
Plug-Ins Guide
Sun™ ONE Certificate Server

Version 4.7

September 2002
816-5546-10
Second Edition

Copyright © 2002 Sun Microsystems, Inc. All rights reserved.

Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries.

Federal Acquisitions: Commercial Software -- Government Users Subject to Standard License Terms and Conditions.

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of the product or this document may be reproduced in any form by any means without prior written authorization of the Sun
Microsystems, Inc. and its licensers, if any.

THIS DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Some pre-existing portions:

Copyright © 1998,1999 by Jef Poskanzer <jef@acme.com>. All rights reserved. Copyright © 1996 by Jef Poskanzer <jef@acme.com>.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) "HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
"LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002 Sun Microsystems, Inc. Tous droits réservés.

Sun, Sun Microsystems, le Sun logo, et iPlanet sont des marques dposes ou des marques dposes registre de Sun Microsystems, Inc.
aux Etats-Unis et d'autres pays.

Le produit dé crit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la
distribution et la décompilation.

Aucune partie de ce produit ni de ce document ne peut être reproduite sous quelque forme ou par quelque moyen que ce soit sans
l'autorisation écrite préalable de Sun Microsystems, Inc., le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE "EN L'ÉTAT", ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRÉSENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À
UN BUT PARTICULIER OU DE NON CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

3

Contents

About This Guide . 11
What’s in This Guide . 12
What You Should Already Know . 13
Conventions Used in This Guide . 14
Where to Go for Related Information . 15

Chapter 1 Authentication Plug-in Modules . 19
Overview of Authentication Modules . 20
Manual Authentication . 23
UidPwdDirAuth Plug-in Module . 24

Configuration Parameters of UidPwdDirAuth . 26
UidPwdPinDirAuth Plug-in Module . 30

Configuration Parameters of UidPwdPinDirAuth . 31
NISAuth Plug-in Module . 37

Configuration Parameters of NISAuth . 39
PortalEnroll Plug-in Module . 44

Configuration Parameters of PortalAuth . 47
SSOAuthentication Plug-In Module . 52

Configuring SSOAuthenication . 52
Certificate-Based Enrollment . 53
Enrollment Forms . 57

Customizing Enrollment Forms for Generating DSA Key Pairs . 61
Generating Files Required By Third-Party Object Signing Tools . 63

Chapter 2 Job Plug-in Modules . 67
Overview of Job Plug-in Modules . 67
RenewalNotificationJob Plug-in Module . 69

Configuration Parameters of RenewalNotificationJob . 70
RequestInQJob Plug-in Module . 73

Configuration Parameters of RequestInQJob . 74

4 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

UnpublishExpiredJob Plug-in Module . 76
Configuration Parameters of UnpublishExpiredJob . 78
Schedule for Executing Jobs . 80

Customizing Notification Messages . 81
Templates for Summary Notifications . 81
Customizing Message Templates . 83
Tokens Available in Message Templates . 83

Tokens for Renewal Notification Messages . 83
Tokens for Request In Queue Notification Messages . 85
Tokens for Directory Update Notification Messages . 85

Chapter 3 Constraints Policy Plug-in Modules . 87
Overview of Constraints-Specific Policy Modules . 88
AttributePresentConstraints Plug-in Module . 90

Configuration Parameters of AttributePresentConstraints . 91
DSAKeyConstraints Plug-in Module . 95

Configuration Parameters of DSAKeyConstraints . 96
DSAKeyRule Rule . 98

IssuerConstraints Plug-in Module . 98
Configuration Parameters of IssuerConstraints . 99
IssuerRule Rule . 100

KeyAlgorithmConstraints Plug-in Module . 101
Configuration Parameters of KeyAlgorithmConstraints . 101
KeyAlgRule Rule . 103

RenewalConstraints Plug-in Module . 103
Configuration Parameters of RenewalConstraints . 104
RenewalConstraintsRule Rule . 105

RenewalValidityConstraints Plug-in Module . 106
Configuration Parameters of RenewalValidityConstraints . 107
DefaultRenewalValidityRule Rule . 109

RevocationConstraints Plug-in Module . 110
Configuration Parameters of RevocationConstraints . 110
RevocationConstraintsRule Rule . 111

RSAKeyConstraints Plug-in Module . 112
Configuration Parameters of RSAKeyConstraints . 112
RSAKeyRule Rule . 114

SigningAlgorithmConstraints Plug-in Module . 115
Configuration Parameters of SigningAlgorithmConstraints . 116
SigningAlgRule Rule . 118

SubCANameConstraints Plug-in Module . 118
Configuration Parameters of SubCANameConstraints . 119
SubCANameConstraints Rule . 120

UniqueSubjectNameConstraints Plug-in Module . 121

5

Configuration Parameters of UniqueSubjectNameConstraints . 121
UniqueSubjectNameConstraints Rule . 124

ValidityConstraints Plug-in Module . 124
Configuration Parameters of ValidityConstraints . 126
DefaultValidityRule Rule . 128

Chapter 4 Certificate Extension Plug-in Modules . 131
Overview of Extension-Specific Policy Modules . 132
AuthInfoAccessExt Plug-in Module . 136

Configuration Parameters of AuthInfoAccessExt . 138
AuthInfoAccessExt Rule . 143

AuthorityKeyIdentifierExt Plug-in Module . 144
Configuration Parameters of AuthorityKeyIdentifierExt . 145
AuthorityKeyIdentifierExt Rule . 147

BasicConstraintsExt Plug-in Module . 147
Configuration Parameters of BasicConstraintsExt . 148
BasicConstraintsExt Rule . 150

CertificatePoliciesExt Plug-in Module . 151
Configuration Parameters of CertificatePoliciesExt . 152
CertificatePoliciesExt Rule . 155

CertificateRenewalWindowExt Plug-in Module . 156
Configuration Parameters of CertificateRenewalWindowExt . 157

CertificateScopeOfUseExt Plug-in Module . 161
Configuration Parameters of CertificateScopeOfUseExt . 162

CRLDistributionPointsExt Plug-in Module . 166
Configuration Parameters of CRLDistributionPointsExt . 166
CRLDistributionPointsExt Rule . 170

ExtendedKeyUsageExt Plug-in Module . 171
Configuration Parameters of ExtendedKeyUsageExt . 173
CODESigningExt Rule . 175
OCSPSigningExt Rule . 176

GenericASN1Ext Plug-in Module . 177
Configuration Parameters of GenericASN1Ext . 179
GenericASN1Ext Rule . 184

IssuerAltNameExt Plug-in Module . 184
Configuration Parameters of IssuerAltNameExt . 185

KeyUsageExt Plug-in Module . 189
Configuration Parameters of KeyUsageExt . 191
CMCertKeyUsageExt Rule . 196
RMCertKeyUsageExt Rule . 197
ServerCertKeyUsageExt Rule . 198
ClientCertKeyUsageExt Rule . 199
ObjSignCertKeyUsageExt Rule . 201

6 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

CRLSignCertKeyUsageExt . 202
NameConstraintsExt Plug-in Module . 202

Configuration Parameters of NameConstraintsExt . 203
NameConstraintsExt Rule . 210

NSCCommentExt Plug-in Module . 211
Configuration Parameters of NSCCommentExt . 212
NSCCommentExt Rule . 214

NSCertTypeExt Plug-in Module . 215
Configuration Parameters of NSCertTypeExt . 218
NSCertTypeExt Rule . 220

OCSPNoCheckExt Plug-in Module . 220
Configuration Parameters of OCSPNoCheckExt . 222
OCSPNoCheckExt Rule . 223

PolicyConstraintsExt Plug-in Module . 224
Configuration Parameters of PolicyConstraintsExt . 224
PolicyConstraintsExt Rule . 227

PolicyMappingsExt Plug-in Module . 227
Configuration Parameters of PolicyMappingsExt . 228
PolicyMappingsExt Rule . 231

PrivateKeyUsagePeriodExt Plug-in Module . 231
Configuration Parameters of PrivateKeyUsagePeriodExt . 232

RemoveBasicConstraintsExt Plug-in Module . 233
Configuration Parameters of RemoveBasicConstraintsExt . 234

SubjectAltNameExt Plug-in Module . 235
Configuration Parameters of SubjectAltNameExt . 237
SubjectAltNameExt Rule . 240

SubjectDirectoryAttributesExt Plug-in Module . 241
Configuration Parameters of SubjectDirectoryAttributesExt . 242

SubjectKeyIdentifierExt Plug-in Module . 245
Configuration Parameters of SubjectKeyIdentifierExt . 246
SubjectKeyIdentifierExt Rule . 248

Chapter 5 Mapper Plug-in Modules . 251
Overview of Mapper Modules . 252
LdapCaSimpleMap Plug-in Module . 255

Configuration Parameters of LdapCaSimpleMap . 256
LdapCaCertMap Mapper . 258
LdapCrlMap Mapper . 259

LdapDNCompsMap Plug-in Module . 259
Configuration Parameters of LdapDNCompsMap . 262

LdapDNExactMap Plug-in Module . 264
Configuration Parameters of LdapDNExactMap . 265

LdapSimpleMap Plug-in Module . 265

7

Configuration Parameters of LdapSimpleMap . 266
LdapUserCertMap Mapper . 267

LdapSubjAttrMap Plug-in Module . 268
Configuration Parameters of LdapSubjAttrMap . 268

Chapter 6 Publisher Plug-in Modules . 271
Overview of Publisher Modules . 272
FileBasedPublisher Plug-in Module . 274

Configuration Parameters of FileBasedPublisher . 274
LdapCaCertPublisher Plug-in Module . 275

Configuration Parameters of LdapCaCertPublisher . 276
LdapCaCertPublisher Publisher . 277

LdapUserCertPublisher Plug-in Module . 277
Configuration Parameters of LdapUserCertPublisher . 278
LdapUserCertPublisher Publisher . 279

LdapCrlPublisher Plug-in Module . 279
Configuration Parameters of LdapCrlPublisher . 280
LdapCrlPublisher Publisher . 281

OCSPPublisher Plug-in Module . 281
Configuration Parameters of OCSPPublisher . 281

Chapter 7 CRL Extension Plug-in Modules . 283
Overview of CRL Extension Modules . 284
AuthorityKeyIdentifier Rule . 285
CRLNumber Rule . 287
CRLReason Rule . 288
HoldInstruction Rule . 290
InvalidityDate Rule . 291
IssuerAlternativeName Rule . 293
IssuingDistributionPoint Rule . 297

Chapter 8 Log Plug-in Modules . 301
Overview of Log Modules . 301
file Plug-in Module . 303

Configuration Parameters of file . 304
Audit Log Event Listener . 306
Error Log Event Listener . 307
System Log Event Listener . 308

NTEventLog Plug-in Module . 308
Configuration Parameters of NTEventLog . 309
NTAudit Event Listener . 310
NTSystem Event Listener . 310

8 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Appendix A Distinguished Names . 313
What Is a Distinguished Name? . 313

Distinguished Name Components . 314
Root Distinguished Name . 315
Base Distinguished Name . 315

DNs in Certificate Management System . 316
Extending Attribute Support . 318

Adding New or Proprietary Attributes . 319
Adding Attributes to an Enrollment Form . 320
Changing the DER Encoding Order . 322

Role of Distinguished Names in Certificates . 323
DNs in End-Entity Certificates . 324
DNs in CA Certificates . 324
Selecting DNs for Certificates . 325
DN Patterns and Certificate Subject Names . 325

Appendix B Object Identifiers . 329
What’s an Object Identifier? . 329
Registration of Object Identifiers . 330

Appendix C Certificate and CRL Extensions . 331
Introduction to Certificate Extensions . 331

Structure of Certificate Extensions . 334
Sample Certificate Extensions . 335

 . Recommendations for Certificate Extension Use 335
Standard X.509 v3 Certificate Extensions . 341

authorityInfoAccess . 343
authorityKeyIdentifier . 344
basicConstraints . 345
certificatePolicies . 346
cRLDistributionPoints . 347
extKeyUsage . 348
issuerAltName . 350
keyUsage . 351
nameConstraints . 354
OCSPNocheck . 354
policyConstraints . 355
policyMappings . 356
privateKeyUsagePeriod . 357
subjectAltName . 358
subjectDirectoryAttributes . 359
subjectKeyIdentifier . 360

Introduction to CRL Extensions . 361

9

Structure of CRL Extensions . 361
Sample CRL and CRL Entry Extensions . 363

Standard X.509 v3 CRL Extensions . 364
Extensions for CRLs . 364

authorityKeyIdentifier . 364
CRLNumber . 365
deltaCRLIndicator . 365
issuerAltName . 366
issuingDistributionPoint . 366

CRL Entry Extensions . 367
certificateIssuer . 367
holdInstructionCode . 368
invalidityDate . 368
reasonCode . 369

Netscape-Defined Certificate Extensions . 369
netscape-cert-type . 370
netscape-comment . 371

CA Certificates and Extension Interactions . 371

Index . 373

10 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

11

About This Guide

The CMS Plug-Ins Guide provides reference information about all the plug-in
modules provided with iPlanet Certificate Management Server (CMS). Plug-in
modules help you configure and customize Certificate Management System, and
use it for issuing and managing certificates to various end entities, such as web
browsers (users), servers, Virtual Private Network (VPN) clients, and Cisco™
routers.

This chapter has the following sections:

• What’s in This Guide (page 12)

• What You Should Already Know (page 13)

• Conventions Used in This Guide (page 14)

• Where to Go for Related Information (page 15)

NOTE Sun™ ONE Certificate Server was previously known as iPlanet™
Certificate Management System. The product was renamed shortly before
the launch of this 4.7 release.

The late renaming of this product has resulted in a situation where the new
product name is not fully integrated into the shipping product. In particular,
you will see the product referenced as iPlanet Certificate Management
Server (CMS) within the product GUI and within the product
documentation. For this release, please consider iPlanet Certificate
Management Server and Sun™ ONE Certificate Server as interchangeable
names for the same product.

What’s in This Guide

12 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

What’s in This Guide
This guide covers topics that are listed below. You should use this guide in
conjunction with the other CMS documentation, such as the one that explains how
to install and setup Certificate Management System. For a complete list of CMS
documentation, see section “Where to Go for Related Information,” available later
in this preface.

• “About This Guide” Describes what’s covered in this guide, what you should
already know, and where to look for more information.

• Chapter 1, “Authentication Plug-in Modules” Describes the plug-in modules
that you can use for authenticating end-users during certificate enrollment and
it helps you decide on the authentication method suitable for your PKI setup.

• Chapter 2, “Job Plug-in Modules” Describes the plug-in modules that enable
you to automate certain certificate-related tasks—such as notifying agents
when a request gets queued, notifying users before their certificates expire, and
removing expired certificates from the directrory—to ease administration
overheads.

• Chapter 3, “Constraints Policy Plug-in Modules” Describes the plug-in
modules that you can use to govern the formulation of certificate content, such
as key size, signing algorithm, validity period, and so on, and issuance of
certificates.

• Chapter 4, “Certificate Extension Plug-in Modules” Describes the plug-in
modules that enable you to add standard (X.509) and proprietary certificate
extensions to certificate requests.

• Chapter 5, “Mapper Plug-in Modules” Describes the plug-in modules that
enable you to configure a Certificate Manager to locate directory entries for
publishing certificates and CRLs to the directory.

• Chapter 6, “Publisher Plug-in Modules” Describes the plug-in modules that
enable you to configure a Certificate Manager to publish certificates to the
correct attribute of the located directory entries.

• Chapter 7, “CRL Extension Plug-in Modules” Describes the plug-in modules
that enable you to configure a Certificate Manager to set CRL extensions in
CRLs before generating them and publishing them to a directory.

• Chapter 8, “Log Plug-in Modules” Describes the plug-in modules that enable
you to configure CMS logs.

What You Should Already Know

About This Guide 13

Appendixes

• Appendix A, “Distinguished Names” Briefly explains what are distinguished
names (DNs) and describes how DNs are used in Certificate Management
System.

• Appendix B, “Object Identifiers” Briefly explains what are object identifiers
(OIDs) and describes significance of registering OIDs.

• Appendix C, “Certificate and CRL Extensions” Summarizes the standard
certificate and CRL extensions defined by X.509 version 3 and the extensions
defined by Netscape before this version was finalized. Recommends
extensions to use with specific kinds of certificates, including both PKIX Part 1
recommendations and Netscape extensions that must be supported to
maintain compatibility with early versions of Netscape products.

What You Should Already Know
This guide is intended for experienced system administrators who are planning to
deploy Certificate Management System. CMS agents should refer to CMS Agent’s
Guide for information on how to perform agent tasks, such as handling certificate
requests and revoking certificates.

This guide assumes that you

• Are familiar with the basic concepts of public-key cryptography and the Secure
Sockets Layer (SSL) protocol.

❍ SSL cipher suites

❍ The purpose of and major steps in the SSL handshake

• Understand the concepts of intranet, extranet, and the Internet security and the
role of digital certificates in a secure enterprise. These include the following
topics:

❍ Encryption and decryption

❍ Public keys, private keys, and symmetric keys

❍ Significance of key lengths

❍ Digital signatures

❍ Digital certificates, including various types of digital certificates

❍ The role of digital certificates in a public-key infrastructure (PKI)

Conventions Used in This Guide

14 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

❍ Certificate hierarchies

If you are new to these concepts, we recommend you read the security-related
documents available online at this URL:
http://docs.sun.com/db?p=coll/S1_nsCMS_42_Resources

You may also refer to the security-related appendixes (Appendix D and
Appendix E) of the accompanying manual, Managing Servers with iPlanet
Console.

• Are familiar with the role of iPlanet Console in managing Netscape version 4.x
servers. Otherwise, see the accompanying manual, Managing Servers with
iPlanet Console.

• Are reading this guide in conjunction with the documentation listed in section
“Where to Go for Related Information” on page 15.

Conventions Used in This Guide
The following conventions are used in this guide:

• Monospaced font—This typeface is used for any text that appears on the
computer screen or text that you should type. It’s also used for filenames,
functions, and examples.

Example: Server Root is the directory where the CMS binaries are kept.

• Italic—Italic type is used for emphasis, book titles, and glossary terms.

Example: This control depends on the access permissions the superadministrator
has set up for you.

• Text within “quotation marks”—Indicates cross-references to other topics
within this guide.

Example: For more information, see “Issuing a Certificate to a New User” on
page 154.

• Boldface—Boldface type is used for various UI components such as captions
and field names, and the terminology explained in the glossary, which can be
found in CMS Installation and Setup Guide.

Example:

Rotation frequency. From the drop-down list, select the interval at which the
server should rotate the active error log file. The available choices are Hourly,
Daily, Weekly, Monthly, and Yearly. The default selection is Monthly.

Where to Go for Related Information

About This Guide 15

• Monospaced []—Square brackets enclose commands that are optional.

Example: PrettyPrintCert <input_file> [<output_file>]

<input_file> specifies the path to the file that contains the base-64
encoded certificate.

<output_file> specifies the path to the file to write the certificate. This
argument is optional; if you don’t specify an output file, the certificate
information is written to the standard output.

• Monospaced <>—Angle brackets enclose variables or placeholders. When
following examples, replace the angle brackets and their text with text that
applies to your situation. For example, when path names appear in angle
brackets, substitute the path names used on your computer.

Example: Using Netscape Communicator 4.04 or later, enter the URL for the
administration server: http://<hostname>:<port_number>

• /—A slash is used to separate directories in a path. If you use the Windows NT
operating system, you should replace / with \ in paths.

Example: Except for the Security Module Database Tool, you can find all the
other command-line utilities at this location: <server_root>/bin/cert/tools

• Sidebar text—Sidebar text marks important information. Make sure you read
the information before continuing with a task.

Examples:

Where to Go for Related Information
This section summarizes the documentation that ships with Certificate
Management System, using these conventions:

• <server_root> is the directory where the CMS binaries are kept (which you
specify during installation).

NOTE You can use iPlanet Console only when Administration Server is up
and running.

CAUTION A caution note documents a potential risk of losing data, damaging
software or hardware, or otherwise disrupting system performance.

Where to Go for Related Information

16 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

• <instance_id> is the ID for this instance of Certificate Management System
(specified during installation).

The documentation set for Certificate Management System includes the following:

• Managing Servers with iPlanet Console

Provides background information on basic cryptography concepts and the role
of iPlanet Console. To view the HTML version of this guide, open this file:
<server_root>/manual/en/admin/help/contents.htm

• CMS Installation and Setup Guide

Describes how to plan for, install, and administer Certificate Management
System. To access the installation and configuration information from within
the CMS Installation Wizard or from the CMS window (within iPlanet
Console), click any help button.

To view the HTML version of this guide, open this file:
<server_root>/manual/en/cert/setup_guide/contents.htm

• CMS Plug-Ins Guide(this guide)

Provides detailed reference information on CMS plug-ins. To access this
information from the CMS window within iPlanet Console, click any help
button.

To view the HTML version of this guide, open this file:
<server_root>/manual/en/cert/plugin_guide/contents.htm

• CMS Command-Line Tools Guide

Provides detailed reference information on CMS tools.

To view the HTML version of this guide, open this file:
<server_root>/manual/en/cert/tools_guide/contents.htm

• CMS Customization Guide

Provides detailed reference information on customizing the HTML-based
agent and end-entity interfaces.

To view the HTML version of this guide, open this file:
<server_root>/manual/en/cert/custom_guide/contents.htm

• CMS Agent’s Guide

Provides detailed reference information on CMS agent interfaces. To access
this information from the Agent Services pages, click any help button.

Where to Go for Related Information

About This Guide 17

To view the HTML version of this guide, open this file:
<server_root>/cert-<instance_id>/web/agent/manual/agent_guide/

contents.htm

To view the PDF version of this guide, open this file:
<server_root>/manual/en/cert/pdf/cms42sp2agent.pdf

• End-entity help (online only, not printed)

Provides detailed reference information on CMS end-entity interfaces. To
access this information from the end-entity pages, click any help button.

To view the HTML version of this guide, open this file:
<server_root>/cert-<instance_id>/web/ee/manual/ee_guide/

contents.htm

For a complete list of all documentation for Certificate Management System,
including documentation for Directory Server, see Documentation Summary,
located at: <server_root>/manual/index.html

For the latest information about Certificate Management System, including current
release notes, technical notes, and deployment information, check this site:
http://docs.sun.com/?p=coll/S1_s1CertificateServer_47

NOTE Do not change the default location of any of the HTML files; they
are used for online help. You may move the PDF files to another
location.

Where to Go for Related Information

18 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

19

Chapter 1

Authentication Plug-in Modules

iPlanet Certificate Management Server (CMS) provides a set of authentication
plug-in modules that enable you to configure a Certificate Manager or Registration
Manager to authenticate end users, based on specified criteria, when they enroll for
a certificate. This chapter explains the authentication modules that are installed
with the Certificate Manager and Registration Manager—it lists and briefly
describes the modules and then explains each one in detail.

The chapter has the following sections:

• Overview of Authentication Modules (page 20)

• Manual Authentication (page 23)

• UidPwdDirAuth Plug-in Module (page 24)

• UidPwdPinDirAuth Plug-in Module (page 30)

• NISAuth Plug-in Module (page 37)

• PortalEnroll Plug-in Module (page 44)

• SSOAuthentication Plug-In Module (page 52)

• Certificate-Based Enrollment (page 53)

• Enrollment Forms (page 57)

Overview of Authentication Modules

20 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Overview of Authentication Modules
Certificate Management System supports both manual and automated certificate
issuance.

• In the manual method of certificate issuance, end entities supply most of the
information required by the server to formulate certificate requests and issue
certificates. Manual issuance is also dependent on human agents; it requires
that all end-entity certificate requests be approved by agents before the server
can process the requests. To understand the role of an agent in your PKI, see
section “Agents” in Chapter 13, Managing Privileged Users and Groups” of
CMS Installation and Setup Guide.

• In the automated method of certificate issuance, repositories, such as
directories, supply part of the end-entity information. End entities only supply
certain information—for example, a user ID and password—contained in the
repository during certificate enrollment. The server uses this information for
authenticating end entities before retrieving information required to formulate
the certificate request from the repository.

For details on the manual method of certificate issuance, see “Manual
Authentication” on page 23. For the automated method of certificate issuance,
Certificate Management System provides a set of plug-in modules. Plug-in
modules are implemented as Java classes and are registered in the CMS
authentication framework. The Authentication Plugin Registration tab of the CMS
window (see Figure 1-1) lists all the modules and the corresponding classes that are
currently registered with a CMS instance.

Figure 1-1 Default authentication modules for end-user enrollment

Overview of Authentication Modules

Chapter 1 Authentication Plug-in Modules 21

Table 1-1 lists the authentication modules provided for the Certificate Manager and
Registration Manager; no authentication modules are provided for the Data
Recovery Manager as it does not function as an enrollment authority in a PKI. You
can use these modules to configure a Certificate Manager and Registration
Manager to employ a specific authentication method during certificate
enrollments.

Note that the name of the Java class for an authentication plug-in is in this format:

com.iplanet.certsrv.authentication.<plugin_name>

where <plugin_name> is the name of a plug-in module. For example, the Java class
for the UidPwdDirAuth module would be:

com.iplanet.certsrv.authentication.UidPwdDirAuthentication

Because large corporations typically store corporatewide user, group, and
network-resource data in LDAP-compliant directories, the default authentication
modules provided for automated certificate enrollment use an LDAP directory for
authenticating users or for formulating certificate subject names, or for both. If you
already have an LDAP-compliant directory, such as iPlanet Directory Server, with
end-user data, you can use that directory for any of the purposes mentioned above.
For example, if you have an NIS server and LDAP directory installations, you can
use the NIS server for authenticating end users and the directory for formulating
certificate subject names; end users will be required to provide only their NIS user
IDs and passwords during enrollment.

Table 1-1 Authentication plug-in modules for end user certificate enrollments

Plug-in module name Function

NISAuth Authenticates end users based on their user IDs and passwords stored in a NIS
server. Optionally, uses an LDAP directory for formulating certificate subject
names. For details, see “NISAuth Plug-in Module” on page 37.

PortalEnroll Authenticates online service users based on their user IDs and passwords stored
in an LDAP directory. Also registers new users for the online service. For details,
see “PortalEnroll Plug-in Module” on page 44.

UidPwdDirAuth Authenticates end users based on their user IDs and passwords stored in an
LDAP directory. For details, see “UidPwdDirAuth Plug-in Module” on page 24.

UidPwdPinDirAuth Authenticates end users based on their user IDs, passwords, and PINs stored in
an LDAP directory. For details, see “UidPwdPinDirAuth Plug-in Module” on
page 30.

Overview of Authentication Modules

22 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

If you don’t have a directory deployed, you may use the Directory Server instance
created at the time of CMS installation; in the documentation, this instance is
identified as the Configuration Directory. For a demonstration on how to use this
directory for issuing certificates to end users, see Chapter 3, “Default Demo
Installation” of CMS Installation and Setup Guide.

If you determine that the default authentication modules do not meet your
requirements, you can develop a custom authentication module using the CMS
SDK, which is available in the form of Java Docs at this location:

<server_root>/cms_sdk/cms_jdk/javadocs

For general guidelines on developing custom authentication modules and adding
them to the CMS authentication framework, check the tutorials on authentication.
Be sure to take a look at the authentication-specific samples available at this
location: <server_root>/cms_sdk/cms_jdk/samples/authentication

For instructions on how to configure a Certificate Manager and a Registration
Manager to use one or more of the authentication methods, see section
“Configuring Authentication for End-User Enrollment” in Chapter 15, “Setting Up
End-User Authentication” of CMS Installation and Setup Guide.

Keep in mind that in an automated certificate management setup, the Certificate
Manager and Registration Manager use the configured authentication methods
only during certificate enrollment. During certificate renewal, the servers rely on
end users SSL client certificate for automated renewal. For automated revocation,
the users can use their SSL-client certificate or a challenge password. For more
information, see sections “Authentication for End Users During Certificate
Renewal” and “Authentication for End Users During Certificate Revocation” in
Chapter 15, “Setting Up End-User Authentication” of CMS Installation and Setup
Guide .

Certificate Management System also provides HTML forms-based interfaces for all
the authentication methods it supports. Your end entities can use these forms for
certificate enrollment. Explanation of each enrollment form, along with the
corresponding authentication module, is covered in “Enrollment Forms” on
page 57. Certificate renewal and revocation forms are covered as a part of those
processes. For details on individual form elements in the enrollment, renewal, and
revocation forms, see the online help available by clicking the Help buttons on the
HTML forms. You can also customize these forms to suit to your organization’s
requirements. For customization information, see CMS Customization Guide.

Manual Authentication

Chapter 1 Authentication Plug-in Modules 23

Manual Authentication
Manual authentication refers to operations which must be approved by a CMS
agent, where no automated operation is possible. That is, a real person must log in
to approve or reject request. By default, Certificate Management System provides
manual-enrollment forms that enable you to request many types of certificates
from the server. For details, see “Enrollment Forms” on page 57.

Note that the manual authentication method is hardcoded; you cannot configure it
in any other way. This ensures that when the server receives requests that lack
authentication credentials, it sends those requests to the request queue for agent
approval. It also means that if you don’t configure a Certificate Manager or
Registration Manager for any other authentication method, the server
automatically sends all certificate-related requests to a queue where they await
agent approval.

Figure 1-2 illustrates how the manual authentication method works during
certificate enrollment.

Figure 1-2 Manual authentication of end entities during certificate enrollment

UidPwdDirAuth Plug-in Module

24 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

These are the steps shown in Figure 1-2:

1. In the manual enrollment form, the end entity enters the information needed to
request a certificate and submits the request to the server.

2. When the server receives the request, it automatically lists the request in a
certificate request queue for an agent to process.

3. An agent verifies the authenticity of the request.

❍ If the request is from a valid end entity, the agent verifies that all the
information the end entity has provided in the request is correct, makes
required modifications, if any, and approves the certificate request for
issuance.

❍ If the request is from an invalid end entity, the agent rejects the request,
which in turn triggers a rejection notification to the end entity.

4. When the server receives the agent-approved request, it subjects it to policy
processing. For details, see Chapter 18, “Setting Up Policies” of CMS
Installation and Setup Guide .

❍ If the request fails any of the configured policies, the server rejects the
request, logs an error message, and sends a rejection notification to the end
entity.

❍ If the request passes all the configured policies, the server issues the
certificate.

The certificate is delivered to the email address specified in the certificate
request.

UidPwdDirAuth Plug-in Module
The UidPwdDirAuth plug-in module implements the directory-based
authentication method. You can use this module for authenticating end users,
provided their information is stored in an LDAP directory, during certificate
enrollment.

Here’s how the enrollment method works: as part of configuring a Certificate
Manager and a Registration Manager, or both, for authentication, you specify an
LDAP directory that the server must use to authenticate end users. End users enroll
for a certificate by entering their user IDs and passwords for this authentication

UidPwdDirAuth Plug-in Module

Chapter 1 Authentication Plug-in Modules 25

directory in an HTML form that is served by a Certificate Manager or Registration
Manager (see “Enrollment Forms” on page 57). Once the server successfully
authenticates an end user, it retrieves the rest of the information required to
formulate the certificate from the directory.

Figure 1-3 illustrates how authentication based on a user ID and password works
during certificate enrollment.

Figure 1-3 User ID- and password-based authentication of an end user

These are the steps shown in Figure 1-3:

1. In the directory-based certificate enrollment form, the end user enters a user ID
and password for the directory and submits the request to a Certificate
Manager or Registration Manager.

2. When the server receives the request, it looks up the directory that is
configured for authenticating end users. The server verifies the authenticity of
the user by checking the directory entries.

❍ If the end user does not have a valid entry in the directory, the server
rejects the request, logs an error message, and sends a rejection notification
to the user.

UidPwdDirAuth Plug-in Module

26 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

❍ If the end user has a valid entry in the directory, the server retrieves all the
information required to construct the subject name for the user’s
certificate.

If, for some reason, the directory to which the server binds for authenticating
the user ID and password is unavailable, the server returns an LDAP error
code and writes it to the log. A sample log entry with an LDAP error code is
shown below:

28/Jun/1999:18:40:25 -0700] conn=0 op=7 RESULT err=32 tag=101
nentries=0 etime=0]

3. Next, the server subjects the certificate request to policy processing. For details,
see Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide.

❍ If the request fails any of the configured policies, the server rejects the
request, logs an error message, and sends a rejection notification to the end
entity.

❍ If the request passes all the configured policies, the server issues the end
user a certificate.

The end user gets the certificate, which, if the server is configured to do so,
is delivered to the email address specified in the request or in the directory.
For information on configuring a Certificate Manager or Registration
Manager to send automated notifications, see section “Notifications of
Certificate Issuance to End Entities” in Chapter 16, “Setting Up Automated
Notifications” of CMS Installation and Setup Guide.

Configuration Parameters of UidPwdDirAuth
In the configuration file, the UidPwdDirAuth module is identified as
auths.impl.UidPwdDirAuth.class=com.iplanet.certsrv.
authentication.UidPwdDirAuthentication.

In the CMS window, the module is identified as UidPwdDirAuth. Figure 1-4 shows
how configurable parameters of the module are displayed in the CMS window.

UidPwdDirAuth Plug-in Module

Chapter 1 Authentication Plug-in Modules 27

Figure 1-4 Parameters defined in the UidPwdDirAuth module

Table 1-2 gives details about each of these parameters and their values.

UidPwdDirAuth Plug-in Module

28 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Table 1-2 Description of parameters defined in the UidPwdDirAuth module

Parameter Description

dnpattern Specifies a string representing a subject name pattern to formulate from the
directory attributes and entry DN.

Permissible values: Any valid DN string composed from standard DN
attributes, which must be separated by commas; see “DNs in Certificate
Management System” on page 316.

The syntax is illustrated in the following example:

E=$attr.mail.1, CN=$attr.cn, OU=$dn.ou.2, O=$dn.o, C=US

This sample configuration specifies that the subject name should be
formulated as follows:

• E = the first mail LDAP attribute value in the user’s entry

• CN = the (first) cn LDAP attribute value in the user’s entry

• OU = the second ou value in the user’s entry DN

• O = the (first) o value in the user’s entry DN

• C = the string US

If this parameter value is empty or not set, the server uses E=$attr.mail,
CN=$attr.cn, O=$dn.o, C=$dn.c as the DN pattern.

This default DN pattern works well with Netscape Communicator and other
browsers. For Communicator, if you leave out E= in end-user certificates,
S/MIME may not work correctly (assuming lack of other extensions in the
certificate). Also, if C= and O= are left out, certificate display looks strange in
Communicator (when the Display Certificate button is clicked).

ldapStringAttributes Specifies the list of LDAP string attributes that should be considered authentic
for the end entity. If specified, the values corresponding to these attributes
will be copied from the authentication directory into the authentication
token—that is, values retrieved from this parameter can be used by policy
modules to formulate subject names for certificates or to make other policy
decisions. For details, see “SubjectAltNameExt Plug-in Module” on page 235.

Entering values for this parameter is optional.

Permissible values: Any valid LDAP string attributes, separated by commas.

Example: mail

(This sample configuration specifies that the value of the mail attribute
should be stored in the authentication token.)

UidPwdDirAuth Plug-in Module

Chapter 1 Authentication Plug-in Modules 29

ldapByteAttributes Specifies the list of LDAP byte (binary) attributes that should be considered
authentic for the end entity. If specified, the values corresponding to these
attributes will be copied from the authentication directory into the
authentication token for use by other modules—that is, values retrieved from
this parameter can be used by policy modules to make certain policy decisions
or to add additional information to users’ certificates.

For example, assume you have defined an LDAP binary attribute for storing
users’ pictures or fingerprints in your directory. You could develop a policy
plug-in that adds users’ pictures to their certificates as extensions.

Entering values for this parameter is optional.

Permissible values: Any valid LDAP byte attributes, separated by commas.

Example: jpegPhoto

This sample configuration specifies that the value of the LDAP attribute
named jpegPhoto (which is included in the standard inetOrgPerson
object class) should be stored in the authentication token and be used to put
the user’s picture in his or her certificate.

ldap.ldapconn.host Specifies the host name of the authentication directory.

Permissible values: The name must be in the
<machine_name>.<your_domain>.<domain> form.

Example: corpDirectory.siroe.com

ldap.ldapconn.port Specifies the TCP/IP port at which the authentication directory listens to
requests from Certificate Management System.

Permissible values: Any valid port number.

Example: 389

ldap.ldapconn.
secureConn

Specifies the type—SSL or non-SSL—of the port at which the authentication
directory listens to requests from Certificate Management System.

• Check the box if the port is an SSL (HTTPS) port. If your authentication
directory is configured for SSL-enabled communication (with or without
SSL client authentication), choose this option.

• Leave the box unchecked if the port is a non-SSL (HTTP) port. If your
authentication directory is configured for basic authentication, choose this
option (default).

Table 1-2 Description of parameters defined in the UidPwdDirAuth module (Continued)

Parameter Description

UidPwdPinDirAuth Plug-in Module

30 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

UidPwdPinDirAuth Plug-in Module
The UidPwdPinDirAuth plug-in module implements the directory- and PIN-based
authentication method. You can use this module for authenticating users in the
global LDAP domain during certificate enrollment. This authentication method is
functionally very similar to the directory-based authentication explained in
“UidPwdDirAuth Plug-in Module” on page 24, except that for stronger
authentication you combine a PIN or one-time password with the end users’ user
IDs and passwords.

ldap.ldapconn.
version

Specifies the LDAP protocol version.

Permissible values: 2 or 3.

• 2 specifies LDAP version 2. If your authentication directory is based on
Netscape Directory Server 1.x, choose 2.

• 3 specifies LDAP version 3. For Directory Server versions 3.x and later,
choose 3.

Example: 3

ldap.basedn Specifies the base DN for searching the authentication directory—the server
uses the value of the uid field from the HTTP input (what a user enters in the
enrollment form) and the base DN to construct an LDAP search filter.

Permissible values: Any valid DN string of up to 255 characters.

Example: O=siroe.com

ldap.minConns Specifies the minimum number of connections permitted to the authentication
directory.

Permissible values: 1 to 3.

Example: 2

ldap.maxConns Specifies the maximum number of connections permitted to the
authentication directory.

Permissible values: 3 to 10.

Example: 8

Table 1-2 Description of parameters defined in the UidPwdDirAuth module (Continued)

Parameter Description

UidPwdPinDirAuth Plug-in Module

Chapter 1 Authentication Plug-in Modules 31

Here’s how the enrollment method works: as a part of setting up a Certificate
Manager or a Registration Manager, or both for end-user authentication, you
specify the LDAP directory that the server must use to authenticate end users. End
users enroll for a certificate by entering their user IDs, passwords, and PINs in an
HTML form that is served by the Certificate Manager or Registration Manager (see
“Enrollment Forms” on page 57). Once the server successfully authenticates an end
user, it retrieves the rest of the information required to formulate the certificate
from the directory. You can also configure the server to either retain or remove the
PIN from the directory following successful authentication.

Normally, user entries in directories do not contain PINs. In order to use the
UidPwdPinDirAuth module, you must first populate the directory that you intend
to use for authentication with unique PINs for users; each user to whom you intend
to issue a certificate must know his or her PIN at the time of certificate enrollment,
as he or she will be required to enter it in the enrollment form. To aid you in the
process of generating unique PINs for users and adding them to the directory,
Certificate Management System provides a command-line tool called the PIN
Generator. For information about this tool, see CMS Command-Line Tools Guide .

Configuration Parameters of UidPwdPinDirAuth
In the configuration file, the UidPwdPinDirAuth module is identified as
auths.impl.UidPwdPinDirAuth.class=com.iplanet.certsrv.
authentication.UidPwdPinDirAuthentication.

In the CMS window, the module is identified as UidPwdPinDirAuth. Figure 1-5
shows how configurable parameters of the module are displayed in the CMS
window.

UidPwdPinDirAuth Plug-in Module

32 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 1-5 Parameters defined in the UidPwdPinDirAuth module

Table 1-3 gives details about each of these parameters.

Table 1-3 Description of parameters defined in the UidPwdPinDirAuth module

Parameter Description

removePin Specifies whether to remove PINs from the authentication directory (after end
users successfully authenticate). Removing PINs from the directory restricts
users from enrolling more than once, and thus prevents them from getting
more than one certificate.

• Check the box if you want the server to remove PINs from the directory
after successful authentication. If you set the value to true, you must also
specify the values for the ldap.ldapauth.bindDN and password
parameters.

• Uncheck the box if you want the server to leave PINs in the directory after
authentication.

UidPwdPinDirAuth Plug-in Module

Chapter 1 Authentication Plug-in Modules 33

pinAttr Specifies the authentication directory attribute for PINs. If you used the PIN
Generator utility (provided with Certificate Management System), the attribute
is specified by the value of the objectclass parameter; the default value for
this parameter is pin. For details, see section “Arguments” in Chapter 4, “PIN
Generator Tool” of CMS Command-Line Tools Guide .

Permissible values: Any valid attribute name.

Example: pin

dnpattern Specifies a string representing a subject name pattern to formulate from the
directory attributes and entry DN.

Permissible values: Any valid DN string composed from standard DN
attributes, which must be separated by commas; see “DNs in Certificate
Management System” on page 316.

The syntax is illustrated in the following example:

E=$attr.mail.1, CN=$attr.cn, OU=$dn.ou.2, O=$dn.o, C=US

This sample configuration specifies that the subject name should be
formulated as follows:

• E = the first mail LDAP attribute value in the user’s entry

• CN = the (first) cn LDAP attribute value in the user’s entry

• OU = the second ou value in the user’s entry DN

• O = the (first) o value in the user’s entry DN

• C = the string US

If this parameter value is empty or not set, the server uses E=$attr.mail,
CN=$attr.cn, O=$dn.o, C=$dn.c as the DN pattern.

This default DN pattern works well with Netscape Communicator and other
browsers. For Communicator, if you leave out E= in end-user certificates,
S/MIME may not work correctly (assuming lack of other extensions in the
certificate). Also, if C= and O= are left out, certificate display looks strange in
Communicator (when the Display Certificate button is clicked).

Table 1-3 Description of parameters defined in the UidPwdPinDirAuth module (Continued)

Parameter Description

UidPwdPinDirAuth Plug-in Module

34 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

ldapStringAttributes Specifies the list of LDAP string attributes that should be considered authentic
for the end entity. If specified, the values corresponding to these attributes
will be copied from the authentication directory into the authentication
token—that is, values retrieved from this parameter can be used by policy
modules to formulate subject names for certificates or to make other policy
decisions. For details, see “SubjectAltNameExt Plug-in Module” on page 235.

Entering values for this parameter is optional.

Permissible values: Any valid LDAP string attributes, separated by commas.

Example: mail

(This sample configuration specifies that the value of the mail attribute
should be stored in the authentication token.)

ldapByteAttributes Specifies the list of LDAP byte (binary) attributes that should be considered
authentic for the end entity. If specified, the values corresponding to these
attributes will be copied from the authentication directory into the
authentication token for use by other modules—that is, values retrieved from
this parameter can be used by policy modules to make certain policy decisions
or to add additional information to users’ certificates.

For example, assume you have defined an LDAP binary attribute for storing
users’ pictures or fingerprints in your directory. You could develop a policy
plug-in that adds users’ pictures to their certificates as extensions.

Entering values for this parameter is optional.

Permissible values: Any valid LDAP byte attributes, separated by commas.

Example: jpegPhoto

This sample configuration specifies that the value of the LDAP attribute
named jpegPhoto (which is included in the standard inetOrgPerson
object class) should be stored in the authentication token and be used to put
the user’s picture in his or her certificate.

ldap.ldapconn.host Specifies the host name of the authentication directory.

Permissible values: The name must be in the
<machine_name>.<your_domain>.<domain> form.

Example: corpDirectory.siroe.com

ldap.ldapconn.port Specifies the TCP/IP port at which the authentication directory listens to
requests from Certificate Management System.

Permissible values: Any valid port number.

Example: 389

Table 1-3 Description of parameters defined in the UidPwdPinDirAuth module (Continued)

Parameter Description

UidPwdPinDirAuth Plug-in Module

Chapter 1 Authentication Plug-in Modules 35

ldap.ldapconn.
secureConn

Specifies the type—SSL or non-SSL—of the port at which the authentication
directory listens to requests from Certificate Management System.

• Check the box if the port is an SSL (HTTPS) port. If your authentication
directory is configured for SSL-enabled communication (with or without
SSL client authentication), choose this option.

• Leave the box unchecked if the port is a non-SSL (HTTP) port. If your
authentication directory is configured for basic authentication, choose this
option (default).

ldap.ldapconn.
version

Specifies the LDAP protocol version.

Permissible values: 2 or 3.

• 2 specifies LDAP version 2. If your authentication directory is based on
Netscape Directory Server 1.x, choose 2.

• 3 specifies LDAP version 3. For Directory Server versions 3.x and later,
choose 3 (default).

Example: 3

ldap.ldapauth.bindDN Specifies the user entry to bind as when removing PINs from the
authentication directory. You need to specify this parameter only if you’ve
selected removePin. It is recommended that you create and use a separate
user entry that has permission to modify only the PIN attribute in the
directory. For example, don’t use the directory manager’s entry as it has
privileges to modify the entire directory content.

Permissible values: A valid bind DN.

Example: CN=pinmanager

password Specifies the password associated with the DN specified by the
ldap.ldapauthbindDN parameter. when you save your changes, the
server stores the password in the single sign-on password cache and uses it
for subsequent start ups (see section “Required Start-up Information” in
Chapter 8, “Starting and Stopping CMS Instances” of CMS Installation and
Setup Guide.)

You need to specify this parameter only if you’ve selected removePin.

Table 1-3 Description of parameters defined in the UidPwdPinDirAuth module (Continued)

Parameter Description

UidPwdPinDirAuth Plug-in Module

36 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

ldap.ldapauth.
clientCertNickname

Specifies the nickname or the friendly name of the certificate to be used for
SSL client authentication to the authentication directory in order to remove
PINs. Make sure that the certificate is valid and has been signed by a CA that
is trusted in the authentication directory’s certificate database, and that the
authentication directory’s certmap.conf file has been configured to
correctly map the certificate to a DN in the directory. (This is needed for PIN
removal only.)

Permissible values: Enter the name of a currently valid CMS certificate, for
example, its SSL server certificate.

Example: Server-Cert

ldap.ldapauth.
authtype

Specifies the authentication type—basic authentication or SSL client
authentication—required in order to remove PINs from the authentication
directory.

Permissible values: BasicAuth or SslClientAuth.

• BasicAuth specifies basic authentication. If you choose this option, be
sure to enter the correct values for ldap.ldapauth.bindDN and
password parameters; the server uses the DN from the
ldap.ldapauth.bindDN attribute to bind to the directory (default).

• SslClientAuth specifies SSL client authentication. If you choose this
option, be sure to set the value of the ldap.ldapconn.secureConn
parameter to true and the value of the
ldap.ldapauth.clientCertNickname parameter to the nickname of
the certificate to be used for SSL client authentication.

Example: BasicAuth

ldap.basedn Specifies the base DN for searching the authentication directory—the server
uses the value of the uid field from the HTTP input (what a user enters in the
enrollment from) and the base DN to construct an LDAP search filter.

Permissible values: Any valid DN string of up to 255 characters.

Example: O=siroe.com

ldap.minConns Specifies the minimum number of connections permitted to the authentication
directory.

Permissible values: 1 to 3.

Example: 3

Table 1-3 Description of parameters defined in the UidPwdPinDirAuth module (Continued)

Parameter Description

NISAuth Plug-in Module

Chapter 1 Authentication Plug-in Modules 37

NISAuth Plug-in Module
The NISAuth module implements the NIS server-based authentication. You can
use the module for authenticating unprivileged users in the NIS domain during
certificate enrollment. The module enables you to deploy Public Key Infrastructure
(PKI) leveraging an existing NIS server installation—it enables you to configure a
Certificate Manager or Registration Manager to authenticate end users, based on
their user IDs and passwords stored in an existing NIS server, and to issue
certificates.

Optionally, you can configure the authentication module to do an LDAP
correlation—that is, use the NIS directory to authenticate users based on the user ID
and password they enter in the enrollment form, but compose certificate subject
names from an LDAP-compliant directory, such as iPlanet Directory Server. When
using an LDAP directory to compose subject names, you can configure the module
to search for and retrieve specific LDAP attribute values from the directory. The
ability of the module to use an LDAP directory to form certificate subject names is
useful in cases where the NIS server only stores user IDs and passwords and you
don’t want to formulate subject names using just common names and user IDs.

In the absence of an LDAP directory, subject names of all certificates issued by the
server will be of the form CN=<FirstName LastName>,UID=<UserID>, where
First Name and Last Name is a user’s first and last names as specified in the NIS
directory, and UserID is the user’s NIS ID. To accommodate scenarios where the
default subject-name form isn’t adequate, the module supports a parameter named
extendedDN. This parameter enables you to specify a suffix that the server should
use for extending the default subject DN pattern.

Figure 1-6 illustrates how the NIS authentication module works during certificate
enrollment.

ldap.maxConns Specifies the maximum number of connections permitted to the
authentication directory.

Permissible values: 3 to 10.

Example: 9

Table 1-3 Description of parameters defined in the UidPwdPinDirAuth module (Continued)

Parameter Description

NISAuth Plug-in Module

38 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 1-6 NIS server-based authentication of an end user

These are the steps shown in Figure 1-6:

1. In the NIS server-based certificate enrollment form, the end user enters his or
her user ID and password for the NIS server and submits the request to a
Certificate Manager or Registration Manager.

2. When the server receives the request, it looks up the NIS server that is
configured for authenticating end users. The server verifies the authenticity of
the end user by checking the entries.

NISAuth Plug-in Module

Chapter 1 Authentication Plug-in Modules 39

❍ If the end user does not have a valid entry in the NIS server, the Certificate
Manager or Registration Manager rejects the request, logs an error
message, and sends a rejection notification to the user.

❍ If the end user has a valid entry in the NIS server, the Certificate Manager
or Registration Manager checks to see if any LDAP directory has been
configured for retrieving attributes for constructing the certificate subject
name. If a directory is specified, the server checks it for the user’s entry,
retrieves all the information required to construct the subject name, and
adds the subject name to the certificate request. If a directory is
unspecified, the server uses the NIS user’s name, user ID, and extended
DN (if specified) for the subject name.

If, for some reason, the directory to which the server binds for retrieving user
attributes is unavailable, the server writes the appropriate LDAP error code to
the log. A sample log entry with an LDAP error code is shown below:

30/Dec/1999:18:40:25 -0700] conn=0 op=7 RESULT err=32 tag=101
nentries=0 etime=0]

3. Next, the server subjects the certificate request to policy processing. For details,
see Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide .

❍ If the request fails any of the configured policies, the server rejects the
request, logs an error message, and sends a rejection notification to the end
user.

❍ If the request passes all the configured policies, the server issues the end
user a certificate.

The end user gets the certificate, which, if the server is configured to do so,
is delivered to the email address specified in the request or in the directory;
for information on configuring a Certificate Manager or Registration
Manager to send automated notifications, see section “Notifications of
Certificate Issuance to End Entities” in Chapter 16, “Setting Up Automated
Notifications” of CMS Installation and Setup Guide.

Configuration Parameters of NISAuth
In the configuration file, the NISAuth module is identified as
auths.impl.NISAuth.class=com.iplanet.certsrv.authentication.
NISAuth.

In the CMS window, the module is identified as NISAuth. Figure 1-7 shows how
configurable parameters of the module are displayed in the CMS window.

NISAuth Plug-in Module

40 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 1-7 Parameters defined in the NISAuth module

Table 1-4 gives details about each of these parameters and their values.

Table 1-4 Description of parameters defined in the NISAuth module

Parameter Description

nisserver Specifies the NIS server name. (In Unix, use the ypwhich command to find
the NIS server name.)

Permissible values: A valid server name.

Example: myServer

nisdomain Specifies the NIS domain name. (In Unix, use the domainname command to
find the domain name.)

Permissible values: A valid domain name.

Example: siroe.com

NISAuth Plug-in Module

Chapter 1 Authentication Plug-in Modules 41

dnpattern Specifies a string representing a subject name pattern to formulate from the
directory attributes and entry DN.

Permissible values: Any valid DN string composed from standard DN
attributes, which must be separated by commas; see “DNs in Certificate
Management System” on page 316.

The syntax is illustrated in the following example:

E=$attr.mail.1, CN=$attr.cn, OU=$dn.ou.2, O=$dn.o, C=US

This sample configuration specifies that the subject name should be
formulated as follows:

• E = the first mail LDAP attribute value in the user’s entry

• CN = the (first) cn LDAP attribute value in the user’s entry

• OU = the second ou value in the user’s entry DN

• O = the (first) o value in the user’s entry DN

• C = the string US

If this parameter value is empty or not set, the server uses E=$attr.mail,
CN=$attr.cn, O=$dn.o, C=$dn.c as the DN pattern.

This default DN pattern works well with Netscape Communicator and other
browsers. For Communicator, if you leave out E= in end-user certificates,

S/MIME may not work correctly (assuming lack of other extensions in the
certificate). Also, if C= and O= are left out, certificate display looks strange in
Communicator (when the Display Certificate button is clicked).

extendedDN Specifies the suffix that the server should use for extending the default subject
DN when an LDAP directory for retrieving such information is not specified.
The value you specify in this field is used by the sever to suffix the default
subject name in certificates, which is in the form CN=<FirstName
LastName>,UID=<UserID>.

Example: If you assign OU=People,O=siroe.org,C=US as the extended
DN, subject names in certificates would be of this form:

CN=<FirstName LastName>,UID=<UserID>,OU=People,
O=siroe.org,C=US

Table 1-4 Description of parameters defined in the NISAuth module (Continued)

Parameter Description

NISAuth Plug-in Module

42 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

ldapStringAttributes Specifies the list of LDAP string attributes that should be considered authentic
for the end entity. If specified, the values corresponding to these attributes
will be copied from the authentication directory into the authentication
token—that is, values retrieved from this parameter can be used by policy
modules to formulate subject names for certificates or to make other policy
decisions. For details, see “SubjectAltNameExt Plug-in Module” on page 235.

Entering values for this parameter is optional.

Permissible values: Any valid LDAP string attributes, separated by commas.

Example: mail

(This sample configuration specifies that the value of the mail attribute
should be stored in the authentication token.)

ldapByteAttributes Specifies the list of LDAP byte (binary) attributes that should be considered
authentic for the end user. If specified, the values corresponding to these
attributes will be copied from the LDAP directory into the authentication
token for use by other modules—that is, values retrieved from this parameter
can be used by policy modules to make certain policy decisions or to add
additional information to users’ certificates.

For example, assume you have defined an LDAP binary attribute for storing
users’ pictures or fingerprints in your directory. You could develop a policy
plug-in that adds users’ pictures to their certificates as extensions.

Entering values for this parameter is optional.

Permissible values: Any valid LDAP byte attributes, separated by commas.

Example: jpegPhoto

This sample configuration specifies that the value of the LDAP attribute
named jpegPhoto (which is included in the standard inetOrgPerson
object class) should be stored in the authentication token and be used to put
the user’s picture in his or her certificate.

ldap.ldapconn.host Specifies the host name of the LDAP directory.

Permissible values: The name must be in the
<machine_name>.<your_domain>.<domain> form.

Example: corpDirectory.siroe.com

ldap.ldapconn.port Specifies the TCP/IP port at which the LDAP directory listens to requests
from Certificate Management System.

Permissible values: Any valid port number.

Example: 389

Table 1-4 Description of parameters defined in the NISAuth module (Continued)

Parameter Description

NISAuth Plug-in Module

Chapter 1 Authentication Plug-in Modules 43

ldap.ldapconn.
secureConn

Specifies the type—SSL or non-SSL—of the port at which the LDAP directory
listens to requests from Certificate Management System.

Permissible values: true or false.

• true specifies that the port is an SSL (HTTPS) port. If your directory is
configured for SSL-enabled communication (with or without SSL client
authentication), choose this option.

• false specifies that the port is a non-SSL (HTTP) port. If your directory is
configured for basic authentication, choose this option.

Example: false

ldap.ldapconn.
version

Specifies the LDAP protocol version of the LDAP directory.

Permissible values: true or false.

• 2 specifies LDAP version 2. If your directory is based on Netscape
Directory Server 1.x, choose 2.

• 3 specifies LDAP version 3. For Directory Server versions 3.x and later,
choose 3.

Example: 3

ldap.basedn Specifies the base DN for searching the LDAP directory—the server uses the
value of the uid field from the HTTP input (what a user enters in the
enrollment form) and the base DN to construct an LDAP search filter.

Permissible values: Any valid DN string of up to 255 characters.

Example: O=siroe.com

ldap.minConns Specifies the minimum number of connections permitted to the LDAP
directory.

Permissible values: 1 to 3

Example: 2

ldap.maxConns Specifies the maximum number of connections permitted to the LDAP
directory.

Permissible values: 3 to 10

Example: 10

Table 1-4 Description of parameters defined in the NISAuth module (Continued)

Parameter Description

PortalEnroll Plug-in Module

44 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

PortalEnroll Plug-in Module
The PortalEnroll module implements portal enrollment. This module enables
you to issue certificates and create directory entries for users who do not yet have
an entry in the directory. For example, if your company runs a portal service, such
as mysun.sun.com, you can use the PortalEnroll module to issue certificates to
new users when they register for the online service. You can also use the module to
authenticate and issue certificates to your extranet users. For example, if you have
deployed extranets for partners and vendors, you can use the module to
authenticate and issue certificates to these users when they register for the service.

The PortalEnroll module does following:

• Performs dual operations, registration and authentication, eliminating the
need for users to use separate forms to register for an online service and to
request a certificate; the module enables deployment of certificates along with
registration in an LDAP-compliant directory.

• Verifies the uniqueness of the new user’s chosen user name against an
LDAP-compliant user directory and uses the user name as the only
authentication token required to obtain a certificate.

• Uses the information from the enrollment form to create new user entries and
update directory entry attributes for unique usernames.

• Leverages an existing LDAP-compliant user directory, typically used for
storing user information.

There are many advantages in issuing certificates to your user community:

• Certificates enable you to uniquely identify users and establish a relationship
with users in that you can use their identities to track services and features
utilized by these users and use this information to offer customized services to
them—certificates become equivalent to the way online services utilize cookies
for personalization.

• Certificates also enable you to make your online service subscription
based—because a certificate’s life is tied to its validity period, by issuing
certificates with specific validity period you can enforce users to subscribe to
your online service by renewing their certificate before its expiry.

• Certificates also enable you to remove people from your user base and add
them back after giving them a credential—by making a certificate issued to a
new user expire after a specific validity period you can restrict that user from
using your service, and put the user back on service by forcing the user to
renew the expired certificate after giving them a credential. For example,
assume you have an extranet deployed for your partners. You have no prior

PortalEnroll Plug-in Module

Chapter 1 Authentication Plug-in Modules 45

knowledge of people who will register as your partners, but you want them to
register and you want to trust the information they provide during
registration. By issuing them a certificate with a short validity period you can
limit them from using your service for that period. In the meantime, you can
verify their registration data and decide whether to allow them to continue
using your service; if you want them to be your partners, you allow them to
renew their certificates before they expire; if you don’t want them as your
partners, you reject their certificate renewal requests.

Note that Certificate Management System can send automated renewal
notifications to users before their certificates expire; see
“RenewalNotificationJob Plug-in Module” on page 69.

Functionally, the portal authentication module is very similar to the
directory-based authentication module (see “UidPwdDirAuth Plug-in Module” on
page 24) except that instead of binding to the directory as the enrolling user,
Certificate Management System binds as some directory account with permission
to create and update user entries. The server then queries the directory for the user
name specified by the user and if it doesn’t find a match, it adds the entry with all
the standard LDAP field names that match the directory attributes.

For example, if the HTTP form input contains data such as surname, common
name, and phone number, the corresponding LDAP attributes would be set in the
directory; for details, see “Enrollment Forms” on page 57. The server also uses a
combination of these attributes (which you can specify using the dnpattern
parameter defined in the module) to construct subject names for certificates.

Note that the portal authentication module by default uses the standard LDAP
object class named inetOrgPerson to create and update user entries. The input
fields defined in the default portal enrollment form correspond to the attributes
defined in this object class as defined in iPlanet Directory Server 4.x. The module is
capable of reading and writing these attributes only. However, you can customize
the module to accommodate all the fields supported by popular portals by
extending the directory schema to include a new object class; you’ll also be
required to update the enrollment form to include attributes corresponding to the
new object class. For guidelines on how to customize the module, check the sample
located here: <server_root>/cms_sdk/cms_jdk/samples/authentication

Figure 1-8 illustrates how the portal authentication module works during
certificate enrollment.

PortalEnroll Plug-in Module

46 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 1-8 Portal authentication of an end user

These are the steps shown in Figure 1-8:

1. In the portal enrollment form, the end user enters registration information,
such as a user name or ID, password, first name, last name, and mailing
address, and submits the request to the server.

2. When the server receives the request, it verifies that the required fields contain
appropriate information, for example, the values entered in the Password and
Confirm Password fields match. Next, the server looks up the directory that is
configured for authenticating portal service users for a matching user name.

❍ If the server finds a matching user name in the directory, it rejects the
request, logs an error message, and sends a rejection notification to the end
user.

PortalEnroll Plug-in Module

Chapter 1 Authentication Plug-in Modules 47

❍ If the server fails to find a matching user name in the directory, it uses the
registration information to create a user entry for the new user and add
relevant attributes. The server also retrieves information required to
construct the subject name for the certificate.

If, for some reason, the directory to which the server binds for authenticating
the user ID and password is unavailable, the server returns an LDAP error
code and writes it to the log. A sample log entry with an LDAP error code is
shown below:

28/Jun/1999:18:40:25 -0700] conn=0 op=7 RESULT err=32 tag=101
nentries=0 etime=0]

3. Next, the server subjects the certificate request to policy processing. For details,
see Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide.

❍ If the request fails any of the configured policies, the server rejects the
request, logs an error message, and sends a rejection notification to the end
user. Note that if this happens, the user won’t be able to reregister using
the same user name.

❍ If the request passes all the configured policies, the server issues the end
user a certificate.

The end user gets the certificate, which, if the server is configured to do so,
is delivered to the email address specified in the request or in the directory;
for information on configuring a Certificate Manager or Registration
Manager to send automated notifications, see section “Notifications of
Certificate Issuance to End Entities” in Chapter 16, “Setting Up Automated
Notifications” of CMS Installation and Setup Guide.

Configuration Parameters of PortalAuth
In the configuration file, the PortalEnroll module is identified as
auths.impl.PortalEnroll.class=com.iplanet.certsrv.
authentication.PortalEnroll.

In the CMS window, the module is identified as PortalEnroll. Figure 1-9 shows
how configurable parameters for the module are displayed in the CMS window.

PortalEnroll Plug-in Module

48 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 1-9 Parameters defined in the PortalEnroll module

Table 1-5 gives details about each of these parameters and their values.

PortalEnroll Plug-in Module

Chapter 1 Authentication Plug-in Modules 49

Table 1-5 Description of parameters defined in the PortalEnroll module

Parameter Description

dnpattern Specifies a string representing a subject name pattern to formulate from the
directory attributes and entry DN.

Permissible values: Any valid DN string composed from standard DN
attributes, which must be separated by commas; see “DNs in Certificate
Management System” on page 316.

The syntax is illustrated in the following example:

E=$attr.mail.1, CN=$attr.cn, OU=$dn.ou.2, O=$dn.o, C=US

This sample configuration specifies that the subject name should be
formulated as follows:

• E = the first mail LDAP attribute value in the user’s entry

• CN = the (first) cn LDAP attribute value in the user’s entry

• OU = the second ou value in the user’s entry DN

• O = the (first) o value in the user’s entry DN

• C = the string US

If this parameter value is empty or not set, the server uses E=$attr.mail,
CN=$attr.cn, O=$dn.o, C=$dn.c as the DN pattern.

This default DN pattern works well with Netscape Communicator and other
browsers. For Communicator, if you leave out E= in end-user certificates,
S/MIME may not work correctly (assuming lack of other extensions in the
certificate). Also, if C= and O= are left out, certificate display looks strange in
Communicator (when the Display Certificate button is clicked).

ldap.ldapconn.host Specifies the host name of the portal directory.

Permissible values: The name must be in the
<machine_name>.<your_domain>.<domain> form.

Example: portalDirectory.siroe.com

ldap.ldapconn.port Specifies the TCP/IP port at which the portal directory listens to requests
from Certificate Management System.

Permissible values: Any valid port number.

Example: 389

PortalEnroll Plug-in Module

50 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

ldap.ldapconn.
secureConn

Specifies the type—SSL or non-SSL—of the port at which the portal directory
listens to requests from Certificate Management System.

• Check the box if the port is an SSL (HTTPS) port. If your portal directory is
configured for SSL-enabled communication (with or without SSL client
authentication), choose this option.

• Leave the box unchecked if the port is a non-SSL (HTTP) port. If your
portal directory is configured for basic authentication, choose this option
(default).

ldap.ldapconn.
version

Specifies the LDAP protocol version.

Permissible values: 2 or 3.

• 2 specifies LDAP version 2. If your portal directory is based on Netscape
Directory Server 1.x, choose 2.

• 3 specifies LDAP version 3. For Directory Server versions 3.x and later,
choose 3 (default).

Example: 3

ldap.ldapauth.
bindDN

Specifies the user account to bind as in order to create and update user entries
in the portal directory. It is recommended that you create and use a separate
user account that has permission to create user entries and modify user
attributes in the directory. For example, don’t use the directory manager’s
entry as it has privileges to modify the entire directory content.

Permissible values: A valid bind DN.

Example: CN=Portal Registration Manager

password Specifies the password associated with the DN specified by the
ldap.ldapauthbindDN parameter.

Permissible values: As applicable.

ldap.ldapauth.
clientCertNickname

Specifies the nickname or the friendly name of the certificate to be used for
SSL client authentication to the portal directory. Make sure that the certificate
is valid and has been signed by a CA that is trusted in the portal directory’s
certificate database, and that the portal directory’s certmap.conf file has
been configured to correctly map the certificate to a DN in the directory.

Permissible values: Enter the name of a currently valid CMS certificate, for
example, its SSL server certificate.

Example: Server-Cert

Table 1-5 Description of parameters defined in the PortalEnroll module (Continued)

Parameter Description

PortalEnroll Plug-in Module

Chapter 1 Authentication Plug-in Modules 51

ldap.ldapauth.
authtype

Specifies the authentication type—basic authentication or SSL client
authentication—required to communicate with the portal directory.

Permissible values: BasicAuth or SslClientAuth.

• BasicAuth specifies basic authentication. If you choose this option, be
sure to enter the correct values for ldap.ldapauth.bindDN and
password parameters; the server uses the DN from the
ldap.ldapauth.bindDN attribute to bind to the directory (default).

• SslClientAuth specifies SSL client authentication. If you choose this
option, be sure to set the value of the ldap.ldapconn.secureConn
parameter to true and the value of the
ldap.ldapauth.clientCertNickname parameter to the nickname of
the certificate to be used for SSL client authentication.

Example: BasicAuth

ldap.basedn Specifies the base DN for searching the portal directory—the server uses the
value of the uid field from the HTTP input (what a user enters in the
enrollment form) and the base DN to construct an LDAP search filter.

Permissible values: Any valid DN string of up to 255 characters.

Example: O=siroe.com

ldap.objectclass Specifies the object class to modify or update in the portal directory.

Permissible values: Must be inetOrgPerson for the default portal
enrollment form; see “Enrollment Forms” on page 57.

Example: inetOrgPerson

ldap.minConns Specifies the minimum number of connections permitted to the directory.

Permissible values: 1 to 3

Example: 2

ldap.maxConns Specifies the maximum number of connections permitted to the directory.

Permissible values: 3 to 10

Example: 10

Table 1-5 Description of parameters defined in the PortalEnroll module (Continued)

Parameter Description

SSOAuthentication Plug-In Module

52 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

SSOAuthentication Plug-In Module
CMS provides a Single Sign-On (SSO) authentication module for user
authentication. The Sun™ ONE Identity Server 6.0 will be integrated with the
Certificate Server SSO authentication mechanism. This integration will make it
possible for an Identity Server user to authenticate himself to the Certificate Server
by providing his Single Sign-On token instead of userID and password. The user
can also apply for a general-purpose user certificate with a single click of a button,
eliminating the need to manually import or install the certificate. The user clicks
the GetMyCert button in the Identity Server user profile page to automatically
generate the user certificate.

The following section provides instructions for configuring the Certificate Server
Single Sign-On (SSO) Authentication module to work with Identity Server 6.0.

Configuring SSOAuthenication
Enabling this feature is a three-part procedure. Part 1 is described in detail in this
document. For details on Parts 2 and 3, please see the Identity Server 6.0
documentation when it becomes available.

1. Create an instance of SSOBasedAuthentication in CMS.

2. In Identity Server, configure the Security service to work in non-SSL Certificate
Server enrollment.

3. In Identity Server, configure the Security service to work in non-SSL Certificate
Server enrollment.

Before You Begin
• Certificate Server 4.7 must be running and a Certificate Administrator must

already be configured.

• Identity Server 6.0 must be installed and running.

Create an instance of SSOBasedAuthentication in CMS.
1. In the Certificate Server window, click Configuration>Authentication>Add.

NOTE At the time of this writing, Identity Server 6.0 is not yet released.
When it becomes available, please see the documentation that
comes with that product for detailed information on configuring
Identity Server to work with Certificate Server.

Certificate-Based Enrollment

Chapter 1 Authentication Plug-in Modules 53

2. In the Select Authentication Plug-in Implementation window, select
SSOBasedAuthentication, and then click Next.

3. In the Authentication Instance Editor, provide the following information:

com.iplanet.am.naming.url. This is the Universal Resource Identifier (URI) for
the Identity Server Naming Service. Type a URL to be used in place of the
default URI. Use the following form:

http://Identity_Server_root:portNumber/amserver/namingservice

password. Type the Shared Secret used by the Identity Server.

com.iplanet.am.cookie.name. Type the Cookie property used by Identity
Server. The default is iplanetDirectoryPro.

com.iplanet.am.pcookie.name. Type the PCookie property used by Identity
Server. The default is DProPcookie.

com.iplanet.am.services.deploymentDescriptor. Type the Deployment
Descriptor property used by Identity Server. The default value is amserver.

4. Click OK.

Certificate-Based Enrollment
Certificate Management System supports certificate-based enrollment for browser
certificates. End users can use preissued certificates to authenticate to the server in
order to enroll for certificates. Below are two deployment scenarios that explain the
usefulness of certificate-based enrollment.

• You have deployed a client that can generate dual key pairs and you want to
issue dual certificates (one for signing and another for encrypting data) to your
users. You also want to make sure that users put their key materials only on
hardware tokens.

One way to achieve this would be to initialize hardware tokens in bulk and
preload them with dual certificates issued by Certificate Management System
for dual key pairs. You generate these certificates with some generic-looking
common names, for example, hardwaretoken1234. This way, there’s no
one-to-one relation between users and the hardware tokens initially. Once the
tokens are ready, you make them available to users by some means, for
example, from a vending-machine-like box in the break room. Basically, a user
can get and use any pre-initialized and certificate-loaded hardware token.

Certificate-Based Enrollment

54 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Next, each user uses the randomly-picked token to enroll (strictly speaking,
renew) for a pair of certificates that have a subject name derived from their
LDAP attribute values; the certificates will be issued for the existing key pairs
preloaded into the token, but now the key pairs will be associated with the
user’s identity.

• You want users use the signing certificate already in their possession to get an
encryption certificate.

For example, assume you have deployed Certificate Management System and
have issued single certificates (for single key pairs) to users. Recently, you
deployed a client application (such as Netscape Personal Security Manager)
that is capable of generating dual key pairs. Your CMS installation includes the
Data Recovery Manager, but you weren’t using it until now because you didn’t
have clients that were capable of generating dual-key pairs. Now, you want
your users to use their signing certificates as authentication tokens to request
another certificate that they’ll use for encrypting data.

To enable you to configure Certificate Management System for certificate-based
enrollment, the following three enrollment forms are provided:

• CertBasedDualEnroll.html—this form enables end users to request dual
certificates—one for signing another for encryption—by submitting pre-issued
certificates as authentication tokens; when a user enrolls for a certificate, the
server verifies the CA that has issued the certificate the user uses for
authentication, uses the configured directory to formulate subject names for
the new certificates, and issues the certificates.

• CertBasedEncryptionEnroll.html—this form is provided as a sample. It
enables end users to request encryption certificates by submitting pre-issued
certificates as authentication tokens; when a user enrolls for a certificate, the
server verifies the CA that has issued the certificate the user uses for
authentication, uses the configured directory to formulate the subject name for
the new certificate, and issues the certificate.

• CertBasedSingleEnroll.html—this form is provided as a sample. It enables
end users to request signing certificates by submitting pre-issued certificates as
authentication tokens; when a user enrolls for a certificate, the server verifies
the CA that has issued the certificate the user uses for authentication, uses the
configured directory to formulate the subject name for the new certificate, and
issues the certificate.

Note that all three enrollment forms by default work with the directory-based
authentication module, named UidPwdDirAuth, explained in “UidPwdDirAuth
Plug-in Module” on page 24. You can use the certificate-based enrollment forms
with any of the authentication modules, for example, directory- and PIN-based or

Certificate-Based Enrollment

Chapter 1 Authentication Plug-in Modules 55

NIS-server based authentication modules. However, this would require you to add
the necessary hidden fields or variables to enrollment form that’s provided for the
corresponding authentication module; check Table 1-6 on page 59 to figure out
which enrollment form works with which module.

In general, the following three hidden variables distinguish certificate-based
enrollment forms from other enrollment forms:

• certauthEnroll—this variable specifies whether certificate-based enrollment
is turned on or off.

• certauthEnrollType—this variable specifies one of the three
certificate-based-enrollment types: dual, single, or encryption; dual
specifies that the enrollment request is for dual certificates; single specifies
that the enrollment request is for a signing certificate; and encryption
specifies that the enrollment request is for an encryption certificate.

Note that choosing dual would require a client that’s capable of generating
dual key pairs.

• doSslAuth—this variable specifies whether the server should request the client
for SSL client authentication. You must set the value of this parameter to on
and make sure that the port number specified in the authentication instance is
an SSL port.

Before modifying a form, be sure to take a look at the default certificate-based
enrollment forms. Also check the customization-related information for the
enrollment forms in CMS Customization Guide.

In addition to the enrollment forms, a policy plug-in named IssuerConstraints is
also provided; see “IssuerConstraints Plug-in Module” on page 98. This plug-in
allows you to configure the server to recognize the CA that issues the certificates
that your users will use for authentication purposes; you need this policy to ensure
that the CA issues certificates only to those users who present a valid certificate
during enrollment. Note that in the current implementation, the CA that issues the
new certificates must be the same as the one that issues the certificates users will
use for authentication. That is, the issuer DN in the authentication certificate must
match the issuer DN specified in the policy configuration.

Here are a few things to keep in mind:

• Enrollment requests for dual certificates must be submitted directly to the
Certificate Manager; the Registration Manager doesn’t support generation of
dual certificates.

Certificate-Based Enrollment

56 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

• The Certificate Manager provides a bulk-enrollment interface, which can be
used to preload keys and certificates on hardware tokens before distributing
them to users for certificate enrollment. For details, see section “Bulk
Enrollment Interface” of CMS Customization Guide.

• When using certificate-based enrollment, the IssuerConstraints policy must
be enabled and configured to check the CA (its issuer DN) in certificates users
will use to authenticate to the server. Also, the value assigned to the issuerDN
parameter must match the issuer DN of the CA that was used to generate
hardware tokens in bulk.

• Enabling certificate-based enrollment creates one link, named Certificate,
under the list of user-enrollment links in the end-entity enrollment interface.
By default, the link points to the CertBasedDualEnroll.html form. If you
want to use either of the other two forms, CertBasedEncryptionEnroll.html
or CertBasedSingleEnroll.html, you should associate the Certificate link
to the form you want to use or add more links to the index.html file.

General guidelines to set up certificate-based enrollment (for dual certificates) are
as follows:

• On the server side you need do the following:

❍ Customize the enrollment form you want your users to use for enrollment.

❍ Enable the appropriate enrollment option, such as directory-based
enrollment or NIS-server based enrollment. Be sure to configure the
authentication module to compose the desired DN pattern.

❍ Enable the Key Usage extension policy explained in “KeyUsageExt Plug-in
Module” on page 189.

Take a look at the key-usage policy rule named ClientCertKeyUsageExt
and see if it needs any modifications. For example, to get a signing-only
certificate, you need to turn off keyEncipherment and dataEncipherment
bits of the extension; similarly, to get an encryption-only certificate, you
may need to turn off the digitalSignature bit of the extension.

❍ Configure the IssuerRule policy with the correct issuer DN and set the
predicate expression so that the rule is applied to client certificates only.

• On the client side, you need to do the following:

❍ Install drivers for the hardware tokens you want to use during bulk
generation of key pairs and corresponding certificates with generic subject
names.

Enrollment Forms

Chapter 1 Authentication Plug-in Modules 57

❍ If you want to issue dual certificates, install a client that can generate dual
key pairs; for example, Netscape Communicator (version 4.7 or later) with
Netscape Personal Security Manager.

Enrollment Forms
The end-entity interface of the Certificate Manager and the Registration Manager
include default HTML forms for all the authentication methods—manual and
automated—supported by the server.

Enrollment forms can be categorized into two types, depending on the
authentication method they support.

• Manual enrollment forms—these forms work with the built-in manual
authentication module (see “Manual Authentication” on page 23), enabling
users to request all types of certificates such as client certificates, server
certificates, object-signing certificates, CA certificates, and so on. Manual
enrollment for end users requires them to enter information such as name,
email ID, department, organization, and the state and the country in which the
organization is located, and submit the request for a personal certificate.
Manual enrollment for server certificates requires the server administrator to
paste the certificate signing request (in the PKCS#10 format) from the server
into the specified area in the enrollment form; see Chapter 24, “Issuing and
Managing Server Certificates” of CMS Installation and Setup Guide.

Because the Certificate Manager or Registration Manager cannot verify the
information an end user or administrator enters against anything, it builds the
certificate request based on the user input and puts the request in the agent
queue for approval.

• Automated enrollment forms—these forms work with the corresponding
plug-in module, enabling users to request certificates by authenticating to the
configured repository, for example an LDAP directory or NIS directory.

All enrollment forms are accessible from the Enrollment tab of the End Entity
Services interface. Note that by default the Enrollment tab lists only those forms
that are associated with the manual enrollment method (it does not list the forms
provided for the automated-enrollment methods). However, when you create an
instance of any of the authentication modules provided for automated end-user
enrollment—for example, directory-based or NIS-server based authentication—a
link to the corresponding form is automatically created under the Browser section
of the Enrollment tab. Instructions for enabling automated end-user enrollments is
covered in Chapter 15, “Setting Up End-User Authentication” of CMS Installation
and Setup Guide.

Enrollment Forms

58 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Before asking users to use any of the enrollment forms, you should review the form
and make the appropriate changes to the form content. For example, some of the
forms include instructions for administrators and you should delete those lines.
Files for all enrollment forms are located here:

<server_root>/cert-<instance_id>/web/ee

For basic instructions to customize any of the enrollment forms, see section “Step 5.
Set Up the Enrollment Interface” in Chapter 15, “Setting Up End-User
Authentication” of CMS Installation and Setup Guide.

For advanced information on customizing the HTML forms, including how to
make changes to the embedded Javascript functions, see CMS Customization Guide.

Figure 1-10 shows the End Entity Services interface of a Certificate Manager with
the manual enrollment form for end users selected.

Figure 1-10 End Entity Services interface of a Certificate Manager

Enrollment Forms

Chapter 1 Authentication Plug-in Modules 59

Table 1-6 lists the forms that correspond to the menu options in the Enrollment tab
of the End Entity Services interface of the Certificate Manager and Registration
Manager.

Table 1-6 Default forms for end-entity enrollment

Menu link and form filename Description

Browser (This section lists menu options for end-user enrollments.)

Manual
(ManUserEnroll.html)

End users can use this form to request SSL client and S/MIME
certificates. Requests submitted using this form get queued for agent
approval.

Directory
(DirUserEnroll.html)

This form works with the UidPwdDirAuth module, enabling end
users to request SSL client and S/MIME certificates by entering their
user IDs and passwords for the directory; the server verifies this
information against the configured directory and issues the certificate.

Directory and PIN
(DirPinUserEnroll.html)

This form works with the UidPwdPinDirAuth module, enabling end
users to request SSL client and S/MIME certificates by entering their
user IDs, passwords, and PINs for the configured directory; the server
verifies this information against the specified directory and issues the
certificate.

NIS
(NISUserEnroll.html)

This form works with the NISAuth module, enabling end users to
request SSL client and S/MIME certificates by entering their NIS user
IDs and passwords for the configured NIS server.

Portal
(PortalEnrollment.html)

This form works with the PortalEnroll module, enabling end
users to register for an online service and at the same time submit a
request for a personal certificate. Note that the form models the
standard LDAP object class inetOrgPerson, which has many useful
attributes that can be used in a real portal deployment.

As a part of registration, a user is required (by the portal
authentication module) to supply a user ID and password for user ID
validation and a first and last name for user registration. Entering
information in other fields are optional; the server retrieves the rest of
the information needed to construct the subject name for the
certificate from the directory. As explained in “PortalEnroll Plug-in
Module” on page 44, if the user ID is unique, the server issues a
certificate and registers the user automatically. To protect the privacy
of a user’s password, the server turns it in to a SHA-1 or MD5 hashed
password before storing it in the directory.

Enrollment Forms

60 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Certificate
(CertBasedDualEnroll.html)

This form by default works with the UidPwdDirAuth module,
enabling end users to request dual certificates (one for signing another
for encryption) by submitting pre-issued certificates as authentication
tokens; the server verifies the CA that has issued the certificate, uses
the configured directory to formulate the subject names for the new
certificates, and issues the certificate.

Note that the link appears only if you create an instance of the
UidPwdDirAuth module and if the port number specified in the
instance configuration is an SSL port. For details, see
“Certificate-Based Enrollment” on page 53.

Server (This section lists menu options for SSL server, Registration Manager, Certificate Manager, and
OCSP Responder enrollments.)

SSL Server
(ManServerEnroll.html)

Server administrators can use this form to request SSL server
certificates for SSL-enabled servers, such as iPlanet Administration
Server and Directory Server. Requests submitted using this form get
queued for agent approval.

Registration Manager
(ManRAEnroll.html)

Registration Manager administrators can use this form to request a
signing certificate for a Registration Manager; see section “Signing
Key Pair and Certificate” in Chapter 14, “Managing CMS Keys and
Certificates” of CMS Installation and Setup Guide. Requests submitted
using this form get queued for agent approval.

Certificate Manager
(ManCAEnroll.html)

Certificate Manager administrators can use this form to request CA
signing certificates for Certificate Managers functioning as subordinate
CAs; see section “CA Signing Key Pair and Certificate” in Chapter 14,
“Managing CMS Keys and Certificates” of CMS Installation and Setup
Guide. Requests submitted using this form get queued for agent
approval.

Only the Certificate Manager provides this form.

OCSP Responder
(OCSPResponder.html)

Server administrators can use this form to enroll for an OCSP
responder certificate. Requests submitted using this form get queued
for agent approval.

WTLS (This section lists menu options for wireless certificate enrollments, and the section appears only if
you configured the Certificate Manager to support issuance of Wireless Transport Layer Support
(wTLS)-compliant certificates during installation.)

Client
(WTLSManUserEnroll.html)

Users can use this form to enroll for a wireless certificate.

Only the Certificate Manager provides this form.

Table 1-6 Default forms for end-entity enrollment (Continued)

Menu link and form filename Description

Enrollment Forms

Chapter 1 Authentication Plug-in Modules 61

Customizing Enrollment Forms for Generating
DSA Key Pairs
Netscape Communicator (version 4.x and later) can successfully obtain and use
DSA client certificates for SSL client authentication. These versions of
Communicator can also recognize the signature on SSL certificates signed by a
DSA CA. In order for Communicator to generate a DSA key pair, you must modify
the KEYGEN tag in the default certificate enrollment forms; the modifications will
indicate that the DSA algorithm is to be used, and will also supply the PQG
parameters. For details on the KEYGEN tag, see the document entitled Netscape
Extensions for User Key Generation available at this site:

http://home.netscape.com/eng/security/comm4-keygen.html

Depending on the enrollment plug-in you want to use for authenticating end users,
you may need to modify the KEYGEN tags in the following certificate enrollment
forms:

• DirPinUserEnroll.html

Server
(WTLSManServerEnroll.html)

Server administrators can use this form to enroll for a wireless
certificate; the certificate request can be in PKCS#10 format.

Only the Certificate Manager provides this form.

Other (This section lists menu options for object signing enrollments.)

ObjectSigning (PKCS10)
(ObjSignPKCS10Enroll.html)

Server administrators can use this form to enroll for a certificate (by
submitting the request in the PKCS #10 format) that allows them to
sign objects, such as Java applets. Requests submitted using this form
get queued for agent approval.

ObjectSigning (Browser)
(ManObjSignEnroll.html)

End users and administrators can use this form to enroll for a
certificate that allows them to sign objects, such as Java applets.
Requests submitted using this form get queued for agent approval.

Note that when issuing an object signing certificate to Microsoft IE, if
you need to generate a .CER and a .PVK file for use by Microsoft
signcode tool, follow the instructions in “Generating Files Required
By Third-Party Object Signing Tools” on page 63.

CMC
(CMCResponder.html)

End users and administrators can use this form to submit a certificate
request in the CMC format.

Table 1-6 Default forms for end-entity enrollment (Continued)

Menu link and form filename Description

Enrollment Forms

62 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

• DirUserEnroll.html

• ManObjSignEnroll.html

• ManUserEnroll.html

• NISUserEnroll.html

• PortalEnrollment.html

These files are located in this directory:
<server_root>/cert-<instance_id>/web/ee

The procedure below explains how to modify an enrollment form to generate a
DSA key pair when used with Netscape Communicator:

1. Go to the configuration directory of the Certificate Manager:
<server_root>/cert-<instance_id>/config

2. Open the Certificate Manager’s configuration file (CMS.cfg) in a text editor.

3. Open the enrollment form in a text editor.

4. In the configuration file, find the DSSParms entry; this entry represents the
PQG attribute and its value contains the PQG parameters that the CA has
generated during configuration.

5. Copy the value of the DSSParms entry.

6. Go to the text editor that has the enrollment form open.

7. Search for the KEYGEN tag.

8. Insert the cursor at the end of the word KEYGEN, add a space after the word
KEYGEN, and type the following:

keytype="DSA" PQG=

9. Paste the value of the DSSParms entry following the equal to (=) sign and
enclose the value you pasted in double quotes (" ").

An example of a modified KEYGEN tag is shown below (the modifications are
shown in bold):

<KEYGEN keytype="DSA"
PQG="MIIBHgKBgQCsQeVqw5ID/xhSe7s4vLaOuKskCFJN23OBgWCEquYIZbMZdHN
7015p6nN7XsDpTWBccLdrSdpMxmJd8rF2agb3tbk9hjZ6//MfLCTAwvegdgAzzRw
B7akOgYD/SpPFb7rYuvPfkiRjiDDrrp9r+csWqnue9uABvJtWGnW8WVYP6wIVAMC
Ru0u3q+PORrJxO9QcswzrLpnfAoGAM3ZBjxLTPbXOgWIXHZnIFSpGAW1JzK5ywEt
nabJWfiIRrWi3hyWLj98PcIc2cxbpOh60rwqeElUMv74V72Q2+HwIQwsPvTFyQUc
BtOG40zlXoFwEqlaqDoXv3iA0Zp2XQy/JQFbx23J+0HKz7iB7co04LCa0wDU7Z0x
+oTwmsd0=" name="subjectKeyGenInfo">

Enrollment Forms

Chapter 1 Authentication Plug-in Modules 63

10. Repeat steps 7 through 9 to modify any additional KEYGEN tags.

11. Save your changes.

12. Next, configure the Certificate Manager to accept DSA key based certificate
enrollment requests.

A Certificate Manager by default only accepts RSA key-based requests. For the
server to accept DSA key based certificate requests, the value of the
algorithms parameter in the KeyAlgRule policy rule must be set to RSA,DSA.
For instructions to change policy rules, see Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Generating Files Required By Third-Party Object
Signing Tools
When issuing an object-signing certificate to Microsoft IE, Certificate Management
System can generate a certificate (.CER) and a private key (.PVK) files for use by
Microsoft signcode tool or any third-party sign tools that rely on these files. For
the server to generate these files, you must edit the default form provided for
requesting an object-signing certificate for browsers.

To generate the private-key file:

1. Go to this directory: <server_root>/cert-<instance_id>/web/ee

2. Locate the file named ManObjSignEnroll.html.

3. Open it in an editor.

4. Search for this line:

Enroll.GenKeyFlags = 1 ' key exportable

5. Type the following line below it:

Enroll.PVKFilename = "<pvk_file_path>"

Your changes should look like this:

...
Enroll.GenKeyFlags = 1 ' key exportable
Enroll.PVKFilename = "<pvk_file_path>"
szCertReq = Enroll.createPKCS10(szName, "1.3.6.1.5.5.7.3.2")
...

Enrollment Forms

64 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

6. Replace <pvk_file_path> with the absolute path, including the filename, to
the directory in which you want the private key file created; for example,
"C:\myKey.PVK". Be sure to use the .PVK extension and to enclose the path in
double quotes.

7. Optionally, you may further edit the form to include a text field for entering
the file path.

8. Save your changes.

9. Now use the form to issue an object-signing certificate.

If your users need to generate Software Publishing File (SPC) files for their
object-signing certificates, you should ask them to use the Microsoft tool named
cert2spc. The SPC file enables them to execute commands such as this:

signcode -spc myCert.spc -v myKey.pvk file.exe

Here’s how a user can create a SPC file for an object-signing certificate:

1. Open a web browser window.

2. Go to the End Entity Services interface.

3. Locate the object-signing certificate for which you want to create the SPC file.

4. Scroll down the page (that shows the certificate information in detail) to find
the certificate in base-64 encoded format. It looks like this:

-----BEGIN CERTIFICATE-----

MIICJzCCAZCgAwIBAgIBAzANBgkqhkiG9w0BAQQFADBCMSAwHgYDVQQKExdOZXRz
Y2FwZSBDb21tdW5pY2F0aW9uczngjhnMVQ2VydGlmaWNhdGUgQXV0aG9yaXR5MB4
XDTk4MDgyNzE5MDwMFoXDTk5MDIyMzE5MDAwMnbjdgngYoxIDAeBgNVBAoTF05ld
HNjYXBlIENvbW11bmljYXRpb25zMQ8wDQYDVQQLEwZQZW9wbGUxFzAVBgoJkiaJk
IsZAEBEwdzdXByaXlhMRcwFQYDVQQDw5TdXByaXlhIFNoZXR0eTEjMCEGCSqGSIb
3DbndgJA

-----END CERTIFICATE-----

5. Create an ASCII file named cert.b64.

6. Copy and paste the base-64 encoded certificate blob, including the marker lines
-----BEGIN CERTIFICATE----- and -----END CERTIFICATE----- to the file.

7. Convert the text-based certificate to its DER-encoded format using the ASCII to
Binary tool, explained in CMS Customization Guide.

For example, the command

<server_root>/bin/cert/tools/AtoB cert.b64 cert.der

Enrollment Forms

Chapter 1 Authentication Plug-in Modules 65

converts the base-64 encoded certificate in the cert.b64 file to its
DER-encoded format and writes the DER-encoded certificate to a file named
cert.der.

8. Next, use the Microsoft tool named cert2spc to convert the DER-encoded
certificate to SPC format. For example, the command

cert2spc cert.der cert.spc

converts the DER-encoded certificate in the cert.der file to its SPC format and
writes the certificate to a file named cert.spc.

For additional information, check these links:

• http://www.lantimes.com/ltparts/connect/shoptalk1.htm

• http://www.thawte.com/certs/developer/msauthenticode.html

• http://www.drh-consultancy.demon.co.uk/pkcs12faq.html

Enrollment Forms

66 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

67

Chapter 2

Job Plug-in Modules

iPlanet Certificate Management Server (CMS) includes a component called Job
Scheduler that can execute specific jobs at specified times. The job scheduler
functions similar to a traditional Unix cron daemon in that it takes registered cron
jobs and executes them at a preconfigured date and time. If configured, the
scheduler checks at specified intervals for jobs waiting to be executed; if the
specified execution time has arrived, the scheduler initiates the job automatically.
Jobs that you might want to schedule include email notifications of timed events
(such as the expiration of a certificate) that require action on the part of users, and
periodic activities such as updates of related directories.

This chapter describes the job plug-in modules that are provided with Certificate
Management System and explains how to schedule times for jobs.

The chapter has the following sections:

• Overview of Job Plug-in Modules (page 67)

• RenewalNotificationJob Plug-in Module (page 69)

• RequestInQJob Plug-in Module (page 73)

• UnpublishExpiredJob Plug-in Module (page 76)

• Customizing Notification Messages (page 81)

Overview of Job Plug-in Modules
Both the Certificate Manager and Registration Manager provide a set of job plug-in
modules that can be employed by the server to automate certain activities. The Job
Plugin Registration tab of the CMS window (see Figure 2-1) lists all the modules
and the corresponding classes that are currently registered with a Certificate
Manager.

Overview of Job Plug-in Modules

68 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 2-1 Default job modules for the Certificate Manager

Table 2-1 lists these modules.

Table 2-1 Schedulable job plug-in modules for Certificate Manager and Registration Manager

Plug-in module name Description

RenewalNotificationJob A schedulable job that notifies end entities by email that their certificates
are about to expire and must be renewed, and optionally sends a
summary of these notices to agents. For more information, see
“RenewalNotificationJob Plug-in Module” on page 69.

RequestInQueueJob A schedulable job that notifies agents at regular intervals of the current
state of the request queue.

In addition, agents can also be notified by email that a request has been
added to the request queue by configuring an event-driven notification.
See “RequestInQJob Plug-in Module” on page 73.

UnpublishExpiredJob A schedulable job that updates the configured publishing directory
periodically by removing expired certificates, and sends a summary of
removed certificates to agents or administrators. For more information,
see “UnpublishExpiredJob Plug-in Module” on page 76.

RenewalNotificationJob Plug-in Module

Chapter 2 Job Plug-in Modules 69

Jobs are implemented as Java classes, which are then registered with Certificate
Management System as plug-in modules. You can use a given implementation of a
job module and configure multiple instances of it. Each instance must have a
unique name (an alphanumeric string with no spaces) and can contain different
input parameter values to apply to different jobs.

Note that the name of the Java class for a job plug-in module is in this format:

com.iplanet.certsrv.jobs.<plugin_name>

where <plugin_name> is the name of a plug-in module. For example, the Java class
for the RenewalNotificationJob module would be:

com.iplanet.certsrv.jobs.RenewalNotificationJob

RenewalNotificationJob Plug-in Module
When a certificate is about to expire, the owner of the certificate needs to renew it.
Using the Jobs Scheduler, you can configure a Certificate Manager or Registration
Manager to automatically send email-based renewal notices to users whose
certificates are about to expire or have expired. You can also configure these
subsystems to send one or more administrators or issuing agents a summary of
users who have received these reminders.

The RenewalNotificationJob plug-in module is a schedulable job. When an
instance of the job is enabled, it checks for certificates that are about to expire in the
internal database. When it finds one, it automatically emails the certificate’s owner
and continues sending email reminders for a configured period of time, or until the
certificate is renewed. The job also collects a summary of all such renewal
notifications and mails the summary to one or more agents or administrators.

The job determines the email address to which to send the notification using an
email resolver, which you can customize. By default, the email address is found in
the certificate itself or in the certificate’s associated enrollment request.

The email notification message, as well as the summary message, are constructed
using a template found in the configured directory. This directory has the
following default location: <server_root>/cert-<instance_id>/emails

You can configure both the path and filenames of the template files for each job and
modify the templates to customize the contents and appearance of the messages.
Messages can be sent as HTML or plain text. For customization information, see
“Customizing Notification Messages” on page 81.

RenewalNotificationJob Plug-in Module

70 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

For each instance of the RenewalNotificationJob class, you can configure the
following:

• The schedule of times when the job will be run; see “Schedule for Executing
Jobs” on page 80.

• How long before expiration the first notification will be sent.

• How long, after the certificate expires, notifications will continue to be sent if
the certificate is not renewed.

• The sender of the notification messages (who will be notified of any delivery
problems).

• The file location of the notification email template.

• The subject line of the notification message.

• How the email address for the notification is to be resolved.

• Whether a summary will be compiled and sent.

If a summary is to be sent, you can configure the following:

• The recipients of the summary message. These can be, for example, agents who
need to know the status of user certificates.

• The sender of the summary message (who will be notified of any delivery
problems).

• The file location of the summary message template.

• The file location of content and format of each item to be collected for the
summary.

• The subject line of the summary message.

Configuration Parameters of
RenewalNotificationJob
In the CMS configuration file, the RenewalNotificationJob module is identified
as jobsScheduler.impl.RenewalNotificationJob.class=com.iplanet.
certsrv.jobs.RenewalNotificationJob.

In the CMS window, the module is identified as RenewalNotificationJob. Figure
2-2 shows how the configurable parameters pertaining to the plug-in module are
displayed in the CMS window.

RenewalNotificationJob Plug-in Module

Chapter 2 Job Plug-in Modules 71

Figure 2-2 Parameters defined in the RenewalNotificationJob module

Table 2-2 gives details about each of these parameters.

Table 2-2 Description of parameters defined in the RenewalNotificationJob module

Parameter Description

enabled Specifies whether the job is enabled or disabled. Check the box to enable the
job. Uncheck the box to disable the job. If you enable the job and set the
remaining parameters correctly, the server runs the job at scheduled intervals.

cron Specifies the cron specification for when this job should be run. In other
words, it specifies the time at which the Job Scheduler daemon thread should
check the certificates for sending renewal notifications.

Permissible values: Must follow the convention specified in “Schedule for
Executing Jobs” on page 80.

Example: 03**1-5

RenewalNotificationJob Plug-in Module

72 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

notifyTriggerOffset Specifies how long (in days) before certificate expiration the first notification
will be sent.

Permissible values: As applicable.

Example: 30

notifyEndOffset Specifies how long (in days) after the certificate expire notifications will
continue to be sent, if the certificate is not renewed.

Permissible values: As applicable.

Example: 30

senderEmail Specifies the sender of the notification messages (who will be notified of any
delivery problems).

Permissible values: The complete email address.

Example: CertCentral@siroe.com

emailSubject Specifies the subject line of the notification message.

Permissible values: An alphanumeric string of up to 255 characters.

Example: Certificate Renewal Notification

emailTemplate Specifies the path, including the filename, to the directory that contains the
template to be used for formulating the message content.

Permissible values: Template file path, including the file name.

Example: C:\iplanet\servers\cert-testCA\emails\renewJob.txt

summary.enabled Specifies whether a summary report of renewal notifications should be
compiled and sent. Check the box if you want the server to compose and send a
summary report. Uncheck the box if you don’t want the server to compose and
send a summary report. If you check the box, be sure to set the remaining
parameters; these are required by the server to send the summary report.

summary.
recipientEmail

Specifies the recipients of the summary message. These can be, for example,
agents who need to know the status of user certificates.

Permissible values: Full email addresses, separated by commas.

Example: ca_agent1@siroe.com,ca_agent2@siroe.com

summary.senderEmail Specifies the sender of the summary message (who will be notified of any
delivery problems).

Permissible values: The full email address.

Example: CAadmin@siroe.com

Table 2-2 Description of parameters defined in the RenewalNotificationJob module (Continued)

Parameter Description

RequestInQJob Plug-in Module

Chapter 2 Job Plug-in Modules 73

RequestInQJob Plug-in Module
In addition to or instead of notifying agents of new requests, you might want to
schedule a job that regularly notifies them of the status of the request queue. Such a
job can check at a configured interval whether there are any deferred enrollment
requests waiting for review. It can then send an email message to agents informing
them of the number of requests waiting in the request queue for which they are
responsible.

The RequestInQJob plug-in module is a schedulable job. When an instance of the
job is enabled, it gets activated at the configured interval and checks the status of
the request queue. If any deferred enrollment requests are waiting in the queue, the
job constructs an email message summarizing its findings and sends it to the
specified agents.

The job constructs the summary message by using a template located in a
configured directory. This directory has the following default location:
<server_root>/cert-<instance_id>/emails

summary.
emailSubject

Specifies the subject line of the summary message.

Permissible values: An alphanumeric string of up to 255 characters.

Example: Certificate Renewal Notification Summary

summary.
itemTemplate

Specifies the path, including the filename, to the directory that contains the
template to be used for formulating the content and format of each item to be
collected for the summary report (see the summary.emailTemplate
parameter below). For details, see “Customizing Notification Messages” on
page 81.

Permissible values: The template file path, including the file name.

Example: C:\iplanet\servers\cert-testCA\emails\
renewJobItem.txt

summary.
emailTemplate

Specifies the path, including the filename, to the directory that contains the
template to be used for formulating the summary report. For details, see
“Customizing Notification Messages” on page 81.

Permissible values: The template file path, including the file name.

Example: C:\iplanet\servers\cert-testCA\emails\
renewJobSummary.txt

Table 2-2 Description of parameters defined in the RenewalNotificationJob module (Continued)

Parameter Description

RequestInQJob Plug-in Module

74 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

You can configure the path and filename of the template file for each job and
modify the templates to customize the contents and appearance of the messages.
Messages can be sent as HTML or plain text.

For each instance of the RequestInQJob class, you can configure the following:

• The subsystem, Certificate Manager or Registration Manager, that should use
this job.

• The schedule of times when the job will be run; see “Schedule for Executing
Jobs” on page 80.

• The sender of the notification messages (who will be notified of any delivery
problems).

• The file location of the notification email template.

• The subject line of the notification message.

• The email addresses of message recipients; these should be subsystem agents
whose task it is to review manual enrollment requests.

Configuration Parameters of RequestInQJob
In the CMS configuration file, the RequestInQJob module is identified as
jobsScheduler.impl.RequestInQJob.class=com.iplanet.certsrv.
jobs.RequestInQJob.

In the CMS window, the module is identified as RequestInQJob. Figure 2-3 shows
how the configurable parameters for the module are displayed in the CMS
window.

RequestInQJob Plug-in Module

Chapter 2 Job Plug-in Modules 75

Figure 2-3 Parameters defined in the RequestInQJob module

Table 2-3 gives details for each of these parameters.

Table 2-3 Description of parameters defined in the RequestInQJob module

Parameter Description

enabled Specifies whether the job is enabled or disabled. Check the box to enable the
job. Uncheck the box to disable the job. If you enable the job and set the
remaining parameters correctly, the server runs the job at scheduled intervals.

cron Specifies the cron specification for when this job should be run. This is the
time at which the Job Scheduler daemon thread checks the queue for pending
requests.

Permissible values: Must follow the convention specified in “Schedule for
Executing Jobs” on page 80.

Example: 00**0

subsystemid Specifies the subsystem that this job is for.

Permissible values: ca or ra.

• ca specifies that the job is for the Certificate Manager.

• ra specifies that the job is for the Registration Manager.

Example: ca

UnpublishExpiredJob Plug-in Module

76 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

UnpublishExpiredJob Plug-in Module
Certificate Management System doesn’t automatically remove expired certificates
from the publishing directory. If you configure a Certificate Manager or
Registration Manager to publish certificates to an LDAP directory, over time the
directory will contain expired certificates. To help you remove expired certificates
from the directory, both the Certificate Manager and Registration Manager come
with a plug-in module that allows you to create a schedulable job that periodically
removes (or unpublishes) certificates that have expired. When the directory has

summary.enabled Specifies whether a summary of the job accomplished should be compiled and
sent. Check the box if you want the server to compose and send a summary
report. Uncheck the box if you don’t want the server to compose and send a
summary report. If you check the box, be sure to set the remaining parameters;
these are required by the server to send the summary report.

summary.
emailSubject

Specifies the subject line of the summary message.

Permissible values: An alphanumeric string of up to 255 characters.

Example: Summary Report of Requests in the Agent Queue

summary.
emailTemplate

Specifies the path, including the filename, to the directory that contains the
template to be used for formulating the summary report. For details, see
“Customizing Notification Messages” on page 81.

Permissible values: The template file path, including the file name.

Example: C:\iplanet\servers\cert-testCA\emails\
reqInQJobSummary.txt

summary.senderEmail Specifies the sender of the notification message (who should be notified of any
delivery problems).

Permissible values: The full email address.

Example: CAadmin@siroe.com

summary.
recipientEmail

Specifies the recipients of the summary message. These should be, for example,
agents who need to process pending requests.

Permissible values: Full email addresses, separated by commas.

Example: ca_agent1@siroe.com,ca_agent2@siroe.com

Table 2-3 Description of parameters defined in the RequestInQJob module (Continued)

Parameter Description

UnpublishExpiredJob Plug-in Module

Chapter 2 Job Plug-in Modules 77

been updated, the job can collect a summary report of the certificates that have
been removed and send it to people who need to have this information. Typically,
you would want to send this notification to certificate issuing agents or the
administrator of the publishing directory.

Th UnpublishExpiredJob plug-in module is a schedulable job. When an instance
of the job is enabled, it gets activated at the configured interval and checks for
certificates that have expired and are still marked as published in the internal
database. The job connects to the publishing directory and deletes these certificates;
it then marks these certificates as unpublished in the internal database. The job also
collects a summary of expired certificates that it deleted and mails the summary to
one or more agents or administrators as specified by the configuration.

The job constructs the summary message by using a template located in a
configured directory. This directory has the following default location:
<server_root>/cert-<instance_id>/emails

You can configure the path and filename of the template file for each job. You can
also modify the templates to customize the contents and appearance of the
messages; see “Customizing Message Templates” on page 83.

Messages can be sent as HTML or plain text.

For each instance of the UnpublishExpiredJob class, you can configure the
following:

• The schedule of times when the job will be run; see “Schedule for Executing
Jobs” on page 80.

• Whether a summary will be compiled and sent.

If a summary is to be sent, you can configure the following:

• The recipients of the summary message. These can be, for example,
administrators who are responsible for the publishing directory.

• The sender of the summary message (who will be notified of any delivery
problems).

• The file location a of the summary message template.

• The file location of content and format of each item to be collected for the
summary.

• The subject line of the summary message.

UnpublishExpiredJob Plug-in Module

78 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Note that the job automates removal of expired certificates from the directory. You
can also remove expired certificates manually following the instructions outlined
in section “Manually Updating Certificates and CRLs in a Directory” in Chapter 19,
“Setting Up LDAP Publishing” of CMS Installation and Setup Guide.

Configuration Parameters of
UnpublishExpiredJob
In the CMS configuration file, the UnpublishExpiredJob module is identified as
jobsScheduler.impl.ExpiredUnpublishJob.class=com.iplanet.
certsrv.jobs.UnpublishExpiredJob.

In the CMS window, the module is identified as UnpublishExpiredJob. Figure 2-4
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 2-4 Parameters defined in the UnpublishExpiredJob module

Table 2-4 gives details for each of these parameters.

UnpublishExpiredJob Plug-in Module

Chapter 2 Job Plug-in Modules 79

Table 2-4 Description of parameters defined in the UnpublishExpiredJob module

Parameter Description

enabled Specifies whether the job is enabled or disabled. Check the box to enable the
job. Uncheck the box to disable the job. If you enable the job and set the
remaining parameters correctly, the server runs the job at scheduled intervals.

cron Specifies the cron specification for when this job should be run. This is the
time at which the Job Scheduler daemon thread checks the certificates for
removing expired certificates from the publishing directory.

Permissible values: Must follow the convention specified in “Schedule for
Executing Jobs” on page 80.

Example: 00**6

summary.enabled Specifies whether a summary of the certificates removed by the job should be
compiled and sent. Check the box if you want the server to compose and send a
summary report. Uncheck the box if you don’t want the server to compose and
send a summary report. If you check the box, be sure to set the remaining
parameters; these are required by the server to send the summary report.

summary.
emailSubject

Specifies the subject line of the summary message.

Permissible values: An alphanumeric string of up to 255 characters.

Example: Expired Certificate Removal Job Summary

summary.
emailTemplate

Specifies the path, including the filename, to the directory that contains the
template to be used for formulating the summary report. For details, see
“Customizing Notification Messages” on page 81.

Permissible values: The template file path, including the file name.

Example: C:\iplanet\servers\cert-testCA\emails\
unpublishCertsJobSummary.html

summary.
itemTemplate

Specifies the path, including the filename, to the directory that contains the
template to be used for formulating the content and format of each item to be
collected for the summary report (see the summary.emailTemplate
parameter above).

Permissible values: The template file path, including the file name.

Example: C:\iplanet\servers\cert-testCA\emails\
unpublishCertsJobItem.txt

summary.senderEmail Specifies the sender of the summary message (who should be notified of any
delivery problems).

Permissible values: The full email address.

Example: CAadmin@siroe.com

UnpublishExpiredJob Plug-in Module

80 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Schedule for Executing Jobs
The Job Scheduler uses a variation of the Unix crontab entry format to specify
dates and times for checking the job queue and executing jobs. As shown in Table
2-5, the time entry format consists of five fields (the sixth field specified for the
Unix crontab is not used by the Job Scheduler). Values are separated by spaces or
tabs.

Each field can contain either a single integer or a pair of integers separated by a
hyphen or dash (-) to indicate an inclusive range. To specify all legal values, a field
can contain an asterisk rather than an integer. Day fields can contain a
comma-separated list of values.

For example, the following time entry specifies every hour at 15 minutes (1:15, 2:15,
3:15 and so on):

15 * * * *

The following example specifies a job execution time of noon on April 12:

0 12 12 4 *

summary.
recipientEmail

Specifies the recipients of the summary message. These can be, for example,
agents who need to know the status of user certificates.

Permissible values: Complete email addresses, separated by commas.

Example: cert_agent1@siroe.com,cert_agent2@siroe.com

Table 2-5 Time format for scheduling jobs

Field Value

Minute 0-59

Hour 0-23

Day of month 1-31

Month of year 1-12

Day of week 0-6 (where 0=Sunday)

Table 2-4 Description of parameters defined in the UnpublishExpiredJob module (Continued)

Parameter Description

Customizing Notification Messages

Chapter 2 Job Plug-in Modules 81

The day-of-month and day-of-week fields can contain a comma-separated list of
values to specify more than one day. If both day fields are specified, the
specification is inclusive; that is, the day of the month is not required to fall on the
day of the week to be valid. For example, the following entry specifies a job
execution time of midnight on the first and fifteenth of every month, and on every
Monday:

0 0 1,15 * 1

To specify one day type without the other, use an asterisk in the other day field. For
example, the following entry specifies a job execution time of 3:15 a.m. on every
weekday morning:

15 3 * * 1-5

Customizing Notification Messages
Summary email messages are constructed using templates located in the emails
directory of a CMS instance. This directory has the following default location:
<server_root>/cert-<instance_id>/emails

Both text an HTML templates are included by default. They are listed in Table 2-6.

Templates for Summary Notifications
Table 2-6 lists the default template files for formulating the notification messages
that summarize jobs that were executed by the Job Scheduler component of a
Certificate Manager or Registration Manager. You can change the name of these
files as applicable; be sure to make the appropriate changes to the configuration.

For summaries, a separate template is used to format the entry for each item in the
summary. The item entries are then added to a table in the summary message.

Tokens, which you can use as variables in the body of the message, are defined for
each templates enabling you to customize the message; the token is replaced by its
current variable value in the constructed message. For details, see “Customizing
Message Templates” on page 83.

Customizing Notification Messages

82 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Note that in the CMS configuration, template files for schedulable jobs are
identified as follows:

jobsScheduler.job.<job_name>.summary.emailTemplate=
<template_file_path>

jobsScheduler.job.<job_name>.summary.itemTemplate=
<template_file_path>

<job_name> specifies the job instance name.

<template_file_path> specifies the path, including the filename, to the
directory that contains the template to be used for formulating the message
content.

Table 2-6 Default templates for summary notifications

Filename Description

Templates for UnpublishExpiredJob module

ExpiredUnpublishJob Template for formulating the summary report or table that summarizes
removal of expired certificates from the directory.

ExpiredUnpublishJobItem Template for formatting the items to be included in the summary table,
which is constructed using the ExpiredUnpublishJob template.

Templates for RequestInQueueJob module

riq1Item.html Template for formatting the items to be included in the summary table,
which is constructed using the riq1Summary.html template.

riq1Summary.html Template for formulating the summary report or table that summarizes
how many requests are pending in the agent queue of a Certificate
Manager or Registration Manager.

Templates for RenewalNotificationJob module

rnJob1.txt Template for formulating the message content to be sent to end entities
to inform them that their certificates are about to expire and that they
should renew their certificates before expiration.

rnJob1Item.txt Template for formatting the items to be included in the summary report,
which is constructed using the rnJob1Summary.txt template.

rnJob1Summary.txt Template for formulating the summary report to be sent to agents and
administrators.

Customizing Notification Messages

Chapter 2 Job Plug-in Modules 83

Customizing Message Templates
You can modify the templates to customize the contents and appearance of
messages. The message body can contain HTML or plain text. In the body of the
message, you can use tokens or keywords as variables. A token is indicated by the
dollar character ($) and is replaced by its current variable value in the constructed
message. Different tokens are available for each job or notification class. These are
listed in “Tokens Available in Message Templates” on page 83.

For example, a certificate-issuance-notification message can make use of tokens as
follows:

CERTIFICATE RENEWAL NOTIFICATION

Your certificate will expire soon:

Serial Number= $SerialNumber
SubjectDN= $SubjectDN
IssuerDN= $IssuerDN
Validity Period= $NotBefore - $NotAfter

To renew your certificate, please follow this URL:

https://$HttpHost:$HttpPort

If you have any questions or problems, please send an email to
cert_central@siroe.com.

Thank you.

Tokens Available in Message Templates
This section explains the tokens provided in the templates used by the default job
plug-in and event-triggered notification modules to formulate notification
messages.

• Tokens for Renewal Notification Messages

• Tokens for Request In Queue Notification Messages

• Tokens for Directory Update Notification Messages

Tokens for Renewal Notification Messages
This section lists the tokens that are available in the message templates for
instances of the RenewalNotificationJob class or plug-in module.

Customizing Notification Messages

84 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Table 2-7 lists the tokens that you can use for formulating this job’s summary
report. You can customize the content and format of the items in the report by
using the tokens defined in Table 2-8.

Table 2-8 lists the tokens for the inner list items.

Table 2-7 Tokens for the renewal-notification job’s summary report

Token Description

$ExecutionTime Specifies the time the job (instance) was run.

$InstanceID Specifies the name of the job instance.

$SummaryItemList Specifies the list of items in the summary notification. Each item
corresponds to a certificate the job detects for renewal.

$SummaryTotalfailure Specifies the total number of items in the summary report that failed.

$SummaryTotalNum Specifies the total number of items (certificates that require to be renewed)
in the summary report.

$SummaryTotalSuccess Specifies how many of the total number of items in the summary report
succeeded.

Table 2-8 Tokens for items in renewal-notification job’s summary report

Token Description

$CertType Specifies the type of certificate—whether SSL client (client), SSL server
(server), Registration Manager’s signing certificate (ra), Certificate Manager’s
CA signing certificate (ca), router certificate (Cisco-router), or other
(other).

$HttpHost Specifies the fully qualified host name of the Certificate Manager or Registration
Manager to which end entities should connect to renew their certificates. (The
token enables you to construct the URL which end entities use to renew their
certificates; see the example in “Customizing Message Templates” on page 83.)

$HttpPort Specifies the port number at which the Certificate Manager or Registration
Manager is listening to certificate-renewal requests from end entities. (The token
enables you to construct the URL which end entities use to renew their
certificates; see the example in “Customizing Message Templates” on page 83.)

$IssuerDN Specifies the distinguished name of the certificate issuer.

$NotAfter Specifies the NotAfter attribute.

$NotBefore Specifies the NotBefore attribute.

Customizing Notification Messages

Chapter 2 Job Plug-in Modules 85

Tokens for Request In Queue Notification Messages
Table 2-9 lists the tokens that you can use for formulating the content of the
RequestInQueueJob job’s summary report.

Tokens for Directory Update Notification Messages
This section lists the tokens that are available in summary message templates for
instances of the UnpublishExpiredJob class or plug-in module.

Table 2-10 lists the tokens that are available for this jobs’s summary report. You can
customize the content and format of the items in the report by using the tokens
defined in Table 2-11.

$RequestorEmail Specifies the requestor’s email address.

$RequestType Specifies the request type—whether it is a certificate enrollment, certificate
renewal, certificate revocation, key archival, or key recovery request.

$SerialNumber Specifies the serial number of the certificate; the serial number will be displayed
as a hexadecimal value in the resulting message.

$Status Specifies whether the operation failed or succeeded.

$SubjectDN Specifies the distinguished name of the certificate subject.

Table 2-9 Tokens for the request-in-queue job’s summary report

Token Description

$InstanceID Specifies the ID assigned to the subsystem that sent this notification.

• If the notification is sent by a Certificate Manager, this will be ca.

• If the notification is sent by a Registration Manager, this will be ra.

$ExecutionTime Specifies the time the job (instance) was run.

$RecipientEmail Specifies the email address of the recipient.

$SenderEmail Specifies the email address of the sender.

$SummaryTotalNum Specifies the total number of items (certificate requests that are pending in the
queue) in the summary report.

Table 2-8 Tokens for items in renewal-notification job’s summary report (Continued)

Token Description

Customizing Notification Messages

86 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Table 2-11 lists the tokens for the inner list items.

Table 2-10 Tokens for the unpublish-expired job’s summary report

Token Description

$InstanceID Specifies the name of the job instance that generated this summary report.

$ExecutionTime Specifies the time the job (instance) was run.

$SummaryItemList Specifies the list of items in the summary notification. Each item
corresponds to a certificate the job detects for removal from the publishing
directory.

$SummaryTotalfailure Specifies the total number of items in the summary report that failed.

$SummaryTotalNum Specifies the total number of items (certificates to be removed from the
directory) in the summary report.

$SummaryTotalSuccess Specifies how many of the total number of items in the summary report
succeeded.

Table 2-11 Tokens for items in the unpublish-expired job’s summary report

Token Description

$CertType Specifies the type of certificate—whether SSL client (client), SSL server
(server), Registration Manager’s signing certificate (ra), Certificate Manager’s
CA signing certificate (ca), router certificate (Cisco-router), or other (other).

$IssuerDN Specifies the distinguished name of the certificate issuer.

$NotAfter Specifies the NotAfter attribute.

$NotBefore Specifies the NotBefore attribute.

$RequestorEmail Specifies the requestor’s email address.

$SerialNumber Specifies the serial number of the certificate; the serial number will be displayed
as a hexadecimal value in the resulting message.

$Status Specifies whether the operation failed or succeeded.

$SubjectDN Specifies the distinguished name of the certificate subject.

87

Chapter 3

Constraints Policy Plug-in Modules

You can configure iPlanet Certificate Management Server (CMS) to apply certain
organizational policies to an end entity’s certificate enrollment, renewal, and
revocation requests before servicing them. For example, some of the policies you
might want Certificate Management System to apply to these requests may include
setting a minimum and maximum limit on validity period and key length of
certificates, setting extensions based on the end entity’s role within an
organization, setting signing algorithms, and so on.

Certificate Management System comes with various policy plug-in modules that
define the formulation of a certificate’s content and govern the server’s certificate
generation and management operations. The modules are categorized, based on
their functionality, into two groups: constraints-specific policy modules and
extension-specific policy modules.

This chapter explains the constraints-specific policy plug-in modules in detail—it
lists and briefly describes the modules that are installed with Certificate
Management System, and then explains each one in detail. For details on
extension-specific modules, see Chapter 4, “Certificate Extension Plug-in
Modules”.

The chapter has the following sections:

• Overview of Constraints-Specific Policy Modules (page 88)

• AttributePresentConstraints Plug-in Module (page 90)

• DSAKeyConstraints Plug-in Module (page 95)

• IssuerConstraints Plug-in Module (page 98)

• KeyAlgorithmConstraints Plug-in Module (page 101)

• RenewalConstraints Plug-in Module (page 103)

• RenewalValidityConstraints Plug-in Module (page 106)

Overview of Constraints-Specific Policy Modules

88 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

• RevocationConstraints Plug-in Module (page 110)

• RSAKeyConstraints Plug-in Module (page 112)

• SigningAlgorithmConstraints Plug-in Module (page 115)

• SubCANameConstraints Plug-in Module (page 118)

• UniqueSubjectNameConstraints Plug-in Module (page 121)

• ValidityConstraints Plug-in Module (page 124)

Overview of Constraints-Specific Policy Modules
Constraints-specific policy plug-in modules help you define rules or constraints
that Certificate Management System uses to evaluate an incoming certificate
enrollment, renewal, or revocation request. Each module enables you to configure
the server to check the request for particular attributes, and, based on the
configured criteria, either modify these attributes or reject the request altogether.

Policy plug-in modules are implemented as Java classes and are registered in the
CMS policy framework. The Policy Plugin Registration tab of the CMS window
(Figure 3-1) lists all the modules that are registered with a CMS instance.

Figure 3-1 CMS window showing policy modules registered with a Certificate Manager

Overview of Constraints-Specific Policy Modules

Chapter 3 Constraints Policy Plug-in Modules 89

Table 3-1 lists constraints-specific policy modules that are installed with a
Certificate Manager. An installation of a Registration Manager also includes all
these modules, expect for the ones noted below:

• IssuerConstraints

• SubCANameConstraints

• UniqueSubjectNameConstraints

Note that the name of the Java class for a policy plug-in module is in this format:

com.iplanet.certsrv.policy.<plugin_name>

where <plugin_name> is the name of a plug-in module. For example, the Java class
for the AttributePresentConstraints module would be:

com.iplanet.certsrv.policy.AttributePresentConstraints

You can use whichever modules you need in order to define policy rules for a
Certificate Manager or Registration Manager. Note that no modules are provided
for the Data Recovery Manager. Both Certificate Manager and Registration
Manager subject a request to policy checking as explained in section “Policy
Processor” in Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide.

Keep in mind that the changes made to a request by a Registration Manager may
be overwritten by a Certificate Manager when it subjects the request to its own
policy checks.

Table 3-1 Default constraints-specific policy plug-in modules

Plug-in module name Function

AttributePresentConstraints Rejects a request if an LDAP attribute is not present in the enrolling
user’s directory entry or if the attribute does not have a specified
value. For details, see “AttributePresentConstraints Plug-in
Module” on page 90.

DSAKeyConstraints Certifies only those DSA keys that have specific key lengths. For
details, see “DSAKeyConstraints Plug-in Module” on page 95.

IssuerConstraints Checks for certificates that have been issued by a particular CA.
For details, see “IssuerConstraints Plug-in Module” on page 98.

KeyAlgorithmConstraints Certifies only those keys that are generated using one of the
permitted algorithms, such as RSA or DSA. For details, see
“KeyAlgorithmConstraints Plug-in Module” on page 101.

RenewalConstraints Allows or rejects requests for renewal of expired certificates. For
details, see “RenewalConstraints Plug-in Module” on page 103.

AttributePresentConstraints Plug-in Module

90 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

AttributePresentConstraints Plug-in Module
The AttributePresentConstraints plug-in module implements the attribute
present constraints policy. The module enables you to configure the Certificate
Manager and Registration Manager to reject a request if an LDAP attribute (for
example, pin) is not present in the enrolling user’s directory entry or if the attribute
does not have a specified value. An example usage is in “Step 3. Enable the
AttributePresentConstraints Policy” in Chapter 15, “Setting Up End-User
Authentication” of CMS Installation and Setup Guide.

Note that many of the parameters defined in the module (see Table 3-2 on page 92)
are specified in the same way as the modules provided for authenticating users
during directory-based enrollment.

RenewalValidityConstraints Enforces the number of days before which a currently active
certificate can be renewed and sets a new validity period for the
renewed certificate. For details, see “RenewalValidityConstraints
Plug-in Module” on page 106.

RevocationConstraints Allows or rejects requests for revocation of expired certificates. For
details, see “RevocationConstraints Plug-in Module” on page 110.

RSAKeyConstraints Certifies only those RSA keys that have specific key lengths. For
details, see “RSAKeyConstraints Plug-in Module” on page 112.

SigningAlgorithmConstraints Specifies the signature algorithm to be used by the CA (a
Certificate Manager) to sign certificates. For details, see
“SigningAlgorithmConstraints Plug-in Module” on page 115.

SubCANameConstraints Checks for issuer name uniqueness and prevents a CA from
issuing a subordinate CA certificate with issuer name same as its
own. For details, see “SubCANameConstraints Plug-in Module”
on page 118.

UniqueSubjectNameConstraints Checks for certificate subject name uniqueness and prevents
issuance of multiple certificates with same subject names. For
details, see “UniqueSubjectNameConstraints Plug-in Module” on
page 121.

ValidityConstraints Checks whether the validity period of a certificate falls within a
specific validity period. For details, see “ValidityConstraints
Plug-in Module” on page 124.

Table 3-1 Default constraints-specific policy plug-in modules (Continued)

Plug-in module name Function

AttributePresentConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 91

If you enable the policy and configure it correctly, it first searches for the user
under the base specified in the ldap.ldapconn.basedn parameter with the filter
(uid=HTTP_PARAMS.UID) for the user’s entry.

• If the value parameter is empty, the policy checks the attribute parameter:

❍ If the attribute named in the attribute parameter is present in the
request, the policy accepts the request.

❍ If the attribute named in the attribute parameter is not present in the
request, the policy rejects the request.

• If the value parameter is not empty, the policy checks its value with the value
of the attribute specified in the attribute parameter.

❍ If the attribute named in the attribute parameter has the specified value,
the policy accepts the request.

❍ If the attribute named in the attribute parameter does not have the
specified value, the policy rejects the request.

In the case of multi-valued attributes, the request will be accepted if any of the
values matches the specified value; comparisons are case sensitive.

Unlike some of the other policy modules, Certificate Management System does not
create an instance of the attribute present constraints policy during installation. If
you want to create an instance of the AttributePresentConstraints module, see
section “Step 4. Add New Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Configuration Parameters of
AttributePresentConstraints
In the CMS configuration file, the AttributePresentConstraints module is
identified as <subsystem>.Policy.impl.AttributePresentConstraints.
class=com.iplanet.certsrv.policy.AttributePresentConstraints, where
<subsystem> is ca or ra (prefix identifying the subsystem).

In the CMS window, the module is identified as AttributePresentConstraints.
Figure 3-2 shows how configurable parameters for the module are displayed in the
CMS window.

AttributePresentConstraints Plug-in Module

92 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 3-2 Parameters of the AttributePresentConstraints module

The configuration shown in Figure 3-2 creates a policy rule named
PinCheckForClientCerts, which enforces a rule that the server should check for
users PINs in the specified LDAP directory.

Table 3-2 describes each of the parameters.

Table 3-2 Description of parameters defined in the AttributePresentConstraints module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server
applies the rule to certificates specified by the predicate expression.

• If you disable the rule, the server does not apply the rule to certificates.

AttributePresentConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 93

predicate Specifies the predicate expression for this rule. If you want the rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

ldap.ldapconn.
host

Specifies the host name of the LDAP directory to connect to.

Permissible values: The name must be fully-qualified host name in the
<machine_name>.<your_domain>.<domain> form.

Example: corpDirectory.siroe.com

ldap.ldapconn.
port

Specifies the TCP/IP port at which the LDAP directory listens to requests from
Certificate Management System.

Permissible values: Any valid port number. The default is 389; use 636 if the directory
is configured for SSL-enabled communication.

Example: 389

ldap.ldapconn.
secureConn

Specifies the type—SSL or non-SSL—of the port at which the LDAP directory listens
to requests from Certificate Management System.

• Check the box if the port is an SSL (HTTPS) port. If your directory is configured
for SSL-enabled communication (with or without SSL client authentication),
choose this option.

• Leave the box unchecked if the port is a non-SSL (HTTP) port. If your directory is
configured for basic authentication, choose this option (default).

ldap.ldapconn.
version

Specifies the LDAP protocol version.

Permissible values: 2 or 3.

• 2 specifies LDAP version 2. If your directory is based on Netscape Directory
Server 1.x, choose 2.

• 3 specifies LDAP version 3. For Directory Server versions 3.x and later, choose 3
(default).

Example: 3

ldap.ldapauth.
bindDN

Specifies the user entry to bind as for checking the attribute in the LDAP directory.

Permissible values: A valid bind DN.

Example: CN=pinmanager

password Specifies the password associated with the DN specified by the
ldap.ldapauthbindDN parameter.

Table 3-2 Description of parameters defined in the AttributePresentConstraints module (Continued)

Parameter Description

AttributePresentConstraints Plug-in Module

94 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

ldap.ldapauth.
clientCertNick
name

Specifies the nickname or the friendly name of the certificate to be used for SSL client
authentication to the LDAP directory in order to check attributes. Make sure that the
certificate is valid and has been signed by a CA that is trusted in the directory’s
certificate database, and that the directory’s certmap.conf file has been configured
to correctly map the certificate to a DN in the directory. (This is needed for PIN
removal only.)

Permissible values: Enter the name of a currently valid CMS certificate, for example,
its SSL server certificate.

Example: Server-Cert

ldap.ldapauth.
authtype

Specifies how to bind to the directory or the authentication type—basic
authentication or SSL client authentication—required in order to check attributes in
the LDAP directory.

Permissible values: BasicAuth or SslClientAuth.

• BasicAuth specifies basic authentication (default). If you choose this option, be
sure to enter the correct values for ldap.ldapauth.bindDN and password
parameters; the plug-in uses the DN from the ldap.ldapauth.bindDN attribute
to bind to the directory.

• SslClientAuth specifies SSL client authentication. If you choose this option, be
sure to select the ldap.ldapconn.secureConn parameter and set the value of
the ldap.ldapauth.clientCertNickname parameter to the nickname of the
certificate to be used for SSL client authentication.

Example: BasicAuth

ldap.ldapconn.
basedn

Specifies the base DN for searching the LDAP directory—the plug-in uses the value
of the uid field from the HTTP input (what a user enters in the enrollment from) and
the base DN to construct an LDAP search filter.

Permissible values: Any valid DN string of up to 255 characters. (If your user’s DN is
uid=jdoe, o=company, you might want to use o=company here.)

Example: O=siroe.com

ldap.ldapconn.
minConns

Specifies the minimum number of connections permitted (or to keep open) to the
LDAP directory.

Permissible values: 1 to 3; the default value is 1.

Example: 3

Table 3-2 Description of parameters defined in the AttributePresentConstraints module (Continued)

Parameter Description

DSAKeyConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 95

DSAKeyConstraints Plug-in Module
The DSAKeyConstraints plug-in module implements the DSA key constraints
policy. This policy imposes constraints on the following:

• The minimum and maximum sizes for keys

• The sizes of exponents

The policy restricts the key size to one of the sizes, such as 512 or 1024, supported
by Certificate Management System.

You may apply this policy to end-entity certificate enrollment and renewal
requests. For example, if you want your CA to certify public keys up to 512 bits in
length for end users and 1024 for servers, you can configure Certificate
Management System to do so using the policy.

During installation, Certificate Management System automatically creates an
instance of the DSA key constraints policy. See “DSAKeyRule Rule” on page 98.

ldap.ldapconn.
maxConns

Specifies the maximum number of connections permitted to the LDAP directory;
when needed, connection pool can grow to this many (multiplexed) connections.

Permissible values: 3 to 10; the default value is 5.

Example: 9

attribute Specifies the LDAP attribute, the presence of which is to be checked in the
certificate-enrollment request.

Permissible values: Valid directory attributes, separated by commas; the default
value is pin.

Example: pin

value If this parameter is non-empty, the attribute value must match this value for the
request to proceed to the next stage.

Table 3-2 Description of parameters defined in the AttributePresentConstraints module (Continued)

Parameter Description

DSAKeyConstraints Plug-in Module

96 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Configuration Parameters of
DSAKeyConstraints
In the CMS configuration file, the DSAKeyConstraints module is identified as
<subsystem>.Policy.impl.DSAKeyConstraints.class=
com.iplanet.certsrv.policy.DSAKeyConstraints, where <subsystem> is ca or
ra (prefix identifying the subsystem).

In the CMS window, the module is identified as DSAKeyConstraints. Figure 3-3
shows how configurable parameters for the module are displayed in the CMS
window.

Figure 3-3 Parameters of the DSAKeyConstraints module

The configuration shown in Figure 3-3 creates a policy rule named
DSAKeySizeForClientCert, which enforces a rule that the server should restrict
the minimum and maximum key sizes for all DSA key-based client certificates to
512 and 1024, respectively.

Table 3-3 describes each of the parameters.

DSAKeyConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 97

Table 3-3 Description of parameters defined in the DSAKeyConstraints module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server
applies the rule to certificates specified by the predicate expression.

• If you disable the rule, the server does not apply the rule to certificates.

predicate Specifies the predicate expression for this rule. If you want the rule to be applied to all
certificate requests, leave the field blank (default). To form a predicate expression, see
section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

minSize Specifies the minimum length, in bits, for the key (the length of the modulus in bits).
The value must be smaller than or equal to the one specified by the maxSize
parameter.

In general, a longer key size results in a key pair that is more difficult to crack. You
may want to enforce a minimum length to ensure a minimum level of security.

Permissible values: 512 or 1024. You may also enter a custom key size that is
between 512 and 1024, in increments of 64 bits. The default value is 512.

Example: 512

maxSize Specifies the maximum length, in bits, for the key.

Permissible values: 512 or 1024. You may also enter a custom key size that is
between 512 and 1024, in increments of 64 bits. The default value is 1024.

Example: 1024

exponents Limits the possible public exponent values. Use commas to separate different values.

Some exponents are more widely used than others. The following exponent values
are recommended for arithmetic and security reasons: 17 and 65537. Of these two
values, 65537 is preferred. (This setting is mainly an issue if you are using your own
software for generating key pairs. Key-generation programs in Netscape clients and
servers use 3 or 65537.)

Permissible values: A combination of 3, 7, 17, and 65537, separated by commas. The
default value is 3,7,17,65537.

Example: 17,65537

IssuerConstraints Plug-in Module

98 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

DSAKeyRule Rule
The rule named DSAKeyRule is an instance of the DSAKeyConstraints module.
Certificate Management System automatically creates this rule during installation.
By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression is left blank so that the rule is applied to all certificate
enrollment and renewal requests processed by the server.

• The minimum key size permitted for certificates is 512 bits (minSize=512).

• The maximum key size permitted for certificates is 1024 bits (maxSize=1024).

• The exponents allowed are 3, 7, 17, and 65537 (exponents=3,7,17,65537).

For details on individual parameters defined in the rule, see Table 3-3 on page 97.
You need to review this rule and make the changes appropriate for your PKI setup.
For instructions, see section “Step 2. Modify Existing Policy Rules” in Chapter 18,
“Setting Up Policies” of CMS Installation and Setup Guide. For instructions on
adding additional instances, see section “Step 4. Add New Policy Rules” in the
same chapter.

IssuerConstraints Plug-in Module
The IssuerConstraints plug-in module implements the issuer constraints policy.
The policy enables you to effectively deploy certificate-based enrollment explained
in “Certificate-Based Enrollment” on page 53.

The policy enables the Certificate Manager to authenticate an end user by checking
the issuer DN of the CA that has issued the certificate the user presents as an
enrollment token during enrollment. Note that in the current implementation, the
CA that issues the new certificates must be the same as the one that has issued the
certificates used for SSL client authentication; that is, the issuer DN in the
authentication certificate must match the issuer DN specified in the policy
configuration.

During installation, Certificate Management System automatically creates an
instance of the issuer constraints policy. See “IssuerRule Rule” on page 100. The
server also provides appropriate enrollment forms for the three certificate-based
enrollment scenarios explained above; see “Enrollment Forms” on page 57.

IssuerConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 99

Configuration Parameters of IssuerConstraints
In the CMS configuration file, the IssuerConstraints module is identified as
ca.Policy.impl.IssuerConstraints.class=com.iplanet.certsrv.
policy.IssuerConstraints.

In the CMS window, the module is identified as IssuerConstraints. Figure 3-4
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 3-4 Parameters of the IssuerConstraints module

The configuration shown in Figure 3-4 creates a policy rule named
IssuerNameCheckInCert, which enforces a rule that the server should check for
certificates issued by a CA, whose issuer DN is CN=bulkGenCA,OU=Information
Systems,O=Siroe Corp,C=US.

Table 3-4 describes each parameter.

IssuerConstraints Plug-in Module

100 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

IssuerRule Rule
The rule named IssuerRule is an instance of the IssuerConstraints module.
Certificate Management System automatically creates this rule during installation.
By default, the rule is configured as follows:

• The rule is disabled; for the rule to be effective, it must be enabled and
configured appropriately.

• The predicate expression is set (predicate=HTTP_PARAMS.certType==client
AND certauthEnroll==on) so that the rule is applied to only those
client-certificate requests that have certificate-based authentication turned on.

• The issuer DN field is left blank for you to enter the appropriate information.

Table 3-4 Description of parameters defined in the IssuerConstraints module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server
checks for certificates issued by the specified CA and enforces certificate-based
enrollment.

• If you disable the rule, the server does not check for certificates issued by a CA; it
ignores the values specified in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want the rule to be applied to all
certificate requests, leave the field blank (default). To form a predicate expression, see
section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client AND certauthEnroll==on

issuerDN Specifies the name of the CA that has issued certificates that are to be checked. You
should enter the issuer name as it appears in the CA’s signing certificate; the same
name also appears as the issuer name in certificates the CA signs.

Permissible values: A valid issuer name.

Example: CN=bulkGenCA,OU=Information Systems,O=Siroe Corp,C=US

KeyAlgorithmConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 101

For details on individual parameters defined in the rule, see Table 3-4 on page 100.
You need to review this rule and make the changes appropriate for your PKI setup.
For instructions, see section “Step 2. Modify Existing Policy Rules” in Chapter 18,
“Setting Up Policies” of CMS Installation and Setup Guide . For instructions on
adding additional instances, see section “Step 4. Add New Policy Rules” in the
same chapter.

KeyAlgorithmConstraints Plug-in Module
The KeyAlgorithmConstraints plug-in module implements the key algorithm
constraints policy. This policy restricts the key algorithm requested in certificates
to the algorithms, such as RSA and DSA, supported by Certificate Management
System. In other words, this policy allows you to set restrictions on the types of
public keys certified by Certificate Management System.

You may apply this policy to end-entity certificate enrollment and renewal
requests. For example, if you want your CA to certify only those public keys that
comply with the PKCS-1 RSA Encryption Standard, you can configure the server
for that using the policy.

During installation, Certificate Management System automatically creates an
instance of the key algorithm constraints policy. See “KeyAlgRule Rule” on
page 103.

Configuration Parameters of
KeyAlgorithmConstraints
In the CMS configuration file, the KeyAlgorithmConstraints module is identified
as <subsystem>.Policy.impl.KeyAlgorithmConstraints.class=
com. iplanet.certsrv.policy.KeyAlgorithmConstraints, where
<subsystem> is ca or ra (prefix identifying the subsystem).

In the CMS window, the module is identified as KeyAlgorithmConstraints.
Figure 3-5 shows how the configurable parameters for the module are displayed in
the CMS window.

KeyAlgorithmConstraints Plug-in Module

102 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 3-5 Parameters of the KeyAlgorithmConstraints module

The configuration shown in Figure 3-5 creates a policy rule named
KeyAlgForClientServerCert, which enforces a rule that the server should restrict
the key algorithm of all client and server certificates to RSA.

Table 3-5 gives details about each of the parameters.

Table 3-5 Description of parameters defined in the KeyAlgorithmConstraints module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server sets
the configured algorithm in certificates specified by the predicate parameter.

• If you disable the rule, the server sets the algorithm specified in the certificate
request.

predicate Specifies the predicate expression for this rule. If you want the rule to be applied to all
certificate requests, leave the field blank (default). To form a predicate expression, see
section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client AND
HTTP_PARAMS.certType==server

RenewalConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 103

KeyAlgRule Rule
The rule named KeyAlgRule is an instance of the KeyAlgorithmConstraints
module. Certificate Management System automatically creates this rule during
installation. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression is left blank so that the rule is applied to all certificate
enrollment and renewal requests processed by the server.

• The key type allowed is RSA (algorithms=RSA).

For details on individual parameters defined in the rule, see Table 3-5 on page 102.
You need to review this rule and make the changes appropriate for your PKI setup.
For instructions, see section F“Step 2. Modify Existing Policy Rules” in Chapter 18,
“Setting Up Policies” of CMS Installation and Setup Guide . For instructions on
adding additional instances, see section “Step 4. Add New Policy Rules” in the
same chapter.

RenewalConstraints Plug-in Module
The RenewalConstraints plug-in module implements the renewal constraints
policy. This policy imposes constraints on renewal of expired certificates—it allows
or restricts the server from renewing expired certificates. You may apply this
policy to end-entity certificate renewal requests. For example, if you don’t want to
allow renewal of expired certificates, you can configure the server accordingly
using the policy.

In certain situations you may want to allow renewal of expired certificates. Here’s
one such scenario: the renewal validity constraints policy (see
“RenewalValidityConstraints Plug-in Module” on page 106) allows you to delay
renewal of certificates as long as possible to reduce the overhead of processing new
certificate requests. Typically, you would limit the renewal process to the last few

algorithms Specifies the key type the server should certify. The default is RSA.

Permissible values: RSA, DSA, or RSA,DSA.

Example: RSA

Table 3-5 Description of parameters defined in the KeyAlgorithmConstraints module (Continued)

Parameter Description

RenewalConstraints Plug-in Module

104 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

weeks of validity of the certificate. However, if the interval specified in the policy
rule is not sufficient for renewal to occur, some of your users may not be able to
renew their certificates prior to the expiration time and end up owning expired
certificates.

Note that the policy also allows you to specify how long after the expiration of a
certificate can it be renewed. If you don’t specify this, the server will renew all
expired certificates that are submitted for renewal.

During installation, Certificate Management System automatically creates an
instance of the renewal constraints policy. See “RenewalConstraintsRule Rule” on
page 105.

Configuration Parameters of
RenewalConstraints
In the CMS configuration file, the RenewalConstraints module is identified as
<subsystem>.Policy.impl.RenewalConstraints.class=
com.iplanet.certsrv.policy.RenewalConstraints, where <subsystem> is ca
or ra (prefix identifying the subsystem).

In the CMS window, the module is identified as RenewalConstraints. Figure 3-6
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 3-6 Parameters of the RenewalConstraints module

RenewalConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 105

The configuration shown in Figure 3-6 creates a policy rule named
RenewExpiredClientCert, which specifies that the server should allow renewal of
expired client certificates, if it’s done within 30 days from the expiry date.

Table 3-6 gives details about each of the parameters.

RenewalConstraintsRule Rule
The rule named RenewalConstraintsRule is an instance of the
RenewalConstraints module. Certificate Management System automatically
creates this rule during installation. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression is left blank so that the policy is applied to all
certificate renewal requests processed by the server.

Table 3-6 Description of parameters defined in the RenewalConstraints module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server
verifies the validity period of the certificate being renewed, checks the value
assigned to the allowExpiredCerts parameter, and accordingly allows or
denies the renewal request.

• If you disable the rule, the server does not verify the validity period of the
certificate being renewed; it simply renews the certificate.

predicate Specifies the predicate expression for this rule. If you want the rule to be applied
to all certificate requests, leave the field blank (default). To form a predicate
expression, see section “Using Predicates in Policy Rules” in Chapter 18, “Setting
Up Policies” of CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

allowExpiredCerts Specifies whether to allow or prevent renewal of expired certificates. Check the
box if you want the server to renew expired certificates (default). Uncheck the
box if you don’t want the server to renew expired certificates.

renewalNotAfter Specifies how long, in days, after the expiration of a certificate can it be renewed.
The default value is 30 days. If you leave the field blank, the server will renew all
expired certificates that are submitted for renewal.

Example: 15

RenewalValidityConstraints Plug-in Module

106 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

• The server allows renewal of expired certificates within 30 days, starting from
the date they expire.

For details on individual parameters defined in the rule, see Table 3-6 on page 105.
You need to review this rule and make the changes appropriate for your PKI setup.
For instructions, see section “Step 2. Modify Existing Policy Rules” in Chapter 18,
“Setting Up Policies” of CMS Installation and Setup Guide. For instructions on
adding additional instances, see section “Step 4. Add New Policy Rules” in the
same chapter.

RenewalValidityConstraints Plug-in Module
The RenewalValidityConstraints plug-in module implements the renewal
validity constraints policy. This policy governs the formulation of content in the
renewed certificate based on the currently issued certificate.

Every certificate issued by Certificate Management System is valid for a limited
duration, which is determined by the validity period specified in the validity
constraints policy (see “ValidityConstraints Plug-in Module” on page 124) at the
time the certificate is issued. In order to continue to participate in the PKI-using
system beyond this validity period, the entity owning the certificate must renew
the certificate; the new certificate generally contains a new validity time period and
some updated attributes.

To eliminate administrative overhead of monitoring certificate validity periods and
reminding users to renew their certificates, Certificate Management System
provides a schedulable job that can detect any to-be-expired certificates and
automatically remind users to renew their certificates. For details about this job, see
“RenewalNotificationJob Plug-in Module” on page 69.

The renewal validity constraints policy enables you to enforce certain restrictions
on certificate-renewal requests, when end entities attempt to renew their
certificates. You can specify restrictions on the following:

• The number of days before expiration that end entities can renew their
currently active or valid certificates. For example, if you want to prevent end
entities from renewing their certificates any earlier than 15 days before
expiration, you can configure the server accordingly using the policy.

• The validity period of the renewed certificate. For example, if you want the
validity period of all renewed certificates to be a minimum of 180 days, you
can configure the server accordingly using the policy. Note that the renewal
period starts from the ending period in the certificate presented for renewal.

RenewalValidityConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 107

Note that you may apply this policy to certificate renewal requests only, and the
renewal process to which this policy is applied can be manual (a request needs to
be approved by an agent) or automated. In both cases, the currently issued
certificate must be either presented during SSL client authentication by the end
entity or selected by the agent approving the renewal request.

By default, any validity requested in a certificate-renewal request cannot exceed
beyond that of the expiration time specified in the CA’s signing certificate (see
section “CA Signing Key Pair Certificate” in Chapter 14, “Managing CMS Keys and
Certificates” of CMS Installation and Setup Guide). If the Certificate Manager (CA)
finds a request with validity period extending beyond that of its CA signing
certificate, it automatically truncates the validity period to end on the day the CA
signing certificate expires. For example, if the CA signing certificate expires on
June 10, 2004, any renewal request with validity period beyond June 10, 2004 will
have validity period truncated to end on June 10, 2004.

However, you can configure the Certificate Manager to renew certificates with
validity periods beyond that of its CA signing certificate by selecting the “Override
validity nesting requirement” option; see section F“Step 6. Enable End-Entity
Interaction” in Chapter 15, “Setting Up End-User Authentication” of CMS
Installation and Setup Guide.

During installation, Certificate Management System automatically creates an
instance of the renewal validity constraints policy. See
“DefaultRenewalValidityRule Rule” on page 109.

Configuration Parameters of
RenewalValidityConstraints
In the CMS configuration file, the RenewalValidityConstraints module is
identified as <subsystem>.Policy.impl.RenewalValidityConstraints.class=
com.iplanet.certsrv.policy.RenewalValidityConstraints, where
<subsystem> is ca or ra (prefix identifying the subsystem).

In the CMS window, the module is identified as RenewalValidityConstraints.
Figure 3-7 shows how the configurable parameters for the module are displayed in
the CMS window.

RenewalValidityConstraints Plug-in Module

108 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 3-7 Parameters of the RenewalValidityConstraints module

The configuration shown in Figure 3-7 creates a policy rule named
RenewalRuleForClientCert, which enforces a rule that the server should renew
only those client certificates that are due to expire within the next 15 days. The
renewed certificates are valid for at least 60 days (two months) and require
renewing after 180 days (six months).

Table 3-7 gives details about each of the parameters.

Table 3-7 Description of parameters defined in the RenewalValidityConstraints module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server sets
the configured validity period in renewed certificates specified by the
predicate parameter.

• If you disable the rule, the server sets the validity period as specified in the
renewal request.

predicate Specifies the predicate expression for this rule. If you want the rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate
expression, see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up
Policies” of CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

RenewalValidityConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 109

DefaultRenewalValidityRule Rule
The rule named DefaultRenewalValidityRule is an instance of the
RenewalValidityConstraints module. Certificate Management System
automatically creates this rule during installation. By default, the rule is configured
as follows:

• The rule is enabled.

• The predicate expression is left blank so that the policy is applied to all
certificate renewal requests processed by the server.

• The minimum validity period permitted for renewed certificates is 30 days
(minValidity=30).

• The maximum validity period permitted for renewed certificates is 365 days
(maxValidity=365).

• The number of days before expiration that end entities can renew their
currently valid certificates is 15 (renewalInterval=15).

For details on individual parameters defined in the rule, see Table 3-7 on page 108.
You need to review this rule and make the changes appropriate for your PKI setup.
For instructions, see section “Step 2. Modify Existing Policy Rules” in Chapter 18,
“Setting Up Policies” of CMS Installation and Setup Guide. For instructions on
adding additional instances, see section “Step 4. Add New Policy Rules” in the
same chapter.

minValidity Specifies the minimum validity period, in days, for renewed certificates.

Permissible values: As applicable. The default value is 180 days.

Example: 60

maxValidity Specifies the maximum validity period, in days, for renewed certificates.

Permissible values: As applicable. The default value is 730 days.

Example: 180

renewalInterval Specifies how many days before its expiration that a certificate can be renewed.

Permissible values: As applicable. The default value is 15 days.

Example: 15

Table 3-7 Description of parameters defined in the RenewalValidityConstraints module (Continued)

Parameter Description

RevocationConstraints Plug-in Module

110 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

RevocationConstraints Plug-in Module
The RevocationConstraints plug-in module implements the revocation
constraints policy. This policy imposes constraints on revocation of expired
certificates—it allows or restricts the server from revoking expired certificates. You
may apply this policy to end-entity certificate revocation requests. For example, if
you don’t want to allow revocation of expired certificates in your PKI setup, you
can configure the server accordingly using the policy.

During installation, Certificate Management System automatically creates an
instance of the revocation constraints policy. See “Configuration Parameters of
RevocationConstraints” on page 110.

Configuration Parameters of
RevocationConstraints
In the CMS configuration file, the RevocationConstraints module is identified as
<subsystem>.Policy.impl.RevocationConstraints.class=
com.iplanet.certsrv.policy.RevocationConstraints, where <subsystem> is
ca or ra (prefix identifying the subsystem).

In the CMS window, the module is identified as RevocationConstraints. Figure
3-8 shows how the configurable parameters for the module are displayed in the
CMS window.

Figure 3-8 Parameters of the RevocationConstraints module

RevocationConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 111

The configuration shown in Figure 3-8 creates a policy rule named
RevokeExpiredClientCert, which specifies that the server should allow
revocation of expired client certificates.

Table 3-8 gives details about each of the parameters.

RevocationConstraintsRule Rule
The rule named RevocationConstraintsRule is an instance of the
RevocationConstraints module. Certificate Management System automatically
creates this rule during installation. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression is left blank so that the policy is applied to all
certificate revocation requests processed by the server.

• The server allows revocation of expired certificates.

Table 3-8 Description of parameters defined in the RevocationConstraints module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server
verifies the validity period of the certificate being revoked, checks the value
assigned to the allowExpiredCerts parameter, and accordingly allows or
denies the revocation request.

• If you disable the rule, the server does not verify the validity period of the
certificate being revoked; it simply revokes the certificate.

predicate Specifies the predicate expression for this rule. If you want the rule to be applied
to all certificate requests, leave the field blank (default). To form a predicate
expression, see section “Using Predicates in Policy Rules” in Chapter 18, “Setting
Up Policies” of CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

allowExpiredCerts Specifies whether to allow or prevent revocation of expired certificates. Check the
box if you want the server to revoke expired certificates (default). Uncheck the
box if you don’t want the server to revoke expired certificates.

RSAKeyConstraints Plug-in Module

112 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

For details on individual parameters defined in the rule, see Table 3-8 on page 111.
You need to review this rule and make the changes appropriate for your PKI setup.
For instructions, see section “Step 2. Modify Existing Policy Rules” in Chapter 18,
“Setting Up Policies” of CMS Installation and Setup Guide. For instructions on
adding additional instances, see section “Step 4. Add New Policy Rules” in the
same chapter.

RSAKeyConstraints Plug-in Module
The RSAKeyConstraints plug-in module implements the RSA key constraints
policy. This policy imposes constraints on the following:

• The minimum and maximum sizes for keys

• The exponent sizes

The policy restricts the key size to one of the sizes supported by Certificate
Management System—512, 1024, 2048, or 4096. In other words, the policy allows
you to set up restrictions on the lengths of public keys certified by Certificate
Management System.

You may apply this policy to end-entity certificate enrollment and renewal
requests. For example, if you want your CA to certify public keys up to 1024 bits in
length for end users, you can configure the server accordingly using the policy.

During installation, Certificate Management System automatically creates an
instance of the RSA key constraints policy. See “RSAKeyRule Rule” on page 114.

Configuration Parameters of
RSAKeyConstraints
In the CMS configuration file, the RSAKeyConstraints module is identified as
<subsystem>.Policy.impl.RSAKeyConstraints.class=
com.iplanet.certsrv.policy.RSAKeyConstraints, where <subsystem> is ca or
ra (prefix identifying the subsystem).

In the CMS window, the module is identified as RSAKeyConstraints. Figure 3-9
shows how the configurable parameters for the module are displayed in the CMS
window.

RSAKeyConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 113

Figure 3-9 Parameters of the RSAKeyConstraints module

The configuration shown in Figure 3-9 creates a policy rule named
RSAKeySizeForClientCert, which enforces a rule that the server should restrict
the minimum and maximum key sizes for all RSA key-based client certificates to
512 and 2048, respectively.

Table 3-9 describes each parameter.

Table 3-9 Description of parameters defined in the RSAKeyConstraints module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server uses
the configured RSA key rules when issuing certificates specified by the
predicate parameter.

• If you disable the rule, the server certifies the requested key size.

predicate Specifies the predicate expression for this rule. If you want the rule to be applied to all
certificate requests, leave the field blank (default). To form a predicate expression, see
section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide .

Example: HTTP_PARAMS.certType==client

RSAKeyConstraints Plug-in Module

114 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

RSAKeyRule Rule
The rule named RSAKeyRule is an instance of the RSAKeyConstraints module.
Certificate Management System automatically creates this rule during installation.
By default, the rule is configured as follows:

• The rule is disabled; for the rule to be effective, it must be enabled and
configured appropriately.

• The predicate expression is left blank so that the rule is applied to all certificate
enrollment and renewal requests processed by the server.

• The minimum key size permitted for certificates is 512 bits (minSize=512).

minSize Specifies the minimum length, in bits, for the key (the length of the modulus in bits).
The value must be smaller than or equal to the one specified by the maxSize
parameter.

In general, a longer key size results in a key pair that is more difficult to crack. You
may want to allow a minimum length to ensure a minimum level of security.

Permissible values: 512, 1024, 2048, or 4096. You may also enter a custom key size
that is between 512 and 4096 bits. The default value is 512.

Example: 512

maxSize Specifies the maximum length, in bits, for the key.

Permissible values: 512, 1024, 2048, or 4096. You may also enter a custom key size
that is between 512 and 4096 bits. The default value is 2048.

Example: 1024

exponents Limits the possible public exponent values. Use commas to separate different values.

Some exponents are more widely used than others. The following exponent values
are recommended for arithmetic and security reasons: 17 and 65537. Of these two
values, 65537 is preferred. (This setting is mainly an issue if you are using your own
software for generating key pairs. Key-generation programs in Netscape clients and
servers use 3 or 65537.)

Permissible values: A combination of 3, 7, 17, and 65537, separated by commas. The
default value is 3,7,17,65537.

Example: 17,65537

Table 3-9 Description of parameters defined in the RSAKeyConstraints module (Continued)

Parameter Description

SigningAlgorithmConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 115

• The maximum key size permitted for certificates is 2048 bits (maxSize=2048).

• The exponents allowed are 3, 7, 17, and 65537 (exponents=3,7,17,65537).

For details on individual parameters defined in the rule, see Table 3-9 on page 113.
You need to review this rule and make the changes appropriate for your PKI setup.
For instructions, see section “Step 2. Modify Existing Policy Rules” in Chapter 18,
“Setting Up Policies” of CMS Installation and Setup Guide. For instructions on
adding additional instances, see section “Step 4. Add New Policy Rules” in the
same chapter.

SigningAlgorithmConstraints Plug-in Module
The SigningAlgorithmConstraints plug-in module implements the signing
algorithm constraints policy. This policy restricts the requested signing algorithm
to be one of the algorithms supported by Certificate Management System: MD2
with RSA, MD5 with RSA, and SHA-1 with RSA, if the Certificate Manager’s
signing key is RSA and SHA-1 with DSA, if the Certificate Manager’s signing key is
DSA.

When a Certificate Manager digitally signs a message, it generates a compressed
version of the message called a message digest. Some of the algorithms used to
produce this digest include MD5 and SHA-1 (Secure Hash Algorithm).

• MD5 generates a 128-bit message digest. Most existing software applications
that handle certificates only support MD5.

• SHA-1 generates a 160-bit message digest. Some software applications do not
yet support the SHA-1 algorithm. For example, Netscape Navigator 3.0 (or
higher) and Enterprise Server 2.01 (or higher) support SHA-1; previous
versions of these applications do not support SHA-1.

You may apply this policy to end-entity certificate enrollment and renewal
requests.

During installation, Certificate Management System automatically creates an
instance of the signing algorithm constraints policy. See “SigningAlgRule Rule” on
page 118.

SigningAlgorithmConstraints Plug-in Module

116 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Configuration Parameters of
SigningAlgorithmConstraints
In the CMS configuration file, the SigningAlgorithmConstraints module is
identified as <subsystem>.Policy.impl.SigningAlgorithmConstraints.class
=com.iplanet.certsrv.policy.SigningAlgorithmConstraints, where
<subsystem> is ca or ra (prefix identifying the subsystem).

In the CMS window, the module is identified as SigningAlgorithmConstraints.
Figure 3-10 shows how the configurable parameters for the module are displayed
in the CMS window.

Figure 3-10 Parameters of the SigningAlgorithmConstraints module

The configuration shown in Figure 3-10 creates a policy rule named
SigningAlgForClientCert, which enforces a rule that the server should use MD5
with RSA signature algorithm to sign all client certificates.

Table 3-10 provides details for each of these parameters.

SigningAlgorithmConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 117

Table 3-10 Description of parameters defined in the SigningAlgorithmConstraints module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server uses
the configured algorithms to sign certificates specified by the predicate
parameter.

• If you disable the rule, the server uses the default algorithm specified for the
Certificate Manager; see Certificate Manager’s “General Settings” tab in the CMS
window.

predicate Specifies the predicate expression for this rule. If you want the rule to be applied to all
certificate requests, leave the field blank (default). To form a predicate expression, see
section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide .

Example: HTTP_PARAMS.certType==client

algorithms Specifies the signature algorithm the server should use to sign certificates.

Permissible values: Depends on the CA’s signing key type (the key type you chose for
the Certificate Manager’s CA signing certificate).

• If the key type is RSA, select one of the following:
- MD2withRSA,MD5withRSA,SHA1withRSA
- MD2withRSA,MD5withRSA
- MD2withRSA,SHA1withRSA
- MD5withRSA,SHA1withRSA
- MD2withRSA
- MD5withRSA
- SHA1withRSA
The default value is MD2withRSA,MD5withRSA,SHA1withRSA.

• If the key type is DSA, select SHA1withDSA.

Example: MD5withRSA

SubCANameConstraints Plug-in Module

118 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

SigningAlgRule Rule
The rule named SigningAlgRule is an instance of the
SigningAlgorithmConstraints module. Certificate Management System
automatically creates this rule during installation. By default, the rule is configured
as follows:

• The rule is enabled.

• The predicate expression is left blank so that the rule is applied to all certificate
enrollment and renewal requests processed by the server.

• The signature algorithms allowed are MD5 with RSA, MD2 with RSA, and
SHA-1 with RSA (algorithms=MD5withRSA,MD2withRSA,SHA1withRSA).

For details on individual parameters defined in the rule, see Table 3-10 on
page 117. You need to review this rule and make the changes appropriate for your
PKI setup. For instructions, see section “Step 2. Modify Existing Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide. For
instructions on adding additional instances, see section “Step 4. Add New Policy
Rules” in the same chapter.

SubCANameConstraints Plug-in Module
The SubCANameConstraints plug-in module implements the subordinate CA
name constraints policy. This policy restricts a CA from issuing a subordinate CA
certificate that has the same issuer name as that of the CA itself—that is, the policy
prevents a situation where the signing certificates of a CA and its subordinate CA
have identical issuer names.

This policy must be turned on if you’re planning to issue subordinate CA
certificates. The reason for this is that, whenever the Certificate Manager issues a
certificate, it stores the related information in its internal database; see Chapter 12,
“Setting Up Internal Database” of CMS Installation and Setup Guide. If the CA issues
a subordinate CA certificate with an issuer DN that matches its own issuer DN, the
internal database will not function properly.

You may apply this policy to CA certificate enrollment and renewal requests.

During installation, Certificate Management System automatically creates an
instance of the subordinate CA name constraints policy. See
“SubCANameConstraints Rule” on page 120.

SubCANameConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 119

Configuration Parameters of
SubCANameConstraints
In the CMS configuration file, the SubCANameConstraints module is identified as
ca.Policy.impl.SubCANameConstraints.class=
com.iplanet.certsrv.policy.SubCANameConstraints.

In the CMS window, the module is identified as SubCANameConstraints. Figure
3-11 shows how configurable parameters for the module are displayed in the CMS
window.

Figure 3-11 Parameters of the SubCANameConstraints module

The configuration shown in Figure 3-11 creates a policy rule named
IssuerDNCheckForSubCACert, which enforces a rule that the server should reject
subordinate CA certificate requests with issuer DNs matching its own issuer DN.

Table 3-11 gives details about each of the parameters.

SubCANameConstraints Plug-in Module

120 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

SubCANameConstraints Rule
The rule named SubCANameConstraints is an instance of the
SubCANameConstraints module. Certificate Management System automatically
creates this rule during installation. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression is left blank so that the rule is applied to all certificate
enrollment and renewal requests processed by the server.

For details on individual parameters defined in the rule, see Table 3-12 on
page 122. You need to review this rule and make the changes appropriate for your
PKI setup. For instructions, see section F“Step 2. Modify Existing Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide. For
instructions on adding additional instances, see section “Step 4. Add New Policy
Rules” in the same chapter.

Table 3-11 Description of parameters defined in the SubCANameConstraints module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule.
Uncheck the box to disable the rule (default).

• If you enable the rule and set the remaining parameters correctly, the server
checks the certificate requests for issuer name uniqueness. If a certificate with the
requested issuer name already exists in the internal database, the server rejects the
request.

• If you disable the rule, the server does not check the CA certificate requests for
issuer name uniqueness.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==ca

UniqueSubjectNameConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 121

UniqueSubjectNameConstraints Plug-in Module
The UniqueSubjectNameConstraints plug-in module implements the unique
subject name constraints policy. This policy restricts the server from issuing
multiple certificates with same subject names. Optionally, you can also configure
the server to allow multiple certificates with the same subject name if the key
usages are different. Note that key usages for certificates are usually specified by
the key usage extension and Certificate Management System allows you to add this
extension to certificates using the key usage extension policy explained in
“KeyUsageExt Plug-in Module” on page 189.

You may apply the unique subject name constraints policy to end-entity certificate
enrollment and renewal requests. For example, if you want to prevent your users
from requesting multiple certificates with same subject names, you can configure
the server accordingly using the policy. Alternatively, if you want to allow your
users to own multiple certificates, each for a different use, all having the same
subject name, you can do so easily using the enableKeyUsageExtensionChecking
parameter defined in this policy. This parameter makes the server check whether
the key usages specified in the certificate request being processed is different than
those specified in the existing certificates that have the same subject names and
accordingly issue or deny the certificate. Keep in mind that the server can check for
key usages only if the key usage extension bits are set in the certificate request
being processed as well as in the existing certificates that have the same subject
names.

During installation, Certificate Management System automatically creates an
instance of the unique subject name constraints policy. See
“UniqueSubjectNameConstraints Rule” on page 124.

Configuration Parameters of
UniqueSubjectNameConstraints
In the CMS configuration file, the UniqueSubjectNameConstraints module is
identified as ca.Policy.impl.UniqueSubjectNameConstraints.class=
com.iplanet.certsrv.policy.UniqueSubjectNameConstraints.

In the CMS window, the module is identified as UniqueSubjectNameConstraints.
Figure 3-12 shows how configurable parameters for the module are displayed in
the CMS window.

UniqueSubjectNameConstraints Plug-in Module

122 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 3-12 Parameters of the UniqueSubjectNameConstraints module

The configuration shown in Figure 3-12 creates a policy rule named
UniqueNameForAllCert, which enforces a rule that all certificates must have
unique subject names.

Table 3-12 describes each of the parameters.

Table 3-12 Description of parameters defined in the UniqueSubjectNameConstraints module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule.
Uncheck the box to disable the rule (default).

• If you enable the rule and set the remaining parameters correctly, the server
checks the certificate requests, as specified by the predicate parameter, for
subject name uniqueness.

• If you disable the rule, the server does not check the certificate requests for subject
name uniqueness.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section F“Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

UniqueSubjectNameConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 123

enablePreAgent
ApprovalChecki
ng

Specifies whether the request must be checked for the subject name uniqueness on
submission by the user, before the request gets queued for agent approval.

• Check the box if you want the server to check the certificate request for the subject
name uniqueness as soon as the user submits it.

• Uncheck the box if you want the server to check the certificate request for the
subject name uniqueness after agent approval; that is, you want the policy to be
applied to the request after an agent approves the request. You should choose this
option if you want the server to check the Key Usage extension (see
“KeyUsageExt Plug-in Module” on page 189) before determining whether to issue
the certificate.

enableKeyUsage
ExtensionCheck
ing

Specifies whether the certificate request must be checked for the Key Usage extension.
Note that the policy can check the certificate request for the Key Usage extension only
if you uncheck (disable) the enablePreAgentApprovalChecking parameter. The
reason for this is that, extensions are set on the request after agent approval, so this
checking can be done after an agent approves the request.

• Check the box if you want the server to check the certificate request for the Key
Usage extension. If you check the box, the server checks its internal database for
certificates that have the same subject name as the one specified in the request. For
each certificate that has the matching subject name, the server compares the Key
Usage extension of the certificate to the one specified in the request. If the server
finds a certificate that has the same subject name and Key Usage extension, it
rejects request. Otherwise, the server approves the request. (This choice is suitable
if you want to have multiple certificates with same subject names but for different
purposes, such as signing and encrypting. If key-usage comparison is to be done,
be sure to specify that this policy is to be applied after the Key Usage extension
policy; see section “Step 5. Reorder Policy Rules” in Chapter 18, “Setting Up
Policies” of CMS Installation and Setup Guide.)

• Uncheck the box if you don’t want the server to check the certificate request for
the Key Usage extension. If you uncheck the box, the server does not compare the
Key Usage extension in the request with the ones set in the existing certificates
that have the same subject name; it simply rejects requests with same subject
names.

Table 3-12 Description of parameters defined in the UniqueSubjectNameConstraints module (Continued)

Parameter Description

ValidityConstraints Plug-in Module

124 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

UniqueSubjectNameConstraints Rule
The rule named UniqueSubjectNameConstraints is an instance of the
UniqueSubjectNameConstraints module. Certificate Management System
automatically creates this rule during installation. By default, the rule is configured
as follows:

• The rule is disabled; for the rule to be effective, it must be enabled and
configured appropriately.

• The certificate requests are checked for subject name uniqueness after agents
process the requests for approval—if you’re using manual enrollment and
deferred requests.

• The certificate requests are checked for Key Usage extension.

• The predicate expression is left blank so that the rule is applied to all certificate
enrollment and renewal requests processed by the server.

For details on individual parameters defined in the rule, see Table 3-12 on
page 122. You need to review this rule and make the changes appropriate for your
PKI setup. For instructions, see section “Step 2. Modify Existing Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide. For
instructions on adding additional instances, see section “Step 4. Add New Policy
Rules” in the same chapter.

ValidityConstraints Plug-in Module
The ValidityConstraints plug-in module implements the validity constraints
policy. This policy enforces minimum and maximum validity periods for
certificates and changes them if the policy is not met. Specifically, the policy
imposes constraints on the following:

• The duration of a certificate’s validity period (based on supported minimum
and maximum validity periods).

• The lead and lag time for the beginning date and time (the notBefore and
notAfter attributes in certificate requests) for the validity period; how far back
into the front or back the notBefore date could go in minutes.

If this policy rule is enabled, the server applies the rule to the certificate request
being processed, and then determines if the validity period in the request is
acceptable. The rule checks two X.509 attributes of the certificate, the notBefore
and notAfter time, which together indicate the total validity life of a certificate, to
make sure that they conform to the configured ranges.

ValidityConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 125

The rule checks that the value of the notBefore attribute in the request is not more
than leadTime minutes in the future; the leadTime is a configurable parameter in
the plug-in implementation. The ability to configure the value of the leadTime
parameter in the policy rule allows you to prohibit end entities from requesting
certificates whose validity starts too far in the future, and yet allows some amount
of toleration of clock-skew problems. For example, if the current date and time is
01/15/2000 (mm/dd/YYYY) and 1:30 p.m., the value of the notBefore attribute is
set to 3:00 p.m., and that the leadTime is 10 minutes, then the request would fail,
because the validity requested begins more than 10 minutes in the future.

The rule also checks that the value of the notBefore attribute in the request is not
more than lagTime minutes in the past. For example, if the current date and time is
01/15/2000 (mm/dd/yyyy) and 1:30 p.m., the value of the notBefore attribute is
set to 1:15 p.m., and the lagTime is set to 10 minutes, the request would fail
because the user has requested a certificate 15 minutes in the past. Note that a
request with notBefore set to 1:25 p.m. would have passed, however.

You may apply this policy to end-entity certificate enrollment requests. It can be
useful to restrict the length of the validity period for certificates issued by the
server. For example, if you want users to renew their certificates at least once a
year, you can set the maximum validity period to one year. If you want to limit the
frequency of certificate renewals to keep down administrative costs, you can set the
minimum validity period to six months.

By default, any validity requested in a certificate enrollment request cannot exceed
beyond that of the expiration time specified in the CA’s signing certificate. If the
Certificate Manager (CA) finds a request with validity period extending beyond
that of its CA signing certificate, it automatically truncates the validity period to
end on the day the CA signing certificate expires. For example, if the CA signing
certificate expires on June 10, 2004, any enrollment request with validity period
beyond June 10, 2004 will have validity period truncated to end on June 10, 2004.

However, you can configure the Certificate Manager to issue certificates with
validity periods beyond that of its CA signing certificate by selecting the “Override
validity nesting requirement” option; see section “Step 6. Enable End-Entity
Interaction” in Chapter 18, “Setting Up Policies” of CMS Installation and Setup
Guide.

NOTE When applying the validity constraints policy, the server does not check
the lag time in all certificate requests. It checks the lag time only in those
requests that are based on the CRMF protocol—currently, CRMF is the
only enrollment format that allows an end entity to request a specific
validity period with the notBefore attribute set to a time in the past.

ValidityConstraints Plug-in Module

126 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

During installation, Certificate Management System automatically creates an
instance of the validity constraints policy. See “DefaultValidityRule Rule” on
page 128.

Configuration Parameters of ValidityConstraints
In the CMS configuration file, the ValidityConstraints module is identified as
<subsystem>.Policy.impl.ValidityConstraints.class=
com.iplanet.certsrv.policy.ValidityConstraints, where <subsystem> is ca
or ra (prefix identifying the subsystem).

In the CMS window, the module is identified as ValidityConstraints. Figure
3-13 shows how configurable parameters for the module are displayed in the CMS
window.

Figure 3-13 Parameters of the ValidityConstraints module

The configuration shown in Figure 3-13 creates a policy rule named
ValidityForClientCert, which enforces a rule that all client certificates requested
by end users in an organizational unit (OU) called Marketing are valid for at least 60
days (two months) and require renewing after 180 days (six months).

Table 3-13 gives details about each of the parameters.

ValidityConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 127

Table 3-13 Description of parameters defined in the ValidityConstraints module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server sets
the configured validity period in certificates specified by the predicate
parameter.

• If you disable the rule, the server does not set the configured validity period in
certificates; it sets the validity period to the one specified in the request.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client AND
HTTP_PARAMS.OU==Marketing

minValidity Specifies the minimum validity period, in days, for certificates.

Permissible values: An integer greater than zero and less than the value specified by
the maxValidity parameter. The default value is 180 days.

Example: 60

maxValidity Specifies the maximum validity period, in days, for certificates.

Permissible values: An integer greater than zero and also greater than the value
specified by the minValidity parameter. The default value is 730 days.

Example: 180

leadTime Specifies the lead time, in minutes, for certificates. For a certificate renewal request to
pass the renewal validity constraints policy, the value of the notBefore attribute in
the certificate request must not be more than value of the leadTime parameter in the
future, relative to the time when the policy rule is run.

The notBefore attribute value specifies the date on which the certificate validity
begins; validity dates through the year 2049 are encoded as UTCTime, dates in 2050
or later are encoded as GeneralizedTime.

Permissible values: As applicable. The default value is 10 minutes.

Example: 10

ValidityConstraints Plug-in Module

128 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

DefaultValidityRule Rule
The rule named DefaultValidityRule is an instance of the
ValidityConstraints module. Certificate Management System automatically
creates this rule during installation. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression is left blank so that the rule is applied to all certificate
enrollment and renewal requests processed by the server.

• The minimum validity period allowed for certificates is 1 day
(minValidity=1).

• The maximum validity period allowed for certificates is 365 days
(maxValidity=365).

• The lead time allowed is 10 minutes (leadTime=10).

• The lag time allowed is 10 minutes (lagTime=10).

lagTime Specifies the lag time, in minutes, for certificates. For a certificate renewal request to
pass the renewal validity constraints policy, the value of the notBefore attribute in
the certificate request must not be more than the value of the lagTime in the past,
relative to the time when the policy is run.

The notBefore attribute value specifies the date on which the certificate validity
ends; validity dates through the year 2049 are encoded as UTCTime, dates in 2050 or
later are encoded as GeneralizedTime.

Permissible values: As applicable. The default value is 10 minutes.

Example: 10

notBeforeSkew Specifies the number of minutes to subtract from the current time when creating the
value for the certificate’s notBefore attribute. It can help some clients with
incorrectly set clocks use the new certificate after downloading. For example, if the
certificate is issued at 11:30 a.m. and the clock settings of the client into which the
certificate is downloaded is 11:20 a.m., the certificate cannot be used for 10 minutes.
Setting the value of the beforeFix parameter to 10 minutes would adjust the value
of the notBefore parameter to 11:20 a.m.—thus making the certificate usable
following the download.

Permissible values: As applicable. The default value is 5 minutes.

Example: 5

Table 3-13 Description of parameters defined in the ValidityConstraints module (Continued)

Parameter Description

ValidityConstraints Plug-in Module

Chapter 3 Constraints Policy Plug-in Modules 129

• The the number of minutes to subtract from the current time when creating the
value for the certificate’s notBefore attribute is 5 minutes (notBeforeSkew=5).

For details on individual parameters defined in the rule, see Table 3-13 on
page 127. You need to review this rule and make the changes appropriate for your
PKI setup. For instructions, see section “Step 2. Modify Existing Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide. For
instructions on adding additional instances, see section “Step 4. Add New Policy
Rules” in the same chapter.

ValidityConstraints Plug-in Module

130 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

131

Chapter 4

Certificate Extension Plug-in Modules

iPlanet Certificate Management Server (CMS) comes with a set of policy plug-in
modules that enable you to add X.509 certificate extensions to certificates the server
issues. This chapter explains those modules—it lists and briefly describes the
modules that are installed with a Certificate Manager and Registration Manager,
and then explains each one in detail.

The chapter has the following sections:

• Overview of Extension-Specific Policy Modules (page 132)

• AuthInfoAccessExt Plug-in Module (page 136)

• AuthorityKeyIdentifierExt Plug-in Module (page 144)

• BasicConstraintsExt Plug-in Module (page 147)

• CertificatePoliciesExt Plug-in Module (page 151)

• CertificateRenewalWindowExt Plug-in Module (page 156)

• CertificateScopeOfUseExt Plug-in Module (page 161)

• CRLDistributionPointsExt Plug-in Module (page 166)

• ExtendedKeyUsageExt Plug-in Module (page 171)

• GenericASN1Ext Plug-in Module (page 177)

• IssuerAltNameExt Plug-in Module (page 184)

• KeyUsageExt Plug-in Module (page 189)

• NameConstraintsExt Plug-in Module (page 202)

• NSCCommentExt Plug-in Module (page 211)

• NSCertTypeExt Plug-in Module (page 215)

Overview of Extension-Specific Policy Modules

132 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

• OCSPNoCheckExt Plug-in Module (page 220)

• PolicyConstraintsExt Plug-in Module (page 224)

• PolicyMappingsExt Plug-in Module (page 227)

• PrivateKeyUsagePeriodExt Plug-in Module (page 231)

• RemoveBasicConstraintsExt Plug-in Module (page 233)

• SubjectAltNameExt Plug-in Module (page 235)

• SubjectDirectoryAttributesExt Plug-in Module (page 241)

• SubjectKeyIdentifierExt Plug-in Module (page 245)

Overview of Extension-Specific Policy Modules
To enable you to add standard and private extensions to end-entity certificates,
Certificate Management System provides a set of policy plug-in modules; each
module enables you to add a particular extension to a certificate request. Plug-in
modules are implemented as Java classes and are registered in the CMS policy
framework. The Policy Plugin Registration tab of the CMS window (Figure 4-1)
lists all the modules that are registered with a CMS instance.

Note that the name of the Java class for a policy plug-in module is in this format:

com.netscape.certsrv.policy.<plugin_name>

where <plugin_name> is the name of a plug-in module. For example, the Java class
for the AuthorityKeyIdentifierExt module would be:

com.netscape.certsrv.policy.AuthorityKeyIdentifierExt

When deciding whether to add any of the X.509 v3 certificate extensions, keep in
mind that not all applications support X.509 v3 extensions. Among the applications
that do support extensions, not all applications will recognize every extension. For
general guidelines on using extensions in certificates, see Appendix C, “Certificate
and CRL Extensions.”

Overview of Extension-Specific Policy Modules

Chapter 4 Certificate Extension Plug-in Modules 133

Figure 4-1 Extension policy modules registered with a Certificate Manager

Table 4-1 lists extension-specific policy modules that are installed with a Certificate
Manager. A Registration Manager installation also includes all the modules, expect
for the ones noted below:

• AuthorityKeyIdentifierExt

• BasicConstraintsExt

• NameConstraintsExt

• PolicyConstraintsExt

• PolicyMappingsExt

You can use these modules to configure a Certificate Manager and Registration
Manager to add extensions to certificates. Both subsystems add extensions to a
certificate request when it undergoes policy processing (see section “Policy
Processor” in Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide).
Keep in mind that the changes made to a request by a Registration Manager may
be overwritten by a Certificate Manager when it subjects the request to its own
policy checks.

Overview of Extension-Specific Policy Modules

134 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Table 4-1 Default extension-specific policy plug-in modules

Plug-in module Function

AuthInfoAccessExt Adds the Authority Information Access extension to certificates.
For details, see “AuthInfoAccessExt Plug-in Module” on
page 136.

AuthorityKeyIdentifierExt Adds the Authority Key Identifier extension to certificates. For
details, see “AuthorityKeyIdentifierExt Plug-in Module” on
page 144.

BasicConstraintsExt Adds the Basic Constraints extension to certificates. For details,
see “BasicConstraintsExt Plug-in Module” on page 147.

CertificatePoliciesExt Adds the Certificate Policies extension to certificates. For details,
see “CertificatePoliciesExt Plug-in Module” on page 151.

CertificateRenewalWindowExt Adds the Certificate Renewal Window extension to certificates. For
details, see “CertificateRenewalWindowExt Plug-in Module” on
page 156.

CertificateScopeOfUseExt Adds the Certificate Scope of Use extension to certificates. For
details, see “CertificateScopeOfUseExt Plug-in Module” on
page 161.

CRLDistributionPointsExt Adds the CRL Distribution Points extension to certificates. For
details, see “CRLDistributionPointsExt Plug-in Module” on
page 166.

ExtendedKeyUsageExt Adds the Extended Key Usage extension to certificates. For details,
see “ExtendedKeyUsageExt Plug-in Module” on page 171.

GenericASN1Ext Adds ASN.1 type custom extension to certificates. For details, see
“GenericASN1Ext Plug-in Module” on page 177.

IssuerAltNameExt Adds the Issuer Alternative Name extension to certificates. For
details, see “IssuerAltNameExt Plug-in Module” on page 184.

KeyUsageExt Adds the Key Usage extension to certificates. For details, see
“KeyUsageExt Plug-in Module” on page 189.

NameConstraintsExt Adds the Name Constraints extension to certificates. For details,
see “NameConstraintsExt Plug-in Module” on page 202.

NSCCommentExt Adds the Netscape Certificate Comment extension to certificates.
For details, see “NSCCommentExt Plug-in Module” on page 211.

NSCertTypeExt Adds the Netscape Certificate Type extension to certificates. For
details, see “NSCertTypeExt Plug-in Module” on page 215.

OCSPNoCheckExt Adds the OCSP No Check extension to certificates. For details, see
“OCSPNoCheckExt Plug-in Module” on page 220.

Overview of Extension-Specific Policy Modules

Chapter 4 Certificate Extension Plug-in Modules 135

As indicated in Table 4-1, Certificate Management System enables you to add
almost all of the extensions defined in the PKIX standard RFC 2459
(http://www.ietf.org/rfc/rfc2459.txt). All modules have three features in
common, enabling you to specify these:

• Whether to add the extension to certificates.

• The certificates to which the extension is to be added.

• Whether to mark the extension critical or noncritical.

By default, only noncritical extensions are added to certificates. This ensures that
the resulting certificates can be used with all clients. If you add a critical extension,
the resulting certificate can only be used by clients that support that extension.

Additionally, the server also provides a module for adding any custom, ASN.1
type extensions. If you determine that the default policy modules do not meet your
requirements entirely, you can develop a custom module using CMS SDK. It is
available in the form of Java Docs at this location:

<server_root>/cms_sdk/cms_jdk/javadocs

PolicyConstraintsExt Adds the Policy Constraints extension to certificates. For details,
see “PolicyConstraintsExt Plug-in Module” on page 224.

PolicyMappingsExt Adds the Policy Mappings extension to certificates. For details, see
“PolicyMappingsExt Plug-in Module” on page 227.

PrivateKeyUsagePeriodExt Adds the Private Key Usage Period extension to certificates. For
details, see “PrivateKeyUsagePeriodExt Plug-in Module” on
page 231.

RemoveBasicConstraintsExt Detects and removes the Basic Constraints extension in certificate
requests. For details, see “RemoveBasicConstraintsExt Plug-in
Module” on page 233.

SubjectAltNameExt Adds the Subject Alternative Name extension to certificates. For
details, see “SubjectAltNameExt Plug-in Module” on page 235.

SubjectDirectoryAttributesExt Adds a Subject Directory Attributes extension to certificates. For
details, see “SubjectDirectoryAttributesExt Plug-in Module” on
page 241.

SubjectKeyIdentifierExt Adds the Subject Key Identifier extension to certificates. For
details, see “SubjectKeyIdentifierExt Plug-in Module” on
page 245.

Table 4-1 Default extension-specific policy plug-in modules (Continued)

Plug-in module Function

AuthInfoAccessExt Plug-in Module

136 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

For general guidelines on developing custom policy modules and adding them to
the CMS policy framework, take a look at the samples installed at these locations:

<server_root>/cms_sdk/cms_jdk/samples/policies

For instructions to configure a Certificate Manager and Registration Manager to
use one or more of the policy modules, see section “Configuring Policy Rules for a
Subsystem” in installChapter 18, “Setting Up Policies” of installCMS Installation
and Setup Guide.

AuthInfoAccessExt Plug-in Module
The AuthInfoAccessExt plug-in module implements the authority information
access extension policy. This policy enables you to configure Certificate
Management System to add the Authority Information Access Extension defined in
X.509 and PKIX standard RFC 2459 (see
http://www.ietf.org/rfc/rfc2459.txt) to certificates. The extension specifies
how an application validating a certificate can access information, such as on-line
validation services and CA policy statements, about the CA that has issued the
certificate in which the extension appears. Note that this extension should not be
used to point directly to the CRL location maintained by a CA; the CRL
Distribution Points extension explained in “CRLDistributionPointsExt Plug-in
Module” on page 166 allows you to reference to CRL locations.

The PKIX standard recommends that you may include the authority information
access extension in end-entity and CA certificates and that the extension be marked
noncritical. For general guidelines on setting the authority information access
extension, see “authorityInfoAccess” on page 343.

The authority information access extension policy in Certificate Management
System allows you to set the authority information access extension as defined in
its X.509 definition. The policy enables you to specify any number of access points
for CA information. For each access point, you can specify the access method,
actual location that contains the additional information about the CA, and the
mechanism for retrieving the information. The location can be specified in any of
the following general-name forms: an rfc822name, a directory name, a DNS name,
an EDI party name, a uniform resource indicator (URI), an IP address, an object
identifier (OID), and any other name.

AuthInfoAccessExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 137

By default, the policy supports three access methods:

• caIssuers (this method is also identified by its OID, 1.3.6.1.5.5.7.48.2).

As specified in the PKIX standard, you should use the caIssuers method
when the additional information is a list of parent CAs or CAs that have issued
certificates superior to the CA that issued the certificate containing the
extension. The certificate-using application may use the list of parent CAs
referenced by the extension to determine the certification path and to check
whether the path terminates at a point trusted by the certificate user.

When you use the caIssuers method, the access location referenced in the
extension must take any of the following general-name forms:

❍ Uniform resource identifier (URI) if the information is available via HTTP,
FTP, or LDAP.

❍ An X.500 directory name if the information is available via the directory
access protocol (DAP).

❍ An rfc822Name if the information is available via electronic mail.

• ocsp (this method is also identified by its OID, 1.3.6.1.5.5.7.48.1).

The ocsp method indicates to the certificate-using client that it must use the
OCSP protocol to access the location that contains additional information
about the CA that has issued the certificate. You should use the ocsp method
when you want to reference to the online validation authority that maintains
the revocation status of certificates issued by the CA.

When you use the ocsp method, the access location referenced in the extension
must be a uniform resource indicator (URI); this means, the location type must
be URL and the location value must be the complete URL (including the port
number) at which the online validation authority for the CA is listening for
OCSP requests from OCSP-compliant clients.

• renewal (this method is also identified by its OID, 2.16.840.1.113730.16.1)

The renewal method works with the automated-certificate-renewal feature
built into Netscape Personal Security Manager. When you use this method, the
access location referenced in the extension must be a URI.

The built-in support for the ocsp access method and a URI value for the access
location in the extension conform to the profile defined in RFC 2560 (see
http://www.ietf.org/rfc/rfc2560.txt) for CAs that support the OCSP service.
For details about OCSP support in Certificate Management System, see Chapter 21,
“Setting Up an OCSP Responder” of CMS Installation and Setup Guide.

AuthInfoAccessExt Plug-in Module

138 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

If you configure a Certificate Manager to publish CRLs to an OCSP responder and
want to include the authority information access extension referencing to the
responder, you should configure an instance of this policy as follows: access
method is set to ocsp, name type is set to URI, and name value is set to the URL at
which the OCSP responder listens to OCSP requests. This way, OCSP-compliant
applications can verify the revocation status of certificates issued by the Certificate
Manager by accessing the validation authority using the OCSP method.

During installation, Certificate Management System automatically creates an
instance of the authority information access extension policy. See
“AuthInfoAccessExt Rule” on page 143.

Configuration Parameters of AuthInfoAccessExt
In the CMS configuration file, the AuthInfoAccessExt module is identified as
<subsystem>.Policy.impl.AuthInfoAccessExt.class=
com.netscape.certsrv.policy.AuthInfoAccessExt, where <subsystem> is ca
or ra (prefix identifying the subsystem).

In the CMS window, the module is identified as AuthInfoAccessExt. Figure 4-2
shows how the configurable parameters for the module are displayed in the CMS
window.

NOTE The CMS configuration file (CMS.cfg) includes a parameter named
jss.ocspcheck.enable, which enables you to specify whether a
CMS manager should use Online Certificate Status Protocol (OCSP)
to verify the revocation status of the certificate it receives as a part
of SSL client or server authentication (from clients or servers it
makes connections with). If you change the value of this parameter
to true, the CMS manager reads the Authority Information Access
extension in the certificate and verifies the revocation status of the
certificate from the OCSP responder specified in the extension.

AuthInfoAccessExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 139

Figure 4-2 Parameters defined in the AuthInfoAccessExt module

The configuration shown in Figure 4-2 creates a policy rule named
AuthInfoAccessExtForClientCert, which enforces a rule that the server should
add the authority information access extension to client certificates. The extension
indicates that the online validation service (or the OSCSP responder) for the CA
that has issued these certificates is at this URL:

http://ocspResponder.siroe.com:8000

The extension is marked noncritical (to comply with the PKIX recommendation).

Table 4-2 gives details about the configurable parameters defined in the
AuthInfoAccessExt module.

Table 4-2 Description of parameters defined in the AuthInfoAccessExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server adds
the authority information access extension to certificates specified by the
predicate parameter.

• If you disable the rule, the server does not add the extension to certificates; it
ignores the values in the remaining fields.

AuthInfoAccessExt Plug-in Module

140 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

critical Specifies whether the extension should be marked critical or noncritical in certificates
specified by the predicate parameter. Check the box if you want the server to mark
the extension critical. Uncheck the box if you want the server to mark the extension
noncritical (default).

numADs Specifies the total number of access locations to be contained or allowed in the
extension.

By default, this field is set to 3 and the UI shows fields for configuring three locations.
You can change the total number of locations by changing the value assigned to this
parameter; there’s no restriction on the total number of locations you can include in
the extension.

Note that each location has its own set of configuration parameters and you must
specify appropriate values for each of those parameters; otherwise the policy rule will
return an error. Each set of configuration parameters is distinguished by <n>, which
is an integer derived from the value you assign in this field. For example, if you set
the numADs parameter to 2, <n> would be 0 and 1.

Permissible values: 0 or n.

• 0 specifies that no locations can be contained in the extension.

• n specifies the total number of locations to be included in the extension; it must be
an integer greater than zero. The default value is 3.

Example: 2

ad<n>_method Specifies the access method for retrieving additional information about the CA that
has issued the certificate in which the extension appears.

Permissible values:

• ocsp (or 1.3.6.1.5.5.7.48.1).

• caIssuers (or 1.3.6.1.5.5.7.48.2).

• renewal (or 2.16.840.1.113730.16.1)

Example 1: ocsp

Example 2: 1.3.6.1.5.5.7.48.1

Table 4-2 Description of parameters defined in the AuthInfoAccessExt module (Continued)

Parameter Description

AuthInfoAccessExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 141

ad<n>_location
_type

Specifies the general-name type for the location that contains additional information
about the CA that has issued the certificate in which this extension appears.

Permissible values: rfc822Name, directoryName, dNSName, ediPartyName,
URL, iPAddress, OID, or otherName.

• Select rfc822Name if the location is an Internet mail address.

• Select directoryName if the location is an X.500 directory name.

• Select dNSName if the location is a DNS name.

• Select ediPartyName if the location is a EDI party name.

• Select URL if the location is a uniform resource identifier (default).

• Select iPAddress if the location is an IP address.

• Select OID if the location is an object identifier.

• Select otherName if the location is in any other name form.

Example: URL

ad<n>_location Specifies the address or location to get additional information about the CA that has
issued the certificate in which this extension appears.

Permissible values: Depends on the location type you specified in the
ad<n>_location_type field.

• If you selected rfc822Name, the value must be a valid Internet mail address in
the local-part@domain format; see the definition of an rfc822Name as
defined in RFC 822 (http://www.ietf.org/rfc/rfc0822.txt). You may
use upper and lower case letters in the mail address; no significance is attached to
the case. For example, ocspResponder@siroe.com.

• If you selected directoryName, the value must be a string form of X.500 name,
similar to the subject name in a certificate, in the RFC 2253 syntax (see
http://www.ietf.org/rfc/rfc2253.txt). Note that RFC 2253 replaces
RFC 1779. For example, CN=corpDirectory, OU=IS, O=Siroe.com, C=US.

• If you selected dNSName, the value must be a valid domain name in the
preferred-name syntax as specified in RFC 1034
(http://www.ietf.org/rfc/rfc1034.txt). You may use upper and lower
case letters in the domain name; no significance is attached to the case. Do not use
the string “ ” for the DNS name. Also don’t use the DNS representation for
Internet mail addresses; such identities should be encoded as rfc822Name. For
example, ocspResponder.siroe.com.

• If you selected ediPartyName, the value must be an IA5String. For example,
Siroe Corporation.

Table 4-2 Description of parameters defined in the AuthInfoAccessExt module (Continued)

Parameter Description

AuthInfoAccessExt Plug-in Module

142 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

• If you selected URL, the value must be a non-relative universal resource identifier
(URI) following the URL syntax and encoding rules specified in RFC 1738
(http://www.ietf.org/rfc/rfc1738.txt). That is, the name must include
both a scheme (for example, http) and a fully qualified domain name or IP
address of the host. For example, http://ocspResponder.siroe.com:8000

• If you selected iPAddress, the value must be a valid IP address specified in
dot-separated numeric component notation. The syntax for specifying the IP
address is as follows:
For IP version 4 (IPv4), the address should be in the form specified in RFC 791
(http://www.ietf.org/rfc/rfc0791.txt). IPv4 address must be in the
n.n.n.n format; for example, 128.21.39.40. IPv4 address with netmask must
be in the n.n.n.n,m.m.m.m format. For example,
128.21.39.40,255.255.255.00.
For IP version 6 (IPv6), the address should be in the form described in RFC 1884
(http://www.ietf.org/rfc/rfc1884.txt), with netmask separated by a
comma. Examples of IPv6 addresses with no netmask are
0:0:0:0:0:0:13.1.68.3 and FF01::43. Examples of IPv6 addresses with
netmask are 0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:FFFF:
FFFF:255.255.255.0 and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000.

• If you selected OID, the value must be a unique, valid OID specified in
dot-separated numeric component notation. Although you can invent your own
OIDs for the purposes of evaluating and testing this server, in a production
environment, you should comply with the ISO rules for defining OIDs and for
registering subtrees of IDs. See Appendix B, “Object Identifiers” for information
on allocating private OIDs. For example, 1.2.3.4.55.6.5.99.

• If you selected otherName, the value must be the absolute path to the file
containing the base-64 encoded string of the location. For example,
/opt/SUNWcertsrv/certsrv47/ext/aia/othername.txt.

Table 4-2 Description of parameters defined in the AuthInfoAccessExt module (Continued)

Parameter Description

AuthInfoAccessExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 143

AuthInfoAccessExt Rule
The rule named AuthInfoAccessExt is an instance of the AuthInfoAccessExt
module. Certificate Management System automatically creates this rule during
installation. By default, the rule is configured as follows:

• The rule is disabled.

• The predicate expression (predicate=HTTP_PARAMS.certType==client)
ensures that the policy is to be applied to client certificate requests processed
by the server.

• The extension is marked noncritical (to comply with the PKIX
recommendation).

• The total number of access locations to be contained or allowed in the
extension is set to 1 (numADs=1).

• The access method for retrieving additional information about the CA that has
issued the certificate in which the extension appears is set to OCSP
(ad0_method=ocsp).

• The general-name type for the location that contains additional information
about the CA that has issued the certificate in which the extension appears is
set to URL (ad0_location_type=URL).

• The address or location to get additional information about the CA that has
issued the certificate in which this extension appears is left blank for you to
enter the URL at which the OCSP responder will service requests from
OCSP-compliant clients.

Note that if you installed the Certificate Manager with it’s built-in OCSP service
enabled, the policy rule will be enabled and the address location (ad0_location=)
will be pointed to the Certificate Manager’s nonSSL end-entity port. For example, if
the nonSSL end-entity port of your Certificate Manager is 80, the URL would look
like this: http://ocspResponder.siroe.com:80/ocsp

For details on individual parameters defined in the rule, see Table 4-2 on page 139.
You need to review this rule and make the changes appropriate for your PKI setup.
For instructions, see section “Step 2. Modify Existing Policy Rules” in Chapter 18,
“Setting Up Policies” of CMS Installation and Setup Guide. For instructions on
adding additional instances, see section “Step 4. Add New Policy Rules” in the
same chapter.

AuthorityKeyIdentifierExt Plug-in Module

144 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

AuthorityKeyIdentifierExt Plug-in Module
The AuthorityKeyIdentifierExt plug-in module implements the authority key
identifier extension policy. This policy enables you to configure Certificate
Management System to add the Authority Key Identifier Extension defined in X.509
and PKIX standard RFC 2459 (see http://www.ietf.org/rfc/rfc2459.txt) to
certificates. The extension is used to identify the public key that corresponds to the
private key used by a CA to sign certificates.

You should consider adding this extension to all certificates, especially CA
certificates, issued by Certificate Management System. The reason is, in certain
situations, a CA’s public key may change (for example, when the key gets updated)
or the CA may have multiple signing keys (either due to multiple concurrent key
pairs or due to key changeover). In these cases, the CA ends up with more than one
distinct key. When verifying a signature on a certificate, other applications need to
know which key was used in the signature. The extension, if present in a certificate,
enables applications (those that can use the extension) to identify the correct key to
use in situations when multiple keys exist; the extension specifies the public key to
be used to verify the signature on the certificate.

For general guidelines on setting the authority key identifier extension, see
“authorityKeyIdentifier” on page 344.

The authority key identifier extension policy in Certificate Management System
allows setting of the authority key identifier extension as defined in its X.509
definition with key identifiers. The policy enables you to specify what is to be done if
the CA certificate does not have a subject key identifier extension—whether to use
the a SHA-1 hash of the CA’s subject public key information (carries the public key
and identifies the algorithm with which the key is used) or skip adding the
authority key identifier extension itself. For information on setting the subject key
identifier extension in certificates, see “SubjectKeyIdentifierExt Plug-in Module”
on page 245.

Note that PKIX and Federal PKI standards recommend against the use of
authorityCertIssuer and authorityCertSerialNumber fields of the X.509
definition.

If enabled, the policy does the following:

• Sets the authority key identifier extension in certificates using the CA’s key
identifier in the CA’s subject key identifier extension, if it exists. In the absence
of a subject key identifier extension, the policy does either of the following (as
specified by the configuration):

AuthorityKeyIdentifierExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 145

❍ Uses the SHA-1 hash of the CA’s subject public key information as the key
identifier. This option is compatible with Netscape Communicator when
the CA does not have a subject public key identifier extension.

❍ Does not set the authority key identifier extension.

• Adds a authority key identifier extension to an enrollment request if the
extension does not already exist. If the extension exists in the request, for
example from a CRMF request, the policy replaces the extension. In case of
manual enrollments, after an agent approves the enrollment request, the policy
accepts any authority key identifier extension that is already there.

During installation, Certificate Management System automatically creates an
instance of the authority key identifier extension policy. See
“AuthorityKeyIdentifierExt Rule” on page 147.

Configuration Parameters of
AuthorityKeyIdentifierExt
In the CMS configuration file, the AuthorityKeyIdentifierExt module is
identified as ca.Policy.impl.AuthorityKeyIdentifierExt.class=
com.netscape.certsrv.policy.AuthorityKeyIdentifierExt.

In the CMS window, the module is identified as AuthorityKeyIdentifierExt.
Figure 4-3 shows how the configurable parameters for the module are displayed in
the CMS window.

Figure 4-3 Parameters defined in the AuthorityKeyIdentifierExt module

AuthorityKeyIdentifierExt Plug-in Module

146 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The configuration shown in Figure 4-3 creates a policy rule named
AuthKeyIDExtForCACert, which enforces a rule that the server should set the
authority key identifier extension in all CA certificates.

Table 4-3 gives details about each of these parameters.

Table 4-3 Description of parameters defined in the AuthorityKeyIdentifierExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server adds
the authority key identifier extension to certificates specified by the predicate
parameter.

• If you disable the rule, the server does not add the extension to certificates; it
ignores the values in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==ca

critical Specifies whether the extension should be marked critical or noncritical in certificates
specified by the predicate parameter. Check the box if you want the server to mark
the extension critical. Uncheck the box if you want the server to mark the extension
noncritical (default).

AltKeyIdType Specifies what should be done if the CA certificate does not have a Subject Key
Identifier extension.

Permissible values: SpkiSHA1 or None.

• Select SpkiSHA1 if you want the server to use a SHA-1 hash of the CA’s subject
public key information (default).

• Select None if you don’t want the server to set the authority key identifier
extension in certificates.

Example: SpkiSHA1

BasicConstraintsExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 147

AuthorityKeyIdentifierExt Rule
The rule named AuthorityKeyIdentifierExt is an instance of the
AuthorityKeyIdentifierExt module. Certificate Management System
automatically creates this rule during installation. By default, the rule is configured
as follows:

• The rule is enabled.

• The predicate expression is left blank so that the extension gets added to all
certificates the server issues.

• The extension is marked noncritical (to comply with the PKIX
recommendation).

• The rule specifies that a SHA-1 hash of the CA’s subject public key info be used
if the CA certificate does not have a Subject Key Identifier extension
(AltKeyIdType=SpkiSHA1).

For details on individual parameters defined in the rule, see Table 4-3 on page 146.
You need to review this rule and make the changes appropriate for your PKI setup.
For instructions, see section “Step 2. Modify Existing Policy Rules” in Chapter 18,
“Setting Up Policies” of CMS Installation and Setup Guide. For instructions on
adding additional instances, see section “Step 4. Add New Policy Rules” in the
same chapter.

BasicConstraintsExt Plug-in Module
The BasicConstraintsExt plug-in module implements the basic constraints
extension policy. This policy enables you to configure Certificate Management
System to add the Basic Constraints Extension defined in X.509 and PKIX standard
RFC 2459 (see http://www.ietf.org/rfc/rfc2459.txt) in certificates. The
extension identifies whether the Certificate Manager is a CA. In addition, the
extension is also used during the certificate chain verification process to identify
CA certificates and to apply certificate chain-path length constraints.

You should consider adding this extension to all CA certificates (root as well as
subordinate) issued by Certificate Management System. The current PKIX
standard requires that this extension be marked critical and that it appear in all CA
certificates. The standard also recommends that the extension should not appear in
end-entity certificates. For general guidelines on setting the basic constraints
extension, see “basicConstraints” on page 345.

BasicConstraintsExt Plug-in Module

148 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Because the basic constraints extension is a critical extension and is used by
applications to determine the path length during certificate validation to chain up
to the trusted CA, it’s important that you set this extension correctly.

Also note that when a user submits a certificate request using the
manual-enrollment method, the basic constraints extension is set on that request as
per the configured policy, and then the request is queued for agent approval. When
an agent approves the request, it is subjected to the configured policy again. If
there’s a change in the configuration of the basic constraints extension, the server
may reject the agent-approved request. For the server to approve the request, the
user will have to resubmit the request.

During installation, Certificate Management System automatically creates an
instance of the basic constraints extension policy. See “BasicConstraintsExt Rule”
on page 150.

Configuration Parameters of
BasicConstraintsExt
In the CMS configuration file, the BasicConstraintsExt module is identified as
ca.Policy.impl.BasicConstraintsExt.class=com.netscape.certsrv.
policy.BasicConstraintsExt.

In the CMS window, the module is identified as BasicConstraintsExt. Figure 4-4
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 4-4 Parameters defined in the BasicConstraintsExt module

BasicConstraintsExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 149

The configuration shown in Figure 4-4 creates a policy rule named
BasicConsExtForCACert, which enforces a rule that the server should set the basic
constraints extension in all CA certificates.

Table 4-4 gives details about each of these parameters.

Table 4-4 Description of parameters defined in the BasicConstraintsExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server adds
the basic constraints extension to certificates specified by the predicate
parameter.

• If you disable the rule, the server does not add the extension to certificates; it
ignores the values in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==ca

critical Specifies whether the extension should be marked critical or noncritical in certificates
specified by the predicate parameter. Check the box if you want the server to mark
the extension critical (default). Uncheck the box if you want the server to mark the
extension noncritical.

isCA Specifies whether the certificate subject is a CA. If you select the option, the server
checks the maxPathLen parameter and sets the specified path length in the
certificate. If you deselect the option, the server treats the certificate subject as a
non-CA and ignores the value specified for the maxPathLen parameter.

BasicConstraintsExt Plug-in Module

150 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

BasicConstraintsExt Rule
The rule named BasicConstraintsExt is an instance of the
BasicConstraintsExt module. Certificate Management System automatically
creates this rule during installation. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression is set (predicate=HTTP_PARAMS.certType==ca) so
that the extension gets added to CA certificates only.

• The extension is marked critical to comply with the PKIX recommendation.

maxPathLen Specifies the path length, the maximum number of CA certificates that may be
chained below (subordinate to) the subordinate CA certificate being issued. Note that
the path length you specify affects the number of CA certificates to be used during
certificate validation. The chain starts with the end-entity certificate being validated
and moving up the chain.

The maxPathLen parameter has no effect if the extension is set in end-entity
certificates.

Permissible values: 0 or n. Make sure that the value you choose is less than the path
length specified in the Basic Constraints extension of the CA signing certificate
(owned by the CA that will issue these certificates).

• 0 specifies that no subordinate CA certificates are allowed below the subordinate
CA certificate being issued—that is, only an end-entity certificate may follow in
the path.

• n must be an integer greater than zero. It specifies at the most n subordinate CA
certificates are allowed below the subordinate CA certificate being used.

• If you leave the field blank, the path length defaults to a value that is determined
by the path length set on the Basic Constraints extension in the issuer’s certificate.
If the issuer’s path length is unlimited, the path length in the subordinate CA
certificate will also be unlimited. If the issuer’s path length is an integer greater
than zero, the path length in the subordinate CA certificate will be set to a value
that’s one less than the issuer’s path length; for example, if the issuer’s path length
is 4, the path length in the subordinate CA certificate will be set to 3.

Example: 2

Table 4-4 Description of parameters defined in the BasicConstraintsExt module (Continued)

Parameter Description

CertificatePoliciesExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 151

• The path length field (maxPathLen) is left blank so that it defaults to a value
that is determined by the path length set on the Basic Constraints extension in
the issuer’s certificate.

For details on individual parameters defined in the rule, see Table 4-4 on page 149.
You need to review this rule and make the changes appropriate for your PKI setup.
For instructions, see section “Step 2. Modify Existing Policy Rules” in Chapter 18,
“Setting Up Policies” of CMS Installation and Setup Guide. For instructions on
adding additional instances, see section “Step 4. Add New Policy Rules” in the
same chapter.

CertificatePoliciesExt Plug-in Module
The CertificatePoliciesExt plug-in module implements the certificate policies
extension policy. This policy enables you to configure Certificate Management
System to add the Certificate Policies Extension defined in X.509 and PKIX standard
RFC 2459 (see http://www.ietf.org/rfc/rfc2459.txt) in certificates. The
extension contains a sequence of one or more policy statements, each indicating the
policy under which the certificate has been issued and identifying the purposes for
which the certificate may be used. Presence of this extension in certificates enables
an application with specific policy requirements to compare its list of policies to the
ones contained in a certificate during its validation; typically, such applications
will have a list of policies (which they will accept) and compare the policies in the
certificate to their list as a part validating the certificate.

To promote interoperatability, the PKIX standard recommends that the policy
statements or information terms should be included in certificates in the form of
object identifiers (OIDs). For more information on OIDs, see Appendix B, “Object
Identifiers.” This means, in order for the server to add this extension to any
certificate it issues, you need to compose policy statements you want to include in
the extension, define OIDs for these policy statements, and configure the server
with these OIDs.

When determining whether to add this extension to certificates, keep in mind that
if the extension exists in a certificate and if it is marked critical, the application
validating the certificate must be able to interpret the extension (including the
optional qualifiers, if any), or else it must reject the certificate. For general
guidelines on setting the certificate policies extension, see “certificatePolicies” on
page 346.

CertificatePoliciesExt Plug-in Module

152 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The certificate policies extension policy in Certificate Management System enables
you to set the extension with the following information:

• The name of the your company or organization.

• The OID assigned to the policy statement you want to include in the certificate.

• A pointer (URI) to the published Certification Practice Statement (CPS).

Any company deploying its own PKI should make a CPS available to anyone
who may come across certificates issued by the CA deployed in the PKI. (The
reason for this is people outside the company intranet may receive signed
email messages from an employee.) To see an example of a CPS, check this site:
http://people.netscape.com/shadow/cps.html

• A textual user notice (which the application validating the certificate can
interpret and display).

During installation, Certificate Management System automatically creates an
instance of the certificate policies extension policy. See “CertificatePoliciesExt
Rule” on page 155.

Configuration Parameters of
CertificatePoliciesExt
In the CMS configuration file, the CertificatePoliciesExt module is identified
as <subsystem>.Policy.impl.CertificatePoliciesExt.class=
com.netscape.certsrv.policy.CertificatePoliciesExt, where <subsystem>
is ca or ra (prefix identifying the subsystem).

In the CMS window, the module is identified as CertificatePoliciesExt. Figure
4-5 shows how the configurable parameters for the module are displayed in the
CMS window.

CertificatePoliciesExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 153

Figure 4-5 Parameters defined in the CertificatePoliciesExt module

The configuration shown in Figure 4-5 creates a policy rule named
CertPoliciesExtForClientCert, which enforces a rule that the server should set
the certificate policies extension in all client certificates.

Table 4-5 gives details about each of these parameters.

Table 4-5 Description of parameters defined in the CertificatePoliciesExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled.

• Check the box to enable the rule (default). If you enable the rule and set the
remaining parameters correctly, the server adds the certificate policies
extension to certificates specified by the predicate parameter.

• Uncheck the box to disable the rule. If you disable the rule, the server does not
add the extension to certificates; it ignores the values in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate
expression, see section “Using Predicates in Policy Rules” in Chapter 18, “Setting
Up Policies” of CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

CertificatePoliciesExt Plug-in Module

154 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

critical Specifies whether the extension should be marked critical or noncritical in
certificates specified by the predicate parameter. Check the box if you want the
server to mark the extension critical. Uncheck the box if you want the server to
mark the extension noncritical (default).

policyId Specifies the OID assigned to the policy statement you want to include in the
extension. If you specify a valid OID, the server includes the OID in the extension.

The policyId, if specified, identifies by number a particular textual statement
prepared by your organization (which is specified by the parameter named
organizationName, listed next in this table). For example, it might identify the
organization as Siroe Corporation and notice number 1.2.3.4.5.6.99.
Typically, applications validating the certificate will have a notice file containing
the current set of notices for your company; these application will interpret the
number in the certificate by extracting the notice text that corresponds to the
number from the file and display it to the relying party.

Permissible values: A unique, valid OID specified in dot-separated numeric
component notation (see the example). Although you can invent your own OIDs
for the purposes of evaluating and testing this server, in a production environment,
you should comply with the ISO rules for defining OIDs and for registering
subtrees of IDs. See Appendix B, “Object Identifiers”for information on allocating
private OIDs.

Example: 2.16.840.1.113730.1.99

organizationName Specifies the name of the organization that owns the OID or is the owner of the
policy statement referenced by the OID.

Permissible values: The name of a company or its organizational unit.

Example: Siroe Corporation

cpsURI Specifies the location where the Certification Practice Statement published by the
CA (that has issued the certificate) can be found.

Permissible values: An IA5String value. The PKIX standard recommends that the
pointer should be in the form of a URI.

Example: http://testCA.siroe.com/CPS_statement

Table 4-5 Description of parameters defined in the CertificatePoliciesExt module (Continued)

Parameter Description

CertificatePoliciesExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 155

CertificatePoliciesExt Rule
The policy rule named CertificatePoliciesExt is an instance of the
CertificatePoliciesExt module. Certificate Management System automatically
creates this rule during installation. By default, the rule is configured as follows:

• The rule is disabled; for the rule to be effective, it must be enabled and
configured appropriately.

• The predicate field is left blank so that the extension gets added to all
certificates.

• The extension is marked noncritical (to comply with the PKIX
recommendation).

• Other fields are left blank for you to enter the appropriate information.

For details on individual parameters defined in the rule, see Table 4-5 on page 153.
You need to review this rule and make the changes appropriate for your PKI setup.
For instructions, see section “Step 2. Modify Existing Policy Rules” in Chapter 18,
“Setting Up Policies” of CMS Installation and Setup Guide. For instructions on
adding additional instances, see section “Step 4. Add New Policy Rules” in the

displayText Specifies the textual statement to be included in certificates; this parameter
corresponds to the explicitText field of the user notice. If you want to embed a
textual statement (for example, your company’s legal notice) in certificates, then
add that statement here. The text you enter here will be displayed to a relying party
when the certificate is used or viewed.

Note that certain applications may not have the capability to display this text. Also,
embedding a policy statement in a certificate increases its size.

If you specify values for both policyId and displayText parameters and if the
application software cannot locate the notice text indicated by the policyId
parameter, then it is supposed to display the embedded notice; otherwise, it’s
supposed to display the information specified by the policyId parameter. (This
feature is application specific and Certificate Management System has no control
over it.)

Permissible values: A string with up to 200 characters.

Example: SiroeCorp’s CPS incorp. by reference liab. ltd.
 (c)97 SiroeCorp

Table 4-5 Description of parameters defined in the CertificatePoliciesExt module (Continued)

Parameter Description

CertificateRenewalWindowExt Plug-in Module

156 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

same chapter. For example, if you want to include different policy statements in
different types of certificates, you should create multiple instances of the policy
module and configure each instance with the appropriate policy OID and predicate
expression.

CertificateRenewalWindowExt Plug-in Module
The CertificateRenewalWindowExt plug-in module implements the certificate
renewal window extension policy. This policy enables you to configure Certificate
Management System to add the Certificate Renewal Window Extension to certificates.
The extension, which must be noncritical, aids in managing the life cycle of a
certificate by specifying a process to follow for renewing a certificate and by
defining a time window when automatic renewal of the certificate should be
attempted.

Every certificate issued by Certificate Management System has a validity period
beyond which it cannot be used. In order to continue to participate in the
PKI-using system beyond this validity period, the entity owning the certificate
must renew the certificate. Renewal of a certificate essentially means getting a new
certificate for the existing key pair with a new validity time period (and updated
attributes).

Once a certificate is issued, the owner of the certificate may attempt its renewal any
time. To prevent certificate owners from renewing their certificates too often and
thus reduce the overhead of processing new certificate requests, the CA can use a
policy that restricts the time period when certificate renewal may occur. For
example, the CA can use a policy that limits the renewal process to the last few
weeks or days of validity of the certificate, thus defining a certificate renewal
window. In general, the renewal window must be sufficient for the renewal to
occur, but at the same time delay the renewal as long as possible to best utilize a
certificate’s life time.

The certificate-renewal process is often different than the enrollment process an
entity uses to obtain the certificate; this is because the entity already owns a key
pair that is associated with his or her identity. For example, in Certificate
Management System, the certificate-renewal process for end users is different than
the enrollment process they used to obtain the certificate. To renew their
certificates, end users go to the certificate-renewal interface of Certificate
Management System and submit their original certificates; for details, see section
“Authentication of End Users During Certificate Renewal” in Chapter 15, “Setting
Up End-User Authentication” of CMS Installation and Setup Guide.

CertificateRenewalWindowExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 157

Because the renewal process requires end users to remember when their certificates
expire and renew them before the expiry date, some clients provide built-in
support for automated renewal. Inclusion of the certificate renewal window
extension in certificates is useful in a PKI setup with such clients; such a setup
eliminates the need for the owner of the certificate to manually submit a renewal
request to the CA and install the renewed certificate. For example, assume you
have deployed clients that can automatically submit certificate-renewal requests to
Certificate Management System. If you issue certificates with the certificate
renewal window extension to these clients, they can then read this extension for the
renewal window and automatically get the certificate renewed from the CA during
that window.

For a PKI setup without clients that can handle automated certificate renewals,
Certificate Management System enables administrators to easily manage certificate
renewals using the following features:

• The renewal notification job, which reminds users to renew their certificates
before they expire.

• The renewal constraints policy, which determines whether expired certificates
can be renewed; see “RenewalConstraints Plug-in Module” on page 103.

• The renewal validity constraints policy, which controls when users can renew
their certificates and what should be the validity period in renewed certificates;
see “RenewalValidityConstraints Plug-in Module” on page 106.

Unlike some of the other policy modules, Certificate Management System does not
create an instance of the certificate renewal window extension policy during
installation. If you want the server to add this extension to certificates, you must
create an instance of the CertificateScopeOfUseExt module and configure it. For
instructions, see section “Step 4. Add New Policy Rules” in Chapter 18, “Setting Up
Policies” of CMS Installation and Setup Guide.

Configuration Parameters of
CertificateRenewalWindowExt
In the CMS configuration file, the CertificateRenewalWindowExt module is
identified as <subsystem>.Policy.impl.CertificateRenewalWindowExt.
class=com.netscape.certsrv.policy.CertificateRenewalWindowExt, where
<subsystem> is ca or ra (prefix identifying the subsystem).

In the CMS window, the module is identified as CertificateRenewalWindowExt.
Figure 4-6 shows how the configurable parameters for the module are displayed in
the CMS window.

CertificateRenewalWindowExt Plug-in Module

158 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 4-6 Parameters defined in the CertificateRenewalWindowExt module

The configuration shown in Figure 4-6 creates a policy rule named
CertRenewWindowExtForClientCert, which enforces a rule that the server should
set the certificate renewal window extension in client certificates only; the renewal
window starts 30 days before a certificate expires and ends with certificate
expiration.

Table 4-6 gives details about each of these parameters.

Table 4-6 Description of parameters defined in the CertificateRenewalWindowExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled.

• Check the box to enable the rule (default). If you enable the rule and set the
remaining parameters correctly, the server adds the certificate renewal
window extension to certificates specified by the predicate parameter.

• Uncheck the box to disable the rule. If you disable the rule, the server does not
add the extension to certificates; it ignores the values in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied
to all certificate requests, leave the field blank (default). To form a predicate
expression, see section “Using Predicates in Policy Rules” in Chapter 18, “Setting
Up Policies” of CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

CertificateRenewalWindowExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 159

critical Specifies whether the extension should be marked critical or noncritical in
certificates specified by the predicate parameter. Check the box if you want the
server to mark the extension critical. Uncheck the box if you want the server to
mark the extension noncritical (default).

relativeBeginTime Specifies the first time automatic renewal of certificate that contains the extension
should be attempted.

Permissible values: 0 or n.

• 0 specifies that the renewal window begins at the same time the certificate is
issued; the beginTime field of the extension will be set to the time of
certificate issuance.

• n specifies a future time for certificate renewal; the beginTime field of the
extension will be set to the specified time since certificate issuance. You can
specify the time period in seconds, minutes, hours, days, or months. Use the
following suffixes to indicate the time unit.
s - seconds
m - minutes
h - hours
D - days
M - months
For example, if you’re issuing certificates with a validity period of two years
and want the renewal window to begin a month before the certificates expire,
and want to specify the interval in months, you would enter 23M in this field.
To specify the same validity interval in seconds, you would set the value to
59616000s (23 months x 30 days x 24 hours x 60 minutes x 60 seconds).

Example: 23M

Table 4-6 Description of parameters defined in the CertificateRenewalWindowExt module (Continued)

Parameter Description

CertificateRenewalWindowExt Plug-in Module

160 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

relativeEndTime Specifies the last opportunity for automatic renewal of the certificate that contains
this extension. Specifying a value for this parameter is optional; if you leave the
field blank, the certificate-using application is expected to use the expiration date
(notAfter value) in the certificate.

Permissible values: 0 or n.

• 0 specifies that the renewal window ends at the same time the certificate
expires; the endTime field of the extension will be set to the time the
certificate expires.

• n specifies a past or future time, in seconds, by which the certificate must be
renewed; the endTime field of the extension will be set to the specified time
since certificate issuance. You can specify the time period in seconds, minutes,
hours, days, or months. Use the following suffixes to indicate the time unit.
s - seconds
m - minutes
h - hours
D - days
M - months
For example, if you’re issuing certificates with a validity period of two years
and want the renewal window to end a month after the certificates expire, and
want to specify the interval in months, you would enter 25M in this field. On
the other hand, if you want the renewal window to end 15 days before
certificates expire, then you would set the value to 705D ((23 months x 30
days) + 15 days).
Note that if you choose to extend the renewal window after the expiration
date of the certificate itself, your CA must maintain appropriate status
information about the certificate during that window in order to allow
appropriate authentication in the renewal process. (Automatic renewal may
take place after the certificate has expired, when it is not valid for other
purposes.)

Example: 705D

Table 4-6 Description of parameters defined in the CertificateRenewalWindowExt module (Continued)

Parameter Description

CertificateScopeOfUseExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 161

CertificateScopeOfUseExt Plug-in Module
The CertificateScopeOfUseExt plug-in module implements the certificate scope
of use extension policy. This policy enables you to configure Certificate
Management System to add the Certificate Scope of Use Extension to certificates. The
extension enables you to specify a list of web sites that may request the use of a
particular certificate for SSL client authentication, thus aiding certificate-using
applications to select certificates to present to web sites and to control release of
these certificates.

The SSL protocol provides a way for a client application to authenticate itself to a
web site or server. SSL client authentication occurs upon request of the server, and
proceeds by providing a certificate and a signature to the server. The client may
have more than one certificate that could be used to perform this authentication.
The SSL protocol provides a way for the server to indicate which certificate may be
useful by listing issuing CAs in one of the SSL protocol messages.

By using a particular certificate for SSL client authentication, the client releases
information about itself to the server. This information may include the name and
key information contained in the certificate. It also releases the information that the
client holds a certificate from a particular CA. This information may be of interest
to the company running the server, for example to find users that have certificates
from competing companies.

The certificate scope of use extension can be included in certificates to restrict the
scope-of-use of the certificate for client authentication; the extension enables the
certificate-using application to restrict the release of individual certificates to web
sites requesting SSL client authentication.

The certificate scope of use extension policy in Certificate Management System
enables you to include a list of name patterns that will match server DNS names
where the certificate may be used. It’s up to the certificate-using applications to use
the values in this extension to filter the list of potential certificates to use for client
authentication.

Unlike some of the other policy modules, Certificate Management System does not
create an instance of the certificate scope of use extension policy during
installation. If you want the server to add this extension to certificates, you must
create an instance of the CertificateScopeOfUseExt module and configure it. For
instructions, see section “Step 4. Add New Policy Rules” in Chapter 18, “Setting Up
Policies” of CMS Installation and Setup Guide.

CertificateScopeOfUseExt Plug-in Module

162 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Configuration Parameters of
CertificateScopeOfUseExt
In the CMS configuration file, the CertificateScopeOfUseExt module is
identified as <subsystem>.Policy.impl.CertificateScopeOfUseExt.class=
com.netscape.certsrv.policy.CertificateScopeOfUseExt, where
<subsystem> is ca or ra (prefix identifying the subsystem).

In the CMS window, the module is identified as CertificateScopeOfUseExt.
Figure 4-7 shows how the configurable parameters for the module are displayed in
the CMS window.

Figure 4-7 Parameters defined in the CertificateScopeOfUseExt module

The configuration shown in Figure 4-7 creates a policy rule named
CertScopeOfUseExtForClientCert, which enforces a rule that the server should
set the certificate scope of use extension in client certificates only.

Table 4-7 gives details about each of these parameters.

CertificateScopeOfUseExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 163

Table 4-7 Description of parameters defined in the CertificateScopeOfUseExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled.

• Check the box to enable the rule (default). If you enable the rule and set the
remaining parameters correctly, the server adds the certificate scope of use
extension to certificates specified by the predicate parameter.

• Uncheck the box to disable the rule. If you disable the rule, the server does
not add the extension to certificates; it ignores the values in the remaining
fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be
applied to all certificate requests, leave the field blank (default). To form a
predicate expression, see section “Using Predicates in Policy Rules” in Chapter
18, “Setting Up Policies” of CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

critical Specifies whether the extension should be marked critical or noncritical in
certificates specified by the predicate parameter. Check the box if you want
the server to mark the extension critical. Uncheck the box if you want the server
to mark the extension noncritical (default).

numEntries Specifies the total number of sites to be contained or allowed in the extension.

By default, this field is set to 3 and the UI shows fields for configuring three
sites. You can change the total number of sites by changing the value assigned to
this parameter; there’s no restriction on the total number of sites you can
include in the extension.

Note that each site has its own set of configuration parameters and you must
specify appropriate values for each of those parameters; otherwise the policy
rule will return an error. Each set of configuration parameters is distinguished
by <n>, which is an integer derived from the value you assign in this field. For
example, if you set the numEntries parameter to 2, <n> would be 0 and 1.

Permissible values: 0 or n.

• 0 specifies that no sites can be contained in the extension.

• n specifies the total number of sites to be included in the extension; it must
be an integer greater than zero. The default is 3.

Example: 2

CertificateScopeOfUseExt Plug-in Module

164 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

entry<n>_name_type Specifies the general-name type for the site that you want to include in the
extension.

Permissible values: rfc822Name, directoryName, dNSName,
ediPartyName, URL, iPAddress, OID, or otherName.

• Select rfc822Name if the site is an Internet mail address.

• Select directoryName if the site is an X.500 directory name.

• Select dNSName if the site is a DNS name (default).

• Select ediPartyName if the site is a EDI party name.

• Select URL if the site is a uniform resource identifier.

• Select iPAddress if the site is an IP address.

• Select OID if the site is an object identifier.

• Select otherName if the site is in any other name form.

Example: URL

entry<n>_name Specifies the general-name value for the site you want to include in the
extension.

Permissible values: Depends on the general-name type you selected in the
entry<n>_name_type field.

• If you selected rfc822Name, the value must be a valid Internet mail address
in the local-part@domain format; see the definition of an rfc822Name
as defined in RFC 822 (http://www.ietf.org/rfc/rfc0822.txt).
You may use upper and lower case letters in the mail address; no
significance is attached to the case. For example, webSite@siroe.com.

• If you selected directoryName, the value must be a string form of X.500
name, similar to the subject name in a certificate, in the RFC 2253 syntax (see
http://www.ietf.org/rfc/rfc2253.txt). Note that RFC 2253
replaces RFC 1779. For example: CN=corpDirectory, OU=IS,
O=Siroe.com, C=US.

• If you selected dNSName, the value must be a valid domain name in the
preferred-name syntax as specified in RFC 1034
(http://www.ietf.org/rfc/rfc1034.txt). You may use upper and
lower case letters in the domain name; no significance is attached to the case.
Do not use the string “ ” for the DNS name. Also don’t use the DNS
representation for Internet mail addresses; such identities should be
encoded as rfc822Name. For example, webSite.siroe.com.

Table 4-7 Description of parameters defined in the CertificateScopeOfUseExt module (Continued)

Parameter Description

CertificateScopeOfUseExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 165

• If you selected ediPartyName, the value must be an IA5String. For
example, Siroe Corporation.

• If you selected URL, the value must be a non-relative URI, including both a
scheme (for example, http) and a fully qualified domain name or IP
address of the host. For example, http://webSite.siroe.com.

• If you selected iPAddress, the value must be a valid IP address (IPv4 or
IPv6) specified in dot-separated numeric component notation. The syntax
for specifying the IP address is as follows:
For IP version 4 (IPv4), the address should be in the form specified in RFC
791 (http://www.ietf.org/rfc/rfc0791.txt). IPv4 address must be
in the n.n.n.n format; for example, 128.21.39.40. IPv4 address with
netmask must be in the n.n.n.n,m.m.m.m format. For example,
128.21.39.40,255.255.255.00.
For IP version 6 (IPv6), the address should be in the form described in RFC
1884 (http://www.ietf.org/rfc/rfc1884.txt), with netmask
separated by a comma. Examples of IPv6 addresses with no netmask are
0:0:0:0:0:0:13.1.68.3 and FF01::43. Examples of IPv6 addresses
with netmask are 0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:
FFFF:FFFF:255.255.255.0 and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000.

• If you selected OID, the value must be a unique, valid OID specified in
dot-separated numeric component notation. Although you can invent your
own OIDs for the purposes of evaluating and testing this server, in a
production environment, you should comply with the ISO rules for defining
OIDs and for registering subtrees of IDs. See Appendix B, “Object
Identifiers” for information on allocating private OIDs. For example,
1.2.3.4.55.6.5.99.

• If you selected otherName, the value must be the absolute path to the file
that contains the base-64 encoded string for the site. For example,
/opt/SUNWcertsrv/certsrv47//opt/SUNWcertsrv/certsrv47/ex
t/aia/othername.txt.

entry<n>_port_
number

Specifies the port number.

Example: 8888

Table 4-7 Description of parameters defined in the CertificateScopeOfUseExt module (Continued)

Parameter Description

CRLDistributionPointsExt Plug-in Module

166 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

CRLDistributionPointsExt Plug-in Module
The CRLDistributionPointsExt plug-in module implements the CRL
distribution points extension policy. This policy enables you to configure
Certificate Management System to add the CRL Distribution Points Extension
defined in X.509 and PKIX standard RFC 2459 (see
http://www.ietf.org/rfc/rfc2459.txt) to certificates. This extension, when
present in a certificate, identifies one or more locations from where the application
that is validating the certificate can obtain the CRL information (to verify the
revocation status of the certificate).

For general guidelines on setting the CRL distribution points extension in
certificates, see “cRLDistributionPoints” on page 347.

The CRL distribution points extension policy in Certificate Management System
enables you to specify pointers to one or more CRL locations. The pointers can be
in these forms: the name of the X.500 directory that stores the CRL, the URI to the
location that contains the CRL, or both.

Note that in the current implementation, the policy supports only two name forms
for distribution points, X.500 Directory Name and URI; URIs described in this
document support two CRL retrieval mechanisms, LDAP-based and HTTP-based.
Optionally, each distribution point may contain a set of reason flags, indicating
what revocation reasons are covered by the CRL at that location. Also, the
distribution point location can be relative to the location of the issuer. In this last
case, the issuerName and issuerType parameters should be included to give the
location of the issuer.

You can modify the policy to support any name form by making appropriate
changes to the sample code provided for this purpose. The sample code is located
here: <server_root>/cms_sdk/cms_jdk/samples/policies

During installation, Certificate Management System automatically creates an
instance of the CRL distribution points extension policy. See
“CRLDistributionPointsExt Rule” on page 170.

Configuration Parameters of
CRLDistributionPointsExt
In the CMS configuration file, the CRLDistributionPointsExt module is
identified as <subsystem>.Policy.impl.CRLDistributionPointsExt.class=
com.netscape.certsrv.policy.CRLDistributionPointsExt, where
<subsystem> is ca or ra (prefix identifying the subsystem).

CRLDistributionPointsExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 167

In the CMS window, the module is identified as CRLDistributionPointsExt.
Figure 4-8 shows how the configurable parameters for the module are displayed in
the CMS window.

Figure 4-8 Description of parameters defined in the CRLDistributionPointsExt module

The configuration shown in Figure 4-8 creates a policy rule named
CRLDistPtsExtForRouterCert, which enforces a rule that the server should set
the CRL distribution point extension in router certificates; the CRL location is a
X.500 directory.

Table 4-8 gives details about each of these parameters.

Table 4-8 Description of parameters defined in the CRLDistributionPointsExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server adds
the CRL distribution points extension to certificates specified by the predicate
parameter.

• If you disable the rule, the server does not add the extension to certificates; it
ignores the values in the remaining fields.

CRLDistributionPointsExt Plug-in Module

168 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==CEP-Request

critical Specifies whether the extension should be marked critical or noncritical in certificates
specified by the predicate parameter. Check the box if you want the server to mark
the extension critical. Uncheck the box if you want the server to mark the extension
noncritical (default).

numPoints Specifies the total number of CRL distribution points to be contained or allowed in
the extension.

By default, this field is set to 3 and the UI shows fields for configuring three
distribution points. You can change the total number of distribution points by
changing the value assigned to this parameter; there’s no restriction on the total
number of distribution points you can include in the extension.

Note that each distribution point has its own set of configuration parameters and you
must specify appropriate values for each of those parameters; otherwise the policy
rule will return an error. Each set of configuration parameters is distinguished by
<n>, which is an integer derived from the value you assign in this field. For example,
if you set the numPoints parameter to 2, <n> would be 0 and 1.

Permissible values: 0 or n.

• 0 specifies that no distribution points can be contained in the extension.

• n specifies the total number of distribution points to be included in the extension;
it must be an integer greater than zero. The default is 3.

Example: 2

Table 4-8 Description of parameters defined in the CRLDistributionPointsExt module (Continued)

Parameter Description

CRLDistributionPointsExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 169

pointName<n> Specifies the name of the CRL distribution point.

Permissible values: Any supported name forms. By default, the name can be in any of
the following formats:

• An X.500 directory name in the RFC 2253 syntax (see
http://www.ietf.org/rfc/rfc2253.txt); note that RFC 2253 replaces RFC
1779. For example, the name would look similar to the subject name in a
certificate, like this: CN=CA Central, OU=Research Dept, O=Siroe Corp,
C=US

• A URI; for example, it would look similar to this:
http://testCA.siroe.com:80

• An RDN which specifies a location relative to the CRL Issuer. In this case, the value
of the pointType attribute must be RelativeToIssuer.

pointType<n> Specifies the type of the CRL distribution point.

Permissible values: DirectoryName, URI, or RelativeToIssuer. The type you
select must correspond to the value in the pointName field.

• Select DirectoryName if the value in the pointName field is an X.500 directory
name (default).

• Select URI if the value in the pointName field is a uniform resource indicator.

• Select RelativeToIssuer if the value in the pointName field is a location
relative to the CRL Issuer.

Example: URI

reasons<n> Specifies revocation reasons covered by the CRL maintained at the distribution point.

Permissible values: A comma-separated list of the following constants.

• unused

• keyCompromise

• cACompromise

• affiliationChanged

• superseded

• cessationOfOperation

• certificateHold

Example: keyCompromise

Table 4-8 Description of parameters defined in the CRLDistributionPointsExt module (Continued)

Parameter Description

CRLDistributionPointsExt Plug-in Module

170 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

CRLDistributionPointsExt Rule
The policy rule named CRLDistributionPointsExt is an instance of the
CRLDistributionPointsExt module. Certificate Management System
automatically creates this rule during installation. By default, the rule is configured
as follows:

• The rule is disabled; for the rule to be effective, it must be enabled and
configured appropriately.

• The predicate field is left blank so that the extension gets added to all
certificates.

• The extension is marked noncritical (to comply with the PKIX
recommendation).

• Other fields are left blank for you to enter the appropriate information.

issuerName<n> Specifies the name of the issuer that has signed the CRL maintained at distribution
point.

Permissible values: Any supported name forms. By default, the name can be in any of
the following formats:

• An X.500 directory name in the RFC 2253 syntax (see
http://www.ietf.org/rfc/rfc2253.txt); note that RFC 2253 replaces RFC
1779. For example, the name would look similar to this:
CN=CA Central, OU=Research Dept, O=Siroe Corp, C=US

• A URI; for example, it would look similar to this:
http://testCA.siroe.com:80

issuerType<n> Specifies the general-name type of the CRL issuer that has signed the CRL maintained
at distribution point.

Permissible values: DirectoryName or URI. The value you specify for this
parameter must correspond to the value in the issuerName field.

• Select DirectoryName if the value in the issuerName field is an X.500 directory
name (default).

• Select URI if the value in the issuerName field is a uniform resource indicator.

Example: DirectoryName

Table 4-8 Description of parameters defined in the CRLDistributionPointsExt module (Continued)

Parameter Description

ExtendedKeyUsageExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 171

For details on individual parameters defined in the rule, see Table 4-8 on page 167.
It is important that you review this rule and make the appropriate changes
required by your PKI setup. For instructions, see section “Step 2. Modify Existing
Policy Rules” in Chapter 18, “Setting Up Policies” of CMS Installation and Setup
Guide. For instructions on adding additional instances, see section “Step 4. Add
New Policy Rules” in the same chapter. For example, if you want to include
different CRL distribution points in different types of certificates, you should
create multiple instances of the policy module and configure each instance with the
appropriate CRL distribution point and predicate expression.

ExtendedKeyUsageExt Plug-in Module
The ExtendedKeyUsageExt plug-in module implements the extended key usage
extension policy. This policy enables you to configure Certificate Management
System to add the Extended Key Usage Extension defined in X.509 and PKIX
standard RFC 2459 (see http://www.ietf.org/rfc/rfc2459.txt) to certificates.
The extension identifies one or more purposes—in addition to or in place of the
basic purposes indicated in the key usage extension—for which the certified public
key may be used. For example, if the key usage extension identifies a key to be
used for signing, the extended key usage extension can further narrow down the
usage of the key for signing OCSP responses only or for signing Java applets only.
(For information on key usage extension, see “KeyUsageExt Plug-in Module” on
page 189.)

The PKIX standard suggests that organizations can define their own extended key
usage purposes, if there’s a need. Each key purpose must be identified by an OID,
which in turn must be defined in accordance with IANA or ITU-T Rec. X.660 |
ISO/IEC/ITU 9834-1. The standard also recommends that the extension may be
marked either critical or noncritical—mark the extension critical if you want to
restrict the usage of the certificate only for one of the key-usage purposes indicated
by the extension; mark the extension noncritical, when you want it to indicate the
intended purposes of the key, and not restrict the use of the certificate to the
indicated purposes (in this case, validating applications are expected to treat the
extension as an advisory field and may use it to identify the key, not its usage
purpose).

Table 4-9 lists the usages defined by PKIX for use with the extended key usage
extension.

ExtendedKeyUsageExt Plug-in Module

172 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Note that Windows 2000TM allows you to encrypt files on the hard disk, a feature
known as encrypted file system (EFS), using certificates that contain the Extended
Key Usage extension with the following two OIDs:

1.3.6.1.4.1.311.10.3.4 (this OID is for the EFS certificate)

1.3.6.1.4.1.311.10.3.4.1 (this OID is for the EFS recovery certificate)

The EFS recovery certificate is used by a recovery agent when a user loses the
private key and the data encrypted with that key needs to be used. Certificate
Management System supports the above two OIDs and allows you to issue
certificates containing extended key usage extension with these OIDs.

Normal user certificates should be created with only the EFS OID, not the recovery
OID.

For general guidelines on setting the extended key usage extension in certificates,
see “extKeyUsage” on page 348.

The extended key usage extension policy in Certificate Management System allows
setting of the key usage extension as defined in its X.509 definition. The policy
enables you to specify OIDs, that identify key usages, in the extension.

During installation, Certificate Management System automatically creates two
instances of the extended key usage extension policy. See “CODESigningExt Rule”
on page 175 and “OCSPSigningExt Rule” on page 176.

Table 4-9 PKIX usage definitions for the extended key usage extension

Usage OID

Server authentication 1.3.6.1.5.5.7.3.1

Client authentication 1.3.6.1.5.5.7.3.2

Code signing 1.3.6.1.5.5.7.3.3

Email 1.3.6.1.5.5.7.3.4

IPSec end system 1.3.6.1.5.5.7.3.5

IPSec tunnel 1.3.6.1.5.5.7.3.6

IPSec user 1.3.6.1.5.5.7.3.7

Timestamping 1.3.6.1.5.5.7.3.8

ExtendedKeyUsageExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 173

Configuration Parameters of
ExtendedKeyUsageExt
In the CMS configuration file, the ExtendedKeyUsageExt module is identified as
<subsystem>.Policy.impl.ExtendedKeyUsageExt.class=com.netscape.
certsrv.policy.ExtendedKeyUsageExt, where <subsystem> is ca or ra (prefix
identifying the subsystem).

In the CMS window, the module is identified as ExtendedKeyUsageExt. Figure 4-9
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 4-9 Parameters defined in the ExtendedKeyUsageExt module

The configuration shown in Figure 4-9 creates a policy rule named
CodeSigningExt, which enforces a rule that the extended key usage extension
should be set in object-signing certificates.

Table 4-10 gives details about each of these parameters.

ExtendedKeyUsageExt Plug-in Module

174 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Table 4-10 Description of parameters defined in the ExtendedKeyUsageExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server adds
the extended key usage extension to certificates specified by the predicate
parameter.

• If you disable the rule, the server does not add the extension to certificates; it
ignores the values in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==codeSignClient

critical Specifies whether the extension should be marked critical or noncritical in certificates
specified by the predicate parameter. Check the box if you want the server to mark
the extension critical (default). Uncheck the box if you want the server to mark the
extension noncritical.

numIds Specifies the total number of key-usage purposes to be contained or allowed in the
extension.

By default, this field is set to 10 and the UI shows fields for configuring ten key-usage
purposes. You can change the total number by changing the value assigned to this
parameter; there’s no restriction on the total number of key-usage purposes you can
include in the extension.

Note that for each key-usage purpose, you must specify a valid OID; otherwise the
policy rule will return an error. Configuration parameters for each key-usage
purposes is distinguished by <n>, which is an integer derived from the value you
assign in this field. For example, if you set the numIds parameter to 2, <n> would be
0 and 1.

Permissible values: 0 or n.

• 0 specifies that no key-usage purposes can be contained in the extension.

• n specifies the total number of key-usage purposes to be included in the
extension; it must be an integer greater than zero. The default value is 10.

Example: 1

ExtendedKeyUsageExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 175

CODESigningExt Rule
The rule named CODESigningExt is an instance of the ExtendedKeyUsageExt
module. Certificate Management System automatically creates this rule during
installation. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression is set (HTTP_PARAMS.certType==codeSignClient)
so that the extension gets added to object signing certificates only—these
certificates are used for signing objects.

• The extension is marked noncritical (to comply with the PKIX
recommendation).

• The extension contains a single key-usage purpose, which is identified by an
OID (id0=1.3.6.1.5.5.7.3.3). As shown in Table 4-9 on page 172, this OID
is designated for code signing.

Note that this policy rule must remain enabled if you want Certificate Management
System to issue object signing certificates with the correct extended key usage
extension.

For details on individual parameters defined in the rule, see Table 4-10 on
page 174. You need to review this rule and make the changes appropriate for your
PKI setup. For instructions, see section “Step 2. Modify Existing Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide. For
instructions on adding additional instances, see section “Step 4. Add New Policy
Rules” in the same chapter.

id<n> Specifies the OID that identifies a key-usage purpose.

Permissible values: A unique, valid OID specified in the dot-separated numeric
component notation. Depending on the key-usage purposes, you may choose to use
the OIDs designated by PKIX (listed in Table 4-9 on page 172) or define your own
OIDs. If you’re defining your own OID, it should be in the registered subtree of IDs
reserved for your company’s use. Although you can invent your own OIDs for the
purposes of evaluating and testing this server, in a production environment, you
should comply with the ISO rules for defining OIDs and for registering subtrees of
IDs. See Appendix B, “Object Identifiers” for information on allocating private OIDs.

Example: 2.16.840.1.113730.1.99

Table 4-10 Description of parameters defined in the ExtendedKeyUsageExt module (Continued)

Parameter Description

ExtendedKeyUsageExt Plug-in Module

176 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

OCSPSigningExt Rule
The rule named OCSPSigningExt is an instance of the ExtendedKeyUsageExt
module. Certificate Management System automatically creates this rule during
installation. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression is set (HTTP_PARAMS.certType==ocspResponder) so
that the extension gets added to an OCSP responder certificate only—the
certificate that corresponds to the key an online validation authority uses to
sign OCSP responses.

• The extension is marked noncritical (to comply with the PKIX
recommendation).

• The extension contains a single key-usage purpose, which is identified by an
OID (id0=1.3.6.1.5.5.7.3.9).

Note that this policy rule must remain enabled if your PKI setup includes a
CA-delegated OCSP responder and you want to issue an OCSP responder
certificate to that server; the rule adds the extended key usage extension to an
OCSP responder certificate indicating that the associated key can be used for
signing OCSP responses.

Here’s some background information that will help you understand why you
should set this extension in OCSP responder certificates:

The online certificate status protocol (OCSP) enables OCSP-compliant applications
to determine the revocation status of a certificate being validated. Certificate
Management System supports the OCSP service—you can configure a Certificate
Manager to publish CRLs to an online validation authority (also called OCSP
responder); for details, see Chapter 21, “Setting Up an OCSP Responder” of CMS
Installation and Setup Guide. If you configure Certificate Management System to
work with an OCSP responder, OCSP-compliant applications in your PKI setup
will be able to do real-time verification of certificates by querying the OCSP
responder for their revocation status. Note that these applications will be able to
query the OCSP responder only if the certificate being validated includes the
authority information access extension indicating the location of the OCSP
responder; for information on adding this extension to certificates, see
“AuthInfoAccessExt Plug-in Module” on page 136.

GenericASN1Ext Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 177

When queried by an application on the status of a certificate, the OCSP responder
sends a digitally signed response. To generate the signature, the responder needs
to use a key. Because the signature needs to be verified by the application that
sought the response, RFC 2560 recommends that the key used for signing an OCSP
response must belong to one of the following:

• The CA that has issued the certificate, the revocation status of which is being
requested.

• A trusted OCSP responder whose public key is trusted by the application that
requested the revocation status of the certificate (as a part of validating the
certificate).

• An OCSP responder that has been authorized by the CA (that has issued the
certificate being validated) to sign OCSP responses for certificates issued by
that CA.

In this type of deployment, the CA authorizes a responder to sign OCSP
responses on its behalf by issuing a specially marked certificate to the
responder. This certificate is called the OCSP responder certificate, and it enables
OCSP-compliant applications to identify the responder as a CA-designated
responder—a responder authorized to sign OCSP responses for all certificates
issued by the CA. The special marking that the CA includes in the certificate is
the extended key usage extension with a unique value, OCSPSigning. This
extension value indicates to OCSP-compliant applications that the key
associated with the certificate can be used for signing OCSP responses.

If you want to deploy a CA-delegated OCSP responder, the OCSPSigningExt rule
enables you to add the extended key usage extension (with OCSPSigning value) to
the OCSP responder certificate. In addition to this extension, the responder’s
signing certificate should also include the OCSP no check extension. For details, see
“OCSPNoCheckExt Plug-in Module” on page 220.

GenericASN1Ext Plug-in Module
The GenericASN1Ext plug-in module implements the generic ASN.1 extension
policy. This policy enables you to configure Certificate Management System to add
custom extensions to certificates. Using this policy, you can add as many ASN.1
type based-extensions as required without having to write any code. Further, it
eliminates the dependency on the command-line tools for generating base-64
encoded standard extensions from the x.509 extension classes.

GenericASN1Ext Plug-in Module

178 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The generic extension policy in Certificate Management System accepts custom
extensions in the form of object identifiers (OIDs) and values as DER-encoded
extension values. That is, for the server to add a custom extension to certificates it
issues, you need to first define the extension and then configure the server with
extension details.

Similar to a standard extension, you define a custom extension by defining an OID
and a ASN.1 structure.

• The OID must be specified in the dot-separated numeric component notation
(for example, 2.5.29.35). Although you can invent your own OIDs for the
purposes of evaluating and testing the server, in a production environment,
you should comply with the ISO rules for defining OIDs and for registering
subtrees of IDs. See Appendix B, “Object Identifiers” for information on
allocating private OIDs.

• The ASN.1 structure must be constructed from a sequence of DER-encoded
extension values.

The resulting extension would look similar to the way a standard extension
appears in certificates (as defined in RFC 2459):

Extension ::= SEQUENCE {
extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING }

In the policy configuration, the extnID field is defined by the oid parameter, the
critical field is defined by the critical parameter, and the extnValue field is
defined by evaluating the expression in the pattern parameter, which in turn is
defined by the attribute parameters. See Table 4-11 on page 180 for details on
individual parameters.

Typically, the application receiving the certificate checks the extension ID to
determine if it can recognize the ID. If it can, it uses the extension ID to determine
the type of value used. When adding your custom extension to certificates, keep in
mind that if the extension exists in a certificate and if it is marked critical, the
application validating the certificate must be able to interpret the extension, or else
it must reject the certificate. Since it’s unlikely that all applications will be able to
interpret your custom extensions, you should consider marking these extensions
noncritical.

GenericASN1Ext Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 179

Note that each instance of the policy can be configured to add one custom
extension only. To configure the server to add multiple custom extensions, create
multiple instances of the module, each with a distinct name and appropriate
configuration values. Also note that the policy allows you to encode simple
(possibly nested) SEQUENCEs. There is no support for CHOICE, SET, or ASN.1
tagging.

During installation, Certificate Management System automatically creates an
instance of the generic ASN.1 extension policy. See “GenericASN1Ext Rule” on
page 184.

Configuration Parameters of GenericASN1Ext
In the CMS configuration file, the GenericASN1Ext module is identified as
<subsystem>.Policy.impl.GenericASN1Ext.class=com.netscape.
certsrv.policy.GenericASN1Ext, where <subsystem> is ca or ra (prefix
identifying the subsystem).

In the CMS window, the module is identified as GenericASN1Ext. Figure 4-10
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 4-10 Parameters defined in the GenericASN1Ext module

GenericASN1Ext Plug-in Module

180 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The configuration shown in Figure 4-10 defines a custom extension named
testGenASN1Ext with OID 2.4.5.99. The extension is non-critical, and it will be
added to all certificates issued by the server. The expected dumpasn1 output (see
“dumpasn1 Tool” in CMS Command-Line Tools Guide) of the resulting extension,
would look like this:

337 30 148: SEQUENCE {
340 06 3: OBJECT IDENTIFIER '2 4 5 99'
345 04 140: OCTET STRING, encapsulates {
348 30 137: SEQUENCE {
351 13 24: PrintableString '1st data in 1st sequence'
377 16 24: IA5String '2nd data in 1st sequence'
403 13 32: PrintableString 'This is 3rd data in 1st

sequence'
437 04 10: OCTET STRING

: 11 22 33 44 A0 B0 C0 D0 E0 F0
449 30 37: SEQUENCE {
451 17 13: UTCTime '000406070000Z'
466 30 8: SEQUENCE {
468 01 1: BOOLEAN TRUE
471 06 3: OBJECT IDENTIFIER '2 4 5 100'

: }
476 04 10: OCTET STRING

: 11 22 33 44 A0 B0 C0 D0 E0 F0
: }
: }
: }
: }

Table 4-11 describes the configurable parameters of the generic ASN.1 extension
policy module.

Table 4-11 Description of parameters defined in the GenericASN1Ext module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule.
Uncheck the box to disable the rule (default).

• If you enable the rule and set the remaining parameters correctly, the server adds
the configured extension to certificates specified by the predicate parameter.

• If you disable the rule, the server does not add the extension to certificates; it
ignores the values in the remaining fields.

GenericASN1Ext Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 181

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

critical Specifies whether the extension should be marked critical or noncritical in certificates
specified by the predicate parameter. Check the box if you want the server to mark
the extension critical. Uncheck the box if you want the server to mark the extension
noncritical (default).

In general, you should make custom extensions noncritical if you want your
certificates supported by other applications. (Other applications most likely will not
understand your extension.)

name Specifies the name of the extension. The name is displayed when users view the
details of a certificate that includes the extension.

Permissible values: A unique name that corresponds to the OID specified by the oid
parameter.

Example: myCorp’sExtension

oid Specifies the OID assigned to the extension.

Permissible values: A valid OID specified in dot-separated numeric component
notation (see the example). Although you can invent your own OIDs for the purposes
of evaluating and testing this server, in a production environment, you should
comply with the ISO rules for defining OIDs and for registering subtrees of IDs. See
Appendix B, “Object Identifiers” for information on allocating private OIDs.

Example: 1.22.333.444.55.666

Table 4-11 Description of parameters defined in the GenericASN1Ext module (Continued)

Parameter Description

GenericASN1Ext Plug-in Module

182 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

pattern Specifies the pattern of the extension.

Permissible values: The pattern can be any sequence of supported ASN.1 type. Rules
for formulating the pattern are as follows:

• Each data component in the pattern must be represented by it’s predefined
attribute identifier, 0 to 9, and each sequence must be grouped by a pair of curly
brackets, {}.

• Each attribute identifier represented in the pattern must be fully defined in the
extension. For example, if you want to include attribute identifier 0, you must
specify values for attribure.0.type, attribure.0.source, and
attribure.0.value parameters.

No default value is assigned to this parameter.

Example: {{012}34}

attribute.<n>.
type

Specifies the data type for attribute n, where n is an identifier assigned to identify
parameters pertaining to a specific attribute. The value of n can be 0 to 9.

Permissible values: Integer, IA5String, OctetString, PrintableString,
UTCtime, OID, or Boolean.

• Select Integer for extensions that have ASN.1 INTEGER values (default). It’s
case insensitive and accepts an integer in decimal notation as value.

• Select IA5String for extensions that have ASN.1 IA5String values. It’s case
insensitive and accepts any normal string as value.

• Select OctetString for extensions that have ASN.1 OCTET STRING values. It’s
case insensitive and the value is dependent on data source. If the data source is
Value, the value must be in colon-separated, ASCII hexadecimal encoding
notation. If the data source is File, the server reads the attribute value from the
file specified.

• Select VisualString for extensions that have printing character sets of
International ASCII.

• Select PrintableString for extensions that have ASN.1 PrintableString values.
It’s case insensitive and accepts any normal string as value.

• Select UTCTime for site-defined extensions that have ASN.1 UTCTime values.

• Select OID for extensions that have ASN.1 OBJECT IDENTIFIER values.

• Select Boolean for extensions that have ASN.1 BOOLEAN values. It’s case
insensitive and accepts true or false as value.

Example: Integer

Table 4-11 Description of parameters defined in the GenericASN1Ext module (Continued)

Parameter Description

GenericASN1Ext Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 183

attribute.<n>.
source

Specifies the data source for attribute n in the extension, where n is an identifier
assigned to identify parameters pertaining to a specific attribute. The value of n can
be 0 to 9.

In some cases, it may be preferable to put the value of an attribute in a file, instead of
specifying it in the configuration parameters. This may be the case if the value of the
attribute is a long text file or octet-string, for example.

Permissible values: Value or File. (The attribute’s value parameter is interpreted
according to the value specified for this parameter.)

• Value specifies that the attribute’s value parameter is literally the value to be
inserted in the extension (default).

• File specifies that the attribute’s value parameter is a fully-qualified pathname
of a file containing the value to be inserted in the extension.

Example: Value

attribute.<n>.
value

Specifies the data value for attribute n, where n is an identifier assigned to identify
parameters pertaining to a specific attribute. The value of n can be 0 to 9.

Permissible values: Depends on the data type and source you selected.

• If the data type is Integer, enter an integer in decimal notation as value. For
example, 1234567890.

• If the data type is IA5String, enter a normal string as value. For example, Test
of IA5String.

• If the data type is OctetString and if the data source is Value, enter the value
in colon-separated ASCII hexadecimal encoding notation. For example,
11:22:33:44:A0:B0:C0:D0:E0:F0.
If data source is File, enter the complete file path, including the filename, in the
specified format. When specifying file path in a Window NT system do not use
the NT native file separator, the backward slash (\). Use Unix style file separator,
the forward slash (/), instead. For example,
C:/customExt/octet_string_value.txt.

• If the data type is PrintableString, enter a normal string as value. For
example, This_is_a_printable_string.

• If the data type is UTCTime, enter a date in mm/dd/yy format. For example, April
5, 2000 would be 4/5/00 and October 10, 2001 would be 10/10/01.

• If the data type is OID, enter a valid OID. For example, 11.33.234.99.

• If the data type is Boolean, enter true or false as value. For example, true.

Table 4-11 Description of parameters defined in the GenericASN1Ext module (Continued)

Parameter Description

IssuerAltNameExt Plug-in Module

184 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

GenericASN1Ext Rule
The rule named GenericASN1Ext is an instance of the GenericASN1Ext module.
Certificate Management System automatically creates this rule during installation.
By default, the rule is configured as follows:

• The rule is disabled; for the rule to be effective, it must be enabled and
configured appropriately.

• The predicate field is left blank so that the extension gets added to all
certificates the server issues.

• The extension is marked noncritical (to comply with the PKIX
recommendation).

• Other fields are left blank for you to enter the appropriate information.

For details on individual parameters defined in the rule, see Table 4-11 on
page 180. You need to review this rule and make the changes appropriate for your
PKI setup. For instructions, see section “Step 2. Modify Existing Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide. For
instructions on adding additional instances, see section “Step 4. Add New Policy
Rules” in the same chapter.

IssuerAltNameExt Plug-in Module
The IssuerAltNameExt plug-in module implements the issuer alternative name
extension policy. This policy enables you to configure Certificate Management
System to add the Issuer Alternative Name Extension defined in X.509 and PKIX
standard RFC 2459 (see http://www.ietf.org/rfc/rfc2459.txt) to certificates.
This extension enables binding of or associating Internet style identities—such as
Internet electronic mail address, a DNS name, an IP address, and a uniform
resource indicator (URI)— with the certificate issuer.

For general guidelines on setting the issuer alternative name extension, see
“issuerAltName” on page 350.

The issuer alternative name extension policy in Certificate Management System
allows setting of the issuer alternative name extension as defined in its X.509
definition. The policy enables you to associate the following alternative identities
to a CA, by including them in the extension:

• An rfc822 name

• A directory name

IssuerAltNameExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 185

• A DNS name

• An EDI party name

• A uniform resource indicator (URI)

• An IP address

• An object identifier (OID)

• Other Name

Unlike some of the other policy modules, Certificate Management System does not
create an instance of the issuer alternative name extension policy during
installation. If you want the server to add this extension to certificates, you must
create an instance of the IssuerAltNameExt module and configure it. For
instructions, see section “Step 4. Add New Policy Rules” in Chapter 18, “Setting Up
Policies” of CMS Installation and Setup Guide.

Configuration Parameters of IssuerAltNameExt
In the CMS configuration file, the IssuerAltNameExt module is identified as
<subsystem>.Policy.impl.IssuerAltNameExt.class=com.netscape.
certsrv.policy.IssuerAltNameExt, where <subsystem> is ca or ra (prefix
identifying the subsystem).

In the CMS window, the module is identified as IssuerAltNameExt. Figure 4-11
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 4-11 Parameters defined in the IssuerAltNameExt module

IssuerAltNameExt Plug-in Module

186 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The configuration shown in Figure 4-11 creates a policy rule named
IssuerAltNameExtForCACert, which enforces a rule that the server should set the
issuer alternative name extension in CA certificates only.

Table 4-12 gives details about each of these parameters.

Table 4-12 Description of parameters defined in the IssuerAltNameExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable
the rule (default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the
server adds the issuer alternative name extension to all certificates
specified by the predicate parameter.

• If you disable the rule, the server doesn’t add the extension to
certificates; it ignores the values in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be
applied to all certificate requests, leave the field blank (default). To form a
predicate expression, see section “Using Predicates in Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==ca

critical Specifies whether the extension should be marked critical or noncritical in
certificates specified by the predicate parameter. Check the box if you
want the server to mark the extension critical (default). Uncheck the box if
you want the server to mark the extension noncritical.

numGeneralNames Specifies the total number of alternative names or identities permitted in
the extension. Note that each name has a set of configuration
parameters—generalName<n>.generalNameChoice and
generalName<n>.generalNameValue—and you must specify
appropriate values for each of those parameters; otherwise the policy rule
will return an error. You can change the total number of identities by
changing the value specified in this field; there’s no restriction on the total
number of identities you can include in the extension. Each set of
configuration parameters is distinguished by <n>, which is an integer
derived from the value you assign in this field. For example, if you set the
numGeneralNames parameter to 2, <n> would be 0 and 1.

Permissible values: 0 or n.

• 0 specifies that no identities can be contained in the extension (default).

• n specifies the total number of identities to be included in the extension;
it must be an integer greater than zero. The default value is 8.

Example: 2

IssuerAltNameExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 187

generalName<n>.general
NameChoice

Specifies the general-name type for the alternative name you want to
include in the extension.

Permissible values: rfc822Name, directoryName, dNSName,
ediPartyName, URL, iPAddress, OID, or otherName.

• Select rfc822Name if the alternative name is an Internet mail address
(default).

• Select directoryName if the alternative name is an X.500 directory
name.

• Select dNSName if the alternative name is a DNS name.

• Select ediPartyName if the alternative name is a EDI party name.

• Select URL if the alternative name is a uniform resource locator (URL).

• Select iPAddress if the alternative name is an IP address.

• Select OID if the alternative name is an object identifier.

• Select otherName if the alternative name is in any other name form.

Example: rfc822Name

generalName<n>.general
NameValue

Specifies the general-name value for the alternative name you want to
include in the extension.

Permissible values: Depends on the general-name type you selected in the
generalName<n>.generalNameChoice field.

• If you selected rfc822Name, the value must be a valid Internet mail
address in the local-part@domain format; see the definition of an
rfc822Name as defined in RFC 822
(http://www.ietf.org/rfc/rfc0822.txt). You may use upper
and lower case letters in the mail address; no significance is attached to
the case. For example, testCA@siroe.com.

• If you selected directoryName, the value must be a string form of
X.500 name, similar to the subject name in a certificate, in the RFC 2253
syntax (see http://www.ietf.org/rfc/rfc2253.txt). Note that
RFC 2253 replaces RFC 1779. For example, CN=CA
Corp,OU=Research Dept,O=Siroe Corp, C=US.

Table 4-12 Description of parameters defined in the IssuerAltNameExt module (Continued)

Parameter Description

IssuerAltNameExt Plug-in Module

188 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

• If you selected dNSName, the value must be a valid domain name in the
preferred-name syntax as specified by RFC 1034
(http://www.ietf.org/rfc/rfc1034.txt). You may use upper
and lower case letters in the domain name; no significance is attached
to the case. Do not use the string “ ” for the DNS name. Also don’t use
the DNS representation for Internet mail addresses; such identities
should be encoded as rfc822Name. For example,
testCA.siroe.com.

• If you selected ediPartyName, the value must be an IA5String. For
example, Siroe Corporation.

• If you selected URL, the value must be a non-relative universal resource
identifier (URI) following the URL syntax and encoding rules specified
in RFC 1738. That is, the name must include both a scheme (for
example, http) and a fully qualified domain name or IP address of the
host. For example, http://testCA.siroe.com.

• If you selected iPAddress, the value must be a valid IP address (IPv4
or IPv6) specified in dot-separated numeric component notation. The
syntax for specifying the IP address is as follows:
For IP version 4 (IPv4), the address should be in the form specified in
RFC 791 (http://www.ietf.org/rfc/rfc0791.txt). IPv4
address must be in the n.n.n.n format; for example, 128.21.39.40.
IPv4 address with netmask must be in the n.n.n.n,m.m.m.m format.
For example, 128.21.39.40,255.255.255.00.
For IP version 6 (IPv6), the address should be in the form described in
RFC 1884 (http://www.ietf.org/rfc/rfc1884.txt), with
netmask separated by a comma. Examples of IPv6 addresses with no
netmask are 0:0:0:0:0:0:13.1.68.3 and FF01::43. Examples of
IPv6 addresses with netmask are 0:0:0:0:0:0:13.1.68.3,FFFF:
FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0 and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000.

• If you selected OID, the value must be a unique, valid OID specified in
the dot-separated numeric component notation. Although you can
invent your own OIDs for the purposes of evaluating and testing this
server, in a production environment, you should comply with the ISO
rules for defining OIDs and for registering subtrees of IDs. See
Appendix B, “Object Identifiers” for information on allocating private
OIDs. For example, 1.2.3.4.55.6.5.99.

• If you selected otherName, the value must be the absolute path to the
file that contains the base-64 encoded string of the alternative name.
For example,
/opt/SUNWcertsrv/certsrv47/ext/ian/othername.txt.

Table 4-12 Description of parameters defined in the IssuerAltNameExt module (Continued)

Parameter Description

KeyUsageExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 189

KeyUsageExt Plug-in Module
The KeyUsageExt plug-in module implements the key usage extension policy. This
policy enables you to configure Certificate Management System to add the Key
Usage Extension defined in X.509 and PKIX standard RFC 2459 (see
http://www.ietf.org/rfc/rfc2459.txt) to certificates. The extension specifies
the purposes for which the key contained in a certificate should be used—for
example, it specifies whether the key should be used for data signing, key
encipherment, or data encipherment—and thus enables you to restrict the usage of
a key pair to predetermined purposes.

The key usage extension is a string of boolean bit-flags, each bit identifying the
purpose for which a key is to be used. Table 4-13 lists the bits and their designated
purposes.

You can restrict the purposes for which a key pair (and thus the corresponding
certificate) should be used by setting the appropriate key-usage bits. For example,
if you want to restrict a key pair to be used for digital signature only, when issuing
the certificate you would add the key usage extension to the certificate with
digital_signature bit (or bit 0) set. For general guidelines on setting the key
usage extension in certificates, see “keyUsage” on page 351.

Table 4-13 Key usage extension bits and designated purposes

Bit Purpose

0 digitalSignature

1 nonRepudiation

2 keyEncipherment

3 dataEncipherment

4 keyAgreement

5 keyCertSign

6 cRLSign

7 encipherOnly

8 decipherOnly

KeyUsageExt Plug-in Module

190 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Note that you can specify which bits in the extension are to be set on both server
and client sides:

• On the server side, you set the bits by modifying the appropriate configuration
parameters that are defined in the key usage extension policy.

• On the client side, bits set in the key usage extension are formed from
pre-defined HTTP input variables that can be embedded as hidden values in
the enrollment forms. You specify which bits are to be set by adding the
appropriate HTTP variables to the enrollment forms. Table 4-14 lists the HTTP
input variables that correspond to key usage extension bits.

During installation, Certificate Management System automatically creates multiple
instances of the key usage extension policy suitable for various types of certificates
that you may want the server to issue. The default instances are named as follows:

• CMCertKeyUsageExt (For details, see “CMCertKeyUsageExt Rule” on
page 196.)

• RMCertKeyUsageExt (For details, see “RMCertKeyUsageExt Rule” on
page 197.)

• ServerCertKeyUsageExt (For details, see “ServerCertKeyUsageExt Rule” on
page 198.)

NOTE For all certificates, the key-usage-bits set on the server side (which is
governed by the policy) override the ones set on the client side.

Table 4-14 HTTP input variables for key usage extension bits

HTTP input variable Key usage extension bit

digital_signature digitalSignature (bit 0)

non_repudiation nonRepudiation (bit 1)

key_encipherment keyEncipherment (bit 2)

data_encipherment dataEncipherment (bit3)

key_agreement keyAgreement (bit4)

key_certsign keyCertsign (bit5)

crl_sign cRLSign (bit6)

encipher_only encipherOnly (bit7)

decipher_only decipherOnly (bit8)

KeyUsageExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 191

• ClientCertKeyUsageExt (For details, see “ClientCertKeyUsageExt Rule” on
page 199.)

• ObjSignCertKeyUsageExt (For details, see “ObjSignCertKeyUsageExt Rule” on
page 201.)

• CRLSignCertKeyUsageExt (For details, see “CRLSignCertKeyUsageExt” on
page 202.)

It is important that you review each policy instance and make the appropriate
changes required by your PKI setup. For instructions, see section “Step 2. Modify
Existing Policy Rules” in Chapter 18, “Setting Up Policies” of CMS Installation and
Setup Guide. For instructions on adding additional instances, see section “Step 4.
Add New Policy Rules” in the same chapter.

Additionally, as you’ll notice in Figure 4-13 through Figure 4-17, the default
enrollment forms provided for requesting various types of certificates (see
“Enrollment Forms” on page 57) include the appropriate HTTP input variables that
correspond to the key-usage bits. By default only variables that correspond to
key-usage bits that need to be set are included in the form.

Typically, you won’t have to change the key-usage bit setting by editing the
enrollment forms as you can do this easily by making the appropriate changes to
the policy instance (bits set on the server side override the ones set on the client
side). However, if you want to add new variables on the client side, you can do that
too. Be sure to add the new variable in the following format:

<input type="HIDDEN" name="variable_name" value=true>

where, variable_name can be any of the HTTP input variables listed in Table 4-14.

The value of an HTTP input variable corresponding to a key-usage bit must be
either true or false; any other value is considered equivalent to false. For
example, a value tree would be interpreted as false by the server. Note that
values true and false are case insensitive.

Configuration Parameters of KeyUsageExt
In the CMS configuration file, the KeyUsageExt module is identified as
<subsystem>.Policy.impl.KeyUsageExt.class=com.netscape.certsrv.
policy.KeyUsageExt, where <subsystem> is ca or ra (prefix identifying the
subsystem).

In the CMS window, the module is identified as KeyUsageExt. Figure 4-12 shows
how the configurable parameters for the module are displayed in the CMS
window.

KeyUsageExt Plug-in Module

192 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 4-12 Parameters defined in the KeyUsageExt module

The configuration shown in Figure 4-12 creates a policy rule named
KeyUsageExtForClientCert, which enforces a rule that the server should set the
key usage extension (digitalSignature, nonRepudiation, and keyEncipherment
bits) in client certificates.

Table 4-15 gives details about each of these parameters.

KeyUsageExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 193

Table 4-15 Description of parameters defined in the KeyUsageExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule, the server checks the key usage extension bits specified
in the remaining fields, and adds the extension with those bits to certificates
specified by the predicate parameter.

• If you disable the rule, the server does not add the extension to certificates; it
ignores the key usage extension-specific bits specified in the policy
configuration and in the enrollment forms.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate
expression, see section “Using Predicates in Policy Rules” in Chapter 18, “Setting
Up Policies” of CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

critical Specifies whether the extension should be marked critical or noncritical in
certificates specified by the predicate parameter. Check the box if you want the
server to mark the extension critical (default). Uncheck the box if you want the
server to mark the extension noncritical.

digitalSignature Specifies whether to set the digitalSignature bit (or bit 0) of the key usage
extension in certificates specified by the predicate parameter.

Permissible values: true, false, or HTTP_INPUT.

• Select true if you want the server to set the bit (default).

• Select false if you don’t want the server to set the bit.

• Select HTTP_INPUT if you want the server to check the certificate request for
the HTTP input variable corresponding to the digitalSignature bit and set
the bit accordingly. If the variable is set to true, the server sets the bit. If the
variable doesn’t exist or if it is set to false (or any other value), the server
doesn’t set the bit.

KeyUsageExt Plug-in Module

194 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

nonRepudiation Specifies whether to set the nonRepudiation bit (or bit 1) of the key usage
extension in certificates specified by the predicate parameter.

Permissible values: true, false, or HTTP_INPUT.

• Select true if you want the server to set the bit (default).

• Select false if you don’t want the server to set the bit.

• Select HTTP_INPUT if you want the server to check the certificate request for
the HTTP input variable corresponding to the nonRepudiation bit and set
the bit accordingly. If the variable is set to true, the server sets the bit. If the
variable doesn’t exist or if it is set to false (or any other value), the server
doesn’t set the bit.

keyEncipherment Specifies whether to set the keyEncipherment bit (or bit 2) of the key usage
extension in certificates specified by the predicate parameter.

Permissible values: true, false, or HTTP_INPUT.

• Select true if you want the server to set the bit (default).

• Select false if you don’t want the server to set the bit.

• Select HTTP_INPUT if you want the server to check the certificate request for
the HTTP input variable corresponding to the keyEncipherment bit and set
the bit accordingly. If the variable is set to true, the server sets the bit. If the
variable doesn’t exist or if it is set to false (or any other value), the server
doesn’t set the bit.

dataEncipherment Specifies whether to set the dataEncipherment bit (or bit 3) of the key usage
extension in certificates specified by the predicate parameter.

Permissible values: true, false, or HTTP_INPUT.

• Select true if you want the server to set the bit (default).

• Select false if you don’t want the server to set the bit.

• Select HTTP_INPUT if you want the server to check the certificate request for
the HTTP input variable corresponding to the dataEncipherment bit and set
the bit accordingly. If the variable is set to true, the server sets the bit. If the
variable doesn’t exist or if it is set to false (or any other value), the server
doesn’t set the bit.

Table 4-15 Description of parameters defined in the KeyUsageExt module (Continued)

Parameter Description

KeyUsageExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 195

keyAgreement Specifies whether to set the keyAgreement bit (or bit 4) of the key usage extension
in certificates specified by the predicate parameter.

Permissible values: true, false, or HTTP_INPUT.

• Select true if you want the server to set the bit (default).

• Select false if you don’t want the server to set the bit.

• Select HTTP_INPUT if you want the server to check the certificate request for
the HTTP input variable corresponding to the keyAgreement bit and set the
bit accordingly. If the variable is set to true, the server sets the bit. If the
variable doesn’t exist or if it is set to false (or any other value), the server
doesn’t set the bit.

keyCertsign Specifies whether to set the keyCertSign bit (or bit 5) of the key usage extension
in certificates specified by the predicate parameter.

Permissible values: true, false, or HTTP_INPUT.

• Select true if you want the server to set the bit (default).

• Select false if you don’t want the server to set the bit.

• Select HTTP_INPUT if you want the server to check the certificate request for
the HTTP input variable corresponding to the keyCertsign bit and set the bit
accordingly. If the variable is set to true, the server sets the bit. If the variable
doesn’t exist or if it is set to false (or any other value), the server doesn’t set
the bit.

cRLSign Specifies whether to set the cRLSign bit (or bit 6) of the key usage extension in
certificates specified by the predicate parameter.

Permissible values: true, false, or HTTP_INPUT.

• Select true if you want the server to set the bit (default).

• Select false if you don’t want the server to set the bit.

• Select HTTP_INPUT if you want the server to check the certificate request for
the HTTP input variable corresponding to the CRLsign bit and set the bit
accordingly. If the variable is set to true, the server sets the bit. If the variable
doesn’t exist or if it is set to false (or any other value), the server doesn’t set
the bit.

Table 4-15 Description of parameters defined in the KeyUsageExt module (Continued)

Parameter Description

KeyUsageExt Plug-in Module

196 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

CMCertKeyUsageExt Rule
The policy rule named CMCertKeyUsageExt is an instance of the KeyUsageExt
module. This rule is for setting the appropriate key-usage bits in Certificate
Manager CA signing certificates; see section “CA Signing Key Pair and Certificate”
in Chapter 14, “Managing CMS Keys and Certificates” of CMS Installation and Setup
Guide. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression (predicate=HTTP_PARAMS.certType==ca) ensures
that the rule is applied only to CA signing certificate requests.

• The extension is marked noncritical (to comply with the PKIX
recommendation).

encipherOnly Specifies whether to set the encipherOnly bit (or bit 7) of the key usage extension
in certificates specified by the predicate parameter.

Permissible values: true, false, or HTTP_INPUT.

• Select true if you want the server to set the bit (default).

• Select false if you don’t want the server to set the bit.

• Select HTTP_INPUT if you want the server to check the certificate request for
the HTTP input variable corresponding to the encipherOnly bit and set the
bit accordingly. If the variable is set to true, the server sets the bit. If the
variable doesn’t exist or if it is set to false (or any other value), the server
doesn’t set the bit.

decipherOnly Specifies whether to set the decipherOnly bit (or bit 8) of the key usage extension
in certificates specified by the predicate parameter.

Permissible values: true, false, or HTTP_INPUT.

• Select true if you want the server to set the bit (default).

• Select false if you don’t want the server to set the bit.

• Select HTTP_INPUT if you want the server to check the certificate request for
the HTTP input variable corresponding to the decipherOnly bit and set the
bit accordingly. If the variable is set to true, the server sets the bit. If the
variable doesn’t exist or if it is set to false (or any other value), the server
doesn’t set the bit.

Table 4-15 Description of parameters defined in the KeyUsageExt module (Continued)

Parameter Description

KeyUsageExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 197

• The server is configured to set digitalSignature, nonRepudiation,
keyCertsign, and cRLSign bits in CA signing certificates. Notice that the
key-usage bits specified in the default policy rule match the bits specified in the
enrollment form (ManCAEnroll.html) for requesting CA signing certificates
(see Figure 4-13).

Figure 4-13 Key usage bit-specific variables in the Certificate Manager enrollment form

RMCertKeyUsageExt Rule
The policy rule named RMCertKeyUsageExt is an instance of the KeyUsageExt
module. This rule is for setting the appropriate key-usage bits in Registration
Managers’ signing certificates; see section “Signing Key Pair and Certificate” in
Chapter 14, “Managing CMS Keys and Certificates” of CMS Installation and Setup
Guide. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression (HTTP_PARAMS.certType==ra) ensures that the rule
is applied only to Registration Manager signing certificate requests.

• The extension is marked noncritical (to comply with the PKIX
recommendation).

KeyUsageExt Plug-in Module

198 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

• The server is configured to set digitalSignature and nonRepudiation bits
in Registration Manager signing certificates. Notice that the key-usage bits
specified in the default policy rule match the bits specified in the enrollment
form (ManRAEnroll.html) for requesting Registration Manager signing
certificates (see Figure 4-14).

Figure 4-14 Key usage bit-specific variables in the Registration Manager enrollment form

ServerCertKeyUsageExt Rule
The policy rule named ServerCertKeyUsageExt is an instance of the KeyUsageExt
module. This rule is for setting the appropriate key-usage bits in SSL server
certificates. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression (HTTP_PARAMS.certType==server) ensures that the
rule is applied only to SSL server certificate requests.

• The extension is marked noncritical (to comply with the PKIX
recommendation).

• The server is configured to set digitalSignature, nonRepudiation,
keyEncipherment, and dataEncipherment bits in SSL server certificates.
Notice that the key-usage bits specified in the default policy rule match the bits
specified in the enrollment form (ManServerEnroll.html) for requesting SSL
server certificates (see Figure 4-15).

KeyUsageExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 199

Figure 4-15 Key usage bit-specific variables in the SSL server certificate enrollment form

ClientCertKeyUsageExt Rule
The policy rule named ClientCertKeyUsageExt is an instance of the KeyUsageExt
module. This rule is for setting the appropriate key-usage bits in SSL client
certificates. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression (HTTP_PARAMS.certType==client) ensures that the
rule is applied only to SSL client certificate requests.

• The extension is marked noncritical (to comply with the PKIX
recommendation).

• The server is configured to set digitalSignature, nonRepudiation, and
keyEncipherment key-usage bits in SSL client certificates.

Notice that the key-usage bits specified in the default policy rule match the bits
specified in the enrollment form for requesting SSL client certificates. Figure 4-16
shows the default directory-based enrollment form for end users with the
information related to the key usage extension variables highlighted—it shows
three of the total number of variables listed in Table 4-14 on page 190. Note that by
default three key-usage bits—digitalSignature, nonRepudiation, and
keyEncipherment—are enabled and the remaining bits are disabled.

KeyUsageExt Plug-in Module

200 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Additionally, also notice the HTTP variables for the Netscape certificate type
extension: the values indicate that the certificate is meant for S/MIME and SSL
client authentication use only. (For details on Netscape certificate type extension,
see “NSCertTypeExt Plug-in Module” on page 215.)

Figure 4-16 Key usage extension bits in the directory-based enrollment form

Keep in mind that for requesting client certificates, there are many enrollment
forms. You may be using a combination of them:

• Certificate-based enrollment forms (CertBasedDualEnroll.html,
CertBasedEncryptionEnroll.html, or CertBasedSingleEnroll.html)

• Directory-based enrollment form (DirUserEnroll.html)

• Directory- and PIN-based enrollment form (DirPinUserEnroll.html)

• Manual enrollment form (ManUserEnroll.html)

• NIS-based enrollment form (NISEnroll.html)

• Portal enrollment form (PortalEnrollment.html)

For details about these forms, see “Enrollment Forms” on page 57.

KeyUsageExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 201

Each of these forms embed HTTP input variables (for key-usage bits) that are
considered appropriate for the certificate being requested using that form. If you
want, you may create additional instances of the key usage extension policy, one
each for each client certificate enrollment form and configure these instances as
appropriate. Be sure to use the correct predicate expression to distinguish the
certificates to thus avoid setting incorrect bits.

ObjSignCertKeyUsageExt Rule
The policy rule named ObjSignCertKeyUsageExt is an instance of the
KeyUsageExt module. This rule is for setting the appropriate key-usage bits in
object signing certificates. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression
(predicate=HTTP_PARAMS.certType==objSignClient) ensures that the rule
is applied to only object signing certificate requests.

• The extension is marked noncritical (to comply with the PKIX
recommendation).

• The server is configured to set digitalSignature and keyCertsign bits in
object-signing certificates. Notice that the key-usage bits specified in the
default policy rule match the bits specified in the enrollment form
(ManObjSignEnroll.html) for requesting object-signing certificates (see
Figure 4-17).

Figure 4-17 Key usage extension bits in the object signing certificate enrollment form

NameConstraintsExt Plug-in Module

202 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

CRLSignCertKeyUsageExt
The policy rule named CrlSignCertKeyUsageExt is an instance of the
KeyUsageExt module. This rule is for setting the appropriate key-usage bits in a
CRL signing certificate. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression
(predicate=HTTP_PARAMS.certType==caCrlSigning) ensures that the rule is
applied to only CRL signing certificate requests.

• The server is configured to set the cRLSign bit in CRL signing certificates.

NameConstraintsExt Plug-in Module
The NameConstraintsExt plug-in module implements the name constraints
extension policy. This policy enables you to configure Certificate Management
System to add the Name Constraints Extension defined in X.509 and PKIX standard
RFC 2459 (see http://www.ietf.org/rfc/rfc2459.txt) to certificates. The
extension is used in CA certificates to indicate a name space within which subject
names or subject alternative names in subsequent certificates in a certification path
or chain should be located.

Various standards describe how the name constraints extension should be
processed during certificate verification. It’s beyond the scope of this document to
explain this. For general guidelines on setting the name constraints extension in
certificates, see “nameConstraints” on page 354.

The policy implemented in Certificate Management System allows setting of the
name constraints extension in any form as defined in its X.509 definition; the policy
enables you to specify the number of subtrees permitted and excluded in the
extension. It is up to applications to process the extension as described in the
standards.

During installation, Certificate Management System automatically creates an
instance of the name constraints extension policy. See “NameConstraintsExt Rule”
on page 210.

NameConstraintsExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 203

Configuration Parameters of
NameConstraintsExt
In the CMS configuration file, the NameConstraintsExt module is identified as
ca.Policy.impl.NameConstraintsExt.class=com.netscape.certsrv.
policy.NameConstraintsExt.

In the CMS window, the module is identified as NameConstraintsExt. Figure 4-18
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 4-18 Parameters defined in the NameConstraintsExt module

The configuration shown in Figure 4-18 creates a policy rule named
NameConsExtForCACert, which enforces a rule that the server should set the name
constraints extension as a critical extension in CA certificates.

Table 4-16 gives details about each of these parameters.

NameConstraintsExt Plug-in Module

204 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Table 4-16 Description of parameters defined in the NameConstraintsExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable
the rule (default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the
server adds the name constraints extension to all certificates specified
by the predicate parameter.

• If you disable the rule, the server doesn’t add the extension to
certificates; it ignores the values in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be
applied to all certificate requests, leave the field blank (default). To form a
predicate expression, see section “Using Predicates in Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==ca

critical Specifies whether the extension should be marked critical or noncritical in
certificates specified by the predicate parameter. Check the box if you
want the server to mark the extension critical (default). Uncheck the box if
you want the server to mark the extension noncritical.

numPermittedSubtrees Specifies the total number of subtrees to be permitted in the extension.
Note that each permitted subtree has a set of configuration parameters and
you must specify appropriate values for each of these parameters;
otherwise the policy rule will return an error.

You can change the total number of permitted subtrees by changing the
value in this field; there’s no restriction on the total number of permitted
subtrees you can include in the extension. Each set of configuration
parameters is distinguished by <n>, which is an integer derived from the
value you assign in this field. For example, if you set the
numPermittedSubtrees parameter to 2, <n> would be 0 and 1.

Permissible values: 0 or n.

• 0 specifies that no permitted subtrees can be contained in the extension.

• n specifies the total number of permitted subtrees to be included in the
extension; it must be an integer greater than zero. The default value is
8.

Example: 2

NameConstraintsExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 205

numExcludedSubtrees Specifies the total number of subtrees to be excluded in the extension. Note
that each excluded subtree has a set of configuration parameters and you
must specify appropriate values for each of these parameters; otherwise
the policy rule will return an error.

You can change the total number of excluded subtrees by changing the
value in this field; there’s no restriction on the total number of excluded
subtrees you can include in the extension. Each set of configuration
parameters is distinguished by <n>, which is an integer derived from the
value you assign in this field. For example, if you set the
numExcludedSubtrees parameter to 2, <n> would be 0 and 1.

Permissible values: 0 or n.

• 0 specifies that no excluded subtrees can be contained in the extension.

• n specifies the total number of excluded subtrees to be included in the
extension; it must be an integer greater than zero. The default value is
8.

Example: 2

permittedSubtrees<n>.
base.generalNameChoice

Specifies the general-name type for the permitted subtree you want to
include in the extension.

Permissible values: rfc822Name, directoryName, dNSName,
ediPartyName, URI, iPAddress, registeredID, or otherName.

• Select rfc822Name if the subtree is an Internet mail address (default).

• Select directoryName if the subtree is an X.500 directory name.

• Select dNSName if the subtree is a DNS name.

• Select ediPartyName if the subtree is a EDI party name.

• Select URL if the subtree is a uniform resource locator.

• Select iPAddress if the subtree is an IP address.

• Select OID if the subtree is an object identifier.

• Select otherName if the subtree is in any other name form.

Example: directoryName

Table 4-16 Description of parameters defined in the NameConstraintsExt module (Continued)

Parameter Description

NameConstraintsExt Plug-in Module

206 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

permittedSubtrees<n>.
base.generalNameValue

Specifies the general-name value for the permitted subtree you want to
include in the extension.

Permissible values: Depends on the general-name type you selected in the
permittedSubtrees<n>.base.generalNameChoice field.

• If you selected rfc822Name, the value must be a valid Internet mail
address in the local-part@domain format; see the definition of an
rfc822Name as defined in RFC 822
(http://www.ietf.org/rfc/rfc0822.txt). You may use upper
and lower case letters in the mail address; no significance is attached to
the case. For example, testCA@siroe.com.

• If you selected directoryName, the value must be a string form of
X.500 name, similar to the subject name in a certificate, in the RFC 2253
syntax (see http://www.ietf.org/rfc/rfc2253.txt). Note that
RFC 2253 replaces RFC 1779. For example, CN=SubCA, OU=Research
Dept, O=SiroeCorp, C=US.

• If you selected dNSName, the value must be a valid domain name in the
preferred-name syntax as specified by RFC 1034
(http://www.ietf.org/rfc/rfc1034.txt). You may use upper
and lower case letters in the domain name; no significance is attached
to the case. Do not use the string “ ” for the DNS name. Also don’t use
the DNS representation for Internet mail addresses; such identities
should be encoded as rfc822Name. For example,
testCA.siroe.com.

• If you selected ediPartyName, the value must be a IA5String. For
example, Siroe Corporation.

• If you selected URL, the value must be a non-relative universal resource
identifier (URI) following the URL syntax and encoding rules specified
in RFC 1738. That is, the name must include both a scheme (for
example, http) and a fully qualified domain name or IP address of the
host. For example, http://testCA.siroe.com.

Table 4-16 Description of parameters defined in the NameConstraintsExt module (Continued)

Parameter Description

NameConstraintsExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 207

• If you selected iPAddress, the value must be a valid IP address (IPv4
or IPv6) specified in the dot-separated numeric component notation.
The syntax for specifying the IP address is as follows:
For IP version 4 (IPv4), the address should be in the form specified in
RFC 791 (http://www.ietf.org/rfc/rfc0791.txt). IPv4
address must be in the n.n.n.n format; for example, 128.21.39.40.
IPv4 address with netmask must be in the n.n.n.n,m.m.m.m format.
For example, 128.21.39.40,255.255.255.00.
For IP version 6 (IPv6), the address should be in the form described in
RFC 1884 (http://www.ietf.org/rfc/rfc1884.txt), with
netmask separated by a comma. Examples of IPv6 addresses with no
netmask are 0:0:0:0:0:0:13.1.68.3 and FF01::43. Examples of
IPv6 addresses with netmask are 0:0:0:0:0:0:13.1.68.3,FFFF:
FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0 and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000.

• If you selected OID, the value must be a unique, valid OID specified in
dot-separated numeric component notation. Although you can invent
your own OIDs for the purposes of evaluating and testing this server,
in a production environment, you should comply with the ISO rules for
defining OIDs and for registering subtrees of IDs. See Appendix B,
“Object Identifiers” for information on allocating private OIDs. For
example, 1.2.3.4.55.6.5.99.

• If you selected otherName, the value must be the absolute path to the
file that contains the base-64 encoded string of the subtree. For
example,
/opt/SUNWcertsrv/certsrv47/ext/nc/othername.txt.

permittedSubtrees<n>.
min

Specifies the minimum number of permitted subtrees.

Permissible values: -1, 0, or n.

• -1 specifies that the field should not be set in the extension.

• 0 specifies that the minimum number of subtrees is zero (default).

• n must be an integer that is greater than zero. It specifies at the most n
subtrees are allowed.

Example: 0

Table 4-16 Description of parameters defined in the NameConstraintsExt module (Continued)

Parameter Description

NameConstraintsExt Plug-in Module

208 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

permittedSubtrees<n>.
max

Specifies the maximum number of permitted subtrees.

Permissible values: -1, 0, or n.

• -1 specifies that the field should not be set in the extension (default).

• 0 specifies that the maximum number of subtrees is zero.

• n must be an integer that is greater than zero. It specifies at the most n
subtrees are allowed.

Example: 1

excludedSubtrees<n>.
base.generalNameChoice

Specifies the general-name type for the excluded subtree you want to
include in the extension.

Permissible values: rfc822Name, directoryName, dNSName,
ediPartyName, URL, iPAddress, OID, or otherName.

• Select rfc822Name if the subtree is an Internet mail address.

• Select directoryName if the subtree is an X.500 directory name.

• Select dNSName if the subtree is a DNS name.

• Select ediPartyName if the subtree is a EDI party name.

• Select URL if the subtree is a uniform resource locator.

• Select iPAddress if the subtree is an IP address.

• Select OID if the subtree is an object identifier.

• Select otherName if the subtree is in any other name form.

Example: OID

excludedSubtrees<n>.
base.generalNameValue

Specifies the general-name value for the excluded subtree you want to
include in the extension.

Permissible values: Depends on the general-name type you selected in the
excludedSubtrees<n>.base.generalNameChoice field.

• If you selected rfc822Name, the value must be a valid Internet mail
address in the local-part@domain format; see the definition of an
rfc822Name as defined in RFC 822
(http://www.ietf.org/rfc/rfc0822.txt). You may use upper
and lower case letters in the mail address; no significance is attached to
the case. For example, testCA@siroe.com.

Table 4-16 Description of parameters defined in the NameConstraintsExt module (Continued)

Parameter Description

NameConstraintsExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 209

• If you selected directoryName, the value must be a string form of
X.500 name, similar to the subject name in a certificate, in the RFC 2253
syntax (see http://www.ietf.org/rfc/rfc2253.txt). Note that
RFC 2253 replaces RFC 1779. For example, CN=SubCA,OU=Research
Dept,O=Siroe Corp,C=US.

• If you selected dNSName, the value must be a valid domain name in the
preferred-name syntax as specified by RFC 1034
(http://www.ietf.org/rfc/rfc1034.txt). You may use upper
and lower case letters in the domain name; no significance is attached
to the case. Do not use the string “ ” for the DNS name. Also don’t use
the DNS representation for Internet mail addresses; such identities
should be encoded as rfc822Name. For example,
testCA.siroe.com.

• If you selected ediPartyName, the value must be an IA5String. For
example, Siroe Corporation.

• If you selected URL, the value must be a non-relative universal resource
identifier (URI) following the URL syntax and encoding rules specified
in RFC 1738. That is, the name must include both a scheme (for
example, http) and a fully qualified domain name or IP address of the
host. For example, http://testCA.siroe.com.

• If you selected iPAddress, the value must be a valid IP address (IPv4
or IPv6) specified in the dot-separated numeric component notation.
The syntax for specifying the IP address is as follows:
For IP version 4 (IPv4), the address should be in the form specified in
RFC 791 (http://www.ietf.org/rfc/rfc0791.txt). IPv4
address must be in the n.n.n.n format; for example, 128.21.39.40.
IPv4 address with netmask must be in the n.n.n.n,m.m.m.m format.
For example, 128.21.39.40,255.255.255.00.
For IP version 6 (IPv6), the address should be in the form described in
RFC 1884 (http://www.ietf.org/rfc/rfc1884.txt), with
netmask separated by a comma. Examples of IPv6 addresses with no
netmask are 0:0:0:0:0:0:13.1.68.3 and FF01::43. Examples of
IPv6 addresses with netmask are 0:0:0:0:0:0:13.1.68.3,FFFF:
FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0 and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000.

• If you selected OID, the value must be a unique, valid OID specified in
dot-separated numeric component notation. For example,
1.2.3.4.55.6.5.99.

Table 4-16 Description of parameters defined in the NameConstraintsExt module (Continued)

Parameter Description

NameConstraintsExt Plug-in Module

210 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

NameConstraintsExt Rule
The policy rule named NameConstraintsExt is an instance of the
NameConstraintsExt module. Certificate Management System automatically
creates this rule during installation. By default, the rule is configured as follows:

• The rule is disabled; for the rule to be effective, it must be enabled and
configured appropriately.

• The predicate expression is set (predicate=HTTP_PARAMS.certType==ca) so
that the extension gets added to CA certificates only.

• The extension is marked critical (to comply with the PKIX recommendation).

• The total number of permitted subtrees to be contained in the extension is set
to 3 (numPermittedSubtrees=3).

• If you selected otherName, the value must be the absolute path to the
file that contains the base-64 encoded string of the subtree. For
example,
/opt/SUNWcertsrv/certsrv47/ext/nc/othername.txt.

excludedSubtrees<n>.
min

Specifies the minimum number of excluded subtrees.

Permissible values: -1, 0, or n.

• -1 specifies that the field should not be set in the extension.

• 0 specifies that the minimum number of subtrees is zero (default).

• n must be an integer that is greater than zero. It specifies at the most n
subtrees are allowed.

Example: 0

excludedSubtrees<n>.
max

Specifies the maximum number of excluded subtrees.

Permissible values: -1, 0, or n.

• -1 specifies that the field should not be set in the extension (default).

• 0 specifies that the maximum number of subtrees is zero.

• n must be an integer that is greater than zero. It specifies at the most n
subtrees are allowed.

Example: 1

Table 4-16 Description of parameters defined in the NameConstraintsExt module (Continued)

Parameter Description

NSCCommentExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 211

• The total number of excluded subtrees to be contained in the extension is set to
3 (numExcludedSubtrees=3).

• The maximum number of permitted subtrees is set to -1
(permittedSubtrees<n>.max=-1) and the minimum number of permitted
subtrees is set to 0 (permittedSubtrees<n>.min=0).

• The maximum number of excluded subtrees is set to -1
(excludedSubtrees<n>.max=-1) and the minimum number of excluded
subtrees is set to 0 (excludedSubtrees<n>.min=0).

• The general name type and value fields for each subtree are left blank for you
to select or enter the appropriate values.

For details on individual parameters defined in the rule, see Table 4-16 on
page 204. You need to review this rule and make the changes appropriate for your
PKI setup. For instructions, see section “Step 2. Modify Existing Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide. For
instructions on adding additional instances, see section “Step 4. Add New Policy
Rules” in the same chapter.

NSCCommentExt Plug-in Module
The NSCCommentExt plug-in module implements the Netscape certificate comment
extension policy. This policy enables you to configure Certificate Management
System to add the Netscape Certificate Comment Extension (see
http://www.netscape.com/eng/security/cert-exts.html) to certificates. The
extension can be used to include textual comments in certificates. Applications that
are capable of interpreting the comment may display it to a relying party when the
certificate is used or viewed.

For general guidelines on setting the Netscape certificate comment extension, see
“netscape-comment” on page 371.

The Netscape certificate comment extension policy in Certificate Management
System allows you to specify a textual statement or a comment to be included in
certificates. You may choose to directly embed the text in the certificate itself or
point to the file that contains the statement.

During installation, Certificate Management System automatically creates an
instance of the Netscape certificate comment extension policy. See
“NSCCommentExt Rule” on page 214.

NSCCommentExt Plug-in Module

212 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Configuration Parameters of NSCCommentExt
In the CMS configuration file, the NSCCommentExt module is identified as
<subsystem>.Policy.impl.NSCCommentExt.class=com.netscape.
certsrv.policy.NSCCommentExt, where <subsystem> is ca or ra (prefix
identifying the subsystem).

In the CMS window, the module is identified as NSCCommentExt. Figure 4-19
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 4-19 Parameters defined in the NSCCommentExt module

The configuration shown in Figure 4-19 creates a policy rule named
NetscapeCommentExtForClientCert, which enforces a rule that the server should
set the Netscape certificate comment extension in client certificates.

Table 4-17 provides details for each of these parameters.

NSCCommentExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 213

Table 4-17 Description of parameters defined in the NSCCommentExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule.
Uncheck the box to disable the rule (default).

• If you enable the rule and set the remaining parameters correctly, the server adds
the Netscape certificate comment extension to certificates specified by the
predicate parameter. If you enable the policy without specifying values in
displayText and commentfile fields, the server puts an empty string in the
comment extension.

• If you disable the rule, the server does not add the extension to certificates; it
ignores the values in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

critical Specifies whether the extension should be marked critical or noncritical in certificates
specified by the predicate parameter. Check the box if you want the server to mark
the extension critical. Uncheck the box if you want the server to mark the extension
noncritical (default).

inputType Specifies whether to embed a textual statement or to include a pointer to file that
contains the textual statement in certificates. The extension value is interpreted
according to the value specified for this parameter.

You should consider putting the textual statement in a file because certain
applications may not have the capability to display the text embedded in certificates.
Also, embedding a textual statement in a certificate increases its size. If you’re using
smart cards for generating and storing certificates, you may not want to embed
textual statements in certificates because on a smart card the memory for a certificate
may be limited.

Permissible values: Text or File.

• Text specifies that the textual statement—the value of the displayText field—
should be inserted in the extension (default).

• File specifies that the path to the file that contains the textual statement—the
value of the commentfile field—should be inserted in the extension.

Example: File

NSCCommentExt Plug-in Module

214 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

NSCCommentExt Rule
The policy rule named NSCCommentExt is an instance of the NSCCommentExt
module. Certificate Management System automatically creates this rule during
installation. By default, the rule is configured as follows:

• The rule is disabled; for the rule to be effective, it must be enabled and
configured appropriately.

• The predicate field is left blank so that the extension gets added to all
certificates.

• The extension is marked noncritical.

• The textual statement is to be embedded in certificates (inputType=Text).

• The displayText and commentfile fields are left blank for you to enter the
appropriate information.

For details on individual parameters defined in the rule, see Table 4-17 on
page 213. You need to review this rule and make the changes appropriate for your
PKI setup. For instructions, see section “Step 2. Modify Existing Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide. For
instructions on adding additional instances, see section “Step 4. Add New Policy
Rules” in the same chapter.

displayText Specifies the textual statement that should be included in certificates. If you want to
embed a textual statement (for example, your company’s legal notice) in certificates,
then add that statement here. The text you enter here will be displayed to a relying
party when the certificate is used or viewed.

Permissible values: A string with up to 200 characters.

Example: SiroeCorp’s CPS incorp. by reference liab. ltd.
 (c)99 SiroeCorp

commentfile Specifies the path to the file that contains the textual statement that should be
included in certificates; be sure to include the complete path, including the filename.
Note that the existence of the file is not checked at the time of policy configuration.
The filename will be checked when the policy is applied to a request.

Example: C:\CApolicies\UserCertpolicy.txt

Table 4-17 Description of parameters defined in the NSCCommentExt module (Continued)

Parameter Description

NSCertTypeExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 215

NSCertTypeExt Plug-in Module
The NSCertTypeExt plug-in module implements the Netscape certificate type
extension policy. This policy enables you to configure Certificate Management
System to add the Netscape Certificate Type extension to certificates. The extension
identifies the certificate type—for example, it identifies whether the certificate is a
CA certificate, server SSL certificate, client SSL certificate, object signing certificate,
or S/MIME certificate—and thus enables you to restrict the usage of a certificate to
predetermined purposes.

• If the extension exists in a certificate, it limits the uses of the certificate to those
specified (it limits the applications for a certificate).

• If the extension is not present, the certificate can be used for all applications
except object signing.

The Netscape certificate type extension is a string of boolean bit-flags, each bit
identifying the purpose for which a certificate to be used. Table 4-18 lists the bits
and their designated purposes. The extension has no default value.

Table 4-18 Netscape certificate type extension bits and designated purposes

Bit Purpose Description

0 SSL Client Specifies that the certificate can be used by clients for authentication
during SSL connections.

1 SSL Server Specifies that the certificate can be used by servers for authentication
during SSL connections.

2 S/MIME Specifies that the certificate can be used to send secure email
messages.

3 Object Signing Specifies that the certificate can be used for signing objects such as
Java applets and plug-ins.

4 Reserved This bit is reserved for future use.

5 SSL CA Specifies that the certificate can be used by a CA to issue certificates
for SSL connections.

6 S/MIME CA Specifies that the certificate can be used by a CA to issue certificates
for secure email.

7 Object Signing CA Specifies that the certificate can be used by a CA to issue certificates
for object signing.

NSCertTypeExt Plug-in Module

216 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The Netscape certificate type extension policy has been implemented in such a way
that it enables you to set the appropriate certificate-type bits for certificates being
issued by Certificate Management System. This way, you can restrict the purposes
for which a certificate should be used by adding the extension, with the
appropriate bits set, to the certificate at the time of issuance. For example, if you
want to restrict a certificate to be used for SSL client authentication only, when
issuing the certificate you would add the Netscape certificate type extension to the
certificate with ssl_client (bit 0) set. For general guidelines on setting the
Netscape certificate type extension, see “netscape-cert-type” on page 370.

In the current implementation, you can specify whether to add the extension to
certificates on the server side and which bits in the extension are to be set on the
client side—you specify whether to add the extension by enabling the Netscape
certificate type extension policy and which bits are to be set by adding the
appropriate HTTP variables to the enrollment forms.

Bits set in the Netscape certificate type extension are formed from pre-defined
input variables that you can embed as hidden values in the default enrollment
forms (see “Enrollment Forms” on page 57). Table 4-19 lists the HTTP input
variables that correspond to Netscape certificate type extension bits.

During installation, Certificate Management System automatically creates an
instance of the Netscape certificate type extension policy for the various types of
certificates that you may want the server to issue. See “NSCertTypeExt Rule” on
page 220.

Table 4-19 HTTP input variables for Netscape certificate type extension bits

HTTP input variable Netscape certificate type extension bit

ssl_client SSL Client (bit 0)

ssl_server SSL Server (bit 1)

email S/MIME (bit 2)

object_signing Object Signing (bit 3)

Reserved for future use (bit 4)

ssl_ca SSL CA (bit 5)

email_ca S/MIME CA (bit 6)

object_signing_ca Object Signing CA (bit 7)

NSCertTypeExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 217

Additionally, the default enrollment forms—the directory-based, directory- and
PIN-based, manual, Kerberos server-based, and NIS server-based enrollment
forms—for various types of certificates also include the appropriate HTTP input
variables corresponding to Netscape certificate type extension bits. For details
about these forms, see “Enrollment Forms” on page 57.

Figure 4-20 shows the default directory-based enrollment form for end users with
HTTP input variables specific to Netscape certificate type extension highlighted; it
shows two of the total number of variables listed in Table 4-19, ssl_client and
email, indicating that these bits be set in certificates requested using this form.

Figure 4-20 Netscape certificate type extension-specific variables in enrollment forms

Note that the default enrollment forms embed variables that are considered
appropriate for the type of certificate, such as client, server, or CA, that can be
requested using the form. For example, the server enrollment form embeds the
ssl_server variable, whereas the subordinate CA (Certificate Manager)
enrollment form embeds the ssl_client, email_ca, ssl_ca and
object_signing_ca variables.

In general, the forms are set up so that you don’t have to make any modifications.
However, if there is a need to modify the bit settings, be sure to add or remove the
corresponding variable. Also, when adding a new variable, make sure that the
HTML input format is as follows:

<input type="HIDDEN" value="true" name="variable_name">

NSCertTypeExt Plug-in Module

218 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

where variable_name can be any of the variables listed in Table 4-19.

Configuration Parameters of NSCertTypeExt
In the CMS configuration file, the NSCertTypeExt module is identified as
<subsystem>.Policy.impl.NSCertTypeExt.class=com.netscape.
certsrv.policy.NSCertTypeExt, where <subsystem> is ca or ra (prefix
identifying the subsystem).

In the CMS window, the module is identified as NSCertTypeExt. Figure 4-21
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 4-21 Parameters defined in the NSCertTypeExt module

The configuration shown in Figure 4-21 creates a policy rule named
NetscapeCertTypeExtForClientCert, which enforces a rule that the server
should set the Netscape certificate type extension in client certificates.

Table 4-20 gives details about each of these parameters.

NSCertTypeExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 219

Table 4-20 Description of parameters defined in the NSCertTypeExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule.
Uncheck the box to disable the rule (default).

• If you enable the rule, be sure to review the enrollment forms for Netscape
certificate type extension-specific variables and to set the remaining parameters of
this policy correctly. If the bits are unspecified in the enrollment form, the server
checks the value assigned to the setDefaultBits parameter. If it is unchecked
(false), the server does not set the extension.

• If you disable the rule, the server does not add the extension to certificates; it
ignores the Netscape certificate type extension-specific HTTP input values in the
certificate request and the status of the setDefaultBits parameter.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

setDefaultBits Specifies whether to set the Netscape certificate type extension with default bits in
certificates specified by the predicate expression.

• Check the box the if you want the server to add the extension, with default bits, to
certificates. If you check the box and if no bits are requested from the HTTP input,
the server adds the Netscape certificate type extension to certificates with the
following bits set:
- ssl client (bit 0)
- email (bit 2)

• Uncheck the box if you don’t want the server to add the extension with default
bits. If you uncheck the box and if no bits are requested from the HTTP input, the
server does not add the extension to certificates.

OCSPNoCheckExt Plug-in Module

220 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

NSCertTypeExt Rule
The policy rule named NSCertTypeExt is an instance of the NSCertTypeExt
module. Certificate Management System automatically creates this rule during
installation. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression is set so that the extension gets added to all
certificates except the ones issued to routers
(predicate=HTTP_PARAMS.certType!=CEP-Request).

• The server sets the default bits if the bits are unspecified in the enrollment
form.

For details on individual parameters defined in the rule, see Table 4-20 on
page 219. You need to review this rule and make the changes appropriate for your
PKI setup. For instructions, see section “Step 2. Modify Existing Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide. For
instructions on adding additional instances, see section “Step 4. Add New Policy
Rules” in the same chapter.

OCSPNoCheckExt Plug-in Module
The OCSPNoCheckExt plug-in module implements the OCSP no check extension
policy. This policy enables you to configure Certificate Management System to add
the OCSP No Check Extension defined in X.509 and PKIX standard RFC 2560 (see
http://www.ietf.org/rfc/rfc2560.txt) to certificates. The extension, which
should be used in OCSP responder certificates only, indicates how
OCSP-compliant applications can verify the revocation status of the certificate an
authorized OCSP responder uses to sign OCSP responses.

The online certificate status protocol (OCSP) enables OCSP-compliant applications
to determine the revocation status of a certificate being validated. Certificate
Management System supports the OCSP service—you can configure a Certificate
Manager to publish CRLs to an online validation authority, also called OCSP
responder (see Chapter 21, “Setting Up an OCSP Responder” of CMS Installation
and Setup Guide). If you configure Certificate Management System to work with an
OCSP responder, OCSP-compliant applications in your PKI setup will be able to do
real-time verification of certificates by querying the OCSP responder for their
revocation status. Note that these applications will be able to query the OCSP

OCSPNoCheckExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 221

responder only if the certificate being validated includes the authority information
access extension indicating the location of the OCSP responder; for information on
adding this extension to certificates, see “AuthInfoAccessExt Plug-in Module” on
page 136.

When queried by an application on the status of a certificate, the OCSP responder
sends a digitally signed response. For the signature, the responder uses the key
pair designated for signing OCSP responses. Usually, the CA issues an OCSP
responder certificate to the responder, which enables applications to identify it as a
CA-designated responder. The CA issues this certificate with an extended key
usage extension with a unique value, which indicates that the key associated with
the certificate can be used for signing OCSP responses. For details on this
extension, see “OCSPSigningExt Rule” on page 176.

When an OCSP-compliant application receives a signed response, as a part of
validating the signature, the application needs to verify that the responder’s
certificate has not been revoked. RFC 2560 recommends three ways in which a CA
may indicate the revocation status of an OCSP responder certificate. One of them is
that the CA issue the OCSP responder a certificate with the OCSP no check
extension, which indicates that the certificate can be trusted by the clients for its
lifetime. The OCSP no check policy of Certificate Management System implements
this method and enables you to set the OCSP no check extension in OCSP
responder certificates.

Because OCSP-compliant applications don’t check for the revocation status of the
OCSP responder certificate (containing the OCSP no check extension), when
issuing these types of certificates, you should consider issuing them with a short
validity period (and renew them frequently). Note that the OCSP no check
extension policy only adds the extension to a certificate; it doesn’t control the
validity period of the certificate. If you want to limit the validity period of these
certificates to a short period, you should consider creating an instance of the
ValidityConstraints module with the appropriate configuration, for example,
set the predicate parameter to HTTP_PARAMS.certType=ocspResponder. For
details, see “ValidityConstraints Plug-in Module” on page 124. If you have agent
privileges, you can also specify the required validity period when approving the
OCSP responder certificate request in the request queue; the enrollment process for
an OCSP responder certificate is manual, and the request gets queued for agent
approval.

Before configuring the server to add the OCSP no check extension to OCSP
responder certificates, read the general guidelines provided in “OCSPNocheck” on
page 354.

OCSPNoCheckExt Plug-in Module

222 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

During installation, Certificate Management System automatically creates an
instance of the OCSP no check extension policy. See “OCSPNoCheckExt Rule” on
page 223.

Configuration Parameters of OCSPNoCheckExt
In the CMS configuration file, the OCSPNoCheckExt module is identified as
<subsystem>.Policy.impl.OCSPNoCheckExt.class=com.netscape.
certsrv.policy.OCSPNoCheckExt, where <subsystem> is ca or ra (prefix
identifying the subsystem).

In the CMS window, the module is identified as OCSPNoCheckExt. Figure 4-22
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 4-22 Parameters defined in the OCSPNoCheckExt module

The configuration shown in Figure 4-22 creates a policy rule named
OCSPNoCheckExtForResponderCert, which enforces a rule that the server should
set the OCSP no check extension in OCSP responder certificates only.

Table 4-21 provides details for each of these parameters.

OCSPNoCheckExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 223

OCSPNoCheckExt Rule
The policy rule named OCSPNoCheckExt is an instance of the OCSPNoCheckExt
module. Certificate Management System automatically creates this rule during
installation. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression is set
(predicate=HTTP_PARAMS.certType==ocspResponder) so that the extension
gets added to OCSP responder certificates only.

• The extension is marked noncritical (to comply with the PKIX
recommendation).

For details on individual parameters defined in the rule, see Table 4-21 on
page 223. You need to review this rule and make the changes appropriate for your
PKI setup. For instructions, see section “Step 2. Modify Existing Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide. For
instructions on adding additional instances, see section “Step 4. Add New Policy
Rules” in the same chapter.

Table 4-21 Description of parameters defined in the OCSPNoCheckExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server adds
the OCSP no check extension to certificates specified by the predicate
parameter.

• If you disable the rule, the server does not add the extension to certificates; it
ignores the values in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==ocspResponder

critical Specifies whether the extension should be marked critical or noncritical in certificates
specified by the predicate parameter. Check the box if you want the server to mark
the extension critical. Uncheck the box if you want the server to mark the extension
noncritical (default).

PolicyConstraintsExt Plug-in Module

224 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

PolicyConstraintsExt Plug-in Module
The PolicyConstraintsExt plug-in module implements the policy constraints
extension policy. This policy enables you to configure Certificate Management
System to add the Policy Constraints Extension defined in X.509 and PKIX standard
RFC 2459 (see http://www.ietf.org/rfc/rfc2459.txt) to certificates. The
extension, which can be used in CA certificates only, constrains path validation in
two ways—either to prohibit policy mapping or to require that each certificate in a
path contain an acceptable policy identifier.

The policy constraints extension policy in Certificate Management System allows
setting of the policy constraints extension as defined in its X.509 definition. The
policy allows you to specify both, requireExplicitPolicy and
inhibitPolicyMapping fields. PKIX standard requires that, if present in a CA
certificate, the extension must never consist of a null sequence. At least one of the
two specified fields must be present. Before configuring the server to add the
policy constraints extension to certificates, read the general guidelines provided in
“policyConstraints” on page 355.

During installation, Certificate Management System automatically creates an
instance of the policy constraints extension policy. See “PolicyConstraintsExt Rule”
on page 227.

Configuration Parameters of
PolicyConstraintsExt
In the CMS configuration file, the PolicyConstraintsExt module is identified as
ca.Policy.impl.PolicyConstraintsExt.class=com.netscape.certsrv.
policy.PolicyConstraintsExt.

In the CMS window, the module is identified as PolicyConstraintsExt. Figure
4-23 shows how the configurable parameters for the module are displayed in the
CMS window.

PolicyConstraintsExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 225

Figure 4-23 Parameters defined in the PolicyConstraintsExt module

The configuration shown in Figure 4-23 creates a policy rule named
PolicyConsExtForCACert, which enforces a rule that the server should set the
policy constraints extension in CA certificates only.

Table 4-22 gives details about each of these parameters.

Table 4-22 Description of parameters defined in the PolicyConstraintsExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server adds
the policy constraints extension to certificates specified by the predicate
parameter.

• If you disable the rule, the server does not add the extension to certificates; it
ignores the values in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==ca

PolicyConstraintsExt Plug-in Module

226 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

critical Specifies whether the extension should be marked critical or noncritical in certificates
specified by the predicate parameter. Check the box if you want the server to mark
the extension critical. Uncheck the box if you want the server to mark the extension
noncritical (default).

reqExplicit
Policy

Specifies the total number of certificates permitted in the path before an explicit
policy is required—that is, the number of CA certificates that can be chained below
(subordinate to) the subordinate CA certificate being issued before an acceptable
policy is required.

Note that the number you specify affects the number of CA certificates to be used
during certificate validation. The chain starts with the end-entity certificate being
validated and moving up the chain. (The parameter has no effect if the extension is set
in end-entity certificates.)

Permissible values: -1, 0, or n.

• -1 specifies that the field should not be set in the extension (default).

• 0 specifies that no subordinate CA certificates are permitted in the path before an
explicit policy is required.

• n must be an integer that is greater than zero. It specifies at the most n
subordinate CA certificates are allowed in the path before an explicit policy is
required.

Example: 1

inhibitPolicy
Mapping

Specifies the total number of certificates permitted in the path before policy mapping
is no longer permitted.

Permissible values: -1, 0, or n.

• -1 specifies that the field should not be set in the extension (default).

• 0 specifies that no subordinate CA certificates are permitted in the path before
policy mapping is no longer permitted.

• n must be an integer that is greater than zero. It specifies at the most n
subordinate CA certificates are allowed in the path before policy mapping is no
longer permitted. For example, a value of one indicates that policy mapping may
be processed in certificates issued by the subject of this certificate, but not in
additional certificates in the path.

Example: -1

Table 4-22 Description of parameters defined in the PolicyConstraintsExt module (Continued)

Parameter Description

PolicyMappingsExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 227

PolicyConstraintsExt Rule
The policy rule named PolicyConstraintsExt is an instance of the
PolicyConstraintsExt module. Certificate Management System automatically
creates this rule during installation. By default, the rule is configured as follows:

• The rule is disabled; for the rule to be effective, it must be enabled and
configured appropriately.

• The predicate expression is set (predicate=HTTP_PARAMS.certType==ca) so
that the extension gets added to CA certificates only. PKIX and Federal PKI
standards recommend that CA certificates must have this extension and
end-entity certificates should have this extension.

• The extension is marked noncritical.

• No subordinate CA certificates are permitted in the path before an explicit
policy is required (reqExplicitPolicy=0).

• The inhibitPolicyMapping field is not set in the extension.

For details on individual parameters defined in the rule, see Table 4-22 on
page 225. You need to review this rule and make the changes appropriate for your
PKI setup. For instructions, see section “Step 2. Modify Existing Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide. For
instructions on adding additional instances, see section “Step 4. Add New Policy
Rules” in the same chapter.

PolicyMappingsExt Plug-in Module
The PolicyMappingsExt plug-in module implements the policy mappings
extension policy. This policy enables you to configure Certificate Management
System to add the Policy Mappings Extension defined in X.509 and PKIX standard
RFC 2459 (see http://www.ietf.org/rfc/rfc2459.txt) to certificates. The
extension lists one or more pairs of OIDs, each pair identifying two policy
statements of two CAs. The pairing indicates that the corresponding policies of one
CA are equivalent to policies of another CA. The extension may be useful in the
context of cross-certification.

The PKIX standard suggests that the extension must be marked noncritical and
may be supported by CAs and/or applications. If supported, the extension is to be
included in CA certificates only. Before configuring the server to add the policy
mappings extension to certificates, read the general guidelines provided in
“policyMappings” on page 356.

PolicyMappingsExt Plug-in Module

228 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The policy mappings extension policy in Certificate Management System allows
setting of the policy mappings extension as defined in its X.509 definition. The
policy allows you to map policy statements of one CA to that of another by pairing
the OIDs assigned to their policy statements. (For information on OIDs, see
Appendix B, “Object Identifiers.”) For information on certificate policies, see
“CertificatePoliciesExt Plug-in Module” on page 151.)

Each pair is defined by two parameters, issuerDomainPolicy and
subjectDomainPolicy. The pairing indicates that the issuing CA considers the
issuerDomainPolicy equivalent to the subjectDomainPolicy of the subject CA.
The issuing CA’s users may accept an issuerDomainPolicy for certain
applications. The policy mapping tells these users which policies associated with
the subject CA are equivalent to the policy they accept.

During installation, Certificate Management System automatically creates an
instance of the policy mappings extension policy. See “PolicyMappingsExt Rule”
on page 231.

Configuration Parameters of PolicyMappingsExt
In the CMS configuration file, the PolicyMappingsExt module is identified as
ca.Policy.impl.PolicyMappingsExt.class=com.netscape.certsrv.
policy.PolicyMappingsExt.

In the CMS window, the module is identified as PolicyMappingsExt. Figure 4-24
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 4-24 Parameters defined in the PolicyMappingsExt module

PolicyMappingsExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 229

The configuration shown in Figure 4-24 creates a policy rule named
PolicyMapExtForCACert, which enforces a rule that the server should set the
policy mappings extension in CA certificates only.

Table 4-23 provides details for each of these parameters.

Table 4-23 Description of parameters defined in the PolicyMappingsExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the
rule. Uncheck the box to disable the rule (default).

• If you enable the rule and set the remaining parameters correctly, the
server adds the policy mappings extension to certificates specified by the
predicate parameter.

• If you disable the rule, the server does not add the extension to certificates;
it ignores the values in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be
applied to all certificate requests, leave the field blank (default). To form a
predicate expression, see section “Using Predicates in Policy Rules” in Chapter
18, “Setting Up Policies” of CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==ca

critical Specifies whether the extension should be marked critical or noncritical in
certificates specified by the predicate parameter. Check the box if you want
the server to mark the extension critical. Uncheck the box if you want the
server to mark the extension noncritical (default).

PolicyMappingsExt Plug-in Module

230 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

numPolicyMappings Specifies the total number of policy mapping (pairs) to be contained or allowed
in the extension. Note that each policy mapping represents a pair of
policies—specified by policyMap<n>.issuerDomainPolicy and
policyMap<n>.subjectDomainPolicy—and each policy in the pair
belongs to a specific CA.

You can change the total number of policy pairs by changing the value
assigned to this parameter; there’s no restriction on the total number of policy
pairs you can include in the extension. Each pair is distinguished by <n>,
which is an integer derived from the value you assign in this field. For
example, if you set the numPolicyMappings parameter to 2, <n> would be 0
and 1.

Permissible values: 0 or n.

• 0 specifies that no policy pairs can be contained in the extension.

• n specifies the total number of policy pairs to be included in the extension;
it must be a integer greater than zero. The default value is 1.

Example: 2

policyMap<n>.
issuerDomainPolicy

Specifies the OID assigned to the policy statement<n> of the issuing CA that
you want to map with the policy statement of another CA.

Permissible values: Any valid OID specified in dot-separated numeric
component notation (see the example). The OID that you specify should be in
the registered subtree of IDs reserved for your company’s use. Although you
can invent your own OIDs for the purposes of evaluating and testing this
server, in a production environment, you should comply with the ISO rules for
defining OIDs and for registering subtrees of IDs. See Appendix B, “Object
Identifiers” for information on allocating private OIDs.

Example: 1.2.3.4.5

policyMap<n>.
subjectDomainPolicy

Specifies the OID assigned to the policy statement<n> of the subject CA that
corresponds to the policy statement of the issuing CA.

Permissible values: Any valid OID specified in dot-separated numeric
component notation (see the example).

Example: 6.7.8.9.10

Table 4-23 Description of parameters defined in the PolicyMappingsExt module (Continued)

Parameter Description

PrivateKeyUsagePeriodExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 231

PolicyMappingsExt Rule
The rule named PolicyMappingsExt is an instance of the PolicyMappingsExt
module. Certificate Management System automatically creates this rule during
installation. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression is set (predicate=HTTP_PARAMS.certType==ca) so
that the extension gets added to CA certificates only.

• The extension is marked noncritical (to comply with the PKIX
recommendation).

• The number of policy mappings is set to 1 (numPolicyMappings=1) indicating
that a pair of policies are to be mapped.

• The fields for entering the OIDs for policies that are to be mapped are left blank
for you to enter the appropriate values.

For details on individual parameters defined in the rule, see Table 4-23 on
page 229. You need to review this rule and make the changes appropriate for your
PKI setup. For instructions, see section “Step 2. Modify Existing Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide. For
instructions on adding additional instances, see section “Step 4. Add New Policy
Rules” in the same chapter.

PrivateKeyUsagePeriodExt Plug-in Module
The PrivateKeyUsagePeriodExt plug-in module implements the private key
usage period extension policy. This policy enables you to configure Certificate
Management System to add the Private Key Usage Period Extension defined in X.509
and PKIX standard RFC 2459 (see http://www.ietf.org/rfc/rfc2459.txt) to
certificates. The extension allows the certificate issuer to specify a different validity
period for the private key than the one specified for the corresponding certificate.
The extension is intended for use with digital signature keys.

The PKIX standard recommends against the use of this extension. The standard
also recommends that CAs conforming to the standard must not generate
certificates with private key usage period extensions that are marked critical. For
general guidelines on setting this extension in certificates, see
“privateKeyUsagePeriod” on page 357.

PrivateKeyUsagePeriodExt Plug-in Module

232 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The private key usage period extension policy in Certificate Management System
allows setting of the private key usage period extension as defined in its X.509
definition. The policy enables you to specify values for the notBefore and
notAfter components. When included in a certificate, the notBefore and
notAfter components define the time before and after which the private key
associated with the certificate should not be used to sign objects.

Configuration Parameters of
PrivateKeyUsagePeriodExt
In the CMS configuration file, the PrivateKeyUsagePeriodExt module is
identified as <subsystem>.Policy.impl.PrivateKeyUsagePeriodExt.class=
com.netscape.certsrv.policy.PrivateKeyUsagePeriodExt, where
<subsystem> is ca or ra (prefix identifying the subsystem).

In the CMS window, the module is identified as PrivateKeyUsagePeriodExt.
Figure 4-25 shows how the configurable parameters for the module are displayed
in the CMS window.

Figure 4-25 Parameters defined in the PrivateKeyUsagePeriodExt module

The configuration shown in Figure 4-25 creates a policy rule named
PrivKeyUsagePrdExtForClientCert, which enforces a rule that the server should
set the private key usage period extension in client certificates.

RemoveBasicConstraintsExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 233

Table 4-24 provides details for each of these parameters.

RemoveBasicConstraintsExt Plug-in Module
The RemoveBasicConstraintsExt plug-in module implements the remove basic
constraints extension policy. This policy, if enabled, can detect the presence of Basic
Constraints extension in a certificate request and remove it. For details about the
Basic Constraints extension, see “BasicConstraintsExt Plug-in Module” on
page 147.

Table 4-24 Description of parameters defined in the PrivateKeyUsagePeriodExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule.
Uncheck the box to disable the rule (default).

• If you enable the rule and set the remaining parameters correctly, the server adds
the private key usage period extension to certificates specified by the predicate
parameter.

• If you disable the rule, the server does not add the extension to certificates; it
ignores the values in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied to
all certificate requests, leave the field blank (default). To form a predicate expression,
see section “Using Predicates in Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

critical Specifies whether the extension should be marked critical or noncritical in certificates
specified by the predicate parameter. Check the box if you want the server to mark
the extension critical. Uncheck the box if you want the server to mark the extension
noncritical (default).

notBefore Specifies the date on which the validity period for the private key associated with the
certificate begins.

Permissible values: A valid date specified in the MM/DD/YYYY format.

Example: 12/25/2000

notAfter Specifies the date on which the validity period for the private key associated with the
certificate ends.

Permissible values: A valid date specified in the MM/DD/YYYY format.

Example: 12/25/2001

RemoveBasicConstraintsExt Plug-in Module

234 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The policy can be useful in certain enrollment scenarios. For example, enrollment
requests from customized clients that can generate CRMF requests can include
extensions, including the Basic Constraints extension, and the policy can detect the
presence of the Basic Constraints extension and remove it.

Configuration Parameters of
RemoveBasicConstraintsExt
In the CMS configuration file, the RemoveBasicConstraintsExt module is
identified as ca.Policy.impl.RemoveBasicConstraintsExt.class=
com.netscape.certsrv.policy.RemoveBasicConstraintsExt.

In the CMS window, the module is identified as RemoveBasicConstraintsExt.
Figure 4-26 shows how the configurable parameters for the module are displayed
in the CMS window.

Figure 4-26 Parameters defined in the RemoveBasicConstraintsExt module

The configuration shown in Figure 4-26 creates a policy rule named
RemoveBasicConstraintsExtForClientCerts, which enforces a rule that the
Basic Constraints extension be removed from all client certificate requests.

Table 4-25 provides details for each of these parameters.

SubjectAltNameExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 235

SubjectAltNameExt Plug-in Module
The SubjectAltNameExt plug-in module implements the subject alternative name
policy. This policy enables you to configure Certificate Management System to add
the Subject Alternative Name Extension defined in X.509 and PKIX standard RFC
2459 (see http://www.ietf.org/rfc/rfc2459.txt) to certificates. The extension
enables you to bind additional identities—such as Internet electronic mail address,
a DNS name, an IP address, and a uniform resource indicator (URI)—to the subject
of the certificate.

The standard suggests that if the certificate subject field contains an empty
sequence, then the subject alternative name extension must contain the subject’s
alternative name and that the extension be marked critical. For general guidelines
on setting the subject alternate name extension in certificates, see
“subjectAltName” on page 358.

The subject alternative name extension policy in Certificate Management System
enables you to include values of certificate-request attributes in the extension. You
can include any number of attributes as long as the attribute values conform to any
of the supported general-name forms: rfc822Name, X.500 directory name, DNS
name, EDI party name, URL, IP address, object identifier, and Other name.

Table 4-25 Description of parameters defined in the RemoveBasicConstraintsExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the
rule (default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server
checks certificate requests for Basic Constraints extension and removes it.

• If you disable the rule, the server does not check the requests for Basic
Constraints extension; it ignores the values in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied
to all certificate requests, leave the field blank (default). To form a predicate
expression, see section “Using Predicates in Policy Rules” in Chapter 18, “Setting
Up Policies” of CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

SubjectAltNameExt Plug-in Module

236 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Attributes in a certificate request are filled in by servlets from the HTTP input
forms used for request submission. Some attributes, such as passwords typed in
the form are not stored in the request. Other attributes regarding the end entity,
such as the user ID, are set on the request after successful authentication. The
servlets can also set additional attributes related to the certificate content on the
request; for example, in automated-enrollment methods, some attributes may be
read from the authentication directory and set in the request as authenticated
attributes.

If you’re using any of the directory-based authentication methods, you can
configure Certificate Management System to retrieve values for any string and byte
attributes from the directory and set them in the certificate request during
authentication—you specify these attributes by entering them in the
ldapStringAttributes and ldapByteAttributes fields defined in the
automated enrollment modules. For more information, see Table 1-2 on page 28,
Table 1-3 on page 32, and Table 1-4 on page 40.

Note that all data related to an end entity is gathered at the servlet level and set on
the request before the request is passed to the policy subsystem.

In general, you can configure which attributes should or shouldn’t be stored in the
request; for example, you can exclude sensitive attributes such as passwords from
getting stored in the request with the help of the parameter named
dontSaveHttpParams defined in the CMS configuration file. For details on using
this parameter, see the description for HTTP_PARAMS in section “JavaScript Used By
All Interfaces” of CMS Customization Guide. You can also distinguish the attributes
based on their origin—that is, whether they originated from the enrollment form or
where added to the request during the authentication process. Authenticated
attributes have AUTH_TOKEN as prefix (for example, AUTH_TOKEN.mail) and
non-authenticated attributes such as the ones that come from the HTTP input have
HTTP_PARAMS as prefix (for example, HTTP_PARAMS.csrRequestorEmail).

If enabled, the subject alternative extension policy checks the certificate request for
configured attributes. If the request contains an attribute, the policy reads its value
and sets it in the extension. This way, the extension that gets to added to certificates
contains all the configured attributes.

During installation, Certificate Management System automatically creates an
instance of the subject alternative name extension policy. See “SubjectAltNameExt
Rule” on page 240.

SubjectAltNameExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 237

Configuration Parameters of SubjectAltNameExt
In the CMS configuration file, the SubjectAltNameExt module is identified as
<subsystem>.Policy.impl.SubjectAltNameExt.class=com.netscape.
certsrv.policy.SubjectAltNameExt, where <subsystem> is ca or ra (prefix
identifying the subsystem).

In the CMS window, the module is identified as SubjectAltNameExt. Figure 4-27
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 4-27 Parameters defined in the SubjectAltNameExt module

The configuration shown in Figure 4-27 creates a policy rule named
SubAltNameExtForClientCert, which enforces a rule that the alternative name of
the certificate’s subject must be derived from the mail attribute of subject’s entry in
the authentication directory and that the server should set the subject alternative
name extension only in client certificates.

Table 4-26 provides details for each of these parameters.

SubjectAltNameExt Plug-in Module

238 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Table 4-26 Description of parameters defined in the SubjectAltNameExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the
rule (default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server
adds the subject alternative name extension to certificates specified by the
predicate parameter.

• If you disable the rule, the server does not add the extension to certificates; it
ignores the values in the remaining fields.

predicate Specifies the predicate expression for this rule. If you want this rule to be applied
to all certificate requests, leave the field blank (default). To form a predicate
expression, see section “Using Predicates in Policy Rules” in Chapter 18, “Setting
Up Policies” of CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client

critical Specifies whether the extension should be marked critical or noncritical in
certificates specified by the predicate parameter. Check the box if you want
the server to mark the extension critical. Uncheck the box if you want the server
to mark the extension noncritical (default).

numGeneralNames Specifies the total number of alternative names or identities permitted in the
extension. Note that each name has a set of configuration
parameters—generalName<n>.requestAttr and
generalName<n>.generalNameChoice—and you must specify appropriate
values for each of those parameters; otherwise the policy rule will return an
error.

You can change the total number of identities by changing the value of this
parameter; there’s no restriction on the total number of identities you can
include in the extension. Each set of configuration parameters is distinguished
by <n>, which is an integer derived from the value you assign in this field. For
example, if you set the numGeneralNames parameter to 2, <n> would be 0 and
1.

Permissible values: 0 or n.

• 0 specifies that no identities can be contained in the extension.

• n specifies the total number of identities to be included in the extension; it
must be an integer greater than zero. The default value is 8.

Example: 2

SubjectAltNameExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 239

generalName<n>.
requestAttr

Specifies the request attribute whose value is to be included in the extension. The
attribute value must conform to any of the supported general-name types
(specified by the generalName<n>.generalNameChoice parameter). If the
server finds the attribute in the request, it sets the attribute value in the extension
and then adds the extension to certificates specified by the predicate
parameter. If you specify multiple attributes and if none of the attributes are
present in the request, the server does not add the subject alternative name
extension to certificates.

Permissible values: A request attribute included in the certificate request.

Example: AUTH_TOKEN.mail

generalName<n>.
generalNameChoice

Specifies the general-name type for the request attribute.

Permissible values: rfc822Name, directoryName, dNSName,
ediPartyName, URL, iPAddress, OID, or otherName.

• Select rfc822Name if the request-attribute value is an Internet mail address
in the local-part@domain format (default). For example,
jdoe@siroe.com.

• Select directoryName if the request-attribute value is an X.500 directory
name, similar to the subject name in a certificate. For example,
CN=Jane Doe, OU=Sales Dept, O=Siroe Corp, C=US.

• Select dNSName if the request-attribute value is a DNS name. For example,
corpDirectory.siroe.com.

• Select ediPartyName if the request-attribute value is a EDI party name. For
example, Siroe Corporation.

• Select URL if the request-attribute value is a non-relative URI that includes
both a scheme (for example, http) and a fully qualified domain name or IP
address of the host. For example, http://hr.siroe.com.

• Select iPAddress if the request-attribute value is a valid IP address
specified in dot-separated numeric component notation. For example,
128.21.39.40.

• Select OID if the request-attribute value is a unique, valid OID specified in
the dot-separated numeric component notation. For example,
1.2.3.4.55.6.5.99.

• Select otherName if the request-attribute value is the absolute path to the
file that contains the base-64 encoded string of the subject alternative name.
For example,
/opt/SUNWcertsrv/certsrv47/ext/san/othername.txt.

Example: rfc822Name

Table 4-26 Description of parameters defined in the SubjectAltNameExt module (Continued)

Parameter Description

SubjectAltNameExt Plug-in Module

240 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

SubjectAltNameExt Rule
The policy rule named SubjectAltNameExt is an instance of the
SubjectAltNameExt module. Certificate Management System automatically
creates this rule during installation. By default, the rule is configured as follows:

• The rule is enabled.

• The predicate expression is left blank so that the extension gets added to all
certificates the server issues. (PKIX and Federal PKI standards recommend that
CA certificates must have this extension and end-entity certificates should
have this extension.)

• The extension is marked noncritical (to comply with the PKIX
recommendation).

• The rule is configured to include at the most three alternative names in the
extension (numGeneralNames=3).

• The first alternative name is the value of the mail attribute in the certificate
subject’s directory entry (generalName0.requestAttr=AUTH_TOKEN.mail)
and the name is in the rfc822Name format
(generalName0.generalNameChoice=rfc822Name).

• The second alternative name is the value of the mailalternateaddress
attribute in the certificate subject’s directory entry
(generalName1.requestAttr=AUTH_TOKEN.mailalternateaddress) and the
name is in the rfc822Name format
(generalName1.generalNameChoice=rfc822Name).

• The third alternative name is the value of an HTTP input parameter
csrRequestorEmail included in the certificate request
(generalName2.requestAttr=HTTP_PARAMS.csrRequestorEmail) and the
name is in rfc822Name format
(generalName2.generalNameChoice=rfc822Name).

For details on individual parameters defined in the rule, see Table 4-26 on
page 238. You need to review this rule and make the changes appropriate for your
PKI setup. For instructions, see section “Step 2. Modify Existing Policy Rules” in
Chapter 18, “Setting Up Policies” of CMS Installation and Setup Guide. For
instructions on adding additional instances, see section “Step 4. Add New Policy
Rules” in the same chapter.

Before you edit the default rule, you should read the additional details about the
attributes that are set in the default policy rule.

SubjectDirectoryAttributesExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 241

The first two attributes, AUTH_TOKEN.mail and
AUTH_TOKEN.mailalternateaddress, are standard LDAP attributes typically used
for storing end users’ email addresses in an LDAP directory. These attributes
enable you to include a user’s email address as an alternative name in the
certificate. Remember that you need to specify the LDAP attribute for users’ email
addresses as a part of configuring the server to use a specific directory for
authentication—which means for the default rule to set end users’ email addresses
in the subject alternative name extension, you must ensure the following:

• The server is configured for directory-based, directory- and PIN-based, or NIS
server based (using directory attributes for forming subject names) enrollment;
that is, you have created and configured an authentication instance.

• The ldapStringAttributes parameter in the authentication instance is set to
mail or mailalternateaddress, or to both.

The third attribute, HTTP_PARAMS.csrRequestorEmail, is the email component of
the subject name in an enrollment request—it is an HTTP input value that gets
added to the request when a user uses the manual enrollment form; for details, see
“Enrollment Forms” on page 57.

If you enable the default policy rule, the server automatically checks the certificate
request for attributes AUTH_TOKEN.mail, AUTH_TOKEN.mailalternateaddress,
and HTTP_PARAMS.csrRequestorEmail. If the server finds any of the attributes, it
sets the attribute value in the extension and then adds the extension to certificates
specified by the predicate parameter. If none of the attributes are in a request, the
server does not add the subject alternative name extension to the certificate.

SubjectDirectoryAttributesExt Plug-in Module
The SubjectDirectoryAttributesExt plug-in module implements the subject
directory attributes extension policy. This policy enables you to configure
Certificate Management System to add the Subject Directory Attributes Extension
defined in X.509 and PKIX standard RFC 2459 (see
http://www.ietf.org/rfc/rfc2459.txt) to certificates. The extension is used to
specify any desired directory attribute values for the subject of the certificate.

As per the PKIX standard, inclusion of this extension in certificates is not essential;
the standard suggests that the extension may be used in local environments. For
general guidelines on setting the subject directory attributes extension, see
“subjectDirectoryAttributes” on page 359.

SubjectDirectoryAttributesExt Plug-in Module

242 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The subject directory attributes extension policy in Certificate Management System
allows you to include up to three directory attributes in the extension. For each
attribute that you want to include in the extension, you need to specify the attribute
name and its value—the name must be the X.500 directory attribute name itself and
the attribute value can be derived from the request or directly entered in the policy
configuration as a string value.

The list of directory attributes supported by default are shown as permissible
values for the attribute<n>.attributeName parameter explained in Table 4-27
on page 243. You can extend the list of attributes supported by the policy by
defining new X.500 directory attributes. For details on defining new attributes, see
“Extending Attribute Support” on page 318.

Note that, during installation, Certificate Management System does not create an
instance of the subject directory attributes extension policy. If you want the server
to add this extension to certificates, you must create an instance of the
SubjectDirectoryAttributesExt module and configure it. For instructions, see
section “Step 4. Add New Policy Rules” in Chapter 18, “Setting Up Policies” of
CMS Installation and Setup Guide.

Configuration Parameters of
SubjectDirectoryAttributesExt
In the CMS configuration file, the SubjectDirectoryAttributesExt module is
identified as <subsystem>.Policy.impl.SubjectDirectoryAttributesExt.
class=com.netscape.certsrv.policy.SubjectDirectoryAttributesExt,
where <subsystem> is ca or ra (prefix identifying the subsystem).

In the CMS window, the module is identified as
SubjectDirectoryAttributesExt. Figure 4-28 shows how the configurable
parameters for the module are displayed in the CMS window.

SubjectDirectoryAttributesExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 243

Figure 4-28 Parameters defined in the SubjectDirectoryAttributesExt module

The configuration shown in Figure 4-28 creates a policy rule named
SubDirAttrForClientCert, which enforces a rule that the server should set the
subject directory attributes extension in client certificates.

Table 4-27 provides details for each of these parameters.

Table 4-27 Description of parameters defined in the SubjectDirectoryAttributesExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the
rule. Uncheck the box to disable the rule (default).

• If you enable the rule and set the remaining parameters correctly, the server
adds the subject directory attributes extension to certificates specified by the
predicate parameter.

• If you disable the rule, the server does not add the extension to certificates;
it ignores the values in the remaining fields.

SubjectDirectoryAttributesExt Plug-in Module

244 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

predicate Specifies the predicate expression for this rule. If you want this rule to be
applied to all certificate requests, leave the field blank (default). To form a
predicate expression, see section “Using Predicates in Policy Rules” in Chapter
18, “Setting Up Policies” of CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==client AND
HTTP_PARAMS.OU==Engineering

critical Specifies whether the extension should be marked critical or noncritical in
certificates specified by the predicate parameter. Check the box if you want
the server to mark the extension critical. Uncheck the box if you want the server
to mark the extension noncritical (default).

numAttributes Specifies the total number of directory attributes to be contained or allowed in
the extension. Note that each attribute has a name (or OID) and value and you
must specify appropriate values for both; otherwise the policy rule will return
an error.

You can configure the server to include up to three attributes in the extension.
By default, this field is set to its maximum value, 3, and the UI shows fields for
configuring three attributes. You can change the total number of attributes by
changing the value of this parameter. Each set of configuration parameters is
distinguished by <n>, which is an integer derived from the value you assign in
this field. For example, if you set the numAttributes parameter to 2, <n>
would be 0 and 1.

Permissible values: 1, 2, or 3. The default value is 3.

Example: 1

attribute<n>.attrib
uteName

Specifies the name of the directory attribute whose value is to be included in
the extension.

Permissible values: TITLE, O, OU, L, E, C, GIVENNAME, DC, UID, CN,
UNSTRUCTUREDNAME, GENERATIONQUALIFIER, ST, DNQUALIFIER, SN, MAIL,
UNSTRUCTUREDADDRESS, STREET, SERIALNUMBER, and INITIALS. The list
may show any additional attributes that you may have added.

Example: TITLE

Table 4-27 Description of parameters defined in the SubjectDirectoryAttributesExt module (Continued)

Parameter Description

SubjectKeyIdentifierExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 245

SubjectKeyIdentifierExt Plug-in Module
The SubjectKeyIdentifierExt plug-in module implements the subject key
identifier policy. This policy enables you to configure Certificate Management
System to add the Subject Key Identifier Extension defined in X.509 and PKIX
standard RFC 2459 (see http://www.ietf.org/rfc/rfc2459.txt) to certificates.
The extension is used to identify certificates that contain a particular public
key—that is, the extension is used to uniquely identify a certificate from among
several that have the same subject name.

Typically, the subject key identifier extension is used in CA certificates as it helps
determine which CA key is being certified in a CA certificate. To facilitate chain
building, you should consider adding this extension to conforming subordinate
CA certificates (subordinate Certificate Managers’ CA signing certificates) issued
by Certificate Management System. You may also want to consider adding this
extension to other or all certificates. For example, if added to end-entity certificates,
the extension provides a means for identifying certificates containing the particular
public key used in an application. If an end entity has multiple certificates,
especially from multiple CAs, the subject key identifier provides a means to
quickly identify the set of certificates that contain a particular public key.

For general guidelines on setting the subject key identifier extension, see
“subjectKeyIdentifier” on page 360.

attribute<n>.whereT
oGetValue

Specifies from where to get the value for the selected directory attribute.

Permissible values: Request Attribute or Fixed Value.

• Select Request Attribute if you want the server to read the value from
the request attribute.

• Select Fixed Value if you want to specify a fixed value for the attribute.

• Note that both the options require you to enter the value for the attribute in
the attribute<n>.value field. The server will set the extension with this
value in all certificates specified by the predicate parameter.

Example: Fixed Value

attribute<n>.value Specifies the value for the directory attribute to be included in the extension.

Permissible value: A string value for the attribute selected.

Example: Member of Technical Staff

Table 4-27 Description of parameters defined in the SubjectDirectoryAttributesExt module (Continued)

Parameter Description

SubjectKeyIdentifierExt Plug-in Module

246 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The subject key identifier extension policy in Certificate Management System
allows setting of the subject key identifier extension as defined in its X.509
definition. It enables you to specify the method for forming the Key Identifier.

By default, the policy supports three types of methods for deriving the Key
Identifier; the default methods for forming the Key Identifier are based on PKIX
recommendations as defined in section 4.2.1.2. They are as follows:

• 20 byte (160 bit) SHA-1 hash of the BIT STRING of Subject Public Key.

• A type field value of 0100 followed by 60 least significant bits of the SHA-1
hash of the Subject Public Key.

• 20 byte (160 bit) SHA-1 hash of the Subject Public Key Info. This is how
Netscape Communicator generates a Key Identifier (but is not necessary to be
compatible with the Communicator).

You can also customize the method for deriving the Key Identifier by subclassing
the policy and overriding the following method:

formKeyIdentifier(X509CertInfo certInfo, IRequest req)

For details, check the CMS SDK installed at this location:

<server_root>/cms_sdk/cms_jdk/javadocs

You may also want to check the CMS samples installed here:

<server_root>/cms_sdk/cms_jdk/samples/policies

If enabled, the policy adds a Subject Key Identifier Extension to an enrollment
request if the extension does not already exist. If the extension exists in the request,
for example from a CRMF request, the policy replaces the extension. In case of
manual enrollments, after an agent approves the enrollment request, the policy
accepts any Subject Key Identifier Extension that is already there.

During installation, Certificate Management System automatically creates an
instance of the subject key identifier extension policy. See “SubjectKeyIdentifierExt
Rule” on page 248.

Configuration Parameters of
SubjectKeyIdentifierExt
In the CMS configuration file, the SubjectKeyIdentifierExt module is
identified as <subsystem>.Policy.impl.SubjectKeyIdentifierExt.class=
com.netscape.certsrv.policy.SubjectKeyIdentifierExt, where
<subsystem> is ca or ra (prefix identifying the subsystem).

SubjectKeyIdentifierExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 247

In the CMS window, the module is identified as SubjectKeyIdentifierExt.
Figure 4-29 shows how the configurable parameters for the module are displayed
in the CMS window.

Figure 4-29 Parameters defined in the SubjectKeyIdentifierExt module

The configuration shown in Figure 4-29 creates a policy rule named
SubKeyIDExtForAllCert, which enforces a rule that the server should set the
subject key identifier extension in all certificates.

Table 4-28 provides details for each of these parameters.

Table 4-28 Description of configuration parameters defined in the SubjectKeyIdentifierExt module

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the
rule. Uncheck the box to disable the rule (default).

• If you enable the rule and set the remaining parameters correctly, the server
adds the subject key identifier extension to certificates specified by the
predicate parameter.

• If you disable the rule, the server does not add the extension to certificates; it
ignores the values in the remaining fields.

SubjectKeyIdentifierExt Plug-in Module

248 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

SubjectKeyIdentifierExt Rule
The policy rule named SubjectKeyIdentifierExt is an instance of the
SubjectKeyIdentifierExt module. Certificate Management System
automatically creates this rule during installation. By default, the rule is configured
as follows:

• The rule is enabled.

• The predicate expression is set (predicate=HTTP_PARAMS.certType==ca) so
that the extension gets added to CA certificates only. (PKIX and Federal PKI
standards recommend that CA certificates must have this extension and
end-entity certificates should have this extension.)

• The key identifier is a 20 byte (160 bit) SHA-1 hash of the BIT STRING of
Subject Public Key (KeyIdentifierType=SHA1).

predicate Specifies the predicate expression for this rule. If you want this rule to be applied
to all certificate requests, leave the field blank (default). To form a predicate
expression, see section “Using Predicates in Policy Rules” in Chapter 18, “Setting
Up Policies” of CMS Installation and Setup Guide.

Example: HTTP_PARAMS.certType==ca

critical Specifies whether the extension should be marked critical or noncritical in
certificates specified by the predicate parameter. Check the box if you want
the server to mark the extension critical. Uncheck the box if you want the server
to mark the extension noncritical (default).

KeyIdentifierType Specifies the method for deriving Key Identifier.

Permissible values: SHA1, TypeField, or SpkiSHA1.

• SHA1 specifies that the key identifier must be derived as a 20 byte (160 bit)
SHA-1 hash of the BIT STRING of Subject Public Key (default).

• TypeField specifies that the key identifier must be derived as a type field
value of 0100 followed by 60 least significant bits of the SHA-1 hash of the
Subject Public Key.

• SpkiSHA1 specifies that the key identifier must be derived as a 20 byte (160
bit) SHA-1 hash of the Subject Public Key Info.

Example: SHA1

Table 4-28 Description of configuration parameters defined in the SubjectKeyIdentifierExt module

Parameter Description

SubjectKeyIdentifierExt Plug-in Module

Chapter 4 Certificate Extension Plug-in Modules 249

For details on individual parameters defined in the rule, see Table 4-28 on
page 247. It is important that you review this rule and make the appropriate
changes required by your PKI setup. For example, if you’re planning to issue
multiple certificates to an end entity and want to assist applications in identifying
the appropriate end-entity certificate, you should consider modifying the predicate
expression to add this extension to all end-entity certificates. For instructions, see
section “Step 2. Modify Existing Policy Rules” in Chapter 18, “Setting Up Policies”
of CMS Installation and Setup Guide. For instructions on adding additional instances,
see section “Step 4. Add New Policy Rules” in the same chapter.

SubjectKeyIdentifierExt Plug-in Module

250 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

251

Chapter 5

Mapper Plug-in Modules

You can configure a Certificate Manager to publish certificates to an LDAP
directory or flat file, and to publish CRLs to a directory, online validation
authority, or flat file. If you configure the Certificate Manager to publish to any of
these repositories, when the Certificate Manager is requested to issue a certificate
or to update certificate information, it automatically updates the corresponding
entry in the configured repository with relevant information. Similarly, when a
certificate is revoked, the Certificate Manager automatically updates the
configured repositoty with relevant CRL information. To locate the correct entry in
the repository, the Certificate Manager relies on object-mapping rules and to
update the located entry with relevant information, the Certificate Manager relies
on object-publishing rules.

To enable you to construct object-mapping rules, the Certificate Manager provides
a set of mapper plug-in modules. These modules are implemented as Java classes
and are registered with the Certificate Manager’s publishing framework.

This chapter explains the mapper modules that are installed with a Certificate
Manager—it lists and briefly describes the modules and then explains each one in
detail.

The chapter has the following sections:

• Overview of Mapper Modules (page 252)

• LdapCaSimpleMap Plug-in Module (page 255)

• LdapDNCompsMap Plug-in Module (page 259)

• LdapDNExactMap Plug-in Module (page 264)

• LdapSimpleMap Plug-in Module (page 265)

• LdapSubjAttrMap Plug-in Module (page 268)

Overview of Mapper Modules

252 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Overview of Mapper Modules
If you configure a Certificate Manager to publish to a directory, whenever the
server issues a certificate or updates a certificate or CRL, it needs to locate the entry
in the directory in order to update it. For example, to find the correct directory
entry to update, the Certificate Manager needs to present Directory Server with
search criteria (so that it can initiate an LDAP search operation); the Certificate
Manager considers the search successful only if Directory Server returns a single
LDAP entry that exactly matches the search criteria.

The Certificate Manager uses object-mapping rules to find the directory entry that
needs to be updated. When configuring a Certificate Manager for publishing
certificates and CRLs, you define mapping rules that help the server to construct
appropriate search criteria that find the entry that needs to be updated.

Mapper modules help you configure the Certificate Manager to use specific rules to
map or locate a specific entry, such as a CA’s entry or an end-entity’s entry, in a
specified directory; once the correct entry is located, the server publishes the
certificate or CRL to the correct attribute in the entry using a publisher rule, as
explained in Chapter 6, “Publisher Plug-in Modules”.

By default, the Certificate Manager provides a set of mapper plug-in modules for
mapping the CA certificate, end-entity certificates, and CRLs to the appropriate
entries in an LDAP directory; because it’s not required to map entries in a flat file
and online validation authority, no mapper modules are provided for mapping
objects in a flat file or an online validation authority.

Plug-in modules are implemented as Java classes and are registered in the CMS
publishing framework. The Mapper Plugin Registration tab of the CMS window
(Figure 5-1) lists all the modules and the corresponding classes that are registered
by default with a Certificate Manager.

Note that the name of the Java class for a mapper plug-in module is in this format:

com.netscape.certsrv.ldap.<plugin_name>

where <plugin_name> is the name of a plug-in module. For example, the Java class
for the LdapCaSimpleMap module would be:

com.netscape.certsrv.ldap.LdapCaSimpleMap

Overview of Mapper Modules

Chapter 5 Mapper Plug-in Modules 253

Figure 5-1 Default mapper modules registered with a Certificate Manager

Table 5-1 lists the mapper modules provided for the Certificate Manager.

Table 5-1 Default mapper plug-in modules for mapping certificates and CRLs

Plug-in module name Function

LdapCaSimpleMap Maps the CA certificate to the CA’s directory entry by formulating the entry’s DN
from components specified in the certificate’s issuer name and attribute variable
assertion (AVA) constants. Optionally, the plugin can also create an entry for the
CA in the directory. For details, see “LdapCaSimpleMap Plug-in Module” on
page 255.

LdapDNCompsMap Maps a certificate to a directory entry by formulating the entry’s DN from
components (such as CN, OU, O, and C) in the certificate’s subject name and using it
as the search DN to locate the entry in the directory. For details, see
“LdapDNCompsMap Plug-in Module” on page 259.

LdapDNExactMap Maps a certificate to a directory entry by searching for the entry whose DN exactly
matches the certificate subject name. For details, see “LdapDNExactMap Plug-in
Module” on page 264.

LdapSimpleMap Maps a certificate to a directory entry by formulating the entry’s DN from
components specified in the certificate’s subject name and attribute variable
assertion (AVA) constants. For details, see “LdapSimpleMap Plug-in Module” on
page 265.

Overview of Mapper Modules

254 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

After you take a look at the default mapper modules, if you determine that they do
not meet your requirements entirely, you can develop a custom mapper module by
implementing the following Java interface:

com.netscape.certsrv.ldappublish.ILdapMapper

For more information about this interface, check the CMS software development
kit (SDK) installed at this location:

<server_root>/cms_sdk/cms_jdk

Be sure to take a look at the samples available at this location:

<server_root>/cms_sdk/cms_jdk/samples/mappers

When developing a custom mapper module, you may want to intercept LDAP
error 52 and reword it so that the correct error message gets logged. To give you an
example, if the publishing directory has been stopped, the server logs the following
message in its error and system logs:

Error publishing CRL MasterCRL: Cannot find a match in the LDAP
server for certificate. netscape.ldap.LDAPException: unable to
establish connection (52); DSA is unavailable.

Notice that the error message incorrectly says DSA is unavailable instead of
Directory Server is unavailable.

For instructions on how to configure a Certificate Manager to use a mapper
module, see section “Configuring a Certificate Manager to Publish Certificates and
CRLs” in Chapter 19, “Setting Up LDAP Publishing” of CMS Installation and Setup
Guide.

LdapSubjAttrMap Maps a certificate to a directory entry by searching for the entry that contains the
LDAP attribute named certSubjNameAttr whose value exactly matches the
certificate subject name. For details, see “LdapSubjAttrMap Plug-in Module” on
page 268.

Table 5-1 Default mapper plug-in modules for mapping certificates and CRLs (Continued)

Plug-in module name Function

LdapCaSimpleMap Plug-in Module

Chapter 5 Mapper Plug-in Modules 255

LdapCaSimpleMap Plug-in Module
The LdapCaSimpleMap plug-in module implements the CA certificate mapper. This
mapper enables you to configure a Certificate Manager to automatically create an
entry for the CA in an LDAP directory and then map the CA’s certificate to the
directory entry by formulating the entry’s DN from components specified in the
certificate request, certificate subject name, certificate extension, and attribute
variable assertion (AVA) constants. For more information on AVAs, check the
directory documentation.

The CA certificate mapper allows you to specify whether to create an entry for the
CA or to just map the certificate to an existing entry, or to do both. For example,
you can choose to manually create an entry for the CA in the directory and then
configure the CA certificate mapper to just locate the entry by using attributes from
the issuer name in the CA’s signing certificate and AVA constants.

Note that if you already have one CA entry created in the publishing directory and
if you change the value assigned to the dnPattern parameter of this mapper to
something different, but with the same UID and O attributes, the mapper will fail
to create the second CA entry. For example, if the directory already has a CA entry
with UID=CA,OU=Marketing,O=Siroe.com and if you configure the mapper to
create another CA entry with UID=CA,OU=Engineering,O=Siroe.com, the
operation will fail.

The reason for the failure may be because you are using a directory (for example,
the configuration directory) that has the uid uniqueness plug-in set to a specific base
DN in the slapd.ldbm.conf file. This setting prevents the directory from having
two entries with the same UID under that base DN. For example, it prevents the
directory from having two entries under O=Siroe.com with the same UID, CA.

If the mapper fails to create a second CA entry, be sure to check the base DN that
the uid uniqueness plug-in is set to (in the slapd.ldbm.conf file) and also check if
an entry with the same UID already exists in the directory. If it’s true, adjust the
mapper setting, remove the old CA entry, comment out the plug-in, or create the
entry manually using the CMS window.

During installation, the Certificate Manager automatically creates two instances
(called mappers) of the CA certificate mapper module (see Figure 5-2). The
mappers are named as follows:

• LdapCrlMap for CRLs (see “LdapCrlMap Mapper” on page 259)

• LdapCaCertMap for CA certificates (see “LdapCaCertMap Mapper” on
page 258)

LdapCaSimpleMap Plug-in Module

256 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 5-2 Default mappers created during installation

It is important that you review and customize these mappers. For instructions on
modifying mappers or creating new mappers, section “Configuring a Certificate
Manager to Publish Certificates and CRLs” in Chapter 19, “Setting Up LDAP
Publishing” of CMS Installation and Setup Guide.

Configuration Parameters of LdapCaSimpleMap
In the CMS configuration file, the LdapCaSimpleMap module is identified as
ca.publish.mapper.impl.LdapCaSimpleMap.class=com.netscape.
certsrv.ldap.LdapCaSimpleMap.

In the CMS window, the module is identified as LdapCaSimpleMap. Figure 5-3
shows how the configurable parameters for the module are displayed in the CMS
window.

LdapCaSimpleMap Plug-in Module

Chapter 5 Mapper Plug-in Modules 257

Figure 5-3 Parameters defined in the LdapCaSimpleMap module

Table 5-2 describes these parameters.

Table 5-2 Description of parameters defined in the LdapCaSimpleMap module

Parameter Description

createCAEntry Specifies whether the Certificate Manager should create an entry for the CA in the
publishing directory. Check the box if you want the server to create a CA’s entry
(default). Uncheck the box if you don’t want the server to create an entry.

If you check the box, the Certificate Manager first attempts to create an entry for the
CA in the directory. If the Certificate Manager succeeds in creating the entry, it then
attempts to publish the CA’s certificate to the entry. Note that the CA’s entry DN in
the directory will match the pattern you specify in the dnPattern field. For
example, if the issuer DN (specified in the CA’s signing certificate) is CN=testCA,
OU=Research Dept, O=Siroe Corporation, C=US, and the dnPattern is set
to CN=$subj.cn,OU=$subj.ou,O=$subj.o,C=US, the Certificate Manager
creates an entry with CN=testCA, OU=Research Dept, O=Siroe
Corporation, C=US as its DN.

LdapCaSimpleMap Plug-in Module

258 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

LdapCaCertMap Mapper
The mapper named LdapCaCertMap is an instance of the LdapCaSimpleMap
module. The Certificate Manager automatically creates this mapper during
installation.

You can use this mapper for creating an entry for the CA in the directory and for
mapping the CA certificate to the CA’s entry in the directory.

By default, the mapper is configured to create an entry for the CA in the directory
and the default DN pattern for locating the CA’s entry is as follows:

UID=$subj.cn,OU=people,O=$subj.o

dnPattern Specifies the DN pattern the Certificate Manager should use to construct the DN in
order to search for the CA’s entry in the publishing directory. The value of
dnPattern can be a list of AVAs separated by commas. An AVA can be a variable,
such as CN=$subj.cn, that the Certificate Manager can derive from the certificate
subject name, or a constant, such as O=Siroe Corporation.

Note that if your CA certificate does not have the CN component in its subject name,
be sure to adjust the CA certificate mapping DN pattern to reflect the DN of the entry
in the directory where the CA certificate is to be published. For example, if your CA
certificate subject DN is O=Siroe Corporation and the CA’s entry in the directory
is cn=Certificate Authority, o=Siroe Corporation, the pattern should
look like this: cn=Certificate Authority, o=$subj.o

(This rule applies to other mappers as well.)

Permissible values: A valid pattern that will enable the Certificate Manager to
construct the DN for the CA’s entry.

Example 1: uid=CertMgr, o=Siroe Corporation

Example 2: CN=$subj.cn,OU=$subj.ou,O=$subj.o,C=US

Example 3: uid=$req.HTTP_PARAMS.uid,
E=$ext.SubjectAlternativeName.RFC822Name,ou=$subj.ou

In the above examples, $req means take the attribute from the certificate request,
$subj means take the attribute from the certificate subject name, and $ext means
take the attribute from the certificate extension.

Table 5-2 Description of parameters defined in the LdapCaSimpleMap module (Continued)

Parameter Description

LdapDNCompsMap Plug-in Module

Chapter 5 Mapper Plug-in Modules 259

LdapCrlMap Mapper
The mapper named LdapCrlMap is an instance of the LdapCaSimpleMap module.
The Certificate Manager automatically creates this mapper during installation.

You can use this mapper for creating an entry for the CA in the directory and for
mapping the CRL to the CA’s entry in the directory.

By default, the mapper is configured to create an entry for the CA in the directory
and the default DN pattern for locating the CA’s entry is as follows:

UID=$subj.cn,OU=people,O=$subj.o

LdapDNCompsMap Plug-in Module
The LdapDNCompsMap plug-in module implements the DN components mapper.
This mapper enables you to configure a Certificate Manager to map a certificate to
an LDAP directory entry by constructing the entry’s distinguished name from
components (such as CN, OU, O, and C) specified in the certificate subject name, and
then using it as the search DN to locate the entry in the directory. You can use this
mapper to locate the following:

• The CA’s entry in the directory for publishing the CA certificate and the CRL.

• End-entity entries in the directory for publishing end-entity certificates.

The mapper requires you to specify values for three parameters, filterComps,
dnComps, and baseDN, which are explained in Table 5-3. In general, the mapper
takes DN components to build the search DN. The mapper also takes an optional
root search DN. The server uses the DN components to form an LDAP entry to
begin a subtree search and the filter components to form a search filter for the
subtree. If none of the DN components are configured, the server uses the base DN
for the subtree. If the base DN is null and none of the DN components match, an
error is returned. If none of the DN components and filter components match, an
error is returned. If the filter components are null, a base search is performed.

Note that both DNComps and filterComps parameters accept valid DN
components or attributes separated by commas. The parameters don’t accept
multiple entries of an attribute; for example, you can set filterComps to CN,OU,
but not to CN,OU2,OU1. If there’s a need for you to support such a filter, for
example, if your directory entries contain multiple OUs and you want to use
multiple OUs in your filterComps for filtering entries, you can modify the source
code for the LdapDNCompsMap module. The java class for the module is in this
directory: <server_root>/cms_sdk/cms_jdk/samples/mappers

LdapDNCompsMap Plug-in Module

260 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The discussion below explains how mapping by DN components works. It is
recommended that you read this before configuring a Certificate Manager to use
this mapper.

Subject names in certificates are in distinguished-name format. A distinguished name
(DN) uniquely identifies an entry in an LDAP directory. The DN consists of
components that help identify the entry; for details, see Appendix , “Distinguished
Names.”

The following components are commonly used in DNs:

• UID, which represents the user ID of a user in the directory

• CN, which represents the common name of a user in the directory

• OU, which represents an organizational unit in the directory

• O, which represents an organization in the directory

• L, which represents a locality in the directory

• ST, which represents a state in the directory

• C, which represents a country in the directory

For example, the following DN represents the user named Jane Doe who works for
the Sales department at Siroe Corporation, which is located in Mountain View in
the state of California, United States:

CN=Jane Doe, E=jdoe@siroe.com, OU=Sales, O=Siroe Corporation,
L=Mountain View, ST=California, C=US

The Certificate Manager uses the components in subject names to construct a DN
that it can use as the base for searching specific directory entries in order to publish
the corresponding certificate information.

For example, suppose the subject name in the certificate is in this form:

CN=Jane Doe, OU=Sales, O=Siroe Corporation, L=Mountain View,
ST=California, C=US

The Certificate Manager can use some or all of these components (CN, OU, O, L, ST,
and C) to build a DN for searching the directory. When creating a mapper rule, you
can specify the components the server should use to build a DN (that is,
components to match attributes in the directory). You do this by configuring the
dnComps parameter; for details, see Table 5-3 on page 263.

LdapDNCompsMap Plug-in Module

Chapter 5 Mapper Plug-in Modules 261

For example, assume you entered components CN, E, OU, O, and C as values for the
dnComps parameter. For locating Jane Doe’s entry in the directory, the Certificate
Manager constructs the following DN by reading the DN attribute values from the
certificate, and uses the DN as the base for searching the directory:

CN=Jane Doe, OU=Sales, O=Siroe Corporation, C=US

Note the following:

• A subject name does not need to have all of the components that you specify
for the dnComps parameter. The server ignores any components that are not
part of the subject name (such as L, ST, and E in this example).

• Unspecified components are not used to build the DN. In the example, if you
did not include the OU component, the server would use this DN as the base for
searching the directory: CN=Jane Doe, O=Siroe Corporation, C=US

In general, for the dnComps parameter, you should enter those DN components that
the Certificate Manager can use to form the LDAP DN exactly. In certain situations,
however, the subject name in a certificate may match more than one entry in the
directory. Then, the Certificate Manager might not get a single, distinct matching
entry from the DN. For example, the subject name

CN=Jane Doe, OU=Sales, O=Siroe Corporation, C=US

might match two users with the name Jane Doe in the directory. If that occurred,
the Certificate Manager would need additional criteria to determine which entry
corresponds to the subject of the certificate.

To specify the components the Certificate Manager must use to distinguish
between different entries in the directory, use the filterComps parameter; for
details, see Table 5-3 on page 263. For example, if you entered CN, OU, O, and C as
values for the dnComps parameter, enter L for the filterComps parameter only if
the L attribute can be used to distinguish between entries with identical CN, OU, O,
and C values.

Consider another example that shows how two directory entries with similar DNs
can be differentiated by the value of the UID attribute:

Assume that the two Jane Doe entries are distinguished by the value of the UID
attribute. One entry’s UID value is janedoe1 and the other entry’s UID value is
janedoe2. Because the UID attribute corresponds to the UID component in a DN,
you can set up the subject names of certificates to include the UID component.

LdapDNCompsMap Plug-in Module

262 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Configuration Parameters of LdapDNCompsMap
In the configuration file, the LdapCertCompsMap module is identified as
ca.publish.mapper.impl.LdapDNCompsMap.class=com.netscape.
certsrv.ldap.LdapCertCompsMap.

In the CMS window, the module is identified as LdapDNCompsMap. Figure 5-4
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 5-4 Parameters defined in the LdapDNCompsMap module

With this configuration, a Certificate Manager maps its certificates with the ones in
the LDAP directory by using the dnComps values to form a DN and the
filterComps values to form a search filter for the subtree.

• If the formed DN is null, the server uses the baseDN value for the subtree. If
both the formed DN and base DN are null, the server logs an error.

NOTE Generally, the E, L, and ST components are not included in the
standard set of certificate request forms provided for end entities.
You can add these components to the forms, or you can have the
issuing agents insert these components when editing the subject
name in the certificate issuance forms.

LdapDNCompsMap Plug-in Module

Chapter 5 Mapper Plug-in Modules 263

• If the filter is null, the server uses the baseDN value for the search. If both the
filter and base DN are null, the server logs an error.

Table 5-3 describes these parameters.

Table 5-3 Description of parameters defined in the LdapDNCompsMap module

Parameter Description

baseDN Specifies the DN to start searching for an entry in the publishing directory. If you
leave the dnComps field blank, the server uses the base DN value to start its search in
the directory.

Permissible values: Alphanumeric string up to 255 characters; see “Base
Distinguished Name” on page 315.

Example: O=siroe.com

dnComps Specifies where in the publishing directory the Certificate Manager should start
searching for an LDAP entry that matches the CA’s or the end entity’s information
(that is, the owner of the certificate).

The server uses the dnComps values to form an LDAP entry to begin a subtree search.
The server gathers values for these attributes from the certificate subject name and
uses the values to form an LDAP DN, which then determines where in the LDAP
directory the server starts its search. For example, if you set dnComps to use the O
and C attributes of the DN, the server starts the search from the O=<org>,
C=<country> entry in the directory, where <org> and <country> are replaced
with values from the DN in the certificate.

If you leave the dnComps field empty, the server checks the baseDN field and
searches the directory tree specified by that DN for entries matching the filter
specified by filterComps parameter values.

Permissible values: Valid DN components or attributes separated by commas.

Example: O,C

LdapDNExactMap Plug-in Module

264 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

LdapDNExactMap Plug-in Module
The LdapDNExactMap plug-in module implements the subject name mapper. This
mapper enables you to configure a Certificate Manager to map a certificate to an
LDAP directory entry by searching for the LDAP entry DN that matches the
certificate subject name. Note that to be able to use this mapper, each certificate
subject name must exactly match a DN in a directory entry. For example, assume
the certificate subject name is this: UID=jdoe, O=Siroe Corporation, C=US

When searching the directory for the entry, the Certificate Manager only searches
for an entry whose DN is this: UID=jdoe, O=Siroe Corporation, C=US

If no matching entries are found, the server returns an error and does not publish
the certificate.

This mapper does not require you to specify any values for any parameters because
it obtains all values from the certificate (Figure 5-5).

filterComps Specifies components the Certificate Manager should use to filter entries from the
search result. The server uses the filterComps values to form an LDAP search filter
for the subtree. The server constructs the filter by gathering values for these attributes
from the certificate subject name; it uses the filter to search for and match entries in
the LDAP directory.

If the server finds one or more entries in the LDAP directory that match the
information gathered from the certificate, the search is successful and the server
optionally performs a verification. For example, if filterComps is set to use the
email and user ID attributes (filterComps=e, uid), the server searches the
directory for an entry whose values for email and user ID match the information
gathered from the certificate.

Email addresses and user IDs are good filters because they are usually unique entries
in the directory. Keep in mind that email is not always included in the certificate
subject name. The filter needs to be specific enough to match one and only one entry
in the LDAP database.

Permissible values: Valid directory attributes (in the certificate DN) separated by
commas. The attribute names for the filters need to be attribute names from the
certificate, not from ones in the LDAP directory. For example, most certificates have
an E attribute for the user’s email address; LDAP calls that attribute mail.

Example: UID

Table 5-3 Description of parameters defined in the LdapDNCompsMap module (Continued)

Parameter Description

LdapSimpleMap Plug-in Module

Chapter 5 Mapper Plug-in Modules 265

Configuration Parameters of LdapDNExactMap
In the configuration file, the LdapDNExactMap module is identified as
ca.publish.mapper.impl.LdapDNExactMap.class=com.netscape.certsrv
.ldap.LdapCertExactMap.

In the CMS window, the module is identified as LdapDNExactMap. Figure 5-5
shows how the module looks when viewed in the CMS window.

Figure 5-5 The LdapDNExactMap module

LdapSimpleMap Plug-in Module
The LdapSimpleMap plug-in module implements the simple mapper. This mapper
enables you to configure a Certificate Manager to map a certificate to an LDAP
directory entry by formulating the entry’s DN from components specified in the
certificate request, certificate’s subject name, certificate extension, and attribute
variable assertion (AVA) constants. For more information on AVAs, see the
directory documentation.

The simple mapper requires you to specify just one parameter, which is named
dnPattern. The value of dnPattern can be a list of AVAs separated by commas.
An AVA can be a variable, such as UID=$subj.UID, , or a constant, such as O=Siroe
Corporation. Thr examples below illustrate how you can use AVAs to form the
DN pattern.

LdapSimpleMap Plug-in Module

266 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Example 1: uid=CertMgr, o=Siroe Corporation

Example 2: CN=$subj.cn,OU=$subj.ou,O=$subj.o,C=US

Example 3: uid=$req.HTTP_PARAMS.uid,
E=$ext.SubjectAlternativeName.RFC822Name,ou=$subj.ou

In the above examples, $req means take the attribute from the certificate request,
$subj means take the attribute from the certificate subject name, and $ext means
take the attribute from the certificate extension.

By default, the Certificate Manager uses mapper rules that are based on the simple
mapper. During installation, the Certificate Manager automatically creates an
instance (called a mapper) of the simple mapper module. The mapper is named
LdapUserCertMap (see Figure 5-2 on page 256). You can use the default mapper to
map various types of end-entity certificates the server will issue to their
corresponding directory entries. For details, see “LdapUserCertMap Mapper” on
page 267.

It is important that you review and customize this mapper. For instructions on
modifying mappers or creating new mappers, section “Configuring a Certificate
Manager to Publish Certificates and CRLs” in Chapter 19, “Setting Up LDAP
Publishing” of CMS Installation and Setup Guide.

Configuration Parameters of LdapSimpleMap
In the CMS configuration file, the LdapSimpleMap module is identified as
ca.publish.mapper.impl.LdapSimpleMap.class=com.netscape.certsrv.
ldap.LdapSimpleMap.

In the CMS window, the module is identified as LdapSimpleMap. Figure 5-6 shows
how configurable parameters for the module are displayed in the CMS window.

LdapSimpleMap Plug-in Module

Chapter 5 Mapper Plug-in Modules 267

Figure 5-6 Parameters defined in the LdapSimpleMap module

LdapUserCertMap Mapper
The rule named LdapUserCertMap is an instance of the LdapSimpleMap module.
The Certificate Manager automatically creates this mapper during installation.

You can use this mapper for mapping end-user certificates to users’ directory
entries. The default DN pattern for locating end-user entries is as follows:

UID=$subj.UID, OU=people, O=$subj.o

The default pattern indicates that the Certificate Manager should use the UID and O
values from the certificate subject name and a constant OU=people to construct the
DN pattern in order to search for an entry.

For example, if the certificate subject name is

CN=Jane Doe, UID=jdoe, OU=people, O=Siroe Corporation, C=US

the Certificate Manager will construct the following DN to search the directory for
the entry:

UID=jdoe, OU=people, O=Siroe Corporation

LdapSubjAttrMap Plug-in Module

268 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

LdapSubjAttrMap Plug-in Module
The LdapSubjAttrMap plug-in module implements the subject attribute mapper.
This mapper enables you to configure a Certificate Manager to map a certificate to
an LDAP directory entry by using the LDAP attribute named certSubjectDN.
Note that for you to be able to use this mapper, your directory entries must include
the certSubjectDN attribute.

This mapper requires you to specify the exact pattern of the subject DN because the
Certificate Manager searches the directory for the certSubjectDN attribute whose
value exactly matches the entire subject DN specified in the mapper configuration.
For example, assume the certificate subject name is this:

UID=jdoe, O=Siroe Corporation, C=US

When searching the directory for the entry, the Certificate Manager first searches
for entries that have these attributes in common

certSubjectDN=UID=jdoe, O=Siroe Corporation, C=US

and then narrows down the search to an entry that has only this:

certSubjectDN=UID=jdoe, O=Siroe Corporation, C=US

If no matching entries are found, the server returns an error and writes it to the log;
see section “Monitoring CMS Logs” in Chapter 23, “Managing CMS Logs” of CMS
Installation and Setup Guide.

Configuration Parameters of LdapSubjAttrMap
In the configuration file, the LdapSubjAttrMap module is identified as
ca.publish.mapper.impl.LdapSubjAttrMap.class=com.netscape.
certsrv.ldap.LdapCertSubjMap.

In the CMS window, the module is identified as LdapSubjAttrMap. Figure 5-7
shows how configurable parameters for the module are displayed in the CMS
window.

LdapSubjAttrMap Plug-in Module

Chapter 5 Mapper Plug-in Modules 269

Figure 5-7 Parameters defined in the LdapSubjAttrMap module

Table 5-4 describes these parameters.

Table 5-4 Description of parameters defined in the LdapSubjAttrMap module

Parameter Description

certSubjNameAttr Specifies the name of the LDAP attribute that contains a certificate subject name as
its value.

Permissible values: Must be certSubjectName.

Example: certSubjectName

searchBase Specifies the base DN for starting the attribute search.

Permissible values: A valid DN of an LDAP entry.

Example: O=siroe.com, C=US

LdapSubjAttrMap Plug-in Module

270 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

271

Chapter 6

Publisher Plug-in Modules

You can configure a Certificate Manager to publish certificates to an LDAP
directory or flat file, and to publish CRLs to a directory, online validation
authority, or flat file. If you configure the Certificate Manager to publish to any of
these repositories, when the Certificate Manager is requested to issue a certificate
or to update certificate information, it automatically updates the corresponding
entry in the configured repository with relevant information. Similarly, when a
certificate is revoked, the Certificate Manager automatically updates the
configured repositoty with relevant CRL information. To locate the correct entry in
the repository, the Certificate Manager relies on object-mapping rules and to
update the located entry with relevant information, the Certificate Manager relies
on object-publishing rules.

To enable you to construct object-publishing rules, the Certificate Manager
provides a set of publisher plug-in modules. These modules are implemented as
Java classes and are registered with the Certificate Manager’s publishing
framework.

This chapter explains the publisher modules that are installed with a Certificate
Manager—it lists and briefly describes the modules and then explains each one in
detail. Before reading this chapter, you should have read the previous chapter,
Chapter 5, “Mapper Plug-in Modules.”

The chapter has the following sections:

• Overview of Publisher Modules (page 272)

• FileBasedPublisher Plug-in Module (page 274)

• LdapCaCertPublisher Plug-in Module (page 275)

• LdapUserCertPublisher Plug-in Module (page 277)

• LdapCrlPublisher Plug-in Module (page 279)

• OCSPPublisher Plug-in Module (page 281)

Overview of Publisher Modules

272 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Overview of Publisher Modules
Publisher modules help you configure the Certificate Manager to publish a CA
certificate, end-entity certificates, or CRLs to the following:

• A mapped entry in the directory (entries are mapped by one of the mapper
modules explained in Chapter 5, “Mapper Plug-in Modules.”)

• A particular file

• An online validation authority

By default, the Certificate Manager provides publisher modules for publishing the
CA certificate, end-entity certificates, and CRLs. Plug-in modules are implemented
as Java classes and are registered in the CMS publishing framework. The Publisher
Plugin Registration tab of the CMS window (Figure 6-1) lists all the modules and
the corresponding classes that are currently registered with a Certificate Manager.

Figure 6-1 Default publisher modules registered with a Certificate Manager

Table 6-1 describes the publisher modules provided for the Certificate Manager.
You can use these modules to configure a Certificate Manager to employ specific
publishing rules.

Overview of Publisher Modules

Chapter 6 Publisher Plug-in Modules 273

Note that the name of the Java class for a publisher plug-in is in this format:

com.netscape.certsrv.ldap.<plugin_name>

where <plugin_name> is the name of a plug-in module. For example, the Java class
for the FileBasedPublisher module would be:

com.netscape.certsrv.ldap.FileBasedPublisher

If you determine that the default publisher modules do not meet your
requirements, you can develop a custom publisher class by implementing the
following Java interface:

com.netscape.certsrv.ldappublish.ILdapPublisher

For more information on this interface, check the CMS software development kit
(SDK) installed at this location: <server_root>/cms_sdk/cms_jdk

Be sure to take a look at the samples available at this location:
<server_root>/cms_sdk/cms_jdk/samples/publishers

Table 6-1 Default publisher plug-in modules for publishing certificates and CRLs

Plug-in module name Function

FileBasedPublisher Publishes certificates and CRLs to a flat file (for exporting into other
repositories). For details, see “FileBasedPublisher Plug-in Module” on
page 274.

LdapCaCertPublisher Publishes or unpublishes a certificate to the caCertificate;binary
attribute of the mapped directory entry as a DER encoded binary blob. Also
converts the object class to a certificationAuthority if it’s not one
already; similarly, removes the certificationAuthority object class
on unpublish if the CA has no other certificates. For details, see
“LdapCaCertPublisher Plug-in Module” on page 275.

LdapCrlPublisher Publishes (replaces) a CRL to the
certificateRevocationList;binary attribute of the mapped
directory entry as a DER encoded binary blob. The entry should be a
certificationAuthority object class. For details, see
“LdapCrlPublisher Plug-in Module” on page 279.

LdapUserCertPublisher Publishes or unpublishes a certificate to the userCertificate;binary
attribute of the mapped directory entry as a DER encoded binary blob. For
details, see “LdapUserCertPublisher Plug-in Module” on page 277.

OCSPPublisher Publishes CRLs to a Online Certificate Status Manager. For details, see
“OCSPPublisher Plug-in Module” on page 281.

FileBasedPublisher Plug-in Module

274 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

When developing a custom publisher module, you may want to intercept LDAP
error 52 and reword it so that the correct error message gets logged. To give you an
example, if the publishing directory has been stopped, the server logs the following
message in its error and system logs:

Error publishing CRL MasterCRL: Cannot find a match in the LDAP
server for certificate. netscape.ldap.LDAPException: unable to
establish connection (52); DSA is unavailable.

Notice that the error message incorrectly says DSA is unavailable instead of
Directory Server is unavailable.

For instructions on how to configure a Certificate Manager to use a publisher
module, see section “Configuring a Certificate Manager to Publish Certificates and
CRLs” in Chapter 19, “Setting Up LDAP Publishing” of CMS Installation and Setup
Guide.

FileBasedPublisher Plug-in Module
The FileBasedPublisher plug-in module implements the flat file publisher. This
module enables you to configure a Certificate Manager to publish certificates and
CRLs to files, which then can be used for importing the certificates and CRLs into
any other repository.

By default, the Certificate Manager does not create an instance of the
FileBasedPublisher module. The instructions covered in Chapter 20, “Publishing
Certificates and CRLs to a File” of CMS Installation and Setup Guide explain how to
create an instance of this module and how to configure a Certificate Manager to
publish certificates and CRLs to files.

Configuration Parameters of FileBasedPublisher
In the CMS configuration file, the FileBasedPublisher module is identified as
ca.publish.publisher.impl.FileBasedPublisher.class=com.netscape.
certsrv.ldap.FileBasedPublisher.

In the CMS window, the module is identified as FileBasedPublisher. Figure 6-2
shows how the configurable parameters for the module are displayed in the CMS
window.

LdapCaCertPublisher Plug-in Module

Chapter 6 Publisher Plug-in Modules 275

Figure 6-2 Configuration parameters defined in the FileBasedPublisher module

The configuration shown in Figure 6-2 creates a publisher named
PublishCertsToFile, which can publish certificate and CRL files to a directory at
C:\certificates.

LdapCaCertPublisher Plug-in Module
The LdapCaCertPublisher plug-in module implements the CA certificate
publisher. This module enables you to configure a Certificate Manager to publish
or unpublish a certificate to the caCertificate;binary attribute of the mapped
directory entry; the mapper must locate the correct entry so the publisher can
publish the certificate to the specified attribute. The certificate is published as a
DER encoded binary blob.

The module also converts the object class of the CA’s entry to a
certificationAuthority if it’s not one already. Similarly, it also removes the
certificationAuthority object class on unpublish if the CA has no other
certificates.

You can use this module for publishing the CA certificate to the LDAP directory
only.

During installation, the Certificate Manager automatically creates an instance
(called a publisher) of the LdapCaCertPublisher module for publishing the CA
certificate to the directory. See “LdapCaCertPublisher Publisher” on page 277.

LdapCaCertPublisher Plug-in Module

276 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Configuration Parameters of
LdapCaCertPublisher
In the CMS configuration file, the LdapCaCertPublisher module is identified as
ca.publish.publisher.impl.LdapCaCertPublisher.class=com.netscape.
certsrv.ldap.LdapCaCertPublisher.

In the CMS window, the module is identified as LdapCaCertPublisher. Figure 6-3
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 6-3 Parameters defined in the LdapCaCertPublisher module

Table 6-2 describes these parameters.

Table 6-2 Description of parameters defined in the LdapCaCertPublisher module

Parameter Description

caCertAttr Specifies the LDAP directory attribute to publish the CA certificate.

Permissible values: Must be caCertificate;binary.

Example: caCertificate;binary

LdapUserCertPublisher Plug-in Module

Chapter 6 Publisher Plug-in Modules 277

LdapCaCertPublisher Publisher
The publisher named LdapCaCertPublisher is an instance of the
LdapCaCertPublisher module. The Certificate Manager automatically creates
this publisher during installation.

You can use this publisher for publishing the CA certificate to
caCertificate;binary attribute of the mapped CA’s entry in the directory.

LdapUserCertPublisher Plug-in Module
The LdapUserCertPublisher plug-in module implements the end-entity
certificate publisher. This module enables you to configure a Certificate Manager to
publish or unpublish a certificate to the userCertificate;binary attribute of the
mapped directory entry; the mapper must locate the correct entry so the publisher
can publish the certificate to the specified attribute. The certificate is published as a
DER encoded binary blob.

You can use this module to publish any end-entity certificate to an LDAP directory.
Types of end-entity certificates include SSL client, S/MIME, SSL server, object
signing, router, and OCSP responder.

During installation, the Certificate Manager automatically creates an instance
(called a publisher) of the LdapUserCertPublisher module for publishing
end-entity certificates to the directory. See “LdapUserCertPublisher Publisher” on
page 279.

caObjectClass Specifies the object class for the CA’s entry in the directory.

Permissible values: Must be certificationAuthority.

Example: certificationAuthority

Table 6-2 Description of parameters defined in the LdapCaCertPublisher module (Continued)

Parameter Description

LdapUserCertPublisher Plug-in Module

278 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Configuration Parameters of
LdapUserCertPublisher
In the CMS configuration file, the LdapUserCertPublisher module is identified as
ca.publish.publisher.impl.LdapUserCertPublisher.class=com.netscape.
certsrv.ldap.LdapUserCertPublisher.

In the CMS window, the module is identified as LdapUserCertPublisher. Figure
6-4 shows how the configurable parameters for the module are displayed in the
CMS window.

Figure 6-4 Parameters defined in the LdapUserCertPublisher module

The configuration shown in Figure 6-4 creates a publisher rule named
LdapUserCertPublisher, which publishes user certificates to the
userCertificate;binary attribute of the mapped user entries.

Table 6-3 describes the parameters.

LdapCrlPublisher Plug-in Module

Chapter 6 Publisher Plug-in Modules 279

LdapUserCertPublisher Publisher
The publisher named LdapUserCertPublisher is an instance of the
LdapUserCertPublisher module. The Certificate Manager automatically creates
this publisher during installation.

You can use this publisher to publish an end-entity certificate to the
userCertificate;binary attribute of the mapped end-entity’s entry in the
directory.

LdapCrlPublisher Plug-in Module
The LdapCrlPublisher plug-in module implements the CRL publisher. This
module enables you to configure a Certificate Manager to publish or unpublish the
CRL to the certificateRevocationList;binary attribute of the mapped
directory entry; the configured mapper must locate the CA’s entry so that the
publisher can publish the CRL to the certificateRevocationList;binary
attribute. The CRL is published as a DER-encoded binary blob.

The CRL publisher requires you to specify just one parameter named crlAttr. The
value of this parameter must be certificateRevocationList;binary.

During installation, the Certificate Manager automatically creates an instance
(called a publisher) of the LdapCrlPublisher module for publishing CRLs to the
directory. See “LdapCrlPublisher Publisher” on page 281.

Table 6-3 Description of parameters defined in the LdapUserCertPublisher module

Parameter Description

certAttr Specifies the directory attribute of the mapped entry to which the Certificate
Manager should publish the certificate.

Permissible values: Must be userCertificate;binary.

Example: userCertificate;binary

LdapCrlPublisher Plug-in Module

280 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Configuration Parameters of LdapCrlPublisher
In the CMS configuration file, the LdapCrlPublisher module is identified as
ca.publish.publisher.impl.LdapCrlPublisher.class=com.netscape.
certsrv.ldap.LdapCrlPublisher.

In the CMS window, the module is identified as LdapCrlPublisher. Figure 6-5
shows how the configurable parameters for the module are displayed in the CMS
window.

Figure 6-5 Parameters defined in the LdapCrlPublisher module

Table 6-4 describes these parameters.

Table 6-4 Description of parameters defined in the LdapCrlPublisher module

Parameter Description

crlAttr Specifies the directory attribute of the mapped entry to which the Certificate
Manager should publish the certificate.

Permissible values: Must be certificateRevocationList;binary.

Example: certificateRevocationList;binary

OCSPPublisher Plug-in Module

Chapter 6 Publisher Plug-in Modules 281

LdapCrlPublisher Publisher
The publisher named LdapCrlPublisher is an instance of the LdapCrlPublisher
module. The Certificate Manager automatically creates this publisher during
installation.

You can use this publisher for publishing the CRL to
certificateRevocationList;binary attribute of the CA’s entry in the directory.

OCSPPublisher Plug-in Module
The OCSPPublisher plug-in module implements the OCSP publisher. This module
enables you to configure a Certificate Manager to publish its CRLs to a Online
Certificate Status Manager, the OCSP responder provided by Certificate
Management System.

During installation, the Certificate Manager does not create any instancs of the
OCSPPublisher module.

Configuration Parameters of OCSPPublisher
In the CMS configuration file, the OCSPPublisher module is identified as
ca.publish.publisher.impl.OCSPPublisher.class=com.netscape.
certsrv.ldap.OCSPPublisher.

In the CMS window, the module is identified as OCSPPublisher. Figure 6-6 shows
how the configurable parameters for the module are displayed in the CMS
window.

OCSPPublisher Plug-in Module

282 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 6-6 Parameters defined in the OCSPPublisher module

Table 6-5 describes these parameters.

Table 6-5 Description of parameters defined in the OCSPPublisher module

Parameter Description

host Specifies the hostname of the Online Certificate Status Manager.

Permissible values: Must be the fully-qualified hostname of a Online Certificate
Status Manager in this form: <machine)_name>.<your_domain>.com

Example: ocspResponder.siroe.com

port Specifies the port number at which the Online Certificate Status Manager is listening
to the Certificate Manager.

Permissible values: Must be the Online Certificate Status Manager’s agent port
number.

Example: 8101

path Specifies the path for publishing the CRL.

Permissible values: Must be the default path, /ocsp/addCRL.

Example: /ocsp/addCRL

283

Chapter 7

CRL Extension Plug-in Modules

You can configure a Certificate Manager to generate CRLs and publish them to
repositories such as an LDAP directory, a flat file, or an OCSP responder which
other applications may use for checking the revocation status of a certificate or
from which other applications can retrieve the CRL. You can also configure the
Certificate Manager to generate and publish CRLs conforming to either X.509
version 1 or X.509 version 2 standards—CRLs compliant to X.509 version 2
standards contain CRL extensions.

To enable you to add these extensions to the CRL it generates, the Certificate
Manager provides a set of plug-in modules. These modules are implemented as
Java classes and are registered with the Certificate Manager’s publishing
framework.

This chapter explains plug-in modules that are installed with a Certificate
Manager—it lists and briefly describes the modules and then explains each one in
detail.

The chapter has the following sections:

• Overview of CRL Extension Modules (page 284)

• AuthorityKeyIdentifier Rule (page 285)

• CRLNumber Rule (page 287)

• CRLReason Rule (page 288)

• HoldInstruction Rule (page 290)

• InvalidityDate Rule (page 291)

• IssuerAlternativeName Rule (page 293)

• IssuingDistributionPoint Rule (page 297)

Overview of CRL Extension Modules

284 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Overview of CRL Extension Modules
To enable you issue or publish X.509 v2 CRLs (that is, CRLs with extensions),
Certificate Management System provides a set of plug-in modules; each module
enables you to configure the Certificate Manager to set a particular CRL or
CRL-entry extension in CRLs it issues. Plug-in modules are implemented as Java
classes and are registered in the CMS publishing framework. The CRL Extensions
Management tab of the CMS window (Figure 7-1) lists all the modules that are
registered with a Certificate Manager.

When deciding whether to add CRL extensions, keep in mind that not all
applications support version 2 CRLs. Among the applications that do support
extensions, not all applications will recognize every extension. For general
guidelines on using these extensions in CRLs, see Appendix C, “Certificate and
CRL Extensions.”

Figure 7-1 Default CRL extension modules registered with a Certificate Manager

Table 7-1 lists CRL extension modules that are installed with a Certificate Manager.
For instructions on how to configure a Certificate Manager to set CRL extensions,
see section “Configuring a Certificate Manager to Publish Certificates and CRLs”
in Chapter 19, “Setting Up LDAP Publishing” of CMS Installation and Setup Guide.

AuthorityKeyIdentifier Rule

Chapter 7 CRL Extension Plug-in Modules 285

AuthorityKeyIdentifier Rule
The AuthorityKeyIdentifier rule enables you to configure a Certificate Manager
to set the Authority Key Identifier Extension defined in X.509 and PKIX standard RFC
2459 (see http://www.ietf.org/rfc/rfc2459.txt) in CRLs. The extension is
used to identify the public key that corresponds to the private key used by a CA to
sign CRLs.

The PKIX standard recommends that the CA must include this extension in all
CRLs it issues. Therefore, you should consider adding this extension to all CRLs
issued by the Certificate Manager. The reason for this is that in certain situations, a
CA’s public key may change (for example, when the key gets updated) or the CA
may have multiple signing keys (either because of multiple concurrent key pairs or
because of key changeover). In these cases, the CA ends up with more than one key
pair. When verifying a signature on a certificate, other applications need to know
which key was used in the signature. The extension, if present in a certificate,
enables applications (those that can use the extension) to identify the correct key to
use in situations when multiple keys exist; the extension specifies the public key to
be used to verify the signature on the CRL.

Table 7-1 Default CRL extension modules

Plug-in module name Function

AuthorityKeyIdentifier Sets the Authority Key Identifier extension in CRLs. For details, see
“AuthorityKeyIdentifier Rule” on page 285.

CRLNumber Sets the CRL Number extension in CRLs. For details, see “CRLNumber
Rule” on page 287.

CRLReason Sets the Reason Code extension in CRL entries. For details, see
“CRLReason Rule” on page 288.

HoldInstruction Sets the Hold Instruction Code extension in CRL entries. For details, see
“HoldInstruction Rule” on page 290.

InvalidityDate Sets the Invalidity Date extension in CRL entries. For details, see
“InvalidityDate Rule” on page 291.

IssuerAlternativeName Sets the Issuer Alternative Name extension in CRLs. For details, see
“IssuerAlternativeName Rule” on page 293.

IssuingDistributionPoint Sets the Issuing Distribution Point extension in CRLs. For details, see
“IssuingDistributionPoint Rule” on page 297.

AuthorityKeyIdentifier Rule

286 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

For general guidelines on setting the authority key identifier extension in CRLs, see
“authorityKeyIdentifier” on page 364.

Figure 7-2 shows how configurable parameters for the AuthorityKeyIdentifier
rule are displayed in the CMS window.

Figure 7-2 Parameters defined in the AuthorityKeyIdentifier rule

The configuration shown in Figure 7-2 specifies that the server should not set the
authority key identifier extension in CRLs.

Table 7-2 describes these parameters.

Table 7-2 Description of parameters defined in the AuthorityKeyIdentifierExt rule

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule.
Uncheck the box to disable the rule (default).

• If you enable the rule and set the remaining parameters correctly, the server sets
the authority key identifier extension in CRLs.

• If you disable the rule, the server does not add the extension to CRLs; it ignores
the values in the remaining fields.

critical Specifies whether the extension should be marked critical or noncritical in CRLs
issued by the server. Check the box if you want the server to mark the extension
critical. Uncheck the box if you want the server to mark the extension noncritical
(default).

CRLNumber Rule

Chapter 7 CRL Extension Plug-in Modules 287

CRLNumber Rule
The CRLNumber rule enables you to configure a Certificate Manager to set the CRL
Number Extension defined in X.509 and PKIX standard RFC 2459 (see
http://www.ietf.org/rfc/rfc2459.txt) in CRLs. This extension specifies a
monotonically increasing sequence number for each CRL issued by a CA, allowing
CRL users to easily determine when a particular CRL supersedes another CRL.

For general guidelines on setting the CRL number extension in CRLs, see
“CRLNumber” on page 365.

Figure 7-3 shows how the configurable parameters for the CRLNumber rule are
displayed in the CMS window.

Figure 7-3 Parameters defined in the CRLNumber rule

The configuration shown in Figure 7-3 specifies that the server should not set the
CRL number extension in CRLs.

Table 7-3 describes these parameters.

CRLReason Rule

288 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

CRLReason Rule
The CRLReason rule enables you to configure a Certificate Manager to set the CRL
ReasonCode Extension defined in X.509 and PKIX standard RFC 2459 (see
http://www.ietf.org/rfc/rfc2459.txt) in CRL entries. The extension is used
to identify the reason for the revocation of a certificate included in the CRL.

For general guidelines on setting the CRL reason code in CRL entries, see
“reasonCode” on page 369.

The revocation reasons defined by the standard are listed in Table 7-4.

Table 7-3 Description of parameters defined in the CRLNumber rule

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule.
Uncheck the box to disable the rule (default).

• If you enable the rule and set the remaining parameters correctly, the server sets
the CRL number extension in CRLs.

• If you disable the rule, the server does not add the extension to CRLs; it ignores
the values in the remaining fields.

critical Specifies whether the extension should be marked critical or noncritical in CRLs
issued by the server. Check the box if you want the server to mark the extension
critical. Uncheck the box if you want the server to mark the extension noncritical
(default).

Table 7-4 Certificate revocation reasons

Code Reason

0 unspecified

1 keyCompromise

2 cACompromise

3 affiliationChanged

4 superseded

5 cessationOfOperation

6 certificateHold

8 removeFromCRL

CRLReason Rule

Chapter 7 CRL Extension Plug-in Modules 289

Figure 7-4 shows how the configurable parameters for the CRLReason rule are
displayed in the CMS window.

Figure 7-4 Parameters defined in the CRLReason rule

The configuration shown in Figure 7-4 specifies that the server should set the CRL
reason code extension in CRL entries.

Table 7-5 describes these parameters.

Table 7-5 Description of parameters defined in the CRLReason rule

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule
(default). Uncheck the box to disable the rule.

• If you enable the rule and set the remaining parameters correctly, the server sets
the CRL number extension in CRLs.

• If you disable the rule, the server does not add the extension to CRLs; it ignores
the values in the remaining fields.

critical Specifies whether the extension should be marked critical or noncritical in CRLs
issued by the server. Check the box if you want the server to mark the extension
critical. Uncheck the box if you want the server to mark the extension noncritical
(default).

HoldInstruction Rule

290 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

HoldInstruction Rule
The HoldInstruction rule enables you to configure a Certificate Manager to set
the CRL Hold Instruction Extension defined in X.509 and PKIX standard RFC 2459
(see http://www.ietf.org/rfc/rfc2459.txt) in CRLs. The extension is a
non-critical CRL entry extension that is used to specify a registered instruction
identifier—the identifier indicates what action the validating application should
take when it encounters a certificate that has been placed on hold.

For general guidelines on setting the CRL hold instruction code in CRL entries, see
“holdInstructionCode” on page 368.

Figure 7-5 shows how the configurable parameters for the HoldInstruction rule
are displayed in the CMS window.

Figure 7-5 Parameters defined in the HoldInstruction rule

The configuration shown in Figure 7-5 specifies that the server should not set the
hold instruction extension in CRL entries.

Table 7-6 describes these parameters.

InvalidityDate Rule

Chapter 7 CRL Extension Plug-in Modules 291

InvalidityDate Rule
The InvalidityDate rule enables you to configure a Certificate Manager to set the
Invalidity Date Extension defined in X.509 and PKIX standard RFC 2459 (see
http://www.ietf.org/rfc/rfc2459.txt) in CRLs. The extension is a non-critical
CRL entry extension that is used to specify the date on which it is known or
suspected that the private key was compromised or that the certificate otherwise
became invalid.

For general guidelines on setting the invalidity date extension in CRL entries, see
“invalidityDate” on page 368.

Table 7-6 Description of parameters defined in the HoldInstruction rule

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule.
Uncheck the box to disable the rule (default).

• If you enable the rule and set the remaining parameters correctly, the server sets
the Hold Instruction extension in CRLs.

• If you disable the rule, the server does not add the extension to CRLs; it ignores
the values in the remaining fields.

critical Specifies whether the extension should be marked critical or noncritical in CRLs
issued by the server. Check the box if you want the server to mark the extension
critical. Uncheck the box if you want the server to mark the extension noncritical
(default).

instruction Specifies the action a validating application must take when it encounters a certificate
that has been put on hold.

Permissible values: none, callissuer, or reject.

• none specifies that the validating application need not do anything; the PKIX
standard says that this is semantically equivalent to the absence of a
holdInstructionCode (default).

• callissuer specifies that the validating application must call the CA that has
issued the certificate or reject the certificate.

• reject specifies that the validating application must reject the certificate on
hold.

Example: none

InvalidityDate Rule

292 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 7-6 shows how the configurable parameters for the InvalidityDate rule
are displayed in the CMS window.

Figure 7-6 Parameters defined in the InvalidityDate rule

The configuration shown in Figure 7-6 specifies that the server should not set the
invalidity date extension in CRL entries.

Table 7-7 describes these parameters.

Table 7-7 Description of parameters defined in the InvalidityDate rule

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable the rule.
Uncheck the box to disable the rule (default).

• If you enable the rule and set the remaining parameters correctly, the server sets
the Invalidity Date extension in CRLs.

• If you disable the rule, the server does not add the extension to CRLs; it ignores
the values in the remaining fields.

critical Specifies whether the extension should be marked critical or noncritical in CRLs
issued by the server. Check the box if you want the server to mark the extension
critical. Uncheck the box if you want the server to mark the extension noncritical
(default).

IssuerAlternativeName Rule

Chapter 7 CRL Extension Plug-in Modules 293

IssuerAlternativeName Rule
The IssuerAlternativeName rule enables you to configure a Certificate Manager
to set the Issuer Alternative Name Extension defined in X.509 and PKIX standard RFC
2459 (see http://www.ietf.org/rfc/rfc2459.txt) in CRLs. This extension
enables binding of or associating alternative identities, such as Internet electronic
mail address, a DNS name, an IP address, and a uniform resource indicator (URI),
with the issuer of the CRL.

The IssuerAlternativeName rule enables you to associate the following identities
with a CRL issuer, by including them in the extension:

• An rfc822Name

• A DNS name

• A directory name

• A uniform resource indicator (URI)

• An IP address

• An object identifier (OID)

For general guidelines on setting the issuer alternative name extension in CRLs, see
“issuerAltName” on page 366.

Figure 7-7 shows how configurable parameters for the IssuerAlternativeName
rule are displayed in the CMS window.

Figure 7-7 Parameters defined in the IssuerAlternativeName rule

IssuerAlternativeName Rule

294 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The configuration shown in Figure 7-7 specifies that the server should not set the
issuing point extension in CRLs.

Table 7-8 describes these parameters.

Table 7-8 Description of parameters defined in the IssuerAlternativeName rule

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable
the rule. Uncheck the box to disable the rule (default).

• If you enable the rule and set the remaining parameters correctly, the
server sets the issuer alternative name extension in CRLs.

• If you disable the rule, the server does not add the extension to CRLs; it
ignores the values in the remaining fields.

critical Specifies whether the extension should be marked critical or noncritical in
CRLs issued by the server. Check the box if you want the server to mark
the extension critical. Uncheck the box if you want the server to mark the
extension noncritical (default).

numNames Specifies the total number of alternative names or identities permitted in
the extension. Note that each name has a set of configuration parameters—
nameType and name—and you must specify appropriate values for each
of those parameters; otherwise, the policy rule will return an error.

You can change the total number of identities by changing the value
specified in this field; there’s no restriction on the total number of
identities you can include in the extension. Each set of configuration
parameters is distinguished by <n>, which is an integer derived from the
value you assign in this field. For example, if you set the numNames
parameter to 2, <n> would be 0 and 1.

Permissible values: 0 or n.

• 0 specifies that no identities can be contained in the extension.

• n specifies the total number of identities to be included in the
extension; it must be an integer greater than zero. The default value is
3.

Example: 1

IssuerAlternativeName Rule

Chapter 7 CRL Extension Plug-in Modules 295

nameType<n> Specifies the general-name type.

Permissible values: rfc822Name, directoryName, dNSName,
ediPartyName, URL, iPAddress, OID, or otherName.

• Select rfc822Name if the name is an Internet mail address.

• Select directoryName if the name is an X.500 directory name.

• Select dNSName if the name is a DNS name.

• Select ediPartyName if the name is a EDI party name.

• Select URL if the name is a uniform resource identifier (default).

• Select iPAddress if the name is an IP address.

• Select OID if the name is an object identifier.

• Select otherName if the name is in any other name form.

Example: URL

name<n> Specifies the general-name value.

Permissible values: Depends on the name type specified in the
nameType<n> field.

• If the type is rfc822Name, the value must be a valid Internet mail
address in the local-part@domain format; see the definition of an
rfc822Name as defined in RFC 822
(http://www.ietf.org/rfc/rfc0822.txt). You may use upper
and lower case letters in the mail address; no significance is attached to
the case. For example, testCA@siroe.com.

• If the type is directoryName, the value must be a string form of X.500
name, similar to the subject name in a certificate, in the RFC 2253
syntax (see http://www.ietf.org/rfc/rfc2253.txt). Note that
RFC 2253 replaces RFC 1779. For example,
CN=CACentral,OU=Research Dept,O=Siroe Corp,C=US.

• If the type is dNSName, the value must be a valid domain name in the
preferred-name syntax as specified in RFC 1034
(http://www.ietf.org/rfc/rfc1034.txt). You may use upper
and lower case letters in the domain name; no significance is attached
to the case. Do not use the string “ ” for the DNS name. Also don’t use
the DNS representation for Internet mail addresses; such identities
should be encoded as rfc822Name. For example,
testCA.siroe.com.

Table 7-8 Description of parameters defined in the IssuerAlternativeName rule (Continued)

Parameter Description

IssuerAlternativeName Rule

296 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

• If the type is ediPartyName, the name must be an IA5String. For
example, Siroe Corporation.

• If the type is URL, the value must be a non-relative universal resource
identifier (URI) following the URL syntax and encoding rules specified
in RFC 1738 (http://www.ietf.org/rfc/rfc1738.txt). That is,
the name must include both a scheme (for example, http) and a fully
qualified domain name or IP address of the host. For example,
http://testCA.siroe.com.

• If the type is iPAddress, the value must be a valid IP address
specified in dot-separated numeric component notation. The syntax for
specifying the IP address is as follows:
For IP version 4 (IPv4), the address should be in the form specified in
RFC 791 (http://www.ietf.org/rfc/rfc0791.txt). IPv4
address must be in the n.n.n.n format; for example, 128.21.39.40.
IPv4 address with netmask must be in the n.n.n.n,m.m.m.m format.
For example, 128.21.39.40,255.255.255.00.
For IP version 6 (IPv6), the address should be in the form described in
RFC 1884 (http://www.ietf.org/rfc/rfc1884.txt), with
netmask separated by a comma. Examples of IPv6 addresses with no
netmask are 0:0:0:0:0:0:13.1.68.3 and FF01::43. Examples of
IPv6 addresses with netmask are 0:0:0:0:0:0:13.1.68.3,FFFF:
FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0 and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000.

• If the type is OID, the value must be a unique, valid OID specified in
the dot-separated numeric component notation. Although you can
invent your own OIDs for the purposes of evaluating and testing this
server, in a production environment, you should comply with the ISO
rules for defining OIDs and for registering subtrees of IDs. See
Appendix B, “Object Identifiers” for information on allocating private
OIDs. For example, 1.2.3.4.55.6.5.99.

• If the type is otherName, the name must be must be the absolute path
to the file that contains the general name in its base-64 encoded format.
For example,
C:\netscape\server4\extn\ian\othername.txt.

Table 7-8 Description of parameters defined in the IssuerAlternativeName rule (Continued)

Parameter Description

IssuingDistributionPoint Rule

Chapter 7 CRL Extension Plug-in Modules 297

IssuingDistributionPoint Rule
The IssuingDistributionPoint rule enables you to configure a Certificate
Manager to set the Issuing Distribution Point Extension defined in X.509 and PKIX
standard RFC 2459 (see http://www.ietf.org/rfc/rfc2459.txt) in CRLs. The
CRL issuing point extension enables you to specify a pointer to a particular CRL
and to include additional information about the CRL at that location—whether it
covers revocation of end-entity certificates only, CA certificates only, or revoked
certificates that have a limited set of reason codes.

By default, the pointer can be in either of these forms:

• The name of the X.500 directory that stores the CRL

• The URI to the location that contains the CRL

Optionally, each issuing point may contain a set of reason flags, indicating what
revocation reasons are covered by the CRL at the specified location. Note that you
can modify the rule to support any name form by making the appropriate changes
to the sample code provided for this purpose. The sample code is located here:

<server_root>/cms_sdk/cms_jdk/samples/CRLs/IssuingDistributionPoint

For general guidelines on setting the issuing distribution point extension in CRLs,
see “issuingDistributionPoint” on page 366.

Figure 7-8 shows how configurable parameters for the
IssuingDistributionPoint rule are displayed in the CMS window.

Figure 7-8 Parameters defined in the IssuingDistributionPoint rule

IssuingDistributionPoint Rule

298 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The configuration shown in Figure 7-8 specifies that the server should not set the
issuing point extension in CRLs.

Table 7-9 describes these parameters.

Table 7-9 Description of parameters defined in the IssuingDistributionPoint rule

Parameter Description

enable Specifies whether the rule is enabled or disabled. Check the box to enable
the rule. Uncheck the box to disable the rule (default).

• If you enable the rule and set the remaining parameters correctly, the
server sets the issuing distribution point extension in CRLs.

• If you disable the rule, the server does not add the extension to CRLs; it
ignores the values in the remaining fields.

critical Specifies whether the extension should be marked critical or noncritical in
CRLs issued by the server. Check the box if you want the server to mark
the extension critical (default). Uncheck the box if you want the server to
mark the extension noncritical.

pointType Specifies the type (for example, URI) of the issuing distribution point.

Permissible values: By default, DirectoryName and URI.

• DirectoryName specifies that the type is an X.500 Directory Name
(that is, the CRL is stored in an X.500 directory).

• URI specifies that the type is a uniform resource indicator (this
provides a pointer to the location for the most current CRL issued by
this CA).

Example: URI

IssuingDistributionPoint Rule

Chapter 7 CRL Extension Plug-in Modules 299

pointName Specifies the name of the issuing distribution point. The name of the
distribution point can be in any of the following formats:

Permissible values: Depends on the value specified for the pointType
parameter.

• If the pointType attribute is set to DirectoryName, the name must
be an X.500 Name (in RFC1779 syntax).

• If the pointType attribute is set to URI, the name must be a URI; the
URI must be an absolute pathname and must specify the host.

Example:

• If the name is a URI, it would look similar to this:

http://testCA.siroe.com/get/your/crls/here/

• If the name is an X.500 Directory Name, it would look similar to this:

CN=CRLCentral,OU=Research Dept,O=Siroe Corp,C=US

(Note that the CRL may be stored in the directory entry corresponding
to the CRL issuing point, which may be different than the directory
entry of the CA.)

onlySomeReasons Specifies the reason codes associated with the distribution point.

Permissible values: A combination of reason codes—unspecified,
keyCompromise, cACompromise, affiliationChanged,
superseded, cessationOfOperation, certificateHold, and
removeFromCRL—separated by commas. Leave field blank if the
distribution point contains revoked certificates with all reason codes or if
you don’t want to set this field (default).

Example: unspecified, keyCompromise, cessationOfOperation

onlyContainsCACerts Specifies whether the distribution point contains only revoked CA
certificates. Check the box if the distribution point contains CA certificates
only. Uncheck the box if the distribution point contains all types of
revoked certificates (default).

onlyContainsUserCerts Specifies whether the distribution point contains only revoked user
certificates. Check the box if the distribution point contains user certificates
only. Uncheck the box if the distribution point contains all types of
certificates (default).

indirectCRL Specifies whether the distribution point contains an indirect CRL. Check
the box if the distribution point contains an indirect CRL. Uncheck the box
if the distribution point doesn’t contain an indirect CRL (default).

Table 7-9 Description of parameters defined in the IssuingDistributionPoint rule (Continued)

Parameter Description

IssuingDistributionPoint Rule

300 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

301

Chapter 8

Log Plug-in Modules

iPlanet Certificate Management Server (CMS) can record events related to its
activities, such as administration, communications using any of the protocols the
server supports, and various other processes employed by all the subsystems that
the server manages. To monitor these events, you need to capture them in to a
repository. For this purpose, Certificate Management System provides plug-in
modules. This chapter explains the log modules—it lists and briefly describes the
modules and then explains each one in detail.

The chapter has the following sections:

• Overview of Log Modules (page 301)

• file Plug-in Module (page 303)

• NTEventLog Plug-in Module (page 308)

Overview of Log Modules
You can configure a CMS instance to log messages related to specific activities
when events relevant to those activities occur. Log messages are
event-driven—that is, whenever an event occurs, Certificate Management System
generates the message and writes it to the configured repository. Event-driven
logging involves a listener class in the CMS instance that registers an interest in an
appropriate event such as a failed enrollment request.

Log plug-in modules discussed in this chapter are listeners, which are
implemented as Java classes and are registered in the CMS policy framework. The
Log Event Listener Plugin Registration tab of the CMS window (Figure 8-1) lists all
the modules that are registered with a CMS instance.

Overview of Log Modules

302 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Figure 8-1 Default log modules

Table 8-1 lists the log modules provided for a CMS instance.

Note that the name of the Java class for a log plug-in is in this format:

com.netscape.certsrv.logging.<plugin_name>

where <plugin_name> is the name of a plug-in module. For example, the Java class
for the NTEventLog module would be:

com.netscape.certsrv.logging.NTEventLogs

After you take a look at the default log modules, if you determine that they do not
meet your requirements entirely, you can develop a custom module. Check the
CMS software development kit (SDK) installed at this location:
<server_root>/cms_sdk/cms_jdk

Table 8-1 Log plug-in modules

Plug-in module name Function

file Logs messages to a file. For details, see “file Plug-in Module” on page 303.

NTEventLog Logs messages to Windows NT Event log (when you run a CMS instance on a
Windows NT system). For details, see “NTEventLog Plug-in Module” on
page 308.

file Plug-in Module

Chapter 8 Log Plug-in Modules 303

file Plug-in Module
The file module enables you to configure Certificate Management System to log
audit, error, and system messages to a file. The module also enables you to specify
the following:

• Filename

• Log level or message category

• Rollover criteria, which can be based on the size or age of the file

• Expiration time for rotated logs

During installation, Certificate Management System automatically creates three
instances of the file modules for logging audit, error, and system messages.

The listeners are named as follows:

• Audit (see “Audit Log Event Listener” on page 306)

• Error (see “Error Log Event Listener” on page 307)

• System (see “System Log Event Listener” on page 308)

You need to review these listeners and make the changes appropriate for your PKI
setup. For instructions, see “Configuring CMS Logs” in Chapter 23, “Managing
CMS Logs” of CMS Installation and Setup Guide.

file Plug-in Module

304 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Configuration Parameters of file
In the CMS configuration file, the file module is identified as
log.impl.file.class=com.netscape.certsrv.logging.RollingLogFile.

In the CMS window, the module is identified as file. Figure 8-2 shows how
configurable parameters for the module are displayed in the CMS window.

Figure 8-2 Parameters defined in the file module

Table 8-2 gives details about each of these parameters and their values.

Table 8-2 Description of parameters defined in the file module

Parameter Description

type Specifies the log (or event) type.

Permissible values: audit or system. Select audit for Audit logs and
system for Error and System logs. The default selection is audit.

Example: audit

file Plug-in Module

Chapter 8 Log Plug-in Modules 305

enabled Specifies whether the listener is enabled to log messages.

• Check the box if you want the server to log messages of the type specified
in the type field.

• Leave the box unchecked if you do not want the server to log messages of
this type.

level Specifies a message category that represents the level of logging to filter
messages. Log levels are additive. Before selecting a level, be sure to read
“Log Levels (Message Categories)” in Chapter 23, “Managing CMS Logs” of
CMS Installation and Setup Guide.

Permissible values: Debug, Information, Warning, Failure,
Misconfiguration, Catastrophe, and Security. By default, the level is
set to Information.

Example: Debug

fileName Specifies the file path for the active log file; when the file is rotated, its name
will be appended with a timestamp. For details, see “Timing of Log File
Rotation” in Chapter 23, “Managing CMS Logs” of CMS Installation and Setup
Guide.

Permissible values: Absolute path to the file, including the filename.

Example: C:\cms\server4\cert-demoCA\logs\audit.log

bufferSize Specifies the buffer size, in kilobytes (KB), for the active log file. For details,
see “Buffered Versus Unbuffered Logging” in Chapter 23, “Managing CMS
Logs” of CMS Installation and Setup Guide.

Permissible values: As applicable. The default value is 512.

Example: 512

flushInterval Specifies the flush interval, in seconds, for the active log file; when the file
reaches the specified interval, the buffer will be flushed to the file. For details,
see “Timing of Log File Rotation” in Chapter 23, “Managing CMS Logs” of
CMS Installation and Setup Guide

Permissible values: As applicable. The default value is 5.

Example: 5

Table 8-2 Description of parameters defined in the file module (Continued)

Parameter Description

file Plug-in Module

306 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Audit Log Event Listener
The event listener named Audit is an instance of the file module. Certificate
Management System automatically creates this listener during installation. By
default, the listener is configured as follows:

• The rule is enabled.

• The type is set to log audit messages (type=audit).

• The log level for the active log file is set to 1 (level=Information).

• Log messages are written to a file named audit.log, which is at:
<server_root>/cert-<instance_id>/logs/

maxFileSize Specifies the file size, in kilobytes (KB), for the active log file; the file will be
rotated when its size reaches or exceeds the specified value. For details, see
“Timing of Log File Rotation” in Chapter 23, “Managing CMS Logs” of CMS
Installation and Setup Guide

Permissible values: As applicable. The default value is 100.

Example: 100

rolloverInterval Specifies the frequency for rotating the active log file; the file will be rotated
when its age is equal to or older than this interval. For details, see “Rotation of
Log Files” in Chapter 23, “Managing CMS Logs” of CMS Installation and Setup
Guide.

Permissible values: Hourly, Daily, Weekly, Monthly, and Yearly. The
default selection is Hourly.

Example: Weekly

expirationTime Specifies the interval at which the server should delete the rotated log file; the
file will be deleted when its age is equal to or older than this interval. By
default, the rotated log files are not deleted. For details, see “Timing of Log
File Deletion” in Chapter 23, “Managing CMS Logs” of FCMS Installation and
Setup Guide.

Permissible values: An appropriate value in seconds. For example, if you
want the files to be deleted every 30 days, you would type 2592000
(60x60x24x30) seconds.

Example: 2592000

Table 8-2 Description of parameters defined in the file module (Continued)

Parameter Description

file Plug-in Module

Chapter 8 Log Plug-in Modules 307

• The buffer size for the active log file is set to 512 KB (bufferSize=512).

• The interval for flushing the buffer to the file is set to 5 seconds
(flushInterval=5).

• The size limit for the active log file is set to 100 KB (maxFileSize=100).

• The rollover interval for the active log file is set to monthly or every 30 days
(rolloverInterval=Monthly).

• Expiration time for the rotated log files is set to 0 seconds (expirationTime=0).

For details on individual parameters defined in the listener, see Table 8-2 on
page 304.

Error Log Event Listener
The event listener named Error is an instance of the file module. Certificate
Management System automatically creates this listener during installation. By
default, the listener is configured as follows:

• The rule is enabled.

• The type is set to log error messages (type=system).

• The log level for the active log file is set to 3 (level=Failure).

• Log messages are written to a file named error.log, which is at:
<server_root>/cert-<instance_id>/logs/

• The buffer size for the active log file is set to 512 KB (bufferSize=512).

• The interval for flushing the buffer to the file is set to 5 seconds
(flushInterval=5).

• The size limit for the active log file is set to 100 KB (maxFileSize=100).

• The rollover interval for the active log file is set to monthly or every 30 days
(rolloverInterval=Monthly).

• Expiration time for the rotated log files is set to 0 seconds (expirationTime=0).

For details on individual parameters defined in the listener, see Table 8-2 on
page 304.

NTEventLog Plug-in Module

308 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

System Log Event Listener
The event listener named System is an instance of the file module. Certificate
Management System automatically creates this listener during installation. By
default, the listener is configured as follows:

• The rule is enabled.

• The type is set to log system messages (type=system).

• The log level for the active log file is set to 3 (level=Failure).

• Log messages are written to a file named system.log, which is at:
<server_root>/cert-<instance_id>/logs/

• The buffer size for the active log file is set to 512 KB (bufferSize=512).

• The interval for flushing the buffer to the file is set to 5 seconds
(flushInterval=5).

• The size limit for the active log file is set to 100 KB (maxFileSize=100).

• The rollover interval for the active log file is set to monthly or every 30 days
(rolloverInterval=Monthly).

• Expiration time for the rotated log files is set to 0 seconds (expirationTime=0).

For details on individual parameters defined in the listener, see Table 8-2 on
page 304.

NTEventLog Plug-in Module
The NTEventLog module enables you to configure Certificate Management System
to write both audit and system logs to the Event Log of a Windows NT system. If
you’ve installed Certificate Management System on a Windows NT system, the
CMS window allows you to turn this feature on or off and to specify the levels for
logging.

During installation, Certificate Management System automatically creates two
instances or listeners of the NTEventLog modules for logging audit and system
messages. The listeners are named as follows:

• NTAudit (see “NTAudit Event Listener” on page 310)

• NTSystem (see “NTSystem Event Listener” on page 310)

NTEventLog Plug-in Module

Chapter 8 Log Plug-in Modules 309

Note that by default both the listeners are enabled. You need to review these
listeners and make the changes appropriate for your PKI setup. For instructions,
see “Configuring CMS Logs” in Chapter 23, “Managing CMS Logs” of FCMS
Installation and Setup Guide.

Configuration Parameters of NTEventLog
In the configuration file, the NTEventLog module is identified as
log.impl.NTEventLog.class=com.netscape.certsrv.logging.NTEventLog.

In the CMS window, the module is identified as NTEventLog. Figure 8-3 shows
how configurable parameters of the module are displayed in the CMS window.

Figure 8-3 Parameters defined in the NTEventLog module

Table 8-3 gives details about each of these parameters and their values.

Table 8-3 Description of parameters defined in the NTEventLog module

Parameter Description

type Specifies the log (or event) type.

Permissible values: audit or system. Select audit for audit logs and
system for error and system logs.

Example: system

NTEventLog Plug-in Module

310 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

NTAudit Event Listener
The event listener named NTAudit is an instance of the NTEventLog module.
Certificate Management System automatically creates this listener during
installation. By default, the listener is configured as follows:

• The rule is enabled.

• The type is set to log audit messages (type=audit).

• The log level is set to 1 (level=Information).

• The event source identifies the name of the CMS instance that’s logging the
events.

For details on individual parameters defined in the listener, see Table 8-3 on
page 309.

NTSystem Event Listener
The event listener named NTSystem is an instance of the NTEventLog module.
Certificate Management System automatically creates this listener during
installation. By default, the listener is configured as follows:

• The rule is enabled.

enable Specifies whether the listener is enabled to log messages.

• Check the box if you want the server to log messages of this type.

• Leave the box unchecked if you do not want the server to log messages of
this type.

level Specifies a message category that represents the level of logging to filter
messages. For details, see section “Log Levels (Message Categories)” in
Chapter 23, “Managing CMS Logs” of CMS Installation and Setup Guide.

Permissible values: Debug, Info, Warning, Failure, Misconfiguration,
Catastrophe, and Security.

Example: Info

NTEventSourceName Specifies the name of the CMS instance that’s logging the messages.

Table 8-3 Description of parameters defined in the NTEventLog module (Continued)

Parameter Description

NTEventLog Plug-in Module

Chapter 8 Log Plug-in Modules 311

• The type is set to log system messages (type=system).

• The log level is set to 2 (level=Warning).

• The event source identifies the name of the CMS instance that’s logging the
events.

For details on individual parameters defined in the listener, see Table 8-3 on
page 309.

NTEventLog Plug-in Module

312 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

313

Appendix A

Distinguished Names

This appendix explains what a distinguished name is and how iPlanet Certificate
Management Server (CMS) uses distinguished names to automatically update
certificate information in your corporate LDAP directory.

The appendix has the following sections:

• What Is a Distinguished Name? (page 313)

• DNs in Certificate Management System (page 316)

• Role of Distinguished Names in Certificates (page 323)

For the most part, the information presented in this appendix is specific to
Netscape Directory Server, an LDAP-compliant directory.

What Is a Distinguished Name?
Distinguished names (DNs) are string representations that uniquely identify users,
systems, and organizations. In general, DNs are used in LDAP-compliant
directories, such as Netscape Directory Server. In Certificate Management System,
you use DNs to identify the owner of a certificate and the authority that issued a
certificate.

NOTE If you are using an LDAP directory in conjunction with Certificate
Management System, the DNs in your certificates should match the
DNs in your directory.

What Is a Distinguished Name?

314 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Distinguished Name Components
A DN identifies an entry in an LDAP directory. Because directories are
hierarchical, DNs identify the entry by its location as a path in a hierarchical tree
(much as a path in a file system identifies a file). Generally, a DN begins with a
specific common name, and proceeds with increasingly broader areas of
identification until the country name is specified. DNs are typically made up of the
following components (which are defined in the X.520 standard):

CN=common name, OU=organizational unit, O=organization, L=locality,
ST=state or province, C=country name

These components are described in Table A-1. For more information on
distinguished names, see RFC 2253 (which replaces RFC 1779). You can find RFC
2253 at this URL: http://www.ietf.org/rfc/rfc2253.txt

Note that if used in conjunction with an LDAP-compliant directory, Certificate
Management System by default recognizes components that are listed in Table A-2.

Table A-1 Definitions of standard DN components

Component Name Definition

CN Common name A required component that identifies the person or object defined
by the entry. For example:

• CN=Jane Doe

• CN=corpDirectory.siroe.com

E
(deprecated)

Email address Identifies the email address of the entry. For example:
jdoe@siroe.com

The use of this component is discouraged by the PKIX standard;
instead, it recommends the use of Subject Alternative Name Extension
to associate an email address with a certificate; see
“SubjectAltNameExt Plug-in Module” on page 235. The reason for
this is because it is usually too hard to have a E in a directory
structure; email addresses change too frequently.

OU Organizational unit Identifies a unit within the organization. For example:

• OU=Sales

• OU=Manufacturing

O Organization Identifies the organization in which the entry resides. For example:

• O=Siroe Corporation

• O=Public Power & Gas

What Is a Distinguished Name?

Appendix A Distinguished Names 315

Root Distinguished Name
The root distinguished name, or root DN, is the first, or top-most, entry in an LDAP
directory tree. In Netscape Directory Server, the root DN is commonly referred to
as the directory manager. By default, the root DN uses no suffix; it is simply a
common name attribute-data pair: CN=Directory Manager. For example, the root
entry’s DN could look like this: CN=Directory Manager, O=Siroe Corporation,
C=US.

Base Distinguished Name
The base distinguished name, or base DN, identifies the entry in the directory from
which searches initiated by LDAP clients occur; the base DN is often referred to as
the search base. For example, if you specify a base DN of OU=people,
O=siroe.com for a client, the LDAP search operation initiated by the client
examines only the OU=people subtree in the O=siroe.com directory tree.

L Locality Identifies the place where the entry resides. The locality can be a
city, county, township, or other geographic region. For example:

• L=Mountain View

• L=Pacific Northwest

• L=Anoka County

ST State or province
name

Identifies the state or province in which the entry resides. For
example:

• ST=California

• ST=British Columbia

C Country Identifies the name of the country under which the entry resides.
For example:

• C=US

• C=GB

DC Domain component Identifies the domain components of a domain. For example, if the
domain is siroe.com, the domain components would be:

• DC=siroe, DC=com

Table A-1 Definitions of standard DN components (Continued)

Component Name Definition

DNs in Certificate Management System

316 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Typically, an LDAP search consists of the following components:

• The base DN—for example, O=Siroe, C=US, which initiates a subtree search
through all entries below this entry in the directory (in other words, all entries
with the suffix O=Siroe, C=US).

• The search type, which can be a base search (only the entry specified by the
base DN is searched), a one-level search (only entries one level below the base
entry are searched), or a subtree search (all entries at all levels below the base
entry are searched).

• The search filter, which specifies the search criteria applied to each entry
within the scope of the search.

When Certificate Management System is configured for LDAP publishing, the
search point and search criteria are determined by the configuration parameter
values; for details, see information about the mapper or publisher classes in
Chapter 5, “Mapper Plug-in Modules” and Chapter 6, “Publisher Plug-in
Modules.” In the absence of a base DN value, Certificate Management System uses
DN components in the certificate’s subject name to construct the base DN so that it
can search the directory in order to publish to or update the appropriate directory
entry.

Typically, when you configure Certificate Management System for LDAP
publishing, you set the base DN value to Directory Manager, so that it can use the
publishing directory’s root entry to start searching; see section “Configuring a
Certificate Manager to Publish Certificates and CRLs” in Chapter 19, “Setting Up
LDAP Publishing” of CMS Installation and Setup Guide.

DNs in Certificate Management System
In Certificate Management System, the characters allowed in a DN are based on the
components (attributes) as defined in the X.509 standard.

Table A-2 lists the attributes supported by default and their character sets.
Explanation of the character sets are in Table A-3. The set of attributes is extensible.

Table A-2 Allowed characters for value types

Attribute Value type Object identifier

CN Directory String 2.5.4.3

OU Directory String 2.5.4.11

O Directory String 2.5.4.10

DNs in Certificate Management System

Appendix A Distinguished Names 317

C Printable String of
length 2

2.5.4.6

L Directory String 2.5.4.7

ST Directory String 2.5.4.8

STREET Directory String 2.5.4.9

TITLE Directory String 2.5.4.12

UID Directory String 0.9.2342.19200300.100.1.1

MAIL IA5String 0.9.2342.19200300.100.1.3

E IA5String 1.2.840.113549.1.9.1

DC IA5String 0.9.2342.19200300.100.1.2.
25

SERIALNUMBER (for CEP
support)

Printable String 2.5.4.5

UNSTRUCTUREDNAME (for CEP
support)

IA5String 1.2.840.113549.1.9.2

UNSTRUCTUREDADDRESS (for CEP
support)

Printable String 1.2.840.113549.1.9.8

Table A-3 Explanation of character sets for DNs

Value type Character set allowed

Printable String A-Z, a-z, 0-9, space
\
(
)
+
,
-
.
/
:
=
?

IA5String Any 7-bit US ASCII character.

Table A-2 Allowed characters for value types (Continued)

Attribute Value type Object identifier

DNs in Certificate Management System

318 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Extending Attribute Support
By default, Certificate Management System supports attribute identified in
Table A-2 on page 316. You can extend the list of attributes supported by server.
The syntax for adding additional X.500Name attributes (or components) is as
follows:

X500Name.<NEW_ATTRNAME>.oid=<n.n.n.n>
X500Name.<NEW_ATTRNAME>.class=<string_to_DER_value_converter_class>

Directory String Any character in format as specified in Lightweight Directory Access Protocol
(v3): UTF-8 String Representation of Distinguished Names (see
http://www.ietf.org/rfc/rfc2253.txt). Certificate Management
System conforms to all of this standard, including support of using hex
numbers to escape characters. The special characters are as follows:

,
=
+
<
>
#
;

They can be escaped by either a backslash (\) before the character or by
surrounding the value in double quotes (“ ”). A few examples are shown
below:

Siroe Corp. \, Ltd.

“Siroe Corp. , Ltd”

“Siroe Corp. \, Ltd”

Name \, with \= escaped \+ special \< characters \# like
\> or \”\\\;

“Name , with = special + characters < surrounded > by #
quotes; ,=+<>#;”

Name with escaped characters like return \0D or C with
Caron \C4\8D or L\4C

Name with spaces at beginning and end

For additional more examples, check the standards.

Table A-3 Explanation of character sets for DNs (Continued)

Value type Character set allowed

DNs in Certificate Management System

Appendix A Distinguished Names 319

Note the following:

• Value converter class converts a string to a ASN.1 value.

• It must implement netscape.security.x509.AVAValueConverter interface.

The string-to-value converter class can be one of these:

• netscape.security.x509.PrintableConverter—converts a string to a
Printable String value. The string must have only printable characters.

• netscape.security.x509.IA5StringConverter—converts a string to a
IA5String value. The string must have only IA5String characters.

• netscape.security.x509.DirStrConverter—converts a string to a
Directory (v3) String. The string is expected to be in DirectoryString format
according to RFC 2253.

• netscape.security.x509.GenericValueConverter—converts a string
character by character in the following order, from smaller character sets to
broadest character set: Printable, IA5String, BMPString, Universal String.

For example:

X500Name.MY_ATTR.oid=1.2.3.4.5.6
X500Name.MY_ATTR.class=netscape.security.x509.DirStrConverter

Adding New or Proprietary Attributes
To add a new or proprietary attribute that’s not supported by Certificate
Management System by default:

1. Stop the Certificate Manager.

2. Go to this directory: <server_root>/cert-<instance_id>/config

3. Open the configuration file, CMS.cfg, in a text editor.

4. Add the new attributes to the configuration file.

For example, if you want to add three proprietary attributes, MYATTR1 that is a
directoryString, MYATTR2 that is a IA5String, and MYATTR3 that is
PrintableStrings, you would add the following lines at the end of the
configuration file:

X500Name.attr.MYATTR1.oid=1.2.3.4.5.6
X500Name.attr.MYATTR1.class=netscape.security.x509.

DirStrConverter
X500Name.attr.MYATTR2.oid=11.22.33.44.55.66
X500Name.attr.MYATTR2.class=netscape.security.x509.

DNs in Certificate Management System

320 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

IA5StringConverter
X500Name.attr.MYATTR3.oid=111.222.333.444.555.666
X500Name.attr.MYATTR3.class=netscape.security.x509.

PrintableConverter

5. Save your changes and close the file.

6. Next, add each new attribute or component (for example, MYATTR1, MYATTR2
and MYATTR3) to the enrollment form. For instructions, see “Adding Attributes
to an Enrollment Form” on page 320.

7. Restart the Certificate Manager.

8. Reload the enrollment page and verify your changes; the new attributes that
you added should now show up in the form.

9. To verify that the new attributes are in effect, request a certificate using the
manual enrollment form.

Be sure to enter values for the new attributes (so that you can verify whether
they appear in certificate subject names). For example, you can enter the
following values for the new attributes and look for them in the subject name:

MYATTR1: a_value
MYATTR2: a.Value
MYATTR3: aValue
CN: John Doe
O: Siroe Corp

10. Go to the agent interface and approve your request.

11. When you receive the certificate, check the subject name. The certificate should
show the new attribute values in the subject name.

Adding Attributes to an Enrollment Form
The steps below explain how to add an attribute (or component) to the Manual
enrollment form:

1. Go to this directory: <server_root>/cert-<instance_id>/web/ee

2. Open the ManUserEnroll.html file in a text editor.

3. Find the line with the component name that the new component will follow
and copy the table row, using the new component name. For the purposes of
this instruction, assume that the new component you want to add is DC and
that it follows component OU. Here’s how you would add a table row for DC
(the lines you need to add are shown in bold):

DNs in Certificate Management System

Appendix A Distinguished Names 321

<tr>
<td valign="TOP">

<div align="RIGHT">
<font face="PrimaSans BT, Verdana, Arial, Helvetica,
 sans-serif" size="-1">Organization unit:

</div>
</td>
<td valign="TOP">

<input type="TEXT" name="OU" size="30"
 onchange="formulateDN(this.form, this.form.subject)">

</td>
</tr>

<tr>
<td valign="TOP">

<div align="RIGHT">
<font face="PrimaSans BT, Verdana, Arial, Helvetica,
 sans-serif" size="-1">Domain component:

</div>
</td>
<td valign="TOP">

<input type="TEXT" name="DC" size="30"
 onchange="formulateDN(this.form, this.form.subject)">

</td>
</tr>

4. Save your changes and close the file.

5. Go to this directory: <server_root>/cert-<instance_id>/web/ee

6. Open the cms-funcs.js file in a text editor.

7. Find the line with form.OU != null (or the component that the new
component will follow) and add the if block. For example, if the new
component is DC and comes after OU, you need to add the lines shown in bold:

if (form.OU != null) {
if (OU.value != '') {

if (doubleQuotes(OU.value) == true) {
alert('Double quotes are not allowed in Org Unit

field');
OU.value = '';
OU.focus();
return;

}
if (distinguishedName.value != '')

 distinguishedName.value += ', ';

DNs in Certificate Management System

322 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

 distinguishedName.value += 'OU=' +
 escapeDNComponent(OU.value);

}
}

if (form.DC != null) {
if (DC.value != '') {

if (doubleQuotes(DC.value) == true) {
alert('Double quotes are not allowed in DC

field');
 DC.value = '';
 DC.focus();
 return;

}
if (distinguishedName.value != '')

 distinguishedName.value += ', ';
 distinguishedName.value += 'DC=' +
 escapeDNComponent(DC.value);

}
}

8. Save your changes and close the file.

9. Reload the Manual enrollment form in the browser and verify your changes.

10. To verify that the Enroll for a certificate using the new attribute value.

Changing the DER Encoding Order
You can also change the DER-encoding order of a DirectoryString. (The reason for
allowing this to be configurable is that different clients support different encodings
for historical reasons.)

The syntax for changing the DER-encoding order of a DirectoryString is as follows:

X500Name.dirStringEncodingOrder=<encoding_list_separated_by_commas>

Possible encoding values are as follows:

• Printable

• IA5String

• UniversalString

• BMPString

• UTF8String

For example, X500Name.dirEncodingOrder=Printable,BMPString.

DNs in Certificate Management System

Appendix A Distinguished Names 323

To change the DirectoryString encoding:

1. Stop the Certificate Manager.

2. Go to this directory: <server_root>/cert-<instance_id>/config

3. Open the configuration file, CMS.cfg, in a text editor.

4. Add the encoding order to the configuration file.

For example, if you want to specify two encoding values, PrintableString
and UniversalString, and the encoding order is PrintableString first and
UniversalString next, you would add the following line at the end of the
configuration file:

X500Name.directoryStringEncodingOrder=PrintableString,
UniversalString

5. Save your changes and close the file.

6. To verify that the encoding order are in effect, enroll for a certificate using the
manual enrollment form. Use “John_Doe” for CN.

7. Go to the agent interface and approve your request.

8. When you receive the certificate, use the dumpasn1 tool to examine the
encoding of the certificate. For details about the dumpasn1 tool, see CMS
Command-Line Tools Guide.

The CN component of the subject name should be encoded as a
UniversalString.

9. Repeat Steps 6 through 8 above, but use "John Smith for CN this time.

The CN component of the subject name should be encoded as a
PrintableString.

Role of Distinguished Names in Certificates
In certificates issued by Certificate Management System, DNs are used to identify
the entity that owns the certificate. In all cases, if you are using Certificate
Management System with a directory, the format of the DNs in your certificates
should match the format of the DNs in your directory. It is not necessary that the
names match exactly; certificate mapping allows the subject DN in a certificate to
be different from the one in the directory. For more information, see Chapter 5,
“Mapper Plug-in Modules.”

DNs in Certificate Management System

324 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

DNs in End-Entity Certificates
In end-entity certificates issued by Certificate Management System, DNs are used
to identify the end entity that owns the certified key pair. The end entity is one of
the following:

• The individual who owns the certified key pair (for personal or client
certificates—to form this type of DN, use the CN component to specify the
user’s full name:

CN=<user’s_full_name>, OU=<user’s_division_name>,
O=<company_name>, C=<country_name>

For example:

CN=Jane Doe, OU=Human Resources, O=Siroe Corporation, C=US

• The server that owns the certified key pair (for SSL server certificates)—to form
this type of DN, use the CN component to specify the server’s fully qualified
host name in the form <machine_name>.<your_domain>.<domain>:

CN=<host_name>, OU=<division_name>, O=<company_name>,
C=<country_name>

For example:

CN=corpDirectory.siroe.com, OU=Human Resources, O=Siroe
Corporation, C=US

When clients such as Netscape Navigator receive a server certificate, they
expect the CN component of the certificate’s subject to match the host name in
the URL. If the name in the certificate and the host name of the server do not
match, Navigator notifies the user and gives the user the choice of not
connecting to the server.

For example, if Navigator goes to the URL
https://corpDirectory.siroe.com and receives a certificate from the
server, it expects the CN component of the certificate’s subject to be
corpDirectory.siroe.com. If the CN component has a different value (for
example, corpDir.siroe.com), Navigator notifies the user that the certificate’s
subject name does not match the host name in the URL.

DNs in CA Certificates
In CA certificates issued by Certificate Management System (for both root and
subordinate CAs), DNs are used to identify the authority who owns the certified
key pair.

To form this type of distinguished name, use the CN component to specify the name
of your CA: CN=<CA_name>, O=<company_name>, C=<country_name>

DNs in Certificate Management System

Appendix A Distinguished Names 325

For example: CN=Siroe Certificate Authority, O=Siroe Corporation, C=US

Selecting DNs for Certificates
Figure A-1 illustrates the structure of distinguished names you might select for CA
certificates, server certificates, and personal certificates.

Figure A-1 Sample directory hierarchy

DN Patterns and Certificate Subject Names
You can configure Certificate Management System to issue certificates with subject
names that are formulated from the directory attributes and entry DN. The
dnpattern configuration variable of the automated-enrollment modules, such as
UidPwdDirAuth and UidPwdPinDirAuth, described in Chapter 1, “Authentication
Plug-in Modules” enable you to configure the server to issue certificates with
required subject names. Note that dnpattern is a string representing a subject
name pattern to formulate from the directory attributes and entry DN. If empty or
not set, Certificate Management System uses the LDAP entry DN as the certificate
subject name.

The dnpattern configuration variable supports escaped commas and multiple
attribute variable assertions (AVAs) in a RDN. Below is the syntax for the DN
pattern followed by examples.

DNs in Certificate Management System

326 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Syntax

dnPattern := rdnPattern *["," rdnPattern]
rdnPattern := avaPattern *["+" avaPattern]
avaPattern := name "=" value | name "=" "$attr" "." attrName ["."

attrNumber] | name "="
"$dn" "." attrName ["." attrNumber] | "$dn" "." "$rdn" "." number

Example 1

If the configured DN pattern is

E=$attr.mail.1, CN=$attr.cn, OU=$dn.ou.2, O=$dn.o, C=US

LDAP entry: dn: UID=jdoe, OU=IS, OU=people, O=siroe.org
LDAP attributes: cn: Jane Doe
LDAP attributes: mail: jdoe@siroe.org

The subject name formulated will be as follows:

E=jdoe@siroe.org, CN=Jane Doe, OU=people, O=siroe.org, C=US

E= the first ‘mail’ LDAP attribute value in user’s entry.
CN= the (first) ‘cn’ LDAP attribute value in the user’s entry.
OU= the second ‘ou’ value in the user’s entry DN.
O= the (first) ‘o’ value in the user’s entry DN.
C= the string ‘US’

Example 2

If the configured DN pattern is

E=$attr.mail.1, CN=$attr.cn, OU=$dn.ou.2, O=$dn.o, C=US

LDAP entry: dn: UID=jdoe, OU=IS+OU=people, O=siroe.org
LDAP attributes: cn: Jane Doe
LDAP attributes: mail: jdoe@siroe.org

The subject name formulated will be as follows:

E=jdoe@siroe.org, CN=Jane Doe, OU=people, O=siroe.org, C=US

E= the first ‘mail’ LDAP attribute value in user’s entry.
CN= the (first) ‘cn’ LDAP attribute value in the user’s entry.
OU= the second ‘ou’ value in the user’s entry DN; note the multiple AVAs in a
RDN in this example.
O= the (first) ‘o’ value in the user’s entry DN.
C= the string ‘US’

DNs in Certificate Management System

Appendix A Distinguished Names 327

Example 3

If the configured DN pattern is

CN=$attr.cn, $rdn.2, O=$dn.o, C=US

LDAP entry: dn: UID=jdoe, OU=IS+OU=people, O=siroe.org
LDAP attributes: cn: Jane Doe
LDAP attributes: mail: jdoe@siroe.org

The subject name formulated will be as follows:

CN=Jane Doe, OU=IS+OU=people, O=siroe.org, C=US

CN= the (first) ‘cn’ LDAP attribute value in the user’s entry followed by the
second RDN in the user’s entry DN.
O= the (first) ‘o’ value in the user’s entry DN.
C= the string ‘US’

Example 4

If the configured DN pattern is

CN=$attr.cn, OU=$dn.ou.2+OU=$dn.ou.1, O=$dn.o, C=US

LDAP entry: dn: UID=jdoe, OU=IS+OU=people, O=siroe, org
LDAP attributes: cn: Jane Doe
LDAP attributes: mail: jdoe@siroe.org

The subject name formulated will be as follows:

CN=Jane Doe, OU=people+OU=IS, O=”siroe \, org”, C=US

CN= the (first) ‘cn’ LDAP attribute value in the user’s entry.
OU= the second ‘ou’ value in the user’s entry DN followed by the first ‘ou’ value
in the user’s entry; note the multiple AVAs in a RDN in this example.
O= the (first) ‘o’ value in the user’s entry DN.
C= the string ‘US’

If an attribute or subject DN component does not exist, the attribute is skipped.

DNs in Certificate Management System

328 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

329

Appendix B

Object Identifiers

iPlanet Certificate Management Server (CMS) comes with a set of
extension-specific policy plug-in modules that enable you to add X.509 certificate
extensions to the certificates the server issues. Some of the extensions contain fields
for specifing object identifiers. This appendix explain what’s an object indentifier
(OID) and the significance of registering it.

The appendix has the following sections:

• What’s an Object Identifier? (page 329)

• Registration of Object Identifiers (page 330)

What’s an Object Identifier?
An object identifier is a string of numbers identifying a unique object, for example,
a certificate extension or a company’s certificate practice statement. For general
information on OIDs, see the information at this URL:

http://www.alvestrand.no/objectid/

OIDs are controlled by the International Standards Organization (ISO) registration
authority. In some cases, this authority is delegated by ISO to regional registration
authorities. For example, in the United States, the American National Standards
Institute (ANSI) manages this registration.

Registration of Object Identifiers

330 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Registration of Object Identifiers
To promote interoperatability, the PKIX standard recommends that all objects
(such as extensions and policy statements) that appear in certificates that will be
used in networks shared by other organizations should be included in the form of
OIDs. If you plan to issue certificates that will be used in such networks, you
should register your object identifier prefixes with the appropriate registration
authority. For example, assume you want to add a custom extension that points to
a certificate practice statement (CPS) of your company. To implement this, you
need to compose the policy statement you want to include in the extension, define
an OID for the policy statement, and configure Certificate Management System
with the OID so that it can add that to the certificate it issues.

The use of an OID registered to another organization or the failure to register an
OID may carry legal consequences, depending on context. Registration may be
subject to fees. For more information, you should contact the appropriate
registration authority.

To define or assign OIDs for your objects, you must know your company’s arc,
which is an OID for a private enterprise. If your company doesn’t have an arc, it
needs to get one. This URL contains information on registering for a company arc:

http://www.isi.edu/cgi-bin/iana/enterprise.pl

To understand why you need to have a company arc, check the information at this
site:

http://www.alvestrand.no/objectid/2.16.840.1.113730.1.13.html

The site contains information on Netscape-defined OID for an extension named
Netscape Certificate Comment. Note that the OID assigned to this extension is
hierarchical and it includes the Netscape company arc, which is
2.16.840.1.113730. Every OID Netscape owns has this prefix.

When determining whether to add custom extension to certificates, keep in mind
that if the extension exists in a certificate and if it is marked critical, the application
validating the certificate must be able to interpret the extension (including the
optional qualifiers, if any), or else it must reject the certificate. Since it’s unlikely
that all applications will be able to interpret your company’s extensions (embedded
in the form of OIDs), the PKIX standard recommends that the extension be always
marked noncritical. For general guidelines on setting extensions in certificates, see
Appendix C, “Certificate and CRL Extensions.”

331

Appendix C

Certificate and CRL Extensions

This appendix explains both the standard certificate extensions defined by X.509 v3
and the extensions defined by Netscape that were used in versions of products
released before X.509 v3 was finalized. It also provides recommendations for
extensions to use with specific kinds of certificates, including both PKIX Part 1
recommendations and Netscape extensions that must be supported for
compatibility with early versions of Netscape products.

This appendix contains the following sections:

• Introduction to Certificate Extensions (page 331)

• Recommendations for Certificate Extension Use (page 335)

• Standard X.509 v3 Certificate Extensions (page 341)

• Introduction to CRL Extensions (page 361)

• Standard X.509 v3 CRL Extensions (page 364)

• Netscape-Defined Certificate Extensions (page 369)

• CA Certificates and Extension Interactions (page 371)

Introduction to Certificate Extensions
An X.509 v3 certificate contains an extensions field that permits any number of
additional fields to be added to the certificate. Certificate extensions provide a way
of adding information such as alternative subject names and usage restrictions to
certificates. Older versions of Netscape browsers and servers that were developed
before PKIX part 1 standards were defined require Netscape-specific extensions.

Introduction to Certificate Extensions

332 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The X.509 v1 certificate specification was originally designed to bind public keys to
names in an X.500 directory. As certificates began to be used on the Internet and
extranets, and directory lookups could not always be performed, problem areas
such as the following emerged that were not foreseen in the original specification:

• Trust—The X.500 specification establishes trust by means of a strict directory
hierarchy. By contrast, Internet and extranet deployments frequently involve
distributed trust models that do not conform to the hierarchical X.500 approach.

• Certificate use—Some organizations may wish to restrict the use of certificates
for policy reasons. For example, some certificates may be restricted to client
authentication only.

• Multiple certificates—It’s not uncommon for certificate users to possess
multiple certificates with identical subject names but different key material. In
this case, it’s necessary to identify which key and certificate should be used for
what purpose.

• Alternate names—For some purposes, it is useful to have alternative subject
names that are also bound to the public key in the certificate.

• Additional attributes—Some organizations may find it convenient to store
additional information in certificates, for example for situations in which it’s
not possible to look up information in a directory.

• Relationship with CA—When certificate chaining involves intermediate CAs,
it is useful to have information about the relationships among CAs embedded
in their certificates.

• CRL checking—Since it’s not always possible to check a certificate’s revocation
status against a directory or with the original certificate authority, it is useful
for certificates to include information about where to check CRLs.

Eventually, the X.509 v3 specification addressed many of these issues by amending
the certificate format to include additional information within a certificate—the
version 3 format defines a general format for certificate extensions and specifies a
number of standard extensions that can be included the certificate. Thus, the
extensions defined for X.509 v3 certificates enable you to associate additional
attributes with users or public keys and manage the certification hierarchy. The
Internet X.509 Public Key Infrastructure Certificate and CRL Profile (see
http://www.ietf.org/rfc/rfc2459.txt) recommends a set of extensions to be
used in Internet certificates (and standard locations for certificate or CA
information). These extensions are called standard extensions.

Introduction to Certificate Extensions

Appendix C Certificate and CRL Extensions 333

The X.509 v3 standard for certificates also suggests that you can define your own
extensions and include them in certificates you issue. These extensions are called
private, proprietary, or custom extensions and they carry information unique to your
organization or business. Keep in mind that applications may not able to validate
certificates that contain private, critical extensions, thus preventing the use of these
certificates in a general context.

Before the X.509 v3 standard was finalized, Netscape and other companies had to
address some of the most pressing issues listed above with their own extension
definitions. For example, Netscape applications (Netscape Navigator 3.0 or higher,
and Enterprise Server 2.01 or higher) support an extension known as Netscape
Certificate Type Extension that specifies the type of certificate issued, such as
client, server, or object signing. Therefore, to maintain compatibility with older
versions of browsers that were released before the X.509 v3 specification was
finalized, certain kinds of certificates should include some of the Netscape
extensions. For details, see “Recommendations for Certificate Extension Use” on
page 335.

Note that the X.500 and X.509 specifications are controlled by the International
Telecommunication Union (ITU), an international organization that primarily
serves large telecom companies, government organizations, and other entities
concerned with the international telecommunications network. The Internet
Engineering Task Force (IETF), which controls many of the standards that underlie
the Internet, is currently developing public-key infrastructure X.509 (PKIX)
standards. These proposed standards further refine the X.509 v3 approach to
extensions for use on the Internet. The recommendations for certificates and CRLs
have reached proposed standard status and are in a document often referred to as
PKIX Part 1, which can be retrieved from
http://www.ietf.org/rfc/rfc2459.txt.

Some explanations in this appendix also make reference to Abstract Syntax Notation
One (ASN.1) and Distinguished Encoding Rules (DER). These are specified in the
CCITT Recommendations X.208 and X.209. For a quick summary of ASN.1 and
DER, see A Layman’s Guide to a Subset of ASN.1, BER, and DER, which is available at
RSA Laboratories’ web site (http://www.rsa.com).

Introduction to Certificate Extensions

334 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Structure of Certificate Extensions
In RFC 2459, an X.509 certificate extension is defined as follows:

Extension ::= SEQUENCE {

extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING }

Which means, a certificate extension consists of the following:

• The object identifier (OID) for the extension; see Appendix B, “Object
Identifiers.”

This identifier uniquely identifies the extension. It also determines the ASN.1
type of value in the value field and how the value is interpreted. That is, when
an extension appears in a certificate, the OID appears as the extension ID field
(extnID) and the corresponding ASN.1 encoded structure appears as the value
of the octet string (extnValue); see the examples in “Sample Certificate
Extensions” on page 335.

• A flag or boolean field called critical.

The value, which can be either true or false, assigned to this field indicates
whether the extension is critical or noncritical to the certificate.

❍ If the extension is critical and the certificate is sent to an application that
does not understand the extension (based on the extension’s ID), the
application must reject the certificate.

❍ If the extension is not critical and the certificate is sent to an application
that does not understand the extension (based on the extension’s ID), the
application can ignore the extension and accept the certificate.

• An octet string containing the DER encoding of the value of the extension.

Typically, the application receiving the certificate checks the extension ID to
determine if it can recognize the ID. If it can, it uses the extension ID to
determine the type of value used.

Examples of standard extensions defined in the X.509 v3 standard include the
following:

• Authority Key Identifier Extension—an extension for identifying the certificate
authority’s public key (the key used to sign the certificate).

• Subject Key Identifier Extension—an extension for identifying the subject’s
public key (the key being certified).

Recommendations for Certificate Extension Use

Appendix C Certificate and CRL Extensions 335

Note that not all applications support certificates with version 3 extensions.
Applications that do support these extensions may not be able to interpret some or
all of these specific extensions.

Sample Certificate Extensions
The following is an example of the section of a certificate containing X.509 v3
extensions. (Certificate Management System can display certificates in
human-readable format, as shown here.) As shown in the example, certificate
extensions appear in sequence and only one instance of a particular extension may
appear in a particular certificate; for example, a certificate may contain only one
subject key identifier extension. Note that certificates that support these extensions
have the version 0x2 (which corresponds to version 3).

Recommendations for Certificate Extension Use
Most deployments will use some or all of these extensions:

authorityKeyIdentifier. Identifies the public key corresponding to the private key
used to sign a certificate.

basicConstraints. Identifies CA certificates and optionally specifies a maximum
certificate chain path length.

Certificate:
Data:

Version: v3 (0x2)
...
Extensions:
Identifier: Certificate Type

Critical: no
Certified Usage:

SSL CA
Identifier: Subject Key Identifier

Critical: no
Value:

2c:22:c6:ae:4e:4b:91:c7:fb:4c:cc:ae:84:e8:aa:5b:46:6a:a0:ad
Identifier: Authority Key Identifier

Critical: no
Key Identifier:

2c:22:c6:ae:4e:4b:91:c7:fb:4c:cc:ae:84:e8:aa:5b:46:6a:a0:ad

Recommendations for Certificate Extension Use

336 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

cRLDistributionPoints. Defines how CRL information for the certificate is to be
obtained.

extKeyUsage. Indicates purpose or purposes for which the certificate may be used,
either in addition to or instead of the purposes indicated by the keyUsage
extension.

keyUsage. Indicates the purpose or purposes for which the public key certified by
the certificate may be used.

netscape-cert-type. Indicates the purpose or purposes for which the certificate may
be used. Required only for compatibility with some Netscape products that were
released before by X.509 v3 was finalized.

subjectAltName. Specifies one or more alternative names for the identity bound by
the CA to the certified public key.

subjectKeyIdentifier. Identifies the public key certified by the certificate.

These extensions, plus others, are described in detail in later sections of this
appendix. Additional extensions may be useful for a variety of purposes. However,
the extensions listed above are either required or recommended for various kinds
of certificates issued by Certificate Management System.

Table C-1 summarizes guidelines for using these extensions. The table provides a
summary only. Each extension is explained in detail later in the Appendix. Keep
the following in mind as you use the table:

• Using certificate extensions incorrectly can lead to severe deployment
problems. Make sure you have thoroughly analyzed your deployment needs
and completely understand the purpose of each extension you want to use
before adding them to certificates.

• Unless otherwise noted in Table C-1, the extensions indicated should be
included with certificates of each type to ensure compatibility with both PKIX
Part 1 and with future Netscape or iPlanet products.

• Extensions marked “required” must be supported for some existing Netscape
or Microsoft products or for other reasons explained in the extenstion
descriptions that follow.

Recommendations for Certificate Extension Use

Appendix C Certificate and CRL Extensions 337

Table C-1 Recommendations for Use of Certificate Extensions with CMS

Certificate type CA root Intermediate CA Issued certificate

SSL client
certificate

authorityKeyIdentifier

basicConstraints: true
(required)

extKeyUsage: client auth

keyUsage:
keyCertSign, cRLSign

netscape-cert-type:
SSL CA (if extension exists,
bit must be set)

subjectKeyIdentifier

authorityKeyIdentifier

basicConstraints: true
(required)

cRLDistributionPoints

extKeyUsage:
client auth

keyUsage:
keyCertSign, cRLSign

netscape-cert-type:
SSL CA (required for client
authentication with some
Netscape servers)

subjectKeyIdentifier

authorityKeyIdentifier

cRLDistributionPoints

extKeyUsage: client auth

keyUsage:
digitalSignature

netscape-cert-type:
SSL client (if extension exists,
bit must be set; otherwise, not
required)

subjectKeyIdentifier

Recommendations for Certificate Extension Use

338 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

S/MIME client
certificate
(single key
pair)

authorityKeyIdentifier

extKeyUsage: Email

keyUsage:
keyCertSign, cRLSign

netscape-cert-type:
S/MIME CA (if extension
exists, bit must be set)

subjectKeyIdentifier

authorityKeyIdentifier

cRLDistributionPoints

extKeyUsage: Email

keyUsage:
keyCertSign, cRLSign

netscape-cert-type:
S/MIME CA (if extension
exists, bit must be set)

subjectKeyIdentifier

authorityKeyIdentifier

cRLDistributionPoints

extKeyUsage: Email

keyUsage:
digitalSignature

netscape-cert-type:
S/MIME (if extension exists,
bit must be set)

subjectAltName

subjectKeyIdentifier

Table C-1 Recommendations for Use of Certificate Extensions with CMS (Continued)

Certificate type CA root Intermediate CA Issued certificate

Recommendations for Certificate Extension Use

Appendix C Certificate and CRL Extensions 339

S/MIME client
certificate
(dual key pair)

authorityKeyIdentifier

extKeyUsage: Email

keyUsage:
keyCertSign, cRLSign

subjectKeyIdentifier

authorityKeyIdentifier

cRLDistributionPoints

extKeyUsage: Email

keyUsage:
keyCertSign,
cRLSign

subjectKeyIdentifier

authorityKeyIdentifier

cRLDistributionPoints

extKeyUsage: Email

keyUsage, signing
certificate:
digitalSignature
(required)

keyUsage, encryption
certificate:
keyEncipherment
(required)

subjectAltName

subjectKeyIdentifier

Table C-1 Recommendations for Use of Certificate Extensions with CMS (Continued)

Certificate type CA root Intermediate CA Issued certificate

Recommendations for Certificate Extension Use

340 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

SSL server
certificate

authorityKeyIdentifier

extKeyUsage: Server
Auth (recommended),
Microsoft SGC and
Netscape SGC (required
for step-up)

keyUsage:
keyCertSign, cRLSign

netscape-cert-type:
SSL CA (if extension exists,
bit must be set)

subjectKeyIdentifier

authorityKeyIdentifier

cRLDistributionPoints

extKeyUsage: Server
Auth (recommended),
Microsoft SGC and
Netscape SGC (required
for step-up)

keyUsage:
keyCertSign, cRLSign

netscape-cert-type:
SSL CA (if extension exists,
bit must be set)

subjectKeyIdentifier

authorityKeyIdentifier

cRLDistributionPoints

extKeyUsage: Server Auth
(recommended), Microsoft
SGC and Netscape SGC
(required for step-up)

keyUsage:
keyEncipherment

netscape-cert-type:
SSL Client, SSL Server
(required for some Netscape
servers)

subjectAltName

subjectKeyIdentifier

Table C-1 Recommendations for Use of Certificate Extensions with CMS (Continued)

Certificate type CA root Intermediate CA Issued certificate

Standard X.509 v3 Certificate Extensions

Appendix C Certificate and CRL Extensions 341

Standard X.509 v3 Certificate Extensions
This section summarizes the extension types that are defined as part of the Internet
X.509 Version 3 standard, as of September 1998, and indicates which types are
recommended by the PKIX working group.

This section summarizes important information about each certificate. For
complete details, see both the X.509 v3 standard (available from the ITU) and the
Internet X.509 Public Key Infrastructure - Certificate and CRL Profile (RFC 2459),
available at http://www.ietf.org/rfc/rfc2459.txt. The descriptions of
extensions reference the RFC and section number of the standard draft that
discusses the extension; the object identifier (OID) for each extensions is also
provided.

Object
signing/Authe
nticode
certificate

authorityKeyIdentifier

extKeyUsage: Code
Signing (required for
Authenticode)

keyUsage:
keyCertSign, cRLSign

netscape-cert-type:
Object-signing CA
(required for Object
Signing)

subjectKeyIdentifier

authorityKeyIdentifier

cRLDistributionPoints

extKeyUsage: Code
Signing (required for
Authenticode)

keyUsage:
keyCertSign, cRLSign

netscape-cert-type:
Object-signing CA
(required for Object
Signing)

subjectKeyIdentifier

authorityKeyIdentifier

cRLDistributionPoints

extKeyUsage: Code Signing
(required for Authenticode)

keyUsage:
digitalSignature

netscape-cert-type:
Object-signing (required for
Object Signing)

subjectAltName

subjectKeyIdentifier

Table C-1 Recommendations for Use of Certificate Extensions with CMS (Continued)

Certificate type CA root Intermediate CA Issued certificate

Standard X.509 v3 Certificate Extensions

342 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Each extension in a certificate can be designated as critical or noncritical. A
certificate-using system, such as browser software, must reject the certificate if it
encounters a critical extension it does not recognize; however, a noncritical
extension can be ignored if it is not recognized.

The descriptions below contain recommendations for use of the extension from
Netscape and Microsoft. The Microsoft recommendations were taken from
“Structuring X.509 Certificates for Use with Microsoft Products” at
http://www.microsoft.com/security/tech/certificates/structuring.asp,
dated December 4, 1997.

Certificate Management System (CMS) version support is listed for each extension.
“Supported” means that the indicated version of CMS ships with built-in support
for the extension via a policy plug-in. “Not supported” means that the indicated
version of CMS does not ship a policy plug-in for the extension (although the
extension can be used if a custom plug-in is written).

These are the standard X.509 v3 extensions described in the sections that follow:

• authorityInfoAccess (page 343)

• authorityKeyIdentifier (page 344)

• basicConstraints (page 345)

• certificatePolicies (page 346)

• cRLDistributionPoints (page 347)

• extKeyUsage (page 348)

• issuerAltName (page 350)

• keyUsage (page 351)

• nameConstraints (page 354)

• OCSPNocheck (page 354)

• policyConstraints (page 355)

• policyMappings (page 356)

• privateKeyUsagePeriod (page 357)

• subjectAltName (page 344)

• subjectDirectoryAttributes (page 359)

• subjectKeyIdentifier (page 360)

Standard X.509 v3 Certificate Extensions

Appendix C Certificate and CRL Extensions 343

authorityInfoAccess

OID
1.3.6.1.5.5.7.1.1

Reference
http://www.ietf.org/rfc/rfc2459.txt 4.2.2.1

Criticality
This extension must be noncritical.

Discussion
The Authority Information Access extension indicates how and where to access
information about the issuer of the certificate. The extension contains an
accessMethod and an accessLocation field. The accessMethod specifies (by an
OID) the type and format of information about the issuer found at the
accessLocation.

PKIX Part 1 defines one accessMethod (id-ad-caIssuers) to get a list of CAs that
have issued certificates higher in the CA chain than the issuer of the certificate
using the extension. The accessLocation field then typically contains a URL
indicating the location and protocol (LDAP, HTTP, FTP) used to retrieve the list.

The Online Certificate Status Protocol (RFC 2560), available at
http://www.ietf.org/rfc/rfc2560.txt, defines an accessMethod
(id-ad-ocsp) for using OCSP to verify certificates. The accessLocation field then
contains a URL indicating the location and protocol used to access an OCSP
responder that can validate the certificate.

CMS Version Support
Refer to “AuthInfoAccessExt Plug-in Module” on page 136.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendation
Netscape recommends that you add this extension with id-ad-ocsp and the URL
for an OCSP responder to every certificate that can be verified using OCSP.

Standard X.509 v3 Certificate Extensions

344 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

OCSP signing certificates and CA signing certificates should only use the
authorityInfoAccess extension to point to an OCSP responder if that responder
has been configured to verify them. For example, if there is a hierarchy of
responders, a subordinate responder may point to its parent for verification. If a
CA signing certificate points to an OCSP responder, that responder’s signing
certificate should be signed by a different CA (for example, the CA that issued the
CA signing certificate in question).

Microsoft Recommendation
Microsoft products do not currently use on-line revocation checking.

authorityKeyIdentifier

OID
2.5.29.35

Reference
http://www.ietf.org/rfc/rfc2459.txt 4.2.1.1

Criticality
This extension is always noncritical and is always evaluated.

Discussion
The Authority Key Identifier extension identifies the public key corresponding to
the private key used to sign a certificate. This extension is useful when an issuer
has multiple signing keys (for example, due to CA certificate renewal).

The extension consists of either or both of the following:

• an explicit key identifier (keyIdentifier field)

• an issuer (authorityCertIssuer field) and serial number
(authorityCertSerialNumber field) identifying a certificate

If the keyIdentifier field exists, then it is used to select the certificate with a
matching subjectKeyIdentifier extension. If the authorityCertIssuer and
authorityCertSerialNumber fields are present, then they are used to identify the
correct certificate by issuer and serialNumber.

If this extension is not present, then the issuer name alone is used to identify the
issuer certificate.

Standard X.509 v3 Certificate Extensions

Appendix C Certificate and CRL Extensions 345

PKIX Part 1 requires this extension for all certificates except self-signed root CA
certificates. Where a key identifier has not been previously established, PKIX
recommends that the authorityCertIssuer and authorityCertSerialNumber
fields be specified. These fields permit construction of a complete certificate chain
by matching the SubjectName and CertificateSerialNumber fields in the
issuer’s certificate against the authortiyCertIssuer and
authorityCertSerialNumber in the AuthorityKeyIdentifier extension of the
subject certificate.

CMS Version Support
Refer to “AuthorityKeyIdentifierExt Plug-in Module” on page 144.

• CMS 4.1: Supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Note that Certificate Management System does not use or support the
authorityCertSerialNumber field in the Authority Key Identifier extension.

Netscape Recommendation
Netscape recommends that this extension be present in all certificates and that the
authorityCertIssuer and authorityCertSerialNumber fields be specified. This
extension is not supported by Navigator 3.x, but its presence in a certificate won’t
interfere with Navigator 3.x.

Microsoft Recommendation
Microsoft recommends that this extension be present in all certificates and that the
authorityCertIssuer and authorityCertSerialNumber fields be specified.

basicConstraints

OID
2.5.29.19

Reference
http://www.ietf.org/rfc/rfc2459.txt 4.2.1.10

Criticality
PKIX Part 1 requires that this extension be marked critical. This extension is
evaluated regardless of its criticality.

Standard X.509 v3 Certificate Extensions

346 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Discussion
This extension is used during the certificate chain verification process to identify
CA certificates and to apply certificate chain path length constraints. The cA
component should be set to true for all CA certificates. PKIX recommends that this
extension should not appear in end-entity certificates.

If the pathLenConstraint component is present, its value must be greater than the
number of CA certificates that have been processed so far (starting with the
end-entity certificate and moving up the chain). If pathLenConstraint is omitted,
then all of the higher level CA certificates in the chain must not include this
component when the extension is present.

See “CA Certificates and Extension Interactions” on page 371 regarding the
interaction of the this extension with the Netscape Certificate Type extension.

CMS Version Support
Refer to “BasicConstraintsExt Plug-in Module” on page 147.

• CMS 4.1: Supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendation
Netscape requires this extension for all CA certificates.

Microsoft Recommendation
Microsoft recommends this extension for all certificates.

certificatePolicies

OID
2.5.29.32

References
http://www.ietf.org/rfc/rfc2459.txt 4.2.1.5

Criticality
This extension may be critical or noncritical.

Standard X.509 v3 Certificate Extensions

Appendix C Certificate and CRL Extensions 347

Discussion
The Certificate Policies extension defines one or more policies, each of which
consists of an OID and optional qualifiers. The extension can include a URI to the
issuer’s Certificate Practice Statement or can embed issuer policy information, such
as a user notice in text form. This information can be used by certificate-enabled
applications.

If this extension is present, PKIX Part 1 recommends that policies be identified with
an OID only, or if necessary only certain recommended qualifiers.

CMS Version Support
Refer to “CertificatePoliciesExt Plug-in Module” on page 151.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendation
Netscape recommends that this extension be included at the discretion of the
certificate issuer.

Microsoft Recommendation
Microsoft recommends that this extension be included in all certificates.

cRLDistributionPoints

OID
2.5.29.31

Reference
http://www.ietf.org/rfc/rfc2459.txt 4.2.1.14

Criticality
PKIX recommends that this extension be marked noncritical and that it be
supported for all certificates.

Discussion
This extension defines how CRL information for this certificate is to be obtained. It
should be used if the system is configured to use CRL issuing points.

Standard X.509 v3 Certificate Extensions

348 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

If the extension contains a DistributionPointName of type URI, the URI is
assumed to be a pointer to the current CRL for the associated reasons and will be
issued by the associated cRLIssuer. The expected values for the URI are those
defined for the subjectAltName extension. If the distributionPoint omits
reasons, the CRL must include revocations for all reasons. If the
distributionPoint omits cRLIssuer, the CRL must be issued by the CA that
issued the certificate.

PKIX recommends that this extension be supported by CAs and applications.

CMS Version Support
Refer to “CRLDistributionPointsExt Plug-in Module” on page 166.

• CMS 4.1: Supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendation
Netscape recommends that this extension be supported for all certificates, with the
exception of self-signed root CA certificates.

Microsoft Recommendation
Microsoft recommends that this extension be supported.

extKeyUsage

OID
2.5.29.37

Reference
http://www.ietf.org/rfc/rfc2459.txt 4.2.1.13

Criticality
If this extension is marked critical, the certificate must be used for one of the
indicated purposes only. If it is not marked critical, it is treated as an advisory field
that may be used to identify keys but does not restrict the use of the certificate to
the indicated purposes.

Discussion
The Extended Key Usage extension indicates one or more purposes for which the
certified public key may be used. These purposes may be in addition to or in place
of the basic purposes indicated in the key usage extension.

Standard X.509 v3 Certificate Extensions

Appendix C Certificate and CRL Extensions 349

The Extended Key Usage extension must include OCSP Signing in an OCSP
responder’s certificate (unless the CA signing key that signed the certificates
validated by the responder is also the OCSP signing key). The OCSP responder’s
certificate must be issued directly by the CA that signs certificates the responder
will validate.

The Key Usage, Extended Key Usage, and Basic Constraints extensions act together
to define the purposes for which the certificate is intended to be used. Applications
can use these extensions to disallow the use of a certificate in inappropriate
contexts.

Table C-2 lists the uses defined by PKIX for this extension, and Table C-3 lists uses
privately defined by Microsoft or Netscape.

* OCSP Signing is not defined in PKIX Part 1, but in RFC 2560, “X.509 Internet
Public Key Infrastructure Online Certificate Status Protocol - OCSP.”

Table C-2 PKIX Extended Key Usage Extension Uses

Use OID

Server authentication 1.3.6.1.5.5.7.3.1

Client authentication 1.3.6.1.5.5.7.3.2

Code signing 1.3.6.1.5.5.7.3.3

Email 1.3.6.1.5.5.7.3.4

Timestamping 1.3.6.1.5.5.7.3.8

OCSP Signing 1.3.6.1.5.5.7.3.9*

Table C-3 Private Extended Key Usage Extension Uses

Use OID

Certificate trust list signing 1.3.6.1.4.1.311.10.3.1

Microsoft Server Gated
Crypto (SGC)

1.3.6.1.4.1.311.10.3.3

Microsoft Encrypted File
System

1.3.6.1.4.1.311.10.3.4

Netscape SGC 2.16.840.1.113730.4.1

Standard X.509 v3 Certificate Extensions

350 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

CMS Version Support
Refer to “ExtendedKeyUsageExt Plug-in Module” on page 171.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendations
Netscape recommends that this extension be supported for all certificates, and
requires it for all certificates that support step-up, or Server Gated Crypto (SGC).
OCSP Signing should be included in all certificates issued to OCSP responders.

Microsoft Recommendations
Microsoft products interpret this extension as follows. If the extension is not
present, the certificate is considered to be valid for any usage (to support backward
compatibility with certificates that did not use this extension). Otherwise,
interpretation depends on usage, as follows:

• Authenticode requires that Code Signing be the unique usage specified.

• SGC operation requires that the SGC usage be specified.

• Timestamping requires that timestamping usage be specified.

Microsoft allows users to control certificate properties that correspond to Extended
Key Usage specifications. For example, from the Internet Explorer 4.0 user
interface, the user may deselect a CA certificate in a list of CA certificates otherwise
trusted for a given usage. Note that the user may only restrict uses, and not add
uses that are not supported by the certificate itself. These user settings affect only
the interpretation of the certificate on the computer where they are set. They do not
affect the certificate itself.

A given certificate is valid only for the intersection of key usages of all the
certificates in the chain to its root (as determined by both the Extended Key Usage
extension for each certificate and the corresponding user settings). To be valid for a
particular usage, the end-entity certificate and all certificates in the chain must all
be valid for that usage.

issuerAltName

OID
2.5.29.18

Standard X.509 v3 Certificate Extensions

Appendix C Certificate and CRL Extensions 351

Reference
http://www.ietf.org/rfc/rfc2459.txt 4.2.1.8

Criticality
PKIX Part 1 recommends that this extension be marked noncritical.

Discussion
The Issuer Alternative Name extension is used to associate Internet-style identities
with the certificate issuer. Names must use the forms defined for subjectAltName.

CMS Version Support
Refer to “IssuerAltNameExt Plug-in Module” on page 184.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendation
Netscape products do not examine this extension.

Microsoft Recommendation
Microsoft products do not examine this extension. Microsoft recommends that, for
the purposes of building certificate chains, authorityKeyIdentifier be used rather
than issuerAltName or the certificate’s issuer name.

keyUsage

OID
2.5.29.15

Reference
http://www.ietf.org/rfc/rfc2459.txt 4.2.1.3

Criticality
This extension may be critical or noncritical. PKIX Part 1 recommends that it
should be marked critical if it is used.

Standard X.509 v3 Certificate Extensions

352 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Discussion
The Key Usage extension defines the purpose of the key contained in the certificate.
The Key Usage, Extended Key Usage, Basic Constraints, and Netscape Certificate
Type extensions act together to specify the purposes for which a certificate can be
used. For more information on interactions between these extensions in CA
certificates, see “CA Certificates and Extension Interactions” on page 371.

If this extension is included at all, set the bits as follows:

• digitalSignature (0) for SSL client certificates, S/MIME signing certificates,
and object-signing certificates.

• nonRepudiation (1) for some S/MIME signing certificates and object-signing
certificates. Note, however, that the use of this bit is controversial. You should
carefully consider the legal consequences of its use before setting it for any
certificate.

• keyEncipherment (2) for SSL server certificates and S/MIME encryption
certificates.

• dataEncipherment (3) when the subjects’s public key is used to encipher user
data (as opposed to key material).

• keyAgreement (4) whenever the subject’s public key is used for key agreement.

• keyCertSign (5) for all CA signing certificates

• cRLSign (6) for CA signing certificates that are used to sign CRLs

• encipherOnly (7) if the public key is to be used only for enciphering data. If
this bit is set, keyAgreement should also be set.

• decipherOnly (8) if the public key is to be used only for deciphering data. If
this bit is set, keyAgreement should also be set.

Table C-4 summarizes the above guidelines for typical certificate uses.

Table C-4 Certificate uses and corresponding Key Usage bits

Purpose of certificate Required Key Usage bit

CA Signing keyCertSign

cRLSign

SSL Client digitalSignature

SSL Server keyEncipherment

S/MIME Signing digitalSignature

Standard X.509 v3 Certificate Extensions

Appendix C Certificate and CRL Extensions 353

If the keyUsage extension is present and is marked critical, then it will be used to
enforce the usage of the certificate and key. The extension is used to limit the usage
of a key; if the extension is not present or not critical, all types of usage are allowed.

If the keyUsage extension is present (critical or not), it is used to select from
multiple certificates for a given operation. For example, it is used to distinguish
separate signing and encryption certificates for users who have separate certificates
and key pairs for these operations.

CMS Version Support
Refer to “KeyUsageExt Plug-in Module” on page 189.

• CMS 4.1: Supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendation
Netscape recommends this extension for all certificates if their intended purpose or
purposes are known. Netscape requires this extension for all dual-key signing
certificates.

Microsoft Recommendation
Microsoft recommends this extension for all certificates if their intended purpose
or purposes are known. If the extension is absent, Microsoft products will assume
the certificate is valid for all usages. If the extension is present, Microsoft products
will interpret the extension in the same way whether marked critical or not. If the
extension is present, the actual usage must conform to the specified usage.

The only Microsoft application that currently enforces this extension is Microsoft
Outlook.

S/MIME Encryption keyEncipherment

Certificate Signing keyCertSign

Object Signing digitalSignature

Table C-4 Certificate uses and corresponding Key Usage bits (Continued)

Purpose of certificate Required Key Usage bit

Standard X.509 v3 Certificate Extensions

354 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

nameConstraints

OID
2.5.29.30

Reference
http://www.ietf.org/rfc/rfc2459.txt 4.2.1.11

Criticality
PKIX Part 1 requires that this extension be marked critical.

Discussion
This extension, which can used in CA certificates only, defines a name space within
which all subject names in subsequent certificates in a certification path must be
located.

CMS Version Support
Refer to “NameConstraintsExt Plug-in Module” on page 202.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendation
Netscape products do not currently examine this extension.

Microsoft Recommendation
Microsoft products do not currently examine this extension.

OCSPNocheck

OID
1.3.6.1.5.5.7.48.4

Reference
http://www.ietf.org/rfc/rfc2560.txt 4.2.2.2.1

Criticality
This extension should be noncritical.

Standard X.509 v3 Certificate Extensions

Appendix C Certificate and CRL Extensions 355

Discussion
The extension is meant to be included in an OCSP responder’s signing certificate.
The extension tells an OCSP client that the signing certificate can be trusted
without querying the OCSP responder (since the reply would again be signed by
the OCSP responder, and the client would again request the validity status of the
signing certificate). This extension is null-valued: its meaning is determined by its
presence or absence.

Since the presence of this extension in a certificate will cause OCSP clients to trust
responses signed with that certificate, use of this extension should be managed
carefully. If the OCSP signing key is compromised, the entire process of validating
certificates in the PKI will be compromised for the duration of the validity period
of the certificate. Therefore, certificates using OCSPNocheck should be issued with
short lifetimes and be renewed frequently.

CMS Version Support
Refer to “OCSPNoCheckExt Plug-in Module” on page 220.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendation
Netscape recommends using this extension in OCSP responder signing certificates.
The validity period should be short enough to minimize the potential impact of a
compromised OCSP responder signing key to your organization.

Microsoft Recommendation
Microsoft products do not currently use online status checking.

policyConstraints

OID
2.5.29.36

References
http://www.ietf.org/rfc/rfc2459.txt 4.2.1.12

Criticality
This extension may be critical or noncritical.

Standard X.509 v3 Certificate Extensions

356 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Discussion
This extension, which is for CA certificates only, constrains path validation in two
ways. It can be used to prohibit policy mapping or to require that each certificate in
a path contain an acceptable policy identifier.

PKIX requires that, if present, this extension must never consist of a null sequence.
At least one of the two available fields must be present.

CMS Version Support
Refer to “PolicyConstraintsExt Plug-in Module” on page 224.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendations
Netscape products do not currently examine this extension.

Microsoft Recommendations
Microsoft products do not currently examine this extension.

policyMappings

OID
2.5.29.33

References
http://www.ietf.org/rfc/rfc2459.txt 4.2.1.6

Criticality
This extension must be noncritical.

Discussion
The Policy Mappings extension is used in CA certificates only. It lists one or more
pairs of OIDs used to indicate that the corresponding policies of one CA are
equivalent to policies of another CA. It may be useful in the context of
cross-certification.

This extension may be supported by CAs and/or applications.

CMS Version Support
Refer to “PolicyMappingsExt Plug-in Module” on page 227.

Standard X.509 v3 Certificate Extensions

Appendix C Certificate and CRL Extensions 357

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendation
Netscape products do not currently examine this extension.

Microsoft Recommendations
Microsoft products do not currently examine this extension.

privateKeyUsagePeriod

OID
2.5.29.16

Reference
http://www.ietf.org/rfc/rfc2459.txt 4.2.1.4

Discussion
The Private Key Usage Period extension allows the certificate issuer to specify a
different validity period for the private key than for the certificate itself. This
extension is intended for use with digital signature keys.

PKIX Part 1 recommends against the use of this extension. CAs conforming to
PKIX Part 1 must not generate certificates with this extension.

CMS Version Support
Refer to “PrivateKeyUsagePeriodExt Plug-in Module” on page 231.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendation
Netscape recommends against the use of this extension.

Microsoft Recommendation
Microsoft recommends against the use of this extension.

Standard X.509 v3 Certificate Extensions

358 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

subjectAltName

OID
2.5.29.17

Reference
http://www.ietf.org/rfc/rfc2459.txt 4.2.1.7

Criticality
If the certificate’s subject field is empty, this extension must be marked critical.

Discussion
The Subject Alternative Name extension includes one or more alternative
(non-X.500) names for the identity bound by the CA to the certified public key. It
may be used in addition to the certificate’s subject name or as a replacement for it.
Defined name forms include Internet electronic mail address (SMTP, as defined in
RFC-822), DNS name, IP address, and uniform resource identifier (URI).

PKIX requires this extension for entities that are identified by name forms other
than the X.500 distinguished name (DN) used in the subject field. PKIX Part 1
describes additional rules for the relationship between this extension and the
subject field.

Email addresses may be provided either in the Subject Alternative Name
extension, the certificate subject name field, or both. If the email address is
provided as part of the subject name, it must be in the form of the EmailAddress
attribute defined by PKCS-9. Software that supports S/MIME must be able to read
an email address from either the Subject Alternative Name extension or from the
subject name field.

CMS Version Support
Refer to “SubjectAltNameExt Plug-in Module” on page 235.

• CMS 4.1: Supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendation
Netscape recommends the use of this extension with all certificates issued by a CA
(except for SSL client certificates).

Standard X.509 v3 Certificate Extensions

Appendix C Certificate and CRL Extensions 359

Netscape products read only the first alternative name in this extension, and ignore
the rest. For S/MIME certificates, Netscape software first checks the first
alternative name in this extension (if the extension is present) for the
EmailAddress attribute. If the first alternative name is not an EmailAddress
attribute, Netscape software looks for the e= attribute of the DN. If the e= attribute
is not present, Netscape software looks for the mail= attribute of the DN.

Microsoft Recommendation
Microsoft recommends the use of this extension whenever X.500 guidelines are
insufficient for naming purposes. Currently, no Microsoft products require the use
of Subject Alternative Name. All Microsoft products that support S/MIME are
capable of reading email names from this extension or from the subject name.
Future versions of Microsoft Exchange Server will issue certificates with X.500
names that do not contain the Email Address attribute, and will place the SMTP
address in the Subject Alternative Name extension.

subjectDirectoryAttributes

OID
2.5.29.9

Reference
http://www.ietf.org/rfc/rfc2459.txt 4.2.1.9

Criticality
PKIX Part 1 requires that this extension be marked noncritical.

Discussion
The Subject Directory Attributes extension conveys any desired directory attribute
values for the subject of the certificate. It is not recommended as an essential part of
the proposed PKIX standard, but may be used in local environments.

CMS Version Support
Refer to “SubjectDirectoryAttributesExt Plug-in Module” on page 241.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendation
Netscape products do not examine this extension.

Standard X.509 v3 Certificate Extensions

360 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Microsoft Recommendation
Microsoft products do not examine this extension.

subjectKeyIdentifier

OID
2.5.29.14

Reference
http://www.ietf.org/rfc/rfc2459.txt 4.2.1.2

Criticality
This extension is always noncritical.

Discussion
The Subject Key Identifier extension identifies the public key certified by this
certificate. This extension provides a way of distinguishing public keys if more
than one is available for a given subject name, for example after the certificate has
been renewed with a new key.

The value of this extension should be calculated by performing a SHA-1 hash of the
certificate’s DER-encoded subjectPublicKey, as recommended by PKIX. The
Subject Key Identifier extension is used in conjunction with the Authority Key
Identifier extension for CA certificates. If the CA certificate has a Subject Key
Identifier extension, the key identifier in the Authority Key Identifier extension (of
the certificate being verified) should match the key identifier of the CA’s Subject
Key Identifier extension. It is not necessary for the verifier to recompute the key
identifier in this case.

PKIX Part 1 requires this extension for all CA certificates and recommends it for all
other certificates.

CMS Version Support
Refer to “SubjectKeyIdentifierExt Plug-in Module” on page 245.

• CMS 4.1: Supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape Recommendation
Netscape recommends this extension for all certificates.

Introduction to CRL Extensions

Appendix C Certificate and CRL Extensions 361

Microsoft Recommendation
Microsoft recommends this extension for all certificates.

Introduction to CRL Extensions
Since its initial publication, the X.509 standard for CRL formats has been amended
to include additional information within a CRL. Version 2, the latest version,
allows you to add information as CRL extensions.

The extensions defined by ANSI X9 and ISO/IEC/ITU for X.509 v2 CRLs [X.509]
[X9.55] enable you to associate additional attributes with CRLs. The Internet X.509
Public Key Infrastructure Certificate and CRL Profile (see
http://www.ietf.org/rfc/rfc2459.txt) recommends a set of extensions to be
used in CRLs. These extensions are called standard CRL extensions.

The standard also suggests that you can define your own extensions and include
them in CRLs you issue. These extensions are called private, proprietary, or custom
CRL extensions and they carry information unique to your organization or
business. Keep in mind that applications may not able to validate CRLs that
contain private, critical extensions, thus preventing the use of these CRLs in a
general context.

Structure of CRL Extensions
A CRL extension consists of the following:

• The object identifier (OID) for the extension; see Appendix B, “Object
Identifiers.”

This identifier uniquely identifies the extension. It also determines the ASN.1
type of value in the value field and how the value is interpreted. That is, when
an extension appears in a CRL, the OID appears as the extension ID field
(extnID) and the corresponding ASN.1 encoded structure appears as the value
of the octet string (extnValue); see the examples in “Sample Certificate
Extensions” on page 335.

NOTE Some explanations in this chapter make reference to Abstract
Syntax Notation One (ASN.1) and Distinguished Encoding Rules
(DER). These are specified in the CCITT Recommendations X.208
and X.209. For a quick summary of ASN.1 and DER, see A Layman’s
Guide to a Subset of ASN.1, BER, and DER, which is available at RSA
Laboratories’ web site (http://www.rsa.com).

Introduction to CRL Extensions

362 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

• A flag or boolean field called critical.

The true or false value assigned to this field indicates whether the extension
is critical (true) or noncritical (false) to the CRL.

❍ If the extension is critical and the CRL is sent to an application that does
not understand the extension (based on the extension’s ID), the application
must reject the CRL.

❍ If the extension is not critical and the CRL is sent to an application that
does not understand the extension (based on the extension’s ID), the
application can ignore the extension and accept the CRL.

• An octet string containing the DER encoding of the value of the extension.

Typically, the application receiving the CRL checks the extension ID to
determine if it can recognize the ID. If it can, it uses the extension ID to
determine the type of value used.

Introduction to CRL Extensions

Appendix C Certificate and CRL Extensions 363

Sample CRL and CRL Entry Extensions
The following is an example of the section of a CRL containing X.509 v2 extensions.
(Certificate Management System can display CRLs in human-readable format, as
shown here.) As shown in the example, CRL extensions appear in sequence and
only one instance of a particular extension may appear in a particular CRL; for
example, a CRL may contain only one authority key identifier extension. However,
CRL-entry extensions appear in appropriate entries in the CRL.

Certificate Revocation List:
Data:

Version: v2
...

Extensions:
Identifier: Authority Key Identifier

Critical: no
Key Identifier:

2c:22:c6:ae:4e:4b:91:c7:fb:4c:cc:ae:84:e8:aa:5b:46:6a:a0:ad
Extensions:

Identifier: Revocation Reason - 2.5.29.21
Critical: no
Reason: Key_Compromise
Serial Number: 0x12
Revocation Date: Tuesday, December 15, 1998 5:20:42 AM

Extensions:
Identifier: Revocation Reason - 2.5.29.21

Critical: no
Reason: CA_Compromise
Serial Number: 0x11
Revocation Date: Wednesday, December 16, 1998 4:51:54 AM

Extensions:
Identifier: Revocation Reason - 2.5.29.21

Critical: no
Reason: Key_Compromise
Serial Number: 0x10
Revocation Date: Thursday, December 17, 1998 2:37:24 AM

Extensions:
Identifier: Revocation Reason - 2.5.29.21

Critical: no
Reason: Affiliation_Changed
Serial Number: 0xA
Revocation Date: Wednesday, November 25, 1998 5:11:18 AM

...

Standard X.509 v3 CRL Extensions

364 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Standard X.509 v3 CRL Extensions
In addition to certificate extensions, the X.509 v3 proposed standard defines
extensions to CRLs, which provide methods for associating additional attributes
with Internet CRLs. These are of two kinds: extensions to the CRL itself, and
extensions to individual certificate entries in the CRL.

• Extensions for CRLs

• CRL Entry Extensions

Extensions for CRLs
The sections that follow describe the CRL extension types that are defined as part
of the Internet X.509 v3 Public Key Infrastructure proposed standard, as of
September 1998.

These are the CRL extensions described in the sections that follow:

• authorityKeyIdentifier (page 364)

• CRLNumber (page 365)

• deltaCRLIndicator (page 365)

• issuerAltName (page 366)

• issuingDistributionPoint (page 366)

authorityKeyIdentifier

OID
2.5.29.35

Reference
http://www.ietf.org/rfc/rfc2459.txt 5.2.1

Discussion
The Authority Key Identifier extension for a CRL identifies the public key
corresponding to the private key used to sign the CRL. For details, see the
discussion under certificate extensions at authorityKeyIdentifier.

CMS Version Support
Refer to “AuthorityKeyIdentifier Rule” on page 285.

Standard X.509 v3 CRL Extensions

Appendix C Certificate and CRL Extensions 365

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

CRLNumber

OID
2.5.29.20

Reference
http://www.ietf.org/rfc/rfc2459.txt 5.2.3

Criticality
This extension must not be critical.

Discussion
The CRL Number extension specifies a sequential number for each CRL issued by a
CA. It allows users to easily determine when a particular CRL supersedes another
CRL.

PKIX requires that all CRLs have this extension.

CMS Version Support
Refer to “CRLNumber Rule” on page 287.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

deltaCRLIndicator

OID
2.5.29.27

Reference
http://www.ietf.org/rfc/rfc2459.txt 5.2.4

Criticality
PKIX requires that this extension be critical if it exists.

Standard X.509 v3 CRL Extensions

366 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Discussion
The Delta CRL Indicator extension identifies a delta-CRL. The use of delta-CRLs
allows changes to be added to the local database while ignoring unchanged
information that is already in the local database. This can significantly improve
processing time for applications that store revocation information in a format other
than the CRL structure.

This extension is used only with delta-CRLs, which are not supported by
Certificate Management System.

CMS Version Support
• CMS 4.1: Not supported

• CMS 4.2: Not supported

• CMS 4.2-SP2: Supported

issuerAltName

OID
2.5.29.18

Reference
http://www.ietf.org/rfc/rfc2459.txt 5.2.2

Discussion
The Issuer Alternative Name extension allows additional identities to be associated
with the issuer of the CRL. For details, see the discussion under certificate
extensions at issuerAltName.

CMS Version Support
Refer to “IssuerAlternativeName Rule” on page 293.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

issuingDistributionPoint

OID
2.5.29.28

Standard X.509 v3 CRL Extensions

Appendix C Certificate and CRL Extensions 367

Reference
http://www.ietf.org/rfc/rfc2459.txt 5.2.5

Criticality
PKIX requires that this extension be critical if it exists.

Discussion
The Issuing Distribution Point CRL extension identifies the CRL distribution point
for a particular CRL and indicates what kinds of revocation it covers.

PKIX Part I does not require this extension.

CMS Version Support
Refer to “IssuingDistributionPoint Rule” on page 297.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

CRL Entry Extensions
The sections that follow lists the CRL entry extension types that are defined as part
of the Internet X.509 v3 Public Key Infrastructure proposed standard, as of
September 1998. All of these extensions are noncritical.

These are the CRL entry extensions described in the sections that follow:

• certificateIssuer (page 367)

• holdInstructionCode (page 368)

• invalidityDate (page 368)

• reasonCode (page 369)

certificateIssuer

OID
2.5.29.29

Reference
http://www.ietf.org/rfc/rfc2459.txt 5.3.4

Standard X.509 v3 CRL Extensions

368 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

Discussion
The Certificate Issuer extension identifies the certificate issuer associated with an
entry in an indirect CRL.

This extension is used only with indirect CRLs, which are not supported by
Certificate Management System.

CMS Version Support
• CMS 4.1: Not supported

• CMS 4.2: Not supported

• CMS 4.2-SP2: Not supported

holdInstructionCode

OID
2.5.29.23

Reference
http://www.ietf.org/rfc/rfc2459.txt 5.3.2

Discussion
The Hold Instruction Code extension indicates the action to be taken after
encountering a certificate that has been placed on hold.

CMS Version Support
Refer to “HoldInstruction Rule” on page 290.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

invalidityDate

OID
2.5.29.24

Reference
http://www.ietf.org/rfc/rfc2459.txt 5.3.3

Netscape-Defined Certificate Extensions

Appendix C Certificate and CRL Extensions 369

Discussion
The Invalidity Date extension provides the date on which the private key was
compromised or that the certificate otherwise became invalid.

CMS Version Support
Refer to “InvalidityDate Rule” on page 291.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

reasonCode

OID
2.5.29.21

Reference
http://www.ietf.org/rfc/rfc2459.txt 5.3.1

Discussion
The Reason Code extension identifies the reason for certificate revocation.

CMS Version Support
Refer to “CRLReason Rule” on page 288.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

Netscape-Defined Certificate Extensions
Netscape has defined certain certificate extensions for use with Navigator and
Communicator. Some of the extensions that have been defined are now obsolete,
and others can be superseded by the extensions defined in the X.509 proposed
standard. All Netscape extensions should be tagged as noncritical, so that their
presence in a certificate does not make that certificate incompatible with other
clients.

Netscape-Defined Certificate Extensions

370 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

The specifications for all Netscape-defined extensions are defined at
http://home.netscape.com/eng/security/comm4-cert-exts.html. For most
CMS deployments, only netscape-cert-type and netscape-comment need to be
supported to maintain compatibility with Navigator 3.x. Therefore, only these two
Netscape certificate extensions are described here.

netscape-cert-type

OID
2.16.840.1.113730.1

Discussion
The Netscape Certificate Type extension can be used to limit the purposes for
which a certificate can be used. It has been replaced by the X.509 v3 extensions
extKeyUsage and basicConstraints, but must still be supported in deployments
that include Navigator 3.x clients.

If the extension exists in a certificate, it limits the certificate to the uses specified in
it. If the extension is not present, the certificate can be used for all applications
except object signing.

The value is a bit-string, where the individual bit positions, when set, certify the
certificate for particular uses as follows:

• bit 0: SSL Client certificate

• bit 1: SSL Server certificate

• bit 2: S/MIME certificate

• bit 3: Object-signing certificate

• bit 4: Reserved for future use

• bit 5: SSL CA certificate

• bit 6: S/MIME CA certificate

• bit 7: Object-signing CA certificate

CMS Version Support
Refer to “NSCertTypeExt Plug-in Module” on page 215.

• CMS 4.1: Supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

CA Certificates and Extension Interactions

Appendix C Certificate and CRL Extensions 371

netscape-comment

OID
2.16.840.1.113730.13

Discussion
The value of this extension is an IA5String. It is a comment that can be displayed to
the user when the certificate is viewed.

CMS Version Support
Refer to “NSCCommentExt Plug-in Module” on page 211.

• CMS 4.1: Not supported

• CMS 4.2: Supported

• CMS 4.2-SP2: Supported

CA Certificates and Extension Interactions
Netscape recommends that all CA certificates contain the basicConstraints
extension, as this is the standard way to identify a CA certificate. In addition, to
ensure support for Navigator 3.x, CAs should also use netscape-cert-type.
These two extensions can interact with each other. The following table describes
what different combinations of the two extensions mean.

Extensions Present Description

Only
basicConstraints

The certificate is a CA certificate if the cA component is true.
Path length processing is done as described above.

Only
netscape-cert-type

The certificate is a CA if at least one of the CA bits is set: SSL
CA (5), S/MIME CA (6), or object-signing CA (7). The
certificates issued by this CA are limited to the particular
applications specified. Path length processing is done as
though the pathLenConstraint is unlimited.

Neither extension The certificate is not a CA.

CA Certificates and Extension Interactions

372 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

A certificate chain generally consists of an entity certificate, zero or more
intermediate CA certificates, and a root CA certificate. Typically the root CA
certificate is self-signed and is loaded into Communicator's certificate database as a
trusted CA.

An exchange of certificates takes place when performing an SSL handshake, when
sending an S/MIME message, or when sending a signed object. As part of the
handshake, the sender is expected to send the subject certificate and any
intermediate CA certificates needed to link the subject certificate to the trusted
root. For certificate chaining to work properly the certificates should have the
following properties:

• CA certificates must have either the basicConstraints extension, the
netscape-cert-type extension with one or more CA bits set, or both, as
described above.

• If CAs issue multiple certificates for the same identity, for example for separate
signing and encryption keys, they must include the keyUsage extension in the
subject certificates.

• If CAs ever intend to generate new keys for their CA, they must add the
authorityKeyIdentifier extension to all subject certificates. If the key ID is
anything other than the SHA-1 hash of the CA certificates
subjectPublicKeyInfo field, then the CA certificate should contain the
subjectKeyIdentifier extension. This will allow for a smooth transition
when the new issuing certificate becomes active.

Both extensions The certificate is a CA certificate if the cA component of
basicConstraints is true. If one or more of the SSL CA
(5), S/MIME CA (6), or object-signing CA (7) bits are set in
the netscape-cert-type extension, then the CA will be
limited to issuing certificates for the specified application
areas; otherwise, the CA can issue certificates for any
application.

Extensions Present Description

373

Index

A
adding extensions

to CRLs 284
to end-entity certificates 132

adding new directory attributes 319
Attribute Present Constraints policy 90
Audit log

configuring 303
logging to Windows NT event log 308

authentication
automated vs. manual 20
built-in modules 20

list of 21
NISAuth 39
PortalEnroll 44, 47
See also PIN Generator tool
UidPwdDirAuth 26
UidPwdPinDirAuth 31

configuring for end-user enrollment 22
default forms for users 22
directory- and PIN-based 30
directory-based 24
during certificate renewal 22
during certificate revocation 22
how to write custom plug-ins 22
manual 23
NIS server-based 37

Authority Information Access extension policy 136
Authority Key Identifier extension policy 144
authorityKeyIdentifier 344, 364, 372
automated enrollment 20

B
base DN 315
Basic Constraints extension policy 147
basicConstraints 345, 371
built-in plug-in modules

See plug-in modules
bulk enrollment 56

C
CA certificate mapper 255
CA certificate publisher 275
Certificate Manager

enrollment forms for 60
logging to Windows NT event log 308

Certificate Policy extension policy 151
certificate renewal

validity period for 106
Certificate Renewal Window extension policy 156
Certificate Scope of Use extension policy 161
certificate-based enrollment 53

forms for 54
what you need 54
when to use 53

certificateIssuer 367
certificatePolicies 346
certificates

enrollment forms 57
automated 57

374 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

manual 57
extensions for 331–372

challenge password 22
changing

DER encoding order of DirectoryString 322
Chapter Single Template 313, 329
client certificates

for DSA key pairs 61
CMC request enrollment 61
common features in extension policies 135
constraints-specific policies

attribute present constraints 90
DSA key constraints 95
issuer constraints 98
key algorithm constraints 101
renewal constraints 103
renewal validity constraints 106
revocation constraints 110
RSA key constraints 112
signing algorithm constraints 115
subordinate CA name constraints 118
unique subject name constraints 121
validity constraints 124

constraints-specific policy modules 88
conventions used in this book 14
CRL Distribution Point extension policy 166
CRL extension modules

AuthorityKeyIdentifier 285
CRLNumber 287
CRLReason 288
HoldInstruction 290
InvalidityDate 291
IssuerAlternativeName 293
IssuingDistributionPoint 297
list of 285

CRL publisher 279
cRLDistributionPoints 347
CRLNumber 365
CRLs

extensions for 364–369
extension-specific modules 361
supported versions 283

custom plug-ins
for authentication 22
for logs 302

for mapping directory entries 254
for policy 135
for publishing to a directory 273

D
Data Recovery Manager

logging to Windows NT event log 308
defining custom OIDs 329
deltaCRLIndicator 365
DER-encoding order of DirectoryString 322
directory

removing expired certificates from 76
directory attributes

adding new 319
supported in CMS 316

directory-based authentication 24
user ID and password 24
user ID, password, and PIN 30

distinguished name (DN)
base DN 315
characters allowed in CMS 316
components 314
defined 313
extending attribute support 318
guidelines for choosing DNs 325
role in certificates 323

CA certificates 324
end-entity certificates 324

root DN 315
DN character support in CMS 316
DN components mapper 259, 264
DN pattern mapper 265
documentation

conventions followed 14
where to find 15

DSA client certificates 61
DSA Key Constraints policy 95
DSA key pairs 61

Index 375

E
encrypted file system (EFS) 172
end-entity certificate publisher 277
end-entity enrollment forms 57

automated 57
manual 57

end-entity forms
for enrollment 59

enrollment
automated 20
in bulk 56
manual 20

enrollment forms
for Certificate Managers 60
for end users 59
for object signing certificates 61
for OCSP responder certificates 60
for Registration Managers 60
for servers 60
generating DSA key pairs 61

Error log
configuring 303

event log
configuring 308
logging audit and system messages 308

expired certificates
removing from the directory 76

Extended Key Usage extension policy 171
OIDs for encrypted file system 172

extending directory-attribute support in CMS 318
extensions 331–372

134
adding to end-entity certificates 132
an example 335
authorityKeyIdentifier 344, 364, 372
basicConstraints 345, 371
CA certificates and 371–372
certificateIssuer 367
certificatePolicies 346
cRLDistributionPoints 347
CRLNumber 365
deltaCRLIndicator 365
extKeyUsage 348
holdInstructionCode 368
introduction to 332

invalidityDate 368
issuerAltName 350, 366
issuingDistributionPoint 366
keyUsage 351
nameConstraints 354
netscape-cert-type 370, 371
netscape-comment 371
Netscape-defined 369–372
policyConstraints 355
policyMappings 356
privateKeyUsagePeriod 357
reasonCode 369
recommendations for usage 335–341
structure of 334
subjectAltName 358
subjectDirectoryAttributes 359
subjectKeyIdentifier 360
X.509 certificate, summarized 341–361
X.509 CRL, summarized 364–369

extension-specific policies
authority information access 136
authority key identifier 144
basic constraints 147
certificate policy 151
certificate renewal window 156
certificate scope of use 161
common features 135
CRL distribution point 166
extended key usage 171
Generic ASN.1 177
issuer alternative name 184
key usage 189
name constraints 202
Netscape certificate comment 211
Netscape certificate type 215
policy constraints 220, 224
policy mappings 227
private key usage period 231
remove basic constraints 233
subject alternative name 235
subject directory attributes 241
subject key identifier 245

extension-specific policy modules 332
list of 134

extKeyUsage 348

376 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

F
file-based logging

configurable parameters 304
plug-in module name 304

file-based publisher 274
fonts used in this book 14

G
Generic ASN.1 extension policy 177

H
holdInstructionCode 368
HTML forms

for end entities
for enrollment 59

I
invalidityDate 368
Issuer Alternative Name extension policy 184
Issuer Constraints policy 98
issuerAltName 350, 366
issuingDistributionPoint 366

J
jobs

built-in modules 67
RenewalNotificationJob 68, 69
RequestInQueueJob 68, 73
UnpublishExpiredJob 68, 76

compared to plug-in implementation 69
specifying schedule for 80

K
Key Algorithm Constraints policy 101
Key Usage extension policy 189
keyUsage 351

L
listing

of CRL extension modules 285
of schedulable jobs 68

locating directory entries for publishing
how to write custom plug-ins 254

location of
CMS documentation 15

logging
built-in modules

file 303, 304
list of 302
NTEventLog 309

how to write custom plug-ins 302
to files 303

M
manual authentication 23
manual enrollment 20
mapper modules

introduction 251, 271
list of 253

mappers
created during installation 255, 266
defined 251, 271

mappers that use
CA certificate 255
DN components 259
DN patterns 265
subject attributes 268
subject names 264

mapping certificates to directory entries 252
message templates for notifications 81

Index 377

N
Name Constraints extension policy 202
nameConstraints 354
Netscape Certificate Comment extension policy 211
Netscape Certificate Type extension policy 215
netscape-cert-type 370, 371
netscape-comment 371
NIS server-based authentication 37

configurable parameters 39
plug-in module name 39

notifications
customizing 81

templates 83
sending renewal notifications to end entities 69
to agents about pending requests 73
to agents about unpublishing certificates 76

NT Event log
plug-in module name 309

O
object identifiers 329
object signing certificates

for third-party tools 63
how to enroll for 61

OCSP publisher 281
OCSP responder certificates

how to enroll for 60
OIDs 329
overview

authentication modules 20

P
plug-in modules

for authentication
list of 21
NISAuth 39
PortalEnroll 47
UidPwdDirAuth 26

UidPwdPinDirAuth 31
for CRL extensions

AuthorityKeyIdentifier 285
CRLNumber 287
CRLReason 288
HoldInstruction 290
InvalidityDate 291
IssuerAlternativeName 293
IssuingDistributionPoint 297
list of 285

for logging to file 304
for logging to NT Event log 309
for logs

list of 302
for policy 87, 131, 329

AttributePresentConstraints 90
AuthInfoAccessExt 136
AuthorityKeyIdentifierExt 144
BasicConstraintsExt 147
CertificatePoliciesExt 151
CertificateRenewalWindowExt 156
CertificateScopeOfUseExt 161
CRLDistributionPointsExt 166
DSAKeyConstraints 95
ExtendedKeyUsageExt 171
GenericASN1Ext 177
IssuerAltNameExt 184
IssuerConstraints 98
KeyAlgorithmConstraints 101
KeyUsageExt 189
NameConstraintsExt 202
NSCCommentExt 211
NSCertTypeExt 215
OCSPNoCheckExt 220
PolicyConstraintsExt 224
PolicyMappingsExt 227
PrivateKeyUsagePeriodExt 231
RemoveBasicConstraintsExt 233
RenewalConstraints 103
RenewalValidityConstraints 106
RevocationConstraints 110
RSAKeyConstraints 112
SigningAlgorithmConstraints 115
SubCANameConstraints 118
SubjectAltNameExt 235
SubjectDirectoryAttributesExt 241
SubjectKeyIdentifierExt 245

378 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

UniqueSubjectNameConstraints 121
ValidityConstraints 124

for publishing 272
FileBasedPublisher 274
LdapCaCertPublisher 275
LdapCaSimpleMap 255
LdapCrlPublisher 279
LdapDNCompsMap 259
LdapDNExactMap 264
LdapSimpleMap 265
LdapSubjAttrMap 268
LdapUserCertPublisher 277
list of 253, 273
OCSPPublisher 281

for scheduling jobs
list of 68
RenewalNotificationJob 69
RequestInQJob 73
UnpublishExpiredJob 76

policy
built-in plug-in modules 87, 131, 329
constraints-specific modules 88
extension-specific modules 332
how to write custom plug-ins 135

Policy Constraints extension policy 220, 224
Policy Mappings extension policy 227
policyConstraints 355
policyMappings 356
portal enrollment 44

configurable parameters 47
plug-in module name 47

PQG parameters 61
Private Key Usage Period extension policy 231
privateKeyUsagePeriod 357
publisher modules

introduction 272
list of 273

publishers
created during installation 275, 277, 279

publishers that can publish to
CA’s entry in the directory 275, 279
files 274
OCSP responder 281
users’ entries in the directory 277

publishing

how to write custom plug-ins 273
publishing certificates and CRLs to directory

entries 272

R
reasonCode 369
registering

custom OIDs 330
Registration Manager

enrollment forms for 60
logging to Windows NT event log 308

Remove Basic Constraints extension policy 233
Renewal Constraints policy 103
Renewal Validity Constraints policy 106
Revocation Constraints policy 110
root DN 315
RSA Key Constraints policy 112

S
server enrollment forms 60
setting CRL extensions 284
Signing Algorithm Constraints policy 115
Subject Alternative Name extension policy 235
subject attribute mapper 268
Subject Directory Attributes extension policy 241
Subject Key Identifier extension policy 245
subjectAltName 358
subjectDirectoryAttributes 359
subjectKeyIdentifier 360
subordinate CA

enrollment forms for 60
Subordinate CA Name Constraints policy 118
Sun ONE 11
support for DN characters in CMS 316
System log

configuring 303
logging to Windows NT event log 308

Index 379

T
templates

for notifications 81
customizing 83
token list 83

templates
for automated notifications 81

type styles used in this book 14

U
Unique Subject Name Constraints policy 121
user enrollment forms 59
user ID and password based authentication 24

configurable parameters 26
plug-in module name 26

user ID, password, and PIN based authentication 30
configurable parameters 31
module name 31

V
Validity Constraints policy 124

W
Windows NT event log

logging audit and system messages 308
wireless certificates 60

380 iPlanet Certificate Management Server Plug-Ins Guide • September 2002

	Contents
	About This Guide
	What’s in This Guide
	What You Should Already Know
	Conventions Used in This Guide
	Where to Go for Related Information

	Authentication Plug-in Modules
	Overview of Authentication Modules
	Manual Authentication
	UidPwdDirAuth Plug-in Module
	Configuration Parameters of UidPwdDirAuth

	UidPwdPinDirAuth Plug-in Module
	Configuration Parameters of UidPwdPinDirAuth

	NISAuth Plug-in Module
	Configuration Parameters of NISAuth

	PortalEnroll Plug-in Module
	Configuration Parameters of PortalAuth

	SSOAuthentication Plug-In Module
	Configuring SSOAuthenication
	Before You Begin
	Create an instance of SSOBasedAuthentication in CMS.

	Certificate-Based Enrollment
	Enrollment Forms
	Customizing Enrollment Forms for Generating DSA Key Pairs
	Generating Files Required By Third-Party Object Signing Tools

	Job Plug-in Modules
	Overview of Job Plug-in Modules
	RenewalNotificationJob Plug-in Module
	Configuration Parameters of RenewalNotificationJob

	RequestInQJob Plug-in Module
	Configuration Parameters of RequestInQJob

	UnpublishExpiredJob Plug-in Module
	Configuration Parameters of UnpublishExpiredJob
	Schedule for Executing Jobs

	Customizing Notification Messages
	Templates for Summary Notifications
	Customizing Message Templates
	Tokens Available in Message Templates
	Tokens for Renewal Notification Messages
	Tokens for Request In Queue Notification Messages
	Tokens for Directory Update Notification Messages

	Constraints Policy Plug-in Modules
	Overview of Constraints-Specific Policy Modules
	AttributePresentConstraints Plug-in Module
	Configuration Parameters of AttributePresentConstraints

	DSAKeyConstraints Plug-in Module
	Configuration Parameters of DSAKeyConstraints
	DSAKeyRule Rule

	IssuerConstraints Plug-in Module
	Configuration Parameters of IssuerConstraints
	IssuerRule Rule

	KeyAlgorithmConstraints Plug-in Module
	Configuration Parameters of KeyAlgorithmConstraints
	KeyAlgRule Rule

	RenewalConstraints Plug-in Module
	Configuration Parameters of RenewalConstraints
	RenewalConstraintsRule Rule

	RenewalValidityConstraints Plug-in Module
	Configuration Parameters of RenewalValidityConstraints
	DefaultRenewalValidityRule Rule

	RevocationConstraints Plug-in Module
	Configuration Parameters of RevocationConstraints
	RevocationConstraintsRule Rule

	RSAKeyConstraints Plug-in Module
	Configuration Parameters of RSAKeyConstraints
	RSAKeyRule Rule

	SigningAlgorithmConstraints Plug-in Module
	Configuration Parameters of SigningAlgorithmConstraints
	SigningAlgRule Rule

	SubCANameConstraints Plug-in Module
	Configuration Parameters of SubCANameConstraints
	SubCANameConstraints Rule

	UniqueSubjectNameConstraints Plug-in Module
	Configuration Parameters of UniqueSubjectNameConstraints
	UniqueSubjectNameConstraints Rule

	ValidityConstraints Plug-in Module
	Configuration Parameters of ValidityConstraints
	DefaultValidityRule Rule

	Certificate Extension Plug-in Modules
	Overview of Extension-Specific Policy Modules
	AuthInfoAccessExt Plug-in Module
	Configuration Parameters of AuthInfoAccessExt
	AuthInfoAccessExt Rule

	AuthorityKeyIdentifierExt Plug-in Module
	Configuration Parameters of AuthorityKeyIdentifierExt
	AuthorityKeyIdentifierExt Rule

	BasicConstraintsExt Plug-in Module
	Configuration Parameters of BasicConstraintsExt
	BasicConstraintsExt Rule

	CertificatePoliciesExt Plug-in Module
	Configuration Parameters of CertificatePoliciesExt
	CertificatePoliciesExt Rule

	CertificateRenewalWindowExt Plug-in Module
	Configuration Parameters of CertificateRenewalWindowExt

	CertificateScopeOfUseExt Plug-in Module
	Configuration Parameters of CertificateScopeOfUseExt

	CRLDistributionPointsExt Plug-in Module
	Configuration Parameters of CRLDistributionPointsExt
	CRLDistributionPointsExt Rule

	ExtendedKeyUsageExt Plug-in Module
	Configuration Parameters of ExtendedKeyUsageExt
	CODESigningExt Rule
	OCSPSigningExt Rule

	GenericASN1Ext Plug-in Module
	Configuration Parameters of GenericASN1Ext
	GenericASN1Ext Rule

	IssuerAltNameExt Plug-in Module
	Configuration Parameters of IssuerAltNameExt

	KeyUsageExt Plug-in Module
	Configuration Parameters of KeyUsageExt
	CMCertKeyUsageExt Rule
	RMCertKeyUsageExt Rule
	ServerCertKeyUsageExt Rule
	ClientCertKeyUsageExt Rule
	ObjSignCertKeyUsageExt Rule
	CRLSignCertKeyUsageExt

	NameConstraintsExt Plug-in Module
	Configuration Parameters of NameConstraintsExt
	NameConstraintsExt Rule

	NSCCommentExt Plug-in Module
	Configuration Parameters of NSCCommentExt
	NSCCommentExt Rule

	NSCertTypeExt Plug-in Module
	Configuration Parameters of NSCertTypeExt
	NSCertTypeExt Rule

	OCSPNoCheckExt Plug-in Module
	Configuration Parameters of OCSPNoCheckExt
	OCSPNoCheckExt Rule

	PolicyConstraintsExt Plug-in Module
	Configuration Parameters of PolicyConstraintsExt
	PolicyConstraintsExt Rule

	PolicyMappingsExt Plug-in Module
	Configuration Parameters of PolicyMappingsExt
	PolicyMappingsExt Rule

	PrivateKeyUsagePeriodExt Plug-in Module
	Configuration Parameters of PrivateKeyUsagePeriodExt

	RemoveBasicConstraintsExt Plug-in Module
	Configuration Parameters of RemoveBasicConstraintsExt

	SubjectAltNameExt Plug-in Module
	Configuration Parameters of SubjectAltNameExt
	SubjectAltNameExt Rule

	SubjectDirectoryAttributesExt Plug-in Module
	Configuration Parameters of SubjectDirectoryAttributesExt

	SubjectKeyIdentifierExt Plug-in Module
	Configuration Parameters of SubjectKeyIdentifierExt
	SubjectKeyIdentifierExt Rule

	Mapper Plug-in Modules
	Overview of Mapper Modules
	LdapCaSimpleMap Plug-in Module
	Configuration Parameters of LdapCaSimpleMap
	LdapCaCertMap Mapper
	LdapCrlMap Mapper

	LdapDNCompsMap Plug-in Module
	Configuration Parameters of LdapDNCompsMap

	LdapDNExactMap Plug-in Module
	Configuration Parameters of LdapDNExactMap

	LdapSimpleMap Plug-in Module
	Configuration Parameters of LdapSimpleMap
	LdapUserCertMap Mapper

	LdapSubjAttrMap Plug-in Module
	Configuration Parameters of LdapSubjAttrMap

	Publisher Plug-in Modules
	Overview of Publisher Modules
	FileBasedPublisher Plug-in Module
	Configuration Parameters of FileBasedPublisher

	LdapCaCertPublisher Plug-in Module
	Configuration Parameters of LdapCaCertPublisher
	LdapCaCertPublisher Publisher

	LdapUserCertPublisher Plug-in Module
	Configuration Parameters of LdapUserCertPublisher
	LdapUserCertPublisher Publisher

	LdapCrlPublisher Plug-in Module
	Configuration Parameters of LdapCrlPublisher
	LdapCrlPublisher Publisher

	OCSPPublisher Plug-in Module
	Configuration Parameters of OCSPPublisher

	CRL Extension Plug-in Modules
	Overview of CRL Extension Modules
	AuthorityKeyIdentifier Rule
	CRLNumber Rule
	CRLReason Rule
	HoldInstruction Rule
	InvalidityDate Rule
	IssuerAlternativeName Rule
	IssuingDistributionPoint Rule

	Log Plug-in Modules
	Overview of Log Modules
	file Plug-in Module
	Configuration Parameters of file
	Audit Log Event Listener
	Error Log Event Listener
	System Log Event Listener

	NTEventLog Plug-in Module
	Configuration Parameters of NTEventLog
	NTAudit Event Listener
	NTSystem Event Listener

	What Is a Distinguished Name?
	Distinguished Name Components
	Root Distinguished Name
	Base Distinguished Name

	DNs in Certificate Management System
	Extending Attribute Support
	Adding New or Proprietary Attributes
	Adding Attributes to an Enrollment Form
	Changing the DER Encoding Order

	Role of Distinguished Names in Certificates
	DNs in End-Entity Certificates
	DNs in CA Certificates
	Selecting DNs for Certificates
	DN Patterns and Certificate Subject Names

	What’s an Object Identifier?
	Registration of Object Identifiers
	Introduction to Certificate Extensions
	Structure of Certificate Extensions
	Sample Certificate Extensions

	Recommendations for Certificate Extension Use
	Standard X.509 v3 Certificate Extensions
	authorityInfoAccess
	authorityKeyIdentifier
	basicConstraints
	certificatePolicies
	cRLDistributionPoints
	extKeyUsage
	issuerAltName
	keyUsage
	nameConstraints
	OCSPNocheck
	policyConstraints
	policyMappings
	privateKeyUsagePeriod
	subjectAltName
	subjectDirectoryAttributes
	subjectKeyIdentifier

	Introduction to CRL Extensions
	Structure of CRL Extensions
	Sample CRL and CRL Entry Extensions

	Standard X.509 v3 CRL Extensions
	Extensions for CRLs
	authorityKeyIdentifier
	CRLNumber
	deltaCRLIndicator
	issuerAltName
	issuingDistributionPoint

	CRL Entry Extensions
	certificateIssuer
	holdInstructionCode
	invalidityDate
	reasonCode

	Netscape-Defined Certificate Extensions
	netscape-cert-type
	netscape-comment

	CA Certificates and Extension Interactions

	Index

