
Command-Line Tools Guide
Sun™ ONE Certificate Server

Version 4.7

September 2002
816-5549-10
Second Edition

Copyright © 2002 Sun Microsystems, Inc. All rights reserved.

Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries.

Federal Acquisitions: Commercial Software -- Government Users Subject to Standard License Terms and Conditions.

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of the product or this document may be reproduced in any form by any means without prior written authorization of the Sun
Microsystems, Inc. and its licensers, if any.

THIS DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Some pre-existing portions:

Copyright © 1998,1999 by Jef Poskanzer <jef@acme.com>. All rights reserved. Copyright © 1996 by Jef Poskanzer <jef@acme.com>.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) "HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
"LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002 Sun Microsystems, Inc. Tous droits réservés.

Sun, Sun Microsystems, le Sun logo, et iPlanet sont des marques dposes ou des marques dposes registre de Sun Microsystems, Inc.
aux Etats-Unis et d'autres pays.

Le produit dé crit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la
distribution et la décompilation.

Aucune partie de ce produit ni de ce document ne peut être reproduite sous quelque forme ou par quelque moyen que ce soit sans
l'autorisation écrite préalable de Sun Microsystems, Inc., le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE "EN L'ÉTAT", ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRÉSENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À
UN BUT PARTICULIER OU DE NON CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

3

Contents

About This Guide . 9
What You Should Already Know . 9
What’s in This Guide . 11
Conventions Used in This Guide . 12
Where to Go for Related Information . 13

Chapter 1 Command-Line Tools . 17

Chapter 2 Password Cache Utility . 21
Location . 21
Syntax . 22
Usage . 22

Changing the Single Sign-On Password . 23
Listing the Contents of the Password Cache . 23
Adding a New Entry to the Password Cache . 24
Changing the Password of an Entry in the Password Cache . 24
Deleting an Entry From the Password Cache . 25
Creating a New Password Cache . 26

Chapter 3 Kill Process Tool . 27
Location . 27
Syntax . 27
Usage . 28

Chapter 4 PIN Generator Tool . 29
Locating the PIN Generator Tool . 29
The setpin Command . 30

Command-Line Syntax . 30
Arguments . 30
Example . 34

4 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

How the Tool Works . 34
Input File . 37
Output File . 38
How PINs Are Stored in the Directory . 39
Exit Codes . 40

Chapter 5 Extension Joiner Tool . 41
Location . 42
Syntax . 42
Usage . 42

Chapter 6 Backing Up and Restoring Data . 45
Backup and Restore Tools . 45
Backing Up Data . 46

What the Backup Tool Does . 46
What the Backup Tool Does Not Do . 48
Running the Backup Tool . 49
After You Finish a Backup . 50

Restoring Data . 51
Before You Restore Data . 51
Running the Restore Tool . 52

Chapter 7 ASCII to Binary Tool . 57
Availability . 57
Syntax . 57
Example . 58

Chapter 8 Binary to ASCII Tool . 59
Availability . 59
Syntax . 59
Example . 60

Chapter 9 Pretty Print Certificate Tool . 61
Availability . 61
Syntax . 61
Example . 62

Chapter 10 Pretty Print CRL Tool . 65
Availability . 65
Syntax . 65
Example . 66

5

Chapter 11 Certificate Database Tool . 69
Availability . 69
Syntax . 70

Options and Arguments . 70
Usage . 74
Examples . 75

Creating a New Certificate Database . 75
Listing Certificates in a Database . 76
Creating a Certificate Request . 76
Creating a Certificate . 77
Adding a Certificate to the Database . 77
Validating a Certificate . 78

Chapter 12 Key Database Tool . 81
Availability . 81
Syntax . 82

Options and Arguments . 82
Usage . 84
Examples . 85

Creating a Key Database . 85
Generating a New Key . 86
Displaying Public Key Information . 87
Listing Key IDs . 87
Deleting a Private Key . 88

Chapter 13 Netscape Signing Tool . 89
Introduction to Netscape Signing Tool . 89

What Is Netscape Signing Tool? . 90
JAR Format and JAR Archives . 91
What Signing a File Means . 92
Object-Signing Certificates . 92

Using Netscape Signing Tool . 93
Getting Ready to Use Netscape Signing Tool . 94

Setting Up Your Certificate . 94
Listing Available Certificates . 95

Signing a File . 96
Using Netscape Signing Tool with a ZIP Utility . 97
Tips and Techniques . 97

SignTool Syntax and Options . 99
Command Syntax . 99
Command Options . 99
Command File Syntax . 104
Command File Keywords and Example . 104

6 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Generating Test Object-Signing Certificates . 106
Generating the Keys and Certificate . 106

Using Netscape Signing Tool with Smart Cards . 108
What Is a Smart Card? . 108
Setting Up a Smart Card . 108
Using the -M Option to List Smart Cards . 110
Using Netscape Signing Tool and a Smart Card to Sign Files . 110

Netscape Signing Tool and FIPS-140-1 . 111
Using FIPS-140 Mode . 111
Verifying FIPS Mode . 112

Answers to Common Questions . 113

Chapter 14 SSL Debugging Tool . 117
Availability . 117
Description . 117
Syntax . 118

Options . 118
Examples . 119

Example 1 . 120
Command . 120
Output . 120

Example 2 . 124
Command . 124
Output . 124

Example 3 . 127
Command . 127
Output . 127

Example 4 . 128
Command . 128
Output . 128

Usage Tips . 129

Chapter 15 SSL Strength Tool . 131
Availability . 131
Syntax . 131

Options and Arguments . 132
Usage . 132

Restricting Ciphers . 133
Export Policy and Step-up . 133

Examples . 134
Example 1 . 134
Example 2 . 135

7

Example 3 . 135

Chapter 16 Security Module Database Tool . 137
Availability . 137
Syntax . 138

Options and Arguments . 138
Usage . 141
JAR Installation File . 142

Sample Script . 142
Script Grammar . 143

Keys . 144
Global Keys . 144
Per-Platform Keys . 146
Per-File Keys . 147

Examples . 148
Creating Database Files . 149
Displaying Module Information . 149
Setting a Default Provider . 150
Enabling a Slot . 151
Enabling FIPS Compliance . 151
Adding a Cryptographic Module . 152
Installing a Cryptographic Module from a JAR File . 152
Changing the Password on a Token . 154

Index . 155

8 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

9

About This Guide

The CMS Command-Line Tools Guide describes various command-line tools or
utilities that are bundled with iPlanet Certificate Management Server (CMS). It
provides information such as the command syntax, platform support, examples,
and so on, required to use these tools.

This preface has the following sections:

• What You Should Already Know

• What’s in This Guide

• Conventions Used in This Guide

• Where to Go for Related Information

What You Should Already Know
This guide is intended for experienced system administrators who are planning to
deploy Certificate Management System. CMS agents should refer to CMS Agent’s
Guide for information on how to perform agent tasks, such as handling certificate
requests and revoking certificates.

NOTE Sun™ ONE Certificate Server was previously known as iPlanet™
Certificate Management System. The product was renamed shortly before
the launch of this 4.7 release.

The late renaming of this product has resulted in a situation where the new
product name is not fully integrated into the shipping product. In particular,
you will see the product referenced as iPlanet Certificate Management
Server (CMS) within the product GUI and within the product
documentation. For this release, please consider iPlanet Certificate
Management Server and Sun™ ONE Certificate Server as interchangeable
names for the same product.

What You Should Already Know

10 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

This guide assumes that you

• Are familiar with the basic concepts of public-key cryptography and the Secure
Sockets Layer (SSL) protocol.

❍ SSL cipher suites

❍ The purpose of and major steps in the SSL handshake

• Understand the concepts of intranet, extranet, and the Internet security and the
role of digital certificates in a secure enterprise. These include the following
topics:

❍ Encryption and decryption

❍ Public keys, private keys, and symmetric keys

❍ Significance of key lengths

❍ Digital signatures

❍ Digital certificates, including various types of digital certificates

❍ The role of digital certificates in a public-key infrastructure (PKI)

❍ Certificate hierarchies

If you are new to these concepts, we recommend you read the security-related
documents available online at this URL:
http://docs.sun.com/db?p=coll/S1_nsCMS_42_Resources

You may also refer to the security-related appendixes (Appendix D and
Appendix E) of the accompanying manual, Managing Servers with iPlanet
Console.

• Are familiar with the role of Netscape Console in managing Netscape version
4.x servers. Otherwise, see the accompanying manual, Managing Servers with
iPlanet Console.

• Are reading this guide in conjunction with the documentation listed in “Where
to Go for Related Information” on page 13.

What’s in This Guide

About This Guide 11

What’s in This Guide
This guide covers the following topics:

• Chapter 1, “Command-Line Tools” Provides an overview of the command-line
tools provided with Certificate Management System, including the ones that
are not covered in this documentation.

• Chapter 2, “Password Cache Utility” Describes how to use the tool for
managing the single sign-on password cache.

• Chapter 3, “Kill Process Tool” Describes how to use the tool for terminating
CMS process if the server fails to respond to a start, restart, or stop commands.

• Chapter 4, “PIN Generator Tool” Describes how to use the tool for generating
unique PINs for your users and for populating their directory entries with
PINs.

• Chapter 5, “Extension Joiner Tool” Describes how to use the tool for joining
MIME-64 encoded formats of certificate extensions to create a single blob.

• Chapter 7, “ASCII to Binary Tool” Describes how to use the tool for converting
ASCII data to its binary equivalent.

• Chapter 8, “Binary to ASCII Tool” Describes how to use the tool for converting
binary data to its ASCII equivalent.

• Chapter 9, “Pretty Print Certificate Tool” Describes how to use the tool for
printing or viewing the contents of a certificate stored as ASCII base-64
encoded data in a human-readable form.

• Chapter 10, “Pretty Print CRL Tool” Describes how to use the tool for printing
or viewing the contents of a CRL stored as ASCII base-64 encoded data in a
human-readable form.

• Chapter 11, “Certificate Database Tool” Describes how to use the tool for
manipulating the certificate database.

• Chapter 12, “Key Database Tool” Describes how to use the tool for
manipulating the key database.

• Chapter 13, “Netscape Signing Tool” Describes how to use the tool to associate
a digital signature with any file, including CMS log files.

• Chapter 14, “SSL Debugging Tool” Describes how to use the tool for testing
and debugging purposes.

• Chapter 15, “SSL Strength Tool” Describes how to use the tool for testing and
debugging purposes.

Conventions Used in This Guide

12 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

• Chapter 16, “Security Module Database Tool” Describes the Password Cache
Utility and explains how to use it for managing the single sign-on password
cache.

Conventions Used in This Guide
This guide uses the following conventions:

The following conventions are used in this guide:

• Monospaced font—This typeface is used for any text that appears on the
computer screen or text that you should type. It’s also used for filenames,
functions, and examples.

Example: Server Root is the directory where the CMS binaries are kept.

• Italic—Italic type is used for emphasis, book titles, and glossary terms.

Example: This control depends on the access permissions the superadministrator
has set up for you.

• Text within “quotation marks”—Indicates cross-references to other topics
within this guide.

Example: For more information, see “Issuing a Certificate to a New User” on
page 154.

• []—Square brackets enclose commands that are optional.

Example: PrettyPrintCert <input_file> [<output_file>]

<input_file> specifies the path to the file that contains the base-64
encoded certificate.

<output_file> specifies the path to the file to write the certificate. This
argument is optional; if you don’t specify an output file, the certificate
information is written to the standard output.

• <>—Angle brackets enclose variables or placeholders. When following
examples, replace the angle brackets and their text with text that applies to
your situation. For example, when path names appear in angle brackets,
substitute the path names used on your computer.

Example: Using Netscape Communicator 4.04 or later, enter the URL for the
administration server: http://<hostname>:<port_number>

Where to Go for Related Information

About This Guide 13

• /—A forward slash is used to separate directories in a path. If you use the
Windows NT operating system, you should replace / with \ in paths.

Example: Except for the Security Module Database Tool, you can find all the
other command-line utilities at this location: <server_root>/bin/cert/tools

• Sidebar text—Sidebar text marks important information. Make sure you read
the information before continuing with a task.

Examples:

Where to Go for Related Information
This section summarizes the documentation that ships with Certificate
Management System, using these conventions:

• <server_root> is the directory where the CMS binaries are kept (specified
during installation).

• <instance_id> is the ID for this instance of Certificate Management System
(specified during installation).

The documentation set for Certificate Management System includes the following:

• Managing Servers with iPlanet Console

Provides background information on basic cryptography concepts and the role
of Netscape Console.

For the HTML version, open this file:
<server_root>/manual/en/admin/help/contents.htm

• CMS Installation and Setup Guide

Describes how to plan for, install, and administer Certificate Management
System. To access the installation and configuration information from within
the CMS Installation Wizard or from the CMS window (within Netscape
Console), click any help button.

NOTE You can use Netscape Console only when Administration Server is up
and running.

CAUTION A caution note documents a potential risk of losing data, damaging
software or hardware, or otherwise disrupting system performance.

Where to Go for Related Information

14 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

To view the HTML version of this guide, open this file:
<server_root>/manual/en/cert/setup_guide/contents.htm

• CMS Plug-Ins Guide

Provides detailed reference information on CMS plug-ins. To access this
information from the CMS window within Netscape Console, click any help
button.

To view the HTML version of this guide, open this file:
<server_root>/manual/en/cert/plugin_guide/contents.htm

• CMS Command-Line Tools Guide(this guide)

Provides detailed reference information on CMS tools.

To view the HTML version of this guide, open this file:
<server_root>/manual/en/cert/tools_guide/contents.htm

• CMS Customization Guide

Provides detailed reference information on customizing the HTML-based
agent and end-entity interfaces.

To view the HTML version of this guide, open this file:
<server_root>/manual/en/cert/custom_guide/contents.htm

• CMS Agent’s Guide

Provides detailed reference information on CMS agent interfaces. To access
this information from the Agent Services pages, click any help button.

To view the HTML version of this guide, open this file:
<server_root>/<instance_id>/web/agent/manual/agent_guide/
contents.htm

• End-entity help (online only, not printed)

Provides detailed reference information on CMS end-entity interfaces. To
access this information from the end-entity pages, click any help button.

To view the HTML version of this guide, open this file:
<server_root>/<instance_id>/web/ee/manual/ee_guide/contents.htm

CAUTION Do not change the default location of any of the HTML files; they are
used for online help. You may move the PDF files to another
location..

Where to Go for Related Information

About This Guide 15

For a complete list of all documentation that ships with Certificate Management
System, including documentation for Directory Server, see Documentation
Summary, at: <server_root>/manual/index.html

For the latest information about Certificate Management System, including current
release notes, technical notes, and deployment information, check this site:
http://docs.sun.com/db?p=prod/s1.s1certs

Where to Go for Related Information

16 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

17

Chapter 1

Command-Line Tools

iPlanet Certificate Management Server (CMS) is bundled with various
command-line utilities. This chapter summarizes these utilities and provides
pointers to chapters that further explain them.

Table 1-1 summarizes the command-line utilities that are bundled with Certificate
Management System.

Table 1-1 Summary of command-line utilities

Utility/Tool Function

Batch/Shell Scripts located under <server_root>/bin/cert/tools/ (require jre):

PasswordCache
(Password Cache Utility)

Manipulates the contents of the single sign-on password cache.
For details, see Chapter 2, “Password Cache Utility.”

AtoB
(ASCII to Binary Tool)

Converts ASCII base-64 encoded data to binary base-64 encoded
data. For details, see Chapter 7, “ASCII to Binary Tool.”

BtoA
(Binary to ASCII Tool)

Converts binary base-64 encoded data to ASCII base-64 encoded
data. For details, see Chapter 8, “Binary to ASCII Tool.”

PrettyPrintCert
(Pretty Print Certificate
Tool)

Prints the contents of a certificate stored as ASCII base-64 encoded
data in a human-readable form. For details, see Chapter 9, “Pretty
Print Certificate Tool.”

PrettyPrintCrl
(Pretty Print CRL Tool)

Prints the contents of a CRL stored as ASCII base-64 encoded data
in a human-readable form. For details, see Chapter 10, “Pretty
Print CRL Tool.”

Executable tools located under <server_root>/bin/cert/tools:

certutil
(Certificate Database Tool)

View and manipulate the certificate database (cert7.db)
contents. For details, see Chapter 11, “Certificate Database Tool.”

keyutil
(Key Database Tool)

View and manipulate the key database (key3.db) contents. For
details, see Chapter 12, “Key Database Tool.”

18 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

killproc

(Kill Process Tool)

Kills or terminates system processes in Windows NT. For details,
see Chapter 3, “Kill Process Tool.”

setpin
(PIN Generator tool)

Generates PINs for end users for directory- and PIN-based
authentication. For details, see Chapter 4, “PIN Generator Tool.”

signtool
(Netscape Signing Tool)

Digitally signs any file, including log files. For details, see Chapter
13, “Netscape Signing Tool.”

sslstrength
(SSL Strength Tool)

Connects to an SSL server and reports back the type and strength
of the encryption cipher that it’s using. For details, see Chapter 15,
“SSL Strength Tool.”

ssltap
(SSL Debugging Tool)

Used to debug SSL applications. For details, see Chapter 14, “SSL
Debugging Tool.”

Perl Scripts located under <server_root> (require_perl):

cmsbackup Copies all of the pertinent data and configuration files for a CMS
instance, the local Administration Server, and local Netscape
Directory Servers that the instance uses into a compressed archive.
For details, see Chapter 6, “Backing Up and Restoring Data.”

cmsrestore Opens a named archive, extracts the data, and uses it to restore the
configuration of a CMS instance. For details, see Chapter 6,
“Backing Up and Restoring Data.”

Executable tools located under <server_root>/shared/bin:

modutil
(Security Module Database
Tool)

Used for managing the PKCS #11 module information within
secmod.db files or within hardware tokens. For details, see
Chapter 16, “Security Module Database Tool.”

Third-party executable tools located under <server_root>/bin/cert/tools:

dumpasn1 Dumps the contents of binary base-64-encoded data. Note that the
tool is freeware that is packaged with Certificate Management
System for your convenience. For more information about this
tool, check this site:
http://www.cs.auckland.ac.nz/~pgut001/

Third-party support tools located under <server_root>:

Table 1-1 Summary of command-line utilities (Continued)

Utility/Tool Function

Chapter 1 Command-Line Tools 19

The AtoB, BtoA, PrettyPrintCert, PrettyPrintCrl, and dumpasn1 tools are
useful for converting back and forth between various encodings and formats you
may encounter when dealing with keys and certificates.

The Password Cache Utility can be used to manipulate the contents of an existing
single sign-on password cache and to create a new cache.

The Certificate Database Tool, Key Database Tool, and Security Module Database
Tool are useful for a variety of administrative tasks that involve manipulating
certificate and key databases.

The PIN Generator tool is used to create PINs for directory authentication. The
killproc tool is used to terminate the Java virtual machines, called jre processes,
when Certificate Management System becomes unresponsive.

The Netscape Signing Tool can be used to associate a digital signature with any file,
including CMS log files.

bin/base/jre/bin/jre

bin/cert/jre/bin/jre

Java runtime executable for Netscape Console.

Java runtime executable for Certificate Management System.

Note that the CMS jre is invoked as cms_daemon during CMS
installation and configuration, as cms_watchdog to monitor the
status of the CMS server, and as cms_server to actually run the
CMS server.

bin/cert/tools/unzip Decompression utility executable.

bin/cert/tools/zip Compression utility executable.

install/perl perl scripting language executable.

Table 1-1 Summary of command-line utilities (Continued)

Utility/Tool Function

20 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

The SSL Strength Tool and SSL Debugging Tool are useful for testing and
debugging purposes.

NOTE If you find any problems in Certificate Database Tool (certutil),
Key Database Tool (keyutil), Netscape Signing Tool (signtool),
SSL Debugging Tool (ssltap), and SSL Strength Tool
(sslstrength), you may obtain the source code and build
instructions for the very latest version of these tools (and/or
potentially a binary image for the newer tool) at the following URL:

http://www.mozilla.org/projects/security/pki/nss/tools/
index.html

Note that all Key Database Tool functions have now been
incorporated into the single tool, Certificate Database Tool, and that
several of the command-line options for many of the tools may
have changed. Be sure to check back often to obtain the very latest
version of the desired security tool, as this site will be updated
often.

21

Chapter 2

Password Cache Utility

During the installation of iPlanet iPlanet Certificate Management Server (CMS), the
watchdog stores all the passwords required by the server for starting up—such as
passwords for the internal or external tokens, the bind password used by
Certificate Management System to access and update the internal database, the
bind password used by Certificate Management System to access and update the
LDAP directory used for authentication or publishing—in a password cache. The
cache is maintained in a file encrypted using the single sign-on password you
specify during installation.

The command-line utility named PasswordCache enables you to manipulate the
contents of the password cache. You will be required to manipulate the password
cache for various reasons. For example, assume you’ve configured the Certificate
Manager to publish certificates and CRLs to an LDAP directory and have
configured it to bind to the directory with Directory Manager’s DN and password.
If the directory administrator changes the Directory Manager’s password, the
Certificate Manager will fail to bind to the directory during startup. You can
resolve this problem by modifying the corresponding bind password in the cache
using the PasswordCache utility.

This chapter has the following sections:

• Location (page 21)

• Syntax (page 22)

• Usage (page 22)

Location
The PasswordCache utility is located with the rest of the command-line tools in
this directory: <server_root>/bin/cert/tools

Syntax

22 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Syntax
You can run the utility by executing the following command from the
<server_root>/cert-<instance_id> directory:

PasswordCache <sso_password> <command>

where <sso_password> specifies the current single sign-on password and
<command> can be any of the following:

❍ list

❍ add <password_name> <password>

❍ change <password_name> <password>

❍ delete <password_name>

❍ changesso <new_sso_password>

❍ create

<password_name> specifies the string (describing the password usage) you
want to add to, or modify or delete from the cache; it is equivalent to the
value assigned to the bindPWPrompt or tokenname parameter in the CMS
configuration file.

<password> specifies the new password.

<new_sso_password> specifies the new single sign-on password.

Usage
You can use the PasswordCache utility for the following:

• Changing the single sign-on password

• Listing or viewing the contents of the password cache

• Adding a new entry to the cache

• Changing the password associated with an entry

• Deleting an entry in the cache

NOTE You must run the PasswordCache utility from the
<server_root>/cert-<instance_id> directory.

Usage

Chapter 2 Password Cache Utility 23

The sections that follow explain how you can accomplish the above mentioned
tasks.

Changing the Single Sign-On Password
To change the single sign-on password:

1. Open a command window.

2. Go to this directory: <server_root>/cert-<instance_id>

3. At the prompt, enter the command below, substituting <sso_password> with
the single sign-on password and <new_sso_password> with the new single
sign-on password.

PasswordCache <sso_password> changesso <new_sso_password>

For example, if your old password is mySsoPwd and new password is
myNewSsoPwd, the command would look like this:

PasswordCache mySsoPwd changesso myNewSsoPwd

Listing the Contents of the Password Cache
To list or view the contents of the password cache:

1. Open a command window.

2. Go to this directory: <server_root>/cert-<instance_id>

3. At the prompt, enter the command below, substituting <sso_password> with
the single sign-on password:

PasswordCache <sso_password> list

For example, if your single sign-on password is mySsoPwd, the command
would look like this:

PasswordCache mySsoPwd list

NOTE The server queries the password cache only during start up, and
hence recongnizes the changes you’ve made to the cache only if you
restart the server from the command line. If you left any of the
passwords blank, the server will prompt you to enter that during
startup and from then on stores it in the password cache.

Usage

24 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

In response, you should see something similar to this:

----- Password Cache -----

Internal LDAP Database : myIdbPwd
Internal Key Storage Token : myTokenPwd
LDAP Publishing: myLdapPubPwd

Adding a New Entry to the Password Cache
To add a new entry to the cache:

1. Open a command window.

2. Go to this directory: <server_root>/cert-<instance_id>

3. At the prompt, enter the command below, substituting <sso_password> with
the single sign-on password, <password_name> with a string describing the
password usage, and <password> with the actual password:

PasswordCache <sso_password> add <password_name> <password>

For example, if your single sign-on password is mySsoPwd, the string
describing the password usage is Bind Password for LDAP Publishing
Directory, and password is myLdapPubPwd, the command would look like
this:

PasswordCache mySsoPwd add “Bind Password for LDAP Publishing
Directory” myLdapPubPwd

If the password name string includes spaces, be sure to enclose the string in
double quotes as indicated in the above example.

Changing the Password of an Entry in the
Password Cache
To change the password associated with an entry in the password cache:

1. Open a command window.

2. Go to this directory: <server_root>/cert-<instance_id>

Usage

Chapter 2 Password Cache Utility 25

3. At the prompt, enter the command below, substituting <sso_password> with
the single sign-on password, <password_name> with the string that describes
the password usage, and <password> with the new password:

PasswordCache <sso_password> change <password_name> <password>

For example, if your single sign-on password is mySsoPwd, the string
describing the password usage is Bind Password for LDAP Publishing
Directory, and the new password is myNewLdapPubPwd, the command would
look like this:

PasswordCache mySsoPwd change “Bind Password for LDAP Publishing
Directory” myNewLdapPubPwd

If the password name string includes spaces, be sure to enclose the string in
double quotes as indicated in the above example.

Deleting an Entry From the Password Cache
To delete an entry from the cache:

1. Open a command window.

2. Go to this directory: <server_root>/cert-<instance_id>

3. At the prompt, enter the command below, substituting <sso_password> with
the single sign-on password and <password_name> with the string that
describes the password usage:

PasswordCache <sso_password> delete <password_name>

For example, if your single sign-on password is mySsoPwd and the string
describing the password usage is Bind Password for LDAP Publishing
Directory, the command would look like this:

PasswordCache mySsoPwd delete “Bind Password for LDAP Publishing
Directory”

If the password name string includes spaces, be sure to enclose the string in
double quotes as indicated in the above example.

Usage

26 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Creating a New Password Cache
If you have changed CMS startup so that the server prompts for all the required
passwords, instead of just the single sign-on password, and want to revert back to
starting the server with a single sign-on password, you must create a new
password cache. Before creating a new password cache, decide on the single
sign-on password to protect the cache.

To create a new, empty password cache:

1. Open a command window.

2. Go to this directory: <server_root>/cert-<instance_id>

3. At the prompt, enter the command below, substituting <sso_password> with
a password to protect the cache:

PasswordCache <sso_password> create

For example, if the password you want to use to protect the single sign-on
cache is mySsoPwd, the command would look like this:

PasswordCache mySsoPwd create

27

Chapter 3

Kill Process Tool

If an error causes iPlanet Certificate Management Server (CMS) to become
unresponsive, and all attempts to stop it from Netscape Console fail, it may be
necessary to kill the server processes manually. This chapter describes the
killproc utility, which enables you to terminate CMS processes manually.

This chapter has the following sections:

• Location (page 27)

• Syntax (page 27)

• Usage (page 28)

Location
The killproc tool is located with the rest of the command-line tools in this
directory: <server_root>/bin/cert/tools

Syntax
The killproc command takes one argument, the process ID of the process to be
killed:

killproc <process_id>

where <process_id> specifies the ID of the process that needs to be
terminated.

Usage

28 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Usage
If an error causes Certificate Management System to become unresponsive, and all
attempts to stop it from Netscape Console fail, it may be necessary to kill the server
processes manually. The processes that should be killed are identified as follows:

• cms_server

• cms_watchdog

• cms_daemon

On a Windows NT system, the server processes will have .exe file extension and
will be listed in the Windows NT Task Manager. However, because they are
system processes, you cannot terminate them from the Task Manager. Instead, you
should terminate them using the killproc command-line tool.

In order to kill system processes, the user that runs killproc command must have
the Debug Programs permission. By default, this permission is given only to the
Administrators group, although this can be changed in the Windows NT User
Manager. Assuming it is not changed, killproc command must be run by a
member of the Administrators group (such as the user Administrator).

You can obtain the process ID from the Windows NT Task Manager. For example,
to kill the jre process whose process ID is 255, you should type:

c:\> killproc 255
Killed process 255.
c:\>

NOTE The killproc tool should only be used as a last resort. Because it
forces the process to terminate abruptly, the process is not able to
cleanup or to save its internal state before exiting.

29

Chapter 4

PIN Generator Tool

For iPlanet Certificate Management Server (CMS) to use the authentication plug-in
module named UidPwdPinDirAuth your authentication directory must contain
unique PINs for each end entity to whom you intend to issue a certificate. To aid
you in generating PINs for end-entity entries in a directory, Certificate
Management System provides a command-line tool called the PIN Generator. This
tool allows you to generate unique PINs for entries in an LDAP-compliant user
directory. The tool stores these PINs (as hashed values) in the same directory
against the corresponding user entries, and it copies the PINs to a text file, from
which you can deliver the PINs to end entities by an appropriate, secure means.

This chapter explains how to use the PIN Generator. The chapter has the following
sections:

• Locating the PIN Generator Tool (page 29)

• The setpin Command (page 30)

• How the Tool Works (page 34)

Locating the PIN Generator Tool
You can find the PIN Generator at this location:

<server_root>/bin/cert/tools/setpin.exe

The setpin Command

30 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

The setpin Command
You run the PIN Generator by entering the setpin command and its arguments in
a command shell and monitoring the output in the shell window. This section gives
the syntax for the setpin command and its arguments. For instructions on
generating PINs and storing them in your authentication directory, see section
“Configuring Authentication for End-User Enrollment”in Chapter 15, “Setting Up
End-User Authentication” of CMS Installation and Setup Guide.

Command-Line Syntax
Use the following command in a Unix or DOS command shell:

setpin [arguments]
setpin [optfile=filename] [param1] [param2]

Arguments
The setpin command takes the following arguments and options:

setpin

[host=<host_name> [port=<port_number>]]
[certdb=<path> nickname=<certificate_nickname> | "binddn=<user_id>"

bindpw=<bind_password> [SSL=yes | no]]
[objectclass=<objectclass_to_add>]
[attribute=<attribute_name_for_pins>]
["filter=<LDAP_search_filter>"]
[input=<file_name>]
[length=<PIN_length> | minlength=<minimum_PIN_length>

maxlength=<maximum_PIN_length>]
[gen=RNG-alpha | RNG-alphanum | RNG=printableascii]
[case=upperonly]
[hash=sha1 | md5 | none]
[output=<file_name>]
[clobber]
[write]
[saltattribute=<LDAP_attribute_to_use_for_salt_creation>]
[debug]

A description for each argument follows:

• [host=<host_name> [port=<port_number>]]

<host_name> specifies the LDAP directory to connect to.

The setpin Command

Chapter 4 PIN Generator Tool 31

<port_number> specifies the TCP/IP port to bind to; the default port number
is the default LDAP port, 389.

• [certdb=<path> nickname=<certificate_nickname> |
"binddn=<user_id>" bindpw=<bind_password> [SSL=yes | no]]

Use this argument to specify how the tool should connect to the directory:
whether to use basic authentication, SSL, or SSL with client authentication. By
default, SSL is not used (SSL=no).

❍ If you want the tool to use basic authentication, you must turn off SSL
(SSL=no) and enter the bind DN and password information. Do not enter
values for the remaining options.

❍ If you want the tool to use SSL, you must turn on SSL (SSL=yes) and enter
the bind DN and password information. Do not enter values for the
remaining options.

❍ If you want the tool to use SSL with client authentication, you must turn on
SSL (SSL=yes) and enter the nickname of the certificate to use for SSL client
authentication and the path to the certificate database that contains this
certificate. You don’t have to provide the bind DN and password.

<path> specifies the path to the certificate database containing the client
authentication certificate to use for SSL client authentication. If you provide the
path to the certificate database (cert7.db in Netscape Directory Server), it is
assumed that the LDAP directory has been set up for SSL-based access. You
must also specify the certificate for SSL client authentication to the directory.

<certificate_nickname> specifies the nickname of the certificate to use for
SSL client authentication to the directory. The tool looks for this certificate in
the database specified by the path parameter value. If you want the tool to use
a client certificate residing on a token or smart card to access the directory,
prefix the nickname with the word module (module:nickname); then a PKCS
#11 module will be used.

<user_id> specifies the user ID that has read and write permission to the
LDAP directory; the PIN Generator binds to the directory as this user.

<bind_password> specifies the password for the user ID that has read and
write access to the LDAP directory.

If the bind password is not given at the command line, the tool prompts for it.

• [objectclass=<objectclass_to_add>]

Use this argument to specify the object class, if any, the tool should add to the
authentication directory. By default it is pinPerson.

The setpin Command

32 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

• [attribute=<attribute_name_for_pins>]

Use this argument to specify the authentication directory attribute to which
PINs should be published. If you don’t specify an attribute, it defaults to pin,
the new attribute added to the authentication directory schema.

• ["filter=<LDAP_search_filter>"]

Use this argument to filter those DNs in the directory for which the tool should
generate PINs. For information on how to specify filters, see the information
available at this URL: http://developer.netscape.com/docs/manuals/
dirsdk/capi/search.htm

• [input=<file_name>]

Use this argument to specify the name of the file that contains the list of DNs to
process. Using this argument is optional. If you do, the tool compares the
filtered DNs to the ones specified by the input file and generates PINs for only
those DNs that are also in the file.

• [length=<PIN_length> | minlength=<minimum_PIN_length>
maxlength=<maximum_PIN_length>]

Use this argument to specify the exact number or a range of characters that a
PIN must contain. The PINs can be either a fixed length or generated to be
between two values (x,y) inclusive (x,y>0).

<PIN_length> specifies the exact length for the PINs. For example, if you want
PIN length to be eight characters, enter 8. PIN length must be an integer
greater than zero.

<minimum_PIN_length> specifies the minimum length for the PINs. For
example, if you want PIN length to be at least six characters, enter 6.

<maximum_PIN_length> specifies the maximum length for the PINs. For
example, if you want PIN length to be nine characters at the most, enter 9.

• [gen=RNG-alpha | RNG-alphanum | RNG-printableascii]

Use this argument to specify the type of characters for PINs. The characters in
the password can be constructed out of alphabetic characters (RNG-alpha),
alphanumeric characters (RNG-alphanum), or any printable ASCII characters
(printableascii).

• [case=upperonly]

Use this argument with the gen parameter. If you do, the case for all alphabetic
characters is fixed to uppercase only; otherwise, the case is mixed. Restricting
alphabetic characters to uppercase reduces the overall combinations for the
password space significantly.

The setpin Command

Chapter 4 PIN Generator Tool 33

• [hash=sha1 | md5 | none]

Use this argument to specify the message digest algorithm the tool should use
to hash the PINs before storing them in the authentication directory. If you
want to store PINs as SHA-1 or MD5 hashed values in the directory, be sure to
specify an output file for storing PINs in plain text. You will need the PINs in
plain text for delivering them to end entities.

sha1 produces a 160-bit message digest. This option is used by default.
md5 produces a 128-bit message digest.
none does not hash the PINs.

• [output=<file_name>]

Use this argument to specify the absolute path to the file to which the tool
should write the PINs as it generates them; this is the file to which the tool will
capture the output.

If you don’t specify a filename, the tool will write the output to the standard
output. In any case, all the error messages will be directed to the standard
error.

• [clobber]

Use this argument to specify whether the tool should overwrite preexisting
PINs, if any, associated with a DN (user). If specified, the tool overwrites the
existing PINs with the one it generates. Otherwise, it leaves the existing PINs
as they are.

• [write]

Use this argument to specify whether the tool should write PINs to the
directory. If specified, the tool writes PINs (as it generates) to the directory.
Otherwise, the tool does not make any changes to the directory.

For example, if you want to check PINs—that the PINs are being given to the
correct users and that they are conforming to the length and character-set
restrictions—before updating the directory, do not specify this option. You can
check the PINs before updating the directory by looking at the output file; for
details, see “Output File” on page 38.

• [saltattribute=<LDAP_attribute_to_use_for_salt_creation>]

Use this argument to specify the LDAP attribute the tool should use for salt
creation. If you specify an attribute, the tool integrates the corresponding value
of the attribute with each PIN, and hashes the resulting string with the hash
routine specified in the hash argument.

How the Tool Works

34 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

If you don’t specify this argument, the DN of the user is used. For details, see
“How PINs Are Stored in the Directory” on page 39.

• [debug]

Use this argument to specify whether the tool should write debugging
information (to the standard error). If debug=attrs is specified, the tool writes
much more information about each entry in the directory.

• [testpingen=<count>]

Use this argument to test the pin-generation mode.

<count> specifies the total number (in decimal) of PINs to be generated for
testing purposes.

• [optfile]

Use this argument to specify that the tool should read in options (one per line)
from specified file; this option enables you to put all the arguments in a file,
instead of typing them on the command line.

Example
The following command generates PINs for all entries that have the CN attribute (in
their distinguished name) defined in an LDAP directory named laiking that is
listening at port 19000. The PIN Generator binds to the directory as user
DirectoryManager and starts searching the directory from the node
dn=o=siroe.com in the directory tree. The tool overwrites the existing PINs, if
any, with the new ones.

setpin host=lailing port=19000 "binddn=CN=directoryManager"
bindpw=password "filter=(cn=*)" basedn=o=siroe.com clobber write

How the Tool Works
The Pin Generator allows you to generate PINs for user entries in an
LDAP-compliant directory and update the directory with these PINs. To run the
setpin command, you need at a minimum to specify the following:

• The host name (host) and port number (port) of the LDAP server

• The bind DN (binddn) and password (bindpw)

• An LDAP filter (filter) for filtering out the user entries that require PINs

How the Tool Works

Chapter 4 PIN Generator Tool 35

For example:

setpin host=laiking port=19000 "binddn=CN=Directory Manager"
bindpw=netscape "filter=(ou=employees)" basedn=o=siroe.com

This command, if run, will query the directory for all the entries that match the
filter criteria, which in this case is all users belonging to an organizational unit (ou)
called employees. For each entry matching the filter, information is printed out to
standard error. Additionally, to the standard output or the file named in output;
see “Output File” on page 38.

You can also provide the tool with an input argument using the input option. The
argument must be in the form of an ASCII file of pre-prepared DNs and PINs (see
Figure 4-1). Note that the input file isn’t a substitute for the LDAP directory entries;
the filter attribute must still be provided. If an input file is provided, the tool
updates only those filtered attributes that match the ones in the input file. For more
information about the input file, see “Input File” on page 37.

Figure 4-1 Using an input and output file for the PIN-generation process

How the Tool Works

36 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Examples of output follow:

Processing: cn=QA Managers,ou=employees,o=siroe.com

 Adding new pin/password

dn:cn=QA Managers,ou=employees,o=siroe.com
pin:lDWynV
status:notwritten

Processing: cn=PD Managers,ou=employees,o=siroe.com

 Adding new pin/password

dn:cn=PD Managers,ou=employees,o=siroe.com
pin:G69uV7
status:notwritten

Because the PIN Generator makes a lot of changes to your directory, it is important
that you specify the correct filter; otherwise, you may change the wrong entries. As
a safeguard, a write option is provided that you use to enable writing to the
directory after you verify the output; the tool doesn’t make any changes to the
directory until you specify the write option on the command line.

The output also contains the status of each entry in the directory. It can be one of
the values specified in Table 4-1.

Table 4-1 PIN Generator status

Exit code Description

notwritten Specifies that the PINs were not written to the directory, because the write
option was not specified on the command line.

writefailed Specifies that the tool made an attempt to modify the directory, but the write
operation was unsuccessful.

added Specifies that the tool added the new PIN to directory successfully.

replaced Specifies that the tool replaced an old PIN with a new one (the clobber option
was specified).

notreplaced Specifies that the tool did not replace the old PIN with a new one (the clobber
option was not specified).

How the Tool Works

Chapter 4 PIN Generator Tool 37

If a PIN already exists for a user, it will by default not be changed if you run the
setpin command a second time. This is so that you can generate PINs for new
users without overwriting PINs for users who have previously been notified of
their PINs. If you want to overwrite a PIN, you should use the clobber option.

Once you are sure that the filter is matching the right users, you should run the
setpin command again with the write option, and with output set to the name of
the file to capture the unhashed PINs. This output file is in the same format as the
input file. For details about the output file, see “Output File” on page 38.

Input File
The PIN Generator can receive a list of DNs to modify in a text file specified by the
input=<file_name> argument. If you specify an input file, the tool compares the
DNs it filtered from the LDAP directory with the ones in the input file, and updates
only those DNs that matched the ones in the input file.

The purpose of the input file is multifold. It enables you to provide the Pin
Generator with an exact list of DNs to modify. Via the input file, you can also
provide the PIN Generator with PINs (in plain text format) for all DNs or for
specific DNs.

The following examples explain why you might want to use the input file:

• Assume that you have set PINs for all entries in the user directory. Two new
users joined your organization and you updated the directory with new users’
information. For the new users to get certificates, the directory must contain
PINs. And you want to set PINs for just those user entries without making
changes to any of the other user entries. Instead of constructing a complex
LDAP filter to filter out just these two entries, you can construct a general filter,
put the two users’ DNs in the input file, and run the PIN Generator.

• Assume that you want your users to use their social security numbers as PINs.
You can enter users’ social security numbers as PINs in the input file, and the
PIN Generator will store them as hashed values in the directory.

The format of the input file is the same as that of the output file (see “Output File”
on page 38), with the omission of the status line. In the input file, you can choose to
specify PINs for all the DNs in the file, for specific DNs, or for none of the DNs. If
the PIN attribute is missing for a DN, the tool automatically generates a random
PIN.

How the Tool Works

38 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

For example, you can set up your input file to look like this:

dn:cn=user1, o=siroe
<blank line>

dn:cn=user2, o=siroe
<blank line>

...

dn:cn=user3, o=siroe

You can also provide PINs, in plain-text format, for the DNs in the input file, which
is then hashed according to the command-line arguments. For example, you can set
up your input file to look like this:

dn:cn=user1, o=siroe
pin:pl229Ab
<blank line>

dn:cn=user2, o=siroe
pin:9j65dSf
<blank line>

...

dn:cn=user3, o=siroe
pin:3knAg60
<blank line>

Output File
The PIN Generator can capture the output to a text file specified by the
output=<file_name> argument.

The captured output will contain a sequence of records and will be in the following
format:

dn: <user_dn>1
pin: <generated_pin>1
status: <status>1
<blank line>

NOTE You cannot provide hashed PINs to the tool.

How the Tool Works

Chapter 4 PIN Generator Tool 39

dn: <user_dn>2
pin: <generated_pin>2
status: <status>2
<blank line>

...

dn: <user_dn>n
pin: <generated_pin>n
status: <status>n
<blank line>

where

<user_dn> is a distinguished name that matched the specified DN pattern
(specified by the DN filter) or that was in the input file (the DN file). By default, the
delimiter is ";" or the character defined on the command line.

<generated_pin> is a string of characters with either fixed or variable length,
dependent on parameters passed into the command.

<status> is one of the values specified in Table 4-1 on page 36.

The first line in each record will always be the distinguished name. The subsequent
lines, for pin and status, are optional. The record ends with a blank line. The end
of line (EOL) sequence is as follows:

• On Windows NT: \r\n

• On Unix: \n

How PINs Are Stored in the Directory
Each PIN is concatenated with the corresponding user's LDAP attribute named in
the saltattribute argument. If this argument is not specified, the DN of the user
is used. Then, this string is hashed with the hash routine specified in the hash
argument (the default selection is SHA-1).

Then, one byte is prepended to indicate the hash type used. Here’s how the PIN
gets stored:

byte[0] = X

The value of X depends on the hash algorithm chosen during the PIN generation
process:

X=0 if the hash algorithm chosen is SHA-1.
X=1 if the hash algorithm chosen is MD5.
X=45 if the hash algorithm chosen is none.

How the Tool Works

40 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

byte[1...] = hash("DN"+"pin")

The PIN is stored in the directory as a binary value, not as a base-64 encoded value.

Exit Codes
The PIN Generator returns exit codes to the shell window; for a list of codes, see
Table 4-2. If you plan on automating the PIN-generation process, exit codes are
useful in programming shell scripts.

Table 4-2 Exit codes returned by the PIN Generator

Exit code Description

0 Indicates that PIN generation was successful; that is, PINs are set for all the DNs in the
specified directory.

2 Indicates that the tool could not open the certificate database specified by the certdb
parameter.

3 Indicates that the tool could not locate the certificate specified by the nickname
parameter in the specified certificate database.

4 Indicates that the tool could not bind to the directory as the user specified by the
binddn parameter (over SSL).

5 Indicates that the tool could not open the output file specified by the output
parameter.

7 Indicates an error parsing command-line arguments.

8 Indicates that the tool could not open the input file specified by the input parameter.

9 Indicates that the tool encountered an internal error.

10 Indicates that the tool found a duplicate entry in the input file specified by the input
parameter.

11 Indicates that the tool didn’t find the salt attribute, specified by the
saltattribute parameter, in the directory.

41

Chapter 5

Extension Joiner Tool

iPlanet iPlanet Certificate Management Server (CMS) provides many policy
plug-in modules that enable you to add standard and custom X.509 certificate
extensions to end-entity certificates the server issues. Similarly, the wizard that
helps you generate the certificates required by the Certificate Manager,
Registration Manager, and Data Recovery Manager enables you to select
extensions that you want to include in the certificates. Additionally, the wizard
interface and the request-approval page of the Agent interface contains a text area,
enabling you to paste any extension in its MIME-64 encoded format.

Certificate Management System also provides tools that generate MIME-64
encoded blobs for many standard extensions. You can use these tools for
generating MIME-64 encoded blobs for any extensions that you may want to
include in CA and other certificate requests. The tools are located with the rest of
the command-line utilities in this directory: <server_root>/bin/cert/tools

The text field provided for pasting the extension in general accepts a single
extension blob. If you want to add multiple extensions, you should first join them
to form a single extension blob and then paste the blob into the text field.

The ExtJoiner is a program that joins a sequence of extensions together so that the
final output can be used in the wizard text field or in the request-approval page of
the Agent interface for specifying multiple extensions.

This chapter has the following sections:

• Location (page 42)

• Syntax (page 42)

• Usage (page 42)

Location

42 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Location
The ExtJoiner program is located with the rest of the command-line tools in this
directory: <server_root>/bin/cert/tools

Syntax
To run the ExtJoiner tool, type the following command:

java ExtJoiner <ext_file0> <ext_file1> ... <ext_fileN>

where <ext_file> specifies the path, including the filename, to files that contain
the base-64 encoded DER encoding of an X.509 extension.

Usage
As discussed in the introduction of this chapter, the ExtJoiner program doesn’t
generate an extension in its MIME-64 encoded format, it only joins the extensions
that are in MIME-64 encoded format. The steps below outline how you can use the
ExtJoiner to join multiple custom extensions and add the extensions to a
certificate request.

1. Write the appropriate Java programs for the extensions.

2. Join the extensions using ExtJoiner. To do this:

a. Note the file paths to the files that contain the programs for extensions.

b. Open a command window.

c. Run the ExtJoiner, substituting the appropriate file paths. For example, if
you have two extension files named myExt1 and myExt2 and have copied
them to the same directory as the ExtJoiner, the command would look like
this: java ExtJoiner myExt1 myExt2

You should see a base-64 encoded blob, similar to the one below, of the
joined extensions on screen:
MEwwLgYDVR0lAQHBCQwIgYFKoNFBAMGClGC5EKDM5PeXzUGBi2CVyLNCQYFU

iBakowGgYDVR0SBBMwEaQPMA0xCzAJBgNVBAYTAlVT

d. Copy the encoded blob, without any modifications, to a file.

Usage

Chapter 5 Extension Joiner Tool 43

3. Verify that the extensions are joined correctly before adding them to a
certificate request. To do this, first you’ll need to convert the binary data to
ASCII format using the AtoB utility and then verify the binary data by
dumping the contents of the base-64 encoded blob using the dumpasn1 utility.
For information on the AtoB utility see, Chapter 7, “ASCII to Binary Tool” and
for the dumpasn1 utility see, Table 1-1 on page 17.

Here’s how you would do this verification:

a. Go to this directory: <server_root>/bin/cert/tools

b. Enter this command: AtoB <input_file> <output_file>, substituting
<input_file> with the path to the file that contains the base-64 encoded
data in ASCII format (from Step 2) and <output_file> with the path to
the file to write the base-64 encoded data in binary format.

c. Next, enter this command: dumpasn1 <ouput_file>, substituting
<output_file> with the path to the file to that contains the base-64
encoded data in binary format. Your output should look similar to this:

0 30 76: SEQUENCE {
2 30 46: SEQUENCE {
4 06 3: OBJECT IDENTIFIER extKeyUsage (2 5 29 37)
9 01 1: BOOLEAN TRUE
12 04 36: OCTET STRING
: 30 22 06 05 2A 83 45 04 03 06 0A 51 82 E4 42 83
: 33 93 DE 5F 35 06 06 2D 82 57 22 CD 09 06 05 51
: 38 81 6A 4A
: }
50 30 26: SEQUENCE {
52 06 3: OBJECT IDENTIFIER issuerAltName (2 5 29 18)
57 04 19: OCTET STRING
: 30 11 A4 0F 30 0D 31 0B 30 09 06 03 55 04 06 13
: 02 55 53
: }
: }

 0 warnings, 0 errors.

d. If the output doesn’t appear right, repeat steps 1 through 3 to get the
correct output.

4. Copy the base-64 encoded blob in step 2 (the output generated by the
ExtJoiner) to the CMS wizard screen and generate the certificate or the
certificate signing request (CSR), if submitting the request to another CA..

Usage

44 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

45

Chapter 6

Backing Up and Restoring Data

This chapter explains how to back up the iPlanet Certificate Management Server
(CMS) data and configuration information and how to use the backups to restore
data if there is a need.

The chapter has the following sections:

• Backup and Restore Tools (page 45)

• Backing Up Data (page 46)

• Restoring Data (page 51)

Backup and Restore Tools
Certificate Management System provides tools to backup and restore the data and
configuration for a CMS instance. These tools can be used, for example, to back up
just your CMS data before you upgrade hardware or software on a machine. You
might also use these tools as part of your overall system backup plan, perhaps to
provide more frequent checkpoints of the CMS data than a nightly disk backup
would record.

Since only CMS configuration and data are backed up, you will need to take other
measures to back up data for external PKCS#11 cryptographic or key storage
devices (such as smart card readers). If you rely on an external device for key
storage (for example, to store the CA signing key), make sure that its data is backed
up whenever you back up CMS data. When you restore the CMS data, it will rely
on the external keys still being available. Refer to the PKCS#11 module vendor’s
instructions for how to back up the data.

Backing Up Data

46 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

The backup and restore tools are simple Perl scripts; most Perl programmers
should find no difficulty in customizing or extending them. Read this chapter to
familiarize yourself with how the scripts work as well as their capabilities and
limitations.

The Perl scripts that perform the backup or restore are called from shell scripts
installed in the <server_root>/cert-<instance_id>/ directory of every CMS
instance:

• cmsbackup[.bat] copies all of the pertinent data and configuration files for a
CMS instance, the local Administration Server, and local Netscape Directory
Servers that the instance uses into an compressed archive (a zip file). See
“Backing Up Data” on page 46 for instructions on how to use this tool.

• cmsrestore[.bat] opens a named archive, extracts the data, and uses it to
restore the configuration of a CMS instance. You have the option to restore
everything or to select a subset of the archived data. See “Restoring Data” on
page 51 for instructions on how to use this tool.

Be aware that the backup archives contain sensitive information (for example, your
CMS key database). Protect the backup archives as carefully as you protect the
server itself. The backups are stored on a local disk by default. To avoid losing both
the current data and the backup because of a disk failure, move the backup
archives to another medium as soon as they are created. If possible, encrypt the
archives or store them on removable media in a secured location.

Backing Up Data
Backing up your data is actually a very simple process. You run the script, and it
creates an archive that you store securely. This section explains what the backup
tool (cmsbackup) does and does not do so that you can plan your overall system
maintenance and backup procedures.

What the Backup Tool Does
There is a script or batch file installed in the instance directory of every CMS
instance. This file calls the Perl script
<server_root>/bin/cert/tools/CMSBackup.pl (using a Perl 5.003 interpreter
bundled with Certificate Management System). CMSBackup.pl does the following:

• Creates a log file where all backup actions are logged

• Creates a temporary backup directory

Backing Up Data

Chapter 6 Backing Up and Restoring Data 47

• Copies non-CMS certificate and key databases and shared files

• Copies files required to configure the Netscape Console and Administration
Server

• Backs up the configuration directory server using that server’s db2bak backup
utility (if the server is running locally)

• Backs up the CMS internal database directory server using that server’s db2bak
backup utility

• Copies CMS global and local class files

• Copies CMS user interface files and templates

• Copies CMS instance configuration files

• Creates a compressed archive of all files in the backup directory

The log file is in <server_root>/cert-<instance_id>/logs/cmsbackup.log.
You should review the log file after each backup to make sure that all phases of the
backup completed successfully. If all or part of the backup fails it is usually due to
a directory that is missing or not readable by the user running the backup.

The default temporary backup directory is /var/tmp (Unix) or C:\Temp (Windows
NT). Ensure that access to this directory is restricted so that no one can intercept
backup files while the archive is being built. You can change the working backup
directory by changing the value of $backup_path_prefix in CMSBackup.pl.

The non-CMS databases and shared files that are backed up are:

• <server_root>/alias/*

• <server_root>/shared/config/*.conf

The Netscape Console Administration Server files that are backed up are the
following files from <server_root>/admin-serv/config/:

• admpw, the Administration Server password cache

• *.conf, the Configuration files for the server and its associated LDAP data

• *.db, the certificate and key databases for the Administration Server and
secmodule.db (database of PKCS#11 modules available to all server instances)

The backup tool will use the Netscape Directory Server db2bak tool to create a
backup of the CMS server instance internal database directory and the
configuration directory (if it is running locally). See Chapter 4, “Managing
Directory Server Databases,” in iPlanet Directory Server Administrator’s Guide for full
details of what this tool does. The data backed up includes all schema and object
class definitions and, of course, all entries in the directory.

Backing Up Data

48 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

These CMS global and local class files are Java classes for custom plug-ins used by
CMS servers. To back up this data, all files and subdirectories in the following
directories are backed up:

• <server_root>/bin/cert/classes

• <server_root>/cert-<instance_id>/classes

The CMS user interface files and templates are the files used to create the forms end
entities and agents use to interact with CMS servers. All of these files for the
instance you are backing up are in

• <server_root>/cert-<instance_id>/web

The CMS configuration files that get backed up are in
<server_root>/cert-<instance_id>/config. The specific files and their
purposes are:

• CMS.cfg, the current master configuration file for the instance.

• CMS.cfg.*, previous configuration files, available for reverting to an earlier
configuration.

• *.db, the server instance key and certificate databases.

• *.ldif, ldif-format files that describe objects in the configuration database.

• pwcache.p12, the server instance password cache.

All of the data to be backed up is copied to the temporary backup directory. After
all of the data has been copied, the script archives the entire backup directory into a
compressed archive using zip (a copy of zip is installed in
<server_root>/bin/cert/tools/zip). The script deletes the backup directory
once the zip archive is created.

What the Backup Tool Does Not Do
The cmsbackup script backs up only configuration and data related to a single CMS
server instance. You may need to back up other files to recover from a failure
completely, depending on the nature of the failure. For example, if some entries in
your configuration directory server become corrupted then the data backed up by
cmsbackup is sufficient to restore the directory to a previous state. If, however, you
suffer a catastrophic disk failure, you will probably have to reinstall or restore
Certificate Management System, Netscape Console, and Netscape Directory Server
binaries and related tools before you use cmsrestore to recover your previous
configuration.

Backing Up Data

Chapter 6 Backing Up and Restoring Data 49

The following is a list of items which may be part of your overall CMS deployment,
but which are not backed up by cmsbackup:

• Other instances of CMS servers in the same server root

Each instance has a copy of the cmsbackup script that backs up only data
related to that instance.

• External PKCS#11 module data

If you use an external PKCS#11 device for key storage, make sure you follow
the vendor’s instructions for backing up its data whenever you back up your
CMS server. It may be possible to extend the CMSBackup.pl and
CMSRestore.pl Perl scripts to include this data in the archives used by the
CMS backup tools.

• Server binaries, libraries, and tools

These files do not change after installation, and are not backed up. To restore
these files, you can install the software again from the original media. You can
also use a more generic disk backup tool to archive the contents of all
directories beneath the server root.

Running the Backup Tool
Before you run cmsbackup, make sure that

• You are logged in as a user with permission to run cmsbackup, to run db2bak
for the LDAP servers, and to write to the output directory; you may need to
become superuser on a UNIX system or Administrator on a Windows NT
system.

• There is plenty of disk space in the output directory; the size of the backup
archive will vary with the amount of data in your system, so you will learn
from experience how much space you require.

The configuration that you back up, of course, will use all of your current
passwords. You will need to remember the current passwords if you restore this
data after you change some passwords.

To run cmsbackup:

1. Log in to the machine where your CMS instance is running and open a
command shell.

Backing Up Data

50 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

2. Change to the CMS server instance directory in the server root. For example, if
your server root is /usr/netscape/server4 and the instance ID of the server
you want to back up is cmsinstance:

cd /usr/netscape/server4/cert-cmsinstance

3. Execute the backup script: either cmsbackup on UNIX or cmsbackup.bat on
Windows NT systems. For example,

./cmsbackup

The script will run. Control returns to the command prompt when the script has
finished.

After You Finish a Backup
Immediately after running the backup tool, you should check the log file to make
sure that all systems were archived successfully. The log file is

<server_root>/cert-<instance>/logs/cmsbackup.log

If the any part of the backup was not successful, there will be a message labeled
WARNING or ERROR that tells you why. Most of the time, the problems are the result
of directories or files that are missing or inaccessible to the user running
cmsbackup. If necessary, change the permissions on the required files, delete the
zip archive in the output directory, and run cmsbackup again.

Once you have a successful zip archive, you should secure it. The output directory
is probably accessible to any user on the system, and it may be on the same
physical disk as the server instance itself. You want to make sure the archive is not
accessible to unauthorized users and that you can use the archive if there is a
system hardware failure. Remember, the archive contains a database of private
keys. Although it is not easy to extract a key from the database without the correct
passwords, you do not want anyone to have the opportunity to try.

Move the zip archive to another machine or removable medium. If possible,
encrypt the archive (do not use the private keys stored in your CMS server’s
database, since they may not be available when you need to restore the data). If you
copy the archive to removable media such as tape or CD, make sure the copy is
kept in a limited-access, locked area.

Restoring Data

Chapter 6 Backing Up and Restoring Data 51

Restoring Data
The purpose of creating back up archives, of course, is to allow you to restore a
previous state of the CMS server instance after a hardware or software failure
corrupts your current state. The restore tool allows you to recover all or part of the
configuration that was backed up. For example, you can use the tool to restore just
the internal database of a CMS server instance.

A special case, automatic restore, allows you to completely restore the
configuration from the latest backup archive quickly and without interaction.

Before You Restore Data
Before you can restore from a backup archive, the archive you want to use has to be
available on a disk accessible from the server instance directory. If you want to use
the automatic restore feature, you should put the archive in the output directory
where cmsbackup originally created it (C:\Temp on Windows NT or /var/tmp on
UNIX).

Note the full path name to the backup archive; in the instructions later it will be
referred to as <archive_path>. For example, on a UNIX system, the
<archive_path> might be

/var/tmp/CMS_cmsdemo_BACKUP-19991115093827.zip.

You can use the word automatic instead of a path name to indicate the location of
the backup archive. If you use automatic, the restore tool will read the file
logs/latest_backup to find the path name of the archive. This file is created by
cmsbackup and contains the name of the last archive created. Note that automatic
always causes all data to be restored: you will not be able to select only a subset of
the data.

If you moved the zip archive to another machine or removable medium, copy it
back to the local file system. If you encrypted the archive, decrypt it before you try
to restore the data.

You cannot restore data to a CMS instance that has not been configured. If you
re-installed CMS prior to attempting to restore data, you must configure the new
CMS instance. When you configure the new installation, keep the following points
in mind:

• All services should be running on the same network ports as they were when
the backup archive was created. For example, the administration console port
is a random number by default; be sure to change the default to the same port
that your original installation used.

Restoring Data

52 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

• During configuration, you still need to create new keys and certificates for any
servers that use the internal token. You only need to create these keys to
complete the configuration process. Your signing, SSL, or DRM transport
certificates will be restored (replacing whatever you create during the new
configuration) when you run the restore script.

The user running the restore tool will probably need superuser (UNIX) or
Administrator (Windows NT) privileges. The user running the tool will need
privileges to do the following:

• Read the backup zip archive

• Create a temporary working directory in the directory where the archive is
located

• Create directories and files in the server root and server instance directories
(for example, if the CMS.cfg file needs to be restored)

• Run the bak2db tool for any Netscape Directory Servers that are being restored

• (UNIX) Change file ownership of the LDAP database backup files to the
directory server user. The directory server user is defined by the localuser
parameter in slapd.conf. If the directory server user is different from the user
running cmsrestore, the user running the tool must be able to run chown to
change the owner of the files to the LDAP server user (typically only the
superuser has this privilege).

The process of restoring data will require that some servers be stopped and
restarted. If any of your servers require passwords to start (for example, if they
need to unlock the key database in order to listen for SSL requests), you will be
prompted for the password. If any passwords have changed since you created the
backup archive, make sure you know the password that was valid at the time the
archive was created.

Running the Restore Tool
To run cmsrestore:

1. Log in to the machine where the CMS instance you want to restore is installed
and open a command shell.

2. Change to the CMS server instance directory in the server root. For example, if
your server root is /usr/netscape/server4 and the instance ID of the server
you want to restore is cmsinstance:

cd /usr/netscape/server4/cert-cmsinstance

Restoring Data

Chapter 6 Backing Up and Restoring Data 53

3. Execute the restore script: either cmsrestore on UNIX or cmsrestore.bat on
Windows NT systems.

You can either provide the <archive_path> as an argument or use the
argument automatic (to read the archive path from logs/latest_backup):

./cmsrestore <archive_path> | automatic

For example,

./cmsrestore \
/var/tmp/CMS_cmsdemo_BACKUP-19991115093827.zip

If you use automatic as the argument, the restore proceeds automatically; go
to Step 9 when cmsrestore completes.

4. The script asks if you would like to perform a complete or prompted restore.
Enter

❍ c (complete) to completely restore the contents of the archive without
further prompts. Proceed with Step 9 when the restore is complete.

❍ p (prompted) to have the script ask you whether you want to restore
specific parts of the archive.

5. If the configuration directory server is located in the same server root, the first
prompt asks if you want to restore it. The configuration directory server is the
directory used by the Administration Server to store information about
servers, users, and groups.

If you answer yes, the restore tool stops the directory server, restores the data,
then restarts the server. You may be asked to enter a password if one is
required to start the server.

6. Next you are asked if you want to restore selected Administration Server data.

If you answer no, no Administration Server data will be restored; proceed with
the next step.

If you answer yes, you will be asked three more questions about specific
Administration Server data you want to restore:

a. Main admin data is data in the Administration Server’s config directory.

b. Non-CMS shared data is data in the <server_root>/shared/config
directory.

c. Non-CMS certificate and key databases are the databases in the
<server_root>/alias directory; CMS instances maintain their own
alias directories in the instance subdirectories.

Restoring Data

54 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

After you answer the questions, the Administration Server is stopped, the data
restored from the archive, and the server is started again. If necessary, you will
be prompted to enter a password to start the Administration Server.

7. Next you are asked if you want to restore the CMS internal database directory
server. This is the directory server this CMS instance uses as its internal
database.

If you answer yes, the restore tool stops the directory server, restores the data,
then restarts the server. You may be asked to enter a password if one is
required to start the server.

8. Next you are asked if you want to restore selected data for this CMS server
instance.

If you answer yes, you will be asked four more questions about the following
CMS server instance data that you can restore:

a. Global CMS classes are Java classes that are shared by all CMS servers in
the same server root.

b. Critical CMS data includes the configuration files, certificate and key
databases, and password cache in the config directory for this CMS
instance.

c. Local CMS classes are Java classes used only by this server instance.

d. Custom CMS UI data includes all HTML files and templates in the web
subdirectory of this CMS instance.

After you answer these questions, the tool stops the CMS server, restores the
data, then restarts the server. You will be asked to enter the single sign-on
password that unlocks the password cache when the server restarts (see
section “Password Cache” in Chapter 8, “Starting and Stopping CMS
Instances” of CMS Installation and Setup Guide.)

9. After the tool finishes restoring data, view the cmsrestore.log file in the
server instance logs directory.

Review each step to make sure there were no errors in restoring the data. If
there were errors or warnings, you may want to run cmsrestore again. You
may need to change permissions on some files or manually start some servers
before running cmsrestore again.

The restore tool deletes the working directory where it unpacked the archive, but it
does not delete the archive itself. You probably will not want to keep the backup
archive on disk. Remember that the backup archive contains sensitive information.
Delete or secure the archive when you are done using it to restore data.

Restoring Data

Chapter 6 Backing Up and Restoring Data 55

Restoring Data

56 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

57

Chapter 7

ASCII to Binary Tool

You can use the ASCII to Binary tool to convert ASCII base-64 encoded data to
binary base-64 encoded data.

This chapter has the following sections:

• Availability (page 57)

• Syntax (page 57)

• Example (page 58)

Availability
This tool is available for AIX 4.3, OSF/1 v4.0D, Solaris 2.6 (SunOS 5.6), Solaris 8,
and Windows NT 4.0.

Syntax
To run the ASCII to Binary tool, type the following command:

AtoB[.bat] <input_file> <output_file>

.bat specifies the file extension; this is required only when running the utility
on a Windows NT system.

<input_file> specifies the path to the file that contains the base-64 encoded
data in ASCII format.

<output_file> specifies the path to the file to write the base-64 encoded data
in binary format.

Example

58 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Example
AtoB.bat C:\test\data.in C:\test\data.out

The above command takes the base-64 encoded data (in ASCII format) in the file
named data.in and writes the binary equivalent of the data to the file named
data.out.

59

Chapter 8

Binary to ASCII Tool

You can use the Binary to ASCII tool to convert binary base-64 encoded data to
ASCII base-64 encoded data.

The chapter has the following sections:

• Availability (page 59)

• Syntax (page 59)

• Example (page 60)

Availability
This tool is available for AIX 4.3, OSF/1 v4.0D, Solaris 2.6 (SunOS 5.6), Solaris 8,
and Windows NT 4.0.

Syntax
To run the Binary to ASCII tool, type the following command:

BtoA[.bat] <input-file> <output_file>

.bat specifies the file extension; this is required only when running the utility
on a Windows NT system.

<input_file> specifies the path to the file that contains the base-64 encoded
data in binary format.

<output_file> specifies the path to the file to write the base-64 encoded data
in ASCII format.

Example

60 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Example
BtoA.bat C:\test\data.in C:\test\data.out

The above command takes the base-64 encoded data (in binary format) in the file
named data.in and writes the ASCII equivalent of the data to the file named
data.out.

61

Chapter 9

Pretty Print Certificate Tool

You can use the Pretty Print Certificate tool to print the contents of a certificate
stored as ASCII base-64 encoded data in a human-readable form.

The chapter has the following sections:

• Availability (page 61)

• Syntax (page 61)

• Example (page 62)

Availability
This tool is available for AIX 4.3, OSF/1 v4.0D, Solaris 2.6 (SunOS 5.6), Solaris 8,
and Windows NT 4.0.

Syntax
To run the Pretty Print Certificate tool, type the following command:

PrettyPrintCert[.bat] <input_file> [<output_file>]

.bat specifies the file extension; this is required only when running the utility
on a Windows NT system.

<input_file> specifies the path to the file that contains the base-64 encoded
certificate.

<output_file> specifies the path to the file to write the certificate. This
argument is optional; if you don’t specify an output file, the certificate
information is written to the standard output.

Example

62 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Example
PrettyPrintCert.bat C:\test\cert.in C:\test\cert.out

The above command takes the base-64 encoded certificate in the cert.in file and
writes the certificate in the pretty-print form to the output file named cert.out.

The base-64 encoded certificate (content of the cert.in file) would look similar to
this:

-----BEGIN CERTIFICATE-----

MIIC2DCCAkGgAwIBAgICEAwwDQYJKoZIhvcNAQEFBQAwfDELMAkGA1UEBhMCVVMxIzA
hBgNVBAoTGlBhbG9va2FWaWxsZSBXaWRnZXRzLCBJbmMuMR0wGwYDVQQLExRXaWRnZX
QgTWFrZXJzICdSJyBVczEpMCcGA1UEAxMgVGVzdCBUZXN0IFRlc3QgVGVzdCBUZXN0I
FRlc3QgQ0EwHhcNOTkwMjE4MDMMzM5WhcNMDAwMjE4MDM0MzM5WjCBrjELMAkGA1UEB
hMCVVMxJjAkBgNVBAoTHU5ldHNjYXBlIENvbW11bmljYXRpb25zIENvcnAuMRUwEwYD
VQQLEwOZXRzY2FwZSBDTVMxGDAWBEBEwhtaGFybXNlbjEfMB0GA1UEAxMWaW50ZGV2Y
2EgQWRtaW5pcwp0frfJOObeiSsia3BuifRHBNw95ZZQR9NIXr1x5bE

-----END CERTIFICATE-----

The certificate in pretty-print form (content of the cert.out file) would look
similar to this:

Certificate:

Data:

Version: v3

Serial Number: 0x100C

Signature Algorithm: OID.1.2.840.113549.1.1.5 -1.2.840.113549.1.1.5

Issuer: CN=Test CA,OU=Widget Makers 'R'Us,O=Siroe Corp ,
Widgets\,Inc.,C=US

Validity:
Not Before: Wednesday, February 17, 1999 7:43:39 PM
Not After: Thursday, February 17, 2000 7:43:39 PM

Subject: MAIL=admin@siroe.com,CN=testCA,Administrator, UID=admin,
OU=IS, O=Siroe Corp.,C=US

Subject Public Key Info:
Algorithm: RSA - 1.2.840.113549.1.1.1
Public Key:
30:81:89:02:81:81:00:DE:26:B3:C2:9D:3F:7F:FA:DF:
24:E3:9B:7A:24:AC:89:AD:C1:BA:27:D1:1C:13:70:F7:
96:59:41:1F:4D:21:7A:F5:C7:96:C4:75:83:35:9F:49:
E4:B0:A7:5F:95:C4:09:EA:67:00:EF:BD:7C:39:92:11:
31:F2:CA:C9:16:87:B9:AD:B8:39:69:18:CE:29:81:5F:

Example

Chapter 9 Pretty Print Certificate Tool 63

F3:4D:97:B9:DF:B7:60:B3:00:03:16:8E:C1:F8:17:6E:
7A:D2:00:0F:7D:9B:A2:69:35:18:70:1C:7C:AE:12:2F:
0B:0F:EC:69:CD:57:6F:85:F3:3E:9D:43:64:EF:0D:5F:
EF:40:FF:A6:68:FD:DD:02:03:01:00:01:

Extensions:
Identifier: 2.16.840.1.113730.1.1
Critical: no
Value: 03:02:00:A0:

Identifier: Authority Key Identifier - 2.5.29.35
Critical: no
Key Identifier:

EB:B5:11:8F:00:9A:1A:A6:6E:52:94:A9:74:BC:65:CF:
07:89:2A:23:

Signature:
Algorithm: OID.1.2.840.113549.1.1.5 - 1.2.840.113549.1.1.5
Signature:
3E:8A:A9:9B:D1:71:EE:37:0D:1F:A0:C1:00:17:53:26:
6F:EE:28:15:20:74:F6:C5:4F:B4:E7:95:3C:A2:6A:74:
92:3C:07:A8:39:12:1B:7E:C4:C7:AE:79:C8:D8:FF:1F:
D5:48:D8:2E:DD:87:88:69:D5:3A:06:CA:CA:9C:9A:55:
DA:A9:E8:BF:36:BC:68:6D:1F:2B:1C:26:62:7C:75:27:
E2:8D:24:4A:14:9C:92:C6:F0:7A:05:A1:52:D7:CC:7D:
E0:9D:6C:D8:97:3A:9C:12:8C:25:48:7F:51:59:BE:3C:
2B:30:BF:EB:0A:45:7D:A6:49:FB:E7:BE:04:05:D6:8F:

Example

64 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

65

Chapter 10

Pretty Print CRL Tool

You can use the Pretty Print CRL tool to print the contents of a CRL stored as ASCII
base-64-encoded data in a human-readable form.

The chapter has the following sections:

• Availability (page 65)

• Syntax (page 65)

• Example (page 66)

Availability
This tool is available for AIX 4.3, OSF/1 v4.0D, Solaris 2.6 (SunOS 5.6), Solaris 8,
and Windows NT 4.0.

Syntax
To run the Pretty Print CRL tool, type the following command:

PrettyPrintCrl[.bat] <input_file> [<output-file>]

.bat specifies the file extension; this is required only when running the utility
on a Windows NT system.

<input_file> specifies the path to the file that contains the base-64 encoded
CRL.

<output_file> specifies the path to the file to write the CRL. This argument is
optional; if you don’t specify an output file, the CRL information is written to
the standard output.

Example

66 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Example
PrettyPrintCrl.bat C:\test\crl.in C:\test\crl.out

The above command takes the base-64 encoded CRL in the crl.in file and writes
the CRL in the pretty-print form to the output file named crl.out.

The base-64 encoded CRL (content of the crl.in file) would look similar to this:

-----BEGIN CRL-----

MIIBkjCBAIBATANBgkqhkiG9w0BAQQFADAsMREwDwYDVQQKEwhOZXRzY2FwZTEXM
BUGA1UEAxMOQ2VydDQwIFRlc3QgQ0EXDTk4MTIxNzIyMzcyNFowgaowIAIBExcNO
TgxMjE1MTMxODMyWjAMMAoGA1UdFQQDCgEBMCACARIXDTk4MTIxNTEzMjA0MlowD
DAKBgNVHRUEAwoBAjAgAgERFw05ODEyMTYxMjUxNTRaMAwwCgYDVR0VBAMKAQEwI
AIBEBcNOTgxMjE3MTAzNzI0WjAMMAoGA1UdFQQDCgEDMCACAQoXDTk4MTEyNTEzM
TExOFowDDAKBgNVHRUEAwoBATANBgkqhkiG9w0BQQFAAOBgQBCN85O0GPTnHfImY
PROvoorx7HyFz2ZsuKsVblTcemsX0NL7DtOa+MyY0pPrkXgm157JrkxEJ7GBOeog
bAS6iFbmeSqPHj8+JBH5stJNnfTCuhaM6Wx63Wc9LwZXOXTPsvpGxq0YI0+DPfBZ
lI3z4lCsNczxJV+9NkeMrheEg==

-----END CRL-----

The CRL in pretty-print form (content of the crl.out file) would look similar to
this:

Certificate Revocation List:

Data:

Version: v2

Signature Algorithm: MD5withRSA - 1.2.840.113549.1.1.4

Issuer: CN=Cert40 Test CA,O=Netscape

This Update: Thu Dec 17 14:37:24 PST 1998

Revoked Certificates:

Serial Number: 0x13
Revocation Date: Tuesday, December 15, 1998 5:18:32 AM
Extensions:

Identifier: Revocation Reason - 2.5.29.21
Critical: no
Reason: Key_Compromise

Serial Number: 0x12
Revocation Date: Tuesday, December 15, 1998 5:20:42 AM
Extensions:

Identifier: Revocation Reason - 2.5.29.21
Critical: no
Reason: CA_Compromise

Example

Chapter 10 Pretty Print CRL Tool 67

Serial Number: 0x11
Revocation Date: Wednesday, December 16, 1998 4:51:54 AM
Extensions:

Identifier: Revocation Reason - 2.5.29.21
Critical: no
Reason: Key_Compromise

Serial Number: 0x10
Revocation Date: Thursday, December 17, 1998 2:37:24 AM
Extensions:

Identifier: Revocation Reason - 2.5.29.21
Critical: no
Reason: Affiliation_Changed

Serial Number: 0xA
Revocation Date: Wednesday, November 25, 1998 5:11:18 AM
Extensions:

Identifier: Revocation Reason - 2.5.29.21
Critical: no
Reason: Key_Compromise

Signature:
Algorithm: MD5withRSA - 1.2.840.113549.1.1.4
Signature:

42:37:CE:4E:D0:63:D3:9C:77:C8:99:83:D1:3A:FA:28:
AF:1E:C7:C8:5C:F6:66:CB:8A:B1:56:E5:4D:C7:A6:B1:
7D:0D:2F:B0:ED:39:AF:8C:C9:8D:29:3E:B9:17:82:6D:
79:EC:9A:E4:C4:42:7B:18:13:9E:A2:06:C0:4B:A8:85:
6E:67:92:A8:F1:E3:F3:E2:41:1F:9B:2D:24:D9:DF:4C:
2B:A1:68:CE:96:C7:AF:F7:5B:F7:3D:2F:06:57:39:74:
CF:B2:FA:46:C6:AD:18:60:8D:3E:0C:F7:C1:66:52:37:
CF:89:42:B0:D7:33:C4:95:7E:F4:D9:1E:32:B8:5E:12:

Example

68 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

69

Chapter 11

Certificate Database Tool

Certificate Database Tool is a command-line utility that can create the certificate
database file (cert7.db) for Certificate Management System. The utility can also
list, generate, modify, or delete certificates within the file.

Certificate database management tasks are part of a process that typically also
involves managing key databases (key3.db files). The key and certificate
management process generally begins with creating keys in the key database, then
generating and managing certificates in the certificate database.

This chapter discusses certificate database management:

• Availability (page 69)

• Syntax (page 70)

• Usage (page 74)

• Examples (page 75)

For information on key database and security module database management, see
Chapter 12, “Key Database Tool” and Chapter 16, “Security Module Database
Tool.”

Availability
This tool is available for AIX 4.3, OSF/1 v4.0D, Solaris 2.6 (SunOS 5.6),
Solaris 8, and Windows NT 4.0.

Syntax

70 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Syntax
To run Certificate Database Tool, type the following command:

certutil option [arguments]

where options and arguments are combinations of the options and arguments listed
in the following section. Each command takes one option. Each option may take
zero or more arguments. To see a usage string, issue the command without
options, or with the -H option.

Options and Arguments
Options specify an action and are uppercase. Option arguments modify an action
and are lowercase. Certificate Database Tool command options and their
arguments are defined as follows:

Table 11-1 Command options and their arguments

Option Description

-N Create a new certificate database.

-S Create an individual certificate and add it to a certificate database.

-R Create a certificate-request file that can be submitted to a certificate
authority (CA) for processing into a finished certificate. Output defaults to
standard out unless you use -o output-file argument.

Use the -a argument to specify ASCII output.

-C Create a new binary certificate file from a binary certificate-request file. Use
the -i argument to specify the certificate-request file. If this argument is not
used Certificate Database Tool prompts for a filename.

-A Add an existing certificate to a certificate database. The certificate database
should already exist; if one is not present, this option will initialize one by
default.

-L List all the certificates, or display information about a named certificate, in a
certificate database.

Use the -h tokenname argument to specify the certificate database on a
particular hardware or software token.

-V Check the validity of a certificate and its attributes.

-M Modify a certificate’s trust attributes using the values of the -t argument.

Syntax

Chapter 11 Certificate Database Tool 71

-H Display a list of the options and arguments used by Certificate Database
Tool.

Argument

-a Use ASCII format or allow the use of ASCII format for input or output. This
formatting follows RFC #1113. For certificate requests, ASCII output
defaults to standard output unless redirected.

-b validity-time Specify a time at which a certificate is required to be valid. Use when
checking certificate validity with the -V option. The format of the
validity-time argument is "YYMMDDHHMMSS[+HHMM|-HHMM|Z]".
Specifying seconds (SS) is optional. When specifying an explicit time, use
"YYMMDDHHMMSSZ". When specifying an offset time, use
"YYMMDDHHMMSS+HHMM" or "YYMMDDHHMMSS-HHMM". If this option is not
used, the validity check defaults to the current system time.

-c issuer Identify the certificate of the CA from which a new certificate will derive its
authenticity. Use the exact nickname or alias of the CA certificate, or use the
CA’s email address. Bracket the issuer string with quotation marks if it
contains spaces.

-d certdir Specify a directory containing a certificate database file. On Unix Certificate
Database Tool defaults to $HOME/.netscape (that is, ~/.netscape). On
Windows NT the default is the current directory.

The cert7.db and key3.db database files must reside in the same
directory.

-e Check a certificate’s signature during the process of validating a certificate.

-f password-file Specify a file that will automatically supply the password to include in a
certificate or to access a certificate database. This is a plain-text file
containing one password. Be sure to prevent unauthorized access to this
file.

-h tokenname Specify the name of a token to use or act on. Unless specified otherwise the
default token is an internal slot (specifically, internal slot 2). This slot can
also be explicitly named with the string “internal”. An internal slots is a
virtual slot maintained in software, rather than a hardware device. Internal
slot 2 is used by key and certificate services. Internal slot 1 is used by
cryptographic services.

-i cert|cert-request-file Specify a specific certificate, or a certificate-request file.

-k shortkeyID Specify the public key to use when creating a certificate or certificate
request. The shortkeyID is the first few bytes of the keyID (as shown by the
keyutil -L command), starting from the second byte, with a length
sufficient to identify it uniquely.

Table 11-1 Command options and their arguments

Syntax

72 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

-l Display detailed information when validating a certificate with the -V
option.

-m serial-number Assign a unique serial number to a certificate being created. This operation
should be performed by a CA. The default serial number is 0 (zero). Serial
numbers are limited to integers.

-n certname Specify the nickname of a certificate to list, create, add to a database,
modify, or validate. Bracket the certname string with quotation marks if it
contains spaces.

-o output-file Specify the output file name for new certificates or binary certificate
requests. Bracket the output-file string with quotation marks if it contains
spaces. If this argument is not used the output destination defaults to
standard output.

-p phone Specify a contact telephone number to include in new certificates or
certificate requests. Bracket this string with quotation marks if it contains
spaces.

-r Display a certificate’s binary DER encoding when listing information about
that certificate with the -L option.

-s subject Identify a particular certificate owner for new certificates or certificate
requests. Bracket this string with quotation marks if it contains spaces. The
subject identification format follows RFC #1485.

-t trustargs Specify the trust attributes to modify in an existing certificate or to apply to
a certificate when creating it or adding it to a database.

There are three available trust categories for each certificate, expressed in
this order: "SSL, email, object signing". In each category position use zero or
more of the following attribute codes:

p Valid peer
P Trusted peer (implies p)
c Valid CA
T Trusted CA to issue client certificates (implies c)
C Trusted CA to issue server certificates (SSL only)

(implies c)
u Certificate can be used for authentication or signing
w Send warning (use with other attributes to include a warning when the
certificate is used in that context)

The attribute codes for the categories are separated by commas, and the
entire set of attributes enclosed by quotation marks. For example:

-t "TCu,Cu,Tuw"

Use the -L option to see a list of the current certificates and trust attributes
in a certificate database.

Table 11-1 Command options and their arguments

Syntax

Chapter 11 Certificate Database Tool 73

-u certusage Specify a usage context to apply when validating a certificate with the -V
option. The contexts are the following:

C (as an SSL client)
V (as an SSL server)
S (as an email signer)
R (as an email recipient)

-v valid-months Set the number of months a new certificate will be valid. The validity period
begins at the current system time unless an offset is added or subtracted
with the -w option. If this argument is not used, the default validity period
is three months. When this argument is used, the default three-month
period is automatically added to any value given in the valid-month
argument. For example, using this option to set a value of 3 would cause 3
to be added to the three-month default, creating a validity period of six
months. You can use negative values to reduce the default period. For
example, setting a value of -2 would subtract 2 from the default and create
a validity period of one month.

-w offset-months Set an offset from the current system time, in months, for the beginning of a
certificate’s validity period. Use when creating the certificate or adding it to
a database. Express the offset in integers, using a minus sign (-) to indicate
a negative offset. If this argument is not used, the validity period begins at
the current system time. The length of the validity period is set with the -v
argument.

-x Use Certificate Database Tool to generate the signature for a certificate
being created or added to a database, rather than obtaining a signature from
a separate CA.

-y rsa|dsa Specify the type of key used to generate a new certificate, either RSA or
DSA. The default is rsa.

-1 Add a key usage extension to a certificate that is being created or added to a
database. This extension allows a certificate’s key to be dedicated to
supporting specific operations such as SSL server or object signing.
Certificate Database Tool will prompt you to select a particular usage for
the certificate’s key. These usages are described under "Standard X.509 v3
Certifiate Extensions’ in Appendix C of CMS Plug-Ins Guide

-2 Add a basic constraint extension to a certificate that is being created or
added to a database. This extension supports the certificate chain
verification process. Certificate Database Tool will prompt you to select the
certificate constraint extension. Constraint extensions are described in
"Standard X.509 v3 Certifiate Extensions’ in Appendix C of CMS Plug-Ins
Guide.

Table 11-1 Command options and their arguments

Usage

74 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Usage
Certificate Database Tool’s capabilities are grouped as follows, using these
combinations of options and arguments. Options and arguments in square brackets
are optional, those without square brackets are required.

• Creating a new cert7.db file:

-N [-d certdir]

• Creating a new certificate and adding it to the database with one command:

-S -k shortkeyID -y rsa|dsa -n certname -s subject
[-c issuer |-x] -t trustargs [-h tokenname]
[-m serial-number] [-v valid-months] [-w offset-months]
[-d certdir] [-p phone] [-f password-file] [-1] [-2] [-3] [-4]

• Making a separate certificate request:

-R -k shortkeyID -y rsa|dsa -s subject [-h tokenname]
[-d certdir] [-p phone] [-o output-file] [-f password-file]

• Creating a new binary certificate from a binary certificate request:

-C [-c issuer |-k shortkeyID -y rsa|dsa -x] [-f password-file]
[-h tokenname] -i cert-request-file -o output-file [-m serial-number]
[-v valid-months] [-w offset-months] [-d certdir] [-1] [-2] [-3]
[-4]

-3 Add an authority key ID extension to a certificate that is being created or
added to a database. This extension supports the identification of a
particular certificate, from among multiple certificates associated with one
subject name, as the correct issuer of a certificate. Certificate Database Tool
will prompt you to select the authority key ID extension. Authority key ID
extensions are described under "Standard X.509 v3 Certifiate Extensions’ in
Appendix C of CMS Plug-Ins Guide.

-4 Add a CRL distribution point extension to a certificate that is being created
or added to a database. This extension identifies the URL of a certificate’s
associated certificate revocation list (CRL). Certificate Database Tool
prompts you to enter the URL.

Table 11-1 Command options and their arguments

Examples

Chapter 11 Certificate Database Tool 75

• Adding a certificate to an existing database:

-A -n certname -t trustargs [-h tokenname] [-d certdir] [-a]
[-i cert-request-file]

• Listing all certificates or a named certificate:

-L [-n certname] [-d certdir] [-r] [-a]

• Validating a certificate:

-V -n certname -b validity-time -u certusage [-e] [-l] [-d certdir]

• Modifying a certificate’s trust attribute:

-M -n certname -t trustargs [-d certdir]

• Displaying a list of the options and arguments used by Certificate Database
Tool:

-H

Examples
This section contains examples for the following tasks:

• Creating a New Certificate Database

• Listing Certificates in a Database

• Creating a Certificate Request

• Creating a Certificate

• Adding a Certificate to the Database

• Validating a Certificate

Creating a New Certificate Database
This example creates a new certificate database (cert7.db file) in the specified
directory:

certutil -N -d certdir

You must generate the associated key3.db and secmod.db files by using the Key
Database Tool or other tools.

Examples

76 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Listing Certificates in a Database
This example lists all the certificates in the cert7.db file in the specified directory:

certutil -L -d certdir

Certificate Database Tool displays output similar to the following:

Certificate Name Trust Attributes

Uptime Group Plc. Class 1 CA C,C,
VeriSign Class 1 Primary CA ,C,
VeriSign Class 2 Primary CA C,C,C
AT&T Certificate Services C,C,
GTE CyberTrust Secure Server CA C,,
Verisign/RSA Commercial CA C,C,
AT&T Directory Services C,C,
BelSign Secure Server CA C,,
Verisign/RSA Secure Server CA C,C,
GTE CyberTrust Root CA C,C,
Uptime Group Plc. Class 4 CA ,C,
VeriSign Class 3 Primary CA C,C,C
Canada Post Corporation CA C,C,
Integrion CA C,C,C
IBM World Registry CA C,C,C
GTIS/PWGSC, Canada Gov. Web CA C,C,
GTIS/PWGSC, Canada Gov. Secure CA C,C,C
MCI Mall CA C,C,
VeriSign Class 4 Primary CA C,C,C
KEYWITNESS, Canada CA C,C,
BelSign Object Publishing CA ,,C
BBN Certificate Services CA Root 1 C,C,
p Valid peer
P Trusted peer (implies p)
c Valid CA
T Trusted CA to issue client certs (implies c)
C Trusted CA to issue server certs(for ssl only) (implies c)
u User cert
w Send warning

Creating a Certificate Request
This example generates a binary certificate request file named e95c.req in the
specified directory:

certutil -R -s "CN=John Smith, O=Netscape, L=Mountain View,
ST=California, C=US" -p "650-555-8888" -k e95c -o e95c.req -d certdir

Examples

Chapter 11 Certificate Database Tool 77

Before it creates the request file, Certificate Database Tool prompts you for a
password:

Enter Password or Pin for "Communicator Certificate DB":

Creating a Certificate
A valid certificate must be issued by a trusted CA. If a CA key pair is not available,
you can create a self-signed certificate (for purposes of illustration) with the -x
argument. This example creates a new, self-signed binary certificate named
e95c.crt, from a binary certificate request named e95c.req, in the specified
directory.

certutil -C -i e95c.req -o e95c.crt -k e95c -m 1234
-f password-file -x -d certdir

The following example creates a new binary certificate named one.crt, from a
binary certificate request named one.req, in the specified directory. It is issued by
the self-signed certificate created above, e95c.crt.

certutil -C -m 2345 -i one.req -o one.crt -c e95c.crt -d certdir

Adding a Certificate to the Database
This example adds a certificate to the certificate database:

certutil -A -n jsmith@netscape.com -t "C,C,C" -i e95c.crt
-d certdir

You can see this certificate in the database with this command:

certutil -L -n jsmith@netscape.com -d certdir

Certificate Database Tool displays output similar to the following:

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 0 (0x0)
Signature Algorithm: PKCS #1 MD5 With RSA Encryption
Issuer: CN=John Smith, O=Netscape, L=Mountain View,

ST=California, C=US
Validity:

Examples

78 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Not Before: Thu Mar 12 00:10:40 1998
Not After: Sat Sep 12 00:10:40 1998

Subject: CN=John Smith, O=Netscape, L=Mountain View, ST=California,
C=US

Subject Public Key Info:
Public Key Algorithm: PKCS #1 RSA Encryption
RSA Public Key:

Modulus:
00:da:53:23:58:00:91:6a:d1:a2:39:26:2f:06:3a:
38:eb:d4:c1:54:a3:62:00:b9:f0:7f:d6:00:76:aa:
18:da:6b:79:71:5b:d9:8a:82:24:07:ed:49:5b:33:
bf:c5:79:7c:f6:22:a7:18:66:9f:ab:2d:33:03:ec:
63:eb:9d:0d:02:1b:da:32:ae:6c:d4:40:95:9f:b3:
44:8b:8e:8e:a3:ae:ad:08:38:4f:2e:53:e9:e1:3f:
8e:43:7f:51:61:b9:0f:f3:a6:25:1e:0b:93:74:8f:
c6:13:a3:cd:51:40:84:0e:79:ea:b7:6b:d1:cc:6b:
78:d0:5d:da:be:2b:57:c2:6f

Exponent: 65537 (0x10001)
Signature Algorithm: PKCS #1 MD5 With RSA Encryption
Signature:

44:15:e5:ae:c4:30:2c:cd:60:89:f1:1d:22:ed:5e:5b:10:c8:
7e:5f:56:8c:b4:00:12:ed:5f:a4:6a:12:c3:0d:01:03:09:f2:
2f:e7:fd:95:25:47:80:ea:c1:25:5a:33:98:16:52:78:24:80:
c9:53:11:40:99:f5:bd:b8:e9:35:0e:5d:3e:38:6a:5c:10:d1:
c6:f9:54:af:28:56:62:f4:2f:b3:9b:50:e1:c3:a2:ba:27:ee:
07:9f:89:2e:78:5c:6d:46:b6:5e:99:de:e6:9d:eb:d9:ff:b2:
5f:c6:f6:c6:52:4a:d4:67:be:8d:fc:dd:52:51:8e:a2:d7:15:
71:3e

Certificate Trust Flags:
SSL Flags:

Valid CA
Trusted CA

Email Flags:
Valid CA
Trusted CA

Object Signing Flags:
Valid CA
Trusted CA

Validating a Certificate
This example validates a certificate:

certutil -V -n jsmith@netscape.com -b 9803201212Z -u SR -e -l
-d certdir

Examples

Chapter 11 Certificate Database Tool 79

Certificate Database Tool shows results similar to

Certificate:’jsmith@netscape.com’ is valid.

or

UID=jsmith, E=jsmith@netscape.com, CN=John Smith, O=Netscape
Communications Corp., C=US : Expired certificate

or

UID=jsmith, E=jsmith@netscape.com, CN=John Smith, O=Netscape
Communications Corp., C=US : Certificate not approved for this
operation

Examples

80 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

81

Chapter 12

Key Database Tool

Key Database Tool is a command-line utility that can modify the key database file
(key3.db) of iPlanet Certificate Management Server (CMS). You can use the utility
to create or change the database password, generate new public and private key
pairs, display the contents of the database, or delete key pairs from the database.

Key database management tasks are part of a process that typically also involves
managing client certificate databases (cert7.db file). The key and certificate
management process generally begins with creating keys in the key database, then
generating and managing certificates in the certificate database.

This chapter discusses key database management. For information on certificate
database and security module database management, see Chapter 11, “Certificate
Database Tool” and Chapter 16, “Security Module Database Tool.”

This chapter has the following sections:

• Availability (page 81)

• Syntax (page 82)

• Usage (page 84)

• Examples (page 85)

Availability
This tool is available for AIX 4.3, OSF/1 v4.0D, Solaris 2.6 (SunOS 5.6),
Solaris 8, and Windows NT 4.0.

Syntax

82 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Syntax
To run Key Database Tool, type the command

keyutil option [arguments]

where option and arguments are combinations of the options and arguments listed
in the following section. Each command takes one option. Each option may take
zero or more arguments. To see a usage string, issue the command without
options, or with the -H option.

Options and Arguments
Options specify an action and are uppercase. Option arguments modify an action
and are lowercase. Key Database Tool options and their arguments are defined as
follows:

Table 12-1 Description of options and arguments

Option Description

-N Create a new key database and set its password.

Use the -h tokenname argument to specify a specific hardware or software token
in which to create the new database.

-C Change the password to a key database.

-G Generate a new public and private key pair within a database. The key database
should already exist; if one is not present, this option will initialize one by
default.

Some smart cards (for example, the Litronic card) can store only one key pair. If
you create a new key pair for such a card, the previous pair is overwritten.

-L List the keyID of keys in the key database. A keyID is the modulus of the RSA
key or the publicValue of the DSA key. IDs are displayed in hexadecimal
(“0x” is not shown).

You can identify keys by a shortkeyID. The shortkeyID is the first few bytes of
the keyID, starting from the second byte, with a length sufficient to identify it
uniquely.

Use the -a argument to list keys of all tokens. Otherwise the list will contain
only keys in the default (internal) slot.

Use the -l argument to list DSA as well as RSA keys.

-P Display public key information on the screen.

Syntax

Chapter 12 Key Database Tool 83

-D Delete a private key from a key database. Specify the key to delete with the -k
argument. Specify the database from which to delete the key with the -d
argument.

Use the -t argument to specify explicitly whether to delete a DSA or an RSA
key. If you do not use the -t argument, the option looks for an RSA key
matching the shortkeyID.

When you delete keys, be sure to also remove any certificates associated with
those keys from the certificate database, by using the Certificate Database Tool.

Some smart cards (for example, the Litronic card) do not let you remove a public
key you have generated. In such a case, only the private key is deleted from the
key pair. You can display the public key with the command keyutil -L -h
tokenname.

-H Display a list of the options and arguments used by Key Database Tool.

Argument Description

-a List the RSA keys of all tokens when listing keys in the database.

-d keydir Specify a directory containing a key database file. On Unix Key Database Tool
defaults to $HOME/.netscape (that is, ~/.netscape), and on Windows NT
the default is the current directory.

The key3.db and cert7.db database files must reside in the same directory.

-e exp Set an alternate exponent value to use in generating a new RSA public key for
the database, instead of the default value of 65537. The available alternate
values are 3 and 17.

-f noise-file Read a seed value from the specified binary file to use in generating a new RSA
private and public key pair. This argument makes it possible to use
hardware-generated seed values and unnecessary to manually create a value
from the keyboard. The minimum file size is 20 bytes.

-h tokenname Specify the name of a token to act on. Unless otherwise specified, the default
token is an internal slot (specifically, internal slot 2). An internal slot is a virtual
slot maintained in software, rather than a hardware device. Internal slot 2 is
used by key and certificate services. Internal slot 1 is used by cryptographic
services.

Use the Module Database Tool (modutil -list) to get a list of token names in
the module database.

-k shortkeyID Specify a private key by using the key identifier. You can use the complete
keyID (as shown by the -L option), or the shortkeyID. The shortkeyID is the
first few bytes of the keyID, starting from the second byte, with a length
sufficient to identify it uniquely. If you specify a shortkeyID that is not unique,
the first private key that matches the shortkeyID is found.

Table 12-1 Description of options and arguments (Continued)

Usage

84 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Usage
Key Database Tool’s capabilities are grouped as follows, using these combinations
of options and arguments. The specifications in square brackets are optional, those
without square brackets are required.

• Creating a new key3.db file and setting its password:

-N [-d keydir] [-w password-file]

• Changing the password to a key database file:

-C [-d keydir]

• Generating new RSA key pairs in a key database file:

-G [-h tokenname] [-t rsa] [-s num] [-e exp] [-d keydir]
[-f noise-file] [-w password-file]

• Generating new DSA key pairs in a key database file:

-G [-h tokenname] -t dsa [-q pqgfile -s num]

[-d keydir] [-w password-file]

• Listing the keyIDs of the keys in a database:

-L [-a] [-l] [-t rsa|dsa] [-h tokenname] [-d keydir]

-l List DSA as well as RSA keys when listing keys in the key database.

-q pqgfile Read an alternate PQG value from the specified file when generating DSA key
pairs. If this argument is not used, Key Database Tool generates its own PQG
value. PQG files are created with a separate DSA utility.

-s size Set a key size to use when generating new public and private key pairs. The
minimum is 256 bits and the maximum is 1024 bits. The default is 1024 bits. Any
size between the minimum and maximum is allowed.

-t rsa|dsa Specify the type of a key, either RSA or DSA. The default value is rsa. By
specifying the type of key you can avoid mistakes caused by duplicate
shortkeyIDs.

-w password-file Specify a file to automatically supply the password necessary to access a key
database. This is a plain-text file containing one password. You should not use
this argument if you are accessing an internal slot and hardware tokens that use
different passwords. Be sure to prevent unauthorized access to this file.

Table 12-1 Description of options and arguments (Continued)

Examples

Chapter 12 Key Database Tool 85

• Displaying public key information from the database:

-P -k shortkeyID [-t rsa|dsa] [-h tokenname]
[-d keydir] [-w password-file]

• Deleting private keys from a key database file:

-D -k shortkeyID [-t rsa|dsa] [-h tokenname]
[-d keydir] [-w password-file]

• Displaying a list of the options and arguments used by Key Database Tool:

-H

Examples
Includes the following:

• Creating a Key Database

• Generating a New Key

• Displaying Public Key Information

• Listing Key IDs

• Deleting a Private Key

Creating a Key Database
This example creates new key database files (key3.db and secmod.db) in the
specified directory:

keyutil -N -d keydir

Key Database Tool prompts you as follows:

Creating a brand new key database:keydir/key3.db
Database not initialized. Setting password.
Enter new password:
Re-enter password:

After you enter the password, Key Database Tool creates new key3.db and
secmod.db files in the specified directory.

Examples

86 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Generating a New Key
This example generates a new key in a key database:

keyutil -G -d keydir

Key Database Tool then displays the following:

--
Netscape Communications Corporation
Key Generation
--

Welcome to the key generator. With this program, you can
generate the public and private keys that you use for secure
communications.

A random seed must be generated that will be used in the
creation of your key. One of the easiest ways to create a random
seed is to use the timing of keystrokes on a keyboard.

You have specified the name 'mykey' for your key

If this is correct, press enter:

To begin, type keys on the keyboard until this progress meter is
full. DO NOT USE THE AUTOREPEAT FUNCTION ON YOUR KEYBOARD!

Continue typing until the progress meter is full:

|**|

Finished. Press enter to continue:

Generating key. This may take a few moments...

Password:

generated public/private key pair

Note that if you do not specify a token name, the key is generated on the internal
slot. This is equivalent to the -h internal argument.

If you use the -f noise-file argument, Key Database Tool does not ask for keyboard
input.

If you use the -w password-file argument, Key Database Tool reads the password
from the file instead of asking for keyboard input. Avoid using this argument
when you are accessing both the internal slot and tokens that have different
passwords.

Examples

Chapter 12 Key Database Tool 87

Displaying Public Key Information
This example prints the public key’s information:

keyutil -P -k e95c -d keydir

The public key information appears after you give the correct password:

Password:

It’s the first key found.
RSA Public-Key:
modulus:
00:e9:5c:4a:73:74:39:22:6d:c6:da:4e:b3:1f:01:26:9d:be:
d1:74:ae:cd:c7:7d:65:f9:1d:31:1f:71:fb:60:d0:45:46:5f:
5a:19:e7:61:1e:e7:ce:9f:4a:13:4e:d6:e9:06:90:2a:ba:bd:
0b:5f:7b:a3:28:21:1e:0f:1c:f4:3a:ba:3a:8f:0b:e1:99:91:
cc:e8:fd:17:d2:1c:66:13:6b:95:27:b1:eb:bc:9c:e6:7b:f0:
3a:b9:44:dc:24:a6:f8:83:9a:9e:80:3f:74:48:09:6b:3f:a6:
46:51:be:e0:1b:51:87:8c:44:94:f0:fe:41:fe:b4:9f:4c:0a:
04:a9:a1
publicExponent: 65537 (0x10001)

Listing Key IDs
This command lists the key IDs in the key database:

keyutil -L -d keydir

After you enter the password, Key Database Tool displays the following:

RSA Public-Key:
modulus:
00:e9:5c:4a:73:74:39:22:6d:c6:da:4e:b3:1f:01:26:9d:be:
d1:74:ae:cd:c7:7d:65:f9:1d:31:1f:71:fb:60:d0:45:46:5f:
5a:19:e7:61:1e:e7:ce:9f:4a:13:4e:d6:e9:06:90:2a:ba:bd:
0b:5f:7b:a3:28:21:1e:0f:1c:f4:3a:ba:3a:8f:0b:e1:99:91:
cc:e8:fd:17:d2:1c:66:13:6b:95:27:b1:eb:bc:9c:e6:7b:f0:
3a:b9:44:dc:24:a6:f8:83:9a:9e:80:3f:74:48:09:6b:3f:a6:
46:51:be:e0:1b:51:87:8c:44:94:f0:fe:41:fe:b4:9f:4c:0a:
04:a9:a1

When unmodified, this command lists all the RSA keys in the default (internal)
slot. You can refine this command’s output with the -a, -h, and -l arguments.

Examples

88 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Deleting a Private Key
This example deletes a private key from the key database:

keyutil -D -k e95c -d keydir

When you delete keys, be sure to remove any certificates associated with those
keys from the certificate database by using the Certificate Database Tool.

89

Chapter 13

Netscape Signing Tool

This chapter describes how to use version 1.3 of Netscape Signing Tool (signtool
on the command line) to digitally sign software, including binary files intended for
distribution via SmartUpdate, Java class files, and JavaScript scripts. Version 1.3
includes all the capabilities of, and is fully compatible with, previous versions of
Netscape Signing Tool (.50, .60, 1.0, 1.1, and 1.2).

This chapter has these sections:

• Introduction to Netscape Signing Tool (page 89)

• Using Netscape Signing Tool (page 93)

• SignTool Syntax and Options (page 99)

• Generating Test Object-Signing Certificates (page 106)

• Using Netscape Signing Tool with Smart Cards (page 108)

• Netscape Signing Tool and FIPS-140-1 (page 111)

• Answers to Common Questions (page 113)

Introduction to Netscape Signing Tool
This section reviews basic concepts that you need to understand before you begin
using version 1.3 of Netscape Signing Tool to sign files or JavaScript scripts. If you
are already familiar with object-signing concepts, go straight to “Using Netscape
Signing Tool” on page 93.

• What Is Netscape Signing Tool?

• JAR Format and JAR Archives

• What Signing a File Means

Introduction to Netscape Signing Tool

90 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

• Object-Signing Certificates

For a complete introduction to object signing technology, see Netscape Object
Signing: Establishing Trust for Downloaded Software at this URL:

http://developer.netscape.com/docs/manuals/signedobj/trust/index.ht
m

What Is Netscape Signing Tool?
Netscape Signing Tool is a stand-alone command-line tool that creates digital
signatures and uses the Java Archive (JAR) format to associate them with files in a
directory. It is intended for use by system administrators and by developers who
want to distribute software electronically over the Internet.

Netscape Signing Tool 1.3 is available for AIX 4.3, OSF/1 v4.0D, Solaris 2.6 (SunOS
5.6), Solaris 8, and Windows NT 4.0.

This chapter describes how to use Netscape Signing Tool 1.3 to sign Java applets,
JavaScript scripts, plug-ins, and other files and how to package the signed objects
in a JAR archive (also called a JAR file), which is a digital envelope for a compressed
collection of files. Communicator client software uses JAR archives to install or
update software automatically.

Electronic software distribution over any network involves potential security
problems. To help address some of these problems, you can associate digital
signatures with the files in a JAR archive. Digital signatures allow Communicator
to perform two operations that are important to end users:

• Confirm the identity of the individual, company, or other entity whose digital
signature is associated with the files

• Check whether the files have been tampered with since being signed

You do not need to understand the technical details of JAR archives or digital
signatures to use Netscape Signing Tool. However, you do need some familiarity
with the concepts described in the rest of this chapter. If you are already familiar
with basic object-signing concepts, go straight to “Using Netscape Signing Tool” on
page 93.

Introduction to Netscape Signing Tool

Chapter 13 Netscape Signing Tool 91

JAR Format and JAR Archives
The Java Archive (JAR) format is a set of conventions for associating digital
signatures, installer scripts, and other information with files in a directory. Signing
tools such as Netscape Signing Tool allow you to sign files using the JAR format
and package them as a single JAR file. JAR files are used by Communicator client
software to support automatic software installation, user-controlled access to local
system resources by Java applets, and other features that help address potential
security problems.

The JAR file type is a registered Internet MIME type based on the standard
cross-platform ZIP archive format. A JAR file functions as a digital envelope for a
compressed collection of files. The JAR file type is distinct from the JAR format,
which is simply a way of organizing information in a directory.

Because the JAR format doesn’t require a digital signature to be stored physically
inside the file with which it is associated, JAR files are extremely flexible. You can
use Netscape Signing Tool to sign any files, including Java class files,
Communicator plug-ins, or any other kind of document or application. You can
also use version 1.1 and later versions of Netscape Signing Tool to sign inline
JavaScript scripts.

You must create a JAR file if you want to take advantage of Communicator’s
SmartUpdate feature. Communicator can automatically locate, download, and
install components, plug-ins, and Java classes on a user’s machine, thus freeing the
user from this chore. Automatic software installation also helps both software
developers who want to distribute software and updates over the Internet and
system administrators using Mission Control to manage a corporate intranet.

You don’t need to know anything else about the JAR format to use Netscape
Signing Tool, which takes care of the details for you. For detailed information
about the JAR format, see The Jar Format at this URL:

http://developer.netscape.com/docs/manuals/signedobj/jarfile/index.
html

For detailed information about using the JAR Installation Manager to package your
software for use with SmartUpdate, see Using JAR Installation Manager for
SmartUpdate at this URL:

http://developer.netscape.com/docs/manuals/communicator/jarman/inde
x.htm

Introduction to Netscape Signing Tool

92 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

What Signing a File Means
If you have a signing certificate, you can use Netscape Signing Tool to digitally
sign files and package them as a JAR file. An object-signing certificate is a special
kind of certificate that allows you to associate your digital signature with one or
more files. For information about obtaining an object-signing certificate, see
Object-Signing Tools at this URL:

http://developer.netscape.com/docs/manuals/index.html?content=secur
ity.html

An individual file can potentially be signed with multiple digital signatures. For
example, a commercial software developer might sign the files that constitute a
software product to prove that the files are indeed from a particular company. A
network administrator manager might sign the same files with an additional
digital signature based on a company-generated certificate to indicate that the
product is approved for use within the company.

The significance of a digital signature is comparable to the significance of a
handwritten signature. Once you have signed a file, it is difficult to claim later that
you didn’t sign it. In some situations, a digital signature may be considered as
legally binding as a handwritten signature. Therefore, you should take great care to
ensure that you can stand behind any file you sign and distribute.

For example, if you are a software developer, you should test your code to make
sure it is virus-free before signing it. Similarly, if you are a network administrator,
you should make sure, before signing any code, that it comes from a reliable source
and will run correctly with the software installed on the machines to which you are
distributing it.

Object-Signing Certificates
Before you can use Netscape Signing Tool to sign files, you must have an
object-signing certificate, which is a special certificate whose associated private key
is used to create digital signatures.

For testing purposes only, you can create an object-signing certificate with
Netscape Signing Tool 1.3. When testing is finished and you are ready to disitribute
your software, you should obtain an object-signing certificate from one of two
kinds of sources:

• An independent certificate authority (CA) that authenticates your identity and
charges you a fee. You typically get a certificate from an independent CA if you
want to sign software that will be distributed over the Internet.

Using Netscape Signing Tool

Chapter 13 Netscape Signing Tool 93

• CA server software running on your corporate intranet or extranet. iPlanet
Certificate Management Server provides a complete management solution for
creating, deploying, and managing certificates, including CAs that issue
object-signing certificates.

You must also have a certificate for the CA that issues your signing certificate
before you can sign files. If the certificate authority's certificate isn't already
installed in your copy of Communicator, you typically install it by clicking the
appropriate link on the certificate authority's web site, for example on the page
from which you initiated enrollment for your signing certificate. This is the case for
some test certificates, as well as certificates issued by iPlanet Certificate
Management Server: you must download the the CA certificate in addition to
obtaining your own signing certificate. CA certificates for several certificate
authorities are preinstalled in the Communicator certificate database.

When you receive an object-signing certificate for your own use, it is automatically
installed in your copy of the Communicator client software. Communicator
supports the public-key cryptography standard known as PKCS #12, which
governs key portability. You can, for example, move an object-signing certificate
and its associated private key from one computer to another on a credit-card-sized
device called a smart card. For motr information, see “Using Netscape Signing Tool
with Smart Cards” on page 108.

Using Netscape Signing Tool
This section describes how to use Netscape Signing Tool to create digital signatures
for files in a directory and to associate the signatures with the files according to the
JAR format. Netscape Signing Tool also provides an option that automatically
creates a JAR file containing the directory; this option was not implemented in
pre-1.0 versions. For maximum flexibility, and for compatibility with scripts that
used earlier versions of Netscape Signing Tool, you can still use a ZIP utility to
create the JAR file.

• Getting Ready to Use Netscape Signing Tool

• Signing a File

• Using Netscape Signing Tool with a ZIP Utility

• Tips and Techniques

For a complete list of Netscape Signing Tool command-line options, see “SignTool
Syntax and Options” on page 99.

Using Netscape Signing Tool

94 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Getting Ready to Use Netscape Signing Tool
Before using Netscape Signing Tool, you must have the signtool executable in
your path environment variable. You must also have an object-signing certificate.

Netscape Signing Tool includes an option that allows you to generate an
object-signing certificate for testing purposes. For information about using this
option, see “Generating Test Object-Signing Certificates” on page 106.

Although suitable for testing purposes, the object-signing certificate produced by
Netscape Signing Tool is not recommended for signing finished software that will
be widely distributed over the Internet or an intranet. When you are ready to sign
finished software, you will need to get an object-signing certificate from your
company’s internal certificate authority, if it has one, or from a third-party
certificate authority.

The sections that follow describe how to prepare Netscape Signing Tool for signing
files.

Setting Up Your Certificate
These instructions apply to an object-signing certificate obtained from a third party
or an in-house CA for use in signing finished code. During development, you may
wish to use a special certificate generated by Netscape Signing Tool for testing
purposes.

If you obtained your object-signing certificate while running Communicator on a
system that’s different from the system on which you intend to sign files, you need
to copy your certificate and private key files to the new system. Communicator’s
certificate and key databases are portable among all platforms.

On the computer where you ran Communicator to get the object-signing certificate,
locate the files key3.db and cert7.db. For example, on a typical Windows NT
system, these files are found at C:\Program Files\NETSCAPE\USERS\username\.
You must copy these files to the system where you intend to sign pages. (If you use
FTP, be sure to transfer in binary mode.)

If you are running Netscape Signing Tool on a Unix system and you don’t already
have a ~/.netscape directory, first run Communicator once to create one. If you
want to maintain whatever certificates are already in your ~/.netscape directory,
put the existing key3.db and cert7.db files in some other directory before
replacing them with the versions that include the object-signing certificate you
want to use with Netscape Signing Tool.

If you are using Unix, set up an alias to call signtool, or place it in your path.

Using Netscape Signing Tool

Chapter 13 Netscape Signing Tool 95

If you are using Windows 95 or NT, the signtool executable doesn't know where
your certificates are, so either put the key3.db and cert7.db files in the current
directory and use “-d.” or use -d to point to the directory in which they are
located.

Listing Available Certificates
You use the -L option to list the nicknames for all available certificates and check
which ones are signing certificates, as shown in this Unix example:

% signtool -L
using certificate directory: /u/jsmith/.netscape
S Certificates
- ------------
 BBN Certificate Services CA Root 1
 IBM World Registry CA
 VeriSign Class 1 CA - Individual Subscriber - VeriSign, Inc.
 GTE CyberTrust Root CA
 Uptime Group Plc. Class 4 CA
* Verisign Object Signing Cert
 Integrion CA
 GTE CyberTrust Secure Server CA
 AT&T Directory Services
* test object signing cert
 Uptime Group Plc. Class 1 CA
 VeriSign Class 1 Primary CA
- ------------
Certificates that can be used to sign objects have *'s to their left.
%

In the above example, two signing certificates are displayed: Verisign Object
Signing Cert and test object signing cert.

You use the -l option to get a list of signing certificates only, including the signing
CA for each, as shown in this Unix example:

% signtool -l
using certificate directory: /u/jsmith/.netscape
Object signing certificates

CAUTION Keep copies of the key3.db and cert7.db files somewhere separate
from the copies you use with the signtool executable. This ensures
that you won’t lose your certificates if you accidentally damage the
files. If your keys are on external tokens, such as smart cards, you
should keep a copy the secmod.db file.

Using Netscape Signing Tool

96 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Verisign Object Signing Cert
Issued by: VeriSign, Inc. - Verisign, Inc.
Expires: Tue May 19, 1998

test object signing cert
Issued by: test object signing cert (Signtool 1.0 Testing

Certificate (960187691))
 Expires: Sun May 17, 1998

For a list including CAs, use "signtool -L"

Signing a File
To sign a file using Netscape Signing Tool, follow these steps:

1. Create an empty directory.

% mkdir signdir

2. Put some file into it.

% echo boo > signdir/test.f

3. Specify the name of your object-signing certificate and sign the directory.

If you are using Unix, this example assumes you have put your .db files in the
~/.netscape directory, as explained in “Setting Up Your Certificate” on
page 94.

% signtool -k MySignCert -Z testjar.jar signdir

using key "MySignCert"
using certificate directory: /u/jsmith/.netscape
Generating signdir/META-INF/manifest.mf file..
--> test.f
adding signdir/test.f to testjar.jar
Generating signtool.sf file..
Enter Password or Pin for "Communicator Certificate DB":

4. At the prompt, type the password to your private-key database.

If it accepts the password, signtool responds as follows:

adding signdir/META-INF/manifest.mf to testjar.jar
adding signdir/META-INF/signtool.sf to testjar.jar
adding signdir/META-INF/signtool.rsa to testjar.jar
tree "signdir" signed successfully

Using Netscape Signing Tool

Chapter 13 Netscape Signing Tool 97

5. Test the archive you just created.

% signtool -v testjar.jar

using certificate directory: /u/jsmith/.netscape
archive "testjar.jar" has passed crypto verification.

status path
------------ -------------------

verified test.f

You can also use Netscape Signing Tool from within a script to automate some
aspects of signing. For example, here’s a Windows script that starts with an
unsigned JAR file, unpackages it, signs it, and then repackages it:

rem Expand the jar file into a new directory
unzip -qq myjar.jar -d signjar
del myjar.jar
rem Sign everything in the new directory and recompress
signtool -k MySignCert -Z myjar.jar signdir

Using Netscape Signing Tool with a ZIP Utility
To use Netscape Signing Tool with a ZIP utility, you must have the utility in your
path environment variable. You should use the zip.exe utility rather than
pkzip.exe, which cannot handle long filenames.

You can use a ZIP utility instead of the -Z option to package a signed archive into a
JAR file after you have signed it:

% cd signdir
% zip -r ../myjar.jar *
 adding: META-INF/ (stored 0%)
 adding: META-INF/manifest.mf (deflated 15%)
 adding: META-INF/signtool.sf (deflated 28%)
 adding: META-INF/signtool.rsa (stored 0%)
 adding: text.txt (stored 0%)
%

Tips and Techniques
• If you are storing JAR files or their components in CVS, store them as binary

files.

Using Netscape Signing Tool

98 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

• If you are signing metadata only and not files, you still need to create a blank
directory for Netscape Signing Tool to sign.

• When using the Windows NT version of Netscape Signing Tool, always use a
relative path.

• The command signtool -L should list your object-signing certificate with an
asterisk (*) beside it. If it doesn’t, you cannot sign files.

• If you are having problems using the JAR file from within Navigator, check
signtool -v on your final archive.

• Don’t use Netscape Signing Tool’s -G option while Communicator is running.
The -G option writes to the security databases as it generates certificates, and
corruption could occur if Communicator simultaneously attempts to write to
these files. All other Netscape Signing Tool options are read-only and can’t
harm these files.

• If you see the error Unknown issuer, you need to get the certificate of the
certificate authority that issued your signing certificate. Alternatively, you may
have the certificate authority’s certificate, but it may not be trusted for object
signing.

• If you see the error Issuer not trusted, open Communicator on the system
you used when you obtained the certificate and follow these steps:

a. Click the Security button in a Navigator window.

b. Click Signers under Certificates in the left frame.

c. Select the CA that issued your signing certificate.

d. Click the Edit button.

e. Select the “Accept this Certificate Authority for Certifying software
developers” checkbox.

f. Click OK.

You then need to transfer the cert7.db file to the appropriate directory on the
system on which you are running Netscape Signing Tool, as described in
“Setting Up Your Certificate” on page 94.

SignTool Syntax and Options

Chapter 13 Netscape Signing Tool 99

SignTool Syntax and Options
This section summarizes the syntax and options for Netscape Signing Tool 1.3.

• Command Syntax

• Command Options

• Command File Syntax

• Command File Keywords and Example

Command Syntax
To run Netscape Signing Tool, type

signtool options

where options can be any sequence of the options listed in this chapter.

Each argument for each signtool option must be in quotes if it contains any
spaces or other nonalphanumeric characters.

Command Options
Options for signtool are defined as follows:

Table 13-1 Description of options

Option Description

-b basename Specifies the base filename for the .rsa and .sf files in the META-INF directory
(required by The JAR Format). For example,

-b signatures

causes the files to be named signatures.rsa and signatures.sf. The
default is signtool.

The -b option is available in Netscape Signing Tool 1.0 and later versions only.

SignTool Syntax and Options

100 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

-c# Specifies the compression level for the -J or -Z option. The symbol # represents
a number from 0 to 9, where 0 means no compression and 9 means maximum
compression. The higher the level of compression, the smaller the output but the
longer the operation takes.

If the -c# option is not used with either the -J or the -Z option, the default
compression value used by both the -J and -Z options is 6.

-d certdir Specifies your certificate database directory; that is, the directory in which you
placed your key3.db and cert7.db files. To specify the current directory, use
“-d.” (including the period).

The Unix version of signtool assumes ~/.netscape unless told otherwise.
The NT version of signtool always requires the use of the -d option to specify
where the database files are located.

-e extension Tells signtool to sign only files with the given extension; for example, use
-e".class" to sign only Java class files. Note that with Netscape Signing Tool
version 1.1 and later this option can appear multiple times on one command
line, making it possible to specify multiple file types or classes to include.

-f commandfile Specifies a text file containing Netscape Signing Tool options and arguments in
keyword=value format. All options and arguments can be expressed through this
file. For more information about the syntax used with this file, see “Tips and
Techniques” on page 97.

-i scriptname Specifies the name of an installer script for SmartUpdate. This script installs files
from the JAR archive in the local system after SmartUpdate has validated the
digital signature. For more details, see the description of -m that follows. The -i
option provides a straightforward way to provide this information if you don’t
need to specify any metadata other than an installer script.

-j directory Specifies a special JavaScript directory. This option causes the specified
directory to be signed and tags its entries as inline JavaScript. This special type
of entry does not have to appear in the JAR file itself. Instead, it is located in the
HTML page containing the inline scripts. When you use signtool -v, these
entries are displayed with the string NOT PRESENT.

Table 13-1 Description of options

SignTool Syntax and Options

Chapter 13 Netscape Signing Tool 101

-k key ... directory Specifies the nickname (key) of the certificate you want to sign with and signs
the files in the specified directory. The directory to sign is always specified as
the last command-line argument. Thus, it is possible to write

signtool -k MyCert -d . signdir

You may have trouble if the nickname contains a single quotation mark. To
avoid problems, escape the quotation mark using the escape conventions for
your platform.

It’s also possible to use the -k option without signing any files or specifying a
directory. For example, you can use it with the -l option to get detailed
information about a particular signing certificate.

-G nickname Generates a new private-public key pair and corresponding object-signing
certificate with the given nickname.

The newly generated keys and certificate are installed into the key and
certificate databases in the directory specified by the -d option. With the NT
version of Netscape Signing Tool, you must use the -d option with the -G
option. With the Unix version of Netscape Signing Tool, omitting the -d option
causes the tool to install the keys and certificate in the Communicator key and
certificate databases. If you are installing the keys and certificate in the
Communicator databases, you must exit Communicator before using this
option; otherwise, you risk corrupting the databases. In all cases, the certificate
is also output to a file named x509.cacert, which has the MIME-type
application/x-x509-ca-cert.

Unlike certificates normally used to sign finished code to be distributed over a
network, a test certificate created with -G is not signed by a recognized
certificate authority. Instead, it is self-signed. In addition, a single test signing
certificate functions as both an object-signing certificate and a CA. When you are
using it to sign objects, it behaves like an object-signing certificate. When it is
imported into browser software such as Communicator, it behaves like an
object-signing CA and cannot be used to sign objects.

The -G option is available in Netscape Signing Tool 1.0 and later versions only.
By default, it produces only RSA certificates with 1024-byte keys in the internal
token. However, you can use the -s option specify the required key size and the
-t option to specify the token. For more information about the use of the -G
option, see “Generating Test Object-Signing Certificates” on page 106.

-l Lists signing certificates, including issuing CAs. If any of your certificates are
expired or invalid, the list will so specify. This option can be used with the -k
option to list detailed information about a particular signing certificate.

The -l option is available in Netscape Signing Tool 1.0 and later versions only.

Table 13-1 Description of options

SignTool Syntax and Options

102 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

-J Signs a directory of HTML files containing JavaScript and creates as many
archive files as are specified in the HTML tags. Even if signtool creates more
than one archive file, you need to supply the key database password only once.

The -J option is available only in Netscape Signing Tool 1.0 and later versions.
The -J option cannot be used at the same time as the -Z option.

If the -c# option is not used with the -J option, the default compression value
is 6.

Note that versions 1.1 and later of Netscape Signing Tool correctly recognizes
the CODEBASE attribute, allows paths to be expressed for the CLASS and SRC
attributes instead of filenames only, processes LINK tags and parses HTML
correctly, and offers clearer error messages.

-L Lists the certificates in your database. An asterisk appears to the left of the
nickname for any certificate that can be used to sign objects with signtool.

--leavearc Retains the temporary .arc (archive) directories that the -J option creates.
These directories are automatically erased by default. Retaining the temporary
directories can be an aid to debugging.

-m metafile Specifies the name of a metadata control file. Metadata is signed information
attached either to the JAR archive itself or to files within the archive. This
metadata can be any ASCII string, but is used mainly for specifying an installer
script.

The metadata file contains one entry per line, each with three fields:

• field #1: file specification, or + if you want to specify global metadata (that is,
metadata about the JAR archive itself or all entries in the archive)

• field #2: the name of the data you are specifying; for example:
Install-Script

• field #3: data corresponding to the name in field #2

For example, the -i option uses the equivalent of this line:

+ Install-Script: script.js

This example associates a MIME type with a file:

movie.qt MIME-Type: video/quicktime

For information about the way installer script information appears in the
manifest file for a JAR archive, see The JAR Format on Netscape DevEdge.

Table 13-1 Description of options

SignTool Syntax and Options

Chapter 13 Netscape Signing Tool 103

-M Lists the PKCS #11 modules available to signtool, including smart cards.

The -M option is available in Netscape Signing Tool 1.0 and later versions only.

For information on using Netscape Signing Tool with smart cards, see “Using
Netscape Signing Tool with Smart Cards” on page 108.

For information on using the -M option to verify FIPS-140-1 validated mode, see
“Netscape Signing Tool and FIPS-140-1” on page 111.

--norecurse Blocks recursion into subdirectories when signing a directory’s contents or
when parsing HTML.

-o Optimizes the archive for size. Use this only if you are signing very large
archives containing hundreds of files. This option makes the manifest files
(required by the JAR format) considerably smaller, but they contain slightly less
information.

--outfile outputfile Specifies a file to receive redirected output from Netscape Signing Tool.

-p password Specifies a password for the private-key database. Note that the password
entered on the command line is displayed as plain text.

-s keysize Specifies the size of the key for generated certificate. Use the -M option to find
out what tokens are available.

The -s option can be used with the -G option only.

-t token Specifies which available token should generate the key and receive the
certificate. Use the -M option to find out what tokens are available.

The -t option can be used with the -G option only.

-v archive Displays the contents of an archive and verifies the cryptographic integrity of
the digital signatures it contains and the files with which they are associated.
This includes checking that the certificate for the issuer of the object-signing
certificate is listed in the certificate database, that the CA’s digital signature on
the object-signing certificate is valid, that the relevant certificates have not
expired, and so on.

--verbosity value Sets the quantity of information Netscape Signing Tool generates in operation.
A value of 0 (zero) is the default and gives full information. A value of -1
suppresses most messages, but not error messages.

-w archive Displays the names of signers of any files in the archive.

-x directory Excludes the specified directory from signing. Note that with Netscape Signing
Tool version 1.1 and later this option can appear multiple times on one
command line, making it possible to specify several particular directories to
exclude.

Table 13-1 Description of options

SignTool Syntax and Options

104 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Command File Syntax
Entries in a Netscape Signing Tool command file have this general format:

keyword=value

Everything before the = sign on a single line is a keyword, and everything from the
= sign to the end of line is a value. The value may include = signs; only the first =
sign on a line is interpreted. Blank lines are ignored, but white space on a line with
keywords and values is assumed to be part of the keyword (if it comes before the
equal sign) or part of the value (if it comes after the first equal sign). Keywords are
case insensitive, values are generally case sensitive. Since the = sign and newline
delimit the value, it should not be quoted.

Command File Keywords and Example
Here are the command file keywords and their values:

-z Tells signtool not to store the signing time in the digital signature. This option
is useful if you want the expiration date of the signature checked against the
current date and time rather than the time the files were signed.

-Z jarfile Creates a JAR file with the specified name. You must specify this option if you
want signtool to create the JAR file; it does not do so automatically. If you
don’t specify -Z, you must use an external ZIP tool to create the JAR file.

The -Z option cannot be used at the same time as the -J option.

If the -c# option is not used with the -Z option, the default compression value
is 6.

Keyword Value

basename Same as -b option.

compression Same as -c option.

certdir Same as -d option.

extension Same as -e option.

generate Same as -G option.

installscript Same as -i option.

Table 13-1 Description of options

SignTool Syntax and Options

Chapter 13 Netscape Signing Tool 105

Here's an example of the use of the command file. The command

signtool -d c:\netscape\users\james -k mycert -Z myjar.jar signdir >
output.txt

becomes

signtool -f somefile

where somefile contains the following lines:

javascriptdir Same as -j option.

htmldir Same as -J option.

certname Nickname of certificate, as with -k and -l -k options.

signdir The directory to be signed, as with -k option.

list Same as -l option. Value is ignored, but = sign must be
present.

listall Same as -L option. Value is ignored, but = sign must be
present.

metafile Same as -m option.

modules Same as -M option. Value is ignored, but = sign must be
present.

optimize Same as -o option. Value is ignored, but = sign must be
present.

password Same as -p option.

keysize Same as -s option.

token Same as -t option.

verify Same as -v option.

who Same as -w option.

exclude Same as -x option.

notime Same as -z option. value is ignored, but = sign must be
present.

jarfile Same as -Z option.

outfile Name of a file to which output and error messages will
be redirected. This option has no command-line
equivalent.

Keyword Value

Generating Test Object-Signing Certificates

106 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

certdir=c:\netscape\users\james
certname=mycert
jarfile=myjar.jar
signdir=signdir
outfile=output.txt

Generating Test Object-Signing Certificates
Netscape Signing Tool allows you to create object-signing certificates for testing
purposes. This section describes how to create and use such test certificates.

Unlike certificates normally used to sign finished code to be distributed over a
network, the test certificates created with Netscape Signing Tool are not signed by
a recognized certificate authority. Instead, they are self-signed. In addition, a single
test signing certificate functions as both an object-signing certificate and a CA.
When you are using it to sign objects, it behaves like an object-signing certificate.
When it is imported into browser software such as Communicator, it behaves like
an object-signing CA.

Generating the Keys and Certificate
The signtool option -G generates a new public-private key pair and certificate. It
takes the nickname of the new certificate as an argument. The newly generated
keys and certificate are installed into the key and certificate databases in the
directory specified by the -d option. With the NT version of Netscape Signing Tool,
you must use the -d option with the -G option. With the Unix version of Netscape
Signing Tool, omitting the -d option causes the tool to install the keys and
certificate in the Communicator key and certificate databases. In all cases, the
certificate is also output to a file named x509.cacert, which has the MIME-type
application/x-x509-ca-cert.

Important
Before installing new keys and certificates in the key and certificate databases, you
must set the database password (if you have not done so already). To set the
password for the key and certificate databases currently being used by
Communicator, click the Security icon in the Communicator toolbar, click
Passwords, and click Set Password to create a password.

Generating Test Object-Signing Certificates

Chapter 13 Netscape Signing Tool 107

Warning
If you intend to install the new key pair and certificate in the Communicator
databases, you must exit Communicator before using Netscape Signing Tool to
generate the object-signing certificate. Otherwise, you risk corrupting your
certificate and key databases.

Certificates contain standard information about the entity they identify, such as the
common name and organization name. Netscape Signing Tool prompts you for
this information when you run the command with the -G option. However, all of
the requested fields are optional for test certificates. If you do not enter a common
name, the tool provides a default name. In the following example, the user input is
in boldface:

% signtool -G MyTestCert
using certificate directory: /u/someuser/.netscape
Enter certificate information. All fields are optional. Acceptable
characters are numbers, letters, spaces, and apostrophes.
certificate common name: Test Object Signing Certificate
organization: Netscape Communications Corp.
organization unit: Server Products Division
state or province: California
country (must be exactly 2 characters): US
username: someuser
email address: someuser@netscape.com
Enter Password or Pin for "Communicator Certificate DB": [Password
will not echo]
generated public/private key pair
certificate request generated
certificate has been signed
certificate "MyTestCert" added to database
Exported certificate to x509.raw and x509.cacert.
%

The certificate information is read from standard input. Therefore, the information
can be read from a file using the redirection operator (<) in some operating
systems. To create a file for this purpose, enter each of the seven input fields, in
order, on a separate line. Make sure there is a newline character at the end of the
last line. Then run signtool with standard input redirected from your file as
follows:

% signtool -G MyTestCert <inputfile

The prompts show up on the screen, but the responses will be automatically read
from the file. The password will still be read from the console unless you use the -p
option to give the password on the command line.

Using Netscape Signing Tool with Smart Cards

108 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Using Netscape Signing Tool with Smart Cards
This section describes how to use smart cards from within Netscape Signing Tool
to digitally sign files.

• What Is a Smart Card?

• Setting Up a Smart Card

• Using the -M Option to List Smart Cards

• Using Netscape Signing Tool and a Smart Card to Sign Files

What Is a Smart Card?
A smart card (sometimes called a token) is a credit-card-sized card, a key, or other
easily removable device that can be used for cryptographic operations and for
storing certificates. Smart cards are portable and must be physically inserted in an
appropriate smart card reader attached to a computer for use with Communicator
software running on that computer. Smart cards extend the private-key protection
provided by Communicator, since private keys stored on the card require the
card’s presence as well as the password to the private-key database.

Navigator and Netscape Signing Tool support PKCS #11, a cryptographic standard
developed to support services provided by smart cards. Before purchasing a smart
card for use with Communicator, you should ensure that your vendor provides a
PKCS #11 driver that has been tested with Communicator on your platform. Tested
brands include Litronic Netsign and Datakey’s SignaSURE.

Setting Up a Smart Card
Connect the smart card reader according to the manufacturer instructions. You
may need to reset the smart card to a default state using the manufacturer's
configuration utility. Not all smart cards require this step.

Smart cards designed for use with Communicator come with a software driver that
you should install in your computer according to the manufacturer’s instructions.
You can then add the driver (also called a cryptographic module) to Communicator
as follows:

1. Make sure the smart card is inserted in the smart card reader.

2. Click the Security button near the top of a Navigator window.

Using Netscape Signing Tool with Smart Cards

Chapter 13 Netscape Signing Tool 109

3. Click Cryptographic Modules in the left frame.

4. Click the Add button.

5. Type an appropriate name for the module you want to add in the box labeled
Security Module Name.

6. Type the name of the driver that was supplied with your smart card in the box
labeled Security Module File. For Windows systems, this is a dynamic linked
library (DLL). You don’t have to type the entire path, but you may.

7. Click OK.

8. If Communicator asks for it, type the smart card password.

9. Select the module you've just installed and click the View/Edit button.

10. Make sure the displayed information is correct for the smart card you just
installed.

11. Select the name of the smart card.

12. Click the More Info button and examine that information as well.

13. If the state of the smart card (shown near the bottom of the More Info window)
is Not Logged In, click OK and then click the Login button. Otherwise, just
click OK. (Logging in allows you to install your signing certificate on the smart
card. The smart card doesn’t have to be logged in within Communicator for
you to use it with Netscape Signing Tool.)

14. Click OK again.

After you have activated the smart card, use Communicator to visit the web site for
the certificate authority (CA) you want to use and request a signing certificate.

When you submit your information to the certificate authority, Communicator asks
you to select the card or database you wish to use to generate your private key. You
should select the name of your smart card.

Your system then generates a public-private key pair and submits your request to
the CA. When you receive the certificate, it is installed directly onto the card and
travels with that smart card. However, you will be unable to use the certificate
unless the smart card is inserted in the appropriate reader and you have entered its
password correctly.

Using Netscape Signing Tool with Smart Cards

110 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Using the -M Option to List Smart Cards
You can use the -M option to list the PKCS #11 modules, including smart cards, that
are available to signtool:

% signtool -d "c:\netscape\users\jsmith" -M
using certificate directory: c:\netscape\users\<username>
Listing of PKCS11 modules

1. Netscape Internal PKCS #11 Module
(this module is internally loaded)
slots: 2 slots attached
status: loaded

slot: Communicator Internal Cryptographic Services Version 4.0
token: Communicator Generic Crypto Svcs
slot: Communicator User Private Key and Certificate Services
token: Communicator Certificate DB
2. CryptOS

(this is an external module)
DLL name: core32

slots: 1 slots attached
status: loaded

slot: Litronic 210
 token:
3. Datakey SignaSURE

 (this is an external module)
DLL name: dkck232.dll

slots: 1 slots attached
status: loaded
slot: Datakey Reader
token: <username>

Using Netscape Signing Tool and a Smart Card
to Sign Files
Before you try to use Netscape Signing Tool with a smart card, try using it to sign a
file without a smart card as described in “Using Netscape Signing Tool” on
page 93.

The signtool command normally takes an argument of the -k option to specify a
signing certificate. To sign with a smart card, you supply only the fully qualified
name of the certificate.

Netscape Signing Tool and FIPS-140-1

Chapter 13 Netscape Signing Tool 111

To see fully qualified certificate names when you run Communicator, click the
Security button in Navigator, then click Yours under Certificates in the left frame.
Fully qualified names are of the format smart card:certificate, for example
"MyCard:My Signing Cert". You use this name with the -k argument as follows:

signtool -k "MyCard:My Signing Cert" directory

where directory is the directory tree you want to sign. signtool asks you for two
passwords: the password that protects the Communicator certificate database and
the password that protects your smart card. If the passwords are correct, signtool
signs the files in the directory.

Netscape Signing Tool and FIPS-140-1
This section describes how to use Netscape Signing Tool in FIPS-140-1 validated
mode. FIPS 140-1 is a U.S. government standard for implementations of
cryptographic modules--that is, hardware or software that encrypts and decrypts
data or performs other cryptographic operations (such as creating or verifying
digital signatures). Many products sold to the U.S. government must comply with
one or more of the FIPS standards.

• Using FIPS-140 Mode

• Verifying FIPS Mode

For general information on FIPS standards and Netscape FIPS-140-1 validation, see
the FIPS 140-1 FAQ.

Using FIPS-140 Mode
Netscape Signing Tool is FIPS-140-1 validated when it uses the FIPS-validated
Netscape cryptographic module. The FIPS module can be activated and
deactivated from within Communicator. Communicator stores the module choice
in the security module database (called secmod.db on Windows platforms and
secmodule.db on Unix platforms). This database is stored in the same directory as
your certificate database (cert7.db) and key database (key3.db), as indicated by
the -d option of Netscape Signing Tool.

Before using Netscape Signing Tool in FIPS-validated mode, you must use
Navigator to switch to FIPS mode. For information on how to do this, see
Operating Netscape Navigator in FIPS PUB-140-1 Compliant Mode on Netscape
DevEdge.

Netscape Signing Tool and FIPS-140-1

112 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

After switching the Navigator cryptographic module to FIPS mode, you have two
choices:

• Use the same security module database from Netscape Signing Tool (by
specifying the same directory with the -d option).

• Make a copy of Communicator's security module database and place it in
Netscape Signing Tool's database directory.

Verifying FIPS Mode
Use the -M option to verify that you are using the FIPS-140-1 module.

This Unix example shows that Netscape Signing Tool is using a non-FIPS module:

% signtool -d "c:\netscape\users\jsmith" -M
using certificate directory: c:\netscape\users\jsmith
Listing of PKCS11 modules

 1. Netscape Internal PKCS #11 Module
 (this module is internally loaded)
 slots: 2 slots attached
 status: loaded
 slot: Communicator Internal Cryptographic Services Version 4.0
 token: Communicator Generic Crypto Svcs
 slot: Communicator User Private Key and Certificate Services
 token: Communicator Certificate DB

This Unix example shows that Netscape Signing Tool is using a FIPS-140-1 module:

% signtool -d "c:\netscape\users\jsmith" -M
using certificate directory: c:\netscape\users\jsmith
Enter Password or Pin for "Communicator Certificate DB": [password
will not echo]
Listing of PKCS11 modules

 1. Netscape Internal FIPS PKCS #11 Module
 (this module is internally loaded)
 slots: 1 slots attached
 status: loaded
 slot: Netscape Internal FIPS-140-1 Cryptographic Services
 token: Communicator Certificate DB

Answers to Common Questions

Chapter 13 Netscape Signing Tool 113

Answers to Common Questions
This section answers the most common technical questions regarding Netscape
Signing Tool.

Netscape Signing Tool, or Communicator, fails to report the presence of a
particular certificate in the database, even though that certificate should be
there.

Netscape Signing Tool 1.x and Communicator 4.x are designed to read only the
cert7.db files used by Communicator 4.x. If it happens that a certificate gets
downloaded with Navigator 3.x after Communicator 4.x was installed and run,
that certificate is recorded in a database of the older (3.x) format. While
Communicator does automatically convert Navigator’s cert5.db and key.db
databases to the cert7.db and key3.db formats the first time it runs, it does
not do so again.

To get a certificate into the new database from an old one requires forcing
Communicator to reinitialize its cert7.db file as it does at first run-time. This
requires that the certificates in the current cert7.db file be exported for later
re-importing.

a. Click the Security Info button on the Communicator toolbar.

b. Click Yours under Certificates in the left panel, and select a certificate to
export.

c. Click Export and save a PKCS #12 copy of the certificate to a safe location
(if no copy already exists).

d. Repeat steps 2 and 3 for each certificate present.

e. Exit Communicator completely.

f. Move the cert7.db and key3.db files from your user profile directory to a
backup directory. This is a safety measure: these files shouldn’t be needed
again. Once the following steps are successfully completed, and you have
used signtool -l to verify that the upgraded cert7.db file has the right
certificates, you can discard these backup copies.

g. Copy Navigator’s cert5.db and key.db files to your Communicator
user-profile directory.

h. Restart Communicator. It automatically upgrades the older database files,
including their contents.

i. Click the Security Info button on the Communicator toolbar, then click
Yours under Certificates in the left panel.

Answers to Common Questions

114 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

j. Click Import a Certificate and give the database password.

k. Select a certificate file to open and give the certificate’s password.

l. Repeat steps 9 and 10 for each certificate to be re-imported.

The certificate needed to sign an object is in the certificate database, but
Netscape Signing Tool’s -l and -k options report “Unable to find issuer
certificate” or “Unknown user” errors.

Netscape Signing Tool 1.x reads the cert7.db files used by Communicator 4.x.
Normally, cert7.db files record a certificate’s complete certificate chain
information using the PKCS #7 cryptographic message-syntax standard.
However, Navigator 3.x wasn’t designed to properly use this standard (it
wasn’t in wide use yet). Therefore, certificates used by Communicator 4.x that
were originally imported with Navigator 3.x may not have all the certificate
chain information required for object signing.

In the case of VeriSign Class 2 or Class 3 certificates, the missing portion of the
chain is the intermediate node, since the root is provided with Communicator
by default and the leaf is included in the existing certificate information. To get
the intermediate portion, use Communicator 4.x and click these links for
VeriSign Class 2 or VeriSign Class 3 certificate authority updates.

When trying to read a JAR file into Communicator 4.05 the error message
"Inconsistent files in manifest" appears in the Java console.

Communicator 4.05 (and only that version) has a bug that makes it sensitive to
the case of the JAR manifest’s filename as stored in the META-INF directory.
Version 4.05 requires the filename to be all lowercase. Although the JAR
specification calls for case insensitivity and Netscape Signing Tool does
generate a lowercase filename, an uppercase filename can appear if another
tool is used to create the JAR, or case translation occurs on the Windows
platform.

This problem can be repaired by re-signing the JAR with Netscape Signing
Tool, or by unzipping the file and changing MANIFEST.MF to manifest.mf.

How can users change the nicknames of their own certificates?

For convenience, users may want to shorten the nicknames of some of the
certificates they use. While certificates cannot be renamed directly, it may be
possible to replace them and give the replacement a new name.

Note that this process can present a risk because it requires the user to delete a
certificate before replacing it, and if the replacement fails and there is no
backup certificate, the certificate is lost.

Answers to Common Questions

Chapter 13 Netscape Signing Tool 115

a. Click the Security Info button on Communicator’s toolbar.

b. Click Yours under Certificates and select a certificate to rename.

c. Click Export and save a PKCS #12 copy of the certificate to a safe location
(if no copy already exists). This copy is needed if replacement fails.

d. Click Delete and remove the certificate from the certificate database. Note
that the certificate’s corresponding private key isn’t deleted, just the
certificate itself.

e. Retrieve the certificate again from the Certificate Authority. The specific
procedure for doing this depends on the Certificate Authority being used.
Be very sure that the replacement is the correct one.

f. Enter a new name for the certificate when downloading it.

Note: The Export and Import buttons in the Security Info dialog box can’t be
used to change certificate nicknames. These functions can affect only a
certificate’s exported PKCS #12 filename.

When I click the Security icon in the Communicator toolbar, click Yours under
Certificates, select my object-signing certificate, and click Verify, Communicator
informs me that the certificate is not valid. Why?

This is a common occurrence. The Verify button works with S/MIME
certificates only. It does not work with object-signing certificates.

To verify an object-signing certificate, use

signtool -l -k nickname

where nickname is the nickname of the certificate you want to verify.

I get the following error when trying to create a test certificate:

failure authenticating to key database .: Security I/O error.

This error typically means that you have not yet set a password for the
certificate database. To set the password for the Communicator database, click
the Security icon in the Communicator toolbar, click Passwords, and click Set
Password to create a password.

Objects to be signed will be stored and used long-term, well after the certificates
used for signing have expired. Will signed objects still be trusted even after their
object-signing certificates have expired?

Answers to Common Questions

116 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Although certificates expire, valid signatures do not. Signature validation is
based on the date of the signature rather than the time verification occurs. If a
certificate chain was valid at signing, Communicator will continue to recognize
that signature even after certificates in that chain expire. Note that this would
not be true, however, if an object was signed using the -z option which omits
the original timestamp and forces validation to rely on the current status of the
certificate chain.

117

Chapter 14

SSL Debugging Tool

SSL Debugging Tool is an SSL-aware command-line proxy. It watches TCP
connections and displays the data going by. If a connection is SSL, the data display
includes interpreted SSL records and handshaking information.

This chapter has the following sections:

• Availability (page 117)

• Description (page 117)

• Syntax (page 118)

• Examples (page 119)

• Usage Tips (page 129)

Availability
This tool is available for AIX 4.3, OSF/1 v4.0D, Solaris 2.6 (SunOS 5.6), Solaris 8,
and Windows NT 4.0.

Description
The ssltap command opens a socket on a rendezvous port and waits for an
incoming connection from the client side. Once this connection arrives, the tool
makes another connection to the specified host name and port on the server side. It
passes any data sent by the client to the server and vice versa. The tool also
displays the data to the shell window from which it was called. It can do this for
plain HTTP connections or any TCP protocol, as well as for SSL streams, as
described here.

Syntax

118 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

The tool cannot and does not decrypt any encrypted message data. You use the tool
to look at the plain text and binary data that are part of the handshake procedure,
before the secure connection is established.

Syntax
To run SSL Debugging Tool, type this command in a command shell:

ssltap [-vhfsxl] [-p port] hostname:port

Options
The command does not require any options other than hostname:port, but you
normally use them to control the connection interception and output. The options
for the command are the following:

Table 14-1 Description of command options

Option Description

-v Print a version string for the tool.

-h Turn on hex/ASCII printing. Instead of outputting raw data, the command interprets each
record as a numbered line of hex values, followed by the same data as ASCII characters. The
two parts are separated by a vertical bar. Nonprinting characters are replaced by dots.

-f Turn on fancy printing. Output is printed in colored HTML. Data sent from the client to the
server is in blue; the server's reply is in red. When used with looping mode, the different
connections are separated with horizontal lines. You can use this option to upload the output
into a browser.

-s Turn on SSL parsing and decoding. The tool does not automatically detect SSL sessions. If you
are intercepting an SSL connection, use this option so that the tool can detect and decode SSL
structures.

If the tool detects a certificate chain, it saves the DER-encoded certificates into files in the
current directory. The files are named cert.0x, where x is the sequence number of the
certificate.

If the -s option is used with -h, two separate parts are printed for each record: the plain
hex/ASCII output, and the parsed SSL output.

-x Turn on hex/ASCII printing of undecoded data inside parsed SSL records. Used only with the
-s option. This option uses the same output format as the -h option.

Examples

Chapter 14 SSL Debugging Tool 119

Examples
You can use SSL Debugging Tool to intercept any connection information.
Although you can run the tool at its most basic by issuing the ssltap command
with no options other than hostname:port, the information you get in this way is not
very useful.

For example, assume your development machine is called intercept. The simplest
way to use the debugging tool is to execute the following command from a
command shell:

ssltap www.netscape.com:80

The program waits for an incoming connection on the default port 1924. In your
browser window, enter the URL http://intercept:1924. The browser retrieves
the requested page from the server at www.netscape.com, but the page is
intercepted and passed on to the browser by the debugging tool on intercept.

On its way to the browser, the data is printed to the command shell from which
you issued the command. Data sent from the client to the server is surrounded by
the following symbols:

--> [data]

Data sent from the server to the client is surrounded by the following symbols:

-l Turn on looping; that is, continue to accept connections rather than stopping after the first
connection is complete.

-p port Change the default rendezvous port (1924) to another port. The following are well-known port
numbers:

HTTP 80

HTTPS 443

SMTP 25

FTP 21

IMAP 143

IMAPS 993 (IMAP over SSL)

NNTP 119

NNTPS 563 (NNTP over SSL)

Table 14-1 Description of command options

Examples

120 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

<-- [data]

The raw data stream is sent to standard output and is not interpreted in any way.
This can result in peculiar effects, such as sounds, flashes, and even crashes of the
command shell window. To output a basic, printable interpretation of the data, use
the -h option, or, if you are looking at an SSL connection, the -s option.

You will notice that the page you retrieved looks incomplete in the browser. This is
because, by default, the tool closes down after the first connection is complete, so
the browser is not able to load images. To make the tool continue to accept
connections, switch on looping mode with the -l option.

The following examples show the output from commonly used combinations of
options.

Example 1
The s and x options in this example turn on SSL parsing and show undecoded
values in hex/ASCII format. The output is routed to a text file.

Command
ssltap.exe -sx -p 444 interzone.mcom.com:443 > sx.txt

Output
Connected to interzone.mcom.com:443
--> [
alloclen = 66 bytes

[ssl2] ClientHelloV2 {
version = {0x03, 0x00}
cipher-specs-length = 39 (0x27)
sid-length = 0 (0x00)
challenge-length = 16 (0x10)
cipher-suites = {

 (0x010080) SSL2/RSA/RC4-128/MD5
(0x020080) SSL2/RSA/RC4-40/MD5
(0x030080) SSL2/RSA/RC2CBC128/MD5
(0x040080) SSL2/RSA/RC2CBC40/MD5
(0x060040) SSL2/RSA/DES64CBC/MD5
(0x0700c0) SSL2/RSA/3DES192EDE-CBC/MD5
(0x000004) SSL3/RSA/RC4-128/MD5
(0x00ffe0) SSL3/RSA-FIPS/3DES192EDE-CBC/SHA
(0x00000a) SSL3/RSA/3DES192EDE-CBC/SHA
(0x00ffe1) SSL3/RSA-FIPS/DES64CBC/SHA

Examples

Chapter 14 SSL Debugging Tool 121

(0x000009) SSL3/RSA/DES64CBC/SHA
(0x000003) SSL3/RSA/RC4-40/MD5
(0x000006) SSL3/RSA/RC2CBC40/MD5
}

session-id = { }
challenge = { 0xec5d 0x8edb 0x37c9 0xb5c9 0x7b70 0x8fe9

0xd1d3

0x2592 }
}
]
<-- [
SSLRecord {

0: 16 03 00 03 e5 |.....
type = 22 (handshake)
version = { 3,0 }
length = 997 (0x3e5)
handshake {
0: 02 00 00 46 |...F

type = 2 (server_hello)
length = 70 (0x000046)

ServerHello {
server_version = {3, 0}
random = {...}

0: 77 8c 6e 26 6c 0c ec c0 d9 58 4f 47 d3 2d 01 45 |
wŒn&l.ì..XOG.-.E

10: 5c 17 75 43 a7 4c 88 c7 88 64 3c 50 41 48 4f 7f |

\.uC§L.Ç.d<PAHO.
session ID = {
length = 32

 contents = {..}
0: 14 11 07 a8 2a 31 91 29 11 94 40 37 57 10 a7 32 |

...¨*1.)..@7W.§2
10: 56 6f 52 62 fe 3d b3 65 b1 e4 13 0f 52 a3 c8 f6 |

VoRbþ=³e±...R£È.
}

cipher_suite = (0x0003) SSL3/RSA/RC4-40/MD5
}

0: 0b 00 02 c5 |...Å
type = 11 (certificate)
length = 709 (0x0002c5)

CertificateChain {
chainlength = 706 (0x02c2)

Certificate {
size = 703 (0x02bf)

data = { saved in file ’cert.001’ }
}

Examples

122 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

}
0: 0c 00 00 ca |....

type = 12 (server_key_exchange)
length = 202 (0x0000ca)

0: 0e 00 00 00 |....
type = 14 (server_hello_done)
length = 0 (0x000000)

}
}
]
--> [
SSLRecord {

0: 16 03 00 00 44 |....D
type = 22 (handshake)
version = { 3,0 }
length = 68 (0x44)
handshake {
0: 10 00 00 40 |...@
type = 16 (client_key_exchange)
length = 64 (0x000040)

ClientKeyExchange {
message = {...}

}
}

}
]
--> [
SSLRecord {

0: 14 03 00 00 01 |.....
type = 20 (change_cipher_spec)
version = { 3,0 }
length = 1 (0x1)
0: 01 |.

}
SSLRecord {

0: 16 03 00 00 38 |....8
type = 22 (handshake)
version = { 3,0 }
length = 56 (0x38)

< encrypted >

}
]
<-- [
SSLRecord {

0: 14 03 00 00 01 |.....
type = 20 (change_cipher_spec)
version = { 3,0 }

Examples

Chapter 14 SSL Debugging Tool 123

length = 1 (0x1)
0: 01 |.

}
]
<-- [
SSLRecord {

0: 16 03 00 00 38 |....8
type = 22 (handshake)
version = { 3,0 }
length = 56 (0x38)

< encrypted >

}
]
--> [
SSLRecord {

0: 17 03 00 01 1f |.....
type = 23 (application_data)
version = { 3,0 }
length = 287 (0x11f)

< encrypted >
}
]
<-- [
SSLRecord {

0: 17 03 00 00 a0 |....
type = 23 (application_data)
version = { 3,0 }
length = 160 (0xa0)

< encrypted >

}
]
<-- [
SSLRecord {
0: 17 03 00 00 df |....ß

type = 23 (application_data)
version = { 3,0 }
length = 223 (0xdf)

< encrypted >

}
SSLRecord {

0: 15 03 00 00 12 |.....
type = 21 (alert)
version = { 3,0 }
length = 18 (0x12)

Examples

124 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

< encrypted >
}
]
Server socket closed.

Example 2
The -s option turns on SSL parsing. Because the -x option is not used in this
example, undecoded values are output as raw data. The output is routed to a text
file.

Command
ssltap.exe -s -p 444 interzone.mcom.com:443 > s.txt

Output
Connected to interzone.mcom.com:443
--> [
alloclen = 63 bytes

[ssl2] ClientHelloV2 {
version = {0x03, 0x00}
cipher-specs-length = 36 (0x24)
sid-length = 0 (0x00)
challenge-length = 16 (0x10)
cipher-suites = {

(0x010080) SSL2/RSA/RC4-128/MD5
(0x020080) SSL2/RSA/RC4-40/MD5
(0x030080) SSL2/RSA/RC2CBC128/MD5
(0x060040) SSL2/RSA/DES64CBC/MD5
(0x0700c0) SSL2/RSA/3DES192EDE-CBC/MD5
(0x000004) SSL3/RSA/RC4-128/MD5
(0x00ffe0) SSL3/RSA-FIPS/3DES192EDE-CBC/SHA
(0x00000a) SSL3/RSA/3DES192EDE-CBC/SHA
(0x00ffe1) SSL3/RSA-FIPS/DES64CBC/SHA
(0x000009) SSL3/RSA/DES64CBC/SHA
(0x000003) SSL3/RSA/RC4-40/MD5
}

session-id = { }
challenge = { 0x713c 0x9338 0x30e1 0xf8d6 0xb934 0x7351

0x200c
0x3fd0 }
]
<-- [
SSLRecord {

Examples

Chapter 14 SSL Debugging Tool 125

type = 22 (handshake)
version = { 3,0 }
length = 997 (0x3e5)
handshake {

type = 2 (server_hello)
length = 70 (0x000046)

ServerHello {
server_version = {3, 0}
random = {...}
session ID = {

length = 32
contents = {..}
}
cipher_suite = (0x0003) SSL3/RSA/RC4-40/MD5

}
type = 11 (certificate)
length = 709 (0x0002c5)

CertificateChain {
chainlength = 706 (0x02c2)
Certificate {

size = 703 (0x02bf)
data = { saved in file ’cert.001’ }

}
}

type = 12 (server_key_exchange)
length = 202 (0x0000ca)
type = 14 (server_hello_done)
length = 0 (0x000000)

}
}
]
--> [
SSLRecord {

type = 22 (handshake)
version = { 3,0 }
length = 68 (0x44)
handshake {

type = 16 (client_key_exchange)
length = 64 (0x000040)

ClientKeyExchange {
message = {...}

}
}

}
]
--> [
SSLRecord {

Examples

126 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

type = 20 (change_cipher_spec)
version = { 3,0 }
length = 1 (0x1)

}
SSLRecord {

type = 22 (handshake)
version = { 3,0 }
length = 56 (0x38)

< encrypted >
}
]
<-- [
SSLRecord {

type = 20 (change_cipher_spec)
version = { 3,0 }
length = 1 (0x1)

}
]
<-- [
SSLRecord {

type = 22 (handshake)
version = { 3,0 }
length = 56 (0x38)

< encrypted >
}
]
--> [
SSLRecord {

type = 23 (application_data)
version = { 3,0 }
length = 287 (0x11f)

< encrypted >
}
]
[
SSLRecord {

type = 23 (application_data)
version = { 3,0 }
length = 160 (0xa0)

< encrypted >
}
]
<-- [
SSLRecord {

type = 23 (application_data)
version = { 3,0 }
length = 223 (0xdf)

Examples

Chapter 14 SSL Debugging Tool 127

< encrypted >
}
SSLRecord {

type = 21 (alert)
version = { 3,0 }
length = 18 (0x12)

< encrypted >
}
]
Server socket closed.

Example 3
In this example, the -h option turns hex/ASCII format. There is no SSL parsing or
decoding. The output is routed to a text file.

Command
ssltap.exe -h -p 444 interzone.mcom.com:443 > h.txt

Output
Connected to interzone.mcom.com:443
--> [
0: 80 40 01 03 00 00 27 00 00 00 10 01 00 80 02 00 | .@....’.........
10: 80 03 00 80 04 00 80 06 00 40 07 00 c0 00 00 04 |@......
20: 00 ff e0 00 00 0a 00 ff e1 00 00 09 00 00 03 00 |á.......
30: 00 06 9b fe 5b 56 96 49 1f 9f ca dd d5 ba b9 52 | ..›þ[V.I.Ÿ...º¹R
40: 6f 2d |o-

]
<-- [
0: 16 03 00 03 e5 02 00 00 46 03 00 7f e5 0d 1b 1d |F.......
10: 68 7f 3a 79 60 d5 17 3c 1d 9c 96 b3 88 d2 69 3b | h.:y‘..<.œ.³.Òi;
20: 78 e2 4b 8b a6 52 12 4b 46 e8 c2 20 14 11 89 05 | x.K.¦R.KFè. ..‰.
30: 4d 52 91 fd 93 e0 51 48 91 90 08 96 c1 b6 76 77 | MR.ý..QH.....¶vw
40: 2a f4 00 08 a1 06 61 a2 64 1f 2e 9b 00 03 00 0b | *ô..¡.a¢d..›....
50: 00 02 c5 00 02 c2 00 02 bf 30 82 02 bb 30 82 02 | ..Å......0...0..
60: 24 a0 03 02 01 02 02 02 01 36 30 0d 06 09 2a 86 | $60...*.
70: 48 86 f7 0d 01 01 04 05 00 30 77 31 0b 30 09 06 | H.÷......0w1.0..
80: 03 55 04 06 13 02 55 53 31 2c 30 2a 06 03 55 04 | .U....US1,0*..U.
90: 0a 13 23 4e 65 74 73 63 61 70 65 20 43 6f 6d 6d | ..#Netscape Comm
a0: 75 6e 69 63 61 74 69 6f 6e 73 20 43 6f 72 70 6f | unications Corpo
b0: 72 61 74 69 6f 6e 31 11 30 0f 06 03 55 04 0b 13 | ration1.0...U...
c0: 08 48 61 72 64 63 6f 72 65 31 27 30 25 06 03 55 | .Hardcore1’0%..U
d0: 04 03 13 1e 48 61 72 64 63 6f 72 65 20 43 65 72 |Hardcore Cer
e0: 74 69 66 69 63 61 74 65 20 53 65 72 76 65 72 20 | tificate Server
f0: 49 49 30 1e 17 0d 39 38 30 35 31 36 30 31 30 33 | II0...9805160103

Examples

128 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

<additional data lines>
]
<additional records in same format>
Server socket closed.

Example 4
In this example, the -s option turns on SSL parsing, and the -h options turns on
hex/ASCII format. Both formats are shown for each record. The output is routed to
a text file.

Command
ssltap.exe -hs -p 444 interzone.mcom.com:443 > hs.txt

Output
Connected to interzone.mcom.com:443
--> [

0: 80 3d 01 03 00 00 24 00 00 00 10 01 00 80 02 00 | .=....$.........
10: 80 03 00 80 04 00 80 06 00 40 07 00 c0 00 00 04 |@......
20: 00 ff e0 00 00 0a 00 ff e1 00 00 09 00 00 03 03 |á.......
30: 55 e6 e4 99 79 c7 d7 2c 86 78 96 5d b5 cf e9 |U..™yÇ×,.x.]µÏé

alloclen = 63 bytes
[ssl2] ClientHelloV2 {

version = {0x03, 0x00}
cipher-specs-length = 36 (0x24)
sid-length = 0 (0x00)
challenge-length = 16 (0x10)
cipher-suites = {

(0x010080) SSL2/RSA/RC4-128/MD5
(0x020080) SSL2/RSA/RC4-40/MD5
(0x030080) SSL2/RSA/RC2CBC128/MD5
(0x040080) SSL2/RSA/RC2CBC40/MD5
(0x060040) SSL2/RSA/DES64CBC/MD5
(0x0700c0) SSL2/RSA/3DES192EDE-CBC/MD5
(0x000004) SSL3/RSA/RC4-128/MD5
(0x00ffe0) SSL3/RSA-FIPS/3DES192EDE-CBC/SHA
(0x00000a) SSL3/RSA/3DES192EDE-CBC/SHA
(0x00ffe1) SSL3/RSA-FIPS/DES64CBC/SHA
(0x000009) SSL3/RSA/DES64CBC/SHA
(0x000003) SSL3/RSA/RC4-40/MD5
}

session-id = { }
challenge = { 0x0355 0xe6e4 0x9979 0xc7d7 0x2c86 0x7896 0x5db

0xcfe9 }

Usage Tips

Chapter 14 SSL Debugging Tool 129

}
]
<additional records in same formats>
Server socket closed.

Usage Tips
• When SSL restarts a previous session, it makes use of cached information to do

a partial handshake. If you wish to capture a full SSL handshake, restart the
browser to clear the session id cache.

• If you run the tool on a machine other than the SSL server to which you are
trying to connect, the browser will complain that the host name you are trying
to connect to is different from the certificate. If you are using the default
BadCert callback, you can still connect through a dialog. If you are not using
the default BadCert callback, the one you supply must allow for this
possibility.

Usage Tips

130 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

131

Chapter 15

SSL Strength Tool

SSL Strength Tool is a command-line tool that connects to an SSL server and
reports back the encryption cipher and strength used for the connection.

This chapter has the following sections:

• Availability (page 131)

• Syntax (page 131)

• Usage (page 132)

• Examples (page 134)

Availability
This tool is available for AIX 4.3, OSF/1 v4.0D, Solaris 2.6 (SunOS 5.6), Solaris 8,
and Windows NT 4.0.

Syntax
sslstrength hostname[:port]

[ciphers=ciphercode(s)]
[verbose]
[policy=export|domestic]

This form of the command returns a list of enabled ciphers on the client, then
attempts to connect to the named SSL host, on the specified port. If the connection
is successful, it returns information about the negotiated encryption strength.

sslstrength ciphers

Usage

132 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

This form of the command returns a list of the possible ciphers. A letter in the first
column of the output is the code used by the ciphers= option. Pass any number of
cipher codes to the ciphers= argument to identify the cipher preferences.

Options and Arguments
The SSL Strength Tool command options and their arguments are defined as
follows:

Usage
During an SSL handshake, the client sends the server a list of the ciphers it can use.
The server chooses one of the ciphers based on its cipher policies, and notifies the
client of which one to use.

Table 15-1 Description of options and arguments

Options and Arguments Description

hostname Required. Identifies the SSL server to which to connect.

port Optional. Identifies a specific port on the specified SSL server to which to
connect. If not specified, defaults to the standard HTTPS port, 443.

ciphers= Optional. Turns on the cipher preferences corresponding to the specified
cipher codes, and turns off all other cipher preferences.

To obtain the list of cipher character codes, execute the special form of the
command:

sslstrength ciphers.

verbose Optional. Turns on the verbose form of command output, which provides
additional information about the progress of the connection.

policy= Optional. Sets your policy regarding which ciphers can be permitted.
Restricts the available ciphers to the same set used by Netscape
Communicator for domestic or export versions (to comply with federal
export restrictions).

The value can be export or domestic. If not specified, defaults to
domestic.

Usage

Chapter 15 SSL Strength Tool 133

When you issue the sslstrength command, the tool first prints the list of ciphers
enabled on the client. It then connects to an SSL server and reports back the
following information:

• The bulk encryption algorithm selected

• The key size selected

• The secret key size

• Information about the SSL server certificate, including:

❍ The issuer subject name

❍ The certificate subject name

❍ The validity period

Restricting Ciphers
You can selectively enable or disable specific ciphers on the client, to determine
what strength of connection is used for those ciphers. Use the policy= or ciphers=
option to restrict which ciphers are available.

• To restrict the available ciphers to the same set used by Communicator for
exportable or domestic versions, set the policy= option to either domestic or
export. In an exportable client, only those ciphers that are valid for export are
enabled.

• To further restrict the ciphers available, use the ciphers= option. The
argument to this option is a string of characters, where each single character
represents a cipher. For example, ciphers=bfi turns on the cipher preferences
corresponding to the codes b, f ,and i. It turns off all other cipher preferences.

To obtain the list of cipher character codes, execute this command:

sslstrength ciphers

Export Policy and Step-up
Some institutions, such as banks, may be qualified to obtain a special “step-up”
certificate (also know as a “global server ID”) that allows the server to override
export policy. When this certificate is installed in the server, it allows an export
client that has step-up capability to renegotiate the SSL cipher and use
domestic-strength encryption.

Examples

134 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

A connection that steps up starts out with 40-bit encryption, then, upon
encountering a change-cipher-spec handshake, changes to 128-bit encryption. To
check whether a client has stepped up correctly upon encountering a step-up
certificate, check that it is using export policy, and that the secret key size is 128
bits.

Examples
The following examples show the output from various sslstrength commands.

Example 1
This example shows output from a command that allows all options to default.

sslstrength myhost.netscape.com

Using domestic policy
Connecting to myhost.netscape.com:443
Using all ciphersuites usually found in client
Your Cipher preference:
id CipherName Domestic Export
a SSL_EN_RC4_128_WITH_MD5 (ssl2) Yes No
b SSL_EN_RC2_128_CBC_WITH_MD5 (ssl2) Yes No
c SSL_EN_DES_192_EDE3_CBC_WITH_MD5 (ssl2) Yes No
d SSL_EN_DES_64_CBC_WITH_MD5 (ssl2) Yes No
e SSL_EN_RC4_128_EXPORT40_WITH_MD5 (ssl2) Yes Yes
f SSL_EN_RC2_128_CBC_EXPORT40_WITH_MD5 (ssl2) Yes Yes
i SSL_RSA_WITH_RC4_128_MD5 (ssl3) Yes Step-up only
j SSL_RSA_WITH_3DES_EDE_CBC_SHA (ssl3) Yes Step-up only
k SSL_RSA_WITH_DES_CBC_SHA (ssl3) Yes No
l SSL_RSA_EXPORT_WITH_RC4_40_MD5 (ssl3) Yes Yes
m SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 (ssl3) Yes Yes
o SSL_RSA_WITH_NULL_MD5 (ssl3) Yes Yes
p SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA (ssl3) Yes No
q SSL_RSA_FIPS_WITH_DES_CBC_SHA (ssl3) Yes No
SSL Connection Status
Cipher: RC4
Key Size: 128
Secret Key Size: 128
Issuer: OU=Secure Server Certification Authority, O="RSA
Data Security, Inc.", C=US

Examples

Chapter 15 SSL Strength Tool 135

Subject: CN=myhost.netscape.com, OU=E-Store Merchant Server,
O=Netscape Communications Corp., L=Mountain View, ST=California,
C=US
Valid: from Fri Oct 02, 1998 to Sat Oct 02, 1999

Example 2
This example shows output from a command that limits the client to three ciphers.

sslstrength myhost.netscape.com ciphers=jkl

Using domestic policy
Connecting to myhost.netscape.com:443
Your Cipher preference:
id CipherName Domestic Export
j SSL_RSA_WITH_3DES_EDE_CBC_SHA (ssl3) Yes Step-up only
k SSL_RSA_WITH_DES_CBC_SHA (ssl3) Yes No
l SSL_RSA_EXPORT_WITH_RC4_40_MD5 (ssl3) Yes Yes
SSL Connection Status
Cipher: 3DES-EDE-CBC
Key Size: 168
Secret Key Size: 168
Issuer: OU=Secure Server Certification Authority, O="RSA
Data Security, Inc.", C=US
Subject: CN=myhost.netscape.com, OU=E-Store Merchant Server,
O=Netscape Communications Corp., L=Mountain View, ST=California,
C=US
Valid: from Fri Oct 02, 1998 to Sat Oct 02, 1999

Example 3
This example shows output from a command that sets the client’s policy to enable
standard export ciphers.

sslstrength myhost.netscape.com policy=export

Using export policy
Connecting to myhost.netscape.com:443
Using all ciphersuites usually found in client
Your Cipher preference:
id CipherName Domestic Export
e SSL_EN_RC4_128_EXPORT40_WITH_MD5 (ssl2) Yes Yes

Examples

136 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

f SSL_EN_RC2_128_CBC_EXPORT40_WITH_MD5 (ssl2) Yes Yes
i SSL_RSA_WITH_RC4_128_MD5 (ssl3) Yes Step-up only
j SSL_RSA_WITH_3DES_EDE_CBC_SHA (ssl3) Yes Step-up only
l SSL_RSA_EXPORT_WITH_RC4_40_MD5 (ssl3) Yes Yes
m SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 (ssl3) Yes Yes
o SSL_RSA_WITH_NULL_MD5 (ssl3) Yes Yes
SSL Connection Status
Cipher: RC4-40
Key Size: 128
Secret Key Size: 40
Issuer: OU=Secure Server Certification Authority, O="RSA
Data Security, Inc.", C=US
Subject: CN=myhost.netscape.com, OU=E-Store Merchant Server,
O=Netscape Communications Corp., L=Mountain View, ST=California,
C=US
Valid: from Fri Oct 02, 1998 to Sat Oct 02, 1999

137

Chapter 16

Security Module Database Tool

The Security Module Database Tool is a command-line utility for managing
PKCS#11 module information within secmod.db files or within hardware tokens.
You can use the tool to add and delete PKCS #11 modules, change passwords, set
defaults, list module contents, enable or disable slots, enable or disable FIPS-140-1
compliance, and assign default providers for cryptographic operations. This tool
can also create key3.db, cert7.db, and secmod.db security database files.

The tasks associated with security module database management are part of a
process that typically also involves managing key databases (key3.db files) and
certificate databases (cert7.db files). The key, certificate, and PKCS #11 module
management process generally begins with creating the keys and key database
necessary to generate and manage certificates and the certificate database.

This chapter has the following sections:

• Availability (page 137)

• Syntax (page 138)

• Usage (page 141)

• JAR Installation File (page 142)

• Keys (page 144)

• Examples (page 148)

Availability
This tool is available for Solaris 2.5.1 (SunOS 5.5.1) and Windows NT 4.0.

Syntax

138 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Syntax
To run the Security Module Database Tool, type the command

modutil option [arguments]

where option and [arguments] are combinations of the options and arguments
listed in the following section. Each command takes one option. Each option may
take zero or more arguments. To see a usage string, issue the command without
options.

Options and Arguments
Options specify an action. Option arguments modify an action. The options and
arguments for the modutil command are defined as follows:

Table 16-1 Options and Arguments for modutil

Options Description

-create Create new secmod.db, key3.db, and cert7.db files. Use the -dbdir
directory argument to specify a directory. If any of these databases already exist
in a specified directory, the Security Module Database Tool displays an error
message.

-list [modulename] Display basic information about the contents of the secmod.db file. Use
modulename to display detailed information about a particular module and its
slots and tokens.

-add modulename Add the named PKCS #11 module to the database. Use this option with the
-libfile, -ciphers, and -mechanisms arguments.

-jar JAR-file Add a new PKCS #11 module to the database using the named JAR file. Use
this option with the -installdir and -tempdir arguments. The JAR file
uses the Netscape Server PKCS #11 JAR format to identify all the files to be
installed, the module’s name, the mechanism flags, and the cipher flags. The
JAR file should also contain any files to be installed on the target machine,
including the PKCS #11 module library file and other files such as
documentation. See the section JAR Installation File for information on
creating the special script needed to perform an installation through a server
or with the Security Module Database Tool (that is, in environments without
JavaScript support).

-delete modulename Delete the named module. Note that you cannot delete the Netscape
Communicator internal PKCS #11 module.

Syntax

Chapter 16 Security Module Database Tool 139

-changepw tokenname Change the password on the named token. If the token has not been initialized,
this option initializes the password. Use this option with the -pwfile and
-newpwfile arguments. In this context, the term “password” is equivalent to
a personal identification number (PIN).

-default modulename Specify the security mechanisms for which the named module will be a default
provider. The security mechanisms are specified with the -mechanisms
mechanism-list argument.

-undefault
modulename

Specify the security mechanisms for which the named module will not be a
default provider. The security mechanisms are specified with the
-mechanisms mechanism-list argument.

-enable modulename Enable all slots on the named module. Use the [-slot slotname]
argument to enable a specific slot.

-disable modulename Disable all slots on the named module. Use the [-slot slotname]
argument to disable a specific slot.

-fips [true | false] Enable (true) or disable (false) FIPS-140-1 compliance for the Netscape
Communicator internal module.

-force Disable the Security Module Database Tool’s interactive prompts so it can be
run from a script. Use this option only after manually testing each planned
operation to check for warnings and to ensure that bypassing the prompts will
cause no security lapses or loss of database integrity.

Arguments

-dbdir directory Specify a directory in which to access or create security module database files.
On Unix, the Security Module Database Tool defaults to the user’s Netscape
directory. Windows NT has no default directory, so -dbdir must be used to
specify a directory.

-libfile
library-file

Specify a path to the DLL or other library file containing the implementation of
the PKCS #11 interface module that is being added to the database.

-ciphers
cipher-enable-list

Enable specific ciphers in a module that is being added to the database. The
cipher-enable-list is a colon-delimited list of cipher names. Enclose this list in
quotation marks if it contains spaces. The following cipher is currently
available: FORTEZZA.

Table 16-1 Options and Arguments for modutil

Syntax

140 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

-mechanisms
mechanism-list

Specify the security mechanisms for which a particular module will be flagged
as a default provider. The mechanism-list is a colon-delimited list of mechanism
names. Enclose this list in quotation marks if it contains spaces. The module
becomes a default provider for the listed mechanisms when those mechanisms
are enabled. If more than one module claims to be a particular mechanism’s
default provider, that mechanism’s default provider is undefined. The
following mechanisms are currently available: RSA, DSA, RC2, RC4, RC5, DES,
DH, FORTEZZA, SHA1, MD5, MD2, RANDOM (for random number generation),
and FRIENDLY (meaning certificates are publicly readable).

-installdir
root-installation-directory

Specify the root installation directory relative to which files will be installed by
the -jar JAR-file option. This directory should be one below which it is
appropriate to store dynamic library files (for example, a server's root
directory or the Netscape Communicator root directory).

-tempdir
temporary-directory

The temporary directory is the location where temporary files will be created
in the course of installation by the -jar JAR-file option. If no temporary
directory is specified, the current directory will be used.

-pwfile
old-password-file

Specify a text file containing a token’s existing password so that a password
can be entered automatically when the -changepw tokenname option is used to
change passwords.

-newpwfile
new-password-file

Specify a text file containing a token’s new or replacement password so that a
password can be entered automatically with the -changepw tokenname option.

-slot slotname Specify a particular slot to be enabled or disabled with the -enable
modulename or -disable modulename options.

-nocertdb Do not open the certificate or key databases. This has several effects:

• With the -create command, only a secmod.db file will be created;
cert7.db and key3.db will not be created.

• With the -jar command, signatures on the JAR file will not be checked.

• With the -changepw command, the password on the Netscape internal
module cannot be set or changed, since this password is stored in
key3.db.

Table 16-1 Options and Arguments for modutil

Usage

Chapter 16 Security Module Database Tool 141

Usage
The Security Module Database Tool’s capabilities are grouped as follows, using
these combinations of options and arguments. The options and arguments in
square brackets are optional, those without square brackets are required.

• Creating a set of security management database files (key3.db, cert7.db, and
secmod.db):

-create

• Displaying basic module information or detailed information about the
contents of a given module:

-list [modulename]

• Adding a PKCS #11 module, which includes setting a supporting library file,
enabling ciphers, and setting default provider status for various security
mechanisms:

-add modulename -libfile library-file [-ciphers cipher-enable-list]
[-mechanisms mechanism-list]

• Adding a PKCS #11 module from an existing JAR file:

-jar JAR-file -installdir root-installation-directory
[-tempdir temporary-directory]

• Deleting a specific PKCS #11 module from a security module database:

-delete modulename

• Initializing or changing a token’s password:

-changepw tokenname [-pwfile old-password-file]
[-newpwfile new-password-file]

• Setting the default provider status of various security mechanisms in an
existing PKCS #11 module:

-default modulename -mechanisms mechanism-list

• Clearing the default provider status of various security mechanisms in an
existing PKCS #11 module:

-undefault modulename -mechanisms mechanism-list

• Enabling a specific slot or all slots within a module:

-enable modulename [-slot slotname]

JAR Installation File

142 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

• Disabling a specific slot or all slots within a module:

-disable modulename [-slot slotname]

• Enabling or disabling FIPS-140-1 compliance within the Netscape
Communicator internal module:

-fips [true | false]

• Disabling interactive prompts for the Security Module Database Tool, to
support scripted operation:

-force

JAR Installation File
When a JAR file is run by a server, by the Security Module Database Tool, or by any
program that does not interpret JavaScript, a special information file must be
included in the format described below.

This information file contains special scripting and must be declared in the JAR
archive’s manifest file. The script can have any name. The metainfo tag for this is
Pkcs11_install_script. To declare meta-information in the manifest file, put it
in a file that is passed to the Netscape Signing Tool.

Sample Script
For example, the PKCS #11 installer script could be in the file pk11install. If so,
the metainfo file for the Netscape Signing Tool would include a line such as this:

+ Pkcs11_install_script: pk11install

The sample script file could contain the following:

ForwardCompatible { IRIX:6.2:mips SUNOS:5.5.1:sparc }
Platforms {

WINNT::x86 {
ModuleName { "Fortezza Module" }
ModuleFile { win32/fort32.dll }
DefaultMechanismFlags{0x0001}
DefaultCipherFlags{0x0001}
Files {

win32/setup.exe {
Executable
RelativePath { %temp%/setup.exe }

JAR Installation File

Chapter 16 Security Module Database Tool 143

}
win32/setup.hlp {

RelativePath { %temp%/setup.hlp }
}
win32/setup.cab {

RelativePath { %temp%/setup.cab }
}

}
}
WIN95::x86 {

EquivalentPlatform {WINNT::x86}
}
SUNOS:5.5.1:sparc {

ModuleName { "Fortezza UNIX Module" }
ModuleFile { unix/fort.so }
DefaultMechanismFlags{0x0001}
CipherEnableFlags{0x0001}
Files {

unix/fort.so {
RelativePath{%root%/lib/fort.so}
AbsolutePath{/usr/local/netscape/lib/fort.so}
FilePermissions{555}

}
xplat/instr.html {

RelativePath{%root%/docs/inst.html}
AbsolutePath{/usr/local/netscape/docs/inst.html}
FilePermissions{555}

}
}

}
IRIX:6.2:mips {

EquivalentPlatform { SUNOS:5.5.1:sparc }
}

}

Script Grammar
The script file grammar is as follows:

--> valuelist

valuelist --> value valuelist
<null>

value ---> key_value_pair
string

Keys

144 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

key_value_pair --> key { valuelist }

key --> string

string --> simple_string
"complex_string"

simple_string --> [^ \t\n\""{""}"]+ (No whitespace, quotes, or
braces.)

complex_string --> ([^\"\\\r\n]|(\\\")|(\\\\))+ (Quotes and
backslashes must be escaped with a backslash. A complex string must
not include newlines or carriage returns.)

Outside of complex strings, all white space (for example, spaces, tabs, and carriage
returns) is considered equal and is used only to delimit tokens.

Keys
Keys are case-insensitive. This section discusses the following keys:

• Global Keys

• Per-Platform Keys

• Per-File Keys

Global Keys

Key Description

ForwardCompatible Gives a list of platforms that are forward compatible. If the current
platform cannot be found in the list of supported platforms, then the
ForwardCompatible list is checked for any platforms that have the
same OS and architecture in an earlier version. If one is found, its
attributes are used for the current platform.

Keys

Chapter 16 Security Module Database Tool 145

Platforms (required) Gives a list of platforms. Each entry in the list is itself a key-value pair:
the key is the name of the platform and the value list contains various
attributes of the platform. The ModuleName, ModuleFile, and Files
attributes must be specified for each platform unless an
EquivalentPlatform attribute is specified. The platform string is in
the following format: system name:OS release:architecture. The installer
obtains these values from NSPR. OS release is an empty string on
non-Unix operating systems. The following system names and
platforms are currently defined by NSPR:

• AIX (rs6000)

• BSDI (x86)

• FREEBSD (x86)

• HPUX (hppa1.1)

• IRIX (mips)

• LINUX (ppc, alpha, x86)

• MacOS (PowerPC)

• NCR (x86)

• NEC (mips)

• OS2 (x86)

• OSF (alpha)

• ReliantUNIX (mips)

• SCO (x86)

• SOLARIS (sparc)

• SONY (mips)

• SUNOS (sparc)

• UnixWare (x86)

• WIN16 (x86)

• WIN95 (x86)

• WINNT (x86)

Here are some examples of valid platform strings:

IRIX:6.2:mips
SUNOS:5.5.1:sparc
Linux:2.0.32:x86
WIN95::x86.

Keys

146 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Per-Platform Keys
These keys have meaning only within the value list of an entry in the Platforms
list.

Key Description

ModuleName (required) Gives the common name for the module. This name will be used to
reference the module from Netscape Communicator, the Security
Module Database tool (modutil), servers, or any other program that
uses the Netscape security module database.

ModuleFile (required) Names the PKCS #11 module file (DLL or .so) for this platform. The
name is given as the relative path of the file within the JAR archive.

Files (required) Lists the files that need to be installed for this module. Each entry in the
file list is a key-value pair: the key is the path of the file in the JAR
archive, and the value list contains attributes of the file. At least
RelativePath or AbsolutePath must be specified for each file.

FilePermissions Interpreted as a string of octal digits, according to the standard Unix
format. This string is a bitwise OR of the following constants:

user read: 0400
user write: 0200
user execute: 0100
group read: 0040
group write: 0020
group execute: 0010
other read: 0004
other write: 0002
other execute: 0001

Some platforms may not understand these permissions. They are
applied only insofar as they make sense for the current platform. If this
attribute is omitted, a default of 777 is assumed.

Keys

Chapter 16 Security Module Database Tool 147

Per-File Keys
These keys have meaning only within the value list of an entry in a Files list. At
least one of RelativePath and AbsolutePath must be specified. If both are
specified, the relative path is tried first, and the absolute path is used only if no
relative root directory is provided by the installer program.

DefaultMechanismFlags Specifies mechanisms for which this module will be a default provider.
This key-value pair is a bitstring specified in hexadecimal (0x) format. It
is constructed as a bitwise OR of the following constants. If the
DefaultMechanismFlags entry is omitted, the value defaults to 0x0.

RSA: 0x00000001
DSA: 0x00000002
RC2: 0x00000004
RC4: 0x00000008
DES: 0x00000010
DH: 0x00000020
FORTEZZA: 0x00000040
RC5: 0x00000080
SHA1: 0x00000100
MD5: 0x00000200
MD2: 0x00000400
RANDOM: 0x08000000
FRIENDLY: 0x10000000
OWN_PW_DEFAULTS: 0x20000000
DISABLE: 0x40000000

CipherEnableFlags Specifies ciphers that this module provides but Netscape products do
not, so that Netscape products can enable them. This key is a bitstring
specified in hexadecimal (0x) format. It is constructed as a bitwise OR of
the following constants. If the CipherEnableFlags entry is omitted,
the value defaults to 0x0.

FORTEZZA: 0x0000 0001

EquivalentPlatform Specifies that the attributes of the named platform should also be used
for the current platform. Saves typing when there is more than one
platform using the same settings.

Key Description

AbsolutePath Specifies the destination directory of the file as an absolute path. If both
RelativePath and AbsolutePath are specified, the installer
attempts to use the relative path; if it is unable to determine a relative
path, it uses the absolute path.

Examples

148 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Examples
• Creating Database Files

• Displaying Module Information

• Setting a Default Provider

RelativePath Specifies the destination directory of the file, relative to some directory
decided at install time. Two variables can be used in the relative path:
"%root%" and "%temp%". "%root%" is replaced at run time with the
directory relative to which files should be installed; for example, it may
be the server’s root directory or the Netscape Communicator root
directory. The "%temp%" directory is created at the beginning of the
installation and destroyed at the end.

The purpose of "%temp%" is to hold executable files (such as setup
programs) or files that are used by these programs. For example, a
Windows installation might consist of a setup.exe installation
program, a help file, and a .cab file containing compressed
information. All these files could be installed in the temporary
directory. Files destined for the temporary directory are guaranteed to
be in place before any executable file is run; they are not deleted until all
executable files have finished.

Executable Specifies that the file is to be executed during the course of the
installation. Typically this string would be used for a setup program
provided by a module vendor, such as a self-extracting setup.exe.
More than one file can be specified as executable, in which case the files
are run in the order in which they are specified in the script file.

FilePermissions Interpreted as a string of octal digits, according to the standard Unix
format. This string is a bitwise OR of the following constants:

user read: 0400
user write: 0200
user execute: 0100
group read: 0040
group write: 0020
group execute: 0010
other read: 0004
other write: 0002
other execute: 0001

Some platforms may not understand these permissions. They are
applied only insofar as they make sense for the current platform. If this
attribute is omitted, a default of 777 is assumed.

Examples

Chapter 16 Security Module Database Tool 149

• Enabling a Slot

• Enabling FIPS Compliance

• Adding a Cryptographic Module

• Installing a Cryptographic Module from a JAR File

• Changing the Password on a Token

Creating Database Files
This example creates a set of security management database files in the specified
directory:

modutil -create -dbdir c:\databases

The Security Module Database Tool displays a warning:

WARNING: Performing this operation while a Netscape product is
running could cause corruption of your security databases. If a
Netscape product is currently running, you should exit the product
before continuing this operation. Type 'q <enter>' to abort, or
<enter> to continue:

After you press Enter, the tool displays the following:

Creating "c:\databases\key3.db"...done.
Creating "c:\databases\cert7.db"...done.
Creating "c:\databases\secmod.db"...done.

Displaying Module Information
This example gives detailed information about the specified module:

modutil -list "Netscape Internal PKCS #11 Module" -dbdir
c:\databases

The Security Module Database Tool displays information similar to this:

Using database directory c:\databases...
--
Name: Netscape Internal PKCS #11 Module
Library file: **Internal ONLY module**
Manufacturer: Netscape Communications Corp
Description: Communicator Internal Crypto Svc

Examples

150 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

PKCS #11 Version 2.0
Library Version: 4.0
Cipher Enable Flags: None
Default Mechanism Flags: RSA:DSA:RC2:RC4:DES:SHA1:MD5:MD2

Slot: Communicator Internal Cryptographic Services Version 4.0
Manufacturer: Netscape Communications Corp
Type: Software
Version Number: 4.1
Firmware Version: 0.0
Status: Enabled
Token Name: Communicator Generic Crypto Svcs
Token Manufacturer: Netscape Communications Corp
Token Model: Libsec 4.0
Token Serial Number: 0000000000000000
Token Version: 4.0
Token Firmware Version: 0.0
Access: Write Protected
Login Type: Public (no login required)
User Pin: NOT Initialized

Slot: Communicator User Private Key and Certificate Services
Manufacturer: Netscape Communications Corp
Type: Software
Version Number: 3.0
Firmware Version: 0.0
Status: Enabled
Token Name: Communicator Certificate DB
Token Manufacturer: Netscape Communications Corp
Token Model: Libsec 4.0
Token Serial Number: 0000000000000000
Token Version: 7.0
Token Firmware Version: 0.0
Access: NOT Write Protected
Login Type: Login required
User Pin: NOT Initialized

Setting a Default Provider
This example makes the specified module a default provider for the RSA, DSA, and
RC2 security mechanisms:

modutil -default "Cryptographic Module" -dbdir c:\databases
-mechanisms RSA:DSA:RC2

Examples

Chapter 16 Security Module Database Tool 151

The Security Module Database Tool displays a warning:

WARNING: Performing this operation while a Netscape product is
running could cause corruption of your security databases. If a
Netscape product is currently running, you should exit the product
before continuing this operation. Type 'q <enter>' to abort, or
<enter> to continue:

After you press Enter, the tool displays the following:

Using database directory c:\databases...

Successfully changed defaults.

Enabling a Slot
This example enables a particular slot in the specified module:

modutil -enable "Cryptographic Module" -slot "Cryptographic Reader"
-dbdir c:\databases

The Security Module Database Tool displays a warning:

WARNING: Performing this operation while a Netscape product is
running could cause corruption of your security databases. If a
Netscape product is currently running, you should exit the product
before continuing this operation. Type 'q <enter>' to abort, or
<enter> to continue:

After you press Enter, the tool displays the following:

Using database directory c:\databases...

Slot "Cryptographic Reader" enabled.

Enabling FIPS Compliance
This example enables FIPS-140-1 compliance in Communicator’s internal module:

modutil -fips true

The Security Module Database Tool displays a warning:

WARNING: Performing this operation while a Netscape product is
running could cause corruption of your security databases. If a
Netscape product is currently running, you should exit the product
before continuing this operation. Type 'q <enter>' to abort, or
<enter> to continue:

Examples

152 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

After you press Enter, the tool displays the following:

FIPS mode enabled.

Adding a Cryptographic Module
This example adds a new cryptographic module to the database:

C:\modutil> modutil -dbdir "C:\databases" -add "Cryptorific Module"
-libfile "C:\winnt\system32\crypto.dll" -mechanisms
RSA:DSA:RC2:RANDOM

The Security Module Database Tool displays a warning:

WARNING: Performing this operation while a Netscape product is
running could cause corruption of your security databases. If a
Netscape product is currently running, you should exit the product
before continuing this operation. Type 'q <enter>' to abort, or
<enter> to continue:

After you press Enter, the tool displays the following:

Using database directory C:\databases...
Module "Cryptorific Module" added to database.
C:\modutil>

Installing a Cryptographic Module from a JAR
File
This example installs a cryptographic module from the following sample
installation script.

Platforms {
WinNT::x86 {

ModuleName { "Cryptorific Module" }
ModuleFile { crypto.dll }
DefaultMechanismFlags{0x0000}
CipherEnableFlags{0x0000}
Files {

crypto.dll {
RelativePath{ %root%/system32/crypto.dll }

}
setup.exe {

Executable
RelativePath{ %temp%/setup.exe }

Examples

Chapter 16 Security Module Database Tool 153

}
}

}
Win95::x86 {

EquivalentPlatform { Winnt::x86 }
}

}

To install from the script, use the following command. The root directory should be
the Windows root directory (for example, c:\\windows, or c:\\winnt).

C:\modutil> modutil -dbdir "c:\databases" -jar install.jar
-installdir "C:/winnt"

The Security Module Database Tool displays a warning:

WARNING: Performing this operation while a Netscape product is
running could cause corruption of your security databases. If a
Netscape product is currently running, you should exit the product
before continuing this operation. Type 'q <enter>' to abort, or
<enter> to continue:

After you press Enter, the tool displays the following:

Using database directory c:\databases...

This installation JAR file was signed by:
--

SUBJECT NAME

C=US, ST=California, L=Mountain View, CN=Cryptorific Inc.,
OU=Digital ID Class 3 - Netscape Object Signing,
OU="www.verisign.com/repository/CPS Incorp. by Ref.,LIAB.LTD(c)9 6",
OU=www.verisign.com/CPS Incorp.by Ref. LIABILITY LTD.(c)97 VeriSign,
OU=VeriSign Object Signing CA - Class 3 Organization, OU="VeriSign,
Inc.", O=VeriSign Trust Network **ISSUER NAME**,
OU=www.verisign.com/CPS Incorp.by Ref. LIABILITY LTD.(c)97 VeriSign,
OU=VeriSign Object Signing CA - Class 3 Organization, OU="VeriSign,
Inc.", O=VeriSign Trust Network
--

Do you wish to continue this installation? (y/n) y
Using installer script "installer_script"
Successfully parsed installation script
Current platform is WINNT::x86
Using installation parameters for platform WinNT::x86
Installed file crypto.dll to C:/winnt/system32/crypto.dll

Examples

154 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

Installed file setup.exe to ./pk11inst.dir/setup.exe
Executing "./pk11inst.dir/setup.exe"...
"./pk11inst.dir/setup.exe" executed successfully
Installed module "Cryptorific Module" into module database

Installation completed successfully
C:\modutil>

Changing the Password on a Token
This example changes the password for a token on an existing module.

C:\modutil> modutil -dbdir "c:\databases" -changepw "Communicator
Certificate DB"

The Security Module Database Tool displays a warning:

WARNING: Performing this operation while a Netscape product is
running could cause corruption of your security databases. If a
Netscape product is currently running, you should exit the product
before continuing this operation. Type 'q <enter>' to abort, or
<enter> to continue:

After you press Enter, the tool displays the following:

Using database directory c:\databases...
Enter old password:
Incorrect password, try again...
Enter old password:
Enter new password:
Re-enter new password:
Token "Communicator Certificate DB" password changed successfully.
C:\modutil>

155

Index

A
adding

new entries to the password cache 24
ASCII to Binary tool 57

example 58
supported platforms 57
syntax 57

B
Binary to ASCII tool 59

example 60
supported platforms 59
syntax 59

C
Certificate Database tool 69

examples 75
supported platforms 69
syntax 70
usage 74

Certificate Manager
what to do if not responding 27

changing
passwords in the password cache 24
single sign-on password 23

command-line utilities 17

ASCII to Binary 57
Binary to ASCII 59
Certificate Database tool 69
dumpasn1 18
extension joiner 41
for adding extensions to CMS certificates 41
Key Database tool 81
killproc tool 18, 27
location 17
Netscape Signing tool 89
Password Cache tool 21
PasswordCache tool 17
PIN Generator 29
Pretty Print Certificate 61
Pretty Print CRL 65
some guidelines 19
SSL Debugging tool 117
SSL Strength tool 131
summary table 17

conventions used in this book 12
creating

new password cache 26

D
Data Recovery Manager

what to do if not responding 27
deleting

entries from the password cache 25
documentation

conventions followed 12

156 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

dumpasn1 tool 18

E
ExtensionJoiner tool 41
extensions

tool for joining 41
tools for generating 41

ExtJoiner tool
example 42
location 42
syntax 42

F
fonts used in this book 12

K
Key Database tool 81

examples 85
supported platforms 81
syntax 82
usage 84

killproc tool 18, 27

L
listing

contents of password cache 23
location of

command-line utilities 17
PIN Generator tool 29

N
Netscape Signing tool 89

supported platforms 90

P
password cache

tool for managing 21
Password Cache utility 21

adding new entries 24
changing passwords 24
creating a new cache 26
deleting entries 25
listing contents 23
syntax 22
usage 22
where to find 21

PasswordCache tool 17
PIN Generator tool 29

arguments 30
exit codes 40
how it works 34
how PINs are stored in the directory 39
output file 38

checking the directory-entry status 36
format 38
why should you use an output file 36

overwriting existing PINs in the directory 33, 37
syntax 30
where to find 29

Pretty Print Certificate tool 61
example 62
supported platforms 61
syntax 61

Pretty Print CRL tool 65
example 66
supported platforms 65
syntax 65

Index 157

R
Registration Manager

what to do if not responding 27

S
setpin command 30
single sign-on password

changing 22, 23
single signon password

starting CMS without 26
SSL Debugging tool 117

examples 119
supported platforms 117
syntax 118
usage tips 129

SSL Strength tool 131
examples 134
supported platforms 131
syntax 131
usage 132

Sun ONE 9

T
terms used in this book 12
type styles used in this book 12
typestyles used in this book 12

158 iPlanet Certificate Management Server Command-Line Tools Guide • September 2002

	Contents
	About This Guide
	What You Should Already Know
	What’s in This Guide
	Conventions Used in This Guide
	Where to Go for Related Information

	Command-Line Tools
	Password Cache Utility
	Location
	Syntax
	Usage
	Changing the Single Sign-On Password
	Listing the Contents of the Password Cache
	Adding a New Entry to the Password Cache
	Changing the Password of an Entry in the Password Cache
	Deleting an Entry From the Password Cache
	Creating a New Password Cache

	Kill Process Tool
	Location
	Syntax
	Usage

	PIN Generator Tool
	Locating the PIN Generator Tool
	The setpin Command
	Command-Line Syntax
	Arguments
	Example

	How the Tool Works
	Input File
	Output File
	How PINs Are Stored in the Directory
	Exit Codes

	Extension Joiner Tool
	Location
	Syntax
	Usage

	Backing Up and Restoring Data
	Backup and Restore Tools
	Backing Up Data
	What the Backup Tool Does
	What the Backup Tool Does Not Do
	Running the Backup Tool
	After You Finish a Backup

	Restoring Data
	Before You Restore Data
	Running the Restore Tool

	ASCII to Binary Tool
	Availability
	Syntax
	Example

	Binary to ASCII Tool
	Availability
	Syntax
	Example

	Pretty Print Certificate Tool
	Availability
	Syntax
	Example

	Pretty Print CRL Tool
	Availability
	Syntax
	Example

	Certificate Database Tool
	Availability
	Syntax
	Options and Arguments

	Usage
	Examples
	Creating a New Certificate Database
	Listing Certificates in a Database
	Creating a Certificate Request
	Creating a Certificate
	Adding a Certificate to the Database
	Validating a Certificate

	Key Database Tool
	Availability
	Syntax
	Options and Arguments

	Usage
	Examples
	Creating a Key Database
	Generating a New Key
	Displaying Public Key Information
	Listing Key IDs
	Deleting a Private Key

	Netscape Signing Tool
	Introduction to Netscape Signing Tool
	What Is Netscape Signing Tool?
	JAR Format and JAR Archives
	What Signing a File Means
	Object-Signing Certificates

	Using Netscape Signing Tool
	Getting Ready to Use Netscape Signing Tool
	Setting Up Your Certificate
	Listing Available Certificates

	Signing a File
	Using Netscape Signing Tool with a ZIP Utility
	Tips and Techniques

	SignTool Syntax and Options
	Command Syntax
	Command Options
	Command File Syntax
	Command File Keywords and Example

	Generating Test Object-Signing Certificates
	Generating the Keys and Certificate

	Using Netscape Signing Tool with Smart Cards
	What Is a Smart Card?
	Setting Up a Smart Card
	Using the -M Option to List Smart Cards
	Using Netscape Signing Tool and a Smart Card to Sign Files

	Netscape Signing Tool and FIPS-140-1
	Using FIPS-140 Mode
	Verifying FIPS Mode

	Answers to Common Questions

	SSL Debugging Tool
	Availability
	Description
	Syntax
	Options

	Examples
	Example 1
	Command
	Output

	Example 2
	Command
	Output

	Example 3
	Command
	Output

	Example 4
	Command
	Output

	Usage Tips

	SSL Strength Tool
	Availability
	Syntax
	Options and Arguments

	Usage
	Restricting Ciphers
	Export Policy and Step-up

	Examples
	Example 1
	Example 2
	Example 3

	Security Module Database Tool
	Availability
	Syntax
	Options and Arguments

	Usage
	JAR Installation File
	Sample Script
	Script Grammar

	Keys
	Global Keys
	Per-Platform Keys
	Per-File Keys

	Examples
	Creating Database Files
	Displaying Module Information
	Setting a Default Provider
	Enabling a Slot
	Enabling FIPS Compliance
	Adding a Cryptographic Module
	Installing a Cryptographic Module from a JAR File
	Changing the Password on a Token

	Index

