
SunOS Reference Manual

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

 1994 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This product and related documentation are protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form
by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX and Berkeley 4.3 BSD systems, licensed from UNIX Systems
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party
software, including font technology, in this product is protected by copyright and licensed from Sun’s Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR
52.227-19.

This product or the products described herein may be protected by one or more U.S., foreign patents, or pending
applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun Logo, SunSoft, Sun Microsystems Computer Corporation and Solaris, are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered trademark of
Novell, Inc., in the United States and other countries; X/Open Company, Ltd., is the exclusive licensor of such trademark.
OPEN LOOK is a registered trademark of Novell, Inc. All other product names mentioned herein are the trademarks of
their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC
International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic,
SPARCcluster, SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are
licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and
licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or
graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical
User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with
Sun’s written license agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Portions  AT&T 1983-1990 and reproduced with permission from AT&T.

Preface

OVERVIEW
A man page is provided for both the naive user, and sophisticated user who is
familiar with the SunOS operating system and is in need of on-line information.
A man page is intended to answer concisely the question “What does it do?”
The man pages in general comprise a reference manual. They are not intended
to be a tutorial.

The following contains a brief description of each section in the man pages and
the information it references:

· Section 1 describes, in alphabetical order, commands available with the
operating system.

· Section 1M describes, in alphabetical order, commands that are used chiefly
for system maintenance and administration purposes.

· Section 2 describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value.

· Section 3 describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in
Section 2 of this volume.

i

· Section 4 outlines the formats of various files. The C structure declarations
for the file formats are given where applicable.

· Section 5 contains miscellaneous documentation such as character set tables,
etc.

· Section 7 describes various special files that refer to specific hardware
peripherals, and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

· Section 9 provides reference information needed to write device drivers in
the kernel operating systems environment. It describes two device driver
interface specifications: the Device Driver Interface (DDI) and the
Driver–Kernel Interface (DKI).

· Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point
routines a developer may include in a device driver.

· Section 9F describes the kernel functions available for use by device drivers.

· Section 9S describes the data structures used by drivers to share
information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual
section generally follow this order, but include only needed headings. For
example, if there are no bugs to report, there is no BUGS section. See the intro
pages for more information and detail about each section, and man(1) for more
information about man pages in general.

NAME
This section gives the names of the commands or functions documented,
followed by a brief description of what they do.

SYNOPSIS
This section shows the syntax of commands or functions. When a command or
file does not exist in the standard path, its full pathname is shown. Literal
characters (commands and options) are in bold font and variables (arguments,
parameters and substitution characters) are in italic font. Options and
arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

ii

The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

. . . Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example,
‘filename . . .’.

| Separator. Only one of the arguments separated by this character can
be specified at time.

PROTOCOL
This section occurs only in subsection 3R to indicate the protocol description
file. The protocol specification pathname is always listed in bold font.

AVAILABILITY
This section briefly states any limitations on the availabilty of the command.
These limitations could be hardware or software specific.

A specification of a class of hardware platform, such as x86 or SPARC, denotes
that the command or interface is applicable for the hardware platform specified.

In Section 1 and Section 1M, AVAILABILITY indicates which package contains
the command being described on the manual page. In order to use the
command, the specified package must have been installed with the operating
system. If the package was not installed, see pkgadd(1) for information on how
to upgrade.

MT-LEVEL
This section lists the MT-LEVEL of the library functions described in the
Section 3 manual pages. The MT-LEVEL defines the libraries’ ability to support
threads. See Intro(3) for more information.

DESCRIPTION
This section defines the functionality and behavior of the service. Thus it
describes concisely what the command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands, subcommands, requests, macros,
functions and such, are described under USAGE.

Preface iii

IOCTLS
This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctls(2) system call is called ioctls and
generates its own heading. IOCTLS for a specific device are listed alphabetically
(on the man page for that specific device). IOCTLS are used for a particular class
of devices all which have an io ending, such as mtio(7).

OPTIONS
This lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the
SYNOPSIS section. Possible arguments to options are discussed under the
option, and where appropriate, default values are supplied.

RETURN VALUES
If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a
function can return only constant values, such as 0 or −1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph describes the return
values of each function. Functions declared as void do not return values, so
they are not discussed in RETURN VALUES.

ERRORS
On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described
in a separate paragraph under the error code.

USAGE
This section is provided as a guidance on use. This section lists special rules,
features and commands that require in-depth explanations. The subsections
listed below are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

iv

EXAMPLES
This section provides examples of usage or of how to use a command or
function. Wherever possible a complete example including command line entry
and machine response is shown. Whenever an example is given, the prompt is
shown as

example%

or if the user must be super-user,

example#

Examples are followed by explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

ENVIRONMENT
This section lists any environment variables that the command or function
affects, followed by a brief description of the effect.

FILES
This section lists all filenames referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive
summary or explanation.

SEE ALSO
This section lists references to other man pages, in-house documentation and
outside publications.

DIAGNOSTICS
This section lists diagnostic messages with a brief explanation of the condition
causing the error. Messages appear in bold font with the exception of variables,
which are in italic font.

WARNINGS
This section lists warnings about special conditions which could seriously affect
your working conditions — this is not a list of diagnostics.

Preface v

NOTES
This section lists additional information that does not belong anywhere else on
the page. It takes the form of an aside to the user, covering points of special
interest. Critical information is never covered here.

BUGS
This section describes known bugs and wherever possible suggests
workarounds.

vi

SunOS 5.4 Special Files Intro (7)

NAME Intro, intro − introduction to special files

DESCRIPTION This section describes various special files that refer to specific hardware peripherals, and
device drivers. STREAMS (see intro(2)) software drivers, modules and the STREAMS-
generic set of ioctl(2) system calls are also described. The system provides drivers for a
variety of hardware devices, such as disk, magnetic tapes, serial communication lines,
mice and frame buffers, as well as virtual devices such as pseudo-terminals and win-
dows.

For hardware related files, the names of the entries are generally derived from names for
the hardware, as opposed to the names of the special files themselves. Characteristics of
both the hardware device and the corresponding device driver are discussed where
applicable.

Disk device file names are in the following format:

/dev/{r}dsk/c#t#d#s#

where r indicates a raw interface to the disk, the c# indicates the controller number, #t
indicates the SCSI target id, d# indicates the device attached to the controller and s# indi-
cates the section number of the partitioned device.

Protocols and
Protocol Families

SunOS supports both socket-based and STREAMS-based network communications. The
Internet protocol family, described in inet(7), is the primary protocol family primary sup-
ported by SunOS, although the system can support a number of others. The raw inter-
face provides low-level services, such as packet fragmentation and reassembly, routing,
addressing, and basic transport for socket-based implementations. Facilities for com-
municating using an Internet-family protocol are generally accessed by specifying the
AF_INET address family when binding a socket; see socket(3N) for details.

Major protocols in the Internet family include:

· The Internet Protocol (IP) itself, which supports the universal datagram format, as
described in ip(7). This is the default protocol for SOCK_RAW type sockets within the
AF_INET domain.

· The Transmission Control Protocol (TCP); see tcp(7). This is the default protocol for
SOCK_STREAM type sockets.

· The Address Resolution Protocol (ARP); see arp(7).

· The Internet Control Message Protocol (ICMP); see icmp(7).

SEE ALSO intro(2), ioctl(2), socket(3N), arp(7), icmp(7), inet(7), ip(7), tcp(7)

File System Administration

modified 8 Jan 1993 7-5

Intro (7) Special Files SunOS 5.4

Name Appears on Page Description

aha aha(7) low-level module for Adaptec 154x ISA host bus
adapters

ARP arp(7) Address Resolution Protocol
arp arp(7) Address Resolution Protocol
asy asy(7) asynchronous serial port driver
ata ata(7) AT attachment disk driver
audio audio(7) generic audio device interface
audioamd audioamd(7) telephone quality audio device
audiocs audiocs(7) Crystal Semiconductor 4231 audio Interface
bd bd(7) SunButtons and SunDials STREAMS module
be be(7) BigMAC Fast Ethernet device driver
bpp bpp(7) bi-directional parallel port driver
bufmod bufmod(7) STREAMS Buffer Module
bwtwo bwtwo(7) black and white memory frame buffer
cdio cdio(7) CD-ROM control operations
cgeight cgeight(7) 24-bit color memory frame buffer
cgfour cgfour(7) P4-bus 8-bit color memory frame buffer
cgfourteen cgfourteen(7) 24-bit color graphics device
cgsix cgsix(7) accelerated 8-bit color frame buffer
cgthree cgthree(7) 8-bit color memory frame buffer
cgtwelve cgtwelve(7) 24-bit SBus color memory frame buffer and graphics

accelerator
cgtwo cgtwo(7) color graphics interface
cmdk cmdk(7) common disk driver
cmtp cmtp(7) common tape driver
connld connld(7) line discipline for unique stream connections
console console(7) STREAMS-based console interface
dbri dbri(7) Dual Basic Rate ISDN and audio Interface
display display(7) system console display
dkio dkio(7) disk control operations
dlpi dlpi(7) Data Link Provider Interface
dpt dpt(7) DPT 2011, 2021, 2012 and 2022 low-level controller

modules
dsa dsa(7) low-level module for Dell SCSI Array Controller

(DSA)
eha eha(7) low-level module for Adaptec 174x EISA host bus

adapter
el el(7) 3COM 3C503 Ethernet device driver
elink elink(7) 3COM 3C507 Ethernet device driver
elx elx(7) 3COM EtherLink III Ethernet device driver
envm envm(7) EISA NVRAM support
esp esp(7) ESP SCSI Host Bus Adapter Driver
fbio fbio(7) frame buffer control operations

7-6 modified 8 Jan 1993

SunOS 5.4 Special Files Intro (7)

fd fd(7) drivers for floppy disks and floppy disk controllers
fdc fd(7) drivers for floppy disks and floppy disk controllers
fdio fdio(7) floppy disk control operations
gt gt(7) double buffered 24-bit SBus color frame buffer and

graphics accelerator
hdio hdio(7) SMD and IPI disk control operations
hsfs hsfs(7) High Sierra & ISO 9660 CD-ROM filesystem
ICMP icmp(7) Internet Control Message Protocol
icmp icmp(7) Internet Control Message Protocol
id ipi(7) IPI driver
ie ie(7) Intel 82586 Ethernet device driver
iee iee(7) Intel EtherExpress 16 Ethernet device driver
if if_tcp(7) general properties of Internet Protocol network

interfaces
if_tcp if_tcp(7) general properties of Internet Protocol network

interfaces
inet inet(7) Internet protocol family
IP ip(7) Internet Protocol
ip ip(7) Internet Protocol
ipd ppp(7) STREAMS modules and drivers for the Point-to-Point

Protocol
ipdcm ppp(7) STREAMS modules and drivers for the Point-to-Point

Protocol
ipdptp ppp(7) STREAMS modules and drivers for the Point-to-Point

Protocol
ipi3sc ipi(7) IPI driver
ipi ipi(7) IPI driver
is ipi(7) IPI driver
isdnio isdnio(7) ISDN interfaces
isp isp(7) ISP SCSI Host Bus Adapter Driver
kb kb(7) keyboard STREAMS module
kdmouse kdmouse(7) built-in mouse device interface
keyboard keyboard(7) system console keyboard
kmem mem(7) physical or virtual memory
kstat kstat(7) kernel statistics driver
ksyms ksyms(7) kernel symbols
ldterm ldterm(7) standard STREAMS terminal line discipline module
le le(7) Am7990 (LANCE) Ethernet device driver
lebuffer le(7) Am7990 (LANCE) Ethernet device driver
ledma le(7) Am7990 (LANCE) Ethernet device driver
leo leo(7) double-buffered 24-bit SBus color frame buffer and

graphics accelerator
llc1 llc1(7) Logical Link Control Protocol Class 1 Driver
lofs lofs(7) loopback virtual file system
log log(7) interface to STREAMS error logging and event tracing

modified 8 Jan 1993 7-7

Intro (7) Special Files SunOS 5.4

logi logi(7) LOGITECH Bus Mouse device interface
lp lp(7) driver for parallel port
mcis mcis(7) low-level module for IBM MicroChannel host bus

adapter
mcpp mcpp(7) ALM-2 Parallel Printer port driver
mcpzsa mcpzsa(7) ALM-2 Zilog 8530 SCC serial communications driver
mem mem(7) physical or virtual memory
mlx mlx(7) low-level module for Mylex DAC960 EISA host bus

adapter series
msm msm(7) Microsoft Bus Mouse device interface
mt mt(7) tape interface
mtio mtio(7) general magnetic tape interface
null null(7) the null file
openprom openprom(7) PROM monitor configuration interface
PCFS pcfs(7) DOS formatted file system
pcfs pcfs(7) DOS formatted file system
pckt pckt(7) STREAMS Packet Mode module
pe pe(7) Xircom Pocket Ethernet device driver
pfmod pfmod(7) STREAMS Packet Filter Module
pipemod pipemod(7) STREAMS pipe flushing module
pn ipi(7) IPI driver
ppp ppp(7) STREAMS modules and drivers for the Point-to-Point

Protocol
ppp_diag ppp(7) STREAMS modules and drivers for the Point-to-Point

Protocol
ptem ptem(7) STREAMS Pseudo Terminal Emulation module
ptm ptm(7) STREAMS pseudo-tty master driver
pts pts(7) STREAMS pseudo-tty slave driver
qe qe(7) QEC/MACE Ethernet device driver
qec qec(7) QEC bus nexus device driver
quotactl quotactl(7) manipulate disk quotas
sad sad(7) STREAMS Administrative Driver
sbpro sbpro(7) Sound Blaster Pro audio device
sd sd(7) driver for SCSI disk and CD-ROM devices
smc smc(7) SMC 8003/8013/8216 Ethernet device driver
smce smce(7) SMC 3032/EISA dual-channel Ethernet device driver
sockio sockio(7) ioctls that operate directly on sockets
st st(7) driver for SCSI tape devices
stc stc(7) Serial Parallel Communications driver for SBus
streamio streamio(7) STREAMS ioctl commands
TCP tcp(7) Internet Transmission Control Protocol
tcp tcp(7) Internet Transmission Control Protocol
tcx tcx(7) 24-bit SBus color memory frame buffer
termio termio(7) general terminal interface
termiox termiox(7) extended general terminal interface

7-8 modified 8 Jan 1993

SunOS 5.4 Special Files Intro (7)

ticlts ticlts(7) loopback transport providers
ticots ticlts(7) loopback transport providers
ticotsord ticlts(7) loopback transport providers
timod timod(7) Transport Interface cooperating STREAMS module
tirdwr tirdwr(7) Transport Interface read/write interface STREAMS

module
tmpfs tmpfs(7) memory based filesystem
tr tr(7) IBM 16/4 Token Ring Network Adapter device driver
ttcompat ttcompat(7) V7, 4BSD and XENIX STREAMS compatibility module
tty tty(7) controlling terminal interface
UDP udp(7) Internet User Datagram Protocol
udp udp(7) Internet User Datagram Protocol
visual_io visual_io(7) Solaris VISUAL I/O control operations
volfs volfs(7) Volume Management file system
vuid2ps2 vuidmice(7) converts mouse protocol to Firm Events
vuid3ps2 vuidmice(7) converts mouse protocol to Firm Events
vuidm3p vuidmice(7) converts mouse protocol to Firm Events
vuidm4p vuidmice(7) converts mouse protocol to Firm Events
vuidm5p vuidmice(7) converts mouse protocol to Firm Events
vuidmice vuidmice(7) converts mouse protocol to Firm Events
wscons wscons(7) workstation console
xd xd(7) disk driver for Xylogics 7053 SMD Disk Controller
xdc xd(7) disk driver for Xylogics 7053 SMD Disk Controller
xt xt(7) driver for Xylogics 472 1/2 inch tape controller
xy xy(7) disk driver for Xylogics 450 and 451 SMD Disk

Controllers
xyc xy(7) disk driver for Xylogics 450 and 451 SMD Disk

Controllers
zero zero(7) source of zeroes
zs zs(7) Zilog 8530 SCC serial communications driver
zsh zsh(7) On-board serial HDLC/SDLC interface

modified 8 Jan 1993 7-9

aha (7) Special Files SunOS 5.4

NAME aha − low-level module for Adaptec 154x ISA host bus adapters

AVAILABILITY x86

DESCRIPTION The aha module provides low-level interface routines between the common disk/tape
I/O subsystem and the Adaptec ISA bus master 154x SCSI (Small Computer System
Interface) controllers. The aha module can be configured for disk and streaming tape
support for one or more host adapter boards, each of which must be the sole initiator on
a SCSI bus. Auto configuration code determines if the adapter is present at the configured
address and what types of devices are attached to it.

Board Configuration
and Auto

Configuration

The driver attempts to initialize itself in accordance with the information found in the
configuration file, /kernel/drv/aha.conf. The relevant user configurable items in this file
are:

io port reg=0x330,0,0 ioaddr=0x330 ,
dma channel dmachan=6 ,
dma speed dmaspeed=0 ,
bus on time buson=5 , and
bus off time busoff=9 .

The I/O port is the ISA bus I/O address used for communication with the adapter. The
direct memory access (DMA) channel should be set to the manufacturer’s default of 5 for
the primary adapter. The DMA speed, bus on time, and bus off times may be set for
optimum performance with each ISA motherboard. Refer to the Adaptec AHA-1540/1542
User’s Manual for instructions. All jumpers on the board should be set (or verified) to con-
form the the configuration file.

The 154xC and the 154xCF should be set to default values. Specifically, disable BIOS sup-
port for drives with more than 1024 cylinders and more than two BIOS drives. Make sure
that the DMA transfer speed does not exceed the capabilities of the motherboard: most
can not be run faster than the default 5.7.

The default configurations described in the Adaptec AHA-1540/1542 User’s Manual should
be used for standard configurations of the system. If more than one board is to be used in
a single system, each must at least occupy a different set of address ranges and use a dif-
ferent DMA channel. Use of a different interrupt level for each board is required.

The default listing of the configuration file is as follows:

#
primary controller [Settings for CD-ROM
#
name="aha" class="sysbus" reg=0x330,0,0

ioaddr=0x330 dmachan=6 dmaspeed=0 buson=5 busoff=9;

7-10 modified 14 Mar 1994

SunOS 5.4 Special Files aha (7)

#
another controller example
#
name="aha" class="sysbus" reg=0x234,0,0

ioaddr=0x234 dmachan=6 dmaspeed=0 buson=5 busoff=9;

After installation, 154x controllers may be jumpered for any of the I/O address, IRQ, and
DMA channel combinations supported by the hardware, provided that this is reflected in
the configuration file and that the parameters do not conflict with other devices on the
system.

modified 14 Mar 1994 7-11

arp (7) Special Files SunOS 5.4

NAME arp, ARP − Address Resolution Protocol

SYNOPSIS #include <sys/socket.h>
#include <net/if_arp.h>
#include <netinet/in.h>

s = socket(AF_INET, SOCK_DGRAM, 0);

d = open ("/dev/arp", O_RDWR);

DESCRIPTION ARP is a protocol used to map dynamically between Internet Protocol (IP) and 10Mb/s
Ethernet addresses. It is used by all the 10Mb/s Ethernet datalink providers (interface
drivers) and it can be used by other datalink providers that support broadcast (such as
FDDI and Token Ring). ARP is not specific to the Internet Protocol but this implementa-
tion supports only that network layer protocol. The STREAMS device /dev/arp is not a
Transport Level Interface (TLI) transport provider and may not be used with the TLI
interface.

ARP caches IP-to-Ethernet address mappings. When an interface requests a mapping for
an address not in the cache, ARP queues the message that requires the mapping and
broadcasts a message on the associated network requesting the address mapping. If a
response is provided, the new mapping is cached and any pending message is transmit-
ted. ARP will queue at most four packets while waiting for a mapping request to be
responded to; only the four most recently transmitted packets are kept.

To facilitate communications with systems which do not use ARP, ioctl() requests are
provided to enter and delete entries in the IP-to-Ethernet tables.

USAGE #include <sys/sockio.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
struct arpreq arpreq;
ioctl(s, SIOCSARP, (caddr_t)&arpreq);
ioctl(s, SIOCGARP, (caddr_t)&arpreq);
ioctl(s, SIOCDARP, (caddr_t)&arpreq);

Each ioctl() request takes the same structure as an argument. SIOCSARP sets an ARP
entry, SIOCGARP gets an ARP entry, and SIOCDARP deletes an ARP entry. These
ioctl() requests may be applied to any Internet family socket descriptor s, or to a descrip-
tor for the ARP device, but only by the privileged user.

7-12 modified 3 Jul 1990

SunOS 5.4 Special Files arp (7)

The arpreq structure contains:

/∗
∗ ARP ioctl request
∗/
struct arpreq {

struct sockaddr arp_pa; /∗ protocol address ∗/
struct sockaddr arp_ha; /∗ hardware address ∗/
int arp_flags; /∗ flags ∗/

};

/∗ arp_flags field values ∗/
#define ATF_COM 0x2 /∗ completed entry (arp_ha valid) ∗/
#define ATF_PERM 0x4 /∗ permanent entry ∗/
#define ATF_PUBL 0x8 /∗ publish (respond for other host) ∗/
#define ATF_USETRAILERS 0x10 /∗ send trailer packets to host ∗/

The address family for the arp_pa sockaddr must be AF_INET; for the arp_ha sockaddr
it must be AF_UNSPEC. The only flag bits that may be written are ATF_PUBL and
ATF_USETRAILERS. ATF_PERM makes the entry permanent if the ioctl() request
succeeds. The peculiar nature of the ARP tables may cause the ioctl() request to fail if too
many permanent IP addresses hash to the same slot. ATF_PUBL specifies that the ARP
code should respond to ARP requests for the indicated host coming from other machines.
This allows a host to act as an “ARP server”, which may be useful in convincing an ARP-
only machine to talk to a non-ARP machine.

ARP is also used to negotiate the use of trailer IP encapsulations; trailers are an alternate
encapsulation used to allow efficient packet alignment for large packets despite variable-
sized headers. Hosts that wish to receive trailer encapsulations so indicate by sending
gratuitous ARP translation replies along with replies to IP requests; they are also sent in
reply to IP translation replies. The negotiation is thus fully symmetrical, in that either or
both hosts may request trailers. The ATF_USETRAILERS flag is used to record the
receipt of such a reply, and enables the transmission of trailer packets to that host.

ARP watches passively for hosts impersonating the local host (that is, a host which
responds to an ARP mapping request for the local host’s address).

SEE ALSO arp(1M), ifconfig(1M), if_tcp(7), inet(7)

Plummer, Dave, ‘‘An Ethernet Address Resolution Protocol -or- Converting Network Protocol
Addresses to 48.bit Ethernet Addresses for Transmission on Ethernet Hardware ,’’ RFC 826, Net-
work Information Center, SRI International, Menlo Park, Calif., November 1982.

Leffler, Sam, and Michael Karels, ‘‘Trailer Encapsulations,’’ RFC 893, Network Information
Center, SRI International, Menlo Park, Calif., April 1984.

modified 3 Jul 1990 7-13

asy (7) Special Files SunOS 5.4

NAME asy − asynchronous serial port driver

SYNOPSIS #include <fcntl.h>
#include <sys/termios.h>
open("/dev/ttynn", mode);
open("/dev/ttydn", mode);
open("/dev/cuan", mode);

AVAILABILITY x86

DESCRIPTION The asy module is a loadable STREAMS driver that provides basic support for the stan-
dard UARTS that use Intel-8250, National Semiconductor-16450/16550 hardware,
together with basic asynchronous communication support. The driver supports those
termio(7) device control functions specified by flags in the c_cflag word of the termios
structure and by the IGNBRK, IGNPAR, PARMRK, or INPCK flags in the c_iflag word of
the termios structure. All other termio(7) functions must be performed by STREAMS
modules pushed atop the driver. When a device is opened, the ldterm(7) and ttcom-
pat(7) STREAMS modules are automatically pushed on top of the stream, providing the
standard termio(7) interface.

The character-special devices /dev/tty00 and /dev/tty01 are used to access the two stan-
dard serial ports (COM1 and COM2) on an x86 system. The asy driver supports up to four
serial ports, including the standard ports. These ttynn devices have minor device
numbers in the range 00-03.

By convention these same devices may be given names of the form /dev/ttydn, where n
denotes which line is to be accessed. Such device names are typically used to provide a
logical access point for a dial-in line being used with a modem.

To allow a single tty line to be connected to a modem and used for both incoming and
outgoing calls, a special feature, controlled by the minor device number, is available. By
accessing character-special devices with names of the form /dev/cuan it is possible to
open a port without the Carrier Detect signal being asserted, either through hardware or
an equivalent software mechanism. These devices are commonly known as dial-out lines.

Once a /dev/cuan line is opened, the corresponding tty, or ttyd line cannot be opened
until the /dev/cuan line is closed; a blocking open will wait until the /dev/cuan line is
closed (which will drop Data Terminal Ready, after which Carrier Detect will usually
drop as well) and carrier is detected again, and a non-blocking open will return an error.
Also, if the /dev/ttydn line has been opened successfully (usually only when carrier is
recognized on the modem) the corresponding /dev/cuan line can not be opened. This
allows a modem to be attached to, for example, /dev/ttyd0 (renamed from /dev/tty00)
and used for dial-in (by enabling the line for login in /etc/inittab) and also used for dial-
out (by tip(1) or uucp(1C)) as /dev/cua0 when no one is logged in on the line.

IOCTLS The standard set of termio ioctl() calls are supported by asy.

7-14 modified 16 Oct 1993

SunOS 5.4 Special Files asy (7)

Breaks can be generated by the TCSBRK, TIOCSBRK, and TIOCCBRK ioctl() calls.

The input and output line speeds may be set to any of the speeds supported by termio.
The speeds cannot be set independently; when the output speed is set, the input speed is
set to the same speed.

ERRORS An open() will fail if:

ENXIO The unit being opened does not exist.

EBUSY The dial-out device is being opened and the dial-in device is already
open, or the dial-in device is being opened with a no-delay open and the
dial-out device is already open.

EBUSY The unit has been marked as exclusive-use by another process with a
TIOCEXCL ioctl() call.

EINTR The open was interrupted by the delivery of a signal.

FILES /dev/tty[00-03] hardwired tty lines
/dev/ttyd[0-3] dial-in tty lines
/dev/cua[0-3] dial-out tty lines

SEE ALSO tip(1), uucp(1C), ldterm(7), termio(7), ttcompat(7)

DIAGNOSTICS asyn : silo overflow.
The hardware overrun occurred before the input character could be serviced.

asyn : ring buffer overflow.
The driver’s character input ring buffer overflowed before it could be serviced.

modified 16 Oct 1993 7-15

ata (7) Special Files SunOS 5.4

NAME ata − AT attachment disk driver

AVAILABILITY x86

DESCRIPTION The ata driver supports disk interfaces conforming to the AT Attachment specification.
This includes IDE and ESDI interfaces. It excludes the MFM, RLL, ST506, and ST412
interfaces. The driver initializes itself in accordance with the information found in the
configuration file (see below). The only user configurable items in this file are:

drive0_block_factor
drive1_block_factor

ATA controllers support some amount of buffering (blocking). The purpose is to
interrupt the host when an entire buffer full of data has been read or written
instead of using an interrupt for each sector. This reduces interrupt overhead
and significantly increases throughput. The driver interrogates the controller to
find the buffer size. Some controllers hang when buffering is used, so the values
in the configuration file are used by the driver to reduce the effect of buffering
(blocking). The values presented may be chosen from:

0x1, 0x2, 0x4, 0x8 and 0x10.

The values as shipped are set to 0x1, and they can be tuned to increase performance.

NOTE: If your controller hangs when attempting to use higher block factors, you may be
unable to reboot the system. We recommend that the tuning be carried out using a dupli-
cate of the /kernel subtree. This will ensure that a bootable kernel subtree exists in the
event of a failed test.

max_transfer
This value controls the size of individual requests for consecutive disk sectors.
The value may range from 0x1 to 0x100. Higher values yield higher throughput.
The system is shipped with a value of 0x100, which probably should not be
changed.
#
primary controller
#
for higher performance - set block factor to 16
name="ata" class="sysbus" intr=5,14 reg=0x1f0,0,0

ioaddr1=0x1f0 ioaddr2=0x3f0
drive0_block_factor=0x1 drive1_block_factor=0x1
max_transfer=0x100
flow_control="dmult" queue="qsort" disk="dadk" ;

7-16 modified 18 Oct 1993

SunOS 5.4 Special Files ata (7)

#
secondary controller
#
name="ata" class="sysbus" intr=5,15 reg=0x170,0,0

ioaddr1=0x170 ioaddr2=0x370
drive0_block_factor=0x1 drive1_block_factor=0x1
max_transfer=0x100
flow_control="dmult" queue="qsort" disk="dadk" ;

!

FILES /kernel/drv/ata the driver

/kernel/drv/ata.conf the configuration file

SEE ALSO aha(7), cmdk(7), dpt(7), eha(7)

modified 18 Oct 1993 7-17

audio (7) Special Files SunOS 5.4

NAME audio − generic audio device interface

OVERVIEW The audio interface described below is an uncommitted interface and may be replaced in
the future.

An audio device is used to play and/or record a stream of audio data. Since a specific
audio device may not support all of the functionality described below, refer to the
device-specific manual pages for a complete description of each hardware device. An
application can use the AUDIO_GETDEV ioctl(2) to determine the current audio
hardware associated with /dev/audio.

AUDIO
FORMATS

Digital audio data represents a quantized approximation of an analog audio signal
waveform. In the simplest case, these quantized numbers represent the amplitude of the
input waveform at particular sampling intervals. In order to achieve the best approxima-
tion of an input signal, the highest possible sampling frequency and precision should be
used. However, increased accuracy comes at a cost of increased data storage require-
ments. For instance, one minute of monaural audio recorded in µ-law format at 8 KHz
requires nearly 0.5 megabytes of storage, while the standard Compact Disc audio format
(stereo 16-bit linear PCM data sampled at 44.1 KHz) requires approximately 10 megabytes
per minute.

Audio data may be represented in several different formats. An audio device’s current
audio data format can be determined by using the AUDIO_GETINFO ioctl described
below.

An audio data format is characterized in the audio driver by four parameters: Sample
Rate, Encoding, Precision, and Channels. Refer to the device-specific manual pages for a
list of the audio formats that each device supports. In addition to the formats that the
audio device supports directly, other formats provide higher data compression. Applica-
tions may convert audio data to and from these formats when recording or playing.

Sample Rate Sample rate is a number that represents the sampling frequency (in samples per second)
of the audio data.

Encodings An encoding parameter specifies the audio data representation. µ-law encoding (pro-
nounced mew-law) corresponds to CCITT G.711, and is the standard for voice data used
by telephone companies in the United States, Canada, and Japan. A-law encoding is also
part of G.711, and is the standard encoding for telephony elsewhere in the world. A-law
and µ-law audio data are sampled at a rate of 8000 samples per second with 12-bit preci-
sion, with the data compressed to 8-bit samples. The resulting audio data quality is
equivalent to that of standard analog telephone service.

Linear Pulse Code Modulation (PCM) is an uncompressed audio format in which sample
values are directly proportional to audio signal voltages. Each sample is a 2’s comple-
ment number that represents a positive or negative amplitude.

7-18 modified 14 Apr 1994

SunOS 5.4 Special Files audio (7)

Precision Precision indicates the number of bits used to store each audio sample. For instance, µ-
law and A-law data are stored with 8-bit precision. PCM data may be stored at various
precisions, though 16-bit PCM is most common.

Channels Multiple channels of audio may be interleaved at sample boundaries. A sample frame
consists of a single sample from each active channel. For example, a sample frame of
stereo 16-bit PCM data consists of 2 16-bit samples, corresponding to the left and right
channel data.

DESCRIPTION The device /dev/audio is a device driver that dispatches audio requests to the appropriate
underlying audio device driver. The audio driver is implemented as a STREAMS driver.
In order to record audio input, applications open(2) the /dev/audio device and read data
from it using the read(2) system call. Similarly, sound data is queued to the audio output
port by using the write(2) system call. Device configuration is performed using the
ioctl(2) interface.

As some systems may contain more than one audio device, application writers are
encouraged to query the AUDIODEV environment variable. If this variable is present in
the environment, its value should identify the path name of the default audio device.

Opening the Audio
Device

The audio device is treated as an exclusive resource − only one process can open the dev-
ice at a time. However, two processes may simultaneously access the device: if one opens
it read-only, then another may open it write-only.

When a process cannot open /dev/audio because the requested access mode is busy:
· if either the O_NDELAY or O_NONBLOCK flag are set in the open() oflag argu-

ment, then −1 is immediately returned, with errno set to EBUSY.
· if neither the O_NDELAY nor the O_NONBLOCK flag are set, then open()

hangs until the device is available or a signal is delivered to the process, in
which case a −1 is returned with errno set to EINTR. This allows a process to
block in the open call, while waiting for the audio device to become available.

Upon the initial open() of the audio device, the driver will reset the data format of the
device to the default state of 8-bit, 8Khz, mono µ-law data. If the device is already open
and a different audio format has been set, this will not be possible. Audio applications
should explicitly set the encoding characteristics to match the audio data requirements,
rather than depend on the default configuration.

Since the audio device grants exclusive read or write access to a single process at a time,
long-lived audio applications may choose to close the device when they enter an idle
state and reopen it when required. The play.waiting and record.waiting flags in the audio
information structure (see below) provide an indication that another process has
requested access to the device. For instance, a background audio output process may
choose to relinquish the audio device whenever another process requests write access.

Recording Audio
Data

The read() system call copies data from the system buffers to the application. Ordinarily,
read() blocks until the user buffer is filled. The I_NREAD ioctl (see streamio(7)) may be
used to determine the amount of data that may be read without blocking. The device
may alternatively be set to a non-blocking mode, in which case read() completes

modified 14 Apr 1994 7-19

audio (7) Special Files SunOS 5.4

immediately, but may return fewer bytes than requested. Refer to the read(2) manual
page for a complete description of this behavior.

When the audio device is opened with read access, the device driver immediately starts
buffering audio input data. Since this consumes system resources, processes that do not
record audio data should open the device write-only (O_WRONLY).

The transfer of input data to STREAMS buffers may be paused (or resumed) by using the
AUDIO_SETINFO ioctl to set (or clear) the record.pause flag in the audio information struc-
ture (see below). All unread input data in the STREAMS queue may be discarded by
using the I_FLUSH STREAMS ioctl (see streamio(7)). When changing record parameters,
the input stream should be paused and flushed before the change, and resumed after-
ward. Otherwise, subsequent reads may return samples in the old format followed by
samples in the new format. This is particularly important when new parameters result in
a changed sample size.

Input data can accumulate in STREAMS buffers very quickly. At a minimum, it will accu-
mulate at 8000 bytes per second for 8-bit, 8 KHz, mono, µ-law data. If the device is
configured for 16-bit linear or higher sample rates, it will accumulate even faster. If the
application that consumes the data cannot keep up with this data rate, the STREAMS
queue may become full. When this occurs, the record.error flag is set in the audio informa-
tion structure and input sampling ceases until there is room in the input queue for addi-
tional data. In such cases, the input data stream contains a discontinuity. For this reason,
audio recording applications should open the audio device when they are prepared to
begin reading data, rather than at the start of extensive initialization.

Playing Audio Data The write() system call copies data from an applications buffer to the STREAMS output
queue. Ordinarily, write() blocks until the entire user buffer is transferred. The device
may alternatively be set to a non-blocking mode, in which case write() completes
immediately, but may have transferred fewer bytes than requested (see write(2)).

Although write() returns when the data is successfully queued, the actual completion of
audio output may take considerably longer. The AUDIO_DRAIN ioctl may be issued to
allow an application to block until all of the queued output data has been played. Alter-
natively, a process may request asynchronous notification of output completion by writ-
ing a zero-length buffer (end-of-file record) to the output stream. When such a buffer has
been processed, the play.eof flag in the audio information structure (see below) is incre-
mented.

The final close(2) of the file descriptor hangs until audio output has drained. If a signal
interrupts the close(), or if the process exits without closing the device, any remaining
data queued for audio output is flushed and the device is closed immediately.

The conversion of output data may be paused (or resumed) by using the
AUDIO_SETINFO ioctl to set (or clear) the play.pause flag in the audio information struc-
ture. Queued output data may be discarded by using the I_FLUSH STREAMS ioctl.

Output data will be played from the STREAMS buffers at a rate of at least 8000 bytes per
second for µ-law or A-law data (faster for 16-bit linear data or higher sampling rates). If
the output queue becomes empty, the play.error flag is set in the audio information

7-20 modified 14 Apr 1994

SunOS 5.4 Special Files audio (7)

structure and output is stopped until additional data is written. If an application
attempts to write a number of bytes that is not a multiple of the current sample frame
size, an error will be generated and the device will need to be closed before any future
writes will succeed.

Asynchronous I/O The I_SETSIG STREAMS ioctl enables asynchronous notification, through the SIGPOLL
signal, of input and output ready conditions. The O_NONBLOCK flag may be set using
the F_SETFL fcntl(2) to enable non-blocking read() and write() requests. This is normally
sufficient for applications to maintain an audio stream in the background.

Audio Control
Pseudo-Device

It is sometimes convenient to have an application, such as a volume control panel,
modify certain characteristics of the audio device while it is being used by an unrelated
process. The /dev/audioctl pseudo-device is provided for this purpose. Any number of
processes may open /dev/audioctl simultaneously. However, read() and write() system
calls are ignored by /dev/audioctl. The AUDIO_GETINFO and AUDIO_SETINFO ioctl
commands may be issued to /dev/audioctl to determine the status or alter the behavior of
/dev/audio. Note: In general, the audio control device name is constructed by appending
the letters "ctl" to the path name of the audio device.

Audio Status Change
Notification

Applications that open the audio control pseudo-device may request asynchronous
notification of changes in the state of the audio device by setting the S_MSG flag in an
I_SETSIG STREAMS ioctl. Such processes receive a SIGPOLL signal when any of the fol-
lowing events occur:

· An AUDIO_SETINFO ioctl has altered the device state.
· An input overflow or output underflow has occurred.
· An end-of-file record (zero-length buffer) has been processed on output.
· An open() or close() of /dev/audio has altered the device state.
· An external event (such as speakerbox volume control) has altered the

device state.

IOCTLS
Audio Information

Structure
The state of the audio device may be polled or modified using the AUDIO_GETINFO and
AUDIO_SETINFO ioctl commands. These commands operate on the audio_info struc-
ture as defined, in <sys/audioio.h>, as follows:

/∗ This structure contains state information for audio device
IO streams ∗/

struct audio_prinfo {
/∗ The following values describe the audio data encoding ∗/

uint_t sample_rate; /∗ samples per second ∗/
uint_t channels; /∗ number of interleaved channels ∗/
uint_t precision; /∗ number of bits per sample ∗/
uint_t encoding; /∗ data encoding method ∗/

/∗ The following values control audio device configuration ∗/
uint_t gain; /∗ volume level ∗/
uint_t port; /∗ selected I/O port ∗/
uint_t buffer_size; /∗ I/O buffer size ∗/

/∗ The following values describe the current device state ∗/

modified 14 Apr 1994 7-21

audio (7) Special Files SunOS 5.4

uint_t samples; /∗ number of samples converted ∗/
uint_t eof; /∗ End Of File counter (play only) ∗/
uchar_t pause; /∗ non-zero if paused, zero to resume ∗/
uchar_t error; /∗ non-zero if overflow/underflow ∗/
uchar_t waiting; /∗ non-zero if a process wants access ∗/
uchar_t balance; /∗ stereo channel balance ∗/

/∗ The following values are read-only device state flags ∗/
uchar_t open; /∗ non-zero if open access granted ∗/
uchar_t active; /∗ non-zero if I/O active ∗/
uint_t avail_ports; /∗ available I/O ports ∗/

} audio_prinfo_t;

/∗ This structure is used in AUDIO_GETINFO and AUDIO_SETINFO ioctl
commands ∗/

typedef struct audio_info {
audio_prinfo_t record; /∗ input status information ∗/
audio_prinfo_t play; /∗ output status information ∗/
uint_t monitor_gain; /∗ input to output mix ∗/
uchar_t output_muted; /∗ non-zero if output muted ∗/

} audio_info_t;

/∗ Audio encoding types ∗/
#define AUDIO_ENCODING_ULAW (1) /∗ u-law encoding ∗/
#define AUDIO_ENCODING_ALAW (2) /∗ A-law encoding ∗/
#define AUDIO_ENCODING_LINEAR (3) /∗ Linear PCM encoding ∗/

/∗ These ranges apply to record, play, and monitor gain values ∗/
#define AUDIO_MIN_GAIN (0) /∗ minimum gain value ∗/
#define AUDIO_MAX_GAIN (255) /∗ maximum gain value ∗/

/∗ These values apply to the balance field to adjust channel gain values ∗/
#define AUDIO_LEFT_BALANCE (0) /∗ left channel only ∗/
#define AUDIO_MID_BALANCE (32) /∗ equal left/right balance ∗/
#define AUDIO_RIGHT_BALANCE (64) /∗ right channel only ∗/

/∗ Define some convenient audio port names (for port and avail_ports) ∗/

/∗ output ports (several might be enabled at once) ∗/
#define AUDIO_SPEAKER (0x01) /∗ output to built-in speaker ∗/
#define AUDIO_HEADPHONE (0x02) /∗ output to headphone jack ∗/
#define AUDIO_LINE_OUT (0x04) /∗ output to line out ∗/

/∗ input ports (usually only one may be enabled at a time) ∗/
#define AUDIO_MICROPHONE (0x01) /∗ input from microphone ∗/
#define AUDIO_LINE_IN (0x02) /∗ input from line in ∗/

#define MAX_AUDIO_DEV_LEN(16)

/∗ Parameter for the AUDIO_GETDEV ioctl ∗/
typedef struct audio_device {

char name[MAX_AUDIO_DEV_LEN];
char version[MAX_AUDIO_DEV_LEN];
char config[MAX_AUDIO_DEV_LEN];

} audio_device_t;

The play.gain and record.gain fields specify the output and input volume levels. A value of
AUDIO_MAX_GAIN indicates maximum volume. Audio output may also be temporarily
muted by setting a non-zero value in the output_muted field. Clearing this field restores

7-22 modified 14 Apr 1994

SunOS 5.4 Special Files audio (7)

audio output to the normal state. Most audio devices allow input data to be monitored
by mixing audio input onto the output channel. The monitor_gain field controls the level
of this feedback path.

The play.port field controls the output path for the audio device. It can be set to either
AUDIO_SPEAKER (built-in speaker), AUDIO_HEADPHONE (headphone jack), or
AUDIO_LINE_OUT (line-out port). For some devices, it may be set to a combination of
these ports. The play.avail_ports field returns the set of output ports that are currently
accessible. The input ports can be either AUDIO_MICROPHONE or AUDIO_LINE_IN.
The record.avail_ports field returns the set of input ports that are currently accessible.

The play.balance and record.balance fields are used to control the volume between the left
and right channels when manipulating stereo data. When the value is set between
AUDIO_LEFT_BALANCE and AUDIO_MID_BALANCE, the right channel volume will be
reduced in proportion to the balance value. Conversely, when balance is set between
AUDIO_MID_BALANCE and AUDIO_RIGHT_BALANCE, the left channel will be propor-
tionally reduced.

The play.pause and record.pause flags may be used to pause and resume the transfer of
data between the audio device and the STREAMS buffers. The play.error and record.error
flags indicate that data underflow or overflow has occurred. The play.active and
record.active flags indicate that data transfer is currently active in the corresponding direc-
tion.

The play.open and record.open flags indicate that the device is currently open with the
corresponding access permission. The play.waiting and record.waiting flags provide an
indication that a process may be waiting to access the device. These flags are set
automatically when a process blocks on open(), though they may also be set using the
AUDIO_SETINFO ioctl command. They are cleared only when a process relinquishes
access by closing the device.

The play.samples and record.samples fields are initialized, at open(), to zero and increment
each time a data sample is copied to or from the associated STREAMS queue. Some audio
drivers may be limited to counting buffers of samples, instead of single samples for the
samples accounting. For this reason, applications should not assume that the samples
fields contain a perfectly accurate count. The play.eof field increments whenever a zero-
length output buffer is synchronously processed. Applications may use this field to
detect the completion of particular segments of audio output.

The record.buffer_size field controls the amount of input data that is buffered in the device
driver during record operations. Applications that have particular requirements for low
latency should set the value appropriately. Note however that smaller input buffer sizes
may result in higher system overhead. The value of this field is specified in bytes and
drivers will constrain it to be a multiple of the current sample frame size. Some drivers
may place other requirements on the value of this field. Refer to the audio device-specific
manual page for more details. If an application changes the format of the audio device
and does not modify the record.buffer_size field, the device driver may use a default value
to compensate for the new data rate. Therefore, if an application wishes to modify this
field, it should modify it during or after the format change itself, not before. The

modified 14 Apr 1994 7-23

audio (7) Special Files SunOS 5.4

record.buffer_size field may be modified only on the /dev/audio device by processes that
have it opened for reading. The play.buffer_size field is currently not supported.

The audio data format is indicated by the sample_rate , channels, precision, and encoding
fields. The values of these fields correspond to the descriptions in the AUDIO FORMATS
section above. Refer to the audio device-specific manual pages for a list of supported
data format combinations.

The data format fields may be modified only on the /dev/audio device. The audio
hardware will often constrain the input and output data formats to be identical. If this is
the case, then the data format may not be changed if multiple processes have opened the
audio device.

If the parameter changes requested by an AUDIO_SETINFO ioctl cannot all be accommo-
dated, ioctl() will return with errno set to EINVAL and no changes will be made to the
device state.

Streamio IOCTLS All of the streamio(7) ioctl commands may be issued for the /dev/audio device. Because
the /dev/audioctl device has its own STREAMS queues, most of these commands neither
modify nor report the state of /dev/audio if issued for the /dev/audioctl device. The
I_SETSIG ioctl may be issued for /dev/audioctl to enable the notification of audio status
changes, as described above.

Audio IOCTLS The audio device additionally supports the following ioctl commands:

AUDIO_DRAIN
The argument is ignored. This command suspends the calling process until the
output STREAMS queue is empty, or until a signal is delivered to the calling pro-
cess. It may not be issued for the /dev/audioctl device. An implicit
AUDIO_DRAIN is performed on the final close() of /dev/audio.

AUDIO_GETDEV
The argument is a pointer to an audio_device structure. This command may be
issued for either /dev/audio or /dev/audioctl. The returned value in the name
field will be a string that will identify the current /dev/audio hardware device,
the value in version will be a string indicating the current version of the
hardware, and config will be a device-specific string identifying the properties of
the audio stream associated with that file descriptor. Refer to the audio device-
specific manual pages to determine the actual strings returned by the device
driver.

AUDIO_GETINFO
The argument is a pointer to an audio_info structure. This command may be
issued for either /dev/audio or /dev/audioctl. The current state of the /dev/audio
device is returned in the structure.

7-24 modified 14 Apr 1994

SunOS 5.4 Special Files audio (7)

AUDIO_SETINFO
The argument is a pointer to an audio_info structure. This command may be
issued for either the /dev/audio or the /dev/audioctl device with some restric-
tions. This command configures the audio device according to the structure sup-
plied and overwrites the structure with the new state of the device. Note: The
play.samples, record.samples, play.error , record.error, and play.eof fields are modified
to reflect the state of the device when the AUDIO_SETINFO was issued. This
allows programs to automatically modify these fields while retrieving the previ-
ous value.

Certain fields in the information structure, such as the pause flags are treated as
read-only when /dev/audio is not open with the corresponding access permis-
sion. Other fields, such as the gain levels and encoding information, may have a
restricted set of acceptable values. Applications that attempt to modify such
fields should check the returned values to be sure that the corresponding change
took effect. The sample_rate , channels, precision, and encoding fields treated as
read-only for /dev/audioctl, so that applications can be guaranteed that the exist-
ing audio format will stay in place until they relinquish the audio device.
AUDIO_SETINFO will return EINVAL when the desired configuration is not pos-
sible, or EBUSY when another process has control of the audio device.

Once set, the following values persist through subsequent open() and close()
calls of the device: play.gain, record.gain, play.balance, record.balance, output_muted,
monitor_gain, play.port , and record.port . However, an automatic device driver
unload will reset these parameters to their default values on the next load. All
other state is reset when the corresponding I/O stream of /dev/audio is closed.

The audio_info structure may be initialized through the use of the
AUDIO_INITINFO macro. This macro sets all fields in the structure to values that
are ignored by the AUDIO_SETINFO command. For instance, the following code
switches the output port from the built-in speaker to the headphone jack without
modifying any other audio parameters:

audio_info_tinfo;

AUDIO_INITINFO(&info);
info.play.port = AUDIO_HEADPHONE;
err = ioctl(audio_fd, AUDIO_SETINFO, &info);

This technique eliminates problems associated with using a sequence of
AUDIO_GETINFO followed by AUDIO_SETINFO.

ERRORS An open() will fail if:

EBUSY The requested play or record access is busy and either the O_NDELAY or
O_NONBLOCK flag was set in the open() request.

EINTR The requested play or record access is busy and a signal interrupted the
open() request.

modified 14 Apr 1994 7-25

audio (7) Special Files SunOS 5.4

An ioctl() will fail if:

EINVAL The parameter changes requested in the AUDIO_SETINFO ioctl are
invalid or are not supported by the device.

EBUSY The parameter changes requested in the AUDIO_SETINFO ioctl could
not be made because another process has the device open and is using a
different format.

FILES The physcial audio device names are system dependent and are rarely used by program-
mers. The programmer should use the generic device names listed below.

/dev/audio symbolic link to the system’s primary audio device
/dev/audioctl symbolic link to the control device for /dev/audio
/dev/sound/0 first audio device in the system
/dev/sound/0ctl audio control device for /dev/sound/0

SEE ALSO open(2), close(2), read(2), write(2), ioctl(2), fcntl(2), poll(2), audioamd(7), audiocs(7),
dbri(7), sbpro(7), streamio(7)

BUGS Due to a feature of the STREAMS implementation, programs that are terminated or exit
without closing the audio device may hang for a short period while audio output drains.
In general, programs that produce audio output should catch the SIGINT signal and flush
the output stream before exiting.

FUTURE
DIRECTIONS

Future workstation audio resources will be managed by an audio foundation library. For
the time being, we encourage you to write your programs in a modular fashion, isolating
the audio device-specific functions, so that they may be easily ported to such an environ-
ment.

The AUDIO_GETDEV ioctl is provided for the future implementation of an audio device
capability database. In general, applications may use the play.avail_ports and
record.avail_ports fields of the audio_info structure to determine the audio device capabil-
ities.

7-26 modified 14 Apr 1994

SunOS 5.4 Special Files audioamd (7)

NAME audioamd − telephone quality audio device

AVAILABILITY SPARC

SPARCstation 1 and 2, IPC, IPX, SLC, ELC, LC, and SPARCserver 6xx systems.

Desktop SPARCsystems include a built-in speaker for audio output. The audio cable pro-
vides connectors for a microphone and external headset. The headset output level is ade-
quate to power most headphones, but may be too low for some external speakers.
Powered speakers or an external amplifier may be used. SPARCserver 6xx systems do not
have an internal speaker, but support an external microphone and speaker connected
through the audio cable.

The Sun Microphone is recommended for normal desktop audio recording. It contains a
battery that must be replaced after 210 hours of use. Other microphones may be used, but
a pre-amplifier circuit may be required to achieve a sufficient input signal. Other audio
sources may be recorded by connecting one channel of the line output to the audio cable
microphone input. If the input signal is distorted, external attenuation may be required
(audio sources may also be connected from their headphone output with the volume
turned down).

DESCRIPTION The audioamd device uses the AM79C30A Digital Subscriber Controller chip to imple-
ment the audio device interface. This interface is described fully in the audio(7) manual
page.

Applications that open /dev/audio may use the AUDIO_GETDEV ioctl to determine
which audio device is being used. The audioamd driver will return "SUNW,am79c30" in
the name field of the audio_device structure. The version field will contain "a" and the
config field will be set to "onboard1" .

The AUDIO_SETINFO ioctl controls device configuration parameters. When an applica-
tion modifies the record.buffer_size field using the AUDIO_SETINFO ioctl, the driver will
constrain it to be greater than zero and less than or equal to 8000 bytes or one second of
audio data. Applications are warned that setting this field too low or too high may cause
system performance problems and should therefore set this field with caution.

Audio Data Formats The audioamd device supports the audio formats listed in the following table. When the
device is open for simultaneous play and record, the input and output data formats must
match.

Supported Audio Data Formats
Sample Rate Encoding Precision Channels

8000 Hz µ-law 8 1
8000 Hz A-law 8 1

Since audioamd supports only single-channel (monaural) audio, the play.balance and
record.balance fields of the audio_info structure are ignored.

modified 18 Feb 1993 7-27

audioamd (7) Special Files SunOS 5.4

Audio Ports The record.avail_ports and play.avail_ports fields of the audio_info structure report the
available input and output ports. The audioamd device supports one input port, selected
by setting the record.port field to AUDIO_MICROPHONE. The play.port field may be set to
either AUDIO_SPEAKER or AUDIO_HEADPHONE, to direct audio output to the built-in
speaker or headphone jack, respectively. Note that AUDIO_SPEAKER cannot be enabled
for systems that do not include a built-in speaker.

Sample Granularity Since the audioamd device manipulates single samples of audio data, the reported input
and output sample counts will be very close to the actual sample count. However, some
other audio devices report sample counts that are approximate, due to buffering con-
straints. Programs should, in general, not rely on absolute accuracy of the sample count
fields.

FILES /dev/audio
/dev/audioctl
/dev/sound
/usr/demo/SOUND

SEE ALSO ioctl(2), audio(7), streamio(7)

AMD data sheet for the AM79C30A Digital Subscriber Controller, Publication number
09893.

7-28 modified 18 Feb 1993

SunOS 5.4 Special Files audiocs (7)

NAME audiocs − Crystal Semiconductor 4231 audio Interface

AVAILABILITY The AUDIOCS Multimedia codec is available on SPARCstation 5 systems.

This hardware may or may not be available on future systems from Sun Microsystems
Computer Corporation.

Audio Interfaces SPARCstation 5 systems have the Multimedia Codec integrated onto the CPU board of
the machine. In the "onboard" Codec, there are microphone, line in, headphone, and line
out ports located on the system back panel. In addition, the headphone and microphone
ports do not have the input detection circuitry to determine whether or not there is
currently headphones or a microphone plugged in. There is no interface on the SPARCs-
tation 5 for the speakerbox to connect to.

The new Sun Microphone II is recommended for normal desktop audio recording. Other
audio sources may be recorded by connecting their line output to the line input (audio
sources may also be connected from their headphone output if the volume is adjusted
properly).

Applications that open /dev/audio may use the AUDIO_GETDEV ioctl to determine
which audio device is being used. The audiocs driver will return the string
"SUNW,CS4231" in the name field of the audio_device structure. The version field will
contain "a" and the config field will contain the following value: "onboard1" on a
/dev/audio stream associated with the onboard Multimedia Codec.

The AUDIO_SETINFO ioctl controls device configuration parameters. When an applica-
tion modifies the record.buffer_size field using the AUDIO_SETINFO ioctl, the driver will
constrain it to be non-zero and up to a maximum of 8180 bytes.

Audio Data Formats
for the Multimedia

4231 Codec

The audiocs device supports the audio formats listed in the following table. When the
device is open for simultaneous play and record, the input and output data formats must
match.

Supported Audio Data Formats
Sample Rate Encoding Precision Channels

8000 Hz µ-law or A-law 8 1
9600 Hz µ-law or A-law 8 1
11025 Hz µ-law or A-law 8 1
16000 Hz µ-law or A-law 8 1
18900 Hz µ-law or A-law 8 1
22050 Hz µ-law or A-law 8 1
32000 Hz µ-law or A-law 8 1
37800 Hz µ-law or A-law 8 1
44100 Hz µ-law or A-law 8 1
48000 Hz µ-law or A-law 8 1
8000 Hz linear 16 1 or 2
9600 Hz linear 16 1 or 2
11025 Hz linear 16 1 or 2
16000 Hz linear 16 1 or 2
18900 Hz linear 16 1 or 2

modified 31 Jan 1994 7-29

audiocs (7) Special Files SunOS 5.4

22050 Hz linear 16 1 or 2
32000 Hz linear 16 1 or 2
37800 Hz linear 16 1 or 2
44100 Hz linear 16 1 or 2
48000 Hz linear 16 1 or 2

Audio Ports The record.avail_ports and play.avail_ports fields of the audio_info structure report the
available input and output ports. The audiocs device supports three input ports, selected
by setting the record.port field to either AUDIO_MICROPHONE,
AUDIO_INTERNAL_CD_IN, or AUDIO_LINE_IN. If you select the
AUDIO_INTERNAL_CD_IN this will select input from the internal CD drive installed on
an SPARCstation 5 platform. This will allow you to gather data off of the CD without
using a line out of the headphone jack to the line in of the audio input. The play.port
field may be set to any combination of AUDIO_SPEAKER, AUDIO_HEADPHONE, and
AUDIO_LINE_OUT by OR’ing the desired port names together.

Sample Granularity Since the audiocs device manipulates buffers of audio data, at any given time the
reported input and output sample counts will vary from the actual sample count by no
more than the size of the buffers it is transferring. Programs should, in general, not rely
on absolute accuracy of the play.samples and record.samples fields of the audio_info
structure.

Audio Status Change
Notification

As described in audio(7), it is possible to request asynchronous notification of changes in
the state of an audio device.

ERRORS audiocs errors are defined in the audio(7), man pages.

FILES The physical device names are very system dependent and are rarely used by program-
mers. For example:

/devices/iommu@f,e0000000/sbus@f,e0001000/SUNW,CS4231@2,c00000:sound,audio

The programmer should instead use the generic device names listed below:
/dev/audio symbolic link to the system’s primary audio device, not neces-

sarily a audiocs based audio device
/dev/audioctl control device for the above audio device
/dev/sound/0∗ represents the first audio device on the system and is not neces-

sarily based on audiocs
/dev/sound/0 first audio device in the system
/dev/sound/0ctl audio control for above device
/usr/demo/SOUND audio demonstration programs and other files

SEE ALSO ioctl(2), audio(7), streamio(7)

Crystal Semiconductor, Inc., data sheet for the CS4231 16-Bit, 48 kHz, Multimedia Audio
Codec Publication number DS111PP2.

7-30 modified 31 Jan 1994

SunOS 5.4 Special Files audiocs (7)

NOTES: The AUDIO_INTERNAL_CD_IN is another new functionality addition. Because of this,
audiotool will now have a new button appear in the record popup box that will allow the
user of audiotool to switch to the internal CD on the SPARCstation 5 (if present).

modified 31 Jan 1994 7-31

bd (7) Special Files SunOS 5.4

NAME bd − SunButtons and SunDials STREAMS module

SYNOPSIS open("/dev/bd", O_RDWR)

DESCRIPTION The bd STREAMS module processes the byte streams generated by the SunButtons but-
tonbox and SunDials dialbox. The buttonbox generates a stream of bytes that encode the
identity and state transition of the buttons. The dialbox generates a stream of bytes that
encode the identity of the dials and the amount by which they are turned. Both of these
streams are merged together when a host has both a buttonbox and a dialbox in use at the
same time.

SunButtons reports the button number and up/down status encoded into a one byte mes-
sage. Byte values from 0xc0 to 0xdf indicate a transition to button down. To obtain the
button number, subtract 0xc0 from the byte value. Byte values from 0xe0 to 0xff indicate
a transition to button up. To obtain the button number, subtract 0xe0 from the byte value.

Each dial sample in the byte stream consists of three bytes. The first byte identifies which
dial was turned and the next two bytes return the delta in signed binary format. When
bound to an application using the window system, Virtual User Input Device events are
generated. An event from a dial is constrained to lie between 0x80 and 0x87.

A stream with the bd pushed streams module configured in it can emit firm_events as
specified by the protocol of a VUID. bd understands the VUIDSFORMAT and
VUIDGFORMAT ioctls (see reference below), as defined in /usr/include/sys/bdio.h and
$OPENWINHOME/include/xview/win_event.h. All other ioctl() requests are passed
downstream.

The bd streams module sets the parameters of the serial port when it is first opened. No
termio(7) ioctl () requests should be performed on a bd STREAMS module, as bd
expects the device parameters to remain as it set them.

IOCTLS VUIDSFORMAT
VUIDGFORMAT These are standard Virtual User Input Device ioctls.

BDIOBUTLITE The bd streams module implements this ioctl to enable processes
to manipulate the lights on the buttonbox. The BDIOBUTLITE
ioctl must be carried by an I_STR ioctl to the bd module. For an
explanation of I_STR see streamio(7). The data for the
BDIOBUTLITE ioctl is an unsigned integer in which each bit
represents the lamp on one button. The macro LED_MAP in
<sys/bdio.h> maps button numbers to appropriate bits. Source
code for the demo program x_buttontest is provided with the but-
tons and dials package, and may be found in the directory
/usr/demo/BUTTONBOX. Look at x_buttontest.c for an example
of how to manipulate the lights on the buttonbox.

7-32

SunOS 5.4 Special Files bd (7)

FILES /usr/include/sys/bdio.h
/usr/include/sys/stropts.h
$OPENWINHOME/share/include/xview/win_event.h

SEE ALSO bdconfig(1M), ioctl(2), x_dialtest(6), x_buttontest(6), streamio(7), termio(7)

SunDials Installation and Programmers Guide
SunButtons Installation and Programmers Guide

WARNINGS The SunDials dial box must be used with a serial port.

7-33

be (7) Special Files SunOS 5.4

NAME be − BigMAC Fast Ethernet device driver

SYNOPSIS #include <sys/bmac.h>
#include <sys/be.h>
#include <sys/qec.h>
#include <sys/dlpi.h>

DESCRIPTION The 10/100 Mbit/s Fast Ethernet driver is a multi-threaded, loadable, clonable, STREAMS
hardware device driver supporting the connectionless Data Link Provider Interface,
dlpi(7), over 10/100 Mbit/s 802.30 controller in the SBus Fast Ethernet card. There is no
software limitation on the number of Fast Ethernet cards supported by the driver. The be
driver provides basic support for the BigMAC hardware. Functions include chip initiali-
zation, frame transmit and receive, multicast and promiscuous support, and error
recovery and reporting.

The cloning character-special device /dev/be is used to access the 10/100 Mbit/s device
installed within the system.

be and DLPI The be driver is a “style 2” Data Link Service provider; an explicit DL_ATTACH_REQ
message by the user is required to associate the opened Stream with a particular device
(ppa). The ppa ID is interpreted as an unsigned long and indicates the corresponding
device instance (unit) number. An error (DL_ERROR_ACK) is returned by the driver if
the ppa field value does not correspond to a valid device instance number for this system
(see prtconf(1M)).

All M_PROTO and M_PCPROTO type messages are interpreted as DLPI primitives.

The device is initialized on first attach and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

· The max SDU (Service Data Unit) is 1500 (ETHERMTU).

· The min SDU (Service Data Unit) is 0.

· The dlsap address length is 8. The physical address component is 6 bytes fol-
lowed immediately by a 2-byte sap component within the DLSAP address.

· The MAC type is DL_ETHER.

· The sap length value is −2, which means the physical address component is fol-
lowed immediately by a 2-byte sap component within the DLSAP address.

· The service mode is DL_CLDLS.

· No optional quality of service (QOS) support is included at present so the QOS
fields are 0.

· The provider style is DL_STYLE2.

· The version is DL_VERSION_2.

7-34 modified 26 Jan 1994

SunOS 5.4 Special Files be (7)

· The broadcast address value is Ethernet/IEEE broadcast address
(0xFFFFFFFF).

When in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a par-
ticular SAP (Service Access Point) with the Stream. The be driver interprets the sap field
within the DL_BIND_REQ as an Ethernet “type”; therefore, valid values for the sap field
are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the Stream at any
time.

10/100 Mbit/s algorithm for auto-selection is to be determined.

If the user selects a sap with a value of 0, the receiver will be in 802.3 mode. All frames
received from the media having a “type” field in the range [0-1500] are assumed to be
802.3 frames and are routed up all open Streams which are bound to sap value 0. If more
than one Stream is in “802.3 mode” then the frame will be duplicated and routed up mul-
tiple Streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the sap field of the DL_BIND_REQ if the sap value is 0,
and if the destination type field is in the range [0-1500]. If either is true, the driver com-
putes the length of the message, not including initial M_PROTO mblk (message block), of
all subsequent DL_UNITDATA_REQ messages and transmits 802.3 frames that have this
value in the MAC frame header length field.

The driver also supports raw M_DATA mode. When the user sends a DLIOCRAW ioctl,
the particular Stream is put in raw mode. A complete frame along with a proper ether
header is expected as part of the data.

The be driver DLSAP address format consists of the 6-byte physical (Ethernet) address
component followed immediately by the 2-byte sap (type) component producing an 8-
byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format but use information returned by the
DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap length,
full DLSAP length, and sap/physical ordering are included within the DL_INFO_ACK.
The physical address length can be computed by subtracting the sap length from the full
DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to obtain the current phy-
sical address associated with the Stream.

When in the DL_BOUND state, the user may transmit frames on the Fast Ethernet by
sending DL_UNITDATA_REQ messages to the be driver. The be driver routes received
Fast Ethernet frames as DL_UNITDATA_IND messages up all the open and bound
Streams that have sap matching the Fast Ethernet type. Received Fast Ethernet frames are
duplicated and routed up multiple open Streams if necessary. The DLSAP address con-
tained within the DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of
both the sap (type) and physical (Fast Ethernet) components.

be Primitives In addition to the mandatory connectionless DLPI message set the driver additionally
supports the following primitives.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable recep-
tion of individual multicast group addresses. A set of multicast addresses may be itera-
tively created and modified on a per-stream basis with these primitives. These primitives

modified 26 Jan 1994 7-35

be (7) Special Files SunOS 5.4

are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all
(“promiscuous mode”) frames on the media including frames generated by the local host.
When used with the DL_PROMISC_SAP flag set this enables/disables reception of all sap
(Fast Ethernet type) values. When used with the DL_PROMISC_MULTI flag set this
enables/disables reception of all multicast group addresses. The effect of each is always
on a per-stream basis and independent of the other sap and physical level configurations
on this Stream or other Streams.

The DL_PHYS_ADDR_REQ primitive return the 6-octet Fast Ethernet address currently
associated (attached) to the Stream in the DL_PHYS_ADDR_ACK primitive. This primi-
tive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6-octet Fast Ethernet address
currently associated (attached) to this Stream. The owner of the process which originally
opened this Stream must be superuser or EPERM is returned in the DL_ERROR_ACK. This
primitive is destructive in that it affects all other current and future Streams attached to
this device. An M_ERROR is sent up all other Streams attached to this device when this
primitive on this Stream is successful. Once changed, all Streams subsequently opened
and attached to this device will obtain this new physical address. Once changed, the
physical address will remain so until this primitive is used to change the physical address
again or the system is rebooted, whichever comes first.

FILES /dev/be be special character device.

SEE ALSO prtconf(1M), dlpi(7), ie(7), le(7), qe(7)

7-36 modified 26 Jan 1994

SunOS 5.4 Special Files bpp (7)

NAME bpp − bi-directional parallel port driver

SYNOPSIS #include <sys/types.h>
#include <fcntl.h>
#include <sys/bpp_io.h>

fd = open("/dev/bppn", flags);

DESCRIPTION The bpp driver provides a general-purpose bi-directional interface to parallel devices. It
supports a variety of output (printer) and input (scanner) devices, using programmable
timing relationships between the various handshake signals. The bpp driver is an
exclusive-use device. If the device has already been opened, subsequent opens fail with
EBUSY.

Default Operation Each time the bpp device is opened, the default configuration is BPP_ACK_BUSY_HS for
read handshake, BPP_ACK_HS for write handshake, 1 microsecond for all setup times
and strobe widths, and 60 seconds for both timeouts. This configuration (in the write
mode) drives many common personal computer parallel printers with Centronics-type
interfaces. The application should use the BPPIOC_SETPARMS ioctl() to configure the
bpp for the particular device which is attached, if necessary.

Write Operation If a failure or error condition occurs during a write(2), the number of bytes successfully
written is returned (short write). Note that errno will not be set. The contents of certain
status bits will be captured at the time of the error, and can be retrieved by the applica-
tion program, using the BPPIOC_GETERR ioctl() call. Subsequent write(2) calls may fail
with the system error ENXIO if the error condition is not rectified. The captured status
information will be overwritten each time an attempted transfer or a BPPIOC_TESTIO
ioctl() occurs.

Read/Write
Operation

When the driver is opened for reading and writing, it is assumed that scanning will take
place, as scanners are the only devices supported by this mode. Most scanners require
that the SLCT_IN or AFX pin be set to tell the scanner the direction of the transfer. The
AFX line is set when the read_handshake element of the bpp_transfer_parms structure is
set to BPP_HSCAN_HS, otherwise the SLCT_IN pin is set. Normally, scanning starts by
writing a command to the scanner, at which time the pin is set. When the scan data is
read back, the pin is reset.

If a failure or error condition occurs during a read(2), the number of bytes successfully
read is returned (short read). Note that errno will not be set. The contents of certain
status bits will be captured at the time of the error, and can be retrieved by the applica-
tion, using the BPPIOC_GETERR ioctl() call. Subsequent read(2) calls may fail with
ENXIO if the error condition is not rectified. The captured register information will be
overwritten each time an attempted transfer or a BPPIOC_TESTIO ioctl() occurs.

modified 22 Oct 1991 7-37

bpp (7) Special Files SunOS 5.4

Read Operation If a failure or error condition occurs during a read(2), the number of bytes successfully
read is returned (short read). Note that errno will not be set. If read_handshake is set to
BPP_CLEAR_MEM or BPP_SET_MEM, zeroes or ones, respectively, are written into the
user buffer.

IOCTLS The following ioctl(2) calls are supported:

BPPIOC_SETPARMS Set transfer parameters.
The argument is a pointer to a struct bpp_transfer_parms. See
below for a description of the elements of this structure. If a
parameter is out of range, EINVAL is returned.

BPPIOC_GETPARMS Get current transfer parameters.
The argument is a pointer to a struct bpp_transfer_parms. See
below for a description of the elements of this structure. If no
parameters have been configured since the device was opened, the
contents of the struct will be the default conditions of the parame-
ters (see Default Operation above).

Transfer Parameters Structure

This structure is defined in <sys/bpp_io.h>.

struct bpp_transfer_parms {
enum handshake_t

read_handshake; /∗ parallel port read handshake mode ∗/
int read_setup_time; /∗ DSS register - in nanoseconds ∗/
int read_strobe_width; /∗ DSW register - in nanoseconds ∗/
int read_timeout; /∗

∗ wait this many seconds
∗ before aborting a transfer
∗/

enum handshake_t
write_handshake; /∗ parallel port write handshake mode ∗/

int write_setup_time; /∗ DSS register - in nanoseconds ∗/
int write_strobe_width; /∗ DSW register - in nanoseconds ∗/
int write_timeout; /∗

∗ wait this many seconds
∗ before aborting a transfer
∗/

};

/∗ Values for read_handshake and write_handshake fields ∗/
enum handshake_t {

BPP_NO_HS, /∗ no handshake pins ∗/
BPP_ACK_HS, /∗ handshake controlled by ACK line ∗/

7-38 modified 22 Oct 1991

SunOS 5.4 Special Files bpp (7)

BPP_BUSY_HS, /∗ handshake controlled by BSY line ∗/
BPP_ACK_BUSY_HS, /∗

∗ handshake controlled by ACK and BSY lines
∗ read_handshake only!
∗/

BPP_XSCAN_HS, /∗ xerox scanner mode, read_handshake only! ∗/
BPP_HSCAN_HS, /∗

∗ HP scanjet scanner mode
∗ read_handshake only!
∗/

BPP_CLEAR_MEM, /∗ write 0’s to memory, read_handshake only! ∗/
BPP_SET_MEM, /∗ write 1’s to memory, read_handshake only! ∗/
/∗ The following handshakes are RESERVED. Do not use. ∗/
BPP_VPRINT_HS, /∗ valid only in read/write mode ∗/
BPP_VPLOT_HS /∗ valid only in read/write mode ∗/

};

The read_setup_time field controls the time between dstrb falling edge to bsy rising edge
if the read_handshake field is set to BPP_NO_HS or BPP_ACK_HS. It controls the time
between dstrb falling edge to ack rising edge if the read_handshake field is set to
BPP_ACK_HS or BPP_ACK_BUSY_HS. It controls the time between ack falling edge to
dstrb rising edge if the read_handshake field is set to BPP_XSCAN_HS.

The read_strobe_width field controls the time between ack rising edge and ack falling
edge if the read_handshake field is set to BPP_NO_HS or BPP_ACK_BUSY_HS. It controls
the time between dstrb rising edge to dstrb falling edge if the read_handshake field is set
to BPP_XSCAN_HS.

The values allowed for the write_handshake field are duplicates of the definitions for the
read_handshake field. Note that some of these handshake definitions are only valid in
one mode or the other.

The write_setup_time field controls the time between data valid to dstrb rising edge for
all values of the write_handshake field.

The write_strobe_width field controls the time between dstrb rising edge and dstrb fal-
ling edge if the write_handshake field is not set to BPP_VPRINT_HS or BPP_VPLOT_HS.
It controls the minimum time between dstrb rising edge to dstrb falling edge if the
write_handshake field is set to BPP_VPRINT_HS or BPP_VPLOT_HS.

BPPIOC_SETOUTPINS Set output pin values.
The argument is a pointer to a struct bpp_pins. See below
for a description of the elements of this structure. If a
parameter is out of range, EINVAL is returned.

BPPIOC_GETOUTPINS Read output pin values.
The argument is a pointer to a struct bpp_pins. See below
for a description of the elements of this structure.

modified 22 Oct 1991 7-39

bpp (7) Special Files SunOS 5.4

Transfer Pins Structure

This structure is defined in <sys/bpp_io.h>.

struct bpp_pins {
u_char output_reg_pins; /∗ pins in P_OR register ∗/
u_char input_reg_pins; /∗ pins in P_IR register ∗/

};

/∗ Values for output_reg_pins field ∗/
#define BPP_SLCTIN_PIN 0x01 /∗ Select in pin ∗/
#define BPP_AFX_PIN 0x02 /∗ Auto feed pin ∗/
#define BPP_INIT_PIN 0x04 /∗ Initialize pin ∗/
#define BPP_V1_PIN 0x08 /∗ reserved pin 1 ∗/
#define BPP_V2_PIN 0x10 /∗ reserved pin 2 ∗/
#define BPP_V3_PIN 0x20 /∗ reserved pin 3 ∗/

#define BPP_ERR_PIN 0x01 /∗ Error pin ∗/
#define BPP_SLCT_PIN 0x02 /∗ Select pin ∗/
#define BPP_PE_PIN 0x04 /∗ Paper empty pin ∗/

BPPIOC_GETERR
Get last error status.
The argument is a pointer to a struct bpp_error_status. See below for a
description of the elements of this structure. This structure indicates the
status of all the appropriate status bits at the time of the most recent
error condition during a read(2) or write(2) call, or the status of the bits
at the most recent BPPIOC_TESTIO ioctl(2) call. Note: The bits in the
pin_status element indicate whether the associated pin is active, not the
actual polarity. The application can check transfer readiness without
attempting another transfer using the BPPIOC_TESTIO ioctl(). Note:
The timeout_occurred and bus_error fields will never be set by the
BPPIOC_TESTIO ioctl(), only by an actual failed transfer.

Error Pins Structure

This structure is defined in the include file <sys/bpp_io.h>.

struct bpp_error_status {
char timeout_occurred; /∗ 1 if a timeout occurred ∗/
char bus_error; /∗ 1 if an SBus bus error ∗/
u_char pin_status; /∗

∗ status of pins which could
∗ cause an error
∗/

};

/∗ Values for pin_status field ∗/

7-40 modified 22 Oct 1991

SunOS 5.4 Special Files bpp (7)

#define BPP_ERR_ERR 0x01 /∗ Error pin active ∗/
#define BPP_SLCT_ERR 0x02 /∗ Select pin active ∗/
#define BPP_PE_ERR 0x04 /∗ Paper empty pin active ∗/
#define BPP_SLCTIN_ERR 0x10 /∗ Select in pin active ∗/
#define BPP_BUSY_ERR 0x40 /∗ Busy pin active ∗/

BPPIOC_TESTIO Test transfer readiness.
This command checks to see if a read or write transfer would
succeed based on pin status, opened mode, and handshake selected.
If a transfer would succeed, zero is returned. If a transfer would fail,
-1 is returned, and errno is set to EIO, and the error status informa-
tion is captured. The captured status can be retrieved using the
BPPIOC_GETERR ioctl() call. Note that the timeout_occurred and
bus_error fields will never be set by this ioctl().

ERRORS EBADF The device is opened for write-only access and a read is attempted, or
the device is opened for read-only access and a write is attempted.

EBUSY The device has been opened and another open is attempted.
An attempt has been made to unload the driver while one of the units is
open.

EINVAL A BPPIOC_SETPARMS ioctl() is attempted with an out of range value in
the bpp_transfer_parms structure.
A BPPIOC_SETOUTPINS ioctl() is attempted with an invalid value in the
pins structure.
An ioctl() is attempted with an invalid value in the command argument.
An invalid command argument is received from the vd driver (during
modload(1M), modunload(1M).

EIO The driver encountered an SBus bus error when attempting an access.

A read or write does not complete properly, due to a peripheral error or
a transfer timeout.

A BPPIOC_TESTIO ioctl() call is attempted while a condition exists
which would prevent a transfer (such as a peripheral error).

ENXIO The driver has received an open request for a unit for which the attach
failed.
The driver has received a read or write request for a unit number greater
than the number of units available.
The driver has received a write request for a unit which has an active
peripheral error.

FILES /dev/bpp? bi-directional parallel port devices

SEE ALSO ioctl(2), read(2), write(2)

modified 22 Oct 1991 7-41

bufmod (7) Special Files SunOS 5.4

NAME bufmod − STREAMS Buffer Module

SYNOPSIS ioctl(fd, I_PUSH, "bufmod");

DESCRIPTION bufmod is a STREAMS module that buffers incoming messages, reducing the number of
system calls and the associated overhead required to read and process them. Although
bufmod was originally designed to be used in conjunction with STREAMS-based net-
working device drivers, the version described here is general purpose so that it can be
used anywhere STREAMS input buffering is required.

Read-side Behavior bufmod’s behavior depends on various parameters and flags that can be set and queried
as described below under IOCTLS. bufmod collects incoming M_DATA messages into
chunks, passing each chunk upstream when the chunk becomes full or the current read
timeout expires. It optionally converts M_PROTO messages to M_DATA and adds them
to chunks as well. It also optionally adds to each message a header containing a times-
tamp, and a cumulative count of messages dropped on the stream read side due to
resource exhaustion or flow control. bufmod’s default settings allow it to drop messages
when flow control sets in or resources are exhausted; disabling headers and explicitly
requesting no drops makes bufmod pass all messages through. Finally, bufmod is capa-
ble of truncating upstream messages to a fixed, programmable length.

When a message arrives, bufmod processes it in several steps. The following paragraphs
discuss each step in turn.

Upon receiving a message from below, if the SB_NO_HEADER flag is not set, bufmod
immediately timestamps it and saves the current time value for later insertion in the
header described below.

Next, if SB_NO_PROTO_CVT is not set, bufmod converts all leading M_PROTO blocks in
the message to M_DATA blocks, altering only the message type field and leaving the con-
tents alone.

It then truncates the message to the current snapshot length, which is set with the
SBIOCSSNAP ioctl described below.

Afterwards, if SB_NO_HEADER is not set, bufmod prepends a header to the converted
message. This header is defined as follows.

struct sb_hdr {
u_int sbh_origlen;
u_int sbh_msglen;
u_int sbh_totlen;
u_int sbh_drops;
struct timeval sbh_timestamp;

};
The sbh_origlen field gives the message’s original length before truncation in bytes. The
sbh_msglen field gives the length in bytes of the message after the truncation has been
done. sbh_totlen gives the distance in bytes from the start of the truncated message in
the current chunk (described below) to the start of the next message in the chunk; the

7-42 modified 27 Jul 1992

SunOS 5.4 Special Files bufmod (7)

value reflects any padding necessary to insure correct data alignment for the host
machine and includes the length of the header itself. sbh_drops reports the cumulative
number of input messages that this instance of bufmod has dropped due to flow control
or resource exhaustion. In the current implementation message dropping due to flow
control can occur only if the SB_NO_DROPS flag is not set. (Note: this accounts only for
events occurring within bufmod, and does not count messages dropped by downstream
or by upstream modules.) The sbh_timestamp field contains the message arrival time
expressed as a struct timeval.

After preparing a message, bufmod attempts to add it to the end of the current chunk,
using the chunk size and timeout values to govern the addition. The chunk size and
timeout values are set and inspected using the ioctl() calls described below. If adding the
new message would make the current chunk grow larger than the chunk size, bufmod
closes off the current chunk, passing it up to the next module in line, and starts a new
chunk. If adding the message would still make the new chunk overflow, the module
passes it upward in an over-size chunk of its own. Otherwise, the module concatenates
the message to the end of the current chunk.

To ensure that messages do not languish forever in an accumulating chunk, bufmod
maintains a read timeout. Whenever this timeout expires, the module closes off the
current chunk and passes it upward. The module restarts the timeout period when it
receives a read side data message and a timeout is not currently active. These two rules
insure that bufmod minimizes the number of chunks it produces during periods of
intense message activity and that it periodically disposes of all messages during slack
intervals, but avoids any timeout overhead when there is no activity.

bufmod handles other message types as follows. Upon receiving an M_FLUSH message
specifying that the read queue be flushed, the module clears the currently accumulating
chunk and passes the message on to the module or driver above. (Note: bufmod uses
zero length M_CTL messages for internal synchronization and does not pass them
through.) bufmod passes all other messages through unaltered to its upper neighbor,
maintaining message order for non high priority messages by passing up any accumu-
lated chunk first.

If the SB_DEFER_CHUNK flag is set, buffering does not begin until the second message is
received within the timeout window.

If the SB_SEND_ON_WRITE flag is set, bufmod passes up the read side any buffered data
when a message is received on the write side. SB_SEND_ON_WRITE and
SB_DEFER_CHUNK are often used together.

Write-side Behavior bufmod intercepts M_IOCTL messages for the ioctls described below. The module
passes all other messages through unaltered to its lower neighbor. If
SB_SEND_ON_WRITE is set, message arrival on the writer side suffices to close and
transmit the current read side chunk.

IOCTLS bufmod responds to the following ioctls.

SBIOCSTIME Set the read timeout value to the value referred to by the struct
timeval pointer given as argument. Setting the timeout value to zero

modified 27 Jul 1992 7-43

bufmod (7) Special Files SunOS 5.4

has the side-effect of forcing the chunk size to zero as well, so that the
module will pass all incoming messages upward immediately upon
arrival. Negative values are rejected with an EINVAL error.

SBIOCGTIME Return the read timeout in the struct timeval pointed to by the argu-
ment. If the timeout has been cleared with the SBIOCCTIME ioctl,
return with an ERANGE error.

SBIOCCTIME Clear the read timeout, effectively setting its value to infinity. This
results in no timeouts being active and the chunk being delivered
when it is full.

SBIOCSCHUNK Set the chunk size to the value referred to by the u_int pointer given
as argument. See NOTES for description of effect on stream head
high water mark.

SBIOCGCHUNK Return the chunk size in the u_int pointed to by the argument.

SBIOCSSNAP Set the current snapshot length to the value given in the u_long
pointed to by the ioctl’s final argument. bufmod interprets a
snapshot length value of zero as meaning infinity, so it will not alter
the message. See NOTES for description of effect on stream head high
water mark.

SBIOCGSNAP Returns the current snapshot length in the u_long pointed to by the
ioctl’s final argument.

SBIOCSFLAGS Set the current flags to the value given in the u_long pointed to by the
ioctl’s final argument. Possible values are a combination of the fol-
lowing.

SB_SEND_ON_WRITE Transmit the read side chunk on arrival of a
message on the write side.

SB_NO_HEADER Do not add headers to read side messages.

SB_NO_DROPS Do not drop messages due to flow control
upstream.

SB_NO_PROTO_CVT Do not convert M_PROTO messages into
M_DATA.

SB_DEFER_CHUNK Begin buffering on arrival of the second
read side message in a timeout interval.

SBIOCGFLAGS Returns the current flags in the u_long pointed to by the ioctl’s final
argument.

SEE ALSO dlpi(7), ie(7), le(7), pfmod(7)

NOTES Older versions of bufmod did not support the behavioral flexibility controlled by the
SBIOCSFLAGS ioctl. Applications that wish to take advantage of this flexibility can
guard themselves against old versions of the module by invoking the SBIOCGFLAGS
ioctl and checking for an EINVAL error return.

7-44 modified 27 Jul 1992

SunOS 5.4 Special Files bufmod (7)

When buffering is enabled by issuing an SBIOCSCHUNK ioctl to set the chunk size to a
non zero value, bufmod sends a SETOPTS message to adjust the stream head high and
low water marks to accommodate the chunked messages.

When buffering is disabled by setting the chunk size to zero, message truncation can have
a significant influence on data traffic at the stream head and therefore the stream head
high and low water marks are adjusted to new values appropriate for the smaller trun-
cated message sizes.

BUGS bufmod does not defend itself against allocation failures, so that it is possible, although
very unlikely, for the stream head to use inappropriate high and low water marks after
the chunk size or snapshot length have changed.

modified 27 Jul 1992 7-45

bwtwo (7) Special Files SunOS 5.4

NAME bwtwo − black and white memory frame buffer

SYNOPSIS /dev/fbs/bwtwo

DESCRIPTION The bwtwo interface provides access to monochrome memory frame buffers. It supports
the ioctls described in fbio(7).

Reading or writing to the frame buffer is not allowed — you must use the mmap(2) sys-
tem call to map the board into your address space.

FILES /dev/fbs/bwtwo[0-9] device files

SEE ALSO mmap(2), cgfour(7), fbio(7)

BUGS Use of vertical-retrace interrupts is not supported.

7-46 modified 27 Mar 1992

SunOS 5.4 Special Files cdio (7)

NAME cdio − CD-ROM control operations

SYNOPSIS #include <sys/cdio.h>

DESCRIPTION A SCSI driver sd(7) supports most of this set of ioctl(2) commands for audio operations
and CD-ROM specific operations. Basic to these cdio ioctl() requests are the definitions
in <sys/cdio.h>.

Several CD-ROM specific commands can report addresses either in LBA (Logical Block
Address) format or in MSF (Minute, Second, Frame) format. The READ HEADER , READ
SUBCHANNEL , and READ TABLE OF CONTENTS commands have this feature.

LBA format represents the logical block address for the CD-ROM absolute address field or
for the offset from the beginning of the current track expressed as a number of logical
blocks in a CD-ROM track relative address field. MSF format represents the physical
address written on CD-ROM discs, expressed as a sector count relative to either the begin-
ning of the medium or the beginning of the current track.

IOCTLS The following I/O controls do not have any additional data passed into or received from
them.

CDROMSTART This ioctl() spins up the disc and seeks to the last address
requested.

CDROMSTOP This ioctl() spins down the disc.

CDROMPAUSE This ioctl() pauses the current audio play operation.

CDROMRESUME This ioctl() resumes the paused audio play operation.

CDROMEJECT This ioctl() ejects the caddy with the disc.

The following I/O controls require a pointer to the structure for that ioctl(), with data
being passed into the ioctl().

CDROMPLAYMSF This ioctl() command requests the drive to output the audio sig-
nals at the specified starting address and continue the audio play
until the specified ending address is detected. The address is in
MSF format. The third argument of this ioctl() call is a pointer to
the type struct cdrom_msf.

modified 27 Jan 1994 7-47

cdio (7) Special Files SunOS 5.4

/∗
∗ definition of play audio msf structure
∗/
struct cdrom_msf {

unsigned char cdmsf_min0; /∗ starting minute ∗/
unsigned char cdmsf_sec0; /∗ starting second ∗/
unsigned char cdmsf_frame0; /∗ starting frame ∗/
unsigned char cdmsf_min1; /∗ ending minute ∗/
unsigned char cdmsf_sec1; /∗ ending second ∗/
unsigned char cdmsf_frame1; /∗ ending frame ∗/

};

CDROMPLAYTRKIND
This ioctl() command is similar to CDROMPLAYMSF. The starting
and ending address is in track/index format. The third argument
of the ioctl() call is a pointer to the type struct cdrom_ti.

/∗
∗ definition of play audio track/index structure
∗/
struct cdrom_ti {

unsigned char cdti_trk0; /∗ starting track ∗/
unsigned char cdti_ind0; /∗ starting index ∗/
unsigned char cdti_trk1; /∗ ending track ∗/
unsigned char cdti_ind1; /∗ ending index ∗/

};

CDROMVOLCTRL This ioctl() command controls the audio output level. The SCSI
command allows the control of up to four channels. The current
implementation of the supported CD-ROM drive only uses channel
0 and channel 1. The valid values of volume control are between
0x00 and 0xFF, with a value of 0xFF indicating maximum volume.
The third argument of the ioctl() call is a pointer to struct
cdrom_volctrl which contains the output volume values.

/∗
∗ definition of audio volume control structure
∗/
struct cdrom_volctrl {

unsigned char channel0;
unsigned char channel1;
unsigned char channel2;
unsigned char channel3;

};

The following I/O controls take a pointer that will have data returned to the user pro-
gram from the CD-ROM driver.

7-48 modified 27 Jan 1994

SunOS 5.4 Special Files cdio (7)

CDROMREADTOCHDR
This ioctl() command returns the header of the table of contents
(TOC). The header consists of the starting tracking number and the
ending track number of the disc. These two numbers are returned
through a pointer of struct cdrom_tochdr. While the disc can start
at any number, all tracks between the first and last tracks are in
contiguous ascending order.

/∗
∗ definition of read toc header structure
∗/
struct cdrom_tochdr {

unsigned char cdth_trk0; /∗ starting track ∗/
unsigned char cdth_trk1; /∗ ending track ∗/

};

CDROMREADTOCENTRY
This ioctl() command returns the information of a specified track.
The third argument of the function call is a pointer to the type
struct cdrom_tocentry. The caller needs to supply the track
number and the address format. This command will return a 4-bit
adr field, a 4-bit ctrl field, the starting address in MSF format or
LBA format, and the data mode if the track is a data track. The ctrl
field specifies whether the track is data or audio. To get informa-
tion for the lead-out area, supply the ioctl() command with the
track field set to CDROM_LEADOUT (0xAA).

/∗
∗ definition of read toc entry structure
∗/
struct cdrom_tocentry {

unsigned char cdte_track;
unsigned char cdte_adr :4;
unsigned char cdte_ctrl :4;
unsigned char cdte_format;
union {

struct {
unsigned char minute;
unsigned char second;
unsigned char frame;

} msf;
int lba;

} cdte_addr;
unsigned char cdte_datamode;

};

modified 27 Jan 1994 7-49

cdio (7) Special Files SunOS 5.4

To get the information from leadout track, the following value is
appropriate for cdte_track the field:

CDROM_LEADOUT Leadout track

To get the information form data track, the following value is
appropriate for cdte_ctrl the field:

CDROM_DATA_TRACK Data track

The following values are appropriate for the cdte_adr field:

CDROM_LBA LBA format

CDROM_MSF MSF format

CDROMSUBCHNL This ioctl() command reads the Q sub-channel data of the current
block. The subchannel data includes track number, index number,
absolute CD-ROM address, track relative CD-ROM address, control
data and audio status. All information is returned through a
pointer to struct cdrom_subchnl. The caller needs to supply the
address format for the returned address.

struct cdrom_subchnl {
unsigned char cdsc_format;
unsigned char cdsc_audiostatus;
unsigned char cdsc_adr: 4;
unsigned char cdsc_ctrl: 4;
unsigned char cdsc_trk;
unsigned char cdsc_ind;
union {

struct {
unsigned char minute;
unsigned char second;
unsigned char frame;

} msf;
int lba;

} cdsc_absaddr;
union {

struct {
unsigned char minute;
unsigned char second;
unsigned char frame;

} msf;
int lba;

} cdsc_reladdr;
};

7-50 modified 27 Jan 1994

SunOS 5.4 Special Files cdio (7)

The following values are valid for the audio status field returned
from READ SUBCHANNEL command:

CDROM_AUDIO_INVALID Audio status not supported

CDROM_AUDIO_PLAY Audio play operation in pro-
gress

CDROM_AUDIO_PAUSED Audio play operation paused

CDROM_AUDIO_COMPLETED Audio play successfully com-
pleted

CDROM_AUDIO_ERROR Audio play stopped due to error

CDROM_AUDIO_NO_STATUS No current audio status to
return

CDROMREADOFFSET
This ioctl() command returns the absolute CD-ROM address of the
first track in the last session of a Multi-Session CD-ROM. The third
argument of the ioctl() call is a pointer to an int.

CDROMCDDA This ioctl() command returns the CD-DA data or the subcode data.
The third argument of the ioctl() call is a pointer to the type struct
cdrom_cdda. In addition to allocating memory and supplying its
address, the caller needs to supply the starting address of the data,
the transfer length, and the subcode options. The caller also needs
to issue the CDROMREADTOCENTRY ioctl() to find out which
tracks contain CD-DA data before issuing this ioctl().

/∗
∗ Definition of CD-DA structure
∗/
struct cdrom_cdda {

unsigned int cdda_addr;
unsigned int cdda_length;
caddr_t cdda_data;
unsigned char cdda_subcode;

};

To get the subcode information related to CD-DA data, the follow-
ing values are appropriate for the cdda_subcode field:

CDROM_DA_NO_SUBCODE CD-DA data with no subcode

CDROM_DA_SUBQ CD-DA data with sub Q code

CDROM_DA_ALL_SUBCODE CD-DA data with all subcode

CDROM_DA_SUBCODE_ONLY All subcode only

modified 27 Jan 1994 7-51

cdio (7) Special Files SunOS 5.4

To allocate the memory related to CD-DA and/or subcode data,
the following values are appropriate for each data block
transferred:

CD-DA data with no subcode 2352 bytes

CD-DA data with sub Q code 2368 bytes

CD-DA data with all subcode 2448 bytes

All subcode only 96 bytes

CDROMCDXA This ioctl() command returns the CD-ROM XA (CD-ROM
Extended Architecture) data according to CD-ROM XA format. The
third argument of the ioctl() call is a pointer to the type struct
cdrom_cdxa. In addition to allocating memory and supplying its
address, the caller needs to supply the starting address of the data,
the transfer length, and the format. The caller also needs to issue
the CDROMREADTOCENTRY ioctl() to find out which tracks con-
tain CD-ROM XA data before issuing this ioctl().

/∗
∗ Definition of CD-ROM XA structure
∗/
struct cdrom_cdxa {

unsigned int cdxa_addr;
unsigned int cdxa_length;
caddr_t cdxa_data;
unsigned char cdxa_format;

};

To get the proper CD-ROM XA data, the following values are
appropriate for the cdxa_format field:

CDROM_XA_DATA CD-ROM XA data only

CDROM_XA_SECTOR_DATA CD-ROM XA all sector data

CDROM_XA_DATA_W_ERROR CD-ROM XA data with error
flags data

To allocate the memory related to CD-ROM XA format, the follow-
ing values are appropriate for each data block transferred:

CD-ROM XA data only 2048 bytes

CD-ROM XA all sector data 2352 bytes

CD-ROM XA data with error flags data
2646 bytes

CDROMSUBCODE This ioctl() command returns raw subcode data (subcodes P ˜ W
are described in the "Red Book," see SEE ALSO) to the initiator
while the target is playing audio. The third argument of the ioctl()
call is a pointer to the type struct cdrom_subcode. The caller
needs to supply the transfer length and allocate memory for

7-52 modified 27 Jan 1994

SunOS 5.4 Special Files cdio (7)

subcode data. The memory allocated should be a multiple of 96
bytes depending on the transfer length.

/∗
∗ Definition of subcode structure
∗/
struct cdrom_subcode {

unsigned int cdsc_length;
caddr_t cdsc_addr;

};

The next group of I/O controls get and set various CD-ROM drive parameters.

CDROMGBLKMODE This ioctl() command returns the current block size used by the
CD-ROM drive. The third argument of the ioctl() call is a pointer
to an integer.

CDROMSBLKMODE This ioctl() command requests the CD-ROM drive to change from
the current block size to the requested block size. The third argu-
ment of the ioctl() call is an integer which contains the requested
block size.

This ioctl() command operates in exclusive-use mode only. The
caller must ensure that no other processes can operate on the same
CD-ROM device before issuing this ioctl(). read(2) behavior subse-
quent to this ioctl() remains the same: the caller is still constrained
to read the raw device on block boundaries and in block multiples.

To set the proper block size, the following values are appropriate:

CDROM_BLK_512 512 bytes

CDROM_BLK_1024 1024 bytes

CDROM_BLK_2048 2048 bytes

CDROM_BLK_2056 2056 bytes

CDROM_BLK_2336 2336 bytes

CDROM_BLK_2340 2340 bytes

CDROM_BLK_2352 2352 bytes

CDROM_BLK_2368 2368 bytes

CDROM_BLK_2448 2448 bytes

CDROM_BLK_2646 2646 bytes

CDROM_BLK_2647 2647 bytes

CDROMGDRVSPEED This ioctl() command returns the current CD-ROM drive speed.
The third argument of the ioctl() call is a pointer to an integer.

CDROMSDRVSPEED This ioctl() command requests the CD-ROM drive to change the
current drive speed to the requested drive speed. This speed set-
ting is only applicable when reading data areas. The third

modified 27 Jan 1994 7-53

cdio (7) Special Files SunOS 5.4

argument of the ioctl() is an integer which contains the requested
drive speed.

To set the CD-ROM drive to the proper speed, the following values
are appropriate:

CDROM_NORMAL_SPEED 150k/second

CDROM_DOUBLE_SPEED 330k/second

CDROM_MAXIMUM_SPEED 330k/second

Note that these numbers are only accurate when reading 2048 byte
blocks. The CD-ROM drive will automatically switch to normal
speed when playing audio tracks and will switch back to the speed
setting when accessing data.

SEE ALSO ioctl(2), sd(7)

N. V. Phillips and Sony Corporation, System Description Compact Disc Digital Audio, ("Red
Book").

N. V. Phillips and Sony Corporation, System Description of Compact Disc Read Only
Memory , ("Yellow Book").

N. V. Phillips, Microsoft, and Sony Corporation, System Description CD-ROM XA , 1991.

Volume and File Structure of CD-ROM for Information Interchange, ISO 9660:1988(E).

SCSI-2 Standard, document X3T9.2/86-109

NOTES The CDROMCDDA, CDROMCDXA, CDROMSUBCODE, CDROMGDRVSPEED,
CDROMSDRVSPEED and some of the block sizes in CDROMSBLKMODE are designed for
new Sun-supported CD-ROM drives and might not work on some of the older CD-ROM
drives.

The interface to this device is preliminary and subject to change in future releases. You
are encouraged to write your programs in a modular fashion so that you can easily incor-
porate future changes.

7-54 modified 27 Jan 1994

SunOS 5.4 Special Files cgeight (7)

NAME cgeight − 24-bit color memory frame buffer

SYNOPSIS /dev/fbs/cgeight

DESCRIPTION The cgeight is a 24-bit color memory frame buffer with a monochrome overlay plane and
an overlay enable plane implemented optionally on the Sun-4/110, Sun-4/150, Sun-4/260
and Sun-4/280 system models. It provides the standard frame buffer interface as defined
in fbio(7).

In addition to the ioctls described under fbio(7), the cgeight interface responds to two
cgeight-specific colormap ioctls, FBIOPUTCMAP and FBIOGETCMAP. FBIOPUTCMAP
returns no information other than success/failure using the ioctl return value.
FBIOGETCMAP returns its information in the arrays pointed to by the red, green, and
blue members of its fbcmap structure argument; fbcmap is defined in <sys/fbio.h> as:

struct fbcmap {
int index; /∗ first element (0 origin) ∗/
int count; /∗ number of elements ∗/
unsigned char ∗red; /∗ red color map elements ∗/
unsigned char ∗green; /∗ green color map elements ∗/
unsigned char ∗blue; /∗ blue color map elements ∗/

};

The driver uses color board vertical-retrace interrupts to load the colormap.

The systems have an overlay plane colormap, which is accessed by encoding the plane
group into the index value with the PIX_GROUP macro (see <sys/pr_planegroups.h>).

When using the mmap(2) system call to map in the cgeight frame buffer. The device
looks like:

DACBASE: 0x200000 -> Brooktree Ramdac 16 bytes
0x202000 -> P4 Register 4 bytes

OVLBASE: 0x210000 -> Overlay Plane 1152x900x1
0x230000 -> Overlay Enable Planea 1152x900x1
0x250000 -> 24-bit Frame Buffera 1152x900x32

FILES /dev/fbs/cgeight0
<sys/fbio.h>
<sys/pr_planegroups.h>

SEE ALSO mmap(2), fbio(7)

modified 27 Mar 1992 7-55

cgfour (7) Special Files SunOS 5.4

NAME cgfour − P4-bus 8-bit color memory frame buffer

SYNOPSIS /dev/fbs/cgfour

DESCRIPTION The cgfour is a color memory frame buffer with a monochrome overlay plane and an
overlay enable plane. It provides the standard frame buffer interface as defined in
fbio(7).

In addition to the ioctls described under fbio(7), the cgfour interface responds to two
cgfour-specific colormap ioctls, FBIOPUTCMAP and FBIOGETCMAP. FBIOPUTCMAP
returns no information other than success/failure using the ioctl return value.
FBIOGETCMAP returns its information in the arrays pointed to by the red, green, and
blue members of its fbcmap structure argument; fbcmap is defined in <sys/fbio.h> as:

struct fbcmap {
int index; /∗ first element (0 origin) ∗/
int count; /∗ number of elements ∗/
unsigned char ∗red; /∗ red color map elements ∗/
unsigned char ∗green; /∗ green color map elements ∗/
unsigned char ∗blue; /∗ blue color map elements ∗/

};
The driver uses color board vertical-retrace interrupts to load the colormap.

The cgfour has an overlay plane colormap, which is accessed by encoding the plane
group into the index value with the PIX_GROUP macro (see <sys/pr_planegroups.h>).

FILES /dev/fbs/cgfour0

SEE ALSO mmap(2), fbio(7)

7-56 modified 27 Mar 1992

SunOS 5.4 Special Files cgfourteen (7)

NAME cgfourteen − 24-bit color graphics device

SYNOPSIS /dev/fbs/cgfourteen

DESCRIPTION The cgfourteen device driver controls the video SIMM (VSIMM) component of the video
and graphics subsystem of the Desktop SPARCsystems with SX graphics option. The
VSIMM provides 24-bit truecolor visuals in a variety of screen resolutions and pixel
depths.

The driver supports multi-threaded applications and has an interface accessible through
mmap(2). The user must have an effective user ID of 0 to be able to write to the control
space of the cgfourteen device.

There are eight distinct physical spaces the user may map, in addition to the control
space. The mappings are set up by giving the desired offset to the mmap(2) call.

The cgfourteen device supports the standard frame buffer interface as defined in fbio(7).

The cgfourteen device can serve as a system console device.

See /usr/include/sys/cg14io.h for other device-specific information.

FILES /kernel/drv/cgfourteen cgfourteen device driver
/dev/fbs/cgfourteen[0-9] Logical device name.
/usr/include/sys/cg14io.h Header file that contains device specific information
/usr/include/sys/cg14reg.h Header file that contains device specific information

SEE ALSO mmap(2), fbio(7)

modified 4 Jun 1993 7-57

cgsix (7) Special Files SunOS 5.4

NAME cgsix − accelerated 8-bit color frame buffer

SYNOPSIS /dev/fbs/cgsix

DESCRIPTION cgsix is a low-end graphics accelerator designed to enhance vector and polygon drawing
performance. It has an 8-bit color frame buffer and provides the standard frame buffer
interface as defined in fbio(7).

In addition, cgsix supports the following cgsix-specific IOCTL, defined in <sys/fbio.h>.

FBIOGXINFO Returns cgsix-specific information about the hardware. See the
definition of cg6_info in <sys/fbio.h> for more information.

cgsix has registers and memory that may be mapped with mmap(2), using the offsets
defined in <sys/cg6reg.h>.

FILES /dev/fbs/cgsix0

SEE ALSO mmap(2), fbio(7)

7-58 modified 27 Mar 1992

SunOS 5.4 Special Files cgthree (7)

NAME cgthree − 8-bit color memory frame buffer

SYNOPSIS /dev/fbs/cgthree

DESCRIPTION cgthree is a color memory frame buffer. It provides the standard frame buffer interface
as defined in fbio(7).

FILES /dev/fbs/cgthree[0-9]

SEE ALSO mmap(2), fbio(7)

modified 27 Mar 1992 7-59

cgtwelve (7) Special Files SunOS 5.4

NAME cgtwelve − 24-bit SBus color memory frame buffer and graphics accelerator

SYNOPSIS /dev/fbs/cgtwelve

DESCRIPTION cgtwelve is a 24-bit SBus-based color frame buffer and graphics accelerator, with 12-bit
double buffering, 8-bit colormap, and overlay/enable planes. It provides the standard
frame buffer interface defined in fbio(7), paired with microcode which can be down-
loaded using gsconfig(1M). Application acceleration is achieved using the SunPHIGS
Application Programmer Interface (API).

The cgtwelve has registers and memory that may be mapped with mmap(2), using the
offsets defined in <sys/cg12reg.h>.

When in double-buffer mode, each channel is dithered to 4 bits, yielding 12-bit double-
buffering.

FILES /dev/fbs/cgtwelve0 device special file
/dev/fb default frame buffer
/usr/include/sys/cg12reg.h device-specific definitions

SEE ALSO gsconfig(1M), mmap(2), fbio(7)

7-60 modified 27 Mar 1992

SunOS 5.4 Special Files cgtwo (7)

NAME cgtwo − color graphics interface

SYNOPSIS /dev/cgtwo

DESCRIPTION The cgtwo interface provides access to the color graphics controller board, which is nor-
mally supplied with a 19’’ 66 Hz non-interlaced color monitor. It provides the standard
frame buffer interface as defined in fbio(7).

The hardware consumes 4 megabytes of VME bus address space. The board starts at
standard address 0x400000. The board must be configured for interrupt level 4.

FILES /dev/cgtwo[0-9]

SEE ALSO mmap(2), fbio(7)

modified 21 Oct 1991 7-61

cmdk (7) Special Files SunOS 5.4

NAME cmdk − common disk driver

AVAILABILITY x86

DESCRIPTION The cmdk device driver is a common interface to various disk devices. The driver sup-
ports magnetic fixed disks, magnetic removable disks, and both 512-byte and 2K-byte
CD-ROM drives.

The block-files access the disk using the system’s normal buffering mechanism and are
read and written without regard to physical disk records. There is also a "raw" interface
that provides for direct transmission between the disk and the user’s read or write buffer.
A single read or write call usually results in one I/O operation; raw I/O is therefore con-
siderably more efficient when many bytes are transmitted. The names of the block files
are found in /dev/dsk; the names of the raw files are found in /dev/rdsk.

I/O requests to the magnetic disk must have an offset and transfer length that is a multi-
ple of 512 bytes or the driver returns an EINVAL error. However, I/O requests to the
2K-byte CD-ROM drive must be a multiple of 2K bytes. Otherwise, the driver returns an
EINVAL error, too.

Slice 0 is normally used for the root file system on a disk, slice 1 as a paging area (for
example, swap), and slice 2 for backing up the entire Solaris fdisk partition. Other slices
may be used for usr file systems or system reserved area.

Fdisk partition 0 is to access the entire disk and is generally used by the fdisk(1M)
program.

FILES /dev/dsk/cntndn[s|p]n block device

/dev/rdsk/cntndn[s|p]n raw device

where:
cn controller n
tn target id n (0-6)
dn lun n (0-7)
sn UNIX system slice n (0-15)
pn fdisk partition (0)

SEE ALSO fdisk(1M), mount(1M), lseek(2), read(2), write(2), directory(3C), vfstab(4), dkio(7)

7-62 modified 18 Oct 1993

SunOS 5.4 Special Files cmtp (7)

NAME cmtp − common tape driver

AVAILABILITY x86

DESCRIPTION The cmtp device driver is a common interface to various tape devices. (At the time of
this release, only SCSI interface tape devices are supported.) The driver supports 1/4"
cartridge devices, 4mm digital audio tapes (DAT), 1/2" reel tapes, and 8mm devices. See
mtio(7) for details.

The driver can be opened with either the rewind or the no wind on close option. The
driver supports a maximum of 128 tape devices. In addition, a maximum of four tape
densities per device are supported. The tape density is specified using the different
device name suffixes. See mtio(7) for details.

EOT Handling Most of the tape drives have a logical end of tape (LEOT) before the physical end of tape
(PEOT), to guarantee flushing the data onto the tape. The amount of storage between
LEOT and PEOT varies from a megabyte to about 20 megabytes, depending on the tape
device. Further writing is prohibited to prevent running off the end of the reel.

The first write that encounters EOT will return a short count or zero. The next write will
return zero. Further writes to the tape will receive an ENOSPC error.

Reading past EOT is transparent to the user. Reading is only stopped by reading EOFs.
For 1/2" reel devices, two consecutive file marks indicate the end of the recorded media.

Ioctls The behavior of tape positioning ioctls is the same across all supporting devices. How-
ever, not all devices support every ioctl. The driver returns an ENOTTY error on unsup-
ported ioctls.

SEE ALSO cpio(1), mt(1), tar(1), mtio(7)

modified 18 Oct 1992 7-63

connld (7) Special Files SunOS 5.4

NAME connld − line discipline for unique stream connections

SYNOPSIS /dev/connld

DESCRIPTION connld is a STREAMS-based module that provides unique connections between server
and client processes. It can only be pushed (see streamio(7)) onto one end of a
STREAMS-based pipe that may subsequently be attached to a name in the file system
name space with fattach(3C). After the pipe end is attached, a new pipe is created inter-
nally when an originating process attempts to open(2) or creat(2) the file system name. A
file descriptor for one end of the new pipe is packaged into a message identical to that for
the ioctl I_SENDFD (see streamio(7)) and is transmitted along the stream to the server
process on the other end. The originating process is blocked until the server responds.

The server responds to the I_SENDFD request by accepting the file descriptor through
the I_RECVFD ioctl message. When this happens, the file descriptor associated with the
other end of the new pipe is transmitted to the originating process as the file descriptor
returned from open(2) or creat(2).

If the server does not respond to the I_SENDFD request, the stream that the connld
module is pushed on becomes uni-directional because the server will not be able to
retrieve any data off the stream until the I_RECVFD request is issued. If the server pro-
cess exits before issuing the I_RECVFD request, the open(2) or the creat(2) invocation
will fail and return -1 to the originating process.

When the connld module is pushed onto a pipe, it ignores messages going back and forth
through the pipe.

ERRORS On success, an open of connld returns 0. On failure, errno is set to the following values:

EINVAL A stream onto which connld is being pushed is not a pipe or the pipe does
not have a write queue pointer pointing to a stream head read queue.

EINVAL The other end of the pipe onto which connld is being pushed is linked
under a multiplexor.

EPIPE connld is being pushed onto a pipe end whose other end is no longer
there.

ENOMEM An internal pipe could not be created.

ENXIO An M_HANGUP message is at the stream head of the pipe onto which
connld is being pushed.

EAGAIN Internal data structures could not be allocated.

ENFILE A file table entry could not be allocated.

SEE ALSO creat(2), open(2), fattach(3C), streamio(7)

STREAMS Programmer’s Guide

7-64 modified 3 Jul 1990

SunOS 5.4 Special Files console (7)

NAME console − STREAMS-based console interface

SYNOPSIS /dev/console

DESCRIPTION The file /dev/console refers to the system console device.

SPARC The identity of this device depends on the EEPROM settings in effect at the most recent
system reboot; by default, it is the ‘‘workstation console’’ device consisting of the works-
tation keyboard and frame buffer acting in concert to emulate an ASCII terminal (see
wscons(7)).

x86 By default the device is the ‘‘workstation console’’ device consisting of the workstation
keyboard and display (see display(7) and keyboard(7)) acting in concert to emulate an
ASCII terminal (see wscons(7)).

In either architecture, regardless of the system configuration, the console device provides
asynchronous serial driver semantics so that, in conjunction with the STREAMS line dis-
cipline module ldterm(7), it supports the termio(7) terminal interface.

SEE ALSO termios(3), ldterm(7), termio(7), wscons(7)

x86 Only display(7), keyboard(7)

NOTES In contrast to pre-SunOS 5.0 releases, it is no longer possible to redirect I/O intended for
/dev/console to some other device. Instead, redirection now applies to the workstation
console device using a revised programming interface (see wscons(7)). Since the system
console is normally configured to be the work station console, the overall effect is largely
unchanged from previous releases.

See wscons(7) for detailed descriptions of control sequence syntax, ANSI control func-
tions, control character functions and escape sequence functions.

modified 20 Jan 1994 7-65

dbri (7) Special Files SunOS 5.4

NAME dbri − Dual Basic Rate ISDN and audio Interface

AVAILABILITY SPARC

The DBRI Multimedia Codec, and SpeakerBox are available on SPARCstation 10 and LX
systems.

SPARCstation 10SX and SPARCstation 20 systems have the Multimedia Codec integrated
onto the CPU board of the machine.

This hardware may or may not be available on future systems from Sun Microsystems
Computer Corporation.

DESCRIPTION The dbri device uses the T5900FC Dual Basic Rate ISDN Interface (DBRI) and Multimedia
Codec chips to implement the audio device interface. This interface is described fully in
the audio(7) manual page.

Applications that open /dev/audio may use the AUDIO_GETDEV ioctl to determine
which audio device is being used. The dbri driver will return the string "SUNW,dbri" in
the name field of the audio_device structure. The version field will contain "e" and the
config field will contain one of the following values: "isdn_b" on an ISDN B channel
stream, "speakerbox" on a /dev/audio stream associated with a SpeakerBox, and lastly
"onboard1" on a /dev/audio stream associated with the onboard Multimedia Codec.

The AUDIO_SETINFO ioctl controls device configuration parameters. When an applica-
tion modifies the record.buffer_size field using the AUDIO_SETINFO ioctl, the driver will
constrain it to be non-zero and a multiple of 16 bytes, up to a maximum of 8176 bytes.

Audio Interfaces The SpeakerBox audio peripheral is available for connection to the SpeakerBox Interface
(SBI) port of most dbri equipped systems and provides an integral monaural speaker as
well as stereo line out, stereo line in, stereo headphone, and monaural microphone con-
nections. The headset output level is adequate to power most headphones, but may be
too low for some external speakers. Powered speakers or an external amplifier may be
used with both the headphone and line out ports.

SPARCstation LX systems have the Multimedia Codec integrated onto the CPU board of
the machine thus giving users the option of using it or using a SpeakerBox plugged into
the AUI/Audio port on the back panel. When using the "onboard" Codec, the micro-
phone and headphone ports are located on the system back panel - there are no Line In or
Line Out ports available for this configuration. In addition, the headphone and micro-
phone ports do not have the input detection circuitry to determine whether or not there is
currently headphones or a microphone plugged in. If a SpeakerBox is plugged in when
the machine is first rebooted and reconfigured, or upon the first access of the audio dev-
ice, it will be used, otherwise the onboard Codec will be used.

The Sun Microphone is recommended for normal desktop audio recording. When the
Sun Microphone is used in conjunction with the SpeakerBox, the microphone battery is
bypassed. Other audio sources may be recorded by connecting their line output to the
SpeakerBox line input (audio sources may also be connected from their headphone out-
put if the volume is adjusted properly).

7-66 modified 21 Apr 1994

SunOS 5.4 Special Files dbri (7)

ISDN Interfaces The DBRI controller offers two Basic Rate ISDN (BRI) interfaces. One is a BRI Terminal
Equipment (TE) interface and the other is a BRI Network Termination (NT) interface.

The NT connector is switched by a relay so that when system power is not available or
when software is not accessing the NT port, the TE and NT connectors are electrically
connected and devices plugged into the NT port will be on the same BRI passive bus.

Audio Data Formats
for the Multimedia
Codec/SpeakerBox

The dbri device supports the audio formats listed in the following table. When the dev-
ice is open for simultaneous play and record, the input and output data formats must
match.

Supported Audio Data Formats
Sample Rate Encoding Precision Channels

8000 Hz µ-law or A-law 8 1
9600 Hz µ-law or A-law 8 1
11025 Hz µ-law or A-law 8 1
16000 Hz µ-law or A-law 8 1
18900 Hz µ-law or A-law 8 1
22050 Hz µ-law or A-law 8 1
32000 Hz µ-law or A-law 8 1
37800 Hz µ-law or A-law 8 1
44100 Hz µ-law or A-law 8 1
48000 Hz µ-law or A-law 8 1
8000 Hz linear 16 1 or 2
9600 Hz linear 16 1 or 2
11025 Hz linear 16 1 or 2
16000 Hz linear 16 1 or 2
18900 Hz linear 16 1 or 2
22050 Hz linear 16 1 or 2
32000 Hz linear 16 1 or 2
37800 Hz linear 16 1 or 2
44100 Hz linear 16 1 or 2
48000 Hz linear 16 1 or 2

Audio Data Formats
for BRI Interfeces

ISDN channels implement a subset of audio semantics. The preferred ioctls for querying
or setting the format of a BRI channel are ISDN_GET_FORMAT, ISDN_SET_FORMAT, and
ISDN_SET_CHANNEL. In particular, there is no audio format described in audio(7) that
covers HDLC or transparent data. The dbri driver maps HDLC and transparent data to
AUDIO_ENCODING_NONE. ISDN D-channels are always configured for HDLC encoding
of data. The programmer should interpret an encoding value of
AUDIO_ENCODING_NONE as an indication that the fd is not being used to transfer audio
data.

B-channels can be configured for µ-law, A-law, or HDLC encoding of data. The µ-law
and A-law formats are always at 8000 Hz, 8-bit, mono. Although a BRI H-channel is
actually 16 bits wide at the physical layer and the 16-bit sample occurs at 8 kHz, the
HDLC encoding always presents the data in 8-bit quantities. Therefore, 56 bit-per-second
(bps), 64 bps, and 128 bps formats are all presented to the programmer as 8-bit wide,
mono, AUDIO_ENCODING_NONE format streams at different sample rates. A line rate of

modified 21 Apr 1994 7-67

dbri (7) Special Files SunOS 5.4

56kbps results in a 8-bit sample rate of 7000 Hz. If the bit stuffing and un-stuffing of
HDLC were taken into account, the data rate would be slightly less.

For the sake of compatibility, AUDIO_GETINFO will return one of the following on a ISDN
channel:

BRI Audio Data Formats
Sample Rate Encoding Precision Channels

8000 Hz µ-law or A-law 8 1
- AUDIO_ENCODING_NONE - -

ISDN_GET_FORMAT will return one of the following for an ISDN channel:
BRI Audio Data Formats

Mode Sample Rate Encoding Precision # Ch Available on
HDLC 2000 Hz NONE 8 1 D
HDLC 7000 Hz NONE 8 1 B1,B2
HDLC 8000 Hz NONE 8 1 B1,B2
HDLC 16000 Hz NONE 8 1 B1,B2
TRANS 8000 Hz µ-law 8 1 B1,B2
TRANS 8000 Hz A-law 8 1 B1,B2
TRANS 8000 Hz NONE 8 1 B1,B2
TRANS 8000 Hz NONE 16 1 B1 only

In the previous table, HDLC = ISDN_MODE_HDLC, TRANS = ISDN_MODE_TRANSPARENT.

Audio Ports Audio ports are not relevant to ISDN D or B channels.

The record.avail_ports and play.avail_ports fields of the audio_info structure report the
available input and output ports. The dbri device supports two input ports, selected by
setting the record.port field to either AUDIO_MICROPHONE or AUDIO_LINE_IN. The
play.port field may be set to any combination of AUDIO_SPEAKER, AUDIO_HEADPHONE,
and AUDIO_LINE_OUT by OR’ing the desired port names together. As noted above, when
using the onboard Multimedia Codec on the SPARCstation LX, the Line In and Line Out
ports are not available.

Sample Granularity Since the dbri device manipulates buffers of audio data, at any given time the reported
input and output sample counts will vary from the actual sample count by no more than
the size of the buffers it is transferring. Programs should, in general, not rely on absolute
accuracy of the play.samples and record.samples fields of the audio_info structure.

Audio Status Change
Notification

As described in audio(7), it is possible to request asynchronous notification of changes in
the state of an audio device. The DBRI driver extends this to the ISDN B-channels by
sending the signal up the data channel instead of the control channel. Asynchronous
notification of events on a B-channel only occurs when the channel is in a transparent
data mode. When the channel is in HDLC mode, no such notification will take place.

ERRORS In addition to the errors described in audio(7), an open() will fail if:

ENODEV The driver is unable to communicate with the SpeakerBox, possibly
because it is currently not plugged in.

7-68 modified 21 Apr 1994

SunOS 5.4 Special Files dbri (7)

FILES The physical device names are very system dependent and are rarely used by program-
mers. For example:

/devices/sbus@1,f8000000/SUNW,DBRIe@1,10000:te,b2.

The programmer should instead use the generic device names listed below:

/dev/audio - symlink to the system’s primary audio device, not necessarily a
dbri based audio device

/dev/audioctl - control device for the above audio device.
/dev/sound/0∗ - represents the first audio device on the system and is not

necessarily based on dbri or SpeakerBox.
/dev/sound/0 - first audio device in the system.
/dev/sound/0ctl - audio control for above device
/dev/isdn/0/∗ - represents the first ISDN device on the system and any associ-

ated interfaces. This device is not necessarily based on dbri.
/dev/isdn/0/te/mgt - TE management device
/dev/isdn/0/te/d - TE D-channel
/dev/isdn/0/te/b1 - TE B1-channel
/dev/isdn/0/te/b2 - TE B2-channel
/dev/isdn/0/nt/mgt - NT management device
/dev/isdn/0/nt/d - NT D-channel
/dev/isdn/0/nt/b1 - NT B1-channel
/dev/isdn/0/nt/b2 - NT B2-channel
/dev/isdn/0/aux/0 - SpeakerBox or onboard Multimedia Codec
/dev/isdn/0/aux/0ctl - Control device for SpeakerBox or onboard Multimedia Codec
/usr/demo/SOUND - audio demonstration programs and other files.

SEE ALSO ioctl(2), audio(7), isdnio(7), streamio(7)

AT&T Microelectronics data sheet for the T5900FC Sun Dual Basic Rate ISDN Interface.

Crystal Semiconductor, Inc., data sheet for the CS4215 16-Bit, 48 kHz, Multimedia Audio
Codec Publication number DS76PP5.

NOTES Due to hardware restrictions, it is impossible to reduce the record gain to 0. A valid
input signal is still received at the lowest gain setting the Multimedia Codec allows. For
security reasons, the dbri driver disallows a record gain value of 0. This is to provide
feedback to the user that such a setting is not possible and that a valid input signal is still
being received. An attempt to set the record gain to 0 will result in the lowest possible
non-zero gain. The audio_info structure will be updated with this value when the
AUDIO_SETINFO ioctl returns.

BUGS When a DBRI channel associated with the SpeakerBox Interface underruns, DBRI may
not always repeat the last sample but instead could repeat more than one sample. This
behavior can result in a tone being generated by an audio device connected to the SBI
port.

modified 21 Apr 1994 7-69

dbri (7) Special Files SunOS 5.4

Monitor STREAMs connected to a B1 channel on either the TE or NT interface do not
work because of a DBRI hardware problem. The device driver disallows the creation of
such monitors.

7-70 modified 21 Apr 1994

SunOS 5.4 Special Files display (7)

NAME display − system console display

AVAILABILITY x86

DESCRIPTION display is a component of the kd driver, which is comprised of the display and key-
board drivers.

Solaris for x86 normally uses a windowed environment. The character-based display
facilities offered by the display section of the kd driver are supposed to be used only
until the windowing system takes over. Currently, any VGA adapter can be used to boot
the system, but the windows server requires an SVGA or 8514 adapter.

See the supported hardware list in the Solaris 2.4 x86 Hardware Compatibility List for the
full list of tested adapters.

FILES /dev/console

SEE ALSO console(7), keyboard(7)
Solaris 2.4 x86 Hardware Compatibility List

modified 18 Oct 1993 7-71

dkio (7) Special Files SunOS 5.4

NAME dkio − disk control operations

SYNOPSIS #include <sys/dkio.h>
#include <sys/vtoc.h>

DESCRIPTION Disk drivers support a set of ioctl(2) requests for disk controller, geometry, and partition
information. Basic to these ioctl() requests are the definitions in <sys/dkio.h>.

IOCTLS The following ioctl() requests set and/or retrieve the current disk controller, partitions,
or geometry information:

DKIOCINFO The argument is a pointer to a dk_cinfo structure (described below).
This structure tells the type of the controller and attributes about how
bad-block processing is done on the controller.

/∗
∗ Structures and definitions for disk I/O control commands
∗/

#define DK_DEVLEN 16 /∗ device name max length, ∗/
/∗ including unit # and NULL ∗/

/∗
∗ Used for controller info
∗/

struct dk_cinfo {
char dki_cname[DK_DEVLEN]; /∗ controller name (no unit #)∗/
u_short dki_ctype; /∗ controller type ∗/
u_short dki_flags; /∗ flags ∗/
u_short dki_cnum; /∗ controller number ∗/
u_int dki_addr; /∗ controller address ∗/
u_int dki_space; /∗ controller bus type ∗/
u_int dki_prio; /∗ interrupt priority ∗/
u_int dki_vec; /∗ interrupt vector ∗/
char dki_dname[DK_DEVLEN]; /∗ drive name (no unit #) ∗/
u_int dki_unit; /∗ unit number ∗/
u_int dki_slave; /∗ slave number ∗/
u_short dki_partition; /∗ partition number ∗/
u_short dki_maxtransfer; /∗ maximum transfer size ∗/

/∗ in DEV_BSIZE ∗/
};

/∗
∗ Controller types
∗/

#define DKC_UNKNOWN 0
#define DKC_CDROM 1 /∗ CD-ROM, SCSI or

otherwise ∗/

7-72 modified 8 Apr 1994

SunOS 5.4 Special Files dkio (7)

#define DKC_WDC2880 2
#define DKC_XXX_0 3 /∗ unassigned ∗/
#define DKC_XXX_1 4 /∗ unassigned ∗/
#define DKC_DSD5215 5
#define DKC_XY450 6
#define DKC_ACB4000 7
#define DKC_MD21 8
#define DKC_XXX_2 9 /∗ unassigned ∗/
#define DKC_NCRFLOPPY 10
#define DKC_XD7053 11
#define DKC_SMSFLOPPY 12
#define DKC_SCSI_CCS 13 /∗ SCSI CCS compatible ∗/
#define DKC_INTEL82072 14 /∗ native floppy chip ∗/
#define DKC_PANTHER 15
#define DKC_SUN_IPI1 DKC_PANTHER /∗ Sun Panther ∗/

/∗ VME/IPI controller ∗/
#define DKC_MD 16 /∗ meta-disk (virtual-disk) ∗/

/∗ driver ∗/
#define DKC_CDC_9057 17 /∗ CDC 9057-321 (CM-3) ∗/

/∗ IPI String Controller ∗/
#define DKC_FJ_M1060 18 /∗ Fujitsu/Intellistor ∗/

/∗ IM1060 PI-3 SC ∗/
#define DKC_INTEL82077 19 /∗ 82077 floppy disk ∗/

/∗ controller ∗/
#define DKC_DIRECT 20 /∗ Intel direct attached ∗/

/∗ device (IDE) ∗/

/∗
∗ Sun reserves up through 1023
∗/

#define DKC_CUSTOMER_BASE 1024

/∗
∗ Flags
∗/

#define DKI_BAD144 0x01 /∗ use DEC std 144 bad sector fwding ∗/
#define DKI_MAPTRK 0x02 /∗ controller does track mapping ∗/
#define DKI_FMTTRK 0x04 /∗ formats only full track at a time ∗/
#define DKI_FMTVOL 0x08 /∗ formats only full volume at a time ∗/
#define DKI_FMTCYL 0x10 /∗ formats only full cylinders at a time∗/
#define DKI_HEXUNIT 0x20 /∗ unit number printed as 3 hex digits ∗/

DKIOCGAPART The argument is a pointer to a dk_allmap structure (described below).
This ioctl() gets the controller’s notion of the current partition table for
disk drive.

modified 8 Apr 1994 7-73

dkio (7) Special Files SunOS 5.4

DKIOCSAPART The argument is a pointer to a dk_allmap structure (described below).
This ioctl() sets the controller’s notion of the partition table without
changing the disk itself.

/∗
∗ Partition map (part of dk_label)
∗/

struct dk_map {
daddr_t dkl_cylno; /∗ starting cylinder ∗/
daddr_t dkl_nblk; /∗ number of blocks ∗/

};

/∗
∗ Used for all partitions
∗/

struct dk_allmap {
struct dk_map dka_map[NDKMAP];

};

DKIOCPARTINFO
x86: The argument is a pointer to a part_info structure (described
below). This ioctl() gets the driver’s notion of the size and extent of the
partition or slice indicated by the file descriptor argument.

/∗
∗ Used by applications to get partition or slice information
∗/

struct part_info {
daddr_t p_start;
int p_length;

};

DKIOCGGEOM The argument is a pointer to a dk_geom structure (described below).
This ioctl() gets the controller’s notion of the current geometry of the
disk drive.

DKIOCSGEOM The argument is a pointer to a dk_geom structure (described below).
This ioctl() sets the controller’s notion of the geometry without chang-
ing the disk itself.

DKIOCG_PHYGEOM
x86: The argument is a pointer to a dk_geom structure (described
below). This ioctl() gets the driver’s notion of the physical geometry of
the disk drive. It is functionally identical to the DKIOCGGEOM ioctl().

DKIOCG_VIRTGEOM
x86: The argument is a pointer to a dk_geom structure (described
below). This ioctl() gets the controller’s (and hence the driver’s) notion
of the virtual geometry of the disk drive. Virtual geometry is a view of

7-74 modified 8 Apr 1994

SunOS 5.4 Special Files dkio (7)

the disk geometry maintained by the firmware in a host bus adapter or
disk controller.

/∗
∗ Definition of a disk’s geometry
∗/

struct dk_geom {
unsigned short dkg_ncyl; /∗ # of data ∗/

/∗ cylinders ∗/
unsigned short dkg_acyl; /∗ # of alternate∗/

/∗ cylinders ∗/
unsigned short dkg_bcyl; /∗ cyl offset (for ∗/

/∗ fixed head area) ∗/
unsigned short dkg_nhead; /∗ # of heads ∗/
unsigned short dkg_obs1; /∗ obsolete ∗/
unsigned short dkg_nsect; /∗ # of sectors ∗/

/∗ per track ∗/
unsigned short dkg_intrlv; /∗ interleave factor ∗/
unsigned short dkg_obs2; /∗ obsolete ∗/
unsigned short dkg_obs3; /∗ obsolete ∗/
unsigned short dkg_apc; /∗ alternates per∗/

/∗ cyl (SCSI only) ∗/
unsigned short dkg_rpm; /∗ revolutions per min∗/
unsigned short dkg_pcyl; /∗ # of physical ∗/

/∗ cylinders ∗/
unsigned short dkg_write_reinstruct; /∗ # sectors to ∗/

/∗ skip, writes ∗/
unsigned short dkg_read_reinstruct; /∗ # sectors to ∗/

/∗ skip, reads ∗/
unsigned short dkg_extra[7]; /∗ for compatible∗/

/∗ expansion ∗/
};

#define dkg_gap1 dkg_extra[0] /∗ for application ∗/
/∗ compatibility ∗/

#define dkg_gap2 dkg_extra[1] /∗ for application ∗/
/∗ compatibility ∗/

DKIOCGVTOC The argument is a pointer to a vtoc structure (described below). This
ioctl() returns the device’s current VTOC (volume table of contents).

modified 8 Apr 1994 7-75

dkio (7) Special Files SunOS 5.4

DKIOCSVTOC The argument is a pointer to a vtoc structure (described below). This
ioctl() changes the VTOC associated with the device.

struct partition {
ushort p_tag; /∗ ID tag of partition ∗/
ushort p_flag; /∗ permission flags ∗/
daddr_t p_start; /∗ start sector of partition ∗/
long p_size; /∗ # of blocks in partition ∗/

};

If DKIOCSVTOC is used with a floppy diskette, the p_start field must be the first sector of
a cylinder. Multiply the number of heads by the number of sectors per track to compute
the number of sectors per cylinder.

struct vtoc {
unsigned long v_bootinfo[3]; /∗ info needed ∗/

/∗ by mboot ∗/
/∗ (unsupported) ∗/

unsigned long v_sanity; /∗ to verify vtoc ∗/
/∗ sanity ∗/

unsigned long v_version; /∗ layout version ∗/
char v_volume[LEN_DKL_VVOL]; /∗ volume name ∗/
ushort v_sectorsz; /∗ sector size in ∗/

/∗ bytes ∗/
ushort v_nparts; /∗ number of ∗/

/∗ partitions ∗/
unsigned long v_reserved[10]; /∗ free space ∗/
struct partition v_part[V_NUMPAR]; /∗ partition ∗/

/∗ headers∗/
time_t timestamp[V_NUMPAR]; /∗ partition ∗/

/∗ timestamp ∗/
/∗ (unsupported) ∗/

char v_asciilabel[LEN_DKL_ASCII]; /∗ compatibility ∗/
};

/∗
∗ Partition permission flags
∗/

#define V_UNMNT 0x01 /∗ Unmountable partition ∗/
#define V_RONLY 0x10 /∗ Read only ∗/

/∗
∗ Partition identification tags
∗/

#define V_UNASSIGNED 0x00 /∗ unassigned partition ∗/
#define V_BOOT 0x01 /∗ Boot partition ∗/
#define V_ROOT 0x02 /∗ Root filesystem ∗/
#define V_SWAP 0x03 /∗ Swap filesystem ∗/

7-76 modified 8 Apr 1994

SunOS 5.4 Special Files dkio (7)

#define V_USR 0x04 /∗ Usr filesystem ∗/
#define V_BACKUP 0x05 /∗ full disk ∗/
#define V_STAND 0x06 /∗ Stand partition ∗/
#define V_VAR 0x07 /∗ Var partition ∗/
#define V_HOME 0x08 /∗ Home partition ∗/
#define V_ALTSCTR 0x09 /∗ Alternate sector partition ∗/

DKIOCADDBAD
x86: This ioctl() forces the driver to re-examine the alternates slice and
rebuild the internal bad block map accordingly. It should be used
whenever the alternates slice is changed by any method other than the
addbadsec(1M) utility.

DKIOCEJECT This ioctl() requests the disk drive to eject its disk, if that drive supports
removable media.

DKIOCLOCK SPARC: This ioctl() requests the disk drive to lock the door, for those
devices with removable media.

DKIOCUNLOCK
SPARC: This ioctl() requests the disk drive to unlock the door, for those
devices with removable media.

DKIOCSTATE SPARC: This ioctl() blocks until the state of the drive, inserted or
ejected, is changed. The argument is a pointer to a dkio_state, enum,
whose possible enumerations are listed below. The initial value should
be either the last reported state of the drive, or DKIO_NONE . Upon
return, the enum pointed to by the argument is updated with the current
state of the drive.

enum dkio_state {
DKIO_NONE, /∗ Return disk’s current state ∗/
DKIO_EJECTED, /∗ Disk state is ’ejected’ ∗/
DKIO_INSERTED /∗ Disk state is ’inserted’ ∗/

};

SEE ALSO ioctl(2), cdio(7), fdio(7)
SPARC Only hdio(7), ipi(7), sd(7), xd(7), xy(7)

x86 Only cmdk(7)

modified 8 Apr 1994 7-77

dlpi (7) Special Files SunOS 5.4

NAME dlpi − Data Link Provider Interface

SYNOPSIS #include <sys/dlpi.h>

DESCRIPTION SunOS STREAMS-based device drivers wishing to support the STREAMS TCP/IP and
other STREAMS-based networking protocol suite implementations support Version 2 of
the Data Link Provider Interface (DLPI). DLPI V2 enables a data link service user to
access and use any of a variety of conforming data link service providers without special
knowledge of the provider’s protocol. Specifically, the interface is intended to support
Ethernet, X.25 LAPB, SDLC, ISDN LAPD, CSMA/CD, FDDI, token ring, token bus,
Bisync, and other datalink-level protocols.

The interface specifies access to the data link service provider in the form of M_PROTO
and M_PCPROTO type STREAMS messages and does not define a specific protocol
implementation. The interface defines the syntax and semantics of primitives exchanged
between the data link user and the data link provider to attach a physical device with
physical-level address to a stream, bind a datalink-level address to the stream, get
implementation-specific information from the data link provider, exchange data with a
peer data link user in one of three communication modes (connection, connectionless,
acknowledged connectionless), enable/disable multicast group and promiscuous mode
reception of datalink frames, get and set the physical address associated with a stream,
and several other operations.

For details on this interface refer to the <sys/dlpi.h> header and to the STREAMS DLPI
Specification, 800-6915-01.

FILES Files in or under /dev.

SEE ALSO ie(7), le(7)

7-78 modified 2 Oct 1991

SunOS 5.4 Special Files dpt (7)

NAME dpt − DPT 2011, 2021, 2012 and 2022 low-level controller modules

AVAILABILITY x86

DESCRIPTION The dpt module provides low-level interface routines between the common disk/tape
I/O subsystem and the DPT ISA bus master 2011 and 2021 SCSI (Small Computer System
Interface) and DPT EISA 2012 and 2022 SCSI controllers. The dpt module can be
configured for disk and streaming tape support for one or more host adapter boards,
each of which must be the sole initiator on a SCSI bus. Auto configuration code deter-
mines if the adapter is present at the configured address and what types of devices are
attached to it. If a memory cache module is installed on the DPT board, this cache will be
flushed to disk by the dpt driver module when the system is shut down by the system
administrator.

Board Configuration
and Auto

Configuration

In order to boot from a 2011, 2021, 2012, or 2022 host adapter, it must first be configured
correctly.

DPT 2011 and DPT
2021 ISA SCSI Bus

Master Host Bus
Adapters

The DPT 2011 and DPT 2021 are adapters that are configured using jumpers. Before ins-
tallation of an operating system, the utility dptfmt must be run to prepare disk drives for
use by the adapter. You will be required to enter emulation information as part of this
procedure. There is information for two drives, and it should show ‘‘disabled’’ for both.
Failure to perform this step will result in missing drives during the system boot process.
The entry for drive types should be set to 0 for drives zero and one. This indicates ‘‘no
drives present’’ and disables the emulation mode of the adapter, thus allowing correct
operation of the native mode driver. The user configurable parameters in the
/kernel/drv/dpt.conf file for the DPT 2011 and DPT 2021 are:

io port "reg=0x1f0,0,0" "ioaddr=0x1f0"
priority level (5) and IRQ (interrupt) 14 "intr=5,15"

The I/O port (ioaddr) is the ISA bus base I/O address used for communication with the
adapter. The same base address should appear after reg=XXX and ioaddr=XXX. The
first DPT 2011 or DPT 2021 should be set to 0x1f0, and the next to 0x170. Each 2011 or
2021 should have a unique direct memory access (DMA) channel. The first 2011 or 2021
should be on DMA channel 5. The dpt module reads the 2011 or 2021 DMA channel at
auto configuration time, so no parameter is necessary in the configuration file. The inter-
rupt priority level should always be 5. The boot adapter should be set to IRQ (interrupt)
15. Each 2011 or 2021 should have a unique I/O port and a unique DMA channel. Use of
a different interrupt level for each board is required.

A complete entry in /kernel/drv/dpt.conf is:

name="dpt" class="sysbus" intr=5,14 reg=0x1f0,0,0
ioaddr=0x1f0
flow_control="dmult" queue="qsort" disk="scdk" tape="sctp" ;

modified 18 Oct 1993 7-79

dpt (7) Special Files SunOS 5.4

DPT 2012 AND DPT
2022 EISA SCSI Host

Bus Adapters

These are adapters that are configured using the EISA configuration utility supplied by
the computer manufacturer in conjunction with a configuration file. You will be required
to enter emulation information as part of the configuration process. There is information
for two drives, and it should show ‘‘disabled’’ for both. When asked for drive types for
drives zero and one, enter 0. This indicates ‘‘no drives present’’ and disables the WD1003
emulation mode of the adapter, allowing correct operation of the native mode driver.
You will also be required to use a DPT format utility to configure hard drives prior to
installation. The only relevant user configurable item in dpt.conf is:

io address "reg=0x1c88,0,0"
"ioaddr=0x1c88"

The I/O address is 0x1000 times the EISA slot number + 0xc88. Hence, slot 1 is address
0x1c88 and slot 10 is 0xac88. The same base address should appear after reg=XXX and
ioaddr=XXX.

The first default EISA listing from the configuration file is:

eisa-type hba
name="dpt" class="sysbus" intr=5,14 reg=0x1c88,0,0

ioaddr=0x1c88
flow_control="dmult" queue="qsort" disk="scdk" tape="sctp" ;

To speed boot, parameters in the configuration file may be commented out with a "#" in
the first column for controllers that are not installed.

7-80 modified 18 Oct 1993

SunOS 5.4 Special Files dsa (7)

NAME dsa − low-level module for Dell SCSI Array Controller (DSA)

AVAILABILITY x86

DESCRIPTION The dsa module provides low-level interface routines between the common disk/tape
I/O subsystem and the Dell EISA bus master controller. The dsa module can be
configured for disk and raid disks on up to four host adapter boards. These disks are
called composite disks in Dell configuration software. Auto configuration code deter-
mines if the adapter is present at the configured address and what devices are attached to
it. Non composite drives attached to the bus of a DSA controller are accessed through
Adaptec 1540 emulation. See the entry aha(7).

Board Configuration
and Auto

Configuration

The Dell EISA configuration utility must be run to properly initialize access to the con-
troller. One controller should have the adapter bios enabled. If the DSA controller is used
to read the Solaris CD disk for installation, Adaptec 1540A emulation should be enabled.

All hard drives accessible by the dsa driver must be configured by the Dell Array
Manager software as composite drives. All raid levels supported by Dell are visible to the
dsa driver. A controller can be in slots one through eight. If the DSA controller is used for
Solaris x86 CD installation, the CD must be mapped at the proper target, which cannot be
0. The DSA controller is target 0 on the SCSI bus but should be set up to appear as target
7 in the emulation mappings.

The driver attempts to initialize itself in accordance with the information found in the
configuration file, /kernel/drv/dsa.conf. There are no user configurable items in this file.

The default listing of the an item in the configuration file is as follows:

name="dsa" class="sysbus" interrupts=5,11,5,12,5,13,5,14,5,15
reg=0x1c80,0,0 ioaddr=0x1c80
flow_control="dmult" queue="qfifo" disk="dadk" ;

The driver determines the interrupt from the board at initialization time.

To speed boot, parameters in the configuration file may be commented out with a "#" in
the first column of all three lines for controllers that are not installed. The first number in
the "reg" and "ioaddr" addresses indicates the EISA slot number. Hence, "2c80" indicates
the I/O address of the DSA controller in EISA slot 2.

FILES /kernel/drv/dsa.conf configuration file for the dsa driver.

SEE ALSO aha(7)

NOTES Note that although the DSA controller is physically connected to SCSI devices, the inter-
face to composite drives is that of a direct access disk "dadk." There is no way to send
SCSI commands to composite drives on a DSA controller. Non composite devices (such
as tape and CD) can not be accessed via the dsa driver.

modified 7 Jan 1994 7-81

eha (7) Special Files SunOS 5.4

NAME eha − low-level module for Adaptec 174x EISA host bus adapter

AVAILABILITY x86

DESCRIPTION The eha module provides low-level interface routines between the common disk/tape io
subsystem and the Adaptec EISA 174x SCSI (Small Computer System Interface) controll-
ers. The eha module can be configured for disk and streaming tape support for one or
more host adapter boards, each of which must be the sole initiator on a SCSI bus. Auto
configuration code determines if the adapter is present at the configured address and
what types of devices are attached to it.

Board Configuration
and Auto

Configuration

The driver attempts to initialize itself in accordance with the information found in the
configuration file, /kernel/drv/eha.conf. The only relevant user configurable item in this
file is:

io address "reg=0x1000,0,0"
"ioaddr=0x1000"

The I/O address is 0x1000 times the EISA slot number. Hence, slot 1 is address 0x1000
and slot 8 is 0x8000.

Prior to installation, the 174x controller must be put into enhanced mode with the EISA
configuration utility run under MS-DOS.

The default listing of the configuration file is as follows:

#
primary controller [Settings for CD-ROM installation]
#
name="eha" class="sysbus" reg=0x1000,0,0

ioaddr=0x1000;

another controller example
#
name="eha" class="sysbus" reg=0x2000,0,0

ioaddr=0x2000;
#

To speed boot, parameters in the configuration file may be commented out with a "#" in
the first column for controllers that are not installed.

7-82 modified 18 Oct 1993

SunOS 5.4 Special Files el (7)

NAME el − 3COM 3C503 Ethernet device driver

SYNOPSIS #include <sys/stropts.h>
#include <sys/ethernet.h>
#include <sys/dlpi.h>

AVAILABILITY x86

DESCRIPTION The el Ethernet driver is a multi-threaded, loadable, clonable, STREAMS hardware driver
supporting the connectionless Data Link Provider Interface, dlpi(7), over 3COM 3C503
EtherLink II and EtherLink II/16 Ethernet controllers. Multiple EtherLink II controllers
installed within the system are supported by the driver. The el driver provides basic
support for the EtherLink II hardware. Functions include chip initialization, frame
transmit and receive, multicast and “promiscuous” support, and error recovery and
reporting.

The cloning, character-special device /dev/el is used to access all EtherLink II devices
installed within the system.

The el driver is a “style 2” Data Link Service provider. All M_PROTO and M_PCPROTO
type messages are interpreted as DLPI primitives. An explicit DL_ATTACH_REQ mes-
sage by the user is required to associate the opened stream with a particular device (ppa).
The ppa ID is interpreted as an unsigned long integer and indicates the corresponding
device instance (unit) number. The unit numbers are assigned sequentially to each board
found. The search order is determined by the order defined in the el.conf file. An error (
DL_ERROR_ACK) is returned by the driver if the ppa field value does not correspond to
a valid device instance number for this system. The device is initialized on first attach
and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

The maximum SDU is 1500 (ETHERMTU).

The minimum SDU is 0. The driver will pad to the mandatory 60-octet minimum
packet size.

The dlsap address length is 8.

The MAC type is DL_ETHER.

The sap length value is −2, meaning the physical address component is followed
immediately by a 2-byte sap component within the DLSAP address.

The service mode is DL_CLDLS.

No optional quality of service (QOS) support is included at present, so the QOS
fields are 0.

The provider style is DL_STYLE2.

The version is DL_VERSION_2.

The broadcast address value is Ethernet/IEEE broadcast address

modified 16 Oct 1993 7-83

el (7) Special Files SunOS 5.4

(FF:FF:FF:FF:FF:FF).

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a par-
ticular Service Access Pointer (SAP) with the stream. The el driver interprets the sap
field within the DL_BIND_REQ as an Ethernet “type;” therefore valid values for the sap
field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the stream at
any time.

In addition to Ethernet V2 service, an “802.3 mode” is also provided by the driver. In this
mode, sap values in the range [0-1500] are treated as equivalent and represent a desire by
the user for “802.3” mode. If the value of the sap field of the DL_BIND_REQ is within this
range, then the driver expects that the destination DLSAP in a DL_UNITDATA_REQ will
contain the length of the data rather than a sap value. All frames received from the media
that have a “type” field in this range are assumed to be 802.3 frames, and they are routed
up all open streams which are bound to any sap value within this range. If more than
one stream is in “802.3 mode,” then the frame will be duplicated and routed up multiple
streams as DL_UNITDATA_IND messages.

The el driver DLSAP address format consists of the 6-byte physical (Ethernet) address
component followed immediately by the 2-byte sap (type) component, producing an 8-
byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format, but should instead use information
returned in the DL_INFO_ACK primitive to compose and decompose DLSAP addresses.
The sap length, full DLSAP length, and sap/physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the el driver. The el driver will route received Ethernet
frames up all open and bound streams that have a sap which matches the Ethernet type
as DL_UNITDATA_IND messages. Received Ethernet frames are duplicated and routed
up multiple open streams if necessary. The DLSAP address contained within the
DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the sap (type)
and physical (Ethernet) components.

In addition to the mandatory connectionless DLPI message set, the driver also supports
the following primitives:

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable recep-
tion of individual multicast group addresses. A set of multicast addresses may be itera-
tively created and modified on a per-stream basis using these primitives. These primi-
tives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all “prom-
iscuous mode” frames on the media including frames generated by the local host.

7-84 modified 16 Oct 1993

SunOS 5.4 Special Files el (7)

When used with the DL_PROMISC_SAP flag set, this enables/disables reception of all sap
(Ethernet type) values. When used with the DL_PROMISC_MULTI flag set, this
enables/disables reception of all multicast group addresses. The effect of each is always
on a per-stream basis and independent of the other sap and physical level configurations
on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the 6-octet Ethernet address currently asso-
ciated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primitive is
valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6-octet Ethernet address currently
associated (attached) to this stream. The credentials of the process which originally
opened this stream must be superuser or an EPERM error is returned in the
DL_ERROR_ACK. This primitive is destructive in that it affects all other current and
future streams attached to this device. An M_ERROR is sent up all other streams attached
to this device when this primitive on this stream is successful. Once changed, all streams
subsequently opened and attached to this device will obtain this new physical address.
The new physical address will remain in effect until this primitive is used to change the
physical address again or the system is rebooted, whichever comes first.

CONFIGURATION The /kernel/drv/el.conf file supports the following options:

intr Specifies the IRQ level for the board.

media Specifies the media type. Defined values are:
‘‘thick’’ Use standard AUI interface.
‘‘thin’’ Use the BNC connector interface.
‘‘tp’’ Use the "twisted pair" interface.

reg Specifies the shared RAM the board is jumpered for.

It is important to ensure that there are no conflicts for the board’s I/O port, shared RAM,
or IRQ level.

FILES /dev/el

SEE ALSO dlpi(7)

modified 16 Oct 1993 7-85

elink (7) Special Files SunOS 5.4

NAME elink − 3COM 3C507 Ethernet device driver

SYNOPSIS #include <sys/stropts.h>
#include <sys/ethernet.h>
#include <sys/dlpi.h>

AVAILABILITY x86

DESCRIPTION The elink Ethernet driver is a multi-threaded, loadable, clonable, STREAMS hardware
driver supporting the connectionless Data Link Provider Interface, dlpi(7), over 3COM
3C507 EtherLink 16 Ethernet controllers. Multiple EtherLink 16 controllers installed
within the system are supported by the driver. The elink driver provides basic support
for the EtherLink 16 hardware. Functions include chip initialization, frame transmit and
receive, multicast and “promiscuous” support, and error recovery and reporting.

The cloning, character-special device /dev/elink is used to access all EtherLink 16 devices
installed within the system.

elink and DLPI The elink driver is a “style 2” Data Link Service provider. All M_PROTO and
M_PCPROTO type messages are interpreted as DLPI primitives. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream with a
particular device (ppa). The ppa ID is interpreted as an unsigned long integer and indi-
cates the corresponding device instance (unit) number. The unit numbers are assigned
sequentially to each board found. The search order is determined by the order defined in
the /kernel/drv/elink.conf file. An error (DL_ERROR_ACK) is returned by the driver if
the ppa field value does not correspond to a valid device instance number for this sys-
tem. The device is initialized on first attach and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

· The maximum SDU is 1500 (ETHERMTU).

· The minimum SDU is 0. The driver will pad to the mandatory 60-octet
minimum packet size.

· The dlsap address length is 8.

· The MAC type is DL_ETHER.

· The sap length value is −2, meaning the physical address component is fol-
lowed immediately by a 2-byte sap component within the DLSAP address.

· The service mode is DL_CLDLS.

· No optional quality of service (QOS) support is included at present, so the
QOS fields are 0.

· The provider style is DL_STYLE2.

· The version is DL_VERSION_2.

· The broadcast address value is Ethernet/IEEE broadcast address

7-86 modified 20 Jan 1994

SunOS 5.4 Special Files elink (7)

(FF:FF:FF:FF:FF:FF).

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a par-
ticular Service Access Pointer (SAP) with the stream. The elink driver interprets the sap
field within the DL_BIND_REQ as an Ethernet “type;” therefore valid values for the sap
field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the stream at
any time.

In addition to Ethernet V2 service, an “802.3 mode” is also provided by the driver. In this
mode, sap values in the range [0-1500] are treated as equivalent and represent a desire by
the user for “802.3” mode. If the value of the sap field of the DL_BIND_REQ is within this
range, then the driver expects that the destination DLSAP in a DL_UNITDATA_REQ will
contain the length of the data rather than a sap value. All frames received from the media
that have a “type” field in this range are assumed to be 802.3 frames, and they are routed
up all open streams which are bound to any sap value within this range. If more than
one stream is in “802.3 mode,” then the frame will be duplicated and routed up multiple
streams as DL_UNITDATA_IND messages.

The elink driver DLSAP address format consists of the 6-byte physical (Ethernet) address
component followed immediately by the 2-byte sap (type) component, producing an 8-
byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format, but should instead use information
returned in the DL_INFO_ACK primitive to compose and decompose DLSAP addresses.
The sap length, full DLSAP length, and sap/physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the elink driver. The elink driver will route received
Ethernet frames up all open and bound streams that have a sap which matches the Ether-
net type as DL_UNITDATA_IND messages. Received Ethernet frames are duplicated and
routed up multiple open streams if necessary. The DLSAP address contained within the
DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the sap (type)
and physical (Ethernet) components.

elink Primitives In addition to the mandatory connectionless DLPI message set, the driver also supports
the following primitives:

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable recep-
tion of individual multicast group addresses. A set of multicast addresses may be itera-
tively created and modified on a per-stream basis using these primitives. These primi-
tives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all “prom-
iscuous mode” frames on the media including frames generated by the local host.

modified 20 Jan 1994 7-87

elink (7) Special Files SunOS 5.4

When used with the DL_PROMISC_SAP flag set, this enables/disables reception of all sap
(Ethernet type) values. When used with the DL_PROMISC_MULTI flag set, this
enables/disables reception of all multicast group addresses. The effect of each is always
on a per-stream basis and independent of the other sap and physical level configurations
on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the 6-octet Ethernet address currently asso-
ciated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primitive is
valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6-octet Ethernet address currently
associated (attached) to this stream. The credentials of the process which originally
opened this stream must be superuser or an EPERM error is returned in the
DL_ERROR_ACK. This primitive is destructive in that it affects all other current and
future streams attached to this device. An M_ERROR is sent up all other streams attached
to this device when this primitive on this stream is successful. Once changed, all streams
subsequently opened and attached to this device will obtain this new physical address.
The new physical address will remain in effect until this primitive is used to change the
physical address again or the system is rebooted, whichever comes first.

CONFIGURATION The /kernel/drv/elink.conf file supports the following options:

intr Specifies the IRQ level for the board.

reg Specifies the shared RAM the board is configured for.

It is important to ensure that there are no conflicts for the board’s I/O port, shared RAM,
or IRQ level.

FILES /dev/elink character special device
/kernel/drv/elink.conf configuration file of elink driver

SEE ALSO dlpi(7)

7-88 modified 20 Jan 1994

SunOS 5.4 Special Files elx (7)

NAME elx − 3COM EtherLink III Ethernet device driver

SYNOPSIS #include <sys/stropts.h>
#include <sys/ethernet.h>
#include <sys/dlpi.h>

AVAILABILITY x86

DESCRIPTION The elx Ethernet driver is a multi-threaded, loadable, clonable, STREAMS hardware
driver supporting the connectionless Data Link Provider Interface, dlpi(7), over 3COM
ETHERLINK III Ethernet controllers (3C509, 3C529 and 3C579). Multiple EtherLink III
controllers installed within the system are supported by the driver. The elx driver pro-
vides basic support for the EtherLink III hardware. Functions include chip initialization,
frame transmit and receive, multicast and “promiscuous” support, and error recovery
and reporting.

The cloning, character-special device /dev/elx is used to access all EtherLink III devices
installed within the system.

The elx driver is a “style 2” Data Link Service provider. All M_PROTO and M_PCPROTO
type messages are interpreted as DLPI primitives. An explicit DL_ATTACH_REQ mes-
sage by the user is required to associate the opened stream with a particular device (ppa).
The ppa ID is interpreted as an unsigned long integer and indicates the corresponding
device instance (unit) number. The unit numbers are assigned sequentially to each board
found. The search order is determined by the order defined in the elx.conf file. An error
(DL_ERROR_ACK) is returned by the driver if the ppa field value does not correspond to
a valid device instance number for this system. The device is initialized on first attach
and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

The maximum SDU is 1500 (ETHERMTU).

The minimum SDU is 0. The driver will pad to the mandatory 60-octet minimum
packet size.

The dlsap address length is 8.

The MAC type is DL_ETHER.

The sap length value is −2, meaning the physical address component is followed
immediately by a 2-byte sap component within the DLSAP address.

The service mode is DL_CLDLS.

No optional quality of service (QOS) support is included at present, so the QOS
fields are 0.

The provider style is DL_STYLE2.

The version is DL_VERSION_2.

The broadcast address value is Ethernet/IEEE broadcast address

modified 15 Feb 1994 7-89

elx (7) Special Files SunOS 5.4

(FF:FF:FF:FF:FF:FF).

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a par-
ticular Service Access Pointer (SAP) with the stream. The elx driver interprets the sap
field within the DL_BIND_RE as an Ethernet “type;” therefore valid values for the sap
field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the stream at
any time.

In addition to Ethernet V2 service, an “802.3 mode” is provided by the driver and works
as follows. sap values in the range [0-1500] are treated as equivalent and represent a
desire by the user for “802.3” mode. If the value of the sap field of the DL_BIND_REQ is
within this range, then the driver computs the length of the message, not including the
initial M_PROTO mblk (message block), of all subsequent DL_UNITDATA_REQ messages
and transmit 802.3 frames that have this value in the MAC frame header length field. All
frames received from the media that have a “type” field in this range are assumed to be
802.3 frames, and they are routed up all open streams which are bound to any sap value
within this range. If more than one stream is in “802.3 mode,” then the frame will be
duplicated and routed up multiple streams as DL_UNITDATA_IND messages.

The elx driver DLSAP address format consists of the 6-byte physical (Ethernet) address
component followed immediately by the 2-byte sap (type) component, producing an 8-
byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format, but should instead use information
returned in the DL_INFO_ACK primitive to compose and decompose DLSAP addresses.
The sap length, full DLSAP length, and sap/physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the elx driver. The elx driver will route received Ether-
net frames up all open and bound streams that have a sap which matches the Ethernet
type as DL_UNITDATA_IND messages. Received Ethernet frames are duplicated and
routed up multiple open streams if necessary. The DLSAP address contained within the
DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the sap (type)
and physical (Ethernet) components.

elx Primitives In addition to the mandatory connectionless DLPI message set, the driver also supports
the following primitives:

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable recep-
tion of individual multicast group addresses. A set of multicast addresses may be itera-
tively created and modified on a per-stream basis using these primitives. These primi-
tives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all “prom-
iscuous mode” frames on the media including frames generated by the local host.

7-90 modified 15 Feb 1994

SunOS 5.4 Special Files elx (7)

When used with the DL_PROMISC_SAP flag set, this enables/disables reception of all sap
(Ethernet type) values. When used with the DL_PROMISC_MULTI flag set, this
enables/disables reception of all multicast group addresses. The effect of each is always
on a per-stream basis and independent of the other sap and physical level configurations
on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the 6-octet Ethernet address currently asso-
ciated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primitive is
valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6-octet Ethernet address currently
associated (attached) to this stream. The credentials of the process which originally
opened this stream must be superuser or an EPERM error is returned in the
DL_ERROR_ACK. This primitive is destructive in that it affects all other current and
future streams attached to this device. An M_ERROR is sent up all other streams attached
to this device when this primitive on this stream is successful. Once changed, all streams
subsequently opened and attached to this device will obtain this new physical address.
The new physical address will remain in effect until this primitive is used to change the
physical address again or the system is rebooted, whichever comes first.

CONFIGURATION The /kernel/drv/elx.conf file supports the following options:

intr Specifies the IRQ level for the board.

It is important to ensure that there are no conflicts for the board’s I/O port or IRQ level.

FILES /dev/elx special character device.
/kernel/drv/elx.conf configuration file for elx driver.

SEE ALSO dlpi(7)

modified 15 Feb 1994 7-91

envm (7) Special Files SunOS 5.4

NAME envm − EISA NVRAM support

AVAILABILITY x86

DESCRIPTION The EISA NVRAM is analogous to the CMOS RAM on an AT -type machine, but is much
more complete. It describes the hardware environment in great detail on a slot-by-slot
basis. The information is placed in the NVRAM by the EISA Configuration Utility sup-
plied with the machine. EISA NVRAM support offers access to this data for drivers and
user applications. User-level access is through the device /dev/eisarom. An application
must open the device and issue ioctl calls to gather the required data. Drivers or other
kernel code must call the driver routines directly to gather their data.

Determination of Bus
Type for Drivers

For a driver to determine whether or not it is running on an EISA machine, it should do
the following:

#include <sys/eisarom.h>
extern int envm_check ();/∗ Returns −1 if not an EISA machine. ∗/

if (envm_check () != −1)
{

/∗ It’s an EISA machine. ∗/
}
else
{

/∗ It’s not. ∗/
}

Determination of Bus
Type for

Applications

For an application to determine whether or not it is running on an EISA machine, it
should do the following:

#include <sys/fcntl.h>
extern int open();

if (open("/dev/eisarom", O_RDONLY) != −1) /∗ It’s an EISA machine. ∗/
{

/∗ It’s an EISA machine. ∗/
}
else
{

/∗ It’s not. ∗/
}

7-92 modified 18 Oct 1993

SunOS 5.4 Special Files envm (7)

Data Gathering for
Drivers

To read data from the NVRAM, a driver should use the following template. eisa_nvm ()
returns the number of bytes placed in ‘‘data’’:

#include <sys/eisarom.h>
#include <sys/nvm.h>
extern int eisa_nvm ();

int
eisa_nvm (data, key_mask, [key1, key2, . . . key(n)])

char ∗data;
KEY_MASK key_mask;
{
}

Data Gathering for
Applications

To read data from the NVRAM, an application should do the following:

#include <fcntl.h>
#include <sys/eisarom.h>
#include <sys/nvm.h>

char ∗data;
int length = (20∗1024);
eisanvm nvm;/∗ See "eisarom.h". ∗/
int fd;

/∗ The "ioctl" function will transform the arguments in "data" to a
stack frame that can be passed in to "eisa_nvm". ∗/

if ((fd = open("/dev/eisarom", O_RDONLY)) != −1)
{

/∗ We’re on an EISA machine. ∗/

data = (char ∗)malloc(length);

nvm.data = data;

/∗ This sets up the "key" arguments for the "ioctl" function. ∗/

∗((int ∗)nvm.data)++ = key_mask;
∗((int ∗)nvm.data)++ = key1;
∗((int ∗)nvm.data)++ = key2;

if (ioctl(fd, EISA_CMOS_QUERY, &nvm) != −1)
{
/∗ Call was successful. ∗/
/∗ If length is 0, no records matched all keys. ∗/
/∗ Length is in nvm.length. ∗/
/∗ Data is pointed to by nvm.data. ∗/
/∗ Data consists of 0 or more slot records, each ∗/
/∗ followed by 1 or more function records ∗/

modified 18 Oct 1993 7-93

envm (7) Special Files SunOS 5.4

/∗ (see "nvm.h"). ∗/
}
else
{
/∗ Fatal error. ∗/
}

}
else
{

/∗ Not an EISA machine or no "envm" driver installed. ∗/
}

Masks and Keys This section deals with the values for the key_mask and keys fields in the call to eisa_nvm ().
The key_mask field determines which fields are checked during the search in eisa_nvm ().
The number of keys passed to eisa_nvm () must be the same as the number of items
specified in key_mask. The key arguments must be in the order shown below. See nvm.h
for the slot and function record format. Arguments may be omitted, but the ordering
must be maintained. The key argument ordering is:

slot function (board_id mask) revision checksum type sub-type

Correct values for the key fields may be obtained from the documentation accompanying
the machine.

EXAMPLES To copy all slot and function records into buffer:

bytes = eisa_nvm(buffer, 0);

To copy the record for slot 0 and all its function records into buffer:

bytes = eisa_nvm(buffer, SLOT, 0);

To copy any or all slot and function records that pertain to the board type DISCO into
buffer:

bytes = eisa_nvm(buffer, TYPE, DISCO);

To copy any or all slot and function records that pertain to the board ID xx40110e and the
type COM into buffer:

bytes = eisa_nvm(buffer, BOARD_ID | TYPE, 0x0140110e, 0xffffff, "COM");

To copy any or all slot and function records that pertain to the board ID 0140110e, the
checksum 0xABCD, and the type ASY into buffer:

bytes = eisa_nvm(buffer, BOARD_ID | CHECKSUM | TYPE, 0x0140110e, 0xffffffff,
0xABCD, "ASY");

7-94 modified 18 Oct 1993

SunOS 5.4 Special Files esp (7)

NAME esp − ESP SCSI Host Bus Adapter Driver

SYNOPSIS esp@sbus-slot,0x80000

AVAILABILITY Limited to Sparc SBus-based systems with esp-based SCSI port, Sun4/330 with esp-based
SCSI port, and SSHA, SBE/S, FSBE/S and DSBE/S SBus SCSI Host Adapter options.

DESCRIPTION The esp Host Bus Adapter driver is a SCSA compliant nexus driver that supports the
Emulex family of esp SCSI chips (esp100, esp100A, esp236, fas101, fas236).

The esp driver supports the standard functions provided by the SCSA interface. The
driver supports tagged and untagged queueing, fast SCSI (on FAS esp’s only), almost
unlimited transfer size (using a moving DVMA window approach), auto request sense
but does not support linked commands.

Driver Configuration The esp driver can be configured by defining properties in esp.conf which override the
global SCSI settings. Supported properties are scsi-options, scsi-reset-delay, scsi-
watchdog-tick, scsi-tag-age-limit, scsi-initiator-id.

Refer to scsi_hba_attach(9F) for details.

EXAMPLE Create a file /kernel/drv/esp.conf and add this line:

scsi-options=0x78;

This will disable tagged queueing, fast SCSI, and Wide mode for all esp instances. To
disable an option for one specific esp (refer to driver.conf(4)):

name="esp" parent="/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000"
reg=0xf,0x00800000,00000040
scsi-options = 0x58 scsi-initiator-id = 6;

Note that the default initiator ID in OBP is 7 and that the change to ID 6 will occur at
attach time. It may be preferable to change the initiator ID in OBP.

FILES /kernel/drv/esp ELF Kernel Module
/kernel/drv/esp.conf Configuration file

SEE ALSO prtconf(1M), driver.conf(4), scsi_hba_attach(9F), scsi_abort(9F), scsi_ifgetcap(9F),
scsi_ifsetcap(9F), scsi_reset(9F), scsi_sync_pkt(9F), scsi_transport(9F), scsi_device(9S),
scsi_extended_sense(9S), scsi_inquiry(9S), scsi_pkt(9S),

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2)

ESP Technical Manuals, QLogic Corp.

DIAGNOSTICS The messages described below are some that may appear on the system console, as well
as being logged.

modified 24 May 1994 7-95

esp (7) Special Files SunOS 5.4

This first four messages may be displayed while the esp driver is trying to attach. All of
these messages mean that the esp driver was unable to attach. These messages are pre-
ceded by "esp%d", where "%d" is the instance number of the esp controller.

Device in slave-only slot, unused
The SBus device has been placed in a slave-only slot and will not be accessible;
move to non-slave-only SBus slot.

Device is using a hilevel intr, unused
The device was configured with a interrupt level that cannot be used with this
esp driver. Check the SBus device.

Unable to map registers;
Driver was unable to map device registers; check for bad hardware. Driver did
not attach to device, SCSI devices will be inaccessible.

Cannot find dma controller
Driver was unable to locate a dma controller. This is an auto-configuration error.

Disabled TQ since disconnects are disabled
Tagged Queueing was disabled because disconnects were disabled in scsi-
options.

Bad clock frequency- setting 20mhz, asynchronous mode
Check for bad hardware.

Sync pkt failed.
Syncing a scsi packet failed. Refer to scsi_sync_pkt(9F).

All tags in use!
The driver could not allocate another tag number. The target devices do not
properly support Tagged Queueing.

Cannot alloc tag queue
The driver could not allocate space for tag queue.

Gross error in esp status.
The driver experienced severe SCSI bus problems. Check cables and terminator.

Spurious interrupt
The driver received an interrupt while the hardware was not interrupting.

Lost state in phasemanage
The driver is confused about the state of the SCSI bus.

Unrecoverable DMA error during selection
The DMA controller experienced host SBus problems. Check for bad hardware.

Bad sequence step (0x%x) in selection
The esp hardware reported a bad sequence step. Check for bad hardware.

Undetermined selection failure
The selection of a target failed unexpectedly. Check for bad hardware.

>2 reselection IDs on the bus
Two targets selected simultaneously which is illegal. Check for bad hardware.

7-96 modified 24 May 1994

SunOS 5.4 Special Files esp (7)

Reconnect: unexpected bus free
A reconnect by a target failed. Check for bad hardware.

timeout on receiving tag msg.
Suspect target f/w failure in Tagged Queueing handling.

Parity error in tag msg
A parity error was detected in a tag message. Suspect SCSI bus problems.

Botched tag
The target supplied bad tag messages. Suspect target f/w failure in Tagged
Queueing handling.

Parity error in reconnect msg’s
The reconnect failed because of parity errors.

Target <n> didn’t disconnect after sending <message>
The target unexpectedly didnot disconnect after sending <message>.

No support for multiple segs
The esp driver can only transfer contiguous data.

No dma window?
Moving the DVMA window failed unexpectedly.

No dma window on <type> operation
Moving the DVMA window failed unexpectedly.

Cannot set new dma window
Moving the DVMA window failed unexpectedly.

Unable to set new window at <address> for <type> operation
Moving the DVMA window failed unexpectedly.

Illegal dma boundary?
An attempt was made to cross a boundary that the driver could not handle.

Unwanted data out/in for Target <n>
The target went into an unexpected phase.

Spurious <name> phase from target <n>
The target went into an unexpected phase.

SCSI bus DATA IN phase parity error
The driver detected parity errors on the SCSI bus.

SCSI bus MESSAGE IN phase parity error
The driver detected parity errors on the SCSI bus.

SCSI bus STATUS phase parity error
The driver detected parity errors on the SCSI bus.

Premature end of extended message
An extended SCSI bus message did not complete. Suspect a target f/w problem.

Premature end of input message
A multibyte input message was truncated. Suspect a target f/w problem.

Input message botch

modified 24 May 1994 7-97

esp (7) Special Files SunOS 5.4

The driver is confused about messages coming from the target.

Extended message <n> is too long
The extended message send by the target is longer than expected.

<name> message <n> from Target <m> garbled
Target <m> send message <name> of value <n> which the driver did not under-
stand.

Target <n> rejects our message <name>
Target <n> rejected a message send by the driver.

Rejecting message <name> from Target <n>
The driver rejected a message received from target <n>

Cmd dma error
The driver was unable to send out command bytes.

Target <n> refused message resend
The target did not accept a message resend.

Two byte message <name> <value> rejected
The driver does not accept this two byte message.

Unexpected Selection Attempt
An attempt was made to select this host adapter by another initiator.

Polled cmd failed (target busy)
A polled cmd failed because the target did not complete outstanding commands
within a reasonable time.

Polled cmd failed
A polled command failed because of timeouts or bus errors.

Disconnected command timeout for Target <id>.<lun>
A timeout occurred while target/lun was disconnected. This is usually a target
f/w problem. For tagged queueing targets, <n> commands were outstanding
when the timeout was detected.

Disconnected tagged cmds (<n>) timeout for Target <id>.<lun>
A timeout occurred while target/lun was disconnected. This is usually a target
f/w problem. For tagged queueing targets, <n> commands were outstanding
when the timeout was detected.

Connected command timeout for Target <id>.<lun>.
This is usually a SCSI bus problem. Check cables and termination.

Target <id>.<lun> reverting to async. mode
A data transfer hang was detected. The driver attempts to eliminate this problem
by reducing the data transfer rate.

Target <id>.<lun> reducing sync. transfer rate
A data transfer hang was detected. The driver attempts to eliminate this problem
by reducing the data transfer rate.

Reverting to slow SCSI cable mode
A data transfer hang was detected. The driver attempts to eliminate this problem

7-98 modified 24 May 1994

SunOS 5.4 Special Files esp (7)

by reducing the data transfer rate.

Reset scsi bus failed
An attempt to reset the SCSI bus failed.

External SCSI bus reset
Another initiator reset the SCSI bus.

WARNINGS The esp hardware does not support Wide SCSI mode. Only FAS-type esp’s support fast
SCSI (10 MB/sec).

NOTES The esp driver exports properties indicating per target the negotiated transfer speed
(target<n>-sync-speed) and whether tagged queueing has been enabled (target<n>-TQ).
The sync-speed property value is the data transfer rate in KB/sec. The target-TQ pro-
perty has no value. The existence of the property indicates that tagged queueing has been
enabled. Refer to prtconf(1M) (verbose option) for viewing the esp properties.

dma, instance #3
Register Specifications:

Bus Type=0x2, Address=0x81000, Size=10
esp, instance #3

Driver software properties:
name <target3-TQ> length <0> -- <no value>.
name <target3-sync-speed> length <4>

value <0x00002710>.
name <scsi-options> length <4>

value <0x000003f8>.
name <scsi-watchdog-tick> length <4>

value <0x0000000a>.
name <scsi-tag-age-limit> length <4>

value <0x00000008>.
name <scsi-reset-delay> length <4>

value <0x00000bb8>.

modified 24 May 1994 7-99

fbio (7) Special Files SunOS 5.4

NAME fbio − frame buffer control operations

DESCRIPTION The frame buffers provided with this release support the same general interface that is
defined by <sys/fbio.h>. Each responds to an FBIOGTYPE ioctl(2) request which returns
information in a fbtype structure.

Each device has an FBTYPE which is used by higher-level software to determine how to
perform graphics functions. Each device is used by opening it, doing an FBIOGTYPE
ioctl() to see which frame buffer type is present, and thereby selecting the appropriate
device-management routines.

FBIOGINFO returns information specific to the GS accelerator.

FBIOSVIDEO and FBIOGVIDEO are general-purpose ioctl() requests for controlling pos-
sible video features of frame buffers. These ioctl() requests either set or return the value
of a flags integer. At this point, only the FBVIDEO_ON option is available, controlled by
FBIOSVIDEO. FBIOGVIDEO returns the current video state.

The FBIOSATTR and FBIOGATTR ioctl() requests allow access to special features of
newer frame buffers. They use the fbsattr and fbgattr structures.

Some color frame buffers support the FBIOPUTCMAP and FBIOGETCMAP ioctl()
requests, which provide access to the colormap. They use the fbcmap structure.

Also, some framebuffers with multiple colormaps will either encode the colormap
identifier in the high-order bits of the "index" field in the fbcmap structure, or use the
FBIOPUTCMAPI and FBIOGETCMAPI ioctl() requests.

FBIOVERTICAL is used to wait for the start of the next vertical retrace period.

FBIOVRTOFFSET Returns the offset to a read-only vertical retrace page for those frame-
buffers that support it. This vertical retrace page may be mapped into user space with
mmap(2). The first word of the vertical retrace page (type unsigned int) is a counter that
is incremented every time there is a vertical retrace. The user process can use this
counter in a variety of ways.

FBIOMONINFO returns a mon_info structure which contains information about the mon-
itor attached to the framebuffer, if available.

FBIOSCURSOR, FBIOGCURSOR, FBIOSCURPOS and FBIOGCURPOS are used to control
the hardware cursor for those framebuffers that have this feature. FBIOGCURMAX
returns the maximum sized cursor supported by the framebuffer. Attempts to create a
cursor larger than this will fail.

Finally FBIOSDEVINFO and FBIOGDEVINFO are used to transfer variable-length, device-
specific information into and out of framebuffers.

7-100 modified 27 Mar 1992

SunOS 5.4 Special Files fbio (7)

SEE ALSO gsconfig(1M), ioctl(2), mmap(2), bwtwo(7), cgeight(7), cgfour(7), cgsix(7), cgthree(7),
cgtwelve(7), cgtwo(7)

BUGS The FBIOSATTR and FBIOGATTR ioctl() requests are only supported by frame buffers
which emulate older frame buffer types. For example, cgfour(7) frame buffers emulate
bwtwo(7) frame buffers. If a frame buffer is emulating another frame buffer, FBIOGTYPE
returns the emulated type. To get the real type, use FBIOGATTR.

The FBIOGCURPOS ioctl was incorrectly defined in previous operating systems, and
older code running in binary compatibility mode may get incorrect results.

modified 27 Mar 1992 7-101

fd (7) Special Files SunOS 5.4

NAME fd, fdc − drivers for floppy disks and floppy disk controllers

CONFIG
x86 name="fd" parent="fdc" unit=0;

name="fd" parent="fdc" unit=1;

DESCRIPTION The fd driver provides the interfaces to the floppy disks using the Intel 82072 on SUN4c
systems and the Intel 82077 on SUN4m systems.

The fd and fdc drivers provide the interfaces to floppy disks using the Intel 8272, Intel
82077, NEC 765, or compatible disk controllers on x86 systems.

The default partitions for the floppy driver are
a All cylinders except the last
b Only the last cylinder
c Entire diskette

The fd driver autosenses the density of the diskette.

When the floppy is first opened the driver looks for a SunOS label in logical block 0 of the
diskette. If attempts to read the SunOS label fail, the open will fail. If block 0 is read suc-
cessfully but a SunOS label is not found, auto-sensed geometry and default partitioning
are assumed.

The fd driver supports both block and raw interfaces. The block files access the diskette
using the system’s normal buffering mechanism and may be read and written without
regard to physical diskette records. There is also a “raw” interface that provides for
direct transmission between the diskette and the user’s read or write buffer. A single
read(2) or write(2) call usually results in one I/O operation; therefore raw I/O is consid-
erably more efficient when many words are transmitted.

3.5" Diskettes For 3.5" double-sided diskettes, the following densities are supported:

SPARC high density
80 cylinders, 18 sectors per track, 1.44 Mbyte capacity

double density
80 cylinders, 9 sectors per track, 720 Kbyte capacity

medium density
77 cylinders, 8 sectors per track, 1.2 Mbyte capacity (SUN4m only)

x86 extended density
80 cylinders, 36 sectors per track, 2.88 Mbyte capacity

high density
80 cylinders, 18 sectors per track, 1.44 Mbyte capacity

double density
80 cylinders, 9 sectors per track, 760 Kbyte capacity

7-102 modified 2 May 1994

SunOS 5.4 Special Files fd (7)

5.25" Diskettes For 5.25" double-sided diskettes, the following densities are supported:

SPARC 5.25" diskettes are not supported.

x86 high density
80 cylinders, 15 sectors per track, 1.2 Mbyte capacity

double density
40 cylinders, 9 sectors per track, 360 Kbyte capacity

double density
40 cylinders, 8 sectors per track, 320 Kbyte capacity

quad density
80 cylinders, 9 sectors per track, 720 Kbyte capacity

double density
40 cylinders, 16 sectors per track (256 bytes per sector), 320 Kbyte capa-
city

double density
40 cylinders, 4 sectors per track (1024 bytes per sector), 320 Kbyte capa-
city

ERRORS EBUSY During opening, the partition has been opened for exclusive access and
another process wants to open the partition. Once open, this error is
returned if the floppy disk driver attempted to pass a command to the
floppy disk controller when the controller was busy handling another
command. In this case, the application should try the operation again.

EFAULT An invalid address was specified in an ioctl command (see fdio(7)).

EINVAL The number of bytes read or written is not a multiple of the diskette’s
sector size. This error is also returned when an unsupported command
is specified using the FDIOCMD ioctl command (see fdio(7)).

EIO During opening, the diskette does not have a label or there is no diskette
in the drive. Once open, this error is returned if the requested I/O
transfer could not be completed.

ENOSPC An attempt was made to write past the end of the diskette.

ENOTTY The floppy disk driver does not support the requested ioctl functions
(see fdio(7)).

ENXIO The floppy disk device does not exist or the device is not ready.

EROFS The floppy disk device is opened for write access and the diskette in the
drive is write protected.

x86 Only ENOSYS The floppy disk device does not support the requested ioctl function (
FDEJECT).

modified 2 May 1994 7-103

fd (7) Special Files SunOS 5.4

FILES
SPARC /kernel/drv/fd driver module

/usr/include/sys/fdreg.h
structs and definitions for Intel 82072 and 82077 controllers

/usr/include/sys/fdvar.h
structs and definitions for floppy drivers

/dev/diskette device file
/dev/diskette0 device file
/dev/rdiskette raw device file
/dev/rdiskette0 raw device file
For ucb compatibility:
/dev/fd0[a-c] block file
/dev/rfd0[a-c] raw file

/vol/dev/diskette0 directory containing volume management character device file
/bol/dev/rdiskette0 directory containing the volume management raw character dev-

ice file
/vol/dev/aliases/floppy0

symbolic link to the entry in /vol/dev/rdiskette0

x86 /kernel/drv/fd driver module
/kernel/drv/fd.conf configuration file for floppy driver
/kernel/drv/fdc floppy-controller driver module
/kernel/drv/fdc.conf configuration file for the floppy-controller
/usr/include/sys/fdc.h

structs and definitions for x86 floppy devices
/usr/include/sys/fdmedia.h

structs and definitions for x86 floppy media

First Drive:

/dev/diskette device file
/dev/diskette0 device file
/dev/rdiskette raw device file
/dev/rdiskette0 raw device file
For ucb compatibility:
/dev/fd0[a-c] block file
/dev/rfd0[a-c] raw file

/vol/dev/diskette0 directory containing volume management character device file
/bol/dev/rdiskette0 directory containing the volume management raw character dev-

ice file
/vol/dev/aliases/floppy0

symbolic link to the entry in /vol/dev/rdiskette0

7-104 modified 2 May 1994

SunOS 5.4 Special Files fd (7)

Second Drive:

/dev/diskette1 device file
/dev/rdiskette1 raw device file
For ucb compatibility:
/dev/fd1[a-c] block file
/dev/rfd1[a-c] raw file

/vol/dev/diskette1 directory containing volume management character device file
/bol/dev/rdiskette1 directory containing the volume management raw character dev-

ice file
/vol/dev/aliases/floppy1

symbolic link to the entry in /vol/dev/rdiskette1

SEE ALSO fdformat(1), dd(1M), drvconfig(1M), vold(1M), read(2), write(2), driver.conf(4), dkio(7),
fdio(7)

DIAGNOSTICS fd<n>: <command name> failed (<sr1> <sr2> <sr3>)
The <command name> failed after several retries on drive <n>. The three hex
values in parenthesis are the contents of status register 0, status register 1, and
status register 2 of the Intel 8272, the Intel 82072, and the Intel 82077 Floppy Disk
Controller on completion of the command as documented in the data sheet for
that part. This error message is usually followed by one of the following, inter-
preting the bits of the status register:

fd<n>: not writable
fd<n>: crc error blk <block number>

There was a data error on <block number>.
fd<n>: bad format
fd<n>: timeout
fd<n>: drive not ready
fd<n>: unformatted diskette or no diskette in drive
fd<n>: block <block number> is past the end! (nblk=<total number of

blocks>)
The operation tried to access a block number that is greater than the
total number of blocks.

fd<n>: b_bcount 0x<op_size> not % 0x<sect_size>
The size of an operation is not a multiple of the sector size.

fd<n>: overrun/underrun

SPARC Overrun/underrun errors occur when accessing a diskette while the system is
heavily loaded. These errors are caused by a hardware limitation and cannot be
fixed in the software.

NOTES 3.5" high density diskettes have 18 sectors per track and 5.25" high density diskettes have
15 sectors per track. They can cross a track (though not a cylinder) boundary without los-
ing data, so when using dd(1M) to or from a diskette, you should specify bs=18k or

modified 2 May 1994 7-105

fd (7) Special Files SunOS 5.4

multiples thereof for 3.5" diskettes, and bs=15k or multiples thereof for 5.25" diskettes.

The SPARC fd driver is not an unloadable module.

Under Solaris for x86, the configuration of the floppy drives is specified in CMOS
configuration memory. Use the BIOS setup program or an EISA or MicroChannel
configuration program for the system to define the diskette size and density/capacity for
each installed drive. Note that MS-DOS may operate the floppy drives correctly, even
though the CMOS configuration may be in error. Solaris for x86 relies on the CMOS
configuration to be accurate.

7-106 modified 2 May 1994

SunOS 5.4 Special Files fdio (7)

NAME fdio − floppy disk control operations

SYNOPSIS #include <sys/fdio.h>

DESCRIPTION The Solaris floppy driver supports a set of ioctl(2) requests for getting and setting the
floppy drive characteristics. Basic to these ioctl() requests are the definitions in
<sys/fdio.h>.

IOCTLS The following ioctl() requests are available only on the Solaris floppy driver.

FDDEFGEOCHAR
x86: This ioctl() forces the floppy driver to restore the diskette and
drive characteristics and geometry, and partition information to default
values based on the device configuration.

FDGETCHANGE
The argument is a pointer to an int. This ioctl() returns the status of the
diskette-changed signal from the floppy interface. The following defines
are provided for cohesion.

Note that for x86 systems, FDGC_DETECTED (which is available only on x86) should be
used instead of FDGC_HISTORY.

/∗
∗ Used by FDGETCHANGE, returned state of the sense disk change bit.
∗/
#define FDGC_HISTORY 0x01 /∗ disk has changed since last call ∗/
#define FDGC_CURRENT 0x02 /∗ current state of disk change ∗/
#define FDGC_CURWPROT 0x10 /∗ current state of write protect ∗/
#define FDGC_DETECTED 0x20 /∗ previous state of DISK CHANGE ∗/

FDIOGCHAR The argument is a pointer to an fd_char structure (described below).
This ioctl() gets the characteristics of the floppy diskette from the floppy
controller.

FDIOSCHAR The argument is a pointer to an fd_char structure (described below).
This ioctl() sets the characteristics of the floppy diskette for the floppy
controller.

modified 11 Nov 1993 7-107

fdio (7) Special Files SunOS 5.4

/∗
∗ Floppy characteristics
∗/
struct fd_char {

u_char fdc_medium; /∗ medium type (scsi floppy only) ∗/
int fdc_transfer_rate; /∗ transfer rate ∗/
int fdc_ncyl; /∗ number of cylinders ∗/
int fdc_nhead; /∗ number of heads ∗/
int fdc_sec_size; /∗ sector size ∗/
int fdc_secptrack; /∗ sectors per track ∗/
int fdc_steps; /∗ number of steps per ∗/

};

FDGETDRIVECHAR
The argument to this ioctl() is a pointer to an fd_drive structure
(described below). This ioctl() gets the characteristics of the floppy drive
from the floppy controller.

FDSETDRIVECHAR
x86: The argument to this ioctl() is a pointer to an fd_drive structure
(described below). This ioctl() sets the characteristics of the floppy drive
for the floppy controller. Only fdd_steprate, fdd_headsettle,
fdd_motoron, and fdd_motoroff are actually used by the floppy disk
driver.

/∗
∗ Floppy Drive characteristics
∗/
struct fd_drive {

int fdd_ejectable; /∗ does the drive support eject? ∗/
int fdd_maxsearch; /∗ size of per-unit search table ∗/
int fdd_writeprecomp; /∗ cyl to start write prcompensation ∗/
int fdd_writereduce; /∗ cyl to start recucing write current ∗/
int fdd_stepwidth; /∗ width of step pulse in 1 us units ∗/
int fdd_steprate; /∗ step rate in 100 us units ∗/
int fdd_headsettle; /∗ delay, in 100 us units ∗/
int fdd_headload; /∗ delay, in 100 us units ∗/
int fdd_headunload; /∗ delay, in 100 us units ∗/
int fdd_motoron; /∗ delay, in 100 ms units ∗/
int fdd_motoroff; /∗ delay, in 100 ms units ∗/
int fdd_precomplevel; /∗ bit shift, in nano-secs ∗/
int fdd_pins; /∗ defines meaning of pin 1, 2, 4 and 34 ∗/
int fdd_flags; /∗ TRUE READY, Starting Sector #, & Motor On ∗/

};

FDGETSEARCH Not available.

FDSETSEARCH Not available.

7-108 modified 11 Nov 1993

SunOS 5.4 Special Files fdio (7)

FDEJECT SPARC: This ioctl() requests the floppy drive to eject the diskette.

FDIOCMD The argument is a pointer to an fd_cmd structure (described below).
This ioctl() allows access to the floppy diskette using the floppy device
driver. Only the FDCMD_WRITE, FDCMD_READ, and
FDCMD_FORMAT_TR commands are currently available.

struct fd_cmd {
u_short fdc_cmd; /∗ command to be executed ∗/
int fdc_flags; /∗ execution flags ∗/
daddr_t fdc_blkno; /∗ disk address for command ∗/
int fdc_secnt; /∗ sector count for command ∗/
caddr_t fdc_bufaddr; /∗ user’s buffer address ∗/
u_int fdc_buflen; /∗ size of user’s buffer ∗/

};

/∗
∗ Floppy commands
∗/
#define FDCMD_WRITE 1
#define FDCMD_READ 2
#define FDCMD_SEEK 3
#define FDCMD_REZERO 4
#define FDCMD_FORMAT_UNIT 5
#define FDCMD_FORMAT_TRACK 6

FDRAW
The argument is a pointer to an fd_raw structure (described below). This ioctl()
allows direct control of the floppy drive using the floppy controller. Refer to the
appropriate floppy-controller data sheet for full details on required command
bytes and returned result bytes.

/∗
∗ Used by FDRAW
∗/
struct fd_raw {

char fdr_cmd[10]; /∗ user-supplied command bytes ∗/
short fdr_cnum; /∗ number of command bytes ∗/
char fdr_result[10]; /∗ controller-supplied result bytes ∗/
short fdr_nbytes; /∗ number to transfer if read/write command ∗/
char ∗fdr_addr; /∗ where to transfer if read/write command ∗/

};

SEE ALSO ioctl(2), dkio(7), hdio(7)
x86 only fd(7)

modified 11 Nov 1993 7-109

gt (7) Special Files SunOS 5.4

NAME gt − double buffered 24-bit SBus color frame buffer and graphics accelerator

DESCRIPTION gt is a 24-bit SBus-based color frame buffer and graphics accelerator. The frame buffer
consists of 108 video memory planes of 1280×1024 pixels including 24-bit double buffer-
ing, 16 alpha/overlay planes, 24 z-buffer planes, 10 window ID planes, 8 fast clear planes,
and 2 cursor planes. It provides the standard frame buffer interface defined in fbio(7),
paired with microcode that can be downloaded using gtconfig(1M). Application
acceleration is achieved via the XGL native 3D graphics library.

FILES /dev/fbs/gt0 device special file
/dev/fb default frame buffer

SEE ALSO gtconfig(1M), mmap(2), fbio(7)

7-110 modified 2 Aug 1993

SunOS 5.4 Special Files hdio (7)

NAME hdio − SMD and IPI disk control operations

SYNOPSIS #include <sys/hdio.h>

DESCRIPTION The SMD and IPI disk drivers supplied with this release support a set of ioctl(2) requests
for diagnostics and bad sector information. Basic to these ioctl() requests are the
definitions in <sys/hdio.h>.

IOCTLS HDKIOCGTYPE The argument is a pointer to a hdk_type structure (described below).
This ioctl() gets specific information from the hard disk.

HDKIOCSTYPE The argument is a pointer to a hdk_type structure (described below).
This ioctl() sets specific information about the hard disk.

/∗
∗ Used for drive info
∗/
struct hdk_type {

u_short hdkt_hsect; /∗ hard sector count (read only) ∗/
u_short hdkt_promrev; /∗ prom revision (read only) ∗/
u_char hdkt_drtype; /∗ drive type (ctlr specific) ∗/
u_char hdkt_drstat; /∗ drive status (ctlr specific, ro) ∗/

};

HDKIOCGBAD The argument is a pointer to a hdk_badmap structure (described
below). This ioctl() is used to get the bad sector map from the disk.

HDKIOCSBAD The argument is a pointer to a hdk_badmap structure (described
below). This ioctl() is used to set the bad sector map on the disk.

/∗
∗ Used for bad sector map
∗/
struct hdk_badmap {

caddr_t hdkb_bufaddr; /∗ address of user’s map buffer ∗/
};

HDKIOCGDIAG
The argument is a pointer to a hdk_diag structure (described below).
This ioctl() gets the most recent command that failed along with the sec-
tor and error number from the hard disk.

modified 19 Feb 1993 7-111

hdio (7) Special Files SunOS 5.4

/∗
∗ Used for disk diagnostics
∗/
struct hdk_diag {

u_short hdkd_errcmd; /∗ most recent command in error ∗/
daddr_t hdkd_errsect; /∗ most recent sector in error ∗/
u_char hdkd_errno; /∗ most recent error number ∗/
u_char hdkd_severe; /∗ severity of most recent error ∗/

};

SEE ALSO ioctl(2), dkio(7), ipi(7), xd(7), xy(7)

7-112 modified 19 Feb 1993

SunOS 5.4 Special Files hsfs (7)

NAME hsfs − High Sierra & ISO 9660 CD-ROM filesystem

DESCRIPTION HSFS is a filesystem type that allows users access to files on High Sierra or ISO 9660 for-
mat CD-ROM disks from within the SunOS operating system. Once mounted, a HSFS
filesystem provides standard SunOS read-only file system operations and semantics.
That is, users can read files and list files in a directory on a High Sierra or ISO 9660 CD-
ROM, and applications can use standard UNIX system calls on these files and directories.

This filesystem also contains support for the Rock Ridge Extensions. If the extensions
are contained on the CD-ROM, then the filesystem will provide all of the filesystem
semantics and file types of UFS, except for writability and hard links.

HSFS filesystems are mounted either with the command:

mount −F hsfs −o ro device-special directory-name

or

mount /hsfs

if a line similar to

/dev/dsk/c0t6d0s0 − /hsfs hsfs − no ro

is in your /etc/vfstab file (and /hsfs exists).

Normally, if Rock Ridge extensions exist on the CD-ROM, the filesystem will automati-
cally use those extensions. If you do not want to use the Rock Ridge extensions, use the
‘‘nrr’’ (No Rock Ridge) mount option. The mount command would then be:

mount −F hsfs −o ro,nrr device-special directory-name

Files on a High Sierra or ISO 9660 CD-ROM disk have names of the form
filename.ext;version, where filename and the optional ext consist of a sequence of uppercase
alphanumeric characters (including ‘‘_’’), while the version consists of a sequence of
digits, representing the version number of the file. HSFS converts all the uppercase char-
acters in a file name to lowercase, and truncates the ‘‘;’’ and version information. If more
than one version of a file is present on the CD-ROM, only the file with the highest version
number is accessible.

Conversion of uppercase to lowercase characters may be disabled by using the −o noma-
plcase option to mount(1M). (See mount_hsfs(1M)).

If the CD-ROM contains Rock Ridge extensions, the file names and directory names may
contain any character supported under UFS. The names may also be upper and/or lower
case and will be case sensitive. File name lengths can be as long as those of UFS.

Files accessed through HSFS have mode 555 (owner, group and world readable and exe-
cutable), uid 0 and gid 3. If a directory on the CD-ROM has read permission, HSFS grants
execute permission to the directory, allowing it to be searched.

With Rock Ridge extensions, files and directories can have any permissions that are sup-
ported on a UFS filesystem; however, despite any write permissions, the file system is
read-only, with EROFS returned to any write operations.

modified 25 Apr 1994 7-113

hsfs (7) Special Files SunOS 5.4

High Sierra and ISO 9660 CD-ROMs only support regular files and directories, thus HSFS
only supports these file types. A Rock Ridge CD-ROM can support regular files, direc-
tories and symbolic links, as well as device nodes, such as block, character and FIFO.

EXAMPLES If there is a file

BIG.BAR

on a High Sierra or ISO 9660 format CD-ROM it will show up as

big.bar

when listed on a HSFS filesystem.

If there are three files

BAR.BAZ;1

BAR.BAZ;2

BAR.BAZ;3

on a High Sierra or ISO 9660 format CD-ROM, only the file BAR.BAZ;3 will be accessible;
it will be listed as

bar.baz

SEE ALSO mount(1M), mount_hsfs(1M), vfstab(4)

N. V. Phillips and Sony Corporation, System Description Compact Disc Digital Audio, ("Red
Book").

N. V. Phillips and Sony Corporation, System Description of Compact Disc Read Only
Memory , ("Yellow Book").

IR "Volume and File Structure of CD-ROM for Information Interchange" , ISO
9660:1988(E).

DIAGNOSTICS hsfs: Unknown CD-ROM structure format
You are attempting to mount a CD-ROM with an unknown format. Perhaps it is
UFS format.

hsfs: hsnode table full, %d nodes allocated
There are not enough HSFS internal data structure elements to handle all the files
currently open. This problem may be overcome by adding a line of the form

set hsfs:nhsnode=number

to the /etc/system system configuration file and rebooting. See system(4).

WARNINGS Do not physically eject a CD-ROM while the device is still mounted as a HSFS filesystem.

Under MS-DOS (for which CD-ROMs are frequently targeted), files with no extension may
be represented either as filename. or filename (that is, with or without a trailing period).

7-114 modified 25 Apr 1994

SunOS 5.4 Special Files hsfs (7)

These names are not equivalent under UNIX systems. For example, the names

BAR.

and

BAR

are not names for the same file under the UNIX system. This may cause confusion if you
are consulting documentation for CD-ROMs originally intended for MS-DOS systems.

Use of the −o notraildot option to mount(1M) makes it optional to specify the trailing
dot. (See mount_hsfs(1M)).

NOTES No translation of any sort is done on the contents of High Sierra or ISO 9660 format CD-
ROMs; only directory and file names are subject to interpretation by HSFS.

modified 25 Apr 1994 7-115

icmp (7) Special Files SunOS 5.4

NAME icmp, ICMP − Internet Control Message Protocol

SYNOPSIS #include <sys/socket.h>

#include <netinet/in.h>

#include <netinet/ip_icmp.h>

s = socket(AF_INET, SOCK_RAW, proto);

t = t_open("/dev/icmp", O_RDWR);

DESCRIPTION ICMP is the error and control message protocol used by the Internet protocol family. It is
used by the kernel to handle and report errors in protocol processing. It may also be
accessed by programs using the socket interface or the Transport Level Interface (TLI) for
network monitoring and diagnostic functions. When used with the socket interface, a
“raw socket” type is used. The protocol number for ICMP, used in the proto parameter to
the socket call, can be obtained from getprotobyname(3N). ICMP file descriptors and
sockets are connectionless, and are normally used with the t_sndudata / t_rcvudata and
the sendto() / recvfrom() calls.

Outgoing packets automatically have an Internet Protocol (IP) header prepended to them.
Incoming packets are provided to the user with the IP header and options intact.

ICMP is an datagram protocol layered above IP. It is used internally by the protcol code
for various purposes including routing, fault isolation, and congestion control. Receipt of
an ICMP “redirect” message will add a new entry in the routing table, or modify an exist-
ing one. ICMP messages are routinely sent by the protocol code. Received ICMP mes-
sages may be reflected back to users of higher-level protocols such as TCP or UDP as error
returns from system calls. A copy of all ICMP message received by the system is pro-
vided to every holder of an open ICMP socket or TLI descriptor.

SEE ALSO getprotobyname(3N), recv(3N), send(3N), t_rcvudata(3N), t_sndudata(3N), routing(4),
inet(7), ip(7)

Postel, Jon, Internet Control Message Protocol — DARPA Internet Program Protocol
Specification, RFC 792, Network Information Center, SRI International, Menlo Park, Calif.,
September 1981.

DIAGNOSTICS A socket operation may fail with one of the following errors returned:

EISCONN An attempt was made to establish a connection on a socket which
already has one, or when trying to send a datagram with the desti-
nation address specified and the socket is already connected.

ENOTCONN An attempt was made to send a datagram, but no destination
address is specified, and the socket has not been connected.

7-116 modified 3 Jul 1990

SunOS 5.4 Special Files icmp (7)

ENOBUFS The system ran out of memory for an internal data structure.

EADDRNOTAVAIL An attempt was made to create a socket with a network address
for which no network interface exists.

NOTES Replies to ICMP “echo” messages which are source routed are not sent back using
inverted source routes, but rather go back through the normal routing mechanisms.

modified 3 Jul 1990 7-117

ie (7) Special Files SunOS 5.4

NAME ie − Intel 82586 Ethernet device driver

SYNOPSIS #include <sys/stropts.h>
#include <sys/ethernet.h>
#include <sys/dlpi.h>

open("/dev/ie", mode);

DESCRIPTION The Intel 82586 ethernet driver is a multithreaded, loadable, clonable, STREAMS
hardware driver supporting the connectionless Data Link Provider Interface, dlpi(7),
over Intel 82586 ethernet controller. Two device implementations are supported by this
driver — the onboard (ie0) 82586 for those systems which include this chip on the moth-
erboard and the 3/E VME Ethernet/SCSI card. The older Multibus I Ethernet card in a
Multibus-to-VME adaptor is not supported. Multiple 82586 controllers installed within
the system are supported by the driver. The ie driver provides basic support for the
82586 hardware. Functions include chip initialization, frame transmit and receive, multi-
cast and promiscuous support, and error recovery and reporting.

The cloning character-special device /dev/ie is used to access all 82586 controllers
installed within the system.

The ie driver is a “style 2” Data Link Service provider. All M_PROTO and M_PCPROTO
type messages are interpreted as DLPI primitives. An explicit DL_ATTACH_REQ mes-
sage by the user is required to associate the opened stream with a particular device (ppa).
The ppa ID is interpreted as an unsigned long and indicates the corresponding device
instance (unit) number. An error (DL_ERROR_ACK) is returned by the driver if the ppa
field value does not correspond to a valid device instance number for this system. The
device is initialized on first attach and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

· The max SDU is 1500 (ETHERMTU).
· The min SDU is 0.
· The dlsap address length is 8.
· The MAC type is DL_ETHER.
· The sap length value is -2 meaning the physical address component is followed

immediately by a 2 byte sap component within the DLSAP address.
· The service mode is DL_CLDLS.
· No optional quality of service (QOS) support is included at present so the QOS

fields are 0.
· The provider style is DL_STYLE2.
· The version is DL_VERSION_2.
· The broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF).

7-118 modified 1 Feb 1993

SunOS 5.4 Special Files ie (7)

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular SAP (Service Access Pointer) with the stream. The ie driver interprets the sap
field within the DL_BIND_REQ as an Ethernet “type” therefore valid values for the sap
field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the stream at
any time.

In addition to Ethernet V2 service, an “802.3 mode” is provided by the driver and works
as follows. sap values in the range [0-1500] are treated as equivalent and represent a
desire by the user for “802.3” mode. If the value of the sap field of the DL_BIND_REQ is
within this range, then the driver computes the length of the message, not including ini-
tial M_PROTO mblk, of all subsequent DL_UNITDATA_REQ messages and transmits
802.3 frames having this value in the MAC frame header length field. All frames received
from the media having a “type” field in this range are assumed to be 802.3 frames and are
routed up all open streams which are bound to any sap value within this range. If more
than one stream is in “802.3 mode” then the frame will be duplicated and routed up mul-
tiple streams as DL_UNITDATA_IND messages.

The ie driver DLSAP address format consists of the 6 byte physical (Ethernet) address
component followed immediately by the 2 byte sap (type) component producing an 8
byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format but use information returned in the
DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap
length, full DLSAP length, and sap/physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the ie driver. The ie driver will route received Ether-
net frames up all those open and bound streams having a sap which matches the Ethernet
type as DL_UNITDATA_IND messages. Received Ethernet frames are duplicated and
routed up multiple open streams if necessary. The DLSAP address contained within the
DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the sap
(type) and physical (Ethernet) components.

In addition to the mandatory connectionless DLPI message set the driver additionally
supports the following primitives.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable
reception of individual multicast group addresses. A set of multicast addresses may be
iteratively created and modified on a per-stream basis using these primitives. These
primitives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all
(“promiscuous mode”) frames on the media including frames generated by the local host.
When used with the DL_PROMISC_SAP flag set this enables/disables reception of all
sap (Ethernet type) values. When used with the DL_PROMISC_MULTI flag set this
enables/disables reception of all multicast group addresses.

modified 1 Feb 1993 7-119

ie (7) Special Files SunOS 5.4

The effect of each is always on a per-stream basis and independent of the other sap and
physical level configurations on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive return the 6 octet Ethernet address currently asso-
ciated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primitive is
valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6 octet Ethernet address
currently associated (attached) to this stream. The credentials of the process which origi-
nally opened this stream must be superuser or EPERM is returned in the
DL_ERROR_ACK. This primitive is destructive in that it affects all other current and
future streams attached to this device. An M_ERROR is sent up all other streams
attached to this device when this primitive on this stream is successful. Once changed, all
streams subsequently opened and attached to this device will obtain this new physical
address. The physical address will remain so until this primitive is used to change the
physical address again or the system is rebooted, whichever comes first.

FILES /dev/ie

SEE ALSO netstat(1M), dlpi(7), le(7)

NOTES netstat −i command (see netstat(1M)) will display the number of collisions of a packet
transmission before a packet is successfully transmitted.

7-120 modified 1 Feb 1993

SunOS 5.4 Special Files iee (7)

NAME iee − Intel EtherExpress 16 Ethernet device driver

SYNOPSIS #include <sys/stropts.h>
#include <sys/ethernet.h>
#include <sys/dlpi.h>

AVAILABILITY x86

DESCRIPTION The iee Ethernet driver is a multi-threaded, loadable, clonable, STREAMS hardware driver
supporting the connectionless Data Link Provider Interface, dlpi(7), over Intel EtherEx-
press 16 Ethernet controllers. Multiple EtherLink 16 controllers installed within the sys-
tem are supported by the driver. The iee driver provides basic support for the EtherLink
16 hardware. Functions include chip initialization, frame transmit and receive, multicast
and “promiscuous” support, and error recovery and reporting.

The cloning, character-special device /dev/iee is used to access all EtherLink 16 devices
installed within the system.

iee and DLPI The iee driver is a “style 2” Data Link Service provider. All M_PROTO and M_PCPROTO
type messages are interpreted as DLPI primitives. An explicit DL_ATTACH_REQ message
by the user is required to associate the opened stream with a particular device (ppa). The
ppa ID is interpreted as an unsigned long integer and indicates the corresponding device
instance (unit) number. The unit numbers are assigned sequentially to each board found.
The search order is determined by the order defined in the /kernel/drv/iee.conf file. An
error (DL_ERROR_ACK) is returned by the driver if the ppa field value does not
correspond to a valid device instance number for this system. The device is initialized on
first attach and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

· The maximum SDU is 1500 (ETHERMTU).

· The minimum SDU is 0. The driver will pad to the mandatory 60-octet
minimum packet size.

· The dlsap address length is 8.

· The MAC type is DL_ETHER.

· The sap length value is −2, meaning the physical address component is fol-
lowed immediately by a 2-byte sap component within the DLSAP address.

· The service mode is DL_CLDLS.

· No optional quality of service (QOS) support is included at present, so the
QOS fields are 0.

· The provider style is DL_STYLE2.

· The version is DL_VERSION_2.

· The broadcast address value is Ethernet/IEEE broadcast address

modified 20 Jan 1994 7-121

iee (7) Special Files SunOS 5.4

(FF:FF:FF:FF:FF:FF).

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a par-
ticular Service Access Pointer (SAP) with the stream. The iee driver interprets the sap
field within the DL_BIND_REQ as an Ethernet “type;” therefore valid values for the sap
field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the stream at
any time.

In addition to Ethernet V2 service, an “802.3 mode” is also provided by the driver. In this
mode, sap values in the range [0-1500] are treated as equivalent and represent a desire by
the user for “802.3” mode. If the value of the sap field of the DL_BIND_REQ is within this
range, then the driver expects that the destination DLSAP in a DL_UNITDATA_REQ will
contain the length of the data rather than a sap value. All frames received from the media
that have a “type” field in this range are assumed to be 802.3 frames, and they are routed
up all open streams which are bound to any sap value within this range. If more than
one stream is in “802.3 mode,” then the frame will be duplicated and routed up multiple
streams as DL_UNITDATA_IND messages.

The iee driver DLSAP address format consists of the 6-byte physical (Ethernet) address
component followed immediately by the 2-byte sap (type) component, producing an 8-
byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format, but should instead use information
returned in the DL_INFO_ACK primitive to compose and decompose DLSAP addresses.
The sap length, full DLSAP length, and sap/physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the iee driver. The iee driver will route received Ether-
net frames up all open and bound streams that have a sap which matches the Ethernet
type as DL_UNITDATA_IND messages. Received Ethernet frames are duplicated and
routed up multiple open streams if necessary. The DLSAP address contained within the
DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the sap (type)
and physical (Ethernet) components.

iee Primitives In addition to the mandatory connectionless DLPI message set, the driver also supports
the following primitives:

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable recep-
tion of individual multicast group addresses. A set of multicast addresses may be itera-
tively created and modified on a per-stream basis using these primitives. These primi-
tives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all “prom-
iscuous mode” frames on the media including frames generated by the local host.

7-122 modified 20 Jan 1994

SunOS 5.4 Special Files iee (7)

When used with the DL_PROMISC_SAP flag set, this enables/disables reception of all sap
(Ethernet type) values. When used with the DL_PROMISC_MULTI flag set, this
enables/disables reception of all multicast group addresses. The effect of each is always
on a per-stream basis and independent of the other sap and physical level configurations
on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the 6-octet Ethernet address currently asso-
ciated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primitive is
valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6-octet Ethernet address currently
associated (attached) to this stream. The credentials of the process which originally
opened this stream must be superuser or an EPERM error is returned in the
DL_ERROR_ACK. This primitive is destructive in that it affects all other current and
future streams attached to this device. An M_ERROR is sent up all other streams attached
to this device when this primitive on this stream is successful. Once changed, all streams
subsequently opened and attached to this device will obtain this new physical address.
The new physical address will remain in effect until this primitive is used to change the
physical address again or the system is rebooted, whichever comes first.

CONFIGURATION The /kernel/drv/iee.conf file supports the following options:

intr Specifies the IRQ level for the board.

The iee driver does not support the use of shared RAM on the board. Auto-detect of the
media type is also not supported and the board has to be explicitly configured for which
media connector it is using. It is important to ensure that there are no conflicts for the
board’s I/O port, shared RAM, or IRQ level.

FILES /dev/iee iee character special device
/kernel/drv/iee.conf configuration file of iee driver

SEE ALSO dlpi(7)

modified 20 Jan 1994 7-123

if_tcp (7) Special Files SunOS 5.4

NAME if_tcp, if − general properties of Internet Protocol network interfaces

DESCRIPTION A network interface is a device for sending and receiving packets on a network. A net-
work interface is usually a hardware device, although one may be implemented in
software. Network interfaces used by the Internet Protocol (IP) must be STREAMS devices
conforming to the Datalink Provider Interface (DLPI).

An interface becomes available to IP when it is opened and the IP module is pushed onto
the stream with the I_PUSH ioctl() call. This may be initiated by the kernel at boot time
or by a user program some time after the system is running. Each interface must be
assigned an IP address with the SIOCSIFADDR ioctl() before it can be used. On inter-
faces where the network-to-link layer address mapping is static, only the network
number is taken from the ioctl() request; the remainder is found in a hardware specific
manner. On interfaces which provide dynamic network-to-link layer address mapping
facilities (for example, 10Mb/s Ethernets using arp(7)), the entire address specified in the
ioctl() is used. A routing table entry for destinations on the network of the interface is
installed automatically when an interface’s address is set.

IOCTLS The following ioctl() calls may be used to manipulate IP network interfaces. Unless
specified otherwise, the request takes an ifreq structure as its parameter. This structure
has the form:

/∗ Interface request structure used for socket ioctl’s. All ∗/
/∗ interface ioctl’s must have parameter definitions which ∗/
/∗ begin with ifr_name. The remainder may be interface specific. ∗/

struct ifreq {
#define IFNAMSIZ 16

char ifr_name[IFNAMSIZ]; /∗ if name, for example ∗/
/∗ "emd1" ∗/

union {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
char ifru_oname[IFNAMSIZ]; /∗ other if name ∗/
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
char ifru_data[1]; /∗ interface dependent data ∗/
char ifru_enaddr[6];
int if_muxid[2]; /∗ mux id’s for arp and ip ∗/

} ifr_ifru;
#define ifr_addr ifr_ifru.ifru_addr /∗ address ∗/
#define ifr_dstaddr ifr_ifru.ifru_dstaddr /∗ other end of p-to-p

link ∗/
#define ifr_oname ifr_ifru.ifru_oname /∗ other if name ∗/
#define ifr_broadaddr ifr_ifru.ifru_broadaddr /∗ broadcast address ∗/
#define ifr_flags ifr_ifru.ifru_flags

7-124 modified 9 Feb 1994

SunOS 5.4 Special Files if_tcp (7)

/∗ flags ∗/
#define ifr_metric ifr_ifru.ifru_metric /∗ metric ∗/
#define ifr_data ifr_ifru.ifru_data /∗ for use by interface ∗/
#define ifr_enaddr ifr_ifru.ifru_enaddr /∗ ethernet address ∗/
};

SIOCSIFADDR Set interface address. Following the address assignment, the “ini-
tialization” routine for the interface is called.

SIOCGIFADDR Get interface address.

SIOCSIFDSTADDR Set point to point address for interface.

SIOCGIFDSTADDR Get point to point address for interface.

SIOCSIFFLAGS Set interface flags field. If the interface is marked down, any
processes currently routing packets through the interface are
notified.

SIOCGIFFLAGS Get interface flags.

SIOCGIFCONF Get interface configuration list. This request takes an ifconf struc-
ture (see below) as a value-result parameter. The ifc_len field
should be initially set to the size of the buffer pointed to by
ifc_buf. On return it will contain the length, in bytes, of the
configuration list.

SIOGIFNUM Get number of interfaces. This request returns an integer which is
the number of interface descriptions (struct ifreq) that will be
returned by the SIOCGIFCONF ioctl; that is it gives an indication of
how large ifc_len has to be.

SIOCSIFMTU Set the maximum transmission unit size for interface. Place the
result of this request in ifru_metric field. The mtu has to be
smaller than physical mtu limitation (which is reported in the
DLPI info ack message).

SIOCGIFMTU Get the maximum transmission unit size for interface. Place the
result of this request in ifru_metric field.

SIOCSIFMETRIC Set the metric associated with the interface. The metric is used by
routine daemons such as in.routed(1M).

SIOCGIFMETRIC Get the metric associated with the interface.

SIOCGIFMUXID Get the ip and arp muxid associated with the interface.

SIOCSIFMUXID Set the ip and arp muxid associated with the interface.

modified 9 Feb 1994 7-125

if_tcp (7) Special Files SunOS 5.4

The ifconf structure has the form:

/∗
∗ Structure used in SIOCGIFCONF request.
∗ Used to retrieve interface configuration
∗ for machine (useful for programs which
∗ must know all networks accessible).
∗/
struct ifconf {

int ifc_len; /∗ size of associated buffer ∗/
union {

caddr_t ifcu_buf;
struct ifreq ∗ifcu_req;

} ifc_ifcu;
#define ifc_buf ifc_ifcu.ifcu_buf /∗ buffer address ∗/
#define ifc_req ifc_ifcu.ifcu_req /∗ array of structures returned ∗/
};

SEE ALSO ifconfig(1M), in.routed(1M), arp(7), ip(7)

7-126 modified 9 Feb 1994

SunOS 5.4 Special Files inet (7)

NAME inet − Internet protocol family

SYNOPSIS #include <sys/types.h>
#include <netinet/in.h>

DESCRIPTION The Internet protocol family implements a collection of protocols which are centered
around the Internet Protocol (IP) and which share a common address format. The Internet
family protocols can be accessed using the socket interface, where they support the
SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types, or the Transport
Level Interface (TLI), where they support the connectionless (T_CLTS) and connection
oriented (T_COTS_ORD) service types.

PROTOCOLS The Internet protocol family comprises the Internet Protocol (IP), the Address Resolution
Protocol (ARP), the Internet Control Message Protocol (ICMP), the Transmission Control
Protocol (TCP), and the User Datagram Protocol (UDP).

TCP supports the socket interface’s SOCK_STREAM abstraction and TLI’s
T_COTS_ORD service type. UDP supports the SOCK_DGRAM socket abstraction and
the TLI T_CLTS service type. See tcp(7) and udp(7). A direct interface to IP is available
using both TLI and the socket interface; See ip(7). ICMP is used by the kernel to handle
and report errors in protocol processing. It is also accessible to user programs; see
icmp(7). ARP is used to translate 32-bit IP addresses into 48-bit Ethernet addresses; see
arp(7).

The 32-bit IP address is divided into network number and host number parts. It is
frequency-encoded; The most-significant bit is zero in Class A addresses, in which the
high-order 8 bits represent the network number. Class B addresses have their high order
two bits set to 10 and use the high-order 16 bits as the network number field. Class C
addresses have a 24-bit network number part of which the high order three bits are 110.
Sites with a cluster of IP networks may chose to use a single network number for the clus-
ter; This is done by using subnet addressing. The host number portion of the address is
further subdivided into subnet number and host number parts. Within a subnet, each
subnet appears to be an individual network; Externally, the entire cluster appears to be a
single, uniform network requiring only a single routing entry. Subnet addressing is
enabled and examined by the following ioctl(2) commands; They have the same form as
the SIOCSIFADDR command

SIOCSIFNETMASK Set interface network mask. The network mask defines the net-
work part of the address; If it contains more of the address than
the address type would indicate, then subnets are in use.

SIOCGIFNETMASK Get interface network mask.

modified 3 Jul 1990 7-127

inet (7) Special Files SunOS 5.4

ADDRESSING IP addresses are four byte quantities, stored in network byte order. IP addresses should
be manipulated using the byte order conversion routines (see byteorder(3N)).

Addresses in the Internet protocol family use the sockaddr_in structure, which has that
following members:

short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

Library routines are provided to manipulate structures of this form; See inet(3N).

The sin_addr field of the sockaddr_in structure specifies a local or remote IP address.
Each network interface has its own unique IP address. The special value INADDR_ANY
may be used in this field to effect “wildcard” matching. Given in a bind(3N) call, this
value leaves the local IP address of the socket unspecified, so that the socket will receive
connections or messages directed at any of the valid IP addresses of the system. This can
prove useful when a process neither knows nor cares what the local IP address is or when
a process wishes to receive requests using all of its network interfaces. The sockaddr_in
structure given in the bind(3N) call must specify an in_addr value of either
IPADDR_ANY or one of the system’s valid IP addresses. Requests to bind any other
address will elicit the error EADDRNOTAVAI. When a connect(3N) call is made for a
socket that has a wildcard local address, the system sets the sin_addr field of the socket
to the IP address of the network interface that the packets for that connection are routed
via.

The sin_port field of the sockaddr_in structure specifies a port number used by TCP or
UDP. The local port address specified in a bind(3N) call is restricted to be greater than
IPPORT_RESERVED (defined in <netinet/in.h>) unless the creating process is running
as the super-user, providing a space of protected port numbers. In addition, the local
port address must not be in use by any socket of same address family and type. Requests
to bind sockets to port numbers being used by other sockets return the error EAD-
DRINUSE. If the local port address is specified as 0, then the system picks a unique port
address greater than IPPORT_RESERVED. A unique local port address is also picked
when a socket which is not bound is used in a connect(3N) or sendto (see send(3N)) call.
This allows programs which do not care which local port number is used to set up TCP
connections by simply calling socket(3N) and then connect(3N), and to send UDP
datagrams with a socket(3N) call followed by a sendto() call.

7-128 modified 3 Jul 1990

SunOS 5.4 Special Files inet (7)

Although this implementation restricts sockets to unique local port numbers, TCP allows
multiple simultaneous connections involving the same local port number so long as the
remote IP addresses or port numbers are different for each connection. Programs may
explicitly override the socket restriction by setting the SO_REUSEADDR socket option
with setsockopt (see getsockopt(3N)).

TLI applies somewhat different semantics to the binding of local port numbers. These
semantics apply when Internet family protocols are used using the TLI.

SEE ALSO ioctl(2), bind(3N), byteorder(3N), connect(3N), gethostbyname(3N), getnetbyname(3N),
getprotobyname(3N), getservbyname(3N), getsockopt(3N), send(3N), socket(3N),
arp(7), icmp(7), ip(7), tcp(7), udp(7)

Network Information Center, DDN Protocol Handbook (3 vols.), Network Information
Center, SRI International, Menlo Park, Calif., 1985.

NOTES The Internet protocol support is subject to change as the Internet protocols develop.
Users should not depend on details of the current implementation, but rather the services
exported.

modified 3 Jul 1990 7-129

ip (7) Special Files SunOS 5.4

NAME ip, IP − Internet Protocol

SYNOPSIS #include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF_INET, SOCK_RAW, proto);

t = t_open ("/dev/rawip", O_RDWR);

DESCRIPTION IP is the internetwork datagram delivery protocol that is central to the Internet protocol
family. Programs may use IP through higher-level protocols such as the Transmission
Control Protocol (TCP) or the User Datagram Protocol (UDP), or may interface directly to
IP. See tcp(7) and udp(7). Direct access may be via the socket interface (using a “raw
socket”) or the Transport Level Interface (TLI). The protocol options defined in the IP
specification may be set in outgoing datagrams.

The STREAMS driver /dev/rawip is the TLI transport provider that provides raw access to
IP.

Raw IP sockets are connectionless and are normally used with the sendto() and
recvfrom() calls, ((see send(3N) and recv(3N)) although the connect(3N) call may also be
used to fix the destination for future datagrams (in which case the read(2) or recv(3N)
and write(2) or send(3N) calls may be used). If proto is IPPROTO_RAW, or
IPPROTO_IGMP the application is expected to include a complete IP header when send-
ing. Otherwise, that protocol number will be set in outgoing datagrams and used to filter
incoming datagrams and an IP header will be generated and prepended to each outgoing
datagram. In either case received datagrams are returned with the IP header and options
intact.

The socket options supported at the IP level are:

IP_OPTIONS IP options for outgoing datagrams. This socket option may
be used to set IP options to be included in each outgoing
datagram. IP options to be sent are set with setsockopt()
(see getsockopt(3N)). The getsockopt(3N) call returns the IP
options set in the last setsockopt() call. IP options on
received datagrams are visible to user programs only using
raw IP sockets. The format of IP options given in set-
sockopt() matches those defined in the IP specification with
one exception: the list of addresses for the source routing
options must include the first-hop gateway at the beginning
of the list of gateways. The first-hop gateway address will be
extracted from the option list and the size adjusted accord-
ingly before use. IP options may be used with any socket
type in the Internet family.

IP_ADD_MEMBERSHIP Join a multicast group.

IP_DROP_MEMBERSHIP Leave a multicast group.

7-130 modified 3 Jul 1990

SunOS 5.4 Special Files ip (7)

These options take a struct ip_mreq as the parameter. The structure contains a multicast
address which has to be set to the CLASS-D IP multicast address, and an interface
address. Normally the interface address is set to INADDR_ANY which causes the kernel
to choose the interface to join on.

IP_MULTICAST_IF The outgoing interface for multicast packets. This option
takes a struct in_addr as an argument and it selects that
interface for outgoing IP multicast packets. If the address
specified is INADDR_ANY it will use the unicast routing
table to select the outgoing interface (which is the default
behavior.)

IP_MULTICAST_TTL Time to live for multicast datagrams. This option takes an
unsigned character as an argument. Its value is the TTL that
IP will use on outgoing multicast datagrams. The default is
1.

IP_MULTICAST_LOOP Loopback for multicast datagrams. Normally multicast
datagrams are delivered to members on the sending host.
Setting the unsigned character argument to 0 will cause the
opposite behavior.

The multicast socket options can be used with any datagram socket type in the Internet
family.

At the socket level, the socket option SO_DONTROUTE may be applied. This option
forces datagrams being sent to bypass routing and forwarding by forcing the IP Time To
Live field to 1 (meaning that the packet will not be forwarded bu routers).

Raw IP datagrams can also be sent and received using the TLI connectionless primitives.

Datagrams flow through the IP layer in two directions: from the network up to user
processes and from user processes down to the network. Using this orientation, IP is lay-
ered above the network interface drivers and below the transport protocols such as UDP
and TCP. The Internet Control Message Protocol (ICMP) is logically a part of IP. See
icmp(7).

IP provides for a checksum of the header part, but not the data part of the datagram. The
checksum value is computed and set in the process of sending datagrams and checked
when receiving datagrams.

IP options in received datagrams are processed in the IP layer according to the protocol
specification. Currently recognized IP options include: security, loose source and record
route (LSRR), strict source and record route (SSRR), record route, and internet timestamp.

The IP layer will normally act as a router (forwarding datagrams that are not addressed
to it etc) when the machine has two or more interfaces that are up. This behavior can be
overridden by using ndd(1M) to to set the /dev/ip variable ip_forwarding. The value 0
means do not forward, 1 means forward and 2 gives you the default behavior of forward-
ing when there are two or more "up" interfaces.

modified 3 Jul 1990 7-131

ip (7) Special Files SunOS 5.4

The IP layer will send an ICMP message back to the source host in many cases when it
receives a datagram that can not be handled. A “time exceeded” ICMP message will be
sent if the “time to live” field in the IP header drops to zero in the process of forwarding a
datagram. A “destination unreachable” message will be sent if a datagram can not be
forwarded because there is no route to the final destination, or if it can not be frag-
mented. If the datagram is addressed to the local host but is destined for a protocol that
is not supported or a port that is not in use, a destination unreachable message will also
be sent. The IP layer may send an ICMP “source quench” message if it is receiving
datagrams too quickly. ICMP messages are only sent for the first fragment of a frag-
mented datagram and are never returned in response to errors in other ICMP messages.

The IP layer supports fragmentation and reassembly. Datagrams are fragmented on out-
put if the datagram is larger than the maximum transmission unit (MTU) of the network
interface. Fragments of received datagrams are dropped from the reassembly queues if
the complete datagram is not reconstructed within a short time period.

Errors in sending discovered at the network interface driver layer are passed by IP back
up to the user process.

SEE ALSO ndd(1M), read(2), write(2), connect(3N), getsockopt(3N), recv(3N), send(3N), routing(4),
icmp(7), if_tcp(7), inet(7) tcp(7), udp(7)

Postel, Jon, Internet Protocol - DARPA Internet Program Protocol Specification, RFC 791, Net-
work Information Center, SRI International, Menlo Park, Calif., September 1981.

DIAGNOSTICS A socket operation may fail with one of the following errors returned:

EACCES A IP broadcast destination address was specified and the caller
was not the privileged user.

EISCONN An attempt was made to establish a connection on a socket which
already had one, or to send a datagram with the destination
address specified and the socket was already connected.

EMSGSIZE An attempt was made to send a datagram that was too large for an
interface, but was not allowed to be fragmented (such as broad-
casts).

ENETUNREACH An attempt was made to establish a connection or send a
datagram, where there was no matching entry in the routing table,
or if an ICMP “destination unreachable” message was received.

ENOTCONN A datagrem was sent, but no destination address was specified,
and the socket had not been connected.

ENOBUFS The system ran out of memory for fragmentation buffers or other
internal data structure.

EADDRNOTAVAIL An attempt was made to create a socket with a local address that
did not match any network interface, or an IP broadcast destina-
tion address was specified and the network interface does not sup-
port broadcast.

7-132 modified 3 Jul 1990

SunOS 5.4 Special Files ip (7)

ERRORS The following errors may occur when setting or getting IP options:

EINVAL An unknown socket option name was given.

EINVAL The IP option field was improperly formed; an option field was shorter
than the minimum value or longer than the option buffer provided.

NOTES Raw sockets should receive ICMP error packets relating to the protocol; currently such
packets are simply discarded.

Users of higher-level protocols such as TCP and UDP should be able to see received IP
options.

modified 3 Jul 1990 7-133

ipi (7) Special Files SunOS 5.4

NAME ipi, id, is, pn, ipi3sc − IPI driver

SYNOPSIS pn@4d,0x1080000/ipi3sc@board-num,0/id@facility,0:partition

AVAILABILITY SPARC

Only available on Sun-4/370, Sun-4/400, and SPARCsystem 600MP series systems.

DESCRIPTION The driver for IPI disk devices consists of several components: an IPI controller driver (pn
and ipi3sc), and a facility driver (id). Each of these driver modules may have an associ-
ated configuration file, which lives in the same directory as the driver module. See
driver.conf(4) and vme(4) for the interpretation of the contents of these files.

The block files access the disk using the system’s normal buffering mechanism and may
be read and written without regard to physical disk records. There is also a raw interface
that provides for direct transmission between the disk and the user’s read or write buffer.
A single read or write call usually results in one I/O operation; therefore raw I/O is con-
siderably more efficient when many words are transmitted. The physical names for the
raw files conventionally have ‘,raw’ appended to them. The logical names for the raw
files live in the /dev/rdsk directory, as usual.

In raw I/O, counts should be a multiple of 512 bytes (a disk sector). Likewise
directory(3C) calls should specify a multiple of 512 bytes. Depending on the channel
adaptor, the buffer for raw reads or writes may be required to be on a 2-byte or 4-byte
boundary.

Partition 0 is normally used for the root file system on a disk, partition 1 as a paging area
(for example, swap), and partition 2 for backing up the entire disk. Partition 2 normally
maps the entire disk and may also be used as the mount point for secondary disks in the
system. The rest of the disk is normally partition 6. For the primary disk, the user file
system is located here.

The ioctl() interfaces described in dkio(7) and hdio(7) are supported by this driver. The
HDKIOCSCMD ioctl can be used to issue certain IPI commands to the drive. The argu-
ment structure is:

struct hdk_cmd {
u_short hdkc_cmd; /∗ command to be executed ∗/
int hdkc_flags; /∗ execution flags ∗/
daddr_t hdkc_blkno; /∗ disk address for command ∗/
int hdkc_secnt; /∗ sector count for command ∗/
caddr_t hdkc_bufaddr; /∗ user’s buffer address ∗/
u_int hdkc_buflen; /∗ size of user’s buffer ∗/

};

The lower 8-bits of the hdkc_cmd field indicate one of the supported commands listed
below. The upper 8-bits indicate the IPI Opcode modifier. These commands are defined
in <sys/ipi3sc.h>. Block numbers are not remapped by the partition map when these
commands are used.

7-134 modified 8 Oct 1992

SunOS 5.4 Special Files ipi (7)

The supported commands are:

IP_READ
IP_WRITE Read or write data. The addressing is always by logical block

(ignoring [a-h] logical partition information); the Opcode modifier
is ignored.

IP_READ_DEFLIST
IP_WRITE_DEFLIST Read or write one of the defect lists. The defect list is selected by

the Opcode modifier in bits <15:8> of the hdkc_cmd.

IP_FORMAT Format a range of cylinders. For this command, the block number
and sector count fields must both be a multiple of the number of
blocks per cylinder. The hdk_buflen field must be zero for this
command.

IP_REALLOC Reallocate a block. The controller attempts to recover the data
from the old block being reallocated. If the old data cannot be
recovered, a conditional success status is presented and a message
may be printed. The hdk_buflen field must be zero for this com-
mand.

DISK SUPPORT This driver handles all supported IPI drives by reading controller attributes and a label
from sector 0 of the drive which describes the disk geometry and partitioning.

FILES /kernel/drv/pn kernel module
/kernel/drv/ipi3sc kernel module
/kernel/drv/id kernel module
/kernel/drv/pn.conf driver configuration file
/kernel/drv/ipi3sc.conf

driver configuration file
/kernel/drv/id.conf driver configuration file
/dev/dsk/cXtYd0sZ block files, controller X , facility Y, slice Z
/dev/rdsk/cXtYd0sZ raw files, controller X , facility Y, slice Z

SEE ALSO format(1M), mount(1M), directory(3C), driver.conf(4), vfstab(4), vme(4), dkio(7),
hdio(7)

NOTES The pn.conf and ipi3sc.conf files are only required on Sun-4/370 and Sun-4/490 systems.

modified 8 Oct 1992 7-135

isdnio (7) Special Files SunOS 5.4

NAME isdnio − ISDN interfaces

SYNOPSIS #include <sun/audioio.h>
#include <sun/isdnio.h>

int ioctl (int fd, int command, /∗ arg ∗/ . . .);

DESCRIPTION ISDN ioctl commands are a subset of ioctl(2) commands that perform a variety of control
functions on Integrated Services Digital Network (ISDN) STREAMS devices. The argu-
ments command and arg are passed to the file designated by fd and are interpreted by the
ISDN device driver.

fd is an open file descriptor that refers to a stream. command determines the control func-
tion to be performed as described in the IOCTLS section of this document. arg represents
additional information that is needed by command. The type of arg depends upon the
command, but generally it is an integer or a pointer to a command-specific data structure.

Since these ISDN commands are a subset of ioctl and streamio(7), they are subject to
errors as described in those interface descriptions.

This set of generic ISDN ioctl commands is meant to control various types of ISDN
STREAMS device drivers. The following paragraphs give some background on various
types of ISDN hardware interfaces and data formats, and other device characteristics.

Controllers,
Interfaces, and

Channels

This manual page discusses operations on, and facilities provided by ISDN controllers,
interfaces and channels. A controller is usually a hardware peripheral device that pro-
vides one or more ISDN interfaces and zero or more auxiliary interfaces. In this context,
the term interface is synonymous with the term “port”. Each interface can provide one or
more channels.

Time Division
Multiplexed Serial

Interfaces

ISDN BRI-TE, BRI-NT, and PRI interfaces are all examples of Time Division Multiplexed
Serial Interfaces. As an example, a Basic Rate ISDN (BRI) Terminal Equipment (TE) inter-
face provides one D-channel and two B-channels on the same set of signal wires. The BRI
interface, at the S reference point, operates at a bit rate of 192,000 bits per second. The bits
are encoded using a pseudoternary coding system that encodes a logic one as zero volts,
and a logic zero as a positive or negative voltage. Encoding rules state that adjacent logic
zeros must be encoded with opposite voltages. Violations of this rule are used to indicate
framing information such that there are 4000 frames per second, each containing 48 bits.
These 48 bits are divided into channels. Not including framing and synchronization bits,
the frame is divided into 8 bits for the B1-channel, 1 bit for the D-channel, 8 bits for B2, 1
bit for D, 8 bits for B1, 1 bit for D, and 8 bits for B2. This results in a 64,000 bps B1-
channel, a 64,000 bps B2-channel, and a 16,000 bps D-channel, all on the same serial inter-
face.

Basic Rate ISDN A Basic Rate ISDN (BRI) interface consists of a 16000 bit per second Delta Channel (D-
channel) for signaling and X.25 packet transmission, and two 64000 bit per second Bearer
Channels (B-channels) for transmission of voice or data.

7-136 modified 7 Apr 1994

SunOS 5.4 Special Files isdnio (7)

The CCITT recommendations on ISDN Basic Rate interfaces, I.430, identify several “refer-
ence points” for standardization. From (Stallings89);

“Reference point T (terminal) corresponds to a minimal ISDN network termina-
tion at the customer’s premises. It separates the network provider’s equipment
from the user’s equipment. Reference point S (system) corresponds to the inter-
face of individual ISDN terminals. It separates user terminal equipment from
network-related communications functions. Reference point R (rate) provides a
non-ISDN interface between user equipment that is not ISDN-compatible and
adaptor equipment. . . . The final reference point . . . is reference point U (user).
This interface describes the full-duplex data signal on the subscriber line.”

Some older technology components of some ISDN networks occasionally steal the low
order bit of an ISDN B-channel octet in order to transmit in-band signaling information
between switches or other components of the network. Even when out-of-band signaling
has been implemented in these networks, and the in-band signaling is no longer needed,
the bit-robbing mechanism may still be present. This bit robbing behavior does not appre-
ciably affect a voice call, but it will limit the usable bandwidth of a data call to 56000 bits
per second instead of 64000 bits per second. These older network components only seem
to exist in the United States of America, Canada and Japan. ISDN B-channel data calls
that have one end point in the United States, Canada or Japan may be limited to 56000
bps usable bandwidth instead of the normal 64000 bps. Sometimes the ISDN service pro-
vider may be able to supply 56kbps for some calls and 64kbps for other calls. On an inter-
national call, the local ISDN service provider may advertise the call as 64kbps even
though only 56kbps are reliably delivered because of bit-robbing in the foreign ISDN that
is not reported to the local switch.

A Basic Rate Interface implements either a Terminal Equipment (TE) interface or a Net-
work Termination (NT) interface. TE’s can be ISDN telephones, a Group 4 fax, or other
ISDN terminal equipment. A TE connects to an NT in order to gain access to a public or
private ISDN network. A private ISDN network, such as provided by a Private Branch
Exchange (PBX), usually provides access to the public network.

If multi-point configurations are allowed by an NT, it may be possible to connect up to
eight TE’s to a single NT interface. All of the TE’s in a multipoint configuration share the
same D and B-channels. Contention for B-Channels by multiple TEs is resolved by the
ISDN switch (NT) through signaling protocols on the D-channel.

Contention for access to the D-channel is managed by a collision detection and priority
mechanism. D-channel call control messages have higher priority than other packets.
This media access function is managed at the physical layer.

A BRI-TE interface may implement a “Q-channel”, the Q-channel is a slow speed, 800
bps, data path from a TE to an NT. Although the structure of the Q-channel is defined in
the I.430 specification, the use of the Q-channel is for further study.

A BRI-NT interface may implement an “S-channel”, the S-channel is a slow speed, 4000
bps, data path from a NT to an TE. The use of the S-channel is for further study.

modified 7 Apr 1994 7-137

isdnio (7) Special Files SunOS 5.4

Primary Rate ISDN Primary Rate ISDN (PRI) interfaces are either 1.544Mbps (T1 rate) or 2.048Mbps (E1 rate)
and are typically organized as 23 B-channels and one D-Channel (23B+D) for T1 rates,
and 30 B-Channels and one D-Channel (30B+D) for E1 rates. The D-channels on a PRI
interface operate at 64000 bits per second. T1 rate PRI interface is the standard in the
United States, Canada and Japan while E1 rate PRI interface is the standard in European
countries. Some E1 rate PRI interface implementations allow access to channel zero
which is used for framing.

Channel Types ISDN channels fall into several categories; D-channels, bearer channels, and management
pseudo channels. Each channel has a corresponding device name somewhere under the
directory /dev/isdn/ as documented in the appropriate hardware specific manual page.

D-channels There is at most one D-channel per ISDN interface. The D-channel car-
ries signaling information for the management of ISDN calls and can
also carry X.25 packet data. In the case of a PRI interface, there may
actually be no D-channel if Non-Facility Associated Signaling is used.
D-channels carry data packets that are framed and checked for transmis-
sion errors according to the LAP-D protocol. LAP-D uses framing and
error checking identical to the High Speed Data Link (HDLC) protocol.

B-channels BRI interfaces have two B-channels, B1 and B2. On a BRI interface, the
only other type of channel is an H-channel which is a concatenation of
the B1 and B2 channels. An H-channel is accessed by opening the “base”
channel, B1 in this case, and using the ISDN_SET_FORMAT ioctl to
change the configuration of the B-channel from 8-bit, 8 kHz to 16-bit,
8kHz.

On a primary rate interface, B channels are numbered from 0 to 31 in Europe and 1 to 23
in the United States, Canada and Japan.

H-Channels A BRI or PRI interface can offer multiple B-channels concatenated into a
single, higher bandwidth channel. These concatenated B-channels are
referred to as an “H-channels” on a BRI interface. The PRI interface ver-
sion of an H-channel is referred to as an Hn-channels where n is a
number indicating how the B-channels have been aggregated into a sin-
gle channel.
· A PRI interface H0 channel is 384 kbps allowing 3H0+D on a T1 rate

PRI interface and 4H0+D channels on an E1 rate PRI interface.
· A T1 PRI interface H11 channel is 1536 kbps (24×64000bps). This will

consume the channel normally reserved for the D-channel, so signal-
ing must be done with Non-Facility Associated Signaling (NFAS)
from another PRI interface.

· An E1 PRI interface H12 channel is 1920 kbps (30×64000bps). An
H12-channel leaves room for the framing-channel as well as the D-
channel.

7-138 modified 7 Apr 1994

SunOS 5.4 Special Files isdnio (7)

Auxiliary channels
Auxiliary channels are non-ISDN hardware interfaces that are closely
tied to the ISDN interfaces. An example would be a video or audio
coder/decoder (codec). The existence of an auxiliary channel usually
implies that one or more B-channels can be “connected” to an auxiliary
interface in hardware.

Management pseudo-channels
A management pseudo-channel is used for the management of a con-
troller, interface, or hardware channel. Management channels allow for
out-of-band control of hardware interfaces and for out-of-band
notification of status changes. There is at least one management device
per hardware interface.

There are three different types of management channels implemented by
ISDN hardware drivers:
· A controller management device handles all ioctls that simultane-

ously affect hardware channels on different interfaces. Examples
include resetting a controller, µ-code downloading of a controller, or
the connection of an ISDN B-channel to an auxiliary channel that
represents an audio coder/decoder (codec). The latter case would be
accomplished using the ISDN_SET_CHANNEL ioctl.

· An interface management device handles all ioctls that affect multi-
ple channels on the same interface. Messages associated with the
activation and deactivation of an interface arrive on the management
device associated with the D channel of an ISDN interface.

· Auxiliary interfaces may also have management devices. See the
hardware specific man pages for operations on auxiliary devices.

Trace pseudo-channels
A device driver may choose to implement a trace device for a data or
management channel. Trace channels receive a special M_PROTO header
with the original channel’s original M_PROTO or M_DATA message
appended to the special header. The header is described by:
typedef struct {

uint_t seq; /∗ Sequence number ∗/
int type; /∗ device dependent ∗/
struct timeval timestamp;
char _f[8]; /∗ filler ∗/

} audtrace_hdr_t;

ISDN Channel types The isdn_chan_t type enumerates the channels available on ISDN interfaces. If a particu-
lar controller implements any auxiliary channels then those auxiliary channels will be
described in a controller specific manual page. The defined channels are described by the
isdn_chan_t type as shown below:
/∗ ISDN channels ∗/
typedef enum {

ISDN_CHAN_NONE = 0x0, /∗ No channel given ∗/
ISDN_CHAN_SELF, /∗ The channel performing the ioctl ∗/

modified 7 Apr 1994 7-139

isdnio (7) Special Files SunOS 5.4

ISDN_CHAN_HOST, /∗ Unix STREAM ∗/

ISDN_CHAN_CTRL_MGT, /∗ Controller management ∗/

/∗ TE channel defines ∗/
ISDN_CHAN_TE_MGT, /∗ Receives activation/deactivation ∗/
ISDN_CHAN_TE_D_TRACE, /∗ Trace device for protocol analysis apps ∗/
ISDN_CHAN_TE_D,
ISDN_CHAN_TE_B1,
ISDN_CHAN_TE_B2,

/∗ NT channel defines ∗/
ISDN_CHAN_NT_MGT, /∗ Receives activation/deactivation ∗/
ISDN_CHAN_NT_D_TRACE, /∗ Trace device for protocol analysis apps ∗/
ISDN_CHAN_NT_D,
ISDN_CHAN_NT_B1,
ISDN_CHAN_NT_B2,

/∗ Primary rate ISDN ∗/
ISDN_CHAN_PRI_MGT,
ISDN_CHAN_PRI_D,
ISDN_CHAN_PRI_B0, ISDN_CHAN_PRI_B1,
ISDN_CHAN_PRI_B2, ISDN_CHAN_PRI_B3,
ISDN_CHAN_PRI_B4, ISDN_CHAN_PRI_B5,
ISDN_CHAN_PRI_B6, ISDN_CHAN_PRI_B7,
ISDN_CHAN_PRI_B8, ISDN_CHAN_PRI_B9,
ISDN_CHAN_PRI_B10, ISDN_CHAN_PRI_B11,
ISDN_CHAN_PRI_B12, ISDN_CHAN_PRI_B13,
ISDN_CHAN_PRI_B14, ISDN_CHAN_PRI_B15,
ISDN_CHAN_PRI_B16, ISDN_CHAN_PRI_B17,
ISDN_CHAN_PRI_B18, ISDN_CHAN_PRI_B19,
ISDN_CHAN_PRI_B20, ISDN_CHAN_PRI_B21,
ISDN_CHAN_PRI_B22, ISDN_CHAN_PRI_B23,
ISDN_CHAN_PRI_B24, ISDN_CHAN_PRI_B25,
ISDN_CHAN_PRI_B26, ISDN_CHAN_PRI_B27,
ISDN_CHAN_PRI_B28, ISDN_CHAN_PRI_B29,
ISDN_CHAN_PRI_B30, ISDN_CHAN_PRI_B31,

/∗ Auxiliary channel defines ∗/
ISDN_CHAN_AUX0, ISDN_CHAN_AUX1, ISDN_CHAN_AUX2, ISDN_CHAN_AUX3,
ISDN_CHAN_AUX4, ISDN_CHAN_AUX5, ISDN_CHAN_AUX6, ISDN_CHAN_AUX7

} isdn_chan_t;

ISDN Interface types The isdn_interface_t type enumerates the interfaces available on ISDN controllers. The
defined interfaces are described by the isdn_interface_t type as shown below:

/∗ ISDN interfaces ∗/
typedef enum {

ISDN_TYPE_UNKNOWN = -1, /∗ Not known or applicable ∗/
ISDN_TYPE_SELF = 0, /∗

∗ For queries, application may
∗ put this value into "type" to
∗ query the state of the file
∗ descriptor used in an ioctl.

7-140 modified 7 Apr 1994

SunOS 5.4 Special Files isdnio (7)

∗/
ISDN_TYPE_OTHER, /∗ Not an ISDN interface ∗/
ISDN_TYPE_TE,
ISDN_TYPE_NT,
ISDN_TYPE_PRI,

} isdn_interface_t;

Activation and
Deactivation of ISDN

Interfaces

The management device associated with an ISDN D-channel is used to request activation,
deactivation and receive information about the activation state of the interface. See the
descriptions of the ISDN_PH_ACTIVATE_REQ and ISDN_MPH_DEACTIVATE_REQ ioctls.
Changes in the activation state of an interface are communicated to the D-channel appli-
cation through M_PROTO messages sent up-stream on the management device associated
with the D-channel. If the D-channel protocol stack is implemented as a user process, the
user process can retrieve the M_PROTO messages using the getmsg(2) system call.

These M_PROTO messages have the following format:
typedef struct isdn_message {

unsigned int magic; /∗ set to ISDN_PROTO_MAGIC ∗/
isdn_interface_t type; /∗ Interface type ∗/
isdn_message_type_t message; /∗ CCITT or vendor Primitive ∗/
unsigned int vendor[5]; /∗ Vendor specific content ∗/

} isdn_message_t;

typedef enum isdn_message_type {
ISDN_VPH_VENDOR = 0, /∗ Vendor specific messages ∗/

ISDN_PH_AI, /∗ Physical: Activation Ind ∗/
ISDN_PH_DI, /∗ Physical: Deactivation Ind ∗/

ISDN_MPH_AI, /∗ Management: Activation Ind ∗/
ISDN_MPH_DI, /∗ Management: Deactivation Ind ∗/
ISDN_MPH_EI1, /∗ Management: Error 1 Indication ∗/
ISDN_MPH_EI2, /∗ Management: Error 2 Indication ∗/
ISDN_MPH_II_C, /∗ Management: Info Ind, connection ∗/
ISDN_MPH_II_D /∗ Management: Info Ind, disconn. ∗/

} isdn_message_type_t;

IOCTLS
STREAMS IOCTLS All of the streamio(7) ioctl commands may be issued for a device conforming to the the

isdnio interface.

ISDN interfaces that allow access to audio data should implement a reasonable subset of
the audio(7) interface.

ISDN ioctls ISDN_PH_ACTIVATE_REQ
Request ISDN physical layer activation. This command is valid for both TE and NT
interfaces. fd must be a D-channel file descriptor. arg is ignored.

TE activation will occur without use of the ISDN_PH_ACTIVATE_REQ ioctl if the
device corresponding to the TE D-channel is open, “on”, and the ISDN switch is
requesting activation.

ISDN_MPH_DEACTIVATE_REQ

modified 7 Apr 1994 7-141

isdnio (7) Special Files SunOS 5.4

fd must be a NT D-channel file descriptor. arg is ignored.

This command requests ISDN physical layer de-activation. This is not valid for TE
interfaces. A TE interace may be turned off by use of the ISDN_PARAM_POWER
command or by close(2) on the associated fd.

ISDN_ACTIVATION_STATUS
fd is the file descriptor for a D-channel, the management device associated with
an ISDN interface, or the management device associated with the controller. arg
is a pointer to an isdn_activation_status_t structure. Although it is possible for
applications to determine the current activation state with this ioctl, a D-channel
protocol stack should instead process messages from the management pseudo
channel associated with the D-channel.

typedef struct isdn_activation_status {
isdn_interface_t type;
enum isdn_activation_state activation;

} isdn_activation_status_t;

typedef enum isdn_activation_state {
ISDN_OFF = 0, /∗ Interface is powered down ∗/
ISDN_UNPLUGGED, /∗ Power but no-physical connection ∗/
ISDN_DEACTIVATED_REQ /∗ Pending Deactivation, NT Only ∗/
ISDN_DEACTIVATED, /∗ Activation is permitted ∗/
ISDN_ACTIVATE_REQ, /∗ Attempting to activate ∗/
ISDN_ACTIVATED, /∗ Interface is activated ∗/

} isdn_activation_state_t;

The type field should be set to ISDN_TYPE_SELF. The device specific interface
type will be returned in the type field.

The isdn_activation_status_t structure contains the interface type and the
current activation state. type is the interface type and should be set by the caller
to ISDN_TYPE_SELF.

ISDN_INTERFACE_STATUS
The ISDN_INTERFACE_STATUS ioctl retrieves the status and statistics of an
ISDN interface. The requesting channel must own the interface whose status is
being requested or the ioctl will fail. fd is the file descriptor for an ISDN interface
management device. arg is a pointer to a struct isdn_interface_info. If the inter-
face field is set to ISDN_TYPE_SELF, it will be changed in the returned structure
to reflect the proper device-specific interface of the requesting fd .
typedef struct isdn_interface_info {

isdn_interface_t interface;

enum isdn_activation_state activation;

unsigned int ph_ai; /∗ Physical: Activation Ind ∗/
unsigned int ph_di; /∗ Physical: Deactivation Ind ∗/
unsigned int mph_ai; /∗ Management: Activation Ind ∗/
unsigned int mph_di; /∗ Management: Deactivation Ind ∗/
unsigned int mph_ei1; /∗ Management: Error 1 Indication ∗/

7-142 modified 7 Apr 1994

SunOS 5.4 Special Files isdnio (7)

unsigned int mph_ei2; /∗ Management: Error 2 Indication ∗/
unsigned int mph_ii_c; /∗ Management: Info Ind, connection ∗/
unsigned int mph_ii_d; /∗ Management: Info Ind, disconn. ∗/

} isdn_interface_info_t;

ISDN_CHANNEL_STATUS
The ISDN_CHANNEL_STATUS ioctl retrieves the status and statistics of an ISDN
channel. The requesting channel must own the channel whose status is being
requested or the ioctl will fail. fd is any file descriptor. arg is a pointer to a struct
isdn_channel_info. If the interface field is set to ISDN_CHAN_SELF, it will be
changed in the returned structure to reflect the proper device-specific channel of
the requesting fd .
typedef struct isdn_channel_info {

isdn_chan_t channel;

enum isdn_iostate iostate;

struct isdn_io_stats {
ulong_t packets; /∗ packets transmitted or received ∗/
ulong_t octets; /∗ octets transmitted or received ∗/
ulong_t errors; /∗ errors packets transmitted or received ∗/
} transmit, receive;

} isdn_channel_info_t;

ISDN_SET_PARAM
fd is the file descriptor for a management device. arg is a pointer to a struct
isdn_param. This command allows the setting of various ISDN physical layer
parameters such as timers. This command uses the same arguments as the
ISDN_GET_PARAM command.

ISDN_GET_PARAM
fd is the file descriptor for a management device. arg is a pointer to a struct
isdn_param This command provides for querying the value of a particular ISDN
physical layer parameter.
typedef enum {

ISDN_PARAM_NONE = 0,
ISDN_PARAM_NT_T101, /∗ NT Timer, 5-30 s, in milliseconds ∗/
ISDN_PARAM_NT_T102, /∗ NT Timer, 25-100 ms, in milliseconds ∗/
ISDN_PARAM_TE_T103, /∗ TE Timer, 5-30 s, in milliseconds ∗/
ISDN_PARAM_TE_T104, /∗ TE Timer, 500-1000 ms, in milliseconds ∗/
ISDN_PARAM_MAINT, /∗ Manage the TE Maintenance Channel ∗/
ISDN_PARAM_ASMB, /∗ Modify Activation State Machine ∗/

/∗ Behavior ∗/
ISDN_PARAM_POWER, /∗ Take the interface online or offline ∗/
ISDN_PARAM_PAUSE, /∗ Paused if == 1, else not paused == 0 ∗/

} isdn_param_tag_t;

enum isdn_param_asmb {
ISDN_PARAM_TE_ASMB_CCITT88, /∗ 1988 bluebook ∗/
ISDN_PARAM_TE_ASMB_CTS2, /∗ Conformance Test Suite 2 ∗/

};

modified 7 Apr 1994 7-143

isdnio (7) Special Files SunOS 5.4

typedef struct isdn_param {
isdn_param_tag_t tag;
union {

unsigned int us; /∗ micro seconds ∗/
unsigned int ms; /∗ Timer value in ms ∗/
unsigned int flag; /∗ Boolean ∗/
enum isdn_param_asmb asmb;
enum isdn_param_maint maint;
struct {

isdn_chan_t channel; /∗ Channel to Pause ∗/
int paused; /∗ TRUE or FALSE ∗/

} pause;
unsigned int reserved[2]; /∗ reserved, set to zero ∗/

} value;
} isdn_param_t;

ISDN_PARAM_POWER
If an implementation provides power on and off functions, then power should be
on by default. If flag is ISDN_PARAM_POWER_OFF then a TE interface is forced
into state F0, NT interfaces are forced into state G0. If flag is
ISDN_PARAM_POWER_ON then a TE interface will immediately transition to
state F3 when the TE D-channel is opened. If flag is one, an NT interface will
transition to state G1 when the NT D-channel is opened.

Implementations that do not provide ISDN_POWER return failure with errno set
to ENXIO.

ISDN_POWER is different from ISDN_PH_ACTIVATE_REQ since CCITT
specification requires that if a BRI-TE interface device has power, then it permits
activation.

ISDN_PARAM_NT_T101
This parameter accesses the NT timer value T1. The CCITT recommendations
specify that timer T1 has a value from 5 to 30 seconds. Other standards may
differ.

ISDN_PARAM_NT_T102
This parameter accesses the NT timer value T2. The CCITT recommendations
specify that timer T2 has a value from 25 to 100 milliseconds. Other standards
may differ.

ISDN_PARAM_TE_T103
This parameter accesses the TE timer value T3. The CCITT recommendations
specify that timer T3 has a value from 5 to 30 seconds. Other standards may
differ.

ISDN_PARAM_TE_T104
This parameter accesses the TE timer value T4. The CTS2 specifies that timer T4
is either not used or has a value from 500 to 1000 milliseconds. Other standards
may differ. CTS2 requires that timer T309 be implemented if T4 is not available.

ISDN_PARAM_MAINT
This parameter sets the multi-framing mode of a BRI-TE interface. For normal

7-144 modified 7 Apr 1994

SunOS 5.4 Special Files isdnio (7)

operation this parameter should be set to ISDN_PARAM_MAINT_ECHO. Other
uses of this parameter are dependent on the definition and use of the BRI inter-
face S and Q channels.

ISDN_PARAM_ASMB
There are a few differences in the BRI-TE interface activation state machine stan-
dards. This parameter allows the selection of the appropriate standard. At this
time, only ISDN_PARAM_TE_ASMB_CCITT88 and
ISDN_PARAM_TE_ASMB_CTS2 are available.

ISDN_PARAM_PAUSE
This parameter allows a management device to pause the IO on a B-channel.
pause.channel is set to indicate which channel is to be paused or un-paused.
pause.paused is set to zero to un-pause and one to pause. fd is associated with
an ISDN interface management device. arg is a pointer to a struct isdn_param.

ISDN_SET_LOOPBACK
fd is the file descriptor for an ISDN interface’s management device. arg is a
pointer to an isdn_loopback_request_t structure.
typedef enum {

ISDN_LOOPBACK_LOCAL,
ISDN_LOOPBACK_REMOTE,

} isdn_loopback_type_t;

typedef enum {
ISDN_LOOPBACK_B1 = 0x1,
ISDN_LOOPBACK_B2 = 0x2,
ISDN_LOOPBACK_D = 0x4,
ISDN_LOOPBACK_E_ZERO = 0x8,
ISDN_LOOPBACK_S = 0x10,
ISDN_LOOPBACK_Q = 0x20,

} isdn_loopback_chan_t;

typedef struct isdn_loopback_request {
isdn_loopback_type_t type;
int channels;

} isdn_loopback_request_t;

An application can receive D-channel data during D-Channel loopback but can-
not transmit data. The field type is the bitwise OR of at least one of the following
values:

ISDN_LOOPBACK_B1 (0x1) /∗ loopback on B1-channel ∗/
ISDN_LOOPBACK_B2 (0x2) /∗ loopback on B2-channel ∗/
ISDN_LOOPBACK_D (0x4) /∗ loopback on D-channel ∗/
ISDN_LOOPBACK_E_ZERO (0x8) /∗ force E-channel to Zero if ∗/

/∗ fd is for NT interface ∗/
ISDN_LOOPBACK_S (0x10) /∗ loopback on S-channel ∗/
ISDN_LOOPBACK_Q (0x20) /∗ loopback on Q-channel ∗/

ISDN_RESET_LOOPBACK
arg is a pointer to an isdn_loopback_request_t structure.
ISDN_RESET_LOOPBACK turns off the selected loopback modes.

modified 7 Apr 1994 7-145

isdnio (7) Special Files SunOS 5.4

ISDN data format The isdn_format_t type is meant to be a complete description of the various data modes
and rates available on an ISDN interface. Several macros are available for setting the for-
mat fields. The isdn_format_t structure is shown below:

/∗ ISDN channel data format ∗/

typedef enum {
ISDN_MODE_NOTSPEC, /∗ Not specified ∗/
ISDN_MODE_HDLC, /∗ HDLC framing and error ∗/

/∗ checking ∗/
ISDN_MODE_TRANSPARENT /∗ Transparent mode ∗/

} isdn_mode_t;

/∗ Audio encoding types (from audioio.h) ∗/
#define AUDIO_ENCODING_NONE (0) /∗ no encoding∗/
#define AUDIO_ENCODING_ULAW (1) /∗ mu-law ∗/
#define AUDIO_ENCODING_ALAW (2) /∗ A-law ∗/
#define AUDIO_ENCODING_LINEAR (3) /∗ Linear PCM ∗/

typedef struct isdn_format {
isdn_mode_t mode;
unsigned int sample_rate; /∗ sample frames/sec∗/
unsigned int channels; /∗ # interleaved chans ∗/
unsigned int precision; /∗ bits per sample ∗/
unsigned int encoding; /∗ data encoding ∗/

} isdn_format_t;

/∗
∗ These macros set the fields pointed
∗ to by the macro argument (isdn_format_t∗)fp in preparation
∗ for the ISDN_SET_FORMAT ioctl.
∗/
ISDN_SET_FORMAT_BRI_D(fp) /∗ BRI D-channel ∗/
ISDN_SET_FORMAT_PRI_D(fp) /∗ PRI D-channel ∗/
ISDN_SET_FORMAT_HDLC_B64(fp) /∗ BRI B-ch @ 56kbps ∗/
ISDN_SET_FORMAT_HDLC_B56(fp) /∗ BRI B-ch @ 64kbps ∗/
ISDN_SET_FORMAT_VOICE_ULAW(fp) /∗ BRI B-ch voice ∗/
ISDN_SET_FORMAT_VOICE_ALAW(fp) /∗ BRI B-ch voice ∗/
ISDN_SET_FORMAT_BRI_H(fp) /∗ BRI H-channel ∗/

ISDN Datapath
Types

Every STREAMS stream that carries data to or from the ISDN serial interfaces is
classified as a channel-stream datapath. A possible ISDN channel-stream datapath dev-
ice name for a TE could be /dev/isdn/0/te/b1.

On some hardware implementations, it is possible to route the data from hardware chan-
nel to hardware channel completely within the chip or controller. This is classified as a
channel-channel datapath. There does not need to be any open file descriptor for either
channel in this configuration. Only when data enters the host and utilizes a STREAMS
stream is this classified as an ISDN channel-stream datapath.

ISDN Management
Stream

A management stream is a STREAMS stream that exists solely for control purposes and is
not intended to carry data to or from the ISDN serial interfaces. A possible management
device name for a TE could be /dev/isdn/0/te/mgt.

7-146 modified 7 Apr 1994

SunOS 5.4 Special Files isdnio (7)

Channel
Management

IOCTLS

The following ioctls describe operations on individual channels and the connection of
multiple channels.

ISDN_SET_FORMAT
fd is a data channel, the management pseudo-channel associated with the data
channel, or the management channel associated with the data channel’s interface
or controller. arg is a pointer to a struct isdn_format_req. The
ISDN_SET_FORMAT ioctl sets the format of an ISDN channel-stream datapath. It
may be issued on both an open ISDN channel-stream datapath Stream or an
ISDN Management Stream. Note that an open(2) call for a channel-stream data-
path will fail if an ISDN_SET_FORMAT has never been issued after a reset, as the
mode for all channel-stream datapaths is initially biased to
ISDN_MODE_NOTSPEC. arg is a pointer to an ISDN format type
(isdn_format_req_t∗).
typedef struct isdn_format_req {

isdn_chan_t channel;
isdn_format_t format; /∗ data format ∗/
int reserved[4]; /∗ future use - must be 0 ∗/

} isdn_format_req_t;

If there is not an open channel-stream datapath for a requested channel, the
default format of that channel will be set for a subsequent open(2).

To modify the format of an open STREAM, the driver will disconnect the
hardware channel, flush the internal hardware queues, set the new default
configuration, and finally reconnect the data path using the newly specified for-
mat. Upon taking effect, all state information will be reset to initial conditions, as
if a channel was just opened. It is suggested that the user flush the interface as
well as consult the hardware specific documentation to insure data integrity.

If a user desires to connect more than one B channel, such as an H-channel, the
B-channel with the smallest offset should be specified, then the precision should
be specified multiples of 8.

For an H-channel the precision value would be 16. The user should subsequently
open the base B-channel. If any of the sequential B-channels are busy the open
will fail, otherwise all of the B-channels that are to be used in conjunction will be
marked as busy.

The returned failure codes and their descriptions are listed below:
EPERM /∗ No permission for intented operation ∗/
EINVAL /∗ Invalid format request ∗/
EIO /∗ Set format attempt failed. ∗/

ISDN_SET_CHANNEL
The ISDN_SET_CHANNEL ioctl sets up a data connection within an ISDN con-
troller. The ISDN_SET_CHANNEL ioctl can only be issued from an ISDN manage-
ment stream to establish or modify channel-channel datapaths. The ioctl

modified 7 Apr 1994 7-147

isdnio (7) Special Files SunOS 5.4

parameter arg is a pointer to an ISDN connection request (isdn_conn_req_t∗).
Once a data path is established, data flow is started as soon as the path endpoints
become active. Upon taking effect, all state information is reset to initial condi-
tions, as if a channel was just opened.

The isdn_conn_req_t structure is shown below. The five fields include the receive and
transmit ISDN channels, the number of directions of the data path, as well as the data for-
mat. The reserved field must always be set to zero.

/∗ Number of directions for data flow ∗/
typedef enum {

ISDN_PATH_NOCHANGE = 0,/∗ Invalid value ∗/
ISDN_PATH_DISCONNECT, /∗ Disconnect data path ∗/
ISDN_PATH_ONEWAY, /∗ One way data path ∗/
ISDN_PATH_TWOWAY, /∗ Bi-directional data path ∗/

} isdn_path_t;

typedef struct isdn_conn_req {
isdn_chan_t from;
isdn_chan_t to;
isdn_path_t dir; /∗ uni/bi-directional or disconnect ∗/
isdn_format_t format; /∗ data format ∗/
int reserved[4]; /∗ future use - must be 0 ∗/

} isdn_conn_req_t;

To specify a read-only, write-only, or read-write path, or to disconnect a path, the
dir field should be set to ISDN_PATH_ONEWAY, ISDN_PATH_TWOWAY, and
ISDN_PATH_DISCONNECT respectively. To modify the format of a channel-
channel datapath, a user must disconnect the channel and then reconnect with
the desired format.

The returned failure codes and their descriptions are listed below:
EPERM /∗ No permission for intented operation ∗/
EBUSY /∗ Connection in use ∗/
EINVAL /∗ Invalid connection request ∗/
EIO /∗ Connection attempt failed. ∗/

ISDN_GET_FORMAT
The ISDN_GET_FORMAT ioctl gets the ISDN data format of the channel-stream
datapath described by fd. arg is a pointer to an ISDN data format request type
(isdn_format_req_t∗). ISDN_GET_FORMAT can be issued on any channel to
retrieve the format of any channel it owns. For example, if issued on the TE
management channel, the format of any other te channel can be retrieved.

ISDN_GETCONFIG
The ISDN_GETCONFIG ioctl is used to get the current connection status of all
ISDN channels associated with a particular management STREAM.
ISDN_GETCONFIG also retrieves a hardware identifier and the generic interface
type. arg is an ISDN connection table pointer (isdn_conn_tab_t∗). The
isdn_conn_tab_t structure is shown below:

7-148 modified 7 Apr 1994

SunOS 5.4 Special Files isdnio (7)

typedef struct isdn_conn_tab {
char name[ISDN_ID_SIZE]; /∗ identification string ∗/
isdn_interface_t type;
int maxpaths; /∗ size in entries of app’s

array ∗/
int npaths; /∗

∗ number of valid entries
∗ returned by driver
∗/

isdn_conn_req_t ∗paths; /∗ connection table in app’s
memory ∗/

} isdn_conn_tab_t;

The table contains a string which is the interface’s unique identification string. The
second element of this table contains the ISDN transmit and receive connections and
configuration for all possible data paths for each type of ISDN controller hardware.
Entries that are not connected will have a value of ISDN_NO_CHAN in the from and to
fields. The number of entries will always be ISDN_MAX_CHANS, and can be referenced
in the hardware specific implementation documentation. An isdn_conn_tab_t structure
is allocated on a per controller basis.

SEE ALSO ioctl(2), poll(2), read(2), write(2), audio(7), dbri(7), streamio(7)

“ISDN, An Introduction”, by William Stallings, Macmillian Publishing Company, ISBN
0-02-415471-7

modified 7 Apr 1994 7-149

isp (7) Special Files SunOS 5.4

NAME isp − ISP SCSI Host Bus Adapter Driver

SYNOPSIS isp@sbus-slot,0x10000

AVAILABILITY Limited to the SparcStation10 line, the SparcStation20 line and the SparcCenter line of
systems.

DESCRIPTION The isp Host Bus Adapter is a SCSA compliant nexus driver that supports the Qlogic
ISP1000 SCSI chip. The ISP1000 SCSI is an intelligent SCSI host Bus Adapter chip that
reduces the amount of CPU overhead used in a SCSI transfer.

The isp driver supports the standard functions provided by the SCSA interface. The
driver supports tagged and untagged queueing, fast and wide SCSI, auto request sense
but does not support linked commands.

Driver Configuration The isp driver can be configured by defining properties in isp.conf which override the
global SCSI settings. Supported properties are scsi-options, scsi-reset-delay, scsi-
watchdog-tick, scsi-tag-age-limit, scsi-initiator-id.

Refer to scsi_hba_attach(9F) for details.

EXAMPLE Create a file /kernel/drv/isp.conf and add this line:

scsi-options=0x78;

This will disable tagged queueing, fast SCSI, and Wide mode for all isp instances. To dis-
able an option for one specific isp (refer to driver.conf(4)):

name="isp" parent="/io-unit@f,e1200000/sbi@0,0"
reg=3, 0x10000, 0x450
scsi-options = 0x58 scsi-initiator-id = 15;

Note that the default initiator ID in OBP is 7 and that the change to ID 15 will occur at
attach time. It may be preferable to change the initiator ID in OBP.

FILES /kernel/drv/isp ELF Kernel Module
/kernel/drv/isp.conf Configuration file

SEE ALSO prtconf(1M), driver.conf(4), scsi_hba_attach(9F), scsi_abort(9F), scsi_ifgetcap(9F),
scsi_ifsetcap(9F), scsi_reset(9F), scsi_transport(9F), scsi_device(9S),
scsi_extended_sense(9S), scsi_inquiry(9S), scsi_pkt(9S)

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2)

ISP1000 Firmware Interface Specification, QLogic Corp.

ISP1000 Technical Manual, QLogic Corp.

7-150 modified 24 May 1994

SunOS 5.4 Special Files isp (7)

DIAGNOSTICS The messages described below are some that may appear on the system console, as well
as being logged.

This first set of messages may be displayed while the isp driver is first trying to attach.
All of these messages mean that the isp driver was unable to attach. These messages are
preceded by "isp%d", where "%d" is the instance number of the isp controller.

Device in slave-only slot, unused
The SBus device has been placed in a slave-only slot and will not be accessible;
move to non-slave-only SBus slot.

Device is using a hilevel intr, unused
The device was configured with a interrupt level that cannot be used with this
isp driver, check the SBus device.

Failed to alloc soft state
Driver was unable to allocate space for the internal state structure. Driver did
not attach to device, SCSI devices will be inaccessible.

Bad soft state
Driver requested an invalid internal state structure. Driver did not attach to dev-
ice, SCSI devices will be inaccessible.

Unable to map registers;
Driver was unable to map device registers; check for bad hardware. Driver did
not attach to device, SCSI devices will be inaccessible.

Cannot add intr
Driver was not able to add the interrupt routine to the kernel. Driver did not
attach to device, SCSI devices will be inaccessible.

Unable to attach
Driver was unable to attach to the hardware for some reason that may be
printed. Driver did not attach to device, SCSI devices will be inaccessible.

This next set of messages can be displayed at any time, they will be printed with the full
device pathname followed by the shorter form described above.

Firmware should be < 0x%x bytes
Firmware size exceeded allocated space; will not download firmware. This could
mean that the firmware was corrupted somehow; check the isp driver.

Firmware checksum incorrect
Firmware has an invalid checksum and will not be downloaded.

Chip reset timeout
ISP1000 failed to reset in the time allocated, may be bad hardware.

Stop firmware failed
Stopping the firmware failed, may be bad hardware.

Load ram failed
Unable to download new firmware into the ISP1000 chip

modified 24 May 1994 7-151

isp (7) Special Files SunOS 5.4

DMA setup failed
The DMA setup failed in the host adapter driver on a scsi_pkt; this will return
TRAN_BADPKT to a SCSA target driver.

Bad request pkt
The ISP Firmware rejected the packet as being setup incorrectly. This will cause
the isp driver to call the target completion routine with the reason of
CMD_TRAN_ERR set in the scsi_pkt. Check the target driver for correctly setting
up the packet.

Bad request pkt header
The ISP Firmware rejected the packet as being setup incorrectly. This will cause
the isp driver to call the target completion routine with the reason of
CMD_TRAN_ERR set in the scsi_pkt. Check the target driver for correctly setting
up the packet.

Polled command timeout on %d.%d
A polled command experienced a timeout; the target device, as noted by the tar-
get lun (%d.%d) info, may not be responding correctly to the command, or the
ISP1000 chip may be hung. This will cause an error recovery to be initiated in the
isp driver. This could mean a bad device or cabling.

Firmware error
The ISP1000 Chip encountered a firmware error of some kind. This error will
cause the isp driver to do error recovery by resetting the chip.

Received unexpected SCSI Reset
The ISP1000 chip received an unexpected SCSI Reset and has initiated its own
internal error recovery, which will return all the scsi_pkt with reason set to
CMD_RESET.

Fatal timeout on target %d.%d
The isp driver found a command that had not completed in the correct amount
of time; this will cause error recovery by the isp driver. The device that experi-
enced the timeout was at target lun (%d.%d).

Fatal error, resetting interface
This is an indication that the isp driver is doing error recovery. This will cause
all outstanding commands that have been transported to the isp driver to be
completed via the scsi_pkt completion routine in the target driver with reason of
CMD_RESET and status of STAT_BUS_RESET set in the scsi_pkt.

WARNINGS The current release of the isp driver only supports FAST (10M/s) SCSI-2 disks. In the
future, tapes and other devices will be supported.

NOTES The isp driver exports properties indicating per target the negotiated transfer speed
(target<n>-sync-speed), whether tagged queueing has been enabled (target<n>-TQ), and
whether the wide data transfer has been negotiated (target<n>-wide). The sync-speed
property value is the data transfer rate in KB/sec. The target-TQ and target-wide proper-
ties have no value. The existence of these properties indicate that tagged queueing or

7-152 modified 24 May 1994

SunOS 5.4 Special Files isp (7)

wide transfer has been enabled. Refer to prtconf(1M) (verbose option) for viewing the
isp properties.

QLGC,isp, instance #2
Driver software properties:

name <target0-TQ> length <0> -- <no value>.
name <target0-wide> length <0> -- <no value>.
name <target0-sync-speed> length <4>

value <0x000028f5>.
name <scsi-options> length <4>

value <0x000003f8>.
name <scsi-watchdog-tick> length <4>

value <0x0000000a>.
name <scsi-tag-age-limit> length <4>

value <0x00000008>.
name <scsi-reset-delay> length <4>

value <0x00000bb8>.

modified 24 May 1994 7-153

kb (7) Special Files SunOS 5.4

NAME kb − keyboard STREAMS module

SYNOPSIS #include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/vuid_event.h>
#include <sys/kbio.h>
#include <sys/kbd.h>

ioctl(fd, I_PUSH, "kb");

AVAILABILITY SPARC

DESCRIPTION The kb STREAMS module processes byte streams generated by keyboard attached to a
CPU serial port. Definitions for altering keyboard translation, and reading events from
the keyboard, are in <sys/kbio.h> and <sys/kbd.h>.

kb recognizes which keys have been typed using a set of tables for each known type of
keyboard. Each translation table is an array of 128 16-bit words (unsigned shorts). If an
entry in the table is less than 0x100, it is treated as an ISO 8859/1 character. Higher values
indicate special characters that invoke more complicated actions.

Keyboard
Translation Mode

The keyboard can be in one of the following translation modes:

TR_NONE Keyboard translation is turned off and up/down key
codes are reported.

TR_ASCII ISO 8859/1 codes are reported.

TR_EVENT firm_events are reported.

TR_UNTRANS_EVENT firm_events containing unencoded keystation codes
are reported for all input events within the window
system.

Keyboard
Translation-Table

Entries

All instances of the kb module share seven translation tables used to convert raw keysta-
tion codes to event values. The tables are:

Unshifted Used when a key is depressed and no shifts are in effect.

Shifted Used when a key is depressed and a Shift key is being held
down.

Caps Lock Used when a key is depressed and Caps Lock is in effect.

Alt Graph Used when a key is depressed and the Alt Graph key is
being held down.

Num Lock Used when a key is depressed and Num Lock is in effect.

7-154 modified 27 Jan 1994

SunOS 5.4 Special Files kb (7)

Controlled Used when a key is depressed and the Control key is being
held down (regardless of whether a Shift key or the Alt
Graph is being held down, or whether Caps Lock or Num
Lock is in effect).

Key Up Used when a key is released.

Each key on the keyboard has a “key station” code which is a number from 0 to 127. This
number is used as an index into the translation table that is currently in effect. If the
corresponding entry in that translation table is a value from 0 to 255, this value is treated
as an ISO 8859/1 character, and that character is the result of the translation.

If the entry is a value above 255, it is a “special” entry. Special entry values are classified
according to the value of the high-order bits. The high-order value for each class is
defined as a constant, as shown in the list below. The value of the low-order bits, when
added to this constant, distinguishes between keys within each class:

SHIFTKEYS 0x100 A shift key. The value of the particular shift key is added to deter-
mine which shift mask to apply:

CAPSLOCK 0 “Caps Lock” key.

SHIFTLOCK 1 “Shift Lock” key.

LEFTSHIFT 2 Left-hand “Shift” key.

RIGHTSHIFT 3 Right-hand “Shift” key.

LEFTCTRL 4 Left-hand (or only) “Control” key.

RIGHTCTRL 5 Right-hand “Control” key.

ALTGRAPH 9 “Alt Graph” key.

ALT 10 “Alternate” or “Alt” key.

NUMLOCK 11 “Num Lock” key.

BUCKYBITS 0x200 Used to toggle mode-key-up/down status without altering the
value of an accompanying ISO 8859/1 character. The actual bit-
position value, minus 7, is added.

METABIT 0 The “Meta” key was pressed along with the
key. This is the only user-accessible bucky
bit. It is ORed in as the 0x80 bit; since this
bit is a legitimate bit in a character, the only
way to distinguish between, for example,
0xA0 as META+0x20 and 0xA0 as an 8-bit
character is to watch for “META key up”
and “META key down” events and keep
track of whether the META key was down.

SYSTEMBIT 1 The “System” key was pressed. This is a
place holder to indicate which key is the
system-abort key.

modified 27 Jan 1994 7-155

kb (7) Special Files SunOS 5.4

FUNNY 0x300 Performs various functions depending on the value of the low 4
bits:

NOP 0x300 Does nothing.

OOPS 0x301 Exists, but is undefined.

HOLE 0x302 There is no key in this position on the key-
board, and the position-code should not be
used.

RESET 0x306 Keyboard reset.

ERROR 0x307 The keyboard driver detected an internal
error.

IDLE 0x308 The keyboard is idle (no keys down).

COMPOSE 0x309 This key is the COMPOSE key; the next two
keys should comprise a two-character
“COMPOSE key” sequence.

NONL 0x30A Used only in the Num Lock table; indicates
that this key is not affected by the Num
Lock state, so that the translation table to
use to translate this key should be the one
that would have been used had Num Lock
not been in effect.

0x30B — 0x30F Reserved for nonparameterized functions.

FA_CLASS 0x400 This key is a “floating accent” or “dead” key. When this key is
pressed, the next key generates an event for an accented character;
for example, “floating accent grave” followed by the “a” key gen-
erates an event with the ISO 8859/1 code for the “a with grave
accent” character. The low-order bits indicate which accent; the
codes for the individual “floating accents” are as follows:

FA_UMLAUT 0x400 umlaut

FA_CFLEX 0x401 circumflex

FA_TILDE 0x402 tilde

FA_CEDILLA 0x403 cedilla

FA_ACUTE 0x404 acute accent

FA_GRAVE 0x405 grave accent

STRING 0x500 The low-order bits index a table of strings. When a key with a
STRING entry is depressed, the characters in the null-terminated
string for that key are sent, character by character. The maximum
length is defined as:

KTAB_STRLEN 10

7-156 modified 27 Jan 1994

SunOS 5.4 Special Files kb (7)

Individual string numbers are defined as:

HOMEARROW 0x00
UPARROW 0x01
DOWNARROW 0x02
LEFTARROW 0x03
RIGHTARROW 0x04

String numbers 0x05 — 0x0F are available for custom entries.

FUNCKEYS 0x600 Function keys. The next-to-lowest 4 bits indicate the group of
function keys:

LEFTFUNC 0x600
RIGHTFUNC 0x610
TOPFUNC 0x620
BOTTOMFUNC 0x630

The low 4 bits indicate the function key number within the group:

LF(n) (LEFTFUNC+(n)-1)
RF(n) (RIGHTFUNC+(n)-1)
TF(n) (TOPFUNC+(n)-1)
BF(n) (BOTTOMFUNC+(n)-1)

There are 64 keys reserved for function keys. The actual positions may not be on
left/right/top/bottom of the keyboard, although they usually are.

PADKEYS 0x700
This key is a “numeric keypad key.” These entries should appear only in the
Num Lock translation table; when Num Lock is in effect, these events will be
generated by pressing keys on the right-hand keypad. The low-order bits indi-
cate which key; the codes for the individual keys are as follows:

PADEQUAL 0x700 “=” key

PADSLASH 0x701 “/” key

PADSTAR 0x702 “∗” key

PADMINUS 0x703 “-” key

PADSEP 0x704 “,” key

PAD7 0x705 “7” key

PAD8 0x706 “8” key

PAD9 0x707 “9” key

PADPLUS 0x708 “+” key

PAD4 0x709 “4” key

PAD5 0x70A “5” key

PAD6 0x70B “6” key

PAD1 0x70C “1” key

PAD2 0x70D “2” key

modified 27 Jan 1994 7-157

kb (7) Special Files SunOS 5.4

PAD3 0x70E “3” key

PAD0 0x70F “0” key

PADDOT 0x710 “.” key

PADENTER 0x711 “Enter” key

In TR_ASCII mode, when a function key is pressed, the following escape sequence is sent:
ESC[0 9z

where ESC is a single escape character and “0 . .. 9” indicates the decimal representation of
the function-key value. For example, function key R1 sends the sequence:

ESC[208z
because the decimal value of RF(1) is 208. In TR_EVENT mode, if there is a VUID event
code for the function key in question, an event with that event code is generated; other-
wise, individual events for the characters of the escape sequence are generated.

Keyboard
Compatibility Mode

kb is in “compatibility mode” when it starts up. In this mode, when the keyboard is in
the TR_EVENT translation mode, ISO 8859/1 characters from the “upper half” of the char-
acter set (that is, characters with the 8th bit set) are presented as events with codes in the
ISO_FIRST range (as defined in <sys/vuid_event.h>). The event code is ISO_FIRST plus
the character value. This is for backwards compatibility with older versions of the key-
board driver. If compatibility mode is turned off, ISO 8859/1 characters are presented as
events with codes equal to the character code.

IOCTLS The following ioctl() requests set and retrieve the current translation mode of a key-
board:

KIOCTRANS The argument is a pointer to an int. The translation mode is set to the
value in the int pointed to by the argument.

KIOCGTRANS The argument is a pointer to an int. The current translation mode is
stored in the int pointed to by the argument.

ioctl() requests for changing and retrieving entries from the keyboard translation table
use the kiockeymap structure:

struct kiockeymap {
int kio_tablemask; /∗ Translation table (one of: 0, CAPSMASK,

∗ SHIFTMASK, CTRLMASK, UPMASK,
∗ ALTGRAPHMASK, NUMLOCKMASK)
∗/

#define KIOCABORT1 −1 /∗ Special “mask”: abort1 keystation ∗/
#define KIOCABORT2 −2 /∗ Special “mask”: abort2 keystation ∗/

u_char kio_station; /∗ Physical keyboard key station (0-127) ∗/
u_short kio_entry; /∗ Translation table station’s entry ∗/
char kio_string[10]; /∗ Value for STRING entries (null terminated) ∗/

};

KIOCSKEY The argument is a pointer to a kiockeymap structure. The translation
table entry referred to by the values in that structure is changed.

kio_tablemask specifies which of the five translation tables contains the

7-158 modified 27 Jan 1994

SunOS 5.4 Special Files kb (7)

entry to be modified:

UPMASK 0x0080 “Key Up” translation table.

NUMLOCKMASK 0x0800
“Num Lock” translation table.

CTRLMASK 0x0030 “Controlled” translation table.

ALTGRAPHMASK 0x0200
“Alt Graph” translation table.

SHIFTMASK 0x000E “Shifted” translation table.

CAPSMASK 0x0001 “Caps Lock” translation table.

(No shift keys pressed or locked)
“Unshifted” translation table.

kio_station specifies the keystation code for the entry to be modified.
The value of kio_entry is stored in the entry in question. If kio_entry is
between STRING and STRING+15, the string contained in kio_string is
copied to the appropriate string table entry. This call may return -
EINVAL if there are invalid arguments.

There are a couple special values of kio_tablemask that affect the two
step “break to the PROM monitor” sequence. The usual sequence is L1−a
or Stop−a . If kio_tablemask is KIOCABORT1 then the value of
kio_station is set to be the first keystation in the sequence. If
kio_tablemask is KIOCABORT2 then the value of kio_station is set to be
the second keystation in the sequence.

KIOCGKEY The argument is a pointer to a kiockeymap structure. The current value
of the keyboard translation table entry specified by kio_tablemask and
kio_station is stored in the structure pointed to by the argument. This
call may return EINVAL if there are invalid arguments.

KIOCTYPE The argument is a pointer to an int. A code indicating the type of the
keyboard is stored in the int pointed to by the argument:

KB_SUN3 Sun Type 3 keyboard
KB_SUN4 Sun Type 4 keyboard
KB_ASCII ASCII terminal masquerading as keyboard

KB_DEFAULT is stored in the int pointed to by the argument, if the key-
board type is unknown. In case of error, -1 is stored in the int pointed to
by the argument.

KIOCLAYOUT The argument is a pointer to an int. On a Sun Type 4 keyboard, the lay-
out code specified by the keyboard’s DIP switches is stored in the int
pointed to by the argument.

KIOCCMD The argument is a pointer to an int. The command specified by the
value of the int pointed to by the argument is sent to the keyboard. The
commands that can be sent are:

Commands to the Sun Type 3 and Sun Type 4 keyboards:

modified 27 Jan 1994 7-159

kb (7) Special Files SunOS 5.4

KBD_CMD_RESET Reset keyboard as if power-up.
KBD_CMD_BELL Turn on the bell.
KBD_CMD_NOBELL Turn off the bell.
KBD_CMD_CLICK Turn on the click annunciator.
KBD_CMD_NOCLICK Turn off the click annunciator.

Commands to the Sun Type 4 keyboard:
KBD_CMD_SETLED Set keyboard LEDs.
KBD_CMD_GETLAYOUT

Request that keyboard indicate layout.

Inappropriate commands for particular keyboard types are ignored.
Since there is no reliable way to get the state of the bell or click (because
we cannot query the keyboard, and also because a process could do
writes to the appropriate serial driver — thus going around this ioctl()
request) we do not provide an equivalent ioctl() to query its state.

KIOCSLED The argument is a pointer to an char. On the Sun Type 4 keyboard, the
LEDs are set to the value specified in that char. The values for the four
LEDs are:

LED_CAPS_LOCK “Caps Lock” light.
LED_COMPOSE “Compose” light.
LED_SCROLL_LOCK “Scroll Lock” light.
LED_NUM_LOCK “Num Lock” light.

On some of the Japanese layouts, the value for the fifth LED is:
LED_KANA “Kana” light.

KIOCGLED The argument is a pointer to a char. The current state of the LEDs is
stored in the char pointed to by the argument.

KIOCSCOMPAT The argument is a pointer to an int. “Compatibility mode” is turned on
if the int has a value of 1, and is turned off if the int has a value of 0.

KIOCGCOMPAT
The argument is a pointer to an int. The current state of “compatibility
mode” is stored in the int pointed to by the argument.

These ioctl() requests are supported for compatibility with the system keyboard device
/dev/kbd.

KIOCSDIRECT Has no effect.

KIOCGDIRECT Always returns 1.

SEE ALSO loadkeys(1), keytables(4), termio(7)

NOTES Many of the keyboards released after Sun Type 4 keyboard also report themselves as Sun
Type 4 keyboard.

7-160 modified 27 Jan 1994

SunOS 5.4 Special Files kdmouse (7)

NAME kdmouse − built-in mouse device interface

AVAILABILITY x86

DESCRIPTION The kdmouse driver supports Micro Channel architecture mice and compatibles (such as
the IBM PS/2 mouse) on machines with built-in mouse interfaces such as the 20e and the
model 80. It allows applications to obtain information about the mouse’s movements and
the status of its buttons.

Programs are able to read directly from the device. The data returned corresponds to the
byte sequences as defined in the IBM PS/2 Technical Reference Manual .

FILES /dev/kdmouse

NOTES After the mouse has been disconnected, when you plug it back in, you see the following
message on the system console:

WARNING: kdmouse: detected mouse connection

and the system will continue to operate normally. If the message does not applear within
1 second of plugging the mouse back in, disconnect the mouse and plug it in again.

modified 18 Oct 1993 7-161

keyboard (7) Special Files SunOS 5.4

NAME keyboard − system console keyboard

AVAILABILITY x86

DESCRIPTION keyboard is a component of the kd driver, which is comprised of the display and key-
board drivers.

The Solaris for x86 keyboard may be either an 84- or a 101-key standard PC keyboard.
When the system is booting, keyboard services are provided by the keyboard section of
the kd driver.

Developers are not encouraged to write programs that communicate directly with the
keyboard; they should make use of the environment provided by the windows server.

FILES /dev/console

SEE ALSO console(7), display(7)

7-162 modified 18 Oct 1993

SunOS 5.4 Special Files kstat (7)

NAME kstat − kernel statistics driver

DESCRIPTION The kstat driver is the mechanism used by the kstat(3K) library to extract kernel statis-
tics. This is NOT a public interface.

FILES /dev/kstat
kernel statistics driver

SEE ALSO kstat(3K), kstat(9S)

modified 26 May 1994 7-163

ksyms (7) Special Files SunOS 5.4

NAME ksyms − kernel symbols

SYNOPSIS /dev/ksyms

DESCRIPTION The file /dev/ksyms is a character special file that allows read-only access to an ELF for-
mat image containing two sections: a symbol table and a corresponding string table. The
contents of the symbol table reflect the symbol state of the currently running kernel. You
can determine the size of the image with the fstat() system call. The recommended
method for accessing the /dev/ksyms file is by using the ELF access library. See elf(3E)
for details. If you are unfamiliar with the ELF format, consult the a.out(4) manual page.

/dev/ksyms is an executable for the processor on which you are accessing it. It contains
ELF program headers which describe the text and data segment(s) in kernel memory.
Since /dev/ksyms has no text or data, the fields specific to file attributes are initialized to
NULL. The remaining fields describe the text or data segment(s) in kernel memory.

Symbol table The SYMTAB section contains the symbol table entries present in the
currently running kernel. This section is ordered as defined by the ELF
definition with locally-defined symbols first, followed by globally-
defined symbols. Within symbol type, the symbols are ordered by kernel
module load time. For example, the kernel file (/kernel/unix) symbols
are first, followed by the first module’s symbols, and so on, ending with
the symbols from the last module loaded.

The section header index (st_shndx) field of each symbol entry in the
symbol table is set to SHN_ABS, because any necessary symbol reloca-
tions are performed by the kernel link editor at module load time.

String table The STRTAB section contains the symbol name strings that the symbol
table entries reference.

FILES /kernel/unix system namelist

SEE ALSO mmap(2), stat(2), elf(3E), kvm_open(3K), a.out(4), mem(7)

WARNINGS The kernel is dynamically configured. It loads kernel modules when necessary. Because
of this aspect of the system, the symbol information present in the running system can
vary from time to time, as kernel modules are loaded and unloaded.

When you open the /dev/ksyms file, you have access to an ELF image which represents a
snapshot of the state of the kernel symbol information at that instant in time. While the
/dev/ksyms file remains open, kernel module autounloading is disabled, so that you are
protected from the possibility of acquiring stale symbol data. Note that new modules can
still be loaded, however. If kernel modules are loaded while you have the /dev/ksyms file
open, the snapshot held by you will not be updated. In order to have access to the symbol
information of the newly loaded modules, you must first close and then reopen the
/dev/ksyms file. Be aware that the size of the /dev/ksyms file will have changed. You will
need to use the fstat() function (see stat(2)) to determine the new size of the file.

7-164 modified 27 Sep 1991

SunOS 5.4 Special Files ksyms (7)

Avoid keeping the /dev/ksyms file open for extended periods of time, either by using
kvm_open(3K) of the default namelist file or with a direct open. There are two reasons
why you should not hold /dev/ksyms open. First, the system’s ability to dynamic
configure itself is partially disabled by the locking down of loaded modules. Second, the
snapshot of symbol information held by you will not reflect the symbol information of
modules loaded after your initial open of /dev/ksyms.

Note that the ksyms driver is a loadable module, and that the kernel driver modules are
only loaded during an open system call. Thus it is possible to run stat(2) on the
/dev/ksyms file without causing the ksyms driver to be loaded. In this case, the file size
will appear to be zero. A workaround for this behavior is to first open the /dev/ksyms
file, causing the ksyms driver to be loaded (if necessary). You can then use the file
descriptor from this open in a fstat() system call to get the file’s size.

NOTES The kernel virtual memory access library (libkvm) routines use /dev/ksyms as the
default namelist file. See kvm_open(3K) for more details.

The /dev/ksyms ELF image can be mapped into a process’s address space. See mmap(2)
for details.

modified 27 Sep 1991 7-165

ldterm (7) Special Files SunOS 5.4

NAME ldterm − standard STREAMS terminal line discipline module

SYNOPSIS #include <sys/stream.h>
#include <sys/termios.h>

int ioctl(fd, I_PUSH, "ldterm");

DESCRIPTION ldterm is a STREAMS module that provides most of the termio(7) terminal interface. This
module does not perform the low-level device control functions specified by flags in the
c_cflag word of the termio/termios structure or by the IGNBRK, IGNPAR, PARMRK,
or INPCK flags in the c_iflag word of the termio/termios structure; those functions must
be performed by the driver or by modules pushed below the ldterm module. ldterm per-
forms all other termio/termios functions; some of them, however, require the cooperation
of the driver or modules pushed below ldterm and may not be performed in some cases.
These include the IXOFF flag in the c_iflag word and the delays specified in the c_oflag
word.

ldterm also handles Extended Unix Code (EUC) and multi-byte characters.

The remainder of this section describes the processing of various STREAMS messages on
the read- and write-side.

Read-side Behavior Various types of STREAMS messages are processed as follows:

M_BREAK
When this message is received, depending on the state of the BRKINT flag, either
an interrupt signal is generated or the message is treated as if it were an
M_DATA message containing a single ASCII NUL character.

M_DATA
This message is normally processed using the standard termio input processing.
If the ICANON flag is set, a single input record (‘‘line’’) is accumulated in an
internal buffer and sent upstream when a line-terminating character is received.
If the ICANON flag is not set, other input processing is performed and the pro-
cessed data are passed upstream.

If output is to be stopped or started as a result of the arrival of characters (usually
CNTRL-Q and CNTRL-S), M_STOP and M_START messages are sent down-
stream. If the IXOFF flag is set and input is to be stopped or started as a result of
flow-control considerations, M_STOPI and M_STARTI messages are sent
downstream.

M_DATA messages are sent downstream, as necessary, to perform echoing.

If a signal is to be generated, an M_FLUSH message with a flag byte of FLUSHR
is placed on the read queue. If the signal is also to flush output, an M_FLUSH
message with a flag byte of FLUSHW is sent downstream.

M_CTL
If the size of the data buffer associated with the message is the size of struct
iocblk, ldterm will perform functional negotiation to determine where the

7-166 modified 3 Jul 1990

SunOS 5.4 Special Files ldterm (7)

termio(7) processing is to be done. If the command field of the iocblk structure
(ioc_cmd) is set to MC_NO_CANON, the input canonical processing normally
performed on M_DATA messages is disabled and those messages are passed
upstream unmodified; this is for the use of modules or drivers that perform their
own input processing, such as a pseudo-terminal in TIOCREMOTE mode con-
nected to a program that performs this processing. If the command is
MC_DO_CANON, all input processing is enabled. If the command is
MC_PART_CANON, then an M_DATA message containing a termios structure
is expected to be attached to the original M_CTL message. The ldterm module
will examine the iflag, oflag, and lflag fields of the termios structure and from
then on will process only those flags which have not been turned ON. If none of
the above commands are found, the message is ignored; in any case, the message
is passed upstream.

M_FLUSH
The read queue of the module is flushed of all its data messages and all data in
the record being accumulated are also flushed. The message is passed upstream.

M_IOCACK
The data contained within the message, which is to be returned to the process,
are augmented if necessary, and the message is passed upstream.

All other messages are passed upstream unchanged.

Write-side Behavior Various types of STREAMS messages are processed as follows:

M_FLUSH
The write queue of the module is flushed of all its data messages and the mes-
sage is passed downstream.

M_IOCTL
The function of this ioctl is performed and the message is passed downstream in
most cases. The TCFLSH and TCXONC ioctls can be performed entirely in the
ldterm module, so the reply is sent upstream and the message is not passed
downstream.

M_DATA
If the OPOST flag is set, or both the XCASE and ICANON flags are set, output
processing is performed and the processed message is passed downstream along
with any M_DELAY messages generated. Otherwise, the message is passed
downstream without change.

All other messages are passed downstream unchanged.

IOCTLS ldterm processes the following TRANSPARENT ioctls. All others are passed down-
stream.

TCGETS/TCGETA
The message is passed downstream; if an acknowledgment is seen, the data pro-
vided by the driver and modules downstream are augmented and the ack-
nowledgement is passed upstream.

modified 3 Jul 1990 7-167

ldterm (7) Special Files SunOS 5.4

TCSETS/TCSETSW/TCSETSF/TCSETA/TCSETAW/TCSETAF
The parameters that control the behavior of the ldterm module are changed. If a
mode change requires options at the stream head to be changed, an
M_SETOPTS message is sent upstream. If the ICANON flag is turned on or off,
the read mode at the stream head is changed to message-nondiscard or byte-
stream mode, respectively. If the TOSTOP flag is turned on or off, the tostop
mode at the stream head is turned on or off, respectively. In any case, ldterm
passes the ioctl on downstream for possible additional processing.

TCFLSH
If the argument is 0, an M_FLUSH message with a flag byte of FLUSHR is sent
downstream and placed on the read queue. If the argument is 1, the write queue
is flushed of all its data messages and an M_FLUSH message with a flag byte of
FLUSHW is sent upstream and downstream. If the argument is 2, the write
queue is flushed of all its data messages and an M_FLUSH message with a flag
byte of FLUSHRW is sent downstream and placed on the read queue.

TCXONC
If the argument is 0 and output is not already stopped, an M_STOP message is
sent downstream. If the argument is 1 and output is stopped, an M_START
message is sent downstream. If the argument is 2 and input is not already
stopped, an M_STOPI message is sent downstream. If the argument is 3 and
input is stopped, an M_STARTI message is sent downstream.

TCSBRK
The message is passed downstream, so the driver has a chance to drain the data
and then send and an M_IOCACK message upstream.

EUC_WSET
This call takes a pointer to an eucioc structure, and uses it to set the EUC line
discipline’s local definition for the code set widths to be used for subsequent
operations. Within the stream, the line discipline may optionally notify other
modules of this setting using M_CTL messages.

EUC_WGET
This call takes a pointer to an eucioc structure, and returns in it the EUC code set
widths currently in use by the EUC line discipline.

SEE ALSO termios(3), console(7), termio(7)

STREAMS Programmer’s Guide

7-168 modified 3 Jul 1990

SunOS 5.4 Special Files le (7)

NAME le, lebuffer, ledma − Am7990 (LANCE) Ethernet device driver

SYNOPSIS #include <sys/lance.h>
#include <sys/le.h>
#include <sys/dlpi.h>

DESCRIPTION The Am7990 (LANCE) Ethernet driver is a multi-threaded, loadable, clonable, STREAMS
hardware driver supporting the connectionless Data Link Provider Interface, dlpi(7),
over a LANCE Ethernet controller. The motherboard and add-in SBus LANCE controll-
ers of several varieties are supported. Multiple LANCE controllers installed within the
system are supported by the driver. The le driver provides basic support for the LANCE
hardware. Functions include chip initialization, frame transmit and receive, multicast
and promiscuous support, and error recovery and reporting.

The cloning character-special device /dev/le is used to access all LANCE controllers
installed within the system.

The lebuffer and ledma device drivers are bus nexus drivers which cooperate with the le
leaf driver in supporting the LANCE hardware functions over several distinct slave-only
and DVMA LANCE-based Ethernet controllers. The lebuffer and ledma bus nexi drivers
are not directly accessible to the user.

le and DLPI The le driver is a “style 2” Data Link Service provider. All M_PROTO and M_PCPROTO
type msgs are interpreted as DLPI primitives. An explicit DL_ATTACH_REQ message by
the user is required to associate the opened stream with a particular device (ppa). The
ppa ID is interpreted as an unsigned long and indicates the corresponding device
instance (unit) number. An error (DL_ERROR_ACK) is returned by the driver if the ppa
field value does not correspond to a valid device instance number for this system. The
device is initialized on first attach and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

· The max SDU is 1500 (ETHERMTU).
· The min SDU is 0.
· The dlsap address length is 8.
· The MAC type is DL_ETHER.
· The sap length value is −2 meaning the physical address component is fol-

lowed immediately by a 2 byte sap component within the DLSAP address.
· The service mode is DL_CLDLS.
· No optional quality of service (QOS) support is included at present so the QOS

fields are 0.
· The provider style is DL_STYLE2.
· The version is DL_VERSION_2.
· The broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF).

modified 10 Mar 1994 7-169

le (7) Special Files SunOS 5.4

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a par-
ticular SAP (Service Access Pointer) with the stream. The le driver interprets the sap
field within the DL_BIND_REQ as an Ethernet “type” therefore valid values for the sap
field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the stream at
any time.

If the user selects a sap with a value of 0, the receiver will be in 802.3 mode. All frames
received from the media having a “type” field in the range [0-1500] are assumed to be
802.3 frames and are routed up all open Streams which are bound to sap value 0. If more
than one Stream is in “802.3 mode” then the frame will be duplicated and routed up mul-
tiple Streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the sap field of the DL_BIND_REQ if the sap value is 0,
and if the destination type field is in the range [0-1500]. If either is true, the driver com-
putes the length of the message, not including initial M_PROTO mblk (message block), of
all subsequent DL_UNITDATA_REQ messages and transmits 802.3 frames that have this
value in the MAC frame header length field.

The le driver DLSAP address format consists of the 6 byte physical (Ethernet) address
component followed immediately by the 2 byte sap (type) component producing an 8
byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format but use information returned in the
DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap length,
full DLSAP length, and sap/physical ordering are included within the DL_INFO_ACK.
The physical address length can be computed by subtracting the sap length from the full
DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to obtain the current phy-
sical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the le driver. The le driver will route received Ethernet
frames up all those open and bound streams having a sap which matches the Ethernet
type as DL_UNITDATA_IND messages. Received Ethernet frames are duplicated and
routed up multiple open streams if necessary. The DLSAP address contained within the
DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the sap (type)
and physical (Ethernet) components.

In addition to the mandatory connectionless DLPI message set the driver additionally
supports the following primitives.

le Primitives The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable recep-
tion of individual multicast group addresses. A set of multicast addresses may be itera-
tively created and modified on a per-stream basis using these primitives. These primi-
tives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all
(“promiscuous mode”) frames on the media including frames generated by the local host.

7-170 modified 10 Mar 1994

SunOS 5.4 Special Files le (7)

When used with the DL_PROMISC_SAP flag set this enables/disables reception of all sap
(Ethernet type) values. When used with the DL_PROMISC_MULTI flag set this
enables/disables reception of all multicast group addresses. The effect of each is always
on a per-stream basis and independent of the other sap and physical level configurations
on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive return the 6 octet Ethernet address currently associ-
ated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primitive is
valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6 octet Ethernet address currently
associated (attached) to this stream. The credentials of the process which originally
opened this stream must be superuser or EPERM is returned in the DL_ERROR_ACK. This
primitive is destructive in that it affects all other current and future streams attached to
this device. An M_ERROR is sent up all other streams attached to this device when this
primitive on this stream is successful. Once changed, all streams subsequently opened
and attached to this device will obtain this new physical address. Once changed, the
physical address will remain so until this primitive is used to change the physical address
again or the system is rebooted, whichever comes first.

FILES /dev/le le special character device.
/kernel/drv/options.conf System wide default device driver properties

SEE ALSO driver.conf(4), dlpi(7), ie(7)

SPARCstation 10 Twisted-Pair Ethernet Link Test

Twisted-Pair Ethernet Link Test

NOTES If you are using twisted pair Ethernet (TPE), you need to be aware of the link test feature.
The IEEE 10Base-T specification states that the link test should always be enabled at the
host and the hub. Complications may arise because:

1. Some older hubs do not provide link pulses

2. Some hubs are configured to not send link pulses

Under either of these two conditions the host translates the lack of link pulses into a link
failure unless it is programmed to ignore link pulses. To program your system to ignore
link pulses (also known as disabling the link test) do the following at the OpenBoot
PROM prompt:

<#0> ok setenv tpe-link-test? false
tpe-link-test? = false

The above command will work for SPARCstation-10, SPARCstation-20 and
SPARCclassic systems that come with built in twisted pair Ethernet ports. For other sys-
tems and for add-on boards with twisted pair Ethernet refer to the documentation that
came with the system or board for information on disabling the link test.

modified 10 Mar 1994 7-171

le (7) Special Files SunOS 5.4

SPARCstation-10, SPARCstation-20 and SPARCclassic systems come with a choice of
built in AUI (using an adapter cable) and TPE ports. From Solaris 2.2 onward an auto-
selection scheme was implemented in the le driver that will switch between AUI and
TPE depending on which interface is active. Auto-selection uses the presence or absence
of the link test on the TPE interface as one indication of whether that interface is active.
In the special case where you wish to use TPE with the link-test disabled you should
manually override auto-selection so that the system will use only the twisted pair port.

This override can be performed by defining the cable-selection property in the file
/kernel/drv/options.conf to force the system to use TPE or AUI as appropriate. The
example below sets the cable selection to TPE.

example# cd /kernel/drv
example# echo ’cable-selection="tpe";’ >> options.conf

Note that the standard options.conf file contains important information; the only change
to the file should be the addition of the cable-selection property. Be careful to type this line
exactly as shown above, ensuring that you append to the existing file, and include the ter-
minating semi-colon. Alternatively you can use a text editor to append the line

cable-selection="tpe";

to the end of the file.

Please refer to the SPARCstation 10 Twisted-Pair Ethernet Link Test (801-2481-10), Twisted-
Pair Ethernet Link Test (801-6184-10) and the driver.conf(4) man page for details of the
syntax of driver configuration files.

7-172 modified 10 Mar 1994

SunOS 5.4 Special Files leo (7)

NAME leo − double-buffered 24-bit SBus color frame buffer and graphics accelerator

DESCRIPTION leo (ZX) is a 24-bit SBus-based color frame buffer and graphics accelerator. The frame
buffer consists of 96 video memory planes of 1280 × 1024 pixels, including 24-bit double-
buffering, 8 overlay planes, 24 z-buffer planes, 10 window ID planes, and 6 fast clear
planes. Leo provides the standard frame buffer interface as defined in fbio(7). Applica-
tion acceleration is achieved via the XGL native 3D graphics library.

FILES /dev/fbs/leo0 device special file

SEE ALSO leoconfig(1M) mmap(2), fbio(7),

modified 21 Jul 1993 7-173

llc1 (7) Special Files SunOS 5.4

NAME llc1 − Logical Link Control Protocol Class 1 Driver

SYNOPSIS #include <sys/stropts.h>
#include <sys/ethernet.h>
#include <sys/dlpi.h>
#include <sys/llc1.h>

AVAILABILITY x86

DESCRIPTION The llc1 driver is a multi-threaded, loadable, clonable, STREAMS multiplexing driver
supporting the connectionless Data Link Provider Interface, dlpi(7), implementing IEEE
802.2 Logical Link Control Protocol Class 1 over a STREAM to a MAC level driver. Mul-
tiple MAC level interfaces installed within the system can be supported by the driver.
The llc1 driver provides basic support for the LLC1 protocol. Functions provided
include frame transmit and receive, XID, and TEST, multicast support, and error
recovery and reporting.

The cloning, character-special device, /dev/llc1, is used to access all LLC1 controllers
configured under llc1.

The llc1 driver is a “Style 2” Data Link Service provider. All messages of types
M_PROTO and M_PCPROTO are interpreted as DLPI primitives. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream with a
particular device (ppa). The ppa ID is interpreted as an unsigned long and indicates the
corresponding device instance (unit) number. An error (DL_ERROR_ACK) is returned by
the driver if the ppa field value does not correspond to a valid device instance number
for this system.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

The maximum Service Data UNIT (SDU) is derived from the MAC layer linked
below the driver. In the case of an Ethernet driver, the SDU will be 1497.

The minimum SDU is 0.

The dlsap address length is 7.

The MAC type is DL_CSMACD or DL_TPR as determined by the driver linked
under llc1. If the driver reports that it is DL_ETHER, it will be changed to
DL_CSMACD; otherwise the type is the same as the MAC type.

The sap length value is −1, meaning the physical address component is followed
immediately by a 1-octet sap component within the DLSAP address.

The service mode is DL_CLDLS.

No optional quality of service (QOS) support is included at present, so the QOS
fields should be initialized to 0.

The provider style is DL_STYLE2.

The DLPI version is DL_VERSION_2.

7-174 modified 15 Oct 1993

SunOS 5.4 Special Files llc1 (7)

The broadcast address value is the broadcast address returned from the lower
level driver.

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a par-
ticular Service Access Point (SAP) with the stream. The llc1 driver interprets the sap field
within the DL_BIND_REQ as an IEEE 802.2 “SAP,” therefore valid values for the sap field
are in the [0-0xFF] range with only even values being legal.

The llc1 driver DLSAP address format consists of the 6-octet physical (e.g., Ethernet)
address component followed immediately by the 1-octet sap (type) component produc-
ing a 7-octet DLSAP address. Applications should not hard-code to this particular
implementation-specific DLSAP address format, but use information returned in the
DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap length,
full DLSAP length, and sap/physical ordering are included within the DL_INFO_ACK.
The physical address length can be computed by subtracting the absolute value of the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the LAN by sending
DL_UNITDATA_REQ messages to the llc1 driver. The llc1 driver will route received
frames up all open and bound streams having a sap which matches the IEEE 802.2 DSAP
as DL_UNITDATA_IND messages. Received frames are duplicated and routed up multi-
ple open streams if necessary. The DLSAP address contained within the
DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the sap (type)
and physical (Ethernet) components.

In addition to the mandatory, connectionless DLPI message set, the driver additionally
supports the following primitives:

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable recep-
tion of specific multicast group addresses. A set of multicast addresses may be iteratively
created and modified on a per-stream basis using these primitives. These primitives are
accepted by the driver in any driver state that is valid while still being attached to the
ppa.

The DL_PHYS_ADDR_REQ primitive returns the 6-octet physical address currently associ-
ated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primitive is
valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6-octet physical address currently
associated (attached) to this stream. Once changed, all streams subsequently opened and
attached to this device will obtain this new physical address. Once changed, the physical
address will remain set until this primitive is used to change the physical address again
or the system is rebooted, whichever occurs first.

The DL_XID_REQ/DL_TEST_REQ primitives provide the means for a user to issue an LLC
XID or TEST request message. A response to one of these messages will be in the form of
a DL_XID_CON/DL_TEST_CON message.

The DL_XID_RES/DL_TEST_RES primitives provide a way for the user to respond to the
receipt of an XID or TEST message that was received as a DL_XID_IND/DL_TEST_IND
message.

modified 15 Oct 1993 7-175

llc1 (7) Special Files SunOS 5.4

XID and TEST will be automatically processed by llc1 if the
DL_AUTO_XID/DL_AUTO_TEST bits are set in the DL_BIND_REQ.

FILES /dev/llc1

SEE ALSO dlpi(7)

7-176 modified 15 Oct 1993

SunOS 5.4 Special Files lofs (7)

NAME lofs − loopback virtual file system

SYNOPSIS #include <sys/param.h>
#include <sys/mount.h>

int mount(const char ∗dir, const char ∗virtual, int mflag , lofs , NULL , 0);

DESCRIPTION The loopback file system device allows new, virtual file systems to be created, which pro-
vide access to existing files using alternate pathnames. Once the virtual file system is
created, other file systems can be mounted within it, without affecting the original file
system. However, file systems which are subsequently mounted onto the original file
system are visible to the virtual file system, unless or until the corresponding mount point
in the virtual file system is covered by a file system mounted there.

virtual is the mount point for the virtual file system. dir is the pathname of the existing
file system. mflag specifies the mount options; the MS_DATA bit in mflag must be set. If
the MS_RDONLY bit in mflag is not set, accesses to the loop back file system are the same
as for the underlying file system. Otherwise, all accesses in the loop back file system will
be read-only. All other mount(2) options are inherited from the underlying file systems.

A loopback mount of ’/’ onto /tmp/newroot allows the entire file system hierarchy to
appear as if it were duplicated under /tmp/newroot, including any file systems mounted
from remote NFS servers. All files would then be accessible either from a pathname rela-
tive to ’/’ or from a pathname relative to /tmp/newroot until such time as a file system is
mounted in /tmp/newroot, or any of its subdirectories.

Loopback mounts of ’/’ can be performed in conjunction with the chroot(2) system call, to
provide a complete virtual file system to a process or family of processes.

Recursive traversal of loopback mount points is not allowed; after the loopback mount of
/tmp/newroot, the file /tmp/newroot/tmp/newroot does not contain yet another file sys-
tem hierarchy; rather, it appears just as /tmp/newroot did before the loopback mount was
performed (for example, as an empty directory).

SEE ALSO mount(1M), chroot(2), mount(2), sysfs(2), vfstab(4)

WARNINGS Loopback mounts must be used with care; the potential for confusing users and applica-
tions is enormous. A loopback mount entry in /etc/vfstab must be placed after the mount
points of both directories it depends on. This is most easily accomplished by making the
loopback mount entry the last in /etc/vfstab.

BUGS Because only directories can be mounted or mounted on, the structure of a virtual file
system can only be modified at directories.

modified 20 Mar 1992 7-177

log (7) Special Files SunOS 5.4

NAME log − interface to STREAMS error logging and event tracing

SYNOPSIS #include <sys/strlog.h>
#include <sys/log.h>

DESCRIPTION log is a STREAMS software device driver that provides an interface for console logging
and for the STREAMS error logging and event tracing processes (see strerr(1M), and
strace(1M)). log presents two separate interfaces: a function call interface in the kernel
through which STREAMS drivers and modules submit log messages; and a set of ioctl(2)
requests and STREAMS messages for interaction with a user level console logger, an error
logger, a trace logger, or processes that need to submit their own log messages.

Kernel Interface log messages are generated within the kernel by calls to the function strlog():

strlog(short mid, short sid, char level, ushort flags , char ∗fmt, unsigned arg1 . . .);

Required definitions are contained in <sys/strlog.h>, <sys/log.h>, and <sys/syslog.h>.
mid is the STREAMS module id number for the module or driver submitting the log mes-
sage. sid is an internal sub-id number usually used to identify a particular minor device
of a driver. level is a tracing level that allows for selective screening out of low priority
messages from the tracer. flags are any combination of SL_ERROR (the message is for the
error logger), SL_TRACE (the message is for the tracer), SL_CONSOLE (the message is for
the console logger), SL_FATAL (advisory notification of a fatal error), and SL_NOTIFY
(request that a copy of the message be mailed to the system administrator). fmt is a
printf(3S) style format string, except that %s, %e, %E, %g, and %G conversion
specifications are not handled. Up to NLOGARGS (in this release, three) numeric or char-
acter arguments can be provided.

User Interface log is opened through the /dev/log instance of the clone driver. Each open of /dev/log
obtains a separate stream to log. In order to receive log messages, a process must first
notify log whether it is an error logger, trace logger, or console logger using a STREAMS
I_STR ioctl call (see below). For the console logger, the I_STR ioctl has an ic_cmd field of
I_CONSLOG, with no accompanying data. For the error logger, the I_STR ioctl has an
ic_cmd field of I_ERRLOG, with no accompanying data. For the trace logger, the ioctl has
an ic_cmd field of I_TRCLOG, and must be accompanied by a data buffer containing an
array of one or more struct trace_ids elements.

struct trace_ids {
short ti_mid;
short ti_sid;
char ti_level;

};

7-178 modified 23 Feb 1994

SunOS 5.4 Special Files log (7)

Each trace_ids structure specifies a mid, sid, and level from which messages will be
accepted. strlog() will accept messages whose mid and sid exactly match those in the
trace_ids structure, and whose level is less than or equal to the level given in the
trace_ids structure. A value of −1 in any of the fields of the trace_ids structure indicates
that any value is accepted for that field.

Once the logger process has identified itself using the ioctl call, log will begin sending up
messages subject to the restrictions noted above. These messages are obtained using the
getmsg(2) function. The control part of this message contains a log_ctl structure, which
specifies the mid, sid, level, flags, time in ticks since boot that the message was submitted,
the corresponding time in seconds since Jan. 1, 1970, a sequence number, and a priority.
The time in seconds since 1970 is provided so that the date and time of the message can
be easily computed, and the time in ticks since boot is provided so that the relative timing
of log messages can be determined.

struct log_ctl {
short mid;
short sid;
char level; /∗ level of message for tracing ∗/
short flags; /∗ message disposition ∗/
clock_t ltime; /∗ time in machine ticks since boot ∗/
time_t time; /∗ time in seconds since 1970 ∗/
long seq_no; /∗ sequence number ∗/
int pri; /∗ priority = (facility|level) ∗/

};

The priority consists of a priority code and a facility code, found in <sys/syslog.h>. If
SL_CONSOLE is set in flags , the priority code is set as follows: If SL_WARN is set, the
priority code is set to LOG_WARNING; If SL_FATAL is set, the priority code is set to
LOG_CRIT; If SL_ERROR is set, the priority code is set to LOG_ERR; If SL_NOTE is set, the
priority code is set to LOG_NOTICE; If SL_TRACE is set, the priority code is set to
LOG_DEBUG; If only SL_CONSOLE is set, the priority code is set to LOG_INFO. Messages
originating from the kernel have the facility code set to LOG_KERN. Most messages ori-
ginating from user processes will have the facility code set to LOG_USER.

Different sequence numbers are maintained for the error and trace logging streams, and
are provided so that gaps in the sequence of messages can be determined (during times
of high message traffic some messages may not be delivered by the logger to avoid hog-
ging system resources). The data part of the message contains the unexpanded text of the
format string (null terminated), followed by NLOGARGS words for the arguments to the
format string, aligned on the first word boundary following the format string.

A process may also send a message of the same structure to log, even if it is not an error
or trace logger. The only fields of the log_ctl structure in the control part of the message
that are accepted are the level, flags, and pri fields; all other fields are filled in by log before
being forwarded to the appropriate logger. The data portion must contain a null ter-
minated format string, and any arguments (up to NLOGARGS) must be packed, one
word each, on the next word boundary following the end of the format string.

modified 23 Feb 1994 7-179

log (7) Special Files SunOS 5.4

ENXIO is returned for I_TRCLOG ioctls without any trace_ids structures, or for any
unrecognized ioctl calls. The driver silently ignores incorrectly formatted log messages
sent to the driver by a user process (no error results).

Processes that wish to write a message to the console logger may direct their output to
/dev/conslog, using either write(2) or putmsg(2).

EXAMPLES Example of I_ERRLOG registration:
struct strioctl ioc;

ioc.ic_cmd = I_ERRLOG;
ioc.ic_timout = 0; /∗ default timeout (15 secs.) ∗/
ioc.ic_len = 0;
ioc.ic_dp = NULL;

ioctl(log, I_STR, &ioc);

Example of I_TRCLOG registration:
struct trace_ids tid[2];

tid[0].ti_mid = 2;
tid[0].ti_sid = 0;
tid[0].ti_level = 1;

tid[1].ti_mid = 1002;
tid[1].ti_sid = −1; /∗ any sub-id will be allowed ∗/
tid[1].ti_level = −1; /∗ any level will be allowed ∗/

ioc.ic_cmd = I_TRCLOG;
ioc.ic_timout = 0;
ioc.ic_len = 2 ∗ sizeof(struct trace_ids);
ioc.ic_dp = (char ∗)tid;

ioctl(log, I_STR, &ioc);

Example of submitting a log message (no arguments):
struct strbuf ctl, dat;
struct log_ctl lc;
char ∗message = "Don’t forget to pick up some milk

on the way home";

ctl.len = ctl.maxlen = sizeof(lc);
ctl.buf = (char ∗)&lc;

dat.len = dat.maxlen = strlen(message);

7-180 modified 23 Feb 1994

SunOS 5.4 Special Files log (7)

dat.buf = message;

lc.level = 0;
lc.flags = SL_ERROR|SL_NOTIFY;

putmsg(log, &ctl, &dat, 0);

FILES /dev/log
/dev/conslog

SEE ALSO strace(1M), strerr(1M), intro(2), getmsg(2), putmsg(2), write(2),

STREAMS Programmer’s Guide

modified 23 Feb 1994 7-181

logi (7) Special Files SunOS 5.4

NAME logi − LOGITECH Bus Mouse device interface

SYNOPSIS /dev/logi

AVAILABILITY x86

DESCRIPTION The logi driver supports the LOGITECH Bus Mouse. It allows applications to obtain
information about the mouse’s movements and the status of its buttons. The data is read
in the Five Byte Packed Binary Format, also called MSC format.

FILES /dev/logi

7-182 modified 8 Nov 1993

SunOS 5.4 Special Files lp (7)

NAME lp − driver for parallel port

SYNOPSIS include <sys/bpp_io.h>

fd = open("/dev/lpn", flags);

name=lp
class=sysbus
ioaddr=0x378 interrupts=3,7;

name=lp
class=sysbus
ioaddr=0x278 interrupts=3,5;

AVAILABILITY x86

DESCRIPTION The lp driver provides the interface to the parallel ports used by printers for x86 systems.
The lp driver is implemented as a STREAMS device. Up to three parallel ports can be
accessed by the driver. The lp driver accesses the /kernel/drv/lp.conf file for
specifications about these parallel ports. The specifications include:

name

class

ioaddr The I/O port base address for this port.

interrupts The IRQ level of the port. interrupts is analogous to intr.

For more information about lp.conf, refer to sysbus(4).

IOCTLS BPPIOC_TESTIO Test transfer readiness. This command checks to see if a read or
write transfer would succeed based on pin status. If a transfer
would succeed, 0 is returned. If a transfer would fail, −1 is
returned, and errno is set to EIO. The error status can be retrieved
using the BPPIOC_GETERR ioctl() call.

BPPIOC_GETERR Get last error status. The argument is a pointer to a struct
bpp_error_status. See below for a description of the elements of
this structure. This structure indicates the status of all the
appropriate status bits at the time of the most recent error condi-
tion during a read(2) or write(2) call, or the status of the bits at the
most recent BPPIOC_TESTIO ioctl(2) call. The application can
check transfer readiness without attempting another transfer using
the BPPIOC_TESTIO ioctl().

modified 9 Dec 1993 7-183

lp (7) Special Files SunOS 5.4

Error Pins Structure This structure and symbols are defined in the include file <sys/bpp_io.h>:

struct bpp_error_status {
char timeout_occurred; /∗ Not use ∗/
char bus_error; /∗ Not use ∗/
u_char pin_status; /∗ Status of pins which could

∗ cause an error ∗/
};

/∗ Values for pin_status field ∗/
#define BPP_ERR_ERR 0x01 /∗ Error pin active ∗/
#define BPP_SLCT_ERR 0x02 /∗ Select pin active ∗/
#define BPP_PE_ERR 0x04 /∗ Paper empty pin active ∗/

Note: Other pin statuses are defined in <sys/bpp_io.h>, but BPP_ERR_ERR,
BPP_SLCT_ERR and BPP_PE_ERR are the only ones valid for the x86 lp driver.

ERRORS EIO A BPPIOC_TESTIO ioctl() call is attempted while a condition exists that
would prevent a transfer (such as a peripheral error).

EINVAL An ioctl() is attempted with an invalid value in the command argument.

FILES /kernel/drv/lp.conf
configuration file for lp driver. For a description of each field, refer to
sysbus(4).

SEE ALSO sysbus(4), streamio(7)

DIAGNOSTICS "lp_attach: cannot add intr."
An invalid intr= or interrupts= property has been specified in the
/kernel/drv/lp.conf file.

NOTES A read operation on a bi-directional parallel port is not supported.

7-184 modified 9 Dec 1993

SunOS 5.4 Special Files mcis (7)

NAME mcis − low-level module for IBM MicroChannel host bus adapter

AVAILABILITY x86

DESCRIPTION The mcis module provides low-level interface routines between the common disk/tape
I/O subsystem and the IBM MicroChannel bus master SCSI (Small Computer System
Interface) controllers. The mcis module can be configured for disk and streaming tape
support for one or more host adapter boards, each of which must be the sole initiator on
a SCSI bus. Auto confi- guration code determines if the adapter is present at the
configured address and what types of devices are attached to it.

Board Configuration
and Auto

Configuration

The driver attempts to initialize itself in accordance with the information found in the
configuration file, /kernel/drv/mcis.conf. The relevant user configurable items in this file
are:

io port ’reg=0x3540,0,0’ ’ioaddr=0x3540’,
hardware cache ’hwcache="on"’.

The first host bus adapter is at address 0x3540. If there is a second or third adapter (up to
four are permitted on a PS/2 Model 95), uncomment the appropriate line(s) in the
configuration file.

The hwcache property controls the cache on the host bus adapter. Enabling the cache can
increase file system performance.

Note that the IBM boot disk must be configured at target 6 lun 0.

FILES /kernel/drv/mcis.conf configuration file for mcis.

modified 18 Oct 1993 7-185

mcpp (7) Special Files SunOS 5.4

NAME mcpp − ALM-2 Parallel Printer port driver

SYNOPSIS #include <fcntl.h>
#include <sys/mcpio.h>
open("/dev/mcppn", mode);

DESCRIPTION
(PARALLEL

PORT)

The parallel port is Centronics-compatible and is suitable for most common parallel
printers. Devices attached to this interface are normally handled by the line printer
spooling system and should not be accessed directly by the user.

The printer devices reside on a separate major device number from the serial devices.
Minor device numbers in the range 0 − 7 access the printer, and the recommended nam-
ing is /dev/mcpp[0-7].

IOCTLS Various control flags and status bits may be fetched and set on an ALM-2 printer port.
The following flags and status bits are supported; they are defined in sys/mcpio.h:

MCPRIGNSLCT 0x02 set if interface ignoring SLCT− on open
MCPRDIAG 0x04 set if printer port is in self-test mode
MCPRVMEINT 0x08 set if VME bus interrupts are enabled
MCPRINTPE 0x10 print message when out of paper
MCPRINTSLCT 0x20 print message when printer offline
MCPRPE 0x40 set if device ready, cleared if device out of paper
MCPRSLCT 0x80 set if device online (Centronics SLCT asserted)

The flags MCPRINTSLCT, MCPRINTPE, and MCPRDIAG may be changed; the other bits
are status bits and may not be changed.

The ioctl() calls supported by ALM-2 printer ports are listed below.

MCPIOGPR The argument is a pointer to an unsigned char. The printer flags and
status bits are stored in the unsigned char pointed to by the argument.

MCPIOSPR The argument is a pointer to an unsigned char. The printer flags are set
from the unsigned char pointed to by the argument.

ERRORS Normally, the interface only reports the status of the device when attempting an open(2)
call. An open() on a /dev/mcpp∗ device will fail if:

ENODEV The unit being opened does not exist.

ENXIO The device is offline or out of paper.

Bit 17 of the configuration flags may be specified to say that the interface should ignore
Centronics SLCT− and RDY/PE− when attempting to open the device, but this is normally
useful only for configuration and troubleshooting: if the SLCT− and RDY lines are not
asserted during an actual data transfer (as with a write(2) call), no data is transferred.

FILES /dev/mcpp[0-7] parallel printer port

7-186 modified 8 Mar 1993

SunOS 5.4 Special Files mcpp (7)

SEE ALSO open(2), write(2)

DIAGNOSTICS Printer on mcppn is out of paper

Printer on mcppn paper ok
Assorted printer diagnostics, if enabled as discussed above.

modified 8 Mar 1993 7-187

mcpzsa (7) Special Files SunOS 5.4

NAME mcpzsa − ALM-2 Zilog 8530 SCC serial communications driver

SYNOPSIS #include <fcntl.h>
#include <sys/termios.h>
open("/dev/term/n", mode);
open("/dev/cua/n", mode);

DESCRIPTION The ALM-2 board provides 16 serial input/output channels that are capable of supporting
a variety of communication protocols. A typical system uses these devices to implement
essential functions, including RS-423 ports (which also support most RS-232 equipment).

The mcpzsa module is a loadable STREAMS driver that provides basic support for the
8530 hardware, together with basic asynchronous communication support. The driver
supports those termio(7) device control functions specified by flags in the c_cflag word of
the termios structure and by the IGNBRK, IGNPAR, PARMRK, or INPCK flags in the
c_iflag word of the termios structure. All other termio(7) functions must be performed
by STREAMS modules pushed atop the driver. When a device is opened, the ldterm(7)
and ttcompat(7) STREAMS modules are automatically pushed on top of the stream, pro-
viding the standard termio(7) interface.

The character-special devices /dev/term/[0-15] are used to access the serial ports on the
first ALM-2 board.

Subsequent instances of the ALM-2 board will use the next 16 numbers in sequence.
These term/n devices have minor device numbers in the range 0 − 127.

To allow a single tty line to be connected to a modem and used for both incoming and
outgoing calls, a special feature, controlled by the minor device number, is available. By
accessing character-special devices with names of the form /dev/cua/n, it is possible to
open a port without the Carrier Detect signal being asserted, either through hardware or
an equivalent software mechanism. These devices are commonly known as dial-out lines
and have minor numbers 256 greater than their corresponding dial-in lines.

Once a /dev/cua/n line is opened, the corresponding term line cannot be opened until the
/dev/cua/n line is closed; a blocking open will wait until the /dev/cua/n line is closed
(which will drop Data Terminal Ready, after which Carrier Detect will usually drop as
well) and carrier is detected again, and a non-blocking open will return an error. Also, if
the /dev/term/n line has been opened successfully (usually only when carrier is recog-
nized by the modem) the corresponding /dev/cua/n line can not be opened. This allows a
modem to be attached to, for example, /dev/term/0 and used for dial-in (by enabling the
line for login in /etc/inittab) and also used for dial-out (by tip(1) or uucp(1C)) as
/dev/cua/0 when no one is logged in on the line.

7-188 modified 8 Mar 1993

SunOS 5.4 Special Files mcpzsa (7)

IOCTLS The standard set of termio ioctl() calls are supported by mcpzsa.

If the CRTSCTS flag in the c_cflag is set, output will be generated only if CTS is high; if
CTS is low, output will be frozen. If the CRTSCTS flag is clear, the state of CTS has no
effect. Breaks can be generated by the TCSBRK, TIOCSBRK, and TIOCCBRK ioctl() calls.
The modem control lines TIOCM_CAR, TIOCM_CTS, TIOCM_RTS, and TIOCM_DTR are
provided.

The input and output line speeds may be set to any of the speeds supported by termio.
The speeds cannot be set independently; when the output speed is set, the input speed is
set to the same speed.

ERRORS An open() will fail if:

ENODEV The unit being opened does not exist.

EPROTO An unsupported or non-serial protocol has been requested.

EBUSY The dial-out device is being opened and the dial-in device is already
open, or the dial-in device is being opened with a no-delay open and the
dial-out device is already open.

EBUSY The unit has been marked as exclusive-use by another process with a
TIOCEXCL ioctl() call.

EINTR The open was interrupted by the delivery of a signal.

FILES /dev/term/[0-127] hardwired tty lines
/dev/cua/[0-127] dial-out tty lines

SEE ALSO tip(1), uucp(1C), ldterm(7), termio(7), ttcompat(7), zs(7)

DIAGNOSTICS mcpzsan c : parity error ignored.
A parity error was detected and disregarded due to the IGNPAR flag being set.

mcpzsan c : SCC silo overflow.
The 8530 character input silo overflowed before it could be serviced.

mcpzsan c : input ring overflow.
The driver’s character input ring buffer overflowed before it could be serviced.

NOTES The character-special device names may not always be aligned on multiples of 16 if other
serial port devices, such as SPIF devices are present on the system.

modified 8 Mar 1993 7-189

mem (7) Special Files SunOS 5.4

NAME mem, kmem − physical or virtual memory

SYNOPSIS /dev/mem
/dev/kmem

DESCRIPTION The file /dev/mem is a special file that is an image of the physical memory of the computer.
The file /dev/kmem is a special file that is an image of the kernel virtual memory of the
computer. Either may be used, for example, to examine, and even patch the system.

Byte addresses in /dev/mem are interpreted as physical memory addresses. Byte
addresses in /dev/kmem are interpreted as kernel virtual memory addresses. References
to non-existent locations cause errors to be returned (see ERRORS below).

The file /dev/kmem accesses up to 4GB of kernel virtual memory. The file /dev/mem
accesses physical memory; the size of the file is equal to the amount of physical memory
in the computer. This can be larger than 4GB; in which case, memory beyond 4GB can be
accessed using a series of read(2) and write(2) commands or a combination of llseek(2)
and read(2) and write(2).

ERRORS EFAULT Bad address. This error can occur when trying to: write(2) a read-only
location, read(2) a write-only location, or read(2) or write(2) a non-
existent or unimplemented location.

ENXIO This error results from attempting to mmap(2) a non-existent physical
(mem) or virtual (kmem) memory address.

FILES /dev/mem File containing image of physical memory of computer.
/dev/kmem File containing image of kernel virtual memory of computer.

SEE ALSO llseek(2), mmap(2), read(2), write(2)

NOTES Some of /dev/kmem cannot be read because of write-only addresses or unequipped
memory addresses.

7-190 modified 18 Mar 1994

SunOS 5.4 Special Files mlx (7)

NAME mlx − low-level module for Mylex DAC960 EISA host bus adapter series

SYNOPSIS /kernel/drv/mlx

AVAILABILITY x86

DESCRIPTION The mlx module provides low-level interface routines between the common disk/tape
I/O subsystem and the Mylex DAC960 controllers. The mlx module can be configured
for disk, CD-ROM, and streaming tape support for one or more host adapter boards.

Auto-configuration code determines whether the adapter is present at the configured
address and what types of devices are attached to it. The Mylex DAC960 is primarily
used as a disk array (system drive) controller. In order to configure the attached disk
arrays, the controller must first be configured prior to Solaris boot using the
configuration utilities provided by the hardware manufacturer. With these utilities, the
user can set different levels of redundant arrays of independent disks (RAID), striping
parameters, caching mechanisms, etc. For more information, refer to the user’s manual
supplied with your hardware.

EISA Configuration
Tips

The Mylex DAC960 BIOS can handle multiple cards. Therefore, if more than one Mylex
DAC960 adapter is installed in a system only the BIOS of the one in the lowest slot should
be enabled and the BIOS of the rest should be disabled.

Enable tag queueing only for the SCSI disk drives which are officially tested and
approved by Mylex Corp. Otherwise, it is strongly recommended to disable tag queue-
ing to avoid serious problems.

Board Configuration
and Auto

Configuration

The driver attempts to initialize itself in accordance with the information found in the
configuration file /kernel/drv/mlx.conf. If the Mylex DAC960 SCSI host adapter has N
channels, the mlx.conf file should have N+1 entries for that slot. The section of the file for
that slot will contain N entries, one per physical channel, numbered from 0 to N-1 , and
one entry dedicated to all the System Drives on that adapter, virtual channel number 255
(0xFF). The entry for the virtual channel (0xFF) has to be the first one for each slot.

In general, if the Mylex DAC960 SCSI host adapter is installed in slot S, the syntax of the
entry for its virtual channel is:

name="mlx" parent="eisa"
interrupts=5,9,5,10,5,11,5,12,5,13,5,14,5,15 reg=0xS0FF,0,0
ioaddr=0xS0FF flow_control="dmult" queue="qsort" disk="dadk";

And the entry for its XX-th physical channel (XX in hex) is:

name="mlx" parent="eisa"
interrupts=5,9,5,10,5,11,5,12,5,13,5,14,5,15 reg=0xS0XX,0,0
ioaddr=0xS0XX flow_control="dsngl" queue="qsort" disk="scdk"
tape="sctp" tag_fctrl="adapt" tag_queue="qtag";

modified 29 Oct 1994 7-191

mlx (7) Special Files SunOS 5.4

The ioaddr (I/O address) is 0x1000 times the EISA slot number plus the channel number
in hex. Hence, channel 2 on slot 1 is at address 0x1002 and the virtual channel on slot 10 is
at 0xa0ff.

The SCSI id of the devices on each channel may not be equal or greater than the value of
the maximum number of targets allowed per channel (MAX_TGT), otherwise it cannot
even be configured.

For the best start-up performance on a particular host, keep only the entries that
correspond to the installed slots and comment out the other entries in the configuration
file /kernel/drv/mlx.conf.

EXAMPLES In the following example, the controller is installed in slot 2, and the lines starting with ’#’
are comments.

#
Slot 2:
#

Virtual Channel 0xFF:

name="mlx" parent="eisa"
interrupts=5,9,5,10,5,11,5,12,5,13,5,14,5,15 reg=0x20FF,0,0
ioaddr=0x20FF flow_control="dmult" queue="qsort" disk="dadk";

Channel 0:

name="mlx" parent="eisa"
interrupts=5,9,5,10,5,11,5,12,5,13,5,14,5,15 reg=0x2000,0,0
ioaddr=0x2000 flow_control="dsngl" queue="qsort" disk="scdk"
tape="sctp" tag_fctrl="adapt" tag_queue="qtag";

Channel 1:

name="mlx" parent="eisa"
interrupts=5,9,5,10,5,11,5,12,5,13,5,14,5,15 reg=0x2001,0,0
ioaddr=0x2001 flow_control="dsngl" queue="qsort" disk="scdk"
tape="sctp" tag_fctrl="adapt" tag_queue="qtag";

Channel 2:

name="mlx" parent="eisa"
interrupts=5,9,5,10,5,11,5,12,5,13,5,14,5,15 reg=0x2002,0,0
ioaddr=0x2002 flow_control="dsngl" queue="qsort" disk="scdk"
tape="sctp" tag_fctrl="adapt" tag_queue="qtag";

Channel 3:

name="mlx" parent="eisa"
interrupts=5,9,5,10,5,11,5,12,5,13,5,14,5,15 reg=0x2003,0,0
ioaddr=0x2003 flow_control="dsngl" queue="qsort" disk="scdk"
tape="sctp" tag_fctrl="adapt" tag_queue="qtag";

7-192 modified 29 Oct 1994

SunOS 5.4 Special Files mlx (7)

Channel 4:

name="mlx" parent="eisa"
interrupts=5,9,5,10,5,11,5,12,5,13,5,14,5,15 reg=0x2004,0,0
ioaddr=0x2004 flow_control="dsngl" queue="qsort" disk="scdk"
tape="sctp" tag_fctrl="adapt" tag_queue="qtag";

FILES /kernel/drv/mlx.conf mlx configuration file.

WARNINGS
Tag Queueing Enable tag queueing only for the SCSI disk drives which are officially tested and

approved by Mylex Corp. Otherwise, it is strongly recommended to disable tag queue-
ing to avoid serious problems.

Standby Drives If a SCSI disk drive is not defined to be part of any physical pack within a system drive, it
is automatically labeled as a standby drive. If any SCSI disk drive within a system drive
fails, data on a standby drive may be lost due to the standby replacement procedure. This pro-
cedure will overwrite the standby drive if the failed disk drive is configured with any
level of redundancy (RAID levels 1, 5, and 6) and its size is identical to the size of the
available standby drive.

Therefore, inspite of the fact that the standby drives are physically connected, the system
denies any kind of access to them, so that there would be no chance of accidental loss of
valuable data.

Hot Plugging Other than the ‘‘hot replacement’’ of disk drives, which is described in the
manufacturer’s user’s guide, the Mylex DAC960 series do not support ‘‘hot-plugging’’
(adding or removing devices while the system is running) unless the firmware version of
the adapter is 1.22 or 1.23 . Otherwise, in order to add or remove devices you must shut
down the system, add or remove devices, reconfigure the host bus adapter using the
configuration utility provided by the manufacturer, and then reboot your system.

SCSI Target IDs When setting up the device SCSI target IDs, note that there is a limitation on the choice of
target ID numbers. Assuming the maximum number of targets per channel on the partic-
ular model of Mylex host bus adapter is MAX_TGT (see the manufacturer’s user’s
manual), the SCSI target IDs on a given channel should range from 0 to (MAX_TGT − 1).
Note that target SCSI IDs on one channel can be repeated on other channels.

Example 1:
Mylex DAC960-5 model supports a maximum of four targets per channel, i.e.,
MAX_TGT = 4. Therefore, the SCSI target IDs on a given channel should range
from 0 to 3.

Example 2:
Mylex DAC960-3 model supports a maximum of seven targets per channel, i.e.,
MAX_TGT = 7. Therefore, the SCSI target IDs on a given channel should range
from 0 to 6.

modified 29 Oct 1994 7-193

msm (7) Special Files SunOS 5.4

NAME msm − Microsoft Bus Mouse device interface

AVAILABILITY x86

DESCRIPTION The msm driver supports the Microsoft Bus Mouse. It allows applications to obtain
information about the mouse’s movements and the status of its buttons. The data is read
in the Five Byte Packed Binary Format, also called MSC format.

FILES /dev/msm

7-194 modified 18 Oct 1993

SunOS 5.4 Special Files mt (7)

NAME mt − tape interface

DESCRIPTION The files rmt/∗∗ refer to tape controllers and associated tape drives.

The labelit(1M) command requires these magnetic tape file names to work correctly with
the tape controllers. No other tape controller commands require these file names.

FILES /dev/rmt/∗

SEE ALSO labelit(1M)

modified 3 Jul 1990 7-195

mtio (7) Special Files SunOS 5.4

NAME mtio − general magnetic tape interface

SYNOPSIS #include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mtio.h>

DESCRIPTION 1/2”, 1/4”, 4mm, and 8 mm magnetic tape drives all share the same general character
device interface.

There are two types of tape records: data records and end-of-file (EOF) records. EOF
records are also known as tape marks and file marks. A record is separated by inter-
record (or tape) gaps on a tape.

End-of-recorded-media (EOM) is indicated by two EOF marks on 1/2” tape; by one on
1/4” and 8 mm cartridge tapes.

1/2” Reel Tape Data bytes are recorded in parallel onto the 9-track tape. Since it is a variable-length tap
device, the number of bytes in a physical record may vary.

The recording formats available (check specific tape drive) are 800 BPI, 1600 BPI, 6250 BPI,
and data compression. Actual storage capacity is a function of the recording format and
the length of the tape reel. For example, using a 2400 foot tape, 20 Mbyte can be stored
using 800 BPI, 40 Mbyte using 1600 BPI, 140 Mbyte using 6250 BPI, or up to 700 Mbyte
using data compression.

1/4” Cartridge Tape Data is recorded serially onto 1/4” cartridge tape. The number of bytes per record is
determined by the physical record size of the device. The I/O request size must be a
multiple of the physical record size of the device. For QIC-11, QIC-24, and QIC-150 tape
drives, the block size is 512 bytes.

The records are recorded on tracks in a serpentine motion. As one track is completed, the
drive switches to the next and begins writing in the opposite direction, eliminating the
wasted motion of rewinding. Each file, including the last, ends with one file mark.

Storage capacity is based on the number of tracks the drive is capable of recording. For
example, 4-track drives can only record 20 Mbyte of data on a 450 foot tape; 9-track
drives can record up to 45 Mbyte of data on a tape of the same length. QIC-11 is the only
tape format available for 4-track tape drives. In contrast, 9-track tape drives can use
either QIC-24 or QIC-11. Storage capacity is not appreciably affected by using either for-
mat. QIC-24 is preferable to QIC-11 because it records a reference signal to mark the posi-
tion of the first track on the tape, and each block has a unique block number.

The QIC-150 tape drives require DC-6150 (or equivalent) tape cartridges for writing.
However, they can read other tape cartridges in QIC-11, QIC-24, or QIC-120 tape formats.

8 mm Cartridge Tape Data is recorded serially onto 8 mm helical scan cartridge tape. Since it is a variable-
length tape device, the number of bytes in a physical record may vary. The recording for-
mats available (check specific tape drive) are standard 2Gbyte, 5Gbyte, and compressed
format.

7-196 modified 24 Jan 1994

SunOS 5.4 Special Files mtio (7)

4 mm DAT Tape Data is recorded either in Digital Data Storage (DDS) tape format or in Digital Data
Storage, Data Compressed (DDS-DC) tape format. Since it is a variable-length tape dev-
ice, the number of bytes in a physical record may vary. The recording formats available
are standard 2Gbyte and compressed format.

Read Operation read(2) reads the next record on the tape. The record size is passed back as the number of
bytes read, provided it is no greater than the number requested. When a tape mark or
end of data is read, a zero byte count is returned; another read will return an error. This
is different from the the older BSD behavior where another read will fetch the first record
of the next tape file. If this behavior is required, device names containing the letter b (for
BSD behavior) in the final component should be used.

Two successive reads returning zero byte counts indicate the EOM. No further reading
should be performed past the EOM.

Fixed-length I/O tape devices require the number of bytes read to be a multiple of the
physical record size. For example, 1/4” cartridge tape devices only read multiples of 512
bytes. If the blocking factor is greater than 64512 bytes (minphys limit), fixed-length I/O
tape devices read multiple records.

Tape devices which support variable-length I/O operations, such as 1/2” and 8 mm tape,
may read a range of 1 to 65535 bytes. If the record size exceeds 65535 bytes, the driver
reads multiple records to satisfy the request. These multiple records are limited to 65534
bytes.

Depending on the type of tape drive, some tape drivers may relax the above limitation
and allow applications to read record sizes larger than 65534. Refer to the specific tape
driver man page for details.

Reading past logical EOT is transparent to the user. A read operation should never hit
physical EOT.

Read requests that are lesser than a physical tape record are not allowed. Appropriate
error is returned.

Write Operation write(2) writes the next record on the tape. The record has the same length as the given
buffer.

Writing is allowed on 1/4” tape at either the beginning of tape or after the last written file
on the tape.

Writing is not so restricted on 1/2” and 8 mm cartridge tape. Care should be used when
appending files onto 1/2” reel tape devices, since an extra file mark is appended after the
last file to mark the EOM. This extra file mark must be overwritten to prevent the creation
of a null file. To facilitate write append operations, a space to the EOM ioctl is provided.
Care should be taken when overwriting records; the erase head is just forward of the
write head and any following records will also be erased.

Fixed-length I/O tape devices require the number of bytes written to be a multiple of the
physical record size. For example, 1/4” cartridge tape devices only write multiples of
512 bytes.

modified 24 Jan 1994 7-197

mtio (7) Special Files SunOS 5.4

On SPARC systems, fixed-length I/O tape devices write multiple records if the blocking
factor is greater than 64,512 bytes (minphys limit). These multiple writes are limited to
64,512 bytes. For example, if a write request is issued for 65,536 bytes using a 1/4” car-
tridge tape, two writes are issued; the first for 64,512 bytes and the second for 1024 bytes.

On x86 systems, fixed-length I/O tape devices write multiple records if the blocking fac-
tor is greater than 131,072 bytes (minphys limit). These multiple writes are limited to
131,072 bytes. For example, if a write request is issued for 132096 bytes using a 1/4” car-
tridge tape, two writes are issued; the first for 131,072 bytes and the second for 1024
bytes.

Tape devices which support variable-length I/O operations, such as 1/2” and 8 mm tape,
may write a range of 1 to 65,535 bytes. If the record size exceeds 65,535 bytes, the driver
writes multiple records to satisfy the request. These multiple records are limited to 65534
bytes. As an example, if a write request for 65540 bytes is issued using 1/2” reel tape,
two records are written; one for 65,534 bytes followed by one for 6 byte.

Depending on the type of tape drive, some tape drivers may relax the above limitation
and allow applications to write record sizes larger than 65,534. Refer to the specific tape
driver man page for details.

On SPARC systems, when logical EOT is encountered, a zero byte count is returned. The
next write will complete successfully and the full byte count is returned. Another write
will return a zero byte count. This allows the flushing of buffers. However, it is strongly
recommended to terminate the writing and close the file as soon as possible.

On x86 systems, when logical EOT is encountered, the number of bytes that have been
written will be returned. Another write will return a zero byte count. The next write will
receive an error code of ENOSPC.

Seeks are ignored in tape I/O.

Close Operation Magnetic tapes are rewound when closed, except when the “no-rewind” devices have
been specified. The names of no-rewind device files use the letter n as the end of the final
component. The no-rewind version of /dev/rmt/0l is /dev/0ln. In case of error for a no-
rewind device, the next open rewinds the device.

If the driver was opened for reading and a no-rewind device has been specified, the close
advances the tape past the next filemark (unless the current file position is at EOM) leav-
ing the tape correctly positioned to read the first record of the next file. However, if the
tape is at the first record of a file it doesn’t advance again to the first record of the next
file. These semantics are different from the older BSD behavior. If BSD behavior is
required where no implicit space operation is executed on close, the non-rewind device
name containing the letter b (for BSD behavior) in the final component should be
specified.

If data was written, a file mark is automatically written by the driver upon close. If the
rewinding device was specified, the tape will be rewound after the file mark is written. If
the user wrote a file mark prior to closing, then no file mark is written upon close. If a file
positioning ioctl, like rewind, is issued after writing, a file mark is written before reposi-
tioning the tape.

7-198 modified 24 Jan 1994

SunOS 5.4 Special Files mtio (7)

All buffers are flushed on closing a tape device. Hence, one should check the value
returned by the close operation.

Note that for 1/2” reel tape devices, two file marks are written to mark the EOM before
rewinding or performing a file positioning ioctl. If the user wrote a file mark before clos-
ing a 1/2” reel tape device, the driver will always write a file mark before closing to
insure that the end of recorded media is marked properly. If the non-rewinding device
was specified, two file marks are written and the tape is left positioned between the two
so that the second one is overwritten on a subsequent open(2) and write(2).

If no data was written and the driver was opened for WRITE-ONLY access, one or two file
marks are written, thus creating a null file.

Ioctls Not all devices support all ioctls. The driver returns an ENOTTY error on unsupported
ioctls.

The following structure definitions for magnetic tape ioctl commands are from
<sys/mtio.h>:

The minor device byte structure looks as follows:

15 7 6 5 4 3 2 1 0

Unit # BSD Reserved Density Density No rewind Unit #
Bits 7-15 behavior Select Select on Close Bits 0-1

/∗
∗ Layout of minor device byte:
∗/
#define MTUNIT(dev) (((minor(dev) & 0xff80) >> 5) +(minor(dev) & 0x3))
#define MT_NOREWIND (1 <<2)
#define MT_DENSITY_MASK (3 <<3)
#define MT_DENSITY1 (0 <<3) /∗ Lowest density/format ∗/
#define MT_DENSITY2 (1 <<3)
#define MT_DENSITY3 (2 <<3)
#define MT_DENSITY4 (3 <<3) /∗ Highest density/format ∗/
#define MTMINOR(unit) (((unit & 0x7fc) << 5) + (unit & 0x3))
#define MT_BSD (1 <<6) /∗ BSD behavior on close ∗/

/∗ structure for MTIOCTOP − magnetic tape operation command ∗/
struct mtop {

short mt_op; /∗ operation ∗/
daddr_t mt_count; /∗ number of operations ∗/

};

The following operations of MTIOCTOP ioctl are supported:

MTWEOF write an end-of-file record

MTFSF forward space over file mark

modified 24 Jan 1994 7-199

mtio (7) Special Files SunOS 5.4

MTBSF backward space over file mark (1/2", 8 mm only)

MTFSR forward space to inter-record gap

MTBSR backward space to inter-record gap

MTREW rewind

MTOFFL rewind and take the drive off-line

MTNOP no operation, sets status only

MTRETEN retension the tape (cartridge tape only)

MTERASE erase the entire tape and rewind

MTEOM position to EOM

MTNBSF backward space file to beginning of file

MTSRSZ set record size

MTGRSZ get record size

/∗ structure for MTIOCGET − magnetic tape get status command ∗/
struct mtget {

short mt_type; /∗ type of magtape device ∗/

/∗ the following two registers are device dependent ∗/
short mt_dsreg; /∗ “drive status” register ∗/
short mt_erreg; /∗ “error” register ∗/

/∗ optional error info. ∗/
daddr_t mt_resid; /∗ residual count ∗/
daddr_t mt_fileno; /∗ file number of current position ∗/
daddr_t mt_blkno; /∗ block number of current position ∗/
u_short mt_flags;
short mt_bf; /∗ optimum blocking factor ∗/

};

When spacing forward over a record (either data or EOF), the tape head is positioned in
the tape gap between the record just skipped and the next record. When spacing forward
over file marks (EOF records), the tape head is positioned in the tape gap between the
next EOF record and the record that follows it.

When spacing backward over a record (either data or EOF), the tape head is positioned in
the tape gap immediately preceding the tape record where the tape head is currently
positioned. When spacing backward over file marks (EOF records), the tape head is posi-
tioned in the tape gap preceding the EOF. Thus the next read would fetch the EOF.

Record skipping does not go past a file mark; file skipping does not go past the EOM.
After an MTFSR <huge number> command the driver leaves the tape logically positioned
before the EOF. A related feature is that EOFs remain pending until the tape is closed. For
example, a program which first reads all the records of a file up to and including the EOF
and then performs an MTFSF command will leave the tape positioned just after that same
EOF, rather than skipping the next file.

7-200 modified 24 Jan 1994

SunOS 5.4 Special Files mtio (7)

The MTNBSF and MTFSF operations are inverses. Thus, an “MTFSF −1” is equivalent to
an “MTNBSF 1”. An “MTNBSF 0” is the same as “MTFSF 0”; both position the tape device
at the beginning of the current file.

MTBSF moves the tape backwards by file marks. The tape position will end on the begin-
ning of tape side of the desired file mark.

MTBSR and MTFSR operations perform much like space file operations, except that they
move by records instead of files. Variable-length I/O devices (1/2” reel, for example)
space actual records; fixed-length I/O devices space physical records (blocks). 1/4” car-
tridge tape, for example, spaces 512 byte physical records. The status ioctl residual count
contains the number of files or records not skipped.

MTOFFL rewinds and, if appropriate, takes the device off-line by unloading the tape. The
tape must be inserted before the tape device can be used again.

The MTRETEN retension ioctl applies only to 1/4” cartridge tape devices. It is used to
restore tape tension, improving the tape’s soft error rate after extensive start-stop opera-
tions or long-term storage.

MTERASE rewinds the tape, erases it completely, and returns to the beginning of tape.

MTEOM positions the tape at a location just after the last file written on the tape. For
1/4” cartridge and 8 mm tape, this is after the last file mark on the tape. For 1/2” reel
tape, this is just after the first file mark but before the second (and last) file mark on the
tape. Additional files can then be appended onto the tape from that point.

Note the difference between MTBSF (backspace over file mark) and MTNBSF (backspace
file to beginning of file). The former moves the tape backward until it crosses an EOF
mark, leaving the tape positioned before the file mark. The latter leaves the tape posi-
tioned after the file mark. Hence, "MTNBSF n" is equivalent to "MTBSF (n+1)" followed by
"MTFSF 1". The 1/4 ” cartridge tape devices do not support MTBSF.

MTSRSZ and MTGRSZ are used to set and get fixed record lengths. The MTSRSZ ioctl
allows variable length and fixed length tape drives that support multiple record sizes to
set the record length. The mt_count field of the mtop struct is used to pass the record
size to/from the st driver. A value of 0 indicates variable record size. The MTSRSZ ioctl
makes a variable-length tape device behave like a fixed-length tape device. Refer to the
specific tape driver man page for details.

The MTIOCGET get status ioctl call returns the drive ID (mt_type), sense key error
(mt_erreg), file number (mt_fileno), optimum blocking factor (mt_bf) and record number
(mt_blkno) of the last error. The residual count (mt_resid) is set to the number of bytes not
transferred or files/records not spaced. The flags word (mt_flags) contains information
such as whether the device is SCSI, whether it is a reel device and whether the device
supports absolute file positioning.

EXAMPLES Suppose you have written three files to the non-rewinding 1/2” tape device,
/dev/rmt/0ln, and that you want to go back and dd(1M) the second file off the tape. The
commands to do this are:

modified 24 Jan 1994 7-201

mtio (7) Special Files SunOS 5.4

mt −f /dev/rmt/0ln bsf 3
mt −f /dev/rmt/0ln fsf 1
dd if=/dev/rmt/0ln

To accomplish the same tape positioning in a C program, followed by a get status ioctl:

struct mtop mt_command;
struct mtget mt_status;

mt_command.mt_op = MTBSF;
mt_command.mt_count = 3;
ioctl(fd, MTIOCTOP, &mt_command);
mt_command.mt_op = MTFSF;
mt_command.mt_count = 1;
ioctl(fd, MTIOCTOP, &mt_command);
ioctl(fd, MTIOCGET, (char ∗)&mt_status);

or

mt_command.mt_op = MTNBSF;
mt_command.mt_count = 2;
ioctl(fd, MTIOCTOP, &mt_command);
ioctl(fd, MTIOCGET, (char ∗)&mt_status);

FILES /dev/rmt/<unit number><density>[<BSD behavior>][<no rewind>]

density l, m, h, u/c (low, medium, high, ultra/compressed,
respectively)

BSD behavior (optional) b

no rewind (optional) n

For example, /dev/rmt/0hbn specifies unit 0, high density, BSD behavior and no rewind.

SEE ALSO mt(1), tar(1), dd(1M), read(2), write(2), ar(4),
SPARC only st(7)

x86 only cmtp(7)

1/4 Inch Tape Drive Tutorial

7-202 modified 24 Jan 1994

SunOS 5.4 Special Files null (7)

NAME null − the null file

SYNOPSIS /dev/null

DESCRIPTION Data written on the null special file, /dev/null, is discarded.

Reads from a null special file always return 0 bytes.

FILES /dev/null

modified 18 Sep 1992 7-203

openprom (7) Special Files SunOS 5.4

NAME openprom − PROM monitor configuration interface

SYNOPSIS #include <sys/fcntl.h>
#include <sys/types.h>
#include <sundev/openpromio.h>

open("/dev/openprom", mode);

DESCRIPTION The internal encoding of the configuration information stored in EEPROM or NVRAM
varies from model to model, and on some systems the encoding is “hidden” by the
firmware. The openprom driver provides a consistent interface that allows a user or pro-
gram to inspect and modify that configuration, using ioctl(2) requests. These requests
are defined in <sys/openpromio.h>:

struct openpromio {
u_int oprom_size; /∗ real size of following array ∗/
char oprom_array[1]; /∗ For property names and values ∗/

/∗ NB: Adjacent, Null terminated ∗/
};
#define OPROMMAXPARAM 32768 /∗ max size of array ∗/

/∗
∗ Note that all OPROM ioctl codes are type void. Since the amount
∗ of data copied in/out may (and does) vary, the openprom driver
∗ handles the copyin/copyout itself.
∗/
#define OIOC (’O’<<8)
#define OPROMGETOPT (OIOC | 1)
#define OPROMSETOPT (OIOC | 2)
#define OPROMNXTOPT (OIOC | 3)
#define OPROMSETOPT2 (OIOC | 4) /∗ preferred OPROMSETOPT ∗/
#define OPROMNEXT (OIOC | 5) /∗ interface to raw config_ops ∗/
#define OPROMCHILD (OIOC | 6) /∗ interface to raw config_ops ∗/
#define OPROMGETPROP (OIOC | 7) /∗ interface to raw config_ops ∗/
#define OPROMNXTPROP (OIOC | 8) /∗ interface to raw config_ops ∗/

For all ioctl(2) requests, the third parameter is a pointer to a ‘struct openpromio’. All
property names and values are null-terminated strings; the value of a numeric option is
its ASCII representation.

IOCTLS The OPROMGETOPT ioctl takes the null-terminated name of a property in the
oprom_array and returns its null-terminated value (overlaying its name). oprom_size
should be set to the size of oprom_array ; on return it will contain the size of the returned
value. If the named property does not exist, or if there is not enough space to hold its
value, then oprom_size will be set to zero. See BUGS below.

7-204 modified 30 Nov 1993

SunOS 5.4 Special Files openprom (7)

The OPROMSETOPT ioctl takes two adjacent strings in oprom_array ; the null-terminated
property name followed by the null-terminated value.

The OPROMNXTOPT ioctl is used to retrieve properties sequentially. The null-terminated
name of a property is placed into oprom_array and on return it is replaced with the null-
terminated name of the next property in the sequence, with oprom_size set to its length. A
null string on input means return the name of the first property; an oprom_size of zero on
output means there are no more properties.

The OPROMNXT, OPROMCHILD, OPROMGETPROP, and OPROMNXTPROP ioctls pro-
vide an interface to the raw config_ops operations in the PROM monitor. One can use them
to traverse the system device tree; see prtconf(1M).

ERRORS EAGAIN There are too many opens of the /dev/openprom device.

EFAULT A bad address has been passed to an ioctl(2) routine.

EINVAL The size value was invalid, or (for OPROMSETOPT) the property does
not exist, or and invalid ioctl is being issued.

ENOMEM The kernel could not allocate space to copy the user’s structure.

EPERM Attempts have been made to write to a read-only entity, or read from a
write only entity.

ENXIO Attempting to open a non-existent device.

FILES /dev/openprom PROM monitor configuration interface

SEE ALSO eeprom(1M), monitor(1M), prtconf(1M), mem(7)

BUGS There should be separate return values for non-existent properties as opposed to not
enough space for the value.

An attempt to set a property to an illegal value results in the PROM setting it to some legal
value, with no error being returned. An OPROMGETOPT should be performed after an
OPROMSETOPT to verify that the set worked.

The driver should be more consistent in its treatment of errors and edge conditions.

modified 30 Nov 1993 7-205

pcfs (7) Special Files SunOS 5.4

NAME pcfs, PCFS − DOS formatted file system

DESCRIPTION PCFS is a file system type that allows users direct access to files on DOS formatted disks
from within the SunOS operating system. Once mounted, a PCFS file system provides
standard SunOS file operations and semantics. That is, users can create, delete, read, and
write files on an DOS formatted disk. They can also create and delete directories and list
files in a directory.

Mounting File
Systems

PCFS file systems are mounted from diskette with the command:

mount −F pcfs device-special directory-name

or you can use:

mount directory-name

if the following line is in your /etc/vfstab file:

device-special − directory-name pcfs − no rw

x86: PCFS file systems are mounted from the hard disk with the command:

mount −F pcfs device-special:logical-drivedirectory-name

or you can use:

mount directory-name

if the following line is in your /etc/vfstab file:

device-special:logical_drive − directory-name pcfs − no rw

device-special specifies the special block device file for the diskette (/dev/disketten) or the
entire hard disk (/dev/dsk/cntndnp0).

On x86 systems, logical-drive specifies either the DOS logical drive letter (c through z) or a
drive number (1 through 24). Drive letter c is equivalent to drive number 1 and
represents the Primary DOS partition on the disk; drive letters d through z are equivalent
to drive numbers 2 through 24, and represent DOS logical drives within the Extended
DOS partition. Note that device-special and logical-drive must be separated by a colon.

directory-name specifies the location where the file system is mounted.

For example, on x86, to mount the Primary DOS partition from a hard disk, use:

mount −F pcfs /dev/dsk/cntndnp0:c /pcfs/c

On x86, to mount the first logical drive in the Extended DOS partition from the hard disk,
use:

mount −F pcfs /dev/dsk/cntndnp0:d /pcfs/d

To mount a DOS diskette in the first floppy drive, use:

mount −F pcfs /dev/diskette /pcfs/a

Conventions Files and directories created through PCFS have to comply with the DOS file name con-
vention, which is of the form filename[.ext], where filename consists of from one to eight
upper-case characters, while the optional ext consists of from one to three upper-case

7-206 modified 8 Nov 1993

SunOS 5.4 Special Files pcfs (7)

characters. PCFS converts all the lower-case characters in a file name to upper-case, and
chops off any extra characters in filename or ext . When displaying file names, PCFS only
shows them in lower-case.

One can use either the DOS FORMAT command, or the command:

fdformat −d

in the SunOS system to format a diskette in DOS format.

EXAMPLES If you copy a file:

financial.data

from a UNIX file system to a PCFS file system, it will show up as:

FINANCIA.DAT

on the DOS disk.

The following file names:

.login

test.sh.orig

data+

are considered illegal in DOS, and therefore cannot be created through PCFS.

FILES /usr/lib/fs/pcfs/mount

SEE ALSO eject(1), mount(1M), vfstab(4)
x86 Only fdisk(1M)

NOTES The following are all the legal characters that are allowed in file names or extensions in
PCFS:

0-9, a-z, A-Z, and $#&@!%()-{}<>‘_\ˆ˜|’

Since SunOS and DOS operating systems use different character sets, and have different
requirements for the text file format, one can use

dos2unix

or

unix2dos

command to convert files between them.

PCFS offers a convenient transportation vehicle for files between Sun Workstations and
PC’s. Since the DOS disk format was designed for use under DOS, it is quite inefficient to
operate under the SunOS system. Therefore, it should not be used as the format for a
regular local storage. You should use ufs for local storage within the SunOS system.

WARNINGS It is not recommended to physically eject an DOS floppy while the device is still mounted
as a PCFS file system.

modified 8 Nov 1993 7-207

pcfs (7) Special Files SunOS 5.4

x86: When mounting a pcfs file system on a hard disk, the first block on that device must
contain a valid fdisk partition table.

Since PCFS truncates any extra characters in file names and extensions just as DOS, does,
be careful when copying files from a UNIX file system to a PCFS file system. For instance,
the following two files:

test.data1 test.data2

in a UNIX file system will get copied to the same file:

TEST.DAT

in PCFS.

BUGS PCFS should handle the disk change condition in the same way that DOS, does, so that the
user does not need to unmount the file system to change floppies. PCFS is currently not
NFS mountable. Trying to mount a PCFS file system through NFS will fail with an
EACCES error.

7-208 modified 8 Nov 1993

SunOS 5.4 Special Files pckt (7)

NAME pckt − STREAMS Packet Mode module

SYNOPSIS int ioctl(fd, I_PUSH, "pckt");

DESCRIPTION pckt is a STREAMS module that may be used with a pseudo terminal to packetize certain
messages. The pckt module should be pushed (see I_PUSH on streamio(7)) onto the mas-
ter side of a pseudo terminal.

Packetizing is performed by prefixing a message with an M_PROTO message. The origi-
nal message type is stored in the 1 byte data portion of the M_PROTO message.

On the read-side, only the M_PROTO, M_PCPROTO, M_STOP, M_START, M_STOPI,
M_STARTI, M_IOCTL, M_DATA, M_FLUSH, and M_READ messages are packetized.
All other message types are passed upstream unmodified.

Since all unread state information is held in the master’s stream head read queue, flush-
ing of this queue is disabled.

On the write-side, all messages are sent down unmodified.

With this module in place, all reads from the master side of the pseudo terminal should
be performed with the getmsg(2) or getpmsg() function. The control part of the message
contains the message type. The data part contains the actual data associated with that
message type. The onus is on the application to separate the data into its component
parts.

SEE ALSO getmsg(2), ioctl(2), ldterm(7), ptem(7), streamio(7), termio(7)

STREAMS Programmer’s Guide

modified 3 Jul 1990 7-209

pe (7) Special Files SunOS 5.4

NAME pe − Xircom Pocket Ethernet device driver

SYNOPSIS #include <sys/stropts.h>
#include <sys/ethernet.h>
#include <sys/dlpi.h>

AVAILABILITY x86

DESCRIPTION The Xircom Pocket Ethernet driver (pe) is a multi-threaded, loadable, clonable,
STREAMS hardware driver supporting the connectionless Data Link Provider Interface,
dlpi(7), with a Xircom Pocket Ethernet Adapter III (PE3). Multiple PE3 controllers
installed within the system are supported by the driver.

PE and DLPI The pe driver provides basic support for the PE3 hardware. Functions include chip ini-
tialization, frame transmission and reception, multicast and "promiscuous" support, and
error recovery and reporting.

The pe driver supports both bi-directional and unidirectional parallel ports. The Port
and Adapter type is automatically detected and set when the driver initializes.

It is important not to attempt to use any other driver that may also use the same port
when the pe driver is operational. This may interfere with network traffic that is
currently being sent or received by the PE3 adapter.

The cloning, character-special device /dev/pe is used to access all PE3 controllers installed
within the system.

The pe driver is a “style 2” Data Link Service provider. All M_PROTO and
M_PCPROTO type messages are interpreted as DLPI primitives. An explicit
DL_ATTACH_REQ message is required by the user to associate the opened stream with
a particular device (ppa). The ppa ID is interpreted as an unsigned long and indicates the
corresponding device instance (unit) number. The unit numbers are assigned sequen-
tially to each adapter found. The search order is determined by the order defined in the
pe.conf file. An error (DL_ERROR_ACK) is returned by the driver if the ppa field value
does not correspond to a valid device instance number for this system. The device is ini-
tialized on the first attach and de-initialized (stopped) on the last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

· The max SDU is 1500 (ETHERMTU).

· The min SDU is 0.

· The dlsap address length is 8.

· The MAC type is DL_ETHER or DL_CSMACD.

· The sap length value is −2, meaning the physical address component is fol-
lowed immediately by a 2-byte sap component within the DLSAP address.

· The service mode is DL_CLDLS.

7-210 modified 20 Dec 1993

SunOS 5.4 Special Files pe (7)

· No optional quality of service (QOS) support is included at present, so the
QOS fields are 0.

· The provider style is DL_STYLE2.

· The version is DL_VERSION_2.

· The broadcast address value is Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular SAP (Service Access Pointer) with the stream. The pe driver interprets the sap
field within the DL_BIND_REQ as an Ethernet “type,” therefore valid values for the sap
field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the stream at
any time.

In addition to Ethernet V2 service, an “802.3 mode” is provided by the driver and works
as follows. sap values in the range [0-1500] are treated as equivalent and represent a
desire by the user for “802.3” mode. If the value of the sap field of the DL_BIND_REQ is
within this range, then the driver computes the length, not including initial M_PROTO
mblk, of all subsequent DL_UNITDATA_REQ messages and transmits 802.3 frames hav-
ing this value in the MAC frame header length field. All frames received from the media
having a “type” field in this range are assumed to be 802.3 frames and are routed up all
open streams that are bound to any sap value within this range. If more than one stream
is in “802.3 mode,” then the frame will be duplicated and routed up multiple streams as
DL_UNITDATA_IND messages.

The pe driver DLSAP address format consists of the 6-byte physical (Ethernet) address
component followed immediately by the 2-byte sap (type) component producing an 8-
byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format but use information returned in the
DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap
length, full DLSAP length, and sap/physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the pe driver. The pe driver will route received Eth-
ernet frames up all those open and bound streams having a sap which matches the Ether-
net type as DL_UNITDATA_IND messages. Received Ethernet frames are duplicated
and routed up multiple open streams if necessary. The DLSAP address contained within
the DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the sap
(type) and physical (Ethernet) components.

PE Primitives In addition to the mandatory connectionless DLPI message set, the driver additionally
supports the primitives discussed below.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable
reception of individual multicast group addresses. A set of multicast addresses may be
iteratively created and modified on a per-stream basis using these primitives. These

modified 20 Dec 1993 7-211

pe (7) Special Files SunOS 5.4

primitives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all
(“promiscuous mode”) frames on the media including frames generated by the local host.

When used with the DL_PROMISC_SAP flag set, this enables/disables reception of all
sap (Ethernet type) values. When used with the DL_PROMISC_MULTI flag set, this
enables/disables reception of all multicast group addresses. The effect of each is always
on a per-stream basis and independent of the other sap and physical level configurations
on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the 6-octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primi-
tive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6-octet Ethernet address
currently associated (attached) to this stream. The credentials of the process that origi-
nally opened this stream must be superuser or EPERM is returned in the
DL_ERROR_ACK. This primitive is destructive in that it affects all other current and
future streams attached to this device. An M_ERROR is sent up all other streams
attached to this device when this primitive on this stream is successful. Once changed, all
streams subsequently opened and attached to this device will obtain this new physical
address. Once changed, the physical address will remain in effect until this primitive is
used to change the physical address again or the system is rebooted, whichever comes
first.

CONFIGURATION The /kernel/drv/pe.conf file supports the following options:

intr Specifies the IRQ level for the parallel port that the Xircom Adapter
is connected to.

ioaddr Specifies the I/O address for the parallel port that the Xircom
Adapter is connected to.

It is important to ensure that there are no conflicts for the adapter’s I/O port or IRQ level.

FILES /dev/pe

SEE ALSO dlpi(7)

7-212 modified 20 Dec 1993

SunOS 5.4 Special Files pfmod (7)

NAME pfmod − STREAMS Packet Filter Module

SYNOPSIS #include <sys/pfmod.h>

ioctl(fd, I_PUSH, "pfmod");

DESCRIPTION pfmod is a STREAMS module that subjects messages arriving on its read queue to a
packet filter and passes only those messages that the filter accepts on to its upstream
neighbor. Such filtering can be very useful for user-level protocol implementations and
for networking monitoring programs that wish to view only specific types of events.

Read-side Behavior pfmod applies the current packet filter to all M_DATA and M_PROTO messages arriving
on its read queue. The module prepares these messages for examination by first skipping
over all leading M_PROTO message blocks to arrive at the beginning of the message’s
data portion. If there is no data portion, pfmod accepts the message and passes it along
to its upstream neighbor. Otherwise, the module ensures that the part of the message’s
data that the packet filter might examine lies in contiguous memory, calling the
pullupmsg(9F) utility routine if necessary to force contiguity. (Note: this action destroys
any sharing relationships that the subject message might have had with other messages.)
Finally, it applies the packet filter to the message’s data, passing the entire message
upstream to the next module if the filter accepts, and discarding the message otherwise.
See PACKET FILTERS below for details on how the filter works.

If there is no packet filter yet in effect, the module acts as if the filter exists but does noth-
ing, implying that all incoming messages are accepted. IOCTLS below describes how to
associate a packet filter with an instance of pfmod.

pfmod passes all other messages through unaltered to its upper neighbor.

Write-side Behavior pfmod intercepts M_IOCTL messages for the ioctl described below. The module passes
all other messages through unaltered to its lower neighbor.

IOCTLS pfmod responds to the following ioctl.

PFIOCSETF This ioctl directs the module to replace its current packet filter, if any, with
the filter specified by the struct packetfilt pointer named by its final argu-
ment. This structure is defined in <sys/pfmod.h> as:

struct packetfilt {
u_char Pf_Priority; /∗ priority of filter ∗/
u_char Pf_FilterLen; /∗ length of filter cmd list ∗/
u_short Pf_Filter[ENMAXFILTERS]; /∗ filter command list ∗/

};

The Pf_Priority field is included only for compatibility with other packet filter implemen-
tations and is otherwise ignored. The packet filter itself is specified in the Pf_Filter array
as a sequence of two-byte commands, with the Pf_FilterLen field giving the number of
commands in the sequence. This implementation restricts the maximum number of com-
mands in a filter (ENMAXFILTERS) to 255. The next section describes the available

modified 18 Sep 1992 7-213

pfmod (7) Special Files SunOS 5.4

commands and their semantics.

PACKET FILTERS A packet filter consists of the filter command list length (in units of u_shorts), and the
filter command list itself. (The priority field mentioned above is ignored in this imple-
mentation.) Each filter command list specifies a sequence of actions that operate on an
internal stack of u_shorts (“shortwords”). Each shortword of the command list specifies
one of the actions ENF_PUSHLIT, ENF_PUSHZERO, ENF_PUSHONE, ENF_PUSHFFFF,
ENF_PUSHFF00, ENF_PUSH00FF, or ENF_PUSHWORD+n, which respectively push the next
shortword of the command list, zero, one, 0xFFFF, 0xFF00, 0x00FF, or shortword n of the
subject message on the stack, and a binary operator from the set {ENF_EQ, ENF_NEQ,
ENF_LT, ENF_LE, ENF_GT, ENF_GE, ENF_AND, ENF_OR, ENF_XOR} which then operates on
the top two elements of the stack and replaces them with its result. When both an action
and operator are specified in the same shortword, the action is performed followed by
the operation.

The binary operator can also be from the set {ENF_COR, ENF_CAND, ENF_CNOR,
ENF_CNAND}. These are “short-circuit” operators, in that they terminate the execution of
the filter immediately if the condition they are checking for is found, and continue other-
wise. All pop two elements from the stack and compare them for equality; ENF_CAND
returns false if the result is false; ENF_COR returns true if the result is true; ENF_CNAND
returns true if the result is false; ENF_CNOR returns false if the result is true. Unlike the
other binary operators, these four do not leave a result on the stack, even if they continue.

The short-circuit operators should be used when possible, to reduce the amount of time
spent evaluating filters. When they are used, you should also arrange the order of the
tests so that the filter will succeed or fail as soon as possible; for example, checking the IP
destination field of a UDP packet is more likely to indicate failure than the packet type
field.

The special action ENF_NOPUSH and the special operator ENF_NOP can be used to only
perform the binary operation or to only push a value on the stack. Since both are (con-
veniently) defined to be zero, indicating only an action actually specifies the action fol-
lowed by ENF_NOP, and indicating only an operation actually specifies ENF_NOPUSH fol-
lowed by the operation.

After executing the filter command list, a non-zero value (true) left on top of the stack (or
an empty stack) causes the incoming packet to be accepted and a zero value (false) causes
the packet to be rejected. (If the filter exits as the result of a short-circuit operator, the
top-of-stack value is ignored.) Specifying an undefined operation or action in the com-
mand list or performing an illegal operation or action (such as pushing a shortword
offset past the end of the packet or executing a binary operator with fewer than two
shortwords on the stack) causes a filter to reject the packet.

EXAMPLES The packet filter module is not dependent on any particular device driver or module but
is commonly used with datalink drivers such as the Ethernet driver. If the underlying
datalink driver supports the Data Link Provider Interface (DLPI) message set, the
appropriate STREAMS DLPI messages must be issued to attach the stream to a particular
hardware device and bind a datalink address to the stream before the underlying driver

7-214 modified 18 Sep 1992

SunOS 5.4 Special Files pfmod (7)

will route received packets upstream. Refer to the DLPI Version 2 specification for details
on this interface.

The reverse ARP daemon program may use code similar to the following fragment to
construct a filter that rejects all but RARP packets. That is, is accepts only packets whose
Ethernet type field has the value ETHERTYPE_REVARP.

struct ether_header eh; /∗ used only for offset values ∗/
struct packetfilt pf;
register u_short ∗fwp = pf.Pf_Filter;
u_short offset;
int fd;

/∗
∗ Push packet filter streams module.
∗/
if (ioctl(fd, I_PUSH, "pfmod") < 0)

syserr("pfmod");

/∗
∗ Set up filter. Offset is the displacement of the Ethernet
∗ type field from the beginning of the packet in units of
∗ u_shorts.
∗/
offset = ((u_int) &eh.ether_type - (u_int) &eh.ether_dhost) /

sizeof (u_short);
∗fwp++ = ENF_PUSHWORD + offset;
∗fwp++ = ENF_PUSHLIT;
∗fwp++ = htons(ETHERTYPE_REVARP);
∗fwp++ = ENF_EQ;
pf.Pf_FilterLen = fwp - &pf.Pf_Filter[0];

This filter can be abbreviated by taking advantage of the ability to combine actions and
operations:

∗fwp++ = ENF_PUSHWORD + offset;
∗fwp++ = ENF_PUSHLIT | ENF_EQ;
∗fwp++ = htons(ETHERTYPE_REVARP);

SEE ALSO bufmod(7), dlpi(7), ie(7), le(7), pullupmsg(9F)

modified 18 Sep 1992 7-215

pipemod (7) Special Files SunOS 5.4

NAME pipemod − STREAMS pipe flushing module

DESCRIPTION The typical stream is composed of a stream head connected to modules and terminated
by a driver. Some stream configurations such as pipes and FIFOs do not have a driver
and hence certain features commonly supported by the driver need to be provided by
other means. Flushing is one such feature, and it is provided by the pipemod module.

Pipes and FIFOs in their simplest configurations only have stream heads. A write side is
connected to a read side. This remains true when modules are pushed. The twist occurs
at a point known as the mid-point. When an M_FLUSH message is passed from a write
queue to a read queue the FLUSHR and/or FLUSHW bits have to be switched. The mid-
point of a pipe is not always easily detectable, especially if there are numerous modules
pushed on either end of the pipe. In that case there needs to be a mechanism to intercept
all message passing through the stream. If the message is an M_FLUSH message and it is
at the mid-point, the flush bits need to be switched. This bit switching is handled by the
pipemod module.

pipemod should be pushed onto a pipe or FIFO where flushing of any kind will take
place. The pipemod module can be pushed on either end of the pipe. The only require-
ment is that it is pushed onto an end that previously did not have modules on it. That is,
pipemod must be the first module pushed onto a pipe so that it is at the mid-point of the
pipe itself.

The pipemod module handles only M_FLUSH messages. All other messages are passed
on to the next module using the putnext() utility routine. If an M_FLUSH message is
passed to pipemod and the FLUSHR and FLUSHW bits are set, the message is not pro-
cessed but is passed to the next module using the putnext() routine. If only the FLUSHR
bit is set, the FLUSHR bit is turned off and the FLUSHW bit is set. The message is then
passed on to the next module using putnext(). Similarly, if the FLUSHW bit is the only bit
set in the M_FLUSH message, the FLUSHW bit is turned off and the FLUSHR bit is turned
on. The message is then passed to the next module on the stream.

The pipemod module can be pushed on any stream that desires the bit switching. It
must be pushed onto a pipe or FIFO if any form of flushing must take place.

SEE ALSO STREAMS Programmer’s Guide

7-216 modified 21 Aug 1992

SunOS 5.4 Special Files ppp (7)

NAME ppp, ppp_diag, ipd, ipdptp, ipdcm − STREAMS modules and drivers for the Point-to-
Point Protocol

AVAILABILITY SUNWpppk

DESCRIPTION ppp is a STREAMS module which implements the Point to Point Protocol (PPP). PPP is a
datalink protocol which provides a method for transmitting datagrams over serial point-
to-point links. PPP allows for various options to be negotiated between the two hosts of a
point-to-point link; these options provide things such as peer authentication, header
compression, link quality monitoring, and mapping of control characters. The PPP
specifications are described in RFC 1331 The Point-to-Point Protocol (PPP) for the Transmis-
sion of Multi-protocol Datagrams over Point-to-Point Links and RFC 1332 The PPP Internet
Protocol Control Protocol (IPCP).

The pseudo device drivers /dev/ipd, /dev/ipdptp, and /dev/ipdcm form the IP-dialup
layer. This layer provides IP network interfaces for dialup (connect on demand) point-
to-point links. The ipd and ipdptp devices are the IP-dialup network interfaces. The ipd
device provides a point-to-multipoint interface, and the ipdptp device provides a point-
to-point interface. The ipdcm device supplies an interface between the ipd or ipdptp
device and a link manager.

The ppp module and IP-dialup layer work together to provide IP connectivity over serial
point-to-point links. A "link manager" daemon is responsible for setting up and tearing
down these dialup connections. Connections are established when an IP packet needs to
be sent to the remote host, or the remote host has indicated its desire to establish a PPP
connection.

The ppp_diag module captures PPP layer packets and parses the contents for debugging
purposes. Usually, the parsed output is sent to the strlog facility from which it is
retrieved by the link manager. This module is pushed between the serial device and the
ppp module by the link manager when debugging is enabled.

Operation When a packet is routed to an IP-dialup point-to-point interface which is not currently
connected to the remote host, the ipdcm driver sends a message to the link manager to
establish the connection. The link manager opens a communications channel and pushes
the ppp module onto the corresponding serial device. The ppp module negotiates with
the remote host on which options will be used for the link. When both hosts have agreed
on a set of options, the link manager links the ppp module and serial device underneath
the ipd or ipdptp interface which is providing the IP interface to the remote host.

Similarly, a remote host may initiate a connection on an enabled communications port.
In this case the link manager receives the request and pushes the ppp module onto the
corresponding device. Once the ppp module has successfully negotiated on the set of
options for the link with its peer, the link manager links the ppp module and serial device
underneath the ipd or ipdptp interface which is providing the IP-dialup interface.

modified 18 Feb 1994 7-217

ppp (7) Special Files SunOS 5.4

When the ppp module and serial device have been linked underneath the IP-dialup inter-
face, IP packets are sent and received over the point-to-point link in PPP frames.

FILES /dev/ipd pseudo device driver that provides point-to-ipoint interface.

/dev/ipdptp pseudo device driver that provides point-to-multipoint interface.

/dev/ipdcm pseudo device driver that provides interface between ipd and
ipdptp and link manager.

SEE ALSO aspppd(1M)

7-218 modified 18 Feb 1994

SunOS 5.4 Special Files ptem (7)

NAME ptem − STREAMS Pseudo Terminal Emulation module

SYNOPSIS int ioctl(fd, I_PUSH, "ptem");

DESCRIPTION ptem is a STREAMS module that, when used in conjunction with a line discipline and
pseudo terminal driver, emulates a terminal.

The ptem module must be pushed (see I_PUSH, streamio(7)) onto the slave side of a
pseudo terminal STREAM, before the ldterm(7) module is pushed.

On the write-side, the TCSETA, TCSETAF, TCSETAW, TCGETA, TCSETS, TCSETSW,
TCSETSF, TCGETS, TCSBRK, JWINSIZE, TIOCGWINSZ, and TIOCSWINSZ termio
ioctl(2) messages are processed and acknowledged. If remote mode is not in effect, ptem
handles the TIOCSTI ioctl by copying the argument bytes into an M_DATA message
and passing it back up the read side. Regardless of the remote mode setting, ptem ack-
nowledges the ioctl and passes a copy of it downstream for possible further processing.
A hang up (that is, stty 0) is converted to a zero length M_DATA message and passed
downstream. Termio cflags and window row and column information are stored locally
one per stream. M_DELAY messages are discarded. All other messages are passed
downstream unmodified.

On the read-side all messages are passed upstream unmodified with the following excep-
tions. All M_READ and M_DELAY messages are freed in both directions. A TCSBRK
ioctl is converted to an M_BREAK message and passed upstream and an acknowledge-
ment is returned downstream. An TIOCSIGNAL ioctl is converted into an M_PCSIG
message, and passed upstream and an acknowledgement is returned downstream.
Finally an ioctl TIOCREMOTE is converted into an M_CTL message, acknowledged,
and passed upstream; the resulting mode is retained for use in subsequent TIOCSTI
parsing.

FILES <sys/ptem.h>

SEE ALSO stty(1), ioctl(2), ldterm(7), pckt(7), streamio(7), termio(7)

STREAMS Programmer’s Guide

modified 3 Jul 1990 7-219

ptm (7) Special Files SunOS 5.4

NAME ptm − STREAMS pseudo-tty master driver

DESCRIPTION The pseudo-tty subsystem simulates a terminal connection, where the master side
represents the terminal and the slave represents the user process’s special device end
point. In order to use the pseudo-tty subsystem, a node for the master side driver
/dev/ptmx and N number of nodes for the slave driver must be installed. See pts(7). The
master device is set up as a cloned device where its major device number is the major for
the clone device and its minor device number is the major for the ptm driver. There are
no nodes in the file system for master devices. The master pseudo driver is opened using
the open(2) system call with /dev/ptmx as the device parameter. The clone open finds the
next available minor device for the ptm major device.

A master device is available only if it and its corresponding slave device are not already
open. When the master device is opened, the corresponding slave device is automatically
locked out. Only one open is allowed on a master device. Multiple opens are allowed on
the slave device. After both the master and slave have been opened, the user has two file
descriptors which are the end points of a full duplex connection composed of two
streams which are automatically connected at the master and slave drivers. The user
may then push modules onto either side of the stream pair.

The master and slave drivers pass all messages to their adjacent queues. Only the
M_FLUSH needs some processing. Because the read queue of one side is connected to the
write queue of the other, the FLUSHR flag is changed to the FLUSHW flag and vice versa.
When the master device is closed an M_HANGUP message is sent to the slave device
which will render the device unusable. The process on the slave side gets the errno
ENXIO when attempting to write on that stream but it will be able to read any data
remaining on the stream head read queue. When all the data has been read, read()
returns 0 indicating that the stream can no longer be used. On the last close of the slave
device, a 0-length message is sent to the master device. When the application on the mas-
ter side issues a read() or getmsg() and 0 is returned, the user of the master device
decides whether to issue a close() that dismantles the pseudo-terminal subsystem. If the
master device is not closed, the pseudo-tty subsystem will be available to another user to
open the slave device.

If O_NONBLOCK or O_NDELAY is set, read on the master side returns −1 with errno set
to EAGAIN if no data is available, and write returns −1 with errno set to EAGAIN if there
is internal flow control.

IOCTLS The master driver supports the ISPTM and UNLKPT ioctls that are used by the functions
grantpt(3C), unlockpt(3C) and ptsname(3C). The ioctl ISPTM determines whether the
file descriptor is that of an open master device. On success, it returns the major/minor
number of the master device which can be used to determine the name of the correspond-
ing slave device. The ioctl UNLKPT unlocks the master and slave devices. It returns 0 on
success. On failure, the errno is set to EINVAL indicating that the master device is not
open.

7-220 modified 23 Feb 1994

SunOS 5.4 Special Files ptm (7)

FILES /dev/ptmx master clone device
/dev/pts/M slave devices (M = 0 -> N-1)

SEE ALSO grantpt(3C), ptsname(3C), unlockpt(3C), pckt(7), pts(7)

STREAMS Programmer’s Guide

modified 23 Feb 1994 7-221

pts (7) Special Files SunOS 5.4

NAME pts − STREAMS pseudo-tty slave driver

DESCRIPTION The pseudo-tty subsystem simulates a terminal connection, where the master side
represents the terminal and the slave represents the user process’s special device end
point. In order to use the pseudo-tty subsystem, a node for the master side driver
/dev/ptmx and N nodes for the slave driver (N is determined at installation time) must be
installed. The names of the slave devices are /dev/pts/M where M has the values 0
through N-1. When the master device is opened, the corresponding slave device is
automatically locked out. No user may open that slave device until its permissions are
adjusted and the device unlocked by calling functions grantpt(3C) and unlockpt(3C).
The user can then invoke the open system call with the name that is returned by the
ptsname(3C) function. See the example below.

Only one open is allowed on a master device. Multiple opens are allowed on the slave
device. After both the master and slave have been opened, the user has two file descrip-
tors which are end points of a full duplex connection composed of two streams automati-
cally connected at the master and slave drivers. The user may then push modules onto
either side of the stream pair. The user needs to push the ptem(7) and ldterm(7) modules
onto the slave side of the pseudo-terminal subsystem to get terminal semantics.

The master and slave drivers pass all messages to their adjacent queues. Only the
M_FLUSH needs some processing. Because the read queue of one side is connected to the
write queue of the other, the FLUSHR flag is changed to the FLUSHW flag and vice versa.
When the master device is closed an M_HANGUP message is sent to the slave device
which will render the device unusable. The process on the slave side gets the errno
ENXIO when attempting to write on that stream but it will be able to read any data
remaining on the stream head read queue. When all the data has been read, read returns
0 indicating that the stream can no longer be used. On the last close of the slave device, a
0-length message is sent to the master device. When the application on the master side
issues a read() or getmsg() and 0 is returned, the user of the master device decides
whether to issue a close() that dismantles the pseudo-terminal subsystem. If the master
device is not closed, the pseudo-tty subsystem will be available to another user to open
the slave device. Since 0-length messages are used to indicate that the process on the
slave side has closed and should be interpreted that way by the process on the master
side, applications on the slave side should not write 0-length messages. If that occurs, the
write returns 0, and the 0-length message is discarded by the ptem module.

The standard STREAMS system calls can access the pseudo-tty devices. The slave devices
support the O_NDELAY and O_NONBLOCK flags.

EXAMPLES int fdm fds;
char ∗slavename;
extern char ∗ptsname();

fdm = open("/dev/ptmx", O_RDWR); /∗ open master ∗/
grantpt(fdm); /∗ change permission ofslave ∗/
unlockpt(fdm); /∗ unlock slave ∗/

7-222 modified 21 Aug 1992

SunOS 5.4 Special Files pts (7)

slavename = ptsname(fdm); /∗ get name of slave ∗/
fds = open(slavename, O_RDWR); /∗ open slave ∗/
ioctl(fds, I_PUSH, "ptem"); /∗ push ptem ∗/
ioctl(fds, I_PUSH, "ldterm"); /∗ push ldterm ∗/

FILES /dev/ptmx master clone device
/dev/pts/M slave devices (M = 0 -> N-1)

SEE ALSO grantpt(3C), ptsname(3C), unlockpt(3C), ldterm(7), ptm(7), ptem(7)

STREAMS Programmer’s Guide

modified 21 Aug 1992 7-223

qe (7) Special Files SunOS 5.4

NAME qe − QEC/MACE Ethernet device driver

SYNOPSIS #include <mace.h>
#include <qe.h>
#include <qec.h>
#include <dlpi.h>

DESCRIPTION qe is a multi-threaded, loadable, clonable, STREAMS hardware device driver supporting
the connectionless Data Link Provider Interface, dlpi(7), over Am79C940 (MACE) Ether-
net controllers in the SBus QED card. qec(7) is its parent in the Open Boot Prom device
tree. There is no fixed limitation on the number of QED cards supported by the driver.
The qe driver provides basic support for the MACE and QEC hardware. Functions
include chip initialization, frame transmit and receive, multicast and promiscuous sup-
port, and error recovery and reporting.

The cloning character-special device /dev/qe is used to access all MACE controllers
installed within the system.

qe and DLPI The qe driver is a “style 2” Data Link Service provider. All M_PROTO and M_PCPROTO
type msgs are interpreted as DLPI primitives. An explicit DL_ATTACH_REQ message by
the user is required to associate the opened stream with a particular device (ppa). The
ppa ID is interpreted as an unsigned long and indicates the corresponding device
instance (unit) number. An error (DL_ERROR_ACK) is returned by the driver if the ppa
field value does not correspond to a valid device instance number for this system. The
device is initialized on first attach and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

· The max SDU is 1500 (ETHERMTU).

· The min SDU is 0.

· The dlsap address length is 8.

· The MAC type is DL_ETHER.

· The sap length value is −2 meaning the physical address component is fol-
lowed immediately by a 2 byte sap component within the DLSAP address.

· The service mode is DL_CLDLS.

· No optional quality of service (QOS) support is included at present so the
QOS fields are 0.

· The provider style is DL_STYLE2.

· The version is DL_VERSION_2.

· The broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF).

7-224 modified 3 Mar 1994

SunOS 5.4 Special Files qe (7)

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a par-
ticular SAP (Service Access Pointer) with the stream. The qe driver interprets the sap
field within the DL_BIND_REQ as an Ethernet “type” therefore valid values for the sap
field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the stream at
any time.

If the user selects a sap with a value of 0, the receiver will be in 802.3 mode. All frames
received from the media having a “type” field in the range [0-1500] are assumed to be
802.3 frames and are routed up all open Streams which are bound to sap value 0. If more
than one Stream is in “802.3 mode” then the frame will be duplicated and routed up mul-
tiple Streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the sap field of the DL_BIND_REQ if the sap value is 0,
and if the destination type field is in the range [0-1500]. If either is true, the driver com-
putes the length of the message, not including initial M_PROTO mblk (message block), of
all subsequent DL_UNITDATA_REQ messages and transmits 802.3 frames that have this
value in the MAC frame header length field.

The driver also supports raw M_DATA mode. When the user sends a DLIOCRAW ioctl,
the particular Stream is put in raw mode. A complete frame along with a proper ether
header is expected as part of the data.

The qe driver DLSAP address format consists of the 6 byte physical (Ethernet) address
component followed immediately by the 2 byte sap (type) component producing an 8
byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format but use information returned in the
DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap length,
full DLSAP length, and sap/physical ordering are included within the DL_INFO_ACK.
The physical address length can be computed by subtracting the sap length from the full
DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to obtain the current phy-
sical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the qe driver. The qe driver will route received Ether-
net frames up all those open and bound streams having a sap which matches the Ethernet
type as DL_UNITDATA_IND messages. Received Ethernet frames are duplicated and
routed up multiple open streams if necessary. The DLSAP address contained within the
DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the sap (type)
and physical (Ethernet) components.

qe Primitives In addition to the mandatory connectionless DLPI message set the driver additionally
supports the following primitives.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable recep-
tion of individual multicast group addresses. A set of multicast addresses may be itera-
tively created and modified on a per-stream basis using these primitives. These primi-
tives are accepted by the driver in any state following DL_ATTACHED.

modified 3 Mar 1994 7-225

qe (7) Special Files SunOS 5.4

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all
(“promiscuous mode”) frames on the media including frames generated by the local host.
When used with the DL_PROMISC_SAP flag set this enables/disables reception of all sap
(Ethernet type) values. When used with the DL_PROMISC_MULTI flag set this
enables/disables reception of all multicast group addresses. The effect of each is always
on a per-stream basis and independent of the other sap and physical level configurations
on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive return the 6 octet Ethernet address currently associ-
ated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primitive is
valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6 octet Ethernet address currently
associated (attached) to this stream. The credentials of the process which originally
opened this stream must be superuser or EPERM is returned in the DL_ERROR_ACK. This
primitive is destructive in that it affects all other current and future streams attached to
this device. An M_ERROR is sent up all other streams attached to this device when this
primitive on this stream is successful. Once changed, all streams subsequently opened
and attached to this device will obtain this new physical address. Once changed, the
physical address will remain so until this primitive is used to change the physical address
again or the system is rebooted, whichever comes first.

FILES /dev/qe special character device.

SEE ALSO dlpi(7), ie(7), le(7), qec(7)

7-226 modified 3 Mar 1994

SunOS 5.4 Special Files qec (7)

NAME qec − QEC bus nexus device driver

DESCRIPTION The qec device driver is a bus nexus driver which provides basic support for the QEC
hardware. It is the parent of the qe(7) leaf driver. The driver supports multiple QED
SBus cards installed within the system. It is not directly accessible to the user.

SEE ALSO qe(7)

modified 3 March 1993 7-227

quotactl (7) Special Files SunOS 5.4

NAME quotactl − manipulate disk quotas

SYNOPSIS #include <sys/fs/ufs_quota.h>

int ioctl(int fd, Q_QUOTACTL, struct quotactl ∗qp)

DESCRIPTION This ioctl() call manipulates disk quotas. fd is the file descriptor returned by the open()
system call after opening the quotas file (located in the root directory of the filesystem
running quotas.) Q_QUOTACTL is defined in /usr/include/sys/fs/ufs_quota.h. qp is the
address of the quotctl structure which is defined as

struct quotctl {
int op;
uid_t uid;
caddr_t addr;

};

op indicates an operation to be applied to the user ID uid. (See below.) addr is the address
of an optional, command specific, data structure which is copied in or out of the system.
The interpretation of addr is given with each value of op below.

Q_QUOTAON Turn on quotas for a file system. addr points to the full pathname of the
quotas file. uid is ignored. It is recommended that uid have the value of
0. This call is restricted to the super-user.

Q_QUOTAOFF Turn off quotas for a file system. addr and uid are ignored. It is recom-
mended that addr have the value of NULL and uid have the value of 0.
This call is restricted to the super-user.

Q_GETQUOTA Get disk quota limits and current usage for user uid. addr is a pointer to
a dqblk structure (defined in <sys/fs/ufs_quota.h>). Only the super-
user may get the quotas of a user other than himself.

Q_SETQUOTA Set disk quota limits and current usage for user uid. addr is a pointer to
a dqblk structure (defined in sys/fs/ufs_quota.h). This call is restricted
to the super-user.

Q_SETQLIM Set disk quota limits for user uid. addr is a pointer to a dqblk structure
(defined in sys/fs/ufs_quota.h). This call is restricted to the super-user.

Q_SYNC Update the on-disk copy of quota usages for this file system. addr and
uid are ignored.

Q_ALLSYNC Update the on-disk copy of quota usages for all file systems with active
quotas. addr and uid are ignored.

RETURN VALUES This ioctl() returns:

0 on success.

−1 on failure and sets errno to indicate the error.

7-228 modified 14 Mar 1994

SunOS 5.4 Special Files quotactl (7)

ERRORS EFAULT addr is invalid.

EINVAL The kernel has not been compiled with the QUOTA option.
op is invalid.

ENOENT The quotas file specified by addr does not exist.

EPERM The call is privileged and the caller was not the super-user.

ESRCH No disk quota is found for the indicated user.
Quotas have not been turned on for this file system.

EUSERS The quota table is full.

If op is Q_QUOTAON, ioctl() may set errno to:

EACCES The quota file pointed to by addr exists but is not a regular file.
The quota file pointed to by addr exists but is not on the file system
pointed to by special.

EIO Internal I/O error while attempting to read the quotas file pointed to by
addr.

FILES /usr/include/sys/fs/ufs_quota.h
quota-related structure/function definitions and defines

SEE ALSO quota(1M), getrlimit(2), mount(2), quotacheck(1M), quotaon(1M)

BUGS There should be some way to integrate this call with the resource limit interface provided
by setrlimit() and getrlimit(2).

This call is incompatible with Melbourne quotas.

modified 14 Mar 1994 7-229

sad (7) Special Files SunOS 5.4

NAME sad − STREAMS Administrative Driver

SYNOPSIS #include <sys/types.h>
#include <sys/conf.h>
#include <sys/sad.h>
#include <sys/stropts.h>

int ioctl (int fildes, int command, int arg);

DESCRIPTION The STREAMS Administrative Driver provides an interface for applications to perform
administrative operations on STREAMS modules and drivers. The interface is provided
through ioctl(2) commands. Privileged operations may access the sad driver using
/dev/sad/admin. Unprivileged operations may access the sad driver using /dev/sad/user.

fildes is an open file descriptor that refers to the sad driver. command determines the con-
trol function to be performed as described below. arg represents additional information
that is needed by this command. The type of arg depends upon the command, but it is
generally an integer or a pointer to a command-specific data structure.

COMMAND
FUNCTIONS

The autopush facility (see autopush(1M)) allows one to configure a list of modules to be
automatically pushed on a stream when a driver is first opened. Autopush is controlled
by the following commands:

SAD_SAP Allows the administrator to configure the given device’s autopush informa-
tion. arg points to a strapush structure, which contains the following
members:

uint sap_cmd;
long sap_major;
long sap_minor;
long sap_lastminor;
long sap_npush;
uint sap_list [MAXAPUSH] [FMNAMESZ + 1];

The sap_cmd field indicates the type of configuration being done. It may take
on one of the following values:

SAP_ONE Configure one minor device of a driver.

SAP_RANGE Configure a range of minor devices of a driver.

SAP_ALL Configure all minor devices of a driver.

SAP_CLEAR Undo configuration information for a driver.

The sap_major field is the major device number of the device to be
configured. The sap_minor field is the minor device number of the device to
be configured. The sap_lastminor field is used only with the SAP_RANGE
command, which configures a range of minor devices between sap_minor
and sap_lastminor, inclusive. The minor fields have no meaning for the
SAP_ALL command. The sap_npush field indicates the number of modules to

7-230 modified 3 Jul 1990

SunOS 5.4 Special Files sad (7)

be automatically pushed when the device is opened. It must be less than or
equal to MAXAPUSH , defined in sad.h. It must also be less than or equal to
NSTRPUSH, the maximum number of modules that can be pushed on a
stream, defined in the kernel master file. The field sap_list is an array of
NULL-terminated module names to be pushed in the order in which they
appear in the list.

When using the SAP_CLEAR command, the user sets only sap_major and
sap_minor. This will undo the configuration information for any of the other
commands. If a previous entry was configured as SAP_ALL, sap_minor
should be set to zero. If a previous entry was configured as SAP_RANGE ,
sap_minor should be set to the lowest minor device number in the range
configured.

On failure, errno is set to the following value:

EFAULT arg points outside the allocated address space.

EINVAL The major device number is invalid, the number of modules
is invalid, or the list of module names is invalid.

ENOSTR The major device number does not represent a STREAMS
driver.

EEXIST The major-minor device pair is already configured.

ERANGE The command is SAP_RANGE and sap_lastminor is not
greater than sap_minor, or the command is SAP_CLEAR and
sap_minor is not equal to the first minor in the range.

ENODEV The command is SAP_CLEAR and the device is not
configured for autopush.

ENOSR An internal autopush data structure cannot be allocated.

SAD_GAP Allows any user to query the sad driver to get the autopush configuration
information for a given device. arg points to a strapush structure as described
in the previous command.

The user should set the sap_major and sap_minor fields of the strapush
structure to the major and minor device numbers, respectively, of the device
in question. On return, the strapush structure will be filled in with the entire
information used to configure the device. Unused entries in the module list
will be zero-filled.

On failure, errno is set to one of the following values:

EFAULT arg points outside the allocated address space.

EINVAL The major device number is invalid.

ENOSTR The major device number does not represent a STREAMS
driver.

ENODEV The device is not configured for autopush.

SAD_VML Allows any user to validate a list of modules (that is, to see if they are

modified 3 Jul 1990 7-231

sad (7) Special Files SunOS 5.4

installed on the system). arg is a pointer to a str_list structure with the follow-
ing members:

int sl_nmods;
struct str_mlist ∗sl_modlist;

The str_mlist structure has the following member:

char l_name[FMNAMESZ+1];

sl_nmods indicates the number of entries the user has allocated in the array
and sl_modlist points to the array of module names. The return value is 0 if
the list is valid, 1 if the list contains an invalid module name, or −1 on failure.
On failure, errno is set to one of the following values:

EFAULT arg points outside the allocated address space.

EINVAL The sl_nmods field of the str_list structure is less than or
equal to zero.

SEE ALSO intro(2), ioctl(2), open(2)

STREAMS Programmer’s Guide

DIAGNOSTICS Unless otherwise specified, the return value from ioctl is 0 upon success and −1 upon
failure with errno set as indicated.

7-232 modified 3 Jul 1990

SunOS 5.4 Special Files sbpro (7)

NAME sbpro − Sound Blaster Pro audio device

SYNOPSIS /dev/sbpro
/dev/sbproctl

AVAILABILITY x86

DESCRIPTION The sbpro device plays and records one or two channels of sound using the Creative
Labs Sound Blaster Pro audio card. Digital audio data is sampled at rates from 4000 to
44,100 samples per second with 8-bit precision. By default, the data is converted to use
u−law encoding, for compatibility with SPARC systems.

The sbpro driver is implemented as a STREAMS device. In order to record audio input,
applications open(2) the /dev/sbpro device and read data from it using the read(2) sys-
tem call. (Note that for compatibility with SPARC systems, /dev/sbpro will typically be
linked to /dev/audio). Similarly, sound data is queued to the audio output port by using
the write(2) system call.

Opening the Sound
Blaster Pro Device

The sbpro device is treated as an exclusive resource: only one process may typically open
the device at a time. However, two processes may simultaneously access the device if
one opens it read-only and the other opens it write-only.

When a process cannot open /dev/sbpro because the requested access mode is busy:
· If the O_NDELAY flag is set in the open() flags argument, then open() returns

−1 immediately, with errno set to EBUSY.
· If O_NDELAY is not set, then open() hangs until the device is available or a sig-

nal is delivered to the process, in which case open() returns −1 with errno set
to EINTR.

Since the sbpro device grants exclusive read or write access to a single process at a time,
long-lived audio applications may choose to close the device when they enter an idle
state, reopening it when required. The play.waiting and record.waiting flags in the audio
information structure (see below) provide an indication that another process has
requested access to the device. This information is advisory only; background audio out-
put processes, for example, may choose to relinquish the sbpro device whenever another
process requests write access.

Recording Audio
Data

The read() system call copies data from the system buffers to the application. Ordinarily,
read() blocks until the user buffer is filled. The FIONREAD ioctl may be used to deter-
mine the amount of data that may be read without blocking. The device may alterna-
tively be set to a non-blocking mode, in which case read() completes immediately, but
may return fewer bytes than requested. Refer to the read(2) manual page for a complete
description of this behavior.

When the sbpro device is opened with read access, the device driver immediately starts
buffering audio input data. Since this consumes system resources, processes that do not
record audio data should open the device write-only (O_WRONLY).

modified 18 Oct 1993 7-233

sbpro (7) Special Files SunOS 5.4

The transfer of input data to STREAMS buffers may be paused (or resumed) by using the
AUDIO_SETINFO ioctl to set (or clear) the record.pause flag in the audio information struc-
ture (see below). All unread input data in the STREAMS queue may be discarded by
using the I_FLUSH STREAMS ioctl (see streamio(7)).

Input data accumulates in STREAMS buffers at a rate equivalent to the sampling rate
times the number of channels (the default is 8000 bytes per second for 8kHz monophonic
samples). If the application that consumes the data cannot keep up with this data rate,
the STREAMS queue may become full. When this occurs, the record.error flag is set in the
audio information structure and input sampling ceases until there is room in the input
queue for additional data. In such cases, the input data stream contains a discontinuity.
For this reason, audio recording applications should open the sbpro device when they
are prepared to begin reading data, rather than at the start of extensive initialization.

Playing Audio Data The write() system call copies data from an applications buffer to the STREAMS output
queue. Ordinarily, write() blocks until the entire user buffer is transferred. The device
may alternatively be set to a non-blocking mode, in which case write() completes
immediately, but may have transferred fewer bytes than requested (see write(2)).

Although write() returns when the data is successfully queued, the actual completion of
audio output may take considerably longer. The AUDIO_DRAIN ioctl may be issued to
allow an application to block until all of the queued output data has been played. Alter-
natively, a process may request asynchronous notification of output completion by writ-
ing a zero-length buffer (end-of-file record) to the output stream. When such a buffer has
been processed, the play.eof flag in the audio information structure (see below) is
incremented.

The final close() of the file descriptor hangs until audio output has drained. If a signal
interrupts the close(), or if the process exits without closing the device, any remaining
data queued for audio output is flushed and the device is closed immediately.

The conversion of output data may be paused (or resumed) by using the
AUDIO_SETINFO ioctl to set (or clear) the play.pause flag in the audio information struc-
ture. Queued output data may be discarded by using the I_FLUSH STREAMS ioctl.

Output data is played from the STREAMS buffers at the specified sampling rate. If the
output queue becomes empty, the play.error flag is set in the audio information structure
and output ceases until additional data is written.

Asynchronous I/O The I_SETSIG STREAMS ioctl may be used to enable asynchronous notification, via the
SIGPOLL signal, of input and output ready conditions. This, in conjunction with non-
blocking read() and write() requests, is normally sufficient for applications to maintain
an audio stream in the background. Alternatively, asynchronous reads and writes may
be initiated using the aioread(3) functions.

7-234 modified 18 Oct 1993

SunOS 5.4 Special Files sbpro (7)

Audio Data Encoding The data samples processed by the sbpro device are encoded in 8 bits. The high-order bit
is a sign bit; 1 represents positive data and 0 represents negative data. The low-order 7
bits represent signal magnitude and are inverted (1’s complement). The magnitude is
encoded according to a u-law transfer function; such an encoding provides an improved
signal-to-noise ratio at low amplitude levels. In order to achieve the best results, the
audio recording gain should be set so that typical amplitude levels lie within approxi-
mately three-fourths of the full dynamic range.

Audio Control
Pseudo-Device

It is sometimes convenient to have an application, such as a volume control panel,
modify certain characteristics of the sbpro device while it is being used by an unrelated
process. The /dev/sbproctl minor device is provided for this purpose. (Note that for
compatibility with SPARC systems, /dev/sbproctl will typically be linked to
/dev/audioctl). Any number of processes may open /dev/sbproctl simultaneously. How-
ever, read() and write() system calls are ignored by /dev/sbproctl. The
AUDIO_GETINFO and AUDIO_SETINFO ioctl commands may be issued to /dev/sbproctl
in order to determine the status or alter the behavior of /dev/sbpro.

Audio Status Change
Notification

Applications that open the audio control pseudo-device may request asynchronous
notification of changes in the state of the sbpro device by setting the S_MSG flag in an
I_SETSIG STREAMS ioctl. Such processes receive a SIGPOLL signal when any of the fol-
lowing events occur:

· An AUDIO_SETINFO ioctl has altered the device state.
· An input overflow or output underflow has occurred.
· An end-of-file record (zero-length buffer) has been processed on output.
· An open() or close() of /dev/sbpro has altered the device state.

Audio Information
Structure

The state of the sbpro device may be polled or modified using the AUDIO_GETINFO and
AUDIO_SETINFO ioctl commands. These commands operate on the audio_info struc-
ture, defined in <sys/audioio.h> as follows:
/∗ Data encoding values, used below in the encoding field ∗/
#define AUDIO_ENCODING_ULAW (1) /∗ u-law encoding ∗/
#define AUDIO_ENCODING_ALAW (2) /∗ A-law encoding ∗/
#define AUDIO_ENCODING_LINEAR (3) /∗ linear (8-bit signed data) encoding ∗/

/∗ These ranges apply to record, play, and monitor gain values ∗/
#define AUDIO_MIN_GAIN (0) /∗ minimum gain value ∗/
#define AUDIO_MAX_GAIN (255) /∗ maximum gain value ∗/

/∗ Audio I/O channel status, used below in the audio_info structure ∗/
struct audio_prinfo {

/∗ The following values describe the audio data encoding ∗/
unsigned sample_rate; /∗ samples per second ∗/
unsigned channels; /∗ number of interleaved channels ∗/
unsigned precision; /∗ number of bits per sample ∗/
unsigned encoding; /∗ data encoding method ∗/

modified 18 Oct 1993 7-235

sbpro (7) Special Files SunOS 5.4

/∗ The following values control audio device configuration ∗/
unsigned gain; /∗ gain level ∗/
unsigned port; /∗ selected I/O port ∗/

/∗ The following values describe the current device state ∗/
unsigned samples; /∗ number of samples converted ∗/
unsigned eof; /∗ End Of File counter (play only) ∗/
unsigned char pause; /∗ non-zero if paused, zero to resume ∗/
unsigned char error; /∗ non-zero if overflow/underflow ∗/
unsigned char waiting; /∗ non-zero if a process wants access ∗/

/∗ The following values are read-only device state flags ∗/
unsigned char open; /∗ non-zero if open access granted ∗/
unsigned char active; /∗ non-zero if I/O active ∗/

};

/∗ This structure is used in AUDIO_GETINFO and AUDIO_SETINFO
ioctl commands ∗/

typedef struct audio_info {
struct audio_prinfo record; /∗ input status information ∗/
struct audio_prinfo play; /∗ output status information ∗/
unsigned monitor_gain; /∗ input to output mix ∗/

} audio_info_t;

#define MAX_AUDIO_DEV_LEN(16)
/∗ Parameter for the AUDIO_GETDEV ioctl ∗/
typedef struct audio_device {

char name[MAX_AUDIO_DEV_LEN];
char version[MAX_AUDIO_DEV_LEN];
char config[MAX_AUDIO_DEV_LEN];

} audio_device_t;

The play.gain and record.gain fields specify the output and input volume levels. A value of
AUDIO_MAX_GAIN indicates maximum gain. The device also allows input data to be
monitored by mixing audio input onto the output channel. The monitor_gain field con-
trols the level of this feedback path.

The Sound Blaster hardware does not support multiple output devices, so the play.port
field is provided for compatibility purposes only. On SPARC systems, it controls the out-
put path for the audio device, and may be set to either AUDIO_SPEAKER or
AUDIO_HEADPHONE to direct output to the built-in speaker or the headphone jack,
respectively. The record.port field allows selecting which audio source is used for record-
ing, and may be set to one of AUDIO_MICROPHONE , AUDIO_LINE_IN , or AUDIO_CD to
select input from the microphone jack, line-level input jack, or internal CD input,
respectively.

7-236 modified 18 Oct 1993

SunOS 5.4 Special Files sbpro (7)

The play.pause and record.pause flags may be used to pause and resume the transfer of
data between the sbpro device and the STREAMS buffers. The play.error and record.error
flags indicate that data underflow or overflow has occurred. The play.active and
record.active flags indicate that data transfer is currently active in the corresponding direc-
tion.

The play.open and record.open flags indicate that the device is currently open with the
corresponding access permission. The play.waiting and record.waiting flags provide an
indication that a process may be waiting to access the device. These flags are set
automatically when a process blocks on open(), though they may also be set using the
AUDIO_SETINFO ioctl command. They are cleared only when a process relinquishes
access by closing the device.

The play.samples and record.samples fields are initialized, at open(), to zero and increment
each time a data sample is copied to or from the associated STREAMS queue. Applica-
tions that keep track of the number of samples read or written may use these fields to
determine exactly how many samples remain in the STREAMS buffers. The play.eof field
increments whenever a zero-length output buffer is synchronously processed. Applica-
tions may use this field to detect the completion of particular segments of audio output.

The sample_rate , channels, precision, and encoding fields report the audio data format in use
by the device. Unlike the SPARC systems, these values may be modified and the sbpro
driver will use valid values. The sample_rate field can be set to any value between 4000
and 44100. channels can be set to 1 for monophonic and 2 for stereophonic samples, and
encoding may be set to AUDIO_ENCODING_ULAW or AUDIO_ENCODING_LINEAR , for
SPARC-compatible u−law encoding or PC-compatible linear 8-bit signed data,
respectively.

Filio and STREAMS
IOCTLS

All of the streamio(7) ioctl commands may be issued for the /dev/sbpro device. Because
the /dev/sbproctl device has its own STREAMS queues, most of these commands neither
modify nor report the state of /dev/sbpro if issued for the /dev/sbproctl device. The
I_SETSIG ioctl may be issued for /dev/sbproctl to enable the notification of audio status
changes, as described above.

Audio IOCTLS The sbpro device additionally supports the following ioctl commands:

AUDIO_DRAIN
The argument is ignored. This command suspends the calling process until the
output STREAMS queue is empty, or until a signal is delivered to the calling pro-
cess. It may only be issued for the /dev/sbpro device. An implicit
AUDIO_DRAIN is performed on the final close() of /dev/sbpro.

AUDIO_GETINFO
The argument is a pointer to an audio_info structure. This command may be
issued for either /dev/sbpro or /dev/sbproctl. The current state of the /dev/sbpro
device is returned in the structure.

modified 18 Oct 1993 7-237

sbpro (7) Special Files SunOS 5.4

AUDIO_SETINFO
The argument is a pointer to an audio_info structure. This command may be
issued for either /dev/sbpro or /dev/sbproctl. This command configures the
sbpro device according to the structure supplied and overwrites the structure
with the new state of the device. Note: The play.samples, record.samples, play.error ,
record.error, and play.eof fields are modified to reflect the state of the device when
the AUDIO_SETINFO was issued. This allows programs to atomically modify
these fields while retrieving the previous value.

Certain fields in the information structure, such as the pause flags, are treated as
read-only when /dev/sbpro is not open with the corresponding access permis-
sion. Other fields, such as the gain levels and encoding information, may have a
restricted set of acceptable values. Applications that attempt to modify such
fields should check the returned values to be sure that the corresponding change
took effect.

Once set, the following values persist through subsequent open() and close()
calls of the device: play.gain, record.gain, monitor_gain, play.port , and record.port .
All other state is reset when the corresponding I/O stream of /dev/sbpro is
closed.

The audio_info structure may be initialized through the use of the
AUDIO_INITINFO macro. This macro sets all fields in the structure to values that
are ignored by the AUDIO_SETINFO command. For instance, the following code
switches the input port from the microphone port to the line-level input jack
without modifying any other audio parameters:

audio_info_t info;

AUDIO_INITINFO(&info);
info.record.port = AUDIO_LINE_IN;
err = ioctl(audio_fd, AUDIO_SETINFO, &info);

This technique is preferred over using a sequence of AUDIO_GETINFO followed
by AUDIO_SETINFO.

AUDIO_GETDEV
The argument is a pointer to an audio_device structure. This command may be
issued for either /dev/sbpro or /dev/sbproctl. The returned value in the name
field will be a string that will identify the current hardware device, the value in
version will be a string indicating the current version of the hardware, and config
will be a device-specific string identifying the properties of the audio stream
associated with that file descriptor. The sbpro driver will return "SUNW,sbpro" in
the name field of the audio_device structure. The version field will contain the
version number of the device driver, and the config field will be set to "config" .

Unsupported Device
Features

The Sound Blaster Pro card also supports FM synthesis and MIDI device control,
although neither is supported in this version of the driver.

7-238 modified 18 Oct 1993

SunOS 5.4 Special Files sbpro (7)

FILES /dev/sbpro
/dev/sbproctl
/dev/audio linked to /dev/sbpro
/dev/audioctl linked to /dev/sbproctl
/usr/demo/SOUND

SEE ALSO ioctl(2), read(2), write(2), aioread(3), streamio(7)

Creative Labs, Inc. Sound Blaster Pro User Reference Manual

BUGS Due to a feature of the STREAMS implementation, programs that are terminated or exit
without closing the audio device may hang for a short period while audio output drains.
In general, programs that produce audio output should catch the SIGINT signal and flush
the output stream before exiting.

The current driver implementation does not support the A-law encoding mode. Future
implementations may permit the AUDIO_SETINFO ioctl to modify the play.encoding and
record.encoding fields of the device information structure to enable this mode.

modified 18 Oct 1993 7-239

sd (7) Special Files SunOS 5.4

NAME sd − driver for SCSI disk and CD-ROM devices

SYNOPSIS sd@target ,lun:partition

DESCRIPTION This driver handles embedded SCSI-2 and CCS-compatible SCSI disk drives, CD-ROM
drives, and the Emulex MD21 disk controller for ESDI drives.

The type of disk drive is determined using the SCSI inquiry command and reading the
volume label stored on block 0 of the drive. The volume label describes the disk
geometry and partitioning; it must be present or the disk cannot be mounted by the sys-
tem.

The block-files access the disk using the system’s normal buffering mechanism and are
read and written without regard to physical disk records. There is also a “raw” interface
that provides for direct transmission between the disk and the user’s read or write buffer.
A single read or write call usually results in one I/O operation; raw I/O is therefore con-
siderably more efficient when many bytes are transmitted. The names of the block files
are found in /dev/dsk; the names of the raw files are found in /dev/rdsk.

I/O requests (such as lseek(2)) to the SCSI disk must have an offset that is a multiple of
512 bytes (DEV_BSIZE), or the driver returns an EINVAL error. If the transfer length is not
a multiple of 512 bytes, the transfer count is rounded up by the driver.

Partition 0 is normally used for the root file system on a disk, partition 1 as a paging area
(for example, swap), and partition 2 for backing up the entire disk. Partition 2 normally
maps the entire disk and may also be used as the mount point for secondary disks in the
system. The rest of the disk is normally partition 6. For the primary disk, the user file
system is located here.

CD-ROM Drive
Support

CD-ROM is a removable read-only direct-access device. CD-ROM drives are designed to
work with any disk that meets the Sony-Philips “red-book” or “yellow-book” documents.
These drives can read CD-ROM data disks, digital audio disks (Audio CD’s) or
combined-mode disks, with a mix of audio and data tracks. This driver supports the
SONY CDU-8012 CD-ROM drive controller and other CD-ROM drives which have the
same SCSI command set as the SONY CDU-8012. The type of CD-ROM drive is determined
using the SCSI inquiry command.

A CD-ROM disk is singled sided containing approximately 540 mega-bytes of data or 74
minutes of audio.

When the device is first opened, the CD-ROM drive’s eject button will be disabled,
preventing the manual removal of the disk) until the last close(2) is called.

There is no volume label stored on the CD-ROM . The disk geometry and partitioning
information is always the same. If the CD-ROM is in ISO 9660 or High Sierra Disk for-
mat, it can be mounted as a file system.

Ioctls Refer to dkio(7).

7-240 modified 19 Feb 1993

SunOS 5.4 Special Files sd (7)

ERRORS EACCES Permission denied.

EBUSY The partition was opened exclusively by another thread.

EFAULT The argument was a bad address.

EINVAL Invalid argument.

EIO An I/O error occurred.

ENOTTY This indicates that the device does not support the requested ioctl func-
tion.

ENXIO During opening, the device did not exist.

EROFS The device is a read-only device.

FILES sd.conf driver configuration file
/dev/dsk/cntndnsn block files
/dev/rdsk/cntndnsn raw files

where:
cn controller n
tn SCSI target id n (0-6)
dn SCSI LUN n (0-7)
sn partition n (0-7)

SEE ALSO format(1M), ioctl(2), lseek(2), read(2), write(2), driver.conf(4), cdio(7), dkio(7), esp(7),
isp(7)

ANSI Small Computer System Interface-2 (SCSI-2)

Emulex MD21 Disk Controller Programmer Reference Manual

DIAGNOSTICS Error for command ’<command name>’Error Level: Fatal
Requested Block <n>, Error Block: <m>
Sense Key: <sense key name>
Vendor ’<vendor name>’: ASC = 0x<a> (<ASC name>), ASCQ = 0x, FRU = 0x<c>

The command indicated by <command name> failed. The Requested Block is
the block where the transfer started and the Error Block is the block that
caused the error. Sense Key, ASC, and ASCQ information is returned by the
target in response to a request sense command.

Caddy not inserted in drive
The drive is not ready because no caddy has been inserted.

Check Condition on REQUEST SENSE
A REQUEST SENSE cmd completed with a check condition. The original
command will be retried a number of times.

Label says <m> blocks Drive says <n> blocks
There is a discrepancy between the label and what the drive returned on the
READ CAPACITY command.

modified 19 Feb 1993 7-241

sd (7) Special Files SunOS 5.4

Not enough sense information
The request sense data was less than expected.

Request Sense couldn’t get sense data
The REQUEST SENSE cmd did not transfer any data.

Reservation Conflict
The drive was reserved by another initiator.

SCSI transport failed: reason ’xxxx’ : {retrying|giving up}
The host adapter has failed to transport a command to the target for the rea-
son stated. The driver will either retry the command or, ultimately, give up.

Unhandled Sense Key <n>
The REQUEST SENSE data included an invalid sense key.

Unit not Ready. Additional sense code 0x<n>
The drive is not ready.

can’t do switch back to mode 1
A failure to switch back to read mode 1.

corrupt label - bad geometry
The disk label is corrupted.

corrupt label - label checksum failed
The disk label is corrupted.

corrupt label - wrong magic number
The disk label is corrupted.

device busy too long
The drive returned busy during a number of retries.

disk not responding to selection
The drive was probably powered down or died.

failed to handle UA
A retry on a Unit Attention condition failed.

i/o to invalid geometry
The geometry of the drive could not be established.

incomplete read/write - retrying/giving up
There was a residue after the command completed normally.

logical block size <n> not supported
Illegal blocksize.

logical unit not ready
The drive is not ready.

no bp for disk label
A bp with consistent memory could not be allocated.

no mem for property
Free memory pool exhausted.

7-242 modified 19 Feb 1993

SunOS 5.4 Special Files sd (7)

no memory for disk label
Free memory pool exhausted.

no resources for dumping
A packet could not be allocated during dumping.

offline
Drive went offline; probably powered down.

requeue of command fails <n>
Driver attempted to retry a command and experienced a transport error.

sdrestart transport failed (<n>)
Driver attempted to retry a command and experienced a transport error.

transfer length not modulo <n>
Illegal request size.

transport of request sense fails (<n>)
Driver attempted to submit a request sense command and failed.

transport rejected (<n>)
Host adapter driver was unable to accept a command.

unable to read label
Failure to read disk label.

unit does not respond to selection
Drive went offline; probably powered down.

modified 19 Feb 1993 7-243

smc (7) Special Files SunOS 5.4

NAME smc − SMC 8003/8013/8216 Ethernet device driver

SYNOPSIS #include <sys/stropts.h>
#include <sys/ethernet.h>
#include <sys/dlpi.h>

AVAILABILITY x86

DESCRIPTION The SMC 8003/8013/8216 Ethernet driver is a multi-threaded, loadable, clonable,
STREAMS hardware driver supporting the connectionless Data Link Provider Interface,
dlpi(7), over an SMC 80X3/8216 Ethernet controller. Multiple SMC controllers installed
within the system are supported by the driver. The smc driver provides basic support
for the SMC hardware. Functions include chip initialization, frame transmit and receive,
multicast and "promiscuous" support, and error recovery and reporting.

The cloning character-special device /dev/smc is used to access all SMC controllers
installed within the system.

The smc driver is a “style 2” Data Link Service provider. All M_PROTO and
M_PCPROTO type messages are interpreted as DLPI primitives. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream with a
particular device (ppa). The ppa ID is interpreted as an unsigned long and indicates the
corresponding device instance (unit) number. The unit numbers are assigned sequen-
tially to each board found. The search order is determined by the order defined in the
/kernel/drv/smc.conf file. An error (DL_ERROR_ACK) is returned by the driver if the ppa
field value does not correspond to a valid device instance number for this system. The
device is initialized on first attach and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

· The max SDU is 1500 (ETHERMTU).

· The min SDU is 0.

· The dlsap address length is 8.

· The MAC type is DL_ETHER or DL_CSMACD.

· The sap length value is −2, meaning the physical address component is fol-
lowed immediately by a 2-byte sap component within the DLSAP address.

· The service mode is DL_CLDLS.

· No optional quality of service (QOS) support is included at present, so the
QOS fields are 0.

· The provider style is DL_STYLE2.

· The version is DL_VERSION_2.

· The broadcast address value is Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

7-244 modified 16 Oct 1993

SunOS 5.4 Special Files smc (7)

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a par-
ticular SAP (Service Access Pointer) with the stream. The smc driver interprets the sap
field within the DL_BIND_REQ as an Ethernet “type,” therefore valid values for the sap
field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the stream at
any time.

In addition to Ethernet V2 service, an “802.3 mode” is provided by the driver and works
as follows. sap values in the range [0-1500] are treated as equivalent and represent a
desire by the user for “802.3” mode. If the value of the sap field of the DL_BIND_REQ is
within this range, then the driver computes the length, not including initial M_PROTO
mblk, of all subsequent DL_UNITDATA_REQ messages and transmits 802.3 frames having
this value in the MAC frame header length field. All frames received from the media
having a “type” field in this range are assumed to be 802.3 frames and are routed up all
open streams that are bound to any sap value within this range. If more than one stream
is in “802.3 mode,” then the frame will be duplicated and routed up multiple streams as
DL_UNITDATA_IND messages.

The smc driver DLSAP address format consists of the 6-byte physical (Ethernet) address
component followed immediately by the 2-byte sap (type) component producing an 8-
byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format but use information returned by the
DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap length,
full DLSAP length, and sap/physical ordering are included within the DL_INFO_ACK.
The physical address length can be computed by subtracting the sap length from the full
DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to obtain the current phy-
sical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the smc driver. The smc driver will route received Eth-
ernet frames up all those open and bound streams having a sap which matches the Ether-
net type as DL_UNITDATA_IND messages. Received Ethernet frames are duplicated and
routed up multiple open streams if necessary. The DLSAP address contained within the
DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the sap (type)
and physical (Ethernet) components.

smc Primitives In addition to the mandatory connectionless DLPI message set, the driver additionally
supports the following primitives.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable recep-
tion of individual multicast group addresses. A set of multicast addresses may be itera-
tively created and modified on a per-stream basis using these primitives. These primi-
tives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all
(“promiscuous mode”) frames on the media including frames generated by the local host.

modified 16 Oct 1993 7-245

smc (7) Special Files SunOS 5.4

When used with the DL_PROMISC_SAP flag set, this enables/disables reception of all sap
(Ethernet type) values. When used with the DL_PROMISC_MULTI flag set, this
enables/disables reception of all multicast group addresses. The effect of each is always
on a per-stream basis and independent of the other sap and physical level configurations
on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the 6-octet Ethernet address currently asso-
ciated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primitive is
valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6-octet Ethernet address currently
associated (attached) to this stream. The credentials of the process that originally opened
this stream must be superuser or EPERM is returned in the DL_ERROR_ACK. This primi-
tive is destructive in that it affects all other current and future streams attached to this
device. An M_ERROR is sent up all other streams attached to this device when this primi-
tive on this stream is successful. Once changed, all streams subsequently opened and
attached to this device will obtain this new physical address. Once changed, the physical
address will remain in effect until this primitive is used to change the physical address
again or the system is rebooted, whichever comes first.

CONFIGURATION The /kernel/drv/smc.conf file supports the following options:

intr Specifies the IRQ level for the board.

reg Specifies the shared RAM the board is jumpered for.

It is important to ensure that there are no conflicts for the board’s I/O port, shared RAM,
or IRQ level.

FILES /dev/smc

/kernel/drv/smc.conf smc configuration file.

SEE ALSO dlpi(7)

7-246 modified 16 Oct 1993

SunOS 5.4 Special Files smce (7)

NAME smce − SMC 3032/EISA dual-channel Ethernet device driver

SYNOPSIS #include <sys/stropts.h>
#include <sys/ethernet.h>
#include <sys/dlpi.h>

AVAILABILITY x86

DESCRIPTION The smce Ethernet driver is a multi-threaded, loadable, clonable, STREAMS hardware
driver supporting the connectionless Data Link Provider Interface, dlpi(7), over the SMC
3032/EISA dual-channel Ethernet controllers. Each dual-channel 3032/EISA controller
can support two subnetworks. Multiple 3032/EISA controllers installed within the sys-
tem are supported by the driver. The smce driver provides basic support for the
3032/EISA hardware. Functions include chip initialization, frame transmit and receive,
multicast and “promiscuous” support, and error recovery and reporting on both chan-
nels.

The cloning, character-special device /dev/smce is used to access all 3032/EISA devices
installed within the system.

The smce driver is a “style 2” Data Link Service provider. All M_PROTO and
M_PCPROTO type messages are interpreted as DLPI primitives. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream with a
particular device (ppa). The ppa ID is interpreted as an unsigned long integer and indi-
cates the corresponding device instance (unit) number. The unit numbers are assigned
sequentially to each board found. For the dual-channel 3032/EISA controller, a pair of
ppa IDs is associated with each controller. The lower (even) numbered ppa corresponds
to port A of the controller while the higher (odd) numbered ppa corresponds to port B.
The search order is determined by the order defined in the /kernel/drv/smce.conf file. If
the ppa field value does not correspond to a valid device instance number for this sys-
tem, the driver will return an error (DL_ERROR_ACK). The device is initialized on first
attach and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

· The maximum SDU is 1500 (ETHERMTU).

· The minimum SDU is 0. The driver will pad to the mandatory 60-octet
minimum packet size.

· The dlsap address length is 8.

· The MAC type is DL_ETHER.

· The sap length value is −2, meaning the physical address component is fol-
lowed immediately by a 2-byte sap component within the DLSAP address.

· The service mode is DL_CLDLS.

· No optional quality of service (QOS) support is included at present, so the
QOS fields are 0.

modified 18 Oct 1993 7-247

smce (7) Special Files SunOS 5.4

· The provider style is DL_STYLE2.

· The version is DL_VERSION_2.

· The broadcast address value is Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a par-
ticular Service Access Pointer (SAP) with the stream. The smce driver interprets the sap
field within the DL_BIND_REQ as an Ethernet “type;” therefore valid values for the sap
field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the stream at
any time.

In addition to Ethernet V2 service, an “802.3 mode” is also provided by the driver. In this
mode, sap values in the range [0-1500] are treated as equivalent and represent a desire by
the user for “802.3” mode. If the value of the sap field of the DL_BIND_REQ message is
within this range, then the driver expects that the destination DLSAP in a
DL_UNITDATA_REQ will contain the length of the data rather than a sap value. All
frames received from the media that have a “type” field in this range are assumed to be
802.3 frames, and they are routed up all open streams which are bound to any sap value
within this range. If more than one stream is in “802.3 mode,” then the frame will be
duplicated and routed up multiple streams as DL_UNITDATA_IND messages.

The smce driver DLSAP address format consists of the 6-byte physical (Ethernet) address
component followed immediately by the 2-byte sap (type) component, producing an 8-
byte address. Applications should not hardcode to this particular implementation-
specific DLSAP address format, but should instead use information returned in the
DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap length,
full DLSAP length, and sap/physical ordering are included within the DL_INFO_ACK.
The physical address length can be computed by subtracting the sap length from the full
DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to obtain the current phy-
sical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the smce driver. The smce driver will route received
Ethernet frames up all open and bound streams that have a sap which matches the Ether-
net type as DL_UNITDATA_IND messages. Received Ethernet frames are duplicated and
routed up multiple open streams if necessary. The DLSAP address contained within the
DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the sap (type)
and physical (Ethernet) components.

smce Primitives In addition to the mandatory connectionless DLPI message set, the driver also supports
the following primitives:

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable recep-
tion of individual multicast group addresses. A set of multicast addresses may be itera-
tively created and modified on a per-stream basis using these primitives. These primi-
tives are accepted by the driver in any state following DL_ATTACHED.

7-248 modified 18 Oct 1993

SunOS 5.4 Special Files smce (7)

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all “prom-
iscuous mode” frames on the media including frames generated by the local host.

When used with the DL_PROMISC_SAP flag set, this enables/disables reception of all sap
(Ethernet type) values. When used with the DL_PROMISC_MULTI flag set, this
enables/disables reception of all multicast group addresses. The effect of each is always
on a per-stream basis and independent of the other sap and physical level configurations
on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the 6-octet Ethernet address currently asso-
ciated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primitive is
valid only in states following a successful DL_ATTACH_REQ. When the system starts up,
both channels on the 3032/EISA controller uses the same Ethernet address obtained from
the on-board EEPROM.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6-octet Ethernet address currently
associated (attached) to this stream. The credentials of the process which originally
opened this stream must be superuser or an EPERM error is returned in the
DL_ERROR_ACK. This primitive is destructive in that it affects all other current and
future streams attached to this device. An M_ERROR is sent up all other streams attached
to this device when this primitive on this stream is successful. Once changed, all streams
subsequently opened and attached to this device will obtain this new physical address.
The new physical address will remain in effect until this primitive is used to change the
physical address again or the system is rebooted, whichever comes first.

CONFIGURATION The /kernel/drv/smce.conf file supports the following options:

intr Specifies the IRQ level for the board.

reg Specifies the shared RAM the board is jumpered for.

It is important to ensure that there are no conflicts for the board’s I/O port, shared RAM,
or IRQ level.

FILES /dev/smce

/kernel/drv/smce.conf smce configuration file.

SEE ALSO dlpi(7)

modified 18 Oct 1993 7-249

sockio (7) Special Files SunOS 5.4

NAME sockio − ioctls that operate directly on sockets

SYNOPSIS #include <sys/sockio.h>

DESCRIPTION The IOCTLs listed in this manual page apply directly to sockets, independent of any
underlying protocol. The setsockopt() call (see getsockopt(3N)) is the primary method
for operating on sockets, rather than on the underlying protocol or network interface.
ioctls for a specific network interface or protocol are documented in the manual page for
that interface or protocol.

SIOCSPGRP The argument is a pointer to an int. Set the process-group ID that
will subsequently receive SIGIO or SIGURG signals for the socket
referred to by the descriptor passed to ioctl to the value of that int.

SIOCGPGRP The argument is a pointer to an int. Set the value of that int to the
process-group ID that is receiving SIGIO or SIGURG signals for
the socket referred to by the descriptor passed to ioctl.

SIOCCATMARK The argument is a pointer to an int. Set the value of that int to 1 if
the read pointer for the socket referred to by the descriptor passed
to ioctl points to a mark in the data stream for an out-of-band mes-
sage. Set the value of that int to 0 if the read pointer for the socket
referred to by the descriptor passed to ioctl does not point to a
mark in the data stream for an out-of-band message.

SEE ALSO ioctl(2), getsockopt(3N)

7-250 modified 3 Jul 1990

SunOS 5.4 Special Files st (7)

NAME st − driver for SCSI tape devices

SYNOPSIS st@target,lun:[l,m,h,c,u][b][n]

DESCRIPTION The st device driver is an interface to various SCSI tape devices. Supported tape devices
include 1/4” Archive Viper QIC-150 streaming tape drive, 1/4” Emulex MT-02 tape con-
troller, HP-88780 1/2” tape drive, Exabyte EXB-8200/8500 8mm cartridge tape, and the
Archive Python 4 mm DAT tape subsystem. st provides a standard interface to these
various devices; see mtio(7) for details.

The driver can be opened with either rewind on close or no rewind on close options. A
maximum of four tape formats per device are supported (see FILES below). The tape
format is specified using the device name. Often tape format is also referred to as tape
density.

Read Operation If the driver is opened for reading in a different format than the tape is written in, the
driver overrides the user selected format. For example, if a 1/4” cartridge tape is written
in QIC-24 format and opened for reading in QIC-150, the driver will detect a read failure
on the first read and automatically switch to QIC-24 to read the data.

Note that if the low density format is used, no indication is given that the driver has over-
ridden the user selected format. Other formats issue a warning message to inform the
user of an overridden format selection. Some devices automatically perform this func-
tion and do not require driver support (1/2” reel tape drive, for example).

Write Operation Writing from the beginning of tape is performed in the user-specified format. The origi-
nal tape format is used for appending onto previously written tapes.

Tape Configuration The st tape driver has a built-in configuration table for all Sun supported tape drives. In
order to support the addition of third party tape devices or to override a built-in
configuration, drive information can be supplied in /kernel/drv/st.conf as global proper-
ties that apply to each node, or as properties that are applicable to one node only. The st
driver looks for the property called “tape-config-list”. The value of this property is a list
of triplets, where each triplet consists of three strings.

The formal syntax is:

tape-config-list = <triplet> [, <triplet> ∗];
where

<triplet> := <vid+pid>, <pretty print>, <data-property-name>
and

<data-property-name> = <version>, <type>, <bsize>,
<options>, <number of densities>,
<density> [, <density>∗], <default-density>;

<vid+pid> is the string that is returned by the tape device on a SCSI inquiry command.
This string may contain any character in the range 0x20-0x7e. Characters such as “ " ”
(double quote) or “ ’ ” (single quote), which are not permitted in property value strings,

modified 24 Jan 1994 7-251

st (7) Special Files SunOS 5.4

are represented by their octal equivalent (for example, \042 and \047). Trailing spaces
may be truncated.

<pretty print> is used to report the device on the console. This string may have zero
length, in which case the <vid+pid> will be used to report the device.

<data-property-name> is the name of the property which contains all the tape
configuration values (such as <type>, <bsize>, etc.) corresponding for the tape drive for
the specified <vid+pid>.

<version> is a version number and should be 1. In the future, higher version numbers
may be used to allow for changes in the syntax of the <data-property-name> value list.

<type> is a type field. Valid types are defined in /usr/include/sys/mtio.h. For third party
tape configuration, the following generic types are recommended:

MT_ISQIC 0x32
MT_ISREEL 0x33
MT_ISDAT 0x34
MT_IS8MM 0x35
MT_ISOTHER 0x36

<bsize> is the preferred block size of the tape device. The value should be 0 for variable
block size drives.

<options> is a bit pattern representing the drive options, as defined in
/usr/include/sys/scsi/targets/stdef.h. Valid flags for tape configuration are:

ST_VARIABLE 0x0001
ST_REEL 0x0004
ST_BSF 0x0008
ST_BSR 0x0010
ST_LONG_ERASE 0x0020
ST_KNOWS_EOD 0x0200
ST_IQIC 0x0002
ST_UNLOADABLE 0x0400
ST_LONG_TIMEOUTS 0x1000
ST_BUFFERED_WRITES 0x4000
ST_NO_RECSIZE_LIMIT 0x8000

<number of densities> is the number of densities specified. Each tape drive can support
up to four densities. The value entered should therefore be between 1 and 4; if less than 4,
the remaining densities will be assigned a value of 0x0.

<density> is a single byte hexadecimal number. It can either be found in the drive
specification manual or be obtained from the drive vendor.

<default-density> has a value between 0 and (<number of densities> - 1).

7-252 modified 24 Jan 1994

SunOS 5.4 Special Files st (7)

Example of a global tape-config-list property:

#
Copyright (c) 1992, by Sun Microsystems, Inc."
#
#ident "@(#)st.conf 1.6 93/05/03 SMI"

tape-config-list =
"Magic DAT", "Magic 4mm Helical Scan", "magic-data";

magic-data = 1,0x34,1024,0x1639,4,0,0x8c,0x8c,0x8c,3;

name="st" class="scsi"
target=0 lun=0;

name="st" class="scsi"
target=1 lun=0;

name="st" class="scsi"
target=2 lun=0;
.
.
.

name="st" class="scsi"
target=6 lun=0;

Example of a tape-config-list property applicable to target 2 only:

#
Copyright (c) 1992, by Sun Microsystems, Inc.
#
#ident "@(#)st.conf 1.6 93/05/03 SMI"

name="st" class="scsi"
target=0 lun=0;

name="st" class="scsi"
target=1 lun=0;

name="st" class="scsi"
target=2 lun=0;
tape-config-list =

"Magic DAT", "Magic 4mm Helical Scan", "magic-data"
magic-data = 1,0x34,1024,0x1639,4,0,0x8c,0x8c,0x8c,3;

name="st" class="scsi"
target=3 lun=0;
.
.
.

name="st" class="scsi"
target=6 lun=0;

modified 24 Jan 1994 7-253

st (7) Special Files SunOS 5.4

Large Record Sizes To support applications such as seismic programs that require large record sizes, flag
ST_NO_RECSIZE_LIMIT must be set in drive option in the configuration entry. A SCSI
tape drive that needs to transfer large records should OR this flag with other flags in the
’options’ field in /kernel/drv/st.conf. Refer to Tape Configuration. By default, this flag is
set for the built-in config entries of Archive DAT and Exabyte drives.

If this flag is set, the st driver issues a SCSI-2 READ BLOCK LIMITS command to the dev-
ice to determine the maximum record size allowed by it. If the command fails, st contin-
ues to use the maximum record sizes mentioned in the mtio(7) man page.

If the command succeeds, st restricts the maximum transfer size of a variable-length dev-
ice to the minimum of that record size and the maximum DMA size that the host adapter
can handle. Fixed-length devices are bound by the maximum DMA size allocated by the
machine. Note that tapes created with a large record size may not be readable by earlier
releases or on other platforms.

EOT Handling The Emulex drives have only a physical end of tape (PEOT); thus it is not possible to write
past EOT. All other drives have a logical end of tape (LEOT) before PEOT to guarantee
flushing the data onto the tape. The amount of storage between LEOT and PEOT varies
from less than 1 Mbyte to about 20 Mbyte, depending on the tape drive.

If EOT is encountered while writing an Emulex, no error is reported but the number of
bytes transferred is zero and no further writing is allowed. On all other drives, the first
write that encounters EOT will return a short count or zero. If a short count is returned,
then the next write will return zero. After a zero count is returned, the next write returns
a full count or short count. A following write returns zero again. It is important that the
number and size of trailer records be kept as small as possible to prevent data loss.
Therefore, writing after EOT is not recommended.

Reading past EOT is transparent to the user. Reading is stopped only by reading EOF’s.
For 1/2” reel devices, it is possible to read off the end of the reel if one reads past the two
file marks which mark the end of recorded media.

Write Data Buffering Tape drives with data compression require a much higher data rate in order to stream
the tape. Write data buffering in the driver improves streaming to the drive without
changing the application and augments the buffering in the tape drive itself. If write data
buffering is enabled, data is buffered in the driver and the request is immediately ack-
nowledged by the driver before it has been written to the tape drive. This enables the
driver to submit the next request as soon as the previous request completes and the appli-
cation to prepare the next request while the current request is in progress. A SCSI tape
drive that allows buffering requires ORing the flag ST_BUFFERED_WRITES with other
flags in the ’options’ field in /kernel/drv/st.conf. Refer to Tape Configuration. By
default, this option is set for the built-in config entries of the Archive DAT and Exabyte
drives.

In order for write buffering to work properly, sufficient space after LEOT must be avail-
able to empty the write buffers. Older tape devices usually do not have sufficient space
after LEOT.

7-254 modified 24 Jan 1994

SunOS 5.4 Special Files st (7)

To turn on tape buffering, a property in st.conf called "tape-driver-buffering" should be
added. The value assigned to this property is the maximum number of buffered write
requests allowed. For example, 0 indicates no write request buffering allowed, while 2
indicates buffer up to 2 write requests. If this property is not specified in st.conf, the
driver defaults to a value of 0. The maximum size of write request that can be buffered is
specified through a property in st.conf called "tape-driver-buf-max-size". If this property
is not specified in st.conf, the driver defaults the buffer size to a value of 1 Mbye.

An example of /kernel/drv/st.conf, where the maximum number of write requests buf-
fered is 4 and maximum size of write request buffered is 2 Mbyte, is given below. This
applies to all nodes in this conf file.

Copyright (c) 1992, by Sun Microsystems, Inc. # #ident "@(#)st.conf 1.6 93/05/03
SMI"

tape-driver-buffering = 4; tape-driver-buf-max-size = 0x200000;

name="st" class="scsi"
target=0 lun=0;

name="st" class="scsi"
target=1 lun=0;

name="st" class="scsi"
target=2 lun=0;

. . .

In the case of a SCSI bus reset, a medium error, or any other fatal transport error on a buf-
fered request, the driver returns an error on subsequent write requests and allows no
more writes. If no further write requests occur, an error is returned on close.

Since some applications may perceive write buffering as a potential data integrity prob-
lem, this feature is disabled by default and needs to be explicitly enabled in the config
entry and turned on by means of the property in st.conf. Furthermore, some fault
tolerant backup servers make assumptions about the data buffering in the tape drive
itself. These assumptions may not be valid if write buffering has been enabled.

Write buffering may be superseded by other performance enhancements in a future
release.

Ioctls The behavior of SCSI tape positioning ioctls is the same across all devices which support
them. Refer to mtio(7). However, not all devices support all ioctls. The driver returns an
ENOTTY error on unsupported ioctls.

The retension ioctl only applies to 1/4” cartridge tape devices. It is used to restore tape
tension, thus improving the tape’s soft error rate after extensive start-stop operations or
long-term storage.

modified 24 Jan 1994 7-255

st (7) Special Files SunOS 5.4

In order to increase performance of variable-length tape devices (particularly when they
are used to read/write small record sizes), two operations in the MTIOCTOP ioctl,
MTSRSZ and MTGRSZ, can be used to set and get fixed record lengths. The ioctl also
works with fixed-length tape drives which allow multiple record sizes. The min/max
limits of record size allowed on a driver are found by using a SCSI-2 READ BLOCK LIM-
ITS command to the drive. If this command fails, the default min/max record sizes
allowed are 1 byte and 63k bytes. An application that needs to use a different record size
opens the device, sets the size with the MTSRSZ ioctl and then continues with I/O. The
scope of the change in record size remains until the device is closed. The next open to the
device resets the record size to the default record size (retrieved from st.conf).

Note that the error status is reset by the MTIOCGET get status ioctl call or by the next
read, write, or other ioctl operation. If no error has occurred (sense key is zero), the
current file and record position is returned.

ERRORS EACCES The driver is opened for write access and the tape is write protected.

EBUSY The tape drive is in use by another process. Only one process can use the
tape drive at a time. The driver will allow a grace period for the other pro-
cess to finish before reporting this error.

EINVAL The number of bytes read or written is not a multiple of the physical record
size (fixed-length tape devices only).

EIO During opening, the tape device is not ready because either no tape is in the
drive, or the drive is not on-line. Once open, this error is returned if the
requested I/O transfer could not be completed.

ENOTTY This indicates that the tape device does not support the requested ioctl
function.

ENXIO During opening, the tape device does not exist.

FILES /kernel/drv/st.conf
driver configuration file

/usr/include/sys/mtio.h
structures and definitions for mag tape io control commands

/usr/include/sys/scsi/targets/stdef.h
definitions for SCSI tape drives

/dev/rmt/[0− 127][l,m,h,u,c][b][n]
where l,m,h,u,c specifies the density (low, medium, high,
ultra/compressed), b the optional BSD behavior (see mtio(7)), and n the
optional no rewind behavior. For example, /dev/rmt/0lbn specifies unit 0,
low density, BSD behavior, and no rewind.

For 1/2” reel tape devices (HP-88780), the densities are:
l 800 BPI density
m 1600 BPI density
h 6250 BPI density

7-256 modified 24 Jan 1994

SunOS 5.4 Special Files st (7)

c data compression
(not supported on all modules)

For helical-scan tape devices (Exabyte 8200/8500/8500c/8505):
l Standard 2 Gbyte format
m 5 Gbyte format (8500 only)
h,c data compression

(8500c, 8505 only)

For 4mm DAT tape devices (Archive Python):
l Standard format
m,h,c data compression

For QIC-150 tape devices (Archive Viper):
l QIC-150 Format
m QIC-150 Format
h QIC-150 Format
c QIC-150 Format

For QIC-24 tape devices (Emulex MT−02):
l QIC-11 Format
m QIC-24 Format
h QIC-24 Format
c QIC-24 Format

SEE ALSO read(2), write(2), driver.conf(4), esp(7), isp(7), mtio(7), ioctl(9E)

DIAGNOSTICS Error for command ’<command name>’Error Level: Fatal
Requested Block <n>, Error Block: <m>
Sense Key: <sense key name>
Vendor ’<name>’: ASC = 0x<a> (<extended sense code name>),
ASCQ = 0x, FRU = 0x<c>

The command indicated by <command name> failed. The Requested Block is
the block where the transfer started and the Error Block is the block that
caused the error. Sense Key, ASC, ASCQ and FRU information is returned by
the target in response to a request sense command.

write/read: not modulo <n> block size
The request size for fixed record size devices must be a multiple of the
specified block size.

recovery by resets failed
After a transport error, the driver attempted to recover with device and bus
reset. This recovery failed.

Periodic head cleaning required
The driver reported that periodic head cleaning is now required.

modified 24 Jan 1994 7-257

st (7) Special Files SunOS 5.4

Soft error rate (<n>%) during writing/reading was too high
The soft error rate has exceeded the threshold specified by the vendor.

SCSI transport failed: reason ’xxxx’: {retrying|giving up}
The host adapter has failed to transport a command to the target for the rea-
son stated. The driver will either retry the command or, ultimately, give up.

BUGS Tape devices that do not return a BUSY status during tape loading prevent user com-
mands from being held until the device is ready. The user must delay issuing any tape
operations until the tape device is ready. This is not a problem for Sun Microsystem
Computer Corporation supplied tape devices.

Tape devices that do not report a blank check error at the end of recorded media may
cause file positioning operations to fail. Some tape drives for example, mistakenly report
media error instead of blank check error.

7-258 modified 24 Jan 1994

SunOS 5.4 Special Files stc (7)

NAME stc − Serial Parallel Communications driver for SBus

DESCRIPTION The SPC/S SBus communications board consists of eight asynchronous serial ports and
one IBM PS/2-compatible parallel port. The stc driver supports up to 8 SPC/S boards in an
SBus system. Each serial port has full modem control: the CD, DTR, DSR, RTS and CTS
modem control lines are provided, plus flow control is supported in hardware for either
RTS/CTS hardware flow control or DC1/DC3 software flow control. The parallel port is
unidirectional with support for the ACK, STROBE, BUSY, PAPER OUT, SELECT and
ERROR interface signals. Both the serial and parallel ports support those termio(7) dev-
ice control functions specified by flags in the c_cflag word of the termios(3) structure; in
addition, the serial ports support the IGNPAR, PARMRK, INPCK, IXON, IXANY and IXOFF
flags in the c_iflag word of the termios(3) structure. The latter c_iflag functions are per-
formed by the stc driver for the serial ports. Since the parallel port is a unidirectional,
output-only port, no input termios(3) (c_iflag) parameters apply to it. Trying to execute
a nonsensical ioctl() on the parallel port is not recommended. All other termios(3) func-
tions are performed by STREAMS modules pushed atop the driver. When an stc device is
opened, the ldterm(7) and ttcompat(7) STREAMS modules are automatically pushed on
top of the stream if they are specified in the /etc/iu.ap file (the default condition), provid-
ing the standard termio(7) interface.

The device names of the form /dev/term/n or /dev/ttyyn specify the serial I/O ports pro-
vided on the SPC/S board, conventionally as incoming lines. The device names of the
form /dev/cua/n or /dev/ttyzn specify the serial I/O ports provided on the SPC/S board,
conventionally as outgoing lines. The device names of the form /dev/printers/n or
/dev/stclpn specify the parallel port, and the device name of the form /dev/stcn specify a
special control port per board.

To allow a single tty line to be connected to a modem and used for both incoming and
outgoing calls, a special feature, controlled by the minor device number, has been added.
Minor device numbers in the range 128-191 correspond to the same physical lines as
those in the range 0-63 (that is, the same line as the minor device number minus 128).

A dial-in line has a minor device in the range 0-63 and is conventionally named
/dev/term/n, where n is a number indicating which dial-in line it is (so that /dev/term/0 is
the first dial-in line), and the dial-out line corresponding to that dial-in line has a minor
device number 128 greater than the minor device number of the dial-in line and is con-
ventionally named /dev/cua/n, where n is the number of the dial-in line. These devices
will also have the compatibility names /dev/ttyzn.

The /dev/cua/n lines are special in that they can be opened even when there is no carrier
on the line. Once a /dev/cua/n line is opened, the corresponding /dev/term/n line cannot
be opened until the /dev/cua/n line is closed; a blocking open will wait until the
/dev/cua/n line is closed (which will drop DTR, after which DCD will usually drop as
well) and carrier is detected again, and a non-blocking open will return an error. Also, if
the /dev/term/n line has been opened successfully (usually only when carrier is recog-
nized on the modem) the corresponding /dev/cua/n line can not be opened. This allows a
modem to be attached to /dev/term/0, for example, and used for dial-in (by enabling the

modified 2 Aug 1993 7-259

stc (7) Special Files SunOS 5.4

line for login (using pmadm(1M)) and also used for dial-out (by tip(1) or uucp(1C)) as
/dev/cua/0 when no one is logged in on the line.

The parallel port is given the name /dev/stclpn, where n is the SPC/S unit number (see
Minor Numbers, below).

The control port, named /dev/stcn, where n is the SPC/S, is available. And ioctl() is pro-
vided for this special file which allow the collection of statistics maintained on serial port
performance.

Minor Numbers o p u u | u l l l − these correspond to bits in the minor number

o set if this device is an outgoing serial line

p set if this is a parallel port device

u device unit number

l device line number if this is the parallel port line, ’p’ should be 1 and ’lll’
should be all 0’s if this is the control line, both ’p’ and ’lll’ should be set to
all 1’s

IOCTLS The standard set of termio ioctl() calls are supported by the stc driver on both the serial
and parallel ports.

If the CRTSCTS flag in the c_cflag is set and if CTS is high, output will be transmitted; if
CTS is low, output will be frozen. If the CRTSCTS flag is clear, the state of CTS has no
effect. Breaks can be generated by the TCSBRK, TIOCSBRK and TIOCCBRK ioctl() calls.
The modem control lines TIOCM_CAR, TIOCM_CTS, TIOCM_RTS, TIOCM_DSR and
TIOCM_DTR are provided for the serial ports, although the TIOCMGET ioctl() call will
not return the state of the TIOCM_RTS or TIOCM_DSR lines, which are output-only sig-
nals.

The serial port input and output line speeds may be set to any of the speeds supported by
termio(7).

DEVICE-SPECIFIC
IOCTLS

The following additional ioctl()’s are supported by the stc driver.

STC_SPPC(struct ppc_params_t ∗)
set parallel port parameters (valid until changed or close())

STC_GPPC(struct ppc_params_t ∗)
get parallel port parameters (valid until changed or close())

struct ppc_params_t {
u_int flags; /∗ driver status flag ∗/
u_int state; /∗ status of the printer interface ∗/
u_int strobe_w; /∗ strobe width, in microseconds ∗/
u_int data_setup; /∗ data setup time, in microseconds ∗/
u_int ack_timeout; /∗ ACK timeout in secs ∗/
u_int error_timeout; /∗ PAPER OUT, etc... timeout in secs ∗/
u_int busy_timeout; /∗ BUSY timeout in seconds ∗/

};

7-260 modified 2 Aug 1993

SunOS 5.4 Special Files stc (7)

The possible values for flags , defined in /usr/include/sys/stcio.h, are:

PP_PAPER_OUT honor PAPER OUT from port; returned HIGH means PAPER
OUT.

PP_ERROR honor ERROR from port; returned HIGH means ERROR.

PP_BUSY honor BUSY from port; returned HIGH means BUSY.

PP_SELECT honor SELECT from port; returned HIGH means OFFLINE.

PP_MSG print console message on every error scan.

PP_SIGNAL send a PP_SIGTYPE (SIGURG) to the process if printer error.

The state field contains the current status of the printer interface. It is analogous
to the bit order of flags , but contains the status the driver maintains, masked by
the flags that are set. The result of shifting state PP_SHIFT bits to the left is the
actual state of the hardware.

The STC_SPPC and STC_GPPC ioctl calls are understood only by the parallel
port.

STC_GSTATS(struct stc_stats_t ∗)
get or reset driver performance statistics on serial ports

struct stc_stats_t {
u_int cmd; /∗ command ∗/
u_int qpunt; /∗ punting in stc_drainsilo() ∗/
u_int drain_timer; /∗ posted a timer in stc_drainsilo() ∗/
u_int no_canput; /∗ canput() failed in stc_drainsilo() ∗/
u_int no_rcv_drain; /∗ can’t call stc_drainsilo() in stc_rcv() ∗/
u_int stc_drain; /∗ STC_DRAIN flag set on this line ∗/
u_int stc_break; /∗ BREAK requested on XMIT via stc_ioctl() ∗/
u_int stc_sbreak; /∗ start BREAK requested via stc_ioctl() ∗/
u_int stc_ebreak; /∗ end BREAK requested via stc_ioctl() ∗/
u_int set_modem; /∗ set modem control lines in stc_ioctl() ∗/
u_int get_modem; /∗ get modem control lines in stc_ioctl() ∗/
u_int ioc_error; /∗ bad ioctl() ∗/
u_int set_params; /∗ call to stc_param() ∗/
u_int no_start; /∗ can’t run in stc_start(); already there ∗/
u_int xmit_int; /∗ transmit interrupts ∗/
u_int rcv_int; /∗ receive interrupts ∗/
u_int rcvex_int; /∗ receive exception interrupts ∗/
u_int modem_int; /∗ modem change interrupts ∗/
u_int xmit_cc; /∗ characters transmitted ∗/
u_int rcv_cc; /∗ characters received ∗/
u_int break_cnt; /∗ BREAKs received ∗/
u_int bufcall; /∗ times we couldn’t get STREAMS buffer ∗/
u_int canwait; /∗ stc_drainsilo() called w/pending timer ∗/
u_int reserved; /∗ this field is meaningless ∗/

};

modified 2 Aug 1993 7-261

stc (7) Special Files SunOS 5.4

The possible cmd values, defined in /usr/include/sys/stcio.h, are

STAT_CLEAR clear the line statistics

STAT_GET get the line statistics

The STC_GSTATS ioctl works only on the SPC/S control port.

SOFTCAR, DTR
and CTS/RTS

FLOW CONTROL

Several methods may be used to enable or disable soft carrier on a particular serial line.
The non-programmatic method is to edit the /kernel/drv/stc.conf file. For this change to
take effect, the machine must be rebooted. See the next section, SETTING DEFAULT
LINE PARAMETERS, for more information on this method. From within an application
program, you can enable or disable the recognition of carrier on a particular line by issu-
ing the TIOCGSOFTCAR ioctl() to the driver.

The default mode of operation for the DTR signal is to assert it on the first open() of a
serial line and, if HUPCL is set, to de-assert it on the last close(). To change the operation
of this feature, issue the set on the /kernel/drv/stc.conf parameter flags field bit
DTR_ASSERT.

SETTING
DEFAULT LINE
PARAMETERS

Many default parameters of the serial and parallel ports can be changed using the
/kernel/drv/stc.conf file. The format of a line in the stc.conf file is:

device_tag=token[=value][:token[=value]]

For serial ports, the device_tag is stc_n, where n is between 0 and the maximum number of
serial ports used by the driver. The token and parameters that follow it apply to both the
/dev/term/n entries and /dev/cua/n entries.

For parallel ports, the device_tag is stc_pn, where n is between 0 and the number of paral-
lel ports driven by stc.

The token[=value] specifies a token , and if the token takes a value, the value to assigned.
Tokens that don’t take a value are considered boolean. If boolean tokens don’t appear in
the stc.conf file, they will be cleared by the driver. If these tokens appear in the stc.conf
file, they will be set by the driver.

Tokens that take parameters must have a parameter specified in the token=value couplet
in the stc.conf file. If no parameter or an invalid parameter is specified, the driver will
ignore the token and revert to using the driver’s default value.

Tokens for Serial
Ports

Valid boolean tokens for serial ports are:

soft_carrier- enables the soft carrier on the specified line. When the soft carrier is set,
transitions on the carrier detect line will be ignored.

dtr_assert- causes the DTR to be asserted on the next open of the port.

dtr_force- causes DTR to be continuously asserted. it overrides any other DTR
operations and ioctl calls.

dtr_close- use alternate semantics when dealing with DTR in close. If this is clear,
DTR will drop on the close of the port. If this is set, DTR will not drop
on close() if TS_SOFTCAR (see termiox(7)) is set in the t_flags.

7-262 modified 2 Aug 1993

SunOS 5.4 Special Files stc (7)

cflow_flush- flush any data being held off by remote flow control on close().

cflow_msg- display a message on the console if data transmission is stalled due to
remote flow control blocking the transfer in close().

instantflow- if transmission is stopped by software flow control and the flow control
is disabled via an ioctl() call, the transmitter will be enabled immedi-
ately.

display- displays all serial port parameters.

Valid tokens requiring values are:

drain_size- The size of STREAMS buffers allocated when passing data from the
receive interrupt handler upstream

hiwater, lowwater-
The high water and low water thresholds in the receive interrupt
handler 1024 byte buffer

rtpr- The inter-character receive timer

rxfifo- The UART receive fifo threshold.

For the value-carrying tokens for serial ports:

token default value min value
hiwater 1010 bytes 2 bytes
lowwater 512 bytes 2 bytes
drain_size 64 bytes 4 bytes
rtpr 18 millisecs 1 millisecs
rxfifo 4 bytes 1 bytes

Tokens for Parallel
Ports

Valid boolean tokens for parallel ports are

paper_out- If set, the PAPER OUT signal from the port is monitored. If clear, the
signal is ignored.

error- Monitor the ERROR signal from the port. Ignore the signal if clear.

busy- Monitor the BUSY signal from the port. Ignore the signal if clear.

select- Monitor the SELECT, or ON LINE, signal from the port. Ignore the sig-
nal if clear.

pp_message- If this token is clear, a console message will be printed when any of the
above four enabled conditions are detected, and another when the con-
dition is cleared. If set, a console message will be printed every 60
seconds until the condition is cleared.

pp_signal- If this token is set, the parallel port’s controlling process will get a
PP_SIGTYPE signal whenever one of the above four conditions is
detected. PP_SIGTYPE is defined in stcio.h, which is available to the
user.

modified 2 Aug 1993 7-263

stc (7) Special Files SunOS 5.4

Valid tokens requiring parameters for the parallel ports are

ack_timeout- The amount of time in seconds to wait for an ACK from the port after
asserting STROBE and transferring a byte of data.

error_timeout- Amount of time in seconds to wait for an error to go away.

busy_timeout- The amount of time in seconds to wait for a BUSY signal to clear, or zero
for an infinite BUSY timeout.

data_setup- The amount of time in microseconds between placing data ont the paral-
lel lines and asserting the STROBE.

strobe_width- width of the STROBE pulse, in microseconds.

For value-carrying tokens for parallel ports:
token default value min value
strobe_width 2 microsecs 1 microsecs
data_setup 2 microsecs 0 microsecs
ack_timeout 60 seconds 5 seconds
errror_timeout 5 seconds 1 seconds
busy_timeout 10 seconds 0 seconds

PARALLEL PORT
PARAMETERS

The default values of certain parallel port parameters that govern data transfer between
the SPC/S board and the device attached to the parallel port will usually work well with
most devices; however, some devices don’t strictly adhere to the IBM PS/2-compatible
(Centronics-compatible) data transfer and device control/status protocol, and may require
modification of one or more of the default parallel port parameters. Some printers, for
example, have non-standard timing on their SELECT line, which manifests itself if you
start sending data to the printer and then take it off line; when you put it back on line, the
printer will not assert it’s SELECT line until after the next character is sent to the printer.
Since the stc driver will not send data to the device if it’s SELECT line is de-asserted, a
deadlock condition occurs. To remedy this situation, you can change the default signal
list that the stc driver monitors on the parallel port by removing the SELECT signal from
the list. This can be done either through the /kernel/drv/stc.conf configuration file or
programmatically through the STC_SPPC ioctl() call.

LOADABLE
ISSUES

If you try to unload the driver, and one or more of the ports on one or more of the SPC/S
boards is in use (i.e. open()) by a process, the driver will not be unloaded, and all lines
on all SPC/S boards, with the exception of the control ports, will be marked with an
open inhibit flag to prevent further opens until the driver is sucessfully unloaded.

ERRORS An open() will fail with errno set to:

ENXIO The unit being opened does not exist.

EBUSY The dial-out device is being opened and the dial-in device is already
open, the dial-in device is being opened with a no-delay open and the
dial-out device is already open or the unit has been marked as
exclusive-use by another process with a TIOCEXCL ioctl() call.

7-264 modified 2 Aug 1993

SunOS 5.4 Special Files stc (7)

EINTR The open was interrupted by the delivery of a signal.

EPERM The control port for the board was opened by a process whose uid was
not root.

An ioctl() will fail with errno set to:

ENOSR A STREAMS data block couldn’t be allocated to return data to the caller.

EINVAL An invalid value was passed as the data argument to the ioctl() call or
an invalid argument or op-field was passed in one of the driver-specific
ioctl()’s.

EPERM An STC_GSTATS ioctl() was requested by a process whose uid was not
root.

ENOTTY An unrecognized ioctl() command was received.

FILES /dev/term/[00-3f]
/dev/ttyy[00-3f] hardwired and dial-in tty lines
/dev/cua/[00-3f]
/dev/ttyz[00-3f] dial-out tty lines
/dev/printers/[0-7]
/dev/stclp[0-7] parallel port lines
/dev/stc[0-7] control port
/usr/include/sys/stcio.h header file with ioctl()’s supported by this driver

SEE ALSO tip(1), uucp(1C), pmadm(1M), termios(3), mcpp(7), termio(7), termiox(7), ldterm(7),
ttcompat(7), allocb(9F), bufcall(9F)

DIAGNOSTICS All diagnostic messages from the driver appear on the system console. There are three
severity levels of messages displayed:

FATAL - the device driver does not get loaded and any SPC/S boards installed in the
system are inaccessible (usually occurs during the process of modload’ing the
driver).

ERROR - some condition has caused the normal operation of the board and/or device
driver to be disrupted; data loss may or may not occur; this class of message
might indicate an impending hardware failure.

ADVISORY -
the device driver has detected a condition that may be of interest to the user of
the system; usually this is a transient condition that clears itself.

Messages During
Initialization Of

Driver/Board:

stc_attach: can’t allocate memory for unit structs
FATAL. kmem_zalloc() failed to allocate memory for the driver’s internal
data structures.

stc_attach: board revision undeterminable
FATAL. The driver did not get a hardware revision level from the board’s
onboard FCode PROM.

modified 2 Aug 1993 7-265

stc (7) Special Files SunOS 5.4

stc_attach: board revision 0x%x not supported by driver.
FATAL. This revision of the board is not supported by the driver.

stc_attach: oscillator revision undeterminable
FATAL. The driver did not get an oscillator revision level from the board’s
onboard FCode PROM.

stc_attach: wierd oscillator revision (0x%x), assuming 10Mhz
ADVISORY. The board’s onboard FCode PROM returned an unanticipated
baud-rate oscillator value, so the driver assumes that a 10Mhz oscillator is
installed.

stc_attach: error initializing stc%d
FATAL. An error occured while trying to initialize the board; perhaps a
memory access failed.

stc_attach: bad number of interrupts: %d
FATAL. An incorrect number of interrupts was read from the board’s
onboard FCode PROM.

stc_attach: bad number of register sets: %d
FATAL. An incorrect number of register sets was read from the board’s
onboard FCode PROM.

stc_init: stc%d GIVR was not 0x0ff, was: 0x%x
FATAL. The cd-180 8-channel UART failed to initialize properly, or a memory
fault occured while trying to access the chip.

cd180_init: stc%d GIVR was not 0x0ff, was: 0x%x
FATAL. The cd-180 8-channel UART failed to initialize properly, or a memory
fault occured while trying to access the chip.

stc%d: board revision: 0x%x should be updated
ADVISORY. Two versions of the FCode PROM on the SPC/S card have been
released; V1.0 (0x4) and V1.1 (0x5). The V1.1 PROM fixes some incompatabili-
ties between the V1.0 FCode PROM (on the SPC/S) and the V2.0 OpenBOOT
PROM (on your system) and is required on an SPC/S card to be used in a sys-
tem running Solaris 2.X.

stc%d: system boot PROM revision V%d.%d should be updated
ADVISORY. Your system’s BOOT PROM should be updated to at least V1.3
because prior versions of the BOOT PROM did not map the SBus interrupt
levels that the SPC/S uses correctly.

Messages Related To
The Serial Port:

SET_CCR: CCR timeout
ERROR. the cd-180’s CCR register did not return to zero within the specified
timeout period after it was issued a command

PUTSILO: unit %d line %d soft silo overflow
ERROR. The driver’s internal receive data silo for the enunciated line has
overflowed because the system has not gotten around to pulling data out of
the silo; check that you are using the correct flow control; all data in the silo is

7-266 modified 2 Aug 1993

SunOS 5.4 Special Files stc (7)

flushed; this message may also frequently appear due to a hardware crosstalk prob-
lem that was fixed in later releases of the board.

stc_rcvex: unit %d line %d receiver overrun, char: 0x%x
ERROR. The driver could not get around to service the cd-180 receive data
interrupt before the cd-180’s receive data fifo filled up; this message may also
frequently appear due to a hardware crosstalk problem that was fixed in later releases
of the board.

stc_drainsilo: unit %d line %d can’t allocate streams buffer
ERROR. The driver could not get a STREAMS message buffer from
bufcall(9F); all data in the driver’s receive data silo is flushed.

stc_drainsilo: unit %d line %d punting put retries
ERROR. After trying several times to send data down the stream from the
driver to the application and finding the path blocked, the driver gives up; all
data in the driver’s receive data silo is flushed.

stc_modem: unit %d line %d interesting modem control
ADVISORY. The cd-180 posted a modem control line change interrupt, but
upon examination by the driver, no modem control lines had changed state
since the last time a scan was conducted; if you see this problem frequently, it
is likely that your data cables are either too long or picking up induced noise.

Messages Related To
The Parallel Port:

ppc_stat: unit %d PAPER OUT
ADVISORY. The device connected to the parallel port on the enumerated
BOARD has signalled that it’s out of paper (PAPER OUT line asserted).

ppc_stat: unit %d PAPER OUT condition cleared
ADVISORY. The previously-detected paper out condition has been cleared
by the device connected to the parallel port on the enumerated board (PAPER
OUT line de-asserted)

ppc_stat: unit %d OFFLINE
ADVISORY. The device connected to the parallel port on the enumerated
board has signalled that it is off-line (SLCT line de-asserted).

ppc_stat: unit %d OFFLINE condition cleared
ADVISORY. The previously-detected off line condition has been cleared by
the device connected to the parallel port on the enumerated board (SLCT line
asserted).

ppc_stat: unit %d ERROR
ADVISORY. The device connected to the parallel port on the enumerated
board has signalled that it has encountered an error of some sort (ERROR line
asserted).

ppc_stat: unit %d ERROR condition cleared
ADVISORY. The previously-detected error condition has been cleared by the
device connected to the parallel port on the enumerated board (ERROR line
de-asserted).

modified 2 Aug 1993 7-267

stc (7) Special Files SunOS 5.4

ppc_acktimeout: unit %d ACK timeout
ERROR. The ACK line from the device connected to the parallel port did not
assert itself within the configurable timeout period; check to be sure that the
device is connected and powered on.

ppc_acktimeout: unit %d BUSY timeout
ERROR. The BUSY line from the device connected to the parallel port did not
de-assert itself within the configurable timeout period; check to be sure that
the device is connected and powered on.

ppc_int: unit %d stray interrupt
ADVISORY. The parallel port controller (ppc) chip generated an interrupt
while the device was closed; this was unexpected and if you see it frequently,
your parallel cable might be picking up induced noise causing the ppc to gen-
erate an unwanted interrupt, or this could indicate that the ppc might have an
internal problem.

ppc_acktimeout: unit %d can’t get pointer to read q
ERROR. Somehow the driver’s internal ppc data structure became corrupted;
this should not happen.

ppc_acktimeout: unit %d can’t send M_ERROR message
ERROR. The driver can’t send an M_ERROR STREAMS message to the appli-
cation; this should not happen either.

ppc_signal: unit %d can’t get pointer to read q
ERROR. Somehow the driver’s internal ppc data structure became corrupted;
this should also not happen.

ppc_signal: unit %d can’t send M_PCSIG(PP_SIGTYPE 0x%x) message
ERROR. The driver can’t send an M_PCSIG STREAMS message to the applica-
tion (which could cause a signal to be posted); this should also not happen
either.

Messages Related To
STREAMS
Processing:

stc_wput: unit %d trying to M_STARTI on ppc or control device
ADVISORY. An M_STARTI STREAMS message was sent to the parallel port or
the board control device; this should only happen if an application explictly
sends this message.

stc_wput: unit %d line %d unknown message: 0x%x
ADVISORY. An unknown STREAMS message was sent to the driver; check
your application coding.

stc_start: unit %d line %d unknown message: 0x%x
ADVISORY. An unknown STREAMS message was sent to the driver; check
your application coding.

Messages Related To
Serial Port Control:

stc_ioctl: unit %d line %d can’t allocate streams buffer for ioctl
ERROR. The driver could not get a STREAMS message buffer from bufcall()
for the requested ioctl; the ioctl will not be executed

7-268 modified 2 Aug 1993

SunOS 5.4 Special Files stc (7)

stc_ioctl: unit %d line %d can’t allocate STC_DCONTROL block
ERROR. The driver could not allocate a data block from allocb(9F) for the
STC_DCONTROL return value; the ioctl does not get executed.

stc_ioctl: unit %d line %d can’t allocate STC_GPPC block
ERROR. The driver could not allocate a data block from allocb() for the
STC_GPPC return value; the ioctl does not get executed

stc_ioctl: unit %d line %d can’t allocate TIOCMGET block
ERROR. The driver could not allocate a data block from allocb() for the
TIOCMGET return value; the ioctl does not get executed

stc_vdcmd: unit %d cd-180 firmware revision: 0x%x
ADVISORY. The firmware revision level of the cd-180, displayed when the
driver is first loaded.

modified 2 Aug 1993 7-269

streamio (7) Special Files SunOS 5.4

NAME streamio − STREAMS ioctl commands

SYNOPSIS #include <sys/types.h>
#include <stropts.h>
#include <sys/conf.h>

int ioctl (int fildes, int command, . . . /∗ arg∗/);

DESCRIPTION STREAMS (see intro(2)) ioctl commands are a subset of the ioctl(2) commands, and per-
form a variety of control functions on streams.

fildes is an open file descriptor that refers to a stream. command determines the control
function to be performed as described below. arg represents additional information that
is needed by this command. The type of arg depends upon the command, but it is gen-
erally an integer or a pointer to a command-specific data structure. command and arg are
interpreted by the stream head. Certain combinations of these arguments may be passed
to a module or driver in the stream.

Since these STREAMS commands ioctls, they are subject to the errors described in ioctl(2).
In addition to those errors, the call will fail with errno set to EINVAL, without processing
a control function, if the stream referenced by fildes is linked below a multiplexor, or if
command is not a valid value for a stream.

Also, as described in ioctl(2), STREAMS modules and drivers can detect errors. In this
case, the module or driver sends an error message to the stream head containing an error
value. This causes subsequent calls to fail with errno set to this value.

COMMAND
FUNCTIONS

The following ioctl commands, with error values indicated, are applicable to all STREAMS
files:

I_PUSH Pushes the module whose name is pointed to by arg onto the top of the
current stream, just below the stream head. If the stream is a pipe, the
module will be inserted between the stream heads of both ends of the
pipe. It then calls the open routine of the newly-pushed module. On
failure, errno is set to one of the following values:

EINVAL Invalid module name.

EFAULT arg points outside the allocated address space.

ENXIO Open routine of new module failed.

ENXIO Hangup received on fildes.

I_POP Removes the module just below the stream head of the stream pointed
to by fildes. To remove a module from a pipe requires that the module
was pushed on the side it is being removed from. arg should be 0 in an
I_POP request. On failure, errno is set to one of the following values:

EINVAL No module present in the stream.

ENXIO Hangup received on fildes.

7-270 modified 3 Jul 1990

SunOS 5.4 Special Files streamio (7)

I_LOOK Retrieves the name of the module just below the stream head of the
stream pointed to by fildes, and places it in a null terminated character
string pointed at by arg . The buffer pointed to by arg should be at least
FMNAMESZ+1 bytes long. This requires the declaration #include
<sys/conf.h>). On failure, errno is set to one of the following values:

EFAULT arg points outside the allocated address space.

EINVAL No module present in stream.

I_FLUSH This request flushes all input and/or output queues, depending on the
value of arg . Legal arg values are:

FLUSHR Flush read queues.

FLUSHW Flush write queues.

FLUSHRW Flush read and write queues.

If a pipe or FIFO does not have any modules pushed, the read queue of
the stream head on either end is flushed depending on the value of arg .

If FLUSHR is set and fildes is a pipe, the read queue for that end of the
pipe is flushed and the write queue for the other end is flushed. If fildes
is a FIFO, both queues are flushed.

If FLUSHW is set and fildes is a pipe and the other end of the pipe exists,
the read queue for the other end of the pipe is flushed and the write
queue for this end is flushed. If fildes is a FIFO, both queues of the FIFO
are flushed.

If FLUSHRW is set, all read queues are flushed, that is, the read queue
for the FIFO and the read queue on both ends of the pipe are flushed.

Correct flush handling of a pipe or FIFO with modules pushed is
achieved via the pipemod module. This module should be the first
module pushed onto a pipe so that it is at the midpoint of the pipe itself.

On failure, errno is set to one of the following values:

ENOSR Unable to allocate buffers for flush message due
to insufficient STREAMS memory resources.

EINVAL Invalid arg value.

ENXIO Hangup received on fildes.

I_FLUSHBAND
Flushes a particular band of messages. arg points to a bandinfo struc-
ture that has the following members:

unsigned char bi_pri;
int bi_flag;

The bi_flag field may be one of FLUSHR, FLUSHW, or FLUSHRW as
described earlier.

modified 3 Jul 1990 7-271

streamio (7) Special Files SunOS 5.4

I_SETSIG Informs the stream head that the user wishes the kernel to issue the
SIGPOLL signal (see signal(3C)) when a particular event has occurred
on the stream associated with fildes. I_SETSIG supports an asynchro-
nous processing capability in STREAMS. The value of arg is a bitmask
that specifies the events for which the user should be signaled. It is the
bitwise OR of any combination of the following constants:

S_INPUT Any message other than an M_PCPROTO has
arrived on a stream head read queue. This event
is maintained for compatibility with previous
releases. This event is triggered even if the mes-
sage is of zero length.

S_RDNORM An ordinary (non-priority) message has arrived
on a stream head read queue. This event is trig-
gered even if the message is of zero length.

S_RDBAND A priority band message (band > 0) has arrived
on a stream head read queue. This event is trig-
gered even if the message is of zero length.

S_HIPRI A high priority message is present on the stream
head read queue. This event is triggered even if
the message is of zero length.

S_OUTPUT The write queue just below the stream head is no
longer full. This notifies the user that there is
room on the queue for sending (or writing) data
downstream.

S_WRNORM This event is the same as S_OUTPUT.

S_WRBAND A priority band greater than 0 of a queue down-
stream exists and is writable. This notifies the
user that there is room on the queue for sending
(or writing) priority data downstream.

S_MSG A STREAMS signal message that contains the SIG-
POLL signal has reached the front of the stream
head read queue.

S_ERROR An M_ERROR message has reached the stream
head.

S_HANGUP An M_HANGUP message has reached the
stream head.

S_BANDURG When used in conjunction with
S_RDBAND,SIGURG is generated instead of
SIGPOLL when a priority message reaches the
front of the stream head read queue.

A user process may choose to be signaled only of high priority messages
by setting the arg bitmask to the value S_HIPRI.

7-272 modified 3 Jul 1990

SunOS 5.4 Special Files streamio (7)

Processes that wish to receive SIGPOLL signals must explicitly register
to receive them using I_SETSIG. If several processes register to receive
this signal for the same event on the same stream, each process will be
signaled when the event occurs.

If the value of arg is zero, the calling process will be unregistered and
will not receive further SIGPOLL signals. On failure, errno is set to one
of the following values:

EINVAL arg value is invalid or arg is zero and process is
not registered to receive the SIGPOLL signal.

EAGAIN Allocation of a data structure to store the signal
request failed.

I_GETSIG Returns the events for which the calling process is currently registered
to be sent a SIGPOLL signal. The events are returned as a bitmask
pointed to by arg , where the events are those specified in the description
of I_SETSIG above. On failure, errno is set to one of the following
values:

EINVAL Process not registered to receive the SIGPOLL
signal.

EFAULT arg points outside the allocated address space.

I_FIND Compares the names of all modules currently present in the stream to
the name pointed to by arg, and returns 1 if the named module is
present in the stream. It returns 0 if the named module is not present.
On failure, errno is set to one of the following values:

EFAULT arg points outside the allocated address space.

EINVAL arg does not contain a valid module name.

I_PEEK Allows a user to retrieve the information in the first message on the
stream head read queue without taking the message off the queue.
I_PEEK is analogous to getmsg(2) except that it does not remove the
message from the queue. arg points to a strpeek structure, which con-
tains the following members:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

The maxlen field in the ctlbuf and databuf strbuf structures (see
getmsg(2)) must be set to the number of bytes of control information
and/or data information, respectively, to retrieve. flags may be set to
RS_HIPRI or 0. If RS_HIPRI is set, I_PEEK will look for a high priority
message on the stream head read queue. Otherwise, I_PEEK will look
for the first message on the stream head read queue.

modified 3 Jul 1990 7-273

streamio (7) Special Files SunOS 5.4

I_PEEK returns 1 if a message was retrieved, and returns 0 if no mes-
sage was found on the stream head read queue. It does not wait for a
message to arrive. On return, ctlbuf specifies information in the control
buffer, databuf specifies information in the data buffer, and flags con-
tains the value RS_HIPRI or 0. On failure, errno is set to the following
value:

EFAULT arg points, or the buffer area specified in ctlbuf or
databuf is, outside the allocated address space.

EBADMSG Queued message to be read is not valid for
I_PEEK.

EINVAL Illegal value for flags.

I_SRDOPT Sets the read mode (see read(2)) using the value of the argument arg.
Legal arg values are:

RNORM Byte-stream mode, the default.

RMSGD Message-discard mode.

RMSGN Message-nondiscard mode.

In addition, the stream head’s treatment of control messages may be
changed by setting the following flags in arg:

RPROTNORM Reject read()with EBADMSG if a control message
is at the front of the stream head read queue.

RPROTDAT Deliver the control portion of a message as data
when a user issues read(). This is the default
behavior.

RPROTDIS Discard the control portion of a message, deliver-
ing any data portion, when a user issues a read().

On failure, errno is set to the following value:

EINVAL arg is not one of the above legal values.

I_GRDOPT Returns the current read mode setting in an int pointed to by the argu-
ment arg. Read modes are described in read(). On failure, errno is set
to the following value:

EFAULT arg points outside the allocated address space.

I_NREAD Counts the number of data bytes in data blocks in the first message on
the stream head read queue, and places this value in the location
pointed to by arg. The return value for the command is the number of
messages on the stream head read queue. For example, if zero is
returned in arg, but the ioctl return value is greater than zero, this indi-
cates that a zero-length message is next on the queue. On failure, errno
is set to the following value:

EFAULT arg points outside the allocated address space.

7-274 modified 3 Jul 1990

SunOS 5.4 Special Files streamio (7)

I_FDINSERT Creates a message from user specified buffer(s), adds information about
another stream and sends the message downstream. The message con-
tains a control part and an optional data part. The data and control
parts to be sent are distinguished by placement in separate buffers, as
described below.

arg points to a strfdinsert structure, which contains the following
members:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;
int fildes;
int offset;

The len field in the ctlbuf strbuf structure (see putmsg(2)) must be set
to the size of a pointer plus the number of bytes of control information
to be sent with the message. fildes in the strfdinsert structure specifies
the file descriptor of the other stream. offset, which must be word-
aligned, specifies the number of bytes beyond the beginning of the con-
trol buffer where I_FDINSERT will store a pointer. This pointer will be
the address of the read queue structure of the driver for the stream
corresponding to fildes in the strfdinsert structure. The len field in the
databuf strbuf structure must be set to the number of bytes of data
information to be sent with the message or zero if no data part is to be
sent.

flags specifies the type of message to be created. An ordinary (non-
priority) message is created if flags is set to 0, a high priority message is
created if flags is set to RS_HIPRI. For normal messages, I_FDINSERT
will block if the stream write queue is full due to internal flow control
conditions. For high priority messages, I_FDINSERT does not block on
this condition. For normal messages, I_FDINSERT does not block
when the write queue is full and O_NDELAY or O_NONBLOCK is set.
Instead, it fails and sets errno to EAGAIN.

I_FDINSERT also blocks, unless prevented by lack of internal
resources, waiting for the availability of message blocks, regardless of
priority or whether O_NDELAY or O_NONBLOCK has been specified.
No partial message is sent. On failure, errno is set to one of the follow-
ing values:

EAGAIN A non-priority message was specified, the
O_NDELAY or O_NONBLOCK flag is set, and
the stream write queue is full due to internal
flow control conditions.

ENOSR Buffers could not be allocated for the message
that was to be created due to insufficient
STREAMS memory resources.

modified 3 Jul 1990 7-275

streamio (7) Special Files SunOS 5.4

EFAULT arg points, or the buffer area specified in ctlbuf or
databuf is, outside the allocated address space.

EINVAL One of the following: fildes in the strfdinsert
structure is not a valid, open stream file descrip-
tor; the size of a pointer plus offset is greater than
the len field for the buffer specified through
ctlptr; offset does not specify a properly-aligned
location in the data buffer; an undefined value is
stored in flags.

ENXIO Hangup received on fildes of the ioctl call or
fildes in the strfdinsert structure.

ERANGE The len field for the buffer specified through
databuf does not fall within the range specified
by the maximum and minimum packet sizes of
the topmost stream module, or the len field for
the buffer specified through databuf is larger
than the maximum configured size of the data
part of a message, or the len field for the buffer
specified through ctlbuf is larger than the max-
imum configured size of the control part of a
message.

I_FDINSERT can also fail if an error message was received by the
stream head of the stream corresponding to fildes in the strfdinsert
structure. In this case, errno will be set to the value in the message.

I_STR Constructs an internal STREAMS ioctl message from the data pointed to
by arg, and sends that message downstream.

This mechanism is provided to send user ioctl requests to downstream
modules and drivers. It allows information to be sent with the ioctl, and
will return to the user any information sent upstream by the down-
stream recipient. I_STR blocks until the system responds with either a
positive or negative acknowledgement message, or until the request
"times out" after some period of time. If the request times out, it fails
with errno set to ETIME.

At most one I_STR can be active on a stream. Further I_STR calls will
block until the active I_STR completes at the stream head. The default
timeout interval for these requests is 15 seconds. The O_NDELAY and
O_NONBLOCK (see open(2)) flags have no effect on this call.

7-276 modified 3 Jul 1990

SunOS 5.4 Special Files streamio (7)

To send requests downstream, arg must point to a strioctl structure
which contains the following members:

int ic_cmd;
int ic_timout;
int ic_len;
char ∗ic_dp;

ic_cmd is the internal ioctl command intended for a downstream
module or driver and ic_timout is the number of seconds (-1 = infinite, 0
= use default, >0 = as specified) an I_STR request will wait for ack-
nowledgement before timing out. ic_len is the number of bytes in the
data argument and ic_dp is a pointer to the data argument. The ic_len
field has two uses: on input, it contains the length of the data argument
passed in, and on return from the command, it contains the number of
bytes being returned to the user (the buffer pointed to by ic_dp should
be large enough to contain the maximum amount of data that any
module or the driver in the stream can return).

The stream head will convert the information pointed to by the strioctl
structure to an internal ioctl command message and send it down-
stream. On failure, errno is set to one of the following values:

ENOSR Unable to allocate buffers for the ioctl message
due to insufficient STREAMS memory resources.

EFAULT Either arg points outside the allocated address
space, or the buffer area specified by ic_dp and
ic_len (separately for data sent and data
returned) is outside the allocated address space.

EINVAL ic_len is less than 0 or ic_len is larger than the
maximum configured size of the data part of a
message or ic_timout is less than -1.

ENXIO Hangup received on fildes.

ETIME A downstream ioctl timed out before ack-
nowledgement was received.

An I_STR can also fail while waiting for an acknowledgement if a mes-
sage indicating an error or a hangup is received at the stream head. In
addition, an error code can be returned in the positive or negative ack-
nowledgement message, in the event the ioctl command sent down-
stream fails. For these cases, I_STR will fail with errno set to the value
in the message.

modified 3 Jul 1990 7-277

streamio (7) Special Files SunOS 5.4

I_SWROPT Sets the write mode using the value of the argument arg. Legal bit set-
tings for arg are:

SNDZERO Send a zero-length message downstream when a
write of 0 bytes occurs.

To not send a zero-length message when a write of 0 bytes occurs, this
bit must not be set in arg.

On failure, errno may be set to the following value:

EINVAL arg is not the above legal value.

I_GWROPT Returns the current write mode setting, as described above, in the int
that is pointed to by the argument arg .

I_SENDFD Requests the stream associated with fildes to send a message, containing
a file pointer, to the stream head at the other end of a stream pipe. The
file pointer corresponds to arg , which must be an open file descriptor.

I_SENDFD converts arg into the corresponding system file pointer. It
allocates a message block and inserts the file pointer in the block. The
user id and group id associated with the sending process are also
inserted. This message is placed directly on the read queue (see
intro(2)) of the stream head at the other end of the stream pipe to which
it is connected. On failure, errno is set to one of the following values:

EAGAIN The sending stream is unable to allocate a mes-
sage block to contain the file pointer.

EAGAIN The read queue of the receiving stream head is
full and cannot accept the message sent by
I_SENDFD.

EBADF arg is not a valid, open file descriptor.

EINVAL fildes is not connected to a stream pipe.

ENXIO Hangup received on fildes.

I_RECVFD Retrieves the file descriptor associated with the message sent by an
I_SENDFD ioctl over a stream pipe. arg is a pointer to a data buffer
large enough to hold an strrecvfd data structure containing the follow-
ing members:

int fd;
uid_t uid;
gid_t gid;

fd is an integer file descriptor. uid and gid are the user id and group id,
respectively, of the sending stream.

If O_NDELAY and O_NONBLOCK are clear (see open(2)), I_RECVFD
will block until a message is present at the stream head. If O_NDELAY
or O_NONBLOCK is set, I_RECVFD will fail with errno set to
EAGAIN if no message is present at the stream head.

7-278 modified 3 Jul 1990

SunOS 5.4 Special Files streamio (7)

If the message at the stream head is a message sent by an I_SENDFD, a
new user file descriptor is allocated for the file pointer contained in the
message. The new file descriptor is placed in the fd field of the strrecvfd
structure. The structure is copied into the user data buffer pointed to by
arg . On failure, errno is set to one of the following values:

EAGAIN A message is not present at the stream head read
queue, and the O_NDELAY or O_NONBLOCK
flag is set.

EBADMSG The message at the stream head read queue is not
a message containing a passed file descriptor.

EFAULT arg points outside the allocated address space.

EMFILE NOFILES file descriptors are currently open.

ENXIO Hangup received on fildes.

EOVERFLOW uid or gid is too large to be stored in the structure
pointed to by arg .

I_LIST Allows the user to list all the module names on the stream, up to and
including the topmost driver name. If arg is NULL, the return value is
the number of modules, including the driver, that are on the stream
pointed to by fildes. This allows the user to allocate enough space for the
module names. If arg is non-NULL, it should point to an str_list struc-
ture that has the following members:

int sl_nmods;
struct str_mlist∗sl_modlist;

The str_mlist structure has the following member:

char l_name[FMNAMESZ+1];

sl_nmods indicates the number of entries the user has allocated in the
array and on return, sl_modlist contains the list of module names. The
return value indicates the number of entries that have been filled in. On
failure, errno may be set to one of the following values:

EINVAL The sl_nmods member is less than 1.

EAGAIN Unable to allocate buffers

I_ATMARK Allows the user to see if the current message on the stream head read
queue is ‘‘marked’’ by some module downstream. arg determines how
the checking is done when there may be multiple marked messages on
the stream head read queue. It may take the following values:

ANYMARK Check if the message is marked.

LASTMARK Check if the message is the last one marked on
the queue.

modified 3 Jul 1990 7-279

streamio (7) Special Files SunOS 5.4

The return value is 1 if the mark condition is satisfied and 0 otherwise.
On failure, errno is set to the following value:

EINVAL Invalid arg value.

I_CKBAND Check if the message of a given priority band exists on the stream head
read queue. This returns 1 if a message of a given priority exists, 0 if
not, or -1 on error. arg should be an integer containing the value of the
priority band in question. On failure, errno is set to the following value:

EINVAL Invalid arg value.

I_GETBAND Returns the priority band of the first message on the stream head read
queue in the integer referenced by arg. On failure, errno is set to the fol-
lowing value:

ENODATA No message on the stream head read queue.

I_CANPUT Check if a certain band is writable. arg is set to the priority band in
question. The return value is 0 if the priority band arg is flow controlled,
1 if the band is writable, or -1 on error. On failure, errno is set to the fol-
lowing value:

EINVAL Invalid arg value.

I_SETCLTIME Allows the user to set the time the stream head will delay when a stream
is closing and there are data on the write queues. Before closing each
module and driver, the stream head will delay for the specified amount
of time to allow the data to drain. Note, however, that the module or
driver may itself delay in its close routine; this delay is independent of
the stream head’s delay and is not settable. If, after the delay, data are
still present, data will be flushed. arg is the number of milliseconds to
delay, rounded up to the nearest legal value on the system. The default
is fifteen seconds. On failure, errno is set to the following value:

EINVAL Invalid arg value.

I_GETCLTIME Returns the close time delay in the integer pointed by arg.

The following four commands are used for connecting and disconnecting multiplexed
STREAMS configurations.

I_LINK Connects two streams, where fildes is the file descriptor of the stream
connected to the multiplexing driver, and arg is the file descriptor of the
stream connected to another driver. The stream designated by arg gets
connected below the multiplexing driver. I_LINK requires the multi-
plexing driver to send an acknowledgement message to the stream head
regarding the linking operation. This call returns a multiplexor ID
number (an identifier used to disconnect the multiplexor, see
I_UNLINK) on success, and -1 on failure. On failure, errno is set to one
of the following values:

ENXIO Hangup received on fildes.

7-280 modified 3 Jul 1990

SunOS 5.4 Special Files streamio (7)

ETIME Time out before acknowledgement message was
received at stream head.

EAGAIN Temporarily unable to allocate storage to perform
the I_LINK.

ENOSR Unable to allocate storage to perform the I_LINK
due to insufficient STREAMS memory resources.

EBADF arg is not a valid, open file descriptor.

EINVAL fildes stream does not support multiplexing.

EINVAL arg is not a stream, or is already linked under a
multiplexor.

EINVAL The specified link operation would cause a
‘‘cycle’’ in the resulting configuration; that is, a
driver would be linked into the multiplexing
configuration in more than one place.

EINVAL fildes is the file descriptor of a pipe or FIFO.

An I_LINK can also fail while waiting for the multiplexing driver to
acknowledge the link request, if a message indicating an error or a
hangup is received at the stream head of fildes. In addition, an error
code can be returned in the positive or negative acknowledgement mes-
sage. For these cases, I_LINK will fail with errno set to the value in the
message.

I_UNLINK Disconnects the two streams specified by fildes and arg. fildes is the file
descriptor of the stream connected to the multiplexing driver. arg is the
multiplexor ID number that was returned by the I_LINK. If arg is -1,
then all streams that were linked to fildes are disconnected. As in
I_LINK, this command requires the multiplexing driver to acknowledge
the unlink. On failure, errno is set to one of the following values:

ENXIO Hangup received on fildes.

ETIME Time out before acknowledgement message was received
at stream head.

ENOSR Unable to allocate storage to perform the I_UNLINK due
to insufficient STREAMS memory resources.

EINVAL arg is an invalid multiplexor ID number or fildes is not the
stream on which the I_LINK that returned arg was per-
formed.

EINVAL fildes is the file descriptor of a pipe or FIFO.

modified 3 Jul 1990 7-281

streamio (7) Special Files SunOS 5.4

An I_UNLINK can also fail while waiting for the multiplexing driver to
acknowledge the link request, if a message indicating an error or a
hangup is received at the stream head of fildes. In addition, an error
code can be returned in the positive or negative acknowledgement mes-
sage. For these cases, I_UNLINK will fail with errno set to the value in
the message.

I_PLINK Connects two streams, where fildes is the file descriptor of the stream
connected to the multiplexing driver, and arg is the file descriptor of the
stream connected to another driver. The stream designated by arg gets
connected via a persistent link below the multiplexing driver. I_PLINK
requires the multiplexing driver to send an acknowledgement message
to the stream head regarding the linking operation. This call creates a
persistent link that continues to exist even if the file descriptor fildes
associated with the upper stream to the multiplexing driver is closed.
This call returns a multiplexor ID number (an identifier that may be used
to disconnect the multiplexor, see I_PUNLINK) on success, and -1 on
failure. On failure, errno is set to one of the following values:

ENXIO Hangup received on fildes.

ETIME Time out before acknowledgement message was
received at the stream head.

EAGAIN Unable to allocate STREAMS storage to perform
the I_PLINK.

EBADF arg is not a valid, open file descriptor.

EINVAL fildes does not support multiplexing.

EINVAL arg is not a stream or is already linked under a
multiplexor.

EINVAL The specified link operation would cause a
‘‘cycle’’ in the resulting configuration; that is, if a
driver would be linked into the multiplexing
configuration in more than one place.

EINVAL fildes is the file descriptor of a pipe or FIFO.

An I_PLINK can also fail while waiting for the multiplexing driver to
acknowledge the link request, if a message indicating an error on a
hangup is received at the stream head of fildes. In addition, an error
code can be returned in the positive or negative acknowledgement mes-
sage. For these cases, I_PLINK will fail with errno set to the value in the
message.

7-282 modified 3 Jul 1990

SunOS 5.4 Special Files streamio (7)

I_PUNLINK Disconnects the two streams specified by fildes and arg that are con-
nected with a persistent link. fildes is the file descriptor of the stream
connected to the multiplexing driver. arg is the multiplexor ID number
that was returned by I_PLINK when a stream was linked below the
multiplexing driver. If arg is MUXID_ALL then all streams that are per-
sistent links to fildes are disconnected. As in I_PLINK, this command
requires the multiplexing driver to acknowledge the unlink. On failure,
errno is set to one of the following values:

ENXIO Hangup received on fildes.

ETIME Time out before acknowledgement message was
received at the stream head.

EAGAIN Unable to allocate buffers for the acknowledge-
ment message.

EINVAL Invalid multiplexor ID number.

EINVAL fildes is the file descriptor of a pipe or FIFO.

An I_PUNLINK can also fail while waiting for the multiplexing driver
to acknowledge the link request if a message indicating an error or a
hangup is received at the stream head of fildes. In addition, an error
code can be returned in the positive or negative acknowledgement mes-
sage. For these cases, I_PUNLINK will fail with errno set to the value in
the message.

SEE ALSO intro(2), close(2), fcntl(2), getmsg(2), ioctl(2), open(2), poll(2), putmsg(2), read(2),
write(2), signal(3C), signal(5)

STREAMS Programmer’s Guide

DIAGNOSTICS Unless specified otherwise above, the return value from ioctl is 0 upon success and -1
upon failure with errno set as indicated.

modified 3 Jul 1990 7-283

tcp (7) Special Files SunOS 5.4

NAME tcp, TCP − Internet Transmission Control Protocol

SYNOPSIS #include <sys/socket.h>

#include <netinet/in.h>

s = socket(AF_INET, SOCK_STREAM, 0);

t = t_open("/dev/tcp", O_RDWR);

DESCRIPTION TCP is the virtual circuit protocol of the Internet protocol family. It provides reliable,
flow-controlled, in order, two-way transmission of data. It is a byte-stream protocol lay-
ered above the Internet Protocol (IP), the Internet protocol family’s internetwork
datagram delivery protocol.

Programs can access TCP using the socket interface as a SOCK_STREAM socket type, or
using the Transport Level Interface (TLI) where it supports the connection-oriented
(T_COTS_ORD) service type.

TCP uses IP’s host-level addressing and adds its own per-host collection of “port
addresses.” The endpoints of a TCP connection are identified by the combination of an IP
address and a TCP port number. Although other protocols, such as the User Datagram
Protocol (UDP), may use the same host and port address format, the port space of these
protocols is distinct. See inet(7) for details on the common aspects of addressing in the
Internet protocol family.

Sockets utilizing TCP are either “active” or “passive”. Active sockets initiate connections
to passive sockets. Both types of sockets must have their local IP address and TCP port
number bound with the bind(3N) system call after the socket is created. By default, TCP
sockets are active. A passive socket is created by calling the listen(3N) system call after
binding the socket with bind(). This establishes a queueing parameter for the passive
socket. After this, connections to the passive socket can be received with the accept(3N)
system call. Active sockets use the connect(3N) call after binding to initiate connections.

By using the special value INADDR_ANY, the local IP address can be left unspecified in
the bind() call by either active or passive TCP sockets. This feature is usually used if the
local address is either unknown or irrelevant. If left unspecified, the local IP address will
be bound at connection time to the address of the network interface used to service the
connection.

Once a connection has been established, data can be exchanged using the read(2) and
write(2) system calls.

TCP supports one socket option which is set with setsockopt() and tested with
getsockopt(3N). Under most circumstances, TCP sends data when it is presented. When
outstanding data has not yet been acknowledged, it gathers small amounts of output to
be sent in a single packet once an acknowledgement is received. For a small number of
clients, such as window systems that send a stream of mouse events which receive no
replies, this packetization may cause significant delays.

7-284 modified 3 Jul 1990

SunOS 5.4 Special Files tcp (7)

Therefore, TCP provides a boolean option, TCP_NODELAY (defined in <netinet/tcp.h>),
to defeat this algorithm. The option level for the setsockopt() call is the protocol number
for TCP, available from getprotobyname(3N).

Options at the IP level may be used with TCP. See ip(7).

TCP provides an urgent data mechanism, which may be invoked using the out-of-band
provisions of send(3N). The caller may mark one byte as “urgent” with the MSG_OOB
flag to send(3N). This sets an “urgent pointer” pointing to this byte in the TCP stream.
The receiver on the other side of the stream is notified of the urgent data by a SIGURG
signal. The SIOCATMARK ioctl() request returns a value indicating whether the stream
is at the urgent mark. Because the system never returns data across the urgent mark in a
single read(2) call, it is possible to advance to the urgent data in a simple loop which
reads data, testing the socket with the SIOCATMARK ioctl() request, until it reaches the
mark.

Incoming connection requests that include an IP source route option are noted, and the
reverse source route is used in responding.

A checksum over all data helps TCP implement reliability. Using a window-based flow
control mechanism that makes use of positive acknowledgements, sequence numbers,
and a retransmission strategy, TCP can usually recover when datagrams are damaged,
delayed, duplicated or delivered out of order by the underlying communication medium.

If the local TCP receives no acknowledgements from its peer for a period of time, as
would be the case if the remote machine crashed, the connection is closed and an error is
returned to the user. If the remote machine reboots or otherwise loses state information
about a TCP connection, the connection is aborted and an error is returned to the user.

SEE ALSO read(2), write(2), accept(3N), bind(3N), connect(3N), getprotobyname(3N),
getsockopt(3N), listen(3N), send(3N), inet(7), ip(7)

Postel, Jon, Transmission Control Protocol - DARPA Internet Program Protocol Specification,
RFC 793, Network Information Center, SRI International, Menlo Park, Calif., September
1981.

DIAGNOSTICS A socket operation may fail if:

EISCONN A connect() operation was attempted on a socket on which a con-
nect() operation had already been performed.

ETIMEDOUT A connection was dropped due to excessive retransmissions.

ECONNRESET The remote peer forced the connection to be closed (usually
because the remote machine has lost state information about the
connection due to a crash).

ECONNREFUSED The remote peer actively refused connection establishment (usu-
ally because no process is listening to the port).

EADDRINUSE A bind() operation was attempted on a socket with a network
address/port pair that has already been bound to another socket.

modified 3 Jul 1990 7-285

tcp (7) Special Files SunOS 5.4

EADDRNOTAVAIL A bind() operation was attempted on a socket with a network
address for which no network interface exists.

EACCES A bind() operation was attempted with a “reserved” port number
and the effective user ID of the process was not the privileged user.

ENOBUFS The system ran out of memory for internal data structures.

7-286 modified 3 Jul 1990

SunOS 5.4 Special Files tcx (7)

NAME tcx − 24-bit SBus color memory frame buffer

SYNOPSIS /dev/fbs/tcx

DESCRIPTION tcx is a 8/24-bit color frame buffer and graphics accelerator, with 8-bit colormap, and
overlay/enable planes. It provides the standard frame buffer interface defined in fbio(7).

tcx has two control planes which define how the underlying pixel is displayed. The
display modes are 8-bit (8 bits taken from low-order 8 bits of pixel) through a colormap;
24-bit through a gamma-correction table; 24-bit through the colormap; or 24-bit direct.
The colormap is shared by both 24-bit and 8-bit modes.

The tcx has registers and memory that may be mapped with mmap(2), using the offsets
defined in <sys/tcxreg.h>.

There is an 8-bit only version of tcx which operates the same as the 24-bit version, except
that the 24-bit-related mappings can not be made.

tcx accepts the following ioctls, defined in <sys/fbio.h> and <sys/visual_io.h>, and
implemented as described in fbio(7).

FBIOGATTR FBIOGCURSOR
FBIOGTYPE FBIOSCURPOS
FBIOPUTCMAP FBIOGCURPOS
FBIOGETCMAP FBIOGCURMAX
FBIOSATTR FBIOGXINFO
FBIOSVIDEO FBIOMONINFO
FBIOGVIDEO FBIOVRTOFFSET
FBIOVERTICAL VIS_GETIDENTIFIER
FBIOSCURSOR

The value returned by VIS_GETIDENTIFIER is "SUNW,tcx".

Emulation mode (FBIOGATTR, FBIOSATTR) may be either none, FBTYPE_SUN3COLOR,
or FBTYPE_MEMCOLOR.

FBIOPUTCMAP returns immediately, although the actual colormap update may be
delayed until the next vertical retrace. If vertical retrace is currently in progress, the new
colormap takes effect immediately.

FBIOGETCMAP returns immediately with the currently-loaded colormap, unless a color-
map write is pending (see above), in which case it waits until the colormap is updated
before returning. This may be used to synchronize software with colormap updates.

The size and linebytes values returned by FBIOGATTR, FBIOGTYPE and FBIOGXINFO are
the sizes of the 8-bit framebuffer. The proper way to compute the size of a framebuffer
mapping is

size=linebytes∗height∗bytes_per_pixel

FILES /dev/fbs/tcx device special file
/dev/fb default frame buffer
/usr/include/sys/tcxreg.h device-specific definitions

modified 10 Nov 1993 7-287

tcx (7) Special Files SunOS 5.4

SEE ALSO mmap(2), fbio(7)

7-288 modified 10 Nov 1993

SunOS 5.4 Special Files termio (7)

NAME termio − general terminal interface

SYNOPSIS #include <termio.h>

ioctl(int fildes, int request, struct termio ∗arg);

ioctl(int fildes, int request, int arg);

#include <termios.h>

ioctl(int fildes, int request, struct termios ∗arg);

DESCRIPTION This release supports a general interface for asynchronous communications ports that is
hardware-independent. The user interface to this functionality is using function calls (the
preferred interface) described in termios(3) or ioctl commands described in this section.
This section also discusses the common features of the terminal subsystem which are
relevant with both user interfaces.

When a terminal file is opened, it normally causes the process to wait until a connection
is established. In practice, users’ programs seldom open terminal files; they are opened
by the system and become a user’s standard input, output, and error files. The first ter-
minal file opened by the session leader that is not already associated with a session
becomes the controlling terminal for that session. The controlling terminal plays a special
role in handling quit and interrupt signals, as discussed below. The controlling terminal
is inherited by a child process during a fork(2). A process can break this association by
changing its session using setsid() (see getsid(2)).

A terminal associated with one of these files ordinarily operates in full-duplex mode.
Characters may be typed at any time, even while output is occurring, and are only lost
when the character input buffers of the system become completely full, which is rare (for
example, if the number of characters in the line discipline buffer exceeds
{MAX_CANON} and IMAXBEL (see below) is not set), or when the user has accumu-
lated {MAX_INPUT} number of input characters that have not yet been read by some
program. When the input limit is reached, all the characters saved in the buffer up to that
point are thrown away without notice.

Session management
(Job Control)

A control terminal will distinguish one of the process groups in the session associated
with it to be the foreground process group. All other process groups in the session are
designated as background process groups. This foreground process group plays a spe-
cial role in handling signal-generating input characters, as discussed below. By default,
when a controlling terminal is allocated, the controlling process’s process group is
assigned as foreground process group.

Background process groups in the controlling process’s session are subject to a job con-
trol line discipline when they attempt to access their controlling terminal. Process groups
can be sent signals that will cause them to stop, unless they have made other arrange-
ments. An exception is made for members of orphaned process groups.

modified 6 Jan 1994 7-289

termio (7) Special Files SunOS 5.4

The operating system will not normally send SIGTSTP, SIGTTIN, or SIGTTOU. signals to
a process that is a member of an orphaned process group.

These are process groups which do not have a member with a parent in another process
group that is in the same session and therefore shares the same controlling terminal.
When a member’s orphaned process group attempts to access its controlling terminal,
errors will be returned. since there is no process to continue it if it should stop.

If a member of a background process group attempts to read its controlling terminal, its
process group will be sent a SIGTTIN signal, which will normally cause the members of
that process group to stop. If, however, the process is ignoring or holding SIGTTIN, or is
a member of an orphaned process group, the read will fail with errno set to EIO, and no
signal will be sent.

If a member of a background process group attempts to write its controlling terminal and
the TOSTOP bit is set in the c_lflag field, its process group will be sent a SIGTTOU signal,
which will normally cause the members of that process group to stop. If, however, the
process is ignoring or holding SIGTTOU, the write will succeed. If the process is not
ignoring or holding SIGTTOU and is a member of an orphaned process group, the write
will fail with errno set to EIO, and no signal will be sent.

If TOSTOP is set and a member of a background process group attempts to ioctl its con-
trolling terminal, and that ioctl will modify terminal parameters (for example, TCSETA,
TCSETAW, TCSETAF, or TIOCSPGRP), its process group will be sent a SIGTTOU signal,
which will normally cause the members of that process group to stop. If, however, the
process is ignoring or holding SIGTTOU, the ioctl will succeed. If the process is not
ignoring or holding SIGTTOU and is a member of an orphaned process group, the write
will fail with errno set to EIO, and no signal will be sent.

Canonical mode
input processing

Normally, terminal input is processed in units of lines. A line is delimited by a newline
(ASCII LF) character, an end-of-file (ASCII EOT) character, or an end-of-line character.
This means that a program attempting to read will be suspended until an entire line has
been typed. Also, no matter how many characters are requested in the read call, at most
one line will be returned. It is not necessary, however, to read a whole line at once; any
number of characters may be requested in a read, even one, without losing information.

During input, erase and kill processing is normally done. The ERASE character (by
default, the character DEL) erases the last character typed. The WERASE character (the
character control-W) erases the last ‘‘word’’ typed in the current input line (but not any
preceding spaces or tabs). A ‘‘word’’ is defined as a sequence of non-blank characters,
with tabs counted as blanks. Neither ERASE nor WERASE will erase beyond the beginning
of the line. The KILL character (by default, the character NAK) kills (deletes) the entire
input line, and optionally outputs a newline character. All these characters operate on a
key stroke basis, independent of any backspacing or tabbing that may have been done.
The REPRINT character (the character control-R) prints a newline followed by all charac-
ters that have not been read. Reprinting also occurs automatically if characters that
would normally be erased from the screen are fouled by program output. The characters
are reprinted as if they were being echoed; consequencely, if ECHO is not set, they are
not printed.

7-290 modified 6 Jan 1994

SunOS 5.4 Special Files termio (7)

The ERASE and KILL characters may be entered literally by preceding them with the
escape character (\). In this case, the escape character is not read. The erase and kill
characters may be changed.

Non-canonical mode
input processing

In non-canonical mode input processing, input characters are not assembled into lines,
and erase and kill processing does not occur. The MIN and TIME values are used to
determine how to process the characters received.

MIN represents the minimum number of characters that should be received when the
read is satisfied (that is, when the characters are returned to the user). TIME is a timer of
0.10-second granularity that is used to timeout bursty and short-term data transmissions.
The four possible values for MIN and TIME and their interactions are described below.

Case A: MIN > 0, TIME > 0
In this case, TIME serves as an intercharacter timer and is activated after the first
character is received. Since it is an intercharacter timer, it is reset after a character is
received. The interaction between MIN and TIME is as follows: as soon as one char-
acter is received, the intercharacter timer is started. If MIN characters are received
before the intercharacter timer expires (note that the timer is reset upon receipt of each
character), the read is satisfied. If the timer expires before MIN characters are
received, the characters received to that point are returned to the user. Note that if
TIME expires, at least one character will be returned because the timer would not
have been enabled unless a character was received. In this case (MIN > 0, TIME > 0),
the read sleeps until the MIN and TIME mechanisms are activated by the receipt of
the first character. If the number of characters read is less than the number of charac-
ters available, the timer is not reactivated and the subsequent read is satisfied immedi-
ately.

Case B: MIN > 0, TIME = 0
In this case, since the value of TIME is zero, the timer plays no role and only MIN is
significant. A pending read is not satisfied until MIN characters are received (the
pending read sleeps until MIN characters are received). A program that uses this case
to read record based terminal I/O may block indefinitely in the read operation.

Case C: MIN = 0, TIME > 0
In this case, since MIN = 0, TIME no longer represents an intercharacter timer: it now
serves as a read timer that is activated as soon as a read is done. A read is satisfied as
soon as a single character is received or the read timer expires. Note that, in this case,
if the timer expires, no character is returned. If the timer does not expire, the only
way the read can be satisfied is if a character is received. In this case, the read will not
block indefinitely waiting for a character; if no character is received within TIME∗.10
seconds after the read is initiated, the read returns with zero characters.

Case D: MIN = 0, TIME = 0
In this case, return is immediate. The minimum of either the number of characters
requested or the number of characters currently available is returned without waiting
for more characters to be input.

modified 6 Jan 1994 7-291

termio (7) Special Files SunOS 5.4

Comparison of the
different cases of

MIN, TIME
interaction

Some points to note about MIN and TIME:

1. In the following explanations, note that the interactions of MIN and TIME are not
symmetric. For example, when MIN > 0 and TIME = 0, TIME has no effect. How-
ever, in the opposite case, where MIN = 0 and TIME > 0, both MIN and TIME
play a role in that MIN is satisfied with the receipt of a single character.

2. Also note that in case A (MIN > 0, TIME > 0), TIME represents an intercharacter
timer, whereas in case C (MIN = 0, TIME > 0), TIME represents a read timer.

These two points highlight the dual purpose of the MIN/TIME feature. Cases A and B,
where MIN > 0, exist to handle burst mode activity (for example, file transfer programs),
where a program would like to process at least MIN characters at a time. In case A, the
intercharacter timer is activated by a user as a safety measure; in case B, the timer is
turned off.

Cases C and D exist to handle single character, timed transfers. These cases are readily
adaptable to screen-based applications that need to know if a character is present in the
input queue before refreshing the screen. In case C, the read is timed, whereas in case D,
it is not.

Another important note is that MIN is always just a minimum. It does not denote a
record length. For example, if a program does a read of 20 bytes, MIN is 10, and 25 char-
acters are present, then 20 characters will be returned to the user.

Writing characters When one or more characters are written, they are transmitted to the terminal as soon as
previously written characters have finished typing. Input characters are echoed as they
are typed if echoing has been enabled. If a process produces characters more rapidly
than they can be typed, it will be suspended when its output queue exceeds some limit.
When the queue is drained down to some threshold, the program is resumed.

Special Characters Certain characters have special functions on input. These functions and their default
character values are summarized as follows:

INTR (CTRL-C or ASCII ETX) generates a SIGINT signal. SIGINT is sent to all fre-
quent processes associated with the controlling terminal. Normally,
each such process is forced to terminate, but arrangements may be made
either to ignore the signal or to receive a trap to an agreed upon location.
(See signal(5)).

QUIT (CTRL-� or ASCII FS) generates a SIGQUIT signal. Its treatment is identi-
cal to the interrupt signal except that, unless a receiving process has
made other arrangements, it will not only be terminated but a core
image file (called core) will be created in the current working directory.

ERASE (DEL) erases the preceding character. It does not erase beyond the start
of a line, as delimited by a NL, EOF, EOL, or EOL2 character.

WERASE (CTRL-W or ASCII ETX) erases the preceding ‘‘word’’. It does not erase
beyond the start of a line, as delimited by a NL, EOF, EOL, or EOL2 char-
acter.

KILL (CTRL-U or ASCII NAK) deletes the entire line, as delimited by a NL, EOF,

7-292 modified 6 Jan 1994

SunOS 5.4 Special Files termio (7)

EOL, or EOL2 character.

REPRINT (CTRL-R or ASCII DC2) reprints all characters, preceded by a newline,
that have not been read.

EOF (CTRL-D or ASCII EOT) may be used to generate an end-of-file from a ter-
minal. When received, all the characters waiting to be read are immedi-
ately passed to the program, without waiting for a newline, and the EOF
is discarded. Thus, if no characters are waiting (that is, the EOF occurred
at the beginning of a line) zero characters are passed back, which is the
standard end-of-file indication. Unless escaped, the EOF character is not
echoed. Because EOT is the default EOF character, this prevents termi-
nals that respond to EOT from hanging up.

NL (ASCII LF) is the normal line delimiter. It cannot be changed or escaped.

EOL (ASCII NULL) is an additional line delimiter, like NL. It is not normally
used.

EOL2 is another additional line delimiter.

SWTCH (CTRL-Z or ASCII EM) is used only when shl layers is invoked.

SUSP (CTRL-Z or ASCII SUB) generates a SIGTSTP signal. SIGTSTP stops all
processes in the foreground process group for that terminal.

DSUSP (CTRL-Y or ASCII EM) It generates a SIGTSTP signal as SUSP does, but the
signal is sent when a process in the foreground process group attempts
to read the DSUSP character, rather than when it is typed.

STOP (CTRL-S or ASCII DC3) can be used to suspend output temporarily. It is
useful with CRT terminals to prevent output from disappearing before it
can be read. While output is suspended, STOP characters are ignored
and not read.

START (CTRL-Q or ASCII DC1) is used to resume output. Output has been
suspended by a STOP character. While output is not suspended, START
characters are ignored and not read.

DISCARD (CTRL-O or ASCII SI) causes subsequent output to be discarded. Output
is discarded until another DISCARD character is typed, more input
arrives, or the condition is cleared by a program.

LNEXT (CTRL-V or ASCII SYN) causes the special meaning of the next character
to be ignored. This works for all the special characters mentioned above.
It allows characters to be input that would otherwise be interpreted by
the system (for example KILL, QUIT).

The character values for INTR, QUIT, ERASE, WERASE, KILL, REPRINT, EOF, EOL, EOL2,
SWTCH, SUSP, DSUSP, STOP, START, DISCARD, and LNEXT may be changed to suit indivi-
dual tastes. If the value of a special control character is _POSIX_VDISABLE (0), the func-
tion of that special control character is disabled. The ERASE, KILL, and EOF characters
may be escaped by a preceding \ character, in which case no special function is done.
Any of the special characters may be preceded by the LNEXT character, in which case no

modified 6 Jan 1994 7-293

termio (7) Special Files SunOS 5.4

special function is done.

Modem disconnect When a modem disconnect is detected, a SIGHUP signal is sent to the terminal’s control-
ling process. Unless other arrangements have been made, these signals cause the process
to terminate. If SIGHUP is ignored or caught, any subsequent read returns with an end-
of-file indication until the terminal is closed.

If the controlling process is not in the foreground process group of the terminal, a
SIGTSTP is sent to the terminal’s foreground process group. Unless other arrangements
have been made, these signals cause the processes to stop.

Processes in background process groups that attempt to access the controlling terminal
after modem disconnect while the terminal is still allocated to the session will receive
appropriate SIGTTOU and SIGTTIN signals. Unless other arrangements have been made,
this signal causes the processes to stop.

The controlling terminal will remain in this state until it is reinitialized with a successful
open by the controlling process, or deallocated by the controlling process.

Terminal parameters The parameters that control the behavior of devices and modules providing the termios
interface are specified by the termios structure defined by <termios.h>. Several ioctl(2)
system calls that fetch or change these parameters use this structure that contains the fol-
lowing members:

tcflag_t c_iflag; /∗ input modes ∗/
tcflag_t c_oflag; /∗ output modes ∗/
tcflag_t c_cflag; /∗ control modes ∗/
tcflag_t c_lflag; /∗ local modes ∗/
cc_t c_cc[NCCS]; /∗ control chars ∗/

The special control characters are defined by the array c_cc. The symbolic name NCCS is
the size of the control-character array and is also defined by <termios.h>. The relative
positions, subscript names, and typical default values for each function are as follows:

0 VINTR ETX
1 VQUIT FS
2 VERASE DEL
3 VKILL NAK
4 VEOF EOT
5 VEOL NUL
6 VEOL2 NUL
7 VSWTCH NUL
8 VSTART DC1
9 VSTOP DC3
10 VSUSP SUB
11 VDSUSP EM
12 VREPRINT DC2
13 VDISCARD SI
14 VWERASE ETB
15 VLNEXT SYN

7-294 modified 6 Jan 1994

SunOS 5.4 Special Files termio (7)

16-19 reserved

Input modes The c_iflag field describes the basic terminal input control:

IGNBRK Ignore break condition.
BRKINT Signal interrupt on break.
IGNPAR Ignore characters with parity errors.
PARMRK Mark parity errors.
INPCK Enable input parity check.
ISTRIP Strip character.
INLCR Map NL to CR on input.
IGNCR Ignore CR.
ICRNL Map CR to NL on input.
IUCLC Map upper-case to lower-case on input.
IXON Enable start/stop output control.
IXANY Enable any character to restart output.
IXOFF Enable start/stop input control.
IMAXBEL Echo BEL on input line too long.

If IGNBRK is set, a break condition (a character framing error with data all zeros)
detected on input is ignored, that is, not put on the input queue and therefore not read by
any process. If IGNBRK is not set and BRKINT is set, the break condition shall flush the
input and output queues and if the terminal is the controlling terminal of a foreground
process group, the break condition generates a single SIGINT signal to that foreground
process group. If neither IGNBRK nor BRKINT is set, a break condition is read as a sin-
gle ASCII NULL character (´\0´), or if PARMRK is set, as ´\377´, ´\0´, ´\0´.

If IGNPAR is set, a byte with framing or parity errors (other than break) is ignored.

If PARMRK is set, and IGNPAR is not set, a byte with a framing or parity error (other
than break) is given to the application as the three-character sequence: ´\377´, ´\0´, X ,
where X is the data of the byte received in error. To avoid ambiguity in this case, if
ISTRIP is not set, a valid character of ´\377´ is given to the application as ´\377´, ´\377´.
If neither IGNPAR nor PARMRK is set, a framing or parity error (other than break) is
given to the application as a single ASCII NULL character (´\0´).

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity check-
ing is disabled. This allows output parity generation without input parity errors. Note
that whether input parity checking is enabled or disabled is independent of whether par-
ity detection is enabled or disabled. If parity detection is enabled but input parity check-
ing is disabled, the hardware to which the terminal is connected will recognize the parity
bit, but the terminal special file will not check whether this is set correctly or not.

If ISTRIP is set, valid input characters are first stripped to seven bits, otherwise all eight
bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is set,
a received CR character is ignored (not read). Otherwise, if ICRNL is set, a received CR
character is translated into a NL character.

modified 6 Jan 1994 7-295

termio (7) Special Files SunOS 5.4

If IUCLC is set, a received upper case, alphabetic character is translated into the
corresponding lower case character.

If IXON is set, start/stop output control is enabled. A received STOP character suspends
output and a received START character restarts output. The STOP and START characters
will not be read, but will merely perform flow control functions. If IXANY is set, any
input character restarts output that has been suspended.

If IXOFF is set, the system transmits a STOP character when the input queue is nearly full,
and a START character when enough input has been read so that the input queue is nearly
empty again.

If IMAXBEL is set, the ASCII BEL character is echoed if the input stream overflows.
Further input is not stored, but any input already present in the input stream is not dis-
turbed. If IMAXBEL is not set, no BEL character is echoed, and all input present in the
input queue is discarded if the input stream overflows.

Output modes The c_oflag field specifies the system treatment of output:

OPOST Post-process output.
OLCUC Map lower case to upper on output.
ONLCR Map NL to CR-NL on output.
OCRNL Map CR to NL on output.
ONOCR No CR output at column 0.
ONLRET NL performs CR function.
OFILL Use fill characters for delay.
OFDEL Fill is DEL, else NULL.
NLDLY Select newline delays:

NL0
NL1

CRDLY Select carriage-return delays:
CR0
CR1
CR2
CR3

TABDLY Select horizontal tab delays:
TAB0 or tab expansion:
TAB1
TAB2
TAB3 Expand tabs to spaces.
XTABS Expand tabs to spaces.

BSDLY Select backspace delays:
BS0
BS1

VTDLY Select vertical tab delays:
VT0
VT1

FFDLY Select form feed delays:

7-296 modified 6 Jan 1994

SunOS 5.4 Special Files termio (7)

FF0
FF1

If OPOST is set, output characters are post-processed as indicated by the remaining flags;
otherwise, characters are transmitted without change.

If OLCUC is set, a lower case alphabetic character is transmitted as the corresponding
upper case character. This function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL is
set, the CR character is transmitted as the NL character. If ONOCR is set, no CR character
is transmitted when at column 0 (first position). If ONRET is set, the NL character is
assumed to do the carriage-return function; the column pointer is set to 0 and the delays
specified for CR are used. Otherwise, the NL character is assumed to do just the line-feed
function; the column pointer remains unchanged. The column pointer is also set to 0 if
the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other
movement when certain characters are sent to the terminal. In all cases, a value of 0 indi-
cates no delay. If OFILL is set, fill characters are transmitted for delay instead of a timed
delay. This is useful for high baud rate terminals that need only a minimal delay. If
OFDEL is set, the fill character is DEL; otherwise it is NULL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

Newline delay lasts about 0.10 seconds. If ONLRET is set, the carriage-return delays are
used instead of the newline delays. If OFILL is set, two fill characters are transmitted.

Carriage-return delay type 1 is dependent on the current column position, type 2 is about
0.10 seconds, and type 3 is about 0.15 seconds. If OFILL is set, delay type 1 transmits two
fill characters, and type 2 transmits four fill characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type 2 is about
0.10 seconds. Type 3 specifies that tabs are to be expanded into spaces. If OFILL is set,
two fill characters are transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character is transmitted.

The actual delays depend on line speed and system load.

modified 6 Jan 1994 7-297

termio (7) Special Files SunOS 5.4

Control Modes The c_cflag field describes the hardware control of the terminal:

CBAUD Baud rate:
B0 Hang up
B50 50 baud
B75 75 baud
B110 110 baud
B134 134 baud
B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud
B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud
B19200 19200 baud
EXTA External A
B38400 38400 baud
EXTB External B

CSIZE Character size:
CS5 5 bits
CS6 6 bits
CS7 7 bits
CS8 8 bits

CSTOPB Send two stop bits, else one
CREAD Enable receiver
PARENB Parity enable
PARODD Odd parity, else even
HUPCL Hang up on last close
CLOCAL Local line, else dial-up
CIBAUD Input baud rate, if different from output rate
PAREXT Extended parity for mark and space parity

The CBAUD bits specify the baud rate. The zero baud rate, B0, is used to hang up the
connection. If B0 is specified, the data-terminal-ready signal is not asserted. Normally,
this disconnects the line. If the CIBAUD bits are not zero, they specify the input baud
rate, with the CBAUD bits specifying the output baud rate; otherwise, the output and
input baud rates are both specified by the CBAUD bits. The values for the CIBAUD bits
are the same as the values for the CBAUD bits, shifted left IBSHIFT bits. For any partic-
ular hardware, impossible speed changes are ignored.

7-298 modified 6 Jan 1994

SunOS 5.4 Special Files termio (7)

The CSIZE bits specify the character size in bits for both transmission and reception.
This size does not include the parity bit, if any. If CSTOPB is set, two stop bits are used;
otherwise, one stop bit is used. For example, at 110 baud, two stops bits are required.

If PARENB is set, parity generation and detection is enabled, and a parity bit is added to
each character. If parity is enabled, the PARODD flag specifies odd parity if set; other-
wise, even parity is used.

If CREAD is set, the receiver is enabled. Otherwise, no characters are received.

If HUPCL is set, the line is disconnected when the last process with the line open closes it
or terminates. That is, the data-terminal-ready signal is not asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with no modem con-
trol; otherwise, modem control is assumed.

Local modes The c_lflag field of the argument structure is used by the line discipline to control termi-
nal functions. The basic line discipline provides the following:

ISIG Enable signals.
ICANON Canonical input (erase and kill processing).
XCASE Canonical upper/lower presentation.
ECHO Enable echo.
ECHOE Echo erase character as BS-SP-BS.
ECHOK Echo NL after kill character.
ECHONL Echo NL.
NOFLSH Disable flush after interrupt or quit.
TOSTOP Send SIGTTOU for background output.
ECHOCTL Echo control characters as ˆchar, delete as ˆ?.
ECHOPRT Echo erase character as character erased.
ECHOKE BS-SP-BS erase entire line on line kill.
FLUSHO Output is being flushed.
PENDIN Retype pending input at next read or input character.
IEXTEN Enable extended (implementation-defined) functions.

If ISIG is set, each input character is checked against the special control characters INTR,
QUIT, SWTCH, SUSP, STATUS, and DSUSP. If an input character matches one of these con-
trol characters, the function associated with that character is performed. If ISIG is not
set, no checking is done. Thus, these special input functions are possible only if ISIG is
set.

If ICANON is set, canonical processing is enabled. This enables the erase and kill edit
functions, and the assembly of input characters into lines delimited by NL, EOF, EOL, and
EOL2. If ICANON is not set, read requests are satisfied directly from the input queue. A
read is not satisfied until at least MIN characters have been received or the timeout value
TIME has expired between characters. This allows fast bursts of input to be read
efficiently while still allowing single character input. The time value represents tenths of
seconds.

modified 6 Jan 1994 7-299

termio (7) Special Files SunOS 5.4

If XCASE is set, and if ICANON is set, an upper case letter is accepted on input by
preceding it with a \ character, and is output preceded by a \ character. In this mode,
the following escape sequences are generated on output and accepted on input:

for: use:
` \´
� \!
˜ \ˆ
{ \(
} \)
\ \\

For example, A is input as \a, \n as \\n, and \N as \\\n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible.

1. If ECHO and ECHOE are set, and ECHOPRT is not set, the ERASE and WERASE
characters are echoed as one or more ASCII BS SP BS, which clears the last
character(s) from a CRT screen.

2. If ECHO, ECHOPRT, and IEXTEN are set, the first ERASE and WERASE character
in a sequence echoes as a backslash (\), followed by the characters being erased.
Subsequent ERASE and WERASE characters echo the characters being erased, in
reverse order. The next non-erase character causes a slash (/) to be typed before
it is echoed. ECHOPRT should be used for hard copy terminals.

3. If ECHOKE and IEXTEN are set, the kill character is echoed by erasing each
character on the line from the screen (using the mechanism selected by ECHOE
and ECHOPRT).

4. If ECHOK is set, and ECHOKE is not set, the NL character is echoed after the kill
character to emphasize that the line is deleted. Note that an escape character (\)
or an LNEXT character preceding the erase or kill character removes any special
function.

5. If ECHONL is set, the NL character is echoed even if ECHO is not set. This is use-
ful for terminals set to local echo (so called half-duplex).

If ECHOCTL and IEXTEN are set, all control characters (characters with codes between 0
and 37 octal) other than ASCII TAB, ASCII NL, the START character, and the STOP charac-
ter, ASCII CR, and ASCII BS are echoed as ˆX, where X is the character given by adding 100
octal to the code of the control character (so that the character with octal code 1 is echoed
as ˆA), and the ASCII DEL character, with code 177 octal, is echoed as ˆ?.

If NOFLSH is set, the normal flush of the input and output queues associated with the
INTR, QUIT, and SUSP characters is not done. This bit should be set when restarting sys-
tem calls that read from or write to a terminal (see sigaction(2)).

If TOSTOP and IEXTEN are set, the signal SIGTTOU is sent to a process that tries to
write to its controlling terminal if it is not in the foreground process group for that termi-
nal. This signal normally stops the process. Otherwise, the output generated by that pro-
cess is output to the current output stream. Processes that are blocking or ignoring

7-300 modified 6 Jan 1994

SunOS 5.4 Special Files termio (7)

SIGTTOU signals are excepted and allowed to produce output, if any.

If FLUSHO and IEXTEN are set, data written to the terminal is discarded. This bit is set
when the FLUSH character is typed. A program can cancel the effect of typing the FLUSH
character by clearing FLUSHO.

If PENDIN and IEXTEN are set, any input that has not yet been read is reprinted when
the next character arrives as input. PENDIN is then automatically cleared.

If IEXTEN is set, the following implementation-defined functions are enabled: special
characters (WERASE, REPRINT, DISCARD, and LNEXT) and local flags (TOSTOP,
ECHOCTL, ECHOPRT, ECHOKE, FLUSHO, and PENDIN).

Minimum and
Timeout

The MIN and TIME values are described above under Non-canonical mode input process-
ing. The initial value of MIN is 1, and the initial value of TIME is 0.

Terminal size The number of lines and columns on the terminal’s display is specified in the winsize
structure defined by <sys/termios.h> and includes the following members:

unsigned short ws_row; /∗ rows, in characters ∗/
unsigned short ws_col; /∗ columns, in characters ∗/
unsigned short ws_xpixel; /∗ horizontal size, in pixels ∗/
unsigned short ws_ypixel; /∗ vertical size, in pixels ∗/

Termio structure The SunOS/SVR4 termio structure is used by some ioctls; it is defined by <sys/termio.h>
and includes the following members:

unsigned short c_iflag; /∗ input modes ∗/
unsigned short c_oflag; /∗ output modes ∗/
unsigned short c_cflag; /∗ control modes ∗/
unsigned short c_lflag; /∗ local modes ∗/
char c_line; /∗ line discipline ∗/
unsigned char c_cc[NCC]; /∗ control chars ∗/

The special control characters are defined by the array c_cc. The symbolic name NCC is
the size of the control-character array and is also defined by <termio.h>. The relative
positions, subscript names, and typical default values for each function are as follows:

0 VINTR EXT
1 VQUIT FS
2 VERASE DEL
3 VKILL NAK
4 VEOF EOT
5 VEOL NUL
6 VEOL2 NUL
7 reserved

The MIN values is stored in the VMIN element of the c_cc array; the TIME value is
stored in the VTIME element of the c_cc array. The VMIN element is the same element
as the VEOF element; the VTIME element is the same element as the VEOL element.

modified 6 Jan 1994 7-301

termio (7) Special Files SunOS 5.4

The calls that use the termio structure only affect the flags and control characters that can
be stored in the termio structure; all other flags and control characters are unaffected.

Modem lines On special files representing serial ports, the modem control lines supported by the
hardware can be read, and the modem status lines supported by the hardware can be
changed. The following modem control and status lines may be supported by a device;
they are defined by <sys/termios.h>:

TIOCM_LE line enable
TIOCM_DTR data terminal ready
TIOCM_RTS request to send
TIOCM_ST secondary transmit
TIOCM_SR secondary receive
TIOCM_CTS clear to send
TIOCM_CAR carrier detect
TIOCM_RNG ring
TIOCM_DSR data set ready

TIOCM_CD is a synonym for TIOCM_CAR, and TIOCM_RI is a synonym for
TIOCM_RNG. Not all of these are necessarily supported by any particular device; check
the manual page for the device in question.

Default values The initial termios values upon driver open is configurable. This is accomplished by set-
ting the "ttymodes" property in the file /kernel/drv/options.conf. Note: This property is
assigned during system initialization, therefore any change to the "ttymodes" property
will not take effect until the next reboot. The string value assigned to this property
should be in the same format as the output of the stty command with the -g option. See
stty(1).

If this property is undefined, the following termios modes are in effect. The initial input
control value is BRKINT, ICRNL, IXON, IMAXBEL. The initial output control value is
OPOST, ONLCR, TAB3. The initial hardware control value is B9600, CS8, CREAD. The
initial line-discipline control value is ISIG, ICANON, IEXTEN, ECHO, ECHOK,
ECHOE, ECHOKE, ECHOCTL.

IOCTLS The ioctls supported by devices and STREAMS modules providing the termios interface
are listed below. Some calls may not be supported by all devices or modules. The func-
tionality provided by these calls is also available through the preferred function call inter-
face specified on termios(3).

TCGETS The argument is a pointer to a termios structure. The current terminal
parameters are fetched and stored into that structure.

TCSETS The argument is a pointer to a termios structure. The current terminal
parameters are set from the values stored in that structure. The change
is immediate.

7-302 modified 6 Jan 1994

SunOS 5.4 Special Files termio (7)

TCSETSW The argument is a pointer to a termios structure. The current terminal
parameters are set from the values stored in that structure. The change
occurs after all characters queued for output have been transmitted.
This form should be used when changing parameters that affect output.

TCSETSF The argument is a pointer to a termios structure. The current terminal
parameters are set from the values stored in that structure. The change
occurs after all characters queued for output have been transmitted; all
characters queued for input are discarded and then the change occurs.

TCGETA The argument is a pointer to a termio structure. The current terminal
parameters are fetched, and those parameters that can be stored in a ter-
mio structure are stored into that structure.

TCSETA The argument is a pointer to a termio structure. Those terminal parame-
ters that can be stored in a termio structure are set from the values
stored in that structure. The change is immediate.

TCSETAW The argument is a pointer to a termio structure. Those terminal parame-
ters that can be stored in a termio structure are set from the values
stored in that structure. The change occurs after all characters queued
for output have been transmitted. This form should be used when
changing parameters that affect output.

TCSETAF The argument is a pointer to a termio structure. Those terminal parame-
ters that can be stored in a termio structure are set from the values
stored in that structure. The change occurs after all characters queued
for output have been transmitted; all characters queued for input are
discarded and then the change occurs.

TCSBRK The argument is an int value. Wait for the output to drain. If the argu-
ment is 0, then send a break (zero valued bits for 0.25 seconds).

TCXONC Start/stop control. The argument is an int value. If the argument is 0,
suspend output; if 1, restart suspended output; if 2, suspend input; if 3,
restart suspended input.

TCFLSH The argument is an int value. If the argument is 0, flush the input
queue; if 1, flush the output queue; if 2, flush both the input and output
queues.

TIOCGPGRP The argument is a pointer to a pid_t. Set the value of that pid_t to the
process group ID of the foreground process group associated with the
terminal. See termios(3) for a description or TCGETPGRP.

TIOCSPGRP The argument is a pointer to a pid_t. Associate the process group
whose process group ID is specified by the value of that pid_t with the
terminal. The new process group value must be in the range of valid
process group ID values. Otherwise, the error EPERM is returned. See
termios(3) for a description of TCSETPGRP.

TIOCGSID The argument is a pointer to a pid_t. The session ID of the terminal is
fetched and stored in the pid_t.

modified 6 Jan 1994 7-303

termio (7) Special Files SunOS 5.4

TIOCGWINSZ The argument is a pointer to a winsize structure. The terminal driver’s
notion of the terminal size is stored into that structure.

TIOCSWINSZ The argument is a pointer to a winsize structure. The terminal driver’s
notion of the terminal size is set from the values specified in that struc-
ture. If the new sizes are different from the old sizes, a SIGWINCH sig-
nal is set to the process group of the terminal.

TIOCMBIS The argument is a pointer to an int whose value is a mask containing
modem control lines to be turned on. The control lines whose bits are
set in the argument are turned on; no other control lines are affected.

TIOCMBIC The argument is a pointer to an int whose value is a mask containing
modem control lines to be turned off. The control lines whose bits are
set in the argument are turned off; no other control lines are affected.

TIOCMGET The argument is a pointer to an int. The current state of the modem
status lines is fetched and stored in the int pointed to by the argument.

TIOCMSET The argument is a pointer to an int containing a new set of modem con-
trol lines. The modem control lines are turned on or off, depending on
whether the bit for that mode is set or clear.

FILES files in or under /dev

SEE ALSO fork(2), getsid(2), ioctl(2), termios(3), signal(3C), streamio(7)

7-304 modified 6 Jan 1994

SunOS 5.4 Special Files termiox (7)

NAME termiox − extended general terminal interface

DESCRIPTION The extended general terminal interface supplements the termio(7) general terminal
interface by adding support for asynchronous hardware flow control, isochronous flow
control and clock modes, and local implementations of additional asynchronous features.
Some systems may not support all of these capabilities because of either hardware or
software limitations. Other systems may not permit certain functions to be disabled. In
these cases the appropriate bits will be ignored. See <termiox.h> for your system to find
out which capabilities are supported.

Hardware Flow
Control Modes

Hardware flow control supplements the termio(7) IXON, IXOFF, and IXANY character
flow control. Character flow control occurs when one device controls the data transfer of
another device by the insertion of control characters in the data stream between devices.
Hardware flow control occurs when one device controls the data transfer of another dev-
ice using electrical control signals on wires (circuits) of the asynchronous interface. Iso-
chronous hardware flow control occurs when one device controls the data transfer of
another device by asserting or removing the transmit clock signals of that device. Charac-
ter flow control and hardware flow control may be simultaneously set.

In asynchronous, full duplex applications, the use of the Electronic Industries
Association’s EIA-232-D Request To Send (RTS) and Clear To Send (CTS) circuits is the
preferred method of hardware flow control. An interface to other hardware flow control
methods is included to provide a standard interface to these existing methods.

The EIA-232-D standard specified only uni-directional hardware flow control - the Data
Circuit-terminating Equipment or Data Communications Equipment (DCE) indicates to
the Data Terminal Equipment (DTE) to stop transmitting data. The termiox interface
allows both uni-directional and bi-directional hardware flow control; when bi-directional
flow control is enabled, either the DCE or DTE can indicate to each other to stop transmit-
ting data across the interface. Note: It is assumed that the asynchronous port is
configured as a DTE. If the connected device is also a DTE and not a DCE, then DTE to DTE
(for example, terminal or printer connected to computer) hardware flow control is possi-
ble by using a null modem to interconnect the appropriate data and control circuits.

Clock Modes Isochronous communication is a variation of asynchronous communication whereby two
communicating devices may provide transmit and/or receive clock to each other. Incom-
ing clock signals can be taken from the baud rate generator on the local isochronous port
controller, from CCITT V.24 circuit 114, Transmitter Signal Element Timing - DCE source
(EIA-232-D pin 15), or from CCITT V.24 circuit 115, Receiver Signal Element Timing - DCE
source (EIA-232-D pin 17). Outgoing clock signals can be sent on CCITT V.24 circuit 113,
Transmitter Signal Element Timing - DTE source (EIA-232-D pin 24), on CCITT V.24 circuit
128, Receiver Signal Element Timing - DTE source (no EIA-232-D pin), or not sent at all.

In terms of clock modes, traditional asynchronous communication is implemented sim-
ply by using the local baud rate generator as the incoming transmit and receive clock
source and not outputting any clock signals.

modified 3 Jul 1990 7-305

termiox (7) Special Files SunOS 5.4

Terminal Parameters The parameters that control the behavior of devices providing the termiox interface are
specified by the termiox structure, defined in the <sys/termiox.h> header. Several ioctl(2)
system calls that fetch or change these parameters use this structure:

#define NFF 5
struct termiox {

unsigned short x_hflag; /∗ hardware flow control modes ∗/
unsigned short x_cflag; /∗ clock modes ∗/
unsigned short x_rflag[NFF]; /∗ reserved modes ∗/
unsigned short x_sflag; /∗ spare local modes ∗/

};

The x_hflag field describes hardware flow control modes:

RTSXOFF 0000001 Enable RTS hardware flow control on input.
CTSXON 0000002 Enable CTS hardware flow control on output.
DTRXOFF 0000004 Enable DTR hardware flow control on input.
CDXON 0000010 Enable CD hardware flow control on output.
ISXOFF 0000020 Enable isochronous hardware flow control on input.

The EIA-232-D DTR and CD circuits are used to establish a connection between two sys-
tems. The RTS circuit is also used to establish a connection with a modem. Thus, both
DTR and RTS are activated when an asynchronous port is opened. If DTR is used for
hardware flow control, then RTS must be used for connectivity. If CD is used for
hardware flow control, then CTS must be used for connectivity. Thus, RTS and DTR (or
CTS and CD) cannot both be used for hardware flow control at the same time. Other
mutual exclusions may apply, such as the simultaneous setting of the termio(7) HUPCL
and the termiox DTRXOFF bits, which use the DTE ready line for different functions.

Variations of different hardware flow control methods may be selected by setting the the
appropriate bits. For example, bi-directional RTS/CTS flow control is selected by setting
both the RTSXOFF and CTSXON bits and bi-directional DTR/CTS flow control is
selected by setting both the DTRXOFF and CTSXON. Modem control or uni-directional
CTS hardware flow control is selected by setting only the CTSXON bit.

As previously mentioned, it is assumed that the local asynchronous port (for example,
computer) is configured as a DTE. If the connected device (for example, printer) is also a
DTE, it is assumed that the device is connected to the computer’s asynchronous port
using a null modem that swaps control circuits (typically RTS and CTS). The connected
DTE drives RTS and the null modem swaps RTS and CTS so that the remote RTS is received
as CTS by the local DTE. In the case that CTSXON is set for hardware flow control,
printer’s lowering of its RTS would cause CTS seen by the computer to be lowered. Out-
put to the printer is suspended until the printer’s raising of its RTS, which would cause
CTS seen by the computer to be raised.

If RTSXOFF is set, the Request To Send (RTS) circuit (line) will be raised, and if the asyn-
chronous port needs to have its input stopped, it will lower the Request To Send (RTS)
line. If the RTS line is lowered, it is assumed that the connected device will stop its output
until RTS is raised.

7-306 modified 3 Jul 1990

SunOS 5.4 Special Files termiox (7)

If CTSXON is set, output will occur only if the Clear To Send (CTS) circuit (line) is raised
by the connected device. If the CTS line is lowered by the connected device, output is
suspended until CTS is raised.

If DTRXOFF is set, the DTE Ready (DTR) circuit (line) will be raised, and if the asynchro-
nous port needs to have its input stopped, it will lower the DTE Ready (DTR) line. If the
DTR line is lowered, it is assumed that the connected device will stop its output until DTR
is raised.

If CDXON is set, output will occur only if the Received Line Signal Detector (CD) circuit
(line) is raised by the connected device. If the CD line is lowered by the connected device,
output is suspended until CD is raised.

If ISXOFF is set, and if the isochronous port needs to have its input stopped, it will stop
the outgoing clock signal. It is assumed that the connected device is using this clock sig-
nal to create its output. Transit and receive clock sources are programmed using the
x_cflag fields. If the port is not programmed for external clock generation, ISXOFF is
ignored. Output isochronous flow control is supported by appropriate clock source pro-
gramming using the x_cflag field and enabled at the remote connected device.

The x_cflag field specifies the system treatment of clock modes.

XMTCLK 0000007 Transmit clock source:
XCIBRG 0000000 Get transmit clock from internal baud rate

generator.
XCTSET 0000001 Get transmit clock from transmitter signal

element timing (DCE source) lead, CCITT
V.24 circuit 114, EIA-232-D pin 15.

XCRSET 0000002 Get transmit clock from receiver signal
element timing (DCE source) lead, CCITT
V.24 circuit 115, EIA-232-D pin 17.

RCVCLK 0000070 Receive clock source:
RCIBRG 0000000 Get receive clock from internal baud rate

generator.
RCTSET 0000010 Get receive clock from transmitter signal

element timing (DCE source) lead, CCITT
V.24 circuit 114, EIA-232-D pin 15.

RCRSET 0000020 Get receive clock from receiver signal
element timing (DCE source) lead, CCITT
V.24 circuit 115, EIA-232-D pin 17.

TSETCLK 0000700 Transmitter signal element timing (DTE source)
lead, CCITT V.24 circuit 113, EIA-232-D
pin 24, clock source:

TSETCOFF 0000000 TSET clock not provided.
TSETCRBRG 0000100 Output receive baud rate generator on

circuit 113.

modified 3 Jul 1990 7-307

termiox (7) Special Files SunOS 5.4

TSETCTBRG 0000200 Output transmit baud rate generator on
circuit 113.

TSETCTSET 0000300 Output transmitter signal element timing
(DCE source) on circuit 113.

TSETCRSET 0000400 Output receiver signal element timing
(DCE source) on circuit 113.

RSETCLK 0007000 Receiver signal element timing (DTE source)
lead, CCITT V.24 circuit 128, no EIA-232-D
pin, clock source:

RSETCOFF 0000000 RSET clock not provided.
RSETCRBRG 0001000 Output receive baud rate generator on

circuit 128.
RSETCTBRG 0002000 Output transmit baud rate generator on

circuit 128.
RSETCTSET 0003000 Output transmitter signal element timing

(DCE source) on circuit 128.
RSETCRSET 0004000 Output receiver signal element timing

(DCE) on circuit 128.

If the XMTCLK field has a value of XCIBRG the transmit clock is taken from the
hardware internal baud rate generator, as in normal asynchronous transmission. If
XMTCLK = XCTSET the transmit clock is taken from the Transmitter Signal Element
Timing (DCE source) circuit. If XMTCLK = XCRSET the transmit clock is taken from the
Receiver Signal Element Timing (DCE source) circuit.

If the RCVCLK field has a value of RCIBRG the receive clock is taken from the hardware
Internal Baud Rate Generator, as in normal asynchronous transmission. If RCVCLK =
RCTSET the receive clock is taken from the Transmitter Signal Element Timing (DCE
source) circuit. If RCVCLK = RCRSET the receive clock is taken from the Receiver Sig-
nal Element Timing (DCE source) circuit.

If the TSETCLK field has a value of TSETCOFF the Transmitter Signal Element Timing
(DTE source) circuit is not driven. If TSETCLK = TSETCRBRG the Transmitter Signal
Element Timing (DTE source) circuit is driven by the Receive Baud Rate Generator. If
TSETCLK = TSETCTBRG the Transmitter Signal Element Timing (DTE source) circuit is
driven by the Transmit Baud Rate Generator. If TSETCLK = TSETCTSET the
Transmitter Signal Element Timing (DTE source) circuit is driven by the Transmitter Sig-
nal Element Timing (DCE source). If TSETCLK = TSETCRBRG the Transmitter Signal
Element Timing (DTE source) circuit is driven by the Receiver Signal Element Timing
(DCE source).

7-308 modified 3 Jul 1990

SunOS 5.4 Special Files termiox (7)

If the RSETCLK field has a value of RSETCOFF the Receiver Signal Element Timing
(DTE source) circuit is not driven. If RSETCLK = RSETCRBRG the Receiver Signal Ele-
ment Timing (DTE source) circuit is driven by the Receive Baud Rate Generator. If
RSETCLK = RSETCTBRG the Receiver Signal Element Timing (DTE source) circuit is
driven by the Transmit Baud Rate Generator. If RSETCLK = RSETCTSET the Receiver
Signal Element Timing (DTE source) circuit is driven by the Transmitter Signal Element
Timing (DCE source). If RSETCLK = RSETCRBRG the Receiver Signal Element Timing
(DTE source) circuit is driven by the Receiver Signal Element Timing (DCE source).

The x_rflag is reserved for future interface definitions and should not be used by any
implementations. The x_sflag may be used by local implementations wishing to custom-
ize their terminal interface using the termiox ioctl system calls.

IOCTLS The ioctl(2) system calls have the form:

ioctl (fildes, command, arg)
struct termiox ∗arg ;

The commands using this form are:

TCGETX
The argument is a pointer to a termiox structure. The current terminal
parameters are fetched and stored into that structure.

TCSETX
The argument is a pointer to a termiox structure. The current terminal
parameters are set from the values stored in that structure. The change is
immediate.

TCSETXW
The argument is a pointer to a termiox structure. The current terminal
parameters are set from the values stored in that structure. The change
occurs after all characters queued for output have been transmitted. This
form should be used when changing parameters that will affect output.

TCSETXF
The argument is a pointer to a termiox structure. The current terminal
parameters are set from the values stored in that structure. The change
occurs after all characters queued for output have been transmitted; all
characters queued for input are discarded and then the change occurs.

FILES /dev/∗

SEE ALSO stty(1), ioctl(2), termio(7)

modified 3 Jul 1990 7-309

ticlts (7) Special Files SunOS 5.4

NAME ticlts, ticots, ticotsord − loopback transport providers

SYNOPSIS #include <sys/ticlts.h>
#include <sys/ticots.h>
#include <sys/ticotsord.h>

DESCRIPTION The devices known as ticlts, ticots, and ticotsord are ‘‘loopback transport providers,’’
that is, stand-alone networks at the transport level. Loopback transport providers are
transport providers in every sense except one: only one host (the local machine) is ‘‘con-
nected to’’ a loopback network. Loopback transports present a TPI (STREAMS-level)
interface to application processes and are intended to be accessed via the TLI
(application-level) interface. They are implemented as clone devices and support address
spaces consisting of ‘‘flex-addresses,’’ that is, arbitrary sequences of octets, of length > 0,
represented by a netbuf structure.

ticlts is a datagram-mode transport provider. It offers (connectionless) service of type
T_CLTS. Its default address size is TCL_DEFAULTADDRSZ. ticlts prints the follow-
ing error messages (see t_rcvuderr(3N)):

TCL_BADADDR bad address specification
TCL_BADOPT bad option specification
TCL_NOPEER bound
TCL_PEERBADSTATE peer in wrong state

ticots is a virtual circuit-mode transport provider. It offers (connection-oriented) service
of type T_COTS. Its default address size is TCO_DEFAULTADDRSZ. ticots prints the
following disconnect messages (see t_rcvdis(3N)):

TCO_NOPEER no listener on destination address
TCO_PEERNOROOMONQ peer has no room on connect queue
TCO_PEERBADSTATE peer in wrong state
TCO_PEERINITIATED peer-initiated disconnect
TCO_PROVIDERINITIATED provider-initiated disconnect

ticotsord is a virtual circuit-mode transport provider, offering service of type
T_COTS_ORD (connection-oriented service with orderly release). Its default address
size is TCOO_DEFAULTADDRSZ. ticotsord prints the following disconnect messages
(see t_rcvdis(3N)):

TCOO_NOPEER no listener on destination address
TCOO_PEERNOROOMONQ peer has no room on connect queue
TCOO_PEERBADSTATE peer in wrong state
TCOO_PEERINITIATED peer-initiated disconnect
TCOO_PROVIDERINITIATED provider-initiated disconnect

7-310 modified 3 Jul 1990

SunOS 5.4 Special Files ticlts (7)

USAGE Loopback transports support a local IPC mechanism through the TLI interface. Applica-
tions implemented in a transport provider-independent manner on a client-server model
using this IPC are transparently transportable to networked environments.

Transport provider-independent applications must not include the headers listed in the
synopsis section above. In particular, the options are (like all transport provider options)
provider dependent.

ticlts and ticots support the same service types (T_CLTS and T_COTS) supported by the
OSI transport-level model.

ticotsord supports the same service type (T_COTSORD) supported by the TCP/IP
model.

FILES /dev/ticlts
/dev/ticots
/dev/ticotsord

SEE ALSO t_rcvdis(3N), t_rcvuderr(3N)

modified 3 Jul 1990 7-311

timod (7) Special Files SunOS 5.4

NAME timod − Transport Interface cooperating STREAMS module

SYNOPSIS #include <sys/stropts.h>

ioctl(fildes, I_STR, &my_strioctl);

DESCRIPTION timod is a STREAMS module for use with the Transport Interface (TI) functions of the Net-
work Services library. The timod module converts a set of ioctl(2) calls into STREAMS
messages that may be consumed by a transport protocol provider that supports the Tran-
sport Interface. This allows a user to initiate certain TI functions as atomic operations.

The timod module must be pushed onto only a stream terminated by a transport protocol
provider that supports the TI.

All STREAMS messages, with the exception of the message types generated from the ioctl
commands described below, will be transparently passed to the neighboring module or
driver. The messages generated from the following ioctl commands are recognized and
processed by the timod module. The format of the ioctl call is:

#include <sys/stropts.h>
-
-

struct strioctl my_strioctl;
-
-

strioctl.ic_cmd = cmd;
strioctl.ic_timout = INFTIM;
strioctl.ic_len = size;
strioctl.ic_dp = (char ∗)buf
ioctl(fildes, I_STR, &my_strioctl);

On issuance, size is the size of the appropriate TI message to be sent to the transport pro-
vider and on return size is the size of the appropriate TI message from the transport pro-
vider in response to the issued TI message. buf is a pointer to a buffer large enough to
hold the contents of the appropriate TI messages. The TI message types are defined in
<sys/tihdr.h>. The possible values for the cmd field are:

TI_BIND Bind an address to the underlying transport protocol provider. The
message issued to the TI_BIND ioctl is equivalent to the TI message
type T_BIND_REQ and the message returned by the successful comple-
tion of the ioctl is equivalent to the TI message type T_BIND_ACK.

TI_UNBIND Unbind an address from the underlying transport protocol provider.
The message issued to the TI_UNBIND ioctl is equivalent to the TI mes-
sage type T_UNBIND_REQ and the message returned by the successful
completion of the ioctl is equivalent to the TI message type T_OK_ACK.

TI_GETINFO Get the TI protocol specific information from the transport protocol pro-
vider. The message issued to the TI_GETINFO ioctl is equivalent to the
TI message type T_INFO_REQ and the message returned by the

7-312 modified 26 Mar 1993

SunOS 5.4 Special Files timod (7)

successful completion of the ioctl is equivalent to the TI message type
T_INFO_ACK.

TI_OPTMGMT Get, set, or negotiate protocol specific options with the transport proto-
col provider. The message issued to the TI_OPTMGMT ioctl is
equivalent to the TI message type T_OPTMGMT_REQ and the message
returned by the successful completion of the ioctl is equivalent to the TI
message type T_OPTMGMT_ACK.

FILES <sys/timod.h>
<sys/tiuser.h>
<sys/tihdr.h>
<sys/errno.h>

SEE ALSO intro(2), tirdwr(7)

STREAMS Programmer’s Guide
Network Interfaces Programmer’s Guide

DIAGNOSTICS If the ioctl returns with a value greater than 0, the lower 8 bits of the return value will be
one of the TI error codes as defined in <sys/tiuser.h>. If the TI error is of type TSYSERR,
then the next 8 bits of the return value will contain an error as defined in <sys/errno.h>
(see intro(2)).

modified 26 Mar 1993 7-313

tirdwr (7) Special Files SunOS 5.4

NAME tirdwr − Transport Interface read/write interface STREAMS module

SYNOPSIS int ioctl(fd, I_PUSH, "tirdwr");

DESCRIPTION tirdwr is a STREAMS module that provides an alternate interface to a transport provider
which supports the Transport Interface (TI) functions of the Network Services library (see
Section 3N). This alternate interface allows a user to communicate with the transport
protocol provider using the read(2) and write(2) system calls. The putmsg(2) and
getmsg(2) system calls may also be used. However, putmsg and getmsg can only
transfer data messages between user and stream; control portions are disallowed.

The tirdwr module must only be pushed (see I_PUSH in streamio(7)) onto a stream ter-
minated by a transport protocol provider which supports the TI. After the tirdwr module
has been pushed onto a stream, none of the Transport Interface functions can be used.
Subsequent calls to TI functions cause an error on the stream. Once the error is detected,
subsequent system calls on the stream return an error with errno set to EPROTO.

The following are the actions taken by the tirdwr module when pushed on the stream,
popped (see I_POP in streamio(7)) off the stream, or when data passes through it.

push When the module is pushed onto a stream, it checks any existing data des-
tined for the user to ensure that only regular data messages are present. It
ignores any messages on the stream that relate to process management, such
as messages that generate signals to the user processes associated with the
stream. If any other messages are present, the I_PUSH will return an error
with errno set to EPROTO.

write The module takes the following actions on data that originated from a write
system call:

All messages with the exception of messages that contain control por-
tions (see the putmsg and getmsg system calls) are transparently
passed onto the module’s downstream neighbor.

Any zero length data messages are freed by the module and they will
not be passed onto the module’s downstream neighbor.

Any messages with control portions generate an error, and any
further system calls associated with the stream fails with errno set to
EPROTO.

read The module takes the following actions on data that originated from the tran-
sport protocol provider:

All messages with the exception of those that contain control portions
(see the putmsg and getmsg system calls) are transparently passed
onto the module’s upstream neighbor.

7-314 modified 3 Jul 1990

SunOS 5.4 Special Files tirdwr (7)

The action taken on messages with control portions will be as follows:

Messages that represent expedited data generate an error. All
further system calls associated with the stream fail with errno
set to EPROTO.

Any data messages with control portions have the control
portions removed from the message before to passing the
message on to the upstream neighbor.

Messages that represent an orderly release indication from
the transport provider generate a zero length data message,
indicating the end of file, which will be sent to the reader of
the stream. The orderly release message itself is freed by the
module.

Messages that represent an abortive disconnect indication
from the transport provider cause all further write and
putmsg system calls to fail with errno set to ENXIO. All
further read and getmsg system calls return zero length data
(indicating end of file) once all previous data has been read.

With the exception of the above rules, all other messages with
control portions generate an error and all further system calls
associated with the stream will fail with errno set to
EPROTO.

Any zero length data messages are freed by the module and they are
not passed onto the module’s upstream neighbor.

pop When the module is popped off the stream or the stream is closed, the module
takes the following action:

If an orderly release indication has been previously received, then an
orderly release request will be sent to the remote side of the transport
connection.

SEE ALSO intro(2), getmsg(2), putmsg(2), read(2), write(2), intro(3), streamio(7), timod(7)

STREAMS Programmer’s Guide
Network Interfaces Programmer’s Guide

modified 3 Jul 1990 7-315

tmpfs (7) Special Files SunOS 5.4

NAME tmpfs − memory based filesystem

SYNOPSIS #include <sys/mount.h>
mount (special, directory, MS_DATA, "tmpfs", NULL, 0);

DESCRIPTION tmpfs is a memory based filesystem which uses kernel resources relating to the VM sys-
tem and page cache as a filesystem. Once mounted, a tmpfs filesystem provides stan-
dard file operations and semantics. tmpfs is so named because files and directories are
not preserved across reboot or unmounts, all files residing on a tmpfs filesystem that is
unmounted will be lost.

tmpfs filesystems can be mounted with the command:

mount −F tmpfs swap directory

Alternatively, to mount a tmpfs filesystem on /tmp at multi-user startup time (and max-
imizing possible performance improvements), add the following line to /etc/vfstab:

swap − /tmp tmpfs − yes −
tmpfs is designed as a performance enhancement which is achieved by caching the writes
to files residing on a tmpfs filesystem. Performance improvements are most noticeable
when a large number of short lived files are written and accessed on a tmpfs filesystem.
Large compilations with tmpfs mounted on /tmp are a good example of this.

Users of tmpfs should be aware of some constraints involved in mounting a tmpfs
filesystem. The resources used by tmpfs are the same as those used when commands are
executed (for example, swap space allocation). This means that large sized tmpfs files
can affect the amount of space left over for programs to execute. Likewise, programs
requiring large amounts of memory use up the space available to tmpfs. Users running
into this constraint (for example, running out of space on tmpfs) can allocate more swap
space by using the swap(1M) command.

Another constraint is that the number of files available in a tmpfs filesystem is calculated
based on the physical memory of the machine and not the size of the swap
device/partition. If you have too many files, tmpfs will print a warning message and
you will be unable to create new files. You cannot increase this limit by adding swap
space.

Normal filesystem writes are scheduled to be written to a permanent storage medium
along with all control information associated with the file (for example, modification
time, file permissions). tmpfs control information resides only in memory and never
needs to be written to permanent storage. File data remains in core until memory
demands are sufficient to cause pages associated with tmpfs to be reused at which time
they are copied out to swap.

An additional mount option can be specified to control the size of an individual tmpfs
filesystem.

7-316 modified 9 Oct 1990

SunOS 5.4 Special Files tmpfs (7)

SEE ALSO df(1M), mount(1M), mount_tmpfs(1M), swap(1M), mmap(2), mount(2), umount(2),
vfstab(4)

File System Administration

DIAGNOSTICS If tmpfs runs out of space, one of the following messages will be printed to the console.

directory: File system full, swap space limit exceeded
This message is printed because a page could not be allocated while writing to a
file. This can occur if tmpfs is attempting to write more than it is allowed, or if
currently executing programs are using a lot of memory. To make more space
available, remove unnecessary files, exit from some programs, or allocate more
swap space using swap(1M).

directory: File system full, memory allocation failed.
tmpfs ran out of physical memory while attempting to create a new file or direc-
tory. Remove unnecessary files or directories or install more physical memory.

WARNINGS Files and directories on a tmpfs filesystem are not preserved across reboots or unmounts.
Command scripts or programs which count on this will not work as expected.

NOTES Compilers do not necessarily use /tmp to write intermediate files therefore missing some
significant performance benefits. This can be remedied by setting the environment vari-
able TMPDIR to /tmp. Compilers use the value in this environment variable as the name
of the directory to store intermediate files.

swap to a tmpfs file is not supported.

df(1M) output is of limited accuracy since a tmpfs filesystem size is not static and the
space available to tmpfs is dependent on the swap space demands of the entire system.

modified 9 Oct 1990 7-317

tr (7) Special Files SunOS 5.4

NAME tr − IBM 16/4 Token Ring Network Adapter device driver

SYNOPSIS #include <sys/stropts.h>
#include <sys/ethernet.h>
#include <sys/dlpi.h>

AVAILABILITY x86

DESCRIPTION The tr token ring driver is a multi-threaded, loadable, clonable, STREAMS hardware
driver supporting the connectionless Data Link Provider Interface, dlpi(7), over IBM
16/4 Token Ring adapters. The driver supports installation of both a primary and secon-
dary 16/4 Adapter within the system. The tr driver provides basic support for the IBM
16/4 Adapter hardware. Functions include chip initialization, frame transmit and
receive, functional addresses, and “promiscuous” support, and error recovery and
reporting.

The cloning, character-special device /dev/tr is used to access all 16/4 adapter devices
installed within the system.

The tr driver is a “style 2” Data Link Service provider. All M_PROTO and M_PCPROTO
type messages are interpreted as DLPI primitives. An explicit DL_ATTACH_REQ message
by the user is required to associate the opened stream with a particular device (ppa). The
ppa ID is interpreted as an unsigned long integer and indicates the corresponding device
instance (unit) number. The unit numbers are assigned sequentially to each board found.
The search order is determined by the order defined in the /kernel/drv/tr.conf file. An
error (DL_ERROR_ACK) is returned by the driver if the ppa field value does not
correspond to a valid device instance number for this system. The device is initialized on
first attach and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

· The maximum SDU is 4084.

· The minimum SDU is 0.

· The dlsap address length is 7 or 8 bytes.

· The MAC type is DL_TPR.

· The sap length value is −1 or −2, meaning the physical address component is
followed immediately by a 1 or 2-byte sap component within the DLSAP
address.

· The service mode is DL_CLDLS.

· No optional quality of service (QOS) support is included at present, so the
QOS fields are 0.

· The provider style is DL_STYLE2.

· The version is DL_VERSION_2.

· The broadcast address value is the IEEE broadcast address (FF:FF:FF:FF:FF:FF).

7-318 modified 15 Oct 1993

SunOS 5.4 Special Files tr (7)

The token ring broadcast address (C0:00:FF:FF:FF:FF) is also supported.

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a par-
ticular Service Access Pointer (SAP) with the stream. The tr driver interprets the sap field
within the DL_BIND_REQ as an IEEE 802.2 sap; therefore valid values for the sap field are
in the [0-0xFF] range, of which only even values are legal.

In addition to 802.2 service, a “SNAP mode” is also provided by the driver. In this mode,
sap values in the range [0x5de-0xffff] are used to indicate a request to use “SNAP” mode.

The tr driver DLSAP address format consists of the 6-byte physical token ring address
component followed immediately by the 1 or 2-byte sap component, producing a 7 or 8-
byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format, but should instead use information
returned by the DL_INFO_ACK primitive to compose and decompose DLSAP addresses.
The sap length, full DLSAP length, and sap/physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the token ring by sending
DL_UNITDATA_REQ messages to the tr driver. The tr driver will route received token
ring frames up all open and bound streams that have a sap which matches the sap in the
DL_UNITDATA_IND messages. Received token ring frames are duplicated and routed
up multiple open streams if necessary. The DLSAP address contained within the
DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the sap and
physical (token ring) components.

tr Primitives In addition to the mandatory connectionless DLPI message set, the driver also supports
the following primitives:

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable recep-
tion of individual multicast group addresses. A set of multicast addresses may be itera-
tively created and modified on a per-stream basis using these primitives. These primi-
tives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field is currently unsupported for this driver.

When used with the DL_PROMISC_SAP flag set, this enables/disables reception of all sap
values. When used with the DL_PROMISC_MULTI flag set, this enables/disables recep-
tion of all functional addresses. The effect of each is always on a per-stream basis and
independent of the other sap and physical level configurations on this stream or other
streams.

The DL_PHYS_ADDR_REQ primitive returns the 6-octet token ring address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This primitive
is valid only in states following a successful DL_ATTACH_REQ.

modified 15 Oct 1993 7-319

tr (7) Special Files SunOS 5.4

The DL_SET_PHYS_ADDR_REQ primitive changes the 6-octet token ring address
currently associated (attached) to this stream. The credentials of the process which origi-
nally opened this stream must be superuser or an EPERM error is returned in the
DL_ERROR_ACK. This primitive is destructive in that it affects all other current and
future streams attached to this device. Once changed, all streams subsequently opened
and attached to this device will obtain this new physical address. The new physical
address will remain in effect until this primitive is used to change the physical address
again or the system is rebooted, whichever comes first.

CONFIGURATION The /kernel/drv/tr.conf file supports the following options:

intr Specifies the IRQ level for the board. Note that if the dip switches for the
board are set to use the cascade interrupt, IRQ 2, the IRQ level specified
in the configuration file should be IRQ 9.

ioaddr Specifies the beginning I/O port address occupied by the board.

reg The first register property specifies the location and size of the board’s
BIOS/MMIO area. The second register property specifies the location
and size of the board’s shared RAM.

It is important to ensure that there are no conflicts for the board’s I/O port, shared RAM,
or IRQ level.

FILES /dev/tr

/kernel/drv/tr.conf tr configuration file.

SEE ALSO dlpi(7)

NOTE IBM 16/4 Token Ring Network Adapters and compatibles are not capable of fully sup-
porting the snoop(1) program. This limitation is due to the hardware itself and not to a
bug in the tr driver or the snoop program.

7-320 modified 15 Oct 1993

SunOS 5.4 Special Files ttcompat (7)

NAME ttcompat − V7, 4BSD and XENIX STREAMS compatibility module

SYNOPSIS #include <sys/stream.h>
#include <stropts.h> /∗fixed by epg ∗/
#include <sys/ttold.h>
#include <sys/ttcompat.h>

ioctl(fd, I_PUSH, "ttcompat");

DESCRIPTION ttcompat is a STREAMS module that translates the ioctl calls supported by the older Ver-
sion 7, 4BSD, and XENIX terminal drivers into the ioctl calls supported by the termio
interface (see termio(7)). All other messages pass through this module unchanged; the
behavior of read and write calls is unchanged, as is the behavior of ioctl calls other than
the ones supported by ttcompat.

This module can be automatically pushed onto a stream using the autopush mechanism
when a terminal device is opened; it does not have to be explicitly pushed onto a stream.
This module requires that the termios interface be supported by the modules and the
application can push the driver downstream. The TCGETS, TCSETS, and TCSETSF ioctl
calls must be supported. If any information set or fetched by those ioctl calls is not sup-
ported by the modules and driver downstream, some of the V7/4BSD/XENIX functions
may not be supported. For example, if the CBAUD bits in the c_cflag field are not sup-
ported, the functions provided by the sg_ispeed and sg_ospeed fields of the sgttyb struc-
ture (see below) will not be supported. If the TCFLSH ioctl is not supported, the function
provided by the TIOCFLUSH ioctl will not be supported. If the TCXONC ioctl is not sup-
ported, the functions provided by the TIOCSTOP and TIOCSTART ioctl calls will not be
supported. If the TIOCMBIS and TIOCMBIC ioctl calls are not supported, the functions
provided by the TIOCSDTR and TIOCCDTR ioctl calls will not be supported.

The basic ioctl calls use the sgttyb structure defined by <sys/ttold.h>:
struct sgttyb {

char sg_ispeed;
char sg_ospeed;
char sg_erase;
char sg_kill;
int sg_flags;

};

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the device,
and reflect the values in the c_cflag field of the termios structure. The sg_erase and
sg_kill fields of the argument structure specify the erase and kill characters respectively,
and reflect the values in the VERASE and VKILL members of the c_cc field of the termios
structure.

The sg_flags field of the argument structure contains several flags that determine the
system’s treatment of the terminal. They are mapped into flags in fields of the terminal
state, represented by the termios structure.

modified 13 Mar 1994 7-321

ttcompat (7) Special Files SunOS 5.4

Delay type 0 is always mapped into the equivalent delay type 0 in the c_oflag field of the
termios structure. Other delay mappings are performed as follows:

sg_flags c_oflag

BS1 BS1
FF1 VT1
CR1 CR2
CR2 CR3
CR3 not supported
TAB1 TAB1
TAB2 TAB2
XTABS TAB3
NL1 ONLRET|CR1
NL2 NL1

If previous TIOCLSET or TIOCLBIS ioctl calls have not selected LITOUT or PASS8 mode,
and if RAW mode is not selected, then the ISTRIP flag is set in the c_iflag field of the ter-
mios structure, and the EVENP and ODDP flags control the parity of characters sent to the
terminal and accepted from the terminal.

Parity is not to be generated on output or checked on input. The character size is set to
CS8 and the flag is cleared in the c_cflag field of the termios structure.

Even parity characters are to be generated on output and accepted on input. The flag is
set in the c_iflag field of the termios structure, the character size is set to CS7 and the flag
is set in the c_cflag field of the termios structure.

Odd parity characters are to be generated on output and accepted on input. The flag is
set in the c_iflag field, the character size is set to CS7 and the flags are set in the c_cflag
field of the termios structure.

Even parity characters are to be generated on output and characters of either parity are to
be accepted on input. The flag is cleared in the c_iflag field, the character size is set to
CS7 and the flag is set in the c_cflag field of the termios structure.

The RAW flag disables all output processing (the OPOST flag in the c_oflag field, and the
XCASE flag in the c_lflag field, are cleared in the termios structure) and input processing
(all flags in the c_iflag field other than the IXOFF and IXANY flags are cleared in the ter-
mios structure). 8 bits of data, with no parity bit, are accepted on input and generated on
output; the character size is set to CS8 and the PARENB and PARODD flags are cleared in
the c_cflag field of the termios structure. The signal-generating and line-editing control
characters are disabled by clearing the ISIG and ICANON flags in the c_lflag field of the
termios structure.

The CRMOD flag turns input RETURN characters into NEWLINE characters, and output
and echoed NEWLINE characters to be output as a RETURN followed by a LINEFEED. The
ICRNL flag in the c_iflag field, and the OPOST and ONLCR flags in the c_oflag field, are
set in the termios structure.

7-322 modified 13 Mar 1994

SunOS 5.4 Special Files ttcompat (7)

The LCASE flag maps upper-case letters in the ASCII character set to their lower-case
equivalents on input (the IUCLC flag is set in the c_iflag field), and maps lower-case
letters in the ASCII character set to their upper-case equivalents on output (the OLCUC
flag is set in the c_oflag field). Escape sequences are accepted on input, and generated on
output, to handle certain ASCII characters not supported by older terminals (the XCASE
flag is set in the c_lflag field).

Other flags are directly mapped to flags in the termios structure:

sg_flags flags in termios structure

CBREAK complement of ICANON in c_lflag field
ECHO ECHO in c_lflag field
TANDEM IXOFF in c_iflag field

Another structure associated with each terminal specifies characters that are special in
both the old Version 7 and the newer 4BSD terminal interfaces. The following structure is
defined by <sys/ttold.h>:

struct tchars {
char t_intrc; /∗ interrupt ∗/
char t_quitc; /∗ quit ∗/
char t_startc; /∗ start output ∗/
char t_stopc; /∗ stop output ∗/
char t_eofc; /∗ end-of-file ∗/
char t_brkc; /∗ input delimiter (like nl) ∗/

};

XENIX defines the tchar structure as tc. The characters are mapped to members of the
c_cc field of the termios structure as follows:

tchars c_cc index

t_intrc VINTR
t_quitc VQUIT
t_startc VSTART
t_stopc VSTOP
t_eofc VEOF
t_brkc VEOL

modified 13 Mar 1994 7-323

ttcompat (7) Special Files SunOS 5.4

Also associated with each terminal is a local flag word, specifying flags supported by the
new 4BSD terminal interface. Most of these flags are directly mapped to flags in the ter-
mios structure:

local flags flags in termios structure

LCRTBS not supported
LPRTERA ECHOPRT in the c_lflag field
LCRTERA ECHOE in the c_lflag field
LTILDE not supported
LTOSTOP TOSTOP in the c_lflag field
LFLUSHO FLUSHO in the c_lflag field
LNOHANG CLOCAL in the c_cflag field
LCRTKIL ECHOKE in the c_lflag field
LCTLECH CTLECH in the c_lflag field
LPENDIN PENDIN in the c_lflag field
LDECCTQ complement of IXANY in the c_iflag field
LNOFLSH NOFLSH in the c_lflag field

Another structure associated with each terminal is the ltchars structure which defines
control characters for the new 4BSD terminal interface. Its structure is:

struct ltchars {
char t_suspc; /∗ stop process signal ∗/
char t_dsuspc; /∗ delayed stop process signal ∗/
char t_rprntc; /∗ reprint line ∗/
char t_flushc; /∗ flush output (toggles) ∗/
char t_werasc; /∗ word erase ∗/
char t_lnextc; /∗ literal next character ∗/

};

The characters are mapped to members of the c_cc field of the termios structure as fol-
lows:

ltchars c_cc index

t_suspc VSUSP
t_dsuspc VDSUSP
t_rprntc VREPRINT
t_flushc VDISCARD
t_werasc VWERASE
t_lnextc VLNEXT

IOCTLS ttcompat responds to the following ioctl calls. All others are passed to the module
below.

TIOCGETP The argument is a pointer to an sgttyb structure. The current terminal state
is fetched; the appropriate characters in the terminal state are stored in that
structure, as are the input and output speeds. The values of the flags in the
sg_flags field are derived from the flags in the terminal state and stored in
the structure.

7-324 modified 13 Mar 1994

SunOS 5.4 Special Files ttcompat (7)

TIOCEXCL Set ‘‘exclusive-use’’ mode; no further opens are permitted until the file has
been closed.

TIOCNXCL Turn off ‘‘exclusive-use’’ mode.

TIOCSETP The argument is a pointer to an sgttyb structure. The appropriate charac-
ters and input and output speeds in the terminal state are set from the
values in that structure, and the flags in the terminal state are set to match
the values of the flags in the sg_flags field of that structure. The state is
changed with a TCSETSF ioctl so that the interface delays until output is
quiescent, then throws away any unread characters, before changing the
modes.

TIOCSETN The argument is a pointer to an sgttyb structure. The terminal state is
changed as TIOCSETP would change it, but a TCSETS ioctl is used, so that
the interface neither delays nor discards input.

TIOCHPCL The argument is ignored. The HUPCL flag is set in the c_cflag word of the
terminal state.

TIOCFLUSH The argument is a pointer to an int variable. If its value is zero, all charac-
ters waiting in input or output queues are flushed. Otherwise, the value of
the int is treated as the logical OR of the FREAD and FWRITE flags defined
by <sys/file.h>. If the FREAD bit is set, all characters waiting in input
queues are flushed, and if the FWRITE bit is set, all characters waiting in
output queues are flushed.

TIOCBRK The argument is ignored. The break bit is set for the device.

TIOCCBRK The argument is ignored. The break bit is cleared for the device.

TIOCSDTR The argument is ignored. The Data Terminal Ready bit is set for the device.

TIOCCDTR The argument is ignored. The Data Terminal Ready bit is cleared for the
device.

TIOCSTOP The argument is ignored. Output is stopped as if the STOP character had
been typed.

TIOCSTART The argument is ignored. Output is restarted as if the START character had
been typed.

TIOCGETC The argument is a pointer to a tchars structure. The current terminal state
is fetched, and the appropriate characters in the terminal state are stored in
that structure.

TIOCSETC The argument is a pointer to a tchars structure. The values of the appropri-
ate characters in the terminal state are set from the characters in that struc-
ture.

TIOCLGET The argument is a pointer to an int. The current terminal state is fetched,
and the values of the local flags are derived from the flags in the terminal
state and stored in the int pointed to by the argument.

modified 13 Mar 1994 7-325

ttcompat (7) Special Files SunOS 5.4

TIOCLBIS The argument is a pointer to an int whose value is a mask containing flags
to be set in the local flags word. The current terminal state is fetched, and
the values of the local flags are derived from the flags in the terminal state;
the specified flags are set, and the flags in the terminal state are set to match
the new value of the local flags word.

TIOCLBIC The argument is a pointer to an int whose value is a mask containing flags
to be cleared in the local flags word. The current terminal state is fetched,
and the values of the local flags are derived from the flags in the terminal
state; the specified flags are cleared, and the flags in the terminal state are
set to match the new value of the local flags word.

TIOCLSET The argument is a pointer to an int containing a new set of local flags. The
flags in the terminal state are set to match the new value of the local flags
word.

TIOCGLTC The argument is a pointer to an ltchars structure. The values of the
appropriate characters in the terminal state are stored in that structure.

TIOCSLTC The argument is a pointer to an ltchars structure. The values of the
appropriate characters in the terminal state are set from the characters in
that structure.

FIORDCHK Returns the number of immediately readable characters. The argument is
ignored.

FIONREAD Returns the number of immediately readable characters in the int pointed
to by the argument.

LDSMAP Calls the function emsetmap (tp, mp) if the function is configured in the ker-
nel.

LDGMAP Calls the function emgetmap (tp, mp) if the function is configured in the ker-
nel.

LDNMAP Calls the function emunmap (tp, mp) if the function is configured in the ker-
nel.

The following ioctls are returned as successful for the sake of compatibility. However,
nothing significant is done (that is, the state of the terminal is not changed in any way).

TIOCSETD LDOPEN
TIOCGETD LDCLOSE
DIOCSETP LDCHG
DIOCSETP LDSETT
DIIOGETP LDGETT

SEE ALSO ioctl(2), termios(3), ldterm(7), termio(7)

NOTES TIOCBRK and TIOCCBRK should be handled by the driver. FIONREAD and FIORDCHK
are handled in the stream head.

7-326 modified 13 Mar 1994

SunOS 5.4 Special Files tty (7)

NAME tty − controlling terminal interface

DESCRIPTION The file /dev/tty is, in each process, a synonym for the control terminal associated with
the process group of that process, if any. It is useful for programs or shell sequences that
wish to be sure of writing messages on the terminal no matter how output has been
redirected. It can also be used for programs that demand the name of a file for output,
when typed output is desired and it is tiresome to find out what terminal is currently in
use.

FILES /dev/tty
/dev/tty∗

SEE ALSO ports(1M), console(7)

modified 3 Jul 1990 7-327

udp (7) Special Files SunOS 5.4

NAME udp, UDP − Internet User Datagram Protocol

SYNOPSIS #include <sys/socket.h>

#include <netinet/in.h>

s = socket(AF_INET, SOCK_DGRAM, 0);

t = t_open("/dev/udp", O_RDWR);

DESCRIPTION UDP is a simple datagram protocol which is layered directly above the Internet Protocol
(IP). Programs may access UDP using the socket interface, where it supports the
SOCK_DGRAM socket type, or using the Transport Level Interface (TLI), where it sup-
ports the connectionless (T_CLTS) service type.

Within the socket interface, UDP is normally used with the sendto(), sendmsg(),
recvfrom(), and recvmsg() calls (see send(3N) and recv(3N)). If the connect(3N) call is
used to fix the destination for future packets, then the recv(3N) or read(2) and send(3N)
or write(2) calls may be used.

UDP address formats are identical to those used by the Transmission Control Protocol
(TCP). Like TCP, UDP uses a port number along with an IP address to identify the end-
point of communication. The UDP port number space is separate from the TCP port
number space (that is, a UDP port may not be “connected” to a TCP port). The bind(3N)
call can be used to set the local address and port number of a UDP socket. The local IP
address may be left unspecified in the bind() call by using the special value
INADDR_ANY. If the bind() call is not done, a local IP address and port number will be
assigned to the endpoint when the first packet is sent. Broadcast packets may be sent
(assuming the underlying network supports this) by using a reserved “broadcast
address”; This address is network interface dependent. Broadcasts may only be sent by
the privileged user.

Options at the IP level may be used with UDP; see ip(7).

There are a variety of ways that a UDP packet can be lost or corrupted, including a failure
of the underlying communication mechanism. UDP implements a checksum over the
data portion of the packet. If the checksum of a received packet is in error, the packet
will be dropped with no indication given to the user. A queue of received packets is pro-
vided for each UDP socket. This queue has a limited capacity. Arriving datagrams which
will not fit within its high-water capacity are silently discarded.

UDP processes Internet Control Message Protocol (ICMP) error messages received in
response to UDP packets it has sent. See icmp(7). ICMP “source quench” messages are
ignored. ICMP “destination unreachable,” “time exceeded” and “parameter problem”
messages disconnect the socket from its peer so that subsequent attempts to send packets
using that socket will return an error. UDP will not guarantee that packets are delivered
in the order they were sent. As well, duplicate packets may be generated in the commun-
ication process.

7-328 modified 3 Jul 1990

SunOS 5.4 Special Files udp (7)

SEE ALSO read(2), write(2), bind(3N), connect(3N), recv(3N), send(3N), icmp(7), inet(7), ip(7),
tcp(7)

Postel, Jon, User Datagram Protocol , RFC 768, Network Information Center, SRI Interna-
tional, Menlo Park, Calif., August 1980

DIAGNOSTICS A socket operation may fail if:

EISCONN A connect() operation was attempted on a socket on which a con-
nect() operation had already been performed, and the socket
could not be successfully disconnected before making the new
connection.

EISCONN A sendto() or sendmsg() operation specifying an address to
which the message should be sent was attempted on a socket on
which a connect() operation had already been performed.

ENOTCONN A send() or write() operation, or a sendto() or sendmsg() opera-
tion not specifying an address to which the message should be
sent, was attempted on a socket on which a connect() operation
had not already been performed.

EADDRINUSE A bind() operation was attempted on a socket with a network
address/port pair that has already been bound to another socket.

EADDRNOTAVAIL A bind() operation was attempted on a socket with a network
address for which no network interface exists.

EINVAL A sendmsg() operation with a non-NULL msg_accrights was
attempted.

EACCES A bind() operation was attempted with a “reserved” port number
and the effective user ID of the process was not the privileged user.

ENOBUFS The system ran out of memory for internal data structures.

modified 3 Jul 1990 7-329

visual_io (7) Special Files SunOS 5.4

NAME visual_io − Solaris VISUAL I/O control operations

SYNOPSIS #include <sys/visual_io.h>

DESCRIPTION The Solaris VISUAL environment defines a small set of ioctls for controlling graphics and
imaging devices.

One ioctl, VIS_GETIDENTIFIER, is mandatory, and must be implemented in device
drivers for graphics devices using the Solaris VISUAL environment. The
VIS_GETIDENTIFIER, ioctl is defined to return a device identifier from the device driver.
This identifier must be a uniquely-defined string.

Another set of ioctls supports mouse tracking via hardware cursor operations. These are
optional, but if a graphics device has hardware cursor support and implements these
ioctls the mouse tracking performance will be improved.

IOCTLS VIS_GETIDENTIFIER
This ioctl returns an identifier string to uniquely identify a device used
in the Solaris VISUAL environment. This is a mandatory ioctl and must
return a unique string. VIS_GETIDENTIFIER takes a vis_identifier
structure as its parameter. This structure has the form:

#define VIS_MAXNAMELEN 128

struct vis_identifier {
char name[VIS_MAXNAMELEN];

};

We suggest the name be formed as <companysymbol><devicetype> . For
example, the cgsix driver returns SUNWcg6 .

VIS_GETCURSOR

VIS_SETCURSOR
These ioctls fetch and set various cursor attributes, using the vis_cursor
structure.

struct vis_cursorpos {
short x; /∗ cursor x coordinate ∗/
short y; /∗ cursor y coordinate ∗/

};

struct vis_cursorcmap {
int version; /∗ version ∗/
int reserved;
unsigned char ∗red; /∗ red color map elements ∗/
unsigned char ∗green; /∗ green color map elements ∗/
unsigned char ∗blue; /∗ blue color map elements ∗/

};

7-330 modified 17 Aug 1993

SunOS 5.4 Special Files visual_io (7)

#define VIS_CURSOR_SETCURSOR 0x01 /∗ set cursor ∗/
#define VIS_CURSOR_SETPOSITION 0x02 /∗ set cursor position ∗/
#define VIS_CURSOR_SETHOTSPOT 0x04 /∗ set cursor hot spot ∗/
#define VIS_CURSOR_SETCOLORMAP 0x08 /∗ set cursor colormap ∗/
#define VIS_CURSOR_SETSHAPE 0x10 /∗ set cursor shape ∗/

#define VIS_CURSOR_SETALL (VIS_CURSOR_SETCURSOR | \
VIS_CURSOR_SETPOSITION | \
VIS_CURSOR_SETHOTSPOT | \
VIS_CURSOR_SETCOLORMAP | \
VIS_CURSOR_SETSHAPE)

struct vis_cursor {
short set; /∗ what to set ∗/
short enable; /∗ cursor on/off ∗/
struct vis_cursorpos pos; /∗ cursor position ∗/
struct vis_cursorpos hot; /∗ cursor hot spot ∗/
struct vis_cursorcmap cmap; /∗ color map info ∗/
struct vis_cursorpos size; /∗ cursor bit map size ∗/
char ∗image; /∗ cursor image bits ∗/
char ∗mask; /∗ cursor mask bits ∗/

};

The vis_cursorcmap structure should contain pointers to two elements,
specifying the red, green, and blue values for foreground and back-
ground.

VIS_MOVECURSOR

VIS_SETCURSORPOS
These ioctls fetch and move the current cursor position, using the
vis_cursorpos structure.

modified 17 Aug 1993 7-331

volfs (7) Special Files SunOS 5.4

NAME volfs − Volume Management file system

DESCRIPTION volfs is the Volume Management file system rooted at root_dir. The default file system
name is /vol. The Volume Management daemon, vold(1M), creates and maintains the
/vol file system.

Media can be accessed in a logical manner (no association with a particular piece of
hardware), or a physical manner (associated with a particular piece of hardware).

Logical names for media are referred to through /vol/dsk and /vol/rdsk. /vol/dsk pro-
vides block access to random access devices. /vol/rdsk provides character access to ran-
dom access devices.

The /vol/rdsk and /vol/dsk directories are mirrors of one another. Any change to one is
reflected in the other immediately. The dev_t for a volume will be the same for both the
block and character device.

The default permissions for /vol are mode=0555, owner=root, group=sys. The default
permissions for /vol/dsk and /vol/rdsk are mode=01777, owner=root, group=sys.

Physical references to media are obtained through /vol/dev. This hierarchy reflects the
structure of the /dev name space. The default permissions for all directories in the
/vol/dev hierarchy are mode=0555, owner=root, group=sys.

mkdir(2), rmdir(2), unlink(2) (rm), symlink(2) (ln −s), link(2) (ln), and rename(2) (mv)
are supported, subject to normal file and directory permissions.

The following system calls are not supported in the /vol filesystem: creat(2), only when
creating a file, and mknod(2).

If the media does not contain file systems that can be automatically mounted by
rmmount(1M), users can gain access to the media through the following /vol locations.

Location State of Media

/vol/dev/diskette0/unnamed_floppy formatted unnamed floppy-block device access

/vol/dev/rdiskette0/unnamed_floppy formatted unnamed floppy-raw device access

/vol/dev/diskette0/unlabeled unlabeled floppy-block device access

/vol/dev/rdiskette0/unlabeled unlabeled floppy-raw device access

/vol/dev/dsk/c0t6/unnamed_cdrom CD-ROM-block device access

/vol/dev/rdsk/c0t6/unnamed_cdrom CD-ROM-raw device access

For more information on the location of CD-ROM and floppy media, see Peripherals
Administration or rmmount(1M).

Partitions Some media supports the concept of a partition. If the label identifies partitions on the
media, the name of the media will become a directory with partitions under it. Only valid
partitions are represented. Partitions cannot be moved out of a directory.

7-332 modified 23 Feb 1993

SunOS 5.4 Special Files volfs (7)

Example: disk volume ’foo’ has 3 valid partitions: 0, 2, 5.
/vol/dsk/foo/s0, /vol/dsk/foo/s2, /vol/dsk/foo/s5,
/vol/rdsk/foo/s0, /vol/rdsk/foo/s2, /vol/rdsk/foo/s5

If a volume is relabeled to reflect different partitions, the name space changes to reflect
the new partition layout.

A format program can check to see if there are others with the volume open and not
allow the format to occur if it is. Volume Management, however, does not explicitly
prevent the rewriting of a label while others have the volume open. If a partition of a
volume is open, and the volume is relabeled to remove that partition, it will appear
exactly as if the volume were missing. A notify event will be generated and the user may
cancel the operation with volcancel(1), if desired.

SEE ALSO volcancel(1), volcheck(1), volmissing(1) rmmount(1M), vold(1M), rmmount.conf(4),
vold.conf(4),

File System Administration
Peripherals Administration

modified 23 Feb 1993 7-333

vuidmice (7) Special Files SunOS 5.4

NAME vuidmice, vuidm3p, vuidm4p, vuidm5p, vuid2ps2, vuid3ps2 − converts mouse protocol
to Firm Events

SYNOPSIS #include <sys/stream.h>
#include <sys/vuid_event.h>

int ioctl(fd, I_PUSH, vuidm3p);

int ioctl(fd, I_PUSH, vuidm4p);

int ioctl(fd, I_PUSH, vuidm5p);

int ioctl(fd, I_PUSH, vuid2ps2);

int ioctl(fd, I_PUSH, vuid3ps2);

AVAILABILITY x86

DESCRIPTION The STREAMS modules vuidm3p, vuidm4p, vuidm5p, vuid2ps2, and vuid3ps2 convert
mouse protocols to Firm events. The Firm event structure is described in
<sys/vuid_event.h>. Pushing a STREAMS module does not automatically enable mouse
protocol conversion to Firm events. The STREAMS module state is initially set to raw or
VUID_NATIVE mode which performs no message processing. The user will need to
change the state to VUID_FIRM_EVENT mode in order to initiate mouse protocol conver-
sion to Firm events. This can be accomplished by the following code:

int format;

format = VUID_FIRM_EVENT;
ioctl(fd, VUIDSFORMAT, &format);

The user can also query the state of the STREAMS module by using the VUIDGFORMAT
option.

int format;

int fd; /∗ file descriptor ∗/

ioctl(fd, VUIDGFORMAT, &format);

if (format == VUID_NATIVE);
/∗ The state of the module is in raw mode.
∗ Message processing is not enabled.
∗/

if (format == VUID_FIRM_EVENT);
/∗ Message processing is enabled.
∗ Mouse protocol conversion to Firm events
∗ are performed.

The remainder of this section describes the processing of STREAMS messages on the read-
and write-side.

7-334 modified 17 Dec 1993

SunOS 5.4 Special Files vuidmice (7)

Read Side Behavior M_DATA The messages coming in are queued and converted to Firm events.

M_FLUSH The read queue of the module is flushed of all its data messages and all
data in the record being accumulated are also flushed. The message is
passed upstream.

Write Side Behavior M_IOCTL messages sent downstream as a result of an ioctl(2) system call. There
are two valid ioctl options processed by the vuidmice modules
VUIDGFORMAT and VUIDSFORMAT.

VUIDGFORMAT This option returns the current state of the
STREAMS module. The state of the vuidmice
STREAMS module may either be VUID_NATIVE
(no message processing) or VUID_FIRM_EVENT
(convert to Firm events).

VUIDSFORMAT This option sets the state of the STREAMS module
to VUID_FIRM_EVENT. If the state of the
STREAMS module is already in
VUID_FIRM_EVENT then this option is non-
operational.

It is not possible to set the state back to
VUID_NATIVE once the state becomes
VUID_FIRM_EVENT. To disable message process-
ing, pop the STREAMS module out by calling
ioctl(fd, 1I_POP, vuid∗).

M_FLUSH The write queue of the module is flushed of all its data messages and the
message is passed downstream.

Mouse
Configurations

Module Protocol Type Device

vuidm3p 3-Byte Protocol
Microsoft 2 Button Serial Mouse /dev/tty∗

vuidm4p 4-Byte Protocol
Logitech 3 Button Mouseman /dev/tty∗

vuidm5p 5-Byte Protocol
Logitech 3 Button Bus Mouse /dev/logi
Microsoft Bus Mouse /dev/msm

vuid2ps2 PS/2 Protocol
2 Button PS/2 Compatible Mouse /dev/kdmouse

vuid3ps2 PS/2 Protocol
3 Button PS/2 Compatible Mouse /dev/kdmouse

SEE ALSO STREAMS Programmer’s Guide

modified 17 Dec 1993 7-335

wscons (7) Special Files SunOS 5.4

NAME wscons − workstation console

SYNOPSIS #include <sys/strredir.h>

ioctl(fd, SRIOCSREDIR, target);
ioctl(fd, SRIOCISREDIR, target);

DESCRIPTION The “workstation console” is a device consisting of the combination of the workstation
keyboard and frame buffer, acting in concert to emulate an ASCII terminal. It includes a
redirection facility that allows I/O issued to the workstation console to be diverted to
some other STREAMS device, so that, for example, window systems can arrange to
redirect output that would otherwise appear directly on the frame buffer, corrupting its
appearance.

Redirection The redirection facility maintains a list of devices that have been named as redirection
targets, through the SRIOCSREDIR ioctl described below. All entries but the most recent
are inactive; when the currently active entry is closed, the most recent remaining entry
becomes active. The active entry acts as a proxy for the device being redirected; it han-
dles all read(2), write(2), ioctl(2), and poll(2) calls issued against the redirectee.

The following two ioctls control the redirection facility. In both cases, fd is a descriptor
for the device being redirected (that is, the workstation console) and target is a descriptor
for a STREAMS device.

SRIOCSREDIR Make target be the source and destination of I/O ostensibly directed to
the device denoted by fd.

SRIOCISREDIR Returns 1 if target names the device currently acting as proxy for the
device denoted by fd, and 0 if it is not.

SPARC: ANSI
STANDARD
TERMINAL

EMULATION

On SPARC systems, the PROM monitor emulates an ANSI X3.64 terminal.

Note: the VT100 also follows the ANSI X3.64 standard but both the Sun and the VT100
have nonstandard extensions to the ANSI X3.64 standard. The Sun terminal emulator and
the VT100 are not compatible in any true sense.

The Sun console displays 34 lines of 80 ASCII characters per line, with scrolling, (x, y) cur-
sor addressability, and a number of other control functions.

While the display size is usually 34 by 80, there are instances where it may be a different
size.

· If the display device is not large enough to display 34 lines of text.

· If either screen-#rows or screen-#columns is set by the user to a value other than the
default of 34 or 80 respectively. screen-#rows and screen-#columns are fields stored
in NVRAM/EEPROM, see eeprom(1M).

7-336 modified 11 Nov 1993

SunOS 5.4 Special Files wscons (7)

The Sun console displays a cursor which marks the current line and character position on
the screen. ASCII characters between 0x20 (space) and 0x7E (tilde) inclusive are printing
characters — when one is written to the Sun console (and is not part of an escape
sequence), it is displayed at the current cursor position and the cursor moves one posi-
tion to the right on the current line.

Later PROM revisions have the full 8-bit ISO Latin-1 (ISO 8859-1) character set, not just
ASCII. Earlier PROM revisions display characters in the range 0xA0 − 0xFE as spaces.

If the cursor is already at the right edge of the screen, it moves to the first character posi-
tion on the next line. If the cursor is already at the right edge of the screen on the bottom
line, the Line-feed function is performed (see CTRL-J below), which scrolls the screen up
by one or more lines or wraps around, before moving the cursor to the first character
position on the next line.

SPARC: Control
Sequence Syntax

The Sun console defines a number of control sequences which may occur in its input.
When such a sequence is written to the Sun console, it is not displayed on the screen, but
effects some control function as described below, for example, moves the cursor or sets a
display mode.

Some of the control sequences consist of a single character. The notation
CTRL-X

for some character X , represents a control character.

Other ANSI control sequences are of the form
ESC [paramschar

Spaces are included only for readability; these characters must occur in the given
sequence without the intervening spaces.

ESC represents the ASCII escape character (ESC, CTRL-[, 0x1B).

[The next character is a left square bracket ‘[’ (0x5B).

params are a sequence of zero or more decimal numbers made up of digits between 0
and 9, separated by semicolons.

char represents a function character, which is different for each control sequence.

Some examples of syntactically valid escape sequences are (again, ESC represent the sin-
gle ASCII character ‘Escape’):

ESC[m select graphic rendition with default parameter
ESC[7m select graphic rendition with reverse image
ESC[33;54H set cursor position
ESC[123;456;0;;3;B move cursor down

Syntactically valid ANSI escape sequences which are not currently interpreted by the Sun
console are ignored. Control characters which are not currently interpreted by the Sun
console are also ignored.

Each control function requires a specified number of parameters, as noted below. If
fewer parameters are supplied, the remaining parameters default to 1, except as noted in
the descriptions below.

modified 11 Nov 1993 7-337

wscons (7) Special Files SunOS 5.4

If more than the required number of parameters is supplied, only the last n are used,
where n is the number required by that particular command character. Also, parameters
which are omitted or set to zero are reset to the default value of 1 (except as noted
below).

Consider, for example, the command character M which requires one parameter. ESC[;M
and ESC[0M and ESC[M and ESC[23;15;32;1M are all equivalent to ESC[1M and provide a
parameter value of 1. Note: ESC[;5M (interpreted as ‘ESC[5M’) is not equivalent to
ESC[5;M (interpreted as ‘ESC[5;1M’) which is ultimately interpreted as ‘ESC[1M’).

In the syntax descriptions below, parameters are represented as ‘#’ or ‘#1;#2’.

SPARC: ANSI
Control Functions

The following paragraphs specify the ANSI control functions implemented by the Sun
console. Each description gives:

· the control sequence syntax

· the hex equivalent of control characters where applicable

· the control function name and ANSI or Sun abbreviation (if any).

· description of parameters required, if any

· description of the control function

· for functions which set a mode, the initial setting of the mode. The initial set-
tings can be restored with the SUNRESET escape sequence.

SPARC: Control
Character Functions

CTRL-G (0x7) Bell (BEL)
The Sun Workstation Model 100 and 100U is not equipped with an audible bell.
It ‘rings the bell’ by flashing the entire screen. The window system flashes the
window. The screen will also be flashed on current models if the Sun keyboard
is not the console input device.

CTRL-H (0x8) Backspace (BS)
The cursor moves one position to the left on the current line. If it is already at the
left edge of the screen, nothing happens.

CTRL-I (0x9) Tab (TAB)
The cursor moves right on the current line to the next tab stop. The tab stops are
fixed at every multiple of 8 columns. If the cursor is already at the right edge of
the screen, nothing happens; otherwise the cursor moves right a minimum of one
and a maximum of eight character positions.

CTRL-J (0xA) Line-feed (LF)
The cursor moves down one line, remaining at the same character position on the
line. If the cursor is already at the bottom line, the screen either scrolls up or
‘‘wraps around’’ depending on the setting of an internal variable S (initially 1)
which can be changed by the ESC[r control sequence. If S is greater than zero,
the entire screen (including the cursor) is scrolled up by S lines before executing
the line-feed. The top S lines scroll off the screen and are lost.
S new blank lines scroll onto the bottom of the screen. After scrolling, the line-
feed is executed by moving the cursor down one line.

7-338 modified 11 Nov 1993

SunOS 5.4 Special Files wscons (7)

If S is zero, ‘wrap-around’ mode is entered. ‘ESC [1 r’ exits back to scroll mode.
If a line-feed occurs on the bottom line in wrap mode, the cursor goes to the same
character position in the top line of the screen. When any line-feed occurs, the
line that the cursor moves to is cleared. This means that no scrolling occurs.
Wrap-around mode is not implemented in the window system.

The screen scrolls as fast as possible depending on how much data is backed up
waiting to be printed. Whenever a scroll must take place and the console is in
normal scroll mode (‘ESC [1 r’), it scans the rest of the data awaiting printing to
see how many line-feeds occur in it. This scan stops when any control character
from the set {VT, FF, SO, SI, DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB, CAN, EM,
SUB, ESC, FS, GS, RS, US} is found. At that point, the screen is scrolled by N lines
(N ≥ 1) and processing continues. The scanned text is still processed normally to
fill in the newly created lines. This results in much faster scrolling with scrolling
as long as no escape codes or other control characters are intermixed with the
text.

See also the discussion of the ‘Set scrolling’ (ESC[r) control function below.

CTRL-K (0xB) Reverse Line-feed
The cursor moves up one line, remaining at the same character position on the
line. If the cursor is already at the top line, nothing happens.

CTRL-L (0xC) Form-feed (FF)
The cursor is positioned to the Home position (upper-left corner) and the entire
screen is cleared.

CTRL-M (0xD) Return (CR)
The cursor moves to the leftmost character position on the current line.

SPARC: Escape
Sequence Functions

CTRL-[(0x1B) Escape (ESC)
This is the escape character. Escape initiates a multi-character control sequence.

ESC[#@ Insert Character (ICH)
Takes one parameter, # (default 1). Inserts # spaces at the current cursor position.
The tail of the current line starting at the current cursor position inclusive is
shifted to the right by # character positions to make room for the spaces. The
rightmost # character positions shift off the line and are lost. The position of the
cursor is unchanged.

ESC[#A Cursor Up (CUU)
Takes one parameter, # (default 1). Moves the cursor up # lines. If the cursor is
fewer than # lines from the top of the screen, moves the cursor to the topmost
line on the screen. The character position of the cursor on the line is unchanged.

ESC[#B Cursor Down (CUD)
Takes one parameter, # (default 1). Moves the cursor down # lines. If the cursor
is fewer than # lines from the bottom of the screen, move the cursor to the last
line on the screen. The character position of the cursor on the line is unchanged.

ESC[#C Cursor Forward (CUF)

modified 11 Nov 1993 7-339

wscons (7) Special Files SunOS 5.4

Takes one parameter, # (default 1). Moves the cursor to the right by # character
positions on the current line. If the cursor is fewer than # positions from the right
edge of the screen, moves the cursor to the rightmost position on the current line.

ESC[#D Cursor Backward (CUB)
Takes one parameter, # (default 1). Moves the cursor to the left by # character
positions on the current line. If the cursor is fewer than # positions from the left
edge of the screen, moves the cursor to the leftmost position on the current line.

ESC[#E Cursor Next Line (CNL)
Takes one parameter, # (default 1). Positions the cursor at the leftmost character
position on the #-th line below the current line. If the current line is less than #
lines from the bottom of the screen, positions the cursor at the leftmost character
position on the bottom line.

ESC[#1;#2f Horizontal And Vertical Position (HVP)
or

ESC[#1;#2H Cursor Position (CUP)
Takes two parameters, #1 and #2 (default 1, 1). Moves the cursor to the #2-th
character position on the #1-th line. Character positions are numbered from 1 at
the left edge of the screen; line positions are numbered from 1 at the top of the
screen. Hence, if both parameters are omitted, the default action moves the cur-
sor to the home position (upper left corner). If only one parameter is supplied,
the cursor moves to column 1 of the specified line.

ESC[J Erase in Display (ED)
Takes no parameters. Erases from the current cursor position inclusive to the
end of the screen. In other words, erases from the current cursor position
inclusive to the end of the current line and all lines below the current line. The
cursor position is unchanged.

ESC[K Erase in Line (EL)
Takes no parameters. Erases from the current cursor position inclusive to the
end of the current line. The cursor position is unchanged.

ESC[#L Insert Line (IL)
Takes one parameter, # (default 1). Makes room for # new lines starting at the
current line by scrolling down by # lines the portion of the screen from the
current line inclusive to the bottom. The # new lines at the cursor are filled with
spaces; the bottom # lines shift off the bottom of the screen and are lost. The
position of the cursor on the screen is unchanged.

ESC[#M Delete Line (DL)
Takes one parameter, # (default 1). Deletes # lines beginning with the current
line. The portion of the screen from the current line inclusive to the bottom is
scrolled upward by # lines. The # new lines scrolling onto the bottom of the
screen are filled with spaces; the # old lines beginning at the cursor line are
deleted. The position of the cursor on the screen is unchanged.

ESC[#P Delete Character (DCH)
Takes one parameter, # (default 1). Deletes # characters starting with the current

7-340 modified 11 Nov 1993

SunOS 5.4 Special Files wscons (7)

cursor position. Shifts to the left by # character positions the tail of the current
line from the current cursor position inclusive to the end of the line. Blanks are
shifted into the rightmost # character positions. The position of the cursor on the
screen is unchanged.

ESC[#m Select Graphic Rendition (SGR)
Takes one parameter, # (default 0). Note: unlike most escape sequences, the
parameter defaults to zero if omitted. Invokes the graphic rendition specified by
the parameter. All following printing characters in the data stream are rendered
according to the parameter until the next occurrence of this escape sequence in
the data stream. Currently only two graphic renditions are defined:

0 Normal rendition.

7 Negative (reverse) image.

Negative image displays characters as white-on-black if the screen mode is
currently black-on white, and vice-versa. Any non-zero value of # is currently
equivalent to 7 and selects the negative image rendition.

ESC[p Black On White (SUNBOW)
Takes no parameters. Sets the screen mode to black-on-white. If the screen
mode is already black-on-white, has no effect. In this mode spaces display as
solid white, other characters as black-on-white. The cursor is a solid black block.
Characters displayed in negative image rendition (see ‘Select Graphic Rendition’
above) is white-on-black in this mode. This is the initial setting of the screen
mode on reset.

ESC[q White On Black (SUNWOB)
Takes no parameters. Sets the screen mode to white-on-black. If the screen
mode is already white-on-black, has no effect. In this mode spaces display as
solid black, other characters as white-on-black. The cursor is a solid white block.
Characters displayed in negative image rendition (see ‘Select Graphic Rendition’
above) is black-on-white in this mode. The initial setting of the screen mode on
reset is the alternative mode, black on white.

ESC[#r Set scrolling (SUNSCRL)
Takes one parameter, # (default 0). Sets to # an internal register which deter-
mines how many lines the screen scrolls up when a line-feed function is per-
formed with the cursor on the bottom line. A parameter of 2 or 3 introduces a
small amount of ‘‘jump’’ when a scroll occurs. A parameter of 34 clears the
screen rather than scrolling. The initial setting is 1 on reset.

A parameter of zero initiates ‘‘wrap mode’’ instead of scrolling. In wrap mode, if
a linefeed occurs on the bottom line, the cursor goes to the same character posi-
tion in the top line of the screen. When any linefeed occurs, the line that the cur-
sor moves to is cleared. This means that no scrolling ever occurs. ‘ESC [1 r’ exits
back to scroll mode.

For more information, see the description of the Line-feed (CTRL-J) control func-
tion above.

modified 11 Nov 1993 7-341

wscons (7) Special Files SunOS 5.4

ESC[s Reset terminal emulator (SUNRESET)
Takes no parameters. Resets all modes to default, restores current font from
PROM. Screen and cursor position are

RETURN VALUES When there are no errors, the redirection ioctls have return values as described above.
Otherwise, they return −1 and set errno to indicate the error.

If the target stream is in an error state, errno is set accordingly.

ERRORS EBADF target does not denote an open file.

ENOSTR target does not denote a STREAMS device.

EINVAL (x86 only) fd does not denote /dev/console.

x86 FILES /dev/systty (x86 only)
/dev/syscon (x86 only)
/dev/console (x86 only) the device that must be opened for the SRIOCSREDIR and

SRIOCISREDIR ioctls
/dev/wscons the workstation console, accessed by way of the redirection facility

SEE ALSO console(7)

WARNINGS The redirection ioctls block while there is I/O outstanding on the device instance being
redirected. Thus, attempting to redirect the workstation console while there is a read
outstanding on it will hang until the read completes.

7-342 modified 11 Nov 1993

SunOS 5.4 Special Files xd (7)

NAME xd, xdc − disk driver for Xylogics 7053 SMD Disk Controller

SYNOPSIS xdc@6d,ee80/xd@slave,0:partition
xdc@6d,ee90/xd@slave,0:partition
xdc@6d,eea0/xd@slave,0:partition
xdc@6d,eeb0/xd@slave,0:partition

AVAILABILITY SPARC

Only available on Sun-4/200, Sun-4/300, and Sun-4/400 series systems.

DESCRIPTION The driver for Xylogics 7053 devices consists of several components: a controller driver
(xdc) and a slave device driver module (xd). Each driver module has an associated
configuration file, which lives in the same directory as the driver module. See
driver.conf(4) and vme(4) for the interpretation of the contents of these files.

The block files access the disk using the system’s normal buffering mechanism and may
be read and written without regard to physical disk records. There is also a raw interface
that provides for direct transmission between the disk and the user’s read or write buffer.
A single read or write call usually results in only one I/O operation; therefore raw I/O is
considerably more efficient when many words are transmitted. The physical names of
the raw files conventionally have ‘,raw’ appended to them. The logical names for the raw
files live in the /dev/rdsk directory, as usual.

When using raw I/O, transfer counts should be multiples of 512 bytes (the size of a disk
sector). Likewise, when using lseek(2) to specify block offsets from which to perform
raw I/O, the logical offset should also be a multiple of 512 bytes.

Partition 0 is normally used for the root file system on a disk, partition 1 as a paging area
(for example, swap), and partition 2 for backing up the entire disk. Partition 2 normally
maps the entire disk and may also be used as the mount point for secondary disks in the
system. The rest of the disk is normally partition 6. For the primary disk, the user file
system is located here.

DISK SUPPORT This driver handles all SMD drives by reading a label from sector 0 of the drive which
describes the disk geometry and partitioning.

FILES /kernel/drv/xdc driver module
/kernel/drv/xd driver module
/kernel/drv/xdc.conf driver configuration file
/kernel/drv/xd.conf driver configuration file
/dev/dsk/cXtYd0sZ block devices, controller X , unit Y, slice Z
/dev/rdsk/cXtYd0sZ raw devices, controller X , unit Y, slice Z

SEE ALSO lseek(2), read(2), write(2), driver.conf(4), vme(4), dkio(7), hdio(7)

modified 19 Feb 1993 7-343

xd (7) Special Files SunOS 5.4

NOTES In raw I/O read(2) and write(2) truncate file offsets to 512-byte block boundaries, and
write(2) scribbles on the tail of incomplete blocks. Thus, in programs that are likely to
access raw devices, read(2), write(2), and lseek(2) should always deal in 512-byte multi-
ples.

7-344 modified 19 Feb 1993

SunOS 5.4 Special Files xt (7)

NAME xt − driver for Xylogics 472 1/2 inch tape controller

SYNOPSIS xt@2d,ee60:[l,m][b][n]
xt@2d,ee68:[l,m][b][n]

AVAILABILITY Only available on Sun-4/200, Sun-4/300, and Sun-4/400 series systems.

DESCRIPTION The Xylogics 472 tape controller controls Pertec-interface 1/2” tape drives such as the
Fujitsu M2444 and the CDC Keystone III. The xt driver provides a standard tape interface
to the device; see mtio(7) for details.

The xt driver supports the character device interface. The driver can be opened with
either rewind on close or no rewind on close options. The tape format and options are
specified using the device name (see FILES below).

EOT Handling The user will be notified of end of tape (EOT) on write by a 0 byte count returned the first
time this is attempted. This write must be retried by the user. Subsequent writes will be
successful until the tape winds off the reel. Reading past EOT is transparent to the user.

IOCTL See mtio(7) for a list of ioctls available for tape devices. However, not all devices support
all ioctls. The driver returns an ENOTTY error on unsupported ioctls.

1/2” tape devices do not support the tape retension function.

ERRORS EACCES The driver is opened for write access and the tape is write protected.

EBUSY The tape drive is in use by another process. Only one process can use the
tape drive at a time.

EINVAL The requested number of bytes for a read operation is less than the actual
record length on the tape.

EIO During opening, the tape device is not ready because either no tape is in the
drive, or the drive is not on-line. Once open, this error is returned if the
requested I/O transfer could not be completed.

ENOTTY This indicates that the tape device does not support the requested ioctl
function.

ENXIO During opening, the tape device does not exist.

FILES /kernel/drv/xt driver module
/kernel/drv/xt.conf driver configuration file
/dev/rmt/[0−1][l,m][b][n] raw devices

For raw devices l,m specifies the density (low, medium), and b the optional BSD
behavior (see mtio(7)) and n the optional no rewind behavior. For example /dev/rmt/0lbn
specifies unit 0, low density, BSD behavior, and no rewind.

modified 4 Mar 1993 7-345

xt (7) Special Files SunOS 5.4

For 1/2” reel tape devices, the densities are:

l typically 1600 BPI density

m typically 6250 BPI density

SEE ALSO ioctl(2), driver.conf(4), vme(4), mtio(7)

BUGS Record sizes are restricted to an even number of bytes.

The EOT handling for write operation differs from the mtio(7) specification.

7-346 modified 4 Mar 1993

SunOS 5.4 Special Files xy (7)

NAME xy, xyc − disk driver for Xylogics 450 and 451 SMD Disk Controllers

SYNOPSIS xyc@2d,ee40/xy@slave,0:partition
xyc@2d,ee48/xy@slave,0:partition

AVAILABILITY SPARC

Only available on Sun-4/200, Sun-4/300, and Sun-4/400 series systems.

DESCRIPTION The driver for Xylogics 450/451 devices consists of several components: a controller
driver module (xyc) and a slave device driver module (xy). Each driver module has an
associated configuration file, which lives in the same directory as the driver module. See
driver.conf(4) and vme(4) for the interpretation of the contents of these files.

The block files access the disk using the system’s normal buffering mechanism and may
be read and written without regard to physical disk records. There is also a raw interface
that provides for direct transmission between the disk and the user’s read or write buffer.
A single read or write call usually results in only one I/O operation; therefore raw I/O is
considerably more efficient when many words are transmitted. The physical names of
the raw files conventionally have ‘,raw’ appended to them. The logical names for the raw
files live in the /dev/rdsk directory, as usual.

When using raw I/O, transfer counts should be multiples of 512 bytes (the size of a disk
sector). Likewise, when using lseek(2) to specify block offsets from which to perform
raw I/O, the logical offset should also be a multiple of 512 bytes.

Partition 0 is normally used for the root file system on a disk, partition 1 as a paging area
(for example, swap), and partition 2 for backing up the entire disk. Partition 2 normally
maps the entire disk and may also be used as the mount point for secondary disks in the
system. The rest of the disk is normally partition 6. For the primary disk, the user file
system is located here.

Due to word ordering differences between the disk controller and Sun computers, user
buffers that are used for raw I/O must not begin on odd byte boundaries.

DISK SUPPORT This driver handles all SMD drives by reading a label from sector 0 of the drive which
describes the disk geometry and partitioning.

FILES /kernel/drv/xyc driver module
/kernel/drv/xy driver module
/kernel/drv/xyc.conf driver configuration file
/kernel/drv/xy.conf driver configuration file
/dev/dsk/cXtYd0sZ block device, controller X , unit Y, slice Z
/dev/rdsk/cXtYd0sZ raw device, controller X , unit Y, slice Z

SEE ALSO lseek(2), read(2), write(2), driver.conf(4), vme(4), dkio(7), hdio(7)

modified 19 Feb 1993 7-347

xy (7) Special Files SunOS 5.4

NOTES In raw I/O read(2) and write(2) truncate file offsets to 512-byte block boundaries, and
write(2) scribbles on the tail of incomplete blocks. Thus, in programs that are likely to
access raw devices, read(2), write(2), and lseek(2) should always deal in 512-byte multi-
ples.

7-348 modified 19 Feb 1993

SunOS 5.4 Special Files zero (7)

NAME zero − source of zeroes

DESCRIPTION A zero special file is a source of zeroed unnamed memory.

Reads from a zero special file always return a buffer full of zeroes. The file is of infinite
length.

Writes to a zero special file are always successful, but the data written is ignored.

Mapping a zero special file creates a zero-initialized unnamed memory object of a length
equal to the length of the mapping and rounded up to the nearest page size as returned
by sysconf. Multiple processes can share such a zero special file object provided a com-
mon ancestor mapped the object MAP_SHARED.

FILES /dev/zero

SEE ALSO fork(2), mmap(2), sysconf(3C)

modified 3 Jul 1990 7-349

zs (7) Special Files SunOS 5.4

NAME zs − Zilog 8530 SCC serial communications driver

SYNOPSIS #include <fcntl.h>
#include <sys/termios.h>

open("/dev/term/n", mode);
open("/dev/ttyn", mode);
open("/dev/cua/n", mode);

AVAILABILITY SPARC

DESCRIPTION The Zilog 8530 provides two serial input/output channels that are capable of supporting
a variety of communication protocols. A typical system uses two or more of these dev-
ices to implement essential functions, including RS-423 ports (which also support most
RS-232 equipment), and the console keyboard and mouse devices.

The zs module is a loadable STREAMS driver that provides basic support for the 8530
hardware, together with basic asynchronous communication support. The driver sup-
ports those termio(7) device control functions specified by flags in the c_cflag word of the
termios structure and by the IGNBRK, IGNPAR, PARMRK, or INPCK flags in the c_iflag
word of the termios structure. All other termio(7) functions must be performed by
STREAMS modules pushed atop the driver. When a device is opened, the ldterm(7) and
ttcompat(7) STREAMS modules are automatically pushed on top of the stream, providing
the standard termio(7) interface.

The character-special devices /dev/term/a and /dev/term/b are used to access the two
serial ports on the CPU board.

Note: /dev/cua/[a-z], /dev/term/[a-z] and /dev/tty[a-z] are valid name space entries. The
number of entries used in this name space are machine dependent.

The /dev/ttyn device names only exist if the binary compatibility package is installed. The
/dev/ttyn device names are created by the ucblinks command. This command is only
available via the binary compatibility package .

To allow a single tty line to be connected to a modem and used for both incoming and
outgoing calls, a special feature, controlled by the minor device number, is available. By
accessing character-special devices with names of the form /dev/cua/n it is possible to
open a port without the Carrier Detect signal being asserted, either through hardware or
an equivalent software mechanism. These devices are commonly known as dial-out
lines.

Once a /dev/cua/n line is opened, the corresponding tty line cannot be opened until the
/dev/cua/n line is closed; a blocking open will wait until the /dev/cua/n line is closed
(which will drop Data Terminal Ready, after which Carrier Detect will usually drop as
well) and carrier is detected again, and a non-blocking open will return an error. Also, if
the tty line has been opened successfully (usually only when carrier is recognized on the
modem) the corresponding /dev/cua/n line cannot be opened. This allows a modem to be
attached to, for example, /dev/term/n (renamed from /dev/ttyn) and used for dial-in (by
enabling the line for login in /etc/inittab) and also used for dial-out (by tip(1) or

7-350 modified 1 Mar 1993

SunOS 5.4 Special Files zs (7)

uucp(1C)) as /dev/cua/n when no one is logged in on the line.

IOCTLS The standard set of termio ioctl() calls are supported by zs.

If the CRTSCTS flag in the c_cflag field is set, output will be generated only if CTS is high;
if CTS is low, output will be frozen. If the CRTSCTS flag is clear, the state of CTS has no
effect.

Breaks can be generated by the TCSBRK, TIOCSBRK, and TIOCCBRK ioctl() calls.

The state of the DCD, CTS, RTS, and DTR interface signals may be queried through the
use of the TIOCM_CAR, TIOCM_CTS, TIOCM_RTS, and TIOCM_DTR arguments to the
TIOCMGET ioctl command, respectively. Due to hardware limitations, only the RTS and
DTR signals may be set through their respective arguments to the TIOCMSET, TIOCMBIS,
and TIOCMBIC ioctl commands.

The input and output line speeds may be set to any of the speeds supported by termio.
The speeds cannot be set independently; when the output speed is set, the input speed is
set to the same speed.

ERRORS An open() will fail if:

ENXIO The unit being opened does not exist.

EBUSY The dial-out device is being opened and the dial-in device is already open, or
the dial-in device is being opened with a no-delay open and the dial-out dev-
ice is already open.

EBUSY The port is in use by another serial protocol.

EBUSY The unit has been marked as exclusive-use by another process with a
TIOCEXCL ioctl() call.

EINTR The open was interrupted by the delivery of a signal.

FILES /dev/cua/[a-z] dial-out tty lines
/dev/term/[a-z] dial-in tty lines
/dev/tty[a-z] binary compatibility package device names

SEE ALSO cu(1C), tip(1), ucblinks(1B), uucp(1C), ports(1M), ioctl(2), open(2), ldterm(7), termio(7),
ttcompat(7), zsh(7)

Solaris Binary Compatibility Guide

DIAGNOSTICS zsn : silo overflow.
The 8530 character input silo overflowed before it could be serviced.

zsn : ring buffer overflow.
The driver’s character input ring buffer overflowed before it could be serviced.

modified 1 Mar 1993 7-351

zsh (7) Special Files SunOS 5.4

NAME zsh − On-board serial HDLC/SDLC interface

SYNOPSIS #include <fcntl.h>
open(/dev/zshn, mode);
open(/dev/zsh, mode);

AVAILABILITY SPARC

DESCRIPTION The zsh module is a loadable STREAMS driver that implements the sending and receiving
of data packets as HDLC frames over synchronous serial lines. The module is not a stan-
dalone driver, but instead depends upon the zs module for the hardware support
required by all on-board serial devices. When loaded this module acts as an extension to
the zs driver, providing access to an HDLC interface through character-special devices.

The zshn devices provide what is known as a data path which supports the transfer of
data via read(2) and write(2) system calls, as well as ioctl(2) calls. Data path opens are
exclusive in order to protect against injection or diversion of data by another process.

The zsh device provides a separate control path for use by programs that need to
configure or monitor a connection independent of any exclusive access restrictions
imposed by data path opens. Up to three control paths may be active on a particular
serial channel at any one time. Control path accesses are restricted to ioctl(2) calls only;
no data transfer is possible.

When used in synchronous modes, the Z8530 SCC supports several options for clock
sourcing and data encoding. Both the transmit and receive clock sources can be set to be
the external Transmit Clock (TRxC), external Receive Clock (RTxC), the internal Baud
Rate Generator (BRG), or the output of the SCC’s Digital Phase-Lock Loop (DPLL).

The Baud Rate Generator is a programmable divisor that derives a clock frequency from
the PCLK input signal to the SCC. A programmed baud rate is translated into a 16-bit
time constant that is stored in the SCC. When using the BRG as a clock source the driver
may answer a query of its current speed with a value different from the one specified.
This is because baud rates translate into time constants in discrete steps, and reverse
translation shows the change. If an exact baud rate is required that cannot be obtained
with the BRG, an external clock source must be selected.

Use of the DPLL option requires the selection of NRZI data encoding and the setting of a
non-zero value for the baud rate, because the DPLL uses the BRG as its reference clock
source.

A local loopback mode is available, primarily for use by the syncloop(1M) utility for
testing purposes, and should not be confused with SDLC loop mode, which is not sup-
ported on this interface. Also, an auto-echo feature may be selected that causes all
incoming data to be routed to the transmit data line, allowing the port to act as the
remote end of a digital loop. Neither of these options should be selected casually, or left
in use when not needed.

7-352 modified 20 Jan 1993

SunOS 5.4 Special Files zsh (7)

The zsh driver keeps running totals of various hardware generated events for each chan-
nel. These include numbers of packets and characters sent and received, abort conditions
detected by the receiver, receive CRC errors, transmit underruns, receive overruns, input
errors and output errors, and message block allocation failures. Input errors are logged
whenever an incoming message must be discarded, such as when an abort or CRC error
is detected, a receive overrun occurs, or when no message block is available to store
incoming data. Output errors are logged when the data must be discarded due to under-
runs, CTS drops during transmission, CTS timeouts, or excessive watchdog timeouts
caused by a cable break.

IOCTLS The zsh driver supports several ioctl() commands, including:

S_IOCGETMODE Return a struct scc_mode containing parameters currently in use.
These include the transmit and receive clock sources, boolean loop-
back and NRZI mode flags and the integer baud rate.

S_IOCSETMODE The argument is a struct scc_mode from which the SCC channel will
be programmed.

S_IOCGETSTATS Return a struct sl_stats containing the current totals of hardware-
generated events. These include numbers of packets and characters
sent and received by the driver, aborts and CRC errors detected,
transmit underruns, and receive overruns.

S_IOCCLRSTATS Clear the hardware statistics for this channel.

S_IOCGETSPEED Returns the currently set baud rate as an integer. This may not
reflect the actual data transfer rate if external clocks are used.

S_IOCGETMCTL Returns the current state of the CTS and DCD incoming modem
interface signals as an integer.

The following structures are used with zsh ioctl() commands:

struct scc_mode {
char sm_txclock; /∗ transmit clock sources ∗/
char sm_rxclock; /∗ receive clock sources ∗/
char sm_iflags; /∗ data and clock inversion flags (non-zsh) ∗/
u_char sm_config; /∗ boolean configuration options ∗/
int sm_baudrate; /∗ real baud rate ∗/
int sm_retval; /∗ reason codes for ioctl failures ∗/

};

struct sl_stats {
long ipack; /∗ input packets ∗/
long opack; /∗ output packets ∗/
long ichar; /∗ input bytes ∗/
long ochar; /∗ output bytes ∗/
long abort; /∗ abort received ∗/
long crc; /∗ CRC error ∗/

modified 20 Jan 1993 7-353

zsh (7) Special Files SunOS 5.4

long cts; /∗ CTS timeouts ∗/
long dcd; /∗ Carrier drops ∗/
long overrun; /∗ receive overrun ∗/
long underrun; /∗ transmit underrun ∗/
long ierror; /∗ input error ∗/
long oerror; /∗ output error ∗/
long nobuffers; /∗ receive side memory allocation failure ∗/

};

ERRORS An open() will fail if a STREAMS message block cannot be allocated, or:

ENXIO The unit being opened does not exist.

EBUSY The device is in use by another serial protocol.

An ioctl() will fail if:

EINVAL An attempt was made to select an invalid clocking source.

EINVAL The baud rate specified for use with the baud rate generator would
translate to a null time constant in the SCC’s registers.

FILES /dev/zsh[0-1],/dev/zsh character-special devices
/usr/include/sys/ser_sync.h header file specifying synchronous serial communica-

tion definitions

SEE ALSO syncinit(1M), syncloop(1M), syncstat(1M), ioctl(2), open(2), read(2), write(2), zs(7)

Refer to the Zilog Z8530 SCC Serial Communications Controller for details of the SCC’s
operation and capabilities.

DIAGNOSTICS zsh data open failed, no memory, rq=nnn

zsh clone open failed, no memory, rq=nnn
A kernel memory allocation failed for one of the private data structures. The
value of nnn is the address of the read queue passed to open(2).

zsh_open: can’t alloc message block
The open could not proceed because an initial STREAMS message block could
not be made available for incoming data.

zsh: clone device d must be attached before use!
An operation was attempted through a control path before that path had been
attached to a particular serial channel.

zshn: invalid operation for clone dev.
An inappropriate STREAMS message type was passed through a control path.
Only M_IOCTL and M_PROTO message types are permitted.

7-354 modified 20 Jan 1993

SunOS 5.4 Special Files zsh (7)

zshn: not initialized, can’t send message
An M_DATA message was passed to the driver for a channel that had not
been programmed at least once since the driver was loaded. The SCC’s regis-
ters were in an unknown state. The S_IOCSETMODE ioctl command performs
the programming operation.

zshn: transmit hung
The transmitter was not successfully restarted after the watchdog timer
expired.

modified 20 Jan 1993 7-355

Index

1
1/2-inch tape drive

xt — Xylogics 472
10/100 Mbit/s 802.30 Fast Ethernet device driver —

be, 7-34

3
3COM 3C503 Ethernet device driver — el, 7-83
3COM 3C507 Ethernet device driver — el, 7-86
3COM EtherLink III Ethernet device driver — elx,

7-89

4
450 SMD Disk driver — xy
451 SMD Disk driver — xy
472 1/2-inch tape drive — xt
4BSD compatibility module — ttcompat, 7-321

7
7053 SMD Disk driver — xd

A
Address Resolution Protocol, See ARP
aha — low-level module for Adaptec 154x ISA host

bus adapter, 7-10
ALM-2 Parallel Printer port driver — mcpp, 7-186
ALM-2 Zilog 8530 SCC serial communications

driver — mcpzsa
Am7990 (LANCE) Ethernet device driver — le
Am79C940 (MACE) Ethernet device driver — qe,

7-224 thru 7-227
ANSI standard terminal emulation — wscons
arp — Address Resolution Protocol
arp ioctl

SIOCDARP — delete arp entry, 7-12
SIOCGARP — get arp entry, 7-12
SIOCSARP — set arp entry, 7-12

asy — asynchronous serial port driver, 7-14
asynchronous serial port driver — asy, 7-14
AT attachment disk driver — ata, 7-16
ata — AT attachment disk driver, 7-16
audio — audio device interface, 7-18
audio device

Sound Blaster Pro — sbpro, 7-233
audioamd — telephone quality audio device, 7-27
audiocs — Crystal Semiconductor 4231 audio

Interface, 7-29
Audio Data Formats for the Multimedia 4231

Codec, 7-29
Audio Interfaces, 7-29
Audio Ports, 7-30
Audio Status Change Notification, 7-30
Sample Granularity, 7-30

Index−1

B
bd — SunButtons and SunDials STREAMS module,

7-32
be — 10/100 Mbit/s 802.30 Fast Ethernet device

driver, 7-34
be and DLPI, 7-34
be Primitives, 7-34

BigMAC Ethernet device driver — be, 7-34
bpp — bi-directional parallel port, 7-37
bufmod — STREAMS Buffer module, 7-42
built-in mouse device interface — kdmouse, 7-161
bwtwo — black and white frame buffer, 7-46

C
CD-ROM — ISO 9660 CD-ROM filesystem —

hsfs, 7-113
cdio— CD-ROM control operations, 7-47
CDROM control operations —cdio, 7-47
cgfourteen — 24-bit color graphics device, 7-57
cgeight — 24-bit color memory frame buffer, 7-55
cgfour — P4-bus 8-bit color memory frame buffer,

7-56
cgfourteen — 24-bit color graphics device, 7-57
cgsix — accelerated 8-bit color frame buffer, 7-58
cgthree — 8-bit color memory frame buffer, 7-59
cgtwelve — Sun-4c mid-range graphics accelerator

with color memory frame buffer, 7-60
cgtwo — color graphics interface, 7-61
change translation table entry ioctl — KIOCS-

KEY, 7-158
cmdk — common disk driver, 7-62
color graphics interface

24-bit color memory frame buffer — cgeight,
7-55

8-bit color memory frame buffer — cgthree,
7-59

accelerated 8-bit color frame buffer — cgsix,
7-58

— cgtwo, 7-61
P4-bus 8-bit color memory frame buffer —

cgfour, 7-56
SBus color frame buffer — gt, 7-110
Sun color memory frame buffer — tcx, 7-287

color graphics interface, continued
Sun-4c color memory frame buffer —

cgtwelve, 7-60
common disk driver — cmdk, 7-62
common tape driver — cmtp, 7-63
connections, unique stream

line discipline — connld, 7-64
connld — line discipline for unique connections,

7-64
console — STREAMS-based console interface, 7-65
converts mouse protocol to Firm Events — vuid-

mice, 7-334
vuid2ps2, 7-334
vuid3ps2, 7-334
vuidm3p, 7-334
vuidm4p, 7-334
vuidm5p, 7-334

core memory
image — mem, 7-190

Crystal Semiconductor 4231 audio Interface —
audiocs, 7-29

D
Data Link Provider Interface

— dlpi, 7-78
dbri — ISDN and audio interface, 7-66

Audio Data Formats for BRI Interfeces, 7-67
Audio Data Formats for the Multimedia

Codec/SpeakerBox, 7-67
Audio Interfaces, 7-66
Audio Ports, 7-68
Audio Status Change Notification, 7-68
ISDN Interfaces, 7-67
Sample Granularity, 7-68

delete arp entry ioctl — SIOCDARP, 7-12
device interface

Microsoft Bus Mouse — msm, 7-194
devices

cgfourteen, 7-57
disk control operations — dkio, 7-72
disk driver

Xylogics — xd, 7-343 thru 7-348
disk quotas — quotactl(), 7-228
display — system console display, 7-71

Index−2

dkio — disk control operations, 7-72
DKIOCEJECT — disk eject, 7-72
DKIOCGAPART — get full disk partition table, 7-72
DKIOCGGEOM — get disk geometry, 7-72
DKIOCGVTOC — get volume table of contents (vtoc),

7-72
DKIOCINFO — get disk controller info, 7-72
DKIOCSGEOM — set disk geometry, 7-72
DKIOCSAPART — set disk partition info, 7-72
DKIOCSVTOC — set volume table of contents (vtoc),

7-72
dlpi — Data Link Provider Interface, 7-78
DOS formatted file system PCFS, 7-206
double-buffered 24-bit SBus color frame buffer and

graphics accelerator — leo, 7-173
dpt — DPT 2011, 2021, 2012 and 2022 low-level

controller modules, 7-79
DPT 2011, 2021, 2012 and 2022 low-level controller

modules — dpt, 7-79
driver for parallel port — lp, 7-183
drivers

driver for SCSI disk devices — sd, 7-240
SCSI tape devices — st, 7-251

drivers for floppy disks and floppy disk controllers
— fd, 7-102
fdc, 7-102

dsa — low-level module for Dell SCSI Array Con-
troller (DSA), 7-81

Dual Basic Rate ISDN and audio Interface — dbri,
7-66

E
eha — low-level module for Adaptec 174x EISA

host bus adapter, 7-82
EISA NVRAM support — envm, 7-92
el — 3COM 3C503 Ethernet device driver, 7-83
el — 3COM 3C507 Ethernet device driver, 7-86
elx — 3COM ETHERLINK III Ethernet device

driver, 7-89
elx Primitives, 7-89

envm — EISA NVRAM support, 7-92
esp — ESP SCSI Host Bus Adapter Driver, 7-95

ESP SCSI Host Bus Adapter Driver — esp, 7-95
EtherExpress 16 Ethernet device driver, Intel —

iee, 7-121
Ethernet device driver

SMC 3032/EISA dual-channel Ethernet device
driver — smce, 7-247

SMC 8003/8013/8216 Ethernet device driver —
smc, 7-244

Ethernet driver — ie

F
fbio — frame buffer control operations, 7-100
fd — drivers for floppy disks and floppy disk con-

trollers, 7-102
fdc — drivers for floppy disks and floppy disk

controllers, 7-102
FDGETCHANGE — get status of disk changed, 7-107
fdio — disk control operations, 7-107
FDIOGCHAR — get floppy characteristics, 7-107
FDIOGCHAR — set floppy characteristics, 7-107
FDKEJECT — eject floppy, 7-107
file system

quotactl() — disk quotas, 7-228
floppy disk control operations — fdio, 7-107
frame buffer

black and whirte frame buffer — bwtwo, 7-46
frame buffer control operations

— fbio, 7-100

G
get compatibility mode ioctl — KIOCGCOMPAT,

7-160
get keyboard “direct input” state ioctl —

KIOCGDIRECT, 7-160
get keyboard translation ioctl — KIOCGTRANS,

7-158
get keyboard type ioctl — KIOCLAYOUT, 7-159
get LEDs ioctl — KIOCGLED, 7-160
get translation table entry ioctl — KIOCGKEY,

7-159
gt — SBus color frame buffer and graphics

accelerator, 7-110

Index−3

H
hdio — SMD and IPI disk control operations, 7-111
HSFS — High Sierra filesystem, 7-113

I
I/O

data link provider interface — dlpi, 7-78
extended terminal interface — termiox, 7-305
ioctls that operate directly on sockets —

sockio, 7-250
STREAMS ioctl commands — streamio,

7-270
IBM 16/4 Token Ring Network Adapter device

driver — tr, 7-318
IBM MicroChannel host bus adapter

mcis — low-level module for, 7-185
icmp — Internet Control Message Protocol
ie — Intel 82586 Ethernet device driver
iee — EtherExpress 16 Ethernet device driver,

7-121
if_tcp — general properties of Internet Protocol

network interfaces, 7-124
if_tcp — general properties of Internet Protocol

network interfaces, 7-124
inet — Internet protocol family
Intel 82586 Ethernet device driver — ie
Intel EtherExpress 16 Ethernet device driver —

iee, 7-121
Internet Control Message Protocol — icmp
Internet Protocol — ip

to Ethernet addresses — arp
Internet protocol family — inet
Internet Protocol network interfaces

general properties — if_tcp, 7-124
Internet Transmission Control Protocol — tcp
Internet User Datagram Protocol — udp
ioctls for disks

DKIOCEJECT — disk eject, 7-72
DKIOCGAPART — get full disk partition table,

7-72
DKIOCGGEOM — get disk geometry, 7-72
DKIOCGVTOC — get volume table of contents

(vtoc), 7-72

ioctls for disks, continued
DKIOCINFO — get disk controller info, 7-72
DKIOCSAPART — set disk partition info, 7-72
DKIOCSGEOM — set disk geometry, 7-72
DKIOCSVTOC — set volume table of contents

(vtoc), 7-72
ioctls for floppy

FDEJECT — eject floppy, 7-107
FDGETCHAGE — get status of disk changed,

7-107
FDIOCHAR — get floppy characteristics, 7-107

ioctls for Internet socket descriptors
SIOCSARP — set arp entry, 7-12

ioctls for keyboards
KIOCCMD — send a keyboard command, 7-159
KIOCGCOMPAT — get compatibility mode, 7-160
KIOCGDIRECT — get keyboard “direct input”

state, 7-160
KIOCGKEY — get translation table entry, 7-159
KIOCGLED — get LEDs, 7-160
KIOCGTRANS — get keyboard translation, 7-158
KIOCLAYOUT — get keyboard type, 7-159
KIOCSCOMPAT — set compatibility mode, 7-160
KIOCSDIRECT — set keyboard “direct input”

state, 7-160
KIOCSKEY — change translation table entry,

7-158
KIOCSLED — set LEDs, 7-159
KIOCTRANS — set keyboard translation, 7-158
KIOCTYPE — get keyboard type, 7-159

ioctls for sockets
SIOCDARP — delete arp entry, 7-12
SIOCGARP — get arp entry, 7-12

ip — Internet Protocol
ipd — STREAMS modules and drivers for the

Point-to-Point Protocol, 7-217
ipdcm — STREAMS modules and drivers for the

Point-to-Point Protocol, 7-217
ipdptp — STREAMS modules and drivers for the

Point-to-Point Protocol, 7-217
ipi — IPI driver
ipi — IPI driver
isdnio — generic ISDN interface, 7-136
ISO 9660 — ISO 9660 CD-ROM filesystem — hsfs,

Index−4

7-113
isp — ISP SCSI Host Bus Adapter Driver, 7-150
ISP SCSI Host Bus Adapter Driver — isp, 7-150

K
kb — keyboard, 7-154, 7-160
kdmouse — built-in mouse device interface, 7-161
kernel statistics driver — kstat, 7-163
kernel symbols — ksyms, 7-164
keyboard — system console keyboard, 7-162
keyboard STREAMS module — kb, 7-154
KIOCCMD — send a keyboard command, 7-159
KIOCGCOMPAT — get compatibility mode, 7-160
KIOCGDIRECT — get keyboard “direct input” state,

7-160
KIOCGKEY — get translation table entry, 7-159
KIOCGLED — get LEDs, 7-160
KIOCGTRANS — get keyboard translation, 7-158
KIOCLAYOUT — get keyboard type, 7-159
KIOCSCOMPAT — set compatibility mode, 7-160
KIOCSDIRECT — set keyboard “direct input” state,

7-160
KIOCSKEY — change translation table entry, 7-158
KIOCSLED — set LEDs, 7-159
KIOCTRANS — set keyboard translation, 7-158
KIOCTYPE — get keyboard type, 7-159
kstat — kernel statistics driver, 7-163
kyms — kernel symbols, 7-164

L
ldterm — line discipline for STREAMS terminal

module, 7-166
le — Am7990 (LANCE) Ethernet device driver
leo — double-buffered 24-bit SBus color frame

buffer and graphics accelerator, 7-173
line discipline for unique stream connections

—connld, 7-64
llc1 — Logical Link Control Protocol Class 1

Driver, 7-174
log — interface to STREAMS error logging and

event tracing, 7-178
logi — LOGITECH bus mouse device interface,

7-182
Logical Link Control Protocol Class 1 Driver —

llc1, 7-174
LOGITECH Bus Mouse device interface — logi,

7-182
loopback file system — lofs, 7-177
loopback transport providers

— ticlts, 7-310
— ticots, 7-310
— ticotsord, 7-310

low-level module for
Mylex DAC960 EISA host bus adapter series —

mlx, 7-191
low-level module for Adaptec 154x ISA host bus

adapter — aha, 7-10
low-level module for Adaptec 174x EISA host bus

adapter — eha, 7-82
low-level module for Dell SCSI Array Controller

(DSA) — dsa, 7-81
lp — driver for parallel port, 7-183

M
magnetic tape interface

— mtio, 7-196
mcis — low-level module for IBM MicroChannel

host bus adapter, 7-185
mcpp — ALM-2 Parallel Printer port driver, 7-186
mcpzsa — ALM-2 zilog 8530 SCC serial communi-

cations driver
mem— image of core memory, 7-190
memory based filesystem — tmpfs, 7-316
memory, core

image — mem, 7-190
memory, zeroed unnamed

source — zero, 7-349
Microsoft Bus Mouse device interface — msm, 7-194
mlx — low-level module for Mylex DAC960 EISA

host bus adapter series, 7-191
Board Configuration and Auto Configuration,

7-191
EISA Configuration Tips, 7-191
Hot Plugging, 7-193
SCSI Target IDs, 7-193

Index−5

mlx — low-level module for Mylex DAC960 EISA
host bus adapter series, continued

Standby Drives, 7-193
monitor

PROM monitor configuration interface —
openprom, 7-204

monochrome frame buffer — bwtwo, 7-46
Mouse device interface

LOGITECH Bus Mouse device interface —
logi, 7-182

msm — Microsoft Bus Mouse device interface, 7-194
mtio — general magnetic tape interface, 7-196
Mylex DAC960 EISA host bus adapter series

low-level module — mlx, 7-191

N
null — null file, 7-203

O
openprom — PROM monitor configuration inter-

face, 7-204

P
parallel port, bi-directional — bpp, 7-37

driver for parallel port — lp, 7-183
PCFS — DOS formatted file system, 7-206
pckt — STREAMS Packet Mode module, 7-209
pe — Xircom Pocket Ethernet device driver, 7-210
pfmod — STREAMS packet filter module, 7-213
pipemod — STREAMS pipe flushing module, 7-216
ppp — STREAMS modules and drivers for the

Point-to-Point Protocol, 7-217
Operation, 7-217

ppp — STREAMS modules and drivers for the
Point-to-Point Protocol, 7-217

PROM
monitor configuration interface — openprom,

7-204
Pseudo Terminal Emulation module, STREAMS —

ptem, 7-219
ptem — STREAMS Pseudo Terminal Emulation

module, 7-219
ptm — STREAMS Buffer module, 7-220

pts — STREAMS pseudo-tty slave driver, 7-222

Q
qe — Am79C940 (MACE) Ethernet device driver
qec — Am79C940 (MACE) Ethernet device driver
quotactl() — disk quotas, 7-228

S
sbpro — Creative Labs Sound Blaster Pro audio

device, 7-233
SCSI disk devices

driver — sd, 7-240
SCSI tape devices

driver — st, 7-251
sd — driver for SCSI disk devices, 7-240
send a keyboard command ioctl — KIOCCMD,

7-159
serial communications driver — zs
Serial Parallel Communications driver for SBus —

stc, 7-259
set compatibility mode ioctl — KIOCSCOMPAT,

7-160
set keyboard “direct input” state ioctl —

KIOCSDIRECT, 7-160
set keyboard translation ioctl — KIOCTRANS,

7-158
set LEDs ioctl — KIOCSLED, 7-159
SIOCDARP — delete arp entry, 7-12
SIOCGARP — get arp entry, 7-12
SIOCSARP — set arp entry, 7-12
SMC 3032/EISA dual-channel Ethernet device

driver — smce, 7-247
SMC 8003/8013/8216 Ethernet device driver —

smc, 7-244
smc — SMC 8003/8013/8216 Ethernet device

driver, 7-244
smce — SMC 3032/EISA dual-channel Ethernet

device driver, 7-247
SMD and IPI disk control operations — hdio,

7-111
SMD disk controller

Xylogics 450 — xy

Index−6

SMD disk controller, continued
Xylogics 451 — xy
Xylogics 7053 — xd

sockio — ioctls that operate directly on sockets,
7-250

sockets
ioctrls that operate directly — sockio, 7-250

Solaris VISUAL I/O control operations, 7-330
Sound Blaster Pro audio device — sbpro, 7-233
st — driver for SCSI tape devices, 7-251
stc — Serial Parallel Communications driver for

SBus, 7-259
STREAMS

console interface — console, 7-65
interface to error logging — log, 7-178
interface to event tracing — log, 7-178
keyboard module — kb, 7-154
line discipline for unique stream connections —

connld, 7-64
loopback transport providers — ticlts,

ticots, ticotsord, 7-310
On-board serial HDLC interface — zsh
standard terminal line discipline module —

ldterm, 7-166
Transport Interface cooperating module —

timod, 7-312
Transport Interface read/write interface

module — tirdwr, 7-314
V7, 4BSD, XENIX compatibility module —

ttcompat, 7-321
STREAMS Administrative Driver — sad, 7-230
STREAMS Buffer module — bufmod, 7-42, 7-220
STREAMS ioctl commands — streamio, 7-270
STREAMS module

SunButtons and SunDials — bd, 7-32
STREAMS modules and drivers for the Point-to-

Point Protocol — ppp, 7-217
ipd, 7-217
ipdcm, 7-217
ipdptp, 7-217
ppp_diag, 7-217

STREAMS Packet Filter Module — pfmod, 7-213
STREAMS Packet Mode module — pckt, 7-209
STREAMS pipe flushing module — pipemod,

7-216
STREAMS Pseudo Terminal Emulation module —

ptem, 7-219
STREAMS pseudo-tty slave driver — pts, 7-222
SunButtons and SunDials STREAMS module — bd,

7-32
system console display — display, 7-71
system console keyboard — keyboard, 7-162

T
tape drive, 1/2-inch

xt — Xylogics 472
tape interface — mt, 7-195
tape, magnetic interface

— mtio, 7-196
tcp — Internet Transmission Control Protocol
tcx — Sun low-range graphics accelerator with

color memory frame buffer, 7-287
terminal emulation, ANSI — wscons
terminal interface

— termio, 7-289
terminal interface, extended

— termiox, 7-305
terminal parameters — termiox, 7-305
terminal, standard STREAMS

line discipline module — ldterm, 7-166
termio — general terminal interface, 7-289
termiox — extended general terminal interface,

7-305
ticlts — loopback transport provider, 7-310
ticots — loopback transport provider, 7-310
ticotsord — loopback transport provider, 7-310
timod — Transport Interface cooperating module,

7-312, 7-314
tmpfs — memory based filesystem, 7-316
tr — IBM 16/4 token ring network device driver,

7-318
Transport Interface cooperating STREAMS module

— timod, 7-312
Transport Interface read/write interface STREAMS

module — timod, 7-314
ttcompat — V7, 4BSD and XENIX STREAMS com-

Index−7

patibility module, 7-321
tty — controlling terminal interface, 7-327

U
udp — Internet User Datagram Protocol
unnamed zeroed memory

source — zero, 7-349

V
V7 compatibility module — ttcompat, 7-321
volfs — Volume Management file system, 7-332
Volume Management

file system — volfs, 7-332
vuid2ps2 — converts mouse protocol to Firm

Events, 7-334
vuid3ps2 — converts mouse protocol to Firm

Events, 7-334
vuidm3p — converts mouse protocol to Firm

Events, 7-334
vuidm4p — converts mouse protocol to Firm

Events, 7-334
vuidm5p — converts mouse protocol to Firm

Events, 7-334
vuidmice — converts mouse protocol to Firm

Events, 7-334

W
workstation console — wscons, 7-336

X
xd — Xylogics SMD Disk driver
XENIX compatibility module — ttcompat, 7-321
xt — Xylogics 472 1/2-inch tape drive
xy — Xylogics SMD Disk driver
Xylogics 472 1/2-inch tape drive — xt
Xylogics SMD Disk driver — xd, 7-343 thru 7-348

Z
zero — source of zeroes, 7-349
Zilog 8530 SCC serial communications driver — zs
zs — zilog 8530 SCC serial communications driver
zsh — On-board serial HDLC interface

Index−8

