioctl(dev_t dev, int cmd, int arg, int mode,
cred_t *credp, int *rvalp);

In SunOS 4.x, ioctl () command arguments were defined as follows:

#define XXIOCTL1 _IOR(m, 1, u_int)

The _IOR(), _IOW(), and _IOWR() macros used to encode the direction and
size of the data transfer. The kernel would then automatically copy the data
into or out of the kernel. This is no longer the case. To do a data transfer, the
driver is now required to use ddi_copyin (9F) and ddi_copyout (9F)
explicitly. Do not dereference arg directly.

In addition, use the new method of a left-shifted letter OR-ed with number:

#define XXIOC (‘x’<<8)
#define XXIOCTL1 (XXIOC | 1)

The credential pointer can be used to check credentials on the call (with
drv_priv (9F)), and the return value pointer can be used to return a value
which means something (as opposed to the old method of always getting zero
back for success). This number should be positive to avoid confusion with
applications that check for ioctl (2) returning a negative value for failure.

strategy()

SunOS 4.x:

int xxstrategy(buf)
struct buf *bp;

SunOS 5.x

int xxstrategy(struct buf *bp);

Retrieving the minor number from the b_dev field of the buf(9S) structure no
longer works (or will work occasionally, and fail in new and interesting ways
at other times). Use the b_edev field instead.

If the driver used to allocate buffers uncached, it should now use
ddi_dma_sync (9F) whenever consistent view of the buffer is required.

mmap()

SunOS 4.x:

Converting a Device Driver to SunOS 5.4 289

A

int xxmmap(dev, off, prot)
dev_t dev;
off_t off;
int prot;

SunOS 5.x

int xxmmap(dev_t dev, off_t off, int prot);

Building a page table entry manually is no longer allowed. The driver must
use hat_getkpfnum (9F) to retrieve the PTE information from a virtual
address. See “Mapping Device Memory” on page 161 for more information.

If the driver used to check for root privileges using suser (), it should now use
drv_priv (9F). Because there is no credential pointer passed to mmap(9E), the
driver must use ddi_get_cred (9F) to retrieve the credential pointer.

chpoll()

chpoll (9E) is similar in operation to select (), but there are more conditions
that can be examined. See “Multiplexing I/O on File Descriptors” on page 162,
for details.

SunOS 4.1.x to SunOS 5.4 Differences

This table compares device driver routines on SunOS 4.1.x versus SunOS 5.4. It
is not a table of equivalences. That is, simply changing from the function in
column one to the function (or group of functions) in column two is not always
sufficient. If the 4.1.x driver used a function in column one, read about the
function in column two before changing any code.

Table A-1 SunOS 4.1.x and SunOS 5.4 Kernel Support Routines

SunOS 4.1.x SunOS 5.4 Description

ASSERT() ASSERT() expression verification

CDELAY() - conditional busy-wait

DELAY() drv_usecwait() busy-wait for specified interval

OTHERQ() OTHERQ() get pointer to queue’s partner queue

RD() RD() get pointer to the read queue

WR() WR() get pointer to the write queue

290 Writing Device Drivers—August, 1994

A

add_intr() ddi_add_intr() add an interrupt handler

adjmsg() adjmsg() trim bytes from a message

allocb() allocb() allocate a message block

backq() backq() get pointer to queue behind the current
queue

bcmp() bcmp() compare two byte arrays

bcopy() bcopy() copy data between address locations in
kernel

biodone()
iodone()

biodone() indicate I/O is complete

biowait()
iowait()

biowait() wait for I/O to complete

bp_mapin() bp_mapin() allocate virtual address space

bp_mapout() bp_mapout() deallocate virtual address space

brelse() brelse() return buffer to the free list

btodb() - convert bytes to disk sectors

btop() btop()
ddi_btop()

convert size in bytes to size in pages
(round down)

btopr() btopr()
ddi_btopr()

convert size in bytes to size in pages
(round up)

bufcall() bufcall() call a function when a buffer becomes
available

bzero() bzero() zero out memory

canput() canput() test for room in a message queue

clrbuf() clrbuf() erase the contents of a buffer

copyb() copyb() copy a message block

copyin() ddi_copyin() copy data from a user program to a
driver buffer

copymsg() copymsg() copy a message

Table A-1 SunOS 4.1.x and SunOS 5.4 Kernel Support Routines

SunOS 4.1.x SunOS 5.4 Description

Converting a Device Driver to SunOS 5.4 291

A

copyout() ddi_copyout() copy data from a driver to a user
program

datamsg() datamsg() test whether a message is a data message

delay() delay() delay execution for a specified number of
clock ticks

disksort() disksort() single direction elevator seek sort for
buffers

dupb() dupb() duplicate a message block descriptor

dupmsg() dupmsg() duplicate a message

enableok() enableok() reschedule a queue for service

esballoc() esballoc() allocate a message block using caller-
supplied buffer

esbbcall() esbbcall() call function when buffer is available

ffs() ddi_ffs() find first bit set in a long integer

fls() ddi_fls() find last bit set in a long integer

flushq() flushq() remove messages from a queue

free_pktiopb() scsi_free_consistent_buf() free a SCSI packet in the iopb map

freeb() freeb() free a message block

freemsg() freemsg() free all message blocks in a message

get_pktiopb() scsi_alloc_consistent_buf(
)

allocate a SCSI packet in the iopb map

geterror() geterror() get buffer’s error number

getlongprop() ddi_getlongprop() get arbitrary size property information

getprop() ddi_getprop() get boolean and integer property
information

getproplen() ddi_getproplen() get property information length

getq() getq() get the next message from a queue

gsignal() - send signal to process group

hat_getpkfnum() hat_getkpfnum() get page frame number for kernel
address

Table A-1 SunOS 4.1.x and SunOS 5.4 Kernel Support Routines

SunOS 4.1.x SunOS 5.4 Description

292 Writing Device Drivers—August, 1994

A

index() strchr() return pointer to first occurrence of
character in string

insq() insq() insert a message into a queue

kmem_alloc() kmem_alloc() allocate space from kernel free memory

kmem_free() kmem_free() free previously allocated kernel memory

kmem_zalloc() kmem_zalloc() allocate and clear space from kernel free
memory

linkb() linkb() concatenate two message blocks

log() strlog() log kernel errors

machineid() - get host ID from EPROM

major() getmajor() get major device number

makecom_g0() makecom_g0() make packet for SCSI group 0 commands

makecom_g0_s() makecom_g0_s() make packet for SCSI group 0 sequential
commands

makecom_g1() makecom_g1() make packet for SCSI group 1 commands

makecom_g5() makecom_g5() make packet for SCSI group 5 commands

mapin()
map_regs()

ddi_map_regs() map physical to virtual space

mapout()
unmap_regs()

ddi_unmap_regs() remove physical to virtual mappings

max() max() return the larger of two integers

mb_mapalloc() ddi_dma_buf_setup() setup system DMA resources

mb_mapfree() ddi_dma_free() release system DMA resources

mballoc() - allocate a main bus buffer

mbrelse() - free main bus resources

mbsetup() - set up use of main bus resources

min() min() return the lesser of two integers

minor() getminor() get minor device number

Table A-1 SunOS 4.1.x and SunOS 5.4 Kernel Support Routines

SunOS 4.1.x SunOS 5.4 Description

Converting a Device Driver to SunOS 5.4 293

A

minphys() minphys() limit transfer request size to system
maximum

mp_nbmapalloc() ddi_dma_addr_setup() setup system DMA resources

MBI_ADDR() ddi_dma_htoc() retrieve DMA address

msgdsize() msgdsize() return the number of bytes in a message

nodev() nodev() error function returning ENXIO

noenable() noenable() prevent a queue from being scheduled

nulldev() nulldev() function returning zero

ovbcopy() - copy overlapping byte memory regions

panic() cmn_err() reboot at fatal error

peek() ddi_peeks() read a short value from a location

peekc() ddi_peekc() read a byte value from a location

peekl() ddi_peekl() read a long value from a location

physio() physio() limit transfer request size

pkt_transport() scsi_transport() request by a SCSI target driver to start a
command

poke() ddi_pokes() write a short value to a location

pokec() ddi_pokec() write a byte value to a location

pokel() ddi_pokel() write a long value to a location

printf() cmn_err() display an error message or panic the
system

pritospl() - convert priority level

psignal() - send a signal to a process

ptob() ptob()
ddi_ptob()

convert size in pages to size in bytes

pullupmsg() pullupmsg() concatenate bytes in a message

put() put() call a STREAMS put procedure

putbq() putbq() place a message at the head of a queue

putctl() putctl() send a control message to a queue

Table A-1 SunOS 4.1.x and SunOS 5.4 Kernel Support Routines

SunOS 4.1.x SunOS 5.4 Description

294 Writing Device Drivers—August, 1994

A

putctl1() putctl1() send a control message with one-byte
parameter to a queue

putnext() putnext() send a message to the next queue

putq() putq() put a message on a queue

qenable() qenable() enable a queue

qreply() qreply() send a message on a stream in the
reverse direction

qsize() qsize() find the number of messages on a queue

remintr() ddi_remove_intr() remove an interrupt handler

report_dev() ddi_report_dev() announce a device

rmalloc() rmallocmap()
rmalloc()

allocate resource map
allocate space from a resource map

rmalloc(iopbmap) ddi_iopb_alloc() allocate consistent memory

rmfree() rmfreemap()
rmfree()

free resource map
free space back into a resource map

rmfree(iopbmap) ddi_iopb_free() free consistent memory

rmvb() rmvb() remove a message block from a message

rmvq() rmvq() remove a message from a queue

scsi_abort() scsi_abort() abort a SCSI command

scsi_dmafree() scsi_destroy_pkt() free DMA resources for SCSI command

scsi_dmaget() scsi_init_pkt() allocate DMA resources for SCSI
command

scsi_ifgetcap() scsi_ifgetcap() get SCSI transport capability

scsi_ifsetcap() scsi_ifsetcap() set SCSI transport capability

scsi_pktalloc() scsi_pktalloc() allocate packet resources for SCSI
command

scsi_pktfree() scsi_pktfree() free packet resources for SCSI command

scsi_poll() scsi_poll() run a polled SCSI command

scsi_resalloc() scsi_init_pkt() prepare a complete SCSI packet

Table A-1 SunOS 4.1.x and SunOS 5.4 Kernel Support Routines

SunOS 4.1.x SunOS 5.4 Description

Converting a Device Driver to SunOS 5.4 295

A

scsi_reset() scsi_reset() reset a SCSI bus or target

scsi_resfree() scsi_destroy_pkt() free an allocated SCSI packet

scsi_slave() scsi_probe() probe for a SCSI target

selwakeup() pollwakeup() inform a process that an event has
occurred

slaveslot() ddi_slaveonly() tell if device is installed in a slave-only
slot

sleep() cv_wait() suspend calling thread and exit mutex
atomically

spl n() mutex_enter() set CPU priority level

splr()
splx()

mutex_exit() reset priority level

splstr() - set processor level for STREAMS

strcmp() strcmp() compare two null-terminated strings

strcpy() strcmp() copy a string from one location to
another

suser() drv_priv() verify superuser

swab() swab() swap bytes in 16-bit halfwords

testb() testb() check for an available buffer

timeout() timeout() execute a function after a specified length
of time

uiomove() uiomove() copy kernel data using uio(9S) structure

unbufcall() unbufcall() cancel an outstanding bufcall request

unlinkb() unlinkb() remove a message block from the head of
a message

untimeout() untimeout() cancel previous timeout function call

uprintf() cmn_err() kernel print to controlling terminal

ureadc() ureadc() add character to a uio structure

useracc() useracc() verify whether user has access to
memory

Table A-1 SunOS 4.1.x and SunOS 5.4 Kernel Support Routines

SunOS 4.1.x SunOS 5.4 Description

296 Writing Device Drivers—August, 1994

A

usleep() drv_usecwait busy-wait for specified interval

uwritec() uwritec() remove a character from a uio structure

wakeup() cv_broadcast() signal condition and wake all blocked
threads

Table A-1 SunOS 4.1.x and SunOS 5.4 Kernel Support Routines

SunOS 4.1.x SunOS 5.4 Description

297

Advanced Topics B

This appendix contains a collection of topics. Not all drivers need to be
concerned with the issues addressed.

Multithreading
This section supplements the guidelines presented in Chapter 4,
“Multithreading,” for writing an MT-safe driver, a driver that safely supports
multiple threads.

Lock Granularity

Here are some issues to consider when deciding on how many locks to use in a
driver:

• The driver should allow as many threads as possible into the driver: this
leads to fine-grained locking.

• However, it should not spend too much time executing the locking
primitives: this approach leads to coarse-grained locking.

• Moreover, the code should be simple and maintainable.
• Avoid lock contention for shared data.
• Write reentrant code wherever possible. This makes it possible for many

threads to execute without grabbing any locks.
• Use locks to protect the data and not the code path.

298 Writing Device Drivers—August, 1994

B

• Keep in mind the level of concurrency provided by the device: if the
controller can only handle one request at a time, there is no point in
spending a lot of time making the driver handle multiple threads.

A little thought in reorganizing the ordering and types of locks around such
data can lead to considerable savings.

Avoiding Unnecessary Locks
• Use the MT semantics of the entry points to your advantage.

If an element of a device’s state structure is read-mostly—for example,
initialized in attach (), and destroyed in detach (), but only read in other
entry points—there is no need to acquire a mutex to read that element of the
structure. This may sound obvious, but blindly adding calls to
mutex_enter (9F) and mutex_exit (9F) around every access to such a
variable can lead to unnecessary locking overhead.

• Make all entry points reentrant and reduce the amount of shared data, by
changing static variables to automatic, or by adding them to your state
structure.

Note – Kernel-thread stacks are small (currently 8 Kbytes), so do not allocate
large automatic variables and avoid deep recursion.

Locking Order

When acquiring multiple mutexes, be sure to acquire them in the same order
on each code path. For example, mutexes A and B are used to protect two
resources in the following ways:

Code Path 1 Code Path 2

mutex_enter(&A); mutex_enter(&B);
... ...

mutex_enter(&B); mutex_enter(&A);
... ...

mutex_exit(&B); mutex_exit(&A);
... ...

mutex_exit(&A); mutex_exit(&B);

Advanced Topics 299

B

If thread 1 is executing code path one, and thread two is executing code path 2,
the following could occur:

1. Thread one acquires mutex A.

2. Thread two acquires mutex B.

3. Thread one needs mutex B, so it blocks holding mutex A.

4. Thread two needs mutex A, so it blocks holding mutex B.

These threads are now deadlocked. This is hard to track down, and usually
even more so since the code paths are rarely so straightforward. Also, it
doesn’t always happen, as it depends on the relative timing of threads one and
two.

Scope of a Lock

Experience has shown that it is easier to deal with locks that are either held
throughout the execution of a routine, or locks that are both acquired and
released in one routine. Avoid nesting like this:

static void
xxfoo(...)
{

mutex_enter(&softc->lock);
...
xxbar();

}

static void
xxbar(...)
{

...
mutex_exit(&softc->lock);

}

This example works, but will almost certainly lead to maintenance problems.

If contention is likely in a particular code path, try to hold locks for a short
time. In particular, arrange to drop locks before calling kernel routines that
might block. For example:

mutex_enter(&softc->lock);
...
softc->foo = bar;

300 Writing Device Drivers—August, 1994

B

softc->thingp = kmem_alloc(sizeof(thing_t), KM_SLEEP);
...
mutex_exit(&softc->lock);

This is better coded as:

thingp = kmem_alloc(sizeof(thing_t), KM_SLEEP);
mutex_enter(&softc->lock);
...
softc->foo = bar;
softc->thingp = thingp;
...
mutex_exit(&softc->lock);

Potential Panics

Here is a set of mutex-related panics:

panic: recursive mutex_enter. mutex %x caller %x

Mutexes are not reentrant by the same thread. If you already own the
mutex, you cannot own it again. Doing this leads to the above panic.

panic: mutex_adaptive_exit: mutex not held by thread

Releasing a mutex that the current thread does not hold causes the above
panic.

panic: lock_set: lock held and only one CPU

This only occurs on a uniprocessor, and says that a spin mutex is held and it
would spin forever, because there is no other CPU to release it. This could
happen because the driver forgot to release the mutex on one code path, or
blocked while holding it.

A common cause of this panic is that the device’s interrupt is high-level (see
ddi_intr_hilevel (9F) and Intro (9F)), and is calling a routine that
blocks the interrupt handler while holding a spin mutex. This is obvious if
the driver explicitly calls cv_wait (9F), but may not be so if it’s blocking
while grabbing an adaptive mutex with mutex_enter (9F).

Note – In principle, this is only a problem for drivers that operate above lock
level.

Advanced Topics 301

B

Sun Disk Device Drivers
Sun disk devices represent an important class of block device drivers. A Sun
disk device is one that is supported by disk utility commands such as
format (1M) and newfs (1M).

Disk I/O Controls

Sun disk drivers need to support a minimum set of I/O controls specific to Sun
disk drivers. These I/O controls are specified in the dkio (7) manual page. Disk
I/O controls transfer disk information to or from the device driver. In the case
where data is copied out of the driver to the user, ddi_copyout (9F) should be
used to copy the information into the user’s address space. When data is
copied to the disk from the user, the ddi_copyin (9F) should be used to copy
data into the kernels address space. Table B-1 lists the mandatory Sun disk I/O
controls.

Sun disks may also support a number of optional ioctls listed in the hdio (7)
manual page. Table B-2 lists optional Sun disk ioctls:

Table B-1 Mandatory Sun Disk I/O Controls

I/O Control Description

DKIOCINFO Return information describing the disk controller.

DKIOCGAPART Return a disk’s partition map.

DKIOCSAPART Set a disk’s partition map.

DKIOCGGEOM Return a disk’s geometry.

DKIOCSGEOM Set a disk’s geometry.

DKIOCGVTOC Return a disk’s Volume Table of Contents.

DKIOCSVTOC Set a disk’s Volume Table of Contents.

Table B-2 Optional Sun Disk Ioctls

I/O Control Description

HDKIOCGTYPE Return the disk’s type.

HDKIOCSTYPE Set the disk’s type.

302 Writing Device Drivers—August, 1994

B

Disk Performance

The Solaris 2.x DDI/DKI provides facilities to optimize I/O transfers for
improved file system performance. It supports a mechanism to manage the list
of I/O requests so as to optimize disk access for a file system. See
“Asynchronous Data Transfers” on page 184 for a description of enqueuing an
I/O request.

The diskhd structure is used to manage a linked list of I/O requests.

struct diskhd {
long b_flags; /* not used, needed for */

/* consistency */
struct buf *b_forw, *b_back; /* queue of unit queues */
struct buf *av_forw, *av_back; /* queue of bufs for this unit */
long b_bcount; /* active flag */

};

The diskhd data structure has two buf pointers which can be manipulated by
the driver. The av_forw pointer points to the first active I/O request. The
second pointer, av_back points to the last active request on the list.

A pointer to this structure is passed as an argument to disksort (9F) along
with a pointer to the current buf structure being processed. The disksort (9F)
routine is used to sort the buf requests in a fashion that optimizes disk seek
and then inserts the buf pointer into the diskhd list. The disksort program
uses the value that is in b_resid of the buf structure as a sort key. It is up to
the driver to set this value. Most Sun disk drivers use the cylinder group as the
sort key. This tends to optimize the file system read-ahead accesses.

Once data has been added to the diskhd list, the device needs to transfer the
data. If the device is not busy processing a request, the xxstart () routine
pulls the first buf structure off the diskhd list and starts a transfer.

HDKIOCGBAD Return the bad sector map of the device.

HDKIOCSBAD Set the bad sector map for the device.

HDKIOCGDIAG Return the diagnostic information regarding the most recent
command.

Table B-2 Optional Sun Disk Ioctls

I/O Control Description

Advanced Topics 303

B

If the device is busy, the driver should return from the xxstrategy () entry
point. Once the hardware is done with the data transfer, it generates an
interrupt. The driver’s interrupt routine is then called to service the device.
After servicing the interrupt, the driver can then call the start () routine to
process the next buf structure in the diskhd list.

SCSA

Global Data Definitions

The following is information for debugging, useful when a driver runs into
bus-wide problems. There is one global data variable that has been defined for
the SCSA implementation: scsi_options. This variable is a SCSA configuration
longword used for debug and control. The defined bits in the scsi_options
longword can be found in the file <sys/scsi/conf/autoconf.h> , and have
the following meanings when set:

Note – The setting of scsi_options affects all host adapter and target drivers
present on the system(as opposed to scsi_ifsetcap (9F)). Refer to
scsi_hba_attach (9F) in the Solaris 2.4 Reference Manual AnswerBook for
information on controlling these options for a particular host adapter.

The default setting for scsi_options has these values set:

• SCSI_OPTIONS_DR
• SCSI_OPTIONS_SYNC

Table B-3 SCSA Options

Option Description

SCSI_OPTIONS_DR enable global disconnect/reconnect

SCSI_OPTIONS_SYNC enable global synchronous transfer capability

SCSI_OPTIONS_PARITY enable global parity support

SCSI_OPTIONS_TAG enable global tagged queuing support

SCSI_OPTIONS_FAST enable global FAST SCSI support: 10MB/sec
transfers, as opposed to 5 MB/sec

SCSI_OPTIONS_WIDE enable global WIDE SCSI

304 Writing Device Drivers—August, 1994

B

• SCSI_OPTIONS_PARITY
• SCSI_OPTIONS_TAG
• SCSI_OPTIONS_FAST
• SCSI_OPTIONS_WIDE

Tagged Queueing

For a definition of tagged queueing refer to the SCSI-2 specification. To support
tagged queueing, first check the scsi_options flag SCSI_OPTIONS_TAG to see if
tagged queueing is enabled globally. Next, check to see if the target is a SCSI-2
device and whether it has tagged queueing enabled. If this is all true, attempt
to enable tagged queueing by using scsi_ifsetcap (9F). Code Example B-1
shows an example of supporting tagged queueing.

Code Example B-1 Supporting SCSI Tagged Queueing

#define ROUTE &sdp->sd_address

...

/*
 * If SCSI-2 tagged queueing is supported by the disk drive and
 * by the host adapter then we will enable it.
 */

xsp->tagflags = 0;
if ((scsi_options & SCSI_OPTIONS_TAG) &&

(devp->sd_inq->inq_rdf == RDF_SCSI2) &&
(devp->sd_inq->inq_cmdque)) {
if (scsi_ifsetcap(ROUTE, “tagged-qing”, 1, 1) == 1) {

xsp->tagflags = FLAG_STAG;
xsp->throttle = 256;

} else if (scsi_ifgetcap(ROUTE, “untagged-qing”, 0) == 1) {
xsp->dp->options |= XX_QUEUEING;
xsp->throttle = 3;

} else {
xsp->dp->options &= ~XX_QUEUEING;
xsp->throttle = 1;

}
}

Advanced Topics 305

B

Untagged Queueing

If tagged queueing fails, you can attempt to set untagged queuing. In this
mode, you submit as many commands as you think necessary/optimal to the
host adapter driver. Then, the host adapter queues the commands to the target
one at a time (as opposed to tagged queueing, where the host adapter submits
as many commands as it can until the target indicates that the is queue full).

Auto-Request-Sense Mode

Auto-request-sense mode is most desirable if tagged or untagged queueing is
used.A contingent allegiance condition is cleared by any subsequent command
and, consequently, the sense data is lost. Most HBA drivers will start the next
command before performing the target driver callback. However, some HBA
drivers may use a separate and lower priority thread to perform the callbacks,
which may increase the time it takes to notify the target driver that the packet
completed with a check condition. In this cas, the target driver may not be able
to submit a request sense command in time to retrieve the sense data.

To avoid this loss of sense data, the HBA driver, or controller, should issue a
request sense command as soon as a check condition has been detected; this
mode is known as auto-request_sense mode. Note that not all HBA drivers are
capable of auto-request-sense mode, and some can only operate with auto-
request-sense mode enabled.

A target driver enables auto-request-sense mode by using
scsi_ifsetcap (9F). Code Example B-2 is an example of enabling auto
request sense.

Code Example B-2 Enabling auto request sense

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;
struct scsi_device *sdp = (struct scsi_device *)
 ddi_get_driver_private(dip);

...

/*

306 Writing Device Drivers—August, 1994

B

 * enable auto-request-sense; an auto-request-sense cmd may fail
 * due to a BUSY condition or transport error. Therefore, it is
 * recommended to allocate a separate request sense packet as
 * well.
 * Note that scsi_ifsetcap(9F) may return -1, 0, or 1
 */

xsp->sdp_arq_enabled =
 ((scsi_ifsetcap(ROUTE, “auto-rqsense”, 1, 1) == 1) ? 1 : 0);

/*
 * if the HBA driver supports auto request sense then the
 * status blocks should be sizeof (struct scsi_arq_status); else
 * one byte is sufficient
 */
xsp->sdp_cmd_stat_size = (xsp->sdp_arq_enabled ?
 sizeof (struct scsi_arq_status) : 1);
...

}

When a packet is allocated using scsi_init_pkt (9F) and auto request sense
is desired on this packet then the target driver must request additional space
for the status block to hold the auto request sense structure (as
Code Example B-3 illustrates). The sense length used in the request sense
command is sizeof (struct scsi_extended_sense).

The scsi_arq_status structure contains the following members:

struct scsi_status sts_status;
struct scsi_status sts_rqpkt_status;
u_char sts_rqpkt_reason;/* reason completion */
u_char sts_rqpkt_resid;/* residue */
u_long sts_rqpkt_state;/* state of command */
u_long sts_rqpkt_statistics;/* statistics */
struct scsi_extended_sense sts_sensedata;

Auto request sense can be disabled per individual packet by just allocating
sizeof (struct scsi_status) for the status block.

Code Example B-3 Allocating a packet with auto request sense

pkt = scsi_init_pkt(ROUTE, NULL, bp, CDB_GROUP1,
 xsp->sdp_cmd_stat_size, PP_LEN, 0, func, (caddr_t) xsp);

The packet is submitted using scsi_transport (9F) as usual. When a check
condition occurs on this packet, the host adapter driver:

Advanced Topics 307

B

• Issues a request sense command if the controller doesn’t have auto-request-
sense capability.

• Obtains the sense data

• Fills in the scsi_arq_status information in the packet’s status block

• Sets STATE_ARQ_DONE in the packet’s pkt_state field.

• Calls the packet’s callback handler (pkt_comp)

The target driver’s callback routine should verify that sense data is available
by checking the STATE_ARQ_DONE bit in pkt_state which implies that a
check condition has occurred and a request sense has been performed. If auto-
request-sense has been temporarily disabled in a packet, there is no guarantee
that the sense data can be retrieved at a later time.

The target driver should then verify whether the auto request sense command
completed successfully and decode the sense data.

Code Example B-4 Checking for auto request sense

static void
xxcallback(struct scsi_pkt *pkt)
{

...

if (pkt->pkt_state & STATE_ARQ_DONE) {
/*
 * The transport layer successfully completed an
 * auto-request-sense.
 * Decode the auto request sense data here
 */
....

}
...

}

The sample SCSI drivers in appendixes E and F show in more detail how to
interpret the auto request sense data structure.

308 Writing Device Drivers—August, 1994

B

309

Summary of Solaris 2.4
DDI/DKI Services C

This chapter discusses, by category, the interfaces provided by the Solaris 2.4
DDI/DKI. After each category is introduced, each function in that category is
listed with a brief description. These descriptions should not be considered
complete or definitive, nor do they provide a thorough guide to usage. The
descriptions are intended to describe what the functions do in general terms,
and what the arguments and return values mean. See the manual pages for
more detailed information. The categories are:

buf(9S) Handling page 310

Copying Data page 313

Device Access page 314

Device Configuration page 315

Device Information page 316

DMA Handling page 317

Flow of Control page 324

Interrupt Handling page 324

Kernel Statistics page 324

Memory Allocation page 328

Polling page 329

Printing System Messages page 329

Process Signaling page 330

Properties page 331

Register and Memory Mapping page 333

310 Writing Device Drivers—August, 1994

C

STREAMS interfaces are not discussed here; to learn about them, see the
STREAMS Programmer’s Guide.

buf (9S) Handling
These interfaces manipulate the buf (9S) data structure. It is used to encode
block I/O transfer requests, but some character drivers also use buf (9S) to
encode character I/O requests with physio (9F). Drivers that use buf (9S) as
their primary means of encoding I/O requests have to implement a
strategy (9E) routine. See Chapter 9, “Drivers for Block Devices,” and
Chapter 8, “Drivers for Character Devices” for more information.

void biodone(struct buf *bp);

biodone (9F) marks the I/O described by the buf (9S) structure pointed to by
bp as complete by setting the B_DONE flag in bp->b_flags . biodone (9F)
then notifies any threads waiting in biowait (9F) for this buffer. Call
biodone (9F) on bp when the I/O request it encodes is finished.

void bioerror(struct buf *bp, int error);

bioerror(9F) marks the error bits in the I/O described by the buf(9S)
structure pointed to by bp with error .

I/O Port Access page 333

SCSI and SCSA page 336

Soft State Management page 341

String Manipulation page 344

System Information page 346

Thread Synchronization page 346

Timing page 351

uio(9S) Handling page 352

Utility Functions page 352

Summary of Solaris 2.4 DDI/DKI Services 311

C

void bioreset(struct buf *bp);

bioreset(9F) is used to reset the buf(9S) structure pointed to by bp
allowing a device driver to reuse privately allocated buffers. bioreset(9F)
resets the buffer header to its initially allocated state.

int biowait(struct buf *bp);

biowait (9F) suspends the calling thread until the I/O request described by bp
completes. A call to biodone (9F) unblocks the waiting thread. Usually, if a
driver does synchronous I/O, it calls biowait (9F) in its strategy (9E)
routine, and calls biodone (9F) in its interrupt handler when the request is
complete.

biowait (9F) is usually not called by the driver, instead it is called by
physio (9F), or by the file system after calling strategy (9F). The driver is
responsible for calling biodone (9F) when the I/O request is complete.

void bp_mapin(struct buf *bp);

bp_mapin (9F) maps the data buffer associated with the buf (9S) structure
pointed to by bp into the kernel virtual address space so the driver can access
it. Programmed I/O device drivers often use bp_mapin (9F) because they have
to transfer data explicitly between the buf (9S) structure’s buffer and a device
buffer. See “bp_mapin()” on page 177 for more information.

void bp_mapout(struct buf *bp);

bp_mapout (9F) unmaps the data buffer associated with the buf (9S) structure
pointed to by bp . The buffer must have been mapped previously by
bp_mapin (9F). bp_mapout (9F) can only be called from user or kernel context.

void clrbuf(struct buf *bp);

clrbuf (9F) zeroes bp->b_bcount bytes starting at bp->b_un.b_addr .

312 Writing Device Drivers—August, 1994

C

void disksort(struct diskhd *dp, struct buf *bp);

disksort (9F) implements a queueing strategy for block I/O requests to block-
oriented devices. dp is a pointer to a diskhd structure that represents the head
of the request queue for a the disk. disksort (9F) sorts bp into this queue in
ascending order of cylinder number. The cylinder number is stored in the
b_resid field of the buf(9S) structure. This strategy minimizes seek time for
some disks.

void freerbuf(struct buf *bp);

freerbuf (9F) frees the buf (9S) structure pointed to by bp . The structure must
have been allocated previously by getrbuf (9F).

int geterror(struct buf *bp);

geterror (9F) returns the error code stored in bp if the B_ERROR flag is set in
bp->b_flags . It returns zero if no error occurred.

struct buf *getrbuf(long sleepflag);

getrbuf (9F) allocates a buf (9S) structure and returns a pointer to it.
sleepflag should be either KM_SLEEP or KM_NOSLEEP, depending on
whether getrbuf (9F) should wait for a buf (9S) structure to become available
if one cannot be allocated immediately.

int physio(int (*strat)(struct buf *), struct buf *bp,
dev_t dev, int rw, void (*mincnt)(struct buf *),
struct uio *uio);

physio (9F) translates a read or write I/O request encoded in a uio (9S)
structure into a buf (9S) I/O request. strat is a pointer to a strategy (9E)
routine which physio (9F) calls to handle the I/O request. If bp is NULL,
physio(9F) allocates a private buf (9S) structure.

Before calling strategy(9E), physio (9F) locks down the memory referred to by
the buf(9S) structure (initialized from the uio (9S) structure). For this reason,
many drivers which do DMA must use physio (9F) as it is the only way to lock
down memory.

Summary of Solaris 2.4 DDI/DKI Services 313

C

In most block device drivers, read (9E) and write (9E) handle raw I/O
requests, and consist of little more than a call to physio (9F).

void minphys(struct buf *bp);

minphys (9F) can be passed as the mincnt argument to physio (9F). This
causes physio (9F) to make I/O requests to the strategy routine that are no
larger than the system default maximum data transfer size. If the original
uio (9S) I/O request is to transfer a greater amount of data than minphys (9F)
allows, physio (9F) calls strategy (9E) repeatedly.

Copying Data
These interfaces are data copying utilities, used both for copying data within
the kernel, and for copying data between the kernel and an application
program.

void bcopy(caddr_t from, caddr_t to, size_t bcount);

bcopy (9F) copies count bytes from the location pointed to by from to the
location pointed to by to .

int copyin(caddr_t userbuf, caddr_t driverbuf,
size_t cn);

copyin (9F) copies data from an application program’s virtual address space to
the kernel virtual address space, where the driver can address the data. The
driver developer must ensure that adequate space is allocated for driverbuf .

int copyout(caddr_t driverbuf, caddr_t userbuf,
size_t cn);

copyout (9F) copies data from the kernel virtual address space to an
application program’s virtual address space.

314 Writing Device Drivers—August, 1994

C

int ddi_copyin(caddr_t buf, caddr_t driverbuf,
size_t cn, int flags);

This routine is designed for use in driver ioctl (9E) routines. It copies data
from a source address to a driver buffer. The driver developer must ensure that
adequate space is allocated for the destination address.

The flags argument is used to determine the address space information about
buf . If the FKIOCTL flag is set, it indicates that buf is a kernel address, and
ddi_copyin (9F) behaves like bcopy (9F). Otherwise buf is interpreted as a
user buffer address, and ddi_copyin (9F) behaves like copyin (9F).

The value of the flags argument to ddi_copyin (9F) should be passed
through directly from the mode argument of ioctl (9E) untranslated.

int ddi_copyout(caddr_t driverbuf, caddr_t buf,
size_t cn, int flags);

This routine is designed for use in driver ioctl (9E) routines for drivers that
support layered I/O controls. ddi_copy out (9F) copies data from a driver
buffer to a destination address, buf .

The flags argument is used to determine the address space information about
buf . If the FKIOCTL flag is set, it indicates that buf is a kernel address, and
ddi_copy out (9F) behaves like bcopy (9F). Otherwise buf is interpreted as a
user buffer address, and ddi_copyin (9F) behaves like copy out(9F).

The value of the flags argument to ddi_copy out(9F) should be passed
through directly from the mode argument of ioctl (9E) untranslated.

Device Access
These interfaces verify the credentials of application threads making system
calls into drivers. They are sometimes used in the open (9E) entry point to
restrict access to a device, though this is usually achieved with the permissions
on the special files in the file system.

Summary of Solaris 2.4 DDI/DKI Services 315

C

int drv_priv(cred_t *credp);

drv_priv (9F) returns zero if the credential structure pointed to by credp is
that of a privileged thread. It returns EPERM otherwise. Only use
drv_priv (9F) in place of calls to the obsolete suser () function and when
making explicit checks of a calling thread’s UID.

Device Configuration
These interfaces are used in setting up a driver and preparing it for use. Some
of these routines handle the dynamic loading of device driver modules into the
kernel, and some manage the minor device nodes in /devices that are the
interface to a device for application programs. All of these routines are
intended to be called in the driver’s _init (9E), _fini (9E), _info (9E),
attach (9E), detach (9E), and probe (9E) entry points.

int ddi_create_minor_node(dev_info_t *dip, char *name,
int spec_type, int minor_num, char *node_type,
int is_clone);

ddi_create_minor_node (9F) advertises a minor device node, which will
eventually appear in the /devices directory and refer to the device specified
by dip .

void ddi_remove_minor_node(dev_info_t *dip,
char *name);

ddi_remove_minor_node (9F) removes the minor device node name for the
device dip from the system. name is assumed to have been created by
ddi_create_minor_node (9F). If name is NULL, all minor node information is
removed.

int mod_install(struct modlinkage *modlinkage);

mod_install (9F) links the calling driver module into the system and prepares
the driver to be used. modlinkage is a pointer to the modlinkage structure
defined in the driver. mod_install (9F) must be called from the _init (9E)
entry point.

316 Writing Device Drivers—August, 1994

C

int mod_remove(struct modlinkage *modlinkage);

mod_remove (9F) unlinks the calling driver module from the system.
modlinkage is a pointer to the modlinkage structure defined in the driver.
mod_remove (9F) must be called from the _fini (9E) entry point.

int mod_info(struct modlinkage *modlinkage,
struct modinfo *modinfop);

mod_info (9F) reports the status of a dynamically loadable driver module. It
must be called from the _info (9E) entry point.

Device Information
These interfaces provide information to the driver about a device, such as
whether the device is self-identifying, what instance number the system has
assigned to a device instance, the name of the dev_info node for the device,
and the dev_info node of the device’s parent.

int ddi_dev_is_sid(dev_info_t *dip);

ddi_dev_is_sid (9F) returns DDI_SUCCESS if the device identified by dip is
self-identifying (see “Device Identification” on page 14). Otherwise, it returns
DDI_FAILURE .

int ddi_get_instance(dev_info_t *dip);

ddi_get_instance (9F) returns the instance number assigned by the system
for the device instance specified by dip .

char *ddi_get_name(dev_info_t *dip);

ddi_get_name (9F) returns a pointer to a character string that is the name of
the dev_info tree node specified by dip . ddi_get_name (9F) should be
called in the identify (9E) entry point and the result compared to the name of
the device.

Summary of Solaris 2.4 DDI/DKI Services 317

C

dev_info_t *ddi_get_parent(dev_info_t *dip);

ddi_get_parent (9F) returns the dev_info_t pointer for the parent
dev_info node of the passed node, identified by dip .

int ddi_slaveonly(dev_info_t *dip);

ddi_slaveonly (9F) returns DDI_SUCCESS if the device indicated by dip is
installed in a slave access only bus slot. It returns DDI_FAILURE otherwise.

DMA Handling
These interfaces allocate and release DMA resources for devices capable of
directly accessing system memory. The family of setup functions are all
wrappers around the main setup function, ddi_dma_setup (9F). The wrappers
make it easier to allocate DMA resources for use with kernel virtual addresses
(ddi_dma_addr_setup (9F)), and buf (9S) structures
(ddi_dma_buf_setup (9F)). The setup functions pass back a pointer to a DMA
handle, which identifies the allocated DMA resources in future calls to other
DMA handling functions.

The DMA setup functions take a pointer to a DMA limits structure as an
argument. The DMA limits structure allows any constraints which the device’s
DMA controller may impose on DMA transfers to be specified, such as a
limited transfer size.

The DMA setup functions also provide a callback mechanism where a function
can be specified to be called later if the requested mapping can’t be set up
immediately.

The DMA window functions allow resources to be allocated for a large object.
The resources can be moved from one part of the object to another by moving
the DMA window.

The DMA engine functions allow drivers to manipulate the system DMA
engine, if there is one. These are currently used on x86 systems.

318 Writing Device Drivers—August, 1994

C

int ddi_dma_addr_setup(dev_info_t *dip,
struct as *as, caddr_t addr, u_int len,
u_int flags, int (*waitfp)(caddr_t),
caddr_t arg, ddi_dma_lim_t *lim,
ddi_dma_handle_t *handlep);

ddi_dma_addr_setup (9F) allocates resources for an object of length len at
kernel address addr , subject to any constraints specified by lim . waitfp is a
pointer to a callback function to be called later if the DMA resources cannot be
allocated right away. If the resources are allocated successfully,
ddi_dma_addr_setup (9F) passes back the DMA handle for the mapping in
the location pointed to by handlep . NULL should be passed for as .

int ddi_dma_buf_setup(dev_info_t *dip, struct buf *bp,
u_int flags, int (*waitfp)(caddr_t),
caddr_t arg, ddi_dma_lim_t *lim,
ddi_dma_handle_t *handlep);

ddi_dma_buf_setup (9F) allocates resources for an object described by a
buf (9F) structure pointed to by bp , subject to constraints specified by lim .
waitfp is a pointer to a callback function to be called later if the DMA
resources cannot be allocated right away. If the resources are allocated
successfully, ddi_dma_buf_setup (9F) passes back the DMA handle for the
resources in the location pointed to by handlep .

int ddi_dma_burstsizes(ddi_dma_handle_t handle);

ddi_dma_burstsizes (9F) returns an integer that encodes the allowed burst
sizes for the DMA resources specified by handle . Allowed power of two burst
sizes are bit-encoded in the return value. For a mapping that allows only two-
byte bursts, for example, the return value would be 0x2 . For a mapping that
allows 1, 2, 4, and 8 byte bursts, the return value would be 0xf .

Summary of Solaris 2.4 DDI/DKI Services 319

C

int ddi_dma_coff(ddi_dma_handle_t handle,
ddi_dma_cookie_t *cookiep, off_t *offp);

ddi_dma_coff (9F) passes back, in the location pointed to by offp , an offset
into a DMA object. The mapping is specified by handle , and the offset offp is
derived from the DMA cookie referred to by cookiep . ddi_dma_coff (9F)
can be used after a DMA transfer is complete to find out where the DMA
controller stopped.

int ddi_dma_curwin(ddi_dma_handle_t handle,
off_t *offp, u_int *lenp);

ddi_dma_curwin (9F) passes back the offset and length of the current DMA
window in the locations pointed to by offp and lenp , respectively.

int ddi_dma_devalign(ddi_dma_handle_t handle,
u_int *alignment, u_int *minxfr);

ddi_dma_devalign (9F) passes back, in the location pointed to by
alignment , the required alignment for the beginning of a DMA transfer using
the resources identified by handle . The alignment will be a power of two.
ddi_dma_devalign (9F) also passes back in the location pointed to by
minxfr the minimum number of bytes of the mapping that will be read or
written in a single transfer.

int ddi_dma_htoc(ddi_dma_handle_t handle, off_t off,
ddi_dma_cookie_t *cookiep);

ddi_dma_htoc (9F) passes back a DMA cookie in the location pointed to by
cookiep that represents a DMA transfer starting at off in the DMA resources
identified by handle . The DMA cookie is described in ddi_dma_cookie (9S)
that contains information about a potential DMA transfer. The field
dmac_address contains the transfer address for the DMA controller.

320 Writing Device Drivers—August, 1994

C

int ddi_dma_movwin(ddi_dma_handle_t handle,
off_t *offp, u_int *lenp,
ddi_dma_cookie_t *cookiep);

ddi_dma_movwin (9F) moves the current DMA window in the mapping
identified by handle . The new window offset and length are passed back in
the locations pointed to by offp and lenp , respectively. If a pointer to a DMA
cookie structure is passed in cookiep , ddi_dma_movwin (9F) calls
ddi_dma_htoc (9F) passes back a new DMA cookie in the location pointed to
by cookiep .

int ddi_dma_nextseg(ddi_dma_win_t win,
ddi_dma_seg_t seg, ddi_dma_seg_t *nseg);

ddi_dma_nextseg (9F) gets the next DMA segment within the specified
window win . If the current segment is NULL, the first DMA segment within
the window is returned.

int ddi_dma_nextwin(ddi_dma_handle_t handle,
ddi_dma_win_t win, ddi_dma_win_t *nwin);

ddi_dma_nextwin(9F) shifts the current DMA window win within the object
referred to by handle to the next DMA window nwin . If the current window
is NULL, the first window within the object is returned.

int ddi_dma_segtocookie(ddi_dma_seg_t seg,
off_t *offp, off_t *lenp,
ddi_dma_cookie_t *cookiep);

ddi_dma_segtocookie (9F) takes a DMA segment and fills in the cookie
pointed to by cookiep with the appropriate address, length, and bus type to
be used to program the DMA engine. ddi_dma_segtocookie (9F) also fills in
*offp and *lenp , which specify the range within the object.

Summary of Solaris 2.4 DDI/DKI Services 321

C

int ddi_dma_setup(dev_info_t *dip,
struct ddi_dma_req *dmareqp,
ddi_dma_handle_t *handlep);

ddi_dma_setup (9F) is the main DMA resource allocation function. It allocates
resources based on the DMA request structure pointed to by dmareqp , and
passes back a DMA handle that identifies the mapping in the location pointed
to by handlep .

int ddi_dma_free(ddi_dma_handle_t handle);

ddi_dma_free (9F) calls ddi_dma_sync (9F) and frees the resources
associated with the DMA mapping identified by handle .

int ddi_dma_sync(ddi_dma_handle_t handle, off_t off,
u_int length, u_int type);

ddi_dma_sync (9F) assures that any CPU and the device see the same data
starting at off bytes into the DMA resources identified by handle and
continuing for len bytes. type should be:

• DDI_DMA_SYNC_FORDEV to make sure the device sees any changes made by
a CPU.

• DDI_DMA_SYNC_FORCPU to make sure all CPUs see any changes made by
the device.

• DDI_DMA_SYNC_FORKERNEL, similar to DDI_DMA_SYNC_FORCPU, except
that only the kernel view of the object is synchronized.

int ddi_dmae_alloc(dev_info_t *dip, int chnl,
int (*dmae_waitfp)(), caddr_t arg);

ddi_dmae_alloc (9F) allocates a DMA channel from the system DMA engine.
It must be called prior to any operation on a channel.

int ddi_dmae_release(dev_info_t *dip, int chnl);

ddi_dmae_release (9F) releases a previously allocated DMA channel.

322 Writing Device Drivers—August, 1994

C

int ddi_dmae_prog(dev_info_t *dip,
struct ddi_dmae_req *dmaereqp,
ddi_dma_cookie_t *cookiep, int chnl);

The ddi_dmae_prog (9F) function programs the DMA channel for an
operation. This function allows access to various capabilities of the DMA
engine hardware. It disables the channel prior to setup, and enables the
channel before returning.

The DMA address and count are specified by passing ddi_dmae_prog (9F)
a cookie obtained from ddi_dma_segtocookie (9F). Other DMA engine
parameters are specified by the DMA engine request structure passed in
through dmaereqp . The fields of that structure are documented in
ddi_dmae_req (9S).

int ddi_dmae_disable(dev_info_t *dip, int chnl);

The ddi_dmae_disable (9F) function disables the DMA channel so that it no
longer responds to a device’s DMA service requests.

int ddi_dmae_enable(dev_info_t *dip, int chnl);

The ddi_dmae_enable (9F) function enables the DMA channel for
operation. This may be used to re-enable the channel after a call to
ddi_dmae_disable (9F). The channel is automatically enabled after successful
programming by ddi_dmae_prog (9F).

int ddi_dmae_stop(dev_info_t *dip, int chnl);

The ddi_dmae_stop (9F) function disables the channel and terminates any
active operation.

int ddi_dmae_getcnt(dev_info_t *dip, int chnl,
int *countp);

The ddi_dmae_getcnt (9F) function examines the count register of the DMA
channel and sets (*countp) to the number of bytes remaining to be transferred.
The channel is assumed to be stopped.

Summary of Solaris 2.4 DDI/DKI Services 323

C

int ddi_dmae_1stparty(dev_info_t *dip, int chnl);

The ddi_dmae_1stparty (9F) function is used, by device drivers using first-
party DMA, to configure a channel in the system’s DMA engine to operate in a
‘‘slave’’ mode.

int ddi_dmae_getlim(dev_info_t *dip,
ddi_dma_lim_t *limitsp);

The ddi_dmae_getlim (9F) function fills in the DMA limit structure, pointed
to by limitsp , with the DMA limits of the system DMA engine. This limit
structure must be passed to the DMA setup routines so that they will know
how to break the DMA request into windows and segments. If the device has
any particular restrictions on transfer size or granularity (for example, a disk
sector size), the driver should further restrict the values in the structure
members before passing them to the DMA setup routines. The driver must not
relax any of the restrictions embodied in the structure after it is filled in by
ddi_dmae_getlim (9F).

int ddi_iomin(dev_info_t *dip, int initial,
int streaming);

ddi_iomin (9F) returns an integer that encodes the required alignment and the
minimum number of bytes that must be read or written by the DMA controller
of the device identified by dip . ddi_iomin (9F) is like
ddi_dma_devalign (9F), but the memory object is assumed to be primary
memory, and the alignment is assumed to be equal to the minimum possible
transfer.

int ddi_iopb_alloc(dev_info_t *dip,
ddi_dma_lim_t *limits, u_int length,
caddr_t *iopbp);

ddi_iopb_alloc (9F) allocates a block of length bytes of memory, subject to
constraints specified by limits . A block of memory so allocated is commonly
called an “I/O parameter block”, or IOPB, and is usually used to encode a
device command. This block of consistent memory can be directly accessed by
the device. A pointer to the allocated IOPB is passed back in the location
pointed to by iopbp .

324 Writing Device Drivers—August, 1994

C

void ddi_iopb_free(caddr_t iopb);

ddi_iopb_free (9F) frees the I/O parameter block pointed to by iopb , which
must have been allocated previously by ddi_iopb_alloc (9F).

Flow of Control
These interfaces influence the flow of program control in a driver. These are
mostly callback mechanisms, functions that schedule another function to run at
a later time. Many drivers schedule a function to run every so often to check on
the status of the device, and possibly issue an error message if some strange
condition is detected.

Note – The detach (9E) entry point must assure that no callback functions are
pending in the driver before returning successfully. See Chapter 5,
“Autoconfiguration.”

int timeout(void (*ftn)(caddr_t), caddr_t arg,
long ticks);

timeout (9F) schedules the function pointed to by ftn to be run after ticks
clock ticks have elapsed. arg is passed to the function when it is run.
timeout (9F) returns a “timeout ID” that can be used to cancel the timeout
later.

int untimeout(int id);

untimeout (9F) cancels the timeout indicated by the timeout ID id . If the
number of clock ticks originally specified to timeout (9F) have not elapsed, the
callback function will not be called.

Interrupt Handling
These interfaces manage device interrupts and software interrupts. The basic
model is to register with the system an interrupt handling function to be called
when a device interrupts or a software interrupt is triggered.

Summary of Solaris 2.4 DDI/DKI Services 325

C

int ddi_add_intr(dev_info_t *dip, u_int inumber,
ddi_iblock_cookie_t *iblock_cookiep,
ddi_idevice_cookie_t *idevice_cookiep,
u_int (*int_handler)(caddr_t),
caddr_t int_handler_arg);

ddi_add_intr (9F) tells the system to call the function pointed to by
int_handler when the device specified by dip issues the interrupt identified
by inumber . ddi_add_intr (9F) passes back an interrupt block cookie in the
location pointed to by iblock_cookiep , and an interrupt device cookie in
the location pointed to by idevice_cookiep . The interrupt block cookie is
used to initialize mutual exclusion locks (mutexes) and other synchronization
variables. The device interrupt cookie is used to program the level at which the
device interrupts, for those devices that support such programming.

void ddi_remove_intr(dev_info_t *dip, u_int inumber,
ddi_iblock_cookie_t iblock_cookie);

ddi_remove_intr (9F) tells the system to stop calling the interrupt handler
registered for the interrupt inumber on the device identified by dip .
iblock_cookie is the interrupt block cookie that was returned by
ddi_add_intr (9F) when the interrupt handler was set up. Device interrupts
must be disabled before calling ddi_remove_intr (9F), and always call
ddi_remove_intr (9F) in the detach (9E) entry point before returning
successfully (if any interrupts handlers were added).

int ddi_add_softintr(dev_info_t *dip, int preference,
ddi_softintr_t *idp, ddi_iblock_cookie_t *ibcp,
ddi_idevice_cookie_t *idcp,
u_int (*int_handler)(caddr_t),
caddr_t int_handler_arg);

ddi_add_softintr (9F) tells the system to call the function pointed to by
int_handler when a certain software interrupt is triggered.
ddi_add_softintr (9F) returns a software interrupt ID in the location
pointed to by idp . This ID is later used by ddi_trigger_softintr (9F) to
trigger the software interrupt.

326 Writing Device Drivers—August, 1994

C

void ddi_trigger_softintr(ddi_softintr_t id);

ddi_trigger_softintr (9F) triggers the software interrupt identified by id .
The interrupt handling function that was set up for this software interrupt by
ddi_add_softintr (9F) is then called.

void ddi_remove_softintr(ddi_softintr_t id);

ddi_remove_softintr (9F) tells the system to stop calling the software
interrupt handler for the software interrupt identified by id . If the driver has
soft interrupts registered, it must call ddi_remove_softintr (9F) in the
detach (9E) entry point before returning successfully.

int ddi_dev_nintrs(dev_info_t *dip, int *result);

ddi_dev_nintr (9F) passes back in the location pointed to by result the
number of different interrupt specifications that the device indicated by dip
can generate. This is useful when dealing with a device that can interrupt at
more than one level.

int ddi_intr_hilevel(dev_info_t *dip, u_int inumber);

ddi_intr_hilevel (9F) returns non-zero if the system considers the interrupt
specified by inumber on the device identified by dip to be high level.
Otherwise, it returns zero.

Kernel Statistics
These interfaces allow device drivers to store statistics about the device in the
kernel for later retrieval by applications.

kstat_t *kstat_create(char *module, int instance,
char *name, char *class, uchar_t type,
ulong_t ndata, uchar_t ks_flag);

kstat_create(9F) allocates and performs necessary system initialization of
a kstat(9S) structure. After a successful call to kstat_create(9F) the
driver must perform any necessary initialization of the data structure and then
use kstat_install(9F) to make the kstat(9S) structure accessible to
user land applications.

Summary of Solaris 2.4 DDI/DKI Services 327

C

void kstat_delete(kstat_t *ksp);

kstat_delete(9F) removes the kstat(9S) structure pointed to by ksp
from the kernel statistics data and frees associated system resources.

void kstat_install(kstat_t *ksp);

kstat_install(9F) allows the kstat(9S) structure pointed to by ksp to
be accessible by the user land applications.

void kstat_named_init(kstat_named_t *knp, char *name,
uchar_t data_type);

kstat_named_init(9F) associates the name pointed to by name and the
type specified in data_type with the kstat_named(9S) structure pointed
to by knp .

void kstat_waitq_enter(kstat_io_t *kiop);

kstat_waitq_enter(9F) is used to update the kernel_io(9S) structure
pointed to by kiop indicating that a request has arrived but has not yet be
processed.

void kstat_waitq_exit(kstat_io_t *kiop);

kstat_waitq_exit(9F) is used to update the kernel_io(9S) structure
pointed to by kiop indicating that the request is about to be serviced.

void kstat_runq_enter(kstat_io_t *kiop);

kstat_runq_enter(9F) is used to update the kernel_io(9S) structure
pointed to by kiop indicating that the request is in the process of being
serviced. kstat_runq_enter(9F) is generally invoked after a call to
kstat_waitq_exit(9F) .

void kstat_runq_exit(kstat_io_t *kiop);

kstat_runq_exit(9F) is used to update the kernel_io(9S) structure
pointed to by kiop indicating that the request is serviced.

328 Writing Device Drivers—August, 1994

C

void kstat_waitq_to_runq(kstat_io_t *kiop);

kstat_waitq_to_runq(9F) is used to update the kernel_io(9S) structure
pointed to by kiop indicating that the request is transitioning from one state to
the next. kstat_waitq_to_runq(9F) is used when a driver would normally
call kstat_waitq_exit(9F) followed immediately by
kstat_runq_enter(9F) .

void kstat_runq_to_waitq(kstat_io_t *kiop);

kstat_runq_to_waitq(9F) is used to update the kernel_io(9S) structure
pointed to by kiop indicating that the request is transitioning from one state to
the next. kstat_runq_to_waitq(9F) is used when a driver would normally
call kstat_runq_exit(9F) followed immediately by a call to
kstat_waitq_enter(9F) .

Memory Allocation
These interfaces dynamically allocate memory for the driver to use.

void *kmem_alloc(size_t size, int flag);

kmem_alloc (9F) allocates a block of kernel virtual memory of length size and
returns a pointer to it. If flag is KM_SLEEP, kmem_alloc (9F) may block waiting
for memory to become available. If flag is KM_NOSLEEP, kmem_alloc (9F)
returns NULL if the request cannot be satisfied immediately.

void kmem_free(void *cp, size_t size);

kmem_free (9F) releases a block of memory of length size starting at address
addr that was previously allocated by kmem_alloc (9F). size must be the
original amount allocated.

void *kmem_zalloc(size_t size, int flags);

kmem_zalloc (9F) calls kmem_alloc (9F) to allocate a block of memory of
length size , and calls bzero (9F) on the block to zero its contents before
returning its address.

Summary of Solaris 2.4 DDI/DKI Services 329

C

Polling
These interfaces support the poll (2) system call, which provides a mechanism
for application programs to “poll” character-oriented devices, inquiring about
their readiness to perform certain I/O operations. See the poll (2) manual page
for details.

int nochpoll(dev_t dev, short events, int anyyet,
short *reventsp, struct pollhead **pollhdrp);

Use nochpoll (9F) as the chpoll entry in the cb_ops (9S) structure if the
driver does not support polling.

void pollwakeup(struct pollhead *php, short event);

If the driver does implement a chpoll (9E) entry point to support polling, it
should call pollwakeup (9F) whenever the event occurs.

Printing System Messages
These interfaces are functions that display messages on the system console.

void cmn_err(int level, char *format, ...);

cmn_err (9F) is the mechanism for printing messages on the system console.
level may be one of CE_NOTE, CE_WARN, CE_CONT, or CE_PANIC. CE_NOTE
indicates a purely informational message. CE_WARN indicates a warning to the
user. CE_CONT continues a previous message. And CE_PANIC issues a fatal
error and crashes the system. Use CE_PANIC only for unrecoverable system
errors!

Whenever possible, CE_CONT should be used to print system messages. Note
that CE_PANIC, CE_NOTE, and CE_WARN cause cmn_err (9F) to always append
a new line to the message.

void ddi_report_dev(dev_info_t *dip);

ddi_report_dev (9F) possibly prints a message announcing the presence of a
device on the system. Call this function before returning from a successful
attach (9E).

330 Writing Device Drivers—August, 1994

C

char *sprintf(char *buf, const char *fmt, ...);

sprintf (9F) is just like the C library’s sprintf (3). Use it to format a message
and place it in buf .

void vcmn_err(int level, char *format, va_list ap);

vcmn_err (9F) is a version of cmn_err (9F) that uses varargs (see the
stdarg (5) manual page).

char *vsprintf(char *buf, const char *fmt, va_list ap);

vsprintf (9F) is a version of sprintf (9F) that uses varargs (see the
stdarg (5) manual page).

Process Signaling
These interfaces allow a device driver to send signals to a process in a
multithread safe manner.

void *proc_ref(void);

proc_ref(9F) retrieves an unambiguous reference to the process of the
current thread for signalling purposes.

int proc_signal(void *pref, int sig);

proc_signal(9F) sends the signal indicated in sig to the process defined by
pref that has been referenced by proc_ref(9F) .

void proc_unref(void *pref);

proc_unref(9F) unreferences the process defined by pref .

Summary of Solaris 2.4 DDI/DKI Services 331

C

Properties
Properties are name-value pairs defined by the PROM or the kernel at boot
time, by hardware configuration files, or by calls to ddi_prop_create (9F).
These interfaces handle creating, modifying, retrieving, and reporting
properties.

int ddi_prop_create(dev_t dev, dev_info_t *dip,
int flags, char *name, caddr_t valuep,
int length);

ddi_prop_create (9F) creates a property of the name pointed to by name and
the value pointed to by valuep .

int ddi_prop_modify(dev_t dev, dev_info_t *dip,
int flags, char *name, caddr_t valuep,
int length);

ddi_prop_modify (9F) changes the value of the property identified by name
to the value pointed to by valuep .

int ddi_prop_remove(dev_t dev, dev_info_t *dip,
char *name);

ddi_prop_remove (9F) frees the resources associated with the property
identified by name.

void ddi_prop_remove_all(dev_info_t *dip);

ddi_prop_remove_all (9F) frees the resources associated with all properties
belonging to dip . ddi_prop_remove_all (9F) should be called in the
detach (9E) entry point if the driver defines properties.

int ddi_prop_undefine(dev_t dev, dev_info_t *dip,
int flags, char *name);

ddi_prop_undefine (9F) marks the value of the property identified by name
as temporarily undefined. The property continues to exist, however, and may
be redefined later using ddi_prop_modify (9F).

332 Writing Device Drivers—August, 1994

C

int ddi_prop_op(dev_t dev, dev_info_t *dip,
ddi_prop_op_t prop_op, int flags, char *name,
caddr_t valuep, int *lengthp);

ddi_prop_op (9F) is the generic interface for retrieving properties.
ddi_prop_op (9F) should be used as the prop_op (9E) entry in the
cb_ops (9S) structure if the driver does not have a prop_op (9E) routine. See
“Properties” on page 59 for more information.

int ddi_getprop(dev_t dev, dev_info_t *dip, int flags,
char *name, int defvalue);

ddi_getprop (9F) is a wrapper around ddi_prop_op (9F). It can be used to
retrieve boolean and integer sized properties.

int ddi_getlongprop(dev_t dev, dev_info_t *dip,
int flags, char *name, caddr_t valuep,
int *lengthp);

ddi_getlongprop (9F) is a wrapper around ddi_prop_op (9F). It is used to
retrieve properties having values of arbitrary length. The value returned is
stored in a buffer allocated by kmem_alloc (9F), which the driver must free
with kmem_free (9F) when the value is no longer needed.

int ddi_getlongprop_buf(dev_t dev, dev_info_t *dip,
int flags, char *name, caddr_t valuep,
int *lengthp);

ddi_getlongprop_buf (9F) is a wrapper around ddi_prop_op (9F). It is used
retrieve a property having a value of arbitrary length and to copy that value
into a buffer supplied by the driver. valuep must point to this buffer.

int ddi_getproplen(dev_t dev, dev_info_t *dip,
int flags, char *name, int *lengthp);

ddi_getproplen (9F) is a wrapper around ddi_prop_op (9F) that passes back
in the location pointed to by lengthp the length of the property identified by
name.

Summary of Solaris 2.4 DDI/DKI Services 333

C

Register and Memory Mapping
These interfaces support the mapping of device memory and device registers
into kernel memory so a device driver can address them.

int ddi_dev_nregs(dev_info_t *dip, int *resultp);

ddi_dev_nregs (9F) passes back in the location pointed to by resultp the
number of register specifications a device has.

int ddi_dev_regsize(dev_info_t *dip, u_int rnumber,
off_t *resultp);

ddi_dev_regsize (9F) passes back in the location pointed to by resultp the
size of the register set identified by rnumber on the device identified by dip .

int ddi_map_regs(dev_info_t *dip, u_int rnumber,
caddr_t *kaddrp, off_t offset, off_t len);

ddi_map_regs (9F) maps the register specification identified by rnumber on
the device identified by dip into kernel memory starting at offset bytes from
the base of the register specification. ddi_map_regs (9F) then passes back in
the location pointed to by kaddrp a pointer to the base of the register
specification plus offset .

void ddi_unmap_regs(dev_info_t *dip, u_int rnumber,
caddr_t *kaddrp, off_t offset, off_t len);

ddi_unmap_regs (9F) unmaps the register specification identified by rnumber
on the device identified by dip . The associated mapping resources are freed,
and the driver may no longer address the registers.

int ddi_segmap(dev_t dev, off_t offset, struct as *as,
caddr_t *addrp, off_t len, u_int prot,
u_int maxprot, u_int flags, cred_t *credp);

ddi_segmap (9F) supports the mmap(2) system call, which allows application
programs to map device memory into their address spaces. ddi_segmap (9F)
should be used as the segmap(9E) entry in the cb_ops (9S) structure.

334 Writing Device Drivers—August, 1994

C

int ddi_mapdev(dev_t dev, off_t offset, struct as *as,
caddr_t *addrp, off_t len, u_int prot,
u_int maxprot, u_int flags, cred_t *credp,
struct ddi_mapdev_ctl *ctl,
ddi_mapdev_handle_t *handle, void *devprivate);

ddi_mapdev (9F) sets up user mappings to device space in the same manner as
ddi_segmap (9F). However, unlike mappings created with ddi_segmap (9F),
mappings created with ddi_mapdev (9F) have a set of driver entry points and
a mapping handle associated with them. The driver is notified via these entry
points in response to user events on the mappings.

int ddi_mapdev_intercept(ddi_mapdev_handle_t *handle,
off_t offset, off_t len);

int ddi_mapdev_intercept(ddi_mapdev_handle_t *handle,
off_t offset, off_t len);

ddi_mapdev_intercept (9F) and ddi_mapdev_nointercept (9F) control
whether or not user accesses to the device mappings created by
ddi_mapdev (9F) in the specified range will generate an access event
notification to the device driver.

ddi_mapdev_intercept (9F) tells the system to intercept mapping accesses
and invalidates the mapping translations. ddi_mapdev_nointercept (9F)
prevents the system from intercepting mapping accesses and validates the
mapping translations.

Summary of Solaris 2.4 DDI/DKI Services 335

C

I/O Port Access
These interfaces support the accessing of device registers from the device
driver.

unsigned char inb(int port);
unsigned short inw(int port);
unsigned long inl(int port);
void repinsb(int port, unsigned char *addr, int count);
void repinsw(int port, unsigned short *addr,

int count);
void repinsd(int port, unsigned long *addr, int count);

These routines read data of various sizes from the I/O port with the address
specified by port .

The inb (9F), inw (9F), and inl (9F) functions read 8 bits, 16 bits, and 32 bits of
data respectively, returning the resulting values.

The repinsb (9F), repinsw (9F), and repinsd (9F) functions read multiple 8-
bit, 16-bit, and 32-bit values, respectively. count specifies the number of values
to be read. addr is a pointer to a buffer that will receive the input data. The
buffer must be long enough to hold count values of the requested size.

void outb(int port, unsigned char value);
void outw(int port, unsigned short value);
void outl(int port, unsigned long value);
void repoutsb(int port, unsigned char *addr,

int count);
void repoutsw(int port, unsigned short *addr,

int count);
void repoutsd(int port, unsigned long *addr,

int count);

These routines write data of various sizes to the I/O port with the address
specified by port .

The outb (9F), outw (9F), and outl (9F) functions write 8 bits, 16 bits, and 32
bits of data respectively, writing the data specified by value .

336 Writing Device Drivers—August, 1994

C

The repoutsb (9F), repoutsw (9F), and repoutsd (9F) functions write multiple
8-bit, 16-bit, and 32-bit values, respectively. count specifies the number of
values to be written. addr is a pointer to a buffer from which the output values
are fetched.

SCSI and SCSA
These interfaces are part of the Sun Common SCSI Interface, routines that
support the writing of “target drivers” to drive SCSI devices. Most of these
routines handle allocating SCSI command “packets”, formulating SCSI
commands within those packets, and “transporting” the packets to the host
adapter driver for execution. See Chapter 10, “SCSI Target Drivers.”

struct scsi_pkt *get_pktiopb(struct scsi_address *ap,
caddr_t *datap, int cdblen, int statuslen,
int datalen, int readflag,
int (*callback)(void));

get_pktiopb (9F) allocates a SCSI packet structure with a small data area in
the system IOPB (I/O parameter block) map for the target device denoted by
ap . get_pktiopb (9F) calls scsi_dmaget (9F) to allocate the data area, and
calls scsi_resalloc (9F) to allocate the scsi_pkt (9S) structure itself. If
func is not NULL_FUNC and resources cannot be allocated right away, the
function pointed to by func will be called when resources may have become
available. func can call get_pktiopb (9F) again. If callback is SLEEP_FUNC,
scsi_dmaget (9F) may block waiting for resources.

Target drivers often use get_pktiopb() to allocate packets for the REQUEST
SENSE or INQUIRY SCSI commands, which need a small amount of cache-
consistent memory. Use IOPB packets sparingly, though, because they are
allocated from scarce DMA memory resources.

void free_pktiopb(struct scsi_pkt *pkt, caddr_t datap,
int datalen);

free_pktiopb (9F) frees a scsi_pkt (9S) structure and related DMA
resources previously allocated by get_pktiopb (9F).

Summary of Solaris 2.4 DDI/DKI Services 337

C

void makecom_g0(struct scsi_pkt *pkt,
struct scsi_device *devp, int flag,
int cmd, int addr, int cnt);

makecom_g0(9F) formulates a group 0 SCSI command for the target device
denoted by devp in the scsi_pkt (9S) structure pointed to by pkt . The target
must be a non-sequential access device. Use makecom_g0_s (9F) to formulate
group 0 commands for sequential access devices.

void makecom_g0_s(struct scsi_pkt *pkt,
struct scsi_device *devp, int flag, int cmd,
int cnt, int fixbit);

makecom_g0_s (9F) formulates a group 0 SCSI command for the sequential
access target device denoted by devp in the scsi_pkt (9S) structure pointed to
by pkt . Use makecom_g0(9F) to formulate group 0 commands for non-
sequential access devices.

void makecom_g1(struct scsi_pkt *pkt,
struct scsi_device *devp, int flag, int cmd,
int addr, int cnt);

makecom_g1(9F) formulates a group 1 SCSI command for the target device
denoted by devp in the scsi_pkt (9S) structure pointed to by pkt .

void makecom_g5(struct scsi_pkt *pkt,
struct scsi_device *devp, int flag, int cmd,
int addr, int cnt);

makecom_g5(9F) formulates a group 5 SCSI command for the target device
denoted by devp in the scsi_pkt (9S) structure pointed to by pkt .

int scsi_abort(struct scsi_address *ap,
struct scsi_pkt *pkt);

scsi_abort (9F) cancels the command encoded in the scsi_pkt (9S) structure
pointed to by pkt at the SCSI address denoted by ap . To indicate the current
target, pass in ap the sd_address field of the scsi_device (9S) structure for
the target. To abort the current command, pass NULL for pkt .

338 Writing Device Drivers—August, 1994

C

struct buf *scsi_alloc_consistent_buf(
struct scsi_address *ap, struct buf *bp,
int datalen, ulong bflags,
int (*callback)(caddr_t), caddr_t arg);

scsi_alloc_consistent_buf (9F) allocates a buffer header and the
associated data buffer for direct memory access (DMA) transfer. This buffer is
allocated from the IOPB space, which is considered consistent memory. If bp is
NULL, a new buffer header will be allocated using getrbuf (9F). If datalen is
non-zero, a new buffer will be allocated using ddi_iopb_alloc (9F).

If callback is not NULL_FUNC and the requested DMA resources are not
immediately available, the function pointed to by callback will be called
when resources may have become available. callback can call
scsi_alloc_consistent_buf (9F) again. If callback is SLEEP_FUNC,
scsi_alloc_consistent_buf (9F) may block waiting for resources.

char *scsi_cname(u_char cmd, char **cmdvec);

scsi_cname (9F) searches for the command code cmd in the command vector
cmdvec , and returns the command name. Each string in cmdvec starts with a
one-character command code, followed by the name of the command. To use
scsi_cname (9F), the driver must define a command vector that contains
strings of this kind for all the SCSI commands it supports.

struct scsi_pkt *scsi_dmaget(struct scsi_pkt *pkt,
opaque_t dmatoken, int (*callback)(void));

scsi_dmaget (9F) allocates resources for an existing scsi_pkt (9S) structure
pointed to by pkt . Pass in dmatoken a pointer to the buf (9S) structure that
encodes original I/O request.

If callback is not NULL_FUNC and the requested DMA resources are not
immediately available, the function pointed to by callback will be called
when resources may have become available. callback can call
scsi_dmaget (9F) again. If callback is SLEEP_FUNC, scsi_dmaget (9F)
may block waiting for resources.

Summary of Solaris 2.4 DDI/DKI Services 339

C

void scsi_dmafree(struct scsi_pkt *pkt);

scsi_dmafree (9F) frees the DMA resources previously allocated by
scsi_dmaget (9F) for the scsi_pkt (9S) structure pkt .

char *scsi_dname(int dtype);

scsi_dname (9F) decodes the device type code dtype found in the INQUIRY
data and returns a character string denoting this device type.

void scsi_free_consistent_buf(struct buf *bp);

scsi_free_consistent_buf (9F) frees a buffer header and consistent data
buffer that was previously allocated using
scsi_alloc_consistent_buf (9F).

int scsi_ifgetcap(struct scsi_address *ap,
char *cap, int whom);

scsi_ifgetcap (9F) returns the current value of the host adapter capability
denoted by cap for the host adapter servicing the target at the SCSI address
pointed to by ap . See the manual page for a list of supported capabilities. whom
indicates whether the capability applies only to the target at the specified SCSI
address, or to all targets serviced by the host adapter.

int scsi_ifsetcap(struct scsi_address *ap,
char *cap, int value, int whom);

scsi_ifsetcap (9F) sets the current value of the host adapter capability
denoted by cap , for the host adapter servicing the target at the SCSI address
pointed to by ap , to value . See the manual page for a list of supported
capabilities. whom indicates whether the capability applies only to the target at
the specified SCSI address, or to all targets serviced by the host adapter.

340 Writing Device Drivers—August, 1994

C

struct scsi_pkt *scsi_init_pkt(
struct scsi_address *ap, struct scsi_pkt *pktp,
struct buf *bp, int cmdlen, int statuslen,
int privatelen, int flags,
int (*callback)(caddr_t), caddr_t arg);

scsi_init_pkt (9F) requests the transport layer to allocate a command packet
for commands and, possibly, data transfers. If pktp is NULL, a new
scsi_pkt (9S) is allocated. If bp is non-NULL and contains a valid byte count,
the buf (9S) structure is set up for DMA transfer. If bp was allocated by
scsi_alloc_consistent_buf (9F), the PKT_CONSISTENT flag must be set.
If privatelen is set, additional space is allocated for the pkt_private area
of the scsi_pkt (9S) structure, otherwise pkt_private is a pointer that is
typically used to store the bp during execution of the command. The flags
are set in the command portion of the scsi_pkt (9S) structure.

If callback is not NULL_FUNC and the requested DMA resources are not
immediately available, the function pointed to by callback will be called
when resources may have become available. callback can call
scsi_init_pkt (9F) again. If callback is SLEEP_FUNC,
scsi_init_pkt (9F) may block waiting for resources.

char *scsi_mname(u_char msg);

scsi_mname (9F) decodes the SCSI message code msg and returns the
corresponding message string.

struct scsi_pkt *scsi_pktalloc(
struct scsi_address *ap, int cmdlen,
int statuslen, int (*callback)(void));

scsi_pktalloc (9F) allocates and returns a pointer to a SCSI command packet
for the target at the SCSI address pointed to by ap . cmdlen and statuslen
tell scsi_pktalloc (9F) what size command descriptor block (CDB) and
status completion block (SCB) to allocate. Use scsi_pktalloc (9F) only for
commands that do no actual I/O. Use scsi_resalloc (9F) for I/O
commands.

Summary of Solaris 2.4 DDI/DKI Services 341

C

If callback is not NULL_FUNC and the requested DMA resources are not
immediately available, the function pointed to by callback will be called
when resources may have become available. If callback is SLEEP_FUNC,
scsi_pktalloct (9F) may block waiting for resources.

void scsi_pktfree(struct scsi_pkt *pkt);

scsi_pktfree (9F) frees the scsi_pkt (9S) structure pointed to by pkt that
was previously allocated by scsi_pktalloc (9F).

int scsi_poll(struct scsi_pkt *pkt);

scsi_poll (9F) transports the command packet pointed to by pkt to the host
adapter driver for execution and waits for it to complete before it returns. Use
scsi_poll (9F) sparingly and only for commands that must execute
synchronously.

int scsi_probe(struct scsi_device *devp,
int (*callback)(void *));

scsi_probe (9F) determines whether a target/lun is present and sets up the
scsi_device (9S) structure with inquiry data. scsi_probe (9F) uses the SCSI
INQUIRY command to test if the device exists. It may retry the INQUIRY
command as appropriate. If scsi_probe (9F) is successful, it will fill in the
scsi_inquiry (9S) structure pointed to by the sd_inq member of the
scsi_device (9S) structure, and return SCSI_PROBE_EXISTS.

If callback is not NULL_FUNC and necessary resources are not immediately
available, the function pointed to by callback will be called when resources
may have become available. If callback is SLEEP_FUNC, scsi_probe (9F)
may block waiting for resources.

struct scsi_pkt *scsi_resalloc(
struct scsi_address *ap, int cmdlen,
int statuslen, opaque_t dmatoken,
int (*callback)(void));

scsi_resalloc (9F) allocates and returns a pointer to a SCSI command packet
for the target at the SCSI address pointed to by ap . cmdlen and statuslen
tell scsi_resalloc (9F) what size command descriptor block (CDB) and

342 Writing Device Drivers—August, 1994

C

status completion block (SCB) to allocate. Pass in dmatoken a pointer to the
buf (9S) structure encoding the original I/O request. Use scsi_pktalloc (9F)
for commands that do no actual I/O.

If callback is not NULL_FUNC and the requested DMA resources are not
immediately available, the function pointed to by callback will be called
when resources may have become available. If callback is SLEEP_FUNC,
scsi_resalloc (9F) may block waiting for resources.

int scsi_reset(struct scsi_address *ap, int level);

scsi_reset (9F) requests the host adapter driver to reset the target at the SCSI
address pointed to by ap if level is RESET_TARGET. If level is RESET_ALL,
the entire SCSI bus is reset.

void scsi_resfree(struct scsi_pkt *pkt);

scsi_resfree (9F) frees the scsi_pkt (9S) structure pointed to by pkt and
related DMA resources that were previously allocated by scsi_resalloc (9F).

char *scsi_rname(u_char reason);

scsi_rname (9F) decodes the packet completion reason code reason, and
returns the corresponding reason string.

int scsi_slave(struct scsi_device *devp,
int (*callback)(void));

scsi_slave (9F) issues, to the device indicated by devp, a TEST UNIT READY
command, one or more REQUEST SENSE commands, and an INQUIRY
command to determine whether the target is present and ready. It returns a
code indicating the state of the target.

If callback is not NULL_FUNC and necessary resources are not immediately
available, the function pointed to by callback will be called when resources
may have become available. If callback is SLEEP_FUNC, scsi_slave (9F)
may block waiting for resources.

Summary of Solaris 2.4 DDI/DKI Services 343

C

char *scsi_sname(u_char sense_key);

scsi_sname (9F) decodes the SCSI sense key sense_key , and returns the
corresponding sense key string.

int scsi_transport(struct scsi_pkt *pkt);

scsi_transport (9F) requests the host adapter driver to schedule the
command packet pointed to by pkt for execution. Use scsi_transport (9F)
to issue most SCSI command. scsi_poll (9F) may be used to issue
synchronous commands.

void scsi_unprobe(struct scsi_device *devp);

scsi_unprobe (9F) is used to free any resources that were allocated on the
driver’s behalf during scsi_probe (9F).

void scsi_unslave(struct scsi_device *devp);

scsi_unslave (9F) is used to free any resources that were allocated on the
driver’s behalf during scsi_slave (9F).

Soft State Management
These interfaces comprise the soft state structure allocator, a facility that
simplifies the management of state structures for driver instances. These
routines are the recommended way to keep track of per instance data.

int ddi_soft_state_init(void **state_p,
size_t size, size_t n_items);

ddi_soft_state_init (9F) sets up the soft state allocator to keep track of
soft state structures for all device instances. state_p points a pointer to an
opaque object that keeps track of the soft state structures.

344 Writing Device Drivers—August, 1994

C

void ddi_soft_state_fini(void **state_p);

ddi_soft_state_fini (9F) is the inverse operation to
ddi_soft_state_init (9F). state_p points a pointer to an opaque object
that keeps track of the soft state structures.

int ddi_soft_state_zalloc(void *state, int item);

ddi_soft_state_zalloc (9F) allocates and zeroes a new instance of a soft
state structure. statep points to an opaque object that keeps track of the soft
state structures.

void *ddi_get_soft_state(void *state, int item);

ddi_get_soft_state (9F) returns a pointer to the soft state structure for the
device instance item . statep points to an opaque object that keeps track of
the soft state structures.

void ddi_soft_state_free(void *state, int item);

ddi_soft_state_free (9F) releases the resources associated with the soft
state structure for item . statep points to an opaque object that keeps track of
the soft state structures.

String Manipulation
These interfaces are generic string manipulation utilities similar to, and in most
cases identical to the routines of the same names defined in the standard C
library used by application programmers.

int stoi(char **str);

stoi (9F) converts the ASCII decimal numeric string pointed to by *str to an
integer and returns the integer. *str is updated to point to the last character
examined.

Summary of Solaris 2.4 DDI/DKI Services 345

C

void numtos(unsigned long num, char *s);

numtos (9F) converts the integer num to an ASCII decimal string and copies the
string to the location pointed to by s . The driver must provide the storage for
the string s and assure that it can contain the result.

char *strchr(const char *str, int chr);

strchr (9F) returns a pointer to the first occurrence of the character chr in the
string pointed to by str , or NULL, if chr is not found in the string.

int strcmp(const char *s1, const char *s2);

strcmp (9F) compares two null-terminated character strings. It returns zero if
they are identical; otherwise, it returns a non-zero value.

int strncmp(const char *s1, const char *s2, size_t n);

strncmp (9F) compares the first n characters of the two strings. It returns zero
if these characters are identical; otherwise, it returns a non-zero value.

char *strcpy(char *dst, const char *srs);

strcpy (9F) copies the character string pointed to by srs to the location
pointed to by dst . The driver must provide storage for the string dst and
assure that it is long enough.

char *strncpy(char *dst, const char *srs, size_t n);

strncpy (9F) copies n characters from the string pointed to by srs to the
string pointed to by dst . The driver must provide storage for the string dst
and assure that it is long enough.

size_t strlen(const char *sp);

strlen (9F) returns the length of the character string pointed to by sp , not
including the null-termination character.

346 Writing Device Drivers—August, 1994

C

System Information
These interfaces return current information about the system, such as the root
node of the system dev_info tree, and the values of certain system-wide
parameters.

dev_info_t *ddi_root_node(void);

ddi_root_node (9F) returns a pointer to the root node of the system
dev_info tree. Device drivers rarely use this.

int drv_getparm(unsigned long parm,
unsigned long *valuep);

drv_getparm (9F) retrieves the value of the system parameter parm and
returns that value in the location pointed to by valuep . See the manual page
for a list of possible parameters.

Thread Synchronization
These interfaces allow a device to exploit multiple CPUs on multiprocessor
machines. They prevent the corruption of data by simultaneous access by more
than one thread. The mechanisms for doing this are mutual exclusion locks
(mutexes), condition variables, readers/writer locks, and semaphores.

void cv_init(kcondvar_t *cvp, char *name,
kcv_type_t type, void *arg);

cv_init (9F) prepares the condition variable pointed to by cvp for use.
CV_DRIVER should be specified for type .

void cv_destroy(kcondvar_t *cvp);

cv_destroy (9F) releases the resources associated with the condition variable
pointed to by cvp .

Summary of Solaris 2.4 DDI/DKI Services 347

C

void cv_wait(kcondvar_t *cvp, kmutex_t *mp);

cv_wait (9F) must be called while holding the mutex pointed to by mp.
cv_wait (9F) releases the mutex and blocks until a call is made to
cv_signal (9F) or cv_broadcast (9F) for the condition variable pointed to by
cvp. cv_wait (9F) then reacquires the mutex and returns.

Use cv_wait (9F) to block on a condition that may take a while to change.

void cv_signal(kcondvar_t *cvp);

cv_signal (9F) unblocks one cv_wait (9F) call that is blocked on the
condition variable pointed to by cvp . Call cv_signal (9F) when the condition
that cv_wait (9F) is waiting for becomes true. To unblock all threads blocked
on this condition variable, use cv_broadcast (9F).

void cv_broadcast(kcondvar_t *cvp);

cv_broadcast (9F) unblocks all threads that are blocked on the condition
variable pointed to by cvp . To unblock only one thread, use cv_signal (9F).

int cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp);

cv_wait_sig (9F) is like cv_wait (9F), but if the calling thread receives a
signal while cv_wait_sig (9F) is blocked, cv_wait_sig (9F) immediately
reacquires the mutex and returns zero.

int cv_timedwait(kcondvar_t *cvp, kmutex_t *mp,
long timeout);

cv_timedwait (9F) is like cv_wait (9F), but it returns -1 at time timeout if the
condition has not occurred. timeout is given as a number of clock ticks since
the last reboot. drv_usectohz (9F) converts microseconds, a platform
independent time, to clock ticks.

348 Writing Device Drivers—August, 1994

C

int cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp,
long timeout);

cv_timedwait _sig(9F) is like cv_timedwait (9F) and cv_wait_sig (9F),
except that it returns -1 at time timeout if the condition has not occurred. If the
calling thread receives a signal while cv_timedwait_sig (9F) is blocked,
cv_timedwait_sig (9F) immediately returns zero. In all cases,
cv_timedwait_sig (9F) reacquires the mutex before returning.

void mutex_init(kmutex_t *mp, char *name,
kmutex_type_t type, void *arg);

mutex_init (9F) prepares the mutual exclusion lock pointed to by mp for use.
MUTEX_DRIVER should be specified for type , and pass an interrupt block
cookie of type ddi_iblock_cookie_t for arg . The interrupt block cookie is
returned by ddi_add_intr (9F).

void mutex_enter(kmutex_t *mp);

mutex_enter (9F) acquires the mutual exclusion lock pointed to by mp. If
another thread holds the mutex, mutex_enter (9F) will either block, or spin
waiting for the mutex to become available.

Mutexes are not reentrant: if a thread calls
mutex_enter (9F) on a mutex it already holds, the system will
panic.

mp is assumed to protect a certain set of data, often a single data structure, and
all driver threads accessing those data must first acquire the mutex by calling
mutex_enter (9F). This is accomplished by mutual agreement and consistency
among all driver code paths that access the data in question;
mutex_enter (9F) in no way prevents other threads from accessing the data. It
is only when all driver code paths agree to acquire the mutex before accessing
the data that the data are safe.

void mutex_exit(kmutex_t *mp);

mutex_exit (9F) releases the mutual exclusion lock pointed to by mp.

Summary of Solaris 2.4 DDI/DKI Services 349

C

void mutex_destroy(kmutex_t *mp);

mutex_destroy (9F) releases the resources associated with the mutual
exclusion lock pointed to by mp.

int mutex_owned(kmutex_t *mp);

mutex_owned (9F) returns non-zero if the mutual exclusion lock pointed to by
mp is currently held; otherwise, it returns zero. Use mutex_owned (9F) only in
an expression used in ASSERT(9F).

int mutex_tryenter(kmutex_t *mp);

mutex_tryenter (9F) is similar to mutex_enter (9F), but it does not block
waiting for the mutex to become available. If the mutex is held by another
thread, mutex_tryenter (9F) returns zero. Otherwise, mutex_tryenter (9F)
acquires the mutex and returns non-zero.

void rw_destroy(krwlock_t *rwlp);

rw_destroy (9F) releases the resources associated with the readers/writer lock
pointed to by rwlp .

void rw_downgrade(krwlock_t *rwlp);

If the calling thread holds the lock pointed to by rwlp for writing,
rw_downgrade (9F) releases the lock for writing, but retains the lock for
reading. This allows other readers to acquire the lock unless a thread is waiting
to acquire the lock for writing.

void rw_enter(krwlock_t *rwlp, krw_t enter_type);

If enter_type is RW_READER, rw_enter (9F) acquires the lock pointed to by
rwlp for reading if no thread currently holds the lock for writing, and if no
thread is waiting to acquire the lock for writing. Otherwise, rw_enter(9F)
blocks.

If enter_type is RW_WRITER, rw_enter (9F) acquires the lock for writing if
no thread holds the lock for reading or writing, and if no other thread is
waiting to acquire the lock for writing. Otherwise, rw_enter (9F) blocks.

350 Writing Device Drivers—August, 1994

C

void rw_exit(krwlock_t *rwlp);

rw_exit (9F) releases the lock pointed to by rwlp .

void rw_init(krwlock_t *rwlp, char *name,
krw_type_t type, void *arg);

rw_init (9F) prepares the readers/writer lock pointed to by rwlp for use.
RW_DRIVER should be passed for type .

int rw_read_locked(krwlock_t *rwlp);

The lock pointed to by rwlp must be held during a call to
rw_read_locked (9F). If the calling thread holds the lock for reading,
rw_read_locked (9F) returns a non-zero value. If the calling thread holds the
lock for writing, rw_read_locked (9F) returns zero.

int rw_tryenter(krwlock_t *rwlp, krw_t enter_type);

rw_tryenter (9F) attempts to enter the lock, like rw_enter (9F), but never
blocks. It returns a non-zero value if the lock was successfully entered, and
zero otherwise.

int rw_tryupgrade(krwlock_t *rwlp);

If the calling thread holds the lock pointed to by rwlp for reading,
rw_tryupgrade (9F) acquires the lock for writing if no other threads hold the
lock, and no thread is waiting to acquire the lock for writing. If
rw_tryupgrade (9F) cannot acquire the lock for writing, it returns zero.

void sema_init(ksema_t *sp, u_int val, char *name,
ksema_type_t type, void *arg);

sema_init (9F) prepares the semaphore pointed to by sp for use.
SEMA_DRIVER should be passed for type . count is the initial count for the
semaphore, which usually should be 1 or 0. In almost all cases, drivers should
pass 1 for count .

Summary of Solaris 2.4 DDI/DKI Services 351

C

void sema_destroy(ksema_t *sp);

sema_destroy (9F) releases the resources associated with the semaphore
pointed to by sp .

void sema_p(ksema_t *sp);

sema_p(9F) acquires the semaphore pointed to by sp by decrementing the
counter if its value is greater than zero. If the semaphore counter is zero,
sema_p(9F) blocks waiting to acquire the semaphore.

int sema_p_sig(ksema_t *sp);

sema_p_sig (9F) is like sema_p(9F), except that if the calling thread has a
signal pending, and the semaphore counter is zero, sema_p_sig (9F) returns
zero without blocking.

void sema_v(ksema_t *sp);

sema_v(9F) releases the semaphore pointed to by sp by incrementing its
counter.

int sema_tryp(ksema_t *sp);

sema_tryp (9F) is similar to sema_p(9F), but if the semaphore counter is zero,
sema_tryp (9F) immediately returns zero.

Timing
These are delay and time value conversion routines.

void delay(long ticks);

delay (9F) blocks the calling thread for at least ticks clock ticks (using
timeout (9F)).

void drv_usecwait(clock_t microsecs);

drv_usecwait (9F) busy-waits for microsecs microseconds.

352 Writing Device Drivers—August, 1994

C

clock_t drv_hztousec(clock_t hertz);

drv_hztousec (9F) converts hertz clock ticks to microseconds, and returns
the number of microseconds.

clock_t drv_usectohz(clock_t microsecs);

drv_usectohz (9F) converts microsecs microseconds to clock ticks, and
returns the number of clock ticks.

uio (9S) Handling
These interfaces all deal with moving data using the uio (9S) data structure.

int uiomove(caddr_t address, long nbytes,
enum uio_rw rwflag, struct uio *uio_p);

uiomove (9F) copies data between the address address and the uio (9S)
structure pointed to by uio_p . If rwflag is UIO_READ, data are transferred
from address to a data buffer associated with the uio (9S) structure. If
rwflag is UIO_WRITE, data are transferred from a data buffer associated with
the uio (9S) structure to address .

int ureadc(int c, uio_t *uio_p);

ureadc (9F) appends the character c to the a data buffer associated with the
uio (9S) structure pointed to by uio_p .

int uwritec(uio_t *uio_p);

uwritec (9F) removes a character from a data buffer associated with the
uio (9S) structure pointed to by uio_p , and returns the character.

Utility Functions
These interfaces are miscellaneous utilities that driver may use.

Summary of Solaris 2.4 DDI/DKI Services 353

C

void ASSERT(EX);

The ASSERT(9F) macro does nothing if EX evaluates to non-zero. If EX
evaluates to zero, ASSERT(9F) panics the system. ASSERT(9F) is useful in
debugging a driver, since it can be used to stop the system when an
unexpected situation is encountered, such as an erroneously NULL pointer.

ASSERT(9F) exhibits this behavior only when the DEBUG preprocessor symbol
is defined.

int bcmp(char *s1, char *s2, size_t len);

bcmp(9F) compares len bytes of the byte arrays starting at s1 and s2 . If these
bytes are identical, bcmp(9F) returns zero. Otherwise, bcmp(9F) returns a non-
zero value.

unsigned long btop(unsigned long numbytes);

btop (9F) converts a size n expressed in bytes to a size expressed in terms of
the main system MMU page size, rounded down to the nearest page.

unsigned long btopr(unsigned long numbytes);

btopr (9F) converts a size n expressed in bytes to a size expressed in terms of
the main system MMU page size, rounded up to the nearest page.

void bzero(caddr_t addr, size_t bytes);

bzero (9F) zeroes bytes bytes starting at addr .

unsigned long ddi_btop(dev_info_t *dip,
unsigned long bytes);

ddi_btop (9F) converts a size expressed in bytes to a size expressed in terms of
the parent bus nexus page size, rounded down to the nearest page.

354 Writing Device Drivers—August, 1994

C

unsigned long ddi_btopr(dev_info_t *dip,
unsigned long bytes);

ddi_btopr (9F) converts a size expressed in bytes to a size expressed in terms
of the parent bus nexus page size, rounded up to the nearest page.

unsigned long ddi_ptob(dev_info_t *dip,
unsigned long pages);

ddi_ptob (9F) converts a size expressed in terms of the parent bus nexus page
size to a size expressed in bytes.

int ddi_ffs(long mask);

ddi_ffs (9F) returns the number of the first (least significant) bit set in mask.

int ddi_fls(long mask);

ddi_fls (9F) returns the number of the last (most significant) bit set in mask.

caddr_t ddi_get_driver_private(dev_info_t *dip);

ddi_get_driver_private (9F) returns a pointer to the data stored in the
driver-private area of the dev_info node identified by dip .

void ddi_set_driver_private(dev_info_t *dip,
caddr_t data);

ddi_set_driver_private (9F) sets the driver-private data of the dev_info
node identified by dip to the value data .

int ddi_peekc(dev_info_t *dip, char *addr,
char *valuep);

ddi_peekc (9F) reads a character from the address addr to the location
pointed to by valuep .

Summary of Solaris 2.4 DDI/DKI Services 355

C

int ddi_peeks(dev_info_t *dip, short *addr,
short *valuep);

ddi_peeks (9F) reads a short integer from the address addr to the location
pointed to by valuep .

int ddi_peekl(dev_info_t *dip, long *addr,
long *valuep);

ddi_peekl (9F) reads a long integer from the address addr to the location
pointed to by valuep .

int ddi_peekd(dev_info_t *dip, longlong_t *addr,
longlong_t *valuep);

ddi_peekd (9F) reads a double long integer from the address addr to the
location pointed to by valuep .

int ddi_pokec(dev_info_t *dip, char *addr, char value);

ddi_pokec (9F) writes the character in value to the address addr .

int ddi_pokes(dev_info_t *dip, short *addr,
short value);

ddi_pokes (9F) writes the short integer in value to the address addr .

int ddi_pokel(dev_info_t *dip, long *addr, long value);

ddi_pokel (9F) writes the long integer in value to the address addr .

int ddi_poked(dev_info_t *dip, longlong_t *addr,
longlong_t value);

ddi_poked (9F) writes the double long integer in value to the address addr .

major_t getmajor(dev_t dev);

getmajor (9F) decodes the major device number from dev and returns it.

356 Writing Device Drivers—August, 1994

C

minor_t getminor(dev_t dev);

getminor (9F) decodes the minor device number from dev and returns it.

dev_t makedevice(major_t majnum, minor_t minnum);

makedevice (9F) constructs and returns a device number of type dev_t from
the major device number majnum and the minor device number minnum.

int max(int int1, int int2);

max(9F) returns the larger of the integers int1 and int2 .

int min(int int1, int int2);

min (9F) returns the lesser of the integers int1 and int2 .

int nodev();

nodev (9F) returns an error. Use nodev (9F) as the entry in the cb_ops (9S)
structure for any entry point for which the driver must always fail.

int nulldev();

nulldev (9F) always returns zero, a return which for many entry points
implies success. See the manual pages in Section 9 of the man Pages(9E): DDI
and DKI Driver Entry Points to learn about entry point return semantics.

unsigned long ptob(unsigned long numpages);

ptob (9F) converts a size expressed in terms of the main system MMU page
size to a size expressed in bytes.

357

Sample Driver Source Code Listings D

This chapter lists all the sample driver source code available on the DDK.
Sample driver names and driver descriptions are provided. Sample drivers are
located in the following DDK path:

/opt/SUNWddk/driver_dev

Table D-1 Sample driver source code listings

Subdirectory Driver description

sst Simple SCSI target driver

bst Block SCSI target driver

cgsix Graphics device driver

psli Data link provider interface (DLPI) network device driver

pio Simple programmed I/O driver

dma Simple DMA character device driver

ramdisk Simple RAM disk pseudo-device driver

358 Writing Device Drivers—August, 1994

D

357

Index

A
adb(1) command, 246
add_drv(1M) command, 227
address spaces, 2, 18
attach(9E) entry point, 95
autoconfiguration

of block devices, 171
of character devices, 148
of SCSI drivers, 199
routines, 49

autovectored interrupts, 107

B
binary compatibility, 4
block driver

autoconfiguration, 171
entry points, 50
slice number, 171

block interrupt cookie, 52
burst sizes, 135
bus

architectures, 14
interrupt levels, 106
SCSI, 189

bus nexus device drivers, 5
bus-master DMA, 124

byte-stream I/O, 42

C
cache, 140
callback functions, 51, 102, 134
cb_ops(9S) structure, 88, 170
character device drivers, 42, 147

entry points for, 50
compiler modes, 65
compiling/linking a driver, 226
condition variables, 344

and interface functions, 344
and mutex locks, 77, 277
routines for, 78

configuration file, device
attach(9E), 95
detach(9E), 100
getinfo(9E), 102
identify(9E), 91
probe(9E), 93

configuration file, hardware, 226
context of device driver, 52
control registers

device context management of, 213
cookie

DMA, 120
types of, 52

358 Writing Device Drivers—August, 1994

D
data structures

cb_ops(9S), 88, 170
dev_ops(9S), 87, 170
for device drivers, 60
overview of, 86

data, storage classes of, 74
DDI/DKI

and disk performance, 300
compliance testing, 263
interface summary, 307
kernel support routines, 270

ddi_ functions, 307
ddi_add_intr(9F), 97, 112
ddi_create_minor_node(9F), 98
ddi_dma_free(9F), 123
ddi_dma_nextseg(9F), 124
ddi_dma_nextwin(9F), 123
ddi_dma_segtocookie(9F), 124
ddi_get_instance(9F), 97
ddi_iblock_cookie_t, 52
ddi_idevice_cookie_t, 52
ddi_map_regs(9F), 98
ddi_prop_create(9F), 58
ddi_prop_op(9F), 58
ddi_remove_intr(9F), 101
ddi_unmap_regs(9F), 101

detach(9E) entry point, 100
dev_ops(9S) structure, 87, 170
device access system calls, 173
device addressing, 15
device driver

converting to 5.x, 269
debugging

coding hints, 236
configuration, 231
existing drivers, 241
tools, 243

definition of, 41
entry points, 48
for character-oriented devices, 147
header files, 60
layout structure, 60
loadable interface, 89

module configuration, 62
overview, 41
register mapping, 98
source files, 62
standard character, 42
testing, 263
types of, 42

device information
dev_info node, 97
self-identifying, 14
tree structure, 5, 6

device interrupt cookie, 52
device interrupt handling

ddi_add_intr(9F), 97, 112
ddi_remove_intr(9F), 101
interrupt block cookie, 97

device interrupts, types of, 107
device memory

accessing, 44
mapping, 43, 331

device polling
overview, 44
poll(2) system call, 44

device registers
accessing, 44
ddi_map_regs(9F), 98
ddi_unmap_regs(9F), 101
examples of, 45
mapping, 95

device tree, 5
devlinks(1M) command, 227
disk

I/O controls, 299
performance, 300

DKI, See DDI/DKI
DMA

buffer allocation, 143
burst sizes, 135
callbacks, 138
cookie, 120
engine programming, 136
engine restrictions, 126
freeing resources, 137
handle, 119

359

limits, 127
locking, 131
object, 119
operations, 124
private buffer allocation, 143
register structure, 134
resource allocation, 131
resource interfaces, 315
segment, 120
transfers, 156
types of, 122
window, 120

driver entry points, 313
attach(9E), 95
definition of, 48
detach(9E), 100
identify(9E), 91
probe(9E), 93
prop_op(9E), 58

DVMA
SBus slots that support, 17

dynamic loading, 3
dynamic memory allocation, 54

E
entry points, See driver entry points
external registers, 25

F
filesystem I/O, 169
fini(9E), 49, 91
first-party DMA, 125

G
geographical addressing, 15
graphics devices

device context management of, 213

H
hardware configuration file, 226
header files for device drivers, 60

I
I/O

control overview, 43
disk controls, 299
filesystem structure, 169
miscellaneous control of, 165
multiplexing, 162
port access, 331
programmed transfers, 154
scatter/gather structures, 153

identify(9E) entry point, 91
info(9E), 49
init(9E), 49, 91
instance numbers, 92
internal mode registers, 25
internal sequencing logic, 25
interrupt cookie, See cookie
interrupt handling

block interrupt cookie, 52
device interrupt cookie, 52
interfaces for, 322
overview, 52
registering a handler, 95

interrupts
common problems with, 25
registering, 97
specification of, 106
types of, 107

inumber, 97

K
kadb(1M) command, 246
kernel modules

directory of, 227
dynamic loading, 3

kernel threads, 72
kernel, definition of, 1
keywords, new, 66

360 Writing Device Drivers—August, 1994

L
leaf device drivers, 5
lightweight process, 71
linking a driver, 226
loading drivers

add_drv(1M) command, 227
compiling a driver, 226
hardware configuration file, 226
linking a driver, 226
overview, 3

loading modules, 49, 227
lock granularity, 295
locking primitives, types of, 74
LWP, 71

M
memory mapping

device context management of, 43,
213

memory model
SPARC, 13
store buffers, 12

memory, allocation of, 54, 326
minor device node, 98
modldrv, 87
modlinkage, 87
module directory, 227
module ID, getting, 228
modunload(1M) command, 229
mount(2) system call, 173
multithreaded kernel, 73
multithreading, 2

and condition variables, 78
and lock granularity, 295
and locking primitives, 74
application threads, 71
thread synchronization, 77

mutex
functions, 76, 344
locking order, 296
locks, 75, 344
related panics, 298

routines, 75

N
node types, 99
non-self-identifying devices, 15

O
object locking, 131
open(2) system call, 173

P
padding structures, 47
peripheral devices, 26
physical DMA, 122
physical SBus addresses

in SPARCstation 1, 17
poll(2) system call, 44
polled interrupts, 107
polling, See device polling
printing messages, 53
probe(9E) entry point, 93
programmed I/O, 154
prop_op(9E) entry point, 58
properties

ddi_prop_create(9F), 58
ddi_prop_op(9F), 58
overview of, 57
prop_op(9E)entry point, 58
types of, 57

PTE masks, 37

Q
queueing, 302

R
readers/writer locks, 77
registers, See control registers and device

registers
rnumber, 98

361

S
S_IFCHR, 99
SBus

geographical addressing, 15
physical SBus addresses, 17
slots supporting DVMA, 17

scatter/gather I/O, 153
SCSA, 189

functions, types of, 194
global data definitions, 301
interfaces, 334

SCSI
architecture, 191
flow of control, 192
interfaces, 334
resource allocation, 205
simple driver code listing, 355
target driver overview, 189
target drivers, 102, 195

self-identifying devices, 14
semaphores, 344
slice number

for block devices, 171
soft state structure, 55, 341
source compatibility, 4
source files for device drivers, 62
SPARC processor

byte ordering, 10, 12
data alignment, 9, 11
floating point operations, 11, 12
multiply and divide instructions, 11
register windows, 10
structure member alignment, 10, 11

special files, 3
sst_getinfo() entry point, 102
state structure

description of, 55
management routines, 56

store buffers, 12
STREAMS

drivers, 44
interfaces, 308

string manipulation, 342

structure padding, 47
SunDDI/DKI

interface summary, 307
overview, 3, 170

synchronization of threads, 344
system call, description of, 1

T
tagged queueing, 302
third-party DMA, 126
thread synchronization, 344

condition variables, 77
mutex locks, 75
mutex_init(9F), 76
per instance mutex, 95
readers/writer locks, 77

threads
preemption of, 74
types of, 71

timing routines, 349

U
uio(9S) data structure, 350
unloading drivers

getting the module ID, 228
untagged queuing, 303
user threads, 71
utility functions, 350

V
vectored interrupts, 107
virtual addresses, 2
virtual DMA, 122
virtual memory

address spaces, 2
memory management unit (MMU), 2
overview, 2

VMEbus
address spaces, 20
machine architecture, 18

362 Writing Device Drivers—August, 1994

