Mountain View, CA 94043

Multithreaded Programming Guide

el ¥ SunSoft

A Sun Microsystems, Inc. Business

00 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

Allrights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., awholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open
Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript
and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks
of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

or
e]

Contents

1. Covering Multithreading Basics

Defining Multithreading Terms .

Defining Concurrency and Parallelism.................

Benefiting From Multithreading

Improve Application Responsiveness.

Use Multiprocessors Efficient
Improve Program Structure .
Use Fewer System Resources
Combine Threads and RPC .

Improve Performance

ly. . o

Looking At Multithreading Structure

User-level Threads.
Lightweight Processes.
Unbound Threads
Bound Threads

© ©O© 0o o O B~ B W W W W W PN DN

Meeting Multithreading Standards
2. Programming With Threads
The Threads Library
Create a Thread—the Basics.
Get the Thread Identifier
Yield Thread Execution.
Suspend or Continue Thread Execution................
SendaSignaltoaThread............................
Access the Signal Mask of the Calling Thread...........
TerminateaThread
Wait for Thread Termination

A Simple Threads Example
Maintain Thread-SpecificData.
Create a Thread—Advanced Features
Get the Minimal Stack Size.
Get and Set Thread Concurrency Level
Getand Set Thread Priority
Scheduling and the Threads Library...................

3. Programming With Synchronization Objects
Mutual Exclusion Locks i
Initialize a Mutual Exclusion Lock.
LockaMutex ...
Lock With a Nonblocking Mutex.

Unlocka MuteX e

Multithreaded Programming Guide—August 1994

10
11
11
12
14
14
15
16
16
17
19
21
22
27
32
33
34
35
37
38
39
40
40

Destroy Mutex State i, 42

Mutex Lock Code Example. 43
Nested Locking With a Singly Linked List. 46
Nested Locking With a Circular Linked List 47
Condition Variables i 48
Initialize a Condition Variable 49
Block on a Condition Variable 50
Unblock a Specific Thread 51
Block Until a SpecifiedEvent. 52
Unblock All Threads it 54
Destroy Condition Variable State. 55
The Lost Wake-Up Problem 56
The Producer/Consumer Problem 56
Multiple-Readers, Single-Writer Locks 60
Initialize a Readers/Writer Lock 61
AcquireaRead Lock i 62
Tryto AcquireaRead Lock 62
AcquireaWrite Lock. 63
Try to AcquireaWriteLock 64
Unlock a Readers/Writer Lock 64
Destroy Readers/Writer Lock State. 65
Semaphores 66
Counting Semaphores. i 68
Initialize a Semaphore. L. 69

Contents \Y;

Vi

Incrementa Semaphore. L
Block on a Semaphore Count.........................
Decrement a Semaphore Count.
Destroy the Semaphore State
The Producer/Consumer Problem, Using Semaphores . ..
Synchronization Across Process Boundaries
Comparing Primitives. i
4. Programming With the Operating System................
Processes—Changes for Multithreading.
Duplicating Parent Threads
Executing Files and Terminating Processes
Alarms, Interval Timers, and Profiling
Nonlocal Goto—setjmp (3C) and longimp (3C).............
Resource LIMItS
LWPs and Scheduling Classes
Timeshare Scheduling.
Realtime Scheduling
LWP Scheduling and Thread Binding.
SIGWAITING—Creating LWPs for Waiting Threads
AgINgLWPS
Extending Traditional Signals
Synchronous Signals
Asynchronous Signals.

Continuation Semanticst

Multithreaded Programming Guide—August 1994

70
70
71
72
73
75
7
79
79
79
81
81
82
82
82
83
84
84
85
85
86
87
87
88

New OperationsonSignals 89

Thread-Directed Signals 90
Completion Semantics 92
Signal Handlers and Async Safety 93
Interrupted Waits on Condition Variables 94
7O ISSUEBSo 96
/0 as a Remote Procedure Call 96
Tamed Asynchrony i 96
Asynchronous I/0. i 97
Shared 1/0 and New I/O System Calls 98
Alternatives to getc (3S)and putc (3S) 99

5. Safe and Unsafe Interfaces 101
Thread Safety 101
MT Interface Safety Levels 103
Reentrant Functions for Unsafe Interfaces.............. 104
Async-Safe Functions 105
MT Safety Levels for Libraries........................... 105
Unsafe Libraries. i 106

6. Compiling And Debugging 107
Compiling a Multithreaded Application 107
Using The CCompiler 107
Compiling With the _REENTRANFlag. 108
Using libthread 108
Using Non-C Compilers 109

Contents Vii

viii

Debugging Multithreaded Programs 109

CommonOversights. 109
Usingadb 110

UsSiNg dDX . ..o 111

7. Programming Guidelines 113
Rethinking Global Variables. 114
Providing For Static Local Variables 115
Synchronizing Threads 115
Single-Threaded Strategy 116
Reentrance i 116
Avoiding Deadlock 119
Scheduling Deadlocks. 120
Locking Guidelineso .. 120
Following Some Basic Guidelines 121
Creating Threads 122
Working With Multiprocessors 124
The Underlying Architecture 124
SUMMANY. . . 130

A. Sample ApplicationCode. 131
File COpY. ..o 131
Matrix Multiplication, 133
RPC Program e 135
Window System Server.c. i 141

B. MT Safety Levels: Library Interfaces 145

Multithreaded Programming Guide—August 1994

Contents

Multithreaded Programming Guide—August 1994

Tables

Table 1-1
Table 1-2
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 5-1
Table 5-2
Table 6-1
Table 6-2
Table 6-3

Thread Creation TIMeS.t 4
Thread Synchronization Times 5
Routines for Mutual Exclusion Locks. 38
Routines for Condition Variables 48
Routines for Readers/Writer Locks 60
Routines for Semaphoreso i 68
Reentrant FUNCtionsot 104
Some MT-Safe Libraries 105
Compiling With and Without the _REENTRANTFIag 108
MT adb commands. ... 110
dbx Options for MT Programs 111

Xi

xii

Multithreaded Programming Guide—August 1994

Code Samples

Code Example 2-1
Code Example 2-2
Code Example 2-3
Code Example 2-4
Code Example 2-5
Code Example 3-1
Code Example 3-2
Code Example 3-3
Code Example 3-4
Code Example 3-5
Code Example 3-6
Code Example 3-7
Code Example 3-8
Code Example 3-9
Code Example 3-10
Code Example 3-11

A Simple Threads Program...................... 21
Thread-Specific Data—Global but Private 24
Turning Global References Into Private References . 25
Initializing the Thread-SpecificData.............. 26
thr_create () Creates Thread With New Signal Mask 31
Mutex Lock Example 43
Deadlock. 44
Conditional Locking. 45
Singly Linked List Structure 46
Singly Linked List with Nested Locking........... 47
Circular Linked List Structure. 47
Circular Linked List With Nested Locking......... 48
Example Using cond_wait (3T) and cond_signal (3T) 52
Timed ConditionWait 53
Condition Variable Broadcast. 54
The Producer/Consumer Problem and Condition

Variables. 57

xiii

Xiv

Code Example 3-12
Code Example 3-13
Code Example 3-14
Code Example 3-15
Code Example 3-16
Code Example 3-17
Code Example 3-18

Code Example 4-1
Code Example 4-2
Code Example 4-3
Code Example 4-4
Code Example 5-1
Code Example 7-1
Code Example 7-2
Code Example 7-3
Code Example 7-4
Code Example 7-5

Code Example 7-6
Code Example 7-7
Code Example A-1
Code Example A-2
Code Example A-3
Code Example A-4

The Producer/Consumer Problem—the Producer . . 58
The Producer/Consumer Problem—the Consumer . 59
Read/Write Bank Account 66
The Producer/Consumer Problem With Semaphores 73
The Producer/Consumer Problem—the Producer . . 74
The Producer/Consumer Problem—the Consumer . 74

The Producer/Consumer Problem, Using

USYNC PROCESS i 76
Continuation Semantics. 88
Asynchronous Signals and sigwait (2) 91
Completion Semantics 92
Condition Variables and Interrupted Waits 95
Degrees of Thread Safety........................ 102
Global Variablesanderrmno 114
The gethostbyname () Problem 115
Theprintf ()Problem.......................... 116
Testing the Invariant With assert (3X) 118
The Producer/Consumer Problem—Shared Memory

MUItIProCeSSOrS. . . o\t 126
Mutual Exclusion for Two Threads? 128

Multithreaded Cooperation (Barrier Synchronization) 129

File Copy Example With a Semaphore 132
Matrix Multiplication........................... 133
RPCrstat Program With Multithreaded Client ... 137
WINdow Server 142

Multithreaded Programming Guide—August 1994

Preface

The Multithreaded Programming Guide describes the multithreaded
programming interfaces for the Solaris™ 2.4 system. This guide shows
application programmers how to create new multithreaded programs and how
to add multithreading to existing programs.

To understand this guide, a reader must be familiar with
* A UNIX® SVR4 system—preferably the Solaris 2.4 system

® The C programming language—multithreading is implemented through the
libthread library

How This Guide Is Organized

Chapter 1, “Covering Multithreading Basics,” gives a structural overview of
the Solaris threads implementation.

Chapter 2, “Programming With Threads,” discusses the general threads
library routines.

Chapter 3, “Programming With Synchronization Objects,” covers the threads
library synchronization routines.

Chapter 4, “Programming With the Operating System,” discusses changes to
the operating system to support multithreading.

Chapter 5, “Safe and Unsafe Interfaces,” covers multithreading safety issues.

XV

Chapter 6, “Compiling And Debugging,” covers the basics of compiling and
debugging.

Chapter 7, “Programming Guidelines,” discusses issues that affect
programmers writing multithreaded applications.

Appendix A, “Sample Application Code,” provides code examples you can
refer to for clarification and practice.

Appendix B, “MT Safety Levels: Library Interfaces,” is a table listing routines
that are safe to use in multithreaded programs.

What Typographic Changes and Symbols Mean
Table P-1 describes the type changes and symbols used in this guide.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 Commandes, files, directories, The forkl () function is new.
and C functions; code examples Use Is -a to list all files.

AaBbCc123 Variables, titles, and emphasized The stack_size value is set by...
words You must specify a zero value.

AaBbCc123 What you type, contrasted with system% cc prog.c
on-screen computer output

page (#) The man page name and section See thr_create (3T).
in the Solaris Reference Manual

Sections of program code in the main text are enclosed in boxes:

nt test (100);
main()
{

registerinta, b, c, d, e, f;

test(a) = b & test(c & 0x1) & test(d & 0x1);

XVi Multithreaded Programming Guide—August 1994

Covering Multithreading Basics 1

The word multithreading can be translated as many threads of control. While a
traditional UNIX process always has contained and still does contain a single
thread of control, multithreading (MT) separates a process into many execution
threads, each of which runs independently.

Read this chapter to understand the multithreading basics.

Defining Multithreading Terms page 2
Benefiting From Multithreading page 3
Looking At Multithreading Structure page 5
Meeting Multithreading Standards page 10

Because each thread runs independently, multithreading your code can:

Improve application responsiveness
Use multiprocessors more efficiently
Improve your program structure
Use fewer system resources
Improve performance

1]l
H

Defining Multithreading Terms

The following terms are used in this chapter to describe multithreading

concepts.

Thread A sequence of instructions executed within the context of
a process

Single-threaded Restricting access to a single thread

Multithreaded Allowing access to two or more threads

User-level or Threads managed by the threads library routines in user

Application-level (as opposed to kernel) space

threads

Lightweight processes Threads in the kernel that execute kernel code and system
calls (also called LWPs)

Bound threads Threads that are permanently bound to LWPs
Unbound threads Threads that attach and detach from among the LWP pool
Counting semaphore A memory-based synchronization mechanism

Defining Concurrency and Parallelism

Concurrency exists when at least two threads are in progress at the same time.
Parallelism arises when at least two threads are executing simultaneously.

In a multithreaded process on a single processor, the processor can switch
execution resources between threads, resulting in concurrent execution. In the
same multithreaded process on a shared-memory multiprocessor, each thread
in the process can run on a separate processor at the same time, resulting in
parallel execution.

When the process has as many threads as, or fewer threads than, there are
processors, the threads support system and the operating system ensure that
each thread runs on a different processor. For example, in a matrix
multiplication with m processors and m threads, each thread computes a row
of the result.

2 Multithreaded Programming Guide—August 1994

[HEN
i

Benefiting From Multithreading

Improve Application Responsiveness

Any program in which many activities are not dependent upon each other
can be redesigned so that each activity is fired off as a thread. For example,
a GUI in which you are performing one activity while starting up another

will show improved performance when implemented with threads.

Use Multiprocessors Efficiently

Typically, applications that express concurrency requirements with threads
need not take into account the number of available processors. The
performance of the application improves transparently with additional
processors.

Numerical algorithms and applications with a high degree of parallelism,
such as matrix multiplications, can run much faster when implemented with
threads on a multiprocessor.

Improve Program Structure

Many programs are more efficiently structured as multiple independent or
semi-independent units of execution instead of as a single, monolithic
thread. Multithreaded programs can be more adaptive to variations in user
demands than are single threaded programs.

Use Fewer System Resources

Programs that use two or more processes that access common data through
shared memory are applying more than one thread of control. However,
each process has a full address space and operating systems state. The cost
of creating and maintaining this large amount of state makes each process
much more expensive than a thread in both time and space. In addition, the
inherent separation between processes can require a major effort by the
programmer to communicate between the threads in different processes or
to synchronize their actions.

Covering Multithreading Basics 3

Combine Threads and RPC

By combining threads and a remote procedure call (RPC) package, you can
exploit nonshared-memory multiprocessors (such as a collection of
workstations). This combination distributes your application relatively easily
and treats the collection of workstations as a multiprocessor.

For example, one thread might create child threads. Each of these children
could then place a remote procedure call, invoking a procedure on another
workstation. Although the original thread has merely created a number of
threads that are now running in parallel, this parallelism involves other
computers.

Improve Performance

The performance numbers in this section were obtained on a SPARCstation™ 2
(Sun 4/75). The measurements were made using the built-in microsecond
resolution timer.

Thread Creation Time

Table 1-1 shows the time consumed to create a thread using a default stack that
is cached by the threads package. The measured time includes only the actual
creation time. It does not include the time for the initial context switch to the
thread. The ratio column gives the ratio of the creation time in that row to the
creation time in the previous row.

These data show that threads are inexpensive. The operation of creating a new
process is over 30 times as expensive as creating an unbound thread, and about
5 times the cost of creating a bound thread consisting of both a thread and an
LWP.

Table 1-1 Thread Creation Times

Operation Microseconds Ratio

Create unbound thread 52 -
Create bound thread 350 6.7
fork () 1700 32.7

Multithreaded Programming Guide—August 1994

[HEN
i

Thread Synchronization Times

Table 1-2 shows the time it takes for two threads to synchronize with each
other using two p and v semaphores.

Table 1-2 Thread Synchronization Times

Operation Microseconds Ratio
Unbound thread 66 -
Bound thread 390 5.9
Between processes 200 3

Looking At Multithreading Structure

Traditional UNIX already supports the concept of threads—each process
contains a single thread, so programming with multiple processes is
programming with multiple threads. But a process is also an address space,
and creating a process involves creating a new address space.

Because of this, creating a process is expensive, while creating a thread within
an existing process is cheap. The time it takes to create a thread is on the order
of a thousand times less than the time it takes to create a process, partly
because switching between threads does not involve switching between
address spaces.

Communicating between the threads of one process is simple because the
threads share everything—address space, in particular. So, data produced by
one thread is immediately available to all the other threads.

The interface to multithreading support is through a subroutine library,
libthread . Multithreading provides flexibility by decoupling kernel-level
and user-level resources.

Covering Multithreading Basics 5

User-level Threads?!

Threads are visible only from within the process, where they share all process
resources like address space, open files, and so on. The following state is
unique to each thread.

® Thread ID

® Register state (including PC and stack pointer)
¢ Stack

® Signal mask

® Priority

® Thread-private storage

Because threads share the process instructions and most of its data, a change in
shared data by one thread can be seen by the other threads in the process.
When a thread needs to interact with other threads in the same process, it can
do so without involving the operating system.

Threads are the primary programming interface in multithreaded
programming. User-level threads are handled in user space and so can avoid
kernel context switching penalties. An application can have thousands of
threads and still not consume many kernel resources. How many kernel
resources the application uses is largely determined by the application.

By default, threads are very lightweight. But, to get more control over a thread
(for instance, to control scheduling policy more), the application can bind the
thread. When an application binds threads to execution resources, the threads
become kernel resources (see “Bound Threads” on page 9 for more
information).

1. User-level threads are so named to distinguish them from kernel-level threads, which are the concern of
systems programmers, only. Because this book is for application programmers, kernel-level threads are not
discussed here.

Multithreaded Programming Guide—August 1994

[HEN
i

To summarize, Solaris user-level threads are:

® Inexpensive to create because they are bits of virtual memory that are
allocated from your address space at run time

® Fast to synchronize because synchronization is done at the application level,
not at the kernel level

® Easily managed by the threads library, libthread

Traditional
process \ Proc 1 Proc 2 Proc 3 Proc 4
User T 6 I e e O I Qe

IBLES

Kernel »é *(*(*(»g +< »g

Hardware

,{ = Thread O =Lwp () = Processor

Figure 1-1 Multithreaded System Architecture

Covering Multithreading Basics 7

Lightweight Processes

The threads library uses underlying threads of control called lightweight
processes that are supported by the kernel. You can think of an LWP as a virtual
CPU that executes code or system calls.

Most programmers use threads without thinking about LWPs. All the
information here about LWPs is provided so you can understand the
differences between bound and unbound threads, described on page 9.

Note — The LWPs in Solaris 2.x are not the same as the LWPs in the
SunOS™ 4.0 LWP library, which are not supported in Solaris 2.x.

Much as the stdio library routines such as fopen (3S) and fread (3S) use the
open (2) and read (2) functions, the thread interface uses the LWP interface,
and for many of the same reasons.

Lightweight processes (LWPs) bridge the user level and the kernel level. Each
process contains one or more LWPs, each of which runs one or more user
threads. The creation of a thread usually involves just the creation of some user
context, but not the creation of an LWP.

The user-level threads library, with help from the programmer and the
operating system, ensures that the number of LWPs available is adequate for
the currently active user-level threads. However, there is no one-to-one
mapping between user threads and LWPs, and user-level threads can freely
migrate from one LWP to another.

The programmer can tell the threads library how many threads should be
“running” at the same time. For example, if the programmer says that up to
three threads should run at the same time, then at least three LWPs should be
available. If there are three available processors, the threads run in parallel. If
there is only one processor, then the operating system multiplexes the three
LWPs on that one processor. If all the LWPs block, the threads library adds
another LWP to the pool.

When a user thread blocks due to synchronization, its LWP transfers to another
runnable thread. This transfer is done with a coroutine linkage and not with a
system call.

Multithreaded Programming Guide—August 1994

[HEN
i

The operating system decides which LWP should run on which processor and
when. It has no knowledge about what user threads are or how many are
active in each process. The kernel schedules LWPs onto CPU resources
according to their scheduling classes and priorities. The threads library
schedules threads on the process pool of LWPs in much the same way. Each
LWP is independently dispatched by the kernel, performs independent system
calls, incurs independent page faults, and runs in parallel on a multiprocessor
system.

An LWP has some capabilities that are not exported directly to threads, such as
a special scheduling class.

Unbound Threads

Threads that are scheduled on the LWP pool are called unbound threads. You
will usually want your threads to be unbound, allowing them to float among
the LWPs.

The library invokes LWPs as needed and assigns them to execute runnable
threads. The LWP assumes the state of the thread and executes its instructions.
If the thread becomes blocked on a synchronization mechanism, or if another
thread should be run, the thread state is saved in process memory and the
threads library assigns another thread to the LWP to run.

Bound Threads

If needed, you can permanently bind a thread to an LWP.

For example, you can bind a thread to:

® Have the thread scheduled globally (such as realtime)
® Give the thread an alternate signal stack
® Give the thread a unique alarm or timer

Sometimes having more threads than LWPs, as can happen with unbound
threads, is a disadvantage.

For example, a parallel array computation divides the rows of its arrays among
different threads. If there is one LWP for each processor, but multiple threads
for each LWP, each processor spends time switching between threads. In this
case, it is better to have one thread for each LWP, divide the rows among a
smaller number of threads, and reduce the number of thread switches.

Covering Multithreading Basics 9

A mixture of threads that are permanently bound to LWPs and unbound
threads is also appropriate for some applications.

An example of this is a realtime application that wants some threads to have
system-wide priority and realtime scheduling, while other threads attend to
background computations. Another example is a window system with
unbound threads for most operations and a mouse serviced by a high-priority,
bound, realtime thread.

When a user-level thread issues a system call, the LWP running the thread calls
into the kernel and remains attached to the thread at least until the system call
completes.

Meeting Multithreading Standards

10

The history of multithreaded programming goes back to at least the 1960s. Its
development on UNIX systems goes back to the mid-1980s. Perhaps
surprisingly, there is fair agreement about the features necessary to support
multithreaded programming. Even so, several different thread packages are
available today, each with a different interface.

However, for several years a group known as POSIX 1003.4a has been working
on a standard for multithreaded programming. When the standard is finalized,
most vendors of systems supporting multithreaded programming will support
the POSIX interface. This will have the important benefit of allowing
multithreaded programs to be portable.

There are no fundamental differences between Solaris threads and POSIX
1003.4a. Certainly the interfaces differ, but there is nothing that is expressible
with one interface that cannot be expressed relatively easily with the other.
There are no incompatibilities between the two, so, at least on Solaris systems,
there will be one underlying implementation with two interfaces. Even within
a single application, you will be able to use both interfaces.

Another reason for using Solaris threads is the collection of support tools
supplied with it, such as the multithreaded debugger. truss , which traces a
program’s system calls and signals, has been extended to report on the
activities of a program’s threads as well.

Multithreaded Programming Guide—August 1994

The Threads Library

Programming With Threads 2

User-level multithreading is implemented through the threads library,
libthread (see section 3T in the man Pages(3): Library Routines). The threads
library supports signals, schedules runnable entities, and handles multiple
tasks simultaneously.

This chapter discusses some of the general libthread routines, starting with
the basic ways to create threads and becoming more advanced.

Create a Thread—the Basics thr_create(3T) page 12
Get the Thread Identifier thr_self(3T) page 14
Yield Thread Execution thr_yield(3T) page 14
Suspend or Continue Thread Execution thr_suspend(3T) page 15

thr_continue(3T) page 15
Send a Signal to a Thread thr_kill(3T) page 16
Access the Signal Mask of the Calling Thread thr_sigsetmask(3T) page 16
Terminate a Thread thr_exit(3T) page 17
Wait for Thread Termination thr_join(3T) page 19
Maintain Thread-Specific Data thr_keycreate(3T) page 22

thr_setspecific(3T) page 23

thr_getspecific(3T) page 24
Create a Thread—Advanced Features thr_create(3T) page 27

11

12

Get the Minimal Stack Size thr_min_stack(3T) page 32
Get and Set Thread Concurrency Level thr_getconcurrency(3T) page 33
thr_setconcurrency(3T) page 33
Get and Set Thread Priority thr_getprio(3T) page 34
thr_setprio(3T) page 35

Create a Thread—the Basics

The thr_create (3T) routine is the most elaborate of all the threads library
routines. The explanations in this section are for those cases when you can use
the default values for the thr_create () arguments.

More advanced thr_create () use, including explanations of nondefault
argument values, is covered toward the end of this chapter in “Create a
Thread—Advanced Features” on page 27.

thr_create (3T)

Use thr_create () to add a new thread of control to the current process. Note
that the new thread does not inherit pending signals, but is does inherit
priority and signal masks.

#include <thread.h>

int thr_create(void * stack_base, size_t stack_size,
void *(* start_routine) (void *), void * arg, long flags,
thread_t * new_thread);

size_t thr_min_stack(void);

stack_base — Contains the address for the stack that the new thread uses. If
stack_base is NULLthen thr_create () allocates a stack for the new thread with
at least stack_size bytes.

stack_size — Contains the size, in number of bytes, for the stack that the new
thread uses. If stack_size is zero, a default size is used. In most cases, a zero
value works best.

Multithreaded Programming Guide—August 1994

2

There is no general need to allocate stack space for threads. The threads library
allocates one megabyte of virtual memory for each thread’s stack with no swap
space reserved. (The library uses the MAP_NORESERMption of mmag2) to
make the allocations.)

start_routine — Contains the function with which the new thread begins
execution. If start_routine returns, the thread exits with the exit status set to the
value returned by start_routine (see thr_exit (3T)).

flags — Specifies attributes for the created thread. In most cases a zero value
works best.

The value in flags is constructed from the bitwise inclusive OR of the following.
(The last four flags are explained more fully in “Create a Thread—Advanced
Features” on page 27.)

THR_DETACHEDDetaches the new thread so that its thread ID and other
resources can by reused as soon as the thread terminates. Set this when you
do not want to wait for the thread to terminate.

When there is no explicit synchronization to prevent it, an unsuspended,
detached thread can die and have its thread ID reassigned to another new
thread before its creator returns from thr_create ().

THR_SUSPENDEDSuspends the new thread and does not execute
start_routine until the thread is started by thr_continue ().

THR_BOUNDPermanently binds the new thread to an LWP (the new thread
is a bound thread).

THR_NEW_LWRncreases the concurrency level for unbound threads by one.
THR_DAEMONMarks the new thread as a daemon.

new_thread — Points to a location (when new_thread is not NULL) where the ID
of the new thread is stored. In most cases a zero value works best.

Return Values — thr_create () returns a zero and exits when it completes
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions are detected, thr_create () fails and returns
the corresponding value.

EAGAIN A system limit is exceeded, such as when too many LWPs have
been created.

Programming With Threads 13

1]l
N

ENOMEM Not enough memory was available to create the new thread.

EINVAL stack_base is not NULL and stack_size is less than the value
returned by thr_minstack ().

Get the Thread Identifier

thr_self (3T)

Use thr_self (3T) to get the ID of the calling thread..

#include <thread.h>

thread_t thr_self(void)

Return Values — thr_self () returns the ID of the calling thread.

Yield Thread Execution

thr_yield (3T)

thr_yield () causes the current thread to yield its execution in favor of
another thread with the same or greater priority.

#include <thread.h>

void thr_yield(void);

14 Multithreaded Programming Guide—August 1994

N
1]

Suspend or Continue Thread Execution

thr_suspend (3T)

thr_suspend () suspends thread execution.

#include <thread.h>

int thr_suspend(thread_t target_thread);

thr_suspend () immediately suspends the execution of the thread specified by
target_thread . On successful return from thr_suspend (), the suspended
thread is no longer executing. Once a thread is suspended, subsequent calls to
thr_suspend () have no effect.

Return Values — thr_suspend() returns zero after completing successfully.
Any other returned value indicates that an error occurred. When the following
condition occurs, thr_suspend () fails and returns the corresponding value.

ESRCH target_thread cannot be found in the current process.

thr_continue (3T)

thr_continue () resumes the execution of a suspended thread. Once a
suspended thread is continued, subsequent calls to thr_continue () have no
effect.

#include <thread.h>

int thr_continue(thread_t target_thread);

A suspended thread will not be awakened by a signal. The signal stays
pending until the execution of the thread is resumed by thr_continue ().

Return Values — thr_continue() returns zero after completing successfully.
Any other returned value indicates that an error occurred. When the following
condition occurs, thr_continue () fails and returns the corresponding value.

ESRCH target_thread cannot be found in the current process.

Programming With Threads 15

1]l
N

Send a Signal toa Thread

thr kil (3T)

thr_Kkill () sends a signal to a thread.

#include <thread.h>
#include <signal.h>

int thr_kill(thread_t target_thread, int sig);

thr_Kkill () sends the signal sig to the thread specified by target_thread.
target_thread must be a thread within the same process as the calling thread.
The sig argument must be from the list given in signal (5).

When sig is zero, error checking is performed but no signal is actually sent.
This can be used to check the validity of target_thread.

Return Values — thr_Kkill() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When any of the
following conditions occur, thr_Kkill () fails and returns the corresponding
value.

EINVAL sig is not a valid signal number.

ESRCH target_thread cannot be found in the current process.

Access the Signal Mask of the Calling Thread

thr_sigsetmask (3T)

Use thr_sigsetmask () to change or examine the signal mask of the calling
thread.

#include <thread.h>
#include <signal.h>

int thr_sigsetmask(int how, const sigset_t * set, sigset_t * oset);

16 Multithreaded Programming Guide—August 1994

2

The how argument determines how the signal set is changed and can have one
of the following values.

SIG_BLOCK— Add set to the current signal mask, where set indicates the set
of signals to block.

SIG_UNBLOCK— Delete set from the current signal mask, where set
indicates the set of signals to unblock.

SIG_SETMASK— Replace the current signal mask with set, where set
indicates the new signal mask.

When the value of set is NULL, the value of how is not significant and the
signal mask of the thread is unchanged. So, to inquire about currently
blocked signals, assign a NULL value to the set argument.

When the oset argument is not NULL, it points to the space where the previous
signal mask is stored.

Return Values — thr_sigsetmask () returns a zero when it completes
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions are detected, thr_sigsetmask () fails and
returns the corresponding value.

EINVAL The value of set is not NULL and the value of how is not defined.

EFAULT Either set or oset is not a valid address.
Terminate a Thread

thr_exit (3T)

Use thr_exit () to terminate a thread.

#include <thread.h>

void thr_exit(void *status);

Programming With Threads 17

18

The thr_exit () function terminates the calling thread. All thread-specific data
bindings are released. If the calling thread is not detached, then the thread’s ID
and the exit status specified by status are retained until the thread is waited for.
Otherwise, status is ignored and the thread’s ID can be reclaimed immediately.

Return Values — When the calling thread is the last nondaemon thread in the
process, the process terminates with a status of zero. When the initial thread
returns from main () the process exits with a status equal to the return value.

Finishing Up

A thread can terminate its execution in two ways. The first is simply to return
from its first (outermost) procedure. The second is to call thr_exit (),
supplying an exit code. What happens next depends upon how the flags
parameter was set when the thread was created.

The default behavior of a thread (which happens when the appropriate bit in
the flags parameter is left as zero) is to remain until some other thread has
acknowledged its demise by “joining” with it. The result of the join is that the
joining thread picks up the exit code of the dying thread and the dying thread
vanishes. You can set a bit in the flags parameter, by ORing into it
THR_DETACHEDo make the thread disappear immediately after it calls
thr_exit () or after it returns from its first procedure. In this case, the exit
code is not picked up by any thread.

An important special case arises when the main thread, the one that existed
initially, returns from the main procedure or calls exit (). This action causes
the entire process to be terminated, along with all its threads. So take care to
ensure that the main thread does not return from main prematurely.

Note that when the main thread merely calls thr_exit (), it terminates only
itself—the other threads in the process, as well as the process, continue to exist.
(The process terminates when all threads terminate.)

Note also that if a thread is non-detached, then it is very important that some
thread join with it after it terminates—otherwise the resources of that thread
are not released for use by new threads. So when you do not want a thread to
be joined, create it as a detached thread.

Multithreaded Programming Guide—August 1994

N
1]

An additional flags argument to thr_create () is THR_DAEMQN hreads
created with this flag, daemon threads, are automatically terminated when all
non-daemon threads have terminated. These daemon threads are especially
useful within libraries.

Daemon threads can be created within library routines—as daemon threads
they are effectively invisible to the rest of the program. When all other threads
in the program (the threads you were aware of creating) terminate, these
daemon threads automatically terminate. If they were not daemon threads,
they would not terminate when the other threads do, and the process would
not exit.

Wait for Thread Termination

thr_join (3T)

Use the thr_join () function to wait for a thread to terminate.

#include <thread.h>

int thr_join(thread_t wait_for, thread_t * departed,
void ** status);

The thr_join () function blocks the calling thread until the thread specified by
wait_for terminates. The specified thread must be in the current process and
must not be detached. When wait_for is (thread_t)0 , then thr_join () waits
for any undetached thread in the process to terminate. In other words, when
no thread identifier is specified, any undetached thread that exits causes
thr_join () to return.

When departed is not NULL, it points to a location that is set to the ID of the
terminated thread when thr_join () returns successfully. When status is not
NULL, it points to a location that is set to the exit status of the terminated
thread when thr_join () returns successfully.

When a stack was specified when the thread was created, the stack can be
reclaimed when thr_join () returns. The thread identifier returned by a
successful thr_join () can then be used by thr_create ().

Programming With Threads 19

20

Multiple threads cannot wait for the same thread to terminate. If they try to,
one thread returns successfully and the others fail with an error of ESRCH.

Return Values — thr_join () returns a zero when it completes successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions are detected, thr_join () fails and returns the
corresponding value.

ESRCH wait_for is not a valid, undetached thread in the current process.

EDEADLK wait_for specifies the calling thread.

Final Steps

The thr_join () routine takes three arguments, giving you some flexibility in
its use. When you want the caller to wait until a specific (nondetached) thread
terminates, supply that thread’s ID as the first argument. When you want the
caller to wait until any nondetached thread terminates, supply a zero for the
first argument.

When the caller wants to find out who the terminated thread is, the second
argument should be the address of storage into which the defunct thread’s ID
will be placed.

Otherwise, supply a zero for this argument. Finally, if you are interested in the
exit code of the defunct thread, supply the address of an area to receive it.

A thread can wait until all nondaemon threads have terminated by executing
the following:

while(thr_join(0, 0, 0) == 0)

The declaration for the third parameter of thr_join (), void **, might look
strange. The corresponding argument of thr_exit () is void *. The intent is that
you pass an arbitrary 4-byte item as the exit code. The C for “arbitrary 4-byte
argument” cannot be void , because that means that there is no argument. So it
is void *. Because the third parameter of thr_join () is an output parameter
that must point to whatever is supplied by thr_exit() , its type is necessarily
void **,

Multithreaded Programming Guide—August 1994

N
1]

Remember that thr_join () works only for target threads that are
nondetached. When there is no reason to synchronize with the termination of a
particular thread, then that thread should be detached.

Think of a detached thread as being the usual sort of thread and reserve
nondetached threads for only those situations that require them.

A Simple Threads Example

In Code Example 2-1, one thread executes the procedure at the top, creating a
helper thread that executes the procedure fetch , which involves a
complicated database lookup and might take a while. The mainline thread
wants the results of the lookup but has other work to do in the meantime. So it
does those other things and then waits for its helper to complete its job by
executing thr_join ().

The result is passed as a stack parameter, which can be done here because the
main thread waits for the spun-off thread to terminate. In general, though, it is
better to malloc (3C) storage from the heap instead of passing an address to
thread stack storage.

Code Example 2-1 A Simple Threads Program

void mainline (...) {
char int result;
thread_t helper;
int status;

thr_create(0,0, fetch, &result,0, &helper);
[* do something else for a while */
thr_join(helper, 0, &status);

/* it's now safe to use result */

}

void fetch(int *result) {
/* fetch value from a database */
*result = value;

thr_exit(0);
}

Programming With Threads 21

22

Maintain Thread-Specific Data

Single-threaded C programs have two basic classes of data—Ilocal data and
global data. For multithreaded C programs a third class is added—thread-
specific data (TSD). This is very much like global data, except that it is private
to a thread.

Thread-specific data is maintained on a per-thread basis. TSD is the only way
to define and refer to data that is private to a thread. Each thread-specific data
item is associated with a key that is global to all threads in the process. Using
the key, a thread can access a pointer (void *) that is maintained per-thread.

Maintain thread-specific data with the following three functions.
® thr_keycreate () — Create a key specific to the process threads.
® thr_setspecific () — Bind a thread value to the key.

® thr_getspecific () — Store the value in a specific location.

thr_keycreate (3T)

thr_keycreate () allocates a key that is used to identify thread-specific data
in a process. The key is global to all threads in the process, and all threads
initially have the value NULL associated with the key when it is created.

Once a key has been created, each thread can bind a value to the key. The
values are specific to the binding thread and are maintained for each thread
independently.

#include <thread.h>

int thr_keycreate(thread_key_t * keyp,
void (* destructor) (void * value);

When thr_keycreate () returns successfully, the allocated key is stored in the
location pointed to by keyp. The caller must ensure that the storage and access
to this key are properly synchronized.

Multithreaded Programming Guide—August 1994

2

An optional destructor function, destructor, can be associated with each key.
When a key has a non-NULL destructor function and the thread has a non-
NULL value associated with that key, the destructor function is called with the
current associated value when the thread exits. The order in which the
destructor functions are called for all the allocated keys is unspecified.

Return Values — thr_keycreate() returns zero after completing
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions occur, thr_keycreate () fails and returns the
corresponding value.

EAGAIN The key name space is exhausted.
ENOMEM Not enough memory is available.

thr_setspecific (3T)

#include <thread.h>

int thr_setspecific(thread_key t key, void * value);

thr_setspecific () binds value to the thread-specific data key, key, for the
calling thread.

Return Values — thr_setspecific() returns zero after completing
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions occur, thr_setspecific () fails and returns

the corresponding value.
ENOMEM Not enough memory is available.
EINVAL key is invalid.

Programming With Threads 23

24

thr_getspecific (3T)

#include <thread.h>

int thr_getspecific(thread_key_t key, void ** valuep);

thr_getspecific () stores the current value bound to key for the calling
thread into the location pointed to by valuep.

Return Values — thr_getspecific() returns zero after completing
successfully. Any other returned value indicates that an error occurred. When
the following condition occurs, thr_getspecific () fails and returns the
corresponding value.

EINVAL key is invalid.

Global and Private Thread-Specific Data

Code Example 2-2 shows an excerpt from a multithreaded program. This code
is executed by any number of threads, but it has references to two global
variables, errno and mywindow, that really should be references to items
private to each thread.

Code Example 2-2 Thread-Specific Data—Global but Private

body() {

while (write(fd, buffer, size) == -1) {
if (errno = EINTR) {
fprintf(mywindow, “%s\n”, strerror(errno));
exit(1);
}
}

Multithreaded Programming Guide—August 1994

2

References to errno should get the system error code from the system call
called by this thread, not by some other thread. So, references to errno by one
thread refer to a different storage location than references to errno by other
threads.

The mywindow variable is intended to refer to a stdio stream connected to a
window that is private to the referring thread. So, as with errno , references to
mywindow by one thread should refer to a different storage location (and,
ultimately, a different window) than references to mywindow by other threads.
The only difference here is that the threads library takes care of errno , but the
programmer must somehow make this work for mywindow.

The next example shows how the references to mywindow work. The
preprocessor converts references to mywindow into invocations of the
_mywindow procedure.

This routine in turn invokes thr_getspecific (), passing it the
mywindow_key global variable (it really is a global variable) and an output
parameter, win , which receives the identity of this thread’s window.

Code Example 2-3 Turning Global References Into Private References

#define mywindow _mywindow()
thread_key_t mywindow_key;

FILE *_mywindow(void) {
FILE *win;

thr_getspecific(mywindow_key, &win);
return(win);
}

void thread_start(...) {

make_mywindow();

Programming With Threads 25

26

The mywindow_key variable identifies a class of variables for which each
thread has its own private copy; that is, these variables are thread-specific data.
Each thread calls make_mywindow () to initialize its window and to arrange for
its instance of mywindow to refer to it.

Once this routine is called, the thread can safely refer to mywindow and, after

_mywindow, the thread gets the reference to its private window. So, references

to mywindow behave as if they were direct references to data private to the
thread.

Code Example 2-4 shows how to set this up.

Code Example 2-4 Initializing the Thread-Specific Data

void make_mywindow(void) {
FILE **win;
static int once = 0;
static mutex_t lock;

mutex_lock(&lock);
if (lonce) {
once =1,
thr_keycreate(&mywindow_key, free_key);

mutex_unlock(&lock);

win = malloc(sizeof(*win));
create_window(win, ...);

thr_setspecific(mywindow_key, win);

}

void free_key(void *win) {
free(win);

}

First, get a unique value for the key, mywindow_key . This key is used to
identify the thread-specific class of data. So, the first thread to call
make_mywindow calls thr_keycreate (), which assigns to its first argument a
unique key. The second argument is a destructor function that is used to
deallocate a thread’s instance of this thread-specific data item once the thread
terminates.

Multithreaded Programming Guide—August 1994

2

The next step is to allocate the storage for the caller’s instance of this thread-
specific data item. Having allocated the storage, a call is made to the
create_window routine, which somehow sets up a window for the thread
and sets the storage pointed to by win to refer to it. Finally, a call is made to
thr_setspecific (), which associates the value contained in win (that is, the
location of the storage containing the reference to the window) with the key.

After this, whenever this thread calls thr_getspecific (), passing the global
key, it gets the value that was associated with this key by this thread when it
called thr_setspecific 0.

When a thread terminates, calls are made to the destructor functions that were
set up in thr_keycreate (). Each destructor function is called only if the
terminating thread established a value for the key by calling

thr_setspecific 0.

Create a Thread—Advanced Features

thr_create (3T)

#include <thread.h>

int thr_create(void * stack_base, size_t stack_size,
void *(* start_routine) (void *), void * arg, long flags,
thread_t* new_thread);

size_t thr_min_stack(void);

stack_base—Contains the address for the stack that the new thread uses. When
stack_base is NULLthen thr_create () allocates a stack for the new thread with
at least stack_size bytes.

stack_size—Contains the size, in number of bytes, for the stack that the new
thread uses. If stack_size is zero, a default size is used. If stack_size is not zero, it
must be greater than the value returned by thr_min_stack ().

A stack of minimum size might not accomodate the stack frame for
start_routine, so if a stack size is specified it must provide for the minimum
requirement plus room for the start_routine requirements and for the functions
that start_routine calls.

Programming With Threads 27

28

Typically, thread stacks allocated by thr_create () begin on page boundaries
and any specified size is rounded up to the next page boundary. A page with
no access permission is appended to the top of the stack so that most stack
over-flows result in sending a SIGSEGVsignal to the offending thread. Thread
stacks allocated by the caller are used as is.

When the caller passes in a pre-allocated stack, that stack cannot be freed until
the thr_join () call for that thread has returned, even when the thread is
known to have exited. Then the process exits with a status equal to the return
value.

Generally, you do not need to allocate stack space for threads. The threads
library allocates one megabyte of virtual memory for each thread’s stack with
no swap space reserved. (The library uses the MAP_NORESERMiption of
mmaj§2) to make the allocations.)

Each thread stack created by the threads library has a red zone. The library
creates the red zone by appending a page to the top of a stack to catch stack
overflows. This page is invalid and causes a memory fault if it is accessed. Red
zones are appended to all automatically allocated stacks whether the size is
specified by the application or the default size is used.

Specify stacks or their sizes to thr_create () only when you’re absolutely
certain you know that they are correct. There are very few occasions when it is
sensible to specify a stack, its size, or both to thr_create (). It is difficult even
for an expert to know if the right size was specified. This is because even an
ABIl-compliant program can’t determine its stack size statically. Its size is
dependent on the needs of the particular runtime environment in which it
executes.

Building Your Own Stack

When you specify the size of a thread stack, be sure to account for the
allocations needed by the invoked function and by each function called. The
accounting should include calling sequence needs, local variables, and
information structures.

Occasionally you want a stack that is a bit different from the default stack. An
obvious situation is when the thread needs more than one megabyte of stack
space. A less obvious situation is when the default stack is too large. You might

Multithreaded Programming Guide—August 1994

N
1]

be creating thousands of threads and just not have the virtual memory
necessary to handle the several gigabytes of stack space that this many default
stacks require.

The limits on the maximum size of a stack are often obvious, but what about
the limits on its minimum size? There must be enough stack space to handle all
of the stack frames that are pushed onto the stack, along with their local
variables and so on.

You can get the absolute minimum on stack size by calling thr_min_stack (),
which returns the amount of stack space required for a thread that executes a
null procedure. Useful threads need more than this, so be very careful when
reducing the stack size.

You can specify a custom stack in two ways. The first is to supply a NULL for
the stack location, thereby asking the runtime library to allocate the space for
the stack, but to supply the desired size in the stack-size parameter to
thr_create ().

The other approach is to take overall aspects of stack management and supply
a pointer to the stack to thr_create (). This means that you are responsible
not only for stack allocation but also for stack deallocation—when the thread
terminates, you must arrange for the disposal of its stack.

When you allocate your own stack, be sure to append a red zone to its end by
calling mprotect (2).

start_routine — Contains the function with which the new thread begins
execution. When start_routine returns, the thread exits with the exit status set to
the value returned by start_routine (see thr_exit (3T)).

Note that you can supply only one argument. To get your procedure to take
multiple arguments, encode them as one (such as by putting them in a
structure). This argument can be anything that is described by void , which is
typically any 4-byte value. Anything larger must be passed indirectly by
having the argument point to it.

Programming With Threads 29

flags — Specifies attributes for the created thread. In most cases you want to
supply a zero to the flags argument.

The value in flags is constructed from the bitwise inclusive OR of the following.

THR_SUSPENDEB- Suspends the new thread and does not execute
start_routine until the thread is started by thr_continue (). Use this to
operate on the thread (such as changing its priority) before you run it. The
termination of a detached thread is ignored.

THR_DETACHEB- Detaches the new thread so that its thread ID and other
resources can by reused as soon as the thread terminates. Set this when you
do not want to wait for the thread to terminate.

When there is no explicit synchronization to prevent it, an unsuspended,
detached thread can die and have its thread ID re-assigned to another new
thread before its creator returns from thr_create ().

THR_BOUNB- Permanently binds the new thread to an LWP (the new
thread is a bound thread).

THR_NEW_LWHP- Increases the concurrency level for unbound threads by
one. The effect is similar to incrementing concurrency by one with
thr_setconcurrency (3T), although this does not affect the level set
through the thr_setconcurrency () function. Typically, THR_NEW_LWP
adds a new LWP to the pool of LWPs running unbound threads.

When you specify both THR_BOUNRNd THR_NEW_LWB~o LWPs are
typically created—one for the bound thread and another for the pool of
LWPs running unbound threads.

THR_DAEMON- Marks the new thread as a daemon. The process exits
when all nondaemon threads exit. Daemon threads do not affect the process
exit status and are ignored when counting the number of thread exits.

A process can exit either by calling exit (2) or by having every thread in the
process that was not created with the THR_DAEMORNag call thr_exit (3T).
An application, or a library it calls, can create one or more threads that
should be ignored (not counted) in the decision of whether to exit. The
THR_DAEMORNag identifies threads that are not counted in the process exit
criterion.

Multithreaded Programming Guide—August 1994

2

new_thread — Points to a location (when new_thread is not NULL) where the ID
of the new thread is stored when thr_create () is successful. The caller is
responsible for supplying the storage this argument points to. The ID is valid
only within the calling process.

If you are not interested in this identifier, supply a zero value to new_thread().

Return Values — thr_create () returns a zero and exits when it completes
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions are detected, thr_create () fails and returns
the corresponding value.

EAGAIN A system limit is exceeded, such as when too many LWPs have
been created.

ENOMEM Not enough memory was available to create the new thread.

EINVAL stack base is not NULL and stack_size is less than the value
returned by thr_minstack ().

thr_create (3T) Example — Code Example 2-5 shows how to create a default
thread with a new signal mask (new_mask) that is assumed to have a different
value than the creator’s signal mask (orig_mask).

In the example, new_mask is set to block all signals except for SIGINT. Then
the creator’s signal mask is changed so that the new thread inherits a different
mask, and is restored to its original value after thr_create () returns.

This example assumes that SIGINT is also unmasked in the creator. When it is
masked by the creator, then unmasking the signal opens the creator up to this
signal. The other alternative is to have the new thread set its own signal mask
in its start routine.

Code Example 2-5 thr_create () Creates Thread With New Signal Mask

thread_t tid;
sigset_t new_mask, orig_mask;
int error;

(void)sidfillset(&new_mask);

(void)sigdelset(&new_mask, SIGINT);
(void)thr_sigsetmask(SIGSETMASK, &new_mask, &orig_mask):
error = thr_create(NULL, O, dofunc, NULL, 0, &tid);
(void)thr_sigsetmask(SIGSETMASK, NULL, &orig_mask);

Programming With Threads 31

32

Get the Minimal Stack Size

thr_min_stack (3T)

Use thr_min_stack (3T) to get the minimum stack size for a thread.

#include <thread.h>

size_t thr_min_stack(void);

thr_min_stack () returns the amount of space needed to execute a null thread
(a null thread is a thread that is created to execute a null procedure).

A thread that does more than execute a null procedure should allocate a stack
size greater than the size of thr_min_stack ().

When a thread is created with a user-supplied stack, the user must reserve
enough space to run the thread. In a dynamically linked execution
environment, it is difficult to know what the thread minimal stack
requirements are.

Most users should not create threads with user-supplied stacks. User-supplied
stacks exist only to support applications wanting complete control over their
execution environments.

Instead, users should let the threads library manage stack allocation. The
threads library provides default stacks that should meet the requirements of
any created thread.

Multithreaded Programming Guide—August 1994

N
1]

Get and Set Thread Concurrency Level

thr_getconcurrency (3T)

Use thr_getconcurrency () to get the current value of the desired
concurrency level. Note that the actual number of simultaneously active
threads can be larger or smaller than this number.

#include <thread.h>

int thr_getconcurrency(void)

Return Values — thr_getconcurrency () always returns the current value
for the desired concurrency level.

thr_setconcurrency (3T)

Use thr_setconcurrency () to set the desired concurrency level.

#include <thread.h>

int thr_setconcurrency (new_level)

Unbound threads in a process might or might not be required to be
simultaneously active. To conserve system resources, the threads system
ensures by default that enough threads are active for the process to make
progress and to ensure that the process will not deadlock through a lack of
concurrency.

Because this might not produce the most effective level of concurrency,
thr_setconcurrency () permits the application to give the threads system a
hint, specified by new_level, for the desired level of concurrency.

The actual number of simultaneously active threads can be larger or smaller
than new_level.

Note that an application with multiple compute-bound threads can fail to
schedule all the runnable threads if thr_setconcurrency () has not been
called to adjust the level of execution resources.

Programming With Threads 33

34

You can also affect the value for the desired concurrency level by setting the
THR_NEW_LWf#ag in thr_create ().

Return Values — thr_setconcurrency () returns a zero when it completes
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions are detected, thr_setconcurrency () fails
and returns the corresponding value.

EAGAIN The specified concurrency level would cause a system resource to
be exceeded.

EINVAL The value for new_level is negative.

Get and Set Thread Priority

An unbound thread is usually scheduled only with respect to other threads in
the process using simple priority levels with no adjustments and no kernel
involvement. Its system priority is usually uniform and is inherited from the
creating process.

thr_getprio (3T)

Use thr_getprio () to get the current priority for the thread.

#include <thread.h>

int thr_getprio(thread_t target_thread ,int* pri)

Each thread inherits a priority from its creator. thr_getprio () stores the
current priority, target_thread, in the location pointed to by pri.

Return Values — thr_getprio() returns zero after completing successfully.
Any other returned value indicates that an error occurred. When the following
condition occurs, thr_getprio () fails and returns the corresponding value.

ESRCH target_thread cannot be found in the current process.

Multithreaded Programming Guide—August 1994

N
1]

thr_setprio (3T)

Use thr_setprio () to change the priority of the thread.

#include <thread.h>

int thr_setprio(thread_t target thread ,int pri)

thr_setprio () changes the priority of the thread, specified by target_thread,
within the current process to the priority specified by pri. By default, threads
are scheduled based on fixed priorities that range from zero, the least
significant, to the largest integer. The target_thread will preempt lower priority
threads, and will yield to higher priority threads.

Return Values — thr_setprio() returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, thr_setprio () fails and returns the
corresponding value.

ESRCH target_thread cannot be found in the current process.

EINVAL The value of pri makes no sense for the scheduling class
associated with the target_thread.

Scheduling and the Threads Library

The following libthread routines affect thread scheduling.
® thr_setprio () and thr_getprio 0O

These routines alter and retrieve the priority of the target_thread, which is
the priority used by the scheduler in the user-level threads library, and not
the priority used by the operating system to schedule LWPs.

This priority affects the assignment of threads to LWPs—when there are
more runnable threads than there are LWPs, the higher-priority threads are
given LWPs. The scheduling of threads is preemptive, meaning that when a
thread becomes runnable and its priority is higher than that of some thread
currently assigned to an LWP, and there are no other available LWPs, then
the lower-priority thread must relinquish its LWP to the higher-priority
thread.

Programming With Threads 35

® thr_suspend () and thr_continue ()

These routines control whether a thread is allowed to run. By calling
thr_suspend (), you put a thread into the suspended state, meaning that it
is set aside and will not be granted an LWP even if one is available. The
thread is taken out of this state when some other thread calls

thr_continue () with the suspended thread as the target. These two
routines should be used with care—their effects can be dangerous. For
example, the thread being suspended might be holding a lock on a mutex,
and suspending it could result in a deadlock.

A thread can be created in the suspended state by including the
THR_SUSPENDE#Mag in the flags parameter of thr_create ().

o thr yield ()

The thr_yield () routine causes the calling thread to relinquish its LWP
when a thread of equal priority is runnable and not suspended. (There
cannot be a runnable thread of higher priority that is not running, since it
would have taken the LWP by preemption.) This routine is of particular
importance because there is no time-slicing of threads on LWPs (although,
of course, the operating system time-slices the execution of LWPs).

Finally, note that priocntl (2) also affects thread scheduling. See “LWPs and
Scheduling Classes” on page 82 for more information.

Multithreaded Programming Guide—August 1994

Programming With
Synchronization Objects 3

This chapter describes the four synchronization types available with threads
and discusses synchronization concerns.

Mutual Exclusion Locks page 38
Condition Variables page 48
Multiple-Readers, Single-Writer Locks page 60
Semaphores page 66
Synchronization Across Process Boundaries page 75
Comparing Primitives page 77

Synchronization objects are variables in memory that you access just like data.
Threads in different processes can synchronize with each other through
synchronization variables placed in shared memory, even though the threads
in different processes are generally invisible to each other.

Synchronization variables can also be placed in files and can have lifetimes
beyond that of the creating process.

The types of synchronization objects are:

Mutex Locks
Condition Variables
Readers/Writer Locks

[]
[]
[]
® Semaphores

37

Here are some multithreading situations in which synchronization is
important.

Mutual Exclusion Locks

38

Threads in two or more processes can use a single synchronization variable
jointly. Note that the synchronization variable should be initialized by only
one of the cooperating processes, as reinitializing a synchronization variable
sets it to the unlocked state.

Synchronization is the only way to ensure consistency of shared data.

A process can map a file and have a thread in this process get a record’s
lock. When the modification is done, the thread releases the lock and
unmaps the file. Once the lock is acquired, any other thread in any process
mapping the file that tries to acquire the lock is blocked until the lock is
released.

Synchronization can ensure the safety of mutable data.

Synchronization can be important even when accessing a single primitive
variable, such as an integer. On machines where the integer is not aligned to
the bus data width or is larger than the data width, a single memory load
can use more than one memory cycle. While this cannot happen on the
SPARC® architecture, portable programs cannot rely on this.

Use mutual exclusion locks (mutexes) to serialize thread execution. Mutual
exclusion locks synchronize threads, usually by ensuring that only one thread
at a time executes a critical section of code. Mutex locks can also preserve
single-threaded code.

Table 3-1 Routines for Mutual Exclusion Locks

Routine Operation Page

mutex_init(3T) Initialize a Mutual Exclusion Lock page 39
mutex_lock(3T) Lock a Mutex page 40
mutex_trylock(3T) Lock With a Nonblocking Mutex page 40
mutex_unlock(3T) Unlock a Mutex page 41
mutex_destroy(3T) Destroy Mutex State page 42

Multithreaded Programming Guide—August 1994

3

Mutexes can be used to synchronize threads in this process and other processes
when they are allocated in memory that is writable and shared among the
cooperating processes (see mmayg2)) and if they have been initialized for this
behavior.

Mutexes must be initialized before use.

Note that there is no defined order of acquisition when multiple threads are
waiting for a mutex.

Initialize a Mutual Exclusion Lock

mutex_init (3T)

#include <synch.h> (or #include <thread.h >)

int mutex_init(mutex_t * mp, int type, void * arg);

Use mutex_init () to initialize the mutex pointed to by mp. The type can be
one of the following (note that arg is currently ignored).

USYNC_PROCESS he mutex can be used to synchronize threads in this and
other processes.

USYNC_THREADThe mutex can be used to synchronize threads in this
process, only.

Mutexes can also be initialized by allocation in zeroed memory, in which case a
type of USYNC_THREARB assumed.

Multiple threads must not initialize the same mutex simultaneously. A mutex
lock must not be reinitialized while other threads might be using it.

Return Values — mutex_init () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT mp or arg points to an illegal address.

Programming With Synchronization Objects 39

40

Lock a Mutex

mutex_lock (3T)

#include <synch.h> (or #include <thread.h >)

int mutex_lock(mutex_t * mp);

Use mutex_lock () to lock the mutex pointed to by mp. When the mutex is
already locked, the calling thread blocks until the mutex becomes available
(blocked threads wait on a prioritized queue). When mutex_lock () returns,
the mutex is locked and the calling thread is the owner.

Return Values — mutex_lock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT mp points to an illegal address.

Lock With a Nonblocking Mutex

mutex_trylock (3T)

#include <synch.h> (or #include <thread.h >)

int mutex_trylock(mutex_t * mp);

Use mutex_trylock () to attempt to lock the mutex pointed to by mp. This
function is a nonblocking version of mutex_lock (). When the mutex is already
locked, this call returns with an error. Otherwise, the mutex is locked and the
calling thread is the owner.

Multithreaded Programming Guide—August 1994

3

Return Values — mutex_trylock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.
EFAULT mp points to an illegal address.

EBUSY The mutex pointed to by mp was already locked.

Unlock a Mutex

mutex_unlock (3T)

#include <synch.h> (or #include <thread.h >)

int mutex_unlock(mutex_t * mp);

Use mutex_unlock () to unlock the mutex pointed to by mp. The mutex must
be locked and the calling thread must be the one that last locked the mutex (the
owner). When any other threads are waiting for the mutex to become available,
the thread at the head of the queue is unblocked.

Return Values — mutex_unlock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT mp points to an illegal address.

Programming With Synchronization Objects 41

42

Destroy Mutex State

mutex_destroy (3T)

#include <synch.h> (or #include <thread.h >)

int mutex_destroy(mutex_t * mp);

Use mutex_destroy () to destroy any state associated with the mutex pointed
to by mp. Note that the space for storing the mutex is not freed.

Return Values — mutex_destroy () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT mp points to an illegal address.

Multithreaded Programming Guide—August 1994

w
1]

Mutex Lock Code Example

Code Example 3-1 Mutex Lock Example

mutex_t count_mutex;
int count;

increment_count()

{
mutex_lock(&count_mutex);
count = count + 1;
mutex_unlock(&count_mutex);

}

int

get_count()

{ .
int c;
mutex_lock(&count_mutex);
c = count;
mutex_unlock(&count_mutex);
return (c);

}

The two functions in Code Example 3-1use the mutex lock for different
purposes. increment_count () uses the mutex lock simply to assure an
atomic? update of the shared variable. get_count () uses the mutex lock to
guarantee that memory is synchronized when it refers to count .

Using Locking Hierarchies

You will occasionally want to access two resources at once. Perhaps you are
using one of the resources, and then discover that the other resource is needed
as well. As shown in Code Example 3-2, there could be a problem if two
threads attempt to claim both resources but lock the associated mutexes in

1. An atomic operation cannot be divided into smaller operations.

Programming With Synchronization Objects 43

44

different orders. In this example, if the two threads lock mutexes 1 and 2
respectively, then a deadlock occurs when each attempts to lock the other

mutex.

Code Example 3-2 Deadlock

Thread 1

Thread 2

mutex_lock(&m1);
/* use resource 1 */
mutex_lock(&m?2);

/* use resources
1and 2 ¥

mutex_unlock(&m?2);
mutex_unlock(&m1);

mutex_lock(&m?2);
/* use resource 2 */
mutex_lock(&m1);

/* use resources
1and 2 *

mutex_unlock(&m1);
mutex_unlock(&m?2);

The best way to avoid this problem is to make sure that whenever threads lock
multiple mutexes, they do so in the same order. This technique is known as lock

hierarchies: order the mutexes by logically assigning numbers to them.

Also, honor the restriction that you cannot take a mutex that is assigned i when

you are holding any mutex assigned a number greater than i.

Note — The lock_lint tool can detect the sort of deadlock problem shown in

this example. The best way to avoid such deadlock problems is to use lock
hierarchies: when locks are always taken in a prescribed order, deadlock

cannot occur.

Multithreaded Programming Guide—August 1994

3

However, this technique cannot always be used—sometimes you must take the
mutexes in an order other than the prescribed one. To prevent deadlock in such
a situation, one thread must release the mutexes it currently holds if it
discovers that deadlock would otherwise be inevitable. Code Example 3-3
shows how this is done.

Code Example 3-3 Conditional Locking

Thread 1 Thread 2
for (i) {
mutex_lock(&m1); mutex_lock(&m2);
mutex_lock(&m?2); if (mutex_trylock(&m1)
==0)
mutex_unlock(&m?2); [* got it! */
break;

mutex_unlock(&m1);
/* didn’t get it */
mutex_unlock(&m1);
}
mutex_unlock(&m1);
mutex_unlock(&m?2);

In this example, thread 1 is locking the mutexes in the prescribed order, but
thread 2 is taking them out of order. To make certain that there is no deadlock,
thread 2 has to take mutex 1 very carefully: if it were to block waiting for the
mutex to be released, it is likely to have just entered into a deadlock with
thread 1.

To make sure this does not happen, thread 2 calls mutex_trylock , which
takes the mutex if it is available. If it is not, thread 2 returns immediately,
reporting failure. At this point, thread 2 must release mutex 2, so that thread 1
can lock it, then release both mutex 1 and mutex 2.

Programming With Synchronization Objects 45

46

Nested Locking With a Singly Linked List

Code Example 3-4 takes three locks at once, but prevents deadlock by taking
the locks in a prescribed order.

Code Example 3-4 Singly Linked List Structure

typedef struct nodel {
int value;
struct nodel *link;
mutex_t lock;

} nodel _t;

nodel_t ListHead,;

This example uses a singly linked list structure with each node containing a
mutex. To remove a node from the list, first search the list starting at ListHead
(which itself is never removed) until the desired node is found.

To protect this search from the effects of concurrent deletions, lock each node
before any of its contents can be accessed. Because all searches start at
ListHead , there is never a deadlock because the locks are always taken in list
order.

When the desired node is found, lock both the node and its predecessor
because the change involves both nodes. Because the predecessor’s lock is
always taken first, you are again protected from deadlock.

Multithreaded Programming Guide—August 1994

w
1]

Here is the C code to remove an item from a singly linked list.

Code Example 3-5 Singly Linked List with Nested Locking

nodel_t *delete(int value) {
nodel_t *prev, *curent;

prev = &ListHead;
mutex_lock(&prev->lock);
while ((current = prev->link) '= NULL) {
mutex_lock(¤t->lock);
if (current->value == value) {
prev->link = current->link;
mutex_unlock(¤t->lock);
mutex_unlock(&prev->lock);
current->link = NULL;
return(current);
}
mutex_unlock(&prev->lock);
prev = current;

mutex_unlock(&prev->lock);
return(NULL);

}

Nested Locking With a Circular Linked List

Code Example 3-6 modifies the previous list structure by converting it into a
circular list. There is no longer a distinguished head node; now a thread might
be associated with a particular node and might perform operations on that
node and its neighbor. Note that lock hierarchies do not work easily here
because the obvious hierarchy (following the links) is circular.

Code Example 3-6 Circular Linked List Structure

typedef struct node2 {
int value;
struct node2 *link;
mutex_t lock;

} node2_t;

Programming With Synchronization Objects 47

i
w

Here is the C code that acquires the locks on two nodes and performs an
operation involving both of them.

Code Example 3-7 Circular Linked List With Nested Locking

void Hit Neighbor(node2_t *me) {
while (1) {
mutex_lock(&me->lock);
if (mutex_lock(&me->link->lock)) {
[* failed to get lock */
mutex_unlock(&me->lock);
continue;
}
break;
}
me->link->value += me->value;
me->value /=2;
mutex_unlock(&me->link->lock);
mutex_unlock(&me->lock);

Condition Variables

Use condition variables to atomically block threads until a particular condition
is true. Always use condition variables together with a mutex lock.

Table 3-2 Routines for Condition Variables

Routine Operation Page

cond_init(3T) Initialize a Condition Variable page 49
cond_wait(3T) Block on a Condition Variable page 50
cond_signal(3T) Unblock a Specific Thread page 51
cond_timedwait(3T) Block Until a Specified Event page 52
cond_broadcast(3T) Unblock All Threads page 54
cond_destroy(3T) Destroy Condition Variable State page 55

With a condition variable, a thread can atomically block until a condition is
satisfied. The condition is tested under the protection of a mutual exclusion
lock (mutex).

48 Multithreaded Programming Guide—August 1994

3

When the condition is false, a thread usually blocks on a condition variable
and atomically releases the mutex waiting for the condition to change. When
another thread changes the condition, it can signal the associated condition
variable to cause one or more waiting threads to wake up, reacquire the mutex,
and re-evaluate the condition.

Condition variables can be used to synchronize threads among processes when
they are allocated in memory that is writable and shared by the cooperating
processes.

Always initialize condition variables before using them. Also, note that there is
no defined order of unblocking when multiple threads are waiting for a
condition variable.

Initialize a Condition Variable

cond_init (3T)

#include <synch.h> (or #include <thread.h >)

int cond_init(cond_t * cvp, int type, int arg);

Use cond_init () to initialize the condition variable pointed to by cvp. The type
can be one of the following (note that arg is currently ignored).

USYNC_PROCESSThe condition variable can be used to synchronize
threads in this and other processes. arg is ignored.

USYNC_THREADThe condition variable can be used to synchronize threads
in this process, only. arg is ignored.

Condition variables can also be initialized by allocation in zeroed memory, in
which case a type of USYNC_THREAB assumed.

Multiple threads must not initialize the same condition variable
simultaneously. A condition variable must not be reinitialized while other
threads might be using it.

Programming With Synchronization Objects 49

50

Return Values — cond_init () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL type is not a recognized type.

EFAULT cvp or arg points to an illegal address.

Block on a Condition Variable

cond_wait (3T)

#include <synch.h> (or #include <thread.h >)

int cond_wait(cond_t * cvp, mutex_t * mp);

Use cond_wait () to atomically release the mutex pointed to by mp and to
cause the calling thread to block on the condition variable pointed to by cvp.
The blocked thread can be awakened by cond_signal (), cond_broadcast (),
or when interrupted by delivery of a signal or a fork ().

Any change in the value of a condition associated with the condition variable
cannot be inferred by the return of cond_wait () and any such condition must
be re-evaluated.

cond_wait () always returns with the mutex locked and owned by the calling
thread even when returning an error.

The function blocks until the condition is signaled. It atomically releases the
associated mutex lock before blocking, and atomically reacquires it before
returning.

In typical use, a condition expression is evaluated under the protection of a
mutex lock. When the condition expression is false, the thread blocks on the
condition variable. The condition variable is then signaled by another thread
when it changes the condition value. This causes one or all of the threads
waiting on the condition to unblock and to try to reacquire the mutex lock.

Multithreaded Programming Guide—August 1994

3

Because the condition can change before an awakened thread returns from
cond_wait() , the condition that caused the wait must be retested before the
mutex lock is acquired. The recommended test method is to write the condition
check as a while loop that calls cond_wait ().

mutex_lock();
while(condition_is_false)
cond_wait();
mutex_unlock();

No specific order of acquisition is guaranteed when more than one thread
blocks on the condition variable.

Return Values — cond_wait () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EFAULT cvp points to an illegal address.

EINTR The wait was interrupted by a signal or a fork ().
Unblock a Specific Thread

cond_signal (3T)

#include <synch.h> (or #include <thread.h >)

int cond_signal(cond_t * cvp);

Use cond_signal () to unblock one thread that is blocked on the condition
variable pointed to by cvp. Call cond_ signal() under the protection of the same
mutex used with the condition variable being signaled. Otherwise, the
condition variable could be signaled between the test of the associated
condition and blocking in cond_wait (), which can cause an infinite wait.

When no threads are blocked on the condition variable, then cond_signal ()
has no effect.

Programming With Synchronization Objects 51

52

Return Values — cond_signal () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When the following
condition occurs, the function fails and returns the corresponding value.

EFAULT cvp points to an illegal address.

Code Example 3-8 Example Using cond_wait (3T) and cond_signal (3T)

mutex_t count_lock;
cond_t count_nonzero;
unsigned int count;

decrement_count()
{
mutex_lock(&count_lock);
while (count == 0)
cond_wait(&count_nonzero, &count_lock);
count = count - 1;
mutex_unlock(&count_lock);
}
increment_count()
{
mutex_lock(&count_lock);
if (count == 0)
cond_signal(&count_nonzero);
count = count + 1;
mutex_unlock(&count_lock);

Block Until a Specified Event

cond_timedwait (3T)

#include <synch.h> (or #include <thread.h >)
int cond_timedwait(cond_t * cvp, mutex_t * mp,
timestruc_t * abstime);

Use cond_timedwait () as you would use cond_wait (), except that
cond_timedwait () does not block past the time of day specified by abstime.

Multithreaded Programming Guide—August 1994

3

cond_timedwait () always returns with the mutex locked and owned by the
calling thread even when returning an error.

The cond_timedwait () function blocks until the condition is signaled or until
the time of day specified by the last argument has passed. The time-out is
specified as a time of day so the condition can be retested efficiently without
recomputing the time-out value, as shown in Code Example 3-9.

Return Values — cond_timedwait () returns zero after completing
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions occur, the function fails and returns the
corresponding value.

EINVAL The specified number of seconds in abstime is greater than the
start time of the application plus 50,000,000, or the number of nanoseconds
is greater than or equal to 1,000,000,000.

EFAULT cvp or abstime points to an illegal address.
EINTR The wait was interrupted by a signal or a fork ().

ETIME The time specified by abstime has passed.

Code Example 3-9 Timed Condition Wait

timestruc_t to;
mutex_t m;
cond_tc;

mutex_lock(&m);
to.tv_sec = time(NULL) + TIMEOUT,
to.tv_nsec = 0;
while (cond == FALSE) {
err = cond_timedwait(&c, &m, &to);
if (err == ETIME) {
/* timeout, do something */
break;
}
}

mutex_unlock(&m);

Programming With Synchronization Objects 53

54

Unblock All Threads

cond_broadcast (3T)

#include <synch.h> (or #include <thread.h >)

int cond_wait(cond_t * cvp);

Use cond_broadcast () to unblock all threads that are blocked on the
condition variable pointed to by cvp. When no threads are blocked on the
condition variable then cond_broadcast () has no effect.

This function wakes all the threads blocked in cond_wait (). Since
cond_broadcast () causes all threads blocked on the condition to contend
again for the mutex lock, use it with care.

For example, use cond_broadcast () to allow threads to contend for variable
resource amounts when resources are freed, as shown in Code Example 3-10.

Code Example 3-10 Condition Variable Broadcast

mutex_t rsrc_lock;
cond_trsrc_add;
unsigned int resources;

get_resources(int amount)

{
mutex_lock(&rsrc_lock);
while (resources < amount) {

cond_wait(&rsrc_add, &rsrc_lock);

}
resources -= amount;
mutex_unlock(&rsrc_lock);

}

add_resources(int amount)

{
muteXx_lock(&rsrc_lock);
resources += amount;
cond_broadcast(&rsrc_add);
mutex_unlock(&rsrc_lock);

}

Multithreaded Programming Guide—August 1994

3

Note that in add_resources () it does not matter whether resources is
updated first or cond_broadcast () is called first inside the mutex lock.

Return Values — cond_ broadcast() returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EFAULT cvp points to an illegal address.

Call cond_broadcast () under the protection of the same mutex used with the
condition variable being signaled. Otherwise, the condition variable could be
signaled between the test of the associated condition and blocking in
cond_wait (), which can cause an infinite wait.

Destroy Condition Variable State

cond_destroy (3T)

#include <synch.h> (or #include <thread.h >)

int cond_destroy(cond_t * cvp);

Use cond_destroy () to destroy any state associated with the condition
variable pointed to by cvp. The space for storing the condition variable is not
freed.

Return Values — cond_destroy () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When the following
condition occurs, the function fails and returns the corresponding value.

EFAULT cvp points to an illegal address.

Programming With Synchronization Objects 55

56

The Lost Wake-Up Problem

Calling cond_signal () or cond_broadcast () when the thread does not hold
the mutex lock associated with the condition can lead to lost wake-up bugs. A
lost wake up occurs when a signal or broadcast has been sent but a thread is
waiting on the condition variable even though the condition is true. This
happens when the thread that calls cond_signal () does not hold the mutex
locally.

If the thread calls cond_signal () when another thread is between the test of
the condition and the call to cond_wait (), there are no waiting threads and
the signal has no effect.

The Producer/Consumer Problem

This problem is one of the small collection of standard, well-known problems
in concurrent programming: a finite-size buffer and two classes of threads,
producers and consumers, put items into the buffer (producers) and take items
out of the buffer (consumers).

A producer must wait until the buffer has space before it can put something in,
and a consumer must wait until something is in the buffer before it can take
something out.

A condition variable represents a queue of threads waiting for some condition
to be signaled.

Code Example 3-11 has two such queues, one (less) for producers waiting for
a slot in the buffer, and the other (more) for consumers waiting for a buffer slot
containing information. The example also has a mutex, as the data structure
describing the buffer must be accessed by only one thread at a time.

Multithreaded Programming Guide—August 1994

w
1]

This is the code for the buffer data structure.

Code Example 3-11 The Producer/Consumer Problem and Condition Variables

typedef struct {
char buf[BSIZE];
int occupied;
int nextin;
int nextout;
mutex_t mutex;
cond_t more;
cond_t less;

} buffer_t;

buffer_t buffer;

As Code Example 3-12 shows, the producer thread takes the mutex protecting
the buffer data structure and then makes certain that space is available for
the item being produced. If not, it calls cond_wait (), which causes it to join
the queue of threads waiting for the condition less , representing there is room
in the buffer, to be signaled.

At the same time, as part of the call to cond_wait (), the thread releases its lock
on the mutex. The waiting producer threads depend on consumer threads to
signal when the condition is true (as shown in Code Example 3-12). When the
condition is signaled, the first thread waiting on less is awakened. However,
before the thread can return from cond_wait (), it must reacquire the lock on
the mutex.

This ensures that it again has mutually exclusive access to the buffer data
structure. The thread then must check that there really is room available in the
buffer; if so, it puts its item into the next available slot.

At the same time, consumer threads might be waiting for items to appear in
the buffer. These threads are waiting on the condition variable more. A
producer thread, having just deposited something in the buffer, calls
cond_signal () to wake up the next waiting consumer. (If there are no waiting
consumers, this call has no effect.) Finally, the producer thread unlocks the
mutex, allowing other threads to operate on the buffer data structure.

Programming With Synchronization Objects 57

58

Code Example 3-12 The Producer/Consumer Problem—the Producer

void producer(buffer_t *b, char item) {
mutex_lock(&b->mutex);

while (b->occupied >= BSIZE)
cond_wait(&b->less, &b->mutex);

assert(b->occupied < BSIZE);
b->buf[b->nextin++] = item;

b->nextin %= BSIZE;
b->occupied++;

/* now: either b->occupied < BSIZE and b->nextin is the index
of the next empty slot in the buffer, or
b->occupied == BSIZE and b->nextin is the index of the
next (occupied) slot that will be emptied by a consumer
(such as b-> == b->nextout) */

cond_signal(&b->more);

mutex_unlock(&b->mutex);

}

Note the use of the assert () statement; unless the code is compiled with
NDEBUGiefined, assert () does nothing when its argument evaluates to true
(that is, nonzero), but causes the program to abort if the argument evaluates to
false (zero).

Such assertions are especially useful in multithreaded programs—they
immediately point out runtime problems if they fail, and they have the
additional effect of being useful comments.

The code comment a few lines later could better be expressed as an assertion,
but it is too complicated to say as a Boolean-valued expression and so is said
here in English.

Both the assertion and the comments are examples of invariants. These are
logical statements that should not be falsified by the execution of the program,
except during brief moments when a thread is modifying some of the program
variables mentioned in the invariant. (An assertion, of course, should be true
whenever any thread executes it.)

Multithreaded Programming Guide—August 1994

3

Using invariants is an extremely useful technique. Even when they are not
stated in the program text, think in terms of invariants when you analyze a
program.

The invariant in the producer code that is expressed as a comment is always
true whenever a thread is in the part of the code where the comment appears.
If you move this comment to just after the mutex_unlock (), this does not
necessarily remain true. If you move this comment to just after the assert ,
this is still true.

The point is that this invariant expresses a property that is true at all times,
except when either a producer or a consumer is changing the state of the
buffer. While a thread is operating on the buffer (under the protection of a
mutex), it might temporarily falsify the invariant. However, once the thread is
finished, the invariant should be true again.

Code Example 3-13 shows the code for the consumer. Its flow is symmetric
with that of the producer.

Code Example 3-13 The Producer/Consumer Problem—the Consumer

char consumer(buffer_t *b) {
char item;
mutex_lock(&b->mutex);
while(b->occupied <= 0)
cond_wait(&b->more, &b->mutex);

assert(b->occupied > 0);

item = b->buf[b->nextout++];
b->nextout %= BSIZE;
b->occupied--;

/* now: either b->occupied > 0 and b->nextout is the index
of the next occupied slot in the buffer, or
b->occupied == 0 and b->nextout is the index of the next
(empty) slot that will be filled by a producer (such as
b->nextout == b->nextin) */

cond_signal(&b->less);
mutex_unlock(&b->mutex);

return(item);

Programming With Synchronization Objects 59

3

Multiple-Readers, Single-Writer Locks

Readers/Writer locks allow simultaneous read access by many threads while
restricting write access to only one thread at a time.

Table 3-3 Routines for Readers/Writer Locks

Routine Operation Page

rwlock_init(3T) Initialize a Readers/Writer Lock page 61
rw_rdlock(3T) Acquire a Read Lock page 62
rw_tryrdlock(3T) Try to Acquire a Read Lock page 62
rw_wrlock(3T) Acquire a Write Lock page 63
rw_trywrlock(3T) Try to Acquire a Write Lock page 64
rw_unlock(3T) Unlock a Readers/Writer Lock page 64
rwlock_destroy(3T) Destroy Readers/Writer Lock State page 65

When any thread holds the lock for reading, other threads can also acquire the
lock for reading but must wait to acquire the lock for writing. If one thread
holds the lock for writing, or is waiting to acquire the lock for writing, other
threads must wait to acquire the lock for either reading or writing.

Readers/Writer locks are slower than mutexes, but can improve performance
when they protect data that are not frequently written but that are read by
many concurrent threads.

Use readers/writer locks to synchronize threads in this process and other
processes by allocating them in memory that is writable and shared among the
cooperating processes (see mmayg2)) and by initializing them for this behavior.

By default, the acquisition order is not defined when multiple threads are
waiting for a readers/writer lock. However, to avoid writer starvation, the
Solaris threads package tends to favor writers over readers.

Readers/Writer locks must be initialized before use.

60 Multithreaded Programming Guide—August 1994

w
1]

Initialize a Readers/Writer Lock

rwlock_init ~ (3T)

#include <synch.h> (or #include <thread.h>)

int rwlock_init(rwlock_t * rwlp, int type, void * arg);

Use rwlock_init () to initialize the readers/writer lock pointed to by rwlip
and to set the lock state to unlocked. type can be one of the following (note that
arg is currently ignored).

USYNC_PROCESSThe readers/writer lock can be used to synchronize
threads in this process and other processes. arg is ignored.

USYNC_THREADThe readers/writer lock can be used to synchronize
threads in this process, only. arg is ignored.

Multiple threads must not initialize the same readers/writer lock
simultaneously. Readers/Writer locks can also be initialized by allocation in
zeroed memory, in which case a type of USYNC_THREADB assumed. A
readers/writer lock must not be reinitialized while other threads might be
using it.

Return Values — rwlock_init () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument

EFAULT rwlp or arg points to an illegal address.

Programming With Synchronization Objects 61

62

Acquire a Read Lock

rw_rdlock (3T)

#include <synch.h> (or #include <thread.h>)

int rw_rdlock(rwlock_t * rwip);

Use rw_rdlock () to acquire a read lock on the readers/writer lock pointed to
by rwip. When the readers/writer lock is already locked for writing, the calling
thread blocks until the write lock is released. Otherwise, the read lock is
acquired.

Return Values — rw_rdlock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.
EFAULT rwlp points to an illegal address.

Try to Acquire a Read Lock

rw_tryrdlock (3T)

#include <synch.h> (or #include <thread.h>)

int rw_tryrdlock(rwlock_t * rwip);

Use rw_tryrdlock () to attempt to acquire a read lock on the readers/writer
lock pointed to by rwlp. When the readers/writer lock is already locked for
writing, it returns an error. Otherwise, the read lock is acquired.

Return Values — rw_tryrdlock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

Multithreaded Programming Guide—August 1994

w
1]

EINVAL Invalid argument.
EFAULT rwlp points to an illegal address.

EBUSY The readers/writer lock pointed to by rwlp was already locked.
Acquire a Write Lock

rw_wrlock (3T)

#include <synch.h> (or #include <thread.h>)

int rw_wrlock(rwlock_t * rwip);

Use rw_wrlock () to acquire a write lock on the readers/writer lock pointed to
by rwlp. When the readers/writer lock is already locked for reading or writing,
the calling thread blocks until all the read locks and write locks are released.
Only one thread at a time can hold a write lock on a readers/writer lock.

Return Values — rw_wrlock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT rwlp points to an illegal address.

Programming With Synchronization Objects 63

64

Try to Acquire a Write Lock

rw_trywrlock (3T)

#include <synch.h> (or #include <thread.h>)

int rw_trywrlock(rwlock_t * rwip);

Use rw_trywrlock () to attempt to acquire a write lock on the readers/writer
lock pointed to by rwlp. When the readers/writer lock is already locked for
reading or writing, it returns an error.

Return Values — rw_trywrlock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.
EFAULT rwlp points to an illegal address.
EBUSY The readers/writer lock pointed to by rwlp was already locked.

Unlock a Readers/Writer Lock

rw_unlock (3T)

#include <synch.h> (or #include <thread.h>)

int rwlock_tryrdlock(rwlock_t * rwip);

Use rw_unlock () to unlock a readers/writer lock pointed to by rwlp. The
readers/writer lock must be locked and the calling thread must hold the lock
either for reading or writing. When any other threads are waiting for the
readers/writer lock to become available, one of them is unblocked.

Multithreaded Programming Guide—August 1994

3

Return Values — rw_unlock () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT rwlp points to an illegal address.

Destroy Readers/Writer Lock State

rwlock_destroy (3T)

#include <synch.h> (or #include <thread.h>)

int rwlock_destroy(rwlock_t * rwip);

Use rwlock_destroy () to destroy any state associated with the
readers/writer lock pointed to by rlwp. The space for storing the
readers/writer lock is not freed.

Return Values — rwlock_destroy () returns zero after completing
successfully. Any other returned value indicates that an error occurred. When
any of the following conditions occur, the function fails and returns the
corresponding value.

EINVAL Invalid argument.

EFAULT rwlp points to an illegal address.

Programming With Synchronization Objects 65

i
w

Semaphores

66

Code Example 3-14 uses a bank account to demonstrate readers/writer locks.
While the program could allow multiple threads to have concurrent read-only
access to the account balance, only a single writer is allowed. Note that the
get_balance () function needs the lock to ensure that the addition of the
checking and saving balances occurs atomically.

Code Example 3-14 Read/Write Bank Account

rwlock_t account_lock;
float checking_balance = 100.0;
float saving_balance = 100.0;

rwlock_init(&account_lock, 0, NULL);
float
get_balance() {

float bal;

rw_rdlock(&account_lock);

bal = checking_balance + saving_balance;
rw_unlock(&account_lock);

return(bal);

}

void

transfer_checking_to_savings(float amount) {
rw_wrlock(&account_lock);
checking_balance = checking_balance - amount;
savings_balance = savings_balance + amount;
rw_unlock(&account_lock);

Semaphores are a programming construct designed by E. W. Dijkstra in the late
1960s. Dijkstra’s model was the operation of railroads: consider a stretch of
railroad in which there is a single track over which only one train at a time is
allowed.

Multithreaded Programming Guide—August 1994

3

Guarding this track is a semaphore. A train must wait before entering the
single track until the semaphore is in a state that permits travel. When the train
enters the track, the semaphore changes state to prevent other trains from
entering the track. A train that is leaving this section of track must again
change the state of the semaphore to allow another train to enter.

In the computer version, a semaphore appears to be a simple integer. A thread
waits for permission to proceed and then signals that it has proceeded by
performing a P operation on the semaphore.

The semantics of the operation are such that the thread must wait until the
semaphore’s value is positive, then change the semaphore’s value by
subtracting one from it. When it is finished, the thread performs a V operation,
which changes the semaphore’s value by adding one to it. It is crucial that
these operations take place atomically—they cannot be subdivided into pieces
between which other actions on the semaphore can take place. In the P
operation, the semaphore’s value must be positive just before it is decremented
(resulting in a value that is guaranteed to be nonnegative and one less than
what it was before it was decremented).

In both P and V operations, the arithmetic must take place without
interference. If two V operations are performed simultaneously on the same
semaphore, the net effect should be that the semaphore’s new value is two
greater than it was.

The mnemonic significance of P and V is lost on most of the world, as Dijkstra
is Dutch. However, in the interest of true scholarship: P stands for prolagen, a
made-up word derived from proberen te verlagen, which means try to decrease. V
stands for verhogen, which means increase. This is discussed in one of Dijkstra’s
technical notes, EWD 74.

sema_wait (3T) and sema_post (3T) correspond to Dijkstra’s P and V
operations. sema_trywait (3T) is a conditional form of the P operation: if the
calling thread cannot decrement the value of the semaphore without waiting,
the call returns immediately with a nonzero value.

There are two basic sorts of semaphores: binary semaphores, which never take
on values other than zero or one, and counting semaphores, which can take on
arbitrary nonnegative values. A binary semaphore is logically just like a mutex.

However, although it is not enforced, mutexes should be unlocked only by the
thread holding the lock. There is no notion of “the thread holding the
semaphore,” so any thread can perform a V (or sema_post (3T)) operation.

Programming With Synchronization Objects 67

68

Counting semaphores are about as powerful as conditional variables (used in

conjunction with mutexes). In many cases, the code might be simpler when it is
implemented with counting semaphores rather than with condition variables

(as shown in the next few examples).

However, when a mutex is used with condition variables, there is an implied
bracketing—it is clear which part of the program is being protected. This is not
necessarily the case for a semaphore, which might be called the go to of
concurrent programming—it is powerful but too easy to use in an
unstructured, unfathomable way.

Counting Semaphores

Conceptually, a semaphore is a non-negative integer count. Semaphores are
typically used to coordinate access to resources, with the semaphore count
initialized to the number of free resources. Threads then atomically increment
the count when resources are added and atomically decrement the count when
resources are removed.

When the semaphore count becomes zero, indicating that no more resources
are present, threads trying to decrement the semaphore block until the count
becomes greater than zero.

Table 3-4 Routines for Semaphores

Routine Operation Page

sema_init(3T) Initialize a Semaphore page 69
sema_post(3T) Increment a Semaphore page 70
sema_wait(3T) Block on a Semaphore Count page 70
sema_trywait(3T) Decrement a Semaphore Count page 71
sema_destroy(3T) Destroy the Semaphore State page 72

Because semaphores need not be acquired and released by the same thread,
they can be used for asynchronous event notification (such as in signal
handlers). And, because semaphores contain state, they can be used
asynchronously without acquiring a mutex lock as is required by condition
variables. However, semaphores are not as efficient as mutex locks.

By default, there is no defined order of unblocking if multiple threads are
waiting for a semaphore.

Multithreaded Programming Guide—August 1994

w
1]

Semaphores must be initialized before use.
Initialize a Semaphore

sema_init (3T)

#include <synch.h> (or #include <thread.h>)

int sema_init(sema_t * sp, unsigned int count,int type, void * arg);

Use sema_init () to initialize the semaphore variable pointed to by sp by count
amount. type can be one of the following (note that arg is currently ignored).

USYNC_PROCESSThe semaphore can be used to synchronize threads in
this process and other processes. Only one process should initialize the
semaphore. arg is ignored.

USYNC_THREADThe semaphore can be used to synchronize threads in this
process, only. arg is ignored.

Multiple threads must not initialize the same semaphore simultaneously. A
semaphore must not be reinitialized while other threads may be using it.

Return Values — sema_init () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT sp or arg points to an illegal address.

Programming With Synchronization Objects 69

70

Increment a Semaphore

sema_post (3T)

#include <synch.h> (or #include <thread.h>)

int sema_destroy(sema_t * sp)

Use sema_post () to atomically increment the semaphore pointed to by sp.
When any threads are blocked on the semaphore, one is unblocked.

Return Values — sema_post () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.

EFAULT sp points to an illegal address.
Block on a Semaphore Count

sema_wait (3T)

#include <synch.h> (or #include <thread.h>)

int sema_destroy(sema_t * sp)

Use sema_wait () to block the calling thread until the count in the semaphore
pointed to by sp becomes greater than zero, then atomically decrement it.

Multithreaded Programming Guide—August 1994

3

Return Values — sema_wait () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.
EFAULT sp points to an illegal address.

EINTR The wait was interrupted by a signal or a fork ().
Decrement a Semaphore Count

sema_trywait (3T)

#include <synch.h> (or #include <thread.h>)

int sema_destroy(sema_t * sp)

Use sema_trywait () to atomically decrement the count in the semaphore
pointed to by sp when the count is greater than zero. This function is a
nonblocking version of sema_wait ().

Return Values — sema_trywait () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.
EFAULT sp points to an illegal address.

EBUSY The semaphore pointed to by sp has a zero count.

Programming With Synchronization Objects 71

i
w

Destroy the Semaphore State

sema_destroy (3T)

#include <synch.h> (or #include <thread.h>)

int sema_destroy(sema_t * sp)

Use sema_destroy () to destroy any state associated with the semaphore
pointed to by sp. The space for storing the semaphore is not freed.

Return Values — sema_destroy () returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

EINVAL Invalid argument.
EFAULT sp points to an illegal address.

72 Multithreaded Programming Guide—August 1994

w
1]

The Producer/Consumer Problem, Using Semaphores

The data structure in Code Example 3-15 is similar to that used for the solution
with condition variables; two semaphores represent the number of full and
empty buffers and ensure that producers wait until there are empty buffers
and that consumers wait until there are full buffers.

Code Example 3-15 The Producer/Consumer Problem With Semaphores

typedef struct {
char buf[BSIZE];
sema_t occupied;
sema_t empty;
int nextin;
int nextout;
sema_t pmut;
sema_t cmut;

} buffer_t;

buffer_t buffer;

sema_init(&buffer.occupied, 0, USYNC_THREAD, 0);
sema_init(&buffer.empty, BSIZE, USYNC_THREAD, 0);
sema_init(&buffer.pmut, 1, USYNC_THREAD, 0);
sema_init(&buffer.cmut, 1, USYNC_THREAD, 0);
buffer.nextin = buffer.nextout = 0;

Another pair of (binary) semaphores plays the same role as mutexes,
controlling access to the buffer when there are multiple producers and multiple
empty buffer slots, and when there are multiple consumers and multiple full
buffer slots. Mutexes would work better here, but would not provide as good
an example of semaphore use.

Programming With Synchronization Objects 73

i
w

Code Example 3-16 The Producer/Consumer Problem—the Producer

void producer(buffer_t *b, char item) {
sema_wait(&b->empty);

sema_wait(&b->pmut);
b->buf[b->nextin] = item;
b->nextin++;

b->nextin %= BSIZE;

sema_post(&b->pmut);

sema_post(&b->occupied);

Code Example 3-17 The Producer/Consumer Problem—the Consumer

char consumer(buffer_t *b) {
char item;

sema_wait(&b->occupied);
sema_wait(&b->cmut);
item = b->buf[b->nextout];
b->nextout++;

b->nextout %= BSIZE;
sema_post(&b->cmut);

sema_post(&b->empty);

return(item);

74 Multithreaded Programming Guide—August 1994

w
1]

Synchronization Across Process Boundaries

Each of the four synchronization primitives can be set up to be used across
process boundaries. This is done quite simply by ensuring that the
synchronization variable is located in a shared memory segment and by calling
the appropriate init routine with type set to USYNC_PROCESH this has been
done, then the operations on the synchronization variables work just as they
do when type is USYNC_THREAD

mutex_init(&m, USYNC_PROCESS, 0);
rwlock_init(&rw, USYNC_PROCESS, 0);
cond_init(&cv, USYNC_PROCESS, 0);

sema_init(&s, count, USYNC_PROCESS, 0);

Code Example 3-18 shows the producer/consumer problem with the producer
and consumer in separate processes. The main routine maps zero-filled
memory (that it shares with its child process) into its address space. Note that
mutex_init () and cond_init () must be called because the type of the
synchronization variables is USYNC_PROCESS

A child process is created that runs the consumer. The parent runs the
producer.

This example also shows the drivers for the producer and consumer. The
producer_driver () simply reads characters from stdin and calls

producer (). The consumer_driver () gets characters by calling consumer ()
and writes them to stdout

Programming With Synchronization Objects 75

76

Code Example 3-18 The Producer/Consumer Problem, Using USYNC_PROCESS

main() {
int zfd;
buffer_t *buffer;

zfd = open(“/dev/zero”, O_RDWR);

buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),
PROT_READ|PROT_WRITE, MAP_SHARED, zfd, 0);

buffer->occupied = buffer->nextin = buffer->nextout = 0;

mutex_init(&buffer->lock, USYNC_PROCESS, 0);
cond_init(&buffer->less, USYNC_PROCESS, 0);
cond_init(&buffer->more, USYNC_PROCESS, 0);
if (fork() == 0)

consumer_driver(buffer);
else

producer_driver(buffer);

}

void producer_driver(buffer_t *b) {
int item;

while (1) {
item = getchar();
if (item == EOF) {
producer(b, \0);
break;
} else
producer(b, (char)item);
}
}

void consumer_driver(buffer_t *b) {
char item;

while (1) {
if ((item = consumer(b)) =="\0")
break;
putchar(item);
}
}

A child process is created to run the consumer; the parent runs the producer.

Multithreaded Programming Guide—August 1994

w
1]

Comparing Primitives

The most basic synchronization primitive in Solaris threads is the mutual
exclusion lock. So, it is the most efficient mechanism in both memory use and
execution time. The basic use of a mutual exclusion lock is to serialize access to
a resource.

The next most efficient primitive in Solaris threads is the condition variable.
The basic use of a condition variable is to block on a change of state.
Remember that a mutex lock must be acquired before blocking on a condition
variable and must be unlocked after returning from cond_wait () and after
changing the state of the variable.

The semaphore uses more memory than the condition variable. It is easier to
use in some circumstances because a semaphore variable functions on state
rather than on control. Unlike a lock, a semaphore does not have an owner.
Any thread can increment a semaphore that has blocked.

The readers/writer lock is the most complex Solaris threads synchronization
mechanism. This means that the readers/writer lock is most efficiently used
with a much coarser granularity than is effective with the other
synchronization primitives. A readers/writer lock is basically used with a
resource whose contents are searched more often than they are changed.

Programming With Synchronization Objects 77

78

Multithreaded Programming Guide—August 1994

Programming With the Operating
System 4

This chapter describes how multithreading interacts with the Solaris operating
system and how the operating system has changed to support multithreading.

Processes—Changes for Multithreading page 79
Alarms, Interval Timers, and Profiling page 81
Nonlocal Goto—setjmp(3C) and longjmp(3C) page 82
Resource Limits page 82
LWPs and Scheduling Classes page 82
Extending Traditional Signals page 86
1/O Issues page 96

Processes—Changes for Multithreading

Duplicating Parent Threads

fork (2)

With the fork (2) and fork1l (2) functions, you can choose between duplicating
all parent threads in the child or only one parent thread in the child.

The fork () function duplicates the address space and all the threads (and
LWPs) in the child. This is useful, for example, when the child process never
calls exec (2) but does use its copy of the parent address space.

79

80

To illustrate, think about a thread in the parent process—other than the one
that called fork ()—that has locked a mutex. This mutex is copied into the
child process in its locked state, but no thread is copied over to unlock the
mutex. So, any thread in the child that tries to lock the mutex waits forever. To
avoid this sort of situation, use fork () to duplicate all the threads in the
process.

Note that when one thread in a process calls fork (), threads blocked in an
interruptible system call will return EINTR.

forkl (2)

The forkl (2)! function duplicates the complete address space in the child but
duplicates only the thread that called forkl (). This is useful when the child
process immediately calls exec (), which is what happens after most calls to
fork (). In this case, the child process does not need a duplicate of any thread
other than the one that called fork (2).

Do not call any library functions after calling forkl () and before calling
exec ()—one of the library functions might use a lock that is held by more than
one thread.

Cautions for Both fork (2) and forkl (2)

For both fork () and forkl (), be careful when you use global state after a call
to either.

For example, when one thread reads a file serially and another thread in the
process successfully calls fork (), each process then contains a thread that is
reading the file. Because the seek pointer for a file descriptor is shared after a
fork (), the thread in the parent gets some data while the thread in the child
gets the rest.

-

. Terminology will probably change when POSIX 1003.4a is adopted. What is currently called fork (2) will be
called forkall (), and what is called fork1 (2) will be called fork (). Also added in POSIX is the idea of the
“fork cleanup handler”— you can call pthread_atfork () to register three functions to be called,
respectively, just before the fork () takes place, and just after the fork () in both the parent and the child
processes. These routines are to clean up locks and so on, although this is necessary only with the version of
fork () that creates only one thread in the child process.

Multithreaded Programming Guide—August 1994

4

Also for both fork () and fork1l (), be careful not to create locks that are held
by both the parent and child processes. This can happen when locks are
allocated in memory that is sharable (that is mmay§2)’ed with the MAP_SHARED
flag).

vfork (2)

vfork (2) is like fork 1() in that only the calling thread is copied in the child
process. As in nonthreaded implementations, vfork () does not copy the
address space for the child process.

Be careful that the thread in the child process does not change memory before
it calls exec (2). Remember that vfork () gives the parent address space to the
child. The parent gets its address space back after the child calls exec () or
exits. It is important that the child not change the state of the parent.

For example, it is dangerous to create new threads between the call to vfork ()
and the call to exec ().

Executing Files and Terminating Processes

exec (2) and exit (2)

Both the exec (2) and exit (2) system calls work as they do in single-thread
processes except that they destroy all the threads in the address space. Both
calls block until all the execution resources (and so all active threads) are
destroyed.

When exec () rebuilds the process, it creates a single LWP. The process startup
code builds the initial thread. As usual, if the initial thread returns it calls
exit () and the process is destroyed.

When all the threads in a process exit, the process itself exits with a status of
zero.

Alarms, Interval Timers, and Profiling
Each LWP has a unique realtime interval timer and alarm that a thread bound

to the LWP can use. The timer or alarm delivers one signal to the thread when
the timer or alarm expires.

Programming With the Operating System 81

Il
I

Each LWP also has a virtual time or profile interval timer that a thread bound
to the LWP can use. When the interval timer expires, either SIGVTALRMor
SIGPROF as appropriate, is sent to the LWP that owns the interval timer.

You can profile each LWP with profil (2), giving each LWP its own buffer or
sharing buffers between LWPs. Profiling data is updated at each clock tick in
LWP user time. The profile state is inherited from the creating LWP.

Nonlocal Goto—setjmp (3C) and longjmp (3C)

Resource Limits

The scope of setimp () and longjmp () is limited to one thread, which is fine
most of the time. However, this does mean that a thread that handles a signal
can longjmp () only when setimp () is performed in the same thread.

Resource limits are set on the entire process and are determined by adding the
resource use of all threads in the process. When a soft resource limit is
exceeded, the offending thread is sent the appropriate signal. The sum of the
resource use in the process is available through getrusage (3B).

LWPs and Scheduling Classes

82

The Solaris kernel has three classes of process scheduling. The highest priority
scheduling class is realtime (RT). The middle priority scheduling class is
system . The system scheduling class cannot be applied to a user process. The
lowest priority scheduling class is timeshare (TS), which is also the default
class.

Scheduling class is maintained for each LWP. When a process is created, the
initial LWP inherits the scheduling class and priority of the parent process. As
more LWPs are created to run unbound threads, they also inherit this
scheduling class and priority. All unbound threads in a process have the same
scheduling class and priority.

Each scheduling class maps the priority of the LWP it is scheduling to an
overall dispatching priority according to the configurable priority of the
scheduling class.

Multithreaded Programming Guide—August 1994

4

Bound threads have the scheduling class and priority of their underlying
LWPs. Each bound thread in a process can have a unique scheduling class and
priority that is visible to the kernel. Bound threads are scheduled with respect
to all other LWPs in the system.

The scheduling class is set by priocntl (2). How you specify the first two
arguments determines whether just the calling LWP or all the LWPs of one or
more processes are affected. The third argument of priocntl () is the
command, which can be one of the following.

® PC_GETCID—Get the class ID and class attributes for a specific class.
® PC_GETCLINFG-Get the class name and class attributes for a specific class.

® PC_GETPARMSGet the class identifier and the class-specific scheduling
parameters of a process, an LWP with a process, or a group of processes.

®* PC_SETPARMS Set the class identifier and the class-specific scheduling
parameters of a process, an LWP with a process, or a group of processes.

Use priocntl () only on bound threads. To affect the priority of unbound
threads, use thr_setprio (3T).

Timeshare Scheduling

Timeshare scheduling fairly distributes the processing resource to the set of
processes. Other parts of the kernel can monopolize the processor for short
intervals without degrading response time as seen by the user.

The priocntl (2) call sets the nice (2) level of one or more processes.
priocntl () affects the nice () level of all the timesharing class LWPs in the
process. The nice () level ranges from 0 to +20 normally and from -20 to +20
for processes with superuser privilege. The lower the value, the higher the
priority.

The dispatch priority of time-shared LWPs is calculated from the instantaneous
CPU use rate of the LWP and from its nice () level. The nice () level indicates
the relative priority of the processes to the timeshare scheduler. LWPs with a
greater nice () value get a smaller, but nonzero, share of the total processing.
An LWP that has received a larger amount of processing is given lower priority
than one that has received little or no processing.

Programming With the Operating System 83

84

Realtime Scheduling

The realtime class (RT) can be applied to a whole process or to one or more
LWPs in a process. This requires superuser privilege. Unlike the nice (2) level
of the timeshare class, LWPs that are classified realtime can be assigned
priorities either individually or jointly. A priocntl (2) call affects the
attributes of all the realtime LWPs in the process.

The scheduler always dispatches the highest-priority realtime LWP. It preempts
a lower-priority LWP when a higher-priority LWP becomes runnable. A
preempted LWP is placed at the head of its level queue. A realtime LWP retains
control of a processor until it is preempted, it suspends, or its realtime priority
is changed. LWPs in the RT class have absolute priority over processes in the
TS class.

A new LWP inherits the scheduling class of the parent process or LWP. An RT
class LWP inherits the parent’s time slice, whether finite or infinite. An LWP
with a finite time slice runs until it terminates, blocks (for example, to wait for
an 1/0 event), is preempted by a higher-priority runnable realtime process, or
the time slice expires. An LWP with an infinite time slice ceases execution only
when it terminates, blocks, or is preempted.

LWP Scheduling and Thread Binding

The threads library automatically adjusts the number of LWPs in the pool used
to run unbound threads. Its objectives are:

® To prevent the program from being blocked by a lack of unblocked LWPs

For example, if there are more runnable unbound threads than LWPs and all
the active threads block in the kernel in indefinite waits (such as reading a
tty), the process cannot progress until a waiting thread returns.

®* To make efficient use of LWPs

For example, if the library creates one LWP for each thread, many LWPs will
usually be idle and the operating system is overloaded by the resource
requirements of the unused LWPs.

Keep in mind that LWPs are time-sliced, not threads. This means that when
there is only one LWP there is no time slicing within the process—threads run
on the LWP until they block (through interthread synchronization), are
preempted, or terminate.

Multithreaded Programming Guide—August 1994

4

You can assign priorities to threads with thr_setprio (3T): lower-priority
unbound threads are assigned to LWPs only when no higher-priority unbound
threads are available. Bound threads, of course, do not compete for LWPs
because they have their own.

Bind threads to your LWPs to get precise control over whatever is being
scheduled. This control is not possible when many unbound threads compete
for an LWP.

Realtime threads are useful for getting a quick response to external stimuli.
Consider a thread used for mouse tracking that must respond instantly to
mouse clicks. By binding the thread to an LWP, you guarantee that there is an
LWP available when it is needed. By assigning the LWP to the realtime
scheduling class, you ensure that the LWP is scheduled quickly in response to
mouse clicks.

SIGWAITING—Creating LWPs for Waiting Threads

The library usually ensures that there are enough LWPs in its pool for a
program to proceed. When all the LWPs in the process are blocked in indefinite
waits (such as blocked reading from a tty or network), the operating system
sends the new signal, SIGWAITING, to the process. This signal is handled by
the threads library. When the process contains a thread that is waiting to run, a
new LWP is created and the appropriate waiting thread is assigned to it for
execution.

The SIGWAITING mechanism does not ensure that an additional LWP is
created when one or more threads are compute bound and another thread
becomes runnable. A compute-bound thread can prevent multiple runnable
threads from being started because of a shortage of LWPs. This can be
prevented by calling thr_setconcurrency (3T) or by using THR_NEW_LWin
calls to thr_create (3T).

Aging LWPs

When the number of active threads is reduced, some of the LWPs in the pool
are no longer needed. When there are more LWPs than active threads, the

threads library destroys the unneeded ones. The library ages LWPs—they are
deleted when they are unused for a “long” time, currently set at five minutes.

Programming With the Operating System 85

A

Extending Traditional Signals

86

The traditional UNIX signal model is extended to threads in a fairly natural
way. The disposition of signals is established process-wide, using the
traditional mechanisms (signal (2), sigaction (2), and so on).

When a signal handler is marked SIG_DFL or SIG_IGN, the action on receipt
of the signal (exit, core dump, stop, continue, or ignore) is performed on the
entire receiving process, affecting all threads in the process. See signal (5) for
basic information about signals.

Each thread has its own signal mask. This lets a thread block some signals
while it uses memory or other state that is also used by a signal handler. All
threads in a process share the set of signal handlers set up by sigaction (2)
and its variants, as usual.

A thread in one process cannot send a signal to a specific thread in another
process. A signal sent by kill (2) or sigsend (2) is to a process and is handled
by any one of the receptive threads in the process.

Unbound threads cannot use alternate signal stacks. A bound thread can use
an alternate stack because the state is associated with the execution resource.
An alternate stack must be enabled for the signal through sigaction (2), and
declared and enabled through sigaltstack (2).

An application can have per-thread signal handlers based on the per-process
signal handlers. One way is for the process-wide signal handler to use the
identifier of the thread handling the signal as an index into a table of per-
thread handlers. Note that there is no thread zero.

Signals are divided into two categories: traps and exceptions (synchronous
signals) and interrupts (asynchronous signals).

As in traditional UNIX, if a signal is pending, additional occurrences of that
signal have no additional effect—a pending signal is represented by a bit, not a
counter.

As is the case with single-threaded processes, when a thread receives a signal
while blocked in a system call, the thread might return early, either with the
EINTR error code, or, in the case of 1/0 calls, with fewer bytes transferred than
requested.

Multithreaded Programming Guide—August 1994

4

Of particular importance to multithreaded programs is the effect of signals on
cond_wait (3T). This call usually returns in response to a cond_signal (3T) or
a cond_broadcast (3T), but, if the waiting thread receives a UNIX signal, it
returns with the error code EINTR. See “Interrupted Waits on Condition
Variables” on page 94 for more information.

Synchronous Signals

Traps (such as SIGILL , SIGFPE, SIGSEGV result from something a thread
does to itself, such as dividing by zero or explicitly sending itself a signal. A
trap is handled only by the thread that caused it. Several threads in a process
can generate and handle the same type of trap simultaneously.

Extending the idea of signals to individual threads is easy for synchronous
signals—the signal is dealt with by the thread that caused the problem.
However, if the thread has not chosen to deal with the problem, such as by
establishing a signal handler with sigaction (2), the entire process is
terminated.

Because such a synchronous signal usually means that something is seriously
wrong with the whole process, and not just with a thread, terminating the
process is often a good choice.

Asynchronous Signals

Interrupts (such as SIGINT and SIGIO) are asynchronous with any thread and
result from some action outside the process. They might be signals sent
explicitly by other threads, or they might represent external actions such as a
user typing Control-c. Dealing with asynchronous signals is more complicated
than dealing with synchronous signals.

An interrupt can be handled by any thread whose signal mask allows it. When
more than one thread is able to receive the interrupt, only one is chosen.

When multiple occurrences of the same signal are sent to a process, then each
occurrence can be handled by a separate thread, as long as threads are
available that do not have it masked. When all threads have the signal masked,
then the signal is marked pending and the first thread to unmask the signal
handles it.

Programming With the Operating System 87

88

Continuation Semantics

Continuation semantics are the traditional way to deal with signals. The idea is
that when a signal handler returns, control resumes where it was at the time of
the interruption. This is well suited for asynchronous signals in single-
threaded processes, as shown in Code Example 4-1. This is also used as the
exception-handling mechanism in some programming languages, such as
PL/1.

Code Example 4-1 Continuation Semantics

unsigned int nestcount;

unsigned int A(int i, int j) {
nestcount++;

if (i==0)
return(j+1)
else if (j==0)
return(A(i-1, 1));
else
return(A(i-1, A(, j-1)));
}

void sig(int i) {
printf(“nestcount = %d\n”, nestcount);

}

main() {
sigset(SIGINT, sig);
A(4,4);

}

Multithreaded Programming Guide—August 1994

AN
1]

New Operations on Signals

Several new signal operations for multithreaded programming have been
added to the operating system.

thr_sigsetmask (3T)

thr_sigsetmask (3T) does for a thread what sigprocmask (2) does for a
process—it sets the (thread’s) signal mask. When a new thread is created, its
initial mask is inherited from its creator.

Avoid using sigprocmask () in multithreaded programs because it sets the
signal mask of the underlying LWP, and the thread that is affected by this can
change over time.

Unlike sigprocmask (), thr_sigsetmask () is relatively inexpensive to call
because it does not generally cause a system call, as does sigprocmask ().

thr_kill (3T)
thr_Kill (3T) is the thread analog of kill (2)—it sends a signal to a specific
thread.

This, of course, is different from sending a signal to a process. When a signal is
sent to a process, the signal can be handled by any thread in the process. A
signal sent by thr_Kill () can be handled only by the specified thread.

Note than you can use thr_kill () to send signals only to threads in the
current process. This is because the thread identifier (type thread_t) is local
in scope—it is not possible to name a thread in any process but your own.

sigwait (2)

sigwait (2) causes the calling thread to wait until any signal identified by its
set argument is delivered to the thread. While the thread is waiting, signals
identified by the set argument are unmasked, but the original mask is restored
when the call returns.

Use sigwait () to separate threads from asynchronous signals. You can create
one thread that is listening for asynchronous signals while your other threads
are created to block any asynchronous signals that might be set to this process.

Programming With the Operating System 89

90

When the signal is delivered, sigwait () clears the pending signal and returns
its number. Many threads can call sigwait () at the same time, but only one
thread returns for each signal that is received.

With sigwait () you can treat asynchronous signals synchronously—a thread
that deals with such signals simply calls sigwait () and returns as soon as a
signal arrives. By ensuring that all threads (including the caller of sigwait ())
have such signals masked, you can be sure that signals are handled only by the
intended handler and that they are handled safely.

Usually, you use sigwait () to create one or more threads that wait for signals.
Because sigwait () can retrieve even masked signals, be sure to block the
signals of interest in all other threads so they are not accidentally delivered.
When the signals arrive, a thread returns from sigwait (), handles the signal,
and waits for more signals. The signal-handling thread is not restricted to
using Async-Safe functions and can synchronize with other threads in the
usual way. (The Async-Safe category is defined in “MT Interface Safety Levels”
on page 103.)

Note — sigwait () should never be used with synchronous signals.

sigtimedwait (2)

sigtimedwait (2) is similar to sigwait (2) except that it fails and returns an
error when a signal is not received in the indicated amount of time.

Thread-Directed Signals

The UNIX signal mechanism is extended with the idea of thread-directed signals.
These are just like ordinary asynchronous signals, except that they are sent to a
particular thread instead of to a process.

Waiting for asynchronous signals in a separate thread can be safer and easier
than installing a signal handler and processing the signals there.

Multithreaded Programming Guide—August 1994

4

A better way to deal with asynchronous signals is to treat them synchronously.
By calling sigwait (2), discussed on page 89, a thread can wait until a signal
occurs.

Code Example 4-2 Asynchronous Signals and sigwait (2)

main() {
sigset_t set;
void runA(void);

sigemptyset(&set);

sigaddset(&set, SIGINT);

thr_sigsetmask(SIG_BLOCK, &set, NULL);
thr_create(NULL, O, runA, NULL, THR_DETACHED, NULL);

while (1) {
sigwait(&set);
printf(“nestcount = %d\n”, nestcount);
}
}

void runA() {
A(4,4);
exit(0);

}

This example modifies the code of Code Example 4-1: the main routine masks
the SIGINT signal, creates a child thread that calls the function A of the
previous example, and finally issues sigwait s to handle the SIGINT signal.

Note that the signal is masked in the compute thread because the compute
thread inherits its signal mask from the main thread. The main thread is
protected from SIGINT while, and only while, it is not blocked inside of
sigwait ().

Also, note that there is never any danger of having system calls interrupted
when you use sigwait ().

Programming With the Operating System 91

92

Completion Semantics

Another way to deal with signals is with completion semantics. Use completion
semantics when a signal indicates that something so catastrophic has happened
that there is no reason to continue executing the current code block. The signal
handler runs instead of the remainder of the block that had the problem. In
other words, the signal handler completes the block.

In Code Example 4-3, the block in question is the body of the then part of the
if statement. The call to setjimp (3C) saves the current register state of the
program in jouf and returns 0O—thereby executing the block.

Code Example 4-3 Completion Semantics

sigjmp_buf jbuf;

void mult_divide(void) {
inta, b, c, d;
void problem();

sigset(SIGFPE, problem);
while (1) {
if (sigsetjmp(&jbuf) == 0) {
printf(“Three numbers, please:\n");
scanf(“%d %d %d", &a, &b, &c);
d = a*b/c;
printf(“%d*%d/%d = %d\n”, a, b, c, d);
}
}
}

void problem(int sig) {
printf(“Couldn’t deal with them, try again\n”);
siglongjmp(&jbuf, 1);

}

If a SIGFPE (a floating-point exception) occurs, the signal handler is invoked.

The signal handler calls siglongjmp (3C), which restores the register state
saved in jbuf , causing the program to return from sigsetimp () again (among
the registers saved are the program counter and the stack pointer).

Multithreaded Programming Guide—August 1994

AN
1]

This time, however, sigsetimp (3C) returns the second argument of
siglongjmp (), which is 1. Notice that the block is skipped over, only to be
executed during the next iteration of the while loop.

Note that you can use sigsetimp (3C) and siglongjmp (3C) in multithreaded
programs, but be careful that a thread never does a siglongimp () using the
results of another thread’s sigsetimp() . Also, sigsetimp () and

siglongjmp () save and restore the signal mask, but setjimp (3C) and

longjmp (3C) do not. It is best to use sigsetimp () and siglongjmp () when
you work with signal handlers.

Completion semantics are often used to deal with exceptions. In particular, the
Ada® programming language uses this model.

Note — Remember, sigwait (2) should never be used with synchronous signals.

Signal Handlers and Async Safety

A concept similar to thread safety is async safety. Async-Safe operations are
guaranteed not to interfere with operations being interrupted.

The problem of async safety arises when the actions of a signal handler can
interfere with the operation being interrupted. For example, suppose a
program is in the middle of a call to printf (3S) and a signal occurs whose
handler itself calls printf (): the output of the two printf () statements would
be intertwined. To avoid this, the handler should not call printf () itself when
printf () might be interrupted by a signal.

This problem cannot be solved by using synchronization primitives because
any attempted synchronization between the signal handler and the operation
being synchronized would produce immediate deadlock.

For example, suppose that printf () is to protect itself by using a mutex. Now
suppose that a thread that is in a call to printf (), and so holds the lock on the
mutex, is interrupted by a signal. If the handler (being called by the thread that
is still inside of printf () itself calls printf (), the thread that holds the lock
on the mutex will attempt to take it again, resulting in an instant deadlock.

To avoid interference between the handler and the operation, either ensure that
the situation never arises (perhaps by masking off signals at critical moments)
or invoke only Async-Safe operations from inside signal handlers.

Programming With the Operating System 93

94

Because setting a thread’s mask is an inexpensive user-level operation, you can
inexpensively make functions or sections of code fit in the Async-Safe category.

Interrupted Waits on Condition Variables

When a signal is delivered to a thread while the thread is waiting on a
condition variable, the old convention (assuming that the process is not
terminated) is that interrupted calls return EINTR.

The ideal new condition would be that when cond