
SunOS Reference Manual

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

 1994 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This product and related documentation are protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form
by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX and Berkeley 4.3 BSD systems, licensed from UNIX Systems
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party
software, including font technology, in this product is protected by copyright and licensed from Sun’s Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR
52.227-19.

This product or the products described herein may be protected by one or more U.S., foreign patents, or pending
applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun Logo, SunSoft, Sun Microsystems Computer Corporation and Solaris, are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered trademark of
Novell, Inc., in the United States and other countries; X/Open Company, Ltd., is the exclusive licensor of such trademark.
OPEN LOOK is a registered trademark of Novell, Inc. All other product names mentioned herein are the trademarks of
their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC
International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic,
SPARCcluster, SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are
licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and
licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or
graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical
User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with
Sun’s written license agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Portions  AT&T 1983-1990 and reproduced with permission from AT&T.

Preface

OVERVIEW
A man page is provided for both the naive user, and sophisticated user who is
familiar with the SunOS operating system and is in need of on-line information.
A man page is intended to answer concisely the question “What does it do?”
The man pages in general comprise a reference manual. They are not intended
to be a tutorial.

The following contains a brief description of each section in the man pages and
the information it references:

· Section 1 describes, in alphabetical order, commands available with the
operating system.

· Section 1M describes, in alphabetical order, commands that are used chiefly
for system maintenance and administration purposes.

· Section 2 describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value.

· Section 3 describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in
Section 2 of this volume.

i

· Section 4 outlines the formats of various files. The C structure declarations
for the file formats are given where applicable.

· Section 5 contains miscellaneous documentation such as character set tables,
etc.

· Section 7 describes various special files that refer to specific hardware
peripherals, and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

· Section 9 provides reference information needed to write device drivers in
the kernel operating systems environment. It describes two device driver
interface specifications: the Device Driver Interface (DDI) and the
Driver–Kernel Interface (DKI).

· Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point
routines a developer may include in a device driver.

· Section 9F describes the kernel functions available for use by device drivers.

· Section 9S describes the data structures used by drivers to share
information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual
section generally follow this order, but include only needed headings. For
example, if there are no bugs to report, there is no BUGS section. See the intro
pages for more information and detail about each section, and man(1) for more
information about man pages in general.

NAME
This section gives the names of the commands or functions documented,
followed by a brief description of what they do.

SYNOPSIS
This section shows the syntax of commands or functions. When a command or
file does not exist in the standard path, its full pathname is shown. Literal
characters (commands and options) are in bold font and variables (arguments,
parameters and substitution characters) are in italic font. Options and
arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

ii

The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

. . . Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example,
‘filename . . .’.

| Separator. Only one of the arguments separated by this character can
be specified at time.

PROTOCOL
This section occurs only in subsection 3R to indicate the protocol description
file. The protocol specification pathname is always listed in bold font.

AVAILABILITY
This section briefly states any limitations on the availabilty of the command.
These limitations could be hardware or software specific.

A specification of a class of hardware platform, such as x86 or SPARC, denotes
that the command or interface is applicable for the hardware platform specified.

In Section 1 and Section 1M, AVAILABILITY indicates which package contains
the command being described on the manual page. In order to use the
command, the specified package must have been installed with the operating
system. If the package was not installed, see pkgadd(1) for information on how
to upgrade.

MT-LEVEL
This section lists the MT-LEVEL of the library functions described in the
Section 3 manual pages. The MT-LEVEL defines the libraries’ ability to support
threads. See Intro(3) for more information.

DESCRIPTION
This section defines the functionality and behavior of the service. Thus it
describes concisely what the command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands, subcommands, requests, macros,
functions and such, are described under USAGE.

Preface iii

IOCTLS
This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctls(2) system call is called ioctls and
generates its own heading. IOCTLS for a specific device are listed alphabetically
(on the man page for that specific device). IOCTLS are used for a particular class
of devices all which have an io ending, such as mtio(7).

OPTIONS
This lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the
SYNOPSIS section. Possible arguments to options are discussed under the
option, and where appropriate, default values are supplied.

RETURN VALUES
If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a
function can return only constant values, such as 0 or −1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph describes the return
values of each function. Functions declared as void do not return values, so
they are not discussed in RETURN VALUES.

ERRORS
On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described
in a separate paragraph under the error code.

USAGE
This section is provided as a guidance on use. This section lists special rules,
features and commands that require in-depth explanations. The subsections
listed below are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

iv

EXAMPLES
This section provides examples of usage or of how to use a command or
function. Wherever possible a complete example including command line entry
and machine response is shown. Whenever an example is given, the prompt is
shown as

example%

or if the user must be super-user,

example#

Examples are followed by explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

ENVIRONMENT
This section lists any environment variables that the command or function
affects, followed by a brief description of the effect.

FILES
This section lists all filenames referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive
summary or explanation.

SEE ALSO
This section lists references to other man pages, in-house documentation and
outside publications.

DIAGNOSTICS
This section lists diagnostic messages with a brief explanation of the condition
causing the error. Messages appear in bold font with the exception of variables,
which are in italic font.

WARNINGS
This section lists warnings about special conditions which could seriously affect
your working conditions — this is not a list of diagnostics.

Preface v

NOTES
This section lists additional information that does not belong anywhere else on
the page. It takes the form of an aside to the user, covering points of special
interest. Critical information is never covered here.

BUGS
This section describes known bugs and wherever possible suggests
workarounds.

vi

SunOS 5.4 System Calls Intro (2)

NAME Intro, intro − introduction to system calls and error numbers

SYNOPSIS #include <errno.h>

DESCRIPTION This section describes all of the system calls. Most of these calls have one or more error
returns. An error condition is indicated by an otherwise impossible returned value. This
is almost always −1 or the null pointer; the individual descriptions specify the details. An
error number is also made available in the external variable errno. errno is not cleared on
successful calls, so it should be tested only after an error has been indicated.

In the case of multithreaded applications, the _REENTRANT flag must be defined on the
command line at compilation time (−D_REENTRANT). When the _REENTRANT flag is
defined, errno becomes a macro which enables each thread to have its own errno. This
errno macro can be used on either side of the assignment , just as if it were a variable.

Each system call description attempts to list all possible error numbers. The following is
a complete list of the error numbers and their names as defined in <errno.h>.

1 EPERM Not super-user
Typically this error indicates an attempt to modify a file in some way forbidden
except to its owner or the super-user. It is also returned for attempts by ordinary
users to do things allowed only to the super-user.

2 ENOENT No such file or directory
A file name is specified and the file should exist but doesn’t, or one of the direc-
tories in a path name does not exist.

3 ESRCH No such process, LWP, or thread
No process can be found in the system that corresponds to the specified PID,
LWPID_t, or thread_t.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to
catch, occurred during a system service routine. If execution is resumed after
processing the signal, it will appear as if the interrupted routine call returned this
error condition.

5 EIO I/O error
Some physical I/O error has occurred. This error may in some cases occur on a
call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or exists beyond
the limit of the device. It may also occur when, for example, a tape drive is not
on-line or no disk pack is loaded on a drive.

modified 18 Mar 1994 2-5

Intro (2) System Calls SunOS 5.4

7 E2BIG Arg list too long
An argument list longer than ARG_MAX bytes is presented to a member of the
exec family of routines. The argument list limit is the sum of the size of the argu-
ment list plus the size of the environment’s exported shell variables.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permis-
sions, does not start with a valid format (see a.out(4)).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respectively, write)
request is made to a file that is open only for writing (respectively, reading).

10 ECHILD No child processes
A wait routine was executed by a process that had no existing or unwaited-for
child processes.

11 EAGAIN No more processes, or no more LWPs
For example, the fork routine failed because the system’s process table is full or
the user is not allowed to create any more processes, or a system call failed
because of insufficient memory or swap space.

12 ENOMEM Not enough space
During execution of an exec, brk, or sbrk routine, a program asks for more space
than the system is able to supply. This is not a temporary condition; the max-
imum size is a system parameter. On some architectures, the error may also
occur if the arrangement of text, data, and stack segments requires too many seg-
mentation registers, or if there is not enough swap space during the fork routine.
If this error occurs on a resource associated with Remote File Sharing (RFS), it
indicates a memory depletion which may be temporary, dependent on system
activity at the time the call was invoked.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection sys-
tem.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argument of a
routine. For example, errno potentially may be set to EFAULT any time a routine
that takes a pointer argument is passed an invalid address, if the system can
detect the condition. Because systems will differ in their ability to reliably detect
a bad address, on some implementations passing a bad address to a routine will
result in undefined behavior.

15 ENOTBLK Block device required
A non-block device or file was mentioned where a block device was required (for
example, in a call to the mount routine).

2-6 modified 18 Mar 1994

SunOS 5.4 System Calls Intro (2)

16 EBUSY Device busy
An attempt was made to mount a device that was already mounted or an attempt
was made to unmount a device on which there is an active file (open file, current
directory, mounted-on file, active text segment). It will also occur if an attempt is
made to enable accounting when it is already enabled. The device or resource is
currently unavailable. EBUSY is also used by mutexs, semaphores, condition vari-
ables, and r/w locks, to indicate that a lock is held. And, EBUSY is also used by
the processor control function P_ONLINE.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context (for example, call to
the link routine).

18 EXDEV Cross-device link
A hard link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate operation to a device (for exam-
ple, read a write-only device).

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required (for example, in a
path prefix or as an argument to the chdir routine).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINVAL Invalid argument
An invalid argument was specified (for example, unmounting a non-mounted
device), mentioning an undefined signal in a call to the signal or kill routine.

23 ENFILE File table overflow
The system file table is full (that is, SYS_OPEN files are open, and temporarily no
more files can be opened).

24 EMFILE Too many open files
No process may have more than OPEN_MAX file descriptors open at a time.

25 ENOTTY Inappropriate ioctl for device
A call was made to the ioctl routine specifying a file that is not a special character
device.

26 ETXTBSY Text file busy (obsolete)
An attempt was made to execute a pure-procedure program that is currently
open for writing. Also an attempt to open for writing or to remove a pure-
procedure program that is being executed. (This message is obsolete.)

27 EFBIG File too large
The size of the file exceeded the limit specified by resource RLIMIT_FSIZE; or, the
file size exceeds the maximum supported by the file system.

modified 18 Mar 1994 2-7

Intro (2) System Calls SunOS 5.4

28 ENOSPC No space left on device
While writing an ordinary file or creating a directory entry, there is no free space
left on the device. In the fcntl routine, the setting or removing of record locks on
a file cannot be accomplished because there are no more record entries left on the
system.

29 ESPIPE Illegal seek
A call to the lseek routine was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-
only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links, LINK_MAX, to a
file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condition
normally generates a signal; the error is returned if the signal is ignored.

33 EDOM Math argument out of domain of func
The argument of a function in the math package (3M) is out of the domain of the
function.

34 ERANGE Math result not representable
The value of a function in the math package (3M) is not representable within
machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on the
specified message queue (see msgop(2)).

36 EIDRM Identifier removed
This error is returned to processes that resume execution due to the removal of
an identifier from the file system’s name space (see msgctl(2), semctl(2), and
shmctl(2)).

37 ECHRNG Channel number out of range

38 EL2NSYNC Level 2 not synchronized

39 EL3HLT Level 3 halted

40 EL3RST Level 3 reset

41 ELNRNG Link number out of range

42 EUNATCH Protocol driver not attached

43 ENOCSI No CSI structure available

44 EL2HLT Level 2 halted

2-8 modified 18 Mar 1994

SunOS 5.4 System Calls Intro (2)

45 EDEADLK Deadlock condition
A deadlock situation was detected and avoided. This error pertains to file and
record locking, and also applies to mutexs, semaphores, condition variables, and
r/w locks.

46 ENOLCK No record locks available
There are no more locks available. The system lock table is full (see fcntl(2)).

47 ECANCELED Operation canceled
The associated asynchronous operation was canceled before completion.

48 ENOTSUP Not supported
This version of the system does not support this feature. Future versions of the
system may provide support.

49 Reserved

58−59 Reserved

60 ENOSTR Device not a stream
A putmsg or getmsg system call was attempted on a file descriptor that is not a
STREAMS device.

61 ENODATA No data available

62 ETIME Timer expired
The timer set for a STREAMS ioctl call has expired. The cause of this error is dev-
ice specific and could indicate either a hardware or software failure, or perhaps a
timeout value that is too short for the specific operation. The status of the ioctl
operation is indeterminate. This is also returned in the case of
_lwp_cond_timedwait() or cond_timedwait().

63 ENOSR Out of stream resources
During a STREAMS open, either no STREAMS queues or no STREAMS head data
structures were available. This is a temporary condition; one may recover from it
if other processes release resources.

64 ENONET Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs when users try to
advertise, unadvertise, mount, or unmount remote resources while the machine
has not done the proper startup to connect to the network.

65 ENOPKG Package not installed
This error occurs when users attempt to use a system call from a package which
has not been installed.

66 EREMOTE Object is remote
This error is RFS specific. It occurs when users try to advertise a resource which
is not on the local machine, or try to mount/unmount a device (or pathname)
that is on a remote machine.

67 ENOLINK Link has been severed
This error is RFS specific. It occurs when the link (virtual circuit) connecting to a
remote machine is gone.

modified 18 Mar 1994 2-9

Intro (2) System Calls SunOS 5.4

68 EADV Advertise error
This error is RFS specific. It occurs when users try to advertise a resource which
has been advertised already, or try to stop RFS while there are resources still
advertised, or try to force unmount a resource when it is still advertised.

69 ESRMNT Srmount error
This error is RFS specific. It occurs when an attempt is made to stop RFS while
resources are still mounted by remote machines, or when a resource is readver-
tised with a client list that does not include a remote machine that currently has
the resource mounted.

70 ECOMM Communication error on send
This error is RFS specific. It occurs when the current process is waiting for a
message from a remote machine, and the virtual circuit fails.

71 EPROTO Protocol error
Some protocol error occurred. This error is device specific, but is generally not
related to a hardware failure.

74 EMULTIHOP Multihop attempted
This error is RFS specific. It occurs when users try to access remote resources
which are not directly accessible.

76 EDOTDOT Error 76
This error is RFS specific. A way for the server to tell the client that a process has
transferred back from mount point.

77 EBADMSG Not a data message
During a read, getmsg, or ioctl I_RECVFD system call to a STREAMS device,
something has come to the head of the queue that can’t be processed. That some-
thing depends on the system call:

read: control information or passed file descriptor.
getmsg: passed file descriptor.
ioctl: control or data information.

78 ENAMETOOLONG File name too long
The length of the path argument exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect; see lim-
its(4).

79 EOVERFLOW
Value too large for defined data type.

80 ENOTUNIQ Name not unique on network
Given log name not unique.

81 EBADFD File descriptor in bad state
Either a file descriptor refers to no open file or a read request was made to a file
that is open only for writing.

82 EREMCHG Remote address changed

2-10 modified 18 Mar 1994

SunOS 5.4 System Calls Intro (2)

83 ELIBACC Cannot access a needed shared library
Trying to exec an a.out that requires a static shared library and the static shared
library doesn’t exist or the user doesn’t have permission to use it.

84 ELIBBAD Accessing a corrupted shared library
Trying to exec an a.out that requires a static shared library (to be linked in) and
exec could not load the static shared library. The static shared library is probably
corrupted.

85 ELIBSCN .lib section in a.out corrupted
Trying to exec an a.out that requires a static shared library (to be linked in) and
there was erroneous data in the .lib section of the a.out. The .lib section tells
exec what static shared libraries are needed. The a.out is probably corrupted.

86 ELIBMAX Attempting to link in more shared libraries than system limit
Trying to exec an a.out that requires more static shared libraries than is allowed
on the current configuration of the system. See NFS Administration Guide.

87 ELIBEXEC Cannot exec a shared library directly
Attempting to exec a shared library directly.

88 EILSEQ Error 88
Illegal byte sequence. Handle multiple characters as a single character.

89 ENOSYS Operation not applicable

90 ELOOP Number of symbolic links encountered during path name traversal exceeds
MAXSYMLINKS

91 ESTART Restartable system call
Interrupted system call should be restarted.

92 ESTRPIPE If pipe/FIFO, don’t sleep in stream head
Streams pipe error (not externally visible).

93 ENOTEMPTY Directory not empty

94 EUSERS Too many users

95 ENOTSOCK Socket operation on non-socket

96 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a transport endpoint.
Destination address required.

97 EMSGSIZE Message too long
A message sent on a transport provider was larger than the internal message
buffer or some other network limit.

98 EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket type
requested.

99 ENOPROTOOPT Protocol not available
A bad option or level was specified when getting or setting options for a proto-
col.

modified 18 Mar 1994 2-11

Intro (2) System Calls SunOS 5.4

120 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

121 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no
implementation for it exists.

122 EOPNOTSUPP Operation not supported on transport endpoint
For example, trying to accept a connection on a datagram transport endpoint.

123 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementa-
tion for it exists. Used for the Internet protocols.

124 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used.

125 EADDRINUSE Address already in use
User attempted to use an address already in use, and the protocol does not allow
this.

126 EADDRNOTAVAIL Cannot assign requested address
Results from an attempt to create a transport endpoint with an address not on the
current machine.

127 ENETDOWN Network is down
Operation encountered a dead network.

128 ENETUNREACH Network is unreachable
Operation was attempted to an unreachable network.

129 ENETRESET Network dropped connection because of reset
The host you were connected to crashed and rebooted.

130 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

131 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from a loss of
the connection on the remote host due to a timeout or a reboot.

132 ENOBUFS No buffer space available
An operation on a transport endpoint or pipe was not performed because the
system lacked sufficient buffer space or because a queue was full.

133 EISCONN Transport endpoint is already connected
A connect request was made on an already connected transport endpoint; or, a
sendto or sendmsg request on a connected transport endpoint specified a desti-
nation when already connected.

2-12 modified 18 Mar 1994

SunOS 5.4 System Calls Intro (2)

134 ENOTCONN Transport endpoint is not connected
A request to send or receive data was disallowed because the transport endpoint
is not connected and (when sending a datagram) no address was supplied.

143 ESHUTDOWN Cannot send after transport endpoint shutdown
A request to send data was disallowed because the transport endpoint has
already been shut down.

144 ETOOMANYREFS Too many references: cannot splice

145 ETIMEDOUT Connection timed out
A connect or send request failed because the connected party did not properly
respond after a period of time. (The timeout period is dependent on the com-
munication protocol.)

146 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it.
This usually results from trying to connect to a service that is inactive on the
remote host.

147 EHOSTDOWN Host is down
A transport provider operation failed because the destination host was down.

148 EHOSTUNREACH No route to host
A transport provider operation was attempted to an unreachable host.

149 EALREADY Operation already in progress
An operation was attempted on a non-blocking object that already had an opera-
tion in progress.

150 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a connect) was
attempted on a non-blocking object.

151 ESTALE Stale NFS file handle

DEFINITIONS
Background Process

Group
Any process group that is not the foreground process group of a session that has esta-
blished a connection with a controlling terminal.

Controlling Process A session leader that established a connection to a controlling terminal.

Controlling Terminal A terminal that is associated with a session. Each session may have, at most, one control-
ling terminal associated with it and a controlling terminal may be associated with only
one session. Certain input sequences from the controlling terminal cause signals to be
sent to process groups in the session associated with the controlling terminal; see ter-
mio(7).

Directory Directories organize files into a hierarchical system where directories are the nodes in the
hierarchy. A directory is a file that catalogues the list of files, including directories (sub-
directories), that are directly beneath it in the hierarchy. Entries in a directory file are
called links. A link associates a file identifier with a filename. By convention, a directory

modified 18 Mar 1994 2-13

Intro (2) System Calls SunOS 5.4

contains at least two links, . (dot) and .. (dot-dot). The link called dot refers to the direc-
tory itself while dot-dot refers to its parent directory. The root directory, which is the
top-most node of the hierarchy, has itself as its parent directory. The pathname of the
root directory is / and the parent directory of the root directory is /.

Downstream In a stream, the direction from stream head to driver.

Driver In a stream, the driver provides the interface between peripheral hardware and the
stream. A driver can also be a pseudo-driver, such as a multiplexor or log driver (see
log(7)), which is not associated with a hardware device.

Effective User ID and
Effective Group ID

An active process has an effective user ID and an effective group ID that are used to deter-
mine file access permissions (see below). The effective user ID and effective group ID are
equal to the process’s real user ID and real group ID respectively, unless the process or
one of its ancestors evolved from a file that had the set-user-ID bit or set-group-ID bit set
(see exec(2)).

File Access
Permissions

Read, write, and execute/search permissions on a file are granted to a process if one or
more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of the owner of the file
and the appropriate access bit of the “owner” portion (0700) of the file mode is
set.

The effective user ID of the process does not match the user ID of the owner of the
file, but either the effective group ID or one of the supplementary group IDs of
the process match the group ID of the file and the appropriate access bit of the
“group” portion (0070) of the file mode is set.

The effective user ID of the process does not match the user ID of the owner of the
file, and neither the effective group ID nor any of the supplementary group IDs of
the process match the group ID of the file, but the appropriate access bit of the
“other” portion (0007) of the file mode is set.

Otherwise, the corresponding permissions are denied.

File Descriptor A file descriptor is a small integer used to do I/O on a file. The value of a file descriptor is
from 0 to (NOFILES−1). A process may have no more than NOFILES file descriptors open
simultaneously. A file descriptor is returned by system calls such as open, or pipe. The
file descriptor is used as an argument by calls such as read, write, ioctl, and close.

File Name Names consisting of 1 to NAME_MAX characters may be used to name an ordinary file,
special file or directory.

These characters may be selected from the set of all character values excluding \0 (null)
and the ASCII code for / (slash).

2-14 modified 18 Mar 1994

SunOS 5.4 System Calls Intro (2)

Note that it is generally unwise to use ∗∗, ?, [, or] as part of file names because of the spe-
cial meaning attached to these characters by the shell (see sh(1), csh(1), and ksh(1)).
Although permitted, the use of unprintable characters in file names should be avoided.

A file name is sometimes referred to as a pathname component. The interpretation of a
pathname component is dependent on the values of NAME_MAX and
_POSIX_NO_TRUNC associated with the path prefix of that component. If any pathname
component is longer than NAME_MAX and _POSIX_NO_TRUNC is in effect for the path
prefix of that component (see fpathconf(2) and limits(4)), it shall be considered an error
condition in that implementation. Otherwise, the implementation shall use the first
NAME_MAX bytes of the pathname component.

Foreground Process
Group

Each session that has established a connection with a controlling terminal will distinguish
one process group of the session as the foreground process group of the controlling ter-
minal. This group has certain privileges when accessing its controlling terminal that are
denied to background process groups.

{IOV_MAX} Maximum number of entries in a struct iovec array.

{LIMIT} The braces notation, {LIMIT}, is used to denote a magnitude limitation imposed by the
implementation. This indicates a value which may be defined by a header file (without
the braces), or the actual value may be obtained at runtime by a call to the configuration
inquiry pathconf(2) with the name argument _PC_LIMIT.

Masks The file mode creation mask of the process used during any create function calls to turn
off permission bits in the mode argument supplied. Bit positions that are set in
umask(cmask) are cleared in the mode of the created file.

Message In a stream, one or more blocks of data or information, with associated STREAMS control
structures. Messages can be of several defined types, which identify the message con-
tents. Messages are the only means of transferring data and communicating within a
stream.

Message Queue In a stream, a linked list of messages awaiting processing by a module or driver.

Message Queue
Identifier

A message queue identifier (msqid) is a unique positive integer created by a msgget sys-
tem call. Each msqid has a message queue and a data structure associated with it. The
data structure is referred to as msqid_ds and contains the following members:

struct ipc_perm msg_perm;
struct msg ∗msg_first;
struct msg ∗msg_last;
ulong msg_cbytes;
ulong msg_qnum;
ulong msg_qbytes;
pid_t msg_lspid;
pid_t msg_lrpid;
time_t msg_stime;

modified 18 Mar 1994 2-15

Intro (2) System Calls SunOS 5.4

time_t msg_rtime;
time_t msg_ctime;

Here are descriptions of the fields of the msqid_ds structure:

msg_perm is an ipc_perm structure that specifies the message operation permis-
sion (see below). This structure includes the following members:

uid_t cuid; /∗ creator user id ∗/
gid_t cgid; /∗ creator group id ∗/
uid_t uid; /∗ user id ∗/
gid_t gid; /∗ group id ∗/
mode_t mode; /∗ r/w permission ∗/
ulong seq; /∗ slot usage sequence # ∗/
key_t key; /∗ key ∗/

∗∗msg_first is a pointer to the first message on the queue.

∗∗msg_last is a pointer to the last message on the queue.

msg_cbytes is the current number of bytes on the queue.

msg_qnum is the number of messages currently on the queue.

msg_qbytes is the maximum number of bytes allowed on the queue.

msg_lspid is the process ID of the last process that performed a msgsnd opera-
tion.

msg_lrpid is the process id of the last process that performed a msgrcv opera-
tion.

msg_stime is the time of the last msgsnd operation.

msg_rtime is the time of the last msgrcv operation

msg_ctime is the time of the last msgctl operation that changed a member of the
above structure.

Message Operation
Permissions

In the msgop and msgctl system call descriptions, the permission required for an opera-
tion is given as {token}, where token is the type of permission needed, interpreted as fol-
lows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

Read and write permissions on a msqid are granted to a process if one or more of the fol-
lowing are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches msg_perm.cuid or msg_perm.uid in
the data structure associated with msqid and the appropriate bit of the “user”

2-16 modified 18 Mar 1994

SunOS 5.4 System Calls Intro (2)

portion (0600) of msg_perm.mode is set.

The effective group ID of the process matches msg_perm.cgid or msg_perm.gid
and the appropriate bit of the “group” portion (060) of msg_perm.mode is set.

The appropriate bit of the “other” portion (006) of msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Module A module is an entity containing processing routines for input and output data. It
always exists in the middle of a stream, between the stream’s head and a driver. A
module is the STREAMS counterpart to the commands in a shell pipeline except that a
module contains a pair of functions which allow independent bidirectional (downstream
and upstream) data flow and processing.

Multiplexor A multiplexor is a driver that allows streams associated with several user processes to be
connected to a single driver, or several drivers to be connected to a single user process.
STREAMS does not provide a general multiplexing driver, but does provide the facilities
for constructing them and for connecting multiplexed configurations of streams.

Orphaned Process
Group

A process group in which the parent of every member in the group is either itself a
member of the group, or is not a member of the process group’s session.

Path Name A path name is a null-terminated character string starting with an optional slash (/), fol-
lowed by zero or more directory names separated by slashes, optionally followed by a
file name.

If a path name begins with a slash, the path search begins at the root directory. Other-
wise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named a non-
existent file.

Process ID Each process in the system is uniquely identified during its lifetime by a positive integer
called a process ID. A process ID may not be reused by the system until the process life-
time, process group lifetime and session lifetime ends for any process ID, process group
ID and session ID equal to that process ID. Within a processs, there are threads with
thread id’s, called thread_t and LWPID_t. These threads are not visable to the outside
process.

Parent Process ID A new process is created by a currently active process (see fork(2)). The parent process
ID of a process is the process ID of its creator.

Privilege Having appropriate privilege means having the capability to override system restrictions.

Process Group Each process in the system is a member of a process group that is identified by a process
group ID. Any process that is not a process group leader may create a new process group
and become its leader. Any process that is not a process group leader may join an

modified 18 Mar 1994 2-17

Intro (2) System Calls SunOS 5.4

existing process group that shares the same session as the process. A newly created pro-
cess joins the process group of its parent.

Process Group Leader A process group leader is a process whose process ID is the same as its process group ID.

Process Group ID Each active process is a member of a process group and is identified by a positive integer
called the process group ID. This ID is the process ID of the group leader. This grouping
permits the signaling of related processes (see kill(2)).

Process Lifetime A process lifetime begins when the process is forked and ends after it exits, when its ter-
mination has been acknowledged by its parent process. See wait(2).

Process Group
Lifetime

A process group lifetime begins when the process group is created by its process group
leader, and ends when the lifetime of the last process in the group ends or when the last
process in the group leaves the group.

Read Queue In a stream, the message queue in a module or driver containing messages moving
upstream.

Real User ID and Real
Group ID

Each user allowed on the system is identified by a positive integer (0 to MAXUID) called a
real user ID.

Each user is also a member of a group. The group is identified by a positive integer
called the real group ID.

An active process has a real user ID and real group ID that are set to the real user ID and
real group ID, respectively, of the user responsible for the creation of the process.

Root Directory and
Current Working

Directory

Each process has associated with it a concept of a root directory and a current working
directory for the purpose of resolving path name searches. The root directory of a pro-
cess need not be the root directory of the root file system.

Saved User ID and
Saved Group ID

The saved user ID and saved group ID are the values of the effective user ID and effective
group ID prior to an exec of a file whose set user or set group file mode bit has been set
(see exec(2)).

Semaphore Identifier A semaphore identifier (semid) is a unique positive integer created by a semget system
call. Each semid has a set of semaphores and a data structure associated with it. The
data structure is referred to as semid_ds and contains the following members:

struct ipc_perm sem_perm; /∗ operation permission struct ∗/
struct sem ∗sem_base; /∗ ptr to first semaphore in set ∗/
ushort sem_nsems; /∗ number of sems in set ∗/
time_t sem_otime; /∗ last operation time ∗/
time_t sem_ctime; /∗ last change time ∗/

/∗ Times measured in secs since ∗/
/∗ 00:00:00 GMT, Jan. 1, 1970 ∗/

2-18 modified 18 Mar 1994

SunOS 5.4 System Calls Intro (2)

Here are descriptions of the fields of the semid_ds structure:

sem_perm is an ipc_perm structure that specifies the semaphore operation per-
mission (see below). This structure includes the following members:

uid_t uid; /∗ user id ∗/
gid_t gid; /∗ group id ∗/
uid_t cuid; /∗ creator user id ∗/
gid_t cgid; /∗ creator group id ∗/
mode_t mode; /∗ r/a permission ∗/
ulong seq; /∗ slot usage sequence number ∗/
key_t key; /∗ key ∗/

sem_nsems is equal to the number of semaphores in the set. Each semaphore in
the set is referenced by a nonnegative integer referred to as a sem_num.
sem_num values run sequentially from 0 to the value of sem_nsems minus 1.

sem_otime is the time of the last semop operation.

sem_ctime is the time of the last semctl operation that changed a member of the
above structure.

A semaphore is a data structure called sem that contains the following members:

ushort semval; /∗ semaphore value ∗/
pid_t sempid; /∗ pid of last operation ∗/
ushort semncnt; /∗ # awaiting semval > cval ∗/
ushort semzcnt; /∗ # awaiting semval = 0 ∗/

semval is a non-negative integer that is the actual value of the semaphore.

sempid is equal to the process ID of the last process that performed a semaphore
operation on this semaphore.

semncnt is a count of the number of processes that are currently suspended
awaiting this semaphore’s semval to become greater than its current value.

semzcnt is a count of the number of processes that are currently suspended
awaiting this semaphore’s semval to become 0.

Semaphore
Operation

Permissions

In the semop and semctl system call descriptions, the permission required for an opera-
tion is given as {token}, where token is the type of permission needed interpreted as fol-
lows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

Read and alter permissions on a semid are granted to a process if one or more of the fol-
lowing are true:

The effective user ID of the process is super-user.

modified 18 Mar 1994 2-19

Intro (2) System Calls SunOS 5.4

The effective user ID of the process matches sem_perm.cuid or sem_perm.uid in
the data structure associated with semid and the appropriate bit of the “user”
portion (0600) of sem_perm.mode is set.

The effective group ID of the process matches sem_perm.cgid or sem_perm.gid
and the appropriate bit of the “group” portion (060) of sem_perm.mode is set.

The appropriate bit of the “other” portion (06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Session A session is a group of processes identified by a common ID called a session ID, capable
of establishing a connection with a controlling terminal. Any process that is not a process
group leader may create a new session and process group, becoming the session leader of
the session and process group leader of the process group. A newly created process joins
the session of its creator.

Session ID Each session in the system is uniquely identified during its lifetime by a positive integer
called a session ID, the process ID of its session leader.

Session Leader A session leader is a process whose session ID is the same as its process and process
group ID.

Session Lifetime A session lifetime begins when the session is created by its session leader, and ends when
the lifetime of the last process that is a member of the session ends, or when the last pro-
cess that is a member in the session leaves the session.

Shared Memory
Identifier

A shared memory identifier (shmid) is a unique positive integer created by a shmget sys-
tem call. Each shmid has a segment of memory (referred to as a shared memory seg-
ment) and a data structure associated with it. (Note that these shared memory segments
must be explicitly removed by the user after the last reference to them is removed.) The
data structure is referred to as shmid_ds and contains the following members:

struct ipc_perm shm_perm; /∗ operation permission struct ∗/
int shm_segsz; /∗ size of segment ∗/
struct region ∗shm_reg; /∗ ptr to region structure ∗/
char pad[4]; /∗ for swap compatibility ∗/
pid_t shm_lpid; /∗ pid of last operation ∗/
pid_t shm_cpid; /∗ creator pid ∗/
ushort shm_nattch; /∗ number of current attaches ∗/
ushort shm_cnattch; /∗ used only for shminfo ∗/
time_t shm_atime; /∗ last attach time ∗/
time_t shm_dtime; /∗ last detach time ∗/
time_t shm_ctime; /∗ last change time ∗/

/∗ Times measured in secs since ∗/
/∗ 00:00:00 GMT, Jan. 1, 1970 ∗/

2-20 modified 18 Mar 1994

SunOS 5.4 System Calls Intro (2)

Here are descriptions of the fields of the shmid_ds structure:

shm_perm is an ipc_perm structure that specifies the shared memory operation
permission (see below). This structure includes the following members:

uid_t cuid; /∗ creator user id ∗/
gid_t cgid; /∗ creator group id ∗/
uid_t uid; /∗ user id ∗/
gid_t gid; /∗ group id ∗/
mode_t mode; /∗ r/w permission ∗/
ulong seq; /∗ slot usage sequence # ∗/
key_t key; /∗ key ∗/

shm_segsz specifies the size of the shared memory segment in bytes.

shm_cpid is the process ID of the process that created the shared memory
identifier.

shm_lpid is the process ID of the last process that performed a shmop operation.

shm_nattch is the number of processes that currently have this segment attached.

shm_atime is the time of the last shmat operation (see shmop(2)).

shm_dtime is the time of the last shmdt operation (see shmop(2)).

shm_ctime is the time of the last shmctl operation that changed one of the
members of the above structure.

Shared Memory
Operation

Permissions

In the shmop and shmctl system call descriptions, the permission required for an opera-
tion is given as {token}, where token is the type of permission needed interpreted as fol-
lows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

Read and write permissions on a shmid are granted to a process if one or more of the fol-
lowing are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shm_perm.cuid or shm_perm.uid in
the data structure associated with shmid and the appropriate bit of the “user”
portion (0600) of shm_perm.mode is set.

The effective group ID of the process matches shm_perm.cgid or shm_perm.gid
and the appropriate bit of the “group” portion (060) of shm_perm.mode is set.

The appropriate bit of the “other” portion (06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

modified 18 Mar 1994 2-21

Intro (2) System Calls SunOS 5.4

Special Processes The process with ID 0 and the process with ID 1 are special processes referred to as proc0
and proc1; see kill(2). proc0 is the process scheduler. proc1 is the initialization process
(init); proc1 is the ancestor of every other process in the system and is used to control the
process structure.

STREAMS A set of kernel mechanisms that support the development of network services and data
communication drivers. It defines interface standards for character input/output within
the kernel and between the kernel and user level processes. The STREAMS mechanism is
composed of utility routines, kernel facilities and a set of data structures.

Stream A stream is a full-duplex data path within the kernel between a user process and driver
routines. The primary components are a stream head, a driver and zero or more modules
between the stream head and driver. A stream is analogous to a shell pipeline except that
data flow and processing are bidirectional.

Stream Head In a stream, the stream head is the end of the stream that provides the interface between
the stream and a user process. The principle functions of the stream head are processing
STREAMS-related system calls, and passing data and information between a user process
and the stream.

Super-user A process is recognized as a super-user process and is granted special privileges, such as
immunity from file permissions, if its effective user ID is 0.

Upstream In a stream, the direction from driver to stream head.

Write Queue In a stream, the message queue in a module or driver containing messages moving
downstream.

Name Appears on Page Description

_exit exit(2) terminate process
_lwp_cond_broadcast _lwp_cond_signal(2) signal a condition variable
_lwp_cond_signal _lwp_cond_signal(2) signal a condition variable
_lwp_cond_timedwait _lwp_cond_wait(2) wait on a condition variable
_lwp_cond_wait _lwp_cond_wait(2) wait on a condition variable
_lwp_continue _lwp_suspend(2) continue or suspend LWP execution
_lwp_create _lwp_create(2) create a new light-weight process
_lwp_exit _lwp_exit(2) terminate the calling LWP
_lwp_getprivate _lwp_setprivate(2) set/get LWP specific storage
_lwp_info _lwp_info(2) return the time-accounting information

of a single LWP.
_lwp_kill _lwp_kill(2) send a signal to a LWP
_lwp_makecontext _lwp_makecontext(2) initialize an LWP context
_lwp_mutex_lock _lwp_mutex_lock(2) mutual exclusion
_lwp_mutex_trylock _lwp_mutex_lock(2) mutual exclusion

2-22 modified 18 Mar 1994

SunOS 5.4 System Calls Intro (2)

_lwp_mutex_unlock _lwp_mutex_lock(2) mutual exclusion
_lwp_self _lwp_self(2) get LWP identifier
_lwp_sema_init _lwp_sema_wait(2) semaphore operations
_lwp_sema_post _lwp_sema_wait(2) semaphore operations
_lwp_sema_wait _lwp_sema_wait(2) semaphore operations
_lwp_setprivate _lwp_setprivate(2) set/get LWP specific storage
_lwp_suspend _lwp_suspend(2) continue or suspend LWP execution
_lwp_wait _lwp_wait(2) wait for a LWP to terminate
access access(2) determine accessibility of a file
acct acct(2) enable or disable process accounting
adjtime adjtime(2) correct the time to allow

synchronization of the system clock
alarm alarm(2) set a process alarm clock
audit audit(2) write a record to the audit log
auditon auditon(2) manipulate auditing
auditsvc auditsvc(2) write audit log to specified file

descriptor
brk brk(2) change the amount of space allocated

for the calling process’s data segment
chdir chdir(2) change working directory
chmod chmod(2) change access permission mode of file
chown chown(2) change owner and group of a file
chroot chroot(2) change root directory
close close(2) close a file descriptor
creat creat(2) create a new file or rewrite an

existing one
dup dup(2) duplicate an open file descriptor
exec exec(2) execute a file
execl exec(2) execute a file
execle exec(2) execute a file
execlp exec(2) execute a file
execv exec(2) execute a file
execve exec(2) execute a file
execvp exec(2) execute a file
exit exit(2) terminate process
fchdir chdir(2) change working directory
fchmod chmod(2) change access permission mode of file
fchown chown(2) change owner and group of a file
fchroot chroot(2) change root directory
fcntl fcntl(2) file control
fork1 fork(2) create a new process
fork fork(2) create a new process
fpathconf fpathconf(2) get configurable pathname variables
fstat stat(2) get file status
fstatvfs statvfs(2) get file system information

modified 18 Mar 1994 2-23

Intro (2) System Calls SunOS 5.4

getaudit getaudit(2) get and set process audit information
getauid getauid(2) get and set user audit identity
getcontext getcontext(2) get and set current user context
getdents getdents(2) read directory entries and put in a

file system independent format
getegid getuid(2) get real user, effective user, real

group, and effective group IDs
geteuid getuid(2) get real user, effective user, real

group, and effective group IDs
getgid getuid(2) get real user, effective user, real

group, and effective group IDs
getgroups getgroups(2) get or set supplementary group access

list IDs
getitimer getitimer(2) get or set value of interval timer
getmsg getmsg(2) get next message off a stream
getpgid getpid(2) get process, process group, and parent

process IDs
getpgrp getpid(2) get process, process group, and parent

process IDs
getpid getpid(2) get process, process group, and parent

process IDs
getpmsg getmsg(2) get next message off a stream
getppid getpid(2) get process, process group, and parent

process IDs
getrlimit getrlimit(2) control maximum system resource

consumption
getsid getsid(2) get or set session ID
getuid getuid(2) get real user, effective user, real

group, and effective group IDs
ioctl ioctl(2) control device
kill kill(2) send a signal to a process or a group

of processes
lchown chown(2) change owner and group of a file
link link(2) link to a file
llseek llseek(2) move extended read/write file pointer
lseek lseek(2) move read/write file pointer
lstat stat(2) get file status
memcntl memcntl(2) memory management control
mincore mincore(2) determine residency of memory pages
mkdir mkdir(2) make a directory
mknod mknod(2) make a directory, or a special or

ordinary file
mmap mmap(2) map pages of memory
mount mount(2) mount a file system
mprotect mprotect(2) set protection of memory mapping

2-24 modified 18 Mar 1994

SunOS 5.4 System Calls Intro (2)

msgctl msgctl(2) message control operations
msgget msgget(2) get message queue
msgop msgop(2) message operations
msgrcv msgop(2) message operations
msgsnd msgop(2) message operations
munmap munmap(2) unmap pages of memory
nice nice(2) change priority of a process
open open(2) open for reading or writing
p_online p_online(2) change processor online or offline

status
pathconf fpathconf(2) get configurable pathname variables
pause pause(2) suspend process until signal
pipe pipe(2) create an interprocess channel
poll poll(2) input/output multiplexing
pread read(2) read from file
priocntl priocntl(2) process scheduler control
priocntlset priocntlset(2) generalized process scheduler control
processor_bind processor_bind(2) bind LWPs to a processor
processor_info processor_info(2) determine type and status of a

processor
profil profil(2) execution time profile
ptrace ptrace(2) allows a parent process to control the

execution of a child process
putmsg putmsg(2) send a message on a stream
putpmsg putmsg(2) send a message on a stream
pwrite write(2) write on a file
read read(2) read from file
readlink readlink(2) read the value of a symbolic link
readv read(2) read from file
rename rename(2) change the name of a file
rmdir rmdir(2) remove a directory
sbrk brk(2) change the amount of space allocated

for the calling process’s data segment
semctl semctl(2) semaphore control operations
semget semget(2) get set of semaphores
semop semop(2) semaphore operations
setaudit getaudit(2) get and set process audit information
setauid getauid(2) get and set user audit identity
setcontext getcontext(2) get and set current user context
setegid setuid(2) set user and group IDs
seteuid setuid(2) set user and group IDs
setgid setuid(2) set user and group IDs
setgroups getgroups(2) get or set supplementary group access

list IDs
setitimer getitimer(2) get or set value of interval timer

modified 18 Mar 1994 2-25

Intro (2) System Calls SunOS 5.4

setpgid setpgid(2) set process group ID
setpgrp setpgrp(2) set process group ID
setrlimit getrlimit(2) control maximum system resource

consumption
setsid getsid(2) get or set session ID
setuid setuid(2) set user and group IDs
shmat shmop(2) shared memory operations
shmctl shmctl(2) shared memory control operations
shmdt shmop(2) shared memory operations
shmget shmget(2) get shared memory segment identifier
shmop shmop(2) shared memory operations
sigaction sigaction(2) detailed signal management
sigaltstack sigaltstack(2) set or get signal alternate stack

context
sigpending sigpending(2) examine signals that are blocked and

pending
sigprocmask sigprocmask(2) change and/or examine calling process’s

signal mask
sigsend sigsend(2) send a signal to a process or a group

of processes
sigsendset sigsend(2) send a signal to a process or a group

of processes
sigsuspend sigsuspend(2) install a signal mask and suspend

process until signal
sigwait sigwait(2) wait until a signal is posted
stat stat(2) get file status
statvfs statvfs(2) get file system information
stime stime(2) set system time and date
swapctl swapctl(2) manage swap space
symlink symlink(2) make a symbolic link to a file
sync sync(2) update super block
sysfs sysfs(2) get file system type information
sysinfo sysinfo(2) get and set system information strings
time time(2) get time
times times(2) get process and child process times
uadmin uadmin(2) administrative control
ulimit ulimit(2) get and set process limits
umask umask(2) set and get file creation mask
umount umount(2) unmount a file system
uname uname(2) get name of current operating system
unlink unlink(2) remove directory entry
ustat ustat(2) get file system statistics
utime utime(2) set file access and modification times
utimes utimes(2) set file times

2-26 modified 18 Mar 1994

SunOS 5.4 System Calls Intro (2)

vfork vfork(2) spawn new process in a virtual memory
efficient way

vhangup vhangup(2) virtually “hangup” the current
controlling terminal

wait wait(2) wait for child process to stop or
terminate

waitid waitid(2) wait for child process to change state
waitpid waitpid(2) wait for child process to change state
write write(2) write on a file
writev write(2) write on a file
yield yield(2) yield execution to another lightweight

process

modified 18 Mar 1994 2-27

_lwp_cond_signal (2) System Calls SunOS 5.4

NAME _lwp_cond_signal, _lwp_cond_broadcast − signal a condition variable

SYNOPSIS #include <sys/lwp.h>

int _lwp_cond_signal(lwp_cond_t cvp);

int _lwp_cond_broadcast(lwp_cond_t ∗cvp);

DESCRIPTION _lwp_cond_signal() unblocks one LWP that is blocked on the LWP condition variable
pointed to by cvp.

_lwp_cond_broadcast() unblocks all LWPs that are blocked on the LWP condition vari-
able pointed to by cvp.

If no LWPs are blocked on the LWP condition variable, then _lwp_cond_signal() and
_lwp_cond_broadcast() have no effect.

Both functions should be called under the protection of the same LWP mutex lock that is
used with the LWP condition variable being signalled. Otherwise the condition variable
may be signalled between the test of the associated condition and blocking in
_lwp_cond_wait(). This can cause an infinite wait.

RETURN VALUES Zero is returned when successful. A non-zero value indicates an error.

ERRORS If any of the following conditions are detected, _lwp_cond_signal(), and
_lwp_cond_broadcast() fail and return the corresponding value:

EINVAL cvp points to an invalid LWP condition variable.

EFAULT cvp points to an invalid address.

SEE ALSO _lwp_cond_wait(2), _lwp_mutex_lock(2)

2-28 modified 30 Jul 1992

SunOS 5.4 System Calls _lwp_cond_wait (2)

NAME _lwp_cond_wait, _lwp_cond_timedwait − wait on a condition variable

SYNOPSIS #include <sys/lwp.h>

int _lwp_cond_wait(lwp_cond_t ∗cvp, lwp_mutex_t ∗mp);

int _lwp_cond_timedwait(lwp_cond_t ∗cvp, lwp_mutex_t ∗mp, timestruc_t ∗abstime);

DESCRIPTION These functions are used to wait for the occurrence of a condition represented by an LWP
condition variable. LWP condition variables must be initialized to zero before use.

_lwp_cond_wait() atomically releases the LWP mutex pointed to by mp and causes the
calling LWP to block on the LWP condition variable pointed to by cvp. The blocked LWP
may be awakened by _lwp_cond_signal(2), _lwp_cond_broadcast(2), or when inter-
rupted by delivery of a signal. Any change in value of a condition associated with the
condition variable cannot be inferred by the return of _lwp_cond_wait() and any such
condition must be re-evaluated.

_lwp_cond_timedwait() is similar to _lwp_cond_wait(), except that the calling LWP will
not block past the time of day specified by abstime . If the time of day becomes greater
than abstime then _lwp_cond_timedwait() returns with the error code ETIME .

_lwp_cond_wait(), and_lwp_cond_timedwait() always return with the mutex locked
and owned by the calling lightweight process.

RETURN VALUES Zero is returned when successful. A non-zero value indicates an error.

ERRORS If any of the following conditions are detected, _lwp_cond_wait(), and
_lwp_cond_timedwait() fail and return the corresponding value:

EINVAL cvp points to an invalid LWP condition variable or mp points to an
invalid LWP mutex.

EFAULT mp, cvp, or abstime point to an illegal address.

If any of the following conditions occur, _lwp_cond_wait(), and
_lwp_cond_timedwait() fail and return the corresponding value:

EINTR The call was interrupted by a signal or fork(2).

If any of the following conditions occur, _lwp_cond_timedwait() fails and returns the
corresponding value:

ETIME The time specified in abstime has passed.

modified 30 Jul 1992 2-29

_lwp_cond_wait (2) System Calls SunOS 5.4

EXAMPLES _lwp_cond_wait() is normally used in a loop testing some condition, as follows:

lwp_mutex_t m;
lwp_cond_t cv;
int cond;

(void) _lwp_mutex_lock(&m);
while (cond == FALSE) {

(void) _lwp_cond_wait(&cv, &m);
}
(void) _lwp_mutex_unlock(&m);

_lwp_cond_timedwait() is also normally used in a loop testing some condition. It uses an
absolute timeout value as follows:

timestruc_t to;
lwp_mutex_t m;
lwp_cond_t cv;
int cond, err;

(void) _lwp_mutex_lock(&m);
to.tv_sec = time(NULL) + TIMEOUT;
to.tv_nsec = 0;
while (cond == FALSE) {

err = _lwp_cond_timedwait(&cv, &m, &to);
if (err == ETIME) {

/∗ timeout, do something ∗/
break;

}
}
(void) _lwp_mutex_unlock(&m);

This sets a bound on the total wait time even though the _lwp_cond_timedwait() may
return several times due to the condition being signalled or the wait being interrupted.

SEE ALSO _lwp_cond_broadcast(2), _lwp_cond_signal(2), _lwp_kill(2), _lwp_mutex_lock(2),
fork(2), kill(2)

2-30 modified 30 Jul 1992

SunOS 5.4 System Calls _lwp_create (2)

NAME _lwp_create − create a new light-weight process

SYNOPSIS #include <sys/lwp.h>

int _lwp_create(ucontext_t ∗contextp , unsigned long flags , lwpid_t ∗new_lwp);

DESCRIPTION The function _lwp_create() adds a lightweight process (LWP) to the current process. The
context parameter specifies the initial signal mask, stack, and machine context (including
the program counter and stack pointer) for the new LWP. The new LWP inherits the
scheduling class and priority of the caller.

If _lwp_create() is successful, the ID of the new LWP is stored in the location pointed to
by new_lwp.

flags specifies additional attributes for the new LWP. The value in flags is constructed by
the bit-wise inclusive OR of the following values:

LWP_DETACHED The LWP is created detached.

LWP_SUSPENDED The LWP is created suspended.

If LWP_DETACHED is specified, then the LWP is created in the detached state. Otherwise
the LWP is created in the undetached state. The ID (and system resources) associated
with a detached LWP can be automatically reclaimed when the LWP exits. The ID of an
undetached LWP cannot be reclaimed until it exits and another LWP has reported its ter-
mination via _lwp_wait(2). This allows the waiting LWP to determine that the waited for
LWP has terminated and to reclaim any process resources that it was using.

If LWP_SUSPENDED is specified, then the LWP is created in a suspended state. This
allows the creator to change the LWP’s inherited attributes before it starts to execute. The
suspended LWP can only be resumed via _lwp_continue(2). If LWP_SUSPENDED is not
specified the LWP can begin to run immediately after it has been created.

RETURN VALUES Zero is returned when successful. A non-zero value indicates an error.

ERRORS If any of the following conditions are detected, _lwp_create() fails and returns the
corresponding value:

EFAULT Either the context parameter or the new_lwp parameter point to invalid
addresses.

EAGAIN A system limit is exceeded, e.g., too many LWP were created for this real
user ID.

modified 30 Jul 1992 2-31

_lwp_create (2) System Calls SunOS 5.4

EXAMPLES This example shows how a stack is allocated to a new LWP. _lwp_makecontext() is used
to set up the context parameter so that the new LWP begins executing a function.

contextp = (ucontext_t ∗)malloc(sizeof(ucontext_t));
stackbase = malloc(stacksize);
sigprocmask(SIGSETMASK, NULL, &contextp->uc_sigmask);
_lwp_makecontext(contextp, func, arg, private, stackbase, stacksize);
error = _lwp_create(contextp, NULL, &new_lwp);

SEE ALSO _lwp_continue(2), _lwp_exit(2), _lwp_makecontext(2), _lwp_wait(2), ucontext(5)

2-32 modified 30 Jul 1992

SunOS 5.4 System Calls _lwp_exit (2)

NAME _lwp_exit − terminate the calling LWP

SYNOPSIS #include <sys/lwp.h>

void _lwp_exit(void);

DESCRIPTION _lwp_exit() causes the calling LWP to terminate. If it is the last LWP in the process, then
the process exits with a status of zero (see exit(2).

If the LWP was created undetached, it is transformed into a "zombie LWP" that retains at
least the LWP’s ID until it is waited for (see _lwp_wait(2)). Otherwise, its ID and system
resources may be reclaimed immediately.

SEE ALSO _lwp_create(2), _lwp_wait(2), exit(2)

modified 30 Jul 1992 2-33

_lwp_info (2) System Calls SunOS 5.4

NAME _lwp_info − return the time-accounting information of a single LWP.

SYNOPSIS #include <sys/time.h>
#include <sys/lwp.h>

int _lwp_info(struct lwpinfo ∗buffer);

DESCRIPTION _lwp_info() fills the lwpinfo structure pointed to by buffer with time-accounting infor-
mation pertaining to the calling LWP. This call may be extended in the future to return
other information to the lwpinfo structure as needed. The lwpinfo structure in
<sys/lwp.h> includes the following members:

timestruc_tlwp_utime;
timestruc_tlwp_stime;

lwp_utime is the CPU time used while executing instructions in the user space of the cal-
ling LWP.

lwp_stime is the CPU time used by the system on behalf of the calling LWP.

RETURN VALUES Upon successful completion, _lwp_info() returns 0 and fills in the lwpinfo structure
pointed to by buffer.

ERRORS If the following condition is detected, _lwp_info() returns the corresponding value:

EFAULT buffer points to an illegal address.

SEE ALSO times(2)

2-34 modified 31 Mar 1994

SunOS 5.4 System Calls _lwp_kill (2)

NAME _lwp_kill − send a signal to a LWP

SYNOPSIS #include <sys/lwp.h>
#include <signal.h>

int _lwp_kill(lwpid_t target_lwp , int sig);

DESCRIPTION _lwp_kill() sends a signal to the LWP specified by target_lwp . The signal that is to be sent
is specified by sig and must be one from the list given in signal(5). If sig is 0 (the null sig-
nal), error checking is performed but no signal is actually sent. This can be used to check
the validity of target_lwp .

The target_lwp must be an LWP within the same process as the calling LWP.

RETURN VALUES Zero is returned when successful. A non-zero value indicates an error.

ERRORS If any of the following conditions occur, _lwp_kill() fails and returns the corresponding
value:

EINVAL sig is not a valid signal number.

ESRCH target_lwp cannot be found in the current process.

SEE ALSO kill(2), sigaction(2), sigprocmask(2), signal(5)

modified 30 Jul 1992 2-35

_lwp_makecontext (2) System Calls SunOS 5.4

NAME _lwp_makecontext − initialize an LWP context

SYNOPSIS #include <sys/types.h>
#include <sys/lwp.h>
#include <ucontext.h>

void _lwp_makecontext(ucontext_t ∗ucp, void (∗start_routine) (void ∗), void ∗arg,
void ∗private, caddr_t stack_base, size_t stack_size);

DESCRIPTION _lwp_makecontext() initializes the user context structure pointed to by ucp. The user
context is defined by ucontext(5). The resulting user context can be used by
_lwp_create(2) for specifying the initial state of the new LWP. The user context is set up
to start executing the function start_routine with a single argument, arg , and to call
_lwp_exit(2) if start_routine returns. The new LWP will use the storage starting at
stack_base and continuing for stack_size bytes as an execution stack. The initial value in
LWP-private memory will be set to private (see _lwp_setprivate(2)). The signal mask in
the user context is not initialized.

SEE ALSO _lwp_create(2), _lwp_exit(2), _lwp_setprivate(2), ucontext(5)

2-36 modified 27 Jan 1994

SunOS 5.4 System Calls _lwp_mutex_lock (2)

NAME _lwp_mutex_lock, _lwp_mutex_unlock, _lwp_mutex_trylock − mutual exclusion

SYNOPSIS #include <sys/lwp.h>

int _lwp_mutex_lock(lwp_mutex_t ∗mp);

int _lwp_mutex_trylock(lwp_mutex_t ∗mp);

int _lwp_mutex_unlock(lwp_mutex_t ∗mp);

DESCRIPTION These functions serialize the execution of lightweight processes. They are useful for
ensuring that only one lightweight process can execute a critical section of code at any
one time (mutual exclusion). LWP mutexes must be initialized to zero before use.

_lwp_mutex_lock() locks the LWP mutex pointed to by mp. If the mutex is already
locked, the calling LWP blocks until the mutex becomes available. When
_lwp_mutex_lock() returns, the mutex is locked and the calling LWP is the "owner".

_lwp_mutex_trylock() attempts to lock the mutex. If the mutex is already locked it
returns with an error. If the mutex is unlocked, it is locked and _lwp_mutex_trylock()
returns.

_lwp_mutex_unlock() unlocks a locked mutex. The mutex must be locked and the cal-
ling LWP must be the one that last locked the mutex (the owner). If any other LWPs are
waiting for the mutex to become available, one of them is unblocked.

RETURN VALUES Zero is returned when successful. A non-zero value indicates an error.

ERRORS If any of the following conditions are detected, _lwp_mutex_lock(),
_lwp_mutex_trylock(), and _lwp_mutex_unlock() fail and return the corresponding
value:

EINVAL mp points to an invalid LWP mutex.

EFAULT mp points to an illegal address.

If any of the following conditions occur, _lwp_mutex_trylock() fails and returns the
corresponding value:

EBUSY mp points to a locked mutex.

SEE ALSO intro(2), _lwp_cond_wait(2)

modified 30 Jul 1992 2-37

_lwp_self (2) System Calls SunOS 5.4

NAME _lwp_self − get LWP identifier

SYNOPSIS #include <sys/lwp.h>

lwpid_t _lwp_self(void);

DESCRIPTION _lwp_self() returns the ID of the calling LWP.

SEE ALSO _lwp_create(2)

2-38 modified 30 Jul 1992

SunOS 5.4 System Calls _lwp_sema_wait (2)

NAME _lwp_sema_wait, _lwp_sema_init, _lwp_sema_post − semaphore operations

SYNOPSIS #include <sys/lwp.h>

int _lwp_sema_wait(lwp_sema_t ∗sema);

int _lwp_sema_init(lwp_sema_t ∗sema, int count);

int _lwp_sema_post(lwp_sema_t ∗sema);

DESCRIPTION Conceptually, a semaphore is an non-negative integer count that is atomically incre-
mented and decremented. Typically this represents the number of resources available.
_lwp_sema_init() initializes the count, _lwp_sema_post() atomically increments the
count, and _lwp_sema_wait() waits for the count to become greater than zero and then
atomically decrements it.

LWP semaphores must be initialized before use. _lwp_sema_init() initializes the count
associated with the LWP semaphore pointed to by sema to count.

_lwp_sema_wait() blocks the calling LWP until the semaphore count becomes greater
than zero and then atomically decrements it.

_lwp_sema_post() atomically increments the semaphore count. If there are any LWPs
blocked on the semaphore, one is unblocked.

RETURN VALUES Zero is returned when successful. A non-zero value indicates an error.

ERRORS If any of the following conditions are detected, _lwp_sema_init(), _lwp_sema_wait(),
and _lwp_sema_post() fail and return the corresponding value:

EINVAL sema points to an invalid semaphore.

EFAULT sema points to an illegal address.

EINTR _lwp_sema_wait() was interrupted by a signal or fork(2).

SEE ALSO fork(2)

modified 1 Feb 1994 2-39

_lwp_setprivate (2) System Calls SunOS 5.4

NAME _lwp_setprivate, _lwp_getprivate − set/get LWP specific storage

SYNOPSIS #include <sys/lwp.h>

void _lwp_setprivate(void ∗buffer);

void ∗_lwp_getprivate(void);

DESCRIPTION The function _lwp_setprivate() stores the value specified by buffer in LWP-private
memory that is unique to the calling LWP. This is typically used by thread library imple-
mentations to maintain a pointer to information about the thread currently running on
the calling LWP.

The function _lwp_getprivate() returns the value stored in LWP-private memory.

SEE ALSO _lwp_makecontext(2)

2-40 modified 30 Jul 1992

SunOS 5.4 System Calls _lwp_suspend (2)

NAME _lwp_suspend, _lwp_continue − continue or suspend LWP execution

SYNOPSIS #include <sys/lwp.h>

int _lwp_suspend(lwpid_t target_lwp);

int _lwp_continue(lwpid_t target_lwp);

DESCRIPTION _lwp_suspend() immediately suspends the execution of the LWP specified by target_lwp .
On successful return from _lwp_suspend(), target_lwp is no longer executing. Once a
thread is suspended, subsequent calls to _lwp_suspend() have no affect.

_lwp_continue() resumes the execution of a suspended LWP. Once a suspended LWP is
continued, subsequent calls to _lwp_continue() have no effect.

A suspended LWP will not be awakened by a signal. The signal stays pending until the
execution of the LWP is resumed by _lwp_continue().

RETURN VALUES Zero is returned when successful. A non-zero value indicates an error.

ERRORS If the following condition occurs, _lwp_suspend() and _lwp_continue() fail and return
the corresponding value:

ESRCH target_lwpid cannot be found in the current process

If the following condition is detected, _lwp_suspend() fails and returns the correspond-
ing value:

EDEADLK Suspending target_lwpid will cause all LWPs in the process to be
suspended.

SEE ALSO _lwp_create(2)

modified 30 Jul 1992 2-41

_lwp_wait (2) System Calls SunOS 5.4

NAME _lwp_wait − wait for a LWP to terminate

SYNOPSIS #include <sys/lwp.h>

int _lwp_wait(lwpid_t wait_for, lwpid_t ∗departed_lwp);

DESCRIPTION _lwp_wait() blocks the current LWP until the LWP specified by wait_for terminates. If the
specified LWP terminated prior to the call to _lwp_wait(), then _lwp_wait() returns
immediately. If wait_for is NULL, then _lwp_wait() waits for any undetached LWP in the
current process. If wait_for is not NULL, then it must specify an undetached LWP in the
current process. If departed_lwp is not NULL, then it points to location where the ID of the
exited LWP is stored (see _lwp_exit(2)).

When an LWP exits and there are one or more LWPs in this process waiting for this
specific LWP to exit, then one of the waiting LWPs is unblocked and it returns from
_lwp_wait() successfully. Any other LWPs waiting for this same LWP to exit are also
unblocked, however, they return from _lwp_wait() with an error (ESRCH) indicating
the waited for LWP no longer exists. If there are no LWPs in this process waiting for this
specific LWP to exit but there are one or more LWPs waiting for any LWP to exit, then one
of the waiting LWPs is unblocked and it returns from _lwp_wait() successfully.

The ID of an LWP that has exited may be reused via _lwp_create() after the LWP has been
successfully waited for.

RETURN VALUES Zero is returned when successful. A non-zero value indicates an error.

ERRORS If any of the following conditions are detected, _lwp_wait() fails and returns the
corresponding value:

EINTR _lwp_wait() was interrupted by a signal.

EDEADLK All LWPs in this process would be blocked waiting for LWPs to ter-
minate.

EDEADLK The calling LWP is attempting to wait for itself.

If any of the following conditions occur, _lwp_wait() fails and returns the corresponding
value:

ESRCH wait_for cannot be found in the current process or it was detached.

SEE ALSO _lwp_create(2), _lwp_exit(2)

2-42 modified 30 Jul 1992

SunOS 5.4 System Calls access (2)

NAME access − determine accessibility of a file

SYNOPSIS #include <unistd.h>

int access(const char ∗path , int amode);

DESCRIPTION access() checks the file pointed to by path for accessibility according to the bit pattern
contained in amode , using the real user ID in place of the effective user ID and the real
group ID in place of the effective group ID. This allows a setuid process to verify that the
user running it would have had permission to access this file. The bit pattern contained
in amode is constructed by an OR of the access permissions to be checked (R_OK, W_OK,
and X_OK, or the existence test, (F_OK). These constants are defined in <unistd.h> as fol-
lows:

R_OK Test for read permission.
W_OK Test for write permission.
X_OK Test for execute or search permission.
F_OK Check existence of file

See intro(2) for additional information about "File Access Permission".

RETURN VALUES If the requested access is permitted, a value of 0 is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS Access to the file is denied if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix.

EACCES Permission bits of the file mode do not permit the requested
access.

EFAULT path points to an illegal address.

EINTR A signal was caught during the access() function.

ELOOP Too many symbolic links were encountered in translating path .

EMULTIHOP Components of path require hopping to multiple remote machines.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT The path argument points to an empty string or to the name of a
file that does not exist.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

modified 29 Jul 1991 2-43

access (2) System Calls SunOS 5.4

ENOTDIR A component of the path prefix is not a directory.

EROFS Write access is requested for a file on a read-only file system.

SEE ALSO intro(2), chmod(2), stat(2)

2-44 modified 29 Jul 1991

SunOS 5.4 System Calls acct (2)

NAME acct − enable or disable process accounting

SYNOPSIS #include <unistd.h>

int acct(const char ∗path);

DESCRIPTION acct() enables or disables the system process accounting routine. If the routine is
enabled, an accounting record will be written in an accounting file for each process that
terminates. The termination of a process can be caused by one of two things: an exit()
call or a signal (see exit(2) and signal(3C)). The effective user ID of the process calling
acct() must be super-user.

path points to a pathname naming the accounting file. The accounting file format is given
in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur during the func-
tion. It is disabled if path is (char ∗)NULL and no errors occur during the function.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned
and errno is set to indicate the error.

ERRORS acct() fails if one or more of the following are true:

EACCES The file named by path is not an ordinary file.

EBUSY An attempt is being made to enable accounting using the same file
that is currently being used.

EFAULT path points to an illegal address.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT One or more components of the accounting file pathname do not
exist.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user of the calling process is not super-user.

EROFS The named file resides on a read-only file system.

SEE ALSO exit(2), signal(3C), acct(4)

modified 5 Jul 1990 2-45

adjtime (2) System Calls SunOS 5.4

NAME adjtime − correct the time to allow synchronization of the system clock

SYNOPSIS #include <sys/time.h>

int adjtime(struct timeval ∗delta , struct timeval ∗olddelta);

DESCRIPTION adjtime() adjusts the system’s notion of the current time, as returned by
gettimeofday(3C), advancing or retarding it by the amount of time specified in the struct
timeval pointed to by delta .

The adjustment is effected by speeding up (if that amount of time is positive) or slowing
down (if that amount of time is negative) the system’s clock by some small percentage,
generally a fraction of one percent. Thus, the time is always a monotonically increasing
function. A time correction from an earlier call to adjtime() may not be finished when
adjtime() is called again. If olddelta is not a NULL pointer, then the structure it points to
will contain, upon successful return, the number of seconds and/or microseconds still to
be corrected from the earlier call. If olddelta is a NULL pointer, the corresponding infor-
mation will not be returned.

This call may be used in time servers that synchronize the clocks of computers in a local
area network. Such time servers would slow down the clocks of some machines and
speed up the clocks of others to bring them to the average network time.

Only the super-user may adjust the time of day.

The adjustment value will be silently rounded to the resolution of the system clock.

RETURN VALUES A 0 return value indicates that the call succeeded. A −1 return value indicates an error
occurred, and in this case an error code is stored into the global variable errno.

ERRORS The following error codes may be set in errno:

EFAULT delta or olddelta points outside the process’s allocated address space, or
olddelta points to a region of the process’ allocated address space that is
not writable.

EINVAL tv_usec field in delta is not within valid range (−1000000 to 1000000).

EPERM The effective user of the calling process is not super-user.

SEE ALSO date(1), gettimeofday(3C)

2-46 modified 14 Mar 1994

SunOS 5.4 System Calls alarm (2)

NAME alarm − set a process alarm clock

SYNOPSIS #include <unistd.h>

unsigned alarm(unsigned sec);

DESCRIPTION alarm() instructs the alarm clock of the calling process to send the signal SIGALRM to
the calling process after the number of real time seconds specified by sec have elapsed
(see signal(3C)).

Alarm requests are not stacked; successive calls reset the alarm clock of the calling pro-
cess.

If sec is 0, any previously made alarm request is canceled.

fork sets the alarm clock of a new process to 0 (see fork(2)). A process created by the
exec family of routines inherits the time left on the old process’s alarm clock.

RETURN VALUES alarm() returns the amount of time previously remaining in the alarm clock of the calling
process.

SEE ALSO exec(2), fork(2), pause(2), signal(3C)

modified 29 Jul 1991 2-47

audit (2) System Calls SunOS 5.4

NAME audit − write a record to the audit log

SYNOPSIS cc [flag . . .] file . . . −lbsm −lsocket −lnsl −lintl [library . . .]

#include <sys/param.h>
#include <bsm/audit.h>

int audit(caddr_t record, int length);

AVAILABILITY The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION The audit(2) system call is used to write a record to the system audit log. The data
pointed to by record is written to the log after a minimal consistency check, with the length
parameter specifying the size of the record in bytes. The data should be a well-formed
audit record as described by audit.log(4).

The kernel validates the record header token type and length, and sets the time stamp
value before writing the record to the audit log. The kernel does not do any preselection
for user-level generated events. If the audit policy is set to include sequence or trailer
tokens, the kernel will append them to the record.

Only the super-user may successfully execute this call.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS audit() fails if one or more of the following are true:

EFAULT record points outside the process’s allocated address space.

EINVAL The record header token ID is invalid or the length is either less than the
header token size or greater than MAXAUDITDATA.

EPERM The process’s effective user ID is not super-user.

SEE ALSO auditd(1M), auditon(2), auditsvc(2), getaudit(2), audit.log(4)

2-48 modified 6 May 1993

SunOS 5.4 System Calls auditon (2)

NAME auditon − manipulate auditing

SYNOPSIS cc [flag . . .] file . . . −lbsm −lsocket −lnsl −lintl [library . . .]

#include <sys/param.h>
#include <bsm/audit.h>

int auditon(int cmd, caddr_t data , int length);

AVAILABILITY The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION The auditon(2) system call performs various audit subsystem control operations. The
cmd argument designates the particular audit control command. The data argument is a
pointer to command specific data. The length argument is the length in bytes of the com-
mand specific data.

The following commands are supported:

A_GETCOND
Returns the system audit on/off/disabled condition in the integer long pointed
to by data.

A_SETCOND
Sets the system’s audit on/off condition to the value in the integer long pointed
to by data. If the current state is disabled, the BSM audit module must be enabled
by bsmconv(1M) before auditing can be turned on.

A_GETCLASS
Returns the event to class mapping for the designated audit event. The data argu-
ment points to the au_evclass_map structure containing the event number. The
preselection class mask is returned in the same structure.

A_SETCLASS
Sets the event class preselection mask for the designated audit event. The data
argument points to the au_evclass_map structure containing the event number
and class mask.

A_GETKMASK
Returns the kernel preselection mask in the au_mask structure pointed to by data.

A_SETKMASK
Sets the kernel preselection mask. The data argument points to the au_mask
structure containing the class mask.

A_GETPINFO
Returns the audit ID, preselection mask, terminal ID and audit session ID of the
specified process in the auditpinfo structure pointed to by data.

A_SETPMASK
Sets the preselection mask of the specified process. The data argument points to
the auditpinfo structure containing the process ID and the preselection mask.

modified 6 May 1993 2-49

auditon (2) System Calls SunOS 5.4

A_SETUMASK
Sets the preselection mask for all processes with the specified audit ID. The data
argument points to the auditinfo structure containing the audit ID and the
preselection mask.

A_SETSMASK
Sets the preselection mask for all processes with the specified audit session ID.
The data argument points to the auditinfo structure containing the audit session
ID and the preselection mask.

A_GETQCTRL
Returns the kernel audit queue control parameters. These control the high and
low water marks of the number of audit records allowed in the audit queue.
Another parameter controls the size of the data buffer used by auditsvc(2) to
write data to the audit trail. There is also a parameter that specifies a delay before
data is written to the audit trail. The audit queue parameters are returned in the
au_qctrl structure pointed to by data.

A_SETQCTRL
Sets the kernel audit queue control parameters. The data argument points to the
au_qctrl structure containing the audit queue control parameters.

A_GETCWD
Returns the current working directory as kept by the audit subsystem. This is a
path anchored on the real root, rather than on the active root. The data argument
points to a buffer into which the path is copied. The length argument provides the
length of the buffer.

A_GETCAR
Returns the current active root as kept by the audit subsystem. This path may be
used to anchor an absolute path for a path token generated by an application.
The data argument points to a buffer into which the path is copied. The length
argument provides the length of the buffer.

A_GETSTAT
Returns the system audit statistics in the audit_stat structure pointed to by data.

A_SETSTAT
Resets system audit statistics values.

A_GETPOLICY
Returns the audit policy flags in the integer long pointed to by data.

A_SETPOLICY
Sets the audit policy flags to the values in the integer long pointed to by data. The
following policy flags are recognized:

AUDIT_CNT Do not suspend processes when audit storage is full or inaccessi-
ble. The default action is to suspend processes until storage
becomes available.

AUDIT_ARGV Include the argument list for the exec(2) system call in the audit
record. The default action is not to include this information.

2-50 modified 6 May 1993

SunOS 5.4 System Calls auditon (2)

AUDIT_ARGE Include the environment variables for the execv(2) system call in
the audit record. The default action is not to include this informa-
tion.

AUDIT_SEQ Add a sequence token to each audit record. The default action is
not to include it.

AUDIT_TRAIL Append a trailer token to each audit record. The default action is
not to include it.

AUDIT_GROUP
Include the supplementary groups list in audit records. The
default action is not to include it.

AUDIT_PATH Include secondary paths in audit records. Examples of secon-
dary paths are dynamically loaded shared library modules and
the command shell path for executable scripts.

Only the super-user may successfully execute this call.

RETURN VALUES auditon() returns:

0 on success.

−1 on failure and sets errno to indicate the error.

ERRORS EFAULT The copy of data to/from the kernel failed.

EINVAL One of the system call arguments was illegal.

EPERM The process’s effective user ID is not super-user.

SEE ALSO auditd(1M), bsmconv(1M), audit(2), auditsvc(2), audit.log(4)

modified 6 May 1993 2-51

auditsvc (2) System Calls SunOS 5.4

NAME auditsvc − write audit log to specified file descriptor

SYNOPSIS cc [flag . . .] file . . . −lbsm −lsocket −lnsl −lintl [library . . .]

#include <sys/param.h>
#include <bsm/audit.h>

int auditsvc(int fd, int limit);

AVAILABILITY The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION The auditsvc() system call specifies the audit log file to the kernel. The kernel writes
audit records to this file until an exceptional condition occurs and then the call returns.
The parameter fd is a file descriptor that identifies the audit file. Programs should open
this file for writing before calling auditsvc(). The parameter limit specifies the number of
free blocks that must be available in the audit file system, and causes auditsvc() to return
when the free disk space on the audit filesystem drops below this limit. Thus, the invok-
ing program can take action to avoid running out of disk space. The auditsvc() system
call does not return until one of the following conditions occurs:

· The process receives a signal that is not blocked or ignored.

· An error is encountered writing to the audit log file.

· The minimum free space (as specified by limit), has been reached.

Only processes with an effective user ID of super-user may execute this call successfully.

RETURN VALUES auditsvc() returns only on an error.

ERRORS EAGAIN The descriptor referred to a stream , was marked for System V-style non-
blocking I/O, and no data could be written immediately.

EBADF fd is not a valid descriptor open for writing.

EBUSY A second process attempted to perform this call.

A second process attempted to perform this call.

ENOSPC The user’s quota of disk blocks on the file system containing the file has
been exhausted.

Audit filesystem space is below the specified limit.

EFBIG An attempt was made to write a file that exceeds the process’s file size
limit or the maximum file size.

EINTR The call is forced to terminate prematurely due to the arrival of a signal
whose SV_INTERRUPT bit in sv_flags is set (see sigvec(3B)).
signal(3C), sets this bit for any signal it catches.

EINVAL Auditing is disabled (see auditon(2)).

fd does not refer to a file of an appropriate type. Regular files are always
appropriate.

2-52 modified 6 May 1993

SunOS 5.4 System Calls auditsvc (2)

EIO An I/O error occurred while reading from or writing to the file system.

ENOSPC There is no free space remaining on the file system containing the file.

ENXIO A hangup occurred on the stream being written to.

EPERM The process’s effective user ID is not super-user.

EWOULDBLOCK
The file was marked for 4.2BSD-style non-blocking I/O, and no data
could be written immediately.

SEE ALSO auditd(1M), audit(2), auditon(2), sigvec(3B), audit.log(4)

modified 6 May 1993 2-53

brk (2) System Calls SunOS 5.4

NAME brk, sbrk − change the amount of space allocated for the calling process’s data segment

SYNOPSIS #include <unistd.h>

int brk(void ∗endds);

void ∗sbrk(int incr);

DESCRIPTION brk() and sbrk() are used to change dynamically the amount of space allocated for the
calling process’s data segment (see exec(2)). The change is made by resetting the
process’s break value and allocating the appropriate amount of space. The break value is
the address of the first location beyond the end of the data segment. The amount of allo-
cated space increases as the break value increases. Newly allocated space is set to zero.
If, however, the same memory space is reallocated to the same process its contents are
undefined.

When a program begins execution using execve() the break is set at the highest location
defined by the program and data storage areas.

The getrlimit(2) function may be used to determine the maximum permissible size of the
data segment; it will not be possible to set the break beyond the rlim_max value returned
from a call to getrlimit(), that is to say, “etext + rlim.rlim_max.” (See end(3C) for the
definition of etext().)

brk() sets the break value to endds and changes the allocated space accordingly.

sbrk() adds incr bytes to the break value and changes the allocated space accordingly.
incr can be negative, in which case the amount of allocated space is decreased.

RETURN VALUES Upon successful completion, brk() returns a value of 0 and sbrk() returns the old break
value. Otherwise, a value of −1 is returned and errno is set to indicate the error.

ERRORS brk() and sbrk() will fail and no additional memory will be allocated if one of the fol-
lowing occurs:

ENOMEM The data segment size limit, as set by setrlimit() (see getrlimit(2)),
would be exceeded.

ENOMEM The maximum possible size of a data segment (compiled into the sys-
tem) would be exceeded.

ENOMEM Insufficient space exists in the swap area to support the expansion.

ENOMEM Out of address space; the new break value would extend into an area of
the address space defined by some previously established mapping (see
mmap(2)).

EAGAIN Total amount of system memory available for private pages is tem-
porarily insufficient. This may occur even though the space requested
was less than the maximum data segment size (see ulimit(2)).

2-54 modified 28 Mar 1994

SunOS 5.4 System Calls brk (2)

SEE ALSO exec(2), getrlimit(2), mmap(2), shmop(2), ulimit(2), end(3C), malloc(3C)

WARNINGS Programs combining the brk() and sbrk() functions and malloc() will not work. Many
library routines use malloc() internally, so use brk() and sbrk() only when you know
that malloc() definitely will not be used by any library routine.

NOTES The value of incr may be adjusted by the system before setting the new break value.
Upon successful completion, the implementation guarantees a minimum of incr bytes
will be added to the data segment if incr is a positive value. If incr is a negative value, a
maximum of incr bytes will be removed from the data segment. This adjustment may not
be necessary for all machine architectures.

BUGS Setting the break may fail due to a temporary lack of swap space. It is not possible to dis-
tinguish this from a failure caused by exceeding the maximum size of the data segment
without consulting getrlimit().

modified 28 Mar 1994 2-55

chdir (2) System Calls SunOS 5.4

NAME chdir, fchdir − change working directory

SYNOPSIS #include <unistd.h>

int chdir(const char ∗path);

int fchdir(int fildes);

DESCRIPTION chdir() and fchdir() cause a directory pointed to by path or fildes to become the current
working directory. The starting point for path searches for path names not beginning
with /. path points to the path name of a directory. The fildes argument to fchdir() is an
open file descriptor of a directory.

In order for a directory to become the current directory, a process must have execute
(search) access to the directory.

RETURN VALUES Upon successful completion, a value of zero is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS chdir() will fail and the current working directory will be unchanged if one or more of
the following are true:

EACCES Search permission is denied for any component of the path name.

EFAULT path points to an illegal address.

EINTR A signal was caught during the execution of the chdir() function.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path .

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT Either a component of the path prefix or the directory named by
path does not exist or is a null pathname.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the path name is not a directory.

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

2-56 modified 29 Jul 1991

SunOS 5.4 System Calls chdir (2)

fchdir() will fail and the current working directory will be unchanged if one or more of
the following are true:

EACCES Search permission is denied for fildes.

EBADF fildes is not an open file descriptor.

EINTR A signal was caught during the execution of the fchdir() function.

EIO An I/O error occurred while reading from or writing to the file
system.

ENOLINK fildes points to a remote machine and the link to that machine is no
longer active.

ENOTDIR The open file descriptor fildes does not refer to a directory.

SEE ALSO chroot(2)

modified 29 Jul 1991 2-57

chmod (2) System Calls SunOS 5.4

NAME chmod, fchmod − change access permission mode of file

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>

int chmod(const char ∗path , mode_t mode);

int fchmod(int fildes, mode_t mode);

DESCRIPTION chmod() and fchmod() set the access permission portion of the mode of the file whose
name is given by path or referenced by the open file descriptor fildes to the bit pattern con-
tained in mode . Access permission bits are interpreted as follows:

S_ISUID 04000 Set user ID on execution.
S_ISGID 020#0 Set group ID on execution

if # is 7, 5, 3, or 1.
Enable mandatory file/record locking
if # is 6, 4, 2, or 0.

S_ISVTX 01000 Save text image after execution.
S_IRWXU 00700 Read, write, execute by owner.
S_IRUSR 00400 Read by owner.
S_IWUSR 00200 Write by owner.
S_IXUSR 00100 Execute (search if a directory) by owner.
S_IRWXG 00070 Read, write, execute by group.
S_IRGRP 00040 Read by group.
S_IWGRP 00020 Write by group.
S_IXGRP 00010 Execute by group.
S_IRWXO 00007 Read, write, execute (search) by others.
S_IROTH 00004 Read by others.
S_IWOTH 00002 Write by others.
S_IXOTH 00001 Execute by others.

Modes are constructed by OR’ing the access permission bits.

The effective user ID of the process must match the owner of the file or the process must
have the appropriate privilege to change the mode of a file.

If the process is not a privileged process and the file is not a directory, mode bit 01000
(save text image on execution) is cleared.

If neither the process is privileged, nor the file’s group is a member of the process’s sup-
plementary group list, and the effective group ID of the process does not match the group
ID of the file, mode bit 02000 (set group ID on execution) is cleared.

2-58 modified 29 Jul 1991

SunOS 5.4 System Calls chmod (2)

If a directory is writable and has S_ISVTX (the sticky bit) set, files within that directory
can be removed or renamed only if one or more of the following is true (see unlink(2)
and rename(2)):

· the user owns the file

· the user owns the directory

· the file is writable by the user

· the user is a privileged user

If a directory has the set group ID bit set, a given file created within that directory will
have the same group ID as the directory, if that group ID is part of the group ID set of the
process that created the file. Otherwise, the newly created file’s group ID will be set to the
effective group ID of the creating process.

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010 (execute or
search by group) is not set, mandatory file/record locking will exist on a regular file. This
may affect future calls to open(2), creat(2), read(2), and write(2) on this file.

Upon successful completion, chmod() and fchmod() mark for update the st_ctime field
of the file.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS chmod() will fail and the file mode will be unchanged if one or more of the following are
true:

EACCES Search permission is denied on a component of the path prefix of
path .

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path .

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK fildes points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

modified 29 Jul 1991 2-59

chmod (2) System Calls SunOS 5.4

EPERM The effective user ID does not match the owner of the file and is
not super-user.

EROFS The file referred to by path resides on a read-only file system.

fchmod() will fail and the file mode will be unchanged if:

EBADF fildes is not an open file descriptor

EIO An I/O error occurred while reading from or writing to the file
system.

EINTR A signal was caught during execution of the fchmod() function.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

EPERM The effective user ID does not match the owner of the file and the
process does not have appropriate privilege.

EROFS The file referred to by fildes resides on a read-only file system.

SEE ALSO chmod(1), chown(2), creat(2), fcntl(2), mknod(2), open(2), read(2), rename(2), stat(2),
write(2), mkfifo(3C), stat(5)

System Services Guide

2-60 modified 29 Jul 1991

SunOS 5.4 System Calls chown (2)

NAME chown, lchown, fchown − change owner and group of a file

SYNOPSIS #include <unistd.h>
#include <sys/types.h>

int chown(const char ∗path , uid_t owner, gid_t group);

int lchown(const char ∗path , uid_t owner, gid_t group);

int fchown(int fildes, uid_t owner, gid_t group);

DESCRIPTION chown() sets the owner ID and group ID of the file specified by path or referenced by the
open file descriptor fildes to owner and group respectively. If owner or group is specified as
−1, chown() does not change the corresponding ID of the file.

The function lchown() sets the owner ID and group ID of the named file just as chown()
does, except in the case where the named file is a symbolic link. In this case . lchown()
changes the ownership of the symbolic link file itself, while chown() changes the owner-
ship of the file or directory to which the symbolic link refers.

If chown(), lchown(), or fchown() is invoked by a process other than super-user, the
set-user-ID and set-group-ID bits of the file mode, S_ISUID and S_ISGID respectively,
are cleared (see chmod(2)).

The operating system has a configuration option, {_POSIX_CHOWN_RESTRICTED}, to
restrict ownership changes for the chown(), lchown(), and fchown() functions. When
{_POSIX_CHOWN_RESTRICTED} is not in effect, the effective user ID of the process
must match the owner of the file or the process must be the super-user to change the
ownership of a file. When {_POSIX_CHOWN_RESTRICTED} is in effect, the chown(),
lchown(), and fchown() functions, for users other than super-user, prevent the owner of
the file from changing the owner ID of the file and restrict the change of the group of the
file to the list of supplementary group IDs.

Upon successful completion, chown(), fchown() and lchown() mark for update the
st_ctime field of the file.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS chown() and lchown() fail and the owner and group of the named file remain
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix of
path .

EFAULT path points to an illegal address.

EINTR A signal was caught during the chown() or lchown() functions.

EINVAL group or owner is out of range.

EIO An I/O error occurred while reading from or writing to the file
system.

modified 11 Jul 1991 2-61

chown (2) System Calls SunOS 5.4

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it. Too many symbolic links
were encountered in translating path .

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOENT Either a component of the path prefix or the file referred to by path
does not exist or is a null pathname.

ENOTDIR A component of the path prefix of path is not a directory.

EPERM The effective user ID does not match the owner of the file or the
process is not the super-user and
{_POSIX_CHOWN_RESTRICTED} indicates that such privilege
is required.

EROFS The named file resides on a read-only file system.

fchown() fails and the owner and group of the named file remain unchanged if one or
more of the following are true:

EBADF fildes is not an open file descriptor.

EIO An I/O error occurred while reading from or writing to the file
system.

EINTR A signal was caught during execution of the function.

ENOLINK fildes points to a remote machine and the link to that machine is no
longer active.

EINVAL group or owner is out of range.

EPERM The effective user ID does not match the owner of the file or the
process is not the super-user and
{_POSIX_CHOWN_RESTRICTED} indicates that such privilege
is required.

EROFS The named file referred to by fildes resides on a read-only file sys-
tem.

SEE ALSO chgrp(1), chown(1), chmod(2)

2-62 modified 11 Jul 1991

SunOS 5.4 System Calls chroot (2)

NAME chroot, fchroot − change root directory

SYNOPSIS #include <unistd.h>

int chroot(const char ∗path);

int fchroot(int fildes);

DESCRIPTION chroot() and fchroot() cause a directory to become the root directory, the starting point
for path searches for path names beginning with /. The user’s working directory is unaf-
fected by the chroot() and fchroot() functions.

path points to a path name naming a directory. The fildes argument to fchroot() is the
open file descriptor of the directory which is to become the root.

The effective user ID of the process must be super-user to change the root directory.
fchroot() is further restricted in that while it is always possible to change to the system
root using this call, it is not guaranteed to succeed in any other case, even should fildes be
valid in all respects.

The ‘‘..’’ entry in the root directory is interpreted to mean the root directory itself. Thus,
‘‘..’’ cannot be used to access files outside the subtree rooted at the root directory.
Instead, fchroot() can be used to set the root back to a directory which was opened
before the root directory was changed.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS chroot() will fail and the root directory will remain unchanged if one or more of the fol-
lowing are true:

EACCES Search permission is denied for a component of the path prefix of
dirname.

Search permission is denied for the directory referred to by dir-
name.

EBADF The descriptor is not valid.

EFAULT path points to an illegal address.

EINVAL fchroot() attempted to change to a directory which is not the sys-
tem root and external circumstances do not allow this.

EINTR A signal was caught during the chroot() function.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the

modified 4 May 1994 2-63

chroot (2) System Calls SunOS 5.4

length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT The named directory does not exist or is a null pathname.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR Any component of the path name is not a directory.

EPERM The effective user of the calling process is not super-user.

SEE ALSO chroot(1M), chdir(2)

WARNINGS The only use of fchroot() that is appropriate is to change back to the system root.

2-64 modified 4 May 1994

SunOS 5.4 System Calls close (2)

NAME close − close a file descriptor

SYNOPSIS #include <unistd.h>

int close(int fildes);

DESCRIPTION close() closes the file descriptor indicated by fildes. All outstanding record locks owned
by the process (on the file indicated by fildes) are removed. fildes is an open file descrip-
tor.

When all file descriptors associated with the open file description have been closed, the
open file description is freed.

If the link count of the file is zero, when all file descriptors associated with the file have
been closed, the space occupied by the file is freed and the file is no longer accessible.

If a STREAMS-based (see intro(2)) fildes is closed, and the calling process had previously
registered to receive a SIGPOLL signal (see signal(3C)) for events associated with that
stream (see I_SETSIG in streamio(7)), the calling process will be unregistered for events
associated with the stream. The last close() for a stream causes the stream associated
with fildes to be dismantled. If O_NDELAY and O_NONBLOCK are clear and there
have been no signals posted for the stream, and if there are data on the module’s write
queue, close() waits up to 15 seconds (for each module and driver) for any output to
drain before dismantling the stream. The time delay can be changed using an
I_SETCLTIME ioctl request (see streamio(7)). If O_NDELAY or O_NONBLOCK is set,
or if there are any pending signals, close() does not wait for output to drain, and disman-
tles the stream immediately.

If fildes is associated with one end of a pipe, the last close() causes a hangup to occur on
the other end of the pipe. In addition, if the other end of the pipe has been named (see
fattach(3C)), the last close() forces the named end to be detached (see fdetach(3C)). If
the named end has no open processes associated with it and becomes detached, the
stream associated with that end is also dismantled.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS The named file is closed unless one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

EINTR A signal was caught during the close() function.

ENOLINK fildes is on a remote machine and the link to that machine is no longer
active.

EIO Data was not written out properly.

modified 29 Jul 1991 2-65

close (2) System Calls SunOS 5.4

SEE ALSO intro(2), creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2), fattach(3C), fdetach(3C),
signal(3C), signal(5), streamio(7)

See ‘‘File Description’’ in intro(2).

2-66 modified 29 Jul 1991

SunOS 5.4 System Calls creat (2)

NAME creat − create a new file or rewrite an existing one

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int creat(const char ∗path , mode_t mode);

DESCRIPTION creat() creates a new ordinary file or prepares to rewrite an existing file named by the
path name pointed to by path .

If the file exists, the length is truncated to 0 and the mode and owner are unchanged.

If the file does not exist the file’s owner ID is set to the effective user ID of the process.
The group ID of the file is set to the effective group ID of the process, or if the S_ISGID
bit is set in the parent directory then the group ID of the file is inherited from the parent
directory. The access permission bits of the file mode are set to the value of mode
modified as follows:

· If the group ID of the new file does not match the effective group ID or one of
the supplementary group IDs, the S_ISGID bit is cleared.

· All bits set in the process’s file mode creation mask are cleared (see umask(2)).

· The “save text image after execution bit” of the mode is cleared (see chmod(2)
for the values of mode).

Upon successful completion, a write-only file descriptor is returned and the file is open
for writing, even if the mode does not permit writing. The file pointer is set to the begin-
ning of the file. The file descriptor is set to remain open across exec functions (see
fcntl(2)). A new file may be created with a mode that forbids writing.

The call creat(path, mode) is equivalent to:

open(path, O_WRONLY | O_CREAT | O_TRUNC, mode)

RETURN VALUES Upon successful completion a non-negative integer, namely the lowest numbered unused
file descriptor, is returned. Otherwise, a value of −1 is returned, no files are created or
modified, and errno is set to indicate the error.

ERRORS creat() fails if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix.

EACCES The file does not exist and the directory in which the file is to be
created does not permit writing.

EACCES The file exists and write permission is denied.

EAGAIN The file exists, mandatory file/record locking is set, and there are
outstanding record locks on the file (see chmod(2)).

EFAULT path points to an illegal address.

EINTR A signal was caught during the creat() function.

modified 17 Dec 1991 2-67

creat (2) System Calls SunOS 5.4

EISDIR The named file is an existing directory.

ELOOP Too many symbolic links were encountered in translating path.

EMFILE The process has too many open files (see getrlimit(2)).

EMULTIHOP Components of path require hopping to multiple remote machines.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENFILE The system file table is full.

ENOENT A component of the path prefix does not exist.

ENOENT The path name is null.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOSPC The file system is out of inodes.

ENOTDIR A component of the path prefix is not a directory.

EROFS The named file resides or would reside on a read-only file system.

SEE ALSO chmod(2), close(2), dup(2), fcntl(2), getrlimit(2), lseek(2), open(2), read(2), umask(2),
write(2), stat(5)

2-68 modified 17 Dec 1991

SunOS 5.4 System Calls dup (2)

NAME dup − duplicate an open file descriptor

SYNOPSIS #include <unistd.h>

int dup(int fildes);

DESCRIPTION dup() returns a new file descriptor having the following in common with the original
open file descriptor fildes:

Same open file (or pipe).

Same file pointer (that is, both file descriptors share one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec functions (see fcntl(2)).

The file descriptor returned is the lowest one available.

The dup(fildes) is equivalent to

fcntl(fildes, F_DUPFD, 0)

RETURN VALUES Upon successful completion a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of −1 is returned and errno is set to indicate the error.

ERRORS dup() will fail if one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

EINTR A signal was caught during the dup() function.

EMFILE The process has too many open files (see getrlimit(2)).

ENOLINK fildes is on a remote machine and the link to that machine is no longer
active.

SEE ALSO close(2), creat(2), exec(2), fcntl(2), getrlimit(2), open(2), pipe(2), dup2(3C), lockf(3C)

modified 23 Feb 1993 2-69

exec (2) System Calls SunOS 5.4

NAME exec, execl, execv, execle, execve, execlp, execvp − execute a file

SYNOPSIS #include <unistd.h>

int execl(const char ∗path , const char ∗arg0 , . . ., const char ∗argn, char ∗ /∗NULL∗/);

int execv(const char ∗path , char ∗const argv[]);

int execle (const char ∗path ,char ∗const arg0[], . . . , const char ∗argn,
char ∗ /∗NULL∗/, char ∗const envp[]);

int execve (const char ∗path , char ∗const argv[], char ∗const envp[]);

int execlp (const char ∗file, const char ∗arg0 , . . ., const char ∗argn, char ∗ /∗NULL∗/);

int execvp (const char ∗file, char ∗const argv[]);

DESCRIPTION exec() in all its forms overlays a new process image on an old process. The new process
image is constructed from an ordinary, executable file. This file is either an executable
object file, or a file of data for an interpreter. There can be no return from a successful
exec() because the calling process image is overlaid by the new process image.

An interpreter file begins with a line of the form

#! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument. When an
interpreter file is exec’d, the system execs the specified interpreter. The pathname
specified in the interpreter file is passed as arg0 to the interpreter. If arg was specified in
the interpreter file, it is passed as arg1 to the interpreter. The remaining arguments to the
interpreter are arg0 through argn of the originally exec’d file.

When a C program is executed, it is called as follows:

int main (int argc, char ∗∗argv[], char ∗∗envp[]);

where argc is the argument count, argv is an array of character pointers to the arguments
themselves, and envp is an array of character pointers to the environment strings. As
indicated, argc is at least one, and the first member of the array points to a string contain-
ing the name of the file.

path points to a path name that identifies the new process file.

file points to the new process file. If file does not contain a slash character, the path prefix
for this file is obtained by a search of the directories passed in the PATH environment
variable (see environ(5)). The environment is supplied typically by the shell (see sh(1)).

If the new process file is not an executable object file, execlp() and execvp() use the con-
tents of that file as standard input to sh(1).

The arguments arg0, . . ., argn point to null-terminated character strings. These strings
constitute the argument list available to the new process image. Conventionally at least
arg0 should be present. It will become the name of the process, as displayed by the ps
command. arg0 points to a string that is the same as path (or the last component of path).
The list of argument strings is terminated by a (char ∗∗)0 argument.

2-70 modified 17 Dec 1991

SunOS 5.4 System Calls exec (2)

argv is an array of character pointers to null-terminated strings. These strings constitute
the argument list available to the new process image. By convention, argv must have at
least one member, and it should point to a string that is the same as path (or its last com-
ponent). argv is terminated by a null pointer.

envp is an array of character pointers to null-terminated strings. These strings constitute
the environment for the new process image. envp is terminated by a null pointer. For
execl(), execv(), execvp(), and execlp(), the C run-time start-off routine places a pointer
to the environment of the calling process in the global object extern char ∗∗∗∗environ, and
it is used to pass the environment of the calling process to the new process.

File descriptors open in the calling process remain open in the new process, except for
those whose close-on-exec flag is set; (see fcntl(2)). For those file descriptors that remain
open, the file pointer is unchanged.

Signals that are being caught by the calling process are set to the default disposition in the
new process image (see signal(3C)). Otherwise, the new process image inherits the sig-
nal dispositions of the calling process.

If the set-user-ID mode bit of the new process file is set (see chmod(2)), exec() sets the
effective user ID of the new process to the owner ID of the new process file. Similarly, if
the set-group-ID mode bit of the new process file is set, the effective group ID of the new
process is set to the group ID of the new process file. The real user ID and real group ID
of the new process remain the same as those of the calling process.

If the effective user-ID is root or super-user, the set-user-ID and set-group-ID bits will be
honored when the process is being controlled by ptrace.

The shared memory segments attached to the calling process will not be attached to the
new process (see shmop(2)). Memory mappings in the calling process are unmapped
before the new process begins execution (see mmap(2)).

Profiling is disabled for the new process; see profil(2).

Timers created by timer_create(3R) are deleted before the new process begins execution.

Any outstanding asynchronous I/O operations may be cancelled.

The new process also inherits the following attributes from the calling process:

nice value (see nice(2))
scheduler class and priority (see priocntl(2))
process ID
parent process ID
process group ID
supplementary group IDs
semadj values (see semop(2))
session ID (see exit(2) and signal(3C))
trace flag (see ptrace(2) request 0)
time left until an alarm (see alarm(2))
current working directory

modified 17 Dec 1991 2-71

exec (2) System Calls SunOS 5.4

root directory
file mode creation mask (see umask(2))
resource limits (see getrlimit(2))
utime, stime, cutime, and cstime (see times(2))
file-locks (see fcntl(2) and lockf(3C))
controlling terminal
process signal mask (see sigprocmask(2))
pending signals (see sigpending(2))

Upon successful completion, exec() marks for update the st_atime field of the file, unless
the file is on a read-only file system. Should the exec() succeed, the process image file is
considered to have been open() -ed. The corresponding close() is considered to occur at
a time after this open, but before process termination or successful completion of a subse-
quent call to exec().

RETURN VALUES If exec() returns to the calling process, an error has occurred; the return value is −1 and
errno is set to indicate the error.

ERRORS exec() will fail and return to the calling process if one or more of the following are true:

E2BIG The number of bytes in the new process’s argument list is greater
than the system-imposed limit of 5120 bytes. The argument list
limit is sum of the size of the argument list plus the size of the
environment’s exported shell variables.

EACCES Search permission is denied for a directory listed in the new pro-
cess file’s path prefix.

EACCES The new process file is not an ordinary file.

EACCES The new process file mode denies execute permission.

EAGAIN Total amount of system memory available when reading using
raw I/O is temporarily insufficient.

EFAULT An argument points to an illegal address.

EINTR A signal was caught during the exec() function.

ELOOP Too many symbolic links were encountered in translating path or
file.

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system type does not allow it.

ENAMETOOLONG The length of the file or path argument exceeds {PATH_MAX}, or
the length of a file or path component exceeds {NAME_MAX}
while {_POSIX_NO_TRUNC} is in effect.

ENOENT One or more components of the new process path name of the file
do not exist or is a null pathname.

ENOEXEC The exec() is not an execlp() or execvp(), and the new process file
has the appropriate access permission but an invalid magic
number in its header.

2-72 modified 17 Dec 1991

SunOS 5.4 System Calls exec (2)

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOMEM The new process requires more memory than is allowed by the
limit imposed by getrlimit(), see brk(2). MAXMEM.

ENOTDIR A component of the new process path of the file prefix is not a
directory.

SEE ALSO ps(1), sh(1), alarm(2), brk(2), chmod(2), exit(2), fcntl(2), fork(2), getrlimit(2), mmap(2),
nice(2), priocntl(2), profil(2), ptrace(2), semop(2), shmop(2), signal(3C), sigpending(2),
sigprocmask(2), times(2), umask(2), lockf(3C), timer_create(3R), system(3S), a.out(4),
environ(5)

WARNINGS If a program is setuid to a user ID other than the super-user, and the program is executed
when the real user ID is super-user, then the program has some of the powers of a super-
user as well.

modified 17 Dec 1991 2-73

exit (2) System Calls SunOS 5.4

NAME exit, _exit − terminate process

SYNOPSIS #include <unistd.h>

void _exit(int status);

DESCRIPTION _exit() terminates the calling process with the following consequences:

All of the file descriptors (and thing built on top of file descriptors) open in the
calling process are closed.

A SIGCHLD signal is sent to the calling process’s parent process.

If the parent process of the calling process has not specified the
SA_NOCLDWAIT flag (see sigaction(2)), the calling process is transformed into
a “zombie process.” A zombie process is a process that only occupies a slot in the
process table. It has no other space allocated either in user or kernel space. The
process table slot that it occupies is partially overlaid with time accounting infor-
mation (see <sys/proc.h>) to be used by the times function.

The parent process ID of all of the calling process’s existing child processes and
zombie processes is set to 1. This means the initialization process (see intro(2))
inherits each of these processes.

Each attached shared memory segment is detached and the value of
shm_nattach in the data structure associated with its shared memory identifier is
decremented by 1. Memory mappings created in the process are unmapped.

For each semaphore for which the calling process has set a semadj value (see
semop(2)), that semadj value is added to the semval of the specified semaphore.

If the process has process, text or data locks, an unlock is performed (see
plock(3C) and memcntl(2)).

All open named semaphores in the process are closed as if by appropriate calls to
sem_close(3R). All open message queues in the process are closed as if by
appropriate calls to mq_close(3R). Any outstanding asynchronous I/O opera-
tions may be cancelled.

An accounting record is written on the accounting file if the system’s accounting
routine is enabled (see acct(2)).

If the process is a controlling process, SIGHUP is sent to the foreground process
group of its controlling terminal and its controlling terminal is deallocated.

If the calling process has any stopped children whose process group will be
orphaned when the calling process exits, or if the calling process is a member of a
process group that will be orphaned when the calling process exits, that process
group will be sent SIGHUP and SIGCONT signals.

2-74 modified 29 Jul 1991

SunOS 5.4 System Calls exit (2)

SEE ALSO intro(2), acct(2), plock(3C), semop(2), sigaction(2), signal(3C), times(2), wait(2),
memcntl(2), atexit(3C), exit(3C), sem_close(3R), mq_close(3R)

NOTES See signal(3C) NOTES.

modified 29 Jul 1991 2-75

fcntl (2) System Calls SunOS 5.4

NAME fcntl − file control

SYNOPSIS #include <sys/types.h>
#include <fcntl.h>

int fcntl(int fildes, int cmd, /∗ arg ∗/ . . .);

DESCRIPTION fcntl() provides for control over open files. fildes is an open file descriptor (see intro(2)).

fcntl() may take a third argument, arg, whose data type, value and use depend upon the
value of cmd. cmd specifies the operation to be performed by fcntl() and may be one of
the following:

F_DUPFD Return a new file descriptor with the following characteristics:

Lowest numbered available file descriptor greater than or equal to
the integer value given as the third argument.

Same open file (or pipe) as the original file.

Same file pointer as the original file (that is, both file descriptors
share one file pointer).

Same access mode (read, write, or read/write) as the original file.

Shares any locks associated with the original file descriptor.

Same file status flags (that is, both file descriptors share the same file
status flags) as the original file.

The close-on-exec flag (see F_GETFD) associated with the new file
descriptor is set to remain open across exec(2) functions.

F_GETFD Get the close-on-exec flag associated with fildes. If the low-order bit is 0,
the file will remain open across exec. Otherwise, the file will be closed
upon execution of exec.

F_SETFD Set the close-on-exec flag associated with fildes to the low-order bit of the
integer value given as the third argument (0 or 1 as above).

F_GETFL Get fildes status flags.

F_SETFL Set fildes status flags to the integer value given as the third argument.
Only certain flags can be set (see fcntl(5)).

F_FREESP Free storage space associated with a section of the ordinary file fildes. The
section is specified by a variable of data type struct flock pointed to by
the third argument arg. The data type struct flock is defined in the
<fcntl.h> header (see fcntl(5)) and contains the following members:
l_whence is 0, 1, or 2 to indicate that the relative offset l_start will be
measured from the start of the file, the current position, or the end of the
file, respectively. l_start is the offset from the position specified in
l_whence. l_len is the size of the section.

2-76 modified 16 Mar 1992

SunOS 5.4 System Calls fcntl (2)

An l_len of 0 frees up to the end of the file; in this case, the end of file
(that is, file size) is set to the beginning of the section freed. Any data pre-
viously written into this section is no longer accessible.

Note that all filesystems might not support all possible variations of
F_FREESP arguments. In particular, many filesystems only allow space to
be freed at the end of a file.

The following values for cmd are used for record-locking. Locks may be placed on an
entire file or on segments of a file.

F_SETLK Set or clear a file segment lock according to the flock structure that arg
points to (see fcntl(5)). The cmd F_SETLK is used to establish read
(F_RDLCK) and write (F_WRLCK) locks, as well as remove either type
of lock (F_UNLCK). If a read or write lock cannot be set, fcntl() will
return immediately with an error value of −1.

F_SETLKW This cmd is the same as F_SETLK except that if a read or write lock is
blocked by other locks, fcntl() will block until the segment is free to be
locked.

F_GETLK If the lock request described by the flock structure that arg points to could
be created, then the structure is passed back unchanged except that the
lock type is set to F_UNLCK and the l_whence field will be set to
SEEK_SET.

If a lock is found that would prevent this lock from being created, then
the structure is overwritten with a description of the first lock that is
preventing such a lock from being created. The structure also contains
the process ID and the system ID of the process holding the lock.

This command never creates a lock; it tests whether a particular lock
could be created.

F_RSETLK Used by the network lock daemon, lockd(1M), to communicate with the
NFS server kernel to handle locks on NFS files.

F_RSETLKW Used by the network lock daemon, lockd(1M), to communicate with the
NFS server kernel to handle locks on NFS files.

F_RGETLK Used by the network lock daemon, lockd(1M), to communicate with the
NFS server kernel to handle locks on NFS files.

A read lock prevents any process from write locking the protected area. More than one
read lock may exist for a given segment of a file at a given time. The file descriptor on
which a read lock is being placed must have been opened with read access.

A write lock prevents any process from read locking or write locking the protected area.
Only one write lock and no read locks may exist for a given segment of a file at a given
time. The file descriptor on which a write lock is being placed must have been opened
with write access.

modified 16 Mar 1992 2-77

fcntl (2) System Calls SunOS 5.4

The record to be locked or unlocked is described by the flock structure defined in
<sys/fcntl.h> (included in <fcntl.h>) as follows:

typedef struct flock {
short l_type;
short l_whence;
off_t l_start;
off_t l_len; /∗ len == 0 means until end of file ∗/
long l_sysid;
pid_t l_pid;
long pad[4]; /∗ reserve area ∗/

} flock_t;

The flock structure describes the type (l_type), starting offset (l_whence), relative offset
(l_start), size (l_len), process ID (l_pid), and system ID (l_sysid) of the segment of the file
to be affected. The process ID and system ID fields are used only with the F_GETLK cmd
to return the values for a blocking lock. Locks may start and extend beyond the current
end of a file, but may not be negative relative to the beginning of the file. A lock may be
set to always extend to the end of file by setting l_len to 0. If such a lock also has
l_whence and l_start set to 0, the whole file will be locked. Changing or unlocking a seg-
ment from the middle of a larger locked segment leaves two smaller segments at either
end. Locking a segment that is already locked by the calling process causes the old lock
type to be removed and the new lock type to take effect. All locks associated with a file
for a given process are removed when a file descriptor for that file is closed by that pro-
cess or the process holding that file descriptor terminates. Locks are not inherited by a
child process in a fork(2) function.

When mandatory file and record locking is active on a file (see chmod(2)), creat(2),
open(2), read(2) and write(2) functions issued on the file will be affected by the record
locks in effect. When mandatory file and record locking is active on a file, it cannot be
memory mapped.

RETURN VALUES On success, fcntl() returns a value that depends on cmd:

F_DUPFD A new file descriptor.

F_GETFD Value of flag (only the low-order bit is defined). The return
value will not be negative.

F_SETFD Value other than −1.

F_FREESP Value of 0.

F_GETFL Value of file status flags. The return value will not be negative.

F_SETFL Value other than −1.

F_GETLK Value other than −1.

F_SETLK Value other than −1.

F_SETLKW Value other than −1.

2-78 modified 16 Mar 1992

SunOS 5.4 System Calls fcntl (2)

On failure, fcntl() returns −1 and sets errno to indicate the error.

ERRORS fcntl() will fail if one or more of the following are true:

EAGAIN cmd is F_SETLK, the type of lock (l_type) is a read lock (F_RDLCK) and
the segment of a file to be locked is already write locked by another pro-
cess, or the type is a write lock (F_WRLCK) and the segment of a file to
be locked is already read or write locked by another process.
Note that in the past this function was returned as EACCES.

EAGAIN cmd is F_FREESP, the file exists, mandatory file/record locking is set, and
there are outstanding record locks on the file.

EAGAIN cmd is F_SETLK or F_SETLKW, mandatory file/record locking is set,
and the file is currently being mapped to virtual memory using mmap(2).

EBADF fildes is not a valid open file descriptor.

EBADF cmd is F_SETLK or F_SETLKW, the type of lock (l_type) is a read lock
(F_RDLCK), and fildes is not a valid file descriptor open for reading.

EBADF cmd is F_SETLK or F_SETLKW, the type of lock (l_type) is a write lock
(F_WRLCK), and fildes is not a valid file descriptor open for writing.

EBADF cmd is F_FREESP, and fildes is not a valid file descriptor open for writing.

EDEADLK cmd is F_SETLKW, the lock is blocked by some lock from another pro-
cess, and if fcntl() blocked the calling process waiting for that lock to
become free, a deadlock would occur.

EDEADLK cmd is F_FREESP, mandatory record locking is enabled, O_NDELAY and
O_NONBLOCK are clear and a deadlock condition was detected.

EFAULT cmd is F_FREESP and the third argument arg points to an illegal address.

EFAULT cmd is F_GETLK, F_SETLK or F_SETLKW and the third argument
points to an illegal address.

EINTR A signal was caught during execution of the fcntl() function.

EINVAL cmd is F_DUPFD and the third argument is either negative, or greater
than or equal to the configured value for the maximum number of open
file descriptors allowed each user.

EINVAL cmd is not a valid value.

EINVAL cmd is F_GETLK, F_SETLK, or F_SETLKW and the third argument or
the data it points to is not valid, or fildes refers to a file that does not sup-
port locking.

EIO An I/O error occurred while reading from or writing to the file system.

EMFILE cmd is F_DUPFD and the number of file descriptors currently open in the
calling process is the configured value for the maximum number of open
file descriptors allowed each user.

modified 16 Mar 1992 2-79

fcntl (2) System Calls SunOS 5.4

ENOLCK cmd is F_SETLK or F_SETLKW, the type of lock is a read or write lock,
and there are no more record locks available (too many file segments
locked) because the system maximum has been exceeded.

ENOLINK fildes is on a remote machine and the link to that machine is no longer
active.

ENOLINK cmd is F_FREESP, the file is on a remote machine, and the link to that
machine is no longer active.

EOVERFLOW cmd is F_GETLK and the process ID of the process holding the requested
lock is too large to be stored in the l_pid field.

SEE ALSO lockd(1M), chmod(2), close(2), creat(2), dup(2), exec(2), fork(2), open(2), pipe(2),
read(2), write(2), fcntl(5)

System Services Guide

WARNINGS Mandatory record locks are dangerous. If a runaway or otherwise out-of-control process
should hold a mandatory lock on a file critical to the system and fail to release that lock,
the entire system could hang or crash. For this reason, mandatory record locks may be
removed in a future SunOS release. Use advisory record locking whenever possible.

NOTES In the past, the variable errno was set to EACCES rather than EAGAIN when a section of
a file is already locked by another process. Therefore, portable application programs
should expect and test for either value.

Advisory locks allow cooperating processes to perform consistent operations on files, but
do not guarantee exclusive access. Files can be accessed without advisory locks, but
inconsistencies may result.

read(2) and write(2) system calls on files are affected by mandatory file and record locks
(see chmod(2)).

2-80 modified 16 Mar 1992

SunOS 5.4 System Calls fork (2)

NAME fork, fork1 − create a new process

SYNOPSIS #include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

pid_t fork1(void);

DESCRIPTION fork() and fork1() cause creation of a new process. The new process (child process) is an
exact copy of the calling process (parent process). This means the child process inherits
the following attributes from the parent process:

· real user ID, real group ID, effective user ID, effective group ID
· environment
· open file descriptors
· close-on-exec flags (see exec(2))
· signal handling settings (that is, SIG_DFL, SIG_IGN, SIG_HOLD, function

address)
· supplementary group IDs
· set-user-ID mode bit
· set-group-ID mode bit
· profiling on/off status
· nice value (see nice(2))
· scheduler class (see priocntl(2))
· all attached shared memory segments (see shmop(2))
· process group ID -- memory mappings (see mmap(2))
· session ID (see exit(2))
· current working directory
· root directory
· file mode creation mask (see umask(2))
· resource limits (see getrlimit(2))
· controlling terminal
· saved user ID and group ID

Scheduling priority and any per-process scheduling parameters that are specific to a
given scheduling class may or may not be inherited according to the policy of that partic-
ular class (see priocntl(2)).

The child process differs from the parent process in the following ways:

· The child process has a unique process ID which does not match any active
process group ID.

· The child process has a different parent process ID (that is, the process ID of the
parent process).

· The child process has its own copy of the parent’s file descriptors and directory
streams. Each of the child’s file descriptors shares a common file pointer with
the corresponding file descriptor of the parent.

modified 28 Jan 1994 2-81

fork (2) System Calls SunOS 5.4

· Each shared memory segment remains attached and shm_nattach is incre-
mented by 1.

· All semadj values are cleared (see semop(2)).

· Process locks, text locks, data locks, and other memory locks are not inherited
by the child (see plock(3C) and memcntl(2)).

· The child process’s tms structure is cleared: tms_utime, stime, cutime, and
cstime are set to 0 (see times(2)).

· The child processes resource utilizations are set to 0; see getrlimit(2). The
it_value and it_interval values for the ITIMER_REAL timer are reset to 0; see
getitimer(2).

· The set of signals pending for the child process is initialized to the empty set.

· Timers created by timer_create(3R) are not inherited by the child process.

· No asynchronous input or asynchronous output operations are inherited by
the child.

Record locks set by the parent process are not inherited by the child process (see fcntl(2)).

fork() duplicates all the threads (see thr_create(3T)) and LWPs in the parent process in
the child process. fork1() duplicates only the calling thread (LWP) in the child process.

RETURN VALUES Upon successful completion, fork() and fork1() returns a value of 0 to the child process
and returns the process ID of the child process to the parent process. Otherwise, a value
of (pid_t)−−1 is returned to the parent process, no child process is created, and errno is set
to indicate the error.

ERRORS fork() will fail and no child process will be created if one or more of the following are
true:

EAGAIN There are two conditions that will cause an EAGAIN error.

The system-imposed limit on the total number of processes under execu-
tion by a single user would be exceeded.

The total amount of system memory available is temporarily insufficient
to duplicate this process.

ENOMEM There is not enough swap space.

SEE ALSO alarm(2), exec(2), exit(2), fcntl(2), getitimer(2), getrlimit(2), mmap(2), nice(2), plock(3C),
priocntl(2), ptrace(2), semop(2), shmop(2), times(2), umask(2), wait(2), memcntl(2),
exit(3C), signal(3C), timer_create(3R), system(3S), thr_create(3T)

NOTES Be careful to call _exit() rather than exit(3C) if you cannot execve(), since exit(3C) will
flush and close standard I/O channels, and thereby corrupt the parent processes stan-
dard I/O data structures. Using exit(3C) will flush buffered data twice. See exit(2).

2-82 modified 28 Jan 1994

SunOS 5.4 System Calls fork (2)

When calling fork1() the thread (or LWP) in the child must not depend on any resources
that are held by threads (or LWPs) that no longer exist in the child. In particular, locks
held by these threads (or LWPs) will not be released.

In a multi-threaded process, fork() can cause blocking system calls to be interrupted and
return with an error of EINTR.

modified 28 Jan 1994 2-83

fpathconf (2) System Calls SunOS 5.4

NAME fpathconf, pathconf − get configurable pathname variables

SYNOPSIS #include <unistd.h>

long fpathconf(int fildes, int name);

long pathconf(const char ∗path , int name);

DESCRIPTION The functions fpathconf() and pathconf() return the current value of a configurable limit
or option associated with a file or directory. The path argument points to the pathname
of a file or directory; fildes is an open file descriptor; and name is the symbolic constant
(defined in <unistd.h>) representing the configurable system limit or option to be
returned.

The values returned by pathconf() and fpathconf() depend on the type of file specified
by path or fildes. The following table contains the symbolic constants supported by path-
conf() and fpathconf() along with the POSIX defined return value. The return value is
based on the type of file specified by path or fildes.

Value of name See Note

_PC_LINK_MAX 1

_PC_MAX_CANNON 2

_PC_MAX_INPUT 2

_PC_NAME_MAX 3,4

_PC_PATH_MAX 4,5

_PC_PIPE_BUF 6

_PC_CHOWN_RESTRICTED 7

_PC_NO_TRUNC 3,4

_PC_VDISABLE 2

_PC_ASYNC_IO 2

_PC_PRIO_IO 2

_PC_SYNC_IO 1

Notes:

1 If path or fildes refers to a directory, the value returned applies to the directory
itself.

2 The behavior is undefined if path or fildes does not refer to a terminal file.

3 If path or fildes refers to a directory, the value returned applies to the filenames
within the directory.

4 The behavior is undefined if path or fildes does not refer to a directory.

2-84 modified 11 Jul 1991

SunOS 5.4 System Calls fpathconf (2)

5 If path or fildes refers to a directory, the value returned is the maximum length of
a relative pathname when the specified directory is the working directory.

6 If path or fildes refers to a pipe or FIFO, the value returned applies to the pipe or
FIFO. If path or fildes refers to a directory, the value returned applies to any
FIFOs that exist or can be created within the directory. If path or fildes refer to
any other type of file, the behavior is undefined.

7 If path or fildes refers to a directory, the value returned applies to any files, other
than directories, that exist or can be created within the directory.

The value of the configurable system limit or option specified by name does not change
during the lifetime of the calling process.

RETURN VALUES If fpathconf or pathconf are invoked with an invalid symbolic constant or the symbolic
constant corresponds to a configurable system limit or option not supported on the sys-
tem, a value of −1 is returned to the invoking process. If the function fails because the
configurable system limit or option corresponding to name is not supported on the sys-
tem the value of errno is not changed.

ERRORS fpathconf() fails if the following is true:

EBADF fildes is not a valid file descriptor.

pathconf() fails if one or more of the following are true:

EACCES search permission is denied for a component of the path prefix.

ELOOP too many symbolic links are encountered while translating path.

EMULTIHOP components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG the length of a pathname exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT path is needed for the command specified and the named file does
not exist or if the path argument points to an empty string.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR a component of the path prefix is not a directory.

Both fpathconf() and pathconf() fail if the following is true:

EINVAL if name is an invalid value.

SEE ALSO sysconf(3C), limits(4)

modified 11 Jul 1991 2-85

getaudit (2) System Calls SunOS 5.4

NAME getaudit, setaudit − get and set process audit information

SYNOPSIS cc [flag . . .] file . . . −lbsm −lsocket −lnsl −lintl [library . . .]

#include <sys/param.h>
#include <bsm/audit.h>

int getaudit(struct auditinfo ∗info);

int setaudit(struct auditinfo ∗info);

AVAILABILITY The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION getaudit() gets the audit ID, the preselection mask, the terminal ID and the audit session
ID of the current process.

setaudit() sets the audit ID, the preselection mask, the terminal ID and the audit session
ID for the current process.

The info structure used to pass the process audit information contains the following
members:

au_id_t ai_auid; /∗ audit user ID ∗/
au_mask_t ai_mask; /∗ preselection mask ∗/
au_tid_t ai_termid; /∗ terminal ID ∗/
au_asid_t ai_asid; /∗ audit session ID ∗/

Only processes with the effective user ID of the super-user may successfully execute these
calls.

RETURN VALUES getaudit() and setaudit() return:

0 on success.

−1 on failure and set errno to indicate the error.

ERRORS EFAULT The info parameter points outside the process’s allocated address space.

EPERM The process’s effective user ID is not super-user.

SEE ALSO audit(2)

2-86 modified 6 May 1993

SunOS 5.4 System Calls getauid (2)

NAME getauid, setauid − get and set user audit identity

SYNOPSIS cc [flag . . .] file . . . −lbsm −lsocket −lnsl −lintl [library . . .]

#include <sys/param.h>
#include <bsm/audit.h>

int getauid(au_id_t ∗auid);

int setauid(au_id_t ∗auid);

AVAILABILITY The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

DESCRIPTION The getauid() system call returns the audit user ID for the current process. This value is
initially set at login time and inherited by all child processes. This value does not change
when the real/effective user IDs change, so it can be used to identify the logged-in user,
even when running a setuid program. The audit user ID governs audit decisions for a
process.

The setauid() system call sets the audit user ID for the current process.

Only the super-user may successfully execute these calls.

RETURN VALUES getauid() returns the audit user ID of the current process on success. On failure, it
returns −1 and sets errno to indicate the error.

setauid() returns:

0 on success.

−1 on failure and sets errno to indicate the error.

ERRORS EFAULT auid points to an invalid address.

EPERM The process’s effective user ID is not super-user.

SEE ALSO audit(2), getaudit(2)

NOTES These system calls have been superseded by getaudit() and setaudit().

modified 5 Apr 1994 2-87

getcontext (2) System Calls SunOS 5.4

NAME getcontext, setcontext − get and set current user context

SYNOPSIS #include <ucontext.h>

int getcontext(ucontext_t ∗ucp);

int setcontext(ucontext_t ∗ucp);

DESCRIPTION These functions, along with those defined in makecontext(3C), are useful for implement-
ing user level context switching between multiple threads of control within a process.

getcontext() initializes the structure pointed to by ucp to the current user context of the
calling process. The user context is defined by ucontext(5) and includes the contents of
the calling process’s machine registers, signal mask and execution stack.

setcontext() restores the user context pointed to by ucp. The call to setcontext() does not
return; program execution resumes at the point specified by the context structure passed
to setcontext(). The context structure should have been one created either by a prior call
to getcontext() or makecontext() or passed as the third argument to a signal handler (see
sigaction(2)). If the context structure was one created with getcontext(), program execu-
tion continues as if the corresponding call of getcontext() had just returned. If the con-
text structure was one created with makecontext, program execution continues with the
function specified to makecontext.

RETURN VALUES On successful completion, setcontext() does not return and getcontext() returns 0. Oth-
erwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS getcontext() and setcontext() will fail if the following is true:

EFAULT ucp points to an illegal address.

SEE ALSO sigaction(2), sigaltstack(2), sigprocmask(2), makecontext(3C), ucontext(5)

NOTES When a signal handler is executed, the current user context is saved and a new context is
created by the kernel. If the process leaves the signal handler via longjmp(3C) the origi-
nal context will not be restored, and future calls to getcontext() will not be reliable. Sig-
nal handlers should use siglongjmp(3C) or setcontext() instead.

2-88 modified 5 Jul 1990

SunOS 5.4 System Calls getdents (2)

NAME getdents − read directory entries and put in a file system independent format

SYNOPSIS #include <sys/dirent.h>

int getdents(int fildes, struct dirent ∗buf, size_t nbyte);

DESCRIPTION getdents() attempts to read nbyte bytes from the directory associated with the file
descriptor fildes and to format them as file system independent directory entries in the
buffer pointed to by buf. Since the file system independent directory entries are of vari-
able length, in most cases the actual number of bytes returned will be strictly less than
nbyte. See dirent(4) to calculate the number of bytes.

The file system independent directory entry is specified by the dirent structure. For a
description of this see dirent(4).

On devices capable of seeking, getdents() starts at a position in the file given by the file
pointer associated with fildes. Upon return from getdents(), the file pointer is incre-
mented to point to the next directory entry.

This function was developed in order to implement the readdir routine (for a description,
see directory(3C)), and should not be used for other purposes.

RETURN VALUES Upon successful completion a non-negative integer is returned indicating the number of
bytes actually read. A value of 0 indicates the end of the directory has been reached. If
the function failed, a −1 is returned and errno is set to indicate the error.

ERRORS getdents() will fail if one or more of the following are true:

EBADF fildes is not a valid file descriptor open for reading.

EFAULT buf points to an illegal address.

EINVAL nbyte is not large enough for one directory entry.

EIO An I/O error occurred while accessing the file system.

ENOENT The current file pointer for the directory is not located at a valid entry.

ENOLINK fildes points to a remote machine and the link to that machine is no
longer active.

ENOTDIR fildes is not a directory.

SEE ALSO directory(3C), dirent(4)

modified 5 Jul 1990 2-89

getgroups (2) System Calls SunOS 5.4

NAME getgroups, setgroups − get or set supplementary group access list IDs

SYNOPSIS #include <unistd.h>

int getgroups(int gidsetsize, gid_t ∗grouplist);

int setgroups(int ngroups, const gid_t ∗grouplist);

DESCRIPTION getgroups() gets the current supplemental group access list of the calling process and
stores the result in the array of group IDs specified by grouplist. This array has gidsetsize
entries and must be large enough to contain the entire list. This list cannot be greater
than NGROUPS_MAX. If gidsetsize equals 0, getgroups() will return the number of
groups to which the calling process belongs without modifying the array pointed to by
grouplist.

setgroups() sets the supplementary group access list of the calling process from the array
of group IDs specified by grouplist. The number of entries is specified by ngroups and can
not be greater than NGROUPS_MAX. This function may be invoked only by the super-
user.

RETURN VALUES Upon successful completion, getgroups() returns the number of supplementary group
IDs set for the calling process and setgroups() returns the value 0. Otherwise, a value of
−1 is returned and errno is set to indicate the error.

ERRORS getgroups() will fail if:

EINVAL The value of gidsetsize is non-zero and less than the number of supple-
mentary group IDs set for the calling process.

setgroups() will fail if:

EINVAL The value of ngroups is greater than NGROUPS_MAX.

EPERM The effective user of the calling process is not super-user.

Either call will fail if:

EFAULT A referenced part of the array pointed to by grouplist is an illegal
address.

SEE ALSO groups(1), chown(2), getuid(2), setuid(2), getgrnam(3C), initgroups(3C)

2-90 modified 5 Jul 1990

SunOS 5.4 System Calls getitimer (2)

NAME getitimer, setitimer − get or set value of interval timer

SYNOPSIS #include <sys/time.h>

int getitimer(int which, struct itimerval ∗value);

int setitimer(int which, const struct itimerval ∗value, struct itimerval ∗ovalue);

DESCRIPTION The system provides each process with four interval timers, defined in sys/time.h. The
getitimer() function stores the current value of the timer specified by which into the struc-
ture pointed to by value. The setitimer() call sets the value of the timer specified by which
to the value specified in the structure pointed to by value, and if ovalue is not NULL,
stores the previous value of the timer in the structure pointed to by ovalue.

A timer value is defined by the itimerval structure (see gettimeofday(3C) for the
definition of timeval), which includes the following members:

struct timeval it_interval; /∗ timer interval ∗/
struct timeval it_value; /∗ current value ∗/

it_value indicates the time to the next timer expiration. it_interval specifies a value to be
used in reloading it_value when the timer expires. Setting it_value to zero disables a
timer, regardless of the value of it_interval. Setting it_interval to zero disables a timer
after its next expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to the resolu-
tion of the system clock, except for ITIMER_REALPROF, whose values are rounded up
to the resolution of the profiling clock.

The four timers are:

ITIMER_REAL Decrements in real time. A SIGALRM signal is delivered when
this timer expires.

ITIMER_VIRTUAL Decrements in process virtual time. It runs only when the pro-
cess is executing. A SIGVTALRM signal is delivered when it
expires.

ITIMER_PROF Decrements both in process virtual time and when the system is
running on behalf of the process. It is designed to be used by
interpreters in statistically profiling the execution of interpreted
programs. Each time the ITIMER_PROF timer expires, the
SIGPROF signal is delivered. Because this signal may interrupt
in-progress functions, programs using this timer must be
prepared to restart interrupted functions.

ITIMER_REALPROF Decrements in real time. It is designed to be used for real-time
profiling of multithreaded programs. Each time the
ITIMER_REALPROF timer expires, one counter in a set of
counters maintained by the system for each lightweight process
(lwp) is incremented. The counter corresponds to the state of
the lwp at the time of the timer tick. All lwps executing in user

modified 29 Jul 1991 2-91

getitimer (2) System Calls SunOS 5.4

mode when the timer expires are interrupted into system mode.
When each lwp resumes execution in user mode, if any of the
elements in its set of counters are non-zero, the SIGPROF signal
is delivered to the lwp. The SIGPROF signal is delivered before
any other signal except SIGKILL. This signal does not interrupt
any in-progress function. A siginfo structure, defined in
sys/siginfo.h, is associated with the delivery of the SIGPROF
signal, and includes the following members:

si_tstamp; /∗ high resolution timestamp ∗/
si_syscall; /∗ current syscall ∗/
si_nsysarg; /∗ number of syscall arguments ∗/
si_sysarg[]; /∗ actual syscall arguments ∗/
si_fault; /∗ last fault type ∗/
si_faddr; /∗ last fault address ∗/
si_mstate[]; /∗ ticks in each microstate ∗/

The enumeration of microstates (indices into si_mstate) is
defined in sys/msacct.h.

RETURN VALUES If the calls succeed, a value of 0 is returned. If an error occurs, the value −1 is returned,
and an error code is placed in the global variable errno.

ERRORS getitimer() and setitimer() will fail if:

EINVAL The specified number of seconds is greater than 100,000,000, the number of
microseconds is greater than or equal to 1,000,000, or the which parameter is
unrecognized.

SEE ALSO alarm(2), gettimeofday(3C), sysconf(3C)

NOTES The microseconds field should not be equal to or greater than one second.

setitimer() is independent of the alarm() function.

Do not use setitimer(ITIMER_REAL) with the sleep() routine. A sleep() wipes out
knowledge of the user signal handler for SIGALRM.

ITIMER_PROF and ITIMER_REALPROF deliver the same signal and have different
semantics. They cannot be used together.

The granularity of the resolution of alarm time is platform-dependent.

2-92 modified 29 Jul 1991

SunOS 5.4 System Calls getmsg (2)

NAME getmsg, getpmsg − get next message off a stream

SYNOPSIS #include <stropts.h>

int getmsg(int fildes, struct strbuf ∗ctlptr, struct strbuf ∗dataptr , int ∗flagsp);

int getpmsg(int fildes, struct strbuf ∗ctlptr, struct strbuf ∗dataptr , int ∗bandp, int ∗flagsp);

DESCRIPTION getmsg() retrieves the contents of a message (see intro(2)) located at the stream head
read queue from a STREAMS file, and places the contents into user specified buffer(s).
The message must contain either a data part, a control part, or both. The data and control
parts of the message are placed into separate buffers, as described below. The semantics
of each part is defined by the STREAMS module that generated the message.

The function getpmsg() does the same thing as getmsg(), but provides finer control over
the priority of the messages received. Except where noted, all information pertaining to
getmsg() also pertains to getpmsg().

fildes specifies a file descriptor referencing an open stream. ctlptr and dataptr each point to
a strbuf structure, which contains the following members:

int maxlen; /∗ maximum buffer length ∗/
int len; /∗ length of data ∗/
char ∗buf; /∗ ptr to buffer ∗/

buf points to a buffer in which the data or control information is to be placed, and max-
len indicates the maximum number of bytes this buffer can hold. On return, len contains
the number of bytes of data or control information actually received, or 0 if there is a
zero-length control or data part, or -1 if no data or control information is present in the
message. flagsp should point to an integer that indicates the type of message the user is
able to receive. This is described later.

ctlptr is used to hold the control part from the message and dataptr is used to hold the
data part from the message. If ctlptr (or dataptr) is NULL or the maxlen field is −1, the
control (or data) part of the message is not processed and is left on the stream head read
queue. If ctlptr (or dataptr) is not NULL and there is no corresponding control (or data)
part of the messages on the stream head read queue, len is set to −1. If the maxlen field is
set to 0 and there is a zero-length control (or data) part, that zero-length part is removed
from the read queue and len is set to 0. If the maxlen field is set to 0 and there are more
than zero bytes of control (or data) information, that information is left on the read queue
and len is set to 0. If the maxlen field in ctlptr or dataptr is less than, respectively, the con-
trol or data part of the message, maxlen bytes are retrieved. In this case, the remainder of
the message is left on the stream head read queue and a non-zero return value is pro-
vided, as described below under RETURN VALUES.

By default, getmsg() processes the first available message on the stream head read queue.
However, a user may choose to retrieve only high priority messages by setting the integer
pointed by flagsp to RS_HIPRI. In this case, getmsg() processes the next message only if
it is a high priority message.

modified 29 Jul 1991 2-93

getmsg (2) System Calls SunOS 5.4

If the integer pointed by flagsp is 0, getmsg() retrieves any message available on the
stream head read queue. In this case, on return, the integer pointed to by flagsp will be set
to RS_HIPRI if a high priority message was retrieved, or 0 otherwise.

For getpmsg(), the flags are different. flagsp points to a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI, MSG_BAND, and MSG_ANY. Like
getmsg(), getpmsg() processes the first available message on the stream head read
queue. A user may choose to retrieve only high-priority messages by setting the integer
pointed to by flagsp to MSG_HIPRI and the integer pointed to by bandp to 0. In this case,
getpmsg() will only process the next message if it is a high-priority message. In a similar
manner, a user may choose to retrieve a message from a particular priority band by set-
ting the integer pointed to by flagsp to MSG_BAND and the integer pointed to by bandp
to the priority band of interest. In this case, getpmsg() will only process the next mes-
sage if it is in a priority band equal to, or greater than, the integer pointed to by bandp, or
if it is a high-priority message. If a user just wants to get the first message off the queue,
the integer pointed to by flagsp should be set to MSG_ANY and the integer pointed to by
bandp should be set to 0. On return, if the message retrieved was a high-priority message,
the integer pointed to by flagsp will be set to MSG_HIPRI and the integer pointed to by
bandp will be set to 0. Otherwise, the integer pointed to by flagsp will be set to
MSG_BAND and the integer pointed to by bandp will be set to the priority band of the
message.

If O_NDELAY and O_NONBLOCK are clear, getmsg() blocks until a message of the
type specified by flagsp is available on the stream head read queue. If O_NDELAY or
O_NONBLOCK has been set and a message of the specified type is not present on the
read queue, getmsg() fails and sets errno to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved, getmsg() con-
tinues to operate normally, as described above, until the stream head read queue is
empty. Thereafter, it returns 0 in the len fields of ctlptr and dataptr.

RETURN VALUES Upon successful completion, a non-negative value is returned. A value of 0 indicates that
a full message was read successfully. A return value of MORECTL indicates that more
control information is waiting for retrieval. A return value of MOREDATA indicates
that more data are waiting for retrieval. A return value of MORECTL | MOREDATA
indicates that both types of information remain. Subsequent getmsg calls retrieve the
remainder of the message. However, if a message of higher priority has come in on the
stream head read queue, the next call to getmsg will retrieve that higher priority message
before retrieving the remainder of the previously received partial message.

ERRORS getmsg() or getpmsg() will fail if one or more of the following are true:

EAGAIN The O_NDELAY or O_NONBLOCK flag is set, and no messages are
available.

EBADF fildes is not a valid file descriptor open for reading.

EBADMSG Queued message to be read is not valid for getmsg.

EFAULT ctlptr, dataptr, bandp, or flagsp points to an illegal address.

2-94 modified 29 Jul 1991

SunOS 5.4 System Calls getmsg (2)

EINTR A signal was caught during the getmsg function.

EINVAL An illegal value was specified in flagsp, or the stream referenced by fildes
is linked under a multiplexor.

ENOSTR A stream is not associated with fildes.

getmsg can also fail if a STREAMS error message had been received at the stream head
before the call to getmsg. The error returned is the value contained in the STREAMS error
message.

SEE ALSO intro(2), poll(2), putmsg(2), read(2), write(2)

STREAMS Programmer’s Guide

modified 29 Jul 1991 2-95

getpid (2) System Calls SunOS 5.4

NAME getpid, getpgrp, getppid, getpgid − get process, process group, and parent process IDs

SYNOPSIS #include <sys/types.h>
#include <unistd.h>

pid_t getpid(void);

pid_t getpgrp(void);

pid_t getppid(void);

pid_t getpgid(pid_t pid);

DESCRIPTION getpid() returns the process ID of the calling process.

getpgrp() returns the process group ID of the calling process.

getppid() returns the parent process ID of the calling process.

getpgid() returns the process group ID of the process whose process ID is equal to pid, or
the process group ID of the calling process, if pid is equal to zero.

RETURN VALUES Upon successful completion, all return the process group ID. On failure, getpgid()
returns a value of (pid_t) −1 and sets errno to indicate the error.

ERRORS getpgid() will fail if one or more of the following is true:

EPERM The process whose process ID is equal to pid is not in the same session as
the calling process, and the implementation does not allow access to the
process group ID of that process from the calling process.

ESRCH There is no process with a process ID equal to pid.

SEE ALSO intro(2), exec(2), fork(2), getpid(2), getsid(2), setpgid(2), setpgrp(2), signal(3C)

2-96 modified 29 Jul 1991

SunOS 5.4 System Calls getrlimit (2)

NAME getrlimit, setrlimit − control maximum system resource consumption

SYNOPSIS #include <sys/time.h>
#include <sys/resource.h>

int getrlimit(int resource, struct rlimit ∗rlp);

int setrlimit(int resource, const struct rlimit ∗rlp);

DESCRIPTION Limits on the consumption of a variety of system resources by a process and each process
it creates may be obtained with getrlimit() and set with setrlimit().

Each call to either getrlimit() or setrlimit() identifies a specific resource to be operated
upon as well as a resource limit. A resource limit is a pair of values: one specifying the
current (soft) limit, the other a maximum (hard) limit. Soft limits may be changed by a
process to any value that is less than or equal to the hard limit. A process may (irreversi-
bly) lower its hard limit to any value that is greater than or equal to the soft limit. Only a
process with an effective user ID of super-user can raise a hard limit. Both hard and soft
limits can be changed in a single call to setrlimit() subject to the constraints described
above. Limits may have an “infinite” value of RLIM_INFINITY. rlp is a pointer to struct
rlimit that includes the following members:

rlim_t rlim_cur; /∗ current (soft) limit ∗/
rlim_t rlim_max; /∗ hard limit ∗/

rlim_t is an arithmetic data type to which objects of type int, size_t, and off_t can be cast
without loss of information.

The possible resources, their descriptions, and the actions taken when the current limit is
exceeded are summarized in the table below:

RLIMIT_CORE The maximum size of a core file in bytes that may be created by a
process. A limit of 0 will prevent the creation of a core file.

The writing of a core file will terminate at this size.

RLIMIT_CPU The maximum amount of CPU time in seconds used by a process.
This is a soft limit only.

SIGXCPU is sent to the process. If the process is holding or ignor-
ing SIGXCPU, the behavior is scheduling class defined.

RLIMIT_DATA The maximum size of a process’s heap in bytes.

brk(2) will fail with errno set to ENOMEM.

RLIMIT_FSIZE The maximum size of a file in bytes that may be created by a pro-
cess. A limit of 0 will prevent the creation of a file.

SIGXFSZ is sent to the process. If the process is holding or ignor-
ing SIGXFSZ, continued attempts to increase the size of a file
beyond the limit will fail with errno set to EFBIG.

modified 25 Nov 1991 2-97

getrlimit (2) System Calls SunOS 5.4

RLIMIT_NOFILE One more than the maximum value that the system may assign to
a newly created descriptor. This limit constrains the number of file
descriptors that a process may create.

RLIMIT_STACK The maximum size of a process’s stack in bytes. The system will
not automatically grow the stack beyond this limit.

SIGSEGV is sent to the process. If the process is holding or ignor-
ing SIGSEGV, or is catching SIGSEGV and has not made arrange-
ments to use an alternate stack (see sigaltstack(2)), the disposition
of SIGSEGV will be set to SIG_DFL before it is sent.

RLIMIT_VMEM The maximum size of a process’s mapped address space in bytes.

brk(2) and mmap(2) functions will fail with errno set to ENOMEM.
In addition, the automatic stack growth will fail with the effects
outlined above.

Because limit information is stored in the per-process information, the shell builtin ulimit
command must directly execute this system call if it is to affect all future processes
created by the shell.

The value of the current limit of the following resources affect these implementation
defined parameters:

Limit Implementation Defined Constant

RLIMIT_FSIZE FCHR_MAX
RLIMIT_NOFILE OPEN_MAX

RETURN VALUES Upon successful completion, the function getrlimit() returns a value of 0; otherwise, it
returns a value of −1 and sets errno to indicate an error.

ERRORS Under the following conditions, the functions getrlimit() and setrlimit() fail and set
errno to:

EFAULT rlp points to an illegal address.

EINVAL An invalid resource was specified; or in a setrlimit() call, the new rlim_cur
exceeds the new rlim_max.

EPERM The limit specified to setrlimit() would have raised the maximum limit
value, and the effective user of the calling process is not super-user.

SEE ALSO brk(2), open(2), sigaltstack(2), malloc(3C), signal(3C), signal(5)

2-98 modified 25 Nov 1991

SunOS 5.4 System Calls getsid (2)

NAME getsid, setsid − get or set session ID

SYNOPSIS #include <sys/types.h>

pid_t getsid(pid_t pid);

#include <sys/types.h>
#include <unistd.h>

pid_t setsid(void);

DESCRIPTION The function getsid() returns the session ID of the process whose process ID is equal to
pid. If pid is equal to (pid_t)0, getsid() returns the session ID of the calling process.

If the calling process is not already a process group leader, setsid() sets the process
group ID and session ID of the calling process to the process ID of the calling process,
and releases the process’s controlling terminal.

See intro(2) for more information on process groups and controlling terminals.

RETURN VALUES Upon successful completion, getsid() and setsid() return the session ID of the specified
process. Otherwise, getsid() returns a value of (pid_t)−−1 and sets errno to indicate an
error, and setsid() returns a value of −1 and sets errno to indicate the error.

ERRORS Under the following conditions, getsid() fails and sets errno to:

EPERM The process whose process ID is equal to pid is not in the same session as the
calling process, and the implementation does not allow access to the session
ID of that process from the calling process.

ESRCH There is no process with a process ID equal to pid.

setsid() will fail and return an error if the following is true:

EPERM The calling process is already a process group leader, or there are processes
other than the calling process whose process group ID is equal to the process
ID of the calling process.

SEE ALSO intro(2), exec(2), fork(2), getpid(2), setpgid(2)

WARNINGS A call to setsid() by a process that is a process group leader will fail. A process can
become a process group leader by being the last member of a pipeline started by a job
control shell. Thus, a process that expects to be part of a pipeline, and that calls setsid(),
should always first fork; the parent should exit and the child should call setsid(). This
will ensure that the calling process will work reliably when started by both job control
shells and non-job control shells.

modified 30 Jul 1991 2-99

getuid (2) System Calls SunOS 5.4

NAME getuid, geteuid, getgid, getegid − get real user, effective user, real group, and effective
group IDs

SYNOPSIS #include <sys/types.h>
#include <unistd.h>

uid_t getuid(void);

uid_t geteuid(void);

gid_t getgid(void);

gid_t getegid(void);

DESCRIPTION getuid() returns the real user ID of the calling process. The real user ID identifies the per-
son who is logged in.

geteuid() returns the effective user ID of the calling process. The effective user ID gives
the process various permissions during execution of ‘‘set-user-ID’’ mode processes which
use getuid () to determine the real user ID of the process that invoked them.

getgid() returns the real group ID of the calling process.

getegid() returns the effective group ID of the calling process.

SEE ALSO intro(2), setuid(2)

2-100 modified 4 Dec 1991

SunOS 5.4 System Calls ioctl (2)

NAME ioctl − control device

SYNOPSIS #include <unistd.h>

int ioctl(int fildes, int request, /∗ arg ∗/ . . .);

DESCRIPTION ioctl() performs a variety of control functions on devices and STREAMS. For non-
STREAMS files, the functions performed by this call are device-specific control functions.
request and an optional third argument with varying type are passed to the file desig-
nated by fildes and are interpreted by the device driver.

For STREAMS files, specific functions are performed by the ioctl() call as described in
streamio(7).

fildes is an open file descriptor that refers to a device. request selects the control function
to be performed and depends on the device being addressed. arg represents a third argu-
ment that has additional information that is needed by this specific device to perform the
requested function. The data type of arg depends upon the particular control request, but
it is either an int or a pointer to a device-specific data structure.

In addition to device-specific and STREAMS functions, generic functions are provided by
more than one device driver, for example, the general terminal interface (see termio(7)).

RETURN VALUES Upon successful completion, the value returned depends upon the device control func-
tion, but must be a non-negative integer. Otherwise, a value of −1 is returned and errno is
set to indicate the error.

ERRORS ioctl() fails for any type of file if one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

EINTR A signal was caught during the ioctl() function.

ENOTTY fildes is not associated with a device driver that accepts control func-
tions.

ioctl() also fails if the device driver detects an error. In this case, the error is passed
through ioctl() without change to the caller. A particular driver might not have all of the
following error cases. Under the following conditions, requests to device drivers may fail
and set errno to:

EFAULT
request requires a data transfer to or from a buffer pointed to by arg , but arg
points to an illegal address.

EINVAL
request or arg is not valid for this device.

EIO Some physical I/O error has occurred.

ENOLINK
fildes is on a remote machine and the link to that machine is no longer active.

modified 29 Jul 1991 2-101

ioctl (2) System Calls SunOS 5.4

ENXIO The request and arg are valid for this device driver, but the service requested can
not be performed on this particular subdevice.

STREAMS errors are described in streamio(7).

SEE ALSO streamio(7), termio(7)

2-102 modified 29 Jul 1991

SunOS 5.4 System Calls kill (2)

NAME kill − send a signal to a process or a group of processes

SYNOPSIS #include <sys/types.h>
#include <signal.h>

int kill(pid_t pid, int sig);

DESCRIPTION kill() sends a signal to a process or a group of processes. The process or group of
processes to which the signal is to be sent is specified by pid. The signal that is to be sent
is specified by sig and is either one from the list given in signal (see signal(5)), or 0. If sig
is 0 (the null signal), error checking is performed but no signal is actually sent. This can
be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or saved (from
exec(2)) user ID of the receiving process unless the effective user ID of the sending process
is super-user, (see intro(2)), or sig is SIGCONT and the sending process has the same ses-
sion ID as the receiving process.

If pid is greater than 0, sig will be sent to the process whose process ID is equal to pid.

If pid is negative but not (pid_t)−−1, sig will be sent to all processes whose process group
ID is equal to the absolute value of pid and for which the process has permission to send a
signal.

If pid is 0, sig will be sent to all processes excluding special processes (see intro(2)) whose
process group ID is equal to the process group ID of the sender.

If pid is (pid_t)−−1 and the effective user ID of the sender is not super-user, sig will be sent
to all processes excluding special processes whose real user ID is equal to the effective
user ID of the sender.

If pid is (pid_t)−−1 and the effective user ID of the sender is super-user, sig will be sent to
all processes excluding special processes.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS kill() will fail and no signal will be sent if one or more of the following are true:

EINVAL sig is not a valid signal number.

EPERM sig is SIGKILL and pid is (pid_t)1 (that is, the calling process does not
have permission to send the signal to any of the processes specified by
pid).

EPERM The effective user of the calling process does not match the real or saved
user and is not super-user, and the calling process is not sending
SIGCONT to a process that shares the same session ID.

ESRCH No process or process group can be found corresponding to that
specified by pid.

modified 17 Dec 1991 2-103

kill (2) System Calls SunOS 5.4

SEE ALSO kill(1), intro(2), exec(2), getpid(2), getsid(2), setpgrp(2), sigaction(2), sigsend(2),
signal(3C), signal(5)

NOTES sigsend(2) is a more versatile way to send signals to processes.

2-104 modified 17 Dec 1991

SunOS 5.4 System Calls link (2)

NAME link − link to a file

SYNOPSIS #include <unistd.h>

int link(const char ∗existing, const char ∗new);

DESCRIPTION link() creates a new link (directory entry) for the existing file and increments its link
count by one. existing points to a path name naming an existing file. new points to a path
name naming the new directory entry to be created.

To create hard links, both files must be on the same file system. Both the old and the new
link share equal access and rights to the underlying object. The super-user may make
multiple links to a directory. Unless the caller is the super-user, the file named by existing
must not be a directory.

Upon successful completion, link() marks for update the st_ctime field of the file. Also,
the st_ctime and st_mtime fields of the directory that contains the new entry are marked
for update.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS link() will fail and no link will be created if one or more of the following are true:

EACCES A component of either path prefix denies search permission.

EACCES The requested link requires writing in a directory with a mode that
denies write permission.

EEXIST The link named by new exists.

EFAULT existing or new points to an illegal address.

EINTR A signal was caught during the link() function.

ELOOP Too many symbolic links were encountered in translating path.

EMLINK The maximum number of links to a file would be exceeded.

EMULTIHOP Components of existing or new require hopping to multiple remote
machines and the file system type does not allow it.

ENAMETOOLONG The length of the existing or new argument exceeds {PATH_MAX},
or the length of a existing or new component exceeds
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

ENOENT existing or new is a null path name.

ENOENT A component of either path prefix does not exist.

ENOENT The file named by existing does not exist.

ENOLINK existing or new points to a remote machine and the link to that
machine is no longer active.

ENOSPC the directory that would contain the link cannot be extended.

ENOTDIR A component of either path prefix is not a directory.

modified 29 Jul 1991 2-105

link (2) System Calls SunOS 5.4

EPERM The file named by existing is a directory and the effective user of
the calling process is not super-user.

EROFS The requested link requires writing in a directory on a read-only
file system.

EXDEV The link named by new and the file named by existing are on dif-
ferent logical devices (file systems).

SEE ALSO symlink(2), unlink(2)

2-106 modified 29 Jul 1991

SunOS 5.4 System Calls llseek (2)

NAME llseek − move extended read/write file pointer

SYNOPSIS #include <sys/types.h>
#include <unistd.h>

offset_t llseek(int fildes, offset_t offset , int whence);

DESCRIPTION llseek() sets the 64-bit extended file pointer associated with the open file descriptor
specified by fildes as follows:

· If whence is SEEK_SET, the pointer is set to offset bytes.

· If whence is SEEK_CUR, the pointer is set to its current location plus offset .

· If whence is SEEK_END, the pointer is set to the size of the file plus offset .

On success, llseek() returns the resulting pointer location, as measured in bytes from the
beginning of the file.

RETURN VALUES Upon successful completion, the resulting file pointer is returned. Remote file descrip-
tors are the only ones that allow negative file pointers. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS llseek() fails and the file pointer remains unchanged if one or more of the following are
true:

EBADF fildes is not an open file descriptor.

EINVAL whence is not SEEK_SET, SEEK_CUR, or SEEK_END.

EINVAL offset is not a valid offset for this file system type.

EINVAL fildes is not a remote file descriptor, and the resulting file pointer would
be negative.

ESPIPE fildes is associated with a pipe or fifo.

Some devices are incapable of seeking. The value of the file pointer associated with such
a device is undefined.

LIMITATIONS Although each file has a 64-bit file pointer associated with it, existing file system types do
not support the full range of 64-bit offsets. In particular, non-device files remain limited
to offsets of less than two gigabytes. Device drivers may support offsets of up to 1024
gigabytes for device special files.

SEE ALSO creat(2), dup(2), fcntl(2), lseek(2), open(2)

modified 14 Feb 1992 2-107

lseek (2) System Calls SunOS 5.4

NAME lseek − move read/write file pointer

SYNOPSIS #include <sys/types.h>
#include <unistd.h>

off_t lseek(int fildes, off_t offset , int whence);

DESCRIPTION lseek() sets the file pointer associated with the open file descriptor specified by fildes as
follows:

· If whence is SEEK_SET, the pointer is set to offset bytes.

· If whence is SEEK_CUR, the pointer is set to its current location plus offset .

· If whence is SEEK_END, the pointer is set to the size of the file plus offset .

On success, lseek() returns the resulting pointer location, as measured in bytes from the
beginning of the file. Note that if fildes is a remote file descriptor and offset is negative,
lseek() returns the file pointer even if it is negative.

lseek() allows the file pointer to be set beyond the existing data in the file. If data are later
written at this point, subsequent reads in the gap between the previous end of data and
the newly written data will return bytes of value 0 until data are written into the gap.

RETURN VALUES Upon successful completion, the resulting file pointer is returned. Remote file descrip-
tors are the only ones that allow negative file pointers. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS lseek() fails and the file pointer remains unchanged if one or more of the following are
true:

EBADF fildes is not an open file descriptor.

EINVAL whence is not SEEK_SET, SEEK_CUR, or SEEK_END.

EINVAL fildes is not a remote file descriptor, and the resulting file pointer would
be negative.

ESPIPE fildes is associated with a pipe or fifo.

Some devices are incapable of seeking. The value of the file pointer associated with such
a device is undefined.

SEE ALSO creat(2), dup(2), fcntl(2), open(2), read(2), write(2)

NOTES In multithreaded programs, using lseek() in conjunction with a read() or write() on a file
descriptor shared amongst more than one thread is not an atomic operation. To ensure
atomicity, use pread() or pwrite().

2-108 modified 29 Jul 1991

SunOS 5.4 System Calls memcntl (2)

NAME memcntl − memory management control

SYNOPSIS #include <sys/types.h>
#include <sys/mman.h>

int memcntl(caddr_t addr , size_t len, int cmd, caddr_t arg , int attr , int mask);

MT-LEVEL MT-Safe

DESCRIPTION The function memcntl() allows the calling process to apply a variety of control opera-
tions over the address space identified by the mappings established for the address range
[addr, addr + len).

addr must be a multiple of the pagesize as returned by sysconf(3C). The scope of the con-
trol operations can be further defined with additional selection criteria (in the form of
attributes) according to the bit pattern contained in attr.

The following attributes specify page mapping selection criteria:

SHARED Page is mapped shared.

PRIVATE Page is mapped private.

The following attributes specify page protection selection criteria:

PROT_READ Page can be read.

PROT_WRITE Page can be written.

PROT_EXEC Page can be executed.

The selection criteria are constructed by an OR of the attribute bits and must match
exactly.

In addition, the following criteria may be specified:

PROC_TEXT Process text.

PROC_DATA Process data.
where PROC_TEXT specifies all privately mapped segments with read and execute per-
mission, and PROC_DATA specifies all privately mapped segments with write permis-
sion.

Selection criteria can be used to describe various abstract memory objects within the
address space on which to operate. If an operation shall not be constrained by the selec-
tion criteria, attr must have the value 0.

The operation to be performed is identified by the argument cmd. The symbolic names
for the operations are defined in <sys/mman.h> as follows:

MC_LOCK Lock in memory all pages in the range with attributes attr. A
given page may be locked multiple times through different
mappings; however, within a given mapping, page locks do not
nest. Multiple lock operations on the same address in the same
process will all be removed with a single unlock operation. A
page locked in one process and mapped in another (or visible

modified 22 Jan 1993 2-109

memcntl (2) System Calls SunOS 5.4

through a different mapping in the locking process) is locked in
memory as long as the locking process does neither an implicit
nor explicit unlock operation. If a locked mapping is removed,
or a page is deleted through file removal or truncation, an
unlock operation is implicitly performed. If a writable
MAP_PRIVATE page in the address range is changed, the lock
will be transferred to the private page.

At present arg is unused, but must be 0 to ensure compatibility
with potential future enhancements.

MC_LOCKAS Lock in memory all pages mapped by the address space with
attributes attr. At present addr and len are unused, but must be
NULL and 0 respectively, to ensure compatibility with potential
future enhancements. arg is a bit pattern built from the flags:

MCL_CURRENT Lock current mappings

MCL_FUTURE Lock future mappings

The value of arg determines whether the pages to be locked are
those currently mapped by the address space, those that will be
mapped in the future, or both. If MCL_FUTURE is specified,
then all mappings subsequently added to the address space will
be locked, provided sufficient memory is available.

MC_SYNC Write to their backing storage locations all modified pages in the
range with attributes attr. Optionally, invalidate cache copies.
The backing storage for a modified MAP_SHARED mapping is
the file the page is mapped to; the backing storage for a
modified MAP_PRIVATE mapping is its swap area. arg is a bit
pattern built from the flags used to control the behavior of the
operation:

MS_ASYNC perform asynchronous writes

MS_SYNC perform synchronous writes

MS_INVALIDATE invalidate mappings

MS_ASYNC returns immediately once all write operations are
scheduled; with MS_SYNC the function will not return until all
write operations are completed.

MS_INVALIDATE invalidates all cached copies of data in
memory, so that further references to the pages will be obtained
by the system from their backing storage locations. This opera-
tion should be used by applications that require a memory
object to be in a known state.

MC_UNLOCK Unlock all pages in the range with attributes attr. At present arg
is unused, but must be 0 to ensure compatibility with potential
future enhancements.

2-110 modified 22 Jan 1993

SunOS 5.4 System Calls memcntl (2)

MC_UNLOCKAS
Remove address space memory locks, and locks on all pages in
the address space with attributes attr. At present addr, len, and
arg are unused, but must be NULL, 0 and 0 respectively, to
ensure compatibility with potential future enhancements.

The mask argument must be zero; it is reserved for future use.

Locks established with the lock operations are not inherited by a child process after
fork(). memcntl() fails if it attempts to lock more memory than a system-specific limit.

Due to the potential impact on system resources, all operations, with the exception of
MC_SYNC, are restricted to processes with super-user effective user ID . The memcntl()
function subsumes the operations of plock and mctl.

RETURN VALUES Upon successful completion, the function memcntl() returns a value of 0; otherwise, it
returns a value of −−1 and sets errno to indicate an error.

ERRORS Under the following conditions, the function memcntl() fails and sets errno to:

EAGAIN if some or all of the memory identified by the operation could not be locked
when MC_LOCK or MC_LOCKAS is specified.

EBUSY if some or all the addresses in the range [addr, addr + len) are locked and
MC_SYNC with MS_INVALIDATE option is specified.

EINVAL if addr is not a multiple of the page size as returned by sysconf.

EINVAL if addr and/or len do not have the value 0 when MC_LOCKAS or
MC_UNLOCKAS is specified.

EINVAL if arg is not valid for the function specified.

EINVAL if invalid selection criteria are specified in attr.

ENOMEM if some or all the addresses in the range [addr, addr + len) are invalid for the
address space of the process or pages not mapped are specified.

EPERM if the process’s effective user ID is not super-user and one of MC_LOCK,
MC_LOCKAS, MC_UNLOCK, MC_UNLOCKAS was specified.

SEE ALSO mmap(2), mprotect(2), plock(3C), mlock(3C), mlockall(3C), msync(3C), sysconf(3C)

modified 22 Jan 1993 2-111

mincore (2) System Calls SunOS 5.4

NAME mincore − determine residency of memory pages

SYNOPSIS #include <sys/types.h>

int mincore(caddr_t addr , size_t len, char ∗vec);

DESCRIPTION mincore() determines the residency of the memory pages in the address space covered
by mappings in the range [addr, addr + len]. The status is returned as a character-per-page
in the character array referenced by ∗vec (which the system assumes to be large enough to
encompass all the pages in the address range). The least significant bit of each character
is set to 1 to indicate that the referenced page is in primary memory, 0 if it is not. The set-
tings of other bits in each character are undefined and may contain other information in
future implementations.

Because the status of a page can change after mincore() checks it, but before mincore()
returns the information, returned information might be outdated. Only locked pages are
guaranteed to remain in memory; see mlock(3C).

RETURN VALUES mincore() returns 0 on success, −1 on failure and sets errno to indicate the error.

ERRORS mincore() fails if:

EFAULT vec points to an illegal address.

EINVAL addr is not a multiple of the page size as returned by sysconf(3C).

EINVAL The argument len has a value less than or equal to 0.

ENOMEM Addresses in the range [addr, addr + len] are invalid for the address space
of a process, or specify one or more pages which are not mapped.

SEE ALSO mmap(2), mlock(3C), sysconf(3C)

2-112 modified 12 Aug 1990

SunOS 5.4 System Calls mkdir (2)

NAME mkdir − make a directory

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>

int mkdir(const char ∗path , mode_t mode);

DESCRIPTION mkdir() creates a new directory named by the path name pointed to by path . The mode
of the new directory is initialized from mode (see chmod(2) for values of mode). The pro-
tection part of the mode argument is modified by the process’s file creation mask (see
umask(2)).

The directory’s owner ID is set to the process’s effective user ID. The directory’s group ID
is set to the process’s effective group ID, or if the S_ISGID bit is set in the parent direc-
tory, then the group ID of the directory is inherited from the parent. The S_ISGID bit of
the new directory is inherited from the parent directory.

If path is a symbolic link, it is not followed.

The newly created directory is empty with the exception of entries for itself (.) and its
parent directory (..).

Upon successful completion, mkdir() marks for update the st_atime, st_ctime and
st_mtime fields of the directory. Also, the st_ctime and st_mtime fields of the directory
that contains the new entry are marked for update.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned, and errno is set to indicate the error.

ERRORS mkdir() fails and creates no directory if one or more of the following are true:

EACCES Either a component of the path prefix denies search permission or
write permission is denied on the parent directory of the directory
to be created.

EEXIST The named file already exists.

EFAULT path points to an illegal address.

EIO An I/O error has occurred while accessing the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMLINK The maximum number of links to the parent directory would be
exceeded.

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT A component of the path prefix does not exist or is a null path-
name.

modified 5 Jul 1990 2-113

mkdir (2) System Calls SunOS 5.4

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOSPC No free space is available on the device containing the directory.

ENOTDIR A component of the path prefix is not a directory.

EROFS The path prefix resides on a read-only file system.

SEE ALSO chmod(2), mknod(2), umask(2), stat(5)

2-114 modified 5 Jul 1990

SunOS 5.4 System Calls mknod (2)

NAME mknod − make a directory, or a special or ordinary file

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>

int mknod(const char ∗path , mode_t mode , dev_t dev);

DESCRIPTION mknod() creates a new file named by the path name pointed to by path . The file type and
permissions of the new file are initialized from mode .

The file type is specified in mode by the S_IFMT bits, which must be set to one of the fol-
lowing values:

S_IFIFO fifo special
S_IFCHR character special
S_IFDIR directory
S_IFBLK block special
S_IFREG ordinary file

The file access permissions are specified in mode by the 0007777 bits, and may be con-
structed by an OR of the following values:

S_ISUID 04000 Set user ID on execution.
S_ISGID 020#0 Set group ID on execution if # is 7, 5, 3, or 1.

Enable mandatory file/record locking if # is 6, 4, 2, or 0.
S_ISVTX 01000 Save text image after execution.
S_IRWXU 00700 Read, write, execute by owner.
S_IRUSR 00400 Read by owner.
S_IWUSR 00200 Write by owner.
S_IXUSR 00100 Execute (search if a directory) by owner.
S_IRWXG 00070 Read, write, execute by group.
S_IRGRP 00040 Read by group.
S_IWGRP 00020 Write by group.
S_IXGRP 00010 Execute by group.
S_IRWXO 00007 Read, write, execute (search) by others.
S_IROTH 00004 Read by others.
S_IWOTH 00002 Write by others
S_IXOTH 00001 Execute by others.

The owner ID of the file is set to the effective user ID of the process. The group ID of the
file is set to the effective group ID of the process. However, if the S_ISGID bit is set in the
parent directory, then the group ID of the file is inherited from the parent. If the group ID
of the new file does not match the effective group ID or one of the supplementary group
IDs, the S_ISGID bit is cleared.

The access permission bits of mode are modified by the process’s file mode creation mask:
all bits set in the process’s file mode creation mask are cleared (see umask(2)). If mode
indicates a block or character special file, dev is a configuration-dependent specification of
a character or block I/O device. If mode does not indicate a block special or character
special device, dev is ignored. See makedev(3C).

modified 3 Dec 1993 2-115

mknod (2) System Calls SunOS 5.4

mknod() may be invoked only by a privileged user for file types other than FIFO special.

If path is a symbolic link, it is not followed.

RETURN VALUES 0 is returned upon successful completion; otherwise, −1 is returned and errno is set to
indicate the error.

ERRORS mknod() fails and creates no new file if one or more of the following are true:

EEXIST The named file exists.

EFAULT path points to an illegal address.

EINTR A signal was caught during the mknod() function.

EINVAL dev is invalid.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT A component of the path prefix does not exist or is a null path-
name.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOSPC No space is available.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user of the calling process is not super-user.

EROFS The directory in which the file is to be created is located on a read-
only file system.

SEE ALSO chmod(2), exec(2), mkdir(2), umask(2), makedev(3C), mkfifo(3C), stat(5)

NOTES Normally, applications should use the mkdir(2) routine to make a directory, since the
function mknod() may not establish directory entries for . (the directory itself)
and .. (the parent directory), and appropriate permissions are not required. Similarly,
mkfifo(3C) should be used in preference to mknod() in order to create FIFOs.

2-116 modified 3 Dec 1993

SunOS 5.4 System Calls mmap (2)

NAME mmap − map pages of memory

SYNOPSIS #include <sys/types.h>
#include <sys/mman.h>

caddr_t mmap(caddr_t addr , size_t len, int prot , int flags , int fildes, off_t off);

DESCRIPTION The function mmap() establishes a mapping between a process’s address space and a vir-
tual memory object. The format of the call is as follows:

pa = mmap(addr, len, prot, flags, fildes, off);

mmap establishes a mapping between the process’s address space at an address pa for len
bytes to the memory object represented by the file descriptor fildes at offset off for len
bytes. The value of pa is an implementation-dependent function of the parameter addr
and values of flags , further described below. A successful mmap call returns pa as its
result. The address ranges covered by [pa, pa + len) and [off, off + len) must be legitimate
for the possible (not necessarily current) address space of a process and the object in
question, respectively.

mmap() allows [pa, pa + len) to extend beyond the end of the object, both at the time of
the mmap() and while the mapping persists, such as when the file was created just before
the mmap() and has no contents, or if the file is truncated. Any reference to addresses
beyond the end of the object, however, will result in the delivery of a SIGBUS signal. In
other words, mmap() cannot be used to implicitly extend the length of files.

The mapping established by mmap() replaces any previous mappings for the process’s
pages in the range [pa, pa + len).

Mappings established from fildes are not removed upon a close(2) of that descriptor. Use
munmap(2) to remove a mapping.

The parameter prot determines whether read, write, execute, or some combination of
accesses are permitted to the pages being mapped. The protection options are defined in
<sys/mman.h> as:

PROT_READ Page can be read.
PROT_WRITE Page can be written.
PROT_EXEC Page can be executed.
PROT_NONE Page can not be accessed.

Not all implementations literally provide all possible combinations. PROT_WRITE is
often implemented as PROT_READ|PROT_WRITE and PROT_EXEC as
PROT_READ|PROT_EXEC. However, no implementation will permit a write to succeed
where PROT_WRITE has not been set. The behavior of PROT_WRITE can be influenced by
setting MAP_PRIVATE in the flags parameter, described below.

modified 12 Aug 1990 2-117

mmap (2) System Calls SunOS 5.4

The parameter flags provides other information about the handling of the mapped pages.
The options are defined in <sys/mman.h> as:

MAP_SHARED Share changes.
MAP_PRIVATE Changes are private.
MAP_FIXED Interpret addr exactly.
MAP_NORESERVE Don’t reserve swap space.

MAP_SHARED and MAP_PRIVATE describe the disposition of write references to the
memory object. If MAP_SHARED is specified, write references will change the memory
object. If MAP_PRIVATE is specified, the initial write reference will create a private copy
of the memory object page and redirect the mapping to the copy. Either MAP_SHARED or
MAP_PRIVATE must be specified, but not both. The mapping type is retained across a
fork(2).

Note that the private copy is not created until the first write; until then, other users who
have the object mapped MAP_SHARED can change the object.

MAP_FIXED informs the system that the value of pa must be addr , exactly. The use of
MAP_FIXED is discouraged, as it may prevent an implementation from making the most
effective use of system resources.

When MAP_FIXED is not set, the system uses addr in an implementation-defined manner
to arrive at pa . The pa so chosen will be an area of the address space which the system
deems suitable for a mapping of len bytes to the specified object. All implementations
interpret an addr value of zero as granting the system complete freedom in selecting pa ,
subject to constraints described below. A non-zero value of addr is taken to be a sugges-
tion of a process address near which the mapping should be placed. When the system
selects a value for pa , it will never place a mapping at address 0, nor will it replace any
extant mapping, nor map into areas considered part of the potential data or stack “seg-
ments”.

MAP_NORESERVE specifies that no swap space be reserved for a mapping. Without this
flag, the creation of a MAP_PRIVATE mapping reserves swap space equal to the size of
the mapping; when the mapping is written into, the reserved space is employed to hold
private copies of the data. A write into a MAP_NORESERVE mapping produces results
which depend on the current availability of swap space in the system. If space is avail-
able, the write succeeds and a private copy of the written page is created; if space is not
available, the write fails and a SIGBUS signal is delivered to the writing process.
MAP_NORESERVE mappings are inherited across fork(2); at the time of the fork(2) swap
space is reserved in the child for all private pages that currently exist in the parent;
thereafter the child’s mapping behaves as described above.

The parameter off is constrained to be aligned and sized according to the value returned
by sysconf(). When MAP_FIXED is specified, the parameter addr must also meet these
constraints. The system performs mapping operations over whole pages. Thus, while
the parameter len need not meet a size or alignment constraint, the system will include, in
any mapping operation, any partial page specified by the range [pa, pa + len).

2-118 modified 12 Aug 1990

SunOS 5.4 System Calls mmap (2)

The system will always zero-fill any partial page at the end of an object. Further, the sys-
tem will never write out any modified portions of the last page of an object which are
beyond its end. References to whole pages following the end of an object will result in
the delivery of a SIGBUS signal. SIGBUS signals may also be delivered on various file
system conditions, including quota exceeded errors.

If the process calls mlockall(3C) with the MCL_FUTURE flag, the pages mapped by all
future calls to mmap() will be locked in memory. In this case, if not enough memory
could be locked, mmap() fails and sets errno to EAGAIN.

RETURN VALUES On success, mmap() returns the address at which the mapping was placed (pa). On
failure it returns MAP_FAILED and sets errno to indicate an error.

ERRORS Under the following conditions, mmap() fails and sets errno to:

EACCES fildes is not open for read, regardless of the protection specified, or fildes is not
open for write and PROT_WRITE was specified for a MAP_SHARED type
mapping.

EAGAIN The mapping could not be locked in memory.

There was insufficient room to reserve swap space for the mapping.

The file to be mapped is already locked using advisory or mandatory record
locking. See fcntl(2).

EBADF fildes is not open.

EINVAL The arguments addr (if MAP_FIXED was specified) or off are not multiples of
the page size as returned by sysconf().

The field in flags is invalid (neither MAP_PRIVATE or MAP_SHARED).

The argument len has a value less than or equal to 0.

ENODEV fildes refers to an object for which mmap() is meaningless, such as a terminal.

ENOMEM MAP_FIXED was specified and the range [addr, addr + len) exceeds that
allowed for the address space of a process.

MAP_FIXED was "not" specified and there is insufficient room in the address
space to effect the mapping.

The composite size of len plus the lengths of all previous mmappings exceeds
RLIMIT_VMEM (see getrlimit(2)).

ENXIO The range [off, off + len) is illegal for mmapping to this device.

SEE ALSO close(2), fcntl(2), fork(2), getrlimit(2), mprotect(2), munmap(2), lockf(3C), mlockall(3C),
plock(3C), sysconf(3C)

NOTES mmap() allows access to resources using address space manipulations instead of the
read/write interface. Once a file is mapped, all a process has to do to access it is use the

modified 12 Aug 1990 2-119

mmap (2) System Calls SunOS 5.4

data at the address to which the object was mapped. Consider the following pseudo-
code:

fildes = open(. . .)
lseek(fildes, offset)
read(fildes, buf, len)
/∗ use data in buf ∗/

Here is a rewrite using mmap():

fildes = open(. . .)
address = mmap((caddr_t) 0, len, (PROT_READ | PROT_WRITE),

MAP_PRIVATE, fildes, offset)
/∗ use data at address ∗/

2-120 modified 12 Aug 1990

SunOS 5.4 System Calls mount (2)

NAME mount − mount a file system

SYNOPSIS #include <sys/types.h>
#include <sys/mount.h>

int mount(const char ∗spec, const char ∗dir, int mflag , /∗ char ∗fstype,
const char ∗dataptr , int datalen ∗/ . . .);

DESCRIPTION mount() requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. spec and dir are pointers
to path names. fstype is the file system type, which can be determined by the sysfs(2)
function. If both the MS_DATA and MS_FSS flag bits of mflag are off, the file system type
defaults to the root file system type. Only if either flag is on is fstype used to indicate the
file system type.

If the MS_DATA flag is set in mflag the system expects the dataptr and datalen arguments
to be present. Together they describe a block of file-system specific data at address
dataptr of length datalen . This is interpreted by file-system specific code within the
operating system and its format depends on the file system type. If a particular file sys-
tem type does not require this data, dataptr and datalen should both be zero. Note that
MS_FSS is obsolete and is ignored if MS_DATA is also set, but if MS_FSS is set and
MS_DATA is not, dataptr and datalen are both assumed to be zero.

After a successful call to mount(), all references to the file dir refer to the root directory
on the mounted file system.

The low-order bit of mflag is used to control write permission on the mounted file system:
if 1, writing is forbidden; otherwise writing is permitted according to individual file
accessibility.

The mount() system call may only be invoked only by processes with super-user
privileges.

RETURN VALUES Upon successful completion a value of 0 is returned. Otherwise, a value of −1 is returned
and errno is set to indicate the error.

ERRORS mount() fails if one or more of the following are true:

EBUSY dir is currently mounted on, is someone’s current working direc-
tory, or is otherwise busy.

EBUSY The device associated with spec is currently mounted.

EBUSY There are no more mount table entries.

EFAULT spec, dir, or datalen points outside the allocated address space of
the process.

EINVAL The super block has an invalid magic number or the fstype is
invalid.

modified 14 Mar 1994 2-121

mount (2) System Calls SunOS 5.4

ELOOP Too many symbolic links were encountered in translating spec or
dir.

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT None of the named files exists or is a null pathname.

ENOTBLK spec is not a block special device.

ENOTDIR dir is not a directory.

ENOTDIR A component of a path prefix is not a directory.

EPERM The effective user ID is not super-user.

EREMOTE spec is remote and cannot be mounted.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENXIO The device associated with spec does not exist.

EROFS spec is write protected and mflag requests write permission.

ENOSPC The file system state in the super-block is not FsOKAY and mflag
requests write permission.

SEE ALSO mount(1M), sysfs(2), umount(2)

2-122 modified 14 Mar 1994

SunOS 5.4 System Calls mprotect (2)

NAME mprotect − set protection of memory mapping

SYNOPSIS #include <sys/types.h>
#include <sys/mman.h>

int mprotect(caddr_t addr , size_t len, int prot);

DESCRIPTION The function mprotect() changes the access protections on the mappings specified by the
range [addr, addr + len) to be that specified by prot . Legitimate values for prot are the
same as those permitted for mmap and are defined in <sys/mman.h> as:

PROT_READ /∗∗ page can be read ∗∗/
PROT_WRITE /∗∗ page can be written ∗∗/
PROT_EXEC /∗∗ page can be executed ∗∗/
PROT_NONE /∗∗ page can not be accessed ∗∗/

RETURN VALUES Upon successful completion, the function mprotect() returns a value of 0; otherwise, it
returns a value of −−1 and sets errno to indicate an error.

ERRORS Under the following conditions, the function mprotect() fails and sets errno to:

EACCES prot specifies a protection that violates the access permission the process has
to the underlying memory object.

EAGAIN the address range [addr, addr + len) includes one or more pages that have
been locked in memory and that were mapped MAP_PRIVATE; prot includes
PROT_WRITE; and the system has insufficient resources to reserve memory
for the private pages that may be created. These private pages may be
created by store operations into the now-writable address range.

EINVAL addr is not a multiple of the page size as returned by sysconf.

EINVAL the len argument has a value less than or equal to 0.

ENOMEM addresses in the range [addr, addr + len) are invalid for the address space of a
process, or specify one or more pages which are not mapped.

When mprotect() fails for reasons other than EINVAL, the protections on some of the
pages in the range [addr, addr + len) may have been changed. If the error occurs on some
page at addr2, then the protections of all whole pages in the range [addr, addr2] will have
been modified.

SEE ALSO mmap(2), plock(3C), mlock(3C), mlockall(3C), sysconf(3C)

modified 12 Aug 1990 2-123

msgctl (2) System Calls SunOS 5.4

NAME msgctl − message control operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(int msqid, int cmd, /∗ struct msqid_ds ∗buf ∗/ . . .);

DESCRIPTION msgctl() provides a variety of message control operations as specified by cmd. The fol-
lowing cmds are available:

IPC_STAT Place the current value of each member of the data structure associated
with msqid into the structure pointed to by buf. The contents of this struc-
ture are defined in intro(2).

IPC_SET Set the value of the following members of the data structure associated with
msqid to the corresponding value found in the structure pointed to by buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode /∗ only access permission bits ∗/
msg_qbytes

This cmd can only be executed by a process that has an effective user ID
equal to either that of super user, or to the value of msg_perm.cuid or
msg_perm.uid in the data structure associated with msqid. Only super user
can raise the value of msg_qbytes.

IPC_RMID Remove the message queue identifier specified by msqid from the system
and destroy the message queue and data structure associated with it. This
cmd can only be executed by a process that has an effective user ID equal to
either that of super user, or to the value of msg_perm.cuid or
msg_perm.uid in the data structure associated with msqid.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned
and errno is set to indicate the error.

ERRORS msgctl() fails if one or more of the following are true:

EACCES cmd is IPC_STAT and operation permission is denied to the calling pro-
cess (see intro(2)).

EFAULT buf points to an illegal address.

EINVAL msqid is not a valid message queue identifier.

EINVAL cmd is not a valid command.

EINVAL cmd is IPC_SET and msg_perm.uid or msg_perm.gid is not valid.

EPERM cmd is IPC_RMID or IPC_SET. The effective user of the calling process
is not super-user, or the value of msg_perm.cuid or msg_perm.uid in
the data structure associated with msqid.

2-124 modified 5 Jul 1990

SunOS 5.4 System Calls msgctl (2)

EPERM cmd is IPC_SET, an attempt is being made to increase to the value of
msg_qbytes, and the effective user ID of the calling process is not that of
super user.

EOVERFLOW cmd is IPC_STAT and uid or gid is too large to be stored in the structure
pointed to by buf.

SEE ALSO intro(2), msgget(2), msgop(2)

modified 5 Jul 1990 2-125

msgget (2) System Calls SunOS 5.4

NAME msgget − get message queue

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget(key_t key , int msgflg);

DESCRIPTION msgget() returns the message queue identifier associated with key .

A message queue identifier and associated message queue and data structure (see
intro(2)) are created for key if one of the following are true:

key is IPC_PRIVATE.

key does not already have a message queue identifier associated with it, and
(msgflg&IPC_CREAT) is true.

On creation, the data structure associated with the new message queue identifier is ini-
tialized as follows:

msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set to
the effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are set to the low-order 9 bits of msgflg .

msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set to 0.

msg_ctime is set to the current time.

msg_qbytes is set to the system limit.

RETURN VALUES Upon successful completion, a non-negative integer, namely a message queue identifier,
is returned. Otherwise, a value of −1 is returned and errno is set to indicate the error.

ERRORS msgget() fails if one or more of the following are true:

EACCES A message queue identifier exists for key , but operation permission (see
intro(2)) as specified by the low-order 9 bits of msgflg would not be
granted.

EEXIST A message queue identifier exists for key but (msgflg&IPC_CREAT) and
(msgflg&IPC_EXCL) are both true.

ENOENT A message queue identifier does not exist for key and
(msgflg&IPC_CREAT) is false.

ENOSPC A message queue identifier is to be created but the system-imposed limit
on the maximum number of allowed message queue identifiers system
wide would be exceeded.

SEE ALSO intro(2), msgctl(2), msgop(2), stdipc(3C)

2-126 modified 5 Jul 1990

SunOS 5.4 System Calls msgop (2)

NAME msgop, msgsnd, msgrcv − message operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msqid, const void ∗msgp, size_t msgsz, int msgflg);

int msgrcv(int msqid, void ∗msgp, size_t msgsz, long msgtyp, int msgflg);

DESCRIPTION msgsnd() sends a message to the queue associated with the message queue identifier
specified by msqid. msgp points to a user defined buffer that must contain first a field of
type long integer that will specify the type of the message, and then a data portion that
will hold the text of the message. The following is an example of members that might be
in a user defined buffer.

long mtype; /∗ message type ∗/
char mtext[]; /∗ message text ∗/

mtype is a positive integer that can be used by the receiving process for message selec-
tion. mtext is any text of length msgsz bytes. msgsz can range from 0 to a system imposed
maximum.

msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_qbytes (see intro(2)).

The total number of messages on all queues system-wide is equal to the system-
imposed limit.

These actions are as follows:

If (msgflg&IPC_NOWAIT) is true, the message is not sent and the calling process
returns immediately.

If (msgflg&IPC_NOWAIT) is false, the calling process suspends execution until
one of the following occurs:

· The condition responsible for the suspension no longer exists, in which
case the message is sent.

· msqid is removed from the system (see msgctl(2)). When this occurs, errno
is set to EIDRM, and a value of −1 is returned.

· The calling process receives a signal that is to be caught. In this case the
message is not sent and the calling process resumes execution in the
manner prescribed in signal(3C).

msgrcv() reads a message from the queue associated with the message queue identifier
specified by msqid and places it in the user defined structure pointed to by msgp. The
structure must contain a message type field followed by the area for the message text (see
the structure mymsg above). mtype is the received message’s type as specified by the
sending process. mtext is the text of the message. msgsz specifies the size in bytes of
mtext.

modified 5 Jul 1990 2-127

msgop (2) System Calls SunOS 5.4

The received message is truncated to msgsz bytes if it is larger than msgsz and
(msgflg&MSG_NOERROR) is true. The truncated part of the message is lost and no
indication of the truncation is given to the calling process.

msgtyp specifies the type of message requested as follows:

If msgtyp is 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less than or
equal to the absolute value of msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is not on the queue.
These are as follows:

If (msgflg&IPC_NOWAIT) is true, the calling process returns immediately with a
return value of −1 and sets errno to ENOMSG.

If (msgflg&IPC_NOWAIT) is false, the calling process suspends execution until
one of the following occurs:

· A message of the desired type is placed on the queue.

· msqid is removed from the system. When this occurs, errno is set to
EIDRM, and a value of −1 is returned.

· The calling process receives a signal that is to be caught. In this case a
message is not received and the calling process resumes execution in the
manner prescribed in signal(3C).

RETURN VALUES If msgsnd() or msgrcv() return due to the receipt of a signal, a value of −1 is returned to
the calling process and errno is set to EINTR. If they return due to removal of msqid
from the system, a value of −1 is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:

msgsnd() returns a value of 0.

msgrcv returns the number of bytes actually placed into mtext .

Otherwise, a value of −1 is returned and errno is set to indicate the error.

ERRORS msgsnd() fails and sends no message if one or more of the following are true:

EACCES Operation permission is denied to the calling process (see intro(2)).

EAGAIN The message cannot be sent for one of the reasons cited above and
(msgflg&IPC_NOWAIT) is true.

EFAULT msgp points to an illegal address.

EINVAL msqid is not a valid message queue identifier.

EINVAL mtype is less than 1.

EINVAL msgsz is less than zero or greater than the system-imposed limit.

2-128 modified 5 Jul 1990

SunOS 5.4 System Calls msgop (2)

Upon successful completion, the following actions are taken with respect to the data
structure associated with msqid (see intro(2)).

msg_qnum is incremented by 1.

msg_lspid is set to the process ID of the calling process.

msg_stime is set to the current time.

msgrcv() fails and receives no message if one or more of the following are true:

E2BIG The length of mtext is greater than msgsz and
(msgflg&MSG_NOERROR) is false.

EACCES Operation permission is denied to the calling process.

EFAULT msgp points to an illegal address.

EINVAL msqid is not a valid message queue identifier.

EINVAL msgsz is less than 0.

ENOMSG The queue does not contain a message of the desired type and
(msgtyp&IPC_NOWAIT) is true.

Upon successful completion, the following actions are taken with respect to the data
structure associated with msqid (see intro(2)).

msg_qnum is decremented by 1.

msg_lrpid is set to the process ID of the calling process.

msg_rtime is set to the current time.

SEE ALSO intro(2), msgctl(2), msgget(2), signal(3C)

modified 5 Jul 1990 2-129

munmap (2) System Calls SunOS 5.4

NAME munmap − unmap pages of memory

SYNOPSIS #include <sys/types.h>
#include <sys/mman.h>

int munmap(caddr_t addr , size_t len);

DESCRIPTION The function munmap() removes the mappings for pages in the range [addr, addr + len).
Further references to these pages will result in the delivery of a SIGSEGV signal to the
process.

The function mmap often performs an implicit munmap().

RETURN VALUES Upon successful completion, the function munmap() returns a value of 0; otherwise, it
returns a value of −−1 and sets errno to indicate an error.

ERRORS Under the following conditions, the function munmap() fails and sets errno to:

EINVAL if addr is not a multiple of the page size as returned by sysconf.

EINVAL if addresses in the range [addr, addr + len) are outside the valid range for the
address space of a process.

EINVAL The argument len has a value less than or equal to 0.

SEE ALSO mmap(2), sysconf(3C)

2-130 modified 12 Aug 1990

SunOS 5.4 System Calls nice (2)

NAME nice − change priority of a process

SYNOPSIS #include <unistd.h>

int nice(int incr);

DESCRIPTION nice() allows a process to change its priority. The invoking process must be in a schedul-
ing class that supports the nice() system call. The priocntl function is a more general
interface to scheduler functions.

nice() adds the value of incr to the nice value of the calling process. A process’s nice
value is a non-negative number for which a more positive value results in lower CPU
priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system.
(The default nice value is 20.) Requests for values above or below these limits result in
the nice value being set to the corresponding limit.

RETURN VALUES Upon successful completion, nice() returns the new nice value minus 20. Otherwise, a
value of −1 is returned and errno is set to indicate the error.

ERRORS nice() fails if one or more of the following are true:

EINVAL nice() is called by a process in a scheduling class other than time-sharing.

EPERM incr is negative or greater than 40 and the effective user id of the calling
process is not super-user.

SEE ALSO nice(1), exec(2), priocntl(2)

modified 08 Apr 1994 2-131

open (2) System Calls SunOS 5.4

NAME open − open for reading or writing

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char ∗path , int oflag , /∗ mode_t mode ∗/ . . .);

DESCRIPTION open() opens a file descriptor for the file with the path name pointed to by path , and sets
the file status flags according to the value of oflag . oflag values are constructed by OR-ing
Flags from the following list (only one of the first three flags below may be used):

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY or O_NONBLOCK These flags may affect subsequent reads and writes
(see read(2) and write(2)). If both O_NDELAY and O_NONBLOCK are set,
O_NONBLOCK will take precedence.

When opening a FIFO with O_RDONLY or O_WRONLY set:

If O_NDELAY or O_NONBLOCK is set: An open for reading-only will
return without delay; an open for writing-only will return an error if
no process currently has the file open for reading.

If O_NDELAY and O_NONBLOCK are clear: An open for reading-
only will block until a process opens the file for writing; an open for
writing-only will block until a process opens the file for reading.

When opening a file associated with a terminal line:

If O_NDELAY or O_NONBLOCK is set: The open will return without
waiting for the device to be ready or available; subsequent behavior
of the device is device specific.

If O_NDELAY and O_NONBLOCK are clear: The open will block until
the device is ready or available.

O_APPEND If set, the file pointer will be set to the end of the file prior to each write.

O_DSYNC Write I/O operations on the file descriptor complete as defined by syn-
chronized I/O data integrity completion.

O_RSYNC Read I/O operations on the file descriptor complete at the same level of
integrity as specified by the O_DSYNC and O_SYNC flags. If both
O_DSYNC and O_RSYNC are set in oflag, all I/O operations on the file
descriptor complete as defined by synchronized I/O data integrity com-
pletion. If both O_SYNC and O_RSYNC are set in oflag, all I/O operations
on the file descriptor complete as defined by synchronized I/O file
integrity completion.

O_SYNC When opening a regular file, this flag affects subsequent writes. If set,

2-132 modified 26 Feb 1994

SunOS 5.4 System Calls open (2)

each write(2) will wait for both the file data and file status to be physi-
cally updated. Write I/O operations on the file descriptor complete as
defined by synchronized I/O file integrity completion.

O_NOCTTY If set and the file is a terminal, the terminal will not be allocated as the
calling process’s controlling terminal.

O_CREAT If the file exists, this flag has no effect, except as noted under O_EXCL
below. Otherwise, the file is created and the owner ID of the file is set to
the effective user ID of the process, the group ID of the file is set to the
effective group ID of the process, or if the S_ISGID bit is set in the direc-
tory in which the file is being created, the file’s group ID is set to the
group ID of its parent directory. If the group ID of the new file does not
match the effective group ID or one of the supplementary groups IDs, the
S_ISGID bit is cleared. The access permission bits of the file mode are set
to the value of mode, modified as follows (see creat(2)):

All bits set in the file mode creation mask of the process are cleared
(see umask(2)).

The “save text image after execution bit” of the mode is cleared (see
chmod(2)). O_SYNC Write I/O operations on the file descriptor com-
plete as defined by synchronized I/O file integrity completion (see
fcntl(5) definition of O_SYNC .)

O_EXCL If O_EXCL and O_CREAT are set, open() will fail if the file exists. The
check for the existence of the file and the creation of the file if it does not
exist is atomic with respect to other processes executing open() naming
the same filename in the same directory with O_EXCL and O_CREAT set.

O_TRUNC If the file exists, its length is truncated to 0 and the mode and owner are
unchanged. O_TRUNC has no effect on FIFO special files or directories.

When opening a STREAMS file, oflag may be constructed from O_NDELAY or
O_NONBLOCK OR-ed with either O_RDONLY, O_WRONLY, or O_RDWR. Other flag
values are not applicable to STREAMS devices and have no effect on them. The values of
O_NDELAY and O_NONBLOCK affect the operation of STREAMS drivers and certain func-
tions (see read(2), getmsg(2), putmsg(2), and write(2)). For drivers, the implementation
of O_NDELAY and O_NONBLOCK is device specific. Each STREAMS device driver may
treat these options differently.

When open() is invoked to open a named stream, and the connld module (see connld(7))
has been pushed on the pipe, open() blocks until the server process has issued an
I_RECVFD ioctl (see streamio(7)) to receive the file descriptor.

If path is a symbolic link and O_CREAT and O_EXCL are set, the link is not followed.

The file pointer used to mark the current position within the file is set to the beginning of
the file.

The new file descriptor is the lowest numbered file descriptor available and is set to
remain open across exec functions (see fcntl(2)).

modified 26 Feb 1994 2-133

open (2) System Calls SunOS 5.4

Certain flag values can be set following open() as described in fcntl(2).

If O_CREAT is set and the file did not previously exist, upon successful completion
open() marks for update the st_atime, st_ctime and st_mtime fields of the file and the
st_ctime and st_mtime fields of the parent directory.

If O_TRUNC is set and the file did previously exist, upon successful completion open()
marks for update the st_ctime and st_mtime fields of the file.

RETURN VALUES Upon successful completion, the file descriptor is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS The named file is opened unless one or more of the following are true:

EACCES The file does not exist and write permission is denied by the parent
directory of the file to be created.

O_TRUNC is specified and write permission is denied

A component of the path prefix denies search permission.

oflag permission is denied for an existing file.

EAGAIN If the file exists with enforced record locking enabled, record locks
are on the file (see chmod(2)), and O_TRUNC is specified.

EEXIST O_CREAT and O_EXCL are set, and the named file exists.

EFAULT path points to an illegal address.

EINTR A signal was caught during the open() function.

EIO A hangup or error occurred during the open of the STREAMS-
based device.

EISDIR The named file is a directory and oflag is write or read/write.

ELOOP Too many symbolic links were encountered in translating path.

EMFILE The process has too many open files (see getrlimit(2)).

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENFILE The system file table is full.

ENOENT O_CREAT is not set and the named file does not exist.

O_CREAT is set and a component of the path prefix does not exist
or is the null pathname.

ENOLINK path points to a remote machine, and the link to that machine is no
longer active.

ENOMEM The system is unable to allocate a send descriptor.

2-134 modified 26 Feb 1994

SunOS 5.4 System Calls open (2)

ENOSPC O_CREAT and O_EXCL are set, and the file system is out of inodes.

O_CREAT is set and the directory cannot be extended.

ENOSR Unable to allocate a stream.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The named file is a character special or block special file, and the
device associated with this special file does not exist.

O_NDELAY or O_NONBLOCK is set, the named file is a FIFO,
O_WRONLY is set, and no process has the file open for reading.

A STREAMS module or driver open routine failed.

EROFS The named file resides on a read-only file system and either
O_WRONLY , O_RDWR , O_CREAT , or O_TRUNC is set in oflag (if
the file does not exist).

SEE ALSO intro(2), chmod(2), close(2), creat(2), dup(2), exec(2), fcntl(2), getmsg(2), getrlimit(2),
lseek(2), putmsg(2), read(2), stat(2), umask(2), write(2), stat(5), fcntl(5), connld(7),
streamio(7)

modified 26 Feb 1994 2-135

p_online (2) System Calls SunOS 5.4

NAME p_online − change processor online or offline status

SYNOPSIS #include <sys/types.h>
#include <sys/processor.h>

int p_online(processorid_t processorid , int flag);

DESCRIPTION The processor specified by the first argument is set online or offline or is unchanged,
depending on whether the flag argument is P_ONLINE, P_OFFLINE, or P_STATUS.

When a flag of P_ONLINE is specified, the processor, if previously offline, is brought
online and allowed to process LWPs and perform system activities.

When P_OFFLINE is specified, and the processor is not already offline, it is taken offline
and not allowed to process LWPs. The processor will become as inactive as possible.

When P_STATUS is specified, no change occurs, but the current status is returned.

RETURN VALUES On successful completion, the value returned is the previous state of the processor,
P_ONLINE or P_OFFLINE. Otherwise, a value of −1 is returned and errno is set to indi-
cate the error.

ERRORS EPERM The effective user of the calling process is not superuser.

EINVAL An non-existent processor ID was specified or flag was invalid.

EBUSY flag was P_OFFLINE and the specified processor is the only online pro-
cessor, there are currently LWPs bound to the processor, or the processor
performs some essential function that cannot be performed by another
processor.

SEE ALSO psradm(1M), psrinfo(1M), processor_bind(2), processor_info(2), sysconf(3C)

2-136 modified 23 Sep 1992

SunOS 5.4 System Calls pause (2)

NAME pause − suspend process until signal

SYNOPSIS #include <unistd.h>

int pause(void);

DESCRIPTION pause() suspends the calling process until it receives a signal. The signal must be one
that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause() does not return.

If the signal is caught by the calling process and control is returned from the signal-
catching function (see signal(3C)), the calling process resumes execution from the point
of suspension; with a return value of −1 from pause() and errno set to EINTR.

SEE ALSO alarm(2), kill(2), wait(2), signal(3C)

modified 5 Jul 1990 2-137

pipe (2) System Calls SunOS 5.4

NAME pipe − create an interprocess channel

SYNOPSIS #include <unistd.h>

int pipe(int fildes[2]);

DESCRIPTION pipe() creates an I/O mechanism called a pipe and returns two file descriptors, fildes[0]
and fildes[1]. The files associated with fildes[0] and fildes[1] are streams and are both
opened for reading and writing. The O_NDELAY and O_NONBLOCK flags are cleared.

A read from fildes[0] accesses the data written to fildes[1] on a first-in-first-out (FIFO) basis
and a read from fildes[1] accesses the data written to fildes[0] also on a FIFO basis.

The FD_CLOEXEC flag will be clear on both file descriptors.

Upon successful completion pipe() marks for update the st_atime, st_ctime, and
st_mtime fields of the pipe.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS pipe() fails if:

EMFILE If {OPEN_MAX}-1 or more file descriptors are currently open for this
process.

ENFILE A file table entry could not be allocated.

SEE ALSO sh(1), fcntl(2), getmsg(2), poll(2), putmsg(2), read(2), write(2), streamio(7)

NOTES Since a pipe is bi-directional, there are two separate flows of data. Therefore, the size
(st_size) returned by a call to fstat () with argument fildes[0] or fildes[1] is the number of
bytes available for reading from fildes[0] or fildes[1] respectively. Previously, the size
(st_size) returned by a call to fstat() with argument fildes[1] (the write-end) was the
number of bytes available for reading from fildes[0] (the read-end).

2-138 modified 5 Jul 1990

SunOS 5.4 System Calls poll (2)

NAME poll − input/output multiplexing

SYNOPSIS #include <stropts.h>
#include <poll.h>

int poll(struct pollfd ∗fds, unsigned long nfds, int timeout);

DESCRIPTION poll() provides users with a mechanism for multiplexing input/output over a set of file
descriptors that reference open files. poll() identifies those files on which a user can send
or receive messages, or on which certain events have occurred.

fds specifies the file descriptors to be examined and the events of interest for each file
descriptor. It is a pointer to an array with one element for each open file descriptor of
interest. The array’s elements are pollfd structures, which contain the following
members:

int fd; /∗∗ file descriptor ∗∗/
short events; /∗∗ requested events ∗∗/
short revents; /∗∗ returned events ∗∗/

fd specifies an open file descriptor and events and revents are bitmasks constructed by
an OR of any combination of the following event flags:

POLLIN Data other than high priority data may be read without blocking.
For STREAMS, this flag is set even if the message is of zero length.

POLLRDNORM Normal data (priority band = 0) may be read without blocking.
For STREAMS, this flag is set even if the message is of zero length.

POLLRDBAND Data from a non-zero priority band may be read without blocking
For STREAMS, this flag is set even if the message is of zero length.

POLLPRI High priority data may be received without blocking. For
STREAMS, this flag is set even if the message is of zero length.

POLLOUT Normal data may be written without blocking.

POLLWRNORM The same as POLLOUT.

POLLWRBAND Priority data (priority band > 0) may be written. This event only
examines bands that have been written to at least once.

POLLERR An error has occurred on the device or stream. This flag is only
valid in the revents bitmask; it is not used in the events field.

POLLHUP A hangup has occurred on the stream. This event and POLLOUT
are mutually exclusive; a stream can never be writable if a hangup
has occurred. However, this event and POLLIN, POLLRDNORM,
POLLRDBAND, or POLLPRI are not mutually exclusive. This flag
is only valid in the revents bitmask; it is not used in the events
field.

POLLNVAL The specified fd value does not belong to an open file. This flag is
only valid in the revents field; it is not used in the events field.

modified 11 Mar 1993 2-139

poll (2) System Calls SunOS 5.4

For each element of the array pointed to by fds, poll() examines the given file descriptor
for the event(s) specified in events. The number of file descriptors to be examined is
specified by nfds.

If the value fd is less than zero, events is ignored and revents is set to 0 in that entry on
return from poll().

The results of the poll() query are stored in the revents field in the pollfd structure. Bits
are set in the revents bitmask to indicate which of the requested events are true. If none
are true, none of the specified bits are set in revents when the poll() call returns. The
event flags POLLHUP, POLLERR, and POLLNVAL are always set in revents if the condi-
tions they indicate are true; this occurs even though these flags were not present in
events.

If none of the defined events have occurred on any selected file descriptor, poll() waits at
least timeout milliseconds for an event to occur on any of the selected file descriptors. On
a computer where millisecond timing accuracy is not available, timeout is rounded up to
the nearest legal value available on that system. If the value timeout is 0, poll() returns
immediately. If the value of timeout is INFTIM (or −1), poll() blocks until a requested
event occurs or until the call is interrupted. poll() is not affected by the O_NDELAY and
O_NONBLOCK flags.

RETURN VALUES Upon successful completion, a non-negative value is returned. A positive value indicates
the total number of file descriptors that has been selected (that is, file descriptors for
which the revents field is non-zero). A value of 0 indicates that the call timed out and no
file descriptors have been selected. Upon failure, a value of −1 is returned and errno is
set to indicate the error.

ERRORS poll() fails if one or more of the following are true:

EAGAIN Allocation of internal data structures failed, but the request may be
attempted again.

EFAULT Some argument points to an illegal address.

EINTR A signal was caught during the poll() function.

EINVAL The argument nfds is greater than {OPEN_MAX}.

SEE ALSO intro(2), getmsg(2), getrlimit(2), putmsg(2), read(2), write(2), chpoll(9E)

STREAMS Programmer’s Guide

NOTES Non-STREAMS drivers use chpoll(9E) to implement poll(2) on these devises.

2-140 modified 11 Mar 1993

SunOS 5.4 System Calls priocntl (2)

NAME priocntl − process scheduler control

SYNOPSIS #include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

long priocntl(idtype_t idtype, id_t id, int cmd, /∗ arg ∗/ . . .);

DESCRIPTION priocntl() provides for control over the scheduling of an active light weight process
(LWP).

LWPs fall into distinct classes with a separate scheduling policy applied to each class.
The two classes currently supported are the real-time class and the time-sharing class.
The characteristics of these classes are described under the corresponding headings
below. The class attribute of an LWP is inherited across the fork(2), exec(2) and
_lwp_create(2) system calls. priocntl() can be used to dynamically change the class and
other scheduling parameters associated with a running LWP or set of LWPs given the
appropriate permissions as explained below.

In the default configuration, a runnable real-time LWP runs before any other LWP.
Therefore, inappropriate use of real-time LWP can have a dramatic negative impact on
system performance.

priocntl() provides an interface for specifying a process, set of processes or an LWP to
which the function is to apply. The priocntlset(2) system call provides the same func-
tions as priocntl(), but allows a more general interface for specifying the set of LWPs to
which the function is to apply.

For priocntl(), the idtype and id arguments are used together to specify the set of LWPs.
The interpretation of id depends on the value of idtype. The possible values for idtype and
corresponding interpretations of id are as follows:

P_LWPID id is an LWP ID. The priocntl () system call applies to the LWP with the
specified ID within the calling process.

P_PID id is a process ID specifying a single process. The priocntl() system call
applies to all LWPs currently associated with the specified process.

P_PPID id is a parent process ID. The priocntl() system call applies to all LWPs
currently associated with processes with the specified parent process ID.

P_PGID id is a process group ID. The priocntl() system call applies to all LWPs
currently associated with processes in the specified process group.

P_SID id is a session ID. The priocntl() system call applies to all LWPs currently
associated with processes in the specified session.

P_CID id is a class ID (returned by priocntl() PC_GETCID as explained below).
The priocntl() system call applies to all LWPs in the specified class.

P_UID id is a user ID. The priocntl() system call applies to all LWPs with this
effective user ID.

modified 5 Jul 1990 2-141

priocntl (2) System Calls SunOS 5.4

P_GID id is a group ID. The priocntl() system call applies to all LWPs with this
effective group ID.

P_ALL The priocntl() system call applies to all existing LWPs. The value of id is
ignored. The permission restrictions described below still apply.

An id value of P_MYID can be used in conjunction with the idtype value to specify the
calling LWP’s LWP ID, parent process ID, process group ID, session ID, class ID, user ID,
or group ID.

In order to change the scheduling parameters of an LWP (using the PC_SETPARMS
command as explained below) the real or effective user ID of the LWP calling priocntl()
must match the real or effective user ID of the receiving LWP or the effective user ID of
the calling LWP must be super-user. These are the minimum permission requirements
enforced for all classes. An individual class may impose additional permissions require-
ments when setting LWPs to that class and/or when setting class-specific scheduling
parameters.

A special sys scheduling class exists for the purpose of scheduling the execution of cer-
tain special system processes (such as the swapper process). It is not possible to change
the class of any LWP to sys. In addition, any processes in the sys class that are included
in a specified set of processes are disregarded by priocntl(). For example, an idtype of
P_UID and an id value of zero would specify all processes with a user ID of zero except
processes in the sys class and (if changing the parameters using PC_SETPARMS) the
init(1M) process.

The init process is a special case. In order for a priocntl() call to change the class or other
scheduling parameters of the init process (process ID 1), it must be the only process
specified by idtype and id. The init process may be assigned to any class configured on
the system, but the time-sharing class is almost always the appropriate choice. (Other
choices may be highly undesirable; see the File System Administration for more informa-
tion.)

The data type and value of arg are specific to the type of command specified by cmd.

A structure with the following members is used by the PC_GETCID and
PC_GETCLINFO commands.

id_t pc_cid; /∗ Class id ∗/
char pc_clname[PC_CLNMSZ]; /∗ Class name ∗/
long pc_clinfo[PC_CLINFOSZ]; /∗ Class information ∗/

pc_cid is a class ID returned by priocntl() PC_GETCID. pc_clname is a buffer of size
PC_CLNMSZ (defined in <sys/priocntl.h>) used to hold the class name (RT for real-time
or TS for time-sharing).

pc_clinfo is a buffer of size PC_CLINFOSZ (defined in <sys/priocntl.h>) used to return
data describing the attributes of a specific class. The format of this data is class-specific
and is described under the appropriate heading (REAL-TIME CLASS or TIME-SHARING
CLASS) below.

2-142 modified 5 Jul 1990

SunOS 5.4 System Calls priocntl (2)

A structure with the following elements is used by the PC_SETPARMS and
PC_GETPARMS commands.

id_t pc_cid; /∗ LWP class ∗/
long pc_clparms[PC_CLPARMSZ]; /∗ Class-specific params ∗/

pc_cid is a class ID (returned by priocntl() PC_GETCID). The special class ID
PC_CLNULL can also be assigned to pc_cid when using the PC_GETPARMS command
as explained below.

The pc_clparms buffer holds class-specific scheduling parameters. The format of this
parameter data for a particular class is described under the appropriate heading below.
PC_CLPARMSZ is the length of the pc_clparms buffer and is defined in
<sys/priocntl.h>.

Commands Available priocntl() commands are:

PC_GETCID
Get class ID and class attributes for a specific class given class name. The idtype and id
arguments are ignored. If arg is non-null, it points to a structure of type pcinfo_t.
The pc_clname buffer contains the name of the class whose attributes you are getting.

On success, the class ID is returned in pc_cid, the class attributes are returned in the
pc_clinfo buffer, and the priocntl() call returns the total number of classes configured
in the system (including the sys class). If the class specified by pc_clname is invalid
or is not currently configured the priocntl() call returns −1 with errno set to EINVAL.
The format of the attribute data returned for a given class is defined in the
<sys/rtpriocntl.h> or <sys/tspriocntl.h> header file and described under the
appropriate heading below.

If arg is a NULL pointer, no attribute data is returned but the priocntl() call still
returns the number of configured classes.

PC_GETCLINFO
Get class name and class attributes for a specific class given class ID. The idtype and id
arguments are ignored. If arg is non-null, it points to a structure of type pcinfo_t.
pc_cid is the class ID of the class whose attributes you are getting.

On success, the class name is returned in the pc_clname buffer, the class attributes are
returned in the pc_clinfo buffer, and the priocntl() call returns the total number of
classes configured in the system (including the sys class). The format of the attribute
data returned for a given class is defined in the <sys/rtpriocntl.h> or
<sys/tspriocntl.h> header file and described under the appropriate heading below.

If arg is a NULL pointer, no attribute data is returned but the priocntl() call still
returns the number of configured classes.

modified 5 Jul 1990 2-143

priocntl (2) System Calls SunOS 5.4

PC_SETPARMS
Set the class and class-specific scheduling parameters of the specified LWP(s) associ-
ated with the specified process(es). When this command is used with the idtype of
P_LWPID, it will set the class and class-specific scheduling parameters of the LWP. arg
points to a structure of type pcparms_t. pc_cid specifies the class you are setting and
the pc_clparms buffer contains the class-specific parameters you are setting. The for-
mat of the class-specific parameter data is defined in the <sys/rtpriocntl.h> or
<sys/tspriocntl.h> header and described under the appropriate class heading below.

When setting parameters for a set of LWPs, priocntl() acts on the LWPs in the set in
an implementation-specific order. If priocntl() encounters an error for one or more of
the target processes, it may or may not continue through the set of LWPs, depending
on the nature of the error. If the error is related to permissions (EPERM), priocntl()
continues through the LWP set, resetting the parameters for all target LWPs for which
the calling LWP has appropriate permissions. priocntl() then returns −1 with errno
set to EPERM to indicate that the operation failed for one or more of the target LWPs.
If priocntl() encounters an error other than permissions, it does not continue through
the set of target LWPs but returns the error immediately.

PC_GETPARMS
Get the class and/or class-specific scheduling parameters of an LWP. arg points to a
structure of type pcparms_t.

If pc_cid specifies a configured class and a single LWP belonging to that class is
specified by the idtype and id values or the procset structure, then the scheduling
parameters of that LWP are returned in the pc_clparms buffer. If the LWP specified
does not exist or does not belong to the specified class, the priocntl() call returns −1
with errno set to ESRCH.

If pc_cid specifies a configured class and a set of LWPs is specified, the scheduling
parameters of one of the specified LWP belonging to the specified class are returned
in the pc_clparms buffer and the priocntl() call returns the process ID of the selected
LWP. The criteria for selecting an LWP to return in this case is class dependent. If
none of the specified LWPs exist or none of them belong to the specified class the
priocntl() call returns −1 with errno set to ESRCH.

If pc_cid is PC_CLNULL and a single LWP is specified the class of the specified LWP
is returned in pc_cid and its scheduling parameters are returned in the pc_clparms
buffer.

PC_ADMIN
This command provides functionality needed for the implementation of the
dispadmin(1M) command. It is not intended for general use by other applications.

REAL-TIME
CLASS

The real-time class provides a fixed priority preemptive scheduling policy for those
LWPS requiring fast and deterministic response and absolute user/application control of
scheduling priorities. If the real-time class is configured in the system it should have
exclusive control of the highest range of scheduling priorities on the system. This ensures
that a runnable real-time LWP is given CPU service before any LWP belonging to any
other class.

2-144 modified 5 Jul 1990

SunOS 5.4 System Calls priocntl (2)

The real-time class has a range of real-time priority (rt_pri) values that may be assigned
to an LWP within the class. Real-time priorities range from 0 to x, where the value of x is
configurable and can be determined for a specific installation by using the priocntl()
PC_GETCID or PC_GETCLINFO command.

The real-time scheduling policy is a fixed priority policy. The scheduling priority of a
real-time LWP is never changed except as the result of an explicit request by the
user/application to change the rt_pri value of the LWP.

For an LWP in the real-time class, the rt_pri value is, for all practical purposes, equivalent
to the scheduling priority of the LWP. The rt_pri value completely determines the
scheduling priority of a real-time LWP relative to other LWPs within its class. Numeri-
cally higher rt_pri values represent higher priorities. Since the real-time class controls the
highest range of scheduling priorities in the system it is guaranteed that the runnable
real-time LWP with the highest rt_pri value is always selected to run before any other
LWPs in the system.

In addition to providing control over priority, priocntl() provides for control over the
length of the time quantum allotted to the LWP in the real-time class. The time quantum
value specifies the maximum amount of time an LWP may run assuming that it does not
complete or enter a resource or event wait state (sleep). Note that if another LWP
becomes runnable at a higher priority, the currently running LWP may be preempted
before receiving its full time quantum.

The system’s process scheduler keeps the runnable real-time LWPs on a set of scheduling
queues. There is a separate queue for each configured real-time priority and all real-time
LWPs with a given rt_pri value are kept together on the appropriate queue. The LWPs
on a given queue are ordered in FIFO order (that is, the LWP at the front of the queue has
been waiting longest for service and receives the CPU first). Real-time LWPs that wake
up after sleeping, LWPs which change to the real-time class from some other class, LWPs
which have used their full time quantum, and runnable LWPs whose priority is reset by
priocntl() are all placed at the back of the appropriate queue for their priority. An LWP
that is preempted by a higher priority LWP remains at the front of the queue (with what-
ever time is remaining in its time quantum) and runs before any other LWP at this prior-
ity. Following a fork(2) or _lwp_create(2) system call by a real-time LWP, the parent
LWP continues to run while the child LWP (which inherits its parent’s rt_pri value) is
placed at the back of the queue.

A structure with the following members (defined in <sys/rtpriocntl.h>) defines the for-
mat used for the attribute data for the real-time class.

short rt_maxpri; /∗ Maximum real-time priority ∗/

The priocntl() PC_GETCID and PC_GETCLINFO commands return real-time class
attributes in the pc_clinfo buffer in this format.

rt_maxpri specifies the configured maximum rt_pri value for the real-time class (if
rt_maxpri is x, the valid real-time priorities range from 0 to x).

A structure with the following members (defined in <sys/rtpriocntl.h>) defines the for-
mat used to specify the real-time class-specific scheduling parameters of an LWP.

modified 5 Jul 1990 2-145

priocntl (2) System Calls SunOS 5.4

short rt_pri; /∗ Real-Time priority ∗/
ulong rt_tqsecs; /∗ Seconds in time quantum ∗/
long rt_tqnsecs; /∗ Additional nanoseconds in quantum ∗/

When using the priocntl() PC_SETPARMS or PC_GETPARMS commands, if pc_cid
specifies the real-time class, the data in the pc_clparms buffer is in this format.

The above commands can be used to set the real-time priority to the specified value or get
the current rt_pri value. Setting the rt_pri value of an LWP that is currently running or
runnable (not sleeping) causes the LWP to be placed at the back of the scheduling queue
for the specified priority. The LWP is placed at the back of the appropriate queue regard-
less of whether the priority being set is different from the previous rt_pri value of the
LWP. Note that a running LWP can voluntarily release the CPU and go to the back of the
scheduling queue at the same priority by resetting its rt_pri value to its current real-time
priority value. In order to change the time quantum of an LWP without setting the prior-
ity or affecting the LWP’s position on the queue, the rt_pri field should be set to the spe-
cial value RT_NOCHANGE (defined in <sys/rtpriocntl.h>). Specifying
RT_NOCHANGE when changing the class of an LWP to real-time from some other class
results in the real-time priority being set to zero.

For the priocntl() PC_GETPARMS command, if pc_cid specifies the real-time class and
more than one real-time LWP is specified, the scheduling parameters of the real-time
LWP with the highest rt_pri value among the specified LWPs are returned and the LWP
ID of this LWP is returned by the priocntl() call. If there is more than one LWP sharing
the highest priority, the one returned is implementation-dependent.

The rt_tqsecs and rt_tqnsecs fields are used for getting or setting the time quantum asso-
ciated with an LWP or group of LWPs. rt_tqsecs is the number of seconds in the time
quantum and rt_tqnsecs is the number of additional nanoseconds in the quantum. For
example setting rt_tqsecs to 2 and rt_tqnsecs to 500,000,000 (decimal) would result in a
time quantum of two and one-half seconds. Specifying a value of 1,000,000,000 or greater
in the rt_tqnsecs field results in an error return with errno set to EINVAL. Although the
resolution of the tq_nsecs field is very fine, the specified time quantum length is rounded
up by the system to the next integral multiple of the system clock’s resolution. The max-
imum time quantum that can be specified is implementation-specific and equal to
LONG_MAX ticks (defined in <limits.h>). Requesting a quantum greater than this max-
imum results in an error return with errno set to ERANGE (although infinite quantums
may be requested using a special value as explained below). Requesting a time quantum
of zero (setting both rt_tqsecs and rt_tqnsecs to 0) results in an error return with errno set
to EINVAL.

The rt_tqnsecs field can also be set to one of the following special values (defined in
<sys/rtpriocntl.h>), in which case the value of rt_tqsecs is ignored.

RT_TQINF Set an infinite time quantum.

RT_TQDEF Set the time quantum to the default for this priority (see
rt_dptbl(4)).

2-146 modified 5 Jul 1990

SunOS 5.4 System Calls priocntl (2)

RT_NOCHANGE Do nott set the time quantum. This value is useful when you
wish to change the real-time priority of an LWP without affect-
ing the time quantum. Specifying this value when changing
the class of an LWP to real-time from some other class is
equivalent to specifying RT_TQDEF.

In order to change the class of an LWP to real-time (from any other class) the LWP invok-
ing priocntl() must have super-user privileges. In order to change the priority or time
quantum setting of a real-time LWP, the LWP invoking priocntl() must have super-user
privileges or must itself be a real-time LWP whose real or effective user ID matches the
real of effective user ID of the target LWP.

The real-time priority and time quantum are inherited across the fork(2) and exec(2) sys-
tem calls.

TIME-SHARING
CLASS

The time-sharing scheduling policy provides for a fair and effective allocation of the CPU
resource among LWPs with varying CPU consumption characteristics. The objectives of
the time-sharing policy are to provide good response time to interactive LWPs and good
throughput to CPU-bound jobs while providing a degree of user/application control
over scheduling.

The time-sharing class has a range of time-sharing user priority (see ts_upri below)
values that may be assigned to LWPs within the class. A ts_upri value of zero is defined
as the default base priority for the time-sharing class. User priorities range from −x to +x
where the value of x is configurable and can be determined for a specific installation by
using the priocntl() PC_GETCID or PC_GETCLINFO command.

The purpose of the user priority is to provide some degree of user/application control
over the scheduling of LWPs in the time-sharing class. Raising or lowering the ts_upri
value of an LWP in the time-sharing class raises or lowers the scheduling priority of the
LWP. It is not guaranteed, however, that an LWP with a higher ts_upri value will run
before one with a lower ts_upri value. This is because the ts_upri value is just one factor
used to determine the scheduling priority of a time-sharing LWP. The system may
dynamically adjust the internal scheduling priority of a time-sharing LWP based on other
factors such as recent CPU usage.

In addition to the system-wide limits on user priority (returned by the PC_GETCID and
PC_GETCLINFO commands) there is a per LWP user priority limit (see ts_uprilim
below), which specifies the maximum ts_upri value that may be set for a given LWP; by
default, ts_uprilim is zero.

A structure with the following members (defined in <sys/tspriocntl.h>) defines the for-
mat used for the attribute data for the time-sharing class.

short ts_maxupri; /∗ Limits of user priority range ∗/

The priocntl() PC_GETCID and PC_GETCLINFO commands return time-sharing class
attributes in the pc_clinfo buffer in this format.

ts_maxupri specifies the configured maximum user priority value for the time-sharing
class. If ts_maxupri is x, the valid range for both user priorities and user priority limits is
from −x to +x.

modified 5 Jul 1990 2-147

priocntl (2) System Calls SunOS 5.4

A structure with the following members (defined in <sys/tspriocntl.h>) defines the for-
mat used to specify the time-sharing class-specific scheduling parameters of an LWP.

short ts_uprilim; /∗ Time-Sharing user priority limit ∗/
short ts_upri; /∗ Time-Sharing user priority ∗/

When using the priocntl() PC_SETPARMS or PC_GETPARMS commands, if pc_cid
specifies the time-sharing class, the data in the pc_clparms buffer is in this format.

For the priocntl() PC_GETPARMS command, if pc_cid specifies the time-sharing class
and more than one time-sharing LWP is specified, the scheduling parameters of the
time-sharing LWP with the highest ts_upri value among the specified LWPs is returned
and the LWP ID of this LWP is returned by the priocntl() call. If there is more than one
LWP sharing the highest user priority, the one returned is implementation-dependent.

Any time-sharing LWP may lower its own ts_uprilim (or that of another LWP with the
same user ID). Only a time-sharing LWP with super-user privileges may raise a
ts_uprilim. When changing the class of an LWP to time-sharing from some other class,
super-user privileges are required in order to set the initial ts_uprilim to a value greater
than zero. Attempts by a non-super-user LWP to raise a ts_uprilim or set an initial
ts_uprilim greater than zero fail with a return value of −1 and errno set to EPERM.

Any time-sharing LWP may set its own ts_upri (or that of another LWP with the same
user ID) to any value less than or equal to the LWP’s ts_uprilim. Attempts to set the
ts_upri above the ts_uprilim (and/or set the ts_uprilim below the ts_upri) result in the
ts_upri being set equal to the ts_uprilim.

Either of the ts_uprilim or ts_upri fields may be set to the special value
TS_NOCHANGE (defined in <sys/tspriocntl.h>) in order to set one of the values
without affecting the other. Specifying TS_NOCHANGE for the ts_upri when the
ts_uprilim is being set to a value below the current ts_upri causes the ts_upri to be set
equal to the ts_uprilim being set. Specifying TS_NOCHANGE for a parameter when
changing the class of an LWP to time-sharing (from some other class) causes the parame-
ter to be set to a default value. The default value for the ts_uprilim is 0 and the default
for the ts_upri is to set it equal to the ts_uprilim which is being set.

The time-sharing user priority and user priority limit are inherited across the fork and
exec functions.

RETURN VALUES Unless otherwise noted above, priocntl() returns a value of 0 on success. priocntl()
returns −1 on failure and sets errno to indicate the error.

ERRORS priocntl() fails if one or more of the following are true :

EAGAIN An attempt to change the class of an LWP failed because of insufficient
resources other than memory (for example, class-specific kernel data
structures).

EFAULT One of the arguments points to an illegal address.

EINVAL The argument cmd was invalid, an invalid or unconfigured class was
specified, or one of the parameters specified was invalid.

2-148 modified 5 Jul 1990

SunOS 5.4 System Calls priocntl (2)

ENOMEM An attempt to change the class of an LWP failed because of insufficient
memory.

EPERM The effective user of the calling LWP is not super-user.

ERANGE The requested time quantum is out of range.

ESRCH None of the specified LWPs exist.

SEE ALSO priocntl(1), dispadmin(1M), init(1M), _lwp_create(2), exec(2), fork(2), nice(2),
priocntlset(2), rt_dptbl(4)

File System Administration

modified 5 Jul 1990 2-149

priocntlset (2) System Calls SunOS 5.4

NAME priocntlset − generalized process scheduler control

SYNOPSIS #include <sys/types.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

long priocntlset(procset_t ∗psp, int cmd, /∗ arg ∗/ . . .);

DESCRIPTION priocntlset() changes the scheduling properties of running processes. priocntlset() has
the same functions as the priocntl() function, but a more general way of specifying the
set of processes whose scheduling properties are to be changed.

cmd specifies the function to be performed. arg is a pointer to a structure whose type
depends on cmd. See priocntl(2) for the valid values of cmd and the corresponding arg
structures.

psp is a pointer to a procset structure, which priocntlset() uses to specify the set of
processes whose scheduling properties are to be changed. The procset structure contains
the following members:

idop_t p_op; /∗∗ operator connecting left/right sets ∗∗/
idtype_t p_lidtype; /∗∗ left set ID type ∗∗/
id_t p_lid; /∗∗ left set ID ∗∗/
idtype_t p_ridtype; /∗∗ right set ID type ∗∗/
id_t p_rid; /∗∗ right set ID ∗∗/

p_lidtype and p_lid specify the ID type and ID of one (“left”) set of processes; p_ridtype
and p_rid specify the ID type and ID of a second (“right”) set of processes. ID types and
IDs are specified just as for the priocntl() function. p_op specifies the operation to be
performed on the two sets of processes to get the set of processes the function is to apply
to. The valid values for p_op and the processes they specify are:

POP_DIFF set difference: processes in left set and not in right set

POP_AND set intersection: processes in both left and right sets

POP_OR set union: processes in either left or right sets or both

POP_XOR set exclusive-or: processes in left or right set but not in both

The following macro, which is defined in procset.h, offers a convenient way to initialize a
procset structure:

#define setprocset(psp, op, ltype, lid, rtype, rid) \
(psp)→→p_op = (op), \
(psp)→→p_lidtype = (ltype), \
(psp)→→p_lid = (lid), \
(psp)→→p_ridtype = (rtype), \
(psp)→→p_rid = (rid),

2-150 modified 29 Jul 1991

SunOS 5.4 System Calls priocntlset (2)

RETURN VALUES Unless otherwise noted above, priocntlset() returns a value of 0 on success.
priocntlset() returns −1 on failure and sets errno to indicate the error.

ERRORS priocntlset() fails if one or more of the following are true :

EAGAIN An attempt to change the class of a process failed because of insufficient
resources other than memory (for example, class-specific kernel data
structures).

EFAULT One of the arguments points to an illegal address.

EINVAL The argument cmd was invalid, an invalid or unconfigured class was
specified, or one of the parameters specified was invalid.

ENOMEM An attempt to change the class of a process failed because of insufficient
memory.

EPERM The effective user of the calling process is not super-user.

ERANGE The requested time quantum is out of range.

ESRCH None of the specified processes exist.

SEE ALSO priocntl(1), priocntl(2)

modified 29 Jul 1991 2-151

processor_bind (2) System Calls SunOS 5.4

NAME processor_bind − bind LWPs to a processor

SYNOPSIS #include <sys/types.h>
#include <sys/processor.h>
#include <sys/procset.h>

int processor_bind(idtype_t idtype, id_t id, processorid_t processorid,
processorid_t ∗obind);

DESCRIPTION The LWP or set of LWPs specified by idtype and id are bound to the processor specified by
processorid. Additionally, if obind is not NULL, the processorid_t variable pointed to by
obind will be set to the previous binding of one of the specified LWPs, or to PBIND_NONE
if the selected LWP was not bound.

If idtype is P_PID, the binding effects all LWPs of the process with process ID (PID) id.

If idtype is P_LWPID, the binding effects the LWP of the current process with LWP ID id.

If id is P_MYID, the specified LWP or process is the current one.

If processorid is PBIND_NONE, the processor bindings of the specified LWPs are cleared.

If processorid is PBIND_QUERY, the processor bindings are not changed.

The effective user of the calling process must be super-user, or its real or effective user ID
must match the real or effective user ID of the LWPs being bound. If the calling process
does not have permission to change all of the specified LWPs, the bindings of the LWPs
for which it does have permission will be changed even though an error is returned.

RETURN VALUES processor_bind returns 0 if successful; otherwise, −1 is returned and errno is set to reflect
the error.

ERRORS ESRCH No processes or LWPs were found to match the criteria specified by
idtype and id.

EINVAL An non-existent or offline processor was specified.

EINVAL idtype was not P_PID or P_LWPID.

EFAULT The location pointed to by obind was not NULL and not writable by the
user.

EPERM The effective user of the calling process is not super-user, and its real or
effective user ID does not match the real or effective user ID of one of the
LWPs being bound.

SEE ALSO psradm(1M), psrinfo(1M), p_online(2), sysconf(3C)

2-152 modified 14 Feb 1994

SunOS 5.4 System Calls processor_info (2)

NAME processor_info − determine type and status of a processor

SYNOPSIS #include <sys/types.h>
#include <sys/processor.h>

int processor_info(processorid_t processorid, processor_info_t ∗infop);

DESCRIPTION The status of the processor specified by processorid is returned in the processor_info_t
structure pointed to by infop.

The structure contains the following members:

int pi_state; /∗ P_ONLINE or P_OFFLINE∗/
char pi_processor_type[PI_TYPELEN];
char pi_fputypes[PI_FPUTYPE];
int pi_clock; /∗ CPU clock freq in MHz ∗/

The fields have the following meanings:

pi_state is the current state of the processor, either P_ONLINE or P_OFFLINE.

pi_processor_type is a NULL-terminated ASCII string specifying the type of the processor.

pi_fputypes is a NULL-terminated ASCII string containing the comma-separated types of
floating-point units (FPUs) attached to the processor. This string will be empty if no FPU
is attached.

pi_clock is the processor clock frequency rounded to the nearest megahertz. It may be 0
if not known.

RETURN VALUES processor_info returns 0 if successful. Otherwise -1 is returned and errno is set to reflect
the error.

ERRORS EINVAL An non-existent processor ID was specified.

EFAULT The processor_info_t structure pointed to by infop was not writable by
the user.

SEE ALSO psradm(1M), psrinfo(1M), p_online(2), sysconf(3C)

modified 23 Sep 1992 2-153

profil (2) System Calls SunOS 5.4

NAME profil − execution time profile

SYNOPSIS #include <unistd.h>

void profil(unsigned short ∗buff, unsigned int bufsiz, unsigned int offset ,
unsigned int scale);

DESCRIPTION profil() provides CPU-use statistics by profiling the amount of CPU time expended by a
program. profil() generates the statistics by creating an execution histogram for a current
process. The histogram is defined for a specific region of program code to be profiled,
and the identified region is logically broken up into a set of equal size subdivisions, each
of which corresponds to a count in the histogram. With each clock tick, the current sub-
division is identified and its corresponding histogram count is incremented. These
counts establish a relative measure of how much time is being spent in each code subdivi-
sion. The resulting histogram counts for a profiled region can be used to identify those
functions that consume a disproportionately high percentage of CPU time.

buff is a buffer of bufsiz bytes in which the histogram counts are stored in an array of
unsigned short int.

offset , scale, and bufsiz specify the region to be profiled.

offset is effectively the start address of the region to be profiled.

scale, broadly speaking, is a contraction factor that indicates how much smaller the histo-
gram buffer is than the region to be profiled. More precisely, scale is interpreted as an
unsigned 16-bit fixed-point fraction with the decimal point implied on the left. Its value
is the reciprocal of the number of bytes in a subdivision, per byte of histogram buffer.
Since there are two bytes per histogram counter, the effective ratio of subdivision bytes
per counter is one half the scale.

Several observations can be made:

· the maximal value of scale, 0xffff (approximately 1), maps subdivisions 2
bytes long to each counter.

· the minimum value of scale (for which profiling is performed), 0x0002
(1/32,768), maps subdivision 65,536 bytes long to each counter.

· the default value of scale (currently used by cc −qp), 0x4000, maps subdivi-
sions 8 bytes long to each counter.

The values are used within the kernel as follows: when the process is interrupted for a
clock tick, the value of offset is subtracted from the current value of the program counter
(pc), and the remainder is multiplied by scale to derive a result. That result is used as an
index into the histogram array to locate the cell to be incremented. Therefore, the cell
count represents the number of times that the process was executing code in the subdivi-
sion associated with that cell when the process was interrupted.

2-154 modified 5 Jul 1990

SunOS 5.4 System Calls profil (2)

scale can be computed as (RATIO ∗∗ 0200000L), where RATIO is the desired ratio of bufsiz
to profiled region size, and has a value between 0 and 1. Qualitatively speaking, the
closer RATIO is to 1, the higher the resolution of the profile information.

bufsiz can be computed as (size_of_region_to_be_profiled ∗∗ RATIO).

SEE ALSO exec(2), fork(2), times(2), monitor(3C), prof(5)

NOTES Profiling is turned off by giving a scale of 0 or 1, and is rendered ineffective by giving a
bufsiz of 0. Profiling is turned off when an exec(2) is executed, but remains on in both
child and parent processes after a fork(2). Profiling is turned off if a buff update would
cause a memory fault.

modified 5 Jul 1990 2-155

ptrace (2) System Calls SunOS 5.4

NAME ptrace − allows a parent process to control the execution of a child process

SYNOPSIS #include <unistd.h>
#include <sys/types.h>

int ptrace(int request, pid_t pid, int addr , int data);

DESCRIPTION ptrace() allows a parent process to control the execution of a child process. Its primary
use is for the implementation of breakpoint debugging. The child process behaves nor-
mally until it encounters a signal (see signal(5)), at which time it enters a stopped state
and its parent is notified via the wait(2) function. When the child is in the stopped state,
its parent can examine and modify its “core image” using ptrace(). Also, the parent can
cause the child either to terminate or continue, with the possibility of ignoring the signal
that caused it to stop.

The request argument determines the action to be taken by ptrace() and is one of the fol-
lowing:

0 This request must be issued by the child process if it is to be traced by its
parent. It turns on the child’s trace flag that stipulates that the child should be
left in a stopped state on receipt of a signal rather than the state specified by
func (see signal(3C)). The pid, addr , and data arguments are ignored, and a
return value is not defined for this request. Peculiar results ensue if the parent
does not expect to trace the child.

The remainder of the requests can only be used by the parent process. For each, pid is the
process ID of the child. The child must be in a stopped state before these requests are
made.

1, 2 With these requests, the word at location addr in the address space of the child
is returned to the parent process. If instruction and data space are separated,
request 1 returns a word from instruction space, and request 2 returns a word
from data space. If instruction and data space are not separated, either request
1 or request 2 may be used with equal results. The data argument is ignored.
These two requests fail if addr is not the start address of a word, in which case
a value of −1 is returned to the parent process and the parent’s errno is set to
EIO.

3 With this request, the word at location addr in the child’s user area in the
system’s address space (see <sys/user.h>) is returned to the parent process.
The data argument is ignored. This request fails if addr is not the start address
of a word or is outside the user area, in which case a value of −1 is returned to
the parent process and the parent’s errno is set to EIO.

4, 5 With these requests, the value given by the data argument is written into the
address space of the child at location addr . If instruction and data space are
separated, request 4 writes a word into instruction space, and request 5 writes
a word into data space. If instruction and data space are not separated, either
request 4 or request 5 may be used with equal results. On success, the value
written into the address space of the child is returned to the parent. These two

2-156 modified 5 Jul 1990

SunOS 5.4 System Calls ptrace (2)

requests fail if addr is not the start address of a word. On failure a value of −1
is returned to the parent process and the parent’s errno is set to EIO.

6 With this request, a few entries in the child’s user area can be written. data
gives the value that is to be written and addr is the location of the entry. The
few entries that can be written are the general registers and the condition codes
of the Processor Status Word.

7 This request causes the child to resume execution. If the data argument is 0, all
pending signals including the one that caused the child to stop are canceled
before it resumes execution. If the data argument is a valid signal number, the
child resumes execution as if it had incurred that signal, and any other pending
signals are canceled. The addr argument must be equal to 1 for this request.
On success, the value of data is returned to the parent. This request fails if data
is not 0 or a valid signal number, in which case a value of −1 is returned to the
parent process and the parent’s errno is set to EIO.

8 This request causes the child to terminate with the same consequences as
exit(2).

9 This request sets the trace bit in the Processor Status Word of the child and
then executes the same steps as listed above for request 7. The trace bit causes
an interrupt on completion of one machine instruction. This effectively allows
single stepping of the child.

To forestall possible fraud, ptrace() inhibits the set-user-ID facility on subsequent exec(2)
calls. If a traced process calls exec(2), it stops before executing the first instruction of the
new image showing signal SIGTRAP.

ERRORS ptrace() in general fails if one or more of the following are true:

EIO request is an illegal number.

EPERM The effective user of the calling process is not super-user.

ESRCH pid identifies a child that does not exist or has not executed a ptrace() with
request 0.

SEE ALSO exec(2), exit(2), wait(2), signal(3C), signal(5)

modified 5 Jul 1990 2-157

putmsg (2) System Calls SunOS 5.4

NAME putmsg, putpmsg − send a message on a stream

SYNOPSIS #include <stropts.h>

int putmsg(int fildes, const struct strbuf ∗ctlptr, const struct strbuf ∗dataptr , int flags);

int putpmsg(int fildes, const struct strbuf ∗ctlptr, const struct strbuf ∗dataptr , int band,
int flags);

DESCRIPTION putmsg() creates a message from user-specified buffer(s) and sends the message to a
STREAMS file. The message may contain either a data part, a control part, or both. The
data and control parts to be sent are distinguished by placement in separate buffers, as
described below. The semantics of each part is defined by the STREAMS module that
receives the message.

The function putpmsg() does the same thing as putmsg(), but provides the user the abil-
ity to send messages in different priority bands. Except where noted, all information per-
taining to putmsg() also pertains to putpmsg().

fildes specifies a file descriptor referencing an open stream. ctlptr and dataptr each point to
a strbuf structure, which contains the following members:

int maxlen; /∗ not used here ∗/
int len; /∗ length of data ∗/
void ∗buf; /∗ ptr to buffer ∗/

ctlptr points to the structure describing the control part, if any, to be included in the mes-
sage. The buf field in the strbuf structure points to the buffer where the control informa-
tion resides, and the len field indicates the number of bytes to be sent. The maxlen field
is not used in putmsg() (see getmsg(2)). In a similar manner, dataptr specifies the data, if
any, to be included in the message. flags indicates what type of message should be sent
and is described later.

To send the data part of a message, dataptr must not be NULL and the len field of dataptr
must have a value of 0 or greater. To send the control part of a message, the correspond-
ing values must be set for ctlptr. No data (control) part is sent if either dataptr (ctlptr) is
NULL or the len field of dataptr (ctlptr) is negative.

For putmsg(), if a control part is specified, and flags is set to RS_HIPRI, a high priority
message is sent. If no control part is specified, and flags is set to RS_HIPRI, putmsg()
fails and sets errno to EINVAL. If flags is set to 0, a normal (non-priority) message is sent.
If no control part and no data part are specified, and flags is set to 0, no message is sent,
and 0 is returned.

The stream head guarantees that the control part of a message generated by putmsg() is
at least 64 bytes in length.

2-158 modified 29 Jul 1991

SunOS 5.4 System Calls putmsg (2)

For putpmsg(), the flags are different. flags is a bitmask with the following mutually-
exclusive flags defined: MSG_HIPRI and MSG_BAND. If flags is set to 0, putpmsg()
fails and sets errno to EINVAL. If a control part is specified and flags is set to MSG_HIPRI
and band is set to 0, a high-priority message is sent. If flags is set to MSG_HIPRI and
either no control part is specified or band is set to a non-zero value, putpmsg() fails and
sets errno to EINVAL. If flags is set to MSG_BAND, then a message is sent in the priority
band specified by band. If a control part and data part are not specified and flags is set to
MSG_BAND, no message is sent and 0 is returned.

Normally, putmsg() will block if the stream write queue is full due to internal flow con-
trol conditions. For high-priority messages, putmsg() does not block on this condition.
For other messages, putmsg() does not block when the write queue is full and
O_NDELAY or O_NONBLOCK is set. Instead, it fails and sets errno to EAGAIN.

putmsg() or putpmsg() also blocks, unless prevented by lack of internal resources, wait-
ing for the availability of message blocks in the stream, regardless of priority or whether
O_NDELAY or O_NONBLOCK has been specified. No partial message is sent.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS putmsg() fails if one or more of the following are true:

EAGAIN A non-priority message was specified, the O_NDELAY or
O_NONBLOCK flag is set and the stream write queue is full due to inter-
nal flow control conditions.

EBADF fildes is not a valid file descriptor open for writing.

EFAULT ctlptr or dataptr points to an illegal address.

EINTR A signal was caught during the putmsg() function.

EINVAL An undefined value was specified in flags, or flags is set to RS_HIPRI and
no control part was supplied.

EINVAL The stream referenced by fildes is linked below a multiplexor.

EINVAL For putpmsg(), if flags is set to MSG_HIPRI and band is nonzero.

ENOSR Buffers could not be allocated for the message that was to be created due
to insufficient STREAMS memory resources.

ENOSTR fildes is not associated with a stream.

ENXIO A hangup condition was generated downstream for the specified stream,
or the other end of the pipe is closed.

ERANGE The size of the data part of the message does not fall within the range
specified by the maximum and minimum packet sizes of the topmost
stream module. This value is also returned if the control part of the mes-
sage is larger than the maximum configured size of the control part of a
message, or if the data part of a message is larger than the maximum
configured size of the data part of a message.

modified 29 Jul 1991 2-159

putmsg (2) System Calls SunOS 5.4

putmsg() also fails if a STREAMS error message had been processed by the stream head
before the call to putmsg(). The error returned is the value contained in the STREAMS
error message.

SEE ALSO intro(2), getmsg(2), poll(2), read(2), write(2)

STREAMS Programmer’s Guide

2-160 modified 29 Jul 1991

SunOS 5.4 System Calls read (2)

NAME read, pread, readv − read from file

SYNOPSIS #include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

ssize_t read(int fildes, void ∗buf, size_t nbyte);

ssize_t pread(int fildes, void ∗buf, size_t nbyte, off_t offset);

ssize_t readv(int fildes, struct iovec ∗iov , int iovcnt);

DESCRIPTION read() attempts to read nbyte bytes from the file associated with fildes into the buffer
pointed to by buf. If nbyte is zero, read() returns zero and has no other results. fildes is an
open file descriptor.

On devices capable of seeking, the read() starts at a position in the file given by the file
pointer associated with fildes. On return from read(), the file pointer is incremented by
the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of
a file pointer associated with such a file is undefined.

pread() performs the same action as read(), except that it reads from a given position in
the file without changing the file pointer. The first three arguments to pread() are the
same as read() with the addition of a fourth argument offset for the desired position
inside the file. An attempt to perform a pread() on a file that is incapable of seeking
results in an error.

readv() performs the same action as read(), but places the input data into the iovcnt
buffers specified by the members of the iov array: iov[0], iov[1], . . ., iov[iovcnt− 1].

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory where data
should be placed. readv() always fills one buffer completely before proceeding to the
next.

On success, read() and readv() return the number of bytes actually read and placed in
the buffer; this number may be less than nbyte if the file is associated with a communica-
tion line (see ioctl(2) and termio(7)), or if the number of bytes left in the file is less than
nbyte , or if the file is a pipe or a special file. A value of 0 is returned when an end-of-file
has been reached.

read() reads data previously written to a file. If any portion of an ordinary file prior to
the end of file has not been written, read() returns the number of bytes read as 0. For
example, the lseek routine allows the file pointer to be set beyond the end of existing data
in the file. If additional data is written at this point, subsequent reads in the gap between
the previous end of data and newly written data return bytes with a value of 0 until data
is written into the gap.

modified 24 Feb 1994 2-161

read (2) System Calls SunOS 5.4

A read() or readv() from a STREAMS (see intro(2)) file can operate in three different
modes: byte-stream mode, message-nondiscard mode, and message-discard mode. The
default is byte-stream mode. This can be changed using the I_SRDOPT ioctl(2) request
(see streamio(7)), and can be tested with the I_GRDOPT ioctl(2) request.

In byte-stream mode, read() and readv() retrieve data from the stream until they have
retrieved nbyte bytes, or until there is no more data to be retrieved. Byte-stream mode
ignores message boundaries.

In STREAMS message-nondiscard mode, read() and readv() retrieve data until they have
read nbyte bytes, or until they reach a message boundary. If read() or readv() does not
retrieve all the data in a message, the remaining data is replaced on the stream and can be
retrieved by the next read() or readv() call. Message-discard mode also retrieves data
until it has retrieved nbyte bytes, or it reaches a message boundary. However, unread
data remaining in a message after the read or readv returns is discarded, and is not avail-
able for a subsequent read(), readv(), or getmsg() (see getmsg(2)).

When attempting to read from a regular file with mandatory file/record locking set (see
chmod(2)), and there is a write lock owned by another process on the segment of the file
to be read:

If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to
EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read() sleeps until the blocking
record lock is removed.

When attempting to read from an empty pipe (or FIFO):

If no process has the pipe open for writing, read() returns 0 to indicate end-of-
file.

If some process has the pipe open for writing and O_NDELAY is set, read()
returns 0.

If some process has the pipe open for writing and O_NONBLOCK is set, read()
returns −1 and sets errno to EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read() blocks until data is written
to the pipe or the pipe is closed by all processes that had opened the pipe for
writing.

When attempting to read a file associated with a terminal that has no data currently avail-
able:

If O_NDELAY is set, read() returns 0.

If O_NONBLOCK is set, read() returns −1 and sets errno to EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read() blocks until data become
available.

When attempting to read a file associated with a stream that is not a pipe or FIFO, or ter-
minal, and that has no data currently available:

If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to
EAGAIN.

2-162 modified 24 Feb 1994

SunOS 5.4 System Calls read (2)

If O_NDELAY and O_NONBLOCK are clear, read() blocks until data becomes
available.

When reading from a STREAMS file, handling of zero-byte messages is determined by the
current read mode setting. In byte-stream mode, read() accepts data until it has read
nbyte bytes, or until there is no more data to read, or until a zero-byte message block is
encountered. read() then returns the number of bytes read, and places the zero-byte
message back on the stream to be retrieved by the next read() or getmsg() (see
getmsg(2)). In the two other modes, a zero-byte message returns a value of 0 and the
message is removed from the stream. When a zero-byte message is read as the first mes-
sage on a stream, a value of 0 is returned regardless of the read() mode.

A read() or readv() from a STREAMS file returns the data in the message at the front of
the stream head read queue, regardless of the priority band of the message.

Normally, a read() from a STREAMS file can only process messages with data and
without control information. The read() fails if a message containing control information
is encountered at the stream head. This default action can be changed by placing the
stream in either control-data mode or control-discard mode with the I_SRDOPT ioctl(2).
In control-data mode, control messages are converted to data messages by read(). In
control-discard mode, control messages are discarded by read(), but any data associated
with the control messages is returned to the user.

RETURN VALUES On success a non-negative integer is returned indicating the number of bytes actually
read. Otherwise, a −1 is returned and errno is set to indicate the error.

ERRORS read(), pread(), and readv() fail if one or more of the following are true:

EAGAIN Mandatory file/record locking was set, O_NDELAY or
O_NONBLOCK was set, and there was a blocking record lock.

EAGAIN Total amount of system memory available when reading using raw I/O
is temporarily insufficient.

EAGAIN No data is waiting to be read on a file associated with a tty device and
O_NONBLOCK was set.

EAGAIN No message is waiting to be read on a stream and O_NDELAY or
O_NONBLOCK was set.

EBADF fildes is not a valid file descriptor open for reading.

EBADMSG Message waiting to be read on a stream is not a data message.

EDEADLK The read was going to go to sleep and cause a deadlock to occur.

EFAULT buf points to an illegal address.

EINTR A signal was caught during the read operation and no data was
transferred.

EINVAL Attempted to read from a stream linked to a multiplexor.

EIO A physical I/O error has occurred, or the process is in a background
process group and is attempting to read from its controlling terminal,

modified 24 Feb 1994 2-163

read (2) System Calls SunOS 5.4

and either the process is ignoring or blocking the SIGTTIN signal or the
process group of the process is orphaned.

EISDIR fildes refers to a directory on a file system type that does not support
read operations on directories.

ENOLCK The system record lock table was full, so the read() or readv() could not
go to sleep until the blocking record lock was removed.

ENOLINK fildes is on a remote machine and the link to that machine is no longer
active.

ENXIO The device associated with fildes is a block special or character special
file and the value of the file pointer is out of range.

In addition, readv() may return one of the following errors:

EFAULT iov points outside the allocated address space.

EINVAL iovcnt was less than or equal to 0, or greater than or equal to {IOV_MAX}.
(See intro(2) for a definition of {IOV_MAX}).

EINVAL The sum of the iov_len values in the iov array overflowed an int.

In addition, pread() fails and the file pointer remains unchanged if the following is true:

ESPIPE fildes is associated with a pipe or fifo.

A read() from a STREAMS file also fails if an error message is received at the stream head.
In this case, errno is set to the value returned in the error message. If a hangup occurs on
the stream being read, read() continues to operate normally until the stream head read
queue is empty. Thereafter, it returns 0.

SEE ALSO intro(2), chmod(2), creat(2), dup(2), fcntl(2), getmsg(2), ioctl(2), open(2), pipe(2),
streamio(7), termio(7)

2-164 modified 24 Feb 1994

SunOS 5.4 System Calls readlink (2)

NAME readlink − read the value of a symbolic link

SYNOPSIS #include <unistd.h>

int readlink(const char ∗path , void ∗buf, size_t bufsiz);

DESCRIPTION readlink() places the contents of the symbolic link referred to by path in the buffer buf,
which has size bufsiz. The contents of the link are not null-terminated when returned.

RETURN VALUES Upon successful completion readlink() returns the number of characters placed in the
buffer; otherwise, it returns −1 and places an error code in errno.

ERRORS readlink() fails and the buffer remains unchanged if:

EACCES Search permission is denied for a component of the path prefix of
path.

EFAULT path or buf points to an illegal address.

EINVAL The named file is not a symbolic link.

EIO An I/O error occurs while reading from or writing to the file sys-
tem.

ELOOP Too many symbolic links are encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT The named file does not exist.

ENOSYS The file system does not support symbolic links.

SEE ALSO stat(2), symlink(2)

modified 5 Jul 1990 2-165

rename (2) System Calls SunOS 5.4

NAME rename − change the name of a file

SYNOPSIS #include <stdio.h>

int rename(const char ∗old , const char ∗new);

DESCRIPTION The function rename() changes the name of a file. old points to the pathname of the file
to be renamed. new points to the new pathname of the file.

If old and new both refer to the same existing file, the rename() function returns success-
fully and performs no other action.

If old points to the pathname of a file that is not a directory, new must not point to the
pathname of a directory. If the link named by new exists, it will be removed and old will
be renamed to new. In this case, a link named new must remain visible to other processes
throughout the renaming operation and will refer to either the file referred to by new or
the file referred to as old before the operation began.

If old points to the pathname of a directory, new must not point to the pathname of a file
that is not a directory. If the directory named by new exists, it will be removed and old
will be renamed to new. In this case, a link named new will exist throughout the renaming
operation and will refer to either the file referred to by new or the file referred to as old
before the operation began. Thus, if new names an existing directory, it must be an empty
directory.

The new pathname must not contain a path prefix that names old. Write access permis-
sion is required for both the directory containing old and the directory containing new. If
old points to the pathname of a directory, write access permission is required for the
directory named by old, and, if it exists, the directory named by new.

If the directory containing old has the sticky bit set, at least one of the following condi-
tions listed below must be true:

· the user must own old

· the user must own the directory containing old

· old must be writable by the user

· the user must be a privileged user

If new exists, and the directory containing new is writable and has the sticky bit set, at
least one of the following conditions must be true:

· the user must own new

· the user must own the directory containing new

· new must be writable by the user

· the user must be a privileged user

If the link named by new exists, the file’s link count becomes zero when it is removed, and
no process has the file open, then the space occupied by the file will be freed and the file
will no longer be accessible. If one or more processes have the file open when the last link
is removed, the link will be removed before rename() returns, but the removal of the file

2-166 modified 15 Mar 1994

SunOS 5.4 System Calls rename (2)

contents will be postponed until all references to the file have been closed.

Upon successful completion, the rename() function will mark for update the st_ctime
and st_mtime fields of the parent directory of each file.

RETURN VALUES Upon successful completion, the function rename() returns a value of 0; otherwise, it
returns a value of −1 and sets errno to indicate an error.

ERRORS Under the following conditions, the function rename() fails, and sets errno to:

EACCES A component of either path prefix denies search permission; one of
the directories containing old and new denies write permissions; or
write permission is denied by a directory pointed to by old or new.

EBUSY new is a directory and the mount point for a mounted file system.

EEXIST The link named by new is a directory containing entries other than
‘.’ (the directory itself) and ‘..’ (the parent directory).

EINVAL new directory pathname contains a path prefix that names the old
directory.

EISDIR new points to a directory but old points to a file that is not a direc-
tory.

ELOOP Too many symbolic links were encountered in translating the
pathname.

ENAMETOOLONG The length of old or new exceeds {PATH_MAX}, or a pathname com-
ponent is longer than {NAME_MAX} while {_POSIX_NO_TRUNC} is
in effect.

EMLINK The file named by old is a directory, and the link count of the
parent directory of new would exceed {LINK_MAX}.

ENOENT The link named by old does not exist, or either old or new points to
an empty string.

ENOSPC The directory that would contain new cannot be extended.

ENOTDIR A component of either path prefix is not a directory, or old names a
directory and new names a nondirectory file.

EROFS The requested operation requires writing in a directory on a read-
only file system.

EXDEV The links named by old and new are on different file systems.

EIO An I/O error occurred while making or updating a directory
entry.

SEE ALSO chmod(2), link(2), unlink(2)

NOTES The system can deadlock if there is a loop in the file system graph. Such a loop takes the
form of an entry in directory a, say a/name1, being a hard link to directory b, and an entry
in directory b, say b/name2, being a hard link to directory a. When such a loop exists and

modified 15 Mar 1994 2-167

rename (2) System Calls SunOS 5.4

two separate processes attempt to rename a/name1 to b/name2 and rename b/name2 to
a/name1, respectively, the system may deadlock attempting to lock both directories for
modification. Use symbolic links instead of hard links for directories.

2-168 modified 15 Mar 1994

SunOS 5.4 System Calls rmdir (2)

NAME rmdir − remove a directory

SYNOPSIS #include <unistd.h>

int rmdir(const char ∗path);

DESCRIPTION rmdir() removes the directory named by the path name pointed to by path . The directory
must not have any entries other than “.” and “..”.

If the directory’s link count becomes zero and no process has the directory open, the
space occupied by the directory is freed and the directory is no longer accessible. If one or
more processes have the directory open when the last link is removed, the “.” and “..”
entries, if present, are removed before rmdir() returns and no new entries may be created
in the directory, but the directory is not removed until all references to the directory have
been closed.

Upon successful completion rmdir() marks for update the st_ctime and st_mtime fields
of the parent directory.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS The named directory is removed unless one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix.

EACCES Write permission is denied on the directory containing the direc-
tory to be removed.

EACCES The parent directory has the S_ISVTX variable set and is not
owned by the user; the directory is not owned by the user and is
not writable by the user; the user is not a super-user.

EBUSY The directory to be removed is the mount point for a mounted file
system.

EEXIST The directory contains entries other than those for “.” and “..”.

EFAULT path points to an illegal address.

EINVAL The directory to be removed is the current directory.

EINVAL The final component of path is ‘‘.’’.

EIO An I/O error occurred while accessing the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT The named directory does not exist or is the null pathname.

modified 4 Dec 1991 2-169

rmdir (2) System Calls SunOS 5.4

ENOLINK path points to a remote machine, and the connection to that
machine is no longer active.

ENOTDIR A component of the path prefix is not a directory.

EROFS The directory entry to be removed is part of a read-only file sys-
tem.

SEE ALSO mkdir(1), rm(1), mkdir(2)

2-170 modified 4 Dec 1991

SunOS 5.4 System Calls semctl (2)

NAME semctl − semaphore control operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, . . .);

DESCRIPTION semctl() provides a variety of semaphore control operations as specified by cmd. The
fourth argument is optional, depending upon the operation requested. If required it is of
type union semun, which must be explicitly declared by the application program.

union semun {
int val;
struct semid_ds ∗buf;
ushort ∗array

} arg ;

The permission required for a semaphore operation is given as {token}, where token is the
type of permission needed. The types of permission are interpreted as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

See the Semaphore Operation Permissions subsection of the DEFINITIONS section of
intro(2) for more information. The following semaphore operations as specified by cmd
are executed with respect to the semaphore specified by semid and semnum.

GETVAL Return the value of semval (see intro(2)). {READ}

SETVAL Set the value of semval to arg.val. {ALTER}. When this command is
successfully executed, the semadj value corresponding to the specified
semaphore in all processes is cleared.

GETPID Return the value of (int) sempid. {READ}

GETNCNT Return the value of semncnt. {READ}

GETZCNT Return the value of semzcnt. {READ}

The following operations return and set, respectively, every semval in the set of sema-
phores.

GETALL Place semvals into array pointed to by arg.array. {READ}

SETALL Set semvals according to the array pointed to by arg.array. {ALTER}.
When this cmd is successfully executed, the semadj values correspond-
ing to each specified semaphore in all processes are cleared.

modified 24 Mar 1994 2-171

semctl (2) System Calls SunOS 5.4

The following operations are also available.

IPC_STAT Place the current value of each member of the data structure associated
with semid into the structure pointed to by arg.buf. The contents of this
structure are defined in intro(2). {READ}

IPC_SET Set the value of the following members of the data structure associated
with semid to the corresponding value found in the structure pointed to
by arg.buf:

sem_perm.uid
sem_perm.gid
sem_perm.mode /∗∗ only access permission bits ∗∗/

This command can be executed only by a process that has an effective
user ID equal to either that of super-user, or to the value of
sem_perm.cuid or sem_perm.uid in the data structure associated with
semid.

IPC_RMID Remove the semaphore identifier specified by semid from the system and
destroy the set of semaphores and data structure associated with it. This
command can only be executed by a process that has an effective user ID
equal to either that of super-user, or to the value of sem_perm.cuid or
sem_perm.uid in the data structure associated with semid.

RETURN VALUES Upon successful completion, the value returned depends on cmd as follows:

GETVAL the value of semval

GETPID the value of (int) sempid

GETNCNT the value of semncnt

GETZCNT the value of semzcnt

All other successful completions return 0; otherwise, −1 is returned and errno is set to
indicate the error.

ERRORS semctl() fails if one or more of the following are true:

EACCES Operation permission is denied to the calling process (see intro(2)).

EINVAL semid is not a valid semaphore identifier.

EINVAL semnum is less than 0 or greater than sem_nsems −1.

EINVAL cmd is not a valid command.

EINVAL cmd is IPC_SET and sem_perm.uid or sem_perm.gid is not valid.

EPERM cmd is equal to IPC_RMID or IPC_SET and the effective user of the calling
process is not super-user, or to the value of sem_perm.cuid or
sem_perm.uid in the data structure associated with semid.

EOVERFLOW cmd is IPC_STAT and uid or gid is too large to be stored in the structure
pointed to by arg.buf.

ERANGE cmd is SETVAL or SETALL and the value to which semval is to be set is
greater than the system imposed maximum.

2-172 modified 24 Mar 1994

SunOS 5.4 System Calls semctl (2)

SEE ALSO ipcs(1), intro(2), semget(2), semop(2)

modified 24 Mar 1994 2-173

semget (2) System Calls SunOS 5.4

NAME semget − get set of semaphores

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key_t key , int nsems, int semflg);

DESCRIPTION semget() returns the semaphore identifier associated with key .

A semaphore identifier and associated data structure and set containing nsems sema-
phores (see intro(2)) are created for key if one of the following is true:

· key is equal to IPC_PRIVATE.

· key does not already have a semaphore identifier associated with it, and
(semflg&IPC_CREAT) is true.

On creation, the data structure associated with the new semaphore identifier is initialized
as follows:

· sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and sem_perm.gid are set
equal to the effective user ID and effective group ID, respectively, of the calling
process.

· The access permission bits of sem_perm.mode are set equal to the access per-
mission bits of semflg.

· sem_nsems is set equal to the value of nsems.

· sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

RETURN VALUES Upon successful completion, a non-negative integer, namely a semaphore identifier, is
returned; otherwise, −1 is returned and errno is set to indicate the error.

ERRORS semget() fails if one or more of the following are true:

EACCES A semaphore identifier exists for key , but operation permission (see
intro(2)) as specified by the low-order 9 bits of semflg would not be
granted.

EEXIST A semaphore identifier exists for key but both (semflg&IPC_CREAT) and
(semflg&IPC_EXCL) are both true.

EINVAL nsems is either less than or equal to zero or greater than the system-
imposed limit.

EINVAL A semaphore identifier exists for key , but the number of semaphores in
the set associated with it is less than nsems, and nsems is not equal to
zero.

ENOENT A semaphore identifier does not exist for key and (semflg&IPC_CREAT) is
false.

2-174 modified 30 Nov 1993

SunOS 5.4 System Calls semget (2)

ENOSPC A semaphore identifier is to be created but the system-imposed limit on
the maximum number of allowed semaphore identifiers system wide
would be exceeded.

ENOSPC A semaphore identifier is to be created but the system-imposed limit on
the maximum number of allowed semaphores system wide would be
exceeded.

SEE ALSO ipcs(1), ipcrm(1), intro(2), semctl(2), semop(2), stdipc(3C)

modified 30 Nov 1993 2-175

semop (2) System Calls SunOS 5.4

NAME semop − semaphore operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop(int semid, struct sembuf ∗sops , size_t nsops);

DESCRIPTION semop() is used to perform atomically an array of semaphore operations on the set of
semaphores associated with the semaphore identifier specified by semid. sops is a pointer
to the array of semaphore-operation structures. nsops is the number of such structures in
the array. The contents of each structure includes the following members:

short sem_num; /∗ semaphore number ∗/
short sem_op; /∗ semaphore operation ∗/
short sem_flg; /∗ operation flags ∗/

Each semaphore operation specified by sem_op is performed on the corresponding sema-
phore specified by semid and sem_num. The permission required for a semaphore opera-
tion is given as {token}, where token is the type of permission needed. The types of permis-
sion are interpreted as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

See the Semaphore Operation Permissions section of intro(2) for more information.

sem_op specifies the {ALTER} token if its value is negative or positive, and the {READ}
token if its value is zero. Depending on the value of sem_op, the following may occur:

sem_op is a negative integer; {ALTER}

· If semval (see intro(2)) is greater than or equal to the absolute value of sem_op, the
absolute value of sem_op is subtracted from semval. Also, if (sem_flg&SEM_UNDO)
is true, the absolute value of sem_op is added to the calling process’s semadj value (see
exit(2)) for the specified semaphore.

· If semval is less than the absolute value of sem_op and (sem_flg&IPC_NOWAIT) is
true, semop() returns immediately.

· If semval is less than the absolute value of sem_op and (sem_flg&IPC_NOWAIT) is
false, semop() increments the semncnt associated with the specified semaphore and
suspends execution of the calling process until one of the following conditions occur:

2-176 modified 03 Feb 1994

SunOS 5.4 System Calls semop (2)

· semval becomes greater than or equal to the absolute value of sem_op. When this
occurs, the value of semncnt associated with the specified semaphore is decre-
mented, the absolute value of sem_op is subtracted from semval and, if
(sem_flg&SEM_UNDO) is true, the absolute value of sem_op is added to the calling
process’s semadj value for the specified semaphore.

· The semid for which the calling process is awaiting action is removed from the sys-
tem (see semctl(2)). When this occurs, errno is set equal to EIDRM, and a value of
−1 is returned.

· The calling process receives a signal that is to be caught. When this occurs, the
value of semncnt associated with the specified semaphore is decremented, and the
calling process resumes execution in the manner prescribed in signal(3C).

sem_op is a positive integer; {ALTER}

· The value of sem_op is added to semval and, if (sem_flg&SEM_UNDO) is true, the
value of sem_op is subtracted from the calling process’s semadj value for the specified
semaphore.

sem_op is zero; {READ}

· If semval is zero, semop() returns immediately.

· If semval is not equal to zero and (sem_flg&IPC_NOWAIT) is true, semop() returns
immediately.

· If semval is not equal to zero and (sem_flg&IPC_NOWAIT) is false, semop() incre-
ments the semzcnt associated with the specified semaphore and suspends execution
of the calling process until one of the following occurs:

· semval becomes zero, at which time the value of semzcnt associated with the
specified semaphore is decremented.

· The semid for which the calling process is awaiting action is removed from the sys-
tem. When this occurs, errno is set equal to EIDRM, and a value of −1 is returned.

· The calling process receives a signal that is to be caught. When this occurs, the
value of semzcnt associated with the specified semaphore is decremented, and the
calling process resumes execution in the manner prescribed in signal(3C).

RETURN VALUES Upon successful completion, a value of zero is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS semop() fails if one or more of the following are true for any of the semaphore opera-
tions specified by sops :

E2BIG nsops is greater than the system-imposed maximum.

EACCES Operation permission is denied to the calling process (see intro(2)).

EAGAIN The operation would result in suspension of the calling process but
(sem_flg&IPC_NOWAIT) is true.

EFAULT sops points to an illegal address.

modified 03 Feb 1994 2-177

semop (2) System Calls SunOS 5.4

EFBIG sem_num is less than zero or greater than or equal to the number of
semaphores in the set associated with semid.

EIDRM semop() A semid was removed from the system.

EINTR A signal was received.

EINVAL semid is not a valid semaphore identifier, or the number of individual
semaphores for which the calling process requests a SEM_UNDO
would exceed the limit.

ENOSPC The limit on the number of individual processes requesting an
SEM_UNDO would be exceeded.

ERANGE An operation would cause a semval or a semadj value to overflow the
system-imposed limit.

Upon successful completion, the value of sempid for each semaphore specified in the
array pointed to by sops is set equal to the process ID of the calling process.

SEE ALSO ipcs(1), intro(2), exec(2), exit(2), fork(2), semctl(2), semget(2)

2-178 modified 03 Feb 1994

SunOS 5.4 System Calls setpgid (2)

NAME setpgid − set process group ID

SYNOPSIS #include <sys/types.h>
#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

DESCRIPTION setpgid() sets the process group ID of the process with ID pid to pgid. If pgid is equal to
pid, the process becomes a process group leader. See intro(2) for more information on
session leaders and process group leaders. If pgid is not equal to pid, the process becomes
a member of an existing process group.

If pid is equal to 0, the process ID of the calling process is used. If pgid is equal to 0, the
process specified by pid becomes a process group leader.

RETURN VALUES Upon successful completion, setpgid() returns a value of 0. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS setpgid() fails and returns an error are true:

EACCES pid matches the process ID of a child process of the calling process and
the child process has successfully executed an exec(2) function.

EINVAL pgid is less than (pid_t) 0, or greater than or equal to {PID_MAX}.

EINVAL The calling process has a controlling terminal that does not support job
control.

EPERM The process indicated by the pid argument is a session leader.

EPERM pid matches the process ID of a child process of the calling process and
the child process is not in the same session as the calling process.

EPERM pgid does not match the process ID of the process indicated by the pid
argument and there is no process with a process group ID that matches
pgid in the same session as the calling process.

ESRCH pid does not match the process ID of the calling process or of a child pro-
cess of the calling process.

SEE ALSO intro(2), exec(2), exit(2), fork(2), getpid(2), getsid(2)

modified 29 Jul 1991 2-179

setpgrp (2) System Calls SunOS 5.4

NAME setpgrp − set process group ID

SYNOPSIS #include <sys/types.h>
#include <unistd.h>

pid_t setpgrp(void);

DESCRIPTION If the calling process is not already a session leader, setpgrp() makes it one by setting its
process group ID and session ID to the value of its process ID, and releases its controlling
terminal. See intro(2) for more information on process group IDs and session leaders.

RETURN VALUES setpgrp() returns the value of the new process group ID.

SEE ALSO intro(2), exec(2), fork(2), getpid(2), getsid(2), kill(2), signal(3C)

NOTES setpgrp() will be phased out in favor of the setsid () function.

2-180 modified 29 Jul 1991

SunOS 5.4 System Calls setuid (2)

NAME setuid, setegid, seteuid, setgid − set user and group IDs

SYNOPSIS #include <sys/types.h>
#include <unistd.h>

int setuid(uid_t uid);

int setegid(gid_t egid);

int seteuid(uid_t euid);

int setgid(gid_t gid);

DESCRIPTION The setuid() function sets the real user ID, effective user ID, and saved user ID of the cal-
ling process. The setgid() function sets the real group ID, effective group ID, and saved
group ID of the calling process. The setegid() and seteuid() functions set the effective
group and user ID’s respectively for the calling process. See intro(2) for more informa-
tion on real, effective, and saved user and group IDs.

At login time, the real user ID, effective user ID, and saved user ID of the login process are
set to the login ID of the user responsible for the creation of the process. The same is true
for the real, effective, and saved group IDs; they are set to the group ID of the user
responsible for the creation of the process.

When a process calls exec(2) to execute a file (program), the user and/or group identifiers
associated with the process can change. If the file executed is a set-user-ID file, the effec-
tive and saved user IDs of the process are set to the owner of the file executed. If the file
executed is a set-group-ID file, the effective and saved group IDs of the process are set to
the group of the file executed. If the file executed is not a set-user-ID or set-group-ID file,
the effective user ID, saved user ID, effective group ID, and saved group ID are not
changed.

The following subsections describe the behavior of setuid() and setgid() with respect to
the three types of user and group IDs.

If the effective user ID of the process calling setuid() is the super-user, the real, effective,
and saved user IDs are set to the uid parameter.

If the effective user ID of the calling process is not the super-user, but uid is either the real
user ID or the saved user ID of the calling process, the effective user ID is set to uid.

If the effective user ID of the process calling setgid() is the super-user, the real, effective,
and saved group IDs are set to the gid parameter.

If the effective user ID of the calling process is not the super-user, but gid is either the real
group ID or the saved group ID of the calling process, the effective group ID is set to gid.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

modified 2Dec 1993 2-181

setuid (2) System Calls SunOS 5.4

ERRORS setuid() and setgid() fail if one or more of the following is true:

EINVAL The uid or gid is out of range.

EPERM For setuid() and seteuid() the effective user of the calling process is not
super-user, and the uid parameter does not match either the real or saved user
IDs. For setgid() and setegid() the effective user of the calling process is not
the super-user, and the gid parameter does not match either the real or saved
group IDs.

SEE ALSO intro(2), exec(2), getgroups(2), getuid(2), stat(5)

2-182 modified 2Dec 1993

SunOS 5.4 System Calls shmctl (2)

NAME shmctl − shared memory control operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds ∗buf);

DESCRIPTION shmctl() provides a variety of shared memory control operations as specified by cmd.
The permission required for a shared memory control operation is given as {token}, where
token is the type of permission needed. The types of permission are interpreted as fol-
lows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

See the Shared Memory Operation Permissions section of intro(2) for more information.

The following operations require the specified tokens:

IPC_STAT Place the current value of each member of the data structure associ-
ated with shmid into the structure pointed to by buf. The contents of
this structure are defined in intro(2). {READ}

IPC_SET Set the value of the following members of the data structure associ-
ated with shmid to the corresponding value found in the structure
pointed to by buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode /∗ only access permission bits ∗/

This command can be executed only by a process that has an effec-
tive user ID equal to that of super-user, or to the value of
shm_perm.cuid or shm_perm.uid in the data structure associated
with shmid.

IPC_RMID Remove the shared memory identifier specified by shmid from the
system and destroy the shared memory segment and data structure
associated with it. This command can be executed only by a process
that has an effective user ID equal to that of super-user, or to the
value of shm_perm.cuid or shm_perm.uid in the data structure
associated with shmid.

SHM_LOCK Lock the shared memory segment specified by shmid in memory.
This command can be executed only by a process that has an effec-
tive user ID equal to super-user.

modified 29 Jul 1991 2-183

shmctl (2) System Calls SunOS 5.4

SHM_UNLOCK Unlock the shared memory segment specified by shmid. This com-
mand can be executed only by a process that has an effective user ID
equal to super-user.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned
and errno is set to indicate the error.

ERRORS shmctl() fails if one or more of the following are true:

EACCES cmd is equal to IPC_STAT and {READ} operation permission is denied to
the calling process.

EFAULT buf points to an illegal address.

EINVAL shmid is not a valid shared memory identifier.

EINVAL cmd is not a valid command.

EINVAL cmd is IPC_SET and shm_perm.uid or shm_perm.gid is not valid.

ENOMEM cmd is equal to SHM_LOCK and there is not enough memory.

EOVERFLOW cmd is IPC_STAT and uid or gid is too large to be stored in the structure
pointed to by buf.

EPERM cmd is equal to IPC_RMID or IPC_SET and the effective user of the cal-
ling process is not super-user, or to the value of shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid.

EPERM cmd is equal to SHM_LOCK or SHM_UNLOCK and the effective user
ID of the calling process is not equal to that of super-user.

SEE ALSO ipcs(1), intro(2), shmget(2), shmop(2)

NOTES The user must explicitly remove shared memory segments after the last reference to them
has been removed.

2-184 modified 29 Jul 1991

SunOS 5.4 System Calls shmget (2)

NAME shmget − get shared memory segment identifier

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key_t key , int size, int shmflg);

DESCRIPTION shmget() returns the shared memory identifier associated with key .

A shared memory identifier and associated data structure and shared memory segment
of at least size bytes (see intro(2)) are created for key if one of the following are true:

key is equal to IPC_PRIVATE.

key does not already have a shared memory identifier associated with it, and
(shmflg&IPC_CREAT) is true.

Upon creation, the data structure associated with the new shared memory identifier is
initialized as follows:

shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid are set
equal to the effective user ID and effective group ID, respectively, of the calling
process.

The access permission bits of shm_perm.mode are set equal to the access permis-
sion bits of shmflg. shm_segsz is set equal to the value of size.

shm_lpid, shm_nattch shm_atime, and shm_dtime are set equal to 0.

shm_ctime is set equal to the current time.

RETURN VALUES Upon successful completion, a non-negative integer, namely a shared memory identifier
is returned. Otherwise, a value of −1 is returned and errno is set to indicate the error.

ERRORS shmget() fails if one or more of the following are true:

EACCES A shared memory identifier exists for key but operation permission (see
intro(2)) as specified by the low-order 9 bits of shmflg would not be
granted.

EEXIST A shared memory identifier exists for key but both
(shmflg&IPC_CREAT) and (shmflg&IPC_EXCL) are true.

EINVAL size is less than the system-imposed minimum or greater than the
system-imposed maximum.

EINVAL A shared memory identifier exists for key but the size of the segment
associated with it is less than size and size is not equal to zero.

ENOENT A shared memory identifier does not exist for key and
(shmflg&IPC_CREAT) is false.

modified 5 Jul 1990 2-185

shmget (2) System Calls SunOS 5.4

ENOMEM A shared memory identifier and associated shared memory segment are
to be created but the amount of available memory is not sufficient to fill
the request.

ENOSPC A shared memory identifier is to be created but the system-imposed
limit on the maximum number of allowed shared memory identifiers
system wide would be exceeded.

SEE ALSO intro(2), shmctl(2), shmop(2), stdipc(3C)

NOTES The user must explicitly remove shared memory segments after the last reference to them
has been removed.

2-186 modified 5 Jul 1990

SunOS 5.4 System Calls shmop (2)

NAME shmop, shmat, shmdt − shared memory operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

void ∗shmat(int shmid, void ∗shmaddr, int shmflg);

int shmdt(void ∗shmaddr);

DESCRIPTION shmat() attaches the shared memory segment associated with the shared memory
identifier specified by shmid to the data segment of the calling process.

The permission required for a shared memory control operation is given as {token}, where
token is the type of permission needed. The types of permission are interpreted as fol-
lows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

See the Shared Memory Operation Permissions section of intro(2) for more information.

When (shmflg&SHM_SHARE_MMU) is true, virtual memory resources in addition to
shared memory itself are shared among processes that use the same shared memory.

The shared memory segment is attached to the data segment of the calling process at the
address specified based on one of the following criteria:

· If shmaddr is equal to (void ∗∗) 0, the segment is attached to the first available
address as selected by the system.

· If shmaddr is equal to (void ∗) 0 and (shmflg&SHM_SHARE_MMU) is true, then
the segment is attached to the first available aligned address. See NOTES for the
alignment requirement.

· If shmaddr is not equal to (void ∗∗) 0 and (shmflg&SHM_RND) is true, the segment
is attached to the address given by (shmaddr - (shmaddr modulus SHMLBA)).

· If shmaddr is not equal to (void ∗∗) 0 and (shmflg&SHM_RND) is false, the seg-
ment is attached to the address given by shmaddr.

The segment is attached for reading if (shmflg&SHM_RDONLY) is true {READ}, other-
wise it is attached for reading and writing {READ/WRITE}.

When (shmflg&SHM_SHARE_MMU) is set, however, the permission given by shmget()
determines whether the segment is attached for reading or reading and writing.

shmdt() detaches from the calling process’s data segment the shared memory segment

modified 19 Jul 1993 2-187

shmop (2) System Calls SunOS 5.4

located at the address specified by shmaddr.

RETURN VALUES Upon successful completion, the return value is as follows:

shmat() returns the data segment start address of the attached shared memory
segment.

shmdt() returns a value of 0.

Otherwise, a value of −1 is returned and errno is set to indicate the error.

ERRORS shmat() fails and does not attach the shared memory segment if one or more of the fol-
lowing are true:

EACCES Operation permission is denied to the calling process (see intro(2)).

EINVAL shmid is not a valid shared memory identifier.

EINVAL shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr
modulus SHMLBA)) is an illegal address.

EINVAL shmaddr is not equal to zero, (shmflg&SHM_RND) is false, and the value
of shmaddr is an illegal address.

EINVAL shmaddr is not equal to zero, (shmfg&SHM_SHARE_MMU) is true, and
shmaddr is not aligned properly.

EINVAL shmdt() fails and does not detach the shared memory segment if
shmaddr is not the data segment start address of a shared memory seg-
ment.

EINVAL SHM_SHARE_MMU is not supported in certain architectures.

EMFILE The number of shared memory segments attached to the calling process
would exceed the system-imposed limit.

ENOMEM The available data space is not large enough to accommodate the shared
memory segment.

SEE ALSO intro(2), exec(2), exit(2), fork(2), shmctl(2), shmget(2)

NOTES The user must explicitly remove shared memory segments after the last reference to them
has been removed.

The alignment requirement, which varies on different machines, is determined by the
mapping size of the virtual memory system.

2-188 modified 19 Jul 1993

SunOS 5.4 System Calls sigaction (2)

NAME sigaction − detailed signal management

SYNOPSIS #include <signal.h>

int sigaction(int sig, const struct sigaction ∗act , struct sigaction ∗oact);

DESCRIPTION sigaction() allows the calling process to examine or specify the action to be taken on
delivery of a specific signal. (See signal(5) for an explanation of general signal concepts.)

sig specifies the signal and can be assigned any of the signals specified in signal(5) except
SIGKILL and SIGSTOP. In a multi-threaded process, sig cannot be
SIGWAITING or SIGLWP.

If the argument act is not NULL, it points to a structure specifying the new action to be
taken when delivering sig. If the argument oact is not NULL, it points to a structure
where the action previously associated with sig is to be stored on return from sigaction().

The sigaction structure includes the following members:

void (∗sa_handler)();
void (∗sa_sigaction)(int, siginfo_t ∗, void ∗);
sigset_t sa_mask;
int sa_flags;

sa_handler identifies the action to be associated with the specified signal, if the
SA_SIGINFO flag (see below) is cleared in the sa_flags field of the sigaction structure. It
may take any of the values specified in signal(5) or that of a user specified signal handler.
If the SA_SIGINFO flag is set in the sa_flags field, the sa_sigaction field specifies a
signal-catching function.

sa_mask specifies a set of signals to be blocked while the signal handler is active. On
entry to the signal handler, that set of signals is added to the set of signals already being
blocked when the signal is delivered. In addition, the signal that caused the handler to be
executed will also be blocked, unless the SA_NODEFER flag has been specified. SIG-
STOP and SIGKILL cannot be blocked (the system silently enforces this restriction).

sa_flags specifies a set of flags used to modify the delivery of the signal. It is formed by a
logical OR of any of the following values:

SA_ONSTACK If set and the signal is caught, and if the LWP that is chosen
to processes a delivered signal has an alternate signal stack
declared with sigaltstack(2), then it will process the signal
on that stack. Otherwise, the signal is delivered on the
LWP main stack. Unbound threads (see thr_create(3T))
may not have alternate signal stacks.

SA_RESETHAND If set and the signal is caught, the disposition of the signal
is reset to SIG_DFL and the signal will not be blocked on
entry to the signal handler (SIGILL, SIGTRAP, and
SIGPWR cannot be automatically reset when delivered;
the system silently enforces this restriction).

modified 30 Jul 1992 2-189

sigaction (2) System Calls SunOS 5.4

SA_NODEFER If set and the signal is caught, the signal will not be
automatically blocked by the kernel while it is being
caught.

SA_RESTART If set and the signal is caught, a function that is inter-
rupted by the execution of this signal’s handler is tran-
sparently restarted by the system. Otherwise, that func-
tion returns an EINTR error.

SA_SIGINFO If cleared and the signal is caught, sig is passed as the only
argument to the signal-catching function. If set and the
signal is caught, pending signals of type sig are reliably
queued to the calling process and two additional argu-
ments are passed to the signal-catching function. If the
second argument is not equal to NULL, it points to a
siginfo_t structure containing the reason why the signal
was generated (see siginfo(5)); the third argument points
to a ucontext_t structure containing the receiving process’s
context when the signal was delivered (see ucontext(5)).

SA_NOCLDWAIT If set and sig equals SIGCHLD, the system will not create
zombie processes when children of the calling process exit.
If the calling process subsequently issues a wait(2), it
blocks until all of the calling process’s child processes ter-
minate, and then returns a value of −1 with errno set to
ECHILD.

SA_NOCLDSTOP If set and sig equals SIGCHLD, SIGCHLD will not be
sent to the calling process when its child processes stop or
continue.

SA_WAITSIG If set and sig equals SIGWAITING, then the system will
send SIGWAITING to the process when all the LWPs in
the process are blocked.

RETURN VALUES On success, sigaction() returns zero. On failure, it returns −1 and sets errno to indicate
the error. If sigaction() fails, no new signal handler is installed.

ERRORS sigaction() fails if any of the following is true:

EINVAL The value of the sig argument is not a valid signal number or is equal to
SIGKILL or SIGSTOP. In addition, if in a multi-threaded process, it is
equal to SIGWAITING or SIGLWP.

EFAULT act or oact points to an illegal address.

SEE ALSO kill(1), intro(2), exit(2), kill(2), pause(2), sigaltstack(2), sigprocmask(2), sigsend(2), sig-
suspend(2), wait(2), signal(3C), sigsetops(3C), thr_create(3T), siginfo(5), signal(5),
ucontext(5)

2-190 modified 30 Jul 1992

SunOS 5.4 System Calls sigaction (2)

NOTES The handler routine can be declared:
void handler (int sig, siginfo_t ∗sip, ucontext_t ∗uap);

Here, sig is the signal number. sip is a pointer (to space on the stack) to a siginfo_t struc-
ture, which provides additional detail about the delivery of the signal. uap is a pointer
(again to space on the stack) to a ucontext_t structure (defined in sys/ucontext.h) which
contains the context from before the signal. It is not recommended that uap be used by
the handler to restore the context from before the signal delivery.

modified 30 Jul 1992 2-191

sigaltstack (2) System Calls SunOS 5.4

NAME sigaltstack − set or get signal alternate stack context

SYNOPSIS #include <signal.h>

int sigaltstack(const stack_t ∗ss, stack_t ∗oss);

DESCRIPTION sigaltstack() allows an LWP to define an alternate stack area on which signals are to be
processed. If ss is non-zero, it specifies a pointer to, and the size of a stack area on which
to deliver signals, and tells the system whether the LWP is currently executing on that
stack. When a signal’s action indicates its handler should execute on the alternate signal
stack (specified with a sigaction(2) call), the system checks to see if the LWP chosen to
execute the signal handler is currently executing on that stack. If the LWP is not currently
executing on the signal stack, the system arranges a switch to the alternate signal stack for
the duration of the signal handler’s execution.

The structure stack_t includes the following members:

int ∗ss_sp
long ss_size
int ss_flags

If ss is not NULL, it points to a structure specifying the alternate signal stack that will
take effect upon successful return from sigaltstack(). The ss_sp and ss_size fields
specify the new base and size of the stack, which is automatically adjusted for direction
of growth and alignment. The ss_flags field specifies the new stack state and may be set
to the following:

SS_DISABLE The stack is to be disabled and ss_sp and ss_size are
ignored. If SS_DISABLE is not set, the stack will be
enabled.

If oss is not NULL, it points to a structure specifying the alternate signal stack that was in
effect prior to the call to sigaltstack(). The ss_sp and ss_size fields specify the base and
size of that stack. The ss_flags field specifies the stack’s state, and may contain the fol-
lowing values:

SS_ONSTACK The LWP is currently executing on the alternate signal stack.
Attempts to modify the alternate signal stack while the LWP
is executing on it will fail.

SS_DISABLE The alternate signal stack is currently disabled.

RETURN VALUES On success, sigaltstack() returns zero. On failure, it returns −1 and sets errno to indicate
the error.

ERRORS sigaltstack() fails if any of the following is true:

EFAULT ss or oss points to an illegal address.

EINVAL An attempt was made to disable an active stack or the ss_flags field in ss
specifies invalid flags.

ENOMEM The size of the alternate stack area is less than MINSIGSTKSZ.

2-192 modified 30 Jul 1992

SunOS 5.4 System Calls sigaltstack (2)

SEE ALSO getcontext(2), sigaction(2), ucontext(5)

NOTES The value SIGSTKSZ is defined to be the number of bytes that would be used to cover
the usual case when allocating an alternate stack area. The value MINSIGSTKSZ is
defined to be the minimum stack size for a signal handler. In computing an alternate
stack size, a program should add that amount to its stack requirements to allow for the
operating system overhead.

The following code fragment is typically used to allocate an alternate stack:

if ((sigstk.ss_sp = (char ∗)malloc(SIGSTKSZ)) == NULL)
/∗ error return ∗/;

sigstk.ss_size = SIGSTKSZ;
sigstk.ss_flags = 0;
if (sigaltstack(&sigstk, (stack_t ∗)0) < 0)

perror("sigaltstack");

modified 30 Jul 1992 2-193

sigpending (2) System Calls SunOS 5.4

NAME sigpending − examine signals that are blocked and pending

SYNOPSIS #include <signal.h>

int sigpending(sigset_t ∗set);

DESCRIPTION The sigpending() function retrieves those signals that have been sent to the calling pro-
cess but are being blocked from delivery by the calling process’s signal mask. The signals
are stored in the space pointed to by the argument set.

RETURN VALUES On success, sigpending() returns zero. On failure, it returns −1 and sets errno to indicate
the error.

ERRORS sigpending() fails if the following is true:

EFAULT set points to an illegal address.

SEE ALSO sigaction(2), sigprocmask(2), sigsetops(3C)

2-194 modified 5 Jul 1990

SunOS 5.4 System Calls sigprocmask (2)

NAME sigprocmask − change and/or examine calling process’s signal mask

SYNOPSIS #include <signal.h>

int sigprocmask(int how , const sigset_t ∗set , sigset_t ∗oset);

DESCRIPTION The sigprocmask() function is used to examine and/or change the calling process’s sig-
nal mask. If the value is SIG_BLOCK, the set pointed to by the argument set is added to
the current signal mask. If the value is SIG_UNBLOCK, the set pointed by the argument
set is removed from the current signal mask. If the value is SIG_SETMASK, the current
signal mask is replaced by the set pointed to by the argument set. If the argument oset is
not NULL, the previous mask is stored in the space pointed to by oset. If the value of the
argument set is NULL, the value how is not significant and the process’s signal mask is
unchanged; thus, the call can be used to enquire about currently blocked signals.

If there are any pending unblocked signals after the call to sigprocmask(), at least one of
those signals will be delivered before the call to sigprocmask() returns.

It is not possible to block those signals that cannot be ignored (see sigaction(2)); this res-
triction is silently imposed by the system.

If sigprocmask() fails, the process’s signal mask is not changed.

RETURN VALUES On success, sigprocmask() returns zero. On failure, it returns −1 and sets errno to indi-
cate the error.

ERRORS sigprocmask() fails if any of the following is true:

EFAULT set or oset points to an illegal address.

EINVAL The value of the how argument is not equal to one of the defined values.

SEE ALSO sigaction(2), signal(3C), sigsetops(3C), signal(5)

modified 5 Jul 1990 2-195

sigsend (2) System Calls SunOS 5.4

NAME sigsend, sigsendset − send a signal to a process or a group of processes

SYNOPSIS #include <signal.h>

int sigsend(idtype_t idtype, id_t id, int sig);

int sigsendset(procset_t ∗psp, int sig);

DESCRIPTION sigsend() sends a signal to the process or group of processes specified by id and idtype.
The signal to be sent is specified by sig and is either zero or one of the values listed in sig-
nal(5). If sig is zero (the null signal), error checking is performed but no signal is actually
sent. This value can be used to check the validity of id and idtype.

The real or effective user ID of the sending process must match the real or effective user
ID of the receiving process, unless the effective user ID of the sending process is super-
user, or sig is SIGCONT and the sending process has the same session ID as the receiving
process.

If idtype is P_PID, sig is sent to the process with process ID id.

If idtype is P_PGID, sig is sent to any process with process group ID id.

If idtype is P_SID, sig is sent to any process with session ID id.

If idtype is P_UID, sig is sent to any process with effective user ID id.

If idtype is P_GID, sig is sent to any process with effective group ID id.

If idtype is P_CID, sig is sent to any process with scheduler class ID id (see priocntl(2)).

If idtype is P_ALL, sig is sent to all processes and id is ignored.

If id is P_MYID, the value of id is taken from the calling process.

The process with a process ID of 0 is always excluded. The process with a process ID of 1
is excluded unless idtype is equal to P_PID.

sigsendset() provides an alternate interface for sending signals to sets of processes. This
function sends signals to the set of processes specified by psp. psp is a pointer to a struc-
ture of type procset_t, defined in <sys/procset.h>, which includes the following
members:

idop_t p_op;
idtype_t p_lidtype;
id_t p_lid;
idtype_t p_ridtype;
id_t p_rid;

2-196 modified 5 Jul 1990

SunOS 5.4 System Calls sigsend (2)

p_lidtype and p_lid specify the ID type and ID of one (“left”) set of processes; p_ridtype
and p_rid specify the ID type and ID of a second (“right”) set of processes. ID types and
IDs are specified just as for the idtype and id arguments to sigsend(). p_op specifies the
operation to be performed on the two sets of processes to get the set of processes the
function is to apply to. The valid values for p_op and the processes they specify are:

POP_DIFF set difference: processes in left set and not in right set

POP_AND set intersection: processes in both left and right sets

POP_OR set union: processes in either left or right set or both

POP_XOR set exclusive-or: processes in left or right set but not in both

RETURN VALUES On success, sigsend() returns zero. On failure, it returns −1 and sets errno to indicate the
error.

ERRORS sigsend() and sigsendset() fail if one or more of the following are true:

EINVAL sig is not a valid signal number.

EINVAL idtype is not a valid idtype field.

EINVAL sig is SIGKILL, idtype is P_PID and id is 1 (proc1).

EPERM The effective user of the calling process is not super-user, and its real or
effective user ID does not match the real or effective user ID of the
receiving process, and the calling process is not sending SIGCONT to a
process that shares the same session.

ESRCH No process can be found corresponding to that specified by id and
idtype.

In addition, sigsendset() fails if:

EFAULT psp points to an illegal address.

SEE ALSO kill(1), getpid(2), kill(2), priocntl(2), signal(3C), signal(5)

modified 5 Jul 1990 2-197

sigsuspend (2) System Calls SunOS 5.4

NAME sigsuspend − install a signal mask and suspend process until signal

SYNOPSIS #include <signal.h>

int sigsuspend(const sigset_t ∗set);

DESCRIPTION sigsuspend() replaces the process’s signal mask with the set of signals pointed to by the
argument set and then suspends the process until delivery of a signal whose action is
either to execute a signal catching function or to terminate the process.

If the action is to terminate the process, sigsuspend() does not return. If the action is to
execute a signal catching function, sigsuspend() returns after the signal catching function
returns. On return, the signal mask is restored to the set that existed before the call to
sigsuspend().

It is not possible to block those signals that cannot be ignored (see signal(5)); this restric-
tion is silently imposed by the system.

RETURN VALUES Since sigsuspend() suspends process execution indefinitely, there is no successful com-
pletion return value. On failure, it returns −1 and sets errno to indicate the error.

ERRORS sigsuspend() fails if either of the following is true:

EFAULT set points to an illegal address.

EINTR A signal is caught by the calling process and control is returned from the
signal catching function.

SEE ALSO sigaction(2), sigprocmask(2), signal(3C), sigsetops(3C), signal(5)

2-198 modified 5 Jul 1990

SunOS 5.4 System Calls sigwait (2)

NAME sigwait − wait until a signal is posted

SYNOPSIS #include <signal.h>

int sigwait(sigset_t ∗set);

DESCRIPTION sigwait() selects a signal in set that is pending on the calling thread (see thr_create(3T))
or LWP. If no signal in set is pending, then sigwait() blocks until a signal in set becomes
pending. The selected signal is cleared from the set of signals pending on the calling
thread or LWP and the number of the signal is returned. The selection of a signal in set is
independent of the signal mask of the calling thread or LWP. This means a thread or LWP
can synchronously wait for signals that are being blocked by the signal mask of the cal-
ling thread or LWP.

If more than one thread or LWP waits for the same signal, only one is unblocked when the
signal arrives.

RETURN VALUES Upon successful completion, a signal number is returned. Otherwise, a value of −1 is
returned and errno is set to indicate error.

ERRORS If any of the following conditions are detected, sigwait() fails and returns the
corresponding value:

EINVAL set contains an unsupported signal number.

EFAULT set points to an invalid address.

SEE ALSO sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2), thr_sigsetmask(3T), sig-
nal(5)

NOTES sigwait() cannot be used to wait for signals that cannot be caught (see sigaction(2)). This
restriction is silently imposed by the system.

modified 30 Jul 1992 2-199

stat (2) System Calls SunOS 5.4

NAME stat, lstat, fstat − get file status

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>

int stat(const char ∗path , struct stat ∗buf);

int lstat(const char ∗path , struct stat ∗buf);

int fstat(int fildes, struct stat ∗buf);

DESCRIPTION stat() obtains information about the file pointed to by path . Read, write, or execute per-
mission of the named file is not required, but all directories listed in the path name lead-
ing to the file must be searchable.

lstat() obtains file attributes similar to stat(), except when the named file is a symbolic
link; in that case lstat() returns information about the link, while stat() returns informa-
tion about the file the link references.

fstat() obtains information about an open file known by the file descriptor fildes, obtained
from a successful open, creat, dup, fcntl, or pipe function.

buf is a pointer to a stat() structure into which information is placed concerning the file.

The contents of the structure pointed to by buf include the following members:

mode_t st_mode; /∗ File mode (see mknod(2)) ∗/
ino_t st_ino; /∗ Inode number ∗/
dev_t st_dev; /∗ ID of device containing ∗/

/∗ a directory entry for this file ∗/
dev_t st_rdev; /∗ ID of device ∗/

/∗ This entry is defined only for ∗/
/∗ char special or block special files ∗/

nlink_t st_nlink; /∗ Number of links ∗/
uid_t st_uid; /∗ User ID of the file’s owner ∗/
gid_t st_gid; /∗ Group ID of the file’s group ∗/
off_t st_size; /∗ File size in bytes ∗/
time_t st_atime; /∗ Time of last access ∗/
time_t st_mtime; /∗ Time of last data modification ∗/
time_t st_ctime; /∗ Time of last file status change ∗/

/∗ Times measured in seconds since ∗/
/∗ 00:00:00 UTC, Jan. 1, 1970 ∗/

long st_blksize; /∗ Preferred I/O block size ∗/
long st_blocks; /∗ Number of 512 byte blocks allocated∗/

st_mode The mode of the file as described in mknod(2). In addition to the modes
described in mknod(2), the mode of a file may also be S_IFLNK if the file is a
symbolic link. (Note that S_IFLNK may only be returned by lstat().)

st_ino This field uniquely identifies the file in a given file system. The pair st_ino
and st_dev uniquely identifies regular files.

2-200 modified 9 Mar 1994

SunOS 5.4 System Calls stat (2)

st_dev This field uniquely identifies the file system that contains the file. Its value
may be used as input to the ustat() function to determine more information
about this file system. No other meaning is associated with this value.

st_rdev This field should be used only by administrative commands. It is valid only
for block special or character special files and only has meaning on the system
where the file was configured.

st_nlink This field should be used only by administrative commands.

st_uid The user ID of the file’s owner.

st_gid The group ID of the file’s group.

st_size For regular files, this is the address of the end of the file. For block special or
character special, this is not defined. See also pipe(2).

st_atime Time when file data was last accessed. Changed by the following functions:
creat, mknod, pipe, utime, and read.

st_mtime Time when data was last modified. Changed by the following functions:
creat, mknod, pipe, utime, and write.

st_ctime Time when file status was last changed. Changed by the following functions:
chmod, chown, creat, link, mknod, pipe, unlink, utime, and write.

st_blksize A hint as to the "best" unit size for I/O operations. This field is not defined for
block special or character special files.

st_blocks The total number of physical blocks of size 512 bytes actually allocated on
disk. This field is not defined for block special or character special files.

RETURN VALUES Upon successful completion a value of 0 is returned. Otherwise, a value of −1 is returned
and errno is set to indicate the error.

ERRORS stat() and lstat() fail if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix.

EFAULT buf or path points to an illegal address.

EINTR A signal was caught during the stat() or lstat() function.

ELOOP Too many symbolic links were encountered in translating path .

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT The named file does not exist or is the null pathname.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the path prefix is not a directory.

modified 9 Mar 1994 2-201

stat (2) System Calls SunOS 5.4

EOVERFLOW A component is too large to store in the structure pointed to by
buf.

fstat() fails if one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

EFAULT buf points to an illegal address.

EINTR A signal was caught during the fstat() function.

ENOLINK fildes points to a remote machine and the link to that machine is no
longer active.

EOVERFLOW A component is too large to store in the structure pointed to by
buf.

SEE ALSO chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2), unlink(2),
utime(2), write(2), fattach(3C), stat(5)

2-202 modified 9 Mar 1994

SunOS 5.4 System Calls statvfs (2)

NAME statvfs, fstatvfs − get file system information

SYNOPSIS #include <sys/types.h>
#include <sys/statvfs.h>

int statvfs(const char ∗path , struct statvfs ∗buf);

int fstatvfs(int fildes, struct statvfs ∗buf);

DESCRIPTION statvfs() returns a “generic superblock” describing a file system; it can be used to acquire
information about mounted file systems. buf is a pointer to a structure (described below)
that is filled by the function.

path should name a file that resides on that file system. The file system type is known to
the operating system. Read, write, or execute permission for the named file is not
required, but all directories listed in the path name leading to the file must be searchable.

The statvfs() structure pointed to by buf includes the following members:

u_long f_bsize; /∗ preferred file system block size ∗/
u_long f_frsize; /∗ fundamental filesystem block size

(if supported) ∗/
u_long f_blocks; /∗ total # of blocks on file system

in units of f_frsize ∗/
u_long f_bfree; /∗ total # of free blocks ∗/
u_long f_bavail; /∗ # of free blocks avail to

non-super-user ∗/
u_long f_files; /∗ total # of file nodes (inodes) ∗/
u_long f_ffree; /∗ total # of free file nodes ∗/
u_long f_favail; /∗ # of inodes avail to

non-super-user∗/
u_long f_fsid; /∗ file system id (dev for now) ∗/
char f_basetype[FSTYPSZ]; /∗ target fs type name,

null-terminated ∗/
u_long f_flag; /∗ bit mask of flags ∗/
u_long f_namemax; /∗ maximum file name length ∗/
char f_fstr[32]; /∗ file system specific string ∗/
u_long f_filler[16]; /∗ reserved for future expansion ∗/

f_basetype contains a null-terminated FSType name of the mounted target.

The following flags can be returned in the f_flag field:

ST_RDONLY 0x01 /∗ read-only file system ∗/
ST_NOSUID 0x02 /∗ does not support setuid/setgid

semantics ∗/
ST_NOTRUNC 0x04 /∗ does not truncate file names

longer than {NAME_MAX}∗/

modified 26 May 1993 2-203

statvfs (2) System Calls SunOS 5.4

fstatvfs() is similar to statvfs(), except that the file named by path in statvfs() is instead
identified by an open file descriptor fildes obtained from a successful open(2), creat(2),
dup(2), fcntl(2), or pipe(2) function.

RETURN VALUES Upon successful completion a value of 0 is returned. Otherwise, a value of −1 is returned
and errno is set to indicate the error.

ERRORS statvfs() fails if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix.

EFAULT path or buf points to an illegal address.

EINTR A signal was caught during statvfs() execution.

EIO An I/O error occurred while reading the file system.

ELOOP Too many symbolic links were encountered in translating path .

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of a path component exceeds {NAME_MAX} charac-
ters, or the length of path exceeds {PATH_MAX} characters.

ENOENT Either a component of the path prefix or the file referred to by path
does not exist.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the path prefix of path is not a directory.

fstatvfs() fails if one or more of the following are true:

EBADF fildes is not an open file descriptor.

EFAULT buf points to an illegal address.

EINTR A signal was caught during fstatvfs() execution.

EIO An I/O error occurred while reading the file system.

SEE ALSO chmod(2), chown(2), creat(2), dup(2), fcntl(2), link(2), mknod(2), open(2), pipe(2),
read(2), time(2), unlink(2), utime(2), write(2)

BUGS The values returned for f_files, f_ffree, and f_favail may not be valid for NFS mounted
file systems.

2-204 modified 26 May 1993

SunOS 5.4 System Calls stime (2)

NAME stime − set system time and date

SYNOPSIS #include <unistd.h>

int stime(const time_t ∗tp);

DESCRIPTION stime() sets the system’s idea of the time and date. tp points to the value of time as
measured in seconds from 00:00:00 UTC January 1, 1970.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS stime() will fail if:

EPERM The effective user of the calling process is not super-user.

SEE ALSO time(2)

modified 5 Jul 1990 2-205

swapctl (2) System Calls SunOS 5.4

NAME swapctl − manage swap space

SYNOPSIS #include <sys/stat.h>
#include <sys/swap.h>

int swapctl(int cmd, void ∗arg);

DESCRIPTION swapctl() adds, deletes, or returns information about swap resources. cmd specifies one
of the following options contained in <sys/swap.h>:

SC_ADD /∗ add a resource for swapping ∗/
SC_LIST /∗ list the resources for swapping ∗/
SC_REMOVE /∗ remove a resource for swapping ∗/
SC_GETNSWP /∗ return number of swap resources ∗/

When SC_ADD or SC_REMOVE is specified, arg is a pointer to a swapres structure con-
taining the following members:

char ∗sr_name; /∗ pathname of resource ∗/
off_t sr_start; /∗ offset to start of swap area ∗/
off_t sr_length; /∗ length of swap area ∗/

sr_start and sr_length are specified in 512-byte blocks.

When SC_LIST is specified, arg is a pointer to a swaptable structure containing the fol-
lowing members:

int swt_n; /∗ number of swapents following ∗/
struct swapent swt_ent[]; /∗ array of swt_n swapents ∗/

A swapent structure contains the following members:

char ∗ste_path; /∗ name of the swap file ∗/
off_t ste_start; /∗ starting block for swapping ∗/
off_t ste_length; /∗ length of swap area ∗/
long ste_pages; /∗ number of pages for swapping ∗/
long ste_free; /∗ number of ste_pages free ∗/
long ste_flags; /∗ ST_INDEL bit set if swap file ∗/

/∗ is now being deleted ∗/

SC_LIST causes swapctl() to return at most swt_n entries. The return value of swapctl()
is the number actually returned. The ST_INDEL bit is turned on in ste_flags if the swap
file is in the process of being deleted.

When SC_GETNSWP is specified, swapctl() returns as its value the number of swap
resources in use. arg is ignored for this operation.

The SC_ADD and SC_REMOVE functions will fail if calling process does not have
appropriate privileges.

2-206 modified 5 Jul 1990

SunOS 5.4 System Calls swapctl (2)

RETURN VALUES Upon successful completion, the function swapctl() returns a value of 0 for SC_ADD or
SC_REMOVE, the number of struct swapent entries actually returned for SC_LIST, or
the number of swap resources in use for SC_GETNSWP. Upon failure, the function
swapctl() returns a value of −−1 and sets errno to indicate an error.

ERRORS Under the following conditions, the function swapctl() fails and sets errno to:

EEXIST Part of the range specified by sr_start and sr_length is already
being used for swapping on the specified resource (SC_ADD).

EFAULT arg , sr_name, or ste_path points to an illegal address.

EINVAL The specified function value is not valid, the path specified is not a
swap resource (SC_REMOVE), part of the range specified by
sr_start and sr_length lies outside the resource specified
(SC_ADD), or the specified swap area is less than one page
(SC_ADD).

EISDIR The path specified for SC_ADD is a directory.

ELOOP Too many symbolic links were encountered in translating the
pathname provided to SC_ADD or SC_REMOVE .

ENAMETOOLONG The length of a component of the path specified for SC_ADD or
SC_REMOVE exceeds {NAME_MAX} characters or the length of
the path exceeds {PATH_MAX} characters and
{_POSIX_NO_TRUNC} is in effect.

ENOENT The pathname specified for SC_ADD or SC_REMOVE does not
exist.

ENOMEM An insufficient number of struct swapent structures were pro-
vided to SC_LIST, or there were insufficient system storage
resources available during an SC_ADD or SC_REMOVE, or the
system would not have enough swap space after an
SC_REMOVE.

ENOSYS The pathname specified for SC_ADD or SC_REMOVE is not a file
or block special device.

ENOTDIR Pathname provided to SC_ADD or SC_REMOVE contained a
component in the path prefix that was not a directory.

EPERM The effective user of the calling process is not super-user.

EROFS The pathname specified for SC_ADD is a read-only file system.

modified 5 Jul 1990 2-207

symlink (2) System Calls SunOS 5.4

NAME symlink − make a symbolic link to a file

SYNOPSIS #include <unistd.h>

int symlink(const char ∗name1, const char ∗name2);

DESCRIPTION symlink() creates a symbolic link name2 to the file name1. Either name may be an arbi-
trary pathname, the files need not be on the same file system, and name1 may be nonex-
istent.

The file to which the symbolic link points is used when an open(2) operation is per-
formed on the link. A stat(2) on a symbolic link returns the linked-to file, while an lstat
returns information about the link itself. This can lead to surprising results when a sym-
bolic link is made to a directory. To avoid confusion in programs, the readlink(2) call
can be used to read the contents of a symbolic link.

RETURN VALUES Upon successful completion symlink() returns a value of 0; otherwise, it returns −1 and
places an error code in errno.

ERRORS The symbolic link is made unless one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of
name2.

EEXIST The file referred to by name2 already exists.

EFAULT name1 or name2 points to an illegal address.

EIO An I/O error occurs while reading from or writing to the file sys-
tem.

ELOOP Too many symbolic links are encountered in translating name2.

ENAMETOOLONG The length of the name2 argument exceeds {PATH_MAX}, or the
length of a name2 component exceeds {NAME_MAX} while
(_POSIX_NO_TRUNC) is in effect.

ENOENT A component of the path prefix of name2 does not exist.

ENOSPC The directory in which the entry for the new symbolic link is being
placed cannot be extended because no space is left on the file sys-
tem containing the directory.

ENOSPC The new symbolic link cannot be created because no space is left
on the file system which will contain the link.

ENOSPC There are no free inodes on the file system on which the file is
being created.

2-208 modified 28 Jan 1994

SunOS 5.4 System Calls symlink (2)

ENOSYS The file system does not support symbolic links

ENOTDIR A component of the path prefix of name2 is not a directory.

EROFS The file name2 would reside on a read-only file system.

SEE ALSO cp(1), link(2), open(2), readlink(2), stat(2), unlink(2)

modified 28 Jan 1994 2-209

sync (2) System Calls SunOS 5.4

NAME sync − update super block

SYNOPSIS #include <unistd.h>

void sync(void);

DESCRIPTION sync() causes all information in memory that should be on disk to be written out. This
includes modified super blocks, modified i-nodes, and delayed block I/O.

It should be used by programs that examine a file system, such as fsck(1M), df(1M), etc.
It is mandatory before a re-boot.

The writing, although scheduled, is not necessarily completed before sync() returns. The
fsync function completes the writing before it returns.

SEE ALSO df(1M), fsck(1M), fsync(3C)

2-210 modified 5 Jul 1990

SunOS 5.4 System Calls sysfs (2)

NAME sysfs − get file system type information

SYNOPSIS #include <sys/fstyp.h>
#include <sys/fsid.h>

int sysfs(int opcode , const char ∗fsname);

int sysfs(int opcode , int fs_index, char ∗buf);

int sysfs(int opcode);

DESCRIPTION sysfs() returns information about the file system types configured in the system. The
number of arguments accepted by sysfs() varies and depends on the opcode. The
currently recognized opcodes and their functions are:

GETFSIND Translate fsname, a null-terminated file-system type identifier, into a file-
system type index.

GETFSTYP Translate fs_index, a file-system type index, into a null-terminated file-
system type identifier and write it into the buffer pointed to by buf; this
buffer must be at least of size FSTYPSZ as defined in <sys/fstyp.h>.

GETNFSTYP Return the total number of file system types configured in the system.

RETURN VALUES Upon successful completion, sysfs() returns the file-system type index if the opcode is
GETFSIND, a value of 0 if the opcode is GETFSTYP, or the number of file system types
configured if the opcode is GETNFSTYP. Otherwise, a value of −1 is returned and errno
is set to indicate the error.

ERRORS sysfs() fails if one or more of the following are true:

EFAULT buf or fsname points to an illegal address.

EINVAL fsname points to an invalid file-system identifier; fs_index is zero, or
invalid; opcode is invalid.

modified 5 Jul 1990 2-211

sysinfo (2) System Calls SunOS 5.4

NAME sysinfo − get and set system information strings

SYNOPSIS #include <sys/systeminfo.h>

long sysinfo(int command, char ∗buf, long count);

DESCRIPTION sysinfo() copies information relating to the operating system on which the process is exe-
cuting into the buffer pointed to by buf. sysinfo() can also set certain information where
appropriate commands are available. count is the size of the buffer.

The POSIX P1003.1 interface sysconf(3C) provides a similar class of configuration infor-
mation, but returns an integer rather than a string.

The commands available are:

SI_SYSNAME Copy into the array pointed to by buf the string that would be
returned by uname(2) in the sysname field. This is the name of the
implementation of the operating system, for example, SunOS or
UTS.

SI_HOSTNAME Copy into the array pointed to by buf a string that names the
present host machine. This is the string that would be returned by
uname(2) in the nodename field. This hostname or nodename is
often the name the machine is known by locally.

The hostname is the name of this machine as a node in some net-
work. Different networks may have different names for the node,
but presenting the nodename to the appropriate network directory
or name-to-address mapping service should produce a transport
end point address. The name may not be fully qualified.

Internet host names may be up to 256 bytes in length (plus the ter-
minating null).

SI_SET_HOSTNAME Copy the null-terminated contents of the array pointed to by buf
into the string maintained by the kernel whose value will be
returned by succeeding calls to sysinfo() with the command
SI_HOSTNAME. This command requires that the effective-user-id
be super-user.

SI_RELEASE Copy into the array pointed to by buf the string that would be
returned by uname(2) in the release field. Typical values might be
5.2 or 4.1.

SI_VERSION Copy into the array pointed to by buf the string that would be
returned by uname(2) in the version field. The syntax and seman-
tics of this string are defined by the system provider.

SI_MACHINE Copy into the array pointed to by buf the string that would be
returned by uname(2) in the machine field, for example, sun4,
sun4c, or sun4m.

2-212 modified 21 Mar 1994

SunOS 5.4 System Calls sysinfo (2)

SI_ARCHITECTURE Copy into the array pointed to by buf a string describing the
instruction set architecture of the current system, for example,
sparc, mc68030, m32100, or i386. These names may not match
predefined names in the C language compilation system.

SI_HW_PROVIDER Copies the name of the hardware manufacturer into the array
pointed to by buf.

SI_HW_SERIAL Copy into the array pointed to by buf a string which is the ASCII
representation of the hardware-specific serial number of the physi-
cal machine on which the function is executed. Note that this may
be implemented in Read-Only Memory, using software constants
set when building the operating system, or by other means, and
may contain non-numeric characters. It is anticipated that
manufacturers will not issue the same “serial number” to more
than one physical machine. The pair of strings returned by
SI_HW_PROVIDER and SI_HW_SERIAL is likely to be unique
across all vendor’s SVR4 implementations.

SI_SRPC_DOMAIN Copies the Secure Remote Procedure Call domain name into the
array pointed to by buf.

SI_SET_SRPC_DOMAIN
Set the string to be returned by sysinfo() with the
SI_SRPC_DOMAIN command to the value contained in the array
pointed to by buf. This command requires that the effective-user-
id be super-user.

RETURN VALUES Upon successful completion, the value returned indicates the buffer size in bytes required
to hold the complete value and the terminating null character. If this value is no greater
than the value passed in count, the entire string was copied. If this value is greater than
count, the string copied into buf has been truncated to count −1 bytes plus a terminating
null character.

Otherwise, a value of −1 is returned and errno is set to indicate the error.

ERRORS sysinfo() will fail if one or more of the following are true:

EFAULT buf does not point to a valid address.

EINVAL The data for a SET command exceeds the limits established by the
implementation.

EPERM The effective user of the calling process is not super-user.

USAGE In many cases there is no corresponding programmatic interface to set these values; such
strings are typically settable only by the system administrator modifying entries in the
/etc/system directory or the code provided by the particular OEM reading a serial
number or code out of read-only memory, or hard-coded in the version of the operating
system.

modified 21 Mar 1994 2-213

sysinfo (2) System Calls SunOS 5.4

A good starting guess for count is 257, which is likely to cover all strings returned by this
interface in typical installations.

SEE ALSO uname(2), gethostid(3B), gethostname(3B), sysconf(3C)

2-214 modified 21 Mar 1994

SunOS 5.4 System Calls time (2)

NAME time − get time

SYNOPSIS #include <sys/types.h>
#include <time.h>

time_t time(time_t ∗tloc);

DESCRIPTION time() returns the value of time in seconds since 00:00:00 UTC, January 1, 1970.

If tloc is non-zero, the return value is also stored in the location to which tloc points.

RETURN VALUES Upon successful completion, time() returns the value of time. Otherwise, a value of
(time_t)−−1 is returned and errno is set to indicate the error.

SEE ALSO stime(2), ctime(3C)

NOTES time() fails and its actions are undefined if tloc points to an illegal address.

modified 5 Jul 1990 2-215

times (2) System Calls SunOS 5.4

NAME times − get process and child process times

SYNOPSIS #include <sys/times.h>
#include <limits.h>

clock_t times(struct tms ∗buffer);

DESCRIPTION times() fills the tms structure pointed to by buffer with time-accounting information. The
tms structure, defined in <sys/times.h>, contains the following members:

clock_t tms_utime;
clock_t tms_stime;
clock_t tms_cutime;
clock_t tms_cstime;

This information comes from the calling process and each of its terminated child
processes for which it has executed a wait routine. All times are reported in clock ticks.
The specific value for a clock tick is defined by the variable CLK_TCK, found in the
header <limits.h>.

tms_utime is the CPU time used while executing instructions in the user space of the cal-
ling process.

tms_stime is the CPU time used by the system on behalf of the calling process.

tms_cutime is the sum of the tms_utime and the tms_cutime of the child processes.

tms_cstime is the sum of the tms_stime and the tms_cstime of the child processes.

RETURN VALUES Upon successful completion, times() returns the elapsed real time, in clock ticks, from an
arbitrary point in the past (for example, system start-up time). This point does not
change from one invocation of times() to another. If times() fails, a value of −1 is
returned and errno is set to indicate the error.

ERRORS times() fails if:

EFAULT buffer points to an illegal address.

SEE ALSO time(1), timex(1), exec(2), fork(2), time(2), wait(2), waitid(2), waitpid(2)

2-216 modified 29 Jul 1991

SunOS 5.4 System Calls uadmin (2)

NAME uadmin − administrative control

SYNOPSIS #include <sys/uadmin.h>

int uadmin(int cmd, int fcn, int mdep);

DESCRIPTION uadmin() provides control for basic administrative functions. This function is tightly
coupled to the system administrative procedures and is not intended for general use. The
argument mdep is provided for machine-dependent use and is not defined here.

As specified by cmd, the following commands are available:

A_SHUTDOWN The system is shut down. All user processes are killed, the buffer cache
is flushed, and the root file system is unmounted. The action to be taken
after the system has been shut down is specified by fcn. The functions
are generic; the hardware capabilities vary on specific machines.

AD_HALT Halt the processor(s).

AD_POWEROFF Halt the processor(s) and turn off the power.

AD_BOOT Reboot the system, using /kernel/unix.

AD_IBOOT Interactive reboot; user is prompted for bootable pro-
gram name.

A_REBOOT The system stops immediately without any further processing. The
action to be taken next is specified by fcn as above.

A_REMOUNT The root file system is mounted again after having been fixed. This
should be used only during the startup process.

A_FREEZE Suspend the whole system. The system state is preserved in the state
file. The following three subcommands are available.

AD_COMPRESS
Save the system state to the state file with compression of
data.

AD_CHECK Check if your system supports suspend and resume.
Without performing a system suspend/resume, this com-
mand checks if this feature is currently available on your
system.

AD_FORCE Force AD_COMPRESS even when threads of drivers are
not suspendable.

RETURN VALUES Upon successful completion, the value returned depends on cmd as follows:

A_SHUTDOWN Never returns.

A_REBOOT Never returns.

A_FREEZE 0 upon resume.

A_REMOUNT 0

modified 11 Apr 1994 2-217

uadmin (2) System Calls SunOS 5.4

Upon unsuccessful completion, −1 is returned and errno is set to indicate the error.

ERRORS uadmin() fails if any of the following are true:

EPERM The effective user of the calling process is not super-user.

ENOMEM Suspend/resume ran out of physical memory.

ENOSPC Suspend/resume could not allocate enough space on the root file system
to store system information.

ENOTSUP Suspend/resume not supported on this platform.

ENXIO Unable to successfully suspend system.

EBUSY Suspend already in progress.

SEE ALSO uadmin(1M)

2-218 modified 11 Apr 1994

SunOS 5.4 System Calls ulimit (2)

NAME ulimit − get and set process limits

SYNOPSIS #include <ulimit.h>

long ulimit(int cmd, /∗ newlimit ∗/ . . .);

DESCRIPTION This function provides for control over process limits. The cmd values available are:

UL_GETFSIZE Get the regular file size limit of the process. The limit is in units of 512-
byte blocks and is inherited by child processes. Files of any size can be
read.

UL_SETFSIZE Set the regular file size limit of the process to the value of newlimit ,
taken as a long. Any process may decrease this limit, but only a process
with an effective user ID of super-user may increase the limit.

UL_GMEMLIM
Get the maximum possible break value (see brk(2)).

UL_GDESLIM Get the current value of the maximum number of open files per process
configured in the system.

The getrlimit() and setrlimit() functions provide a more general interface for controlling
process limits.

RETURN VALUES Upon successful completion, a non-negative value is returned. Otherwise, a value of −1
is returned and errno is set to indicate the error.

ERRORS ulimit() fails if the following is true:

EINVAL The cmd argument is not valid.

EPERM The effective user of the calling process is not super-user.

SEE ALSO brk(2), getrlimit(2), write(2)

NOTES ulimit() is effective in limiting the growth of regular files. Pipes are limited to
{PIPE_MAX} bytes.

modified 29 Jul 1991 2-219

umask (2) System Calls SunOS 5.4

NAME umask − set and get file creation mask

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>

mode_t umask(mode_t cmask);

DESCRIPTION umask() sets the process’s file mode creation mask to cmask and returns the previous
value of the mask. Only the access permission bits of cmask and the file mode creation
mask are used.

The mask is inherited by child processes.

See intro(2) for more information on masks.

RETURN VALUES The previous value of the file mode creation mask is returned.

SEE ALSO mkdir(1), sh(1), intro(2), chmod(2), creat(2), mknod(2), open(2), stat(5)

2-220 modified 29 Jul 1991

SunOS 5.4 System Calls umount (2)

NAME umount − unmount a file system

SYNOPSIS #include <sys/mount.h>

int umount(const char ∗file);

DESCRIPTION umount() requests that a previously mounted file system contained on the block special
device or directory identified by file be unmounted. file is a pointer to a path name. After
unmounting the file system, the directory upon which the file system was mounted
reverts to its ordinary interpretation.

umount() may be invoked only by the super-user.

RETURN VALUES Upon successful completion a value of 0 is returned. Otherwise, a value of −1 is returned
and errno is set to indicate the error.

ERRORS umount() will fail if one or more of the following are true:

EBUSY A file on file is busy.

EFAULT file points to an illegal address.

EINVAL file is not mounted.

ENOENT file does not exist.

ELOOP Too many symbolic links were encountered in translating the path
pointed to by file.

EMULTIHOP Components of the path pointed to by file require hopping to mul-
tiple remote machines.

ENAMETOOLONG The length of the file argument exceeds {PATH_MAX}, or the length
of a file component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOLINK file is on a remote machine, and the link to that machine is no
longer active.

ENOTBLK file is not a block special device.

EPERM The process’s effective user ID is not super-user.

EREMOTE file is remote.

SEE ALSO mount(2)

modified 1 Feb 1994 2-221

uname (2) System Calls SunOS 5.4

NAME uname − get name of current operating system

SYNOPSIS #include <sys/utsname.h>

int uname(struct utsname ∗name);

DESCRIPTION uname() stores information identifying the current operating system in the structure
pointed to by name.

uname() uses the structure utsname defined in <sys/utsname.h> whose members
include:

char sysname[SYS_NMLN];
char nodename[SYS_NMLN];
char release[SYS_NMLN];
char version[SYS_NMLN];
char machine[SYS_NMLN];

uname() returns a null-terminated character string naming the current operating system
in the character array sysname. Similarly, nodename contains the name that the system is
known by on a communications network. release and version further identify the operat-
ing system. machine contains a standard name that identifies the hardware that the
operating system is running on.

RETURN VALUES Upon successful completion, a non-negative value is returned. Otherwise, a value of −1
is returned and errno is set to indicate the error.

ERRORS EFAULT uname() fails if name points to an illegal address.

SEE ALSO uname(1), sysinfo(2), sysconf(3C)

2-222 modified 5 Jul 1990

SunOS 5.4 System Calls unlink (2)

NAME unlink − remove directory entry

SYNOPSIS #include <unistd.h>

int unlink(const char ∗path);

DESCRIPTION unlink() removes the directory entry named by the path name pointed to by path. and
decrements the link count of the file referenced by the directory entry. When all links to a
file have been removed and no process has the file open, the space occupied by the file is
freed and the file ceases to exist. If one or more processes have the file open when the last
link is removed, space occupied by the file is not released until all references to the file
have been closed. If path is a symbolic link, the symbolic link is removed. path should
not name a directory unless the process has appropriate privileges. Applications should
use rmdir to remove directories.

Upon successful completion unlink() marks for update the st_ctime and st_mtime fields
of the parent directory. Also, if the file’s link count is not zero, the st_ctime field of the file
is marked for update.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS The named file is unlinked unless one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix.

EACCES Write permission is denied on the directory containing the link to
be removed.

EACCES The parent directory has the sticky bit set and the file is not writ-
able by the user; the user does not own the parent directory and
the user does not own the file.

EBUSY The entry to be unlinked is the mount point for a mounted file sys-
tem.

EFAULT path points to an illegal address.

EINTR A signal was caught during the unlink() function.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT The named file does not exist or is a null pathname.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the path prefix is not a directory.

modified 17 Dec 1991 2-223

unlink (2) System Calls SunOS 5.4

EPERM The named file is a directory and the effective user of the calling
process is not super-user.

EROFS The directory entry to be unlinked is part of a read-only file sys-
tem.

SEE ALSO rm(1), close(2), link(2), open(2), rmdir(2)

2-224 modified 17 Dec 1991

SunOS 5.4 System Calls ustat (2)

NAME ustat − get file system statistics

SYNOPSIS #include <sys/types.h>
#include <ustat.h>

int ustat(dev_t dev, struct ustat ∗buf);

DESCRIPTION ustat() returns information about a mounted file system. dev is a device number identify-
ing a device containing a mounted file system (see makedev(3C)). buf is a pointer to a
ustat() structure that includes the following elements:

daddr_t f_tfree; /∗ Total free blocks ∗/
ino_t f_tinode; /∗ Number of free inodes ∗/
char f_fname[6]; /∗ Filsys name ∗/
char f_fpack[6]; /∗ Filsys pack name ∗/

The last two fields, f_fname and f_fpack may not have significant information on all sys-
tems, and in that case, will contain the null character as the first character of these fields.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS ustat() fails if one or more of the following are true:

ECOMM dev is on a remote machine and the link to that machine is no longer
active.

EFAULT buf points to an illegal address.

EINTR A signal was caught during a ustat() function.

EINVAL dev is not the device number of a device containing a mounted file sys-
tem.

ENOLINK dev is on a remote machine and the link to that machine is no longer
active.

SEE ALSO stat(2), statvfs(2), makedev(3C)

NOTES ustat() will be phased out in favor of the statvfs(2) function.

BUGS The NFS revision 2 protocol does not permit the number of free files to be provided to the
client; thus, when ustat() is done on an NFS file system, f_tinode is always -1.

modified 29 Jul 1991 2-225

utime (2) System Calls SunOS 5.4

NAME utime − set file access and modification times

SYNOPSIS #include <sys/types.h>
#include <utime.h>

int utime(const char ∗path , const struct utimbuf ∗times);

DESCRIPTION utime() sets the access and modification times of the file pointed to by path.

If times is NULL, the access and modification times of the file are set to the current time.
A process must be the owner of the file or have write permission to use utime() in this
manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure (defined in
utime.h) and the access and modification times are set to the values contained in the
designated structure. Only the owner of the file or the super-user may use utime() this
way. The utimbuf structure contains the following members:

time_t actime; /∗∗ access time ∗∗/
time_t modtime; /∗∗ modification time ∗∗/

The times in the members of the utimbuf structure are measured in seconds since
00:00:00 UTC, Jan. 1, 1970.

utime() also causes the time of the last file status change (st_ctime) to be updated.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS utime() will fail if one or more of the following are true:

EACCES Search permission is denied by a component of the path prefix.

EACCES The effective user ID of the process is not super-user and not the
owner of the file, write permission is denied for the file, and times
is NULL.

EFAULT path points to an illegal address.

EINTR A signal was caught during the utime() function.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT The named file does not exist or is a null pathname.

2-226 modified 29 Jul 1991

SunOS 5.4 System Calls utime (2)

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user of the calling process is not super-user and not
the owner of the file, and times is not NULL.

EROFS The file system containing the file is mounted read-only.

SEE ALSO stat(2)

modified 29 Jul 1991 2-227

utimes (2) System Calls SunOS 5.4

NAME utimes − set file times

SYNOPSIS #include <sys/types.h>
#include <sys/time.h>

int utimes(char ∗file, struct timeval ∗tvp);

DESCRIPTION utimes() sets the access and modification times of the file named by file.

If tvp is NULL, the access and modification times are set to the current time. A process
must be the owner of the file or have write permission for the file to use utimes() in this
manner.

If tvp is not NULL, it is assumed to point to an array of two timeval structures. The access
time is set to the value of the first member, and the modification time is set to the value of
the second member. Only the owner of the file or the super-user may use utimes() in
this manner.

In either case, the inode-changed time of the file is set to the current time.

utimes() also causes the time of the last file status change (st_ctime) to be updated.

RETURN VALUES utimes() returns:

0 on success.

−1 on failure and sets errno to indicate the error.

ERRORS utimes() will fail if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of
file.

EACCES The effective user ID of the process is not super-user and not the
owner of the file, write permission is denied for the file, and tvp is
NULL.

EFAULT file or tvp points to an illegal address.

EINTR A signal was caught during the utimes() function.

EINVAL The number of microseconds specified in one or both of the
timeval structures pointed to by tvp was greater than or equal to
1,000,000 or less than 0.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating file.

EMULTIHOP Components of file require hopping to multiple remote machines
and the file system does not allow it.

ENAMETOOLONG The length of the file argument exceeds {PATH_MAX}, or the
length of a path component of file exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

2-228 modified 29 Mar 1994

SunOS 5.4 System Calls utimes (2)

ENOENT The named file does not exist or is a null pathname.

ENOLINK file points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the path prefix of file is not a directory.

EPERM The effective user of the calling process is not super-user and not
the owner of the file, and tvp is not NULL.

EROFS The file system containing the file is mounted read-only.

SEE ALSO stat(2)

modified 29 Mar 1994 2-229

vfork (2) System Calls SunOS 5.4

NAME vfork − spawn new process in a virtual memory efficient way

SYNOPSIS #include <unistd.h>

pid_t vfork(void);

DESCRIPTION vfork() can be used to create new processes without fully copying the address space of
the old process. It is useful when the purpose of fork() would have been to create a new
system context for an execve(). vfork() differs from fork() in that the child borrows the
parent’s memory and thread of control until a call to execve() or an exit (either by a call
to _exit() (see exit(2)) or abnormally). The parent process is suspended while the child is
using its resources.

vfork() returns 0 in the child’s context and (later) the process ID (PID) of the child in the
parent’s context.

vfork() can normally be used just like fork(). It does not work, however, to return while
running in the child’s context from the procedure which called vfork() since the eventual
return from vfork() would then return to a no longer existent stack frame. Be careful,
also, to call _exit() rather than exit(3C) if you cannot execve(), since exit(3C) will flush
and close standard I/O channels, and thereby corrupt the parent processes standard I/O
data structures. Even with fork() it is wrong to call exit(3C) since buffered data would
then be flushed twice.

RETURN VALUES Upon successful completion, vfork() returns a value of 0 to the child process and returns
the process ID of the child process to the parent process. Otherwise, a value of −1 is
returned to the parent process, no child process is created, and the global variable errno
is set to indicate the error.

ERRORS vfork() will fail and no child process will be created if one or more of the following are
true:

EAGAIN The system-imposed limit on the total number of processes under execu-
tion would be exceeded. This limit is determined when the system is
generated.

EAGAIN The system-imposed limit on the total number of processes under execu-
tion by a single user would be exceeded. This limit is determined when
the system is generated.

ENOMEM There is insufficient swap space for the new process.

SEE ALSO exec(2), exit(2), fork(2), ioctl(2), wait(2), exit(3C)

2-230 modified 24 Mar 1993

SunOS 5.4 System Calls vfork (2)

NOTES vfork() is unsafe in multi-thread applications.

This function will be eliminated in a future release. The memory sharing semantics of
vfork() can be obtained through other mechanisms.

To avoid a possible deadlock situation, processes that are children in the middle of a
vfork() are never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are
allowed and input attempts result in an EOF indication.

On some systems, the implementation of vfork() causes the parent to inherit register
values from the child. This can create problems for certain optimizing compilers if
<unistd.h> is not included in the source calling vfork().

modified 24 Mar 1993 2-231

vhangup (2) System Calls SunOS 5.4

NAME vhangup − virtually “hangup” the current controlling terminal

SYNOPSIS void vhangup(void);

DESCRIPTION vhangup() is used by the initialization process init(1M) (among others) to arrange that
users are given “clean” terminals at login, by revoking access of the previous users’
processes to the terminal. To effect this, vhangup() searches the system tables for refer-
ences to the controlling terminal of the invoking process, revoking access permissions on
each instance of the terminal that it finds. Further attempts to access the terminal by the
affected processes will yield I/O errors (EBADF or EIO). Finally, a SIGHUP (hangup sig-
nal) is sent to the process group of the controlling terminal.

SEE ALSO init(1M)

BUGS Access to the controlling terminal using /dev/tty is still possible.

This call should be replaced by an automatic mechanism that takes place on process exit.

2-232 modified 29 Jul 1991

SunOS 5.4 System Calls wait (2)

NAME wait − wait for child process to stop or terminate

SYNOPSIS #include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int ∗stat_loc);

DESCRIPTION wait() suspends the calling process until one of its immediate children terminates or until
a child that is being traced stops because it has received a signal. The wait() function will
return prematurely if a signal is received. If any unawaited process stopped or ter-
minated prior to the call on wait(), return is immediate.

If wait() returns because the status of a child process is available, it returns the process
ID of the child process. If the calling process had specified a non-zero value for stat_loc,
the status of the child process will be stored in the location pointed to by stat_loc. It may
be evaluated with the macros described on wstat(5). In the following, status is the object
pointed to by stat_loc:

If the child process stopped, the high order 8 bits of status will contain the
number of the signal that caused the process to stop and the low order 8 bits will
be set equal to WSTOPFLG.

If the child process terminated due to an _exit() call, the low order 8 bits of status
will be 0 and the high order 8 bits will contain the low order 8 bits of the argu-
ment that the child process passed to _exit(); see exit(2).

If the child process terminated due to a signal, the high order 8 bits of status will
be 0 and the low order 8 bits will contain the number of the signal that caused the
termination. In addition, if WCOREFLG is set, a “core image” will have been
produced; see signal(3C).

If wait() returns because the status of a child process is available, then that status may be
evaluated with the macros defined by wstat(5).

If a parent process terminates without waiting for its child processes to terminate, the
parent process ID of each child process is set to 1. This means the initialization process
inherits the child processes; see intro(2).

RETURN VALUES If wait() returns due to a stopped or terminated child process, the process ID of the child
is returned to the calling process. Otherwise, a value of −1 is returned and errno is set to
indicate the error.

ERRORS wait() will fail if one or both of the following is true:

ECHILD The calling process has no existing unwaited-for child processes.

EINTR The function was interrupted by a signal.

modified 29 Jul 1991 2-233

wait (2) System Calls SunOS 5.4

SEE ALSO intro(2), exec(2), exit(2), fork(2), pause(2), ptrace(2), waitid(2), waitpid(2), signal(3C),

signal(5), wstat(5)

NOTES See NOTES in signal(3C).

If SIGCHLD is blocked, then wait() does not recognize termination of child processes.

2-234 modified 29 Jul 1991

SunOS 5.4 System Calls waitid (2)

NAME waitid − wait for child process to change state

SYNOPSIS #include <sys/types.h>
#include <wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t ∗infop, int options);

DESCRIPTION waitid() suspends the calling process until one of its children changes state. It records
the current state of a child in the structure pointed to by infop. If a child process changed
state prior to the call to waitid(), waitid() returns immediately.

The idtype and id arguments specify which children waitid() is to wait for.

If idtype is P_PID, waitid() waits for the child with a process ID equal to (pid_t)
id.

If idtype is P_PGID, waitid() waits for any child with a process group ID equal to
(pid_t)id.

If idtype is P_ALL, waitid() waits for any child and id is ignored.

The options argument is used to specify which state changes waitid() is to wait for. It is
formed by an OR of any of the following flags:

WCONTINUED Return the status for any child that was stopped and has been con-
tinued.

WEXITED Wait for process(es) to exit.

WNOHANG Return immediately.

WNOWAIT Keep the process in a waitable state.

WSTOPPED Wait for and return the process status of any child that has
stopped upon receipt of a signal.

WTRAPPED Wait for traced process(es) to become trapped or reach a break-
point (see ptrace(2)).

infop must point to a siginfo_t structure, as defined in siginfo(5). siginfo_t is filled in by
the system with the status of the process being waited for.

RETURN VALUES If waitid() returns due to a change of state of one of its children, a value of 0 is returned.
Otherwise, a value of −1 is returned and errno is set to indicate the error.

ERRORS waitid() fails if one or more of the following is true.

ECHILD The set of processes specified by idtype and id does not contain any
unwaited-for processes.

EFAULT infop points to an illegal address.

modified 5 Jul 1990 2-235

waitid (2) System Calls SunOS 5.4

EINTR waitid() was interrupted due to the receipt of a signal by the calling
process.

EINVAL An invalid value was specified for options.

EINVAL idtype and id specify an invalid set of processes.

SEE ALSO intro(2), exec(2), exit(2), fork(2), pause(2), ptrace(2), sigaction(2), signal(3C),

wait(2), siginfo(5)

2-236 modified 5 Jul 1990

SunOS 5.4 System Calls waitpid (2)

NAME waitpid − wait for child process to change state

SYNOPSIS #include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int ∗stat_loc , int options);

DESCRIPTION waitpid() suspends the calling process until one of its children changes state; if a child
process changed state prior to the call to waitpid(), return is immediate. pid specifies a
set of child processes for which status is requested.

If pid is equal to (pid_t)−−1, status is requested for any child process.

If pid is greater than (pid_t)0, it specifies the process ID of the child process for
which status is requested.

If pid is equal to (pid_t)0 status is requested for any child process whose process
group ID is equal to that of the calling process.

If pid is less than (pid_t)−−1, status is requested for any child process whose pro-
cess group ID is equal to the absolute value of pid.

If waitpid() returns because the status of a child process is available, then that status may
be evaluated with the macros defined by wstat(5). If the calling process had specified a
non-zero value of stat_loc, the status of the child process will be stored in the location
pointed to by stat_loc.

The options argument is constructed from the bitwise inclusive OR of zero or more of the
following flags, defined in the header <sys/wait.h>:

WCONTINUED The status of any continued child process specified by pid, whose
status has not been reported since it continued, is also reported to
the calling process.

WNOHANG waitpid() will not suspend execution of the calling process if
status is not immediately available for one of the child processes
specified by pid.

WNOWAIT Keep the process whose status is returned in stat_loc in a waitable
state. The process may be waited for again with identical results.

WUNTRACED The status of any child processes specified by pid that are stopped,
and whose status has not yet been reported since they stopped, is
also reported to the calling process.

waitpid() with options equal to WUNTRACED and pid equal to (pid_t)−1 is identical to a
call to wait(2).

modified 5 Jul 1990 2-237

waitpid (2) System Calls SunOS 5.4

RETURN VALUES If waitpid() returns because the status of a child process is available, this function returns
a value equal to the process ID of the child process for which status is reported. If wait-
pid() returns due to the delivery of a signal to the calling process, a value of −1 is
returned and errno is set to EINTR. If this function was invoked with WNOHANG set in
options, it has at least one child process specified by pid for which status is not available,
and status is not available for any process specified by pid, a value of 0 is returned. Oth-
erwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS waitpid() will fail if one or more of the following is true:

ECHILD The process or process group specified by pid does not exist or is not a
child of the calling process or can never be in the states specified by
options.

EINTR waitpid() was interrupted due to the receipt of a signal sent by the cal-
ling process.

EINVAL An invalid value was specified for options.

SEE ALSO intro(2), exec(2), exit(2), fork(2), pause(2), ptrace(2), sigaction(2), signal(3C), siginfo(5),
wstat(5)

2-238 modified 5 Jul 1990

SunOS 5.4 System Calls write (2)

NAME write, pwrite, writev − write on a file

SYNOPSIS #include <unistd.h>

ssize_t write(int fildes, const void ∗buf, size_t nbyte);

#include <sys/types.h>
#include <unistd.h>

ssize_t pwrite(int fildes, const void ∗buf, size_t nbyte, off_t offset);

#include <sys/types.h>
#include <sys/uio.h>

int writev(int fildes, const struct iovec ∗iov , int iovcnt);

DESCRIPTION write() attempts to write nbyte bytes from the buffer pointed to by buf to the file descrip-
tor specified by fildes. If nbyte is zero and the file is a regular file, write() returns zero and
has no other results.

pwrite() performs the same action as write(), except that it writes into a given position
without changing the file pointer. The first three arguments to pwrite() are the same as
write() with the addition of a fourth argument offset for the desired position inside the
file.

writev() performs the same action as write(), but gathers the output data from the iovcnt
buffers specified by the members of the iov array: iov[0], iov[1], . . ., iov[iovcnt − 1]. The
iovcnt buffer is valid if greater than 0 and less than or equal to {IOV_MAX}. (See intro(2)
for a definition of {IOV_MAX}).

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory from which
data should be written. writev() always writes all data from an area before proceeding
to the next.

On devices capable of seeking, the actual writing of data starts at the position in the file
indicated by the file pointer. On return from write(), the file pointer is incremented by
the number of bytes actually written. On a regular file, if the incremented file pointer is
greater than the length of the file, the length of the file is set to the new file pointer.

On devices incapable of seeking, writing always takes place starting at the current posi-
tion. The value of a file pointer associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer is set to the end of the
file prior to each write(). The system guarantees that no intervening file modification
operation will occur between changing the file offset and the write operation.

modified 26 Feb 1994 2-239

write (2) System Calls SunOS 5.4

For regular files, if the O_SYNC flag of the file status flags is set, write() does not return
until both the file data and file status have been physically updated. This function is for
special applications that require extra reliability at the cost of performance. For block
special files, if O_SYNC is set, write() does not return until the data has been physically
updated.

A write() to a regular file is blocked if mandatory file/record locking is set (see
chmod(2)), and there is a record lock owned by another process on the segment of the file
to be written:

· If O_NDELAY or O_NONBLOCK is set, write() returns −−1 and sets errno to
EAGAIN.

· If O_NDELAY and O_NONBLOCK are clear, write() sleeps until all blocking
locks are removed or the write() is terminated by a signal.

If a write() requests that more bytes be written than there is room for—for example, if the
write would exceed the process file size limit (see getrlimit(2) and ulimit(2)), the system
file size limit, or the free space on the device—only as many bytes as there is room for
will be written. For example, suppose there is space for 20 bytes more in a file before
reaching a limit. A write() of 512-bytes returns 20. The next write() of a non-zero
number of bytes gives a failure return (except as noted for pipes and FIFO below).

Write requests to a pipe or FIFO are handled the same as a regular file with the following
exceptions:

· There is no file offset associated with a pipe, hence each write request appends to
the end of the pipe.

· Write requests of {PIPE_BUF} bytes or less are guaranteed not to be interleaved
with data from other processes doing writes on the same pipe. Writes of greater
than {PIPE_BUF} bytes may have data interleaved, on arbitrary boundaries, with
writes by other processes, whether or not the O_NONBLOCK or O_NDELAY
flags are set.

· If O_NONBLOCK and O_NDELAY are clear, a write request may cause the pro-
cess to block, but on normal completion it returns nbyte.

· If O_NONBLOCK and O_NDELAY are set, write() does not block the process.
If a write() request for {PIPE_BUF} or fewer bytes succeeds completely write()
returns nbyte. Otherwise, if O_NONBLOCK is set, it returns −−1 and sets errno to
EAGAIN or if O_NDELAY is set, it returns 0. A write() request for greater than
{PIPE_BUF} bytes transfers what it can and returns the number of bytes written
or it transfers no data and, if O_NONBLOCK is set, returns −−1 with errno set to
EAGAIN or if O_NDELAY is set, it returns 0. Finally, if a request is greater than
{PIPE_BUF} bytes and all data previously written to the pipe has been read,
write() transfers at least {PIPE_BUF} bytes.

When attempting to write to a file descriptor (other than a pipe, FIFO, or stream) that sup-
ports nonblocking writes and cannot accept the data immediately:

· If O_NONBLOCK and O_NDELAY are clear, write() blocks until the data can

2-240 modified 26 Feb 1994

SunOS 5.4 System Calls write (2)

be accepted.

· If O_NONBLOCK or O_NDELAY is set, write() does not block the process. If
some data can be written without blocking the process, write() writes what it can
and returns the number of bytes written. Otherwise, if O_NONBLOCK is set, it
returns −−1 and sets errno to EAGAIN or if O_NDELAY is set, it returns 0.

For STREAMS files (see intro(2) and streamio(7)), the operation of write() is determined
by the values of the minimum and maximum nbyte range (“packet size”) accepted by the
stream. These values are contained in the topmost stream module, and can not be set or
tested from user level. If nbyte falls within the packet size range, nbyte bytes are written.
If nbyte does not fall within the range and the minimum packet size value is zero, write()
breaks the buffer into maximum packet size segments prior to sending the data down-
stream (the last segment may be smaller than the maximum packet size). If nbyte does
not fall within the range and the minimum value is non-zero, write() fails and sets errno
to ERANGE. Writing a zero-length buffer (nbyte is zero) to a STREAMS device sends a
zero length message with zero returned. However, writing a zero-length buffer to a pipe
or FIFO sends no message and zero is returned. The user program may issue the
I_SWROPT ioctl(2) to enable zero-length messages to be sent across the pipe or FIFO (see
streamio(7)).

When writing to a stream, data messages are created with a priority band of zero. When
writing to a stream that is not a pipe or FIFO:

· If O_NDELAY and O_NONBLOCK are not set, and the stream cannot accept
data (the stream write queue is full due to internal flow control conditions),
write() blocks until data can be accepted.

· If O_NDELAY or O_NONBLOCK is set and the stream cannot accept data,
write() returns -1 and sets errno to EAGAIN.

· If O_NDELAY or O_NONBLOCK is set and part of the buffer has already been
written when a condition occurs in which the stream cannot accept additional
data, write() terminates and returns the number of bytes written.

RETURN VALUES On success, write() returns the number of bytes actually written. Otherwise, it returns -1
and sets errno to indicate the error.

ERRORS write() , pwrite(), and writev() fail and the file pointer remains unchanged if one or
more of the following are true:

EAGAIN Mandatory file/record locking is set, O_NDELAY or O_NONBLOCK is
set, and there is a blocking record lock.

Total amount of system memory available when reading using raw I/O
is temporarily insufficient.

An attempt is made to write to a stream that can not accept data with
the O_NDELAY or O_NONBLOCK flag set.

If a write to a pipe or FIFO of {PIPE_BUF} bytes or less is requested and
less than nbytes of free space is available.

modified 26 Feb 1994 2-241

write (2) System Calls SunOS 5.4

EBADF fildes is not a valid file descriptor open for writing.

EDEADLK The write was going to go to sleep and cause a deadlock situation to
occur.

EFAULT buf points to an illegal address.

EFBIG An attempt is made to write a file that exceeds the process’s file size
limit or the maximum file size (see getrlimit(2) and ulimit(2)).

EINTR A signal was caught during the write operation and no data was
transferred.

EINVAL An attempt is made to write to a stream linked below a multiplexor.

EIO The process is in the background and is attempting to write to its con-
trolling terminal whose TOSTOP flag is set; the process is neither
ignoring nor blocking SIGTTOU signals, and the process group of the
process is orphaned.

ENOLCK Enforced record locking was enabled and {LOCK_MAX} regions are
already locked in the system.

The system record lock table was full, so the write could not go to sleep
until the blocking record lock was removed.

ENOLINK fildes is on a remote machine and the link to that machine is no longer
active.

ENOSPC During a write to an ordinary file, there is no free space left on the dev-
ice.

ENOSR An attempt is made to write to a stream with insufficient STREAMS
memory resources available in the system.

ENXIO A hangup occurred on the stream being written to.

EPIPE and SIGPIPE signal

An attempt is made to write to a pipe that is not open for reading by any
process.

EPIPE An attempt is made to write to a FIFO that is not open for reading by any
process.

An attempt is made to write to a pipe that has only one end open.

ERANGE An attempt is made to write to a stream with nbyte outside specified
minimum and maximum write range, and the minimum value is non-
zero.

2-242 modified 26 Feb 1994

SunOS 5.4 System Calls write (2)

In addition, writev() may return one of the following errors:

EINVAL iovcnt was less than or equal to 0, or greater than {IOV_MAX}.

EINVAL One of the iov_len values in the iov array was negative.

EINVAL The sum of the iov_len values in the iov array overflowed an int.

In addition, pwrite() fails and the file pointer remains unchanged if the following is true:

ESPIPE fildes is associated with a pipe or fifo.

A write() to a STREAMS file can fail if an error message has been received at the stream
head. In this case, errno is set to the value included in the error message.

Upon successful completion write() and writev() mark for update the st_ctime and
st_mtime fields of the file.

SEE ALSO chmod(2), creat(2), dup(2), fcntl(2), getrlimit(2), intro(2), ioctl(2), lseek(2), open(2),
pipe(2), ulimit(2), streamio(7)

modified 26 Feb 1994 2-243

yield (2) System Calls SunOS 5.4

NAME yield − yield execution to another lightweight process

SYNOPSIS #include <unistd.h>

void yield(void);

DESCRIPTION yield() causes the current lightweight process to yield its execution in favor of another
lightweight process with the same or greater priority.

SEE ALSO thr_yield(3T)

2-244 modified 20 Jul 1993

Index

Special Characters
_lwp_cond_broadcast() — signal a condition

variable, 2-28
_lwp_cond_signal() — signal a condition vari-

able, 2-28
_lwp_cond_timedwait() — wait on a condition

variable, 2-29
_lwp_cond_wait() — wait on a condition vari-

able, 2-29
_lwp_continue() — continue LWP execution,

2-41
_lwp_create() — create a new light-weight pro-

cess, 2-31
_lwp_exit() — terminate the calling LWP, 2-33
_lwp_getprivate() — get LWP specific storage

address, 2-40
_lwp_info — return the time-accounting informa-

tion of a single LWP, 2-34
_lwp_kill() — send a signal to an LWP, 2-35
_lwp_makecontext — initialize an LWP context,

2-36
_lwp_makecontext() — initialize an LWP con-

text, 2-36
_lwp_mutex_lock() — acquire an LWP mutual

exclusion lock, 2-37
_lwp_mutex_trylock() — acquire an LWP

mutual exclusion lock, 2-37

_lwp_mutex_unlock() — release an LWP mutual
exclusion lock, 2-37

_lwp_self() — get LWP identifier, 2-38
_lwp_sema_init() — initialize an LWP sema-

phore, 2-39
_lwp_sema_post() — increment an LWP sema-

phore, 2-39
_lwp_sema_wait() — decrement an LWP sema-

phore, 2-39
_lwp_setprivate() — set LWP specific storage,

2-40
_lwp_suspend() — suspend LWP execution, 2-41
_lwp_wait() — wait for a LWP to terminate, 2-42

A
access — determine accessibility of a file, 2-43
access permission mode of file

change — chmod, 2-58
accounting

enable or disable process accounting — acct,
2-45

acct — enable or disable process accounting, 2-45
adjtime — correct the time to allow synchroniza-

tion of the system clock, 2-46
alarm — set a process alarm clock, 2-47
audit — write an audit record, 2-48
auditon() function, 2-49

Index−1

auditsvc() function, 2-52

B
bind LWPs to a processor — processor_bind,

2-152
brk — change the amount of space allocated for the

calling process’s data segment, 2-54

C
chdir — change working directory, 2-56
child processes

allows a parent process to control the execution
of a child process — ptrace, 2-156

get time — times, 2-216
wait for child process to change state —

waitid, 2-235, 2-237
wait for child process to stop or terminate —

wait, 2-233
chmod — change access permission mode of file,

2-58
chown — change owner and group of a file, 2-61
chroot — change root directory, 2-63
close — close a file descriptor, 2-65
CPU-use

process execution time profile — profil,
2-154

creat — create a new file or rewrite an existing
one, 2-67

create a new process — fork, 2-81
fork1, 2-81

D
devices

I/O control functions — ioctl, 2-101
directories

change working directory — chdir, 2-56
create a new one — mknod, 2-115
get configurable pathname variables — path-

conf, 2-84
make a new one — mkdir, 2-113
read directory entries and put in a file system

independent format — getdents,
2-89

directories, continued
remove — rmdir, 2-169

dup — duplicate an open file descriptor, 2-69

E
exec — execute a file, 2-70
execl — execute a file, 2-70
execle — execute a file, 2-70
execlp — execute a file, 2-70
execv — execute a file, 2-70
execve — execute a file, 2-70
execvp — execute a file, 2-70
exit — terminate process, 2-74

F
fchdir — change working directory, 2-56
fchmod — change access permission mode of file,

2-58
fchown — change owner and group of a file, 2-61
fcntl — file control, 2-76
file descriptor

— close, 2-65
duplicate an open one — dup, 2-69

file pointer, read/write
move — lseek, 2-107, 2-108

file status
get — stat, lstat, fstat, 2-200

file system
determine accessibility of a file — access,

2-43
get information — statvfs, fstatvfs,

2-203
get statistics — ustat, 2-225
make a symbolic link to a file — symlink,

2-208
read the value of a symbolic link —

readlink, 2-165
remove link — unlink, 2-223
returns information about the file system types

configured in the system — sysfs,
2-211

unmount — umount, 2-221
update super block — sync, 2-210

Index−2

files
change access permission mode of file —

chmod, 2-58
change owner and group of a file — chown,

2-61
change the name of a file — rename, 2-166
control — fcntl, 2-76
create a new file or rewrite an existing one —

creat, 2-67
execute — exec, 2-70
get configurable pathname variables — path-

conf, 2-84
link to a file — link, 2-105
move read/write file pointer — lseek, 2-107,

2-108
open file for reading or writing — open, 2-132
set access and modification times of file —

utimes, 2-228
set file access and modification times —

utime, 2-226
fork — create a new process, 2-81

spawn new process in a virtual memory
efficient way — vfork, 2-230

fork1 — create a new process, 2-81
fpathconf — get configurable pathname variables,

2-84
fstat — get status on open file known by file

descriptor, 2-200
fstatvfs — get file system information, 2-203

G
getaudit get process audit information, 2-86
getauid — get user audit identity, 2-87
getcontext — get current user context, 2-88
getdents — read directory entries and put in a file

system independent format, 2-89
getegid — get effective group ID, 2-100
geteuid — get effective user ID, 2-100
getgid — get real group ID, 2-100
getgroups — get supplementary group access list

IDs, 2-90
getitimer — get value of interval timer, 2-91
getmsg — get next message off a stream, 2-93

getpgid — get process group IDs, 2-96
getpgrp — get process group IDs, 2-96
getpid — get process IDs, 2-96
getpmsg — get next message off a stream, 2-93
getppid — get parent process IDs, 2-96
getrlimit — control maximum system resource

consumption, 2-97
getsid — get session ID, 2-99
getuid — get real user ID, 2-100
group IDs

get — getgid, getegid, 2-100
set — setgid, 2-181
supplementary group access list IDs — get-

groups, setgroups, 2-90

H
halt system

— uadmin, 2-217
hangup signal

the current controlling terminal — vhangup,
2-232

I
I/O

audit — audit, 2-48
multiplexing — poll, 2-139

initialize an LWP context — _lwp_makecontext,
2-36

interprocess communication
— pipe, 2-138

interval timer
get or set value of interval timer — getiti-

mer, setitimer, 2-91
ioctl — control device, 2-101

K
kill — send a signal to a process or a group of

processes, 2-103

L
lchown — change owner and group of a file, 2-61
link — link to a file, 2-105

remove — unlink, 2-223

Index−3

link, symbolic
make one to a file — symlink, 2-208

lseek — move extended read/write file pointer,
2-107

lseek — move read/write file pointer, 2-108
lstat — get status on symbolic link file, 2-200
LWP

scheduler control — priocntl, 2-141

M
make a directory, or a special or ordinary file —

mknod, 2-115
masks

set and get file creation mask — umask, 2-220
memcntl — memory management control, 2-109
memory

management control — memcntl, 2-109
memory management

change the amount of space allocated for the
calling process’s data segment —
brk, sbrk, 2-54

memory mapping
set protection — mprotect, 2-123

memory pages
determine residency — mincore, 2-112
map — mmap, 2-117
unmap — munmap, 2-130

memory, shared
control operations — shmctl, 2-183
get segment identifier — sjmget, 2-185
operations — shmop, 2-187

message control operations
— msgctl, 2-124

message operations
— msgop, 2-127
— msgrcv, 2-127
— msgsnd, 2-127

message queue
get — msgget, 2-126

messages
send a message on a stream — putmsg, 2-158

mincore — determine residency of memory pages,
2-112

mkdir — make a directory, 2-113

mknod — make a directory, or a special or ordinary
file, 2-115

mmap — map pages of memory, 2-117
mount — mount a file system, 2-121
mount a file system — mount, 2-121
mprotect — set protection of memory mapping,

2-123
msgctl — message control operations, 2-124
msgget — get message queue, 2-126
munmap — unmap pages of memory, 2-130

N
nice — change priority of a time-sharing process,

2-131

O
open — open file for reading or writing, 2-132
open for reading or writing — open, 2-132
operating system

get name of current one — uname, 2-222
owner of file

change — chown, 2-61

P
p_online — change processor online or offline

status, 2-136
pathconf — get configurable pathname variables,

2-84
pathname

get configurable variables — pathconf, 2-84
pause — suspend process until signal, 2-137
pipe — create an interprocess channel, 2-138
poll — input/output multiplexing, 2-139
pread — read from file, 2-161
priocntl — process scheduler control, 2-141
priocntlset — generalized process scheduler

control, 2-150
process accounting

enable or disable — acct, 2-45
process alarm clock

set — alarm, 2-47
process audit information

Index−4

process audit information, continued
get process audit information — getaudit,

2-86
set process audit information — setaudit,

2-86
process group ID

set — setpgid, 2-179, 2-180
process scheduler

control — priocntl, 2-141
generalized control — priocntlset, 2-150

process statistics
process execution time profile — profil,

2-154
process, time-sharing

change priority — nice, 2-131
processes

allows a parent process to control the execution
of a child process — ptrace, 2-156

change priority of a time-sharing process —
nice, 2-131

create a new one — fork, 2-81
create an interprocess channel — pipe, 2-138
execute a file — exec, 2-70
execution time profile — profil, 2-154
generalized scheduler control —

priocntlset, 2-150
get and set current user context — getcon-

text, setcontext, 2-88
get and set limits — ulimit, 2-219
get identification — getpid, getpgrp,

getppid, getpgid, 2-96
get next message off a stream — getmsg, 2-93
get or set session ID — getsid, setsid,

2-99
get or set value of interval timer — getiti-

mer, setitimer, 2-91
get real user, effective user, real group, and

effective group IDs — getuid,
geteuid, getgid, getegid, 2-100

get time — times, 2-216
read directory entries and put in a file system

independent format — getdents,
2-89

read from file — read, 2-161
read the value of a symbolic link —

readlink,
processes, continued

2-165
send a signal to a process or a group of

processes — kill, 2-103
set a process alarm clock — alarm, 2-47
set and get file creation mask — umask, 2-220
set process group ID — setpgid, 2-179, 2-180
spawn new process in a virtual memory

efficient way — vfork, 2-230
supplementary group access list IDs — get-

groups, setgroups, 2-90
suspend process until signal — pause, 2-137
terminate — exit, 2-74
the current controlling terminal — vhangup,

2-232
wait for child process to change state —

waitid, 2-235, 2-237
wait for child process to stop or terminate —

wait, 2-233
processor_bind — bind LWPs to a processor,

2-152
processor_info — determine type and status of

a processor, 2-153
profil — process execution time profile, 2-154
profiling utilities

execution time profile — profil, 2-154
ptrace — allows a parent process to control the

execution of a child process, 2-156
putmsg — send a message on a stream, 2-158
putpmsg — send a message on a stream, 2-158
pwrite — write on a file, 2-239

R
read from file — read, 2-161

pread, 2-161
readv, 2-161

read/write file pointer
move — lseek, 2-107, 2-108

readlink — read the value of a symbolic link,
2-165

read — read from file, 2-161
reboot system

— uadmin, 2-217

Index−5

remount root file system
— uadmin, 2-217

rename — change the name of a file, 2-166
rmdir — remove a directory, 2-169
root directory

change — chroot, 2-63

S
sbrk — change the amount of space allocated for

the calling process’s data segment, 2-54
semaphores

control operations — semctl, 2-171
get a set — semget, 2-174
operations — semop, 2-176

semctl — semaphore control operations, 2-171
semget — get set of semaphores, 2-174
semop — semaphore operations, 2-176
session ID

get or set — getsid, setsid, 2-99
setaudit set process audit information, 2-86
setauid — set user audit identity, 2-87
setcontext — set current user context, 2-88
setegid — set effective group ID, 2-181
seteuid — set effective user ID, 2-181
setgid — set group ID, 2-181
setgroups — set supplementary group access list

IDs, 2-90
setitimer — set value of interval timer, 2-91
setpgid — set process group ID, 2-179
setpgrp — set process group ID, 2-180
setrlimit — control maximum system resource

consumption, 2-97
setsid — set session ID, 2-99
setuid — set user ID, 2-181
shared memory

control operations — shmctl, 2-183
get segment identifier — sjmget, 2-185
operations — shmop, 2-187

shmctl — shared memory control operations,
2-183

shmget — get shared memory segment identifier,
2-185

shmop — shared memory operations, 2-187

shutdown
— uadmin, 2-217

sigaction — detailed signal management, 2-189
sigaltstack — set or get signal alternate stack

context, 2-192
signal alternate stack

set or get context — sigaltstack, 2-192
signal management

detailed — sigaction, 2-189
signal mask

change and/or examine — sigprocmask,
2-195

install, and suspend process until signal —
sigsuspend, 2-198

signals
examine blocked and pending ones — sig-

pending, 2-194
sigpending — examine signals that are blocked

and pending, 2-194
sigprocmask — change and/or examine calling

process’s signal mask, 2-195
sigsend — send a signal to a process or a group of

processes, 2-196
sigsendset — provides an alternate interface to

sigsend for sending signals to sets of
processes, 2-196

sigsuspend — install a signal mask and suspend
process until signal, 2-198

sigwait() — wait until a signal is posted, 2-199
special files

create a new one — mknod, 2-115
stat — get file status, 2-200
statistics

get for mounted file system — ustat, 2-225
statvfs — get file system information, 2-203
stime — set system time and date, 2-205
STREAMS

get next message off a stream — getmsg, 2-93
I/O control functions — ioctl, 2-101
send a message on a stream — putmsg, 2-158

super block
update — sync, 2-210

swap space

Index−6

swap space, continued
manage — swapctl, 2-206

swapctl — manage swap space, 2-206
symbolic link

make one to a file — symlink, 2-208
read the value — readlink, 2-165

symlink — make a symbolic link to a file, 2-208
sync — update super block, 2-210
system administration

— uadmin, 2-217
system clock

synchronization — adjtime, 2-46
system information

get and set strings — sysinfo, 2-212
system operation

update super block — sync, 2-210
system resources

control maximum system resource consump-
tion — getrlimit, setrlimit,
2-97

T
terminate process

— exit, 2-74
time — get time, 2-215

correct the time to allow synchronization of the
system clock — adjtime, 2-46

set system time and date — stime, 2-205
time-accounting

single LWP — _lwp_info, 2-34
times — get process and child process times, 2-216

U
umask — set and get file creation mask, 2-220
umount — unmount a file system, 2-221
uname — get name of current operating system,

2-222
unlink — remove directory entry, 2-223
unmount a file system — umount, 2-221
user audit identity

get user audit identity — getauid, 2-87
set user audit identity — setauid, 2-87

user context

user context, continued
get and set current user context — getcon-

text, setcontext, 2-88
user IDs

get — getuid, geteuid, 2-100
set — setuid, 2-181

utime — set file access and modification times,
2-226

utimes — set access and modification times of file,
2-228

V
vfork — spawn new process in a virtual memory

efficient way, 2-230
vhangup — the current controlling terminal, 2-232

W
wait — wait for child process to stop or terminate,

2-233
waitid — wait for child process to change state,

2-235
waitpid — wait for child process to change state,

2-237
write on a file — write, 2-239

pwrite, 2-239
writev, 2-239

write — write on a file, 2-239

Y
yield — yield execution to another lightweight

process, 2-244
yield execution to another lightweight process —

yield, 2-244

Index−7

