
Netra Data Plane Software Suite 2.1 Update 1

User’s Guide
Part No.: E20948-01
February 2011

Copyright © 2009, 2011, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by
intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us
in writing.
If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:
U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers
are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set
forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any
inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use. Oracle
Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services.

Copyright © 2009, 2011, Oracle et/ou ses affiliés. Tous droits réservés.
Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des
restrictions d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire,
diffuser, modifier, breveter, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par
quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à
des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.
Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles
soient exemptes d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.
Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de
ce logiciel ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique :

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government
contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500
Oracle Parkway, Redwood City, CA 94065.
Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas
conçu ni n’est destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous
utilisez ce logiciel ou matériel dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de
sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés
déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce type d’applications.
Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés.Tout autre nom mentionné peut correspondre à des marques
appartenant à d’autres propriétaires qu’Oracle.
AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. Intel et Intel Xeon sont des
marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. UNIX est une marque déposée concédée sous licence par X/Open Company, Ltd.
Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et
des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou
services émanant de tiers. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts
occasionnés ou des dommages causés par l’accès à des contenus, produits ou services tiers, ou à leur utilisation

Contents

Using This Documentation xxix

1. Sun Netra Data Plane Software Suite Overview 1

Product Description 1

Supported Systems 2

Software Installation 3

Platform Firmware Prerequisites 4

▼ To Check Your OpenBoot PROM Firmware Version 5

Package Dependencies 7

Package Installation Procedures 7

▼ To Install the Software Into the Default Directory 8

▼ To Install the Software in a Directory Other Than the Default 8

▼ To Remove the Software 10

Building and Booting Reference Applications 10

.cshrc File and Required Compiler Path 10

Building Reference Application Instructions 11

▼ To Boot an Application Image 12

Programming Methodology 13

Reusing Existing C Code 14

tejacc Compiler Basic Operation 15
iii

tejacc Compiler Mechanics 15

tejacc Compiler Options 16

tejacc Compiler Configuration 16

tejacc Compiler and Sun Netra DPS Interaction 17

Architecture Elements 19

Hardware Architecture API Overview 19

Hardware Architecture Elements 19

Architecture Relationships 20

Utility Functions 21

Advanced Hardware Architecture Elements 21

Software Architecture and Late-Binding API Overview 23

Late-Binding Elements 24

Other Elements 27

Utility Functions 28

User API Overview 29

Late-Binding API Overview 29

Sun Netra DPS Runtime API Overview 29

Finite State Machine API Overview 31

Map API Overview 31

2. tejacc Basics 33

Command-Line Options 33

tejacc Command-Line Options 34

Optimization 35

Optimization Options 35

Context-Sensitive Generation 36

▼ To Enable Optimization 36

Language 37

Include Files 37
iv Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Late-Binding Object Identifiers 37

3. Profiler 39

Profiler Introduction 39

How the Profiler Works 40

Groups and Events 40

Profiler Output 41

Profiler Examples 43

Profiler API 43

Profiler API Usage for the Sun UltraSPARC T1 Processor 43

Profiler API Usage for the Sun UltraSPARC T2 Processor 44

Profiler Configuration 44

Profiler Output Example 45

Profiling Application Performance 46

Sun UltraSPARC T1 Performance Counters 46

Sun UltraSPARC T2 Performance Counters 49

User-Defined Statistics 52

Profiling Metrics 53

Using the Profiler Script 53

Profiler Scripts 54

Usage 54

Raw Profile Data 55

Summarized Profile Data 58

Sun UltraSPARC T1 Processor Profiler Output 58

Sun UltraSPARC T2 Processor Profiler Output 59

Performance Parameters Calculations 63

Sun UltraSPARC T1 Processor 64

Instructions per Packet: 64

Instructions per Cycle (IPC): 64
Contents v

Packet Rate: 64

SB_full per thousand instructions: 64

FP_instr_cnt per thousand instructions: 64

IC_miss per thousand instructions: 64

DC_miss per thousand instructions: 64

ITLB_miss per thousand instructions: 64

DTLB_miss per thousand instructions: 65

L2_imiss per thousand instructions: 65

L2_dmiss_LD per thousand instructions: 65

Sun UltraSPARC T2 Processor 65

Instruction per Packet: 65

Instructions per Cycle (IPC): 65

Store Instructions per Packet: 65

Load Instructions per Packet: 66

L2 Load misses per Packet: 66

Icache misses per 1000 Packets: 66

Dcache misses per Packet: 66

Packet Rate: 66

▼ To Use a Spreadsheet for Performance Analysis 67

4. Debugger 69

Debugger Introduction 69

Native Debugger 70

Debugging Configuration Code 70

Entering the Debugger 71

Native Debugger Commands 71

Displaying Help 71

help or h 71

Example: 72
vi Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Managing Breakpoints 72

break address or b address 72

info break or i break 73

Example: 73

delete breakpoint ID or d breakpoint ID 73

Managing Program Execution 74

cont or c 74

step or s 74

Example: 74

Displaying and Setting Memory 74

x/nfu address 74

w/u address value 75

Example: 75

Managing Threads 75

info threads or i threads 75

thread ID 75

Example: 76

Displaying Registers 76

info reg or i reg 76

Displaying Stack Trace 78

bt frame-count 78

Resolving Symbols Using Options 79

-h 79

-f function-name 79

-g global-variable 79

-l file-name:line-number 80

GNU Project Debugger 80

Configuring Oracle VM Server for SPARC Software for GDB Support 80
Contents vii

▼ To Configure the Oracle VM Server for SPARC Software Required to
Run the Sun Netra DPS Application With GDB Support 80

▼ To Configure the Oracle Solaris Domain for GDB 82

GDB Showcase Application 82

▼ To Compile the GDB Showcase 82

▼ To Load the GDB Showcase Binary in the Sun Netra DPS Domain 83

▼ To Run the GDB Command 83

GDB Commands 84

▼ To Run Sun Netra DPS Application With GDB Support 85

5. Interprocess Communication Software 89

IPC Introduction 89

Programming Interfaces Overview 90

Configuring the Environment for IPC 90

Memory Management 90

IPC in the Logical Domains Environment 91

Logical Domain Channel Setup 91

IPC Channel Setup 92

Example Environment for UltraSPARC T1 Based Servers 94

Domains 94

primary 95

ldg1 – LWRTE 95

ldg2 – Control Plane Application 95

ldg3 – Solaris Control Domain 95

Virtual Data Plane Channels 96

Global Control Channel 96

Client Control Channel 96

Data Channel 96

IPC Channels 97
viii Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Example Environment for UltraSPARC T2 Based Servers 98

IPC Reference Applications 99

Common Header 99

6. Remote Command-Line Interface 101

Remote Command-Line Interface Introduction 101

IPC Setup for Remote CLI 102

▼ To Configure the Oracle Solaris Domain for Remote CLI 102

Accessing the Remote CLI 103

▼ To Access the CLI Console 104

Debugging Remotely 105

▼ To Access the Sun Netra DPS Debugger 105

Coredump Support 106

System Configuration 106

▼ To Go to the sys Mode From the Remote CLI 106

Compiling the Remote CLI Application 107

Build Script 107

Usage 108

Build Script Arguments 108

Argument Descriptions 108

cmt 108

[profiler] 108

7. Eclipse Development Environment 109

ADE Introduction 109

Starting the Eclipse-Based ADE GUI 110

▼ To Start the Eclipse-Based ADE GUI 110

Creating a Teja Project 110

▼ To Create a Project in the Same Directory as an Existing Teja Application
110
Contents ix

▼ To Add the Graphic Files to a Project 115

Files and Viewers 115

Hardware Architecture Viewer 115

Software Architecture Viewer 118

Mapping Viewer 120

Build 121

▼ To Compile the Teja Application in the Eclipse-Based ADE 121

8. Receive Packet Classification 123

Receive Packet Classification Introduction 123

Supported Networking Interfaces 124

Sun Multithreaded 10GbE and NIU Receive Packet Classifier 124

Receive DMA Channel Selection 124

Hashing Based on Layer 2, Layer 3, and Layer 4 Header Classification 128

Hash Algorithm 129

Hash Key 129

Application 130

Hash Policy 130

Flow Match Based on Layer 2, Layer 3, and Layer 4 Header Classification 131

Layer 2 (L2) Classification 131

Layer 3 and Layer 4 (L3/L4) Classification 132

Applications 132

Classification Programming Interface 132

opcode 133

action 133

flow_spec 134

channel 135

ue or um 135

hd 135
x Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

flow_spec_ipv4_tab_s 136

flow_spec_ipv6_t 136

flow_spec_l2_t 137

Examples 137

▼ To Use Hash Flow 137

▼ To Use TCAM Classification 137

9. Auto-Configuration 143

Auto-Configuration Introduction 143

Installation 144

Prerequisites 144

User Interface 145

Configuring a Logical Domain Environment for Reference Applications 145

Custom Configuring a Primary Domain 146

Custom Configuring a Guest Domain 148

Configuring LDC and IPC 149

Saving Current Guest Domains Configuration 151

Configuring the Oracle VM Server for SPARC Software from a Saved
Location 152

10. Transparent Interprocess Communication 153

Transparent Interprocess Communication Introduction 153

TIPC Components 154

Installing TIPC 155

▼ To Install TIPC 155

Programming Interfaces Overview 157

Configuring Environment for TIPC 158

SUNWndpsd and SUNWndps-tipc Binaries 158

Configuring Sun Netra DPS TIPC Stack from an Oracle Solaris Guest Logical
Domain 159
Contents xi

Configuring Sun Netra DPS TIPC Stack from a Linux Guest Logical Domain
159

▼ To Set the TIPC Address 160

Enabling TIPC Ethernet Bearer 160

Enabling the TIPC IPC Bearer 161

Enabling TIPC vnet Bearer for a NDPS TIPC Node 161

11. Reference Applications 163

IP Packet Forwarding Reference Applications 164

Receive Thread 164

Forwarding Thread 165

Transmit Thread 166

Traffic Flows 166

Source Files 166

▼ To Compile the ipfwd Application 167

Usage 167

Argument Descriptions 167

▼ To Build the ipfwd Application 169

▼ To Run the ipfwd Application 169

Default System Configuration 170

Default ipfwd Application Configuration 170

Other IP Forwarder Options 170

IP Forward Static Cross Configuration 172

Flow Policy for Spreading Traffic to Multiple DMA Channels 172

ipfwd Flow Configurations 173

ipfwd Configuration File Format 173

System Configuration 175

Standalone Environment 175

Logical Domain Environment 175
xii Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Forwarding Application 175

Data Plane Components 176

Control Plane Components and Utilities 178

IPv4 Packet Forwarding Application with Exception Handling 185

ARP Processing 186

ARP in lwIP 186

ARP in the Oracle Solaris OS 186

ARP in the Oracle Solaris OS or Linux OS Using vnet 186

IPv4 Protocol Exception Handling 187

Fragmentation 187

Reassembly and Local Delivery 187

Reassembly and Local Delivery Using vnet 188

FIB Management 188

FIB Management When Using vnet 191

Exception Path Framework Components 191

IPv4 Forwarder (ipfwd Thread) 191

Exception Application (excpd) 192

lwIP ARP Layer 192

ARP STREAMS Module (lwmodarp) 192

The IPv4 STREAMS Module (lwmodip4) 193

Fastpath Manager 193

Exceptions Path Framework Tools 193

ifctl 194

fibctl 194

insarp 194

▼ To Compile the ipfwd Application for IPv4 Exception Handling 195

▼ To Compile the IPv4 Forwarding Application With Exception Handling
By Using Sun Netra DPS 195

Compiling the excpd Application 195
Contents xiii

Usage 196

▼ To Build the excpd Application When lwIP ARP Is Used With IPC
196

▼ To Build the excpd Application When lwIP ARP Is Used With
TIPC 196

▼ To Build the excpd Application When the Oracle Solaris OS ARP Is
Used With IPC 196

▼ To Build the excpd Application When the Oracle Solaris OS ARP Is
Used With TIPC 196

Compiling the lwmodip4 STREAMS Module 197

Usage 197

▼ To Build the lwmodip4 STREAMS Module for IPv4 Exception
Handling Using IPC 197

▼ To Build the lwmodip4 Module for IPv4 Exception Handling Using
TIPC 197

Compiling the lwmodarp STREAMS Module 197

Usage 197

▼ To Build the lwmodarp Module for Oracle Solaris ARP Handling
Using IPC 198

▼ To Build the lwmodarp Module for Oracle Solaris ARP Handling
Using TIPC 198

Compiling the insarp Tool 198

▼ To Compile the insarp Tool 198

▼ To Run the ipfwd Application with IPv4 Exception Handling in lwIP
198

▼ To Run the ipfwd Application with IPv4 Exception Handling and ARP
Handling in the Oracle Solaris Host 200

▼ To Compile the ipfwd Application with IPv4 Exception Handling using
vnet in Sun Netra DPS 202

▼ To Run the ipfwd Application with IPv4 Exception Handling and ARP
Handling in an Oracle Solaris OS Host Using vnet 202

▼ To Compile the IPv4 Forwarding Application With Exception Handling
Using vnet in Sun Netra DPS 204
xiv Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

▼ To Run the ipfwd Application with IPv4 Exception Handling and ARP
Handling in the Linux Host Using vnet 204

IPv6 Packet Forwarding Application with Exception Handling 206

Interface Management 207

IPv6 Protocol Exception Handling 207

IPv6 Protocol Exception Handling Using vnet 208

FIB Management 208

FIB Management Using vnet Exception Handling 209

IP-IP Tunneling 209

Data-Plane and Control-Plane Synchronization 209

Exception Path Components 210

IPv6 Forwarder (ipfwd Strand) 210

IPv6 STREAMS Module (lwmodip6) 211

Fastpath Manager 211

Exception Path Tools 211

ifctl 211

fibctl 211

fibctl.sh 212

ipfwd_sync.d 212

▼ To Compile the Reference Application 212

▼ To Compile the IPv6 Forwarding Application With Exception Handling
Using Sun Netra DPS 212

Compiling the lwmodip6 STREAMS module 213

▼ To Build the lwmodip6 Module for IPv6 Exception Handling Using
IPC 213

▼ To Build the lwmodip6 Module for IPv6 Exception Handling Using
TIPC 213

▼ To Run the ipfwd Application With IPv6 Exception Handling 213

▼ To Compile the IPv6 Forwarding Application With Exceptional Handling
Using vnet 215
Contents xv

▼ To Run the ipfwd Application With IPv6 Exception Handling 215

▼ Run the ipfwd Application That Is Compiled With Exception Handling
216

▼ To Compile the IPv6 Forwarding Application Using vnet Exceptional
Handling in a Linux Guest Logical Domain 217

▼ To Run the ipfwd Application Using IPv6 Exception Handling in a Linux
Guest Logical Domain 217

▼ Run the ipfwd Application That Is Compiled With Exception Handling
218

Differentiated Services Reference Application 220

Classifiers 221

Differentiated Services Code Point Classifier 221

6-Tuple Classifier 221

Policing (Meter) 222

Single-Rate Three-Color Marker 222

Two-Rate Three-Color Marker 222

DSCP Marker 222

Shaping 222

Deficit Round Robin Scheduler 222

Queue Manager 223

Building the DiffServ Application 223

DiffServ Command-Line Interface Implementation 224

▼ To Build the Extended Control Utility 224

Command-Line Interface for the IPv4-DiffServ Application 224

DSCP Classifier 224

add 224

delete 225

update 225

purge 226

display 226
xvi Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

6-Tuple Classifier 226

add 227

delete 227

update 228

purge 229

display 229

enable or disable 229

TC Meter 230

add 230

delete 231

update 231

purge 233

display 233

stats 233

Scheduler 234

add 234

update 234

display 235

DiffServ References 236

Generic Routing Encapsulation Reference Application 236

Generic Routing Encapsulation Introduction 237

References 237

Data Plane Architecture 237

IPv4 Forwarding Data Plane 238

GRE Over IPv4 Data Plane 238

GRE Over IPv4 Data Plane Internal Block Diagram 239

GRE Over IPv4 Application 239

IPv4 Forwarder 239
Contents xvii

GRE Encapsulator 240

GRE Decapsulator 240

Key and Sequence Number Extensions to GRE 240

GRE Command-Line Interface Implementation 241

Directory Structure 241

▼ To Compile the GRE Code 241

▼ To Compile the IPv4 and GRE Application Using Sun Netra DPS 242

▼ To Compile the Command-Line Interface Application 242

▼ To Run the IPv4 and GRE Application 242

▼ To Run the CLI Application 243

CLI for the IPv4-GRE Application 243

add 243

update 244

delete 244

purge 245

display 245

GRE Reference Application Example 246

▼ To Build the GRE Reference Application 246

Traffic Generator Configuration 246

Access Control List Reference Application 247

▼ To Build the ACL Application 248

▼ To Run the ACL Application 248

▼ To Configure the ACL Application Environment Using LDC 248

▼ To Configure the ACL Application Environment Using TIPC 249

Command-Line Interface for the ACL Application 249

▼ To Use acltool in a Linux OS Control Domain 251

Radio Link Protocol Reference Application 252

▼ To Compile the RLP Application 252
xviii Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Build Script 252

Usage 252

Argument Descriptions 253

▼ To Build the RLP Application 254

▼ To Run the Application 254

Default System Configuration 255

Default RLP Application Configuration 255

Other RLP Options 255

▼ To Bypass the rlp Operation 256

▼ To Use One Global Memory Pool 256

Flow Policy for Spreading Traffic to Multiple DMA Channels 256

IPSec Gateway Reference Application 256

IPSec Gateway Application Architecture 257

IPSec Gateway Application Capabilities 257

High-Level Packet Processing 258

Outbound Packets 258

Inbound Packets 259

Security Association Database and Security Policy Database 259

Outbound Packets and Inbound Packets 260

Static Security Policy Database and Security Association Database 262

SPD 263

SAD 263

Packet Encapsulation and De-encapsulation 265

Packet Encapsulation 266

Memory Pools 268

Pipelining 268

Source Code File Description 269

Build Script 269
Contents xix

Usage 270

Argument Descriptions 270

Reference Application Configurations 273

IP with Encryption and Decryption 273

IPSec Gateway on Quad GE 274

IPSec Gateway on NIU 10-Gbps Interface (One Instance) 275

IPSec Gateway on NIU 10-Gbps Interface (Up to Four Instances) 277

Multiple Instances (Up to Eight Instances) Back-to-Back Tunneling
Configuration 279

Flow Policy for Spreading Traffic to Multiple DMA Channels 282

▼ To Enable a Flow Policy 282

Traffic Generator Reference Application 283

Using the User Interface 283

▼ To Start the ntgen User Interface 283

ntgen Option Descriptions 284

Option Descriptions 285

ntgen Parameter Description 294

Notes 295

Traffic Generator Output 296

Template Files 296

Using the Traffic Generator 297

Configuring Logical Domains for the Traffic Generator 297

▼ To Add the tnsm Driver 298

▼ To Prepare Building the ntgen Utility 301

▼ To Set Up and Use Logical Domains for the Traffic Generator 301

▼ To Start the Traffic Generation 301

▼ To Stop Traffic Generation 302

▼ To Compile the Traffic Generator 302

Build Script 302
xx Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Usage 302

Argument Descriptions 302

▼ To Run ndpstgen 303

Default Configurations 304

Interprocess Communication Reference Application 304

IPC Reference Application Content 305

Building the IPC Reference Application 306

Usage 306

Argument Descriptions 306

Example 307

Running the IPC Application 307

▼ To Use the ipctest Utility 307

ipctest Commands 308

▼ To Install the lwmod STREAMS Module 308

▼ To Remove the lwmod STREAMS Module 309

Transparent Interprocess Communication Reference Application 310

Source Files 311

Default Configurations 312

▼ To Compile the TIPC Application 312

Build Script 312

Usage 313

Argument Descriptions 313

▼ To Run the TIPC Application 314

IP Forward Reference Application Using TIPC 315

▼ To Build the IP Packet Forward (ipfwd) Application 315

▼ To Configure the Environment for TIPC 315

▼ To Configure Oracle Solaris OS TIPC Stack in Oracle Solaris Domain
(ldg2) 316

Command-Line Interface Application using TIPC 317
Contents xxi

▼ To Build the Extended Control Utility 317

FIB Table Configuration Command Line Interface (fibctl) 318

Interface Configuration Command Line Interface (ifctl) 318

IPv4 Exception Process (excpd) 318

vnet Reference Application 319

UltraSPARC T2 Platform 319

UltraSPARC T1 Platform 319

Supported Tests 320

testvnet Commands 320

Test Setup 321

Virtual Network Setup 323

vnet Reference Application Content 325

Building the Sun Netra DPS vnet Reference Application 326

Usage 326

Argument Descriptions 326

▼ To Build the vnet Reference Application 327

▼ To Run the vnet Sun Netra DPS Application, vnettest 327

▼ To Build the vnet Guest Logical Domain Application for the Oracle
Solaris OS 327

▼ Building the vnet Guest Logical Domain Application for the Linux OS
327

▼ To Run the vnet Guest Logical Domain Application on a Oracle Solaris
OS Guest Logical Domain 328

▼ To Run the vnet Guest Logical Domain Application on a Linux OS Guest
Logical Domain 330

12. Performance Tuning 333

Performance Tuning Introduction 333

UltraSPARC T1 Processor Overview 334

UltraSPARC T2 Processor Overview 336
xxii Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Identifying Performance Issues 338

UltraSPARC T1 Performance 338

UltraSPARC T2 Performance 341

Optimization Techniques 343

Code Optimization 343

Pipelining 344

Parallelization 345

Mapping 346

Parking Idle Strands 346

Slowing Down Polling 347

Tuning Troubleshooting 348

What Is a Compute-Bound Versus a Memory-Bound Thread? 348

Cannot Reach Line Rate for Packets Smaller Than 300 Bytes 348

Cannot Scale Throughput to Multiple Ports 349

How Do I Achieve Line Rate for 64-byte Packets? 349

When Should I Consider Thread Placement? 350

Example RLP Exercise 350

Application Configuration 350

Configuration 1 352

Configuration 2 352

Using the Profiling API 352

Profiling Data 355

Metrics 357

Configuration 1 Results 357

Configuration 2 Results 358

Analysis 359

Other Uses for Profiling 361

A. Tutorial 363
Contents xxiii

Application Code 363

Configuration Code 366

Build Process 368

▼ To Create the Binary Image 368

Executing the Binary Image 370

▼ To Execute the Binary Image 370

B. Frequently Asked Questions 371

Summary 372

General Questions 374

What Is Teja 4.x and How Does It Differ From an Ordinary C Compiler? 374

Where Are the Tutorials? 375

Configuration Questions 375

What Purpose Are the Hardware Architecture, Software Architecture, and
Mapping Dynamic Libraries? 375

How Can I Debug the Dynamic Libraries? 375

▼ To Debug the Dynamic Libraries 376

What Should I Do When the tejacc Compiler Crashes? 376

What if the Hardware Architecture, Software Architecture, or Mapping
Dynamic Libraries Crash? 376

Can I Build Hardware Architecture, Software Architecture, and Mapping in
the Same Dynamic Library? 377

Can I Map Multiple Variables With One Function Call? 377

Building Questions 377

Where Is the Generated Code? 377

Where Is the Executable Image? 378

How Can I Compile Multiple Modules on the Same Command Line? 378

How Can I Pass Different CLI Options to Different Modules on the tejacc
Command Line? 378

How Can I Change the Behavior of the Generated makefile Without
Modifying it? 378
xxiv Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

How Do I Compile the Reference Applications? 379

Late-Binding Questions 380

What Is the Late-Binding API? 380

What Is a Memory Pool? 380

What Is a Channel? 381

What Is the Difference Between OS Based and Non-OS Based Memory Pools
and Channels? 381

How Do I Access a Late-Binding Object From Application Code? 381

Can I Define a Symbol in the Software Architecture and Use it in My
Application Code? 382

Eclipse Questions 382

How Can I Change the Build Command? 382

How Can I Change the Compiler Invocation Command? 382

API and Application Questions 383

How Do I Synchronize a Critical Region? 383

How Do I Send Data From a Thread to Another Thread? 383

How Do I Allocate Memory? 384

When Should I Use Queues Instead of Channels? 384

Why Is it Not Necessary to Block Interface or Queue Reads? 384

Can Multiple Strands on the Same Queue Take Advantage of the Extra CPU
Cycles if the Strands Are Not Being Used? 385

Why Does the Application Choose the Role for the Strand From the Code
Instead of the Software Architecture API? 385

Is It Possible to Park a Strand Under Logical Domains as Done in a Non-
Logical Domains Environment? 386

Can You Assign Partial Cores to a Sun Netra DPS domain? 386

What Is bss_mem? 386

What Is the Significance of bss_mem Placement in the Code Listing? 386

How Are app.cmt2board.heap_mem0 and Similar Heaps Affected? 387

Can You Clarify BSS, Code, Heap, and DRAM Memory Allocation? 387
Contents xxv

Does the eth_* API Support Virtual Ethernet (VNET) Devices? 388

How Do I Calculate the Base PA Address for NIU or Logical Domains to Use
with the tnsmctl Command? 388

How Do I Modify the IP Forwarding Application to Use a New Classifier Type
Instead of the Default UDP Type? 389

How Do I Add a New Packet Type to ntgen? 390

Optimization Questions 391

How Do I Enable Optimization? 391

What Is Context-Sensitive Generation? 392

What Is Global Inlining? 392

Legacy Code Integration Questions 392

How Can I Reuse Legacy C Code in a Sun Netra DPS Application? 392

Linking Legacy Code to Sun Netra DPS Code 393

Changing Legacy Source Code 393

How Can I Reuse Legacy C++ Code in a Sun Netra DPS Application? 393

Mixing C and C++ Code 394

Translating C++ Code to C Code 394

Sun CMT Specific Questions 395

Is There a Maximum Allowed Size for Text and BSS in My Program? 395

How Is Memory Organized in the Sun CMT Hardware Architecture? 395

How Do I Increase the Size of the DRAM membank? 396

Address Resolution Protocol Questions 396

How Do I Enable ARP in the RLP Application? 396

▼ To Enable ARP in RLP 396

How Do I Enable ARP Without Relying on a Control Domain? 397

How Do I Enable ARP Using a Control Domain? 397

Oracle Solaris Domain and Sun Netra DPS Domain Question 398

How Do I Access kstat Information From the Oracle Solaris Domain for
Network Interfaces That Are in Use by the Sun Netra DPS domain? 398

Traffic Generation 398
xxvi Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

How Do I Stop Traffic Generation? 398

Oracle Solaris TIPC Application 399

What Should I Do When the Oracle Solaris TIPC Application Is Not Able to
Create a Socket and Does a Core Dump? 399

Glossary 401

Index 409
Contents xxvii

xxviii Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Using This Documentation

This user’s guide provides information regarding the operation and use of Oracle’s
Netra Data Plane Software Suite 2.1 Update 1. This document is written for software
engineers, developers, programmers, and users who have advanced experience with
low-level programming.

Sun Netra Data Plane Software is also referred to in this document as Sun Netra DPS.

Related Documentation
The following table lists the documentation for this product. The online
documentation is available at:

http://www.oracle.com/pls/topic/lookup?ctx=E19282-01&id=homepage

Application Title Format Location

Operation Sun Netra Data Plane Software Suite 2.1 Update 1 User Guide HTML,
PDF

online

Reference Sun Netra Data Plane Software Suite 2.1 Update 1 Reference Manual HTML,
PDF

online

Last-minute
information

Sun Netra Data Plane Software Suite 2.1 Update 1 Release Notes HTML,
PDF

online

Documentation
Location

Sun Netra Data Plane Software Suite 2.1 Update 1 Getting Started Guide PDF online
xxix

http://www.oracle.com/pls/topic/lookup?ctx=E19282-01&id=homepage

Reference Documentation
■ Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems

http://www.opensparc.net/publications/published-by-
sun/developing-and-tuning-applications-on-ultrasparc-t1-chip-
multithreading-systems.html

■ CoolThreads — CMT Application Tuning and UltraSPARC T2 Server Resources

http://www.sun.com/servers/coolthreads/tnb/t2.jsp

■ GNU C Compiler User’s Guide

http://gcc.gnu.org/onlinedocs

■ GCC for SPARC Systems - Additional command line option flags

http://cooltools.sunsource.net/gcc/flags.html

■ UltraSPARC T1 Supplement to UltraSPARC Architecture 2005 Specification

http://opensparc-t1.sunsource.net/index.html

■ UltraSPARC Architecture 2007 Specification and OpenSPARC T2 Implementation-
Supplement

http://www.opensparc.net/opensparc-t2

■ Logical Domains (LDoms): Sun SPARC CMT Virtualization Technology

http://www.sun.com/servers/coolthreads/ldoms/index.xml

■ Eclipse: An Open Development Platform:

http://www.eclipse.org

■ GDB: The GNU Project Debugger:

http://sourceware.org/gdb

■ Information and documentation for the Oracle VM Server for SPARC software
(formerly known as LDoms):

http://www.sun.com/ldomse
xxx Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

http://www.opensparc.net/publications/published-by-sun/developing-and-tuning-applications-on-ultrasparc-t1-chip-multithreading-systems.html
http://www.sun.com/ldomse
http://sourceware.org/gdb
http://www.eclipse.org
http://www.sun.com/servers/coolthreads/ldoms/index.xml
http://www.opensparc.net/opensparc-t2
http://opensparc-t1.sunsource.net/index.html
http://cooltools.sunsource.net/gcc/flags.html
http://www.sun.com/servers/coolthreads/tnb/t2.jsp
http://gcc.gnu.org/onlinedocs

Documentation, Support, and Training
These web sites provide additional resources:

■ Documentation
http://www.oracle.com/technetwork/indexes/documentation

■ Support https://support.oracle.com

■ Training https://education.oracle.com
Using This Documentation xxxi

https://education.oracle.com
https://support.oracle.com
http://www.oracle.com/technetwork/indexes/documentation
http://www.oracle.com/technetwork/indexes/documentation

xxxii Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

CHAPTER 1

Sun Netra Data Plane Software Suite
Overview

This chapter is an introduction to the Sun Netra Data Plane Software Suite 2.1
Update 1, and provides installation and theoretical information. Topics include:

■ “Product Description” on page 1

■ “Supported Systems” on page 2

■ “Software Installation” on page 3

■ “Building and Booting Reference Applications” on page 10

■ “Programming Methodology” on page 13

■ “tejacc Compiler Basic Operation” on page 15

■ “Architecture Elements” on page 19

■ “User API Overview” on page 29

Product Description
The Sun Netra Data Plane Software (Sun Netra DPS) Suite 2.1 Update 1 is a complete
board software package solution. The software provides an optimized rapid
development and runtime environment on top of multistrand partitioning firmware
for Oracle’s Sun CMT platforms. The software enables a scalable framework for fast-
path network processing. Sun Netra DPS 2.1 Update 1 includes the following
features:

■ Event-driven scheduling with run to completion states

■ Explicit parallelization

■ Static memory allocation

■ Code generation based on hardware description and mapping
1

■ Efficient communication pipes between pipeline states

The Sun Netra Data Plane Software Suite 2.1 Update 1 uses the tejacc compiler.
tejacc is a component of the Teja NP 4.0 Software Platform used to develop
scalable, high-performance C applications for embedded multiprocessor target
architectures.

tejacc operates on a system-level view of the application, through three techniques
not usually found in a traditional language system:

■ tejacc obtains the characteristics of the targeted hardware and software system
architecture by executing a user-supplied architecture specification (context).

■ tejacc simultaneously examines multiple sets of source files along with their
relationships to the target architecture.

■ tejacc recognizes APIs used in the application code, and generates them based
on the system-level context.

The result is a superior code validation and optimization, enabling more reliable and
higher performance systems.

Supported Systems
Sun Netra DPS 2.1 Update 1 supports the following Oracle Sun UltraSPARC T1 and
UltraSPARC T2 platforms:

■ Sun SPARC Enterprise T5120 server

■ Sun SPARC Enterprise T5220 server

■ Sun SPARC Enterprise T5440 server

■ Sun Netra T5120 server

■ Sun Netra T5220 server

■ Sun Netra T5440 server

■ Sun Netra CP3060 ATCA blade server

■ Sun Netra CP3260 ATCA blade server
2 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Software Installation
The Sun Netra DPS Suite 2.1 Update 1 is distributed for Oracle’s SPARC platforms.

■ Netra_Data_Plane_Software_Suite-2.1-U1.zip contains the SUNWndps,
SUNWndpsd, SUNWndps-tipc, SUNWndps-tipc-examples, and
SUNWndps-tipc-headers packages.

■ Netra_Data_Plane_Software_Suite_Crypto-2.1-U1.zip contains the
SUNWndpsc package.

The SUNWndps and SUNWndpsc packages are installed in the development server.
The SUNWndpsd, SUNWndps-tipc, SUNWndps-tipc-examples, and
SUNWndps-tipc-headers packages are installed on the target deployment system.

TABLE 1-1 describes the contents of the SUNWndps and SUNWndpsc packages:

TABLE 1-1 SUNWndps and SUNWndpsc Package Contents

Directory Contents

/opt/SUNWndps/bsp Contains header files and low-level Sun UltraSPARC T1 and
Sun UltraSPARC T2 platform initialization and management
code.

/opt/SUNWndps/lib Contains system-level libraries.

/opt/SUNWndps/src Contains ipfwd, remotecli, rlp, and PacketClassifier
reference applications, and network device driver interface
header definitions.

/opt/SUNWndps/tools Contains the compiler and runtime system.

/opt/SUNWndpsc/lib Contains the Sun Netra DPS Sun UltraSPARC T2
cryptograpghy driver.

/opt/SUNWndpsc/src Contains Sun Netra DPS Crypto API, IPsec reference
application source, and libraries.
Chapter 1 Sun Netra Data Plane Software Suite Overview 3

TABLE 1-2 describes the contents of the SUNWndpsd package:

Platform Firmware Prerequisites
To support Sun Netra Data Plane Software Suite 2.1 Update 1, use the appropriate
firmware installed. See Sun Netra Data Plane Software Suite 2.1 Update 1 Release Notes
for the latest information in using the correct combination of firmware and software.

TABLE 1-2 SUNWndpsd, SUNWndps-tipc, SUNWndps-tipc-examples, and
SUWNWndps-tipc-headers Package Contents

Directory Contents

/opt/SUNWndpsd/bin/ Contains the Sun Netra Data Plane CMT/IPC Share Memory
drivers which reside on the Oracle Solaris Operating System
(Solaris OS) domain. These include:
/kernel/drv/sparcv9/tnsm
/kernel/drv/tnsm.conf
/kernel/drv/sparcv9/tnacl
/kernel/drv/tnacl.conf

/opt/SUNWndpsd/lib/ Contains the loadable libraries.

/opt/SUNWndpsd/opt/ Contains user applications and utilities run on the Oracle
Solaris domain.

/opt/SUNWndpsd/svc Contains Sun Netra DPS specific service registry entries.

/opt/SUNWndpsd/linux/src Contains sources for Linux utilities

/opt/SUNWndpsd/linux/lib Contains libraries of Linux domain

/opt/SUNWndpsd/linux/bin Contains binaries executable on the Linux domain.

/opt/SUNWndpsd/etc Contains service manifest for rcon services in xml files.

/opt/SUNWndps-tipc Contains TIPC socket library, TIPC configuration utility, and
TIPC Oracle Solaris modules.

/opt/SUNWndps-tipc-examples Contains various TIPC application examples.

/opt/SUNWndps-tipc-headers Contains TIPC header files.
4 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

▼ To Check Your OpenBoot PROM Firmware Version
● As superuser, use the showhost command to verify your version of Oracle’s

OpenBoot PROM firmware.

See the following four examples for each system supported:

ok showhost
Netra CP3260, No Keyboard
Copyright 2007 Sun Microsystems, Inc. All rights reserved.
OpenBoot 4.27.8, 16256 MB memory available, Serial #93062640.
Ethernet address 0:14:4f:8c:5:f0, Host ID: 858c05f0.

sc> showhost
 Sun System Firmware 7.0.7.c 2007/11/26 07:18

Host flash versions:
 Hypervisor 1.5.4 2007/10/29 20:27
 OBP 4.27.8 2007/11/15 07:09
 POST 4.27.7 2007/10/24 08:5
Chapter 1 Sun Netra Data Plane Software Suite Overview 5

ok showhost
SPARC Enterprise T5120, No Keyboard Copyright 2007 Sun Microsystems, Inc.
All rights reserved.
OpenBoot 4.27.0, 32640 MB memory available, Serial #75404926.
Ethernet address 0:14:4f:7e:96:7e, Host ID: 847e967e.

ok showhost
Sun Fire T2000, No Keyboard
Copyright 2007 Sun Microsystems, Inc. All rights reserved.
OpenBoot 4.27.0, 8064 MB memory available, Serial #64545116.
Ethernet address 0:3:ba:d8:e1:5c, Host ID: 83d8e15c.

ok showhost
Netra T2000, No Keyboard Copyright 2007 Sun Microsystems, Inc.
All rights reserved.
OpenBoot 4.26.1, 8064 MB memory available, Serial #69940576.
Ethernet address 0:14:4f:2b:35:60, Host ID: 842b3560.

ok showhost
Netra CP3060, No Keyboard Copyright 2007 Sun Microsystems, Inc. All
rights reserved.
OpenBoot 4.26.1, 16256 MB memory available, Serial #69061958.
Ethernet address 0:14:4f:1d:cd:46, Host ID: 841dcd46.
6 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Package Dependencies
The package software has the following dependencies:

■ The SUNWndps package depends on Sun GCCfss (GCC for SPARC Systems),
Oracle’s Java version 1.6.0 and gmake. The user must install these packages
before applications are built.

■ The SUNWndpsc crypto package requires the SUNWndps base package.

■ The user must perform the debugger symbol resolution on the host using a tool
called dbghelper.pl. This tool depends on and requires dis, dbx, and perl to
be installed on the system.

Package Installation Procedures

Note – The SUNWndps software package is currently supported on a SPARC system
running the Oracle Solaris 10 Update 5 OS, or above.

Note – The SUNWndpsd software package located in the
Netra_Data_Plane_Software_Suite-2.1-U1.zip file is not installed on the
development system. See “Interprocess Communication Software” on page 89 for
details on using this package in a logical domain environment.

Note – If you have previously installed an older version of the Sun Netra Data
Plane Software Suite 2.1 Update 1, remove it before installing the new version. See
“To Remove the Software” on page 10.

Note – When installing a new release, ensure that all of the packages within that
release are updated. For example, if the SUNWndps package is re-installed, ensure
that the SUNWndpsd package (along with all other packages) are also re-installed.
Mismatch of different versions of packages can result in system errors.

Note – The GCCfss package (GCC for SPARC Systems 4.3.3) can be downloaded
from: http://www.sun.com/download/
Chapter 1 Sun Netra Data Plane Software Suite Overview 7

http://www.sun.com/download/

▼ To Install the Software Into the Default Directory
1. After downloading the Sun Netra Data Plane Software Suite 2.1 Update 1 from

the web, as superuser, change to your download directory and go to Step 2.

2. Expand the .zip file. Type:

3. Install the SUNWndps package. Type:

The software is installed in the /opt directory.

4. Use a text editor to add the /opt/SUNWndps/tools/bin directory to your
PATH environment variable.

Use Netra_Data_Plane_Software_Suite_Crypto-2.1-U1.zip for crypto
drivers. For information on Sun Netra DPS regarding the crypto package, see
Support Services at: http://www.sun.com/service/online/

▼ To Install the Software in a Directory Other Than the
Default
1. After downloading the Sun Netra Data Plane Software Suite 2.1 Update 1 from

the web, as superuser, change to your download directory and go to Step 2.

2. Expand the zip file. Type:

3. Add the SUNWndps package to your_directory. Type:

The software is installed in your_directory.

unzip Netra_Data_Plane_Software_Suite-2.1-U1.zip

/usr/sbin/pkgadd . SUNWndps

unzip Netra_Data_Plane_Software_Suite-2.1-U1.zip

pkgadd -d ‘pwd‘ -R your_directory SUNWndps
8 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

http://www.sun.com/service/online/

When using the pkgadd -R command, the following warning messages may
appear and should be ignored.

4. Open the your_directory/opt/SUNWndps/tools/bin/tejacc.sh file in a text
editor and find the following line:

5. Change the line in Step 4 to:

6. Use a text editor to add the your_directory/opt/SUNWndps/tools/bin directory
to your PATH environment variable.

Note – Some reference applications have build scripts and make files hard coded to
the default /opt install path. If the install directory is not the default path, modify
the install path in the build script and make files associated with the application to
match the install path.

WARNING:
 The <SUNWcar> package "Core Architecture, (Root)" is a

prerequisite package and should be installed.
WARNING:
 The <SUNWkvm> package "Core Architecture, (Kvm)" is a

prerequisite package and should be installed.
WARNING:

The <SUNWcsr> package "Core Solaris, (Root)" is a prerequisite
package and should be installed.

WARNING:
The <SUNWcsu> package "Core Solaris, (Usr)" is a prerequisite
package and should be installed.

WARNING:
The <SUNWcsd> package "Core Solaris Devices" is a prerequisite
package and should be installed.

export TEJA_INSTALL_DIR=/opt/SUNWndps/tools

export TEJA_INSTALL_DIR= your_directory/opt/SUNWndps/tools
Chapter 1 Sun Netra Data Plane Software Suite Overview 9

▼ To Remove the Software
Before installing Sun Netra DPS 2.1 Update 1 software, you must remove previous
versions:

● To remove the SUNWndps packages, as superuser, type:

The Sun Netra Data Plane Software Suite 2.1 Update 1 is removed.

Note – For more details about using the pkgadd and pkgrm commands, see the
man pages.

Building and Booting Reference
Applications
The user needs to add the compiler path to your .cshrc file before continuing with
build instructions.

.cshrc File and Required Compiler Path
All the application build scripts are C shell scripts, which do not inherit the
environment from where they are invoked. These scripts use the compiler whose
path is defined in your .cshrc file.

The SUNWndps package requires the GCCfss package. Ensure that the correct PATH
is set and GCCfss binaries are used for Sun Netra DPS application compilation.

/usr/sbin/pkgrm SUNWndps SUNWndpsc
10 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

The Sun Netra DPS application build scripts use csh. Therefore, the user .cshrc file
must contain the correct path setting for GCCfss. If the user path points to an older
cc compiler, the build script exits with a message such as the following:

Building Reference Application Instructions
The instructions for building reference applications are located in the individual
chapters of this guide. The application image is booted over the network. Ensure
that the target system is configured for network boot. The command syntax is:

boot network_device:[dhcp|bootp,][server_ip],[boot_filename],
[client_ip],[router_ip],[boot_retries],[tftp_retries],[subnet_mask],
[boot_arguments]

% pwd
/opt/SUNWndps/src/apps/rlp

%./build 10g_niu
gccfss compiler is not installed
Please install GCC for Sparc System (see User’s Manual)
Chapter 1 Sun Netra Data Plane Software Suite Overview 11

TABLE 1-3 describes the optional parameters.

Note – For the boot command, commas are required to demark missing parameters
unless the parameters are at the end of the list.

▼ To Boot an Application Image
1. Copy the application image to the tftpboot directory of the boot server.

2. At the ok prompt, type one of the following commands:

■ To boot using RARP, type:

■ To boot using DHCP, type:

TABLE 1-3 Boot Optional Parameters

Option Description

network_device The network device used to boot the system.

dhcp|bootp Use DHCP or BOOTP address discovery protocols for
boot. Unless configured otherwise, RARP is used as
the default address discovery protocol.

server_ip The IP address of the DHCP, BOOTP, or RARP server.

boot_filename The file name of the boot script file or boot application
image.

client_ip The IP address of the system being booted.

router_ip The IP address of a router between the client and
server.

boot_retries Number of times the boot process is attempted.

tftp_retries Number of times that the TFTP protocol attempts to
retrieve the MAC address.

subnet_mask The subnet mask of the client.

boot_arguments Additional arguments used for boot.

ok boot network_device:,boot_filename [-v]

ok boot network_device:dhcp,server_ip,boot_filename [-v]
12 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Note – The -v argument is an optional verbose flag.

Programming Methodology
In Sun Netra DPS, you write an application with multiple C programs that execute
in parallel and coordinate with each other. The application is targeted to
multiprocessor architectures with shared resources. Ideally, the applications are
written to be used in several projects and architectures. Additionally, the Sun Netra
DPS attains maximum performance in the target mapping.

When writing the application, you must do the following:

■ Be aware of the multiple threads of the application.

■ Protect critical regions of the code by using mutual exclusion primitives.

■ Communicate structured data using polled queues or event-driven channels.

■ Allocate memory efficiently in a unified manner using memory pools.

tejacc provides the constructs of threads, mutex, queue, channel, and memory
pool within the application code. These constructs enable you to specify coordinated
parallel behavior in a target-independent, reusable manner. When the application is
mapped to a specific target, tejacc generates optimized, target-specific code. The
constructs and their associated API is called late-binding.

One technique for scaling performance is to organize the application in a parallel-
pipeline matrix. This technique is effective when the processed data is in the form of
independent packets. For this technique, the processing loop is broken up into
multiple stages and the stages are pipelined. For example, in an N-stage pipeline,
while stage N is processing packet k, stage (N - 1) is processing packet (k + 1), and
so on. In order to scale performance even further and balance the pipeline, each
stage can run its code multiple times in parallel, yielding an application-specific
parallel-pipeline matrix.

There are several issues with this technique. The most important issue is where to
break the original processing loop into stages. This choice is dictated by the
following factors:

■ Natural partitioning points in the application functionality

■ Structure of the application code

■ Balance in the execution time of the different stages

■ Ease of design and transferability of the context information from one stage to the
next
Chapter 1 Sun Netra Data Plane Software Suite Overview 13

The context carried over from one stage to the next is reduced when the stack is
empty at the end of that stage. Applications written with modular functions are
more flexible for such architecture exploration. During the processing of a context,
the code might wait for the completion of some long-latency operation, such as I/O.
During the wait, the code could switch to another available data context. While
applicable to most targets, such a technique is important when the processor does
not support hardware multithreading. If the stack is empty when the context is
switched, the context information is minimized. Performance is improved as code
modularity becomes more granular.

Expressing the flow of code as state machines (finite state automata) enables
multiple levels of modularity and fine-grained architecture exploration.

Reusing Existing C Code
Standardized C programs can be compiled using tejacc without change. The
following two methods are available in reusing C code with tejacc:

■ Create libraries from existing C code and compile new C code to call these
libraries. This method requires that the libraries are available for the target system
and that code changes are minimized.

■ Substitute system and application calls with calls to the Sun Netra DPS user
application API and compile using tejacc. Use this method when the libraries
are not available for the target system or when performance improvements are
desired.

Increasing the execution performance of existing C programs on multicore
architectures requires targeting for parallel-pipeline execution. This process is
iterative.

■ In the first iteration, some program functions are mapped to a second and
additional processors, executing in parallel. All threads of execution operate on
the same copy of the shared global data structures, with mutual exclusion
primitives for protection.

■ In the second iteration, each thread operates on its own copy of the global data
structures, leaving the others as shared. The threads coordinate with each other
using both mutual exclusion and communication messages.

■ In the final iteration, each thread runs its functions in a loop, operating on a
stream of data to be processed.

By using this method, the bulk of the application code is reused while small changes
are made to the overall control flow and coordination.
14 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

tejacc Compiler Basic Operation
C code developers are familiar with a compiler that takes a C source file and
generates an object file. When multiple source files are submitted to the compiler, it
processes the source files one by one. The tejacc compiler extends this model to a
system-level, multifile process for a multiprocessor target.

tejacc Compiler Mechanics
The basic function of tejacc is to take multiple sets of user application source files
and produce multiple sets of generated files. When processed by target-specific
compilers or assemblers, these generated file sets produce images that are loaded
into the processors of the target architecture. All user source files must adhere to the
C syntax (see “Language” on page 37 for the language reference). The translation of
the source to the image is governed by options that control or configure the behavior
of tejacc.

tejacc is a command-line program suitable for batch processing. For example:

In this example, there are two sets of source files, mysrcset and yoursrcset. The files in
mysrcset are file1 and file2, and the files in yoursrcset are file2, file3, and file4. file2
intentionally appears in both source sets.

file2 defines a global variable, myglobal, whose scope is the source file set. This
situation means that tejacc allocates two locations for myglobal, one within mysrcset
and the other within yoursrcset. References to myglobal within mysrcset resolve to the
first location, and references to myglobal within yoursrcset resolve to the second
location.

A source set can be associated to one or more application processes. In that case, the
source set is compiled several times and the global variable is scoped to the
respective process address space. An application process can also have multiple
source sets associated to it.

Each source set can have a set of compile options. For example:

tejacc options -srcset mysrcset file1 file2 -srcset yoursrcset file2 file3 file4

tejacc options -srcset mysrcset -D mydefine file1 file2 -srcset yoursrcset -D
mydefine -I mydir/include file2 file3 file4
Chapter 1 Sun Netra Data Plane Software Suite Overview 15

In this example, when mysrcset is compiled, tejacc defines the symbol mydefine for
file1 and file2. Similarly, when yoursrcset is compiled, tejacc defines the symbol
mydefine and searches the mydir/include directory for file2, file3 and file4.

When a particular option is applied to every set of source files, that option is
declared to tejacc before any source set is specified. For example:

In this example, the definition of mydefine is factored into the options passed to
tejacc.

tejacc Compiler Options
TABLE 1-4 lists options to tejacc.

tejacc Compiler Configuration
In addition to the tejacc mechanics and options, the behavior of tejacc is
configured by user libraries that are dynamically linked into tejacc.

tejacc -D mydefine other_options -srcset mysrcset file1 file2 -srcset yoursrcset
-I mydir/include file2 file3 file4

TABLE 1-4 Options to tejacc

Option Comment

-include includefile Where includefile is included in each file in each
source set to facilitate the inclusion of common
system files of the application or the target system.

-I includedir Where includedir is searched for each file in each
source set.

-d destdir Where the compilation outputs are placed in a
directory tree with destdir as the root.
16 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

The libraries describe to tejacc the target hardware architecture, the target
software architecture, and the mapping of the variables and functions in the source
set files to the target architecture. TABLE 1-5 describes some of the configuration
options of tejacc.

The three entry point functions into the shared library files take no parameters and
return an int.

The shared library files can be used for multiple configuration options, but the entry
point for each option must be unique, take no parameters, and return an int. The
trade-off is the ease of maintaining fewer libraries versus the speed of updating only
one of several libraries.

Once the memory models are created, tejacc parses and analyzes the source sets
and generates code for the source sets within the context of the models. Using the
system-level information tejacc obtains from the models, in conjunction with
specific API calls made in the user source files, tejacc can apply a variety of
validation and optimization techniques during code generation. The output by
tejacc is source code as input to the target-specific compilers. Although the
compiler-generated code is available for inspection or debugging, you should not
modify this code.

tejacc Compiler and Sun Netra DPS Interaction
FIGURE 1-1 shows the interaction of tejacc with the other platform components of
Sun Netra DPS.

TABLE 1-5 Configuration Options to tejacc

Option Comment

-hwarch myhwarchlib,myhwarch Load the myhwarchlib shared library and execute
the function myhwarch() in it. The execution of
myhwarch() creates a memory model of the target
hardware architecture.

-swarch myswarchlib,myswarch Load the myswarchlib shared library and execute the
function myswarch() in it. The execution of
myswarch() creates a memory model of the target
software architecture.

-map mymaplib,mymap Load the mymaplib shared library and execute the
function mymap() in it. Executing the mymap()
function in the mymaplib shared library creates a
memory model of the application source code
mapping to the target architecture.
Chapter 1 Sun Netra Data Plane Software Suite Overview 17

FIGURE 1-1 Teja 4.0 Overview Diagram

Create the dynamically linked shared libraries for the hardware architecture,
software architecture, and map by writing C programs using the Teja Hardware
Architecture API, the Teja Software Architecture API, and the Teja Map API
respectively. The C programs are compiled and linked into dynamically linked
shared libraries using the C compiler.
18 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Your application source files might contain calls to the Teja late-binding API and the
Sun Netra DPS Runtime API. tejacc is aware of the late-binding API. Depending
on the context of the target hardware, software architecture, and the mapping,
tejacc generates code for the late-binding API calls. The calls are optimized for the
specific situation described in the system context. tejacc is not aware of the Sun
Netra DPS Runtime API, and calls to this API pass to the generated code where the
calls are either macro expanded (if defined in the Sun Netra DPS Runtime library
include file) or linked to the target-specific Sun Netra DPS Runtime library.

Sun Netra DPS also provides a graphical application development environment
(ADE) to visualize and manipulate applications. A description of the ADE is not
within the scope of this document.

Architecture Elements

Hardware Architecture API Overview
The Hardware Architecture API is used to describe target hardware architectures. A
hardware architecture is comprised of processors, memories, buses, hardware
objects, ports, address spaces, address ranges, and the connectivity among all these
elements. A hardware architecture might also contain other hardware architectures,
thereby enabling hierarchical description of complex and scalable architectures.

Most users will not need to specify the hardware architectures as the Sun Netra DPS
platform is predefined. Only in the situation of a custom hardware architecture is the
API used.

Note – The Hardware Architecture API runs on the development host in the context
of the compiler and is not a target API.

Hardware Architecture Elements
Hardware architecture elements are building blocks that appear in almost all
architectures. Each element is defined using the relevant create function, of the form:
teja_type_create(). The user can assign values to the properties of each
function using the teja_type_set_property() and
teja_type_get_property() functions.
Chapter 1 Sun Netra Data Plane Software Suite Overview 19

TABLE 1-6 describes the basic hardware architecture elements.

Architecture Relationships
An architecture can contain other architectures, processors, memories, hardware
objects, and buses. The respective create function for a given element indicates the
containment relationship. An architecture, a processor, a memory, and a hardware
object can connect to a bus using teja_type_connect() functions.

TABLE 1-6 Basic Hardware Architecture Elements

Element Description

Hardware
architecture

A hardware architecture is a container of architecture elements. A
hardware architecture has a user-defined name that must be unique in its
container, and a type that indicates whether its contents are predefined
by tejacc or defined by the user.
Various types of architectures are predefined in the
teja_hardware_architecture.h file and are understood by tejacc.
The user cannot modify a predefined architecture.
User-defined architectures are sometimes desirable to prevent application
developers from modifying an architecture. The user can create a user-
defined architecture by first populating the architecture and then calling
the teja_architecture_set_read_only() function.

Processor A processor is a target for running an operating system. A processor is
contained in an architecture that provides it a name and type.

Memory A memory is a target for mapping program variables. A memory is
contained in an architecture that provides a name and type.

Hardware
object

A hardware object is a logic block that is either known to tejacc or is a
target for user-defined hardware logic. A hardware object is contained in
an architecture that provides it a name and type.

Bus A bus is used to interconnect elements in a hardware architecture.
tejacc uses connection information to validate the user application
and reach ability information to optimize the generated code. A bus is
contained in an architecture that provides it a name and type, and
indicates whether the bus is exported. That is, the bus is visible outside
of the containing architecture.
20 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Utility Functions
Utility functions are provided to look up a named element within an architecture, set
the value of a property, and get the value of a property. These actions are
accomplished with the teja_lookup_type(), teja_type_set_property(), and
teja_type_get_property() functions, respectively. Properties are set to select or
influence specific validation, code generation, or optimization algorithms in tejacc.
Each property and its effect is described in the Sun Netra Data Plane Software Suite 2.1
Update 1 Reference Manual.

Advanced Hardware Architecture Elements
Some hardware architecture elements are available for advanced users and might
not be needed for all targets. Each element is defined using the relevant create
function of the form teja_type_create(). The user can assign values to the
elements properties using the teja_type_set_property() and
teja_type_get_property() functions.

TABLE 1-7 describes advanced hardware architecture elements.
Chapter 1 Sun Netra Data Plane Software Suite Overview 21

TABLE 1-7 Advanced Hardware Architecture Elements

Element Description

Port A bus is a collection of signals in the hardware with a certain protocol for
using the signals. When an element connects to a bus, ports on the
element tap into the bus. The port exposes a level of detail hidden by the
bus. In some configurable target architectures, this action is necessary
because certain signals need to be connected to handles within the user
architecture specification.
A port is also a handle on an architecture for connecting to another port.
A port is contained in an architecture that provides the port a name and
direction.
Elements such as processors, memory, buses, or hardware objects also
have ports, though these ports are predefined within the element. When
a port is connected to a signal, the port is given a value that is the name
of that signal. See the teja_type_set_port() function in the Sun
Netra Data Plane Software Suite 2.1 Update 1 Reference Manual.
A port on an architecture might connect to a signal within the
architecture as well. See the
teja_architecture_set_port_internal() function in the Sun
Netra Data Plane Software Suite 2.1 Update 1 Reference Manual.

Address space
and address
range

In a complex network of shared memories and processors sharing them,
the addressing scheme is not obvious. Address spaces and ranges are
used to specify abstract requirements for shared memory access.
tejacc assigns actual values to the address spaces and ranges by
resolving these requirements.
An address space is an abstract region of contiguous memory used as a
context for allocating address ranges. An address space is contained in an
architecture that provides it a name, a base address, and a high address.
The teja_address_space_join() facility can join two address
spaces. When their constraints are merged, more stringent resolution is
required, as each of the original address spaces refers to the same joined
address space.
An address range is a region of contiguous memory within an address
space. An address range is contained in an address space that specifies its
size. The address range might be generic, or constrained by specific
address values, alignment, and other requirements.
22 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Software Architecture and Late-Binding API
Overview
A software architecture is comprised of operating systems, processes, threads,
mutexes, queues, channels, memory pools, and the relationships among these
elements.

A subgroup of the software architecture elements is defined in the software
architecture description and used in the application code. This subgroup consists of
mutex, queue, channel, and memory pool. The software architecture part of the API
runs on the development host in the context of the compiler. The application part of
the API runs on the target. The API that uses elements of the subgroup in the
application code is the Late-Binding API which is treated specially by tejacc.

The late-binding API offers the functionality of mutual exclusion, queuing, sending
and receiving messages, memory management, and interruptible wait. The functions
in this API are known to tejacc. tejacc generates the implementation of this
functionality in a context-sensitive manner. The context that tejacc uses to
generate the implementation consists of the following:

■ Global system description of hardware and software

■ Constant parameters that are known at compile time

■ User-provided hints

The user can choose the implementation of a late-binding object. For example, a
communication channel could be implemented as a shared memory circular buffer
or as a TCP/IP socket. The user can also indicate how many producers and
consumers a certain queue has, affecting the way late-binding API code is generated.
For example, if a communication channel is used by one producer and one
consumer, tejacc can generate the read-write calls to and from this channel as a
mutex-free circular buffer. If there are two producers and one consumer, tejacc
generates an implementation that is protected by a mutex on the sending side.

The advantage of this method over precompiled libraries is that system functions
contain only the minimal necessary code. Otherwise, a comprehensive, generic
algorithm must account for all possible execution paths at runtime.

If the channel ID is passed to the channel function as a constant, then tejacc knows
all the characteristics of the channel and can generate the unique, minimal code for
each call to that channel function. If the channel ID is a variable, then tejacc must
generate a switch statement and the implementation must be picked at runtime.

Regardless of the method you prefer, you can modify the context without touching
the application code, as the Late-Binding API is completely target independent. This
flexibility enables different software configurations at optimization time without
changing the algorithmic part of the program.
Chapter 1 Sun Netra Data Plane Software Suite Overview 23

Note – The software architecture API runs on the development host in the context
of the compiler and is not a target API. The Late-Binding API runs on the target and
not on the development host.

Late-Binding Elements
The user declares each of the Late-Binding objects (mutex, queue, channel, and
memory pool) using the teja_type_declare()function. The user can assign
values to the properties of most of these elements using the
teja_type_set_property() and teja_type_get_property() functions.

Each of these objects has an identifier indicated by the user as a string in the
software architecture using the declare() function. In the application code, the
element is labeled with a C identifier and not a string. tejacc reads the string from
the software architecture and transforms it in a #define for the application code.
The transformation from string to preprocessor macro is part of the interaction
between the software architecture and the application code.

Multiple target-specific (custom) implementations of the Late-Binding objects are
available. Refer to the Sun Netra Data Plane Software Suite 2.1 Update 1 Reference
Manual for a full list of custom implementations. Every implementation has the same
semantics but different algorithms. Choosing the right custom implementation and
related parameters is important at optimization time.

For example, with mutex, one custom implementation might provide fair access
while another might be unfair. In another example, a channel with multiple
consumers might not broadcast the same message to all consumers.
24 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

TABLE 1-8 describes the Late-Binding elements

TABLE 1-8 Late-Binding Elements

Late-Binding
Element Description

Mutex The mutex element provides mutual exclusion functionality and is used
to protect critical regions of code.
The Late-Binding API for mutex consists of the following:
• teja_mutex_lock() – Lock a mutex.
• teja_mutex_trylock() – Try and lock a mutex without blocking.
• teja_mutex_unlock() – Unlock a mutex.
Chapter 1 Sun Netra Data Plane Software Suite Overview 25

Queue The queue element provides thread-safe and atomic enqueue and
dequeue API functions for storing and accessing nodes* in a first-in-
first-out method.
The Late-Binding API for queue consists of the following:
• teja_queue_dequeue() – Dequeue an element from a queue.
• teja_queue_enqueue() – Enqueue an element to a queue.
• teja_queue_is_empty() – Check for queue emptiness.
• teja_queue_get_size()† – Obtain queue size

Memory pool Memory pools provide an efficient, thread-safe, cross-platform memory
management system. This system requires you to subdivide memory in
preallocated pools.
A memory pool is a set of user-defined, same-size contiguous memory
nodes. At runtime, you can get a node from, or put a node to, a memory
pool. This mechanism is more efficient at dynamic allocation than the
traditional free() and malloc() calls.
Sometimes the application needs to match accesses to two memory
pools. Given a buffer from one memory pool, obtain the memory pool
index value and then obtain the node with the same index value from
the other memory pool.
The Late-Binding API for memory pool consists of the following:
• teja_memory_pool_get_node() – Get a new node from the pool.
• teja_memory_pool_put_node() – Return a node to the pool.
• teja_memory_pool_get_node_from_index() – Provide a

pointer to a node, given its sequential index.
• teja_memory_pool_get_index_from_node() – Provide the

sequential index of a node, given its pointer.

TABLE 1-8 Late-Binding Elements (Continued)

Late-Binding
Element Description
26 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Other Elements
Each of the non-late-binding elements can be defined using the relevant
teja_type_create() create function.

Use the teja_type_set_property() and teja_type_get_property()
functions to assign values to the properties of most of these elements.

Channel The Channel API is used to establish connections among threads, to
inspect connection states, and to exchange data across threads.
Channels are logical communication mediums between two or more
threads.
Threads sending messages to a channel are called producers, threads
receiving messages from a channel are called consumers. Channels are
unidirectional, and they can have multiple producers and consumers.
The semantics of channels are that of a pipe. Data is copied into the
channel at the sender and is copied out of the channel at the receiver.
The user can send a pointer over a channel, as the pointer value is
simply copied into the channel as data. When pointers are sent across
the channel, ensure that the consumer has access to the same memory
or is able to convert the pointer to access that same memory.
The Late-Binding API for channel consists of:
• teja_channel_is_connection_open()‡ – Check if a connection

on a channel is open.
• teja_channel_make_connection() – Establish a connection on a

channel.
• teja_channel_break_connection() – Break a connection on a

channel.
• teja_channel_send() – Send data on a channel.
• teja_wait() – Wait on timeout and a list of channels. If data arrives

on channels before timeout expires, read it.

* The first word of the node that is enqueued is allowed to be overwritten by the queue implementation.

† teja_queue_get_size() is only meant for debugging purposes.

‡ Connection functions are only available on channels that support the concept of connection, such as the TCP/IP
channel. For connectionless channels, these operations are empty.

TABLE 1-8 Late-Binding Elements (Continued)

Late-Binding
Element Description
Chapter 1 Sun Netra Data Plane Software Suite Overview 27

TABLE 1-9 describes other elements.

Utility Functions
Utility functions are provided to look up a named element within an architecture, set
the value of a property, and get the value of a property. These actions are
accomplished with the teja_lookup_type(), teja_type_set_property(), and
teja_type_get_property() functions, respectively. Set properties to select or
influence specific validation, code generation, or optimization algorithms in tejacc.
Each property and its effect is described in the Sun Netra Data Plane Software Suite 2.1
Update 1 Reference Manual.

TABLE 1-9 Other Elements

Other Element Description

Operating system An operating system runs on processors and is a target for
running processes. An operating system has a name and type.
One of the operating system types defined in tejacc states that
no operating system is run on the given processors, implying that
the application will run on bare silicon.

Process A process runs on an operating system and is a target for running
threads. All threads in a process share an address space. The
process has a name and lists the names of source sets that contain
the application code to be compiled for the process.

Thread A thread runs in a process and is a target for executing a
function. A thread has a name.
28 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

User API Overview
This section gives an overview of the Sun Netra DPS API for writing the user
application files in the source sets given to tejacc. This API is executed on the
target and it is composed of three sets of functions:

■ “Late-Binding API Overview” on page 29

■ “Sun Netra DPS Runtime API Overview” on page 29

■ “Finite State Machine API Overview” on page 31

Late-Binding API Overview
The Late-Binding API is described in “Software Architecture and Late-Binding API
Overview” on page 23. This API provides primitives for the synchronization of
distributed threads, communication and memory allocation. This API is treated
specially by the tejacc() compiler and it is generated on the fly based on contextual
information. The Sun Netra Data Plane Software Suite 2.1 Update 1 Reference Manual
contains API function information.

Sun Netra DPS Runtime API Overview
The Sun Netra DPS Runtime API consists of portable, target-independent
abstractions over various operating system facilities such as thread management,
heap-based memory management, time management, socket communication, and
file descriptor registration and handling. Unlike late-binding APIs, Sun Netra DPS
Runtime APIs are not treated by the compiler and are implemented in precompiled
libraries.

The memory management functions offer teja_malloc and teja_free
functionality. These functions are computation expensive and should only be used in
initialization code or nonrelative critical code. On bare hardware targets, the
teja_free() function is an empty operation, so only teja_malloc() should be
used to obtain memory that is not meant to be released. For all other purposes, the
memory pool API should be used.

The thread management functions offer the ability to start and end threads
dynamically.

The time management functions offer the ability to measure time.
Chapter 1 Sun Netra Data Plane Software Suite Overview 29

The socket communication functions offer an abstraction over connection and non-
connection oriented socket communication.

The signal handling functions offer the ability to register Teja signals with a handler
function. Teja signals can be sent to a destination thread that runs in the same
process as the sender. These functions are cross-platform, so they can also be used on
systems that do not support UNIX-like signaling mechanism. Signal handling
functions are more efficient than OS signals, and unlike OS signals, their associated
handler is called synchronously.

Any function can be safely called from within the handler. This ability removes the
limitations of asynchronous handling. Even when the registered signal is a valid OS
signal code, when the application receives an actual OS signal, the handler is still
called synchronously. If a Teja process running multiple threads receives an OS
signal, every one of its threads receive the signal.

Since Teja signals are handled synchronously, threads can only receive signals and
execute their registered handler when the thread is in an interruptible state given by
the teja_wait() function.

Any positive integer is a valid Teja signal code that can be passed to the registration
function. However, if the signal code is also a valid OS code, such as SIGUSR1 on
UNIX, the signal is also registered using the native OS mechanism. The thread reacts
to OS signals as well as to Teja signals.

A typical Teja signal handler reads any data from the relevant source and returns the
data to the caller. The caller is teja_wait(), which in turn exits and returns the
data to the user program.

Registration of file descriptors has some similarities to registration of signals. The
operation registers a fd with the system and associates the fd with a user-defined
handler and optionally with a context, which is a user-defined value (for example, a
pointer). Whenever data is received on the fd, the system automatically executes the
associated handler and passes to it the context.

Just like signal handlers, file descriptor handlers are called synchronously, so any
function can be safely called from within the handler. This ability removes the
limitations of asynchronous handling.

Since fd handlers are called synchronously, threads can only receive fd input and
execute their registered handler when the thread is in an interruptible state given by
the teja_wait() function.

An fd handler reads the data from the fd and returns it to teja_wait(), which in
turn returns the data to the user application.

A complete reference of the Sun Netra DPS Runtime API is provided in the Sun
Netra Data Plane Software Suite 2.1 Update 1 Reference Manual.
30 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Finite State Machine API Overview
The Finite State Machine API enables easy modularization and pipelining of code.
Finite state machines are used to organize the control flow of code execution in an
application. State machine support is through various macros, which are expanded
before they reach tejacc. While tejacc does not recognize these macros, higher
level tools such as the Sun Netra DPS advance development environment (ADE)
might impose additional formatting restrictions on how these macros are used.

A complete reference of the state machine API is given in the Sun Netra Data Plane
Software Suite 2.1 Update 1 Reference Manual. The API includes facilities to do the
following:

■ Declare a state machine

■ Begin and end the state machine

■ Declare the state machine’s states

■ Begin and end each state with the block of code to be executed in that state

■ Declare the start state

■ Transition from one state to the next

Map API Overview
The Map API is used to map elements of the user source files to the target
architecture. TABLE 1-10 describes these relationships.

If a variable is mapped multiple times, the last mapping is used. This functionality
enables you to specify a general class of mappings using a regular expression and
then refine the mapping for a specific variable.

TABLE 1-10 Mapping of Elements

Elements Mapping

Functions Mapped to threads with the teja_map_function_to_thread()
function.

Variables Mapped to memories or process address spaces with the
teja_map_variable_to_memory() and
teja_map_variables_to_memory() functions.

Processors Initialized with the
teja_map_initialization_function_to_processor() function.

Mapping-
specific
properties

Assigned with the teja_mapping_set_property() function.
Chapter 1 Sun Netra Data Plane Software Suite Overview 31

32 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

CHAPTER 2

tejacc Basics

This chapter discusses some of the basic aspects of the tejacc compiler. Topics
include:

■ “Command-Line Options” on page 33

■ “Optimization” on page 35

■ “Language” on page 37

Command-Line Options
The tejacc command-line syntax is as follows:

tejacc common_options [-srcset name srcset_options source_files]+

where:

■ common_options are the options that apply to tejacc or options that apply to all
source files.

■ name is the name of the source set.

■ srcset_options are the options that are applied only to the source set.

■ source_files are the files used to create the source set.

-srcset creates a source set that can be mapped to one or more processes.
Additionally, one or more source sets can be created.
33

tejacc Command-Line Options

TABLE 2-1 tejacc Options

Option Description

-hwarch hwarch_lib,hwarch_function The hwarch_function from the dynamic shared library
hwarch_lib is executed to create a memory model of the
target hardware architecture representation on which the
generated application is run. There are no default values
for this option, so options are mandatory.

-swarch swarch_lib,swarch_function The swarch_function from the dynamic shared library
swarch_lib is executed to create a memory model of the
target software architecture representation on which the
generated application is mapped. There are no default
values for this option, so options are mandatory.

-map map_lib,map_function The map_function from the dynamic shared library map_lib
is executed to create a mapping between the user
application, software architecture, and hardware
architecture. There are no default values for this option, so
options are mandatory.

-D name[=definition] Redefines name as a macro, with definition or 1 if not
specified. This option is applied to the preprocessing stage
of the compilation.

-include includefile Processes includefile as if #include “file” appeared as
the first line of the primary source file.

-I includedir Adds the directory includedir to the head of the list of
directories to be searched for header files.

-E Prints preprocessed output to the stdout and stops any
further processing.

-w Suppresses all warnings.

-d destdir Specifies the destination directory for the generated code.
The default value is the current_dir /code.

-O Enables optimizations. All applicable optimizations are
used for code generation.

-fcontext-sensitive-generation Enables context-sensitive code generation optimization.
The generated Late-Binding API implementation has
separate implementations for every context and enables
inlining through the target compiler.

-pg Enables profiling. Calling the profiling API in the source
files generates target-specific code to enable profiling and
collect data. If the -pg option is not specified, the profiling
API is not called.
34 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Optimization
This section includes information about optimization options and instructions you
can use to enable all of the optimization options at one time or specific options for
your situation.

Optimization Options
The user can do the following command-line switches to tejacc to enable
optimization:

■ -O – enables all optimizations

■ -fcontext-sensitive-generation – enables context sensitive generation
only

-h, ?h, -help, ?help Prints tejacc usage.

-srcset
srcset_namesrcset_specific_optionssource_files

Defines a source set consisting of one or more source files.
The source set is used to map to one or more processes.
srcset_specific_options are applied only to the files listed in
the source_files. The -D, -I and -include options are also
part of the source set specific options.

-finline=comma separated list of functions This option is only applicable to the source set and tries to
inline the functions that are specified in the list. There are
no errors or warnings if a listed function is not found in the
sources.

TABLE 2-1 tejacc Options (Continued)

Option Description
Chapter 2 tejacc Basics 35

TABLE 2-2 lists the available optimizations for the tejacc compiler.

Context-Sensitive Generation
All late-binding APIs and profiler APIs benefit from context-sensitive generation.

▼ To Enable Optimization
1. Add the appropriate switch to the tejacc command line.

Refer to “Optimization Options” on page 35.

2. Use constants in late-binding calls that you want to optimize.

■ For channel, mutex, queue, and memory pool functions, ensure that the late-
binding object you are passing is constant. The user can increase the performance
for channels with a circular buffer-based implementation. When you use a fixed
and constant message size (1, 2, 4, or 8) for all teja_channel_send calls on a
given circular buffer based channel c, the code generator detects the condition
and uses a unique and very fast implementation of the buffer.

■ For teja_wait, ensure that the four parameters specifying a time quantity are
constant and that any channels passed are constant.

If these two conditions are not met for a given function call, that function call is
generated without context-sensitive optimization.

TABLE 2-2 Optimizations for tejacc

Optimization Comment

Context-sensitive generation Affects all late-binding functions. See “Late-
Binding Elements” on page 24. These functions are
generated from context information such as
constant parameters known to the compiler and
global information from software architecture,
hardware architecture, and mapping.

Global inlining Functions marked with the inline keyword get
inlined throughout the entire application, including
across files.

Reachability Unused functions and variables are not generated,
saving code space.

Target compiler optimizations —
36 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Language
The tejacc compiler front-end parses a subset of extended C as defined by gcc.
However, there are some limitations:

■ The compiler does not parse K and R syntax for function declaration.

■ tejacc does not assign integer types to variables by default.

■ The compiler does not support undeclared functions and does not default to type
int.

■ tejacc implements strict type checking, and might return warnings or errors in
the situation of a type mismatch.

■ Though the tejacc compiler recognizes a subset of extended C, for
interoperability, the compiler supports the language that is used by the target
complier.

Include Files
For each user source file, the teja_include_all.h file is always included before
any other include or C code is preprocessed. The teja_include_all.h file is
located in the include/runtime/target_processor_name/target_os_name directory.
This directory also contains other target-dependent include files.

Late-Binding Object Identifiers
Late-binding objects such as channels, memory pools, queues, and mutexes are
created in the software architecture. The Late-Binding API described in the file
teja_late_binding.h provides operations on these objects and is called inside
the user application source code.

The mechanism to access late-binding objects in the user application code is to use
them as C preprocessor symbols that have the same names as the strings that were
used to create the late-binding objects in the software architecture. The tejacc
compiler creates a set of defines for these late-binding object identifiers and passes
them to the command-line during the compilation.

The list of C preprocessor symbols are generated in the
reports/process_name_predefined_symbols.h file.
Chapter 2 tejacc Basics 37

38 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

CHAPTER 3

Profiler

This chapter discusses the Sun Netra DPS profiler used in the Sun Netra Data Plane
software. Topics include:

■ “Profiler Introduction” on page 39

■ “How the Profiler Works” on page 40

■ “Groups and Events” on page 40

■ “Profiler Output” on page 41

■ “Profiler Examples” on page 43

■ “Profiling Application Performance” on page 46

■ “User-Defined Statistics” on page 52

■ “Profiling Metrics” on page 53

■ “Using the Profiler Script” on page 53

■ “Profiler Scripts” on page 54

Profiler Introduction
The Sun Netra DPS profiler is a set of API calls that help you collect various critical
data during the execution of an application. The user can profile one or more areas
of your application such as CPU utilization, I/O wait times, and so on. Information
gathered using the profiler helps you decide where to direct performance-tuning
efforts. The profiler uses special counters and resources available in the system
hardware to collect critical information about the application.

As with instrumentation-based profiling, there is a slight overhead for collecting
data during the application run. The profiler uses as little overhead as possible so
that the presented data is very close to the actual application run without the
profiler API in place.
39

How the Profiler Works
The user enables the profiler with the -pg command-line option (tejacc). Insert the
API calls at desired places to start collecting profiling data. The profiler configures
and sets the hardware resources to capture the requested data. At the same time, the
profiler reserves and sets up the memory buffer where the data will be stored. Insert
calls to update the profiler data at any further location in the application. With this
setup, the profiler reads the current values of the data and stores the values in
memory.

There is an option to store additional user data in the memory along with each
update capture. Storing this data helps you analyze the application in the context of
different application-specific data.

The user can also obtain the current profiler data in the application and use the data
as desired. With the assistance of other communication mechanisms you can send
the data to the host or other parts of the application.

By demarking the portions that are being profiled, you can dump the collected data
to the console. The data is presented as a comma-delimited table that can be further
processed for report generation.

To minimize the amount of memory space needed for the profile capture, the profiler
uses a circular buffer mechanism to store the data. In a circular buffer, the start and
the end data is preserved, yet the intermediate data is overwritten when the buffer
becomes full.

Groups and Events
The profiling data is captured into different groups. For example, with the CPU
performance group, events such as completed instruction cycles, data cache misses
and secondary cache misses are captured. In the memory performance group, events
such as memory queue and memory cycles are captured. Refer to the Profiler API
chapter of the Sun Netra Data Plane Software Suite 2.1 Update 1 Reference Manual for
the different groups and different events that are captured and measured on the
target.
40 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Profiler Output
The profiler output consists of one line per profiler record. Each line commonly has
a format of nine comma-delimited fields. The fields contain values in hexadecimal. If
a record is prefixed with a -1, the buffer allocated for the profiler records has
overrun. When a buffer overrun occurs, you should increase the value of the
profiler_buffer_size property as described in the Configuration API chapter of
the Sun Netra Data Plane Software Suite 2.1 Update 1 Reference Manual, and run the
application again.

TABLE 3-1 describes the fields of the profiler record:

TABLE 3-1 Profiler Record Fields

Field Description

CPU ID Represents the CPU ID where the current profiler call was made.

Caller ID Represents the source location of the teja_profiler call. The
your-build-directory/reports/profiler_calls_location.txt file
lists all of the IDs and their corresponding source locations. The
profiler_calls_location.txt is generated when the application is
successfully built.

Call Type Type of teja_profiler call. The values listed are defined in the
teja_profiler.h file.

Completed
Cycles

Running total of completed clock cycles so far. The user can use this
value to calculate the time between two entries.

Program
Counter

Value of the program counter when the current profiler call was invoked.

Group Type Group number of the events started or being measured.
Chapter 3 Profiler 41

Refer to “Profiler Output Example” on page 45 for an example of dump output.

Event Values Value of the events. This value can be one or more columns depending
on the target processor. The target-dependent values are described in the
Profiler API chapter in the Sun Netra Data Plane Software Suite 2.1 Update
1 Reference Manual. The order of the events are the same as the location of
the bit set in the event bit mask, passed to teja_profiler_start,
starting from left to right. For the entry that represents
teja_profiler_start, the values represent the event types.
There are two events per record (group) in the dump output:
• event_hi – represents the higher bit set in the event mask
• event_lo – represents the lower bit set in the event mask
Overflow values consist of the following:
• 0x0 – no overflow
• 0x1 – overflow of the event_lo
• 0x2 – overflow of the event_hi
• 0x3 – overflow of both event_hi and event_lo

Overflow Overflow information of one or more events being measured. The value
is target-dependent.

User Data Value of the user-defined data. Zero or more columns, depending on the
number of counters allocated and recorded by the user.

TABLE 3-1 Profiler Record Fields (Continued)

Field Description
42 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Profiler Examples
For profiler API function descriptions, refer to the Sun Netra Data Plane Software Suite
2.1 Update 1 Reference Manual.

Profiler API
This section includes profiler API usage for both Sun UltraSPARC T1 and Sun
UltraSPARC T2 processors.

Profiler API Usage for the Sun UltraSPARC T1 Processor
The only difference when profiling functions are used for the Sun UltraSPARC T1
processor is in the teja_profiler_start function call for CPU group of events.
Profiling CPU group on the Sun UltraSPARC T1 processor enables the measuring of
only one additional event along with the completed instruction count that is always
an available event for this group.

EXAMPLE 3-1 provides an example of profiler API usage for the Sun UltraSPARC T1
processor.

EXAMPLE 3-1 Sample Profiler API Usage for the Sun UltraSPARC T1 Processor

main()
{

/* ...user code... */
teja_profiler_start(TEJA_PROFILER_CMT_CPU,

TEJA_PROFILER_CMT_CPU_IC_MISS);
 /* ...user code... */
 while (packet) {

 /* ...user code... */
teja_profiler_update(TEJA_PROFILER_CMT_CPU, num_pkt);
 if (num_pkt == 100)

teja_profiler_dump(generator_thread);
num_pkt = 0;

}
}
teja_profiler_stop(TEJA_PROFILER_CMT_CPU);

}

Chapter 3 Profiler 43

Profiler API Usage for the Sun UltraSPARC T2 Processor
EXAMPLE 3-2 provides an example of profiler API usage for the Sun UltraSPARC T2
processor.

Profiler Configuration
You can change the profiler configuration in the software architecture C-based file.
The following example shows the profiler properties that you can change per
process.

main_process is the process object that was created using the
teja_process_create call. The property values are applied to all threads mapped
to the process specified using main_process.

EXAMPLE 3-2 Sample Profiler API Usage for the Sun UltraSPARC T2 Processor

main()
{

/* ...user code... */
teja_profiler_start(TEJA_PROFILER_CMT_CPU,

TEJA_PROFILER_CMT_CPU_IC_MISS |
TEJA_

PROFILER_CMT_CPU_DC_MISS);
/* ...user code... */

 while (packet) {
 /* ...user code... */
teja_profiler_update(TEJA_PROFILER_CMT_CPU, num_pkt);
if (num_pkt == 100)

teja_profiler_dump(generator_thread);
num_pkg = 0

}
}
teja_profiler_stop(TEJA_PROFILER_CMT_CPU);

}

teja_process_set_property(main_process, “profiler_log_table_size”,"4096");
44 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Profiler Output Example
The following is an example of the profiler output.

The string, ver1.1, is the profiler dump format version. The string is used as an
identifier of the output format. The string helps scripts written to process the output
validate the format before processing further.

Each profiler record (which normally consists of a lot more lines than the above
example) consists of a start delimiter, TEJA_PROFILE_DUMP_START, and an end
delimiter, TEJA_PROFILE_DUMP_END. All profiled data records for a thread are displayed
between the start and end delimiter.

In the first record, call type 1 represents teja_profiler_start. The values 100
and 1 seen in the event_hi and event_lo columns are the types of events in group
1 being measured. In the record with ID 30e6, call type 2 represents
teja_profiler_update, so the values 36c2ba96 and ce are the values of the event
types 100 and 2, respectively.

Cycle counts are accumulative. Thus, the difference between two of them provides
the exact number of cycle counts between two profiler API calls. The difference
divided by the processor frequency calculates the actual time between two calls.

IDs 18236 and 15136 represent the source location of the profiler API call. The
your-build-directory/reports/profiler_calls_location.txt file lists a table
that maps IDs and actual source locations.

TEJA_PROFILE_DUMP_START,ver1.1
CPUID,ID,Type,Cycles,PC,Grp,Evt_Hi,Evt_Lo,Overflow,User Data
4,15136,1,4d048ad5c4,521f08,1,100,2
4,30e6,2,4d162a0db0,5128f0,1,36c2ba96,ce,0,1e8480,3da594c
4,18236,1,4cf2eb9ce4,521f08,1,100,1
4,3a2f,2,4d048acb40,5128f0,1,31cffa4,c2a,0,1b7740,3da594c
TEJA_PROFILE_DUMP_END
Chapter 3 Profiler 45

Profiling Application Performance
Profiling consists of instrumenting your application to extract performance
information that can be used to analyze, diagnose, and tune your application. Sun
Netra DPS provides an interface to assist you to obtain this information from your
application. In general, profiling information consists of hardware performance
counters and a few user-defined counters. This section defines the profiling
information and how to obtain it.

Profiling is a disruptive activity that can have a significant performance effect. Take
care to minimize profiling code and also to measure the effects of the profiling code.
This can be done by measuring performance with and without the profiling code.
One of the most disruptive parts of profiling is printing the profiling data to the
console. To reduce the effects of prints, try to aggregate profiling statistics for many
periods before printing, and print only in a designated strand.

Sun UltraSPARC T1 Performance Counters
The CPU, DRAM, and JBus performance counters for Sun UltraSPARC T1 processor
are described in TABLE 3-2, TABLE 3-3, and TABLE 3-4, respectively.

TABLE 3-2 Sun UltraSPARC T1 CPU Performance Counters

Event Name Description

instr_cnt Number of completed instructions. Annulled, mispredicted, or
trapped instructions are not counted.*

SB_full Number of store buffer full cycles.†

FP_instr_cnt Number of completed floating-point instructions. ‡ Annulled or
trapped instruction are not counted.

IC_miss Number of instruction cache (L1) misses.

DC_miss Number of data cache (L1) misses for loads (store misses are not
included because the cache is write-through nonallocating).

ITLB_miss Number of instruction TLB miss trap taken (includes
real_translation misses).
46 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

DTLB_miss Number of data TLB miss trap taken (includes real_translation
misses).

L2_imiss Number of secondary cache (L2) misses due to instruction cache
requests.

L2_dmiss_Id Number of secondary cache (L2) misses due to data cache load
requests.**

* Tcc instructions that are cancelled due to encountering a higher-priority trap are still counted.

† SB_full increments every cycle a strand (virtual processor) is stalled due to a full store buffer, regardless of
whether other strands are able to keep the processor busy. The overflow trap for SB_full is not precise to the
instruction following the event that occurs when ovfl is set. The trap might occur on the instruction following
the event or the following two instructions.

‡ Only floating-point instructions that execute in the shared FPU are counted. The following instructions are ex-
ecuted in the shared FPU: FADDS, FADDD, FSUBS, FSUBD, FMULS, FMULD, FDIVS, FDIVD, FSMULD, FS-
TOX, FDTOX, FXTOS, FXTOD, FITOS, FDTOS, FITOD, FSTOD, FSTOI, FDTOI, FCMPS, FCMPD, FCMPES,
FCMPED.

** L2 misses because stores cannot be counted by the performance instrumentation logic.

TABLE 3-3 DRAM Performance Counters

Event Name Description

mem_reads Number of read transactions.

mem_writes Number of write transactions.

bank_busy_stalls Number of bank busy stalls (when transactions are pending).

rd_queue_latency Read queue latency (incremented by number of read transactions in
the queue each cycle).

wr_queue_latency Write queue latency (incremented by number of write transactions
in the queue each cycle).

rw_queue_latency Read and write queue latency (incremented by number of write
transactions in the queue each cycle).

wr_buf_hits Writeback buffer hits (incremented by 1 each time a read is deferred
due to conflicts with pending writes).

TABLE 3-2 Sun UltraSPARC T1 CPU Performance Counters (Continued)

Event Name Description
Chapter 3 Profiler 47

Each strand has its own set of CPU counters that only tracks its own events and can
only be accessed by that strand. Performance counters are 32 bits wide so they can
measure the values in range from 0 to 232. If measured event has value greater than
232 the corresponding counter will overflow as it will be indicated in the Overflow
field of the output record. If the counter will overflow or not depends on properties
of the code that is profiled, the clock frequency of the processor, the measured event
and the profiling period. In the case of performance counter overflow it is suggested
to the user to decrease the profiling period. When taking measurements, ensure that
the application behavior is in a steady state. To check this behavior, measure the
event a few times to see that it does not vary by more than a few percent between
measurements. To measure all nine CPU counters, eight measurements are required.
The application’s behavior should be consistent over the entire collection period. To
profile each strand on a 32-thread application, each thread must have code to read
and set the counters. The user must compile their own aggregate statistics across
multiple strands or a core.

Since the JBus and DRAM performance counters are shared across all strands, only
one thread should gather these counters.

TABLE 3-4 JBus Performance Counters

Event Name Description

jbus_cycles JBus cycles (time).

dma_reads DMA read transactions (inbound).

dma_read_latency Total DMA read latency.

dma_writes DMA write transactions.

dma_write8 DMA WR8 sub transactions.

ordering_waits Ordering waits (JBI to L2 queues blocked each cycle).

pio_reads PIO read transactions (outbound).

pio_read_latency Total PIO read latency.

pio_writes PIO write transactions.

aok_dok_off_cycles AOK or DOK off cycles seen.

aok_off_cycles AOK_OFF cycles seen.

dok_off_cycles DOK_OFF cycles seen.
48 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Sun UltraSPARC T2 Performance Counters
The CPU performance counters for the Sun UltraSPARC T2 processor are described
in TABLE 3-5.

TABLE 3-5 Sun UltraSPARC T2 CPU Performance Counters

Event Name Description

Completed_branches Number of completed branches.

Taken_branches Number of branches taken.

FGU_arithmatic_instr Number of floating-point arithmetic instructions executed.

Load_instr Number of load instructions executed.

Store_instr Number of store Instructions executed.

sethi_instr Number of sethi instructions executed.

Other_instr Number of all other instructions executed.

Atomics Number of atomic operations executed.

All_instr Total number of instructions executed.

Icache_misses Number of instruction cache misses.

Dcache_misses Number of L1 data cache misses.

L2_instr_misses Number of secondary cache (L2) misses due to instruction cache
requests.

L2_load_misses Measures the number of secondary cache (L2) misses due to data
cache load requests.

ITLB_ref_L2 For each ITLB miss, this counts the number of accesses the ITLB
hardware tablewalk makes to L2 when hardware tablewalk is
enabled.

DTLB_ref_L2 For each DTLB miss, this counts the number of accesses the DTLB
hardware tablewalk makes to L2 when hardware tablewalk is
enabled.

ITLB_miss_L2 For each ITLB miss, this counts the number of accesses the ITLB
hardware tablewalk makes to L2 which misses in L2 when hardware
tablewalk is enabled.
Note: Depending on the hardware tablewalk configuration, each
ITLB miss may issue from 1 to 4 requests to L2 to search TSB’s.

DTLB_miss_L2 For each DTLB miss, this counts the number of accesses the DTLB
hardware tablewalk makes to L2 which misses in L2 when hardware
tablewalk is enabled.
Note: Depending on the hardware tablewalk configuration, each
DTLB miss may issue from 1 to 4 requests to L2 to search TSB’s.
Chapter 3 Profiler 49

Note – The final output of the profiler displays the Event names, shown in
TABLE 3-5, which are the same as the events listed in Sun Netra Data Plane Software
Suite 2.1 Update 1 Reference Manual.

Stream_LD_to_PCX Counts the number of SPU load operations to L2.

Stream_ST_to_PCX Counts the number of SPU store operations to L2.

CPU_LD_to_PCX Counts the number of CPU loads to L2.

CPU_Ifetch_to_PCX Counts the number of I-fetches to L2.

CPU_ST_to_PCX Counts the number of CPU stores to L2.

MMU_LD_to_PCX Counts the number of MMU loads to L2.

DES_3DES_OP Increments for each CWQ or ASI operation that uses DES/3DES
unit.

AES_OP Increments for each CWQ or ASI operation which uses AES unit.

RC4_OP Increments for each CWQ or ASI operation which uses RC4.

MD5_SHA1_SHA256_OP Increments for each CWQ or ASI operation which uses MD5, SHA-
1, or SHA-256.

MA_OP Increments for each CWQ or ASI modular arithmetic operation.

CRC_TCPIP_Cksum_OP Increments for each iSCSI CRC or TCP/IP checksum operation.

DES_3DES_Busy_cycle Increments each cycle when DES/3DES unit is busy.

AES_Busy_cycle Number of busy cycles encountered per profiling interval when
attempting to execute the AES operation.

RC4_Busy_cycle Number of busy cycles encountered per profiling interval when
attempting to execute the RC4 operation.

MD5_SHA1_SHA256_Busy_cycle Number of busy cycles encountered per profiling interval when
attempting to execute the MD5_SHA1_SHA256 operation.

MA_Busy Increments each cycle when modular arithmetic unit is busy.

CRC_MPA_Cksum Increments each cycle when CRC/MPA/checksum unit is busy.

ITLB_miss Includes all misses (successful and unsuccessful tablewalks).

DTLB_miss Includes all misses (successful and unsuccessful tablewalks).

TLB_miss Counts both ITLB and DTLB misses (successful and unsuccessful
tablewalks).

TABLE 3-5 Sun UltraSPARC T2 CPU Performance Counters (Continued)

Event Name Description
50 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Each strand has its own set of CPU counters that only tracks its own events and can
only be accessed by that strand. Performance counters are 32 bits wide so they can
measure the values in range from 0 to 232. If measured event has value greater than
232 the corresponding counter will overflow as it will be indicated in the Overflow
field of the output record. If the counter will overflow or not depends on the
properties of the code that is profiled, the clock frequency of the processor, the
measured event, and the profiling period. In the case of performance counter
overflow, it is suggested to the user to decrease the profiling period.

When taking measurements, ensure that the application behavior is in a steady state.
To check this behavior, measure the event a few times to see that it does not vary by
more than a few percent between measurements. Since a user can measure any two
events at a time, in order to measure all 38 CPU counters, 19 measurements are
required. The application behavior should be consistent over the entire collection
period. To profile each strand on a 64-thread application, each thread must have
code to read and set the counters. Sample code is provided in EXAMPLE 3-2 (“Sample
Profiler API Usage for the Sun UltraSPARC T2 Processor” on page 44). The user
must compile their own aggregate statistics across multiple strands or a core.

The Sun UltraSPARC T2 DRAM Performance Counters are the same as the Sun
UltraSPARC T1 DRAM Performance Counters described in TABLE 3-3.
Chapter 3 Profiler 51

User-Defined Statistics
The key user-defined statistic is the count of packets processed by the thread.
Another statistic that can be important is a measure of idle time, which is the
number of times the thread polled for a packet and did not find any packets to
process.

The following example shows how to measure idle time. Assume that the workload
looks like the following:

User-defined counters count the number of times through the loop where no work
was done. Measure the time of the idle loop by running idle loop alone
(idle_loop_time). Then run real workload, counting the number of idle loops
(idle_loop_count)

while(1){
If(work_to_do) {

Do work
Increment work_count

} else {
Increment idle_loop_count

}
}

Idle_time = idle_loop_count * idle_loop_time
52 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Profiling Metrics
The user can calculate the following metrics after collecting the appropriate
hardware counter data using the Sun Netra DPS profiling infrastructure. Use the
metrics to quantify performance effects and help in optimizing the application
performance.

■ Instructions per cycle (IPC)

Calculate this metric by dividing instruction count by the total number of ticks
during a time period when the thread is in a stable state. The user can also
calculate the IPC for a specific section of code. The highest number possible is 1
IPC, which is the maximum throughput of 1 core of the UltraSPARC T processor.

■ Cycles per instructions (CPI)

This metric is the inverse of IPC. This metric is useful for estimating the effect of
various stalls in the CPU.

■ Instruction cache misses per instruction (IC_miss per instruction)

Multiplying this number with the L1 cache miss latency helps estimate the cost, in
cycles, of instruction cache misses. Compare this number to the overall CPI to see
if this is the cause of a performance bottleneck.

■ L2 instruction cache misses per instruction (L2_imiss per instruction)

This metric indicates the number of instructions that miss in the L2 cache, and
enables you to calculate the contribution of instruction misses to overall CPI.

■ Data cache misses per instruction (DC_miss per instruction)

Data cache miss rate in combination with the L2 cache miss rate quantifies the
effect of memory accesses. Multiplying this metric with data cache miss latency
provides an indication of its effect (contribution) on CPI.

■ L2 cache misses per instruction (L2_miss per instruction)

Similar to data cache miss rate, this metric has higher cost in terms of cycles of
contribution to overall CPI. This metric also enables you to estimate the memory
bandwidth requirements.

Using the Profiler Script
The profiler script is used to summarize the profiling output generated from the
profiler. The profiler script (written in perl) converts the raw profiler output to a
summarized format that is easy to read and interpret.
Chapter 3 Profiler 53

Profiler Scripts
Two scripts are available, profiler.pl and profiler_n2.pl. profiler.pl is
used for parsing outputs generated from a Sun UltraSPARC T1 (CMT1) processor.
profile_n2.pl is used for parsing outputs generated from a Sun UltraSPARC T2
(CMT2) processor.

Usage
For Sun UltraSPARC T1 platforms (such as a Sun Fire T2000 system):

For Sun UltraSPARC T2 platforms (such as a Sun SPARC Enterprise T5220 system):

input_file

This file consists of raw profile data generated by the Sun Netra DPS profiler.
Typically, this data is captured on the console and saved into a file with .csv suffix,
indicating that this is a CSV (comma-separated values) file. For example,
input_file.csv

output_file

This file is generated by redirecting the outputs of the profiler.pl script to an
output file. This file should also be in CSV format. For example, output_file.csv.

Note – If there is no redirection (that is, the output_file is not specified), the output of
the script will display on the console.

% profiler.pl input_file > output_file

% profiler_n2.pl input_file > output_file
54 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Raw Profile Data
Raw profile data is the direct output from the profiler.

The following shows an example of the raw profile data output from a Sun
UltraSPARC T1 processor:

TEJA_PROFILE_DUMP_START,ver1.1
CPUID,ID,Type,Cycles,PC,Grp,Evt_Hi,Evt_Lo,Overflow,User Data
4,18236,1,4cf2eb9ce4,521f08,1,100,1
4,3a2f,2,4d048acb40,5128f0,1,31cffa4,c2a,0,1b7740,3da594c
4,18236,1,4d048ad5c4,521f08,1,100,2
4,3a2f,2,4d162a0db0,5128f0,1,31d274e,0,0,1e8480,3da594c
4,18236,1,4d162a1888,521f08,1,100,4
4,3a2f,2,4d27c951cc,5128f0,1,31d2e36,50e,0,2191c0,3da594c
4,18236,1,4d27c95c28,521f08,1,100,8
4,3a2f,2,4d396893a0,5128f0,1,31d238f,25b863,0,249f00,3da594c
4,18236,1,4d39689dd8,521f08,1,100,10
4,3a2f,2,4d4b07cca0,5128f0,1,31cf8de,0,0,27ac40,3da594c
4,18236,1,4d4b07d708,521f08,1,100,20
4,3a2f,2,4d5ca70e88,5128f0,1,31d183c,0,0,2ab980,3da594c
4,18236,1,4d5ca7194c,521f08,1,100,40
4,3a2f,2,4d6e4654ac,5128f0,1,31d2bd3,1b2,0,2dc6c0,3da594c
4,18236,1,4d6e465ef4,521f08,1,100,80
TEJA_PROFILE_DUMP_END
Chapter 3 Profiler 55

The following shows an example of the raw profile data output from the Sun
UltraSPARC T2 processor:

TEJA_PROFILE_DUMP_START,ver1.1
CPUID,ID,Type,Cycles,PC,Grp,Evt_Hi,Evt_Lo,Overflow,User Data
2,315,1,d8a403c78c,52cf10,1,12,12
2,21c9,2,d8a403e3b1,514fe8,1,e,e,0,927c0,1d905b
2,4cd,1,d8a403eca2,52cf10,1,22,22
2,21c9,2,d8b8cd3be2,514fe8,1,5e89cc,5e89cc,0,30d40,0
2,4cd,1,d8b8cd3fee,52cf10,1,42,42
2,21c9,2,d8cd9812d0,514fe8,1,0,0,0,30d40,0
2,4cd,1,d8cd98178a,52cf10,1,82,82
2,21c9,2,d8e2636b16,514fe8,1,db21ac,db21ac,0,30d40,0
2,4cd,1,d8e2636f18,52cf10,1,102,102
2,21c9,2,d8f72f1c5c,514fe8,1,46042d,46042d,0,30d40,0
2,4cd,1,d8f72f2058,52cf10,1,202,202
2,21c9,2,d90bfa2d22,514fe8,1,0,0,0,30d40,0
2,4cd,1,d90bfa3181,52cf10,1,402,402
2,21c9,2,d920c5ce6c,514fe8,1,24ea141,24ea141,0,30d40,0
2,4cd,1,d920c5d301,52cf10,1,802,802
2,21c9,2,d93590ffc6,514fe8,1,8fb2c,8fb2c,0,30d40,0
2,4cd,1,d9359103dc,52cf10,1,fd2,fd2
2,21c9,2,d94a5cf7e3,514fe8,1,3f5f51c,3f5f51c,0,30d40,0
2,4cd,1,d94a5cfc19,52cf10,1,13,13
2,21c9,2,d95f283398,514fe8,1,0,0,0,30d40,0
2,4cd,1,d95f28379f,52cf10,1,23,23
2,21c9,2,d973f413a1,514fe8,1,2734a8,2734a8,0,30d40,0
2,4cd,1,d973f417ba,52cf10,1,103,103
2,21c9,2,d988bfbbca,514fe8,1,0,0,0,30d40,0
2,4cd,1,d988bfbfe1,52cf10,1,203,203
2,21c9,2,d99d8be47f,514fe8,1,61aa,61aa,0,30d40,0
2,4cd,1,d99d8be94f,52cf10,1,44,44
2,21c9,2,d9b257ba5a,514fe8,1,0,0,0,30d40,0
2,4cd,1,d9b257be48,52cf10,1,84,84
2,21c9,2,d9c7237ebc,514fe8,1,0,0,0,30d40,0
2,4cd,1,d9c72382f0,52cf10,1,104,104
2,21c9,2,d9dbee7725,514fe8,1,0,0,0,30d40,0
2,4cd,1,d9dbee7b2f,52cf10,1,204,204
2,21c9,2,d9f0b99d84,514fe8,1,0,0,0,30d40,0
2,4cd,1,d9f0b9a1c5,52cf10,1,15,15
2,21c9,2,da05853c14,514fe8,1,0,0,0,30d40,0
2,4cd,1,da05854024,52cf10,1,25,25
2,21c9,2,da1a5067bf,514fe8,1,0,0,0,30d40,0
56 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

2,4cd,1,da1a506bdd,52cf10,1,45,45
2,21c9,2,da2f1c54fd,514fe8,1,300388,300388,0,30d40,0
2,4cd,1,da2f1c5948,52cf10,1,85,85
2,21c9,2,da43e87245,514fe8,1,0,0,0,30d40,0
2,4cd,1,da43e876d0,52cf10,1,105,105
2,21c9,2,da58b3416a,514fe8,1,3d0910,3d0910,0,30d40,0
2,4cd,1,da58b3457e,52cf10,1,205,205
2,21c9,2,da6d7e5a3b,514fe8,1,0,0,0,30d40,0
2,4cd,1,da6d7e5e5d,52cf10,1,16,16
2,21c9,2,da824aa191,514fe8,1,0,0,0,30d40,0
2,4cd,1,da824aa5e5,52cf10,1,26,26
2,21c9,2,da9715c92e,514fe8,1,0,0,0,30d40,0
2,4cd,1,da9715cd85,52cf10,1,46,46
2,21c9,2,daabe167f2,514fe8,1,0,0,0,30d40,0
2,4cd,1,daabe16c18,52cf10,1,86,86
2,21c9,2,dac0ad6c8d,514fe8,1,0,0,0,30d40,0
2,4cd,1,dac0ad7142,52cf10,1,106,106
2,21c9,2,dad5792613,514fe8,1,0,0,0,30d40,0
2,4cd,1,dad5792a2b,52cf10,1,206,206
2,21c9,2,daea449364,514fe8,1,0,0,0,30d40,0
2,4cd,1,daea44979f,52cf10,1,17,17
2,21c9,2,daff0f72f4,514fe8,1,0,0,0,30d40,0
2,4cd,1,daff0f76fd,52cf10,1,27,27
2,21c9,2,db13db2e84,514fe8,1,0,0,0,30d40,0
2,4cd,1,db13db32cc,52cf10,1,47,47
2,21c9,2,db28a68860,514fe8,1,0,0,0,30d40,0
2,4cd,1,db28a68c8d,52cf10,1,87,87
2,21c9,2,db3d7120a0,514fe8,1,0,0,0,30d40,0
2,4cd,1,db3d7125a6,52cf10,1,107,107
2,21c9,2,db523c58b1,514fe8,1,0,0,0,30d40,0
2,4cd,1,db523c5cdf,52cf10,1,207,207
2,21c9,2,db6707bf3f,514fe8,1,0,0,0,30d40,0
2,4cd,1,db6707c3ea,52cf10,1,4b,4b
2,21c9,2,db7bd4202d,514fe8,1,0,0,0,30d40,0
2,4cd,1,db7bd42494,52cf10,1,8b,8b
2,21c9,2,db909fb827,514fe8,1,0,0,0,30d40,0
2,4cd,1,db909fbc6c,52cf10,1,cb,cb
2,21c9,2,dba56a6332,514fe8,1,0,0,0,30d40,0
2,4cd,1,dba56a67dd,52cf10,1,12,12
TEJA_PROFILE_DUMP_END
Chapter 3 Profiler 57

Summarized Profile Data
Summarized profile data is the processed data generated from the profiler.pl
and the profile_n2.pl for the Sun UltraSPARC T1 (CMT1) and (Sun UltraSPARC
T2 (CMT2) processors, respectively.

Sun UltraSPARC T1 Processor Profiler Output
For the Sun UltraSPARC T1 processor, the summary displays as in the following
example:

TABLE 3-6 describes each field in the top section of the summarized Sun UltraSPARC
T1 profile data output:

cpuid , cycle , SB_full ,ITLB_miss ,Instr_cnt ,FP_instr_cnt ,DTLB_miss
,IC_miss ,L2_Imiss ,DC_miss ,L2_Dmiss_LD ,userdata1 ,userdata2 ,
4 , 289219777 ,3121, 0, 51104522, 0, 0, 1080, 433, 2471858, 236191, 2600000
,64641356 ,
CPU,StartPC,UpdatePC,Cycles,Instr_cnt,CntrName,Value,UserData.1,UserData.2,
4,0x521f08,0x5128f0,295649212,52240523,FP_instr_cnt,0,400000,64641356,
4,0x521f08,0x5128f0,147824128,26122620,IC_miss,689,600000,64641356,
4,0x521f08,0x5128f0,295647284,52238312,DC_miss,2472263,800000,64641356,
4,0x521f08,0x5128f0,295646420,52234078,ITLB_miss,0,1000000,64641356,
4,0x521f08,0x5128f0,295644896,52241803,DTLB_miss,0,1200000,64641356,
4,0x521f08,0x5128f0,295649084,52246157,L2_Imiss,434,1400000,64641356,
4,0x521f08,0x5128f0,295646316,52250156,L2_Dmiss_LD,236270,1600000,64641356,
4,0x521f08,0x5128f0,295644764,52232100,SB_full,3114,1800000,64641356,

TABLE 3-6 Sun UltraSPARC T1 Profile Data Output Field Descriptions

Field Description

cpuid CPU ID found in the first column of the raw profile data. Note: If
profiling is done for multiple strands, then multiple rows of
summarized data (with different CPU IDs) are shown in the top
section.

cycle Average number of clock cycles elapsed per profiling interval.

SB_full Average number of SB_full occurrences per profiling interval.

ITLB_miss Average number of ITLB_miss occurrences per profiling interval.

Instr_cnt Average number of instructions executed per profiling interval.

FP_instr_cnt Average number of floating point instructions executed per profiling
interval.

DTLB_miss Average number of DTLB_miss occurrences per profiling interval.
58 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Sun UltraSPARC T2 Processor Profiler Output
For the Sun UltraSPARC T2 processor, the summary displays as in the following
example:

IC_miss Average number of IC_miss occurrences per profiling interval.

L2_Imiss Average number of L2_Imiss occurrences per profiling interval.

DC_miss Average number of DC_miss occurrences per profiling interval.

L2_Dmiss_LD Average number of L2_Dmiss_LD occurrences per profiling
interval.

UserData.1 Average number taken from the User Defined Data1 column.

UserData.2 Average number taken from the User Defined Data2 column.

TABLE 3-6 Sun UltraSPARC T1 Profile Data Output Field Descriptions (Continued)

Field Description
Chapter 3 Profiler 59

CPUid 8
Cycles 213357798
Store_instr 5157787
L2_instr_misses 549
ITLB_miss_L2 0
CPU_ST_to_PCX 4801072
MA_OP 0
MA_Busy 0
Completed_branches 8346953
Icache_misses 1932
Stream_LD_to_PCX 0
DES_3DES_OP 0
DES_3DES_Busy_cycle 0
Sethi_instr 0
L2_load_misses 59993
DTLB_miss_L2 0
MMU_LD_to_PCX 0
CRC_TCPIP_Cksum_OP 0
CRC_MPA_Cksum 0
Taken_branches 5334546
Dcache_misses 1024428
Stream_ST_to_PCX 0
AES_OP 0
AES_Busy_cycle 0
Other_instr 37370926
FGU_arithmatic_instr 0
ITLB_ref_L2 0
CPU_LD_to_PCX 1779478
RC4_OP 0
RC4_Busy_cycle 0
ITLB_miss 0
Atomics 347142
Load_instr 14564094
DTLB_ref_L2 0
CPU_Ifetch_to_PCX 2603
MD5_SHA1_SHA256_OP 0
MD5_SHA1_SHA256_Busy_cycle 0
DTLB_miss 0
TLB_miss 0
All_instr 65033422
Userdata.1 200000
Userdata.2 0
60 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Note – The data in the second and third sections of the Sun UltraSPARC T2
summary are identical. The format of the first section is the field header. The format
in the second section matches the layout of the field header. The format in the third
section is in one single column. This layout enables you to easily transfer data to a
spreadsheet file column.

TABLE 3-7 describes each field in the top section of the summarized Sun UltraSPARC
T2 profile data output:

TABLE 3-7 Sun UltraSPARC T2 Profile Data Output Field Descriptions

Field Description

CPUid CPU ID found in the first column of the raw profile data. Note: If
profiling is done for multiple strands, then multiple rows of
summarized data (with different CPU IDs) are shown in the top section.

cycles Average number of clock cycles elapsed per profiling interval.

Completed_branches Number of completed branches per profiling interval.

Taken_branches Number of branches taken per profiling interval.

FGU_arithmatic_instr Number of Floating-point arithmetic instructions executed per profiling
interval.

Load_instr Number of Load instructions executed per profiling interval.

Store_instr Number of Store Instructions executed per profiling interval.

sethi_instr Number of sethi instructions executed per profiling interval.

Other_instr Number of all other instructions executed per profiling interval.

Atomics Number of atomic operations executed per profiling interval.

All_instr Total number of instructions executed per profiling interval.

Icache_misses Number of Instruction Cache misses per profiling interval.

Dcache_misses Number of L1 Data Cache misses per profiling interval.

L2_instr_misses Number of L2 cache instruction misses per profiling interval.

L2_load_misses Number of L2 cache load misses per profiling interval.

ITLB_ref_L2 For each ITLB miss, this is the number of accesses the ITLB hardware
tablewalk makes to L2 per profiling interval when hardware tablewalk
is enabled.

DTLB_ref_L2 For each DTLB miss, this is the number of accesses the DTLB hardware
tablewalk makes to L2 per profiling interval when hardware tablewalk
is enabled.
Chapter 3 Profiler 61

ITLB_miss_L2 For each ITLB miss, this is the number of accesses the ITLB hardware
tablewalk makes to L2 which misses in L2 per profiling interval when
hardware tablewalk is enabled.
Note: Depending on the hardware tablewalk configuration, each ITLB
miss may issue from 1 to 4 requests to L2 to search TSB’s.

DTLB_miss_L2 For each DTLB miss, this is the number of accesses the DTLB hardware
tablewalk makes to L2 which misses in L2 per profiling interval when
hardware tablewalk is enabled.
Note: Depending on the hardware tablewalk configuration, each DTLB
miss may issue from 1 to 4 requests to L2 to search TSB’s.

Stream_LD_to_PCX Number of SPU load operations to L2 per profiling interval.

Stream_ST_to_PCX Number of SPU store operations to L2 per profiling interval.

CPU_LD_to_PCX Number of CPU loads to L2 per profiling interval.

CPU_Ifetch_to_PCX Number of I-fetches to L2 per profiling interval.

CPU_ST_to_PCX Number of CPU stores to L2 per profiling interval.

MMU_LD_to_PCX Number of MMU loads to L2 per profiling interval.

DES_3DES_OP Number of increments for each CWQ or ASI operation which uses
DES/3DES unit per profiling interval.

AES_OP Number of increments for each CWQ or ASI operation which uses AES
unit per profiling unit.

RC4_OP Number of increments for each CWQ or ASI operation which uses RC4
per profiling interval.

MD5_SHA1_SHA256_OP Number of increments for each CWQ or ASI operation which uses MC5,
SHA-1, or SHA-256 per profiling interval.

MA_OP Number of increments for each CWQ or ASI modular arithmetic
operation per profiling interval.

CRC_TCPIP_Cksum_OP Number of increments for each iSCSI CRC or TCP/IP checksum
operation per profiling interval.

DES_3DES_Busy_cycle Number of increments per profiling interval for each cycle when
DES/3DES unit is busy

AES_Busy_cycle Number of busy cycles encountered per profiling interval when
attempting to execute the AES operation.

RC4_Busy_cycle Number of busy cycles encountered per profiling interval when
attempting to execute the RC4 operation.

MD5_SHA1_SHA256_Busy_cycle Number of busy cycles encountered per profiling interval when
attempting to execute the MD5_SHA1_SHA256 operation.

TABLE 3-7 Sun UltraSPARC T2 Profile Data Output Field Descriptions (Continued)

Field Description
62 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Performance Parameters Calculations
Use the output values of the summarized data to derive various important
performance parameters. This section lists performance parameters and the method
from which they are derived.

■ Key for this section:

■ Division: /

■ Multiplication: *

■ pkts_per_interval = Number of packets per interval (for example, 200000)

This can be obtained from the Userdata.1 field.

■ cpu_frequency = CPU frequency in Hz (for example, 1200000000 for Sun Fire
T2000 system)

MA_Busy Number of increments per profiling interval for each cycle when
modular arithmetic unit is busy.

CRC_MPA_Cksum Number of increments per profiling interval for each cycle when
CRC/MPA/checksum unit is busy.

ITLB_miss Number of misses (successful and unsuccessful tablewalks) per
profiling interval.

DTLB_miss Number of misses (successful and unsuccessful tablewalks) per
profiling interval.

TLB_miss Number of both ITLB and DTLB misses, including successful and
unsuccessful tablewalks per profiling interval.

Userdata.1 Average number taken from the User Defined Data1 column.

Userdata.2 Average number taken from the User Defined Data2 column.

TABLE 3-7 Sun UltraSPARC T2 Profile Data Output Field Descriptions (Continued)

Field Description
Chapter 3 Profiler 63

Sun UltraSPARC T1 Processor

Instructions per Packet:

Average number of instructions executed in a packet.

Formula: value = (Instr_cnt / pkts_per_interval)

Instructions per Cycle (IPC):

Average number of instructions executed per cycle.

Formula: value = (Instr_cnt / cycle)

Packet Rate:

Average number of packets executed per second (in Kilo-packets per second).

Formula: value = ((pkts_per_interval / (cycle / cpu_frequency)) / 1000)

SB_full per thousand instructions:

Average number of SB_full occurrences per 1000 instructions executed.

Formula: value = ((SB_full / Instr_cnt) * 1000)

FP_instr_cnt per thousand instructions:

Average number of FP_instr_cnt occurrences per 1000 instructions executed.

Formula: value = ((FP_Instr_cnt / Instr_cnt) * 1000)

IC_miss per thousand instructions:

Average number of IC_miss occurrences per 1000 instructions executed.

Formula: value = ((IC_miss / Instr_cnt) * 1000)

DC_miss per thousand instructions:

Average number of DC_miss occurrences per 1000 instructions executed.

Formula: value = ((DC_miss / Instr_cnt) * 1000)

ITLB_miss per thousand instructions:

Average number of ITLB_miss occurrences per 1000 instructions executed.

Formula: value = ((ITLB_miss / Instr_cnt) * 1000)
64 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

DTLB_miss per thousand instructions:

Average number of DTLB_miss occurrences per 1000 instructions executed.

Formula: value = ((DTLB_miss / Instr_cnt) * 1000)

L2_imiss per thousand instructions:

Average number of L2_miss occurrences per 1000 instructions executed.

Formula: value = ((L2_miss / Instr_cnt) * 1000)

L2_dmiss_LD per thousand instructions:

Average number of L2_Dmiss_LD occurrences per 1000 instructions executed.

Formula: value = ((L2_miss / Instr_cnt) * 1000)

Sun UltraSPARC T2 Processor

Instruction per Packet:

Average number of instructions executed in a packet.

Formula: value = (All_instr / pkts_per_interval)

Instructions per Cycle (IPC):

Average number of instructions executed per cycle.

Formula: value = (All_instr / cycle)

Note – The Sun UltraSPARC T2 processor has two pipelines in each core. The
maximum IPC number of each pipeline is 1. Therefore, the maximum IPC number of
each core is 2. Pipeline utilization is this number of each pipeline multiplied by
100%. For example, if the IPC is 0.8, then the pipeline utilization of that pipeline is
80%.

Store Instructions per Packet:

Average number of Store instructions executed per packet.

Formula: value = (Store_instr / pkts_per_interval)
Chapter 3 Profiler 65

Load Instructions per Packet:

Average number of Load instructions executed per packet.

Formula: value = (Load_instr / pkts_per_interval)

L2 Load misses per Packet:

Average number of L2 cache Load misses per packet.

Formula: value = (L2_load_misses / pkts_per_interval)

Icache misses per 1000 Packets:

Average number of L1 Icache misses per 1000 packet.

Formula: value = (Icache_misses x 1000) / pkts_per_interval)

Dcache misses per Packet:

Average number of L1 Icache misses per packet.

Formula: value = (Dcache_misses / pkts_per_interval)

Packet Rate:

Average number of packets executed per second (in Kilo-packets per second).

Formula: value = ((pkts_per_interval / (cycle / cpu_frequency)) / 1000)

Note – Not all possible parameters are shown here. The user can derive any
parameter with any formula using the data outputs from the summary.

Note – These formulas can easily be inserted into a spreadsheet program.
66 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

▼ To Use a Spreadsheet for Performance Analysis
1. Open the summary file.

For example, an output_file.csv generated by profiler.pl (for UltraSPARC T1) or by
profiler_n2.pl (for UltraSPARC T2).

2. Insert formulas into the spreadsheet.

See the sample_analysis.sxc spreadsheet provided as part of the software
package. You can open with an OpenOffice compatible software. This file is
included in the SUNWndps/src/libs/profile directory. The first spreadsheet
in this template (click on the Output from profile script tab) consists of sample
output generated from
Step 1. The second spreadsheet in this template (click on the Analysis tab) consists
of formulas for computing the data in the first spreadsheet. The format in the
Analysis spreadsheet is designed so that you can compare the data generated on
each thread side by side.

3. Save the spreadsheet for future reference.

You can form your own spreadsheet templates for your own analysis. For
example, each application can have its own data imported to a spreadsheet for
analysis.
Chapter 3 Profiler 67

68 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

CHAPTER 4

Debugger

This chapter describes the Sun Netra DPS native debugger and GNU debugger
(GDB). Topics include:

■ “Debugger Introduction” on page 69

■ “Native Debugger” on page 70

■ “GNU Project Debugger” on page 80

Debugger Introduction
The Sun Netra DPS native debugger is the default debugger and is useful for
debugging during development. This debugger also identifies system hangs or
crashes in the field deployment. To access the Sun Netra DPS native debugger, press
Ctrl-C.

To use the GNU Debugger (GDB), you must have their own source code and the
binary. You must turn on the flag for this application, for example,
USR_CFLAGS = -DTEJA_DEBUGGER_MODE=TEJA_DEBUGGER_GDB_MODE

See “GNU Project Debugger” on page 80 for detailed setup and example
information.
69

Native Debugger
The native debugger runs on the target and enables you to do the following:

■ Set, clear, and display breakpoints

■ Set and display memory

■ Display registers

■ Display stack trace

■ Manage thread focus

■ Step to the next assembly instruction

The debugger is not symbolic. Symbol resolution is performed separately using a
host-based tool called dbghelper.pl. See “Resolving Symbols Using Options” on
page 79.

The native debugger is denoted by dbg. See “Native Debugger Commands” on
page 71.

Debugging Configuration Code
As seen in “tejacc Compiler Configuration” on page 16, tejacc gets information
about hardware architecture, software architecture, and mapping by executing the
configuration code compiled into dynamic libraries.

The code is written in C and might contain errors causing tejacc to crash. Upon
crashing, you are presented with a Java Hotspot exception, as tejacc is internally
implemented in Java software. The information reported in the exception requires
knowledgeable interpretation.

An alternative version of tejacc.sh, called tejacc_dbg.sh, is provided to assist
debugging configuration code. This program runs tejacc inside the default host
debugger (dbx for Oracle Solaris hosts), stopping the execution immediately after
the configuration libraries have been loaded. You can then continue execution to
reach the instruction that causes the problem and verify its location. Alternatively,
you can set breakpoints on the configuration functions, step through code, or use
any other functionality provided by the host debugger.

To use tejacc_dbg.sh, replace the invocation of tejacc.sh in the makefile
with tejacc_dbg.sh.
70 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Entering the Debugger
The application program calls the native debugger when any of the following
conditions occur:

■ At start time – If the application was compiled without the -O option, the
application calls the debugger at start time. Applications compiled with the -O
option start normally.

■ At a breakpoint – If the application was compiled without the -O option and
while running encounters a breakpoint, the application calls the debugger.
Applications compiled with the -O option cannot set breakpoints.

■ In a crash – If the application crashes, it calls the debugger. The debugger is called
regardless of whether the application was compiled with or without the -O
option.

■ Typing Ctrl-C – If the application calls the teja_debugger_check_ctrl_c()
function and you type the Ctrl-C key sequence, the debugger is also called. The
debugger is called regardless of whether the application was compiled with or
without the -O option.

Note – A call to the debugger stops all threads.

Note – The teja_check_ctrl_c() function must be executed periodically by at
least one of the threads in order for the Ctrl-C function to work. If the thread calling
the teja_check_ctrl_c() function crashes or goes into a deadlock, the Ctrl-C key
sequence stops.

Native Debugger Commands
The following section contains descriptions of the native debugger commands.

Displaying Help

help or h

Displays help for a command. If the command variable is absent, a general help page
is displayed.
Chapter 4 Debugger 71

Example:

Managing Breakpoints
Setting breakpoints is only supported in nonoptimized mode and means that the
application must be built without the -O option to tejacc.

break address or b address

Sets a breakpoint, where address is the hexadecimal address at which to break. The
breakpoint is set only in regions of code that are characterized by sequential
execution and not affected by control flow changes. The easiest way to set a proper
breakpoint is to use the dbghelper script. See “Resolving Symbols Using Options”
on page 79.

dbg>help
 break <address> - set breakpoint

not available for all instructions (see docs)
 b <address> - set breakpoint

not available for all instructions (see docs)
 bt n - display stack trace
 delete breakpoint <bpid> - clear breakpoint
 d breakpoint <bpid> - clear breakpoint
 info - display info help
 i - display info help
 help [cmd] - display help
 h [cmd] - display help
 ? [cmd] - display help
 cont - resume execution
 c - resume execution
 step - step to next Assembly instruction

not available for all instructions (see docs)
 s - step to next Assembly instruction

not available for all instructions (see docs)
 x/nfu <address> - display memory:
 n (count)
 u = {b|h|w|g} (unit)
 f = {x|d|u|o|t|a|f|s|i} (format)
 thread <thdid> - switch thread focus
 w/u addr value - set memory
 u = {b|h|w|g} (unit)
72 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Example:

info break or i break

Displays a list of active breakpoints.

Example:

In this example, only one breakpoint exists. The breakpoint has an ID of 1. When
more than one breakpoint is set, each breakpoint receives a consecutive ID.

delete breakpoint ID or d breakpoint ID

Deletes a breakpoint, where ID is the ID of the breakpoint.

Example:

dbg>break 50b188
Breakpoint set at 0x50b188

dbg>info break
breakpoint [1] set at 0x50b188

dbg>delete breakpoint [1]
Chapter 4 Debugger 73

Managing Program Execution

cont or c

Continues execution of the application.

Example:

step or s

Steps to the next assembly instruction within the application.

Example:

Note – Only use the step command in regions of code that are characterized by
sequential execution and not affected by control flow changes.

Displaying and Setting Memory

x/nfu address

Displays memory contents where:

■ n – Number of memory units to display.

■ f – The display format. The only supported value is x, for hexadecimal format.

■ u – The size of the unit. Supported values are the following:

■ b – byte

■ h – 2-byte half-word

■ w – 4-byte word

■ g – 8-byte long word

■ address – The starting address in hexadecimal.

dbg>cont

dbg>step
74 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Example:

w/u address value

Sets memory where:

■ u – The size of the unit. Supported values are:

■ b – byte

■ h – 2-byte half-word

■ w – 4-byte word

■ g – 8-byte long word

■ address – The starting address in hexadecimal.

■ value – The value to write in hexadecimal.

Example:

Managing Threads

info threads or i threads

Displays a list of the active threads. The thread that has the focus is shown with an
F symbol. Similarly, if a thread has crashed, it is shown with an F symbol.

Example:

thread ID

Changes the thread focus to the thread with the Teja thread ID of ID.

dbg>x/8xw 10000000
count = 8; format = HEX; unitsize = 4
[10000000] : 00000100 000000cd 00000001 00000114 00000100 000000ce
00000001 00518a44

dbg>w/w 10000000 00518a44

dbg>info threads
 : generatorthread: Teja thread id 0, strand id 0
F : classifierthread: Teja thread id 1, strand id 1
Chapter 4 Debugger 75

Example:

In “info threads or i threads” on page 75 example, the focus (F) was on
classifierthread, with Teja ID of 1. In this example, the focus has been moved
to generatorthread.

Displaying Registers

info reg or i reg

Displays the register contents for the thread in focus. Refer to the UltraSPARC T1
Supplement to the UltraSPARC Architecture and the UltraSPARC T2 Supplement to the
UltraSPARC Architecture for detailed descriptions of these registers when using the
native debugger on the UltraSPARC T1 and UltraSPARC T2 platform. In the
following example, the tpc (program counter at trap point) is at 0x508c88. The tt
(trap type) is 0x7c. The content of the code at address 0x508c88 can be located by
an elf file dump utility, such as gobjdump (in SUNWbinutils package) or equivalent
utility.

dbg>thread 0
Thread focus changed to 0

dbg>info reg
Registers of strand 0:
G registers:
g[0] : 0000000000000000 0000000000000000 0000000000500000 0000000000000000
g[4] : 0000000000000000 0000000000615fa0 0000000000000000 0000000000000000
76 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

I registers:
i[0] : 000000000000006e ffffffffef1fe8d4 0000000000520c30 0000000010e01bc8
i[4] : 0000000000000000 0000000000000000 0000000010e00d91 000000000051458c

O registers:
o[0] : 000000000000006e 0000000000520c30 0000000010e01bc8 0000000000000000
o[4] : 0000000000600000 0000000000000061 0000000010e00cd1 0000000000514a18

L registers:
l[0] : 000000000000006e 0000000010e0172c 000000000051e8f0 ffffffffef1fe8d4
l[4] : 0000000000520c30 0000000000000000 0000000000000000 0000000000000000
gl : 0000000000000001
tl : 0000000000000001
tt : 000000000000007c
tpc : 0000000000508c88
tnpc : 0000000000508c8c
tstate : 0000009914001600
pstate : 0000000000000014
tick : 000001884f873558
tba : 0000000000500000
asi : 0000000000000014
Chapter 4 Debugger 77

Displaying Stack Trace

bt frame-count

Displays the stack trace for the thread in focus for frame_count number of frames.

dbg>bt 4
frame 1, sp 0x10e03580, call instruction at 0x50e888:
l[0] : 0000000000000001 00000000111606a8 0000000011160600 0000000000000000
l[4] : 00000000006170d8 0000000000001000 0000000000010000 0000000000000150
i[0] : 0000000000000800 0000000010e036f0 0000000010e036e8 0000000010e036e4
i[4] : 0000000000002000 0000000019ae8ec8 0000000010e02e31 000000000050e888
frame 2, sp 0x10e03630, call instruction at 0x50fcc4:
l[0] : 0000000000000001 00000000111606a8 0000000011160600 0000000000000000
l[4] : 00000000006170d8 0000000000001000 0000000000010000 0000000000000150
i[0] : 0000000000000800 0000000000000001 0000000019d8c148 0000000000000800
i[4] : 0000000019d8c140 0000000019d8c000 0000000010e02f01 000000000050fcc4
frame 3, sp 0x10e03700, call instruction at 0x50fbd8:
l[0] : 0000000000000001 00000000111606a8 0000000011160600 0000000000000000
l[4] : 00000000006170d8 0000000000001000 0000000000010000 0000000000000150
i[0] : 00000000111000e0 0000000000000015 0000000000010000 0000000011160580
i[4] : 0000000000002000 0000000019ae8ec8 0000000010e02fd1 000000000050fbd8
frame 4, sp 0x10e037d0, call instruction at 0x50e104:
l[0] : ffffffffffffffd8 ffffffffffffffba 0000000000000003 0000000000000000
l[4] : 00000000006170d8 0000000000617000 0000000000000617 0000000000000400
i[0] : 00000000111000e0 000000000000792d 000000000000792d 0000000011100180
i[4] : 000000000000792d 0000000000000000 0000000010e03081 000000000050e104
78 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Resolving Symbols Using Options
You can use the dbghelper.pl script to resolve symbols to set breakpoints in the
correct places. The script is located in install-dir/tools/bin directory, where install-
dir is the SUNWndps package installation directory (for example,
/opt/SUNWndps/tools/bin/dbghelper.pl).

-h

Displays help information.

-f function-name

Prints a debugger command to set a breakpoint at the given function-name. This
option does not work for static functions. To set a breakpoint inside of a static
function, use the -l file-name:line-number option.

-g global-variable

Prints a debugger command to display the contents of the given global-variable. The
size of the memory displayed is fixed and does not consider the actual size of the
global-variable. You might need to increase the size of the memory.

% dbghelper.pl -f classifier ./main
b 50b17c

% dbghelper.pl -g stats ./main
x/1wx 13000640
Chapter 4 Debugger 79

-l file-name:line-number

Prints a debugger command to set a breakpoint at the provided file-name:line-number.
The file-name and line-number refer to your source code.

GNU Project Debugger
GDB, the GNU Project debugger, enables you to debug the program in C source code
level. The following sections describe the reference Sun Netra DPS application (gdb
showcase application) that showcases the GDB support in Sun Netra DPS over the
Logical Domain Channel (LDC). In this release, only the IPFwd and GDB showcase
applications have been prepared for gdb support. Other applications can easily be
instrumented by following these examples.

Configuring Oracle VM Server for SPARC
Software for GDB Support
GDB requires the Oracle VM Server for SPARC software. If this product is not
installed, download it at: http://www.sun.com/ldoms

▼ To Configure the Oracle VM Server for SPARC Software
Required to Run the Sun Netra DPS Application With
GDB Support
The GDB currently runs over LDC only, not over IPC.

The GDB uses the vdpc service named ndps-cli and the corresponding client
named solaris-cli. This service-client pair can be created either by using the ldm
commands in this procedure or by using the respective commands in the auto
configuration process.

% dbghelper.pl -l src/classifier.c:57 ./main
b 50b188
80 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

http://www.sun.com/ldoms

● Execute the following commands:

/opt/SUNWldm/bin/ldm add-vdpcs ndps-cli ndps-domain-name
/opt/SUNWldm/bin/ldm add-vdpcc solaris-cli ndps-cli solaris-domain-name
Chapter 4 Debugger 81

▼ To Configure the Oracle Solaris Domain for GDB
After the logical domains are configured and running, perform the following steps
to configure the gateway for GDB in the Oracle Solaris domain.

1. Ensure that the SUNWndpsd package is installed in the domain.

2. Load the driver:

3. Execute the following commands:

GDB Showcase Application
The Sun Netra DPS package contains a simple test application to showcase the use
of gdb. This application is used as shown in “To Compile the GDB Showcase” on
page 82.

▼ To Compile the GDB Showcase
● From the SUNWndps package, compile the application under /src/apps/gdb:

This action generates the binary file called main under
src/apps/gdb/code/main. The required Oracle Solaris utility binaries are
under src/apps/gdb/solaris-gw/ldc_so.

rem_drv remldc
add_drv remldc

echo “remotegw 34980/tcp” >> /etc/services
svccfg import /var/svc/manifest/network/remotegw.xml
svcadm enable svc:/network/remotegw:remotegw

% gmake clean
% gmake CMT=N1(for UltraSPARC T1 based platforms)
% gmake CMT=N2(for UltraSPARC T2 based platforms)
% cd code/main
% gmake
82 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

▼ To Load the GDB Showcase Binary in the Sun Netra
DPS Domain
1. Verify that you have copied your GDB Sun Netra DPS binary main into your

installation server under /tftpboot.

2. Execute the following at the Sun Netra DPS domain OpenBoot PROM ok
prompt:

3. If the file was compiled without the -o option, continue from the initial break
point.

▼ To Run the GDB Command
1. Once your GDB showcase application is compiled, execute the following

commands under any host machine, as long as you can access your code base
src/apps/gdb/code/main:

Where main is the same binary code that you loaded into your Sun Netra DPS
domain.

The GDB debugger then displays the following:

ok boot /virtual-devices@100/channel-devices@200/network@0:,main

% cd src/apps/gdb/code/main
% /opt/SUNWndps/bin/gdb main

GNU gdb 6.6
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “--host=sparc-sun-solaris2.10 --target=sparc64-
elf”...
(gdb)
Chapter 4 Debugger 83

2. Acquire the host name or IP address for the Oracle Solaris domain:

Assuming your IP address is: 10.1.1.249

This connects to your Sun Netra DPS GDB application. The Sun Netra DPS
console then displays:

This indicates that the GDB showcase application reached the initial breakpoint
artificially created by the application. You can then use the GDB commands in
“GDB Commands” on page 84 to investigate your application.

GDB Commands
GDB commands include the following:

■ target remote tcp:10.1.1.194:34980 – Connects to remote Sun Netra
DPS target

■ info thread – Displays threads

■ thread # – Switches thread

■ info reg – Shows the register files

■ info break – Shows the breakpoint

■ b # – Sets breakpoint

■ d # – Clears breakpoint

■ c – Continues

■ s – Steps

■ x – Checks memory location

■ p – Displays variable

■ list – Displays source code, for example, list debug_func

% ifconfig -a

(gdb) target remote tcp:10.1.1.249:34980

LDC Status = UP
calling set_debug_traps()....
Program started: initial breakpoint reached
84 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ bt – Backtraces

■ detach – Enables the Oracle Solaris gateway program to exit which ends the
remote communication. See “To Run Sun Netra DPS Application With GDB
Support” on page 85 for more details.

For additional GDB information and instructions, see GDB: The GNU Project
Debugger at http://sourceware.org/gdb/.

▼ To Run Sun Netra DPS Application With GDB Support
As an example, to run the IPFwd application with GDB support, perform the
following steps.

1. Go to src/apps/ipfwd and compile with gdb as one of the arguments in the
command line.

For example:

2. Load the src/apps/ipfwd/code/ipfwd/ipfwd binary into your Sun Netra
DPS domain.

3. Configure the Oracle Solaris gateway in the Oracle Solaris domain (for
example, 10.1.1.194).

4. In the Oracle Solaris domain, calculate the basepaddr and run the tnsmctl -
P -v command, if the binary booted in the Sun Netra DPS domain uses NIU.

See “How Do I Calculate the Base PA Address for NIU or Logical Domains to Use
with the tnsmctl Command?” on page 388.

5. Run the commands shown in “To Configure the Oracle Solaris Domain for GDB”
on page 82.

6. Go to /opt/SUNWndps/bin and run the gdb binary from the Oracle Solaris
domain:

ipfwd is the same binary code that you loaded into your Sun Netra DPS domain.

The following example output from the gdb showcase application shows the
usage of all of the GDB commands.

% ./build cmt2 10g_niu ldoms gdb

% ./gdb ipfwd
Chapter 4 Debugger 85

http://sourceware.org/gdb/

GNU gdb 6.6
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “--host=sparc-sun-solaris2.10 --target=sparc64-
linux-elf”...
(gdb) target remote tcp:10.1.1.249:34980
Remote debugging using tcp:10.1.1.249:34980
0x0053f34c in teja_breakpoint ()
Current language: auto; currently minimal
(gdb) info thread
* 2 Thread 2 (stat_thd) 0x0053f34c in teja_breakpoint ()
 1 Thread 1 (main_thd00) 0x0050c5d8 in main_thread ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:97
(gdb) thread 1
[Switching to thread 1 (Thread 1)]#0 0x0050c5d8 in main_thread ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:97
97 while (count < (2))
(gdb) list debug_func
58 int i ;
59 int j ;
60 // char *tmp; File: src/app/remcon_impl.c Line: 40
61 char * tmp ;
62 // tmp = “0xdeadbeef”; File: src/app/remcon_impl.c Line: 41
63 tmp = “0xdeadbeef”;
64 // gdbptr = “0xbaddcafe”; File: src/app/remcon_impl.c Line: 42
65 gdbptr = “0xbaddcafe”;
66 // i = first_time++; File: src/app/remcon_impl.c Line: 43
67 i = first_time ++;
(gdb) b 67
Breakpoint 1 at 0x50c510: file src/apps/gdb/code/main/_src_app_remcon_impl.c,
line 67.
(gdb) p first_time
$1 = 18255275
(gdb) c
Continuing.
Can’t send signals to this remote system. SIGSTOP not sent.
86 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Program received signal SIGSTOP, Stopped (signal).
debug_func ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:67
67 i = first_time ++;
(gdb) c
Continuing.
Can’t send signals to this remote system. SIGSTOP not sent.

Program received signal SIGSTOP, Stopped (signal).
0x0050c514 in debug_func ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:67
67 i = first_time ++;
(gdb) c
Continuing.
Can’t send signals to this remote system. SIGSTOP not sent.
Program received signal SIGSTOP, Stopped (signal).
debug_func ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:67
67 i = first_time ++;
(gdb) p first_time
$4 = 18255276
(gdb) info thread
 2 Thread 2 (stat_thd) 0x00508f04 in hv_ldc_rx_get_state ()
* 1 Thread 1 (main_thd00) debug_func ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:67
(gdb) s
Can’t send signals to this remote system. SIGSTOP not sent.

Program received signal SIGSTOP, Stopped (signal).
0x0050c534 in debug_func ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:67
67 i = first_time ++;
(gdb) s
Can’t send signals to this remote system. SIGSTOP not sent.

Program received signal SIGSTOP, Stopped (signal).
debug_func ()
 at src/apps/gdb/code/main/_src_app_remcon_impl.c:69
69 j = i + (first_time);
(gdb) detach
Ending remote debugging.
Chapter 4 Debugger 87

7. After debugging is completed, type detach.

Note – After completed, always type detach in gdb. Otherwise, the remotegw
process is left with an outdated state in the Oracle Solaris domain. If this happens,
stop the remotegw process using the svcadm command (svcadm disable
remotegw) before you start again.

8. (Optional) Reload your binary in the Sun Netra DPS domain.

If your source changes, you need to quit the gdb and re-enter gdb.

(gdb) detach
88 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

CHAPTER 5

Interprocess Communication
Software

This chapter describes the Interprocess Communication (IPC) software. Topics
include:

■ “IPC Introduction” on page 89

■ “Programming Interfaces Overview” on page 90

■ “Configuring the Environment for IPC” on page 90

■ “Example Environment for UltraSPARC T1 Based Servers” on page 94

■ “Example Environment for UltraSPARC T2 Based Servers” on page 98

■ “IPC Reference Applications” on page 99

IPC Introduction
The Interprocess Communication (IPC) mechanism provides a means to
communicate between processes that run in a domain under the Sun Netra DPS
Lightweight Runtime Environment (LWRTE) and processes in a domain with a
control plane operating system. This chapter gives an overview of the programming
interfaces, shows how to set up an logical domains environment in which the IPC
mechanism can be used, and explains the IPC specific portions of the IP forwarding
reference application (see “Reference Applications” on page 163).
89

Programming Interfaces Overview
Chapter 5, Interprocess Communication API, of the Sun Netra Data Plane Software
Suite 2.1 Update 1 Reference Manual contains a detailed description of all APIs needed
to use IPC. The common API can be used in an operating system to connect to an
IPC channel, and transmit and receive packets. First, the user must connect to the
channel and register a function to receive packets. Once the channel is established
this way, the ipc_tx()function can be used to transmit. The framework calls the
registered callback function when a message is received.

In an Sun Netra DPS application, the programmer is responsible for calling the
framework initialization routines for the IPC and LDC frameworks before using IPC,
and must ensure that polling happens periodically.

In a Oracle Solaris domain, the IPC mechanism can be accessed from either user or
kernel space. Before any API can be used, you must install the SUNWndpsd package
using the pkgadd command, and you must add the tnsm driver to the system using
add_drv. Refer to the respective man pages for detailed instructions. From the
Oracle Solaris kernel, the common APIs mentioned above are used for IPC. In user
space, the tnsm driver is seen as a character driver. The open(), ioctl(), read(),
write(), and close() interfaces are used to connect to a channel, and send and
receive messages.

Configuring the Environment for IPC
This section describes the configuration of the environment needed to use the IPC
framework. This section also covers setup of memory pools for the LWRTE
application, the logical domains environment, and the IPC channels.

Memory Management
The IPC framework shares its memory pools with the basic logical domains
framework. These pools are accessed through malloc() and free() functions that
are implemented in the application. The ipfwd_ldom reference application contains
an example implementation.
90 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

The file ldc_malloc_config.h contains definitions of the memory pools and their
sizes. ldc_malloc.c contains the implementation of the malloc() and free()
routines. These functions have the expected signatures:

■ void *malloc(size_t size)

■ void free(void *addr)

In addition to these implementation files, the memory pools must be declared to the
Sun Netra DPS runtime. This declaration is done in the software architecture
definition in ipfwd_swarch.c.

IPC in the Logical Domains Environment
In a logical domains environment, the IPC channels use logical domain channels
(LDCs) as their transport media. These channels are set up as virtual data plane
channels using the ldm command (see the Oracle VM Server for SPARC
documentation). These channels are set up between a server and a client. Some basic
configuration channels must be defined adhering to the naming convention
described in “Logical Domain Channel Setup” on page 91. Each channel has a server
defined in the LWRTE domain and a client defined in the link partner domain.

Logical Domain Channel Setup
There must be a domain that has the right to set up IPC channels in the LWRTE
domain. This domain can be the primary domain or a guest domain with the client
for the configuration service. The administrator must only set up this channel. When
the service (LWRTE) and the client domain are up (and the tnsm driver attached at
the client), the special IPC channel with ID 0 is established automatically between
the devices. The tnsmctl utility can then be used in the configuring domain to set
up additional IPC channels (provided that the required virtual data plane channels
have been configured.)

■ In the LWRTE domain, a data plane channel service with the name primary-gc
must be established using the command
ldm add-vdpcs primary-gc lwrte-domain-name.

■ In the configuration domain, the respective client with the name tnsm-gc0 must
be established using the command
ldm add-vdpcc tnsm-gc0 primary-gc config-domain-name.
Chapter 5 Interprocess Communication Software 91

To enable IPC communications between the LWRTE domain and additional
domains, a special configuration channel must be set up between these domains.
Again, the channel names must adhere to a naming convention. In the LWRTE
domain, the service name must begin with the prefix config-tnsm, whereas the
client name in the other domain must be named config-tnsm0. For example, such
a channel could be established using the ldm commands.

■ ldm add-vdpcs config-tnsm-clnt-domain-name lwrte-domain-name
in the LWRTE domain

■ ldm add-vdpcc config-tnsm0 config-tnsm-clnt-domain-name clnt-domain-
name in the client domain

Additional channels can be added for data traffic between these domains, there are
no naming conventions to follow for these channels. These commands are
configured using the ldm commands.

■ ldm add-vdpcs service-name lwrte-domain-name
in the LWRTE domain

■ ldm add-vdpcc client-name service-name client-domain-name
in the client domain.

Names for data plane channel servers and clients cannot be longer than 48
characters. This limit includes the prefixes of configuration channels.

Note – A Oracle Solaris domain may only have one configuration channel. In the
configuration domain, where the channel client tnsm-gc0 is present, a channel
client with the name config-tnsm0 must not be configured.

IPC Channel Setup
Once the data plane channels are set up by the administrator in the primary domain,
the tnsmctl utility is used to set up IPC channels from the IPC control domain. This
utility is part of the SUNWndpd package and is located in the bin directory. tnsmctl
uses the following syntax:

tnsmctl -S -C channel-id -L local-ldc -R remote-ldc -F control-channel-id
92 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

The parameters to tnsmctl are described in TABLE 5-1. All of these parameters need
to be present to set up an IPC channel.

The tnsm driver stores the channel configuration so it can be replayed when the Sun
Netra DPS domain reboots. This stored configuration can be purged through the
following command:

Note – This option clears the stored configuration, but does not affect the currently
operating channels.

TABLE 5-1 tnsmctl Parameters

Parameter Description

-S Set up IPC channel.

-C channel-id Channel ID of the new channel to be set up.

-L local-ldc Local LDC ID of the Virtual Data Plane Channel to be used for this
IPC channel. Local here always means local to the LWRTE domain.
Obtain this LDC ID using the ldm list-bindings command.

-R remote-ldc Remote LDC ID of the Virtual Data Plane Channel to be used for this
IPC channel, that is, the LDC ID seen in the client domain. Obtain this
LDC ID using the ldm list-bindings command with the -e flag.

-F control-channel-
id

IPC channel ID of the control channel between the LWRTE and the
client domain. If the client domain is the control domain, this channel
ID is 0. For all other client domains, the control channel must be set
up by the administrator. To set up the control channel, use the same
ID for both the -C and the -F options.

tnsmctl -p
Chapter 5 Interprocess Communication Software 93

Example Environment for UltraSPARC
T1 Based Servers
The following is a sample environment, complete with all commands needed to set
up the environment in a Sun Fire T2000 server.

Domains
TABLE 5-2 describes the four environment domains.

The primary as well as the guest domains ldg2 and ldg3 run the Oracle Solaris 10
11/06 operating system (or later) with the patch level required for logical domain
operation. The SUNWldm package is installed in the primary domain. The
SUNWndpsd package is installed in both ldg2 and ldg3.

Assuming 4-GByte of memory for each of the domains, and starting with the factory
default configuration, the environment can be set up using the following domain
commands:

TABLE 5-2 Environment Domains

Domain Description

primary Owns one of the PCI buses, and uses the physical disks and networking
interfaces to provide virtual I/O to the Oracle Solaris guest domains.

ldg1 Owns the other PCI bus (bus_b) with its two network interfaces and
runs an LWRTE application.

ldg2 Runs control plane applications and uses IPC channels to communicate
with the LWRTE domain (ldg1).

ldg3 Controls the LWRTE domain through the global control channel. The
tnsmctl utility is used here to set up IPC channels.
94 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

primary

ldm remove-mau 8 primary
ldm remove-vcpu 28 primary
ldm remove-mem 28G primary (This assumes 32GByte of total memory. Adjust
accordingly.)
ldm remove-io bus_b primary
ldm add-vsw mac-addr=you-mac-address net-dev=e1000g0 primary-vsw0
primary
ldm add-vds primary-vds0 primary
ldm add-vcc port-range=5000-5100 primary-vcc0 primary
ldm add-spconfig 4G4Csplit

ldg1 – LWRTE
ldm add-domain ldg1
ldm add-vcpu 20 ldg1
ldm add-mem 4G ldg1
ldm add-vnet mac-addr=your-mac-address-2 vnet0 primary-vsw0

ldg1
ldm add-var auto-boot\?=false ldg1
ldm add-io bus_b ldg1

ldg2 – Control Plane Application
ldm add-domain ldg2
ldm add-vcpu 4 ldg2
ldm add-mem 4G ldg2
ldm add-vnet mac-addr=your-mac-address-3 vnet0 primary-vsw0 ldg2
ldm add-vdsdev your-disk-file vol2@primary-vds0
ldm add-vdisk vdisk1 vol2@primary-vds0 ldg2
ldm add-var auto-boot\?=false ldg2
ldm add-var boot-device=/virtual-devices@100/channel-
devices@200/disk@0 ldg2

ldg3 – Solaris Control Domain
ldm add-domain ldg3
ldm add-vcpu 4 ldg3
ldm add-mem 4G ldg3
ldm add-vnet mac-addr=your-mac-address-4 vnet0 primary-vsw0 ldg3
ldm add-vdsdev your-disk-file-2 vol3@primary-vds0
ldm add-vdisk vdisk1 vol3@primary-vds0 ldg3
Chapter 5 Interprocess Communication Software 95

ldm add-var auto-boot\?=false ldg3
ldm add-var boot-device=/virtual-devices@100/channel-
devices@200/disk@0 ldg3

The disk files are created using the mkfile command. Oracle Solaris is installed
once the domains are bound and started in a manner described in the Oracle VM
Server for SPARC software documentation.

Virtual Data Plane Channels
While the domains are unbound, the virtual data plane channels are configured in
the primary domain as follows:

Global Control Channel
ldm add-vdpcs primary-gc ldg1
ldm add-vdpcc tnsm-gc0 primary-gc ldg3

Client Control Channel
ldm add-vdpcs config-tnsm-ldg2 ldg1
ldm add-vdpcc config-tnsm0 config-tnsm-ldg2 ldg2

Data Channel
ldm add-vdpcs ldg2-vdpcs0 ldg1
ldm add-vdpcc vdpcc0 ldg2-vdpcs0 ldg2

Additional data channels can be added with names selected by the system
administrator. Once all channels are configured, the domains can be bound and
started.
96 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

IPC Channels
The IPC channels are configured using the /opt/SUNWndpsd/bin/tnsmctl utility
in ldg3.

Before you can use the utility, you must install the SUNWndpsd package in both ldg3
and ldg2, using the pkgadd system administration command. After installing the
package, you must add the tnsm driver by using the add_drv system
administration command.

To be able to configure these channels, the output of ldm ls-bindings -e in the
primary domain is needed to determine the LDC IDs. As an example, the relevant
parts of the output for the configuration channel between ldg1 and ldg2 might
appear as follows:

For ldg1:

For ldg2:

The channel uses the local LDC ID 6 in the LWRTE domain (ldg1) and remote LDC
ID 5 in the Oracle Solaris domain. Given this information, and choosing channel ID
3 for the control channel, this channel is set up using the following command line:

After the control channel is set up, you can then set up the data channel between
ldg1 and ldg2. Assuming local LDC ID 7, remote LDC ID 6, and IPC channel ID 4
(again, the LDC IDs must be determined using ldm ls-bindings -e), the following
command line sets up the channel:

VDPCS
 NAME CLIENT LDC
 config-tnsm-ldg2 config-tnsm0@ldg2 6

VDPCC
 NAME SERVICE LDC

config-tnsm0 config-tnsm-ldg2@ldg1 5

tnsmctl -S -C 3 -L 6 -R 5 -F 3

tnsmctl -S -C 4 -L 7 -R 6 -F 3
Chapter 5 Interprocess Communication Software 97

Note that the -C 4 parameter is the ID for the new channel. -F 3 has the channel ID
of the control channel set up previously. After the completion of this command, the
IPC channel is ready to be used by an application connecting to channel 4 on both
sides. An example application using this channel is contained in the SUNWndps
package, and described in the following section.

Example Environment for UltraSPARC
T2 Based Servers
The example configuration described in “Example Environment for UltraSPARC T1
Based Servers” on page 94 can be used with UltraSPARC T2 based servers with some
minor modifications.

■ The LWRTE domain (ldg1) must still be core aligned.

The UltraSPARC T2 chip has eight threads per core, so changing the number of
vcpus in the primary from four to eight aligns the second domain to a core
boundary.

■ The UltraSPARC T2 chip does not have two PCI buses.

In the environment in “Example Environment for UltraSPARC T1 Based Servers”
on page 94, the primary domain owned one of the PCI buses (bus_a), while the
Sun Netra DPS Runtime Environment domain owned the other one (bus_b). With
a UltraSPARC T2 there is only one PCI bus (pci) and the network interface unit
(niu). To set up an environment on such a system, the NIU should be removed
from the primary domain and added to the Sun Netra DPS Runtime Environment
domain (ldg1) so that the LWRTE domain can utilize NIU for fast packet
processing applications.

In addition, the IP forwarding and RLP reference applications can use up to fifty six
threads in the UltraSPARC T2 logical domain configurations depending on the
configuration, so the Sun Netra DPS Runtime Environment domain must be sized
accordingly.
98 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

IPC Reference Applications
The Sun Netra DPS package contains an IP forwarding reference application that
uses the IPC mechanism. The Sun Netra DPS package contains an IP forwarding
application in LWRTE and an Oracle Solaris utility that uses an IPC channel to
upload the forwarding tables to the LWRTE domain. Sun Netra DPS chooses which
table to use and where to gather some simple statistics, and displays the statistics in
the Oracle Solaris domain. The application is designed to operate in the example
setup shown in “IPC Channels” on page 97.

Refer to “IP Packet Forwarding Reference Applications” on page 164 for details on
how the IPC mechanism is used.

Common Header
The common header file fibtable.h, located in the src/common/include
subdirectory, contains the data structures shared between the Oracle Solaris and the
LWRTE domains. In particular, the command header file contains the message
formats for communication protocol used between the domains, and the IPC
protocol number (201) that it uses. This file also contains the format of the
forwarding table entries.
Chapter 5 Interprocess Communication Software 99

100 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

CHAPTER 6

Remote Command-Line Interface

This chapter describes the Remote Command-Line-Interface (CLI). Topics include:

■ “Remote Command-Line Interface Introduction” on page 101

■ “IPC Setup for Remote CLI” on page 102

■ “Accessing the Remote CLI” on page 103

■ “Debugging Remotely” on page 105

■ “Coredump Support” on page 106

■ “System Configuration” on page 106

Remote Command-Line Interface
Introduction
The Remote Command-Line Interface (CLI) provides you remote access to
commands for you to configure and gather the Sun Netra DPS runtime system
information (for example, platform information). The CLI also provides you remote
access to the Sun Netra DPS runtime interactive debugger and a core dump facility.
101

IPC Setup for Remote CLI
To access the CLI remotely, you must have the interprocess communication (IPC)
mechanism set up on your system (see Chapter 5 for IPC information). In the same
way that the IPC channel with ID 4 was set up to be used by the IP forward
reference application, a channel with ID 1 must be set up for the remote CLI.
SUNWndpsd must be installed on the Oracle Solaris system that will host the remote
CLI.

Note – The remote CLI communicates over IPC channel number 1 (one), therefore,
IPC channel number 1 should not be used for any other purpose.

The applications that use the remote command-line interface must have the
following:

■ The cli type is declared as “remote” in hardware configuration file
teja_architecture_set_property(cmt1_chip, “cli_type”,
“remote”);

■ On one of the CPU strands, the Fast Path Manager must be running
fastpath_mgr_process();USR_LIBS contains common, LDC, and IPC
libraries.

■ USR_LIBS = /opt/SUNWndps/lib/common/lwrtecmn.o
/opt/SUNWndps/lib/ldc/lwrteldc.o
/opt/SUNWndps/lib/ipc/lwrteipc.o

Note – The IP Forwarding (ipfwd) application has the Remote CLI functionality
built in. You can use IP Forwarding as a reference on how an application enables
Remote CLI functionality.

▼ To Configure the Oracle Solaris Domain for Remote CLI
After the logical domains are configured and running, perform the following steps
to configure the IPC channel in the Oracle Solaris domain:
102 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

1. On the primary domain, execute the following commands:

These commands set up an IPC data channel between ndps-domain and solaris-
domain. The CLI server (ldg2-vdpcs-cli) runs on ndps-domain and the CLI
client
(vdpcc-cli) runs on solaris-domain. Prior to execute these commands, ensure that
the Global and Client Control Channels are already setup (see Chapter5
Interprocess Communication Software).

2. On the domain that has access to the Global Control Channel, execute:

local_ldc is the LDC number of the Client Control Channel at the server (ndps-
domain) side.

remote_ldc is the LDC number of the Client Control Channel at the client (solaris-
domain) side.

3. On the domain that has access to the Global Control Channel, execute:

local_ldc is the LDC number of the Data Channel at the server (ndps-domain) side.

remote_ldc is the LDC number of the Data Channel at the client (solaris-domain)
side.

The channel ID assigned to this data channel is 1 (the dedicated channel number
of the remote CLI communication over IPC in the Sun Netra DPS).

Accessing the Remote CLI
After IPC channel number 1 is set up between Sun Netra DPS Runtime and the
remote CLI Solaris host system, enable remote CLI service in the Oracle Solaris host
system. Enable remote CLI service with the command below:

ldm add-vdpcs ldg2-vdpcs-cli <ndps-domain>
ldm add-vdpcc vdpcc-cli ldg2-vdpcs-cli <solaris-domain>

tnsmctl -S -C 3 -L <local_ldc> -R <remote_ldc> -F 3

tnsmctl -S -C 1 -L <local_ldc> -R <remote_ldc> -F 3

svcadm enable rcon
Chapter 6 Remote Command-Line Interface 103

After enabling remote CLI service, you are ready to access the remote CLI.

▼ To Access the CLI Console
1. Connect to the Oracle Solaris CLI host system.

Use telnet to the hosting Oracle Solaris system at the default port number
30001.

2. Enter help at the prompt, as shown in this example, to list options.

3. To connect to the remote CLI, type connect at the prompt:

Type disconnect, as shown, to close the channel to the remote CLI.

% telnet solaris-domain-host-name 30001
Trying 192.168.1.6...
Connected to solarisdomain.
Escape character is ’^]’.
ndps>

ndps> help
 connect : connect to NDPS
 disconnect : disconnect from NDPS Channel
 send break dbg : jump into debugger
 send break sys : jump into system cli
 cont : quit from debugger
 c : quit from debugger
 coredump [-d <dump dir>] <corename> : dumps lwrte core
 [-d <dump dir>] dump directory (default: "/tmp")
 <corename> core dump file name
 quit : quit from system cli
 exit : quit this program
 help : help for this
 console [-f file] : connects to runtime console
 file is the optional log file
ndps>

ndps> connect
Opening channel 1
IPC channel #: 1
ndps> disconnect
Closing channel 1
104 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

4. To close the connection, type exit at the prompt.

Debugging Remotely
After connected to the Sun Netra DPS runtime, you can access the Sun Netra DPS
debugger.

▼ To Access the Sun Netra DPS Debugger
● Type the send break dbg command:

Type help or ? for help options.

Type c or cont to quit the debugger program:

ndps> exit
the IPC link is DOWN or CLOSED, please type connect to bring it up again!
Connection to sol closed by foreign host.
%

ndps> connect
Opening channel 1
IPC channel #: 1
ndps> send break dbg
enter NDPS debugger...
dbg>

dbg> c
exit NDPS debugger...
ndps>
Chapter 6 Remote Command-Line Interface 105

Coredump Support
Coredump is supported under the Debugger program (see “Debugging Remotely”
on page 105). From the dbg mode, use the coredump command to dump the Sun
Netra DPS Runtime system core. The coredump command has the following format:

dump_dir is the directory where the core is saved on the CLI hosting Oracle Solaris
system. By default, the core is saved in /tmp.

corename is the core file name. The next available numeric is appended to this core
file name, followed by .gz.

The preceding core file is created at /tmp/core-1.gz on the remote CLI host
system (solarisdomain). Note that this can take up to several minutes due to the
size of the core dump file.

System Configuration
The user can collect system information and, if desired, change the configuration
from the system (sys) mode.

▼ To Go to the sys Mode From the Remote CLI
1. Connect to the remote CLI.

See “Accessing the Remote CLI” on page 103.

coredump [-d dump_dir] corename

dbg> coredump core
Using dump directory “/tmp”
Total dumped: 74024954 bytes, compressed to: 456741 bytes
finished coredump successfully!
dbg>
106 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

2. To connect to sys mode, use the send break sys command.

3. Enter help for options.

4. To disconnect from sys mode, type quit.

Compiling the Remote CLI Application

Build Script
TABLE 6-1 shows the remotecli application build script.

ndps> connect
Opening channel 1
IPC channel #: 1
ndps> send break sys
enter NDPS system cli...
sys>

sys> help
set - set commands

 clr - clear commands
 show - show commands
 help - help commands
 version - version command
 quit - quit sys cli command
sys>

sys> quit
exit NDPS system cli...
ndps>

TABLE 6-1 Remote CLI Application Build Scripts

Build Script Usage

./build (See “Argument Descriptions” on page 108) Build remotecli application.
Chapter 6 Remote Command-Line Interface 107

Usage
build cmt [profiler]

Build Script Arguments
[] – Optional arguments

Argument Descriptions

cmt

Specifies whether to build the remotecli application to run on the CMT1
(UltraSPARC T1) platform or CMT2 (UltraSPARC T2) platform.

cmt1 – Build for CMT1 (UltraSPARC T1) architecture
cmt2 – Build for CMT2 (UltraSPARC T2) architecture

This argument is required for scripts that expect <cmt>.

[profiler]

Generate codes with profiling enabled.

The above creates the bootable image at code/main/main.

Note – The remotecli application is a simple application to demonstrate remote
CLI functions. The application does not perform any particular useful task. For
details on how to integrate remote CLI functions into a large scale application, refer
to the IP Forwarding application.
108 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

CHAPTER 7

Eclipse Development Environment

This chapter describes the Eclipse-based Teja Advance Development Environment
(ADE) graphical user interface (GUI). Topics include:

■ “ADE Introduction” on page 109

■ “Starting the Eclipse-Based ADE GUI” on page 110

■ “Creating a Teja Project” on page 110

■ “Files and Viewers” on page 115

■ “Build” on page 121

ADE Introduction
Eclipse is an open source community where projects are focused on building
extensive development platforms, runtimes, and application frameworks. Eclipse
includes building, deploying, and managing software across the entire software life
cycle.

Eclipse is more than a Java IDE. The Eclipse open source community has over 60
open source projects. These projects can be conceptually organized into seven
different categories:

■ Enterprise development

■ Embedded and device development

■ Rich client platform

■ Rich internet applications

■ Application frameworks

■ Application lifecycle management (ALM)

■ Service oriented architecture (SOA)

Refer to http:// www.eclipse.org for detailed information.
109

http://www.eclipse.org

Starting the Eclipse-Based ADE GUI
Start the Eclipse-based ADE GUI by running bin/eclipse.sh from a shell
terminal window.

Note – Before running the eclipse.sh script, check if the Eclipse binary has
already been installed in the user’s system. If not, download and install Eclipse
before proceeding.

▼ To Start the Eclipse-Based ADE GUI
● Type:

Creating a Teja Project
To use the Eclipse-based Teja ADE, the user creates a project. A project can be
created from scratch or from an already existing Teja application. In the latter case,
the project can be created in the same directory as the application or in a different
one but linking some files from the original application directory.

▼ To Create a Project in the Same Directory as an
Existing Teja Application
The following steps describe how to create a project in the same directory as an
existing Teja application using examples/PacketClassifier as an example.

1. From the File menu, select New Project.

2. Choose Teja/Teja Project in the list of possible wizards, then click Next.

% /opt/SUNWndps/tools/bin/eclipse.sh
110 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

3. In the Project Name field, type the name of the project.

In this example, type PacketClassifier (the name does not need to match the
name of the application).

4. To create the project in the directory of the application,

a. Deselect Use default.

b. Click the Browse button to get to the PacketClassifier directory.

c. Press OK.

Keeping Use default selected would create the project in the workspace (see
FIGURE 7-1).

d. Click Next to go to the C/ Make Project Setting tab.
Chapter 7 Eclipse Development Environment 111

FIGURE 7-1 Eclipse-Based ADE GUI

5. The user does not need to set the C/Make Project Setting tab, which defines the
project and Builder settings, at this point.

a. Click Next to go to the Teja Project Settings tab.

In the Teja Project Settings tab, the information used to create the product specific
graphic files is set. By default, these files have the same name as the project and
are contained in the project directory. In the Graphic Files Info section, you can
specify a different location and a different name, which will be the same for the
three files with extension tjh, tjs and tjm. Select whether to generate all three
graphic files, or a subset, by putting a tag in the list in the General section.
112 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Populate the Teja Project Setting (FIGURE 7-2) tab in two ways:

■ By specifying a configuration file, selecting the Config file button in the
General section, and providing the name in the Configuration File section. This
file is generated by tejacc with the name parameters. tjc contains all the
information on the parameters tejacc was invoked (use the parameters_file
switch to tejacc.sh to specify a different file name). This file includes which
libraries are correlated to know which architectures that refer to which mapping.
With a config file it is possible to validate across libraries.

Note – To generate the parameters.tjc file, first build the application. The
parameters.tjc file is generated in the top level directory of the application
where the build (or make) is executed.

■ Providing the libraries and entry function names for hardware and software
architectures and mapping. This approach decouples the hardware architecture,
software architecture and mapping, allowing for visualizing one even when the
other is not available or has bugs. To use this approach, select the Libraries and
functions button in the General section and type the required information in the
active sections. For each architecture and mapping, you have to provide the path
of the shared library and the name of the entry point function.

In both ways, only the selected graphics files will be generated. Press the Finish
button, and a project is then created.
Chapter 7 Eclipse Development Environment 113

FIGURE 7-2 Teja Project Settings

You can also specify only the project name and directory, and click Finish. The
project is created without the graphic files, which can be added in a second step.
From the Welcome Window, switch to the Navigator Window to view project
elements.
114 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

▼ To Add the Graphic Files to a Project
1. In the Navigator view, right-click on the directory name inside the project

where you would like to have the graphic files.

Note – To go to the Navigator view from the Welcome Window, click on the
Workbench button.

2. Open New/Other/Teja/Teja Graphic Files and press Next.

The Teja Project Settings tab appears. Fill this out as described in “To Create a
Project in the Same Directory as an Existing Teja Application” on page 110.

Files and Viewers
The Eclipse-based Teja ADE can view three Teja elements: hardware architecture,
software architecture, and mapping. To display the Teja element, the viewer uses the
graphical information stored in separate files, one for each part of the application.
These files are created when the project is created and have the same name as the
project but with different extensions, tjh for the hardware architecture, tjs for the
software architecture, and tjm for the mapping. These files contain the name of the
library and entry function name and some graphical data such as the coordinates of
the various objects, orientation, and type of routing.

After a project is created, it is visible in the Navigator tab by expanding and showing
all the files and directories of the application, in addition to the graphical files.
Double-clicking on these files opens a viewer for the element associated to the files.

Hardware Architecture Viewer
The Hardware Architecture Viewer (FIGURE 7-3) gives a graphical representation of
the hardware architecture. Since hardware architectures can contain other hardware
architectures, you can navigate the containment by double-clicking on architectures.
The Outline tab provides a more straightforward visualization of the containment
and the objects that a hardware architecture contains. To open this tab, go to the
Window/Show view/Outline menu. Click any element in the outline to select the
same element in the viewer, possibly changing the architecture shown to the one
containing the selected object.
Chapter 7 Eclipse Development Environment 115

FIGURE 7-3 PacketClassifier Hardware Architecture – Inner Hardware
116 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

FIGURE 7-4 PacketClassifier Hardware Architecture – Outer Hardware

Sun Netra DPS objects have properties with values of potential interest. The
Properties tab displays such properties and their values. To open the Properties tab,
go to the Window/Show view/Others/Properties menu. Along with the
application properties there are also the GUI properties, some of which can be
changed. For example, a bus has the GUI property AlignStyle. Clicking on the value
and pulling down the menu (there is an arrow on the left) shows the possible values,
in this case Horizontal and Vertical. By choosing one value and selecting Enter, the
bus alignment change is applied. Another property is Source File which is the name
of the file where the selected object was created. If such a file is opened in the GUI,
then clicking the object will indicate in the file the line of code where that object was
created.
Chapter 7 Eclipse Development Environment 117

Software Architecture Viewer
The Software Architecture Viewer (FIGURE 7-5) gives a graphical representation of the
software architecture and consists of two tabs. The viewer opens showing the OS
view tab, with information of threads, processes, and processors. FIGURE 7-5 shows
the OS View.

FIGURE 7-5 PacketClassifier Software Architecture – OS View

A second tab, the Late-Binding View (FIGURE 7-6) shows the information of threads,
mutexes, channels, queues, and memory pools. When a validation is available, that
is, the project was created through a configuration file, the processors displayed in
118 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

the OS View are actually created in the hardware architecture. The processors are
checked for a mismatch in the hardware architecture, and in case of error, the
processors display a cross to highlight the problem. The outline and properties
views are the same as the ones described for the hardware architecture (“Hardware
Architecture Viewer” on page 115.)

FIGURE 7-6 PacketClassifier Software Architecture – Late-Binding View
Chapter 7 Eclipse Development Environment 119

Mapping Viewer
The Mapping Viewer (FIGURE 7-7) shows which functions are mapped on which
threads and which variables are mapped on which memory banks. In the Type
combo box, select an element among Function, Memory Bank, Thread, and Variable.

The Mapping table displays a list of all the elements chosen in the combo. Selecting
an element in the Mapping table causes all the elements mapped to it to be shown in
the right-side list. For example, if you choose Function, the left side of the Mapping
table shows you all the functions that are defined in the application code. When one
function is selected, the names of the threads that have that function as an entry
point function are shown on the right side of the table.

FIGURE 7-7 PacketClassifier Mapping
120 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Set the Mapping Viewer in one of two modes:

■ The basic mode shows only information available in the corresponding mapping
library without considering the hardware architecture, software architecture or
application code. This mode is useful to see what you specified in the mapping,
but does not validate that such information is correct when correlated to the rest
of the elements. For example, if you map a function f1() on a thread t1, the
basic mode shows no indication of whether f1() and t1 actually exist in the
application code and software architecture is provided. Also, if the user maps
variables to a memory using the regexp variant of the mapping API, the regular
expression provided for the variables is shown rather than the matching
variables.

■ The extended mode gathers and correlates the information from all the libraries.
The extended mode provides architectural validation, but requires all the libraries
to exist. As an example of information currently shown in this mode, if an
application has unmapped variables, such variables are shown in the rightmost
list when the Type combo is set to Variables. This is an error in the user
application since all variables must be mapped.

Build
It is possible to compile the Teja application in the Eclipse-based ADE.

▼ To Compile the Teja Application in the Eclipse-
Based ADE
1. Create the target All.

2. Select the project name in the navigator tab and right click on Create Make
Target.

3. Type in the Target Name and Make Target fields. Click Create.

4. To compile, select the project name again and right-click Build Make Target.

5. Choose All and click Build.

In the Console tab, the compiler output and warnings or errors, if any, are shown.
Chapter 7 Eclipse Development Environment 121

122 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

CHAPTER 8

Receive Packet Classification

This chapter describes the basic functions of the Receive Packet Classification and
the Sun Netra DPS software interface. Topics include:

■ “Receive Packet Classification Introduction” on page 123

■ “Sun Multithreaded 10GbE and NIU Receive Packet Classifier” on page 124

■ “Hashing Based on Layer 2, Layer 3, and Layer 4 Header Classification” on
page 128

■ “Flow Match Based on Layer 2, Layer 3, and Layer 4 Header Classification” on
page 131

■ “Examples” on page 137

Receive Packet Classification
Introduction
The Sun multithreaded 10GbE with network interface unit (NIU) networking
hardware consists of a Receive Packet Classifier that performs L2/L3/L4 header
parsing, matching and searching functions. Sun Netra DPS provides the software
interface to utilize this hardware mechanism.

Classification is needed for the following reasons:

■ To spread traffic flows into multiple DMA for load balancing

This classification spreads traffic flows across multiple CPUs so that each CPU
hardware strand shares the load of 10 Gbps processing. By spreading the load
across at least eight pipelines, packets are processed at 10Gbps preventing
overloading of processing power on a particular processing unit.
123

■ To separate and isolate different traffic types for special treatment

This classification refers to blocking, re-routing, or to perform special processing
to certain traffic types from the incoming traffic stream.

■ To sustain high traffic throughput rate

This classification sustains forwarding of 10Gbps of incoming traffic with a
relatively small packet size from the 10Gbps Ethernet ingress port to the 10Gbps
egress port. Traffic must be spread into multiple DMA channels for processing.

Supported Networking Interfaces
The following network interfaces support classification:

■ Sun multithreaded 10GbE and 4GbE

■ Network interface unit (NIU) in UltraSPARC T2

Sun Multithreaded 10GbE and NIU
Receive Packet Classifier
Sun multithreaded PCIe 10GbE, PCIe 4GbE, and 10GbE NIU supports two ways to
spread input packets:

■ Hashing based on Layer 2, Layer 3, and Layer 4 (L2/L3/L4) headers

Determines the target DMA channel based on a L2 RDC group and then a hash
algorithm applied on the defined values of L2/L3/L4 header fields.

■ Flow match based on L2/L3/L4 header

Determines the target DMA channel based on the values of L2/L3/L4 header
fields with the help of hardware lookup tables and TCAM preprogrammed with
matching rules.

Receive DMA Channel Selection
In Sun Multithreaded 10-Gb Ethernet and NIU, there are a total of 16 Receive DMA
Channels (RDCs) in hardware. These Receive DMA channels are organized into
Receive DMA Channel Groups (RDC Groups). Each RDC Channel Group can have
124 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

up to 16 RDC entries. During receive, a RDC group (identified by the RDC group
number) is selected to be used. For packets that pass through classification
successfully, with no L2 CRC error or IP checksum error, the Receive DMA Group
number and the offset from the hardware classifier will be used to select the DMA
channel. For packets with checksum errors, the offset will be changed to zero to
select the default within the group. A RDC hardware RDC table holds the content of
each RDC group. Each table consists of the following entries:

Where n is any number between 0 and 15.

In the default configuration, each Ethernet port is associated with a default RDC
table and all classification results will be based on the value of this RDC table. The
RDC used for receive is determined by the RDC table entry that is indexed by the
offset value generated by the classifier.

TABLE 8-1 RDC Table

Table Entry RDC Number

0 RDCn

1 RDCn

2 RDCn

3 RDCn

4 RDCn

5 RDCn

6 RDCn

7 RDCn

8 RDCn

9 RDCn

10 RDCn

11 RDCn

12 RDCn

13 RDCn

14 RDCn

15 RDCn
Chapter 8 Receive Packet Classification 125

The following tables show the contents of the default RDC table for each reference
configuration:

In this configuration, the RDC table entry 0 is bound to port0 as the default RDC
table entry. All classification results will end up in one of the table entries in this
table. The target RDC used to carry traffic will be in a range from RDC#0 to RDC#7.

TABLE 8-2 Default RDC Table Content for NIU 1-Port x 10-Gb Configuration

RDC Table #0 at port0

Table Entry RDC Number

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 0

9 1

10 2

11 3

12 4

13 5

14 6

15 7

TABLE 8-3 Default RDC Table Content for NIU 2-Port x 10-Gb Configuration

RDC Table #0 at port0 RDC Table#8 at port1

Table Entry RDC Number Table Entry RDC Number

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4
126 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

In this configuration, entry 0 is bound to port0 as the default RDC table entry for
port0. Entry 8 is bound to port1 as the default RDC table entry. All classification
results will end up in one of the table entries in these two table. The target RDC used
to carry traffic will be in a range from RDC#0 to RDC#7.

5 5 5 5

6 6 6 6

7 7 7 7

8 0 8 0

9 1 9 1

10 2 10 2

11 3 11 3

12 4 12 4

13 5 13 5

14 6 14 6

15 7 15 7

TABLE 8-4 4-Port x 1-G Default Configuration

RDC Table#0 at
port0

RDCTable#1 at
port1

RDC Table#2 at
port2

RDC Table#3 at
port3

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

2 0 2 1 2 2 2 3

3 0 3 1 3 2 3 3

4 0 4 1 4 2 4 3

5 0 5 1 5 2 5 3

6 0 6 1 6 2 6 3

7 0 7 1 7 2 7 3

8 0 8 1 8 2 8 3

9 0 9 1 9 2 9 3

10 0 10 1 10 2 10 3

TABLE 8-3 Default RDC Table Content for NIU 2-Port x 10-Gb Configuration (Continued)

RDC Table #0 at port0 RDC Table#8 at port1

Table Entry RDC Number Table Entry RDC Number
Chapter 8 Receive Packet Classification 127

In this configuration, entry 0 is binded to port0 as the default RDC table entry for
port0. Entry 1 is binded to port1 as the default RDC table entry, and so on, up to 4
ports. All classification results end up in one of the table entries in these four table.
Only one RDC is used for each port.

The following I/O control functions can be used to override the default RDC
configuration:

■ ETH_IOC_SET_RDC_GRP

■ ETH_IOC_BIND_RDC_GRP

The following I/O control functions show the current RDC group contents and
configuration:

■ ETH_IOC_SHOW_RDC_GRP

■ ETH_IOC_SHOW_RDC_GRPS

Hashing Based on Layer 2, Layer 3, and
Layer 4 Header Classification
The procedure of hashing includes a hash lookup table based on the hash key. The
hash key is created by applying a hash algorithm to a flow key and the flow key is
generated from extracting certain fields from Layer 2, Layer 3, and Layer 4
(L2/L3/L4) packet headers.

11 0 11 1 11 2 11 3

12 0 12 1 12 2 12 3

13 0 13 1 13 2 13 3

14 0 14 1 14 2 14 3

15 0 15 15 2 15 3

TABLE 8-4 4-Port x 1-G Default Configuration

RDC Table#0 at
port0

RDCTable#1 at
port1

RDC Table#2 at
port2

RDC Table#3 at
port3

0 0 0 1 0 2 0 3
128 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

The header fields in the flow key selections consist of the following individual
header fields:

■ MAC port number

■ MAC destination address

■ VLAN ID if tagged

■ Protocol ID/next header

■ IP source address, IP destination address

■ Layer 4 source and destination port number.
or a combination of these fields.

Hash Algorithm
The hashing algorithm is based on polynomial hashing with CRC-32C. The
algorithm is a 32-bit hash value. The last four bits of the value is used to index into
a hardware hash table to lookup a DMA channel. In a Sun Netra DPS environment,
one RDC table is used. The DMA channel number is one-to-one corresponding to the
RDC table entry number, the value of the last four bits, therefore, equals the DMA
channel number.

X32 + x28 + X27 + X26 + X25 + X23 + X22 + X20 + X19 + X18 + X14 + X13 + X11 + X10 + X9

+ X8 + X6 + 1

Hash Key
The hash key is generated by a seed value. The following driver parameter can be
used to modify the hash key:

nxge_fflp_h1

It is set to 0xffffffff by default.
Chapter 8 Receive Packet Classification 129

Application
Use hashing for general load spreading and load balancing applications. The traffic
load of each DMA channel depends on the value in the header fields used for the
hash. Since the target DMA channel is determined by a polynomial, the correlation
between the header value and the target DMA channel cannot be easily determined.
How balance of the DMA channels are spread also depends on the value and range
of the header fields. Hashing is considered a general purpose load spreading
scheme.

Hash Policy
Hashing is enabled by default. The hash policy is determined by setting the
FLOW_POLICY to one of the values shown in TABLE 8-5:

The default FLOW_POLICY is set to HASH_ALL, meaning that the hash hardware hash
algorithm is applied on all of the above header fields. To disable hash, set
FLOW_POLICY to 0 or TCAM_CLASSIFY. When set to 0, no traffic spreading is
performed. All traffic ends up at a default DMA channel. When set to
TCAM_CLASSIFY, traffic spreading is determined by predefined flow specifications.

TABLE 8-5 Hash Policy Values

Value Meaning

HASH_IP_ADDR Hash on IP destination and source addresses

HASH_IP_DA Hash on IP destination address

HASH_IP_SA Hash on IP source address

HASH_VLAN_ID Hash on VLAN ID

HASH_PORTNUM Hash on physical MAC port number

HASH_L2DA Hash on L2 destination address

HASH_PROTO Hash on protocol number

HASH_SRC_PORT Hash on L4 source port number

HASH_DST_PORT Hash on L4 destination port number

HASH_ALL Hash on all of the above fields

TCAM_CLASSIFY Perform TCAM lookup
130 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Flow Match Based on Layer 2, Layer 3,
and Layer 4 Header Classification

Layer 2 (L2) Classification
The layer 2 parser (part of the classification hardware) parses the following
information from an Ethernet frame:

1. If the frame is VLAN packet, the VLAN ID

2. Ethernet format, whether there is a LLC/SNAP field.

Upon receiving this information, the classifier selects a RDC table to be used for
further classification. L2 classification can be based on the following criteria:

■ Classification based on VLAN

For VLAN frames, the VLAN ID is used to index into a VLAN table to determine
the RDC table number to be used for further classification. The VLAN table
consists of 4-K entries. Each entry specifies a VLAN ID and its corresponding
target RDC table number.

■ Classification based on MAC addresses

The target RDC table can also be determined based on the MAC address
information. This information includes the MAC address type (for example,
unicast, multicast, self address, address filter, or flow control) and the address.

The following I/O Control functions are used for L2 classification setup:

■ ETH_IOC_SET_MAC_TBL

■ ETH_IOC_SET_VLAN_TBL

■ ETH_IOC_SHOW_MAC_TBL

Because both VLAN table and MAC address table can set the preference, the
arbitration between VLAN table and MAC address table is done by setting the
priority field in each of these two tables.

Note – In Sun multithreaded 10-Gb Ethernet technology, L2 classification can be
seen as a coarse classification mechanism in which the output of the classification is
the RDC table number. Further fine classification (such as L3/L4 classification) needs
to be performed to obtain the target RDC number for the RDC to be used to carry
the receive traffic.
Chapter 8 Receive Packet Classification 131

Layer 3 and Layer 4 (L3/L4) Classification
L3/L4 header classification relies on the TCAM hardware to determine how traffic
flows are distributed. There are multiple TCAM hardware entries (256 in Sun
multithreaded 10GbE, 128 in NIU) for specifying flow specification. The CAM
lookup table key generation use the concept of classes of packets to assemble a key.
With the CAM key, a packet goes through a single CAM lookup table for an
associative search. The L3/L4 header classification starts when the header parse
identifies the incoming L2/L3 packet type.

The following packet classes are supported in Sun Netra DPS:

■ UDP over IPv4

■ TCP over IPv4

■ SCTP over IPv4

■ IPSEC (AH/ESP) over IPv4

■ TCP over IPv6

■ UDP over IPv6

■ SCTP over IPv6A

■ IPSEC (AH/ESP) over IPv6

Applications
Use flow tables and TCAM to direct a particular type of traffic flow (with different
traffic classes) into particular DMA channels. Flow tables and TCAM are ideal for
use in load balancing applications.

Classification Programming Interface
The interface to the Flow Matching scheme is the ETH_IOC_SET_CLASSSIFY
“IO Control” command of the Sun Netra DPS Ethernet interface. The following
shows the calling convention of the interface:

eth_ioc(ihdlnet[port], ETH_IOC_SET_CLASSIFY, (void
*)&clsfy_ioc);

ihdlnet[] is an array of device driver handle indexed by the Ethernet port number
[port]. ETH_IOC_SET_CLASSIFY is the set classifier command.
132 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

The clsfy_ioc structure is defined as follows:

typedef struct classify_ioc_s {
uint_t opcode;
uint_t action;
flow_spec_t flow_spec;

} classify_ioc_t;

opcode

opcode specifies what to do about a new traffic flow. TABLE 8-6 shows possible
opcode values:

action

action specifies what action to take when there is a match. TABLE 8-7 shows possible
action values:

TABLE 8-6 opcode Values

Value Meaning

IOC_ADD_CLASSIFY Add a flow.

IOC_INVALIDATE_CLASSIFY Invalidate a flow.

TABLE 8-7 action Values

Value Meaning

IOC_FLOW_ACCEPT Accept when a match.

IOC_FLOW_DISCARD Discard when a match.
Chapter 8 Receive Packet Classification 133

flow_spec

flow_spec is the flow specification specifying the characteristics of the IPv4 and
IPv6 flow. The following shows the flow_spec structure:

fs_type

TABLE 8-8 shows the possible values of the traffic flow spec types (fs_type):

typedef struct flow_spec_ipv4_s {
uint8_t protocol;
uint8_t tos;
union {

port_t tcp;
port_t udp;
spi_port_t spi;

} port;
uint32_t src;
uint32_t dst;

} flow_spec_ipv4_t;

typedef struct flow_spec_ipv6_s {
uint8_t protocol;
uint8_t tos;
union {

port_t tcp;
port_t udp;
spi_port_t spi;

} port;
struct in6_addr src;
struct in6_addr dst;

} flow_spec_ipv6_t;

TABLE 8-8 fs_type Possible Values

Value Meaning

FSPEC_TCPIP4 TCP over IPv4

FSPEC_UDPIP4 UDP over IPv4

FSPEC_AHIP4 IPSEC/AH over IPv4

FSPEC_ESPIP4 IPSEC/ESP over IPv4

FSPEC_SCTPIP4 SCTP over IPv4

FSPEC_TCPIP6 TCP over IPv6

FSPEC_UDPIP6 UDP over IPv6
134 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

index

This is the index into the TCAM entries (for L3/L4 TCAM classification) or index
into the MAC or VLAN table (for L2 MAC/VLAN classification).

■ For TCAM on Sun multithreaded 10GbE: value range is 0 ~ 255

■ For TCAM on NIU: value range is 0 ~ 127

Note – The software application must keep track of the index number.

channel

This is the target DMA channel ranges 0 ~ 15.

ue or um
ue is the 5-tuple for IPv4 or 4-tuple for IPv6 structure for L3/L4 TCAM
classification. For L2 classification, it is the L2 header structure. um is the bit-mask
corresponding to the ue. Set 1 to bit-mask for don’t care (not to compare). Set 0
in bit-mask to compare.

hd

This is the entire 64-bit header.

FSPEC_AHIP6 IPSEC/AH over IPv6

FSPEC_ESPIP6 IPSEC/ESP over IPv6

FSPEC_SCTPIP6 SCTP over IPv6

TABLE 8-8 fs_type Possible Values

Value Meaning
Chapter 8 Receive Packet Classification 135

flow_spec_ipv4_tab_s

The following is the IPv4 flow specification structure:

flow_spec_ipv6_t

The following is the IPv6 flow specification structure:

typedef struct flow_spec_ip4_tab_s {
int index;
uint8_t protocol;
uint8_t tos;
uint8_t tos_mask;
uint16_t src_port;
uint16_t src_port_mask;
uint16_t dst_port;
uint16_t dst_port_mask;
char *src_addr;
char *src_addr_mask;
char *dst_addr;
char *dst_addr_mask;
int action;
uint8_t dma_chan;

} flow_spec_ip4_tab_t;

typedef struct flow_spec_ipv6_s {
uint8_t protocol;
union {

port_t tcp;
port_t udp;
spi_port_t spi;

} port;
uint8_t src[16];
uint8_t dst[16];

} flow_spec_ipv6_t;u
136 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

flow_spec_l2_t

This is the L2 header structure as shown below:

Examples

▼ To Use Hash Flow
● Set FLOW_POLICY to a desired policy. For example:

This command tells Sun multithreaded 10GbE with NIU hardware to hash on all
L2/L3/L4 header fields.

▼ To Use TCAM Classification
This example shows how a flow table can be established in the application.

1. Set up an array of flow table entries.

typedef struct flow_spec_l2_s {
uint8_t dst[6]; /* MAC address */
uint8_t src[6]; /* MAC address */
uint16_t type; /* Ether type */
uint16_t vlantag; /* VLANID|CFI|PRI */

} flow_spec_l2_t;

% gmake FLOW_POLICY=HASH_ALL
Chapter 8 Receive Packet Classification 137

For example, use entries with the following structure:

typedef struct flow_spec_ip4_tab_s {
int index;
uint8_t protocol;
uint8_t tos;
uint8_t tos_mask;
uint16_t src_port;
uint16_t src_port_mask;
uint16_t dst_port;
uint16_t dst_port_mask;
char *src_addr;
char *src_addr_mask;
char *dst_addr;
char *dst_addr_mask;
int action;
uint8_t dma_chan;

} flow_spec_ip4_tab_t;
138 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

2. Populate the flow table as shown in the below example.

flow_spec_ip4_tab_t ip4_flow_tab[] = {
{0, IPPROTO_UDP, 0, 0xFF, 0, 0xFFFF, 0, 0xFFFF,

"192.30.50.0", "255.255.255.255",
"192.31.50.1", "255.255.255.0",
FLOW_ACCEPT, 0},

{1, IPPROTO_UDP, 0, 0xFF, 0, 0xFFFF, 0, 0xFFFF,
"192.30.50.0", "255.255.255.255",
"192.31.50.2", "255.255.255.0",
FLOW_ACCEPT, 1},

{2, IPPROTO_UDP, 0, 0xFF, 0, 0xFFFF, 0, 0xFFFF,
"192.30.50.0", "255.255.255.255",
"192.31.50.3", "255.255.255.0",
FLOW_ACCEPT, 2},

{3, IPPROTO_UDP, 0, 0xFF, 0, 0xFFFF, 0, 0xFFFF,
"192.30.50.0", "255.255.255.255",
"192.31.50.4", "255.255.255.0",
FLOW_ACCEPT, 3},

{4, IPPROTO_UDP, 0, 0xFF, 0, 0xFFFF, 0, 0xFFFF,
"192.30.50.0", "255.255.255.255",
"192.31.50.5", "255.255.255.0",
FLOW_ACCEPT, 4},

{5, IPPROTO_UDP, 0, 0xFF, 0, 0xFFFF, 0, 0xFFFF,
"192.30.50.0", "255.255.255.255",
"192.31.50.6", "255.255.255.0",
FLOW_ACCEPT, 5},

{6, IPPROTO_UDP, 0, 0xFF, 0, 0xFFFF, 0, 0xFFFF,
"192.30.50.0", "255.255.255.255",
"192.31.50.7", "255.255.255.0",
FLOW_ACCEPT, 6},

{7, IPPROTO_UDP, 0, 0xFF, 0, 0xFFFF, 0, 0xFFFF,
"192.30.50.0", "255.255.255.255",
"192.31.50.8", "255.255.255.0",
FLOW_ACCEPT, 7},

{-1, 0, 0, 0, 0, 0, 0, 0, "", "", "", "", 0, 0}
};
Chapter 8 Receive Packet Classification 139

3. Write a parsing function to parse the entries in the table as shown in the below
example.

void
classify_parse_entries(uint_t flow_cfg, uin8_t port,

uint8_t chan, flow_spec_ip4_tab_t *fe)
{

classify_ioc_t clsfy_ioc;
int status;
int i;

for (i = 0; fe[i].index != -1; i++) {
if (fe[i].dma_chan != chan)

continue;
clsfy_ioc.opcode = IOC_ADD_CLASSIFY;
clsfy_ioc.flow_spec.fs_type = FSPEC_UDPIP4;
clsfy_ioc.flow_spec.index = fe[i].index;
clsfy_ioc.flow_spec.channel = fe[i].dma_chan;
clsfy_ioc.flow_spec.ue.ip4.protocol = fe[i].protocol;
clsfy_ioc.flow_spec.ue.ip4.tos = fe[i].tos;
clsfy_ioc.flow_spec.ue.ip4.port.udp.src = fe[i].src_port;
clsfy_ioc.flow_spec.ue.ip4.port.udp.dst = fe[i].dst_port;
status = inet_pton(AF_INET, (char *)fe[i].src_addr,

(char *)&clsfy_ioc.flow_spec.ue.ip4.src);
if (status != 1)

goto fail;
status = inet_pton(AF_INET, (char *)fe[i].dst_addr,

(char *)&clsfy_ioc.flow_spec.ue.ip4.dst);
if (status != 1)

return;
clsfy_ioc.flow_spec.um.ip4.tos = ~fe[i].tos_mask;
clsfy_ioc.flow_spec.um.ip4.port.udp.src = ~fe[i].src_port_mask;
clsfy_ioc.flow_spec.um.ip4.port.udp.dst = ~fe[i].dst_port_mask;
status = inet_pton(AF_INET, (char *)fe[i].src_addr_mask,

(char *)&clsfy_ioc.flow_spec.um.ip4.src);
if (status != 1)

goto fail;
clsfy_ioc.flow_spec.um.ip4.src =

~clsfy_ioc.flow_spec.um.ip4.src;
status = inet_pton(AF_INET, (char *)fe[i].dst_addr_mask,

(char *)&clsfy_ioc.flow_spec.um.ip4.dst);
if (status != 1)

goto fail;
clsfy_ioc.flow_spec.um.ip4.dst =

~clsfy_ioc.flow_spec.um.ip4.dst;
if (fe[i].action == FLOW_ACCEPT)

clsfy_ioc.action = IOC_FLOW_ACCEPT;
else

clsfy_ioc.action = IOC_FLOW_DISCARD;

/* Program the TCAM HW */
(void) eth_ioc(ihdlnet[port], ETH_IOC_SET_CLASSIFY,

(void *)&clsfy_ioc);
}

}

140 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

4. During the build, enable TCAM classification and disable hashing. To do this,
type:

This command enables Sun multithreaded 10-Gb Ethernet with NIU hardware to
enable TCAM classification with matching rules as shown in Step 1 to Step 3.

gmake FLOW_POLICY=TCAM_CLASSIFY
Chapter 8 Receive Packet Classification 141

142 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

CHAPTER 9

Auto-Configuration

This chapter describes the Sun Netra DPS Auto-Configuration (autoconfig) tool.
Topics include:

■ “Auto-Configuration Introduction” on page 143

■ “Installation” on page 144

■ “Prerequisites” on page 144

■ “User Interface” on page 145

Auto-Configuration Introduction
Auto-configuration is a tool for automatically configuring the Logical Domains
Environment for Sun Netra DPS applications. Use the autoconfig tool for the
following:

■ Configure primary and guest domains for reference applications

■ Custom configure primary and guest domains for your own applications

■ Configure Logical domain channel (LDC) and interprocess communication (IPC)
channels

The autoconfig tool cannot be used for the following:

1. Modify parameters of existing guest domains.

2. Reconfigure primary domain in configuration modes other than factory default.
143

Installation
The auto-configuration tool is packaged with both SUNWndps and SUNWndpsd
packages.

To invoke the autoconfig tool, install the SUNWndps package on the primary
domain and run the following command:

Alternatively, you can copy the auto-configuration tool from the above location from
a machine where you have installed the SUNWndps package to the primary domain.

The user can also copy the auto-configuration tool to the primary domain from a
machine where you installed the SUNWndpsd package. In this case, you can find
auto-configuration under the /opt/SUNWndpsd/bin/autoconfig directory.

Prerequisites
Before running the tool, make sure the following prerequisites are satisfied:

■ The system supports Oracle VM Server for SPARC (logical domains 1.0.1, or
higher) and has the required firmware.

■ The system has Logical Domains Manager Version 1.0.1, or higher, software
installed.

■ Storage for virtual disks are identified.

For more information, refer to the logical domains documentation for logical
domains firmware and logical domains manager software installation.

/opt/SUNWndps/tools/bin/solaris/autoconfig
144 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

User Interface
This section describes user interface configurations.

Configuring a Logical Domain Environment for
Reference Applications
When the auto-configuration tool is invoked on a system where Logical Domains are
yet to be configured, the following screen is displayed:

To configure a Logical Domain Environment, that is, the primary and the guest
domains, for a reference application, select option 1. Once you select the option, the
auto-configuration tool will list the set of reference applications for which it can
create the primary and guest domains automatically.

*** Netra Data Plane Suite Configurator ***

The Netra Data Plane Suite (Netra DPS) Configurator can be used to
configure the Logical Domains Environment for Netra DPS applications.
Check for the following prerequisites before proceeding:

* Your system supports Logical Domains and has the required firmware
* Your system has Logical Domains Manager installed
* Storage for virtual disks have been identified

Do you want to proceed? [y] y

Your system is ready to configure the Logical Domains Environment.
You can either choose a Logical Domain Environment that has been
predefined for various Netra DPS applications or create your own.

1) Choose a predefined Logical Domain Environment from a list
2) Custom configure a Logical Domain Environment
3) Quit

Option [1]: 1
Chapter 9 Auto-Configuration 145

Select the application for which you want the tool to create the primary and guest
domains.

After the auto-configuration tool completes the configuration, you can use the same
tool to configure LDC and IPC channels for the application according to your
requirements.

Note that the auto-configuration tool requires that the vntsd service be in enabled
state for its successful operation. While configuring logical domains for reference
applications using the auto-configuration tool, the vntsd service might take a long
time to come up during the guest domains configuration step causing the tool to exit
with the following error:

In such a scenario, execute the following command to proceed with guest domain
configuration after the vntsd service is in enabled state:

If configuring the DemoApplication:

If configuring the ThreeDomainsExampleApplication:

Custom Configuring a Primary Domain
When the auto-configuration tool is invoked on a system where Logical Domains are
yet to be configured, the following screen is displayed:

INFO: vntsd service has not come online. Please start Autoconfig after vntsd
service comes online

/var/NetraDPS/autoconfig/autoconfig_work/CONFIG/main.ksh
guestdomain DemoApplication

/var/NetraDPS/autoconfig/autoconfig_work/CONFIG/main.ksh
guestdomain ThreeDomainsExampleApplication
146 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

To custom configure a Primary domain, select option 2. After you select the option,
the auto-configuration tool will ask a series of questions regarding your primary
domain configuration such as memory, VCPU, MAU, disk, network and console
services, and so on. Answer the prompts according to your requirements.

After the auto-configuration tool collects all the requirements, the tool configures
the primary domain and saves the configuration on the system controller as
ndps-config-initial.

Note – For the changes to be effective, the system should undergo a power cycle.
Allow the tool to do the power cycle or you can do it manually.

After the system is up after the power cycle, you can configure the guest domains
using the auto-configuration tool.

*** Netra Data Plane Suite Configurator ***

The Netra Data Plane Suite (Netra DPS) Configurator can be used to
configure the Logical Domains Environment for Netra DPS applications.
Check for the following prerequisites before proceeding:

* Your system supports Logical Domains and has the required firmware
* Your system has Logical Domains Manager installed
* Storage for virtual disks have been identified

Do you want to proceed? [y] y

Your system is ready to configure the Logical Domains Environment.
You can either choose a Logical Domain Environment that has been
predefined for various Netra DPS applications or create your own.

1) Choose a predefined Logical Domain Environment from a list
2) Custom configure a Logical Domain Environment
3) Quit

Option [1]: 2
Chapter 9 Auto-Configuration 147

Custom Configuring a Guest Domain
When the auto-configuration tool is invoked on a system where Logical Domains are
already configured, the following screen is displayed:

To custom configure a guest domain, select option 1. After you select the option, the
auto-configuration tool will ask a series of questions regarding your guest domain
configuration such as memory, VCPU, MAU disk, network, and so on. Answer the
prompts according to your requirements.

After the auto-configuration tool collects all the information, it configures the guest
domain. If the configuration succeeds, you can use the same tool to setup the tftp
boot server for the domain. To set up tftp, you need to provide a private IP address
for the guest domain, and if not already present, a private IP address for the
primary. As an option, you can also move an image to the /tftpboot directory.

 *** Netra Data Plane Suite Configurator ***

The Netra Data Plane Suite (Netra DPS) Configurator can be used to
configure the Logical Domains Environment for Netra DPS applications.
Check for the following prerequisites before proceeding:

* Your system supports Logical Domains and has the required firmware
* Your system has Logical Domains Manager installed
* Storage for virtual disks have been identified

Do you want to proceed? [y] y

A primary domain has been configured and is in active state.

Please select from one of the following options:

1) Custom configure guest domain
2) Configure guest domains under a configuration directory
3) Save guest domains configuration under a directory
4) Configure LDC channels
5) Configure IPC channels
6) Quit

Option [1]: 1
148 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

To configure the primary domain again at a later time using the auto-configuration
tool, perform the following steps:

1. Set the logical domain configuration to factory-default mode, and perform a
power cycle.

2. Start the auto-configuration tool.

Configuring LDC and IPC
The auto-configuration tool can be used to configure LDC and IPC communication
channels. To configure LDC or IPC, you should have three domains in active state.
One domain for the Sun Netra DPS Runtime Environment application, one domain
for the Control application, and the last for the Global configuration domain. For
more information, refer to Chapter 5.

After you have created the required domains and they are in active state, invoke
auto-configuration and select option 4 for LDC or option 5 for IPC from the
following Sun Netra Data Plane Suite Configurator display.

Note – The user can only configure IPC after configuring the LDC.
Chapter 9 Auto-Configuration 149

Before configuring IPC, you need to have installed the required Oracle Solaris OS on
the Control and Global configuration domains. You should also have installed the
SUNWndpsd package on those domains and should have rebooted the domain
system after the package was installed. While configuring IPC, make sure the Sun
Netra DPS Runtime Environment domain has the required Sun Netra DPS
application running.

 *** Netra Data Plane Suite Configurator ***

The Netra Data Plane Suite (Netra DPS) Configurator can be used to
configure the Logical Domains Environment for Netra DPS applications.
Check for the following prerequisites before proceeding:

* Your system supports Logical Domains and has the required firmware
* Your system has Logical Domains Manager installed
* Storage for virtual disks have been identified

Do you want to proceed? [y] y

A primary domain has been configured and is in active state.

Please select from one of the following options:

1) Custom configure guest domain
2) Configure guest domains under a configuration directory
3) Save guest domains configuration under a directory
4) Configure LDC channels
5) Configure IPC channels
6) Quit

Option [1]: 4 (or) 5
150 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Saving Current Guest Domains Configuration
Save the current guest domains configuration as XML files in a directory. To do this,
select option 3 from the following Sun Netra Data Plane Suite Configurator display:

After you select the option, the auto-configuration tool will save the Logical Domain
configurations as XML files in the directory that you provide.

 *** Netra Data Plane Suite Configurator ***

The Netra Data Plane Suite (Netra DPS) Configurator can be used to
configure the Logical Domains Environment for Netra DPS applications.
Check for the following prerequisites before proceeding:

* Your system supports Logical Domains and has the required firmware
* Your system has Logical Domains Manager installed
* Storage for virtual disks have been identified

Do you want to proceed? [y] y

A primary domain has been configured and is in active state.

Please select from one of the following options:

1) Custom configure guest domain
2) Configure guest domains under a configuration directory
3) Save guest domains configuration under a directory
4) Configure LDC channels
5) Configure IPC channels
6) Quit

Option [1]: 3
Chapter 9 Auto-Configuration 151

Configuring the Oracle VM Server for SPARC
Software from a Saved Location
Create guest domains from their respective XML files present in a directory. To do
this, select option 2 from the following Sun Netra Data Plane Suite Configurator
display:

After you select the option, the auto-configuration tool will create guest domains
from the directory you provide.

 *** Netra Data Plane Suite Configurator ***

The Netra Data Plane Suite (Netra DPS) Configurator can be used to
configure the Logical Domains Environment for Netra DPS applications.
Check for the following prerequisites before proceeding:

* Your system supports Logical Domains and has the required firmware
* Your system has Logical Domains Manager installed
* Storage for virtual disks have been identified

Do you want to proceed? [y] y

A primary domain has been configured and is in active state.

Please select from one of the following options:

1) Custom configure guest domain
2) Configure guest domains under a configuration directory
3) Save guest domains configuration under a directory
4) Configure LDC channels
5) Configure IPC channels
6) Quit

Option [1]: 2
152 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

CHAPTER 10

Transparent Interprocess
Communication

This chapter describes using the Transparent Interprocess Communication (TIPC)
protocol. Topics include:

■ “Transparent Interprocess Communication Introduction” on page 153

■ “TIPC Components” on page 154

■ “Installing TIPC” on page 155

■ “Programming Interfaces Overview” on page 157

■ “Configuring Environment for TIPC” on page 158

Transparent Interprocess
Communication Introduction
The Transparent Interprocess Communication (TIPC) protocol is designed for use in
clustered computer environments. TIPC allows designers to create applications that
can communicate quickly and reliably with other applications regardless of their
location within the cluster.

You first must read the TIPC documentation, which is available at:
http://tipc.sourceforge.net/

TIPC is available for Oracle Solaris and can be downloaded at:
http://opensolaris.org/os/project/tipc/
153

http://opensolaris.org/os/project/tipc/
http://tipc.sourceforge.net/

TIPC Components
The TIPC implementation for Sun Netra DPS contains the components listed below.
These components are required to run a TIPC application on Sun Netra DPS:

■ Sun Netra DPS runtime components – These components provide all APIs and
the libraries for writing the TIPC application for Sun Netra DPS:

■ /opt/SUNWndps/lib/tipc/include – Contains the TIPC header files.

■ /opt/SUNWndps/lib/tipc/lwrtetipc.o – Provides the binaries for TIPC.
The application writer needs to link the application with this binary.

■ Control plane (Oracle Solaris OS) components – To configure TIPC, the following
is required:

■ /opt/SUNWndpsd/bin/tn-tipc-config – The utility tool for configuring
TIPC.

■ /opt/SUNWndpsd/lib/libtipccfgsocket.so.1 – Contains Socket API
implementation over IPC. This library is required for running the tipc-
config utility tool.

■ Oracle Solaris TIPC packages – Oracle Solaris TIPC is modified to support IPC
bearer media:

■ /opt/SUNWndps-tipc – Contains TIPC with IPC media support.

■ /opt/SUNWndps-tipc-headers – TIPC header files to develop TIPC
applications in the Solaris OS.

■ /opt/SUNWndps-tipc-examples – Contains TIPC example applications.

■ Control plane (Linux) components - To configure Sun Netra DPS TIPC, the
following is required:

■ /opt/SUNWndpsd/linux/src/lwrte-tipc-cfg-lnx – Contains the
sources to build the utility tool called tn-tipc-config for Linux OS.

Note – The following packages should not be installed with the above mentioned
packages: SUNWtipc, SUNWtipc-examples and SUNWtipc-headers.

■ TIPC source files

■ /opt/SUNWndps/src/libs/tipc – Contains the TIPC source files for Sun
Netra DPS.
154 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Installing TIPC
This section describes how to install TIPC.

▼ To Install TIPC
1. Go to the /opt/SUNWndps/src/libs/tipc directory. Type:

Or, copy /opt/SUNWndps/src/libs/tipc to a preferred location and change
the directory to the copied location.

2. Compile the Oracle Solaris TIPC application.

Note – Compiling of Oracle Solaris TIPC packages is not necessary unless you want
to change the Oracle Solaris source.

Run the following command to build the Oracle Solaris TIPC packages:

The above command builds the Sun Netra DPS binaries and Oracle Solaris
packages under the ./bins directory.

Three packages are created for Oracle Solaris TIPC, as shown below:

■ SUNWndps-tipc – Contains the TIPC kernel module and associated library
that includes support for IPC bearer.

■ SUNWndps-tipc-headers – Contains the TIPC public header files useful for
development.

■ SUNWndps-tipc-examples – Contains ready-to-run examples.

The TIPC binaries for Sun Netra DPS are created as shown below:

■ ./bins/include – This directory contains the TIPC header files required for
writing Sun Netra DPS TIPC application

■ lwrtetipc.o – This is the TIPC library for the Sun Netra DPS application.

cd /opt/SUNWndps/src/libs/tipc

gmake SOLARIS_PKG_DIR=./bins TARGET_DIR=./bins release
Chapter 10 Transparent Interprocess Communication 155

3. Compile the Sun Netra DPS TIPC application.

Note – Compiling of Sun Netra DPS TIPC is required if you want to change the IPC
channel number used for the Sun Netra DPS TIPC configuration.

Compiling of Sun Netra DPS TIPC alone can be done by the following command.

To build the Sun Netra DPS TIPC application with the TIPC library, the
application should be compiled with the following options:

■ /opt/SUNWndps/lib/tipc/include – This directory path should be added
to include the path to pick the header files.

■ /opt/SUNWndps/lib/tipc/lwrtetipc.o – This is added to USR_LIBS for
linking to your application with the TIPC library.

4. Install TIPC.

Do the following to install Oracle Solaris TIPC.

a. Log on to your target machine as root.

b. Install the SUNWndps-tipc package using the pkgadd command as shown
in the example below:

c. If necessary, install the SUNWndps-tipc-examples package using the
pkgadd command as shown below:

d. Reboot if necessary.

In certain conditions, the tipc module will not load automatically. In this case,
reboot the system or load the tipc module manually by using the following
command:

gmake TARGET_DIR=./bins

pkgadd -d path-to-packages SUNWndps-tipc

pkgadd -d path-to-packages SUNWndps-tipc-examples

add_drv tipc
156 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

e. You must set up the environment to preload the TIPC socket library as
shown below before running the Oracle Solaris TIPC applications:

See “SUNWndpsd and SUNWndps-tipc Binaries” on page 158 for a description
the of tipc-config in the SUNWndpsd and SUNWndps-tipc binaries.

Programming Interfaces Overview
You can use the Transparent Interprocess Communication (TIPC) Socket APIs to
write TIPC applications. The Sun Netra Data Plane Software Suite 2.1 Update 1
Reference Manual contains a detailed description of the TIPC APIs.

In a Sun Netra DPS application, you must call the framework initialization routines
for the IPC, LDC, and TIPC frameworks, and must ensure that tipc_process() is
called periodically.

The application developer must implement tipc_pbuf_alloc() and
tipc_pbuf_free() to allocate and free message block buffers used by the TIPC
stack. The buffers must be 8-byte aligned. The application developer must also
implement tipc_eth_pbuf_alloc() and tipc_eth_pbuf_free() to allocate
and free message block buffers to manage outgoing and incoming Ethernet or vnet
packets.

To support Ethernet or vnet bearer in a Sun Netra DPS application, the programmer
must implement the tipc_eth_get_mac() function to provide the MAC address of
the Ethernet or vnet port to the TIPC stack. And also, the application must open the
corresponding Ethernet or vnet port using eth_open(). To get the TIPC messages
to be transmitted over the Ethernet or vnet media, the application needs to poll on
the fastq returned by tipc_eth_get_fastq(dev_type, port, chan,
TIPC_FASTQ_TX). Then, on receiving a TIPC message over the Ethernet or vnet,
the application needs to enqueue it into the fastq, returned by
tipc_eth_get_fastq(dev_type, port, chan, TIPC_FASTQ_RX) for the
corresponding Ethernet or vnet port.

Note – poll() is not supported in Sun Netra DPS.

LD_PRELOAD_32=/opt/SUNWndps-tipc/lib/libtipcsocket.so
LD_PRELOAD_64=/opt/SUNWndps-tipc/lib/sparcv9/libtipcsocket.so
export LD_PRELOAD_32 LD_PRELOAD_64
Chapter 10 Transparent Interprocess Communication 157

Configuring Environment for TIPC
This section describes the configuration of the environment needed to use the TIPC
framework. This section also covers setup of the Ethernet bearer for the NDPS
application

SUNWndpsd and SUNWndps-tipc Binaries
The tn-tipc-config-bin tool in the SUNWndpsd package configures Sun Netra
DPS TIPC node from Oracle Solaris guest logical domain. This is the same binary as
tipc-config that is present in the SUNWndps-tipc package. Only the libraries
that are pre-loaded are different for Oracle Solaris TIPC and Sun Netra DPS TIPC.
The tipc-config binary is placed in two packages because there are cases where
both packages will not be installed on the same system. For example, if only the
SUNWndpsd package is installed and in the control domain, the tn-tipc-config-
bin and the corresponding tn-tipc-config script are required to configure the
Sun Netra DPS TIPC. Thus, both scripts are in the SUNndpsd package.

Also, the packaging of SUNWndps-tipc is the same as the Oracle Solaris TIPC that
can be found at http://tipc.sourceforge.net/. Therefore, SUNWndps-tipc
also has the tipc-config binary.

The /opt/SUNWndpsd/bin/tn-tipc-config script sets the environment to pre-
load /opt/SUNWndpsd/lib/libtipccfgsocket.so.1. The script then loads the
/opt/SUNWndpsd/bin/tn-tipc-config-bin binary (this binary is the same as
/opt/SUNWndps-tipc/sbin/tipc-config).

When a Linux guest logical domain is used, the tn-tipc-config-bin and the
script file tn-tipc-config that are present in SUNWndpsd cannot be used. The tool
tn-tipc-config-bin uses IPC which is not supported for the Linux
environment. For the Linux environment, the source files for building the same tool
is provided in /opt/SUNWndpsd/linux/src/lwrte-tipc-cfg-lnx. To build
this tool, please do the following:

cd /opt/SUNWndpsd/linux/src/lwrte-tipc-cfg-lnx
tar -cvf lwrte-tipc-cfg-lnx.tar lwrite-tipc-cfg-lnx/
158 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

http://tipc.sourceforge.net/

In a system that has a UltraSPARC T2 cross-compiler installed:

This creates a binary called tn-tipc-config. Deploy this binary in the Linux guest
logical domain.

Configuring Sun Netra DPS TIPC Stack from an
Oracle Solaris Guest Logical Domain
You can configure the TIPC stack using the tn-tipc-config tool located at
/opt/SUNWndpsd/bin in the Solaris Control-Plane. This tool is the same as tipc-
config which is distributed with the Oracle Solaris TIPC package. (Refer to the
TIPC documentation available at http://tipc.sourceforge.net/ for the
options supported by the tipc-config tool). The tn-tipc-config tool uses the
IPC channel to configure the TIPC stack of Sun Netra DPS. tn-tipc-config uses
TIPC_IPC_CHANNEL_ID channel, which is set to 10 by default in
tipc_ipc_cfgsrv.h. This value can be modified by compiling the TIPC stack with
a different TIPC_IPC_CHANNEL_ID and replacing
/opt/SUNWndpsd/lib/libtipccfgsocket.so.1.

Configuring Sun Netra DPS TIPC Stack from a
Linux Guest Logical Domain
The Sun Netra DPS TIPC stack can be configured from a Linux logical domain using
the tn-tipc-config tool built from the sources in
/opt/SUNWndpsd/linux/src/lwrte-tipc-cfg-lnx. This tool supports the
same options as the tipc-config tool that is distributed with the Linux TIPC
package (refer to the TIPC documentation available at
http://tipc.sourceforge.net/ for information on the supported options). The
tn-tipc-config tool uses a proprietary protocol to communicate with the Sun
Netra DPS TIPC stack over a vnet interface. This protocol uses Ethernet
encapsulated frames with an Ethernet Type of 0x3c21 to communicate between the
stack and the tool running in Linux over a vnet interface. The vnet interface name
that is to be used for this communication must be assigned to an environment
variable called TN_TIPC_CFGDEV.

The prerequisites for using this tool are:

tar -xvf lwrte-tipc-cfg-lnx.tar
cd lwrte-tipc-cfg-lnx
make
Chapter 10 Transparent Interprocess Communication 159

http://tipc.sourceforge.net/
http://tipc.sourceforge.net/

1. One vnet interface must be configured for the Oracle VM Server for SPARC
software and the Linux Guest logical domain. These vnet interfaces must be
reachable through a vswitch.

2. Ethernet multicast frame processing must be enabled on these vnet interfaces.

3. The Sun Netra DPS application must have vnet driver packet processing.

4. The TN_TIPC_CFGDEV environment variable to the vnet interface name that is
used for tn-tipc-config exchanges.

Refer to the Sun Netra Data Plane Software 2.1 Update 1 Reference Manual for
instructions on how to handle the tn-tipc-config frames.

The following commands set the TIPC address for Sun Netra DPS TIPC node from a
Linux control plane logical domain:

▼ To Set the TIPC Address
The TIPC addressing mechanism can be found at the TIPC homepage
(http://tipc.sourceforge.net/).

● Set the address using the -addr option of the tn-tipc-config tool.

The following example shows setting the TIPC address to 10.3.4:

Enabling TIPC Ethernet Bearer
The TIPC Ethernet bearers in the Sun Netra Data Plane is named as a port number,
for example, port0, port1, and so on.

For example, to enable eth:port0, the corresponding Ethernet port0 must have
been opened by the application.

The following example enables the Ethernet port0 bearer for the Sun Netra DPS
application with netmask of 10.3.0:

export TN_TIPC_CFGDEV=eth1
./tn-tipc-config -addr=10.3.7

/opt/SUNWndpsd/bin/tn-tipc-config -addr=10.3.4

/opt/SUNWndpsd/bin/tn-tipc-config -be=eth:port0/10.3.0
160 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

http://tipc.sourceforge.net/

For more details on the -be option in tipc-config, refer to the TIPC
documentation available at http://tipc.sourceforge.net.

Enabling the TIPC IPC Bearer
The TIPC IPC bearers must be named as channel.type, for example, 5.200, 6.100, and
so on. Before enabling the bearer, ensure that the corresponding IPC channel is
created. See “Interprocess Communication Software” on page 89 to create an IPC
channel. For example, to enable IPC bearer with IPC Channel 5 and type 200, the
corresponding IPC channel 5 must be created using the tnsmctl tool.

Note the following requirements:

■ The IPC channel number must not be the same as TIPC_IPC_CHANNEL_ID which
is used by TIPC configuration service.

■ The channel and type number should be the same in both Oracle Solaris and Sun
Netra DPS for communication through the IPC bearer.

The following is an example of enabling IPC bearer for Sun Netra DPS using
tn-tipc-config:

The following is an example of enabling IPC bearer for Oracle Solaris using tipc-
config:

Enabling TIPC vnet Bearer for a NDPS TIPC Node
The -be option of the tn-tipc-config command enables the vnet bearers for a
Sun Netra DPS TIPC node. The media type in the bearer name must be specified as
eth. The interface name in the bearer name must be vnet followed by the instance
number, for example, vnet{instance number}. The instance number can be
obtained by executing the following command from the primary Logical Domain

ldm list-bindings -e control-ldom

/opt/SUNWndpsd/bin/tn-tipc-config -be=ipc:5.200/10.3.0

/opt/SUNWndps-tipc/sbin/tipc-config -be=ipc:5.200/10.3.0
Chapter 10 Transparent Interprocess Communication 161

http://tipc.sourceforge.net

For example, the following command enables a vnet bearer using a vnet device
with instance number 5:

tn-tipc-config -be=eth:vnet5/10.3.0
162 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

CHAPTER 11

Reference Applications

This chapter describes Sun Netra DPS reference applications.

Topics include:

■ “IP Packet Forwarding Reference Applications” on page 164

■ “Differentiated Services Reference Application” on page 220

■ “Generic Routing Encapsulation Reference Application” on page 236

■ “Access Control List Reference Application” on page 247

■ “Radio Link Protocol Reference Application” on page 252

■ “IPSec Gateway Reference Application” on page 256

■ “Traffic Generator Reference Application” on page 283

■ “Interprocess Communication Reference Application” on page 304

■ “Transparent Interprocess Communication Reference Application” on page 310

■ “vnet Reference Application” on page 319

Reference applications illustrate how users applications are written to exploit full
capability of Sun Netra DPS running on chip multithread architecture. Each
reference application consists of extensive examples. In many cases, these examples
can be leveraged as building blocks of the users deployment application.
163

IP Packet Forwarding Reference
Applications
The IP Packet Forwarding Application (ipfwd) performs IPv4 (Internet Protocol
Version 4) and IPv6 (Internet Protocol Version 6) forwarding operations. When
packet traffic is received, the application performs forwarding table searches and
determines the destination (next hop). It then re-writes the packet header of the
packet to be forwarded.

The basic IP Forwarding application consists of three or more software threads
forming a traffic flow with multiple traffic flow running in parallel. The following
figure depicts the basic IP Forwarding structure.

FIGURE 11-1 IP Forwarding Traffic Flows

Receive Thread
The receive thread performs the following tasks:

1. Polls packets received from a particular DMA channel’s HW descriptor ring.

2. Checks for received packet status.

3. Delivers the packet to the forwarding thread through fast queue.

The bulk of implementation of the receive thread resides in the device driver.
Normally, no user modification is required.

Receive
Thread

Forwarding
Thread0

Transmit
Thread

Forwarding
Thread<n>Ingress

Traffic
Egress
Traffic. . .

Multiple Traffic Flows
164 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Forwarding Thread
The forward thread performs the following tasks:

1. Polls packet from Rx fast queue enqueued by Rx thread.

2. Verifies the packet header.

3. Checks the received packet’s integrity.

4. Encapsulates or decapsulate packet header, if necessary.
Chapter 11 Reference Applications 165

5. If the packet is destined to host, forwards the packet to the host. Otherwise,
performs lookup for next hop information, based on a selected lookup algorithms,
such as:

■ Direct match or hashing

■ Linear search

■ Longest prefix match (LPM)

■ Binary search of prefix length (BSPL)

6. Updates the packet header with next hop’s address.

7. Delivers the packet to the Tx thread through fast queue.

You can form single or multiple threads in a pipeline depending on the workload of
the forwarding tasks.

Transmit Thread
The transmit thread performs the following tasks:

1. Polls packet from IP forwarding thread through fast queue.

2. Posts the packet to the target transmit descriptor ring of the Tx DMA channel.

Similar to the receive thread, the majority of the code of the transmit thread resides
in the device driver.

Traffic Flows
In this reference application, each software thread is mapped into a hardware CPU
strand. The hardware classifier and the hashing mechanism spread ingress traffic
into multiple parallel traffic flows, each implemented in a multiple threads pipeline
described above. Multiple traffic flows can run in parallel. The overall forwarding
packet rate is the aggregate packet rate of each traffic flow.

Source Files
All ipfwd source files are located in the following directories:

SUNWndps/src/apps/ipfwd

user_workspace/SUNWndps/src/apps/ipfwd
166 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

▼ To Compile the ipfwd Application
1. Copy the ipfwd reference application from the SUNWndps/src/apps/ipfwd

directory to a desired directory location.

2. Execute the build script in the ipfwd directory.

Usage
./build cmt type [ldoms [diffserv] [acl] [gdb] [excp] [tipc]
[no_freeq] [gre] [ipv6]] [profiler] [2port] [vnet] -hash
POLICY_NAME

Note – cmt (processor type) and type (network interface type) must be specified in
each build.

Argument Descriptions
The build script supports the following arguments:

■ cmt

Specifies whether to build the ipfwd application to run on the CMT1
(UltraSPARC T1) platform or CMT2 (UltraSPARC T2) platform.

■ cmt1 – Build for CMT1 (UltraSPARC T1)

■ cmt2 – Build for CMT2 (UltraSPARC T2)

■ type

■ 4g – Build ipfwd application to run on 4-Gbps Ethernet QGC (quad 1-Gbps
nxge Ethernet interface).

■ 10g – Build ipfwd application to run on 10-Gbps Ethernet (dual 10-Gbps nxge
Ethernet interface).

■ 10g_niu – Build ipfwd application to run on NIU (dual 10-Gbps UltraSPARC
T2 Ethernet interface) on a CMT2-based system.

■ [ldoms]

Specifies whether to build the ipfwd application to run on the logical domain
environment. When this flag is specified, the IP forwarding logical domain
reference application will be compiled. If this argument is not specified, then the
non-logical domains (standalone) application will be compiled. Note that the
options under the ldoms parameter (such as diffserv, acl, and gdb) can be
Chapter 11 Reference Applications 167

enabled only when this option is specified. See “How Do I Calculate the Base PA
Address for NIU or Logical Domains to Use with the tnsmctl Command?” on
page 388.

■ [diffserv]

Enables the differentiated services reference application.

■ [acl]

Enables the access control list (ACL) reference application.

■ [gdb]

Enables gdb support in the logical domain environment.

■ [excp]

Enables processing of IPv4 protocol exceptions and support of address resolution
protocol (ARP).

■ [tipc]

Enables application to use TIPC to communicate with control plane application.

■ [ipv6]

Enables IPv6 packet forwarding. Note that when this option is not specified, the
application performs IPv4 forwarding.

■ [no_freeq]

Disables the use of free queues. Can be used with the diffserv option in an
logical domain environment.

■ [gre]

Enables the GRE reference application.

■ [profiler]

Generates code with profiling enabled.

■ [2port]

Compiles dual ports on the 10-Gbps Ethernet or the UltraSPARC T2 NIU.

■ [vnet]

Enables the usage of vnet interfaces for exception handling by the ipfwd Sun
Netra DPS application.

■ [-hash POLICY_NAME]

Enables flow policies. For more information, see “Other IP Forwarder Options”
on page 170.
168 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

▼ To Build the ipfwd Application
● In /src/sys/lwrte/apps/ipfwd, pick the correct build script, and run it.

For example, to build for 10-Gbps Ethernet on a Sun Netra or Sun Fire T2000
system, type:

In this example, the build script with the 10g option is used to build the IP
forwarding application to run on the 10-Gbps Ethernet. The cmt argument is
specified as cmt1 to build the application to run on UltraSPARC T1-based Sun Netra
or Sun Fire T2000 systems.

▼ To Run the ipfwd Application
1. Copy the binary into the /tftpboot directory of the tftpboot server.

2. On the tftpboot server, type:

3. At the ok prompt on the target machine, type:

Note – network-device is an OpenBoot PROM alias corresponding to the physical
path of the network.

% ./build cmt1 10g

% cp user-workspace/ipfwd/code/ipfwd/ipfwd /tftpboot/ipfwd

ok boot network-device:,ipfwd
Chapter 11 Reference Applications 169

Default System Configuration
The following table shows the default system configuration.

The main files that control the default system configuration are:

■ ipfwd/src/apps/config/ipfwd_swarch.c

■ ipfwd/src/apps/config/ipfwd_map.c

Default ipfwd Application Configuration
The following table shows the default ipfwd application configuration.

The main files that control the ipfwd application configuration are:

■ ipfwd/src/apps/ipfwd_config.c

■ ipfwd/src/apps/ipfwd_config.h

Other IP Forwarder Options
Other IP forwarding application options can be enabled during the compile time by
enabling them in the makefiles.

TABLE 11-1 Default System Configuration

NDPS Domain (strand IDs) FastPath Manager (strand ID) Other Domain (strand IDs)

CMT1 non-logical
domain

0 to 31 31 N/A

CMT1 logical domain 0 to 19 19 20 to 31

CMT2 non-logical
domain

0 to 63 63 N/A

CMT2 logical domain 0 to 55 55 56 to 63

TABLE 11-1 Default ipfwd Application Configuration

Application Runs On
Number of Ports
Used

Number of Channels
per Port

Total Number of Q
Instances

Total Number of
Strands Used

4-Gbps PCIE (nxge QGC) 4 1 4 12

10-Gbps PCIE (nxge 10-Gbps) 1 4 4 12

10-Gbps NIU (niu 10-Gbps) 1 8 8 24
170 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ IPFWD_RAW

This option is used to bypass the ipfwd operation (that is, receive -> transmit
without forwarding operation), uncomment the following line from
Makefile.nxge to compile for the Sun multithreaded 10-Gbps NIU, 10-Gbps
PCIe Ethernet adapter, and quad
1-Gbps PCIe Ethernet adapter.

-DIPFWD_RAW

■ IPFWD_MULTI_QS

When this option is enabled, the output destination port is determined by the
output of the forwarding table lookup. Otherwise, the output destination port is
the same as the input port. To enable this option, uncomment the following line
from Makefile.nxge to compile for the Sun multithreaded 10-Gbps Ethernet,
respectively:

-DIPFWD_MULTI_QS

■ N2_1_MODE

This option is enabled by default. You must disable this flag when running Sun
Netra DPS on UltraSPARC T2 version 2.2 and above for optimal performance.

-DN2_1_MODE

■ KSTAT_ON

This option enables the device driver to collect statistical information. To enable
this option, uncomment the following line from Makefile.nxge. Note that there
is a slight performance reduction when this option is enabled:

-DKSTAT_ON

■ IPFWD_DISPLAY_STATS

This option enables the IP forwarding application to display statistical
information to the console. This option must be accompanied by the KSTAT_ON
option. To enable this option, uncomment the following line from
Makefile.nxge:

-DIPFWD_DISPLAY_STATS

■ FORCEONEMEMPOOL

The default memory pool configuration of the IP forwarding application is one
memory pool per traffic flow. This option overrides the default memory pool
configuration. When this option is enabled, all traffic flows share one memory
pool. To enable this option, uncomment the following line from Makefile.nxge:

-DFORCEONEMEMPOOL

■ VNET_TIPC_CONFIG
Chapter 11 Reference Applications 171

This option enables the TIPC stack in ipfwd reference application to be
configured using the Linux tn-tipc-config tool. The Linux tn-tipc-config
tool uses vnet for exchanging commands/data. When the Linux tn-tipc-
config tool is used, then the ipfwd reference application must be compiled with
the -DTIPC_VNET_CONFIG flag enabled in the makefiles (for example
Makefile.nxge):

-DFORCEONEMEMPOOL

IP Forward Static Cross Configuration
When IP Forwarding is configured as cross configuration, the
IPFWD_STATIC_CROSS_CONFIG flag must be enabled. The following is one
example of cross configuration:

Port0 ---> Port1
Port1 ---> Port0

Flow Policy for Spreading Traffic to Multiple
DMA Channels
Specify a policy for spreading traffic into multiple DMA flows by hardware hashing.
TABLE 11-2 describes each policy:

TABLE 11-2 Flow Policy Descriptions

Name Definition

IP_ADDR Hash on IP destination and source addresses.

IP_DA Hash on IP destination address.

IP_SA Hash on IP source address.

VLAN_ID Hash on VLAN ID.

PORTNUM Hash on port number.

L2DA Hash on L2 destination address.

PROTO Hash on Protocol number.

SRC_PORT Hash on source port number.

DST_PORT Hash on destination port number.

ALL Hash on all of the above fields.

TCAM_CLASSIFY Performs TCAM lookup.
172 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

To enable one of the above policies, use the -hash option.

If none of the policies listed in TABLE 11-2 are specified, a default policy is given. The
default policy is set to HASH_ALL. When you use the default policy, all L2, L3, and
L4 header fields are used for spreading traffic.

ipfwd Flow Configurations
The ipfwd_config.c file assists you in mapping application tasks to CPU core and
hardware strands. Normally, mapping is set in the ipfwd_map.c file in the config
directory. This configuration file is a productivity tool. This file provides a way to
facilitate mapping in a quick manner without any modification to the ipfwd_map.c
file.

This configuration file is not a replacement of ipfwd_hwarch.c, ipfwd_swarch.c,
and ipfwd_map.c. This framework is to conduct performance analysis and
measurement with different system configurations. The default (*_def)
configurations specified assumes a minimum of 16 threads of the system allocated
for Sun Netra DPS in ipfwd_map.c and all memory pool resources required are
declared in ipfwd_swarch.c. You still need to specify system resources
declarations and mapping in ipfwd_hwarch.c, ipfwd_swarch.c, and
ipfwd_map.c. The configuration is assigned to a pointer named
ipfwd_thread_config.

Note – You can by-pass this file entirely and perform all the mapping in
ipfwd_map.c. In this case, you would also need to modify ipfwd.c so that it does
not interpret the contents of this file.

ipfwd Configuration File Format
Each application configuration is represented in an array of a six-element entry. Each
entry (each row) represents a software task and its corresponding resources:

■ Thread-ID

Strand number of the hardware strand (0 to 31 on an UltraSPARC T1 system and
0 to 63 on an UltraSPARC T2 system) on which this software task is to be run.

■ HW init

If zero, it indicates no Ethernet port needs to be opened when this task is
activated. If non-zero, it indicates Ethernet port (port number specified by port#)
needs to be opened. The contents of OPEN_OP consists of vendor and device ID
as:

(NXGE_VID << 16) | NXGE_DID
Chapter 11 Reference Applications 173

■ port#

This is the port number of the Ethernet port to be opened. port# should match
the physical port number displayed on the console when the boot command (with
-v option used) is executed to perform tftpboot of the binary. For example, use
the port# if the network device you would like to use for IP forwarding shows
up as the following in the console output during boot:

■ netdev[4]: Vendor ID 0x108e Dev ID 0xabcd

■ netdev[4]: Subsystem Vendor ID 0x108e Subsystem ID 0x0

■ netdev[4]: Revision ID 0x1

■ netdev[4]: PhyType xgf

■ netdev[4]: Compatible pciex108e,abcd.108e.0.1

■ netdev[4]: cfg_addr 0x120000 pio_addr 0xc106000000

■ netdev[4]: mac_addr 0x0:14:4f:6c:74:a8

In this case, the port number specified in the port# field of the application
configuration should be set to 4.

■ chan#

If this is a multi-channel device (such as Sun multithreaded 10-Gbps Ethernet
with NIU), this entry indicates the channel number within each port. Sun
multithreaded 10-Gbps Ethernet device has 24 transmit channels (0 to 23) and 16
receive channels (0 to 16) in each port. Sun multithreaded 10-Gbps Ethernet with
NIU has 16 channels (both tx and rx) in each port.

■ Role

This is the role of the software task.

TROLE_ETH_NETIF_RX (performs a receive function)

TROLE_ETH_NETIF_TX (performs a transmit function

TROLE_APP_IPFWD (performs IP forwarding function)

See common.h for all definitions. If you do not want to run any software task on
this hardware strand, the role field should be set to -1. By default, during
initialization of the ipfwd application, the hardware strand that encounters a -1
software role is parked.

Note – A parked strand is a strand that does not consume any pipeline cycles (an
inactive strand).

■ MemPool#

This is the identity of the memory pool. Note that in this reference application,
each Ethernet port has its own memory pool. Each channel within each port has
its own memory pool. Memory pools are declared in ipfwd_swarch.c.
174 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Note – The application can be configured such that a single memory pool is
dedicated to a particular DMA channel or all DMA channels sharing a global
memory pool. The default configuration is one memory pool per DMA channel.

System Configuration
The IP forwarding application can be set up in two different environments:
standalone and logical domain.

Standalone Environment
In the standalone environment, Sun Netra DPS gains control of the entire system. All
system resources are dedicated for Data Plane usage. When the ldoms option is not
specified in the build script, then the ipfwd application is built for running on the
standalone environment. In the standalone environment, no forward information
base (FIB) is specified.

All packets are forwarded based on hard-coded information in the program. the users
must modify the program to change the default forwarding information and its
corresponding forwarding path. Using the IP forwarding application build script
without specifying the ldoms option will generate the executable for the standalone
environment.

Logical Domain Environment
In a logical domain environment, Sun Netra DPS and other logical domains share
the system resources. Sun Netra DPS is used as the data plane, other logical domains
are used as the control plane. The ipfwd application must be built with the ldoms
option for this environment. The logical domain environment has more flexibility
over the standalone environment on controlling the forwarding information and
specifying the forwarding path.

Forwarding Application
The forwarding application consists of two major groups of components: data plane
components that run on the Sun Netra DPS runtime and the control plane
components and utilities that run on the Oracle Solaris OS.
Chapter 11 Reference Applications 175

Data Plane Components
The forwarding application fast path code are reside mainly in the following
subdirectories:

■ The hardware and software architecture as well as the mapping. These files are
located in the src/config subdirectory.

■ The actual implementation of the packet handling and forwarding algorithm. The
files for this implementation are located in the src/app subdirectory.

The hardware architecture is identical to the default architecture in all other
reference applications.

The software architecture differs from other applications in that it contains code for
the specific number of strands that the target logical domain will have. Also, the
memory pools used in the malloc() and free() implementation for the logical
domain and IPC frameworks are declared here.

The mapping file contains a mapping for each strand of the target logical domain.

The rx.c and tx.c files contain simple functions that use the Ethernet driver to
receive and transmit a packet, respectively.

ldc_malloc.c contains the implementation of the memory allocation algorithm.
The corresponding header file, ldc_malloc_config.h, contains some
configuration for the memory pools used.

user_common.c contains the memory allocation provided for the Ethernet driver,
as well as the definition for the queues used to communicate between the strands.
The corresponding header file, user_common.h, contains function prototypes for
the routines used in the application, as well as declarations for the common data
structures.

ipfwd.c contains the definition of the functions that are run on the different
strands. In this version of the application, all strands start the _main() function.
Based on the thread IDs, the _main() function calls the respective functions for rx,
tx, forwarding, a thread for IPC, the cli, and statistics gathering.

■ The main functionality is provided by the following processes:

■ The rx_process strand polls one Ethernet interface and places received packets
on a queue.

■ The ipfwd_process polls the queue of its associated rx interface, calls the IP
forwarding algorithm, and places the packet in the outbound queue indicated by
the forwarding decision. This process services a single queue inbound, but puts
outgoing packets into one of an array of queues.

■ The tx_process polls an array of queues (one for each forwarding thread) and
transmits any packet on the Ethernet interface.
176 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

The IP forwarder state machine implementation code resides in the following files
and their corresponding header files:

■ ipfwd_state.c

■ ipfwd_eth.c

■ ipfwd_ip4.c

■ ipfwd_ip6.c

■ ipfwd_lib.c

ipfwd_config.c, and its header file, consists of default configuration entries that
determine how application threads are mapped into hardware CPU strands for the
forwarding application. In the ipfwd application, all software thread entry points
(except the fast path manager) are mapped into the _main entry point (see
ipfwd_map.c). In the _main() function, each thread is further assigned a
particular task to perform based on the information specified in the file.

init.c contains the initialization code for the application. First, the queues are
initialized. Initialization of the Ethernet interfaces is left to the rx strands, but the tx
strands must wait until that initialization is done before they can proceed.

ipfwd_ipc.c contains the IPC logical domain framework initialization functions.
The initialization of the logical domain framework is accomplished using calls to the
functions mach_descrip_init(), lwrte_cnex_init(), and
lwrte_init_ldc(). After this initialization, the IPC framework is initialized by a
call of tnipc_init(). The previous four functions must be called in this specific
order. The data structures are then initialized for the forwarding tables.

ipfwd_tipc.c, and its header files, contains the TIPC logical domain functions.
When you specify the tipc option during the build, TIPC will be used as the
communication protocol between control and data plane. Otherwise, IPC will be
used by default.

ipv4_excp.c, and its header files, consists of code that handles exceptions, such as
IP fragmentation and re-assembly.

ipfwd_flow.c, and its header files, specifies the L3/L4 classification flow entries.
When TCAM_CLASSIFY is used in the -hash option during the build, these entries
will be programmed into the TCAM during initialization of the application.

The diffserv/ directory consists of the diffserv implementation.

The gre/ directory consists of the GRE tunneling implementation.

The radix/ directory consists of the radix forwarding algorithm implementation.

To deploy the application, the image must be copied to a tftp server. The image can
then be booted using a network boot from either one of the Ethernet ports, or from a
virtual network interface. After booting the application, the IPC channels are
Chapter 11 Reference Applications 177

initialized. After the IPC or TIPC channels are up, you can use the Oracle Solaris OS
control plane utilities to set up the network interface, to manipulate the forwarding
tables, and to gather statistics.

Control Plane Components and Utilities
The code for the Oracle Solaris control plane components and utilities are located in
the src/solaris subdirectory. This file implements a simple CLI to control the
forwarding application running in the Sun Netra DPS runtime (LWRTE) domain.
These applications are not built when ipfwd is built. They must be built separately
using gmake in the directory and deployed into a domain that has an IPC channel to
the LWRTE domain established.

The code for the Linux control plane components and utilities are located in
src/linux. The applications for Linux are not built when ipfwd is built. They
must be built separately using the makefile in src/linux and deployed into a
domain that is running Linux. By default, the makefile in src/linux uses gcc
version 4.3.2 which is a part of Wind River Linux Sourcery G++ 4.3-85 toolchain. The
compiler is a cross-compiler for UltraSPARC T2 platform that is installed on a
Linux/x86-64 machine.

Interface Configuration Utility (ifctl)

The ifctl interface is used to configure interfaces of the Sun Netra DPS ipfwd
application, as well as displaying the interface parameters. It is similar to the
ifconfig utility in the Oracle Solaris OS, but the available commands and
parameters provide the basic functionality only.

The following shows the usage of the ifctl tool:

ifctl iface-name port-num address tun [tunnel-address] tuntype
4in4|4in6|6in4|6in6|gre|none up|down netmask [netmask] mtu [mtu] vtag
[vid]

Starting the tool without any options will display the current interfaces along with
their configuration.

■ -h or --help

Gives a brief description of the command syntax.

■ iface-name

Specifies the name of the interface. The first non-numeric string on the command
line is interpreted as interface name, except the valid command words (up or
down). The interface name can be up to 5 characters long.

■ port-num
178 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Specifies the Ethernet port number assigned to the interface. The port number
should always starts from 0.

■ address

Specifies the IP address to be assigned to the interface. The ifctl tool accepts
IPv4 and IPv6 addresses in the following formats:

■ IPv4 address:

D.D.D.D (where D is a octet in decimal format)

■ IPv6 address:

H:H:H:H:H:H:H:H (where H is a 16 bit value in hex). ifctl supports the
simplified forms of the IPv6 address string representations. The following
formats are accepted:

H:H:H:H:H::H:H

H:H:H:H:H:H

H:H:H::H

■ tun

Specifies the IP address of the remote end of the tunnel.

■ tuntype

Specifies the type of the tunnel configured on the interface. The types of tunnels
supported are:

■ 4in4 – Indicates IP-in-IP tunnel is configured on the interface.

■ 4in6 – Indicates IPv4-in-IPv6 tunnel is configured on the interface.

■ 6in4 – Indicates IPv6-in-IPv4 tunnel is configured on the interface.

■ GRE – Indicates that GRE tunnel is configured on the interface.

■ none – Disables tunneling on an interface.

■ up

Activate the interface. If the interface has been added previously and brought
down subsequently, then the interface can be brought up without specifying the
parameters again. This option must be used when adding the interface for the
first time.

■ down

Shuts down the interface. All packets received on or forwarded to this interface
will be dropped.

■ mtu

Configures the MTU of the interface. The value supplied is in bytes. It must be
between 46 bytes and 1500 bytes. For interfaces that have tunneling enabled, the
value represents the maximum L3 packet size, excluding the encapsulating
headers, but including the payload L3 header.
Chapter 11 Reference Applications 179

■ netmask

Configures the netmask for the IPv4 interface. The netmask supplied must be in
dotted decimal format.

■ vtag

Configures the VLAN ID (VID) of the interface. To disable VLAN tagging on an
interface, provide a value of 0 for the VLAN ID using this option.

Note – On Oracle Solaris OS platforms, ifctl communicates with the ipfwd
application through IPC. Therefore, ifctl must have read and write permission to
the tnsm device node, and the LDC channels must be configured between logical
domains. The ipfwd application must be running to accept ifctl commands.

Note – On Linux platforms, ifctl communicates with the ipfwd application only
using TIPC. On Linux platforms, IPC is not supported. Therefore, the ifctl
application must be built with TIPC support in it.

ifctl Examples

This section contains examples that show how to use the ifctl options.

▼ To Add an IPv4 Interface

● Execute the following command:

▼ To Add an IPv6 Interface

● Execute the following command:

▼ To Enable IP-in-IP Tunneling on an Interface

● Execute the following command:

% ./ifctl port0 0 1.2.3.4

% ./ifctl port0 0 1111:2222:3333::aaaa

% ./ifctl port0 0 192.168.100.100 tun 192.168.100.2 tuntype 4in4
180 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

▼ To Disable Tunneling on an Interface

● Execute the following command:

▼ To Add an IPv6 Interface and Bring the Interface Up

● Execute the following command:

▼ To Disable Interface port0

● Execute the following command:

▼ To Set the MTU for an Interface That Does Not Have Tunneling
Enabled

● Execute the following command:

▼ To Set the MTU for an Interface That Has IPv4-in-IPv4 Tunneling
Enabled

● Execute the following command:

▼ To Set the MTU for an Interface That Has GRE Tunneling
Enabled Where GRE Header Includes Checksum, Key, and
Sequence Number Fields

● Execute the following command:

% ./ifctl port0 0 192.168.100.100 tun 192.168.100.2 tuntype none

% ./ifctl port1 1 1111:2222:3333::aaaa up

% ./ifctl port0 down

% ./ifctl port0 0 mtu 1500

% ./ifctl port0 0 mtu 1480

% ./ifctl port0 0 mtu 1464
Chapter 11 Reference Applications 181

▼ To Set the Netmask on an Interface

● Execute the following command:

▼ To Enable VLAN on an Interface With VLAN ID

● Execute the following command:

▼ To Disable VLAN on an Interface

● Execute the following command:

FIB Control Utility (fibctl)

The FIB Control utility (fibctl) is used to download the FIB table data from the
control plane to the data plane. When fibctl is started in the control plane, the
fibctl> prompt will appear. The program offers the following commands:

■ connect Channel_ID

Connects to the channel with ID Channel_ID. The forwarding application is hard
coded to use channel ID 4. The IPC type is hard coded on both sides. This
command must be issued before any of the other command.

■ load file_name

Loads an FIB table file that consists of FIB table data. The IP Forwarding
Reference Application uses the following FIB table data file with the application:

SUNWndps/src/apps/ipfwd/src/solaris/fibctl_tables

■ write-table Table_ID

Transmits the table with the indicated ID to the forwarding application. There are
two simple predefined tables in the fibctl application.

■ use-table Table_ID

Instructs the forwarding application to use the specified table. In the current code,
the table ID must be 0 or 1, corresponding to predefined tables. Before a table can
be used, it must be transmitted using the write-table command described
above.

% ./ifctl port1 1 netmask 255.255.255.0

% ./ifctl port0 0 vtag 8

% ./ifctl port0 0 vtag 0
182 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ stats

Requests statistics from the forwarding application and displays them.

■ read

Reads an IPC message that has been received from the forwarding application.
Currently not used.

■ status

Issues the TNIPC_IOC_CH_STATUS ioctl.

■ exit / x / quit /q

Exits the program.

■ help

Contains program help information.

▼ To Build the ifctl and fibctl Utility

1. Execute the appropriate gmake command.

a. To use the fibctl and ifctl utilities on an Oracle Solaris OS logical
domain, execute the gmake in the Oracle Solaris OS subtree
(SUNWndps/src/apps/ipfwd/src/solaris):

2. Execute the appropriate make command.

a. To use the fibctl and ifctl utilities on a Linux OS logical domain, copy
the sources in src/linux and src/common onto a machine that has the
cross-compiler installed.

For all utilities built for Linux logical domains, the TIPC=on option must be
used.

b. In the linux directory, execute the make command.

% gmake

% tar -cvf ipfwd-utils.tar SUNWndps/src/apps/ipfwd/src/linux
SUNWndps/src/apps/ipfwd/src/common
Chapter 11 Reference Applications 183

c. On the system that has the cross-compiler installed, perform the following:

Note – To include diffserv and GRE functionalities, enable the GRE flag and
DIFFSERV flag. Along with gmake, set DIFFSERV to on and GRE to on. In the IP
forwarding reference application, DIFFSERV and GRE flags cannot be enabled
simultaneously.

After the channel to be used is initialized using tnsmctl (must be channel ID 4
which is hard coded into the ipfwd application), use fibctl to change the behavior
of ipfwd as shown below example:

Exception Daemon (excpd)

The excpd application is responsible for:

■ Managing the FIB table.

■ Managing the interfaces when using the lwIP ARP layer for ARP processing.

■ Interfacing with the ARP layer.

■ Communicating with the data plane for exchanging FIB and interface
information.

To build the excpd application, the application source is provided with the Sun
Netra DPS ipfwd reference application. The application source is present in the
ipfwd/src/solaris/excpd directory. The following build options are provided:

% mkdir ipfwd-utilities
% cp ipfwd-utils.tar ipfwd-utilities
% cd ipfwd-utilities
% tar -xvf ipfwd-utils.tar
% cd linux
% make ifctl TIPC=on
% make fibctl TIPC=on

fibctl> connect 4
fibctl> load fibctl_tables
fibctl> write-table 0
fibctl> write-table 1
fibctl> use-table 0
fibctl> use-table 1
fibctl> quit
184 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Usage

./build lwip|sol [tipc]

■ lwip – Use the lwIP ARP layer.

■ sol – Use the Solaris ARP layer.

Note – The excpd application is not used when ipfwd reference application is used
with Linux guest logical domain.

IPv4 Packet Forwarding Application
with Exception Handling
The IPv4 packet forwarder with exception handling consists of:

■ Address resolution protocol (ARP)

■ IPv4 protocol exception handling (fragmentation and reassembly)

■ FIB table management

ARP (RFC 826) is a protocol that enables dynamic mapping of IPv4 addresses to
Ethernet addresses. It is used with the IPv4 forwarding application to map the next-
hop IPv4 addresses in the FIB table to their Ethernet addresses.

The IPv4 exception handling enables fragmentation of egress packets and
reassembly of fragmented packets that are destined to the local host.

FIB table management enables the updates of the next-hop IP addresses in the Data
Plane FIB table, with their Ethernet addresses. When new Ethernet addresses are
learnt, the FIB entries are updated by the FIB management layer and passed to the
Data Plane application. When the exception handling is handled in control plane
host using vnet for packet transfers, the FIB entries are updated by the learning
module within the data plane application itself.

Exception handling is enabled only when the ipfwd application is built with the
ldoms and excp options (see “IP Packet Forwarding Reference Applications” on
page 164 for an explanation of these build options).

The ipfwd reference application is extended with a framework that allows handling
of ARP and IPv4 protocol exceptions. FIGURE 11-2 depicts the exception handling
framework in the ipfwd application that use either LwIP or Solaris Host
(TIPC/TNIPC) methods. FIGURE 11-3 depicts the exception handling frame
framework that uses Oracle Solaris or Linux Host with vnet for packet transfers.
Chapter 11 Reference Applications 185

ARP Processing
Three methods of ARP processing are provided in the ipfwd reference application
when Oracle Solaris OS is used in the control plane logical domain. One method
uses the lwIP ARP protocol layer to process ARP packets and to maintain the ARP
cache. Another method uses the Oracle Solaris ARP layer to process ARP packets
and to maintain the ARP cache, but uses either TNIPC or TIPC for packet transfers
with the Oracle Solaris OS logical domain. A third method uses the Oracle Solaris
ARP layer to process ARP packets and to maintain the ARP cache, but uses vnet
interfaces for packet transfers with the Oracle Solaris OS logical domain.

When Linux OS is used in the control plane logical domain, only one method of ARP
processing is provided. The Linux ARP layer is used to process ARP packets and to
maintain the ARP cache. The vnet interfaces are used for packet transfers with the
Linux OS logical domain.

ARP in lwIP

When the lwIP ARP layer is used for ARP processing, the ARP layer is a part of the
excpd application. lwIP is a static library that implements the TCP/IP protocol
stack. The excpd application uses the ARP layer of lwIP to process the ARP packets
and for ARP table maintenance.

ARP in the Oracle Solaris OS
In this method, the ARP layer in the Oracle Solaris OS control plane is used for ARP
processing. The ARP cache is also managed in the Oracle Solaris OS. The excpd
application is responsible only for FIB management. A STREAMS module named
lwmodarp is used in the Oracle Solaris OS to interface with the Oracle Solaris ARP
layer. For each interface enabled in the data plane, a corresponding vnet interface is
configured in the Oracle Solaris domain. The lwmodarp module is inserted into the
ARP-device STREAM of each configured vnet interface. This module communicates
with the data plane application to receive and transmit ARP packets over IPC/TIPC.

ARP in the Oracle Solaris OS or Linux OS Using vnet

In this method, the ARP layer in the Oracle Solaris OS or Linux OS is used for ARP
processing. The ARP cache is also managed in the Oracle Solaris or Linux OS. The
differences from the previous method are:

1. This method does not use TNIPC or TIPC for packet transfers with the control
plane OS
186 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

2. This method does not use excpd, lwip, or lwmodarp modules

The FIB management is done in the ipfwd Sun Netra DPS application. The FIB table
is pushed to the data plane using fibctl tool. The ipfwd application in Sun Netra
DPS will learn the MAC addresses from ARP packets received from external hosts
and from ARP packets that are transmitted from the control plane to external hosts.
The learnt MAC addresses are used to update the FIB table that is currently in use.

Note – Currently, when ARP packets are handled using vnet interfaces for
communication with the control plane, the learning mechanism in the data plane
learns MAC addresses only for those IP addresses that are present in the dest-addr
column of the FIB table file (that is, the learning mechanism learns MAC addresses
only for the gateways in the FIB table). Thus, the user must push a FIB table to the
data plane before exception packets and control plane packets can be handled using
this method. In addition, if the user requires that the learning mechanism learns
MAC addresses of any host, even if the host is not a gateway, then the learning
mechanism must be extended with this functionality.

IPv4 Protocol Exception Handling
IPv4 protocol exception handling involves fragmentation, reassembly, and local
delivery. This section contains descriptions of these handling processes.

Fragmentation
When a packet that must be forwarded needs to be fragmented, the IPv4 forwarder
thread passes the packet to the fastpath manager thread. The fastpath manager
thread calls the IPv4 fragmentation routine that fragments the packet. The fragments
are then sent to the transmit threads of the outgoing interface.

Reassembly and Local Delivery
When a packet is received in the data plane, the data plane IPv4 layer determines if
the packet is destined to one of the configured local interfaces. If true, then the
packet is passed to the fastpath manager that sends the packet to the IPv4 layer of
the Oracle Solaris control domain. If such packets are fragments, then the Oracle
Solaris IPv4 layer handles the reassembly. A STREAMS module named lwmodip4 is
used in the Oracle Solaris OS to interface with the Oracle Solaris IPv4 layer. For each
interface enabled in the data plane, a corresponding vnet interface is configured in
Chapter 11 Reference Applications 187

the Oracle Solaris domain. The lwmodip4 module is inserted into the ARP-IP-device
STREAM of each configured vnet interface. This module communicates with the
data plane application to receive and transmit IPv4 packets over IPC/TIPC.

Reassembly and Local Delivery Using vnet

When a packet is received in the data plane, the data plane IPv4 layer determines if
the packet is destined to one of the configured local interfaces. If true, then the
packet is passed to the fastpath manager that sends the packet to the IPv4 layer of
the Oracle Solaris OS or Linux control domain using one of the vnet interfaces in
Sun Netra DPS that is connected to a vnet interface in the Oracle Solaris OS or
Linux OS logical domain. If such packets are fragments, then the Oracle Solaris OS
or Linux IPv4 layer does the reassembly of the fragments. Note that when vnet is
used to transfer IPv4 protocol exception packets, lwmodip4 is not used in the Oracle
Solaris OS and Linux OS logical domain.

FIB Management
FIB management is performed by the excpd application. The excpd application
receives FIB tables from the fibctl utility. When a FIB table is received, the excpd
application performs ARP cache lookup for the next-hop IP addresses in the FIB. It
fills the MAC addresses in the FIB entries and transfers the completed FIB entries to
the data plane. For FIB entries whose MAC addresses are not found in the ARP
cache, it monitors the ARP cache until the MAC addresses are found.
188 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

FIGURE 11-2 Internal Block Diagram for the ipfwd Reference Application Using IwIP or Oracle Solaris OS
Host With TIPC and TNIPC

FIGURE 11-3 Internal Block Diagram for the ipfwd Reference Application Using Oracle Solaris OS or Linux
Host With vnet

FIGURE 11-2 depicts the exception handling framework in the ipfwd reference
application that use either IwIP or Oracle Solaris OS Host (TIPC and TNIPC)
methods. The boxes in gray and the arrows in green and red illustrate the exception
path framework.

Rx
IPC/TIPC

Rx Rx

ipfwd

ipfwd

ipfwd

Tx

Tx

Tx

Control plane (user space)

Data plane

excpd

Fa
st

 p
at

h
m

an
ag

er

Packets to exception path

Packets from exception path

Fast path packets

lwIP arp

Control plane (kernel space)

IPC/TIPC
lwmodip4

IP

IPC/TIPC

arp

lwmodarp
Chapter 11 Reference Applications 189

FIGURE 11-3 depicts the exception handling framework in the ipfwd reference
application that use either Oracle Solaris OS host or Linux host using vnet. The
boxes in gray and the arrows in green and red illustrate the exception path
framework.
190 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

FIB Management When Using vnet

When exception handling is done in the control plane Oracle Solaris OS or Linux OS
using vnet for packet transfers, FIB management is done in the data plane
application itself. The FIB is pushed by the user using the fibctl tool. When ARP
packets are received by the data plane application, either from external hosts (on fast
path Ethernet interfaces) or from the control plane (on vnet interfaces), the data
plane learns MAC addresses of the hosts. The learnt addresses are used to update
the MAC addresses of the FIB table entries.

Exception Path Framework Components
The exception path framework consists of the following components:

■ IPv4 forwarder

■ excpd application

■ lwIP ARP layer

■ lwmodarp

■ lwmodip4

■ Fastpath manager

■ vnet driver

IPv4 Forwarder (ipfwd Thread)
The IPv4 forwarder receives Ethernet frames from the Rx strand. The forwarder
checks if the frames received contain IPv4 packets. All frames that do not contain
IPv4 packets are passed to the fastpath manager (green arrows).

All frames that contain IPv4 packets are further processed by the IPv4 forwarder
thread. While processing the IPv4 packets, if any IPv4 protocol exception is detected,
the IPv4 forwarder thread passes those packets to the fastpath manager thread for
processing the exception (green arrows).

The following IPv4 protocol exceptions will result in an exception condition:

■ The TTL in the packet expired while forwarding.

■ The packet is destined to a network or host that does not have an entry in the FIB
table.

■ The packet must be forwarded to a host or gateway which has an Ethernet
address that is unresolved.

■ The length of the packet is larger than the MTU of the outgoing interface and
must be fragmented.
Chapter 11 Reference Applications 191

■ The packet is destined to an interface owned by the ipfwd application (local
delivery)

Exception Application (excpd)
The excpd application is a user-space Oracle Solaris OS application that is
responsible for:

■ Managing the FIB table.

■ Managing the network interfaces when using lwIP ARP layer for ARP
processing.

■ Interfacing with the ARP layer.

■ Communicating with the data plane for exchanging FIB and interface
information.

Note – When ARP is processed in the Oracle Solaris OS or Linux OS using vnet for
ARP packet transfer, the excpd exception application must not be used.

lwIP ARP Layer
lwIP is a static library that implements the TCP/IP protocol stack. This is used
when ARP processing is done in excpd application. To use the lwIP ARP layer, the
excpd application is built with the lwip option (see “To Build the excpd
Application When lwIP ARP Is Used With IPC” on page 196).

ARP STREAMS Module (lwmodarp)
This is used when ARP processing is done in the control domain Oracle Solaris ARP
layer. This module is used to pass ARP packets between the Oracle Solaris ARP layer
and the data plane ipfwd application. It uses IPC or TIPC to communicate with the
data plane application.

Note – When ARP is processed in the Oracle Solaris OS, the lwIP ARP layer is not
used in the excpd application. The excpd application must be compiled with the
sol option (see “To Build the excpd Application When lwIP ARP Is Used With
IPC” on page 196).

Note – When the lwIP ARP layer is used, the lwmodarp module must not be used.
192 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Note – When ARP is processed in the Oracle Solaris OS or Linux OS using vnet for
ARP packet transfer, lwmodarp must not be used.

The IPv4 STREAMS Module (lwmodip4)
This module is used for the processing of IPv4 packets that are destined to the local
interfaces. The module passes IPv4 packets to and from the control plane Oracle
Solaris IPv4 layer and the data plane ipfwd application. It uses IPC or TIPC to
communicate with the data plane application.

Note – This module must not used when IPv4 exception handling is done in the
Oracle Solaris OS or Linux OS using vnet for packet transfer.

Fastpath Manager
The fastpath manager performs the following functions related to IPv4 exception
handling and ARP processing:

■ Interfaces with the control plane components like excpd, lwmodip4, lwmodarp,
fibctl, ifctl using IPC, or TIPC.

■ Passes egress packets from control plane to transmit strands.

■ Receives packets from IP forwarder strands and sends them to control plane.

■ Receives packets that need to be forwarded, but need to be fragmented, from IP
forwarder strands, performs fragmentation, and sends the fragments to transmit
strands.

■ Interfaces with the vnet transmit and receive strands to transmit and receive
packets over the vnet interfaces.

■ Executes the MAC Address learning algorithm and the FIB management when
exception handling is done using vnet for communication.

Exceptions Path Framework Tools
The following tools are required to use the ipfwd application with exception
handling and ARP handling.
Chapter 11 Reference Applications 193

ifctl

See “Control Plane Components and Utilities” on page 178.

fibctl

See “Control Plane Components and Utilities” on page 178.

insarp

The insarp tool is used to insert the lwmodarp STREAMS module into the ARP-
dev stream of an IPv4 interface. By default, the tool expects a module named
lwmodarp.

The tool provides the following options:

■ add

Inserts the lwmodarp module into the ARP-dev stream of the IPv4 interface. The
module is inserted between the device driver and the ARP STREAMS module.
The following shows the usage:

insarp interface-name add

■ rem

Removes the lwmodarp module after ARP module in ARP-dev STREAM of the
IPv4 interface. The following shows the usage:

insarp interface-name rem

■ list

Lists the modules present in ARP-IP-dev STREAM and the ARP-dev stream of an
IPv4 interface. The following shows the usage:

./insarp

./insarp vnet2 add

./insarp vnet2 rem
194 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

insarp interface-name list

▼ To Compile the ipfwd Application for IPv4
Exception Handling
● Copy the ipfwd reference application from

/opt/SUNWndps/src/apps/ipfwd directory to a desired directory location,
and execute the build script in that location.

▼ To Compile the IPv4 Forwarding Application
With Exception Handling By Using Sun Netra
DPS
1. On a system that has /opt/SUNWndps installed, go to the

user_workspace/src/apps/ipfwd application directory.

2. Build the application using the build script.

The ldoms and the excp options must be provided.

Compiling the excpd Application
The excpd application source is provided along with the Sun Netra DPS ipfwd
reference application in the ipfwd/src/solaris/excpd directory. The application
is built using the build file in this directory.

./insarp vnet2 list
ARP-IP-dev STREAM Mod List: 4
0 arp
1 ip
2 lwmodip4
3 vnet

ARP-dev STREAM Mod List: 3
0 arp
1 lwmodarp
2 vnet

% /build cmt2 10g_niu ldoms excp
Chapter 11 Reference Applications 195

Usage
build lwip|sol [tipc]

The following build options are provided:

■ lwip – Use the lwIP ARP layer.

■ sol – Use the Oracle Solaris OS ARP layer.

■ tipc – Use TIPC to communicate with data plane. Otherwise, use TNIPC.

▼ To Build the excpd Application When lwIP ARP Is
Used With IPC
● Execute the following command:

▼ To Build the excpd Application When lwIP ARP Is
Used With TIPC
● Execute the following command:

▼ To Build the excpd Application When the Oracle
Solaris OS ARP Is Used With IPC
● Execute the following command:

▼ To Build the excpd Application When the Oracle
Solaris OS ARP Is Used With TIPC
● Execute the following command:

% ./build lwip

% ./build lwip tipc

% ./build sol

% ./build sol tipc
196 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Compiling the lwmodip4 STREAMS Module
The lwmodip4 module is provided in the ipfwd/src/solaris/module directory.
The module is built using the build file in this directory.

Usage
build ipv4|ipv6 [tipc]

The following build options are provided:

■ ipv4 – Build lwmod for IPv4 interface.

■ ipv6 – Build lwmod for IPv6 interface.

■ tipc – Use TIPC to communicate with data plane. Otherwise, use TNIPC.

▼ To Build the lwmodip4 STREAMS Module for IPv4
Exception Handling Using IPC
● Execute the following command:

▼ To Build the lwmodip4 Module for IPv4 Exception
Handling Using TIPC
● Execute the following command:

Compiling the lwmodarp STREAMS Module
The lwmodarp module is provided in the ipfwd/src/solaris/excpd/module
directory. The module is built using the build file in this directory.

Usage
build tipc|ipc

The following build options are provided:

% ./build ipv4

% ./build ipv4 tipc
Chapter 11 Reference Applications 197

■ tipc – Use TIPC to communicate with data plane.

■ ipc – Use TNIPC to communicate with data plane.

▼ To Build the lwmodarp Module for Oracle Solaris ARP
Handling Using IPC
● Execute the following command:

▼ To Build the lwmodarp Module for Oracle Solaris ARP
Handling Using TIPC
● Execute the following command:

Compiling the insarp Tool
The insarp tool source is provided in the Sun Netra DPS ipfwd reference
application. The source is provided in the ipfwd/src/solaris/excpd/tools
directory.

▼ To Compile the insarp Tool
● Execute the following command:

▼ To Run the ipfwd Application with IPv4
Exception Handling in lwIP

1. Set up logical domains on the target system with one Sun Netra DPS domain
and the following Oracle Solaris OS domains:

■ primary – primary domain for running logical domain manager (ldm)

■ ndps – Sun Netra DPS domain for running the Sun Netra DPS ipfwd application

% ./build ipc

% ./build tipc

% gmake
198 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ ldg2 – Oracle Solaris OS domain for running the excpd application

■ ldg3 – Oracle Solaris domain for establishing IPC channels

One vnet interface is needed in the ldg2 for each data plane port. These vnet
interfaces are connected to isolated vswitches of the primary. Add vswtiches
for each vnet that will be configured.

2. Reboot the primary domain for these changes to take effect.

3. Add the vnet interfaces to the control domain ldg2.

The MAC addresses must be the same as that of the Sun Netra DPS domain
interfaces.

4. Run the ipfwd application that compiled with exception handling:

a. Place the ipfwd binary in the tftpboot server:

b. At the ok prompt on the target machine, type:

5. Place the IPv4 STREAMS module in ldg2, and load it:

6. Enable the vnet interface for each data plane port in ldg2, and insert
lwmodip4 for each interface:

ldm add-vswitch vsw1 primary
ldm add-vswitch vsw2 primary

ldm add-vnet mac-addr=XX;XX:XX:XX:XX:XX vnet1 vsw1 ldg2
ldm add-vnet mac-addr=XX;XX:XX:XX:XX:XX vnet2 vsw2 ldg2

% cp user-dir/ipfwd/code/ipfwd/ipfwd tftpserver-boot/tftpboot

ok boot network-device:,ipfwd

modload lwmodip4

ifconfig vnet1 plumb
ifconfig vnet1 modinsert lwmodip4@2
ifconfig vnet1 12.12.12.13 netmask 255.255.255.0 up
ifconfig vnet2 plumb
ifconfig vnet2 modinsert lwmodip4@2
ifconfig vnet2 11.11.11.12 netmask 255.255.255.0 up
Chapter 11 Reference Applications 199

7. Place the excpd application, the fibctl application, the ifctl application in
the ldg2 domain, and execute the excpd application:

8. Configure the Sun Netra DPS network interface with the ifctl application:

9. Configure the FIB tables using the fibctl application:

▼ To Run the ipfwd Application with IPv4
Exception Handling and ARP Handling in the
Oracle Solaris Host
1. Set up logical domains on the target system with one Sun Netra DPS domain

and the following Oracle Solaris domains:

■ primary – Primary domain for running logical domain manager (ldm)

■ ndps – Sun Netra DPS domain for running the Sun Netra DPS ipfwd application

■ ldg2 – Oracle Solaris domain for running the excpd application

■ ldg3 – Oracle Solaris domain for establishing IPC channels

One vnet interface is needed in ldg2 for each data plane port. These vnet
interfaces are connected to isolated vswitches of the primary domain. Add
vswitches for each vnet interface that will be configured

2. Reboot the primary domain for these changes to take effect.

3. Add the vnet interfaces to the control domain ldg2.

The MAC addresses must be the same as that of Sun Netra DPS domain
interfaces.

4. Run the ipfwd application that compiled with exception handling.

% ./excpd log &

% ./ifctl port0 0 12.12.12.13 netmask 255.255.255.0 mtu 1500 up
% ./ifctl port1 0 12.12.12.12 netmask 255.255.255.0 mtu 1500 up

% ./fibctl fibctl_tables

ldm add-vswitch vsw1 primary
ldm add-vswitch vsw2 primary

ldm add-vnet mac-addr=XX:XX:XX:XX:XX:XX vnet1 vsw1 ldg2
ldm add-vnet mac-addr=XX:XX:XX:XX:XX:XX vnet2 vsw2 ldg2
200 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

a. Place the ipfwd binary in the tftpboot server:

b. At the ok prompt on the target machine, type:

5. Place the IPv4 STREAMS module and the ARP STREAMS module in ldg2,
and load it:

6. Place the insarp tool in the Oracle Solaris control domain.

7. Configure one vnet interface for each data plane port, and insert lwmodip4
and lwmodarp for each interface.

8. Place the excpd application, the fibctl application, the ifctl application in
the ldg2 domain, and execute the excpd application:

The excpd application can be passed a log file name for logging all errors and
warnings as shown above. The log file name can also be omitted. If omitted, all
errors and warnings will be printed to the screen.

Note – The excpd application must run as a background process.

9. Configure the Sun Netra DPS network interface with the ifctl application:

% cp user-dir/ipfwd/code/ipfwd/ipfwd tftpserver-boot/tftpboot

ok boot network-device:,ipfwd

modload lwmodip4
modload lwmodarp

ifconfig vnet1 plumb
ifconfig vnet1 modinsert lwmodip4@2
./insarp vnet1 add
ifconfig vnet1 12.12.12.13 netmask 255.255.255.0 up
ifconfig vnet2 plumb
ifconfig vnet2 modinsert lwmodip4@2
./insarp vnet2 add
ifconfig vnet2 11.11.11.12 netmask 255.255.255.0 up

% ./excpd log &

% ./ifctl port0 0 12.12.12.13 netmask 255.255.255.0 mtu 1500 up
% ./ifctl port1 0 12.12.12.12 netmask 255.255.255.0 mtu 1500 up
% ./ifctl vnet2 2 0.0.0.0 netmask 255.255.255.0 mtu 1500 up
Chapter 11 Reference Applications 201

10. Configure the FIB tables using the fibctl application:

Note – The excpd application must be started before interfaces are configured
using ifctl and FIB tables are downloaded using fibctl.

▼ To Compile the ipfwd Application with IPv4
Exception Handling using vnet in Sun Netra
DPS
1. On a system with /opt/SUNWndps installed, go to the

user_workspace/src/apps/ipfwd application directory.

2. Build the application using the build script.

The ldoms, excp, and vnet options must be provided.

▼ To Run the ipfwd Application with IPv4
Exception Handling and ARP Handling in an
Oracle Solaris OS Host Using vnet

1. Set up the logical domains on the target system with one Sun Netra DPS
domain and the following Oracle Solaris OS domains:

■ primary – Primary domain for running logical domain manager (ldm)

■ ndps – Sun Netra DPS domain for running the Sun Netra DPS ipfwd application

■ ldg2 – Oracle Solaris OS domain for handling exceptions

■ ldg3 – Oracle Solaris OS domain for establishing IPC channels

One vnet interface is needed in ldg2 for each data plane port. One vnet
interface is needed in ndps each ethernet port in the data plane. One vswitch is
needed in the primary domain for each data plane port. Add the vswitch
devices in the primary domain for the vnet devices in ldg2 and ndps that will
be used for exception handling.

% ./fibctl fibctl_tables

% ./build cmt2 10g_niu ldoms excp vnet

ldm add-vswitch vsw1 primary
ldm add-vswitch vsw2 primary
202 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

2. Reboot the primary domain for these changes to take effect.

3. Add the vnet interfaces to the control domain ldg2.

The MAC address must be the same as the interfaces in the Sun Netra DPS
domain (ndps):

4. Add the vnet interface that is used for exception handling in ndps.

5. Run the ipfwd application that is compiled with exception handling:

a. Place the ipfwd binary in the tftpboot server:

b. At the ok prompt on the target machine, type:

6. Configure one vnet interface for each data plane port in ldg2:

7. Place the ifctl application and the fibctl application in the ldg2 domain.

8. Configure the Sun Netra DPS network interfaces with the ifctl application:

9. Configure the FIB tables using the fibctl application:

From this moment, the MAC address learning module will start learning MAC
address for the next-hops mentioned in the FIB table. The data plane will start
transferring packets to and from the control plane using the vnet interface in
ndps.

ldm add-vnet mac-addr=XX:XX:XX:XX:XX:XX vnet1 vsw1 ldg2
ldm add-vnet mac-addr=XX:XX:XX:XX:XX:XX vnet2 vsw2 ldg2

ldm add-vnet vnet1 vsw1 ndps
ldm add-vnet vnet2 vsw2 ndps

% cp user-dir/ipfwd/code/ipfwd/ipfwd tftpserver-boot/tftpboot

ok boot network-device:,ipfwd

ifconfig vnet1 plumb
ifconfig vnet1 12.12.12.13 netmask 255.255.255.0 up
ifconfig vnet2 plumb
ifconfig vnet2 11.11.11.12 netmask 255.255.255.0 up

./ifctl port0 0 12.12.12.13 netmask 255.255.255.0 mtu 1500 up
./ifctl port1 1 11.11.11.12 netmask 255.255.255.0 mtu 1500 up

./fibctl fibctl_tables
Chapter 11 Reference Applications 203

▼ To Compile the IPv4 Forwarding Application
With Exception Handling Using vnet in Sun
Netra DPS
This procedure is used for the Linux guest logical domain.

1. On a system that has /opt/SUNWndps installed, go to the
user_workspace/src/apps/ipfwd application directory.

2. Enable the -DVNET_TIPC_CONFIG flag in the required makefile.

For example: Makefile.nxge

3. Build the application using the build script.

The ldoms, excp, tipc, and vnet options must be provided:

▼ To Run the ipfwd Application with IPv4
Exception Handling and ARP Handling in the
Linux Host Using vnet

1. Set up the logical domains on the target system with one Sun Netra DPS
domain and the following guest domains:

■ primary – Primary domain for running logical domain manager (ldm)

■ ndps – One vnet interface is needed in each Sun Netra DPS domain for each
Ethernet port in the data plane

■ ldg2 – Linux domain for handling exceptions

■ ldg3 – Oracle Solaris OS domain for executing the tnsmctl -P -v command

One vnet interface is needed in ldg2 for each data plane port. One vnet
interface is needed in ndps for each Ethernet port in the data plane. One
vswitch is needed in the primary domain for each data plane port. Add the
vswitch devices in the primary domain for the vnet devices in ldg2 and
ndps that will be used for exception handling.

2. Reboot the primary domain for these changes to take effect.

./build cmt2 10g_niu ldoms excp tipc vnet

ldm add-vswitch vsw1 primary
ldm add-vswitch vsw2 primary
204 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

3. Add the vnet interfaces to the control domain ldg2.

The MAC address must be the same as the interfaces in the Sun Netra DPS
domain.

4. Add the vnet interface that is used for exception handling in ndps.:

5. Run the ipfwd application that is compiled with exception handling:

a. Place the ipfwd binary in the tftpboot server:

b. At the ok prompt on the target machine, type:

6. Configure one vnet interface for each data plane port in ldg2.

7. Configure the Sun Netra DPS TIPC node and Linux TIPC node.

Note that the tn-tipc-config tool for Linux must be built from the SUNWndpsd
package. See “To Configure the Environment for TIPC” on page 315 for
instructions on how to build this tool.

8. Place the fibctl application and the ifctl application in the ldg2 domain.

9. Configure the Sun Netra DPS network interfaces with the ifctl application:

ldm add-vnet mac-addr=XX:XX:XX:XX:XX:XX vnet1 vsw1 ldg2
ldm add-vnet mac-addr=XX:XX:XX:XX:XX:XX vnet2 vsw2 ldg2

ldm add-vnet vnet1 vsw1 ndps
ldm add-vnet vnet2 vsw2 ndps

cp user-dir/ipfwd/code/ipfwd/ipfwd tftpserver-boot/tftpboot

ok boot network-device:,ipfwd

ifconfig vnet1 12.12.12.13 netmask 255.255.255.0 up
ifconfig vnet2 11.11.11.12 netmask 255.255.255.0 up

./tn-tipc-config -addr=10.3.5
./tn-tipc-config -be=eth:vnet1/10.3.0
tipc-config -addr=10.3.4
tipc-config -be=eth:eth1/10.3.0

./ifctl port0 0 12.12.12.13 netmask 255.255.255.0 mtu 1500 up
./ifctl port1 1 11.11.11.12 netmask 255.255.255.0 mtu 1500 up
Chapter 11 Reference Applications 205

10. Configure the exception handling vnet interface in ndps.

The name for this interface must be in the form vnetinstance-number. Obtain the
instance number by executing the ldm list-bindings -e ndps command in
the primary domain. The number listed under the DEVICE column in the output
of this command is the instance number. Also, a valid IP address must not be
assigned to the vnet interface that is used for exception handling. This device is
operated as a pure L2 device.

11. Configure the FIB tables using the fibctl application:

From this moment, the MAC address learning module will start learning MAC
address for the next-hops mentioned in the FIB table. The data plane will start
transferring packets to and from the control plane using the vnet interface in
ndps.

IPv6 Packet Forwarding Application
with Exception Handling
The IPv6 packet forwarder with exception handling consists of:

■ Interface management

Interface management is used to set up network interfaces and change their
parameters such as address. Based on the interface data the incoming packets are
either handed over to the host (control plane) or passed to the protocol exception
handling block.

■ IPv6 protocol exception handling

The exception handling looks for IPv6 packets that require extra actions and
passes them to the control plane for further processing. Such packets are neighbor
or router solicitation and advertisement messages.

■ FIB management

The rest of the packets that do not need special treatment are passed to the
forwarding block that uses the data provided by FIB management to decide
where to send the packet or whether encapsulation is needed.

■ IP-IP tunneling

./ifctl vnet1 1 0.0.0.0 netmask 255.255.255.0 mtu 1500 up
./ifctl vnet2 2 0.0.0.0 netmask 255.255.255.0 mtu 1500 up

./fibctl fibctl_tables
206 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

IP-IP tunneling takes care of decapsulating the incoming packets or encapsulating
the outgoing packets if necessary.

■ Data-plane and control-plane synchronization

Data-plane and control-plane synchronization is responsible of keeping the
interface and FIB data of the data plane synchronized with the interface, routing,
and neighbor data of the control plane.

Interface Management
Interface management is performed by the ifctl application in the control plane. It
can add and remove interfaces, change the address, physical port, and possible
tunnel point. The interface data is transferred to the data plane through IPC or TIPC.

When a packet is received in the data plane, the data plane IPv6 layer determines if
the packet is destined to one of the configured local interfaces. If true, then the
packet is passed to the fastpath manager that sends the packet to the IPv6 layer of
the Oracle Solaris control domain. If the destination interface is a tunnel endpoint
then the packet is decapsulated.

When IPC or TIPC is used for exception packet transfers with the control domain, a
STREAMS module named lwmodip6 is used in the Oracle Solaris OS to interface
with the Oracle Solaris IPv6 Layer. For each interface enabled in the data plane, a
corresponding vnet interface is configured in the Oracle Solaris domain. The
lwmodip6 module is inserted into the STREAMS stack of each configured vnet
interface. This module communicates with the data plane application to receive and
transmit IPv6 packets over IPC or TIPC.

When the vnet interface is used for exception packet transfers with the control
domain, the STREAMS module, lwmodip6 is not used. Instead, the exception path
packets are directly transmitted and received using the vnet interfaces.

IPv6 Protocol Exception Handling
Packets not destined to a local interface are checked for possible exceptions.
Exceptional packets such as neighbor or router solicitation or advertisement
messages are passed to the control plane, using the packet passing mechanism
described in the “Interface Management” on page 207.

The control plane uses the network stack of the Oracle Solaris OS to conduct
neighbor or router discovery, address configuration, and duplicate address
detection. The resulting routing entries and neighbor cache entries are combined
into FIB entries and propagated to the data-plane. See “Data-Plane and Control-
Plane Synchronization” on page 209 for further details.
Chapter 11 Reference Applications 207

Note – Exception handling does not currently include fragmenting of the forwarded
packets.

IPv6 Protocol Exception Handling Using vnet

Packets not destined to a local interface are checked for possible exceptions.
Exceptional packets such as neighbor or router solicitation or advertisement
messages are passed to the control plane using the vnet interfaces.

Note – Currently, when Neighbor Discovery Protocol packets are handled using
vnet interfaces for communication with the control plane, the learning mechanism
in the data plane learns MAC addresses only for those IP addresses that are present
in the dest-addr column of the FIB table (that is, the learning mechanism learns
MAC addresses only for the gateways in the FIB table). Thus, the user must push a
FIB table to the data plane before exception packets and control plane packets can be
handled using this method. In addition, if the user requires that learning mechanism
learns MAC addresses of any host, even if the host is not a gateway, then the
learning mechanism must be extended with this functionality.

The control plane uses the network stack of the Oracle Solaris OS or Linux OS to
conduct neighbor or router discovery, address configuration and duplicate address
detection. The user pushes a FIB to the data plane. The MAC address learning
module in the data plane will learn the MAC address of the next-hop hosts in the
FIB using the neighbor or router solicitation or advertisement messages.

Note – Exception handling does not currently include fragmenting of the forwarded
packets.

FIB Management
FIB management is performed by the ipfwd_sync.d application running in the
control plane. The application uses the fibctl.sh utility to add, remove, or change
FIB entries in the local copy of the database. After the changes are done in the local
copy it is transferred to the data-plane using the fibctl tool. FIB entries are
changed when a new route is added or an existing route is removed in the control
plane. FIB entries are also modified when changes in the control plane’s neighbor
cache require changes.
208 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

FIB Management Using vnet Exception Handling
The FIB Management is done within the data plane application by the MAC address
learning module. The user pushes a FIB to the data plane. The MAC address
learning module will update the FIB entries with MAC addresses learnt from
neighbor solicitation, neighbor advertisement, router solicitation, router
advertisement and router redirect messages that are received from data ports or
from the vnet interfaces.

Note – When exception handling is done using vnet, the ipfwd_sync.d is not
used.

IP-IP Tunneling
IP-IP tunneling is controlled through the ifctl tool. It can set up four types of
tunnels:

■ 6in6 (IPv6-in-IPv6)

■ 6in4 (IPv6-in-IPv4)

■ 4in6 (IPv4-in-IPv6)

■ 4in4 (IPv4-in-IPv4)

The tunnels are created when an interface is given a second IP address that becomes
the tunnel endpoint. Packets received over tunnels are decapsulated and processed
as usual. If the forwarding results in the packet being sent over a tunnel than it is
encapsulated in the appropriate IP protocol and transmitted.

Data-Plane and Control-Plane Synchronization
The ipfwd_sync.d application monitors the control plane (Oracle Solaris OS) for
the following events:

■ Interface changes (add, remove, up, down, and address change)

■ Routing entry changes (add and remove)

■ Neighbor cache changes (set address and remove)

Interface changes are propagated to the data plane using the ifctl tool.

Routing entry changes are applied to the local copy of the data plane FIB table using
fibctl.sh. fibctl.sh can add, remove, and change FIB entries in the local copy
and then load the FIB table to the data plane.
Chapter 11 Reference Applications 209

Neighbor cache changes are also applied to the local FIB table copy first. When a
neighbor appears, the FIB table is searched for gateways (next hop nodes) with the
same IP address as the new neighbor. The MAC address of these entries are
updated. When the neighbor disappears the gateway MAC addresses are set to
00:00:00:00:00:00.

Exception Path Components
The exception path framework consists of the following components:

■ IPv6 forwarder

■ lwmodip6

■ Fastpath manager

■ vnet driver

IPv6 Forwarder (ipfwd Strand)
The IPv6 forwarder receives Ethernet frames from the Rx strand. The forwarder
checks if the frames received contain IP (IPv6 or IPv4) packets. Frames that do not
contain IP packets are passed to the fastpath manager.

All frames that contain IPv6 packets are further processed by the IPv6 forwarder
thread. While processing the IPv6 packets, if any IPv6 protocol exception is detected,
the IPv6 Forwarder thread passes those packets to the fastpath manager thread for
processing the exception.

The following IPv6 protocol exceptions will result in an exception condition:

■ The destination of the packet is a multicast address.

■ The packet is destined to a network or host that does not have an entry in the FIB
table.

■ The packet must be forwarded to a host or a gateway whose Ethernet address is
not resolved.

■ The packet is destined to an interface that is owned by the ipfwd application
(local delivery).

Note – For packets originated from the host (control domain), the fragmentation is
taken care of by the Oracle Solaris OS stack, and only IPv6 packets handled
internally are not fragmented before forwarding.
210 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

IPv6 STREAMS Module (lwmodip6)
This module is used for the processing of IPv6 packets that are destined to the local
interfaces. The module passes IPv6 packets to and from the control plane Oracle
Solaris IPv6 layer and the data plane ipfwd application. It uses IPC or TIPC to
communicate with the data plane application.

Note – This module must not be used when vnet is used for exception packet
transfers.

Fastpath Manager
The fastpath manager performs the following functions related to IPv6 exception
handling:

■ Interfaces with the control plane components such as lwmodip6, fibctl, or
ifctl using IPC, or TIPC.

■ Passes egress packets from control plane to transmit strands.

■ Receives packets from IP forwarder strands and sends them to control plane.

■ Interfaces with the vnet driver transmit and receive strands to enqueue and
dequeue exception packets to and from the control plane.

■ Executes the MAC Address learning algorithm and the FIB management when
exception handling is done using vnet communication.

Exception Path Tools
The following tools are required to use the ipfwd application with exception
handling and neighbor discovery (ND) handling:

ifctl

See “Control Plane Components and Utilities” on page 178.

fibctl

See “Control Plane Components and Utilities” on page 178.
Chapter 11 Reference Applications 211

fibctl.sh

fibctl.sh is a wrapper for fibctl to allow manipulating individual entries in the
FIB table. It keeps a local copy of the table, makes the necessary changes and
commits them to the data-plane using fibctl. The following shows the usage:

fibctl.sh add/del/mac prefix [gateway interface]

ipfwd_sync.d

ipfwd_sync.d can be started without parameters. It monitors events in the control
plane (Oracle Solaris OS) and interacts with the data plane using the described
exception path tools.

Note – With vnet exception handling, fibctl.sh and ipfwd_sync.d are not
used.

▼ To Compile the Reference Application
1. Copy the ipfwd reference application from /opt/SUNWndps/src/apps/ipfwd

directory to a directory location.

2. Execute the build script in that location.

▼ To Compile the IPv6 Forwarding Application
With Exception Handling Using Sun Netra DPS
1. On a system that has /opt/SUNWndps installed, go to the

user_workspace/src/apps/ipfwd application directory.

2. Build the application using the build script.

The ldoms and the ipv6 options must be provided.

fibctl.sh add ::/0 fe80::200:ff:fe00:100 vnet1:0
fibctl.sh del fe80::200:ff:fe00:100/64
fibctl.sh mac 3ffe:501:ffff:101:200:ff:fe00:101 00:00:00:00:01:01

./build cmt2 10g_niu ldoms ipv6
212 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Compiling the lwmodip6 STREAMS module
The lwmodip6 module is provided in ipfwd/src/solaris/module directory. It is
built using the build file in this directory. The following shows the usage:

./build ipv4|ipv6 [tipc]

The following build options are provided:

■ ipv4 – Builds lwmod for IPv4 interface.

■ ipv6 – Builds lwmod for IPv6 interface.

■ tipc – Uses TIPC to communicate with data plane. Otherwise, it uses TNIPC.

▼ To Build the lwmodip6 Module for IPv6 Exception
Handling Using IPC

▼ To Build the lwmodip6 Module for IPv6 Exception
Handling Using TIPC

▼ To Run the ipfwd Application With IPv6 Exception
Handling
1. Set up logical domains on the target system with one Sun Netra DPS domain

and the following Oracle Solaris domains:

■ primary – Primary domain for running Logical Domain Manager (ldm).

■ ndps – Sun Netra DPS domain for running the Sun Netra DPS ipfwd application.

■ ldg2 – Oracle Solaris domain for running the excpd application.

■ ldg3 – Oracle Solaris domain for establishing IPC channels.

One vnet interface is needed in ldg2 for each data plane port. These vnet
interfaces are connected to isolated vswitches in the primary domain.

2. Add vswtiches for each vnet that will be configured:

% ./build ipv6

% ./build ipv6 tipc

ldm add-vswitch vsw1 primary
ldm add-vswitch vsw1 primary
Chapter 11 Reference Applications 213

3. Reboot the primary domain for these changes to take effect.

4. Add the vnet interfaces to the control domain (ldg2).

The MAC addresses must be the same as that of Sun Netra DPS domain’s
interfaces.

5. Run the ipfwd application that is compiled with exception handling:

a. Copy the ipfwd binary to the tftpboot server:

b. At the ok prompt on the target machine, type:

c. Copy the IPv6 STREAMS module to ldg2, and load it:

6. Enable the vnet interface for each data plane port in ldg2, and insert lwmod6
for each interface:

7. Copy the ipfwd_sync.d application, the fibctl application, and the ifctl
application to the ldg2 domain, and start the synchronization, redirecting the
output to a log file:

From this moment the interface or routing table changes of the control plane will
be reflected in the data-plane data structures.

8. Synchronize the interfaces by bringing up the IPv6 interfaces.

ldm add-vnet mac-addr=XX:XX:XX:XX:XX:XX vnet1 vsw1 ldg2
ldm add-vnet mac-addr=XX:XX:XX:XX:XX:XX vnet2 vsw2 ldg2

% cp user-directory/ipfwd/code/ipfwd/ipfwd tftpserver/tftpboot

ok boot network-device:,ipfwd

modload lwmodip6

ifconfig vnet1 inet6 plumb
ifconfig vnet1 inet6 modinsert lwmodip6@1
ifconfig vnet2 inet6 plumb
ifconfig vnet2 inet6 modinsert lwmodip6@1

./ipfwd_sync.d > ipfwd_sync.log &

ifconfig vnet1 inet6 up
ifconfig vnet2 inet6 up
214 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

▼ To Compile the IPv6 Forwarding Application
With Exceptional Handling Using vnet

1. On a system that has /opt/SUNWndps installed, go to the
user_workspace/src/apps/ipfwd application directory.

2. Build the application using the build script.

The ldoms, excp, vnet, and ipv6 options must be provided.

▼ To Run the ipfwd Application With IPv6
Exception Handling
1. Set up the logical domains on the target system with one Sun Netra DPS

domain and the following Oracle Solaris OS domains:

■ primary – Primary domain for running logical domain manager (ldm)

■ ndps – Sun Netra DPS domain for running the Sun Netra DPS ipfwd application

■ ldg2 – Oracle Solaris domain for handling exceptions

■ ldg3 – Oracle Solaris domain for establishing IPC channels

One vnet interface is needed in ldg2 for each data plane port. One vnet
interface is needed in ndps for each Ethernet port in the data plane. One
vswitch is needed in the primary domain for each data plane port. Add the
vswitch devices in the primary domain for the vnet devices in ldg2 and
ndps that will be used for exception handling.

2. Reboot the primary domain for these changes to take effect.

3. Add the vnet interfaces to the control domain ldg2.

The MAC address must be the same as the interfaces in the Sun Netra DPS
domain.

./build cmt2 10g_niu ldoms excp vnet ipv6

ldm add-vswitch vsw1 primary
ldm add-vswitch vsw2 primary

ldm add-vnet mac-addr=XX:XX:XX:XX:XX:XX vnet1 vsw1 ldg2
ldm add-vnet mac-addr=XX:XX:XX:XX:XX:XX vnet2 vsw2 ldg2
Chapter 11 Reference Applications 215

4. Add the vnet interface that is used for exception handling in ndps.

▼ Run the ipfwd Application That Is Compiled
With Exception Handling
1. Place the ipfwd binary on the tftpboot server:

2. At the ok prompt on the target machine, type:

3. Configure one vnet interface for each data plane port in ldg2:

4. Place the fibctl and the ifctl application in the ldg2 domain.

5. Configure the Sun Netra DPS network interfaces with the ifctl application.

6. Configure the vnet exception handling in ndps.

The name chosen for this interface must be in the form vnetinstance-number. Use
the ldm list-bindings -e ndps command in the primary domain to obtain
the instance number. The number listed under the DEVICE column in the output
of this command is the instance number. Also, a valid IP address must not be
assigned to the vnet interface that is used for exception handling. This device is
operated purely as a L2 device.

ldm add-vnet vnet1 vsw1 ndps
ldm add-vnet vnet2 vsw2 ndps

cp user-dir/ipfwd/code/ipfwd/ipfwd tftpserver-boot/tftpboot

ok boot network-device:,ipfwd

ifconfig vnet1 inet6 plumb
ifconfig vnet2 inet6 plumb
ifconfig vnet1 inet6 up
ifconfig vnet2 inet6 up

./ifctl port0 0 fe80::214:4fff:fe9c:86f4 mtu 1500 up
./ifctl port1 1 fe80::214:4fff:fef8:ebec mtu 1500 up

./ifctl vnet1 1 0::0 mtu 1500 up
./ifctl vnet2 2 0::0 mtu 1500 up
216 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

7. Configure the FIB table using fibctl.

The MAC address learning module starts learning MAC address for the next-
hops mentioned in the FIB table. The data plane will start transferring packets to
and from the control plane using the vnet interface in ndps.

▼ To Compile the IPv6 Forwarding Application
Using vnet Exceptional Handling in a Linux
Guest Logical Domain
1. On a system that has /opt/SUNWndps installed, go to the

user_workspace/src/apps/ipfwd application directory.

2. Enable the -DVNET_TIPC_CONFIG flag in the required makefile.

For example: Makefile.nxge

3. Build the application using the build script.

The ldoms, excp, vnet, tipc, and ipv6 options must be provided.

▼ To Run the ipfwd Application Using IPv6
Exception Handling in a Linux Guest Logical
Domain
1. Set up the logical domains on the target system with one Sun Netra DPS

domain and the following guest domains:

■ primary – Primary domain for running logical domain manager (ldm)

■ ndps – Sun Netra DPS domain for running the Sun Netra DPS ipfwd application

■ ldg2 – Linux OS domain for handling exceptions

■ ldg3 – Oracle Solaris OS domain for executing the tnsmctl -P -v command

./ifctl fibctl_tables

./build cmt2 10g_niu ldoms excp tipc vnet ipv6
Chapter 11 Reference Applications 217

2. Add one vnet interface in ldg2 for each data plane port.

One vnet interface is needed in ndps for each Ethernet port in the data plane,
and one vswitch is needed in the primary domain for each data plane port.
Add the vswitch devices in the primary domain for the vnet devices in ldg2
and ndps for exception handling.

3. Reboot the primary domain for these changes to take effect.

4. Add the vnet interfaces to the control domain ldg2.

The MAC address must be the same as the interfaces in the Sun Netra DPS
domain.

5. Add the vnet interface for exception handling in ndps.

▼ Run the ipfwd Application That Is Compiled
With Exception Handling
1. Place the ipfwd binary in the tftpboot server:

2. At the ok prompt on the target machine, type:

3. Configure one vnet interface for each data plane port in ldg2:

ldm add-vswitch vsw1 primary
ldm add-vswitch vsw2 primary

ldm add-vnet mac-addr=XX:XX:XX:XX:XX:XX vnet1 vsw1 ldg2
ldm add-vnet mac-addr=XX:XX:XX:XX:XX:XX vnet2 vsw2 ldg2

ldm add-vnet vnet1 vsw1 ndps
ldm add-vnet vnet2 vsw2 ndps

cp user-dir/ipfwd/code/ipfwd/ipfwd tftpserver-boot/tftpboot

boot network-device:,ipfwd

ifconfig vnet1 inet6 up
ifconfig vnet2 inet6 up
218 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

4. Configure the Sun Netra DPS TIPC node and Linux TIPC node.

Note that the tn-tipc-config tool for Linux must be built from the SUNWndpsd
package.

See “To Configure the Environment for TIPC” on page 315 for instructions to
build this tool.

5. Place the fibctl and the ifctl application in the ldg2 domain.

6. Configure the Sun Netra DPS network interfaces with the ifctl application.

7. Configure the exception handling vnet interface in ndps.

The name chosen for this interface must be in the form vnetinstance-number. Use
the ldm list-bindings -e ndps command in the primary domain to obtain
the instance number. The number listed under the DEVICE column is the instance
number. Also, a valid IP address must not be assigned to the vnet interface that
is used for exception handling. This device is operated purely as a L2 device.

8. Configure the FIB table using fibctl.

The MAC address learning module starts learning MAC address for the next-
hops mentioned in the FIB table. The data plane will start transferring packets to
and from the control plane using the vnet interface in ndps.

./tn-tipc-config -addr=10.3.5
./tn-tipc-config -be=eth:vnet1/10.3.0
tipc-config -addr=10.3.4
tipc-config -be=eth:eth1/10.3.0

./ifctl port0 0 fe80::214:4fff:fe9c:86f4 mtu 1500 up
./ifctl port1 1 fe80::214:4fff:fef8:ebec mtu 1500 up

./ifctl vnet1 1 0::0 mtu 1500 up
./ifctl vnet2 2 0::0 mtu 1500 up

./fibctl fibctl_tables
Chapter 11 Reference Applications 219

Differentiated Services Reference
Application
The differentiated Services (DiffServ) reference application is integrated with the IP
forwarding application. The DiffServ data path consists of classifier, meter, marker,
and policing components. These components provide quality-of-services (QoS)
features for traffic entering the node and avoids congestion in the network. These
components can be arranged in the pipeline such that each component performs
specific task and propagates the result (traffic class and policing information) to the
next component.

The following are major features of DiffServ:

■ “Classifiers” on page 221

■ “Policing (Meter)” on page 222

■ “DSCP Marker” on page 222

■ “Shaping” on page 222

■ “Building the DiffServ Application” on page 223

■ “DiffServ Command-Line Interface Implementation” on page 224

■ “Command-Line Interface for the IPv4-DiffServ Application” on page 224

FIGURE 11-4 shows the arrangement of the components in the data path. The
scheduler and queue manager are executed in a separate thread, whereas the other
components are located in the forwarding thread. The following sections describe
the functions of the different parts.
220 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

FIGURE 11-4 IPv4 DiffServ Internal Data Path

Classifiers
This section describes the Diffserv classifiers.

Differentiated Services Code Point Classifier
The differentiated services code point (DSCP) classifier (RFC 2474) fast path
component sets QoS variables (flow and color) based on the DSCP value extracted
from the IPv4 packet header and directs packets to the proper next component
(meter, marker, and IPv4) for further processing. The DSCP classifier always remain
enabled.

6-Tuple Classifier
The 6-tuple classifier fast path component performs an exact-match lookup on the
IPv4 header. The classifier maintains a hash table with exact-match rules. Thus, a
table lookup can fail only if there is no static rule defined. An empty rule
corresponds to best-effort traffic. As a result, on a lookup failure a packet is assigned
to the best-effort service (default rule) and passed on for further processing. The
classifier slow path component configures the hash table used by the classifier fast
path component. 6-tuple classifier can be enabled or disabled at run time.

Diffserv

Scheduler

Rx Tx

TC-Meter

Classifier
DSCP

Classifier
6-Tuple

Marker
DSCP

IPv4
Forwarder

Scheduler

QM

and QM
Chapter 11 Reference Applications 221

Policing (Meter)
The three-color (TC) meter implements two metering algorithms: single-rate three-
color meter (SRTCM) and two-rate three-color meter (TRTCM).

Single-Rate Three-Color Marker
The single-rate three-color marker (SRTCM) meters an IP packet stream and marks
its packets green, yellow, or red. Marking is based on a committed information rate
(CIR) and two-associated burst sizes, a committed burst size (CBS) and an excess
burst size (EBS). A packet is marked green if it does not exceed the CIR. The packet
is marked yellow if it does exceed the CBS, but not the EBS. Otherwise, the packet is
marked red.

Two-Rate Three-Color Marker
The two-rate three-color marker (TRTCM) meters an IP packet stream and marks its
packets green, yellow, or red. A packet is marked red if it exceeds the peak
information rate (PIR). Otherwise, it is marked either yellow or green depending on
whether it exceeds or does not exceed the committed information rate (CIR).

DSCP Marker
The DSPC marker updates the type-of-service (TOS) field in the IPv4 header and
recomputes the IPv4 header checksum

Shaping
This section includes the deficit round robin scheduler and queue manager.

Deficit Round Robin Scheduler
The deficit round robin (DRR) scheduler schedules packets in a flexible queuing
policy with priority concept. With this scheduler, the parameters are the number of
sequential service slots that each queue can get during its service turn. The number
of services for each queue depends on the value of its parameter called deficit factor.
The deficit of queue is reduced as the scheduler schedules packets from that queue.
The maximum deficit of each queue can be configured and is called weight of that
222 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

queue. The DRR scheduler will schedule the packets by considering the packet size
of the packet at the top of the queue. Queues are still served in round robin fashion
(cyclically) in a preassigned order.

Queue Manager
The queue manager performs enqueue and dequeue operations on the queues. The
queue manager manages an array of queues, with each queue corresponding to a
particular per hop behavior (PHB), for queuing packets per port. The queue
manager receives enqueue requests from the IPv4-DiffServ pipeline. On receiving
the enqueue request, the queue manager places the packet into the queue
corresponding to the PHB indicated by the DSCP value in the packet. The queue
manager maintains the state for each queue and uses the tail drop mechanism in
case of congestion.

The queue manager receives the dequeue requests from the scheduler. The dequeue
request consists of the PHB and the output port. Packets from the queue
corresponding to this PHB and output port is dequeued and the dequeued packet is
placed on the transmit queue for the output port.

Building the DiffServ Application
To build the DiffServ application, specify the diffserv keyword on the build script
command line. All files of the DiffServ data path implementation are located in the
diffserv subdirectory of stc/app in the IP forwarding application. The DiffServ
application requires an logical domain environment, as all configuration is through
an application running on an Oracle Solaris control domain that communicates with
the data plane application through IPC.

For example, to build the DiffServ application to make use of both NIU ports on an
UltraSPARC T2-based system, use the following command:

% ./build cmt2 10g_niu ldoms diffserv no_freeq 2port
Chapter 11 Reference Applications 223

DiffServ Command-Line Interface
Implementation
The IPv4 Forwarding Information Base (FIB) table configuration (fibctl)
command-line interface (CLI) has been extended to support configuration of
DiffServ tables. This support behavior is the same as the FIB table configuration
protocol over IPC between the control plane and data plane logical domains.
Support is provided for configuring (choosing) the following DiffServ tables:

■ DSCP classifier table

■ Classifier 6-tuple table

■ STRCM and TRTCM table

■ Queue manager configuration table

■ Scheduler configuration table

▼ To Build the Extended Control Utility
● Type the following command in the src/solaris subdirectory of the IP

forwarding reference application:

Command-Line Interface for the IPv4-DiffServ
Application
This section contains descriptions of the CLI commands for the IPv4-DiffServ
application.

DSCP Classifier
The DSCP classifier supports the following commands.

add

Adds the DSCP classifier entry in the DSCP table.

% gmake DIFFSERV=on
224 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Syntax

diffserv dscp add DSCP-value port-number flow-id color-id class-id next-block

Parameters
■ DSCP-value – DSCP value should be greater than 0 and less than 64.

■ port-number – Port number should be less than NUM_PORTS.

■ flow-id – ID used to identify the traffic flow to which the packet belongs.

■ color-id – ID should be green, yellow, or red.

■ class-id – ID used to identify the queue number within an output port.

■ next-block – Next block should be meter, marker, or fwder.

Example

delete

Deletes DSCP classifier entry from DSCP table.

Syntax

diffserv dscp delete DSCP-value port-number

Parameters
■ DSCP-value – DSCP value should be greater than 0 and less than 64.

■ port-number – Port number should be less than NUM_PORTS.

Example

update

Updates the existing DSCP classifier entry in DSCP table.

fibctl> diffserv dscp add 1 0 1 green 1 meter

fibctl> diffserv dscp delete 1 0
Chapter 11 Reference Applications 225

Syntax

diffserv dscp update DSCP-value port-number flow-id color-id class-id next-block

Parameters
■ DSCP-value – DSCP value should be greater than 0 and less than 64.

■ port-number – Port number should be less than NUM_PORTS.

■ flow-id – ID used to identify the traffic flow to which the packet belongs.

■ color-id – ID should be green, yellow, or red.

■ class-id – ID used to identify the queue number within an output port.

■ next-block – Next block should be meter, marker, or fwder.

Example

purge

Purges the DSCP table.

Syntax

diffserv dscp purge

display

Displays the DSCP table.

Syntax

diffserv dscp display

6-Tuple Classifier
The 6-tuple classifier supports the following commands:

fibctl> diffserv dscp update 1 0 1 yellow 1 fwder
226 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

add

Adds classifier 6-tuple entry in 6-tuple table.

Syntax

diffserv class6tuple add SrcIp DestIp Proto Tos SrcPrt DestPrt IfNum flow-id
color-id next-block class-id

Parameters
■ SrcIp – Source IP address (for example, 192.168.1.5) in the IP header of packet.

■ DestIp – Destination IP address (for example, 192.168.1.5) in the IP header of
packet.

■ Proto – IP protocol field in the IP header of packet.

■ Tos – Differentiated services code point (6 bits of TOS field).

■ SrcPrt – Source port number in the TCP/UDP header packet.

■ DestPrt – Destination port number in the TCP/UDP header packet.

■ IfNum – Input port starting form port 0, on which the packet is received.

■ flow-id – ID used to identify the traffic flow to which the packet belongs.

■ color-id – ID used to identify the packet drop precedence level (green, yellow, or
red).

■ next-block – Used to identify the next packet processing block meter, marker, and
fwder.

■ class-id – ID used to identify the queue number within an output port
(for example: ef, af0, af1, af2, af3, be).

Example

delete

Deletes 6-tuple classifier entry from 6-tuple table.

fibctl> diffserv class6tuple add 211.2.9.195 192.168.115.76 17
16 61897 2354 0 50 green meter 44
Chapter 11 Reference Applications 227

Syntax

diffserv class6tuple delete SrcIp DestIp Proto Tos SrcPrt DestPrt IfNum

Parameters
■ SrcIp – Source IP address (for example, 192.168.1.5) in the IP header of packet.

■ DestIp – Destination IP address (for example, 192.168.1.5) in the IP header of
packet.

■ Proto – IP protocol field in the IP header of packet.

■ Tos – Differentiated services code point (6 bits of TOS field).

■ SrcPrt – Source port number in the TCP/UDP header packet.

■ DestPrt – Destination port number in the TCP/UDP header packet.

■ IfNum – Input port starting form port 0, on which the packet is received.

Example

update

Updates the existing 6-tuple classifier entry in 6-tuple table.

Syntax

diffserv class6tuple update SrcIp DestIp Proto Tos SrcPrt DestPrt IfNum
flow-id color-id next-block class-id

Parameters
■ SrcIp – Source IP address (for example, 192.168.1.5) in the IP header of packet.

■ DestIp – Destination IP address (for example, 192.168.1.5) in the IP header of
packet.

■ Proto – IP protocol field in the IP header of packet.

■ Tos – Differentiated services code point (6 bits of TOS field).

■ SrcPrt – Source port number in the TCP/UDP header packet.

■ DestPrt – Destination port number in the TCP/UDP header packet.

fibctl> diffserv class6tuple delete 211.2.9.195 192.168.115.76
17 16 61897 2354 0
228 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ IfNum – Input port starting form port 0, on which the packet is received.

■ flow-id – ID used to identify the traffic flow to which the packet belongs.

■ color-id – ID used to identify the packet drop precedence level (green, yellow, or
red).

■ next-block – Used to identify the next packet processing block meter, marker, and
fwder.

■ class-id – ID used to identify the queue number within an output port
(for example: ef, af0, af1, af2, af3, be).

Example

purge

Purges the 6-tuple table.

Syntax

diffserv class6tuple purge

display

Displays the 6-tuple table.

Syntax

diffserv class6tuple display

enable or disable
Enables or disables the 6-tuple table.

Syntax

diffserv class6tuple enable|disable

fibctl> diffserv class6tuple update 211.2.9.195 192.168.115.76
17 16 61897 2354 0 50 red marker 44
Chapter 11 Reference Applications 229

Example

TC Meter
The TC meter supports the following commands:

add

Adds a meter instance in TC meter table.

Syntax

diffserv meter add flow-id CBS EBS CIR EIR green-dscp green-action yellow-dscp
yellow-action red-dscp red-action meter-type stat-flag

Parameters
■ flow-id – ID used to identify the traffic flow to which the packet belongs.

■ CBS – The value of the committed burst size (CBS) is larger than 0, it is larger
than or equal to the size of the largest possible IP packet in the stream. cbs is
measured in bytes.

■ EBS – The value of the excess burst size (EBS) is larger than 0. It is larger than or
equal to the size of the largest possible IP packet in the stream. EBS is measured
in bytes.

■ CIR – Committed information rate (CIR) at which a traffic source is signed up to
send packets to the meter instance. It is measured in bytes-per-second. The cir
should be in M-bytes per seconds.

■ EIR – Excess information rate (EIR) at which a traffic source is signed up to send
packets to the meter instance. It is measured in bytes-per-second. This is used
only when TRTCM is enabled. The eir should be in megabytes-per-second.

■ green-dscp – DSCP packet mark value for green packets.

■ green-action – Select the next packet processing block for green packets (drop,
fwder, and marker).

■ yellow-dscp – DSCP packet mark value for yellow packets.

■ yellow-action – Select the next packet processing block for yellow packets (drop,
fwder, and marker).

fibctl> diffserv class6tuple enable
fibctl> class6tuple disable
230 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ red-dscp – DSCP packet mark value for red packets.

■ red-action – Select the next packet processing block for red packets (drop, fwder,
and marker).

■ meter-type

■ 0 – TRTCM color aware

■ 1 – TRTCM color blind

■ 2 – SRTCM color aware

■ 3 – SRTCM color blind

■ stat-flag

■ 0 – Statistics disable

■ 1 – Statistics enable

Example

delete

Deletes a meter instance in TC meter table.

Syntax

diffserv meter delete flow-id

Parameter
■ flow-id – ID used to identify the traffic flow to which the packet belongs.

Example

update

Updates a meter instance in TC meter table.

fibctl> diffserv meter add 1 1500 1500 1 1 12 marker 13 drop 14
drop 1 1

fibctl> diffserv meter delete 1
Chapter 11 Reference Applications 231

Syntax

diffserv meter update flow-id CBS EBS CIR EIR green-dscp green-action
yellow-dscp yellow-action red-dscp red-action meter-type stat-flag

Parameters
■ flow-id – ID used to identify the traffic flow to which the packet belongs.

■ CBS – The value of the committed burst size (CBS) is larger than 0, it is larger
than or equal to the size of the largest possible IP packet in the stream. cbs is
measured in bytes.

■ EBS – The value of the excess burst size (EBS) is larger than 0, it is larger than or
equal to the size of the largest possible IP packet in the stream. EBS is measured
in bytes.

■ CIR – committed information rate (CIR) at which a traffic source is signed up to
send packets to the meter instance. It is measured in bytes-per-second. The cir
should be in
megabytes-per-second.

■ EIR – excess information rate (EIR) at which a traffic source is signed up to send
packets to the meter instance. It is measured in bytes-per-second. This is used
only when TRTCM is enabled. The eir should be in megabytes-per-second.

■ green-dscp – DSCP packet mark value for green packets.

■ green-action – Select the next packet processing block for green packets (drop,
fwder, and marker).

■ yellow-dscp – DSCP packet mark value for yellow packets.

■ yellow-action – Select the next packet processing block for yellow packets (drop,
fwder, and marker).

■ red-dscp – DSCP packet mark value for red packets.

■ red-action – Select the next packet processing block for red packets (drop, fwder,
and marker).

■ meter-type

■ 0 – TRTCM color aware

■ 1 – TRTCM color blind

■ 2 – SRTCM color aware

■ 3 – SRTCM color blind

■ stat-flag

■ 0 – Statistics disable

■ 1 – Statistics enable
232 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Example

purge

Purges meter table.

Syntax

diffserv meter purge

display

Displays the TC meter table.

Syntax

diffserv meter display

stats

Displays the TC meter statistics.

Syntax

diffserv meter stats flow-id

Parameter
■ flow-id – ID used to identify the traffic flow to which the packet belongs.

fibctl> diffserv meter update 1 1500 1500 1 1 12 marker 13 drop
14 drop 0 0
Chapter 11 Reference Applications 233

Example

Scheduler
The scheduler supports the following commands:

add

Configures weight for all AF classes and maximum rate limit for EF class.

Syntax

diffserv scheduler add output-port class-id weight

Parameters
■ output-port – Port number should be less than NUM_PORTS.

■ class-id – ID used to identify the queue number within an output port
(for example: ef, af0, af1, af2, af3, be).

■ weight – Maximum number of bytes to be scheduled. If class is ef, the weight will
be bytes-per-seconds. Otherwise, the weight will be number of bytes.

Example

update

Updates weight for all AF classes and maximum rate limit for EF class.

Syntax

diffserv scheduler update output-port class-id weight

fibctl> diffserv meter stats 1

fibctl> diffserv scheduler add 1 af1 128
234 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Parameters
■ output-port – Port number should be less than NUM_PORTS.

■ class-id – ID used to identify the queue number within an output port
(for example: ef, af0, af1, af2, af3, be).

■ weight – Maximum number of bytes to be scheduled. If class is ef, the weight will
be bytes-per-seconds. Otherwise, the weight will be number of bytes.

Example

display

Displays scheduler table entries.

Syntax

diffserv scheduler display output-port

Parameter

output-port – Port number should be less than NUM-PORTS.

Example

fibctl> diffserv scheduler update 1 af1 256

fibctl> scheduler display 1
Chapter 11 Reference Applications 235

DiffServ References
TABLE 11-3 lists DiffServ references.

Generic Routing Encapsulation
Reference Application
The generic routing encapsulation (GRE) reference application is integrated with the
IP forwarding application. Topics include:

■ “Generic Routing Encapsulation Introduction” on page 237

■ “References” on page 237

■ “Data Plane Architecture” on page 237

■ “GRE Command-Line Interface Implementation” on page 241

■ “Directory Structure” on page 241

■ “To Compile the GRE Code” on page 241

■ “To Run the IPv4 and GRE Application” on page 242

■ “CLI for the IPv4-GRE Application” on page 243

TABLE 11-3 DiffServ References

Reference Document Descriptions

RFC 2474 Definition of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers

RFC 2475 An Architecture for Differentiated Services

RFC 2597 Assured Forwarding PHB Group

RFC 2697 A Single-Rate Three-Color Marker

RFC 3246 An Expedited Forwarding PHB (Per-Hop Behavior)

RFC 3260 New Terminology and Clarifications for DiffServ

RFC 4115 A Differentiated Service Two-Rate, Three-Color Marker with Efficient
Handling of in-Profile Traffic
236 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Generic Routing Encapsulation Introduction
Generic routing encapsulation (GRE) is a protocol for encapsulating a network layer
protocol within another network layer protocol.

GRE is generally used as a tunneling protocol to encapsulate a wide variety of
network layer packets inside IPv4 tunneling packets. The original network layer
packet becomes the payload for the final packet.

For example, a node has a packet that needs to be encapsulated and sent to another
node. This packet is then encapsulated using the generic routing encapsulation
protocol. A delivery IPv4 header is added to the GRE encapsulated packet and this
packet is forwarded to its destination over the public IPv4 network. At the
destination, the GRE header and the delivery header are decapsulated, and the
payload packet is forwarded in the local network.

References
TABLE 11-4 lists references for the GRE protocol.

Data Plane Architecture
The data plane architecture for the GRE implementation on Sun UltraSPARC T1 and
T2 boards is described in this section.

The GRE encapsulator and GRE decapsulator components are included in the data
plane. The GRE encapsulator adds the GRE header and the delivery header to the
payload packet. The GRE decapsulator removes the delivery header and GRE header
from the encapsulated packet.

TABLE 11-4 GRE Reference Documentation

Reference Number Description

RFC 2784 This document specifies a protocol for performing encapsulation of an
arbitrary network layer protocol over another arbitrary network layer
protocol.

RFC 2890 This document describes extensions by which two fields, key and
sequence number, can be optionally carried in the GRE header.
Chapter 11 Reference Applications 237

IPv4 Forwarding Data Plane
FIGURE 11-5 shows a diagram of the IPv4 forwarding.

FIGURE 11-5 IPv4 Forwarding

GRE Over IPv4 Data Plane
FIGURE 11-6 shows a diagram of the GRE over IPv4 data plane.

FIGURE 11-6 GRE Over IPv4 Data Plane

Rx

Rx

IP-Fwder

IP-Fwder

Tx

Tx

(port 0) (port 0)

(port 1)(port 1)

Enhanced component

Rx

Rx

GRE Tx

Tx

IP-Fwder

GRE
IP-Fwder

(port 0) (port 0)

(port 1)(port 1)
238 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

GRE Over IPv4 Data Plane Internal Block Diagram
FIGURE 11-7 shows the GRE over IPv4 data plane internal block diagram.

FIGURE 11-7 GRE Over IPv4 Data Plane Internal Block Diagram

GRE Over IPv4 Application
The following describes the GRE over IPv4 application.

IPv4 Forwarder
When a tunnel endpoint decapsulates a GRE packet that has an IPv4 packet as the
payload, the destination address in the IPv4 payload packet header is used to
forwards the packet and the TTL of the payload packet is decremented. Take care
while forwarding such a packet, because if the destination address of the payload
packet is the encapsulator of the packet (that is, the other end of the tunnel), looping
can occur. In this case, the packet must be discarded.

Rx Tx

GRE over IPv4

GRE
Decapsulator

IPv4
Forwarder

GRE
Encapsulator
Chapter 11 Reference Applications 239

GRE Encapsulator
When a node has a packet that needs to be encapsulated and forwarded, this packet
is called the payload packet. The payload is first encapsulated in the GRE header.
The resulting GRE packet is then encapsulated in the IPv4 protocol. GRE packets
that are encapsulated within IPv4 use IPv4 protocol type 47.

The GRE encapsulator inserts the key field in the GRE header as according to the
RFC 2890 document. The GRE encapsulator also inserts the Sequence Number field
in the GRE header as according to the RFC 2890 document. See “GRE Reference
Documentation” on page 237.

GRE Decapsulator
When a node receives GRE encapsulated packet for local delivery, the node checks if
the IPv4 protocol type is set to 47. If the IPv4 protocol type is set to 47, then the
packet is given to the GRE decapsulator. The GRE decapsulator removes the GRE
header, and the packet is given to the IPv4 forwarder to forward the packet in the
local network. The GRE decapsulator uses the Sequence Number field in the GRE
header to establish the order in which packets have been transmitted from the GRE
encapsulator to the GRE decapsulator.

Key and Sequence Number Extensions to GRE
The RFC 2890 document (see “GRE Reference Documentation” on page 237)
describes enhancements by which two fields, key and sequence number, can be
optionally carried in the GRE header. The key field identifies an individual traffic
flow within a tunnel. The sequence number field maintains the sequence of packets
within the GRE tunnel.

When the decapsulator receives an out-of-sequence packet, the decapsulator
discards the packet. A packet is considered out-of-sequence if the sequence number
of the received packet is less than or equal to the sequence number of the last
successfully decapsulated packet.

GRE decapsulator maintains a buffer per flow (flow is identified by the key number).
This buffer holds the packets with the sequence number gap. When the GRE
decapsulator receives an in-sequence packet, the decapsulator checks the sequence
number of the packet at the head of the buffer. If the next in-sequence packet has
been received, the receiver decapsulates it as well as the following in-sequence
packets that may be present in the buffer.

The packets do not remain in the buffer indefinitely but they are decapsulated once
they remain in the buffer for OUTOFORDER_TIMER mini-seconds.
240 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

GRE Command-Line Interface Implementation
The IPv4 forwarding information base (FIB) table configuration (fibctl) command-
line interface (CLI) has been extended to support configuration of GRE tables. GRE
related configuration commands are added to the existing FIB table configuration
protocol over IPC between the control plane and the data plane logical domains. The
following parameters are provided for configuring the GRE table:

■ GRE configuration table

Configuration contains the source IP and destination IP of tunnel end points. The
IP addresses of the tunnel end points must be public IP addresses.

■ GRE key number

The GRE key number is configured through the CLI.

■ IPv4 forwarding table is modified to accommodate next hop type and tunnel ID.

Directory Structure
TABLE 11-5 lists the GRE directory structure.

▼ To Compile the GRE Code
1. Copy the ipfwd reference application from the

/opt/SUNWndps/src/apps/ipfwd directory to a desired directory location.

2. Execute the build script in that location.

TABLE 11-5 GRE Directory Structure

Directory Description

ipfwd/src/app/gre Source code for GRE components

ipfwd/src/solaris Control plane CLI code

ipfwd/code Generated code

ipfwd/code/ipfwd Binary
Chapter 11 Reference Applications 241

▼ To Compile the IPv4 and GRE Application Using
Sun Netra DPS
1. On a system that has /opt/SUNWndps installed, go to the

user-workspace/src/apps/ipfwd application directory.

2. To enable GRE, execute the build script:

▼ To Compile the Command-Line Interface
Application
● Go to the src/apps/ipfwd/src/solaris directory, and type the following:

▼ To Run the IPv4 and GRE Application
1. Copy the ipfwd binary to the tftpboot server:

Note – You might need to use ftp or other applications to transfer this binary file.

2. At the ok prompt on the target machine, type:

% ./build cmt2 10g_niu ldoms gre

% gmake clean
% gmake GRE=on

% cp user-directory/ipfwd/code/ipfwd/ipfwd tftpboot-server/tftpboot/

ok boot network_device:,ipfwd
242 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

▼ To Run the CLI Application
1. Set up logical domains on the target system with one Sun Netra DPS domain

and the following Oracle Solaris domains:

■ primary – Primary domain for running the Logical Domain Manager (ldm)

■ ndps – Sun Netra DPS domain for running the Sun Netra DPS data plane
application

■ ldg2 – Oracle Solaris domain for running the fibctl application

■ ldg3 – Oracle Solaris domain for establishing IPC channels

See “To Build the ifctl and fibctl Utility” on page 183, for building the
fibctl utility in the Oracle Solaris subtree.

2. Place the fibctl Oracle Solaris OS executable file into the ldg2 domain.

CLI for the IPv4-GRE Application
The following commands are supported.

add

Adds the GRE entry in the GRE encapsulation table.

Syntax

gre add local-dest-addr local-dst-mask local-src-addr local-src-mask global-src-addr global-
dst-addt

Parameters
■ local-dest-addr – Destination network IPv4 address

■ local-dst-mask – Destination network mask

■ local-src-addr – Source network IPv4 address

■ local-src-mask – Source network mask

■ global-src-addr – Source IPv4 address of encapsulated packet

■ global-dst-addt – Destination IPv4 address of encapsulated packet

% fibctl
Chapter 11 Reference Applications 243

Example

update

Updates the GRE entry in the GRE encapsulation table.

Syntax

gre update local-dest-addr local-dst-mask local-src-addr local-src-mask global-src-addr
global-dst-addt

Parameters
■ local-dest-addr – Destination network IPv4 address

■ local-dst-mask – Destination network mask

■ local-src-addr – Source network IPv4 address

■ local_src-mask – Source network mask

■ global-src-addr – Source IPv4 address of encapsulated packet

■ global-dst-addt – Destination IPv4 address of encapsulated packet

Example

delete

Deletes the GRE entry in the GRE encapsulation table.

Syntax

gre delete local-dest-addr local-dst-mask local-src-addr local-src-mask

fibctl> gre add 192.168.115.0 255.255.255.0 211.2.9.0
255.255.255.0 10.10.10.10 10.11.12.13

fibctl> gre update 192.168.115.0 255.255.255.0 211.2.9.0
255.255.255.0 1.1.1.1 10.1.1.1
244 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Parameters
■ local-dest-addr – Destination network IPv4 address

■ local-dst-mask – Destination network mask

■ local-src-addr – Source network IPv4 address

■ local-src-mask – Source network mask

Example

purge

Purges the GRE encapsulation table.

Syntax

gre purge

Parameters

No parameters are required.

display

Displays the GRE encapsulation table.

Syntax

gre display

Parameters

No parameters are required.

fibctl> gre delete 192.168.115.0 255.255.255.0 211.2.9.0
255.255.255.0
Chapter 11 Reference Applications 245

GRE Reference Application Example
This GRE reference application example is run on an UltraSPARC T2 system. See
“Supported Systems” on page 2 for Sun systems supported by this application.

Required equipment:

■ One UltraSPARC T2-based system

■ One traffic generator port

■ One NIU 10-Gbps Ethernet port (one XAUI card)

■ One straight connect fiber cable

▼ To Build the GRE Reference Application
● Execute the following command:

Traffic Generator Configuration
To run the encapsulation path:

■ Frame data – select EthernetII, IPv4 + UDP/IP

■ DA MAC – MAC ID of the target system’s port that receives the traffic from this
traffic generator.

■ IPv4 – If hash-policy is ip-addr:

SA=211.2.9.0

DA=192.168.115.0 ~ 192.168.115.255 (continue increment by 1)

■ IPv4 – If hash-policy is tcam-classify

SA=211.2.9.0

DA=192.168.115.1 ~ 192.168.115.8 (increment by 1 and repeat 8 counts)

■ UDP – No action required.

■ Payload – No action required.

To run the decapsulation path:

■ Frame data – select EthernetII, IPv4 + GRE/IP

■ Minimum packet size – 128-B

■ DA MAC – MAC ID of the target system’s port that receives the traffic from this
traffic generator.

% ./build cmt2 10g_niu ldoms gre -hash hash-policy
246 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ IPv4 (delivery header) – SA=x.x.x.x and DA=16.0.0.1

■ IPv4 (inner header) – SA=x.x.x.x and DA=16.0.0.2

Note that the following fields must be present in the GRE header:

■ Key field (this is a required field)

■ Sequence number (this is a required field)

■ Checksum/Reserve1 (valid checksum)

■ fibctl application

On the Oracle Solaris domain (ldg2), run the following commands:

To run the encapsulation path, the following command is also required:

Access Control List Reference
Application
The access control list (ACL) reference application is integrated with the IP
forwarding application. The ACL component classifies IPv4 packets using a set of
rules. The classification can be done using the source and destination addresses and
ports, as well as the protocol and the priority of the packet.

The algorithms (trie, bspl, and hicut) are used in the ACL library trade memory
for speed. The rules are preprocessed to achieve a high lookup rate while using a lot
of memory.

The ACL application can be built for using the following mechanism to transfer data
between the control plane application (acltool) and data plane IP Forwarding
application:

1. Use LDC to communicate

2. Use TIPC with IPC bearer

3. Use TIPC with vnet bearer

fibctl> connect
fibctl> write-table 1
fibctl> use-table 1

fibctl> gre add 192.168.115.0 255.255.255.0 211.2.9.0
255.255.255.0 1.1.1.1 10.1.1.1
Chapter 11 Reference Applications 247

▼ To Build the ACL Application
ACL application can be build to use LDC or TIPC as medium to communicate with
the control domain.

● To build ACL to use LDC as medium, specify the acl keyword on the build
script command line.

For example:

● To build ACL to use TIPC as medium, specify the acl and tipc keywords on
the build script command line.

For example:

▼ To Run the ACL Application
The ipfwd application with ACL requires an logical domain environment because
all configurations are done through an application running on an Oracle Solaris OS
or Linux OS control domain. Both LDC and TIPC media are supported for Oracle
Solaris OS domains. To use Linux as a control domain, use TIPC with vnet as TIPC
bearer. The Sun Netra DPS domain needs to be configured with at least 16 Gbytes of
memory, which is a requirement for the ACL application.

▼ To Configure the ACL Application Environment
Using LDC
1. Enable shared memory by adding the following line to the /etc/system file:

% ./build cmt2 10g_niu ldoms acl

% ./build cmt2 10g_niu ldoms acl tipc

set ldc:ldc_shmem_enabled = 1
248 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

2. Enable the ACL communication channel between the Sun Netra DPS domain
and the Oracle Solaris OS control domain.

A special configuration channel must be set up between these domains. The
channel is established as follows:

3. Add /opt/SUNWndpsd/lib to LD_LIBRARY_PATH.

▼ To Configure the ACL Application Environment
Using TIPC
● See “To Configure the Environment for TIPC” on page 315 for instructions on

how to configure the TIPC environment.

Command-Line Interface for the ACL Application
The acltool is a command-line tool that sends commands to the ACL engine
running in the Sun Netra DPS domain. The interface is similar to iptables(8). The
major difference is that it does not take a chain as a parameter. There are three
acltool binaries in the SUNWndpsd package:

■ /opt/SUNWndpsd/bin – This directory contains the acltool for Oracle Solaris
OS control domains.

■ /opt/SUNWndpsd/bin/acltool – This binary uses LDC as media to
communicate with Sun Netra Data plane application.

■ /opt/SUNWndpsd/bin/acltool.tipc – This binary uses TIPC as media to
communicate with Sun Netra Data plane application.

■ /opt/SUNWndpsd/linux/bin – This directory contains the acltool for Linux
control domain:

■ /opt/SUNWndpsd/bin/acltool.tipc – This binary uses TIPC as media to
communicate with Sun Netra Data plane application.

The command options for acltool and acltool.tipc are the same in Oracle
Solaris OS and Linux OS logical domains.

Following is a description of the various acltool commands and options.

ldm add-vdpcs shmem-server Netra-DPS-domain-name
ldm add-vdpcc shmem-client shmem-server Solaris-control-domain-name

% acltool --help
Chapter 11 Reference Applications 249

Usage

acltool command [options]

Help Command
■ -h or --help

Prints usage help.

Control Commands
■ --init algorithm

Initializes ACL engine using algorithm for packet lookup.

■ --start

Starts the packet classification.

■ --stop

Stops the packet classification.

■ --status

Prints the status of the ACL engine.

■ -c or --config-file filename

Reads rule commands from the configuration file.

Rule Commands
■ -A or --append rule

Appends a rule.

■ -D or --delete rule

Removes the matching rule.

■ -L or --list

Lists all rules.
250 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ -F or --flush

Flushes (removes) all rules.

Rule Specification Options
■ -p or --protocol num

Protocol (tcp, udp, icmp) or protocol number.

■ -s or --source ip[/mask]

Source ip prefix.

■ -d or --destination ip[/mask]

Destination ip prefix.

■ -j or --jump num

Specifies where to jump (action).

■ -g or --goto num

Same as --jump.

■ --sport num[:num]

Source protocol port.

■ --source-port num[:num]

Source protocol port.

■ --dport num[:num]

■ Destination protocol port.

■ --destination-port num[:num]

Destination protocol port.

■ -v or --ipv4|6

List rules with given IP version.

■ -o or --offset num

Start listing from num offset.

▼ To Use acltool in a Linux OS Control Domain
1. Copy libtnacltipc.so from /opt/SUNWndpsd/linux/lib to /usr/lib64

directory in the Linux OS guest logical domain.

2. Copy acltool.tipc from /opt/SUNWndpsd/linux/bin to your working
directory in the Linux OS guest logical domain.
Chapter 11 Reference Applications 251

3. Execute the acltool.tipc tool.

For example:

Radio Link Protocol Reference
Application
The radio link protocol (RLP) application (rlp) simulates radio link protocol
operation, which is one of the protocols in the CDMA-2000 high rate packet data
interfaces (HRPD-A). This application implements the forwarding direction fully,
with packets flowing from PDSN --> AN --> AT (that is, packet data serving node to
access network to access terminal). Reverse direction support is also implemented,
but requires an AT side application that can generate NAKs (negative
acknowledges). The application must be modified to process reverse traffic.

▼ To Compile the RLP Application
1. Copy the rlp reference application from the /opt/SUNWndps/src/apps/rlp

directory to a desired directory location.

2. Create the build script in that location.

Build Script
TABLE 11-6 shows the radio link protocol (rlp) application build script.

Usage
./build cmt type [ldoms] [arp] [profiler][-hash FLOW_POLICY]

/working-dir/acltool.tipc options

TABLE 11-6 rlp Application Build Script

Build Script Usage

./build
(See “Argument Descriptions” on page 253.)

Build rlp application to run on an Ethernet interface.
252 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Argument Descriptions
The following arguments are supported:

■ cmt

Specifies whether to build the ipfwd application to run on the CMT1
(UltraSPARC T1) platform or CMT2 (UltraSPARC T2) platform.

■ cmt1 – Build for CMT1 (UltraSPARC T1)

■ cmt2 – Build for CMT2 (UltraSPARC T2)

■ type

■ 4g – Build rlp application to run on QGC (quad 1-Gbps nxge Ethernet
interface).

■ 10g – Build rlp application to run on 10-Gbps Ethernet (dual 10-Gbps nxge
Ethernet interface).

■ 10g_niu – Build rlp application to run on NIU (dual 10-Gbps UltraSPARC T2
Ethernet interface) on a CMT2-based system.

■ [ldoms]

This is an optional argument specifying whether to build the rlp application to
run on the logical domain environment. When this flag is specified, the rlp
logical domain reference application will be compiled. If this argument is not
specified, then the non-logical domain (standalone) application will be compiled.
See “How Do I Calculate the Base PA Address for NIU or Logical Domains to Use
with the tnsmctl Command?” on page 388.

■ [arp]

This is an optional argument to enable arp and can run only on the logical
domain environment.

■ [profiler]

This is an optional argument that generate code with profiling enabled.

■ [-hash FLOW_POLICY]

This is an optional argument used to enable flow policies. For more information,
see “Other RLP Options” on page 255.
Chapter 11 Reference Applications 253

▼ To Build the RLP Application
1. In /src/apps/rlp, pick the correct build script, and run it.

For example, to build for 10-Gbps Ethernet on a Sun Netra or Sun Fire T2000
system, type the following at your shell window:

In this example, the 10g option is used to build the RLP application to run on the
Sun multithreaded 10-Gbps Ethernet. The cmt argument is specified as cmt1 to
build the application to run on UltraSPARC T1-based Sun Netra or Sun Fire T2000
systems.

▼ To Run the Application
1. Copy the binary into the /tftpboot directory of the tftpboot server, and

perform.

2. On the tftpboot server, type:

3. At the ok prompt on the target machine, type:

Note – network-device is an OpenBoot PROM alias corresponding to the physical
path of the network.

% ./build cmt1 10g

% cp your-workspace/rlp/code/rlp/rlp /tftpboot/rlp

ok boot network-device:,rlp
254 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Default System Configuration
The following table shows the default system configuration.

The main files that control the system configurations are:

■ ipfwd/src/apps/config/rlp_swarch.c

■ ipfwd/src/apps/config/rlp_map.c

Default RLP Application Configuration
The following table shows the default RLP application configuration:

The main files that control the application configurations are:

■ ipfwd/src/apps/rlp_config.c

■ ipfwd/src/apps/rlp_config.h

Other RLP Options
This sections includes instructions on how to use additional RLP options.

TABLE 11-7 Default System Configuration

NDPS domain
(strand IDs)

IPC Polling Statistics
(strand IDs)

Other domain
(strand IDs)

CMT1 non-logical domain 0 to 31 31 N/A

CMT1 logical domain 0 to 19 18 and 19 20 to 31

CMT2 non-logical domain 0 to 63 63 N/A

CMT2 logical domain 0 to 39 38 and 39 40 to 63

TABLE 11-8 Default RLP Application Configuration

Applications Runs On Number of Ports Used
Number of Channels
per Port

Total Number of Q
Instances

Total Number of
Strands Used

4-Gbps PCIE (nxge QGC) 4 1 4 12

10-Gbps PCIE (nxge 10-Gbps) 1 4 4 12

10-Gbps NIU (niu 10-Gbps): 1 8 8 24
Chapter 11 Reference Applications 255

▼ To Bypass the rlp Operation
● To bypass the rlp operation (that is, receive --> transmit without

rlp_process operation), uncomment the following line from
Makefile.nxge for Sun multithreaded 10-Gbps and 4x1-Gbps PCIe Ethernet
adapter:

-DIPFWD_RAW

Note – This action disables the RLP processing operation only, the queues are still
used. This is not the default option.

▼ To Use One Global Memory Pool
By default, the RLP application uses a single global memory pool for all the DMA
channels.

1. Enable the single memory pool by using the following flag:

-DFORCEONEMPOOL

2. Update the rlp_swarch.c file to use individual memory pools.

Flow Policy for Spreading Traffic to Multiple
DMA Channels
The user can specify a policy for spreading traffic into multiple DMA flows by
hardware hashing or by hardware TCAM lookup (classification). See TABLE 11-2 for
flow policy options.

IPSec Gateway Reference Application
The IPSec gateway reference application implements the IP encapsulating security
payload (ESP) protocol using tunnel mode. This application allows two gateways (or
a host and a gateway) to securely send packets over an unsecure network with the
original IP packet tunneled and encrypted (privacy service). This application also
implements the optional integrity service allowing the ESP header and tunneled IP
packet to be hashed on transmit and verified on receipt.
256 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

IPSec Gateway Application Architecture
The design calls for six Sun Netra DPS threads in a classic architecture where four
threads are dedicated to packet reception and transmission (two receivers, two
senders). In this architecture, a thread takes plain text packets and encapsulates and
encrypts them, as well as a thread that de-encapsulates and decrypts. The
architecture is shown in FIGURE 11-8.

FIGURE 11-8 IPSec Gateway Application Architecture

Refer to the following RFC documents for a description of IPSec and the ESP protocol:

■ 4301 – Security Architecture for the Internet Protocol

■ 4303 – IP ESP

The IPSec RFC refers to outbound and inbound packets. These design notes refer to
these terms.

■ Outbound packets are those coming into the IPSec gateway as plaintext (from the
unprotected hosts) and being sent to the peer gateway as ciphertext packets
(encrypted).

■ Inbound packets are the opposite, that is, IPSec-encapsulated (ciphertext) packets
coming in from the peer gateway and being decrypted and sent to the
unprotected hosts.

IPSec Gateway Application Capabilities
IPSec is a complex protocol. This application handles the following most common
processing:

■ Static security association database (SADB)

Contains the type of service to provide (privacy, integrity), crypto and hashing
types and keys to be used for a session, among other housekeeping items. An
item in the SADB is called a security association (SA). An SA can be unique to one
connection, or shared among many.

■ Static security policy database (SPD)

Encapsulate packet Xmit packet

Xmit packet De-encapsulate packet Recv packet

Loopback
cable

Plaintext Ciphertext

Recv packet
Chapter 11 Reference Applications 257

A partial implementation that is used to contain selectors that designate what
action should be taken on a packet based on the source and destination IP
addresses, protocol, and port numbers.

■ SPD cache

A critical cache used to quickly look up the SA to use for packets coming from the
plaintext side. The packet source and destination addresses and ports are hashed
to find the action to take on the packet (discard, pass-through, or IPSec protect)
and the SA.

■ Security parameter index (SPI) hash

A cache is used to quickly look up an SA for ESP packets entering the system
from the ciphertext side. The security parameter index is in the ESP header.

■ ESP protocol tunnel mode

This IPSec implementation uses the ESP protocol (it does not currently handle
AH, though ESP provides most of the AH functionality). Tunnel mode is used to
encapsulate (tunnel) IP packets between hosts and interface to a peer gateway
machine.

■ Privacy service

■ Encrypt or decrypt traffic

■ Supported algorithms:

AES (ECB/CBC/CTR) with 128/192/256 bits

DES/3DES (ECB/CBC/FCB) with 128/192/256 bits

RC4

■ Integrity service

■ Authenticate through optional hashing

■ Supported algorithms: HMAC-SHA1, HMAC-SHA256, and HMAC-MD5

High-Level Packet Processing
The following describes functions of outbound and inbound packet processing.

Outbound Packets
The following list contains descriptions of the outbound packet processing:

■ Receive packets from an ingress network port.

■ Hash the source or destination IP address and port numbers.
258 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ Look up in (security policy database caches (SPD-cache) to determine action to
take and a pointer to the security association (SA).

■ If action is IPSec-protect:

■ Build (prepend) outer IP header, ESP header.

■ Encrypt payload (original IP packet) using security parameters in SA.

■ Optionally calculate and add a hash value.

■ Transmit ciphertext packet from an egress network port.

Inbound Packets
The following list contains descriptions of the inbound packet processing:

■ Receive Packets from an ingress network port.

■ If action is an ESP packet:

■ Hash security parameter index (SPI) from ESP header to obtain SA.

■ Optionally hash and verify hash value (integrity service).

■ Decrypt payload.

■ Remove outer IP header, ESP header, and trailer.

■ Transmit plain-text packets from an egress network port.

Security Association Database and Security Policy
Database
The packet encapsulation and encryption code is straight-forward after you have a
pointer to the SA. The SA contains the following information:

■ Crypto algorithm to use (AES, 3DES, and others)

■ Key length

■ Key

■ Initial vector (IV)

■ Type of service to apply (privacy-only or privacy + integrity)

■ Hash algorithm (SHA1, SHA256, and so on)

■ Hash length

■ Hash key

■ Sequence number

Refer to the sadb.h header file (/opt/SUNWndpsc/src/libs/ipsec/sadb.h) for
all other fields in the SA database.
Chapter 11 Reference Applications 259

Packet encapsulation and de-encapsulation is just a matter of determining where the
new IP header goes or where the original IP header is, building the new IP header,
and invoking the crypto APIs on the correct packet location and length. For the
IPSec implementation, you need to find the SA to use when a packet is received
(either outbound on inbound). The user must use software hashing and hash table
lookups for every packet. Note that when this is ported to Sun multithreaded 10-
Gbps Ethernet on PCIe, the packet classification features speed-up this hashing.

Outbound Packets and Inbound Packets
The following sections describe how the SA is obtained for each packet.

Outbound Packets

The user must look at the packet selectors to determine what action to take, either
DISCARD, PASS-THROUGH (as is), or PROTECT. The selectors are the source and
destination IP addresses, the source and destination ports, and the protocol (TCP,
UDP, and others).

The action to take is stored in the security policy database (SPD). For this
application, the complete SPD is not implemented. A static SPD exists that consists
of rules that must be searched in order using the packet selectors.

For each selector (source IP, destination IP, source port, destination port, and
protocol), the rule states one of the following:

■ Single value (for example, matches on source address of 129.1.2.3)

■ List of values (for example, matches either 129.1.2.3, 129.1.2.5, or 129.1.2.10)

■ Range of values (for example, 129.1.1.3 to 129.1.1.10)

■ Match-all (for example, any source port)

■ Mask (for example, matches any source address after applying mask 0x3F)

If all selectors match the rules, use the SP entry to determine what action to take. If
it is PROTECTED (IPSec), the inbound and outbound security parameter index (SPI)
knows which SA to use.

This implies the following:

■ An SA can be exclusive to a given connection.

■ An SA can be shared among many connections (for example, a single SA can be
used to protect all traffic between to hosts).
260 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ Each connection or flow of traffic has two SAs: one for outbound traffic and one
for inbound traffic. Due to the loopback configuration (refer to later sections for
loopback configurations), the receive bound is receiving ciphertext packets from
the transmit. Therefore, an SPI of the outbound packet plus 1 should be used as
the SPI.

The last rule in the SPD should be a catch-all that says DISCARD the packet.

The SPD structures and definitions can be found in spd.h.

The source code for the SPD can be found in spd.c.

The function used to lookup a rule is SPD_Search(), which is passed the selector
values from the packet.

The above lookup is complex for every packet. Because of this, a cache named the
SPD-Cache is maintained. The first time you lookup a particular connection, create a
SPDC structure, hash the selectors, and place this SPDC in a hash table.

When packet that uses the exact combination of selectors comes in, it needs to be
looked up in the SPDC hash table using the SPDC_HASH() function. If found,
immediate access to the SA is made.

The definitions of this SPDC and the function can be found in sadb.h and sadb.c,
respectively.

This application does not hash on the protocol type because UDP or TCP protocols
types are assumed due to the presence of the source and destination ports in the
packets.

The SPDC hash table is defined as:

The primary function used to lookup an SPDC entry is:

For this hash table, take the hash value, mask off the hash table size -1, then index
into this table to get an entry. The application then compares the entry for a match,
and if there is not a match, the function will walk the chain until one is found.

spdc_entry_t *spdc_hash_table[SPDC_HASH_TABLE_SIZE];

spdc_e *spdc_hash_lookup_from_iphdr(iphdr)
Chapter 11 Reference Applications 261

Inbound Packets

Inbound IPSec packets contain an ESP header with an SPI. The application parses
the SPI, hashes it using SPI_HASH_FROM_SPI(), looks it up in the SPI hash table,
and accesses the SA pointer from there. The application cannot use the same hashing
as done for outbound packets because the selectors (source and destination IP
address and ports) have been encapsulated and encrypted. Decryption cannot be
done until the SA is looked up.

The SPI hash table is defined as:

Static Security Policy Database and Security
Association Database
For the purposes of the application, statically define the test SPD and SAD in
compile-time initialized C-code in the following C file: sa_init_static_data.c

spi_entry_t *spi_hash_table[SPI_HASH_TABLE_SIZE];
262 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

SPD
Two SPD rules are defined.

■ The first rule appears as shown below:

This rule matches any source or destination IP address and protocol (TCP or
UDP), and a source port of 6666 and a destination port of 7777. The load
generator is set to send UDP packets with those ports. This needs to be changed if
other ports are used.

■ The second rule matches everything else and the action is set to IPSEC_DISCARD,
which means drop the packet.

These rules are added to the SPD at init-time (init_ipsec() calls
sa_init_static_data()) through the following call: SPD_Add()

Two other functions are defined but not currently used: SPD_Delete() and
SPD_Flush()

SAD
The SAD is also statically defined in sa_init_static_data.c. There are currently
two SA entries: one for the outbound SA and one for the inbound SA. Only the
outbound SA needs to be defined since the inbound SA is just a copy of the
outbound SA, except for the SPI.

sp_t sp_rule1 = {
1, /* rule # */
SA_OUTB1, /* outb_spi */
SA_INB1, /* inb_spi */
IPSEC_PROTECT, /* action */
SPD_PROTOCOL_MATCH_ALL, /* match on all protocols */
{ SPD_MATCH_ALL }, /* match all connections for now */
{ SPD_MATCH_ALL },
{ SPD_SINGLETON, 0, {6666} }, /* Only match UDP ports 6666, 7777 */
{ SPD_SINGLETON, 0, {7777} }, /* Only match UDP ports 6666, 7777 */

};
Chapter 11 Reference Applications 263

To perform various encryption and hashing scenarios, this SA entry is where the
user needs to make changes, as shown below:

The first element to note is the service type. If the user wants to test privacy
(encryption), leave INTEGRITY commented out. No hashing will be done. If the user
wants hashing, comment in the #define for INTEGRITY.

The next fields you might change are the encryption parameters: encr alg, encr
mode, encr key len, encr IV len, encr block len, and the encr key. The IV is
only used for certain modes, such as CBC for AES.

sa_t sa_outb1 = { /* First outbound SA */
 (void *)NULL, /* auth ndps cctx */
 (void *)NULL, /* encr ndps cctx */
 SA_OUTB1, /* SPI */
 1, /* SPD rule # */
 0, /* seq # */
 0x0d010102, /* local_gw_ip */
 0x0d010103, /* remote_gw_ip */
 {{0x0,0x14,0x4f,0x3c,0x3b,0x18}}, /* remote_gw_mac */
 PORT_CIPHERTEXT_TX, /* local_gw_nic */
//#define INTEGRITY
#ifdef INTEGRITY
 IPSEC_SVC_ESP_PLUS_INT, /* service type */
#else
 IPSEC_SVC_ESP, /* service type */
#endif
 IPSEC_TUNNEL_MODE, /* IPSec mode */
 0, /* dont use ESN */

 (int)NDP_CIPHER_AES128, /* encr alg */
 (int)NDP_AES128_ECB, /* encr mode */
 /*(int)NDP_AES128_CBC, /* encr mode */
 128/8, /* encr key len */
 0/8, /* encr IV len */
 16, /* encr block len */

 (int)NDP_HASH_SHA256, /* auth alg */
 0, /* auth mode */
 256/8, /* auth key len */
 256/8, /* auth hash len - will get a default */

 {{TEST_ENCR_KEY_128}}, /* encr key */
 {{TEST_AUTH_KEY_256}}, /* auth key */
 //{{TEST_ENCR_IV_128}}, /* encr IV */
 {{’\000’}}, /* auth IV - will get a default*/
 /* everything else is dynamic and does not need initing here */
264 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

It is important to ensure the proper key lengths and IV lengths in the table.

You might need to modify the hashing algorithms in a similar manner assuming you
chose INTEGRITY.

Eventually, the SPD and SAD need to be integrated with a control plane (CP) such
that the CP determines the static databases. There are two scenarios on how this
takes place: download the tables and shared memory.

Download the Tables

The CP uses the logical domain IPC mechanism to interface with Sun Netra DPS to
download (add) or modify the SPD and SA. Some functionality already exists to
build these databases once the protocol is defined:

■ SPD_Add()

■ SPD_Delete()

■ SPD_Flush()

■ SADB_ADD()

Shared Memory

The CP sets up the tables in memory that is accessible from both the CP and Sun
Netra DPS and informs the Sun Netra DPS application of updates through the
logical domain IPC mechanism.

Packet Encapsulation and De-encapsulation
The main packet processing functions are called from the two processing threads
which reside in ipsecgw.c.

The main plaintext packet processing thread is called
PlaintextRcvProcessLoop() and it pulls a newly received packet out of a Sun
Netra DPS fast queue and calls:

IPSEC_Process_Plaintext_Pkt(mblk)

The main ciphertext packet processing thread is called
CiphertextRcvProcessLoop(). The thread takes a packet off a fast queue and
calls IPSEC_Process_Ciphertext_Pkt(mblk).

Find the IPSEC_Process_Plaintext_Pkt() and
IPSEC_Process_Ciphertext_Pkt() functions in ipsec_proc.c.
Chapter 11 Reference Applications 265

The following two functions perform the hashing and invoke the actual processing
code:

■ IPSEC_ESP_Encapsulate()

■ IPSEC_ESP_Deencapsulate()

The message block (mblk) contains pointers to the start and end of the incoming
packets (b_rptr and b_wptr). Because plaintext packets must be prepended with a
new outer IP header and ESP header, the user application should not shift the
incoming packet data down which is a copy. Therefore, when the Ethernet driver
asks for a new receive buffer through teja_dma_alloc(), a buffer is grabbed from
the receive buffer Sun Netra DPS memory pool. The memory pool size is 2-Kbytes
and the memory pool function returns an offset into that buffer which tells the
driver where to place the packet data. This offset is set to 256 (MAX_IPSEC_HEADER),
which is enough space to prepend the IPSec header information.

Packet Encapsulation
This section contains notes on how to calculate the location of the various parts of
the ESP packet (outbound and inbound).

The following shows how to calculate the location of the outbound packet:

Orig:
OrigIPStart
OrigIPLen (from original IP header, includes IP hdr + tcp/udp hdr + payload)

New:
 ETH_HDR_SIZE: 14
 IP_HDR_SIZE: 20
 ESP_HDR_FIXED: 8 (SPI + Seq#)
 EncIVLen: variable - from SA or cryp_ctx
 EncBlkSize: variable - from static structs
 AuthICVLen: variable - from SA or cryp_ctx

 ESPHdrLen = ESP_HDR_FIXED + EncIVLen
 ESPHdrStart = OrigIPStart - ESPHdrLen

NewIPStart = OrigIPStart - (ETH_HDR_SIZE + IP_HDR_SIZE + ESP_HDR_FIXED +
 EncIVLen)
 CryptoPadding = OrigIPLen % EncBlkSize
 ESPTrailerPadLen = 4
266 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

HashStart = ESPHdrStart
HashLen = ESPHdrLen + OrigIPLen + CryptoPadding + ESPTrailerPadLen

 CryptoStart = OrigIPStart
 CryptoLen = OrigLen + CryptoPadding + ESPTrailerPadLen

 NewIPLen = IP_HDR_SIZE + HashLen + AuthICVLen

NewPktStart---->0 1
 +---------------+
 |EtherHDR |
 +---------------+
NewIPStart----->14 15
 +---------------+
 |IP HDR |
 +---------------+
ESPHdrStart---->32 33
HashStart +---------------+<====== to be hashed from here
 |ESP HDR |
 +---------------+
 40 41
OrigIPStart---->+---------------+<====== to be crypted from here
 | Orig IP HDR |
 +---------------+
 .
 .
 .
CryptoLen +---------------+=== OrigIPLen + CryptoPadLen +
 ESP_TRAILER_FIXED

ICVLoc--------->+---------------+=== HashStart + HashedBytesLen
HashedBytesLen === ESPHdrLen + OrigIPLen + CryptoPadLen +
 ESP_TRAILER_FIXED;

NDPSCrypt(OrigIPStart, CryptoLen)
 NDPSHashDirect(ICVLoc, HashStart, HashedBytesLen)
Chapter 11 Reference Applications 267

The following shows how to calculate the inbound packet:

Memory Pools
The IPSec Gateway uses the Sun Netra DPS memory pools shown in TABLE 11-9. The
names and sizes are defined in ipsecgw_config.h:

Pipelining
The two main processing threads (PlaintextRcvProcessLoop and
CiphertextRcvProcessLoop) are pipelined into two threads: one to perform most
of the packet encapsulation and de-encapsulation, and the other to perform the
encryption and decryption and optional hashing.

OrigIPStart
OrigIPLen (from original IP header, includes IP hdr + tcp/udp hdr + payload)
HashStart = OrigIPStart + IP_HDR_SIZE
HashLen = OrigIPLen - (IP_HDR_SIZE + AuthICVLen)

CryptoStart = HashStart + ESP_HDR_FIXED + EncIVLen
CryptoLen = HashLen - (ESP_HDR_FIXED + EncIVLen)

PadOffset = HashStart + HashLen - 2
PadLen = *PadOffset

NewIPStart = CryptoStart
NewIPLen = same as tunneled IPLen - get from IP header

TABLE 11-9 Sun Netra DPS Memory Pools

Memory Pool Description

SPDC_ENTRY_POOL Pool for SPDC entries stored in the SPDC hash table.

SPI_ENTRY_POOL Pool for SPI entries stored in the SPI hash table. These hash tables
are actually arrays indexed by the hash value (masked with the
hash table size).

SP_POOL Pool of SP entries.

SA_POOL Pool of SA entries.

CRYP_CTX_POOL Crypto context structures (maintained by the crypto API library).
268 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

An extra fast queue is inserted in each path. For example, the pipeline for the eight
threads configurations is shown as follows:

The two new threads (EncryptAndHash and HashAndDecrypt) reside in
ipsec_processing.c rather than ipsecgw.c where the other threads reside.

The packet processing portion of this pipeline must pass the packet to the crypto
part of the pipeline. Packets are normally passed on fast queues through the mblk
pointer. Other vital information also needs to be passed, such as the SA pointer.
Rather than allocation of a new structure to pass the data and the mblk (message
block), this data is piggy-backed at the beginning of the receive buffer, which is not
used. Refer to the cinfo structure defined in ipsec_processing.c.

Source Code File Description
The IPSec package comes with the following directories:

■ /opt/SUNWndpsc>/src/apps/ipsec-gw-nxge

This directory consists of IPSec code that supports the Sun multithreaded 10-Gbps
Ethernet on PCI-E or on-chip NIU in UltraSPARC T2.

■ /opt/SUNWndpsc>/src/libs/ndps_crypto_api

This directory consists of crypto API that interface to the crypto hardware.

■ /opt/SUNWndpsc>/src/libs/ipsec

This directory consists of IPSec library functions.

Build Script
This section contains descriptions of the usage and arguments supported by the
build script.

PlaintextRcvPacket ->
PlaintextRcvProcessLoop ->

EncryptAndHash ->
CiphertextXmitPacket -> Network port 1 ---->

LOOPBACK
<- CiphertextRcvPacket <- Network port 2 <----

<- CiphertextRcvProcessLoop
<- HashAndDecrypt

PlaintextXmitPacket
Chapter 11 Reference Applications 269

Usage
./build cmt type [auth] [-hash FLOW_POLICY]

Argument Descriptions
■ cmt

Specifies whether to build the IPSec Gateway application to run on the CMT1
platform or CMT2 platform.

■ cmt1 – Build for CMT1 (UltraSPARC T1)

■ cmt2 – Build for CMT2 (UltraSPARC T2)

■ type

Specifies the application type. Available application types are shown as follows:

■ ipcrypto – Build the ipsecgw application to run crypto on IP packets only
(no IPSec protocol). This application configuration can be used to measure raw
crypto overheads.

■ qgc – Build the ipsecgw application to run on the Sun Multithreaded Quad
Gigabit Ethernet.

■ 10g_niu – Build the ipsecgw application to run one application instance on
the UltraSPARC T2 10-Gbps Ethernet (NIU).

■ niu_multi – Build the ipsecgw application to run up to four application
instances on the UltraSPARC T2 10-Gbps Ethernet.

■ niu_tunnel_in – Build the ipsecgw application to run up to eight
application instances on the UltraSPARC T2 10-Gbps Ethernet.

■ niu_tunnel_out – Build the ipsecgw application to run up to eight
application instances on the UltraSPARC T2 10-Gbps Ethernet.

■ [auth]

This is an optional argument to apply authentication (hashing protocol) to the
packet stream along with crypto. The hash algorithm is specified in the
sa_init_static_data.c source file.

■ [-hash FLOW_POLICY]

This is an optional argument used to enable flow policies. See TABLE 11-2 for the
flow policies for all flow policy options.

The file descriptions in the following tables are based on the files in the
ipsec-gw-nxge directory.
270 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

TABLE 11-10 lists the source files.

TABLE 11-10 Source Files

Source File Description

common.h Header file consists of common information.

config.h Consists of receive buffer configuration information.

debug.c Used when compiling in DEBUG mode (see IPSEC_DEBUG in
the Makefile to turn on IPSec debugs). This file contains the
debug thread that calls teja_debugger_check_ctrl_c().

init.c Main initialization code called by Sun Netra DPS runtime for
setting up fast queues and initializing the Crypto library and
the IPSec code.

init_multi.c Main initialization code called by Sun Netra DPS runtime for
setting up fast queues used by the IPSec multiple instances
code.

ip_crypto.c Location of the main application threads for the IPSec crypto
(crypto only, no IPSec overhead).

ipsec_niu_config.c Assists user to map application tasks to CPU core and
hardware strands of the UltraSPARC T2 chip specific to the
NIU (network interface unit of the UltraSPARC T2 chip)
configuration.

ipsecgw.c Contains the main application threads.

ipsecgw_config.c Assists user to map application tasks to CPU core and
hardware strands.

ipsecgw_flow.c Contains the classification flow entries.

ipsecgw_flow.h Contains the definitions of the classification flow.

ipsecgw_impl_config.h Contains the information related to mblk, receive buffer
sizes, number of channels, SA, SPDC.

ipsecgw_niu.c Main application thread for the NIU configuration.

ipsecgw_niu_multi.c Main application thread for the NIU multi-instances
configuration.

lb_objects.h Contains memory pool definitions.

mymalloc.c Used by the low-level crypto-code.

mymalloc.h Memory pool definitions used by the crypto library.

perf_tools.c Used for profiling (not available on UltraSPARC T2).

perf_tools.h Used for profiling (not available on UltraSPARC T2).

rx.c Packet receive code which uses Ethernet API.
Chapter 11 Reference Applications 271

TABLE 11-11 lists the IPSec library files.

TABLE 11-12 lists the crypto library files.

tx.c Packet xmit code which uses Ethernet API encryption and
hashing algorithms.

user_common.c Contains the callback functions used by the Sun Netra DPS
Ethernet APIs.

user_common.h Contains fast queue definitions and function prototypes.

util.c Contains IPSec utility functions.

TABLE 11-11 IPSec Library Files

IPSec Library File Description

init_ipsec.c Code that is called at startup to initialize IPSec structures.

ipsec_common.h Function prototypes, some common macros, other definitions.

ipsec_defs.h IPSec protocol definitions and macros.

ipsec_proc.c This is the main IPSec processing code. This is where all the
encapsulation-encryption, de-encapsulation-decryption and
hashing functions reside.

netdefs.h Constant and macro definitions of common Ethernet and IP
protocols.

sa_init_static_data.c Contains the statically-defined SAD and SPD. This is the file to
modify for testing various SA configurations.

sadb.c SADB functions.

sadb.h SADB definitions.

spd.c SPD functions.

spd.h SPD definitions.

TABLE 11-12 Crypto Library Files

Crypto Library File Description

crypt_consts.h Contains various crypto constants.

ndpscript.c Contains crypto API implementations.

ndpscrypt.h Contains data structures and function prototypes.

ndpscrypt_impl.h Contains crypto context structure.

TABLE 11-10 Source Files (Continued)

Source File Description
272 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Reference Application Configurations
IPSec and crypto have five reference application configurations:

■ “IP with Encryption and Decryption” on page 273

■ “IPSec Gateway on Quad GE” on page 274

■ “IPSec Gateway on NIU 10-Gbps Interface (One Instance)” on page 275

■ “IPSec Gateway on NIU 10-Gbps Interface (Up to Four Instances)” on page 277

■ “Multiple Instances (Up to Eight Instances) Back-to-Back Tunneling
Configuration” on page 279

IP with Encryption and Decryption
This configuration can be used to evaluate the raw performance of the crypto
engine. Two UltraSPARC T2 crypto engines are used: one for encryption and one for
decryption.

FIGURE 11-9 IP With Encryption and Decryption Default Configuration

The following list includes the configuration requirements:

■ Required equipment:

■ One UltraSPARC T2-based system

■ One traffic generator port

RX encrypt

TX

RX

TX

port 0

port 1

port 0

port 1

decrypt
Chapter 11 Reference Applications 273

■ Two NIU 10-Gbps Ethernet ports (two XAUI cards)

■ One pair of straight connect copper cable, one cross-over copper cable

■ Build method:

■ ./build cmt2 ipcrypto

■ Traffic generator configuration:

■ Frame Data – Select EthernetII, IPv4 + UDP/IP

■ DA MAC – MAC ID of port 0 (the recipient of plaintext)

■ IPv4 – SA=69.235.4.0 DA=69.235.4.1

■ UDP – SP=6666 DP=7777 (this has to be consistent with sp_rule1 in
src/libs/ipsec/sa_init_static_data.c)

■ Payload – Fill Pattern = 0x55

■ Static data (sa_init_static_data.c) configuration (use default)

IPSec Gateway on Quad GE
This configuration implements one traffic flow on the PCIE Quad Gigabit Ethernet
card.

FIGURE 11-10 IPSec Gateway on Quad GE Default Configuration

RX encrypt/hashipsec

TX hash/decrypt

RX

TX

port 0

port 2

port 3

port 1

ipsec
274 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

The following list includes the configuration requirements:

■ Required equipment:

■ One UltraSPARC T2-based system

■ One Traffic Generator port

■ One PCIE Quad Gigabit Ethernet card

■ One pair of straight connect copper cable, one cross-over copper cable

■ Build method:

■ ./build cmt2 qgc

■ Traffic generator configuration:

■ Frame Data – Select EthernetII, IPv4 + UDP/IP

■ DA MAC – MAC ID of port 0 shown in the above diagram

■ IPv4 – SA=69.235.4.0 DA=69.235.4.1

■ UDP – SP=6666 DP=7777 (this has to be consistent with sp_rule1 in
src/libs/ipsec/sa_init_static_data.c)

■ Payload – Fill Pattern = 0x55

■ Static data (sa_init_static_data.c) configuration:

■ Must specify Remote Gateway MAC ID (port 2) in the MAC ID entry of
sa_outb1.

IPSec Gateway on NIU 10-Gbps Interface (One Instance)
This configuration runs one instance of IPSec gateway application on the NIU 10-
Gbps Ethernet interface. Two UltraSPARC T2 crypto engines are used: one for
encrypt-hash and one for hash-decrypt. This configuration is not yet supported on
the Sun Netra CP3260 platform.
Chapter 11 Reference Applications 275

FIGURE 11-11 IPSec Gateway on NIU 10-Gbps Interface (One Instance) Default
Configuration

The following list includes the configuration requirements:

■ Required equipment:

■ One UltraSPARC T2-based system

■ One traffic generator port

■ One PCIE 10-Gbps Ethernet card

■ One pair of straight connect copper cable and one cross-over copper cable

■ Build method:

■ For crypto only:

./build cmt2 10g_niu -hash FLOW_POLICY

■ For crypto and authentication:

./build cmt2 10g_niu auth -hash FLOW_POLICY

■ Policy TCAM_CLASSIFY is recommended for both configurations.

■ Traffic generator configuration:

■ Frame Data – select EthernetII, IPv4 + UDP/IP

■ DA MAC – MAC ID of port 1

■ IPv4 – SA=69.235.4.0 DA=69.235.4.1

RX ipsec

TX hash/decrypt

RX

TX

port 1

port 0

port 1

port 0

ipsec

encrypt/hash
276 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ UDP – SP=6666 DP=7777 (this has to be consistent with sp_rule1 in
src/libs/ipsec/sa_init_static_data.c)

■ Payload – Fill Pattern = 0x55

■ Static data (sa_init_static_data.c) configuration:

■ Must specify remote gateway MAC ID (port 0) in the MAC ID entry of
sa_outb1.

IPSec Gateway on NIU 10-Gbps Interface (Up to Four
Instances)
This configuration implements multiple instances of IPSEC gateway application on
the NIU interface through internal loopback. Eight UltraSPARC T2 crypto engines
are used: four to perform encrypt-hash and four to perform decrypt-hash.

FIGURE 11-12 IPSec Gateway on NIU 10-Gbps Interface (Up to Four Instances) Default Configuration

The following list includes the configuration requirements:

■ Required equipment:

■ One UltraSPARC T2-based system

■ One traffic generator port

■ One NIU 10-Gbps Ethernet port (one XAUI card)

■ One straight connect fiber cable

Port 0, DMA Channels 0 to 3

RX

RX

RX

RX

ipsec

ipsec

ipsec

ipsec

ipsec

ipsec

ipsec

ipsec

TX

TX

TX

TX

encrypt/hash

encrypt/hash

encrypt/hash

encrypt/hash

hash/decrypt

hash/decrypt

hash/decrypt

hash/decrypt

DMA CHAN0

DMA CHAN1

DMA CHAN2

DMA CHAN3
Chapter 11 Reference Applications 277

■ Build method:

■ For crypto only:

./build cmt2 niu_multi -hash FLOW_POLICY

■ For crypto and authentication:

./build cmt2 niu_multi auth -hash FLOW_POLICY

Note – To build for running on Sun Netra ATCA CP3260 systems, HASH_POLICY
options are limited to the following policies: IP_ADDR, IP_DA, and IP_SA.

■ Traffic generator configuration:

■ Frame data – Select EthernetII, IPv4 + UDP/IP

■ DA MAC – MAC ID of port 0

■ IPv4 – If flow_policy is IP-address (default), then:

SA=69.235.4.0

DA=69.235.0.0 ~ 69.235.255.255 (continue increment by 1)

If FLOW_POLICY is TCAM_CLASSIFY, then:

SA=69.235.4.0

DA=69.235.4.1 ~ 69.235.4.4 (increment by 1 and repeat every 4 counts)

■ UDP – SP=6666 DP=7777 (this has to be consistent with sp_rule1 in
src/libs/ipsec/sa_init_static_data.c)

■ Payload – Fill pattern = 0x55

Note – This setting of the traffic generator applies to the Sun SPARC Enterprise
T5120 and T5220 systems. For Sun Netra ATCA CP3260 systems, see “Flow Policy
for Spreading Traffic to Multiple DMA Channels” on page 282.

Note – To build for Sun Netra CP3260, in
src/libs/ipsec/sa_init_static_data.c, the sa_outb1 remote_gw_mac
must be set to the port address of the outgoing Ethernet port.

■ Static data (sa_init_static_data.c) configuration (use default)

Note – In the application configuration file (for example,
ipsecgw_niu_config.c), if port0 is used, no action is required. If port1 is used,
add: ..., OPEN_OPEN, NXGE_10G_START_PORT+1, ...
278 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Multiple Instances (Up to Eight Instances) Back-to-Back
Tunneling Configuration
This configuration implements multiple instances of the IPSec gateway application
on the NIU interfaces through back-to-back between two systems.

FIGURE 11-13 Default Configuration for System1 (Tunnel in)

Port 0

RX

RX

RX

RX

ipsec

ipsec

ipsec

ipsec

TX

TX

TX

TX

encrypt/hash

encrypt/hash

encrypt/hash

encrypt/hash

DMA CHAN0

DMA CHAN1

DMA CHAN2

DMA CHAN3

To System2 Port0

Port 1

RX

RX

RX

RX

ipsec

ipsec

ipsec

ipsec

TX

TX

TX

TX

encrypt/hash

encrypt/hash

encrypt/hash

encrypt/hash

DMA CHAN4

DMA CHAN5

DMA CHAN6

DMA CHAN7

To System2 Port0

To System2 Port0

To System2 Port0

To System2 Port0

To System2 Port0

To System2 Port0

To System2 Port0
Chapter 11 Reference Applications 279

FIGURE 11-14 Default Configuration for System1 (Tunnel Out)

The following list includes the configuration requirements:

■ Required equipment:

■ Two UltraSPARC T2-based systems

■ Two traffic generator ports

■ Four NIU 10-Gbps Ethernet ports (four XAUI cards, two for each system)

■ Two pair of straight connect fiber cables and one pair of cross-over fiber cable

Port 0

RX

RX

RX

RX

TX

TX

TX

TX

DMA CHAN0

DMA CHAN1

DMA CHAN2

DMA CHAN3

Port 1

RX

RX

RX

TX

TX

TX

TX

DMA CHAN4

DMA CHAN5

DMA CHAN6

DMA CHAN7

ipsec

ipsec

ipsec

ipsec

hash/decrypt

hash/decrypt

hash/decrypt

hash/decrypt

ipsec

ipsec

ipsec

ipsec

hash/decrypt

hash/decrypt

hash/decrypt

hash/decryptRX
280 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ Build method

Two different binaries are required to run the back-to-back tunneling
configuration. The following shows the two different methods generating the
binaries for the corresponding system.

■ System1

For crypto only:

./build cmt2 niu_tunnel_in -hash FLOW_POLICY

For crypto and authentication:

./build cmt2 niu_tunnel_in auth -hash FLOW_POLICY

■ System2

For crypto only:

./build cmt2 niu_tunnel_out -hash TCAM_CLASSIFY

For crypto and authentication:

./build cmt2 niu_tunnel_out auth -hash TCAM_CLASSIFY

Note – Although other hash policies may still be used to generate binary for
System2, traffic might not spread evenly on the System2 Rx input. TCAM_CLASSIFY
policy will guarantee that traffic will spread evenly among the 8 DMA channels for
this particular configuration.

■ Traffic generator configuration:

■ Frame data – Select EthernetII, IPv4 + UDP/IP

■ DA MAC – MAC ID of System1 port0 shown in the diagram in “Default
Configuration for System1 (Tunnel in)” on page 279

■ IPv4

If FLOW_POLICY is IP_ADDR (default), then:

SA=69.235.4.0

DA=69.235.0.0 ~ 69.235.255.255 (continue increment by 1)

If FLOW_POLICY is TCAM_CLASSIFY, then:

SA=69.235.4.0

DA=69.235.4.1 ~ 69.235.4.8 (increment by 1 and repeat every 8 counts)

■ UDP – SP=6666 DP=7777 (this has to be consistent with sp_rule1 in
src/libs/ipsec/sa_init_static_data.c)

■ Payload – Fill pattern = 0x55
Chapter 11 Reference Applications 281

■ Static data (sa_init_static_data.c) configuration:

■ Must specify remote gateway MAC ID (System2 port0) in the MAC ID entry
of sa_outb1.

Note – In the application configuration file (for example,
ipsecgw_niu_config.c), if port0 is used, no action is required. If port1 is used,
add: ..., OPEN_OPEN, NXGE_10G_START_PORT+1, ...

Flow Policy for Spreading Traffic to Multiple
DMA Channels
The user can specify a policy for spreading traffic into multiple DMA flows by
hardware hashing or by hardware TCAM lookup (classification). See TABLE 11-2 for
flow policy options.

▼ To Enable a Flow Policy
● Add the following into the gmake line:

FLOW_POLICY=policy

Where policy is one of the above specified policies.

For example, to enable hash on an IP destination and source address, run the build
script with the following arguments:

Note – If you specify FLOW_POLICY=HASH_ALL, which is backward compatible
with Sun SPARC Enterprise T5120 and T5220 systems, all fields are used.

If none of the policies in TABLE 11-2 are specified do not specify the FLOW_POLICY in
the above gmake line. For example, if #FLOW_POLICY=HASH_IP_ADDR, a default
policy will be given. When the default policy is used, all level (L2, L3, and L4)
header fields are used for spreading traffic.

% ./build cmt2 niu_multi -hash FLOW_POLICY=HASH_IP_ADDR
282 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Traffic Generator Reference Application
This section explains how to compile Sun Netra DPS traffic generator tool (ntgen),
how to use the tool, and the options provided by this tool.

The traffic generator (ntgen) is a tool that allows the generation of packets that are
encapsulated in Ethernet. The Ethernet header might or might not have VLAN tags,
but only Ethernet headers that use type encapsulation are supported. The ntgen
tool provides options to modify the Ethernet header fields for all packet types. The
tool also provides options to modify header fields of IPv4, UDP and GRE packets.
The ntgen tool is capable of generating packets that have fixed or random sizes.

The traffic generator operates only with logical domains enabled. The user interface
application runs in the Oracle VM Server for SPARC software and the ntgen tool
runs in the Sun Netra DPS domain.

The user interface application provides a template packet to ntgen with user-
provided options for modifications. The traffic generator creates new packets using
the template packet, applies the modifications specified by the user options, and
transmits the packets. The template packets are read by the user interface
application from a snoop capture file (see the templates/ directory in the ntgen
application directory).

Note the following requirements:

■ tnsmctl -P -v is required to start the traffic generator on systems that use NIU.

■ The user interface application must be run as superuser in the Oracle Solaris OS
logical domain.

■ On Sun SPARC Enterprise T5120 and T5220 systems, 4-Gbytes of memory are
required.

Using the User Interface
This section contains instructions for using the user interface.

▼ To Start the ntgen User Interface
The ntgen control plane application is represented by the binary ntgen.
Chapter 11 Reference Applications 283

● Type:

Usage

./ntgen [options ...] filename

See TABLE 11-13 for the list of options.

Parameter
■ filename – Snoop file

See “ntgen Parameter Description” on page 294 for further descriptions and
examples.

ntgen Option Descriptions
TABLE 11-13 lists the options for the ntgen control plane application. See -I for
further descriptions and examples.

% ./ntgen

TABLE 11-13 Traffic Generator Control Plane Application Options

Option Description

-h Prints this message.

-D Sets destination MAC address.

-S Sets source MAC address.

-A Sets source and destination IPv4 addresses.

-P Sets payload size.

-p Sets UDP source and destination ports.

-V Sets VLAN ID range.

-k Sets GRE key range.

-iD Destination MAC address increment mask.

-iS Increments source IP address, destination IP address host or network.

-iA Increments SIP or DIPs host or network.

-ip Increments UDP source or destination port.
284 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Option Descriptions
The following options are supported:

■ -h

Prints displayed message.

Example:

ntgen -h

■ -D xx:xx:xx:xx:xx:xx

Changes the destination MAC address of a packet. Specify the destination MAC
address in the colon format.

Example:

ntgen -D aa:bb:cc:dd:ee:00 filename

■ -S xx:xx:xx:xx:xx:xx

Changes the source MAC address of a packet. Specify the destination MAC
address in the colon format.

Example:

ntgen -S 11:22:33:44:55:00 filename

-iV Increments or decrements VLAN ID.

-ik Increments or decrements GRE key.

-dD Destination MAC address decrement mask.

-dS Source MAC address decrement mask.

-dA Decrements source IP address, destination IP address host, or network.

-dp Decrements UDP source or destination port.

-c Continuous generation.

-n Generate number of packets specified.

-I Ingress or receive only mode.

-R Generates random packet sizes.

-N Sets source or destination IPv6 addresses.

-iN Increments IPv6 addresses.

-dN Decrements IPv6 addresses.

TABLE 11-13 Traffic Generator Control Plane Application Options (Continued)

Option Description
Chapter 11 Reference Applications 285

■ -A xx.xx.xx.xx, yy.yy.yy.yy

Changes the source and destination IP addresses in the packet. Specify the IP
addresses in the dotted decimal notation.

The first argument in the option is the source IP address. The second argument in
the option is the destination IP address. You can use an asterisk (*) for either the
source IP address or the destination IP address to imply that no change needs to
occur for that parameter.

Examples:

■ ntgen -A 192.168.1.1,192.168.2.1 filename

The source IP address is changed to 192.168.1.1 and the destination IP address
is changed to 192.168.2.1.

■ ntgen -A 192.168.1.10,* filename

The source IP is changed to 192.168.1.10 and the destination IP is unchanged.
The destination IP is retained as it is in the template packet.

■ -p xx,yy

Changes the UDP source port and destination port numbers.

The first argument is the UDP source port number and the second argument is
the UDP destination port number. You can use an asterisk (*) for either the source
port or the destination port to imply that no change needs to occur to that
parameter. In that case, the value present in the template packet is retained.

Examples:

■ ntgen -p 1111,2222 filename

The source port number is changed to 1111 and the destination port number is
changed to 2222.

■ ntgen -p *,2222 filename

The source port number remains unchanged from its value in the template
packet. The destination port number is changed to 2222 in the packets
generated.

■ -P x

Increases the UDP payload size. The value specified must be between 1 and
65536. The value denotes the number of bytes that need to be added to the
payload.

Example:

ntgen -P 1024 filename

The UDP packet payload size is incremented by 1024 bytes (that is, the new
payload size is the original size plus 1024 bytes).

■ -V VLAN-ID-start-value, VLAN-ID-end-value
286 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Creates Ethernet frames with 802.1Q VLAN tags in the traffic packets. The
Ethernet header of each packet that is generated is appended with a VLAN tag.
The VLAN Identifier (VLAN ID) in the VLAN tags of the outgoing frames vary
between
VLAN-ID-start-value and VLAN-ID-end-value. Two methods of VLAN ID variation
are provided through the -iV option. When the -iV option is used with an
argument of 1, the VLAN IDs are incremented. When the -iV option is used with
an argument of 0, the VLAN IDs are decremented. Refer to “-iV 1/0” on
page 289 for further details and examples.

Examples:

■ ntgen -V 100,4094 filename

Ethernet frames with VLAN tags are generated where the VLAN IDs in the
VLAN tags of all frames are set to 100 (that is, the VLAN ID start value). The
VLAN IDs do not vary in this example since the -iV option is not used.

■ ntgen -V 1,4094 -iV 1 filename

Ethernet frames with VLAN tags are generated where the VLAN IDs in the
VLAN tags vary from 1 to 4094 in an incremental fashion.

■ ntgen -V 1,4094 -iV 0 filename

Ethernet frames with VLAN tags are generated where the VLAN IDs in the
VLAN tags vary from 1 to 4094 in a decremental fashion.

■ -k GRE-key-start-value, GRE-key-end-value

Changes the GRE key of GRE encapsulated packets in the range specified. The
GRE key field in the generated packets will vary between the GRE-key-start value
and the GRE-key-end value. Two methods of the GRE key variation are provided
with the
-ik option. When the -ik option is used with value 1, GRE keys are
incremented. When the -ik option is used with value 0, the GRE keys are
decremented. Refer to “-ik 1/0” on page 290 for further details.

Examples:

■ ntgen -k 1,1000 -ik 1 filename

GRE keys in the generated traffic start from 1 and increase to 1000.

■ ntgen -k 1,1000 -ik 0 filename

GRE keys in the generated traffic start from 1000 and decrease to 1.

Note – Only the file_gre_novlan template file can be used with this option.

■ -iD xx:xx:xx:xx:xx:xx
Chapter 11 Reference Applications 287

Increments the bytes in the destination MAC address that is specified using the -
D option. The option is followed by the byte mask. ff increments the byte. 0 does
not increment the byte.

Examples:

■ ntgen -D aa:bb:cc:dd:ee:00 -iD 00:00:00:00:00:ff filename

Only byte 0 is incremented.

■ ntgen -D aa:bb:cc:dd:ee:00 -iD ff:ff:ff:ff:ff:ff filename

All bytes are incremented.

■ -iS xx:xx:xx:xx:xx:xx

Increments the bytes in the source MAC address that is specified using the -S
option. The option is followed by the byte mask. ff increments the byte. 0 does
not increment the byte.

Examples:

■ ntgen -S aa:bb:cc:dd:ee:00 -iS 00:00:00:00:00:ff filename

Only byte 0 is incremented.

■ ntgen -S aa:bb:cc:dd:ee:00 -iS ff:ff:ff:ff:ff:ff filename

All bytes are incremented.

■ -iA host/net/pfx/*, host/net/pfx/*

Increments the source IP address and destination IP address (that were specified
using the -A option) based on the IP address class or on a prefix. The first
argument corresponds to the source IP address of a packet. The second argument
corresponds to the destination IP address of a packet.

To perform a class-based increment, specify the host or net arguments with the
-iA option. ntgen determines the class of IP address (class A, class B, class C, or
class D) that is specified with the -A option. From the class, the option determines
the length of the host part and the network part of the IP address. Based on the
parameters passed through the -iA option, either the host part or the network
part of the IP address is incremented. If an asterisk (*) is passed, then the IP
address is not incremented.

The string net denotes that the network portion of the corresponding IP address
must be incremented. The string host denotes that the host part of the IP
address must be incremented.

To perform a prefix-based increment, provide the prefix length argument with the
-iA option. Provide a prefix length for each IP address (source and destination)
as arguments to the -iA option. These values are used to calculate the portion of
the IP address that must be incremented. If an asterisk (*) is passed, then the
corresponding IP address is not incremented.
288 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Note – Currently, only 16 bits of an IP address can be incremented using either
class-based or prefix-based methods.

Examples:

■ ntgen -A 192.168.1.1,192.168.2.1 -iA net,host filename

The network portion of the source IP address and the host portion of the
destination IP address are incremented.

■ ntgen -A 192.168.1.1,192.168.2.1 -iA host,host filename

The host portion of both the source and destination IP addresses are
incremented.

■ ntgen -A 192.168.10.10,192.168.10.20 -iA host,* filename

The host portion of the source IP address is incremented. The destination IP
address is not incremented.

■ ntgen -A 10.10.10.10,10.10.10.11 -iA 10,12 filename

The source IP address is incremented with a prefix length of 10. The
destination IP address is incremented with a prefix length of 12.

■ ntgen -A 10.10.10.10,10.10.10.11 -iA 10,* filename

The source IP address is incremented with a prefix length of 10. The
destination IP address is not incremented.

■ -ip 0/1, 0/1

Increments the UDP source port and destination port numbers. The first
argument corresponds to the UDP source port. The second argument corresponds
to the UDP destination port. 0 does not increment the port numbers. 1 increments
the port numbers.

Examples:

■ ntgen -p 1111,2222 -ip 0,1 filename

The source port is not incremented, but the destination port is incremented.

■ ntgen -p 1111,2222 -ip 1,1 filename

Both the source and destination ports are incremented.

■ -iV 1/0

Increments or decrements VLAN IDs in the VLAN tags of the generated Ethernet
frames. 1 denotes an increment operation. 0 denotes a decrement operations.

The VLAN IDs are provided by the user using the -V option. For the increment
operation, the first VLAN ID is the VLAN-ID-start-value that is provided in the -V
option. The VLAN ID is incremented for each subsequent frame until the VLAN-
ID-end-value provided with the -V option is reached. Then the VLAN ID returns
to the VLAN-ID-start-value and the sequence is repeated.
Chapter 11 Reference Applications 289

For the decrement operation, the first VLAN ID is the VLAN-ID-end-value that is
provided with the -V option. The VLAN ID is decremented for each subsequent
frame until VLAN-ID-start-value provided with the -V option is reached. Then the
VLAN ID returns to the VLAN-ID-start-value and the sequence is repeated.

Examples:

■ ntgen -V 100,200 -iV 1 filename

Ethernet frames are appended with a VLAN tag that contain VLAN ID in the
range 100 to 200. Starting at 100, the VLAN IDs are incremented for each frame
starting until 200.

■ ntgen -V 100,200 -iV 0 filename

Ethernet frames are appended with a VLAN tag that contain VLAN ID in the
range 200 to 100. Starting at 200, the VLAN IDs are decremented for each
frame starting until 100.

■ -ik 1/0

Increments or decrements GRE keys in the GRE header of the generated GRE
packets. An argument of 1 denotes an increment operation. 0 denotes a
decrement operation. Provide the GRE keys using the -k option.

For the increment operation, the first GRE key is the GRE-key-start-value provided
with the -k option. The GRE key is incremented for each subsequent packet until
the GRE-key-end-value provided with the -k option is reached. The GRE Key then
returns to the GRE-key-start-value and the sequence is repeated.

For the decrement operation, the first GRE key is the GRE-key-end-value provided
with the -k option. The GRE key is decremented for each subsequent packet until
the GRE-key-start-value provided with the -k option is reached. The GRE key then
returns to the GRE-key-end-value and the sequence is repeated.

Examples:

■ ntgen -k 1,100 -ik 1 filename

GRE packets with key values in the range 1 to 100 are generated. Starting at 1,
the key value is incremented for each packet until 100.

■ ntgen -k 1,100 -ik 0 filename

GRE packets with key values in the range 100 to 1 are generated. Starting at
100, the key value is decremented for each packet until 1.

■ -dD xx:xx:xx:xx:xx:xx

Decrements the bytes in the destination MAC address that is specified using the -
D option. The option is followed by a byte mask. ff decrements the byte. 00 does
not decrement the byte.

Examples:

■ ntgen -D aa:bb:cc:dd:ee:00 -dD 00:00:00:00:00:00 filename
290 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Only byte 0 of the MAC address is decremented.

■ ntgen -D aa:bb:cc:dd:ee:00 -dD ff:ff:ff:ff:ff:ff filename

All bytes of the MAC address are decremented.

■ -dS xx:xx:xx:xx:xx:xx

Decrements the bytes in the source MAC address that is specified using the -S
option. The option is followed by a byte mask. ff decrements the byte. 00 does
not decrement the byte.

Examples:

■ ntgen -S aa:bb:cc:dd:ee:00 -dS 00:00:00:00:00:00 filename

Only byte 0 of the MAC address is decremented.

■ ntgen -S aa:bb:cc:dd:ee:00 -dS ff:ff:ff:ff:ff:ff filename

All bytes of the MAC address are decremented.

■ -dA host/net/pfx/*, host/net/pfx/*

Decrements the source IP address and destination IP address (that were specified
using the -A option) based on the IP address class or on a prefix. The first
argument corresponds to the source IP address of a packet. The second argument
denotes the destination IP address of a packet.

To perform a class-based decrement, specify the host or net arguments with the
-dA option. ntgen determines the class of the IP address (class A, class B, class C
or class D) that is specified using the -A option. From the class, the option
determines the length of the host part and the network part of the IP address.
Based on the parameters passed through the -iA option, either the host part or
the network part of the IP address is decremented. If an asterisk (*) is passed, then
the IP address is not decremented.

The string net denotes that the network portion of the corresponding IP address
must be decremented. The string host denotes that the host part of the
corresponding IP address must be decremented.

To perform a prefix-based decrement. provide the prefix length argument with the
-dA option. Provide a prefix length for each IP address (source and destination)
as arguments to the -dA option. These values are used to calculate the portion of
the IP address that needs to be decremented. If an asterisk (*) is passed, then the
corresponding IP address is not decremented.

Note – Currently, only 16 bits of an IP address can be decremented using either
class-based or prefix-based methods.

Examples:

■ ntgen -A 192.168.1.1,192.168.2.1 -dA net,host filename
Chapter 11 Reference Applications 291

The network portion of the source IP address and the host portion of the
destination IP address are decremented.

■ ntgen -A 192.168.1.1,192.168.2.1 -dA host,host filename

The host portion of both the source and destination IP addresses are
decremented.

■ ntgen -A 192.168.10.10,192.168.10.20 -iA host,* filename

The host portion of the source IP address is decremented. The destination IP
address is not decremented.

■ ntgen -A 10.10.10.10,10.10.10.11 -dA 10,12 filename

The source IP address is decremented using a prefix length of 10. The
destination IP address is decremented using a prefix length of 12.

■ ntgen -A 10.10.10.10,10.10.10.11 -dA 10,* filename

The source IP address is decremented using a prefix length of 10. The
destination IP address is not decremented.

■ -dp 0/1,0/1

Decrements the UDP source port and destination port numbers. The first
argument corresponds to the UDP source port. The second argument corresponds
to the UDP destination port. 0 does not decrement. 1 decrements the port
numbers.

Examples:

■ ntgen -p 1111,2222 -dp 0,1 filename

The UDP source port is not decremented, but the destination port is
decremented.

■ ntgen -p 1111,2222 -dp 1,1 filename

Both the source and destination ports are decremented.

■ -c

Generates packets continuously.

Examples:

■ ntgen -c filename

The packets in the file are generated continuously without applying any
modifications.

■ ntgen -D aa:bb:cc:dd:ee:00 -S 11:22:33:44:55:00
-A 192.168.10.10,192.168.10.11 -p 9999,8888
-iD ff:ff:ff:ff:ff:ff -iS ff:ff:ff:ff:ff:ff -iA host,host
-ip 1,1 -c filename

All the modifications pertaining to the options specified are applied and the
packets are generated continuously.
292 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ -n number of packets

Specifies the number of packets that need to be generated.

Example:

■ ntgen -n 1000000 filename

In this example, a million packets are generated.

■ -I

Runs the traffic generator in ingress mode. In this mode the traffic generator only
receives packets, displays statistics about the ingress traffic, and discards the
received traffic. This option takes no arguments.

■ -R

When used with a UDP/IPv4 template packet or a GRE template packet with a
UDP/IPv4 payload, this option generates random packet sizes. The resulting
frame sizes vary between 64 bytes (or 68 bytes with VLAN tag) and 1518 bytes
(1522 bytes with
VLAN tag).

If other packet types are used, this option has no effect.

■ -N

Changes the source and destination IPv6 addresses in a packet. The IP addresses
are specified in a colon separated format, x:x:x:x:x:x:x:x. In this format, each
x is a hexadecimal 16-bit value of the address part. In all, eight such values are
present.

The first argument in the option is the source IPv6 address and the second
argument is the destination IPv6 address. You can use an asterisk (*) to specify
either the source or the destination address to imply that no change needs to be
done for that parameter.

Examples:

■ ntgen -N 1:1:1:1:1:1:1:1,2:2:2:2:2:2:2:2 -n 10 filename

The source IPv6 address is set to 1:1:1:1:1:1:1:1 and the destination IPv6
address is set to 2:2:2:2:2:2:2:2.

■ ntgen -N 1:1:1:1:1:1:1:1,* -n 10 filename

The source IPv6 address is set to 1:1:1:1:1:1:1:1. The destination IPv6
address is not changed and is retained since it is in the template packet.

■ -iN

Increments the IPv6 addresses in the packet generated. The user provides a mask
in the option for each address that needs to be incremented. The mask is provided
in a colon separated format, x:x:x:x:x:x:x:x. This format consists of eight 16-
Chapter 11 Reference Applications 293

bit parts similar to the IPv6 address. Each x in the mask is either the hexadecimal
value 0x0000 or 0xffff and maps to the corresponding 16-bit value in the IPv6
address supplied with the -N option.

A value of 0x0000 in the mask implies that the corresponding 16-bit IPv6 address
part is not incremented. A value of 0xffff in the mask implies that the
corresponding 16-bit IPv6 address part is incremented.

Examples:

■ ntgen -N a:b:c:d:e:f:0:1,* -iN
0000:0000:0000:0000:0000:0000:0000:ffff,* -n 10 filename

Only the first 16-bit part of the source IPv6 address is incremented. The
remaining parts are unchanged.

■ ntgen -N *,a:b:c:d:e:f:0:1 -iN
*,ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff -n 10 filename

All parts of the IPv6 destination address are incremented.

■ -dN

Decrements the IPv6 addresses in packets generated. The user provides a mask in
the option for each address that needs to be decremented. The mask is provided
in a colon separated format, x:x:x:x:x:x:x:x. This format consists of eight 16-
bit parts similar to the IPv6 address. Each x in the mask is either the hexadecimal
value 0x0000 or 0xffff and maps to the corresponding 16-bit value in the IPv6
address supplied with the -N option.

A value of 0x0000 in the mask implies that the corresponding 16-bit IPv6 address
part is not decremented. A value of 0xffff in the mask implies that the
corresponding 16-bit IPv6 address part is decremented.

Examples:

■ ntgen -N a:b:c:d:e:f:0:1,* -dN
0000:0000:0000:0000:0000:0000:0000:ffff,* -n 10 filename

Only the first 16-bit part of the source IPv6 address is decremented. The
remaining parts are unchanged.

■ ntgen -N *,a:b:c:d:e:f:0:1 -iN
*,ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff -n 10 filename

All parts of the IPv6 destination address are decremented.

ntgen Parameter Description
The snoop input file option, filename, specifies a snoop file that contains the template
packet to be used for creating the traffic packets. You can use one of the files in the
templates/ directory in the ntgen application directory. These files contain
packets whose fields can be modified with the ntgen tool options. You can analyze
294 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

these snoop files by using the snoop program in the Oracle Solaris OS. Use the
ntgen options to modify the protocol header files. A detailed explanation of the
template snoop files is provided in “Template Files” on page 296.

Note – Only the first packet from the snoop command is used by ntgen for
generating traffic.

Note – The -A, -iA and -dA options are applied only to the delivery IPv4 header
(outer IPv4 header) of a GRE packet.

Notes
The increment options (-iD, -iS, -iA and -ip) and the decrement options
(-dD, -dS, -dA and -dp) have effect only when the values that need to be
incremented or decremented are also being modified.

For example, the following commands have no effect:

■ ntgen -iD ff:ff:ff:ff:ff:ff filename

This command has no effect. The destination MAC address will not be
incremented.

■ ntgen -iA host,host filename

This command has no effect. The source and destination IP addresses will not be
incremented.

■ ntgen -ip 1,1 filename

This command has no effect. The port numbers will not be incremented.

The following commands will have effect:

■ ntgen -D aa:bb:cc:dd:ee:00 -iD ff:ff:ff:ff:ff:ff filename

This command increments the destination MAC address after changing it to
aa:bb:cc:dd:ee:00. Because -D option is being used, the -iD option takes
effect.

■ ntgen -A 192.168.1.1,192.168.1.2 -iA host,host filename

This command increments the source and destination IP addresses. Because the -
A option is being used, the -iA option takes effect.

■ ntgen -p 1234,6789 -ip 1,1 filename

This command increments the source and destination UDP ports. Because the -p
option is being used, the -ip option takes effect.
Chapter 11 Reference Applications 295

Traffic Generator Output
TABLE 11-14 shows an example of the traffic generator output.

TABLE 11-15 describes the traffic generator output.

Template Files
The following template files are provided with the application to be used with
ntgen.

■ file_64B_novlan

Snoop file that contains a single 64-byte Ethernet frame that has no VLAN tag.
This file has a UDP/IPv4 payload.

■ file_256B_novlan

Snoop file that contains a single 256 bytes Ethernet frame that has no VLAN tag.
The file has a UDP/IPv4 payload.

■ file_1514B_novlan

TABLE 11-14 Traffic Generator Output Example

Port,Chan Tx Rate (pps) Tx Rate (mbps) Rx Rate (pps) Rx Rate (mbps)

0, 0 947550.5506 485.1459 32224.4898 386.6939

1, 0 947550.5506 485.1459 32224.4898 386.6939

2, 0 947550.5506 485.1459 32224.4898 386.6939

3, 0 947550.5506 485.1459 32224.4898 386.6939

TABLE 11-15 Traffic Generator Output Description

Column Description

Port,Chan Port is the port number and Chan is the channel number for which the
statistics are displayed.
In the example output shown in TABLE 11-14 for NxGE QGC, Port varies
from 0 to 3 and Chan is 0 for all ports.

Tx Rate (pps) Transmission rate in packets per second.

Tx Rate (mbps) Transmission rate in megabits per second.

Rx Rate (pps) Receive rate in packets per second.

Rx Rate (mbps) Receive rate in megabits per second.
296 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Snoop file that contains a single 1514 bytes Ethernet frame that has no VLAN tag.
This file has a UDP/IPv4 payload.

■ file_gre_novlan

Snoop file that contains a GRE packet with an IPv4 as the delivery protocol and
IPv4 as the payload protocol. The payload is a UDP datagram. The UDP
datagram has a payload of 22 bytes. Both IPv4 headers have no IP options. GRE
header consists of GRE key and GRE checksum values.

Using the Traffic Generator
This section describes configuring, starting, and stopping the ntgen tool.

Configuring Logical Domains for the Traffic Generator
TABLE 11-16 shows the domain role in the configuration.

TABLE 11-17 shows the LDC channels configured.

TABLE 11-16 Logical Domain Configuration

Domain Operating System Role

primary Solaris Owns one of the PCI buses and uses the physical disks
and networking interfaces to provide virtual I/O to
the Oracle Solaris OS guest domains.

ldg1 LWRTE Owns the other PCI bus (bus_b) with its two network
interfaces and runs an LWRTE application.

ldg2 Solaris Runs control plane application (ntgen) and add_drv
tnsm (SUNWndpsd package) and uses ntgen to
control traffic generation.

ldg3 Solaris Controls lwrte (global configuration channel) and
add_drv tnsm (SUNWndpsd package) and uses
tnsmctl to set up configuration.

TABLE 11-17 LDC Channels Configured

Server Client

ldg1 primary-gc ldg3 tnsm-gc0
Chapter 11 Reference Applications 297

These LDC channels can be added with the following Oracle VM Server for SPARC
software manager commands:

In the Oracle Solaris domains, you must add the tnsm driver.

▼ To Add the tnsm Driver
1. Install the SUNWndpsd package.

2. Install the driver:

The primary-gc and tnsm-gc0 combination is the global configuration channel.
LWRTE accepts configuration messages on this channel.

The config-tnsm-ldgx and config-tnsm0 combination is for setup messages
between LWRTE and the control plane domain.

To find out what the LDC IDs are on both sides, use the following:

■ For logical domains 1.0, use ldm list-bindings

■ For logical domains 1.0.1, use ldm list-bindings -e

ldg1 config-tnsm-ldg2 ldg2 config-tnsm0

ldg1 ldg2-vdpcs0 ldg2 vdpcc0

ldg1 ldg2-vdpcs1 ldg2 vdpcc1

ldm add-vdpcs primary-gc ldg1
ldm add-vdpcc tnsm-gc0 primary-gc ldg3
ldm add-vdpcs config-tnsm-ldg2 ldg1
ldm add-vdpcc config-tnsm0 config-tnsm-ldg2 ldg2

ldm add-vdpcs ldg2-vdpcs0 ldg1
ldm add-vdpcc vdpcc0 ldg2-vdpcs0 ldg2
etc.

add_drv tnsm

TABLE 11-17 LDC Channels Configured (Continued)

Server Client
298 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Example output from logical domain 1.0:

Example output from logical domain 1.0.1:

3. Pick a channel number to be used for the control IPC channel that uses this
LDC channel (for example, 3).

4. Bring up the control channel with the following command:

Description of parameters:

■ -S – Set up a channel.

■ -C n1 – Channel ID for new channel.

■ -L n2 – LDC ID local to LWRTE.

■ -R n3 – LDC ID remote to LWRTE (local to link partner logical domain).

■ -F n4 – Channel ID of the control channel between the two link partners.
Because this command brings up the control channel, n1 == n4.

In the previous tnsmctl command example:

■ n1 = 3 – Channel ID chosen for this configuration channel.

ldm list-bindings
In ldg1:
Vdpcs: config-tnsm-ldg2
 [LDom ldg2, name: config-tnsm0]
 [LDC: 0x6]
In ldg2:
Vdpcc: config-tnsm0 service: config-tnsm-ldg2 @ ldg1
 [LDC: 0x5]

ldm list-bindings -e
In ldg1:
VDPCS
 NAME
 config-tnsm-ldg2
 CLIENT LDC
 config-tnsm0@ldg2 6
In ldg2:
VDPCC
 NAME SERVICE LDC
 config-tnsm0 config-tnsm-ldg2@ldg1 5

tnsmctl -S -C 3 -L 6 -R 5 -F 3
Chapter 11 Reference Applications 299

■ n2 = 6 – LDC ID shown by ldm list-bindings for config-tnsm-ldg2 in
ldg1.

■ n3 = 5 – LDC ID shown by ldm list-bindings for config-tnsm0 in ldg2.

■ n4 = 3 – Same channel ID as n1, because the config channel is being initialized.

5. Use control channel 3 to set up general purpose IPC channels between LWRTE
and the Oracle Solaris OS.

For example, set up channel ID 4 for use by the ntgen to ndpstgen
communication.

To do so, look up the LDC IDs on both ends.

Example output from logical domain 1.0:

Example output from logical domain 1.0.1:

6. Type the following in ldg3:

The -C 4 parameter is the ID for the new channel. The -F 3 has the channel set
up before.

The global configuration channel between ldg3 and LWRTE comes up
automatically as soon as the application is started in LWRTE and the tnsm device
driver is added in ldg3.

ldg1:
Vdpcs: ldg2-vdpcs0
 [LDom ldg2, name: vdpcc0]
 [LDC: 0x7]
ldg2:
Vdpcc: vdpcc0 service: ldg2-vdpcs0 @ ldg1
 [LDC: 0x6]

ldg1:
VDPCS
 NAME
 ldg2-vdpcs0
 CLIENT LDC
 vdpcc0@ldg2 7
ldg2:
VDPCC
 NAME SERVICE LDC
 vdpcc0‘ ldg2-vdpcs0@ldg1 6

tnsmctl -S -C 4 -L 7 -R 6 -F 3
300 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

7. Build the ntgen utility in the Oracle Solaris OS subtree.

8. After the channel to be used is initialized using tnsmctl (must be channel ID
4 that is hard coded into the ndpstgen application), use ntgen to generate
traffic (refer to the NTGEN User’s Manual).

▼ To Prepare Building the ntgen Utility
1. Build the Sun Netra DPS image.

2. Build the ntgen user interface application (in the src/solaris subdirectory).

▼ To Set Up and Use Logical Domains for the Traffic
Generator
1. Configure the primary domain.

2. Save the configuration (ldm add-spconfig) and reboot.

3. Configure the Sun Netra DPS domain (including the vdpcs services).

4. Configure the Oracle Solaris OS domains (including vdpcc clients).

5. Bind the Sun Netra DPS domain (ldg1).

6. Bind the Oracle Solaris OS domains (ldg2 and ldg3).

7. Start and boot all domains (can be in any order).

8. Install the SUNWndpsd package in the Oracle Solaris OS domains.

9. Load the tnsm driver in the Oracle Solaris OS domains (add_drv tnsm).

10. In the global configuration Oracle Solaris OS domain (ldg3), use
/opt/SUNWndpsd/bin/tnsmctl to set up the control channel between the Sun
Netra DPS domain (ldg1) and the control domain (ldg2).

11. In the global configuration Oracle Solaris OS domain (ldg3), use
/opt/SUNWndpsd/bin/tnsmctl to set up the ntgen control channel
(channel ID 4).

12. In the control domain (ldg2), use the ntgen utility to start traffic generation.

▼ To Start the Traffic Generation
● Use the ntgen binary tool.
Chapter 11 Reference Applications 301

For example:

▼ To Stop Traffic Generation
● Pressing Ctrl-C at any time.

▼ To Compile the Traffic Generator
1. Copy the ntgen reference application from the

/opt/SUNWndps/src/apps/ntgen directory to a desired directory location

2. Run the build script in that location.

Build Script
TABLE 11-18 shows the traffic generator (ntgen) application build script.

Usage
./build cmt app [profiler] [2port]

Argument Descriptions
The build script supports the following optional arguments:

% ./ntgen -c file_64B_novlan

TABLE 11-18 ntgen Application Build Script

Build Script Usage

./build

(See “Argument Descriptions” on page 302.)
Build ntgen application to run on an Ethernet interface.

Build ntgen application to run on Sun QGC (quad 1-Gbps
nxge Ethernet interface).

Build ntgen application to run on Sun multithreaded 10-Gbps
(dual 10 Gbps nxge Ethernet interface).

Build ntgen application to run on NIU (dual 10-Gbps
UltraSPARC T2 Ethernet interface) on a CMT2-based system.
302 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ cmt

Specifies whether to build the traffic generator application to run on the CMT1
platform or CMT2 platform.

■ cmt1 – Build for CMT1 (UltraSPARC T1)

■ cmt2 – Build for CMT2 (UltraSPARC T2)

■ app

■ 4g – Builds the traffic generator application to run on QGC (quad 1-Gbps nxge
Ethernet interface).

■ 10g – Builds the traffic generator application to run on 10-Gbps Ethernet (dual
10-Gbps nxge Ethernet interface).

■ 10g_niu – Builds the traffic generator application to run on NIU (dual 10-
Gbps UltraSPARC T2 Ethernet interface) on a CMT2 based system.

■ [profiler]

Generates code with profiling enabled.

■ [2port]

This is an optional argument to compile dual ports on the 10-Gbps Ethernet card
or the UltraSPARC T2 network interface unit (NIU).

For example, to build for 10-Gbps Ethernet on the Sun Netra T2000 system, type:

In this example, the build script is used to build the traffic generator application
to run on the 10-Gbps Ethernet. The cmt argument is specified as cmt1 to build
the application to run on the Sun Netra T2000 system that is an UltraSPARC T1-
based system. The app argument is specified as 10g to run on 10-Gbps Ethernet.

▼ To Run ndpstgen

1. On a tftpboot server, type:

2. At the ok prompt on the target machine, type:

% ./build cmt1 10g

% cp your-workspace/ntgen/code/ndpstgen/ndpstgen /tftpboot/ndpstgen

ok boot network-device:,ndpstgen
Chapter 11 Reference Applications 303

Default Configurations
The following table shows the default system configuration.
TABLE 11-19 Default System Configuration

The main files that control the system configuration are:

■ ntgen/src/apps/config/tgen_swarch.c

■ ntgen/src/apps/config/tgen_map.c

The following table shows the default ntgen application configuration.

The main files that control the application configurations are:

■ ntgen/src/apps/tgen_config.c

■ ntgen/src/apps/tgen_config.h

Interprocess Communication Reference
Application
The IPC reference application showcases the programming interfaces of the IPC
framework (see “Interprocess Communication Software” on page 89 and the Sun
Netra Data Plane Software Suite 2.1 Update 1 Reference Manual).

NDPS Domain (strand IDs) Statistics (strand ID) Other Domains (strand IDs)

CMT1
logical
domain

0 to 19 N/A 20 to 31

CMT2
logical
domain

0 to 39 N/A 40 to 63

TABLE 11-20 Default ntgen Application Configuration

Applications Runs On Number of Ports Used
Number of Channels
per Port

Total Number of Q
Instances

Total Number of
Strands Used

4-Gbps PCE (nxge QGC) 4 1 4 12

10-Gbps PCIE (nxge 10-Gbps) 1 4 4 12

10-Gbps NIU (niu 10-Gbps) 1 8 8 40
304 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

The IPC reference application consists of the following three components:

■ Sun Netra DPS application that receives and transmits test data messages.

■ Oracle Solaris test utility that transmits and receives messages from user space.

■ STREAMS module that intercepts network traffic from an interface to send it to
the Sun Netra DPS domain, and transmits packets it receives through IPC on this
network interface.

The application runs in an logical domain environment similar to the environment
described in “Example Environment for UltraSPARC T1 Based Servers” on page 94
and “Example Environment for UltraSPARC T2 Based Servers” on page 98.

IPC Reference Application Content
The complete source code for the IPC reference application is in the SUNWndps
package in the /opt/SUNWndps/src/apps/ipc_test directory.

The source code files include the following:

■ Build script and makefiles for the application:

■ Makefile

■ build

■ Common header file describing the communications protocol used between the
components:

■ src/common/include/ipctest.h

■ System configuration for the Sun Netra DPS application in the src/config
directory:

■ src/config/ipc_test_hwarch.c

■ src/config/ipc_test_swarch.c

■ src/config/ipc_test_map.c

■ Sun Netra DPS application files in the src/app directory:

■ src/app/common.h

■ src/app/init.c

■ src/app/ipc_test_config.h

■ src/app/ipc_test.c

■ src/app/lb_objects.h

■ src/app/ldc_malloc_config.h

■ src/app/ldc_malloc.c

■ Oracle Solaris OS user space application in src/solaris/cmd:

■ src/solaris/cmd/ipctest.c
Chapter 11 Reference Applications 305

■ src/solaris/cmd/Makefile

■ Oracle Solaris STREAMS module in the src/solaris/module:

■ src/solaris/module/include/lwmod.h

■ src/solaris/module/lwmod.c

■ src/solaris/module/Makefile

Building the IPC Reference Application
This section includes descriptions of how to build the IPC reference application.

Usage
build cmt [single_thread] | solaris

Argument Descriptions
The build script supports the following arguments:

■ cmt

Specifies whether to build the ipc_test application to run on the CMT1
(UltraSPARC T1) platform or CMT2 (UltraSPARC T2) platform.

■ cmt1 – Build for CMT1 (UltraSPARC T1)

■ cmt2 – Build for CMT2 (UltraSPARC T2)

This argument is required to build the Sun Netra DPS application.

■ [single_thread]

With this option, two data IPC channels are polled by the same thread. In the
default case, three channels are polled, each one on its own thread. The interfaces
and usage for the Oracle Solaris side remain unchanged.

■ solaris

Build the Oracle Solaris OS user space application and the STREAMS module in
their respective source directories.
306 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Example
The following commands below build the Sun Netra DPS application for single
thread polling on an UltraSPARC T2 processor and the Oracle Solaris components,
respectively.

Running the IPC Application
In addition to the channels described in “Example Environment for UltraSPARC T1
Based Servers” on page 94, two IPC channels with IDs 5 and 6, respectively, need to
be set up using the ldm and tnsmctl commands.

The Sun Netra DPS application is booted from either a physical or a virtual network
interface assigned to its domain. For example, if a tftp server has been set up in the
subnet, and there is a vnet interface for the Sun Netra DPS domain, the IPC test
application can be booted with the following command at the OpenBoot PROM:

▼ To Use the ipctest Utility
1. Boot the ipc_test application in the Sun Netra DPS domain

2. Use the tnsmct1 utility from the control domain to set up the IPC channels.

3. Copy the ipctest binary from the src/solaris/cmd directory to the Oracle
Solaris domain.

For example, ldg2 as shown in the Oracle Solaris OS user space application in
src/solaris/cmd.

The ipctest utility drives a single IPC channel, which is selected by the
connect command (see “ipctest Commands” on page 308). Multiple channels
can be driven by separate instances of the utility. The utility can be used at the
same time as the STREAMS module (see “To Install the lwmod STREAMS
Module” on page 308). In this case, however, the IPC channel with ID 5 is not
available for this utility. For example, the utility can be used on channel 4 to read
statistics of the traffic between the Sun Netra DPS application and the Solaris
module on channel 5.

% ./build cmt2 single_thread
% ./build solaris

ok boot /virtual-devices@100/channel-devices@200/network@0:,ipc_test
Chapter 11 Reference Applications 307

ipctest Commands
The ipctest utility opens the tnsm driver and offers the following commands:

■ connect Channel_ID

Connects to the channel with ID Channel_ID. The forwarding application is hard
coded to use channel ID 4. The IPC type is hard coded on both sides. This
command must be issued before any of the other commands.

■ stats

Requests statistics from the ipc_test application and displays them.

■ perf-stats iterations

Requests statistics from the ipc_test application for iterations times and
displays the time used.

■ perf-pkts-rx num_messages message_size

Sends request to the Sun Netra DPS to send num_messages messages with a data
size of message_size and to receive the messages.

■ perf-pkts-tx num_messages message_size

Send num_messages messages with a data size of message_size to the Sun Netra
DPS domain.

■ perf-pkts-rx-tx num_messages message_size

Sends request to the Sun Netra DPS to send num_messages messages with a data
size of message_size and to receive the messages. Also, spawns a thread that sends
as many messages of the same size to the Sun Netra DPS domain.

■ exit, x, quit, or q

Exits the program.

■ help

Contains program help information.

▼ To Install the lwmod STREAMS Module
1. Copy the lwmod module from the src/solaris/module/sparcv9 directory to

the Oracle Solaris domain.

For example, ldg2 as shown in the Solaris OS STREAMS module in
src/solaris/module.
308 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

2. Load and insert the module just above the driver for either a virtual or a
physical networking device.

To use a physical device, modify the configuration such that the primary domain
is connected through IPC channel 5, or, on an UltraSPARC T1-based system,
assign the second PCI bus to ldg2.

Note – Before inserting the module, the ipc_test application must have been
booted in the Sun Netra DPS domain, and the IPC channels must have been set up.

3. Set up the module on a secondary vnet interface:

4. Display the position of the module:

With the module installed, all packets sent to vnet1 will be diverted to the Sun
Netra DPS domain, where the application will reverse the MAC addresses and
echo the packets back to the Oracle Solaris module. The module will transmit the
packet on the same interface.

Note – No packet will be delivered to the stack above the module. If networking to
the domain is needed, the module should not be inserted in the primary interface.

▼ To Remove the lwmod STREAMS Module
● Type:

modload lwmod
ifconfig vnet1 modinsert lwmod@2

ifconfig vnet1 modlist
0 arp
1 ip
2 lwmod
3 vnet

ifconfig vnet1 modremove lwmod@2
Chapter 11 Reference Applications 309

Transparent Interprocess
Communication Reference Application
The TIPC reference application contained in the Sun Netra DPS package is similar to
example applications available with the Oracle Solaris OS TIPC package. The
functionalities provided by this reference application are:

■ HelloWorld – Demonstrates message exchange between server and client in
connection less mode. The application can be compiled with following sub
functionality:

■ Loopback mode – The server and client run on the same TIPC node, without
requiring sending the messages on wire.

■ Server mode – Only the server runs on the Sun Netra DPS domain. The client
must be run on another TIPC node.

■ Client mode – Only the client runs on the Sun Netra DPS domain. The server
must be run on another TIPC node.

■ Connection demo – Demonstrates message exchange between server and client in
connection oriented mode. The application can be compiled with following sub
functionality:

■ Loopback mode – The server and client run on the same TIPC node, without
requiring sending the messages on wire.

■ Server mode – Only the server runs on the Sun Netra DPS domain. The client
must be run on another TIPC node.

■ Client mode – Only the client runs on the Sun Netra DPS domain. The server
must be run on another TIPC node.

The Loopback functions, HelloWorld loopback, and connection demo loopback can
be run in TIPC standalone mode, as the server and client run on the same TIPC
node.

The reference application consists of two components:

■ The hardware and software architecture as well as the mapping. These files are
located in the src/config subdirectory.

■ The actual implementation of the applications. The files for this implementation
are located in the src/app subdirectory.
310 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Source Files
All TIPC example source files are located in the following package directory:
/opt/SUNWndps/src/apps/tipc.

The contents include:

■ The makefile used for building:

■ ./Makefile.nxge

■ Information file for TIPC examples:

■ ./README

■ Build script for one step build include:
■ ./build

■ System configuration for the application:

■ ./src/config/hwarch.c

■ ./src/config/map.c

■ ./src/config/swarch.c

The hardware architecture is similar to the ones used for other reference
applications.

The mapping file contains a mapping for each strand of the target domain:

■ tipc_eth.c file contains simple functions that use the Ethernet driver to receive
and transmit a packet.

■ tipc_util.c file contains the memory allocation provided for the Ethernet
driver.

■ init.c file contains the initialization code for the application. First, the queues
are initialized. The initialization of the Oracle VM Server for SPARC software
framework is accomplished using calls to the functions mach_descrip_init(),
lwrte_cnex_init(), lwrte_init_ldc(), and tnipc_init(). After this
initialization, the TIPC is initialized by a call of tipc_init(). The first four
functions must be called in this specific order.

■ tipc_app.c file contains the functions that are run on the different strands. In
this version of the application, all strands start the _main() function. Based on
the thread IDs, the _main() function calls the respective functions based on the
application that is built.

■ hello_world_client.c file contains implementations of a connectionless TIPC
client similar to the client available in the TIPC examples package.

■ hello_world_server.c file contains implementations of connectionless TIPC
server similar to the server available in TIPC examples package.

■ conn_demo_client.c file contains implementations of connection-oriented
TIPC client similar to the client available in the TIPC examples package.
Chapter 11 Reference Applications 311

■ conn_demo_server.c file contains implementations of connection-oriented
TIPC server similar to the server available in the TIPC examples package.

Default Configurations
TABLE 11-21 shows the default system configurations:

The main files that control the system configurations are:

■ ./src/config/swarch.c

■ ./src/config/map.c

▼ To Compile the TIPC Application
1. Copy the TIPC reference application from the

/opt/SUNWndps/src/apps/tipc directory to a desired directory.

2. Create the build script in that location.

Build Script
TABLE 11-22 shows the TIPC application build script.

TABLE 11-21 TIPC Default System Configurations

Sun Netra DPS Domain (strand
IDs) Statistics (strand ID)

CMT1 logical domain 0 to 7 7

CMT2 logical domain 0 to 7 7

TABLE 11-22 TIPC Application Build Script

Build Script Usage

./build
(See “Argument Descriptions” on
page 313.)

Build TIPC HelloWorld application to run in loopback mode.
312 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Usage
./build cmt type app

Argument Descriptions
The build script supports the following arguments:

■ cmt

Specifies whether to build the TIPC application to run on the CMT1 (UltraSPARC
T1) platform or CMT2 (UltraSPARC T2) platform.

■ cmt1 – Build for CMT1 (UltraSPARC T1)

■ cmt2 – Build for CMT2 (UltraSPARC T2)

■ type

■ 4g – Build TIPC application to use on 4-Gbps Ethernet QGC (quad 1-Gbps
nxge Ethernet interface).

■ 10g – Build TIPC application to use on 10-Gbps Ethernet (dual 10-Gbps
Multithreaded Ethernet PCI-E interface).

■ 10g_niu – Build TIPC application to use on NIU (dual 10-Gbps UltraSPARC
T2 on-chip Ethernet interface) on a CMT2-based system.

■ vnet – Build TIPC application to use vnet interfaces.

Build TIPC HelloWorld application (HelloWorld client and
HelloWorld server) application to run in network mode.

Build TIPC connection demo application to run in loopback
mode.

Build TIPC connection demo application (connection demo
client and connection demo server) to run in network mode.

TABLE 11-22 TIPC Application Build Script

Build Script Usage
Chapter 11 Reference Applications 313

■ app

■ helloworld_server – Build HelloWorld server similar to HelloWorld server
available in TIPC example package.

■ helloworld_client – Build HelloWorld client similar to HelloWorld client
available in TIPC example package.

■ helloworld_loopback – Build HelloWorld server and client to run in Sun
Netra DPS in standalone or loopback mode.

■ conn_demo_loopback – Build connection demo server and client to run in
Sun Netra DPS in standalone or loopback mode.

■ conn_demo_client – Build connection demo client similar to connection
demo client available in TIPC example package.

■ conn_demo_server – Build Connection demo server similar to connection
demo server available in TIPC example package.

■ VNET_TIPC_CONFIG

This option enables the TIPC stack in the Sun Netra DPS application to be
configured using the tn-tipc-config tool for the Linux platform. The Linux
tn-tipc-config tool uses vnet for exchanging commands and data. When the
Linux tn-tipc-config tool is used, the Sun Netra DPS application must be
compiled with the -DTIPC_VNET_CONFIG flag enabled in the makefile (for
example, Makefile.nxge).

▼ To Run the TIPC Application
1. Copy the binary into the /tftpboot directory of the tftpboot server.

2. On the tftpboot server, type:

3. At the ok prompt on the target machine, type:

4. Configure the TIPC stack using the tipc-config tool as described in
“Configuring Environment for TIPC” on page 158.

% cp your-workspace/tipc/code/main/main /tftpboot/tipc_app

ok boot network-device:,tipc_app
314 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

IP Forward Reference Application Using
TIPC
TIPC is integrated with the IP forwarding application. IP forwarding application
uses TIPC to communicate with the control plane applications (fibctl, ifctl, and
excpd). In the IP forward application, the TIPC stack runs in the fast path manager
strand.

The ipfwd application with TIPC requires an logical domain environment because
all configurations are set up through an application running on a Oracle Solaris OS
control domain.

▼ To Build the IP Packet Forward (ipfwd)
Application
● Specify the tipc keyword on the build script command line.

For example:

▼ To Configure the Environment for TIPC
1. Set up an IPC channel ID 10 to configure the TIPC stack.

For example:

To use IPC Channel as TIPC medium-bearer, set up an IPC channel for IPC
medium. Note that channel ID 10 cannot be used as IPC bearer.

The following example shows how to configure IPC channel ID 6:

% ./build cmt2 10g_niu ldoms tipc

tnsmctl -S -C 10 -L 7 -R 6 -F 3

tnsmctl -S -C 6 -L 8 -R 7 -F 3
Chapter 11 Reference Applications 315

2. Set the TIPC address to the TIPC stack.

For example:

3. Enable the medium of communication.

TIPC supports IPC channel or the Ethernet interface as the medium of
communication.

The following example shows how to enable bearer on IPC channel ID 6 with
proto 200.

To support Ethernet as the TIPC medium in the IP forward application, the
application must be build with the excp option. The following example enables
bearer on Ethernet port0:

▼ To Configure Oracle Solaris OS TIPC Stack in
Oracle Solaris Domain (ldg2)
1. Set up environment variables LD_PRELOAD_32 and LD_PRELOAD_64 before

running any Oracle Solaris OS TIPC applications (for instance, tipc-config,
fibctl, ifctl, or excpd).

/opt/SUNWndpsd/bin/tn-tipc-config -addr=10.3.4

/opt/SUNWndpsd/bin/tn-tipc-config -be=ipc:6.200/10.3.0

/opt/SUNWndpsd/bin/tn-tipc-config -be=eth:port0/10.3.0

LD_PRELOAD_32=/opt/SUNWndps-tipc/lib/libtipcsocket.so
LD_PRELOAD_64=/opt/SUNWndps-tipc/lib/sparcv9/libtipcsocket.so
export LD_PRELOAD_32 LD_PRELOAD_64
316 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

2. Enable the medium of communication.

TIPC supports IPC channel or the Ethernet interface as the medium of
communication.

The following example shows how to enable the bearer on IPC channel ID 6 with
proto 200:

The following example shows how to enable the bearer on Ethernet interface
nxge0:

Command-Line Interface Application using TIPC
The IPv4 forwarding information base (FIB) table configuration (fibctl) command-
line interface (CLI), interface configuration tool (ifctl), and IPV4 exception process
(excpd) have been extended to support TIPC.

▼ To Build the Extended Control Utility
1. To build fibctl and ifctl, issue the following command in the

src/solaris subdirectory of the IP forwarding reference application:

2. To build excpd, see “Compiling the excpd Application” on page 195.

3. To build lwmodip4, see “Compiling the lwmodip4 STREAMS Module” on
page 197.

4. To build lwmodarp, see “Compiling the lwmodarp STREAMS Module” on
page 197.

5. To build lwmodip6, see “Compiling the lwmodip6 STREAMS module” on
page 213.

/opt/SUNWndps-tipc/sbin/tipc-config -be=ipc:6.200/10.3.0

/opt/SUNWndps-tipc/sbin/tipc-config -be=eth:nxge0/10.3.0

% gmake TIPC=on
Chapter 11 Reference Applications 317

FIB Table Configuration Command Line Interface
(fibctl)
When IP forward application TIPC address is given, fibctl connects to the
corresponding IP forward application with the given TIPC address.

If no TIPC address in given, then fibctl tries to discover available IP forward
application(s). If only one IP forward application is found, then fibctl connects to
the found Ipfwd application. If multiple IP forward applications are found, then it
prompts the user to choose the IP forward applications and connects to the selected
IP forward applications.

You can use the status command to obtain the status of connectivity with the IP
forward application:

The status command prints the status of connectivity:

■ CONNECTED – fibctl is connected to an IP forward application.

■ NOT CONNECTED – fibctl is connected to an IP forward application.

Interface Configuration Command Line Interface
(ifctl)
The ifctl commands are the same as explained in the ifctl commands list. The
tools establish connection with the first available IP forward application.

IPv4 Exception Process (excpd)
The excpd process runs as the TIPC server, and the IP forward application runs as
an TIPC client. When the IPV4 exception process is up, the IP forward application
connects to the excpd process and starts communicating with each other.

fibctl> connect IP-forward-TIPC-application-TIPC-address

fibctl> status
318 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

vnet Reference Application
The vnet reference application illustrates the usage of the vnet Driver API, and it
can be used to measure the performance of the Sun Netra DPS vnet driver. The
vnet reference application consists of the following components:

■ The Sun Netra DPS application that receives and transmits frames

■ The Oracle Solaris OS or Linux OS test utility that receives and transmits packets
from user space

The application runs in a logical domain environment. To use the application, the
user must have the following logical domain setup:

UltraSPARC T2 Platform
The Sun Netra DPS logical domain (ldg1) must be assigned 40 strands. The guest
logical domain (ldg2) must be assigned at least 16 strands.

UltraSPARC T1 Platform
The Sun Netra DPS logical domain (ldg1) must be assigned 20 strands. The guest
logical domain(ldg2) must be assigned at least 4 strands.

TABLE 11-2 Logical Domain configuration for vnet Reference Application

Domain Environment Description

Primary Solaris OS Owns one of the PCI buses and uses the physical
disks and networking interfaces to provide virtual
I/O to the guest domains.

ldg1 LWRITE (ndps) Owns the other PCI bus (in case of UltraSPARC T1
platform) or the NIU (in case of UltraSPARC T2
platform) and runs the Sun Netra DPS vnet
application.

ldg2 Solaris or Linux
OS

Runs the control plane applications.

ldg3 Solaris or Linux
OS

Controls Sun Netra DPS domain through global
control channel.
Chapter 11 Reference Applications 319

Supported Tests
The Sun Netra DPS binary for the vnet reference application is called vnettest,
and the guest logical domain application is called testvnet.

The vnet reference application supports the following tests:

1. Transmit packets from guest logical domain to Sun Netra DPS logical domain

2. Transmit packets from Sun Netra DPS logical domain to guest logical domain

3. Loop-back packets transmitted from guest logical domain to Sun Netra DPS
logical domain

4. Loop-back packets transmitted from guest logical domain to Sun Netra DPS
logical domain

Performs data integrity check on the loop-backed packets in guest logical domain.
This does not support the use of more than one vnet interface.

5. Transmit packets from Sun Netra DPS logical domain to Sun Netra DPS logical
domain.

testvnet Commands
The testvnet utility offers the following commands:

■ tx

Transmits frames to Sun Netra DPS logical domain application from the guest
logical domain test application using the specified vnet interfaces.

■ rx

Receives packets that are transmitted from Sun Netra DPS logical domain
application in the guest logical domain test application over the specified vnet
interfaces.

■ lpbk

Loops back packets sent from the guest logical domain test application over the
specified vnet interfaces.

■ lpbk-di

Sun Netra DPS logical domain application loops back packets sent from guest logical
domain test application over the specified interface. Test application in guest logical
domain verifies data received with data sent for each vnet interface specified.
Currently, more than one interface cannot be specified for this test.

■ dp-tx
320 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Transmits frames to itself using two vnet interfaces: one for transmitting the
frames and another one for receiving the frames. Currently, this test supports only
one interface (that is, one interface to transmit and another interface to receive).

■ pkt-sz

Specifies the frame size to be used for the test (that is, it includes the size of the
Ethernet, IP, and UDP headers).

■ pkt-cnt

Specifies the number of frames to be used for the test. A value of 0 implies infinite
count.

■ thd-cnt

Specifies the number of threads to be used in the guest logical domain for the test.
The value provided is for each interface specified.

■ intf-cnt

Specifies the number of vnet interfaces to be used for the test.

Test Setup
The vnet reference application uses vnet interfaces and UDP sockets to perform the
tests. The guest logical domain application, testvnet, and the Sun Netra DPS
application, vnettest, behave as the UDP client or server depending on the test.
During the test, the client transmits UDP packets to the server. The packets are
destined to UDP port numbers that are determined appropriate.

Two types of UDP sockets are used: control sockets and data sockets. The guest
logical domain application uses a single UDP control socket bound to UDP port
number 1111 and the Sun Netra DPS application uses a single UDP control socket
bound to UDP port 2222. The control sockets are used to exchange commands and
responses during the test setup. The data sockets are used to exchange the test
packets. The Sun Netra DPS uses data sockets with UDP port numbers starting from
8888. The guest logical domain uses data sockets with UDP port numbers starting
from 4444.

Any number of vnet devices can be used for the tests. The test applications expect
the instance numbers of the vnet devices used in the Sun Netra DPS and the guest
logical domain to be consecutive. The first vnet device in the guest logical domain
and the first vnet interface in the Sun Netra DPS logical domain is used for
exchanging control packets. When using multiple interfaces for a test, interfaces
starting from the lowest instance must be used. For example, if vnet1, vnet2,
vnet3, and vnet4 are enabled and a test is run with two interfaces, then vnet1
and vnet2 must be used. If the test is run with three interfaces, then vnet1, vnet2,
and vnet3 must be used.
Chapter 11 Reference Applications 321

The testvnet application uses one or more Light Weight Processes (LWP) to
perform the tests. The number of LWPs to use is specified by the user in the
command line. For each LWP created, a distinct socket end-point is used for the
transmit or the receive. The following illustrates the UDP port number mappings for
various tests:

TABLE 11-3 vnet Test Configuration 1

Test thd-
cnt

intf-
cnt

Guest Logical Domain
(source port, destination port)

Sun Netra DPS Logical
Domain
(source port, destination port)

tx 1 1 (4444, 8888) (8888, any)

rx 1 1 (4444, any) (8888, 4444)

lpbk 1 1 (4444, 8888) (8888, 4444)

lpbk-di 1 1 (4444, 8888) (8888, 4444)

dp-tx 1 1 N/A N/A

TABLE 11-4 vnet Test Configuration 2

Test thd-
cnt

intf-
cnt

Guest Logical Domain
(source port, destination port)

Sun Netra DPS Logical
Domain
(source port, destination port)

tx 2 1 (4444, 8888), (4445, 8888) (8888, any)

rx 2 1 (4444, any), (4445, any) (8888, 4444), (8888, 4445)

lpbk 2 1 Rx: (4444, any), (4445, any)
Tx: (4446, 8888), (4447, 8888)

(8888, 4444), (8888, 4445)

lpbk-di 2 1 Rx: (4444, any)
Tx: (4445, 8888)

(8888, 4444)
322 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Virtual Network Setup
The number of interfaces to be used is determined by the user. Each Sun Netra DPS
vnet interface must be directly connected to a guest logical domain vnet interface.
This is achieved by linking a Sun Netra DPS vnet and a guest vnet to the same
virtual switch. No more than one vnet interface in a logical domain must be
attached to the same vswitch. The exception to this requirement is one of the vnet
interfaces in the Sun Netra DPS logical domain that is used for dp-tx test. This
vnet device is connected to the same vswitch as the another Sun Netra DPS vnet
interface.

TABLE 11-5 vnet Test Configuration 3

Test thd-
cnt

intf-
cnt

Guest Logical Domain
(source port, destination port)

Sun Netra DPS Logical
Domain
(source port, destination port)

tx 2 2 vnet1: (4444, 8888), (4445,
8888)
vnet2: (4446, 8889), (4447,
8889)

vnet1: (8888, any)
vnet2: (8889, any)

rx 2 2 vnet1: (4444, any), (4445,
any)
vnet2: (4446, any), (4447,
any)

vnet1: (8888, 4444), (8888,
4445)
vnet2: (8889, 4446), (8889,
4447)

lpbk 2 2 vnet1:
Rx: (4444, any), (4445, any)
Tx: (4448, 8888), (4449, 8888)

vnet2:
Rx: (4446, any), (4447, any)
Tx: (4450, 8889), (4451, 8889)

vnet1: (8888, 4444), (8888,
4445)
vnet2: (8889, 4446), (8889,
4447)
Chapter 11 Reference Applications 323

The following table and illustration show the setup of a virtual network with four
vnet interfaces.

FIGURE 11-15 vnet Test Configuration

TABLE 11-23 Virtual Network Setup

Guest Logical
Domain

Sun Netra DPS
Logical Domain

Primary Function

vnet1 vnet2 vsw1 Used for control packets and for data packets
between vnet2 and vnet1

vnet2 vnet3 vsw2 Used for data packets between vnet3 and
vnet2

vnet3 vnet4 vsw3 Used for data packets between vnet4 and
vnet3

vnet4 vnet5 vsw4 Used for data packets between vnet5 and
vnet4

vnet1 vsw1 Data packets for dp-tx between vnet2 and
vnet1.
324 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

In this example, the dotted lines illustrate the direct connection between vnet
interfaces that are connected to the same vswitch.

The vnet interfaces must be assigned IP addresses. Also, the ARP must be disabled on
the vnet devices used for the test. The IP addresses for the Sun Netra DPS vnet
interfaces are assigned during the test setup.

When testing with VLANs, the vnettest application expects the VLAN ID to start
from 11 and continue upwards. For example, in the illustration above, the following
are VLAN IDs that must be assigned to the interfaces:

■ Sun Netra DPS vnet interfaces: vnet1 (11), vnet2 (11 and 12), vnet3 (13),
vnet4 (14), vnet5 (15)

■ Guest vnet interfaces: vnet1 (12), vnet2 (13), vnet3 (14), vnet4 15)

vnet Reference Application Content
The source code for the vnet reference application is in the SUNWndps package in the
/opt/SUWNndps/src/apps/vnet_sample directory. The source code includes the
following:

■ makefile for the application

■ Common header file, src/common/vnet_cmd.h, describing the commands sent
from the test utility to the Sun Netra DPS application

■ System configuration for the Sun Netra DPS application in the src/config
directory:

■ src/config/hwarch.c

■ src/config/swarch.c

■ src/config/map.c

■ Sun Netra DPS application in the src/app directory:

■ src/app/ldc_malloc.c

■ src/app/vnet_test_config.c

■ src/app/appln.c

■ src/app/init.c

■ src/app/user_common.c

■ src/app/vnet_ipc.c

■ src/app/ldc_malloc_config.h

■ src/app/vnet_test_config.h

■ src/app/lb_objects.h

■ Oracle Solaris application in src/solaris directory:

■ src/solaris/makefile
Chapter 11 Reference Applications 325

■ src/solaris/vnet_txrx.c

■ src/solaris/vnet_txrx_ipc.c

■ src/solaris/vnet_txrx.h

■ Linux application in src/linux directory

■ src/linux/makefile

■ src/linux/vnet_txrx.c

■ src/linux/vnet_txrx_ipc.c

■ src/linux/vnet_txrx.h

Building the Sun Netra DPS vnet Reference
Application
This section includes descriptions of how to build the vnet reference application.

Usage
build cmt1 | cmt2 10g | 10g_niu | 4g [2port][profiler][vlan]

Argument Descriptions
The build script supports the following arguments:

■ cmt1 – Builds the Sun Netra DPS application to run on CMT1 (UltraSPARC T1)
platform

■ cmt2 – Builds the Sun Netra DPS application to run on CMT2 (UltraSPARC T2)
platform

■ 10g – Builds the Sun Netra DPS application to simulate the message block (mblk)
and data buffer offset settings for Neptune 10g card.

■ 10g_niu – Builds the Sun Netra DPS application to simulate the message block
(mblk) and data buffer offset settings for NIU.

■ 4g – Builds the Sun Netra DPS application to simulate the message block (mblk)
and data buffer offset settings for Neptune QGC card.

■ [2port] – Builds the Sun Netra DPS application to simulate the message block
(mblk) and data buffer offset settings for Neptune 10g or NIU with 2 ports.

■ profiler – Builds the reference application with profiling enabled

■ vlan – Enables VLAN Tagging for frames used in the tests
326 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

▼ To Build the vnet Reference Application
● Execute the following build command:

This command builds the Sun Netra DPS vnet application for the UltraSPARC T2
platform with VLAN tagging enabled for the test frames.

▼ To Run the vnet Sun Netra DPS Application,
vnettest

The Sun Netra DPS application is booted from a virtual network interface
assigned to its domain.

● Boot the application.

For example:

▼ To Build the vnet Guest Logical Domain
Application for the Oracle Solaris OS
1. Change directories to:

/opt/SUNWndps/src/apps/vnet_sample/src/solaris

2. Run the following command:

▼ Building the vnet Guest Logical Domain
Application for the Linux OS
1. Change directories to: /opt/SUNWndps/src/apps/vnet_sample/src

2. Create a TAR file of the common and linux directories:

./build cmt2 10g vlan

ok boot /virtual-devices@100/channel-devices@200/network@0:,vnettest

% gmake

% tar -cvf testvnet-srcs.tar common/linux/
Chapter 11 Reference Applications 327

3. Copy the TAR file onto a system that has a cross-compiler for UltraSPARC T2.

4. Untar the file into a directory.

5. Change directories to the linux directory, and execute the make command.

▼ To Run the vnet Guest Logical Domain
Application on a Oracle Solaris OS Guest
Logical Domain
1. Copy the testvnet binary into the guest logical domain.

2. Create a permanent, static ARP entry for the control vnet:

3. Start the testvnet application:

The application prompts you to enter the IP addresses for the Sun Netra DPS
vnet interfaces and the guest logical domain vnet interfaces to be used in the
test

% mkdir testvnet-lnx
% cp testvnet-srcs.tar testvnet-lnx
% cd testvnet-lnx
% tar -xvf testvnet-srcs.tar

% cd linux
% make

ok arp -s Netra-DPS-control-vnet-ip Netra-DPS-control-vnet-mac-address permanent

./testvnet tx 64 1000000 4 2
% make
328 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

4. Enter IP address for the local interface to be used:

After you enter all of the IP addresses, the test starts. The testvnet application
prints statistical information to the console. The Sun Netra DPS application also
prints statistical information on its console. The statistics correspond to the
measurements made by each end.

The statistics on the guest logical domain are on a LWP basis. An example is shown
below. If more than one interface is used and if n-threads are specified as the thread
count, then threads 0 to n -1 are used for interface 0, threads n to (2 *n - 1) are used for
interface 1, and so on.

Enter IP address for the local interface to be used:
192.168.20.200
Enter IP address for the connected lwrte interface:
192.168.20.201
Enter IP address for the local interface to be used:
192.168.30.200
Enter IP address for the connected lwrte interface:
192.168.30.201

TRANSMIT STATISTICS - Thread 0

Tx-Cnt: 1048576 Tx-Bytes: 23068672 Perf(pps, mbps): 60197.255870, 10.594717

TRANSMIT STATISTICS - Thread 3

Tx-Cnt: 1048576 Tx-Bytes: 23068672 Perf(pps, mbps): 58018.923256, 10.211330

TRANSMIT STATISTICS - Thread 1

Tx-Cnt: 1048576 Tx-Bytes: 23068672 Perf(pps, mbps): 57842.894969, 10.180350

TRANSMIT STATISTICS - Thread 2

Tx-Cnt: 1048576 Tx-Bytes: 23068672 Perf(pps, mbps): 57516.098952, 10.122833
Chapter 11 Reference Applications 329

The statistics on the Sun Netra DPS console are on a per-port basis. An example is
shown below:

▼ To Run the vnet Guest Logical Domain
Application on a Linux OS Guest Logical
Domain
1. Copy the testvnet binary onto the guest logical domain.

2. Create a permanent, static ARP entry for the control vnet:

3. Start the testvnet application:

The application prompts you to enter the IP addresses for the Sun Netra DPS
vnet interfaces and also the guest logical domain vnet interfaces to be used in
the test.

RECEIVE STATISTICS: vnet3

Rx-Cnt: 1048576 Rx-Bytes: 1587544064 Perf(pps, mbps): 117185.516316,
1419.350974 Rx-Retries: 82633548

RECEIVE STATISTICS: vnet2

Rx-Cnt: 1048576 Rx-Bytes: 1587544064 Perf(pps, mbps): 118617.194570,
1436.691461 Rx-Retries: 81623147

arp -s Netra-DPS-control-vnet-ip Netra-DPS-control-vnet-mac-address

./testvnet tx 64 1000000 4 2
330 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

4. Enter the IP addresses:

After you have entered all of the IP addresses, the test starts. The testvnet
application prints statistical information to the console. The Sun Netra DPS
application also prints statistical information to its console. The statistics
correspond to the measurements made by each end.

The statistics printed on the guest logical domain are on a LWP basis. An example
is shown below. If more than one interface is used and if n-threads are specified
as the thread count, then threads 0 to n -1 are used for interface 0, threads n to (2
*n - 1) are used for interface 1, and so on.

Enter IP address for the local interface to be used:
192.168.20.200
Enter IP address for the connected lwrte interface:
192.168.20.201
Enter IP address for the local interface to be used:
192.168.30.200
Enter IP address for the connected lwrte interface:
192.168.30.201

TRANSMIT STATISTICS - Thread 0

Tx-Cnt: 1048576 Tx-Bytes: 23068672 Perf(pps, mbps): 60197.255870, 10.594717

TRANSMIT STATISTICS - Thread 3

Tx-Cnt: 1048576 Tx-Bytes: 23068672 Perf(pps, mbps): 58018.923256, 10.211330

TRANSMIT STATISTICS - Thread 1

Tx-Cnt: 1048576 Tx-Bytes: 23068672 Perf(pps, mbps): 57842.894969, 10.180350

TRANSMIT STATISTICS - Thread 2

Tx-Cnt: 1048576 Tx-Bytes: 23068672 Perf(pps, mbps): 57516.098952, 10.122833
Chapter 11 Reference Applications 331

The statistics on the Sun Netra DPS console are on a per-port basis. An example is
shown below:

RECEIVE STATISTICS: vnet3

Rx-Cnt: 1048576 Rx-Bytes: 1587544064 Perf(pps, mbps): 117185.516316,
1419.350974 Rx-Retries: 82633548

RECEIVE STATISTICS: vnet2

Rx-Cnt: 1048576 Rx-Bytes: 1587544064 Perf(pps, mbps): 118617.194570,
1436.691461 Rx-Retries: 81623147
332 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Chapter 11 Reference Applications 333

CHAPTER 12

Performance Tuning

This appendix provides guidelines for diagnosing and tuning network applications
running under the Lightweight Runtime Environment (LWRTE) on UltraSPARC T
Series processor multithreading systems.

Topics in include:

■ “Performance Tuning Introduction” on page 333

■ “UltraSPARC T1 Processor Overview” on page 334

■ “UltraSPARC T2 Processor Overview” on page 336

■ “Identifying Performance Issues” on page 338

■ “Optimization Techniques” on page 343

■ “Tuning Troubleshooting” on page 348

■ “Example RLP Exercise” on page 350

Performance Tuning Introduction
The UltraSPARC T series CMT systems deliver a strand-rich environment with
performance and power efficiency that are unmatched by other processors. From a
programming point of view, the UltraSPARC T1 and UltraSPARC T2 processor
strand-rich environment can be thought of as symmetric multiprocessing on a chip.

The Lightweight Runtime Environment (LWRTE) provides an ANSI C development
environment for creating and scheduling application threads to run on individual
strands on the UltraSPARC T series processor. With the combination of the
UltraSPARC T series processor and LWRTE, developers have a platform to create
applications for the fast path and the bearer-data plane space.
333

UltraSPARC T1 Processor Overview
The Sun UltraSPARC T1 processor employs chip multithreading, or CMT, which
combines chip multiprocessing (CMP) and hardware multithreading (MT) to create a
SPARC V9 processor with up to eight 4-way multithreaded cores for up to 32
simultaneous threads. To feed the thread-rich cores, a high-bandwidth, low-latency
memory hierarchy with two levels of on-chip cache and on-chip memory controllers
is available. FIGURE 12-1 shows the UltraSPARC T1 architecture.

FIGURE 12-1 UltraSPARC T1 Architecture

The processing engine is organized as eight multithreaded cores, with each core
executing up to four strands concurrently. Each core has a single pipeline and can
dispatch at most 1 instruction per cycle. The maximum instruction processing rate is
334 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

1 instruction per cycle per core or 8 instructions per cycle for the entire eight core
chip. This document distinguishes between a hardware thread (strand), and a
software thread (lightweight process (LWP)) in Oracle Solaris.

A strand is the hardware state (registers) for a software thread. This distinction is
important because the strand scheduling is not under the control of software. For
example, an operating system can schedule software threads on to and off of a
strand. But once a software thread is mapped to a strand, the hardware controls
when the thread executes. Due to the fine-grained multithreading, on each cycle a
different hardware strand is scheduled on the pipeline in cyclical order. Stalled
strands are switched out and their slot in the pipeline given to the next strand
automatically. Therefore, the maximum throughput of 1 strand is 1 instruction per
cycle if all other strands are stalled or parked. In general, the throughput is lower
than the theoretical maximums.

The memory system consists of two levels of on-chip caching and on-chip memory
controllers. Each core has level 1 instruction and data caches and TLBs. The
instruction cache is 16 Kbyte, the data cache is 8 Kbyte, and the TLBs are 64 entries
each. The level 2 cache is a 3 Mbyte unified instruction, and it is 12-way set
associative and 4-way banked. The level 2 cache is shared across all eight cores. All
cores are connected through a crossbar switch to the level 2 cache.

Four on-chip DDR2 memory controllers provide low-latency, high-memory
bandwidth of up to 25 Gbyte per second. Each core has a modular arithmetic unit for
modular multiplication and exponentiation to accelerate SSL processing. A single
floating-point unit (FPU) is shared by all cores, so this software is not optimal for
floating-point intensive applications. TABLE 12-1 summarizes the key performance
limits and latencies.

TABLE 12-1 UltraSPARC T1 Key Performance Limits and Latencies

Feeds Speeds

Processor instruction
execution bandwidth

9.6 G instructions per sec (peak @ 1.2 GHz)

Memory

L1 hit latency ~ 3 cycles

L2 hit latency ~ 23 cycles

L2 miss latency ~ 90 ns

Bandwidth 17 GBps (25 GBps peak)

I/O bandwidth ~ 2 GBps (JBus limitation)
Chapter 12 Performance Tuning 335

UltraSPARC T2 Processor Overview
The Sun UltraSPARC T2 processor is the second generation of CMT processor. In
addition to features found in UltraSPARC T1, UltraSPARC T2 dramatically increases
processing power by increasing the number of hardware strands in each core. This
processor also increases the floating point performance by introducing one FPU unit
per CPU core. The UltraSPARC T2 also includes on-chip 10G Ethernet and crypto
accelerator. FIGURE 12-2 shows the UltraSPARC T2 system architecture.

FIGURE 12-2 UltraSPARC T2 Architecture
336 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

The processing engine is organized as 8 multithreaded cores, with each core
consisting of two independent integer execution pipelines. Each pipeline executes up
to 4 strands concurrently. Therefore, the processor has a total of 8 strands per CPU
core (64 strands per CPU). The maximum instruction processing rate is 2
instruction/cycle per core or 16 instructions/cycle for the entire 8 core chip. Unlike
UltraSPARC T1, in which one FPU is shared by all 8 CPU cores, UltraSPARC T2 has
an independent FPU per CPU core.

Similar to UltraSPARC T1, the memory system consists of two levels of on-chip
caching and on-chip memory controllers. Each core has separate level 1 instruction
and data caches and TLBs. The instruction cache is 16KB, the data cache is 8KB, and
the TLBs are 64 entries for instructions (ITLB) and 128 entries for data (DTLB).
UltraSPARC T2 has a larger L2 cache compared to its predecessor. The level 2 cache
is a 4 Mbyte unified instruction. The cache is 16-way set associative and 8-way
banked.

UltraSPARC T2 has doubled the memory capacity of its predecessor. This processor
consists of 4 dual-channel FBDIMM memory controllers at 4.8 Gb/sec, capable of
controlling up to 256 Gbyte memory per system. Memory bandwidth is increased to
50 Gbyte/sec.

The integrated network interface unit (NIU) provides dual on-chip 10GbE
processing capability. All network data is sourced from and destined to memory
without having the need to go through the I/O interface. This configuration
eliminates the I/O protocol translation overhead and takes full advantage of the
high memory bandwidth. The NIU also features line rate packet classification and
multiple DMA engines to handle multiple incoming traffic flows in parallel.

Also integrated on-chip is the cryptographic coprocessor, one per CPU core. The
Crypto engine facilitates wire-speed encryption and decryption.

UltraSPARC T2 eliminates the JBUS (the I/O bus of the UltraSPARC T1) entirely. I/O
is controlled by an on-chip x8 at 2.5 GHz per lane PCIe root complex, providing a
total of 3-4 Gbyte/sec I/O bandwidth with maximum payload sizes of 128 bytes to
512 bytes.

TABLE 12-2 summarizes the key performance limits and latencies.

TABLE 12-2 UltraSPARC T2 Key Performance Limits and Latencies

Feeds Speeds

Processor instruction
execution bandwidth

22.4 G instructions/sec (peak@1.4GHz)

Memory

L1 hit latency ~ 3 cycles

L2 hit latency ~ 23 cycles
Chapter 12 Performance Tuning 337

Identifying Performance Issues
The key performance metric is the measure of throughput, usually expressed as
either packets processed per second, or network bandwidth achieved in bits or bytes
per second. This section discusses UltraSPARC T1 and UltraSPARC T2 performance.

UltraSPARC T1 Performance
In UltraSPARC T1 systems, the I/O limitation of 2 Gbyte per second puts an upper
bound on the throughput metric. FIGURE 12-3 shows the packet forwarding rate
limited by this I/O bottleneck.

L2 miss latency ~ 135 ns

Bandwidth ~ 40 GBytes/sec peak for read
~ 20 GBytes/sec peak for write

I/O bandwidth 3~4 GBytes/sec (PCI-Express)

TABLE 12-2 UltraSPARC T2 Key Performance Limits and Latencies (Continued)

Feeds Speeds
338 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

FIGURE 12-3 UltraSPARC T1 Forwarding Packet Rate Limited by I/O Throughput

The theoretical maximum represents the throughput of 10 Gbytes per second. The
measured results show that the achievable forwarding throughput is a function of
packet size. For 64-byte packets, the measured throughput is 2.2 Gbyte per second or
3300 kilo packets per second.
Chapter 12 Performance Tuning 339

In diagnosing performance issues, there are three main areas: I/O bottlenecks,
instruction processing bandwidth, and memory bandwidth. In general, the
UltraSPARC T1 systems have more than enough memory bandwidth to support the
network traffic allowed by the JBus I/O limitation. Nothing can be done about the
I/O bottleneck, therefore this document focuses on instruction processing limits.

For UltraSPARC T1 systems, the network interfaces are 1 Gbit and the interface is
mapped to a single strand. In the simplest case, one strand is responsible for all
packet processing from the corresponding interface. At a 1 Gbit line rate, 64-byte
packets arrive at 1.44 Mpps (million packets per second) or one packet every 672 ns.
To maintain this line rate, the processor must process the packet within 672 ns. On
average, that is 202 instructions per packet. FIGURE 12-4 shows the average maximum
number of instructions the processor can execute per packet while maintaining line
rate.

FIGURE 12-4 Instructions per Packet Versus Frame Size

The inter-arrival time increases with packet size, so that more processing can be
accomplished.
340 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

UltraSPARC T2 Performance
In UltraSPARC T2 systems, the I/O bandwidth is largely expanded from
2 Gbytes/sec to 3 ~ 4 Gbytes/sec range. This is because the Jbus interface is replaced
by the PCI Express interface. The on-chip Ethernet interface substantially improves
network performance by removing the entire I/O bus overhead. When the network
interface unit (NIU) is utilized, ingress traffic data from input ports enters into
memory directly through the DMA engine, and vice versa for egress data.
Performance is no longer I/O bound. The next speed bump is determined by the
CPU processing power and memory controller capacity. CPU frequency and memory
controller capacity on the system platform becomes a factor in determining the
maximum packet forwarding rate.

FIGURE 12-5 shows the forwarding packet rate limited by CPU processing power or
memory controller bandwidth.
Chapter 12 Performance Tuning 341

FIGURE 12-5 UltraSPARC T2 Forwarding Packet Rate
342 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Optimization Techniques
This section includes optimization techniques that you can use to improve tuning.
The techniques include:

■ “Code Optimization” on page 343

■ “Pipelining” on page 344

■ “Parallelization” on page 345

■ “Mapping” on page 346

■ “Parking Idle Strands” on page 346

■ “Slowing Down Polling” on page 347

Code Optimization
Writing efficient code and using the appropriate compiler option is the primary step
in obtaining optimal performance for an application. GCCfss compilers provide
many optimization flags to tune your application. Refer to the GNU C Compiler
User’s Guide and GCC for SPARC Systems-Additional command line option flags for the
complete list of optimization flags available. See “Reference Documentation” on
page xxx. The following list describes some of the important optimization flags that
might help optimize an application developed with LWRTE.

■ Inlining

Use the inline keyword declaration before a function to ensure that the
compiler inlines that particular function. Inlining reduces the path length, and is
especially useful for functions that are called repeatedly.

■ Optimization level

The -xO[12345] option optimizes the object code differently based on the
number (level). Generally, the higher the level of optimization, the better the
runtime performance. However, higher optimization levels can result in longer
compilation time and larger executable files. Use a level of -xO3 for most cases.

■ -xtarget=ultraT1

This option indicates that the target hardware for the application is an
UltraSPARC T1 CPU and enables the compiler to select the correct instruction
latencies for that processor.

■ -xprefetch and -xprefetch_level

Useful options if cache misses seem to slow down the application.
Chapter 12 Performance Tuning 343

Pipelining
The thread-rich UltraSPARC T1 processor and the LWRTE programming
environment enables the user to easily pipeline the application to achieve greater
throughput and higher hardware utilization. Pipelining involves splitting a function
into multiple functions and assigning each to a separate strand, either on the same
processor core or on a different core. The user can program the split functions to
communicate through Sun Netra DPS fast queues or channels.

One approach is to find the function with the most clock cycles per instruction (CPI)
and then split that function into multiple functions. The goal is to reduce the overall
CPI of the CPU execution pipeline. Splitting a large slow function into smaller pieces
and assigning those pieces to different hardware strands is one way to improve the
CPI of some subfunctions, effectively separating the slow and fast sections of the
processing. When slow and fast functions are assigned to different strands, the CMT
processor uses the execution pipelines more efficiently and improves the overall
processing rate.

FIGURE 12-6 shows how to split and map an application using fast queues and CMT
processor to three strands.

FIGURE 12-6 Example of Pipelining
344 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

FIGURE 12-7 shows how pipelining improves the throughput.

FIGURE 12-7 Pipelining Effect on Throughput

In this example, a single-strand application takes nine units of time to complete
processing of a packet. The same application split into three functions and mapped
to three different strands takes longer to complete the same processing, but is able to
process more packets in the same time.

Parallelization
The other advantage of a thread-rich CMT processor is the ability to easily
parallelize an application. If a particular software process is very compute-intensive
compared to other processes in the application, the user can allocate multiple
strands to this processing. Each strand executes the same code but works on
different data sets. For example, since encryption is a heavy operation, the
application shown in FIGURE 12-8 is allocated three strands for encryption.

FIGURE 12-8 Parallelizing Encryption Using Multiple Strands

The process strand uses well-defined logic to fan out encryption processing to the
three encryption strands.
Chapter 12 Performance Tuning 345

Packet processing applications that perform identical processing repeatedly on
different packets easily lend themselves to this type of parallelization. Any
networking protocol that is compute-bound can be allocated on multiple strands to
improve throughput.

Mapping
Four strands share an execution pipeline in the UltraSPARC T1 processor. There are
eight such execution pipes, one for each core. Determining how to map threads
(LWRTE functions) to strands is crucial to achieving the best throughput. The
primary goal of performance optimization is to keep the execution pipeline as busy
as possible, which means trying to achieve an IPC of 1 for each processor core.

Profiling each thread helps quantify the relative processing speed of each thread and
provide an indication of the reasons behind the differences. The general approach is
to assign fast threads (high IPC) with slow threads on the same core. On the other
hand, if instruction cache miss is a dominant factor for a particular function, then
assign multiple instances of the same function on the same core. On UltraSPARC T1
processors, the user must assign any threads that have floating-point instructions to
different strands if floating-point instructions are the performance bottleneck.

Parking Idle Strands
Often a workload does not have processing to run on every strand. For example, a
workload has five 1 Gbit ports with each port requiring four threads for processing.
This workload employs 20 strands for processing, leaving 12 strands unused or idle.
The user might run other applications on these idle strands but currently are testing
only part of the application. LWRTE provides the options to park or to run
while(1) loops on idle strands (that is, strands not participating in the processing).

Parking a strand means that there is nothing running on it and, therefore, the strand
does not consume any of the processor resources. Parking the idle strands produces
the best result because the idle strands do not interfere with the working strands.
The downside of parking strands is that there is currently no interface to activate a
parked strand. In addition, activating a parked strand requires sending an interrupt
to the parked strand, which might take hundreds of cycles before the strand is able
to run the intended task.

If the user wants to run other processing on the idle strands, then parking these
strands might result in optimistic performance measurements. When the final
application is executed, the performance might be significantly lower than that
measured with parked strands. In this case, running with a while(1) loop on the
idle strands might be a more representative case.
346 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

The while(1) loop is an isolated branch. The while(1) loop executing on a strand
takes execution resources that might be needed by the working strands on the same
core to attain the required performance. while(1) loops only affect strands on the
same core, they do not have an effect on strands on other cores. The while(1) loop
often consumes more core pipeline resources than your application. Therefore, if
your working strands are compute-bound, running while(1) loops on all the idle
strands is close to a worst case. In contrast, parking all the idle strands is the best
case. To understand the range of expected performance, run your application with
both parked and while(1) loops on the idle strands.

Slowing Down Polling
As explained in “Parking Idle Strands” on page 346, strands executing on the same
core can have both beneficial and detrimental effects on performance due to
common resources. The while(1) loop is a large consumer of resources, often
consuming more resources than a strand doing useful work. Polling is very common
in LWRTE threads and, as seen with the while(1) loop, might waste valuable
resources needed by the other strands on the core to achieve performance. One way
to alleviate the waste by polling is to slow down the polling loop by executing a long
latency instruction. This situation causes the strand to stall, making its resources
available for use by the other strands on the core.

LWRTE exports interfaces to slowing down the polling that include:

■ Access the memory location using a little endian load (ASI_PRIMARY_LITTLE).
This option always goes to L2 and takes about 30 cycles.

■ Meaningless CAS, which takes about 39 cycles.

■ Meaningless PIO.

■ ASI register read.

■ Floating-point instructions.

The method selected depends on your application. For instance, if the application is
using the floating-point unit, the user might not want a useless floating-point
instruction to slow down polling because that might stall useful floating-point
instructions. Likewise, if the application is memory bound, using a memory
instruction to slow polling might add memory latency to other memory instructions.
Chapter 12 Performance Tuning 347

Tuning Troubleshooting
This section includes descriptions of troubleshooting techniques that you can
perform to improve tuning. The troubleshooting techniques include:

■ “What Is a Compute-Bound Versus a Memory-Bound Thread?” on page 348

■ “Cannot Reach Line Rate for Packets Smaller Than 300 Bytes” on page 348

■ “Cannot Scale Throughput to Multiple Ports” on page 349

■ “How Do I Achieve Line Rate for 64-byte Packets?” on page 349

■ “When Should I Consider Thread Placement?” on page 350

What Is a Compute-Bound Versus a Memory-
Bound Thread?
A thread is compute-bound if its performance is dependent on the rate the processor
can execute instructions. A memory-bound thread is dependent on the caching and
memory latency. As a rough guideline for the UltraSPARC T processor, the CPI for a
compute-bound thread is less than five and for a memory-bound thread is
considerably higher than five.

Cannot Reach Line Rate for Packets Smaller Than
300 Bytes
Single-thread receives, processes, and transmits packets can only achieve line rate
for 300 byte packets or larger.

Goal: Want to get line rate for 250 byte packets.

Solution: Need to optimize single-thread performance. Try compiler optimization,
different flags -O2, -O3, -O4, -O5, or fast function inlining. Change code to optimize
hot sections of code. The user might need to do profiling.

Goal: Want to get to line rate for 64-byte packets.

Solution: Parallelize or pipeline. To get from 300 to 64-byte packets running at line
rate is probably too much for just optimizing single-thread performance.
348 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Cannot Scale Throughput to Multiple Ports
When you increase the number of ports the results don’t scale. For example, with a
line rate of 400 byte packets with two interfaces, when you increase to three
interfaces, you get only 90% of line rate.

Solution: If the problem is in parallelizing, determine if there are conflicts for shared
resources, or synchronization and communication issues. Are there any lock
contention or shared data structures? Is there a significant increase in CPI, cache
misses, or store buffer full cycles? Are you using the shared resources such as the
modular arithmetic unit or floating-point unit? Is the application at the I/O
throughput bottleneck? Is the application at the processing bottleneck?

If there is a conflict for pipeline resources, optimizing single-thread performance
would use fewer resources and improve overall throughput and scaling. In this
situation, distribute the threads across the cores in a more optimal fashion or park
unused strands.

How Do I Achieve Line Rate for 64-byte Packets?
The goal is to achieve line rate processing on 64-byte packets for a single 1 Gigabit
Ethernet port. The current application requires 575 instructions per packet executing
on 1 strand.

Solution: A 64-byte packet size has 202 instructions per packet. So optimizing your
code will not be sufficient. The user must parallelize or pipeline. In parallelization,
the task is executed in multiple threads, each thread doing the identical task. In
pipelining, the task is split up into smaller subtasks, each running on a different
thread, that are sequentially executed. Use a combination of parallelization and
pipelining.

In parallelization, parallelize the task N ways, to increase the instructions per packet
N times. For example, execute the task on three threads, and each thread can now
have 606 instructions per packet (202 x 3) and still maintain 1 Gbit line rate for 64-
byte packets. If the task requires 575 instructions per packet, run the code on 3
threads (606 instruction per packet), to achieve 1 Gbit line rate for 64-byte packets.
Parallelizing maximizes the throughput by duplicating the application on multiple
strands. However, some applications cannot be parallelized or depend too much
upon synchronization when executed in parallel. For example, the UltraSPARC T1
network driver is difficult to parallelize.

In pipelining, increase the amount of processing done on each packet by partitioning
the task into smaller subtasks that are then run sequentially on different strands.
Unlike parallelization, there are not more instructions per packet on a given strand.
Using the example from the previous paragraph, split the task into three subtasks,
each executing up to 202 instructions of the task. In both the parallel and pipelined
Chapter 12 Performance Tuning 349

cases, the overall throughput is similar at three packets every 575 instructions.
Similar to parallelization, not all applications can easily be pipelined and there is
overhead in passing information between the pipe stages. For optimal throughput,
the subtasks need to execute in approximately the same time, which is often difficult
to do.

When Should I Consider Thread Placement?
Thread placement refers to the mapping of threads onto strands. Thread placement
can improve performance if the workload is instruction-processing bound. Thread
placement is useful in cases where there are significant sharing or conflicts in the L1
caches, or when the compute-bound threads are grouped on a core. In the case of
conflicts in the L1 caches, put the threads that conflict on different cores. In the case
of sharing in the L1 caches, put the threads that share on the same core. In the case
of compute-bound threads fighting for resources, put these threads on different
cores. Another method would be to place high CPI threads together with low CPI
threads on the same core.

Other shared resources that might benefit from thread placement include TLBs and
modular arithmetic units. There are separate instruction and data TLBs per core.
TLBs are similar to the L1 caches in that there can be both sharing and conflicts.
There is only one modular arithmetic unit per core, so placing threads using this unit
on different cores might be beneficial.

Example RLP Exercise
This section uses the reference application RLP to analyze the performance of two
versions of an application. The versions of the application are functionally
equivalent but are implemented differently. The profiling information helps to make
decisions regarding pipelining and parallelizing portions of the code. The
information also enables efficient allocation of different software threads to strands
and cores.

Application Configuration
The RLP reference application has three basic components:

■ PDSN

■ ATIF

■ RLP
350 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

The PDSN and ATIF each have receive (RX) and transmit (TX) components. A Sun
Netra T2000 system with four in-ports and four out-ports was configured for the
four instances of the RLP application. FIGURE 12-9 describes the architecture.

FIGURE 12-9 RLP Application Setup

In the application, the flow of packets from PDSN to AT is the forward path. The
RLP component performs the main processing. The PDSN receives packets
(PDSN_RX) and forwards the packets to the RLP strand. After processing the packet
header, the RLP strand forwards the packet to the AT strand for transmission
(ATIF_TX). Summarizing:

■ -> PDSN_RX -> RLP -> ATIF_TX -> (forward path)

■ <- PDSN_TX <- RLP <- ATIF_RX <- (reverse path)

The example focuses on the forward path performance only.
Chapter 12 Performance Tuning 351

Configuration 1
In configuration 1, the PDSN, ATIF, and RLP functionality is assigned to different
threads as shown in TABLE 12-3.

Configuration 2
In configuration 2, the PDSN and ATIF functionality is split into separate RX and TX
functions, and assigned to different strands as shown in TABLE 12-4.

Using the Profiling API
It is important to understand hardware counter data collected from the strands that
have been assigned some functionality. The strands assigned while(1) loops take
up CPU resources but are not analyzed in this study. This study analyzes overall
thread performance by sampling hardware counter data. After the application has
reached a steady state, the hardware counters are sampled at predetermined
intervals. Sampling reduces the performance perturbations of profiling and averages

TABLE 12-3 Configuration 1

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Strand 0 PDSN_RXTX_0 PDSN_RXTX_2 while(1) while(1) while(1) RLP_0 while(1) while(1)

Strand 1 ATIF_RXTX_0 ATIF_RXTX_3 while(1) while(1) while(1) RLP_1 while(1) while(1)

Strand 2
PDSN_RXTX_1 PDSN_RXTX_4 while(1) while(1) while(1) RLP_2 while(1) Profile

thread

Strand 3 ATIF_RXTX_1 ATIF_RXTX_4 while(1) while(1) while(1) RLP_3 while(1) Stat thread

TABLE 12-4 Configuration 2

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Strand 0
PSDN_RX_0 PSDN_RX_1 PSDN_RX_

2
PSDN_RX_
3

while(1) while(1) PSDN_TX_1 while(1)

Strand 1 RLP_0 RLP_1 RLP_2 RLP_3 while(1) while(1) PSDN_TX_2 while(1)

Strand 2
ATIF_RX_0 ATIF_RX_1 ATIF_RX_

2
ATIF_RX_
3

while(1) while(1) PSDN_TX_3 Profile
thread

Strand 3
ATIF_TX_0 ATIF_TX_1 ATIF_TX_

2
ATIF_TX_
3

while(1) PSDN_TX_
0

while(1) Stat thread
352 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

out small differences in the hardware counter data collected. In both versions of the
application, the profiling affected performance by about 5-7% in overall throughput.
The goal is to have the application in a steady state with profiling on.

The analysis uses the Sun Netra DPS Profiling API (refer to the Sun Netra Data Plane
Software Suite 2.1 Update 1 Reference Manual) and creates a simple function that
collects hardware counter data for all the available counters per strand. The function
is called from a relevant section of the application. The hardware counter data is
related to application performance as the number of packets processed by the
application-defined counter that is passed to the API. To reduce the performance
impact of profiling, the profiling API is not called for each packet processed. For the
RLP application and Sun Netra T2000 hardware combination, the API is called every
five seconds, otherwise the counters overflow.

The pseudo-code in EXAMPLE 12-1 shows the functions that were created to collect
the hardware counter data.
Chapter 12 Performance Tuning 353

EXAMPLE 12-1 Sample Code to Cycle Through UltraSPARC T1 Processor Hardware Counters

#ifdef TEJA_PROFILE
/* some global vars */
int event[MAX_CPUS];
uint64_t start_profile_value[MAX_CPUS]; /* when to start collection hw counter data */
uint64_t update_interval_value[MAX_CPUS]; /* when to move to the next counter */
int number_profile_samples[MAX_CPUS]; /* number of samples to be taken before dumping */
int dump_enable[MAX_CPUS]; /* 0 = Dump Disabled 1 = Dump enabled */
int samples_collected[MAX_CPUS]; /* running count of samples collected */
/* set up control values for collection all CPU hardware counter */
inline void init_profiler(uint64_t start_val, uint64_t interval, int num_samples){

int cpuid = teja_get_cpu_number();
event[cpuid] = 1;
number_profile_samples[cpuid] = num_samples;
start_profile_value[cpuid] = start_val;
update_interval_value[cpuid] = interval;
dump_enable[cpuid] = 0;
samples_collected[cpuid] = 0;

}
/* pass the value to be compared against for control */
/* this can be time/packet count */
inline void collect_profile(uint64_t user_value){

int ret;
int cpuid = teja_get_cpu_number();
if (user_value == start_profile_value[cpuid]) {

ret = teja_profiler_start(TEJA_PROFILER_CMT_CPU, event[cpuid]);
if (ret == -1)

printf(“Error Starting Profile \n”);
}

}
if ((user_value % update_interval_value[cpuid])==0) {

ret = teja_profiler_update(TEJA_PROFILER_CMT_CPU, user_value);
if (ret == -1)

printf(“Error Updating Profile \n”);
event[cpuid] = event[cpuid] * 2 ;
if (event[cpuid]==256){

event[cpuid] = 1;
samples_collected[cpuid]++;
if (samples_collected[cpuid] == number_profile_samples[cpuid]){

dump_enable[cpuid] = 1;
/* there is a race here but the side effect is benign as Teja should print*/
/* appropriate records when things get over-written */
samples_collected[cpuid] = 0;

}
}

354 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

The code uses the teja_profiling_api to create a simple set of functions for
collecting hardware counter data. The code is just one example of API usage, but it
is a very good starting point for performance analysis of a LWRTE application.

Each strand that does useful work is annotated with a call to the
collect_profile() function and is passed the number of packets that have been
processed. The location in the code where the call is made is important. In this
application, the call is made in the active section of the code where a packet returned
is not null. The init_profiler() function call sets up the starting point, an
interval, and number of samples to be collected. The dump_hw_profile() function
is called in the statistics strand and prints the data to the console.

Profiling Data
The API calls teja_profile_start and teja_profiler_update to set up and
collect a specific pair of hardware counters. The call to teja_profile_dump
outputs the collected statistics to the console. These function calls are in bold in
EXAMPLE 12-1. For a detailed description of these API functions refer to the Sun Netra
Data Plane Software Suite 2.1 Update 1 Reference Manual.

/* 256 is 2^8 8 is number of HW counter in N1 */
ret = teja_profiler_start(TEJA_PROFILER_CMT_CPU, event[cpuid]);
if (ret == -1)

printf (“Error Starting Profiler\n”);
}

}
inline void
dump_hw_profile(){

int cpuid;
for (cpuid = 0 ; cpuid < MAX_CPUS ; cpuid++){

if (dump_enable[cpuid] == 1){
teja_profiler_dump(cpuid);
dump_enable[cpuid] = 0;

}
}

}
#endif
Chapter 12 Performance Tuning 355

A sample output based on the code in EXAMPLE 12-1 is shown in EXAMPLE 12-2.

All the numbers in the output are hexadecimal. This format can be imported into a
spreadsheet or parsed with a script to calculate the metrics discussed in “Profiling
Metrics” on page 53. The output in EXAMPLE 12-2 shows two types of records that
correspond to teja_profile_start and teja_profile_update calls.

■ An example of a teja_profile_start record:

This record is formatted as CPUID, ID, Call Type, Tick Counter, Program Counter,
Group Type, Hardware counter 1 code, and Hardware counter 2 code. There is
one such record for every call to teja_profiler_start indicated by a 1 in the
Call Type (third) field.

■ An example of a teja_profile_update record:

EXAMPLE 12-2 Sample Profile Output

PROFILE_DUMP_START,ver,2.1
CPUID,ID,Type,Cycles,PC,Grp,Evt_Hi,Evt_Lo,Overflow,User Data
4,6043,2,30051d74250,512598,1,3a372e12,dc22fb0,0,30c1b080
4,1fad3,1,30051d74c70,525968,1,100,2
4,6043,2,3021dd890b0,512598,1,3a3215c1,0,0,30e03500
4,1fad3,1,3021dd89abc,525968,1,100,4
4,6043,2,303e9d9e3e0,512598,1,3a2ee368,15561,0,30feb980
4,1fad3,1,303e9d9ee4c,525968,1,100,8
4,6043,2,305b5db43b0,512598,1,3a2ef375,29d8db7,0,311d3e00
4,1fad3,1,305b5db4db0,525968,1,100,10
4,6043,2,30781dc9ae0,512598,1,3a2f5793,0,0,313bc280
4,1fad3,1,30781dca544,525968,1,100,20
4,6043,2,3094dddeb10,512598,1,3a303d12,0,0,315a4700
4,1fad3,1,3094dddf51c,525968,1,100,40
4,6043,2,30b19df3258,512598,1,3a2ebfbf,6774,0,3178cb80
4,1fad3,1,30b19df3ccc,525968,1,100,80
4,6043,2,30ce5e08248,512598,1,3a2eb2aa,8c9c8f,0,31975000
4,1fad3,1,30ce5e08e24,525968,1,100,1
4,6043,2,30eb1e1e37c,512598,1,3a2f090e,dbbe5ae,0,31b5d480
4,1fad3,1,30eb1e1eea0,525968,1,100,2
4,6043,2,3107de334a8,512598,1,3a2f958f,0,0,31d45900
4,1fad3,1,3107de33f9c,525968,1,100,4
4,6043,2,31249e48ba8,512598,1,3a2fe948,1564a,0,31f2dd80
PROFILE_DUMP_END

4,1fad3,1,30051d74c70,525968,1,100,2

4,6043,2,31249e48ba8,512598,1,3a2fe948,1564a,0,31f2dd80
356 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

This record is formatted as CPUID, ID, Call Type, Tick Counter, Program Counter,
Group Type, Counter Value 1, Counter Value 2, Overflow Indicator, and user-
defined data. There is one such record for every call to teja_profile_update
indicated by a 2 in the Call Type field.

Metrics
The data from the output is processed using a spreadsheet to calculate the metrics
per strand as presented in TABLE 12-5.

These metrics in TABLE 12-5 provide insight into the performance of each strand and
of each core.

Configuration 1 Results
Configuration 1 sustained 224 kpps (kilo packets per second) on each of the four
flows or 65% of 1 Gbps line rate for a 342 byte packet. Only three cores of the
UltraSPARC T1 processor were used to achieve this throughput. See FIGURE 12-10.

TABLE 12-5 Metrics

Metrics Description

Instructions per packet Average path length to process 1 packet

Instructions per cycle Strands instruction processing rate

Packet rate (Kpps) Packet processing rate

SB_full per 1000 instructions
FP_instr_cnt per 1000 instructions
IC_miss per 1000 instructions
DC_miss per 1000 instructions
ITLB_miss per 1000 instructions
DTLB_miss per 1000 instructions
L2_imiss per 1000 instructions
L2_dmiss_ld per 1000 instructions

The hardware counter rates per 1000
instructions enables comparison rates from
different strands.
Chapter 12 Performance Tuning 357

FIGURE 12-10 Results From Configuration 1

Configuration 2 Results
Configuration 2 sustained 310 kpps (kilo packets per second) on each of the four
flows or 90% of 1 Gbps line rate for a 342 byte packet. Four cores of the UltraSPARC
T1 processor were used to achieve this throughput. The Polling notation implies
that the ATIF_RX thread was allocated to a strand, but no packets were handled by
that thread during the test. See FIGURE 12-11.
358 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

FIGURE 12-11 Results From Configuration 2

Analysis
When comparing the processed hardware counter information it is necessary to co-
relate that data with the collection method. The counter information was sampled
over the steady-state run of the application. Other methods of collecting hardware
counter data enables you to optimize a particular section of the application.

Comparing the Instruction per Cycle columns from FIGURE 12-10 and FIGURE 12-11
shows that RXTX threads in configuration 1 are slower than the split RX and TX
threads in configuration 2. The focus is on the forward path processing. Consider the
following:

■ For configuration 1 – PDSN_RXTX -> RLP -> ATIF_RXTX

■ For configuration 2 – PDSN_RX -> RLP -> ATIF_TX
Chapter 12 Performance Tuning 359

The main bottleneck in configuration 1 is the combined ATIF_RXTX thread that runs
at the slowest rate, taking about 12 cycles per instruction. In configuration 2,
ATIF_RX is moved to another strand and the bottleneck in the forward path (that
does not need ATIF_RX) is removed, allowing ATIF_TX to run at a considerably
faster 2.82 cycles per instruction. Also in configuration 2, using another strand
speeded up the slowest section of pipelined processing. To speed up this
configuration even more would require optimizing PDSN_RX, which is now the
slowest part of the pipeline taking up 8.53 cycles per instruction. This optimization
can be accomplished by optimizing code to reduce the number of instructions per
packet or by splitting up this thread using more strands.

To explain the high CPI of the ATIF_RXTX strand in configuration 1, note that there
are 82 DC_misses (dcache misses) per 1000 instructions as compared to just six
misses in the ATIF_TX of configuration 2. The user can estimate the effect of these
misses by calculating the number of cycles these misses add to overall processing.
Use information from TABLE 12-1 to calculate the worst case effect of the data cache
and L2 cache misses. The results for these calculations are shown in TABLE 12-6 for
configuration 1 and in TABLE 12-7 for configuration 2.

The highlighted rows show that the CPI contribution of dcache and L2 cache misses
in configuration 1 is much higher than configuration 2, making the ATIF_RXTX
strand much slower.

TABLE 12-6 Effect of Dcache and L2 Cache Misses on CPI – Configuration 1

CPI
Cycle per Dcache
Miss

Dcache Miss
Effective % Cycles per L2 Miss

L2 Miss
Effective %

PDSN_RXTX 9.07 1.76 19.45 1.73 19.05

ATIF_RXTX 12.51 1.89 15.11 0.93 7.46

PDSN_RXTX 9.02 9.02 9.02 9.02 9.02

ATIF_RXTX 1.69 1.69 1.69 1.69 1.69

TABLE 12-7 Effect of Dcache and L2 Cache Misses on CPI – Configuration 2

CPI
Cycle per Dcache
Miss

Dcache Miss
Effective % Cycles per L2 Miss

L2 Miss
Effective %

PDSN_RX 8.53 1.43 16.71 1.8 21.1

RLP 3.91 0.33 8.43 0.7 17.86

ATIF_RX

ATIF_TX 2.82 0.13 4.63 0.1 3.39
360 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Other effects are involved here besides those outlined in the preceding tables. The
move to put the RLP on the same core as PDSN_RX and ATIF_TX causes constructive
sharing in the level 1 instruction and data caches as seen in the DC_misses per 1000
instructions for RLP strand. Another effect is that the slower processing rate of
configuration 1 causes the RLP strand to spin on null more often, increasing the
number of instructions per packet metric and slowing down processing. Other
experiments have shown that threads that poll or do the while(1) loop take away
processing bandwidth from other more useful threads.

In conclusion, configuration 2 achieves a higher throughput because the ATIF
processing was split to RX and TX, and each was mapped to a different strand,
effectively parallelizing the ATIF thread. Configuration 2 used more strands, but
was able to achieve much higher throughput.

Other Uses for Profiling
The same teja_profiling_api can be used in another way to evaluate and
understand the performance of an application. Besides the sampling method
outlined in the preceding section, the user can use the API to profile specific sections
of the code. This type of profiling enables the user to make decisions regarding
pipelining and reorganizing memory structures in the application.
Chapter 12 Performance Tuning 361

362 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

APPENDIX A

Tutorial

This appendix is a tutorial to tejacc programming. Topics include:

■ “Application Code” on page 363

■ “Configuration Code” on page 366

■ “Build Process” on page 368

■ “Executing the Binary Image” on page 370

Application Code
The application used for the tutorial has two threads, tick and tock. The tick
thread sends a countdown (9, 8, ..., 0) to the tock thread using a channel. Both of the
threads run in a single process called ticktock.

The application code is a file called ticktock.c. The application code has a ticker
function for the tick thread, and a tocker function for the tock thread.
EXAMPLE A-1 lists the ticktock.c file and provides comment.
363

l

EXAMPLE A-1 ticktock.c File and Comments

#include <stdio.h> stdio.h and
teja_late_binding.h
are included. This action
declares the Netra DPS
late-binding API.

#include “teja_late_binding.h”

void The ticker function uses
two late-binding objects, a
memory pool called
tick_memory_pool and
a channel called
ticktock_channel.
These functions are
declared in the software
architecture definition. The
function loops ten times,
sending the count over the
ticktock_channel
once every second.
teja_wait_time is a
macro of teja_wait
defined in the
teja_late_binding.h
file.

ticker(void)
{
 short i;
 char * node = 0;
 int ret;
 for(i=9; i>=0; i--) {
 teja_wait_time(1, 0);
 node = (char *) teja_memory_pool_get_node
(tick_memory_pool);
 if (!node) {
 printf (“Memory pool is empty!”);
 continue;
 }
 sprintf(node, "%d...", i);
 do {

ret = teja_channel_send(ticktock_channel, i, &node,
size of (char *));

if (ret < 0) {
printf(“Failed to send %s\n”, node);

} else {
printf(“%s sent\n”, node);

}
 } while (ret < 0); /* if channel full, spin & keep
trying */
 }
}

364 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

void The tocker function
loops forever, and in each
iteration waits forever for a
message to come in over the
ticktock_channel.
The teja_wait function
is instructed to poll every
tenth of a second (1E8
nanoseconds).
TEJA_INFINITE_WAIT
is defined in the
teja_late_binding.h
file.

tocker(void)
{
 short i;
 char * node = 0;
 while(1) {
 teja_wait(TEJA_INFINITE_WAIT, 0, 0, (int) 1E8,

&i, (void*) &node, size of (char *), ticktock_channel,
NULL);
 if (i > 0) {
 printf(“Received %s\n”, node);

teja_memory_pool_put_node (tick_memory_pool, node);
 } else if (i == 0) {
 printf(“BLAST OFF!!!\n”);
 break;
 }
 }
}

int This simple example
needs no initialization.
The init function is
provided as an example
to show how an
initialization function
can be mapped to a
process.

init(void)
{
 printf(“init\n”);
 return 0;
}

EXAMPLE A-1 ticktock.c File and Comments (Continued)
Appendix A Tutorial 365

Configuration Code
Unlike the application code, the configuration code is target specific. The
configuration code is written to a file called config.c and contains the hardware
architecture, software architecture, and the mapping to the application code.
EXAMPLE A-2 lists the config.c file and provides comment.

EXAMPLE A-2 config.c File and Comments

#include <stdio.h> Teja configuration APIs
are declared. This
example targets generic
PCs and so includes
teja_cmt.h from the
Sun CMT chip support
package. The package has
a function to create the
CMT1 board architecture.
That function is declared
as external

#include “teja_hardware_architecture.h”
#include “teja_software_architecture.h”
#include “teja_mapping.h”
#include “csp/sun/teja_cmt.h”
extern teja_architecture_t
create_cmt1board_architecture(
 teja_architecture_t container, const char *name);

int A user-defined hardware
architecture called top is
created as a container for
the PC architecture

hwarch(void)
{
 teja_architecture_t top;
 teja_architecture_t pc;
 teja_architecture_t cmt1_chip;
 top = teja_architecture_create(
 NULL, “top”,
 TEJA_ARCHITECTURE_TYPE_USER_DEFINED);
 pc = create_cmt1board_architecture (top, “pc”);
 cmt1_chip = teja_lookup_architecture (pc, “cmt1_chip”);
 teja_architecture_set_property (cmt1_chip, “bsp_dir”,
BSP_DIR);
 return 0;
}

366 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

int The software architecture
consists of the raw OS
running on the CMT
with the ticktock
process running on that.
The tick and tock
threads are mapped
respectively to strand0
and strand1 of the
CMT architecture. The
ticktock_channel
and the
tick_memory_pool
have tick as the
producer and tock as the
consumer.

swarch(void)
{
 teja_os_t os;
 teja_process_t process;
 teja_thread_t tick, tock;
 teja_channel_t channel;
 teja_memory_pool_t tick_memory_pool;
const char* processors[3] = {"top.pc.cmt1_chip.strand0",

 "top.pc.cmt1_chip.strand1",
 NULL};
 const char* srcsets[2] = {"ticktock_srcs", NULL};
 teja_thread_t producers[2], consumers[2];
os = teja_os_create(processors, "os", TEJA_OS_TYPE_RAW);
process = teja_process_create(os, "ticktock", srcsets);

 tick = teja_thread_create(process, "tick_thread");
 tock = teja_thread_create(process, "tock_thread");
 teja_thread_set_property(tick,
TEJA_PROPERTY_THREAD_ASSIGN_TO_PROCESSOR,
 "top.pc.cmt1_chip.strand0");
 teja_thread_set_property(tock,
TEJA_PROPERTY_THREAD_ASSIGN_TO_PROCESSOR,
 "top.pc.cmt1_chip.strand1");
 producers[0] = tick; producers[1] = NULL;
 consumers[0] = tock; consumers[1] = NULL;
 channel = teja_channel_declare
 ("ticktock_channel",
 TEJA_GENERIC_CHANNEL_SHARED_MEMORY_OS_BASED,
 producers,
 consumers);
 tick_memory_pool = teja_memory_pool_declare
 ("tick_memory_pool",
 TEJA_GENERIC_MEMORY_POOL_SHARED_MEMORY_OS_BASED,
 100,
 32,
 producers,
 consumers,
 "top.pc.dram_mem");
 return 0;
}

EXAMPLE A-2 config.c File and Comments (Continued)
Appendix A Tutorial 367

Build Process

▼ To Create the Binary Image
1. Create the shared library config.so by compiling the config.c file and the

Netra DPS-supplied cmt1_board.c chip support file.

int The ticker function is
mapped to the tick
thread. The tocker
function is mapped to
tock_thread. The
application code has no
variables to be mapped.
The init function is
mapped to the target
process.

map(void)
{
 teja_map_function_to_thread("ticker", "tick_thread");
 teja_map_function_to_thread("tocker", "tock_thread");
 teja_map_initialization_function_to_process(
 "init", "ticktock");
 return 0;
}

EXAMPLE A-2 config.c File and Comments (Continued)
368 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

2. Compile the ticktock.c file using tejacc to generate the application code in
the code directory.

The following makefile shows how this is done.

3. Run the gmake command in the code/process_name/ generated source directory
to create the application binary image.

TEJA_INSTALL_DIR=/opt/SUNWndps/tools
BSP_DIR=/opt/SUNWndps/bsp/Niagara1

all: config.so ticktock

%.o:%.c
cc -g -c -xcode=pic13 -xarch=v9

-DTEJA_RAW_CMT -DBSP_DIR='$(BSP_DIR)'
-I$(TEJA_INSTALL_DIR)/include $< -o $@

config.so: config.o cmt1_board.o
ld -G -o config.so config.o cmt1_board.o

$(TEJA_INSTALL_DIR)/bin/libtejahwarchapi.so
$(TEJA_INSTALL_DIR)/bin/libtejaswarchapi.so
$(TEJA_INSTALL_DIR)/bin/libtejamapapi.so

cmt1_board.o: $(TEJA_INSTALL_DIR)/src/csp/sun/sparc64/cmt1_board.c
cc -g -c -xcode=pic13 -xarch=v9

-DTEJA_RAW_CMT -DBSP_DIR='$(BSP_DIR)'
-I$(TEJA_INSTALL_DIR)/include $< -o $@

ticktock: ticktock.c
$(TEJA_INSTALL_DIR)/bin/tejacc.sh

-Dprintf=teja_synchronized_printf
-I$(BSP_DIR)/include

-hwarch config.so,hwarch
-swarch config.so,swarch
-map config.so,map
-srcset ticktock_srcs ticktock.c

clean:
rm -rf config.so *.o code
Appendix A Tutorial 369

Executing the Binary Image

▼ To Execute the Binary Image
● Copy the binary image to the tftpboot directory of the tftp server.

The CMT machine is reset, and the system is booted. See “Building and Booting
Reference Applications” on page 10. When the application starts, the following
countdown is printed to the console.

init
tick started.
tock started.
9...
8...
7...
6...
5...
4...
3...
2...
1...
SHUTDOWN. Exiting tick thread ...
BLAST OFF!!!
SHUTDOWN. Exiting tock thread ...
370 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

APPENDIX B

Frequently Asked Questions

This appendix provides frequently asked questions regarding Oracle’s Sun Netra
DPS.

■ “Summary” on page 372

■ “General Questions” on page 374

■ “Configuration Questions” on page 375

■ “Building Questions” on page 377

■ “Late-Binding Questions” on page 380

■ “Eclipse Questions” on page 382

■ “API and Application Questions” on page 383

■ “Optimization Questions” on page 391

■ “Legacy Code Integration Questions” on page 392

■ “Example for the ipfwd Application” on page 384

■ “Address Resolution Protocol Questions” on page 396

■ “Oracle Solaris Domain and Sun Netra DPS Domain Question” on page 398

■ “Traffic Generation” on page 398

■ “Oracle Solaris TIPC Application” on page 399
371

Summary
General Questions

■ “What Is Teja 4.x and How Does It Differ From an Ordinary C Compiler?” on
page 374

■ “Where Are the Tutorials?” on page 375

Configuration Questions

■ “What Purpose Are the Hardware Architecture, Software Architecture, and
Mapping Dynamic Libraries?” on page 375

■ “How Can I Debug the Dynamic Libraries?” on page 375

■ “What Should I Do When the tejacc Compiler Crashes?” on page 376

■ “What if the Hardware Architecture, Software Architecture, or Mapping Dynamic
Libraries Crash?” on page 376

■ “Can I Build Hardware Architecture, Software Architecture, and Mapping in the
Same Dynamic Library?” on page 377

■ “Can I Map Multiple Variables With One Function Call?” on page 377

Building Questions

■ “Where Is the Generated Code?” on page 377

■ “Where Is the Executable Image?” on page 378

■ “How Can I Compile Multiple Modules on the Same Command Line?” on
page 378

■ “How Can I Pass Different CLI Options to Different Modules on the tejacc
Command Line?” on page 378

■ “How Can I Change the Behavior of the Generated makefile Without Modifying
it?” on page 378

■ “How Do I Compile the Reference Applications?” on page 379

Late-Binding Questions

■ “What Is the Late-Binding API?” on page 380

■ “What Is a Memory Pool?” on page 380

■ “What Is a Channel?” on page 381

■ “What Is the Difference Between OS Based and Non-OS Based Memory Pools and
Channels?” on page 381

■ “How Do I Access a Late-Binding Object From Application Code?” on page 381

■ “Can I Define a Symbol in the Software Architecture and Use it in My Application
Code?” on page 382
372 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Eclipse Questions

■ “How Can I Change the Build Command?” on page 382

■ “How Can I Change the Compiler Invocation Command?” on page 382

API and Application Questions

■ “How Do I Synchronize a Critical Region?” on page 383

■ “How Do I Send Data From a Thread to Another Thread?” on page 383

■ “How Do I Allocate Memory?” on page 384

■ “When Should I Use Queues Instead of Channels?” on page 384

■ “Why Is it Not Necessary to Block Interface or Queue Reads?” on page 384

■ “Can Multiple Strands on the Same Queue Take Advantage of the Extra CPU
Cycles if the Strands Are Not Being Used?” on page 385

■ “Why Does the Application Choose the Role for the Strand From the Code Instead
of the Software Architecture API?” on page 385

■ “Is It Possible to Park a Strand Under Logical Domains as Done in a Non-Logical
Domains Environment?” on page 386

■ “What Is bss_mem?” on page 386

■ “What Is the Significance of bss_mem Placement in the Code Listing?” on
page 386

■ “How Are app.cmt2board.heap_mem0 and Similar Heaps Affected?” on
page 387

■ “Can You Clarify BSS, Code, Heap, and DRAM Memory Allocation?” on page 387

■ “Does the eth_* API Support Virtual Ethernet (VNET) Devices?” on page 388

■ “How Do I Calculate the Base PA Address for NIU or Logical Domains to Use
with the tnsmctl Command?” on page 388

Optimization Questions

■ “How Do I Enable Optimization?” on page 391

■ “What Is Context-Sensitive Generation?” on page 392

■ “What Is Global Inlining?” on page 392

Legacy Code Integration Questions

■ “How Can I Reuse Legacy C Code in a Sun Netra DPS Application?” on page 392

■ “How Can I Reuse Legacy C++ Code in a Sun Netra DPS Application?” on
page 393
Appendix B Frequently Asked Questions 373

Sun CMT Specific Questions

■ “Is There a Maximum Allowed Size for Text and BSS in My Program?” on
page 395

■ “How Is Memory Organized in the Sun CMT Hardware Architecture?” on
page 395

■ “How Do I Increase the Size of the DRAM membank?” on page 396

Address Resolution Protocol Questions

■ “How Do I Enable ARP in the RLP Application?” on page 396

■ “How Do I Enable ARP Without Relying on a Control Domain?” on page 397

■ “How Do I Enable ARP Using a Control Domain?” on page 397

Oracle Solaris Domain and Sun Netra DPS Domain Question

■ “How Do I Access kstat Information From the Oracle Solaris Domain for
Network Interfaces That Are in Use by the Sun Netra DPS domain?” on page 398

Traffic Generation

■ “How Do I Stop Traffic Generation?” on page 398

General Questions

What Is Teja 4.x and How Does It Differ From an
Ordinary C Compiler?
Teja 4.x is an optimizing C compiler (called tejacc) and API system for developing
scalable, high-performance applications for embedded multiprocessor architectures.
tejacc operates on a system-level view of the application through three techniques:

■ tejacc obtains the characteristics of the targeted hardware and software system
architecture by executing a user-supplied architecture specification.

■ tejacc examines multiple sets of source files and their relationship to the target
architecture in parallel.

■ tejacc handles a special class of APIs used in the application code according to
the system-level context. See “What Is Context-Sensitive Generation?” on
page 392.

The techniques yield superior code validation and optimization, leading to more
reliable and higher performance systems.
374 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Where Are the Tutorials?
The ticktock tutorial is described in “Tutorial” on page 363.

Configuration Questions

What Purpose Are the Hardware Architecture,
Software Architecture, and Mapping Dynamic
Libraries?
These three dynamic libraries are user supplied. The libraries describe the
configuration of the hardware (processors, memories, buses), software (OS,
processes, threads, communication channels, memory pools, mutexes), and mapping
(functions to threads, variables to memory banks). The library code runs in the
context of the tejacc compiler. The tejacc compiler uses this information as a
global system view on the entire system (hardware, user code, mapping, connectivity
among components) for different purposes:

■ Validation – For example, if a thread tries to reach a variable that is mapped to a
memory bank that is not reachable by the processor on which the thread runs, the
compiler flags this as an error.

■ Optimization – See “What Is Context-Sensitive Generation?” on page 392.

The dynamic libraries are run on the host, not on the target.

How Can I Debug the Dynamic Libraries?
Two ways to help debug the dynamic libraries are:

■ Add printf() calls to the hardware architecture, software architecture, and
mapping code. For example:

■ On targets that use gcc as the target compiler (not Sun CMT), use the following
procedure.

printf(“%s:%d\n”,__FILE__,__LINE__)
Appendix B Frequently Asked Questions 375

▼ To Debug the Dynamic Libraries
1. Type:

2. Set a breakpoint on the teja_user_libraries_loaded function.

3. Type run followed by the same parameters that were passed to tejacc.

4. Control returns immediately after the user dynamic libraries are loaded.

5. Set a breakpoint on the desired dynamic library function, and type cont.

What Should I Do When the tejacc Compiler
Crashes?
There might be a bug in the hardware architecture, software architecture, or mapping
dynamic libraries. See “How Can I Debug the Dynamic Libraries?” on page 375.

What if the Hardware Architecture, Software
Architecture, or Mapping Dynamic Libraries
Crash?
tejacc gets information about hardware architecture, software architecture, and
mapping by executing the configuration code compiled into dynamic libraries. The
code is written in C and might contain errors causing tejacc to crash. Upon
crashing, you are presented with a Java Hotspot exception, as tejacc is internally
implemented in Java.

An alternative version of tejacc.sh, called tejacc_dbg.sh, is provided to assist
debugging configuration code. This program runs tejacc inside the default host
debugger (dbx for Oracle Solaris hosts). The execution automatically stops
immediately after the hardware architecture, software architecture, and mapping
dynamic libraries have been loaded by tejacc.

You can continue the execution and the debugger stops at the instruction causing the
crash. Alternatively, you can set breakpoints in the code before continuing or use any
other feature provided by the host debugger.

gdb $teja-install-directory/bin/tejacc
376 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Can I Build Hardware Architecture, Software
Architecture, and Mapping in the Same Dynamic
Library?
The dynamic libraries can be combined, but the entry points must be different.

Can I Map Multiple Variables With One Function
Call?
Use regular expressions to map multiple variables to a memory bank, using the
function:

For example, to map all variables starting with my_var_ to the OS-based memory
bank:

Building Questions

Where Is the Generated Code?
The generated code is located in the top-level-application/code/process directory,
where top-level-application is the directory where make was invoked and process is the
process name as defined in the software architecture.

If you are generating with optimization there is an additional directory,
code/process/.ir. Optimized generation is a two-step process. The .ir directory
contains the result of the first step.

teja_mapping_t teja_map_variables_to_process_(const char * var,
const char * process);

teja_map_variables_to_memory (“my_var_.*”,
TEJA_MEMORY_TYPE_OS_BASED);
Appendix B Frequently Asked Questions 377

Where Is the Executable Image?
The executable image is located in the code/process directory, where process is the
process name as defined in the software architecture.

How Can I Compile Multiple Modules on the
Same Command Line?
tejacc is a global compiler. And all C files must be provided on the same command
line in order for tejacc to perform global validation and optimization. To compile
an application that requires multiple modules, use the srcset CLI option. The
syntax for this option is:

where:

■ srcset-name – Name defined in the software architecture.

■ srcset-specific-options – Options (for example, -D or -I) that apply only to this
source set.

■ source-files – List of files that are contained in this source set.

How Can I Pass Different CLI Options to Different
Modules on the tejacc Command Line?
See “How Can I Compile Multiple Modules on the Same Command Line?” on
page 378.

How Can I Change the Behavior of the Generated
makefile Without Modifying it?
You can create an auxiliary file that modifies the behavior of the generated Makefile,
and then invoke the generated Makefile with the EXTERNAL_MAKEFILE variable set
to this file name. Or, use the external_makefile property in the software
architecture (both mechanisms are explained in this section). This action causes the
generated makefile to include the file after setting up all the parameters but before

-srcset srcset-name srcset-specific-options source-files
378 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

invoking any compilation command. You can then overwrite any parameter that the
generated Makefile is setting and the new value for that parameter will be in effect
for the compilation.

You can specify a file name using the external_makefile property of the process.
For example, to set the new value for the property, do the following:

If the path is not specified, the top-level application directory is assumed. The path
can be relative to the top-level application directory or an absolute value.

Note – There is no warning or error if the file does not exist. The compilation
continues with the generated Makefile parameters.

If you prefer, you can also specify this external defines filename as a value to the
EXTERNAL_DEFINES parameter during the compilation of the generated code. For
example:

This value takes precedence over the value specified in the software architecture if
both of the approaches are used.

An example of user_defs.mk is USR_CFLAGS=-xO3.

You can generate the Makefile as shown below:

This invocation has the effect of adding the -xO3 flag to the compilation lines.

How Do I Compile the Reference Applications?
See Chapter 11, “Reference Applications” on page 163.

teja_process_set_property(<process_obj>, “external_makefile”,
“new-filename-with-or-without-path”)

gmake EXTERNAL_DEFINES=../../user_defs.mk

gmake EXTERNAL_DEFINES=user_defs.mk
Appendix B Frequently Asked Questions 379

Late-Binding Questions

Note – Refer to “Late-Binding API Overview” on page 29 for more information on
the Late-Binding API.

What Is the Late-Binding API?
The Late-Binding API is the Sun Netra DPS equivalent of OS system calls. However,
OS calls are fixed in precompiled libraries, and Late-Binding API calls are generated
based on contextual information. This situation ensures that the Late-Binding API
calls are small and optimized. See “What Is Context-Sensitive Generation?” on
page 392.

The Late-Binding API addresses the following services:

■ Memory allocation by memory pools

■ Communication through channels and queues

■ Synchronization from mutex

■ Waiting select-like on timeout and channels with teja_wait().

What Is a Memory Pool?
A memory pool is a portion of contiguous memory that is preallocated at system
startup. The memory pool is subdivided into equal-sized nodes and allocated. You
declare memory pools in the software architecture using
teja_memory_pool_declare(). Memory pools enable you to choose size,
implementation type, producers, consumers, and so on.

In the application code, you can get nodes from or put nodes in the memory pool,
using teja_memory_pool_get_node() and teja_memory_pool_put_node. The
allocation mechanism is more efficient than malloc() and free(). The get_node
and put_node primitives are Late-Binding API calls, so they benefit from context-
sensitive generation.
380 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

What Is a Channel?
A channel is a pipe-like mechanism to send data from one thread to another.
Channels are declared in the software architecture using
teja_channel_declare(), which enables you to choose the size and number of
nodes, implementation type, and so on.

In the application code, you can write data to the channel using
teja_channel_send() and read from the channel using teja_wait(). The send
and wait primitives are Late-Binding API calls (see “What Is the Late-Binding API?”
on page 380), so they benefit from context-sensitive generation.

What Is the Difference Between OS Based and
Non-OS Based Memory Pools and Channels?
The operating system (OS) based memory pools and channels allocate buffer in the
heap, which is limited by default. The non-OS based memory pools and channels
allocate buffer with a memory map and have no limitation except the size of the
RAM bank.

How Do I Access a Late-Binding Object From
Application Code?
Use the teja_late-binding-object-type_declare call to declare all late-binding objects
(memory pool, channel, mutex, queue) in the software architecture. The first
parameter of this call is a string containing the name of the object. In the application
code, the late-binding objects are accessed as a C preprocessor symbolic
interpretation of the object name. The name is no longer a string. tejacc makes
these symbols available to the application by processing the software architecture
dynamic library.
Appendix B Frequently Asked Questions 381

Can I Define a Symbol in the Software
Architecture and Use it in My Application Code?
The following function in the software architecture can define a C preprocessor
symbol used in application code:

where

■ process — Process in which the symbol is defined.

■ symbol — String containing the symbol name.

■ value — String containing the symbol value.

Note – In the application, the symbol is accessed as a C preprocessor symbol, not as
a string.

Eclipse Questions

How Can I Change the Build Command?
In Eclipse, open the Window/Preferences menu. In the left-side tree, open the
C/C++/New CDT project wizard/Makefile project node. In the right-side of the
window, select the Builder settings tab. In the section Builder, deselect Use default
build command and in the text field below it, type the command of choice.

How Can I Change the Compiler Invocation
Command?
In Eclipse, open the Window/Preferences menu. In the left-side tree open the
C/C++/New CDT project wizard/Makefile project node. In the right-side of the
window select the Discovery options tab and in the Compiler invocation command
text field, type the command of choice.

int teja_process_add_preprocessor_symbol (teja_process_t process,
const char * symbol, const char * value);
382 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

API and Application Questions

Note – Refer to the Sun Netra Data Plane Software Suite 2.1 Update 1 Reference Manual
for detailed description of the API functions.

How Do I Synchronize a Critical Region?
Use the mutex API which consists of the following:

■ teja_mutex_declare()

■ teja_mutex_lock()

■ teja_mutex_unlock()

■ teja_mutex_trylock()

How Do I Send Data From a Thread to Another
Thread?
Use the Channel API or the Queue API.

The Channel API is composed of:

■ teja_channel_declare()

■ teja_channel_is_connection_open()

■ teja_channel_make_connection()

■ teja_channel_break_connection()

■ teja_channel_send()

■ teja_wait()

The Queue API is composed of:

■ teja_queue_declare()

■ teja_queue_enqueue()

■ teja_queue_dequeue()

■ teja_queue_is_empty()

■ teja_queue_get_size()
Appendix B Frequently Asked Questions 383

How Do I Allocate Memory?
Use the Memory Pool API, which is composed of:

■ teja_memory_pool_declare()

■ teja_memory_pool_get_node()

■ teja_memory_pool_put_node()

■ teja_memory_pool_get_node_from_index()

■ teja_memory_pool_get_index_from_node()

When Should I Use Queues Instead of Channels?
Generally, queues are more efficient than channels. Consider the following guidelines
when deciding between queues or channels:

■ Fast Queue functions have less code and overhead. Fast Queue functions are poll-
driven, and so are more efficient for passing high-rate packet streams.

■ Channels can accommodate variable data size and enables you to perform event-
driven communication. Data is copied into the channel at the sender and copied
out of the channel at the receiver.

■ Channels enable you to send an event value to the receiver that distinguishes the
type of received data. This capability is good for classifier applications and events
that do not arrive regularly.

■ The decision to use a queue instead of a channel depends on the application
model. For example, if an ipfwd application does not require classification, Fast
Queue is more efficient.

Why Is it Not Necessary to Block Interface or
Queue Reads?
If a queue is used by one producer and one consumer, there is no need to block
during the queue read. For example, in the ipfwd application, each queue has only
one producer and consumer, and does not need to block. See FIGURE B-1.

FIGURE B-1 Example for the ipfwd Application

Ethernet
read Rx2ipfwdQ IPfwd2TxQ

Ethernet
write
384 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Note – If the Sun Netra DPS queue API is used instead of Fast Queue, then locks are
generated implicitly during compile time.

It is not necessary to block Ethernet interface reads, as there is only one thread
reading from or writing to a particular interface port or DMA channel at any given
time.

Can Multiple Strands on the Same Queue Take
Advantage of the Extra CPU Cycles if the Strands
Are Not Being Used?
A strand is not being used or consuming the pipeline only when the strand is parked.
Even when a strand is calling teja_wait(), the CPU consumes cycles because the
strand does a busy wait. If the strand performs busy polls, the polls can be optimized
so that other strands on the same CPU core utilize the CPU. This optimization is
accomplished by executing instructions that release the pipeline to other strands until
the instruction completes.

Consider IP-forwarding type applications. When the packet receiving stream
approaches line rate, it is better to let the strand perform busy poll for arriving
packets. At less than the line rate, the polling mechanism is optimized by inserting
large instructions between polls. Under this methodology, the pipeline releases and
enables other strands to utilize unused CPU cycles.

Why Does the Application Choose the Role for the
Strand From the Code Instead of the Software
Architecture API?
When the role is determined from the code, the application (for example, ipfwd.c)
can be made more adaptable to the number of flows and physical interfaces without
modifying any mapping files. In some situations, however, the Software Architecture
API can provide a better role for a strand.
Appendix B Frequently Asked Questions 385

Is It Possible to Park a Strand Under Logical
Domains as Done in a Non-Logical Domains
Environment?
Methods of parking strands are no different in an logical domains environment.
Strands not utilized are automatically parked. If a strand is assigned to a logical
domain but is not used, then that strand should be parked. Strands that are not
assigned to the Sun Netra DPS Runtime Environment logical domain are not visible
to that domain and cannot be parked.

Can You Assign Partial Cores to a Sun Netra DPS
domain?
You must assign complete cores to the Sun Netra DPS Runtime Environment.
Otherwise, you have no control over the resources consumed by other domains on
the core.

What Is bss_mem?
bss_mem is a location where all global and static variables are stored.

Note – The sum of BSS and the code size must not exceed 5 Mbytes of memory.

For example:

What Is the Significance of bss_mem Placement in
the Code Listing?
When the example in What Is bss_mem? is inserted into the code, all subsequent
variables using .*_dram are superseded. To clarify, all variables suffixed with _dram
are mapped to the DRAM memory region. All other variables are mapped to the BSS.

(ipfwd_map.c) (teja_map_variables_to_memory(“.*”,
“app.cmt1board.bss_mem”);
386 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

How Are app.cmt2board.heap_mem0 and
Similar Heaps Affected?
The heap region is used by teja_malloc(). Every time teja_malloc() is called,
the heap space is reduced.

Can You Clarify BSS, Code, Heap, and DRAM
Memory Allocation?
FIGURE B-2 illustrates the allocation of memory for BSS, code, heap, and DRAM.

FIGURE B-2 Memory Allocation Stack

Note – These memory regions are not necessarily contiguous. There may be gaps in
between each region.

where:

■ BSS – Global and static variables.

■ Code – Code segment.

■ Heap – Region for teja_malloc().

■ DRAM – Used for memory pools. For example, DMA buffers, descriptors, queue
data, user application memory, and so on.

BSS

Code

Heap

DRAM

Address

Address+w+x

Address+w+x+y

Address+w+x+y+z

Address+w
}
}
}
}

w memory space

x memory space

y memory space

z memory space
Appendix B Frequently Asked Questions 387

Does the eth_* API Support Virtual Ethernet
(VNET) Devices?
The eth_* API only supports physical Ethernet devices at this time.

How Do I Calculate the Base PA Address for NIU
or Logical Domains to Use with the tnsmctl
Command?
Command syntax:

tnsmctl -P -v basepaddr

The basepaddr is needed when using NIU under logical domains; it is based on the
logical domains configuration on the machine in question. The value is derived from
the output of the ldm command for the domain in which the NIU will be operated
under the Sun Netra DPS environment. This command is issued on the Oracle Solaris
control domain.

Assuming ldg1 is the Sun Netra DPS domain in this example, then based on the
above information, the basepaddr variable can be calculated as PA - RA = basepaddr. In
the above example, the base PA address is 0x40000000 as calculated below:

0x48000000 - 0x8000000 = 0x40000000

/opt/SUNWldm/bin/ldm list -l
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
ldg1 bound ----v 5000 16 4G
...
MEMORY
 RA PA SIZE
 0x8000000 0x48000000 4G
...
388 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

How Do I Modify the IP Forwarding Application
to Use a New Classifier Type Instead of the
Default UDP Type?
The following is an example of modifying the IP forwarding application to the TCP
classifier type:

1. Open the ipfwd_classify.c file.

2. Under the classify_parse_entries() function, add the following lines below
the two UDP cases.

3. Add the flow_spec_ip4_tcp_ioc and flow_spec_ip6_tcp_ioc functions to the file.

You can use flow_spec_ip4_ioc() and flow_spec_ip6_ioc() as a template. The only
difference in the ip4 case is the following three lines:

as opposed to:

4. Do the same additions for ip6.

5. Open the user_common.h file.

6. Add the following function prototypes:

case FSPEC_TCPIP4:
 flow_spec_ip4_tcp_ioc(flow_entry_handle, port, chan,

flow_cfg);
 break;
 case FSPEC_TCPIP6:
 flow_spec_ip6_tcp_ioc(flow_entry_handle, port, chan,
flow_cfg);
break;

clsfy_ioc.flow_spec.fs_type = FSPEC_TCPIP4;
clsfy_ioc.flow_spec.ue.ip4.port.tcp.src = fe[i].src_port;
clsfy_ioc.flow_spec.ue.ip4.port.tcp.dst = fe[i].dst_port;

clsfy_ioc.flow_spec.fs_type = FSPEC_UDPIP4;
clsfy_ioc.flow_spec.ue.ip4.port.udp.src = fe[i].src_port;
clsfy_ioc.flow_spec.ue.ip4.port.udp.dst = fe[i].dst_port;

extern void flow_spec_ip4_tcp_ioc(void *flow_entry_handle, uint8_t port,
uint8_t chan, uint_t flow_cfg);

extern void flow_spec_ip6_tcp_ioc(void *flow_entry_handle, uint8_t port,
uint8_t chan, uint_t flow_cfg);
Appendix B Frequently Asked Questions 389

7. Open the ipfwd.c file:

8. Pass FSPEC_TCPIP4 and FSPEC_TCPIP4 options to classify_parse_entries
instead of passing in FSPEC_UDPIP4 and FSPEC_UDPIP6:

9. Open the ipfwd_flow.c file:

10. Change all IPPROTO_UDP inputs to ip4_flow_tab[] and ip6_flow_tab[] to
IPPROTO_TCP for all TCAM entries.

For example:

11. Recompile.

After that, you should be able to use the TCAM to parse for TCP packets.

How Do I Add a New Packet Type to ntgen?
Perform the following steps:

1. In the apps/ntgen/src/common/protohdr.h file, extend struct
gen_hdr_buf with new header structures.

a. If new packet types introduce a new network layer protocol, change the
get_netproto_len() function.

b. If new packet types introduce a new transport layer protocol, change the
get_tproto_type() and get_tproto_len() functions.

#ifdef IPV6
 classify_parse_entries(ipfwd_flow_config, port, chan,
 FSPEC_TCPIP6, (void
*)&ip6_flow_tab[0]);
#else
 classify_parse_entries(ipfwd_flow_config, port, chan,
 FSPEC_TCPIP4, (void
*)&ip4_flow_tab[0]);
#endif

flow_spec_ip4_tab_t ip4_flow_tab[] = {
{0, IPPROTO_TCP, 0, 0xFF, 0, 0xFFFF, 0, 0xFFFF,

"192.30.50.0", "255.255.255.255",
"192.31.50.1", "255.255.255.0",

FLOW_ACCEPT, 0},
.......
390 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

2. In the apps/ntgen/src/app/trace_buffer.c file, modify the
fill_trace_buffer() function so that the user supplied options are applied to
the template packet to create traffic packets so that the trace buffer is filled.

3. Add modified headers in the logic flow that starts from the modify_packet()
function.

If a template packet needs to be modified, modify_packet() is called. This
function is the entry point for modifying different headers of a packet. A packet's
headers is modified as Ethernet header first, network layer header next, and
transport layer header last. New headers that need to be modified must be added
in the logic flow that starts from this function.

4. If the new packet type introduces a new network protocol, add the handling for
this protocol in the process_net_layer() function in the
apps/ntgen/src/app/parse_eth2.c file.

5. Check if the new packet type uses IPv4 or IPv6.

If the new packet type introduces a new transport protocol, perform the following
steps:

a. Open the apps/ntgen/src/app/parse_ipv4.c or
apps/ntgen/src/app/parse_ipv6.c file.

b. In the parse_ipv4() or parse_ipv6() function, add the support for the new
transport protocol.

If not the new packet type does not create a new transport protocol, the transport
layer protocol header must be handled from the new network layer protocol
handler that was added in Step 4.

Optimization Questions

How Do I Enable Optimization?
TABLE B-1 describes the options for tejacc to enable optimization:

TABLE B-1 Optimization Options for tejacc

Option for tejacc

-O Enables all optimizations.

-fcontext-sensitive-generation Enables context sensitive generation only.
Appendix B Frequently Asked Questions 391

What Is Context-Sensitive Generation?
Context-sensitive generation is the ability of the tejacc compiler to generate
minimal and optimized system calls based on global context information provided
from:

■ Hardware architecture

■ Software architecture

■ Mapping

■ Function parameters

■ User guidelines

In the traditional model, the operating system is completely separated from the
compiler and the operating system calls are fixed in precompiled libraries. In the
tejacc compiler, each system call is generated based on the context.

For example, if a shared memory communication channel is declared in the software
architecture as having only one producer and one consumer, the tejacc compiler
can generate that channel as a mutex-free circular buffer. On a traditional operating
system, the mutex would have to be included because the usage of the function call
was not known when the library was built. See “Late-Binding API Overview” on
page 29 for more information on the Late-Binding API.

What Is Global Inlining?
Functions marked with the inline keyword or with the -finline command-line
option get inlined throughout the entire application, even across files.

Legacy Code Integration Questions

How Can I Reuse Legacy C Code in a Sun Netra DPS
Application?
You can port pre-existing applications to the Sun Netra DPS environment. There are
two methods to integrate legacy application C code with newly compiled Sun Netra
DPS application code:

■ “Linking Legacy Code to Sun Netra DPS Code” on page 393
392 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

■ “Changing Legacy Source Code” on page 393

Linking Legacy Code to Sun Netra DPS Code
By linking legacy code the to Sun Netra DPS code as libraries, the legacy code is not
compiled and changes are minimized. The legacy library is also linked to the Sun
Netra DPS generated code, so those libraries must be available on the target system,
where performance is not an important factor.

Changing Legacy Source Code
Introducing calls to the Sun Netra DPS API in the legacy source code enables context-
sensitive and late-binding optimizations to be activated in the legacy code. This
method provides higher performance than the linking method.

Heavy memory allocation operations such as malloc and free are substituted with
Sun Netra DPS preallocated memory pools, generated in a context-sensitive manner.
The same advantage applies to mutexes, queues, communication channels, and
functions such as select(), which are substituted with teja_wait().

Note – It is not necessary to substitute all legacy calls with Sun Netra DPS calls as
only performance-critical parts of legacy code need to be ported to Sun Netra DPS.
Error handling and exception code can remain unchanged.

How Can I Reuse Legacy C++ Code in a Sun
Netra DPS Application?

Note – See “How Can I Reuse Legacy C Code in a Sun Netra DPS Application?” on
page 392.

C++ code can be integrated with a Sun Netra DPS application by two methods:

■ “Mixing C and C++ Code” on page 394

■ “Translating C++ Code to C Code” on page 394
Appendix B Frequently Asked Questions 393

Mixing C and C++ Code
Sun Netra DPS generates C code, so the final program is in C. Mixing C++ and Sun
Netra DPS code is similar to mixing C++ and C code. This topic has been discussed
extensively in C and C++ literature and forums. Basically, declare the C++ functions
you call from Sun Netra DPS to have C linkage. For example:

Compile the C++ code natively with the C++ compiler and link the code to the
generated Sun Netra DPS code. The Sun Netra DPS code can call the C++ functions
with C linkage.

For detailed discussions of advanced topics such as overloading, templates, classes,
and exceptions, refer to these URLs:

■ http://developers.sun.com/sunstudio/articles/mixing.html

■ http://www.parashift.com/c++-faq-lite/mixing-c-and-cpp.html

Translating C++ Code to C Code
The third-party packages at the following web sites can be used to translate code
from C++ to C. Sun has not verified the functionality of these software programs:

■ http://www.comeaucomputing.com/

■ http://www.desy.de/user/projects/C++/products/solbourne.html

■ http://javashoplm.sun.com/ECom/docs/Welcome.jsp?StoreId=
8&PartDetailId=GCC2C-2.0-MP-G-F&TransactionId=Try

#include <iostream>
extern “C” int print(int i, double d)
{
 std::cout << “i = " << i << ", d = " << d;
}

394 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

http://javashoplm.sun.com/ECom/docs/Welcome.jsp?StoreId=8&PartDetailId=GCC2C-2.0-MP-G-F&TransactionId=Try
http://javashoplm.sun.com/ECom/docs/Welcome.jsp?StoreId=8&PartDetailId=GCC2C-2.0-MP-G-F&TransactionId=Try
http://www.desy.de/user/projects/C++/products/solbourne.html
http://www.comeaucomputing.com/
http://www.parashift.com/c++-faq-lite/mixing-c-and-cpp.html
http://developers.sun.com/sunstudio/articles/mixing.html

Sun CMT Specific Questions

Is There a Maximum Allowed Size for Text and
BSS in My Program?
The limit is 5 Mbyte. If the application exceeds this limit, the generated makefile
indicates so with a static check.

How Is Memory Organized in the Sun CMT
Hardware Architecture?
TABLE B-2 lists the default memory setup in Sun CMT hardware architecture:

These values are changed in the memory bank properties of the hardware
architecture. For example, to move the end of DRAM to 0x110000000, add the
following code to your hardware architecture:

TABLE B-2 Default Memory Setup

Memory Address Space Description

0x00000000 - 0x11000000 Reserved for system use.

0x11000000 - 0x13000000 Private heap memory for each strand. On CMT
systems, there are 32 strands. Each strand receives
1/32th of the memory from 0x11000000 to 0x13000000.
The first strand has its heap from 0x11000000 to
0x11100000, the second one has its heap from 0x1110000
to 0x11200000, and so on. Heap memory is used by
teja_malloc().

0x13000000 - 0x100000000 Shared DRAM. Variables that are mapped to DRAM are
generated in the static memory map.

teja_memory_t mem; char * new_value = “0x110000000”; ... mem =
teja_lookup_memory (board, “dram_mem”); teja_memory_set_property
(mem, TEJA_PROPERTY_MEMORY_SIZE, new_value);
Appendix B Frequently Asked Questions 395

How Do I Increase the Size of the DRAM
membank?
You can increase the size of DRAM as explained in “How Is Memory Organized in
the Sun CMT Hardware Architecture?” on page 395.

Address Resolution Protocol Questions

How Do I Enable ARP in the RLP Application?

▼ To Enable ARP in RLP
1. Modify rlp_config.h to give IP addresses to the network ports.

For example:

a. Assign an IP address to the network ports of the system, running Sun Netra
DPS.

b. Tell the RLP application the remote IP address to which its going to send IP
packets.

#define IP_BY_PORT(port) \
((port == 0)? __GET_IP(192, 12, 1, 2): \
(port == 1)? __GET_IP(192, 12, 2, 2): \
(port == 2)? __GET_IP(192, 12, 3, 2): \
(port == 3)? __GET_IP(192, 12, 4, 2): \
(0))

#define DEST_IP_BY_PORT(port) \
((port == 0)? __GET_IP(192, 12, 1, 1): \
(port == 1)? __GET_IP(192, 12, 2, 1): \
(port == 2)? __GET_IP(192, 12, 3, 1): \
(port == 3)? __GET_IP(192, 12, 4, 1): \
(0))
396 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

c. Assign netmask to each port, to define a subnet.

2. Compile the RLP application with ARP=on.

How Do I Enable ARP Without Relying on a
Control Domain?
Sun Netra DPS applications can make use of the LWIP stack, provided in the
SUNWndps package. LWIP wrapper APIs are provided for the ease of the application
writer. These APIs are located in the following header file: netif/lwrtearp.h
(/opt/SUNWndps/src/libs/lwip/src/include/netif/lwrtearp.h). The RLP
reference application (/opt/SUNWndps/src/apps/rlp) makes use of these APIs.

How Do I Enable ARP Using a Control Domain?
The ipfwd-ARP integration makes use of the LWIP stack in the control-plane to
update the ARP entries in the Forward Information Base (Forwarding table) and
passes the Forwarding table to Sun Netra DPS runtime. If the application writer
needs ARP using a control-domain, then they can design their application according
to the ipfwd reference application (see Chapter 11, “Reference Applications” on
page 163).

#define NETMASK_BY_PORT(port) (0xffffff00)

$ gmake clean
$ gmake ARP=on
Appendix B Frequently Asked Questions 397

Oracle Solaris Domain and Sun Netra
DPS Domain Question

How Do I Access kstat Information From the
Oracle Solaris Domain for Network Interfaces
That Are in Use by the Sun Netra DPS domain?
This feature is available on the IP packet forwarding application (ipfwd). On the
Oracle Solaris domain, use the following command line to access kstat information:

To enable statistics in the ipfwd application, edit the Makefile.nxge file and
uncomment the -DKSTAT_ON flag.

Traffic Generation

How Do I Stop Traffic Generation?
If Oracle’s Sun Netra DPS application is in an unrecoverable state, then a single Ctrl-
C might not exit the user interface application. In that case, pressing Ctrl-C four
times will exit the user interface application and the Sun Netra DPS application can
then be restarted from the primary domain by restarting the Sun Netra DPS domain.

kstat tnxge:0
module: tnxge instance: 0
name: Port Stats class: net

crtime 2975750.16388507
ipackets 6
obytes 384
opackets 6
rbytes 384

snaptime
3145512.6135888
398 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Oracle Solaris TIPC Application

What Should I Do When the Oracle Solaris TIPC
Application Is Not Able to Create a Socket and
Does a Core Dump?
The TIPC socket library should be preloaded before running the Oracle Solaris TIPC
application. Refer “Installing TIPC” on page 155 to setup an environment to preload
the library.
Appendix B Frequently Asked Questions 399

400 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Glossary

A
ADE Sun Netra DPS Eclipse-based Teja Advance Development Environment

(ADE) graphical user interface. Teja ADE views three Teja elements,
hardware architecture, software architecture and mapping.

AF Assured forwarding.

AH/ESP Authentication header/encapsulating security payload.

AN Access network.

API Application programming interface.

AT Access terminal.

ARP Address Resolution Protocol.

B
bsp Header files and low-level Sun UltraSPARC T1 and Sun UltraSPARC T2

platform initialization and management code.
401

C
CAM Content addressable memory.

CBS Committed burst size.

CG Cipher group.

CIR Committed information rate.

CLI Command-line interface.

CMT Chip multithreading.

CMT1 Chip multithreading for Sun UltraSPARC T1 systems.

CMT2 Chip multithreading for Sun UltraSPARC T2 systems.

consumers Threads receiving messages from a channel.

CSP Chip support package. A target-specific section of the code generator aware
of hardware features. CSP is responsible for generating thread startup code,
mutexes, and so on.

D
dbg Chip multithreading (CMT) debugger program. Sun Netra DPS native

debugger is the default debugger and is useful for debugging during
development,

DMA Direct memory access.

DRR Deficit round robin.

DSCP Differentiated services code point.

E
EBS Excess burst size.
402 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Eclipse An open source community where projects are focused on building
extensive development platforms, runtimes, and application
frameworks.

EF Expedited forwarding.

ESP Encapsulating security payload.

F
FIB Forwarding information base.

G
GCCfss GNU C Compiler for Sparc Systems.

GDB GNU debugger that enables you to debug your program in C source code
level.

GRE Generic Routing Encapsulation application.

GUI Graphical user interface.

I
IP Interprocess, as in IP addresses.

IPC Interprocess communication software mechanism that provides a means to
communicate between processes that run in a domain under the Sun Netra
DPS Runtime Environment and processes in a domain with a control plane
operating system.

IPSec Internet Protocol Security.

IPv4 Internet Protocol Version 4.

IPv6 Internet Protocol Version 6.

IV Initialization vector.
403

L
late-binding Provides primitives for the synchronization of distributed threads,

communication, and memory allocation.

LDC Logical domain channel.

LWRTE Lightweight Runtime Environment. Provides an ANSI C development
environment for creating and scheduling application threads to run on
individual strands on the UltraSPARC T series processor.

M
mblk Message block. A data structure that carries packet information.

N
NAK Negative-Acknowledge is sent by a station to indicate that an error was

detected in the previously received block and that the receiver is ready to
accept retransmission of that block.

Sun Netra DPS Sun Netra Data Plane Software Suite. In this document, this suite is also
referred to as Sun Netra DPS.

Sun Netra DPS Runtime
API

Consists of portable, target-independent abstractions over various operating
system facilities such as thread management, heap-based memory
management, time management, socket communication, and file descriptor
registration and handling.

NTGen (ntgen) Sun Netra DPS traffic generator tool.

NIU Network interface unit (Sun multithreaded 10GbE with network interface
unit). Networking hardware consisting of a Receive Packet Classifier that
performs L2/L3/L4 header parsing, matching, and searching functions.
404 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

P
parked A parked strand does not consume any pipeline cycles (an inactive strand).

PDSN The packet data serving node, or PDSN, is a component of a CDMA2000
mobile network. It acts as the connection point between the Radio Access
and IP networks. This component is responsible for managing PPP sessions
between the mobile provider core IP network and the mobile station.

PHB Per hop behavior.

PIR Peak information rate.

producers Threads sending messages to a channel.

Q
QM Queue Manager.

QoS Quality of Services.

R
RFC Request for Comments (RFC) documents are a series of memoranda

encompassing new research, innovations, and methodologies applicable to
Internet technologies.

S
SA Security Association.

SAD Static Security Association Database.

SCTP Stream Control Transmission Protocol.

source set Consists of one or more source files. The source set is used to map to one or
more processes.
405

SP Security Policy.

SPD Security Policy Database.

SPDC Security Policy Database Cache.

SPI Security Parameter Index.

SPU Stream Processing Unit.

SRTCM Single Rate Three Color Marker.

strand A hardware thread, multistrand partitioning firmware for Sun CMT
platforms.

SUNWndps Sun Netra DPS software package installed in the development server.
Contains system-level libraries, header files, and low-level Sun UltraSPARC T1
and Sun UltraSPARC T2 platform code, and tools for compiler and runtime
system.

SUNWndpsd Sun Netra DPS software package installed on the target deployment
system. Contains the Sun Netra Data Plane CMT and IPC Share Memory Driver.

SUNWndpsc Sun Netra DPS software package containing the Sun UltraSPARC T2
cryptography driver.

T
TCAM Temary content addressable memory.

TCP Transmission control protocol.

TC Three color meter.

tejacc A compiler that provides the constructs of threads, mutex, queue, channel,
and memory pool within the application code.

Teja NP 4.0 Teja NP 4.0 software platform used to develop scalable, high-performance C
applications for embedded multiprocessor target architectures.

thread Runs in a process and is a target for executing a function. Thread management
functions offer the ability to start and end threads dynamically.

TIPC Transparent Interprocess Communication protocol.

tnsmctl Contained in SUNWndpsd package and contains the Sun Netra Data Plane
CMT and IPC share memory driver.

TOS Type of service.
406 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

TRTCM Two-rate three color marker.

U
UDP User/universal datagram protocol.

UltraSPARC T1 Processor that employs chip multithreading, or CMT, which combines chip
multiprocessing (CMP) and hardware multithreading (MT). This processor
creates a SPARC V9 processor with up to eight 4-way multithreaded cores
for up to 32 simultaneous threads.

UltraSPARC T2 Processor that is the second generation of the CMT processor. In addition to
features found in UltraSPARC T1, UltraSPARC T2 dramatically increases
processing power by increasing the number of hardware strands in each
core. UltraSPARC T2 includes on-chip 10G Ethernet and crypto accelerator.

V
VLAN Virtual local area network.
407

408 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

Index
A
access control list (ACL) reference application, 247
autoconfig tool, 143

B
basepaddress, calculating, 388
boot an application image, 12
building reference applications, 11

C
command-line options, tejacc, 33
common header file, 99
configuring IPC environment, 90
context-sensitive generation, 36

D
debugger configuration code, 70
debugger, GDB, 80
debugger, native, 70
diagnosing network applications, 333

E
Eclipse GUI, 109

F
FAQ, 371
file contents, software, 3
finite state machine API, 31
firmware

checking version, 5
installation, 4

frequently asked questions, 371

G
GDB debugger, 80
Generic Routing Encapsulation (GRE), 236

H
hardware architecture overview, 19

I
interprocess communication (IPC), 89, 102
IP packet forwarding

ipfwd, 164
IPC

configuring environment, 90
overview, 89, 102

IPC channels, 97
ipfwd, 164
IPSec gateway reference application, 257
IPv4 and IPv6 packet forwarding

ipfwd, 164

L
late-binding API, 29
late-binding elements, 24
logical domains environment, 91

M
map API, 31
409

N
Netra DPS Runtime API, 29
network interface unit (NIU), 123
NIU (network interface unit), 123
ntgen, 283

O
optimization options, 35
overview, 1

P
profiler, 39
profiler API examples, 44
profiler script, using, 53
programming methodology, 13

Q
questions, FAQ, 371

R
radio link protocol (RLP), 252
Receive Packet Classifier, 123
reference application instructions, 11
remote command-line-interface (CLI)

accessing, 104
coredump support, 106
debugging remotely, 105
introduction, 101
IPC setup, 102
system configuration, 106

RLP (radio link protocol), 252

S
software

file contents, 3
installation, 3
package contents, 3, 4

software architecture and late-binding overview, 23
SUNWndps and SUNWndpsd package contents, 3, 4

T
tejacc basics, 33
tejacc compiler basic operation, 15
tipc-config tool, 153
traffic generator

ntgen, 283
transparent interprocess communication

(TIPC), 153
tuning network applications, 333
tutorial, 363

U
UltraSPARC T1 processor, 334
UltraSPARC T2 processor, 336
UltraSPARC T2, example environment, 98

V
virtual data plane channels, 96
410 Netra Data Plane Software Suite 2.1 Update 1 User’s Guide • February 2011

	Netra Data Plane Software Suite 2.1 Update 1
	Contents
	Using This Documentation
	Sun Netra Data Plane Software Suite Overview
	Product Description
	Supported Systems
	Software Installation
	Platform Firmware Prerequisites
	To Check Your OpenBoot PROM Firmware Version

	Package Dependencies
	Package Installation Procedures
	To Install the Software Into the Default Directory
	To Install the Software in a Directory Other Than the Default
	To Remove the Software

	Building and Booting Reference Applications
	.cshrc File and Required Compiler Path
	Building Reference Application Instructions
	To Boot an Application Image

	Programming Methodology
	Reusing Existing C Code

	tejacc Compiler Basic Operation
	tejacc Compiler Mechanics
	tejacc Compiler Options
	tejacc Compiler Configuration
	tejacc Compiler and Sun Netra DPS Interaction

	Architecture Elements
	Hardware Architecture API Overview
	Hardware Architecture Elements
	Architecture Relationships
	Utility Functions
	Advanced Hardware Architecture Elements

	Software Architecture and Late-Binding API Overview
	Late-Binding Elements
	Other Elements
	Utility Functions

	User API Overview
	Late-Binding API Overview
	Sun Netra DPS Runtime API Overview
	Finite State Machine API Overview
	Map API Overview

	tejacc Basics
	Command-Line Options
	tejacc Command-Line Options

	Optimization
	Optimization Options
	Context-Sensitive Generation
	To Enable Optimization

	Language
	Include Files
	Late-Binding Object Identifiers

	Profiler
	Profiler Introduction
	How the Profiler Works
	Groups and Events
	Profiler Output
	Profiler Examples
	Profiler API
	Profiler API Usage for the Sun UltraSPARC T1 Processor
	Profiler API Usage for the Sun UltraSPARC T2 Processor

	Profiler Configuration
	Profiler Output Example

	Profiling Application Performance
	Sun UltraSPARC T1 Performance Counters
	Sun UltraSPARC T2 Performance Counters

	User-Defined Statistics
	Profiling Metrics
	Using the Profiler Script
	Profiler Scripts
	Usage
	input_file
	output_file

	Raw Profile Data
	Summarized Profile Data
	Sun UltraSPARC T1 Processor Profiler Output
	Sun UltraSPARC T2 Processor Profiler Output

	Performance Parameters Calculations
	Sun UltraSPARC T1 Processor
	Instructions per Packet:
	Instructions per Cycle (IPC):
	Packet Rate:
	SB_full per thousand instructions:
	FP_instr_cnt per thousand instructions:
	IC_miss per thousand instructions:
	DC_miss per thousand instructions:
	ITLB_miss per thousand instructions:
	DTLB_miss per thousand instructions:
	L2_imiss per thousand instructions:
	L2_dmiss_LD per thousand instructions:
	Sun UltraSPARC T2 Processor
	Instruction per Packet:
	Instructions per Cycle (IPC):
	Store Instructions per Packet:
	Load Instructions per Packet:
	L2 Load misses per Packet:
	Icache misses per 1000 Packets:
	Dcache misses per Packet:
	Packet Rate:

	To Use a Spreadsheet for Performance Analysis

	Debugger
	Debugger Introduction
	Native Debugger
	Debugging Configuration Code
	Entering the Debugger
	Native Debugger Commands
	Displaying Help

	help or h
	Example:
	Managing Breakpoints

	break address or b address
	info break or i break
	Example:

	delete breakpoint ID or d breakpoint ID
	Managing Program Execution

	cont or c
	step or s
	Example:
	Displaying and Setting Memory

	x/nfu address
	w/u address value
	Example:
	Managing Threads

	info threads or i threads
	thread ID
	Example:
	Displaying Registers

	info reg or i reg
	Displaying Stack Trace

	bt frame-count
	Resolving Symbols Using Options
	-h
	-f function-name
	-g global-variable
	-l file-name:line-number

	GNU Project Debugger
	Configuring Oracle VM Server for SPARC Software for GDB Support
	To Configure the Oracle VM Server for SPARC Software Required to Run the Sun Netra DPS Application With GDB Support
	To Configure the Oracle Solaris Domain for GDB

	GDB Showcase Application
	To Compile the GDB Showcase
	To Load the GDB Showcase Binary in the Sun Netra DPS Domain
	To Run the GDB Command
	GDB Commands
	To Run Sun Netra DPS Application With GDB Support

	Interprocess Communication Software
	IPC Introduction
	Programming Interfaces Overview
	Configuring the Environment for IPC
	Memory Management
	IPC in the Logical Domains Environment
	Logical Domain Channel Setup
	IPC Channel Setup

	Example Environment for UltraSPARC T1 Based Servers
	Domains
	primary
	ldg1 - LWRTE
	ldg2 - Control Plane Application
	ldg3 - Solaris Control Domain

	Virtual Data Plane Channels
	Global Control Channel
	Client Control Channel
	Data Channel

	IPC Channels

	Example Environment for UltraSPARC T2 Based Servers
	IPC Reference Applications
	Common Header

	Remote Command-Line Interface
	Remote Command-Line Interface Introduction
	IPC Setup for Remote CLI
	To Configure the Oracle Solaris Domain for Remote CLI

	Accessing the Remote CLI
	To Access the CLI Console

	Debugging Remotely
	To Access the Sun Netra DPS Debugger

	Coredump Support
	System Configuration
	To Go to the sys Mode From the Remote CLI

	Compiling the Remote CLI Application
	Build Script
	Usage
	Build Script Arguments
	Argument Descriptions
	cmt
	[profiler]

	Eclipse Development Environment
	ADE Introduction
	Starting the Eclipse-Based ADE GUI
	To Start the Eclipse-Based ADE GUI

	Creating a Teja Project
	To Create a Project in the Same Directory as an Existing Teja Application
	To Add the Graphic Files to a Project

	Files and Viewers
	Hardware Architecture Viewer
	Software Architecture Viewer
	Mapping Viewer

	Build
	To Compile the Teja Application in the Eclipse- Based ADE

	Receive Packet Classification
	Receive Packet Classification Introduction
	Supported Networking Interfaces
	Sun Multithreaded 10GbE and NIU Receive Packet Classifier
	Receive DMA Channel Selection
	Hashing Based on Layer 2, Layer 3, and Layer 4 Header Classification
	Hash Algorithm
	Hash Key
	Application
	Hash Policy

	Flow Match Based on Layer 2, Layer 3, and Layer 4 Header Classification
	Layer 2 (L2) Classification
	Layer 3 and Layer 4 (L3/L4) Classification
	Applications
	Classification Programming Interface
	opcode
	action
	flow_spec
	fs_type
	index

	channel
	ue or um
	hd
	flow_spec_ipv4_tab_s
	flow_spec_ipv6_t
	flow_spec_l2_t

	Examples
	To Use Hash Flow
	To Use TCAM Classification

	Auto-Configuration
	Auto-Configuration Introduction
	Installation
	Prerequisites
	User Interface
	Configuring a Logical Domain Environment for Reference Applications
	Custom Configuring a Primary Domain
	Custom Configuring a Guest Domain
	Configuring LDC and IPC
	Saving Current Guest Domains Configuration
	Configuring the Oracle VM Server for SPARC Software from a Saved Location

	Transparent Interprocess Communication
	Transparent Interprocess Communication Introduction
	TIPC Components
	Installing TIPC
	To Install TIPC

	Programming Interfaces Overview
	Configuring Environment for TIPC
	SUNWndpsd and SUNWndps-tipc Binaries
	Configuring Sun Netra DPS TIPC Stack from an Oracle Solaris Guest Logical Domain
	Configuring Sun Netra DPS TIPC Stack from a Linux Guest Logical Domain
	To Set the TIPC Address

	Enabling TIPC Ethernet Bearer
	Enabling the TIPC IPC Bearer
	Enabling TIPC vnet Bearer for a NDPS TIPC Node

	Reference Applications
	IP Packet Forwarding Reference Applications
	Receive Thread
	Forwarding Thread
	Transmit Thread
	Traffic Flows
	Source Files
	To Compile the ipfwd Application
	Usage

	Argument Descriptions
	To Build the ipfwd Application
	To Run the ipfwd Application
	Default System Configuration
	Default ipfwd Application Configuration
	Other IP Forwarder Options
	IP Forward Static Cross Configuration
	Flow Policy for Spreading Traffic to Multiple DMA Channels
	ipfwd Flow Configurations
	ipfwd Configuration File Format

	System Configuration
	Standalone Environment
	Logical Domain Environment

	Forwarding Application
	Data Plane Components
	Control Plane Components and Utilities
	Interface Configuration Utility (ifctl)
	ifctl Examples
	To Add an IPv4 Interface
	To Add an IPv6 Interface
	To Enable IP-in-IP Tunneling on an Interface
	To Disable Tunneling on an Interface
	To Add an IPv6 Interface and Bring the Interface Up
	To Disable Interface port0
	To Set the MTU for an Interface That Does Not Have Tunneling Enabled
	To Set the MTU for an Interface That Has IPv4-in-IPv4 Tunneling Enabled
	To Set the MTU for an Interface That Has GRE Tunneling Enabled Where GRE Header Includes Checksum, Key, and Sequence Number Fields
	To Set the Netmask on an Interface
	To Enable VLAN on an Interface With VLAN ID
	To Disable VLAN on an Interface
	FIB Control Utility (fibctl)
	To Build the ifctl and fibctl Utility
	Exception Daemon (excpd)
	Usage

	IPv4 Packet Forwarding Application with Exception Handling
	ARP Processing
	ARP in lwIP
	ARP in the Oracle Solaris OS
	ARP in the Oracle Solaris OS or Linux OS Using vnet

	IPv4 Protocol Exception Handling
	Fragmentation
	Reassembly and Local Delivery
	Reassembly and Local Delivery Using vnet

	FIB Management
	FIB Management When Using vnet
	Exception Path Framework Components
	IPv4 Forwarder (ipfwd Thread)
	Exception Application (excpd)
	lwIP ARP Layer
	ARP STREAMS Module (lwmodarp)
	The IPv4 STREAMS Module (lwmodip4)

	Fastpath Manager
	Exceptions Path Framework Tools
	ifctl
	fibctl
	insarp

	To Compile the ipfwd Application for IPv4 Exception Handling
	To Compile the IPv4 Forwarding Application With Exception Handling By Using Sun Netra DPS
	Compiling the excpd Application
	Usage
	To Build the excpd Application When lwIP ARP Is Used With IPC
	To Build the excpd Application When lwIP ARP Is Used With TIPC
	To Build the excpd Application When the Oracle Solaris OS ARP Is Used With IPC
	To Build the excpd Application When the Oracle Solaris OS ARP Is Used With TIPC

	Compiling the lwmodip4 STREAMS Module
	Usage
	To Build the lwmodip4 STREAMS Module for IPv4 Exception Handling Using IPC
	To Build the lwmodip4 Module for IPv4 Exception Handling Using TIPC

	Compiling the lwmodarp STREAMS Module
	Usage
	To Build the lwmodarp Module for Oracle Solaris ARP Handling Using IPC
	To Build the lwmodarp Module for Oracle Solaris ARP Handling Using TIPC

	Compiling the insarp Tool
	To Compile the insarp Tool

	To Run the ipfwd Application with IPv4 Exception Handling in lwIP
	To Run the ipfwd Application with IPv4 Exception Handling and ARP Handling in the Oracle Solaris Host
	To Compile the ipfwd Application with IPv4 Exception Handling using vnet in Sun Netra DPS
	To Run the ipfwd Application with IPv4 Exception Handling and ARP Handling in an Oracle Solaris OS Host Using vnet
	To Compile the IPv4 Forwarding Application With Exception Handling Using vnet in Sun Netra DPS
	To Run the ipfwd Application with IPv4 Exception Handling and ARP Handling in the Linux Host Using vnet

	IPv6 Packet Forwarding Application with Exception Handling
	Interface Management
	IPv6 Protocol Exception Handling
	IPv6 Protocol Exception Handling Using vnet
	FIB Management
	FIB Management Using vnet Exception Handling
	IP-IP Tunneling
	Data-Plane and Control-Plane Synchronization
	Exception Path Components
	IPv6 Forwarder (ipfwd Strand)
	IPv6 STREAMS Module (lwmodip6)
	Fastpath Manager

	Exception Path Tools
	ifctl
	fibctl
	fibctl.sh
	ipfwd_sync.d

	To Compile the Reference Application
	To Compile the IPv6 Forwarding Application With Exception Handling Using Sun Netra DPS
	Compiling the lwmodip6 STREAMS module
	To Build the lwmodip6 Module for IPv6 Exception Handling Using IPC
	To Build the lwmodip6 Module for IPv6 Exception Handling Using TIPC
	To Run the ipfwd Application With IPv6 Exception Handling

	To Compile the IPv6 Forwarding Application With Exceptional Handling Using vnet
	To Run the ipfwd Application With IPv6 Exception Handling
	Run the ipfwd Application That Is Compiled With Exception Handling
	To Compile the IPv6 Forwarding Application Using vnet Exceptional Handling in a Linux Guest Logical Domain
	To Run the ipfwd Application Using IPv6 Exception Handling in a Linux Guest Logical Domain
	Run the ipfwd Application That Is Compiled With Exception Handling

	Differentiated Services Reference Application
	Classifiers
	Differentiated Services Code Point Classifier
	6-Tuple Classifier

	Policing (Meter)
	Single-Rate Three-Color Marker
	Two-Rate Three-Color Marker

	DSCP Marker
	Shaping
	Deficit Round Robin Scheduler
	Queue Manager

	Building the DiffServ Application
	DiffServ Command-Line Interface Implementation
	To Build the Extended Control Utility

	Command-Line Interface for the IPv4-DiffServ Application
	DSCP Classifier
	add
	Syntax
	Parameters
	Example

	delete
	Syntax
	Parameters
	Example

	update
	Syntax
	Parameters
	Example

	purge
	Syntax

	display
	Syntax

	6-Tuple Classifier
	add
	Syntax
	Parameters
	Example

	delete
	Syntax
	Parameters
	Example

	update
	Syntax
	Parameters
	Example

	purge
	Syntax

	display
	Syntax

	enable or disable
	Syntax
	Example

	TC Meter
	add
	Syntax
	Parameters
	Example

	delete
	Syntax
	Parameter
	Example

	update
	Syntax
	Parameters
	Example

	purge
	Syntax

	display
	Syntax

	stats
	Syntax
	Parameter
	Example

	Scheduler
	add
	Syntax
	Parameters
	Example

	update
	Syntax
	Parameters
	Example

	display
	Syntax
	Parameter
	Example

	DiffServ References

	Generic Routing Encapsulation Reference Application
	Generic Routing Encapsulation Introduction
	References
	Data Plane Architecture
	IPv4 Forwarding Data Plane
	GRE Over IPv4 Data Plane
	GRE Over IPv4 Data Plane Internal Block Diagram

	GRE Over IPv4 Application
	IPv4 Forwarder
	GRE Encapsulator
	GRE Decapsulator
	Key and Sequence Number Extensions to GRE

	GRE Command-Line Interface Implementation
	Directory Structure
	To Compile the GRE Code
	To Compile the IPv4 and GRE Application Using Sun Netra DPS
	To Compile the Command-Line Interface Application
	To Run the IPv4 and GRE Application
	To Run the CLI Application
	CLI for the IPv4-GRE Application
	add
	Syntax
	Parameters
	Example

	update
	Syntax
	Parameters
	Example

	delete
	Syntax
	Parameters
	Example

	purge
	Syntax
	Parameters

	display
	Syntax
	Parameters

	GRE Reference Application Example
	To Build the GRE Reference Application
	Traffic Generator Configuration

	Access Control List Reference Application
	To Build the ACL Application
	To Run the ACL Application
	To Configure the ACL Application Environment Using LDC
	To Configure the ACL Application Environment Using TIPC
	Command-Line Interface for the ACL Application
	Usage
	Help Command
	Control Commands
	Rule Commands
	Rule Specification Options

	To Use acltool in a Linux OS Control Domain

	Radio Link Protocol Reference Application
	To Compile the RLP Application
	Build Script
	Usage
	Argument Descriptions
	To Build the RLP Application

	To Run the Application
	Default System Configuration
	Default RLP Application Configuration

	Other RLP Options
	To Bypass the rlp Operation
	To Use One Global Memory Pool

	Flow Policy for Spreading Traffic to Multiple DMA Channels

	IPSec Gateway Reference Application
	IPSec Gateway Application Architecture
	IPSec Gateway Application Capabilities
	High-Level Packet Processing
	Outbound Packets
	Inbound Packets

	Security Association Database and Security Policy Database
	Outbound Packets and Inbound Packets
	Outbound Packets
	Inbound Packets

	Static Security Policy Database and Security Association Database
	SPD
	SAD
	Download the Tables
	Shared Memory

	Packet Encapsulation and De-encapsulation
	Packet Encapsulation

	Memory Pools
	Pipelining
	Source Code File Description
	Build Script
	Usage
	Argument Descriptions

	Reference Application Configurations
	IP with Encryption and Decryption
	IPSec Gateway on Quad GE
	IPSec Gateway on NIU 10-Gbps Interface (One Instance)
	IPSec Gateway on NIU 10-Gbps Interface (Up to Four Instances)
	Multiple Instances (Up to Eight Instances) Back-to-Back Tunneling Configuration

	Flow Policy for Spreading Traffic to Multiple DMA Channels
	To Enable a Flow Policy

	Traffic Generator Reference Application
	Using the User Interface
	To Start the ntgen User Interface
	Usage
	Parameter

	ntgen Option Descriptions
	Option Descriptions

	ntgen Parameter Description
	Notes

	Traffic Generator Output
	Template Files
	Using the Traffic Generator
	Configuring Logical Domains for the Traffic Generator
	To Add the tnsm Driver
	To Prepare Building the ntgen Utility
	To Set Up and Use Logical Domains for the Traffic Generator
	To Start the Traffic Generation
	To Stop Traffic Generation
	To Compile the Traffic Generator
	Build Script
	Usage
	Argument Descriptions
	To Run ndpstgen

	Default Configurations

	Interprocess Communication Reference Application
	IPC Reference Application Content
	Building the IPC Reference Application
	Usage
	Argument Descriptions
	Example

	Running the IPC Application
	To Use the ipctest Utility
	ipctest Commands

	To Install the lwmod STREAMS Module
	To Remove the lwmod STREAMS Module

	Transparent Interprocess Communication Reference Application
	Source Files
	Default Configurations
	To Compile the TIPC Application
	Build Script
	Usage
	Argument Descriptions
	To Run the TIPC Application

	IP Forward Reference Application Using TIPC
	To Build the IP Packet Forward (ipfwd) Application
	To Configure the Environment for TIPC
	To Configure Oracle Solaris OS TIPC Stack in Oracle Solaris Domain (ldg2)
	Command-Line Interface Application using TIPC
	To Build the Extended Control Utility

	FIB Table Configuration Command Line Interface (fibctl)
	Interface Configuration Command Line Interface (ifctl)
	IPv4 Exception Process (excpd)

	vnet Reference Application
	UltraSPARC T2 Platform
	UltraSPARC T1 Platform
	Supported Tests
	testvnet Commands
	Test Setup
	Virtual Network Setup
	vnet Reference Application Content
	Building the Sun Netra DPS vnet Reference Application
	Usage
	Argument Descriptions
	To Build the vnet Reference Application

	To Run the vnet Sun Netra DPS Application, vnettest
	To Build the vnet Guest Logical Domain Application for the Oracle Solaris OS
	Building the vnet Guest Logical Domain Application for the Linux OS
	To Run the vnet Guest Logical Domain Application on a Oracle Solaris OS Guest Logical Domain
	To Run the vnet Guest Logical Domain Application on a Linux OS Guest Logical Domain

	Performance Tuning
	Performance Tuning Introduction
	UltraSPARC T1 Processor Overview
	UltraSPARC T2 Processor Overview
	Identifying Performance Issues
	UltraSPARC T1 Performance
	UltraSPARC T2 Performance

	Optimization Techniques
	Code Optimization
	Pipelining
	Parallelization
	Mapping
	Parking Idle Strands
	Slowing Down Polling

	Tuning Troubleshooting
	What Is a Compute-Bound Versus a Memory- Bound Thread?
	Cannot Reach Line Rate for Packets Smaller Than 300 Bytes
	Cannot Scale Throughput to Multiple Ports
	How Do I Achieve Line Rate for 64-byte Packets?
	When Should I Consider Thread Placement?

	Example RLP Exercise
	Application Configuration
	Configuration 1
	Configuration 2

	Using the Profiling API
	Profiling Data
	Metrics
	Configuration 1 Results
	Configuration 2 Results
	Analysis
	Other Uses for Profiling

	Tutorial
	Application Code
	Configuration Code
	Build Process
	To Create the Binary Image

	Executing the Binary Image
	To Execute the Binary Image

	Frequently Asked Questions
	Summary
	General Questions
	What Is Teja 4.x and How Does It Differ From an Ordinary C Compiler?
	Where Are the Tutorials?

	Configuration Questions
	What Purpose Are the Hardware Architecture, Software Architecture, and Mapping Dynamic Libraries?
	How Can I Debug the Dynamic Libraries?
	To Debug the Dynamic Libraries

	What Should I Do When the tejacc Compiler Crashes?
	What if the Hardware Architecture, Software Architecture, or Mapping Dynamic Libraries Crash?
	Can I Build Hardware Architecture, Software Architecture, and Mapping in the Same Dynamic Library?
	Can I Map Multiple Variables With One Function Call?

	Building Questions
	Where Is the Generated Code?
	Where Is the Executable Image?
	How Can I Compile Multiple Modules on the Same Command Line?
	How Can I Pass Different CLI Options to Different Modules on the tejacc Command Line?
	How Can I Change the Behavior of the Generated makefile Without Modifying it?
	How Do I Compile the Reference Applications?

	Late-Binding Questions
	What Is the Late-Binding API?
	What Is a Memory Pool?
	What Is a Channel?
	What Is the Difference Between OS Based and Non-OS Based Memory Pools and Channels?
	How Do I Access a Late-Binding Object From Application Code?
	Can I Define a Symbol in the Software Architecture and Use it in My Application Code?

	Eclipse Questions
	How Can I Change the Build Command?
	How Can I Change the Compiler Invocation Command?

	API and Application Questions
	How Do I Synchronize a Critical Region?
	How Do I Send Data From a Thread to Another Thread?
	How Do I Allocate Memory?
	When Should I Use Queues Instead of Channels?
	Why Is it Not Necessary to Block Interface or Queue Reads?
	Can Multiple Strands on the Same Queue Take Advantage of the Extra CPU Cycles if the Strands Are Not Being Used?
	Why Does the Application Choose the Role for the Strand From the Code Instead of the Software Architecture API?
	Is It Possible to Park a Strand Under Logical Domains as Done in a Non-Logical Domains Environment?
	Can You Assign Partial Cores to a Sun Netra DPS domain?
	What Is bss_mem?
	What Is the Significance of bss_mem Placement in the Code Listing?
	How Are app.cmt2board.heap_mem0 and Similar Heaps Affected?
	Can You Clarify BSS, Code, Heap, and DRAM Memory Allocation?
	Does the eth_* API Support Virtual Ethernet (VNET) Devices?
	How Do I Calculate the Base PA Address for NIU or Logical Domains to Use with the tnsmctl Command?
	How Do I Modify the IP Forwarding Application to Use a New Classifier Type Instead of the Default UDP Type?
	How Do I Add a New Packet Type to ntgen?

	Optimization Questions
	How Do I Enable Optimization?
	What Is Context-Sensitive Generation?
	What Is Global Inlining?

	Legacy Code Integration Questions
	How Can I Reuse Legacy C Code in a Sun Netra DPS Application?
	Linking Legacy Code to Sun Netra DPS Code
	Changing Legacy Source Code

	How Can I Reuse Legacy C++ Code in a Sun Netra DPS Application?
	Mixing C and C++ Code
	Translating C++ Code to C Code

	Sun CMT Specific Questions
	Is There a Maximum Allowed Size for Text and BSS in My Program?
	How Is Memory Organized in the Sun CMT Hardware Architecture?
	How Do I Increase the Size of the DRAM membank?

	Address Resolution Protocol Questions
	How Do I Enable ARP in the RLP Application?
	To Enable ARP in RLP

	How Do I Enable ARP Without Relying on a Control Domain?
	How Do I Enable ARP Using a Control Domain?

	Oracle Solaris Domain and Sun Netra DPS Domain Question
	How Do I Access kstat Information From the Oracle Solaris Domain for Network Interfaces That Are in Use by the Sun Netra DPS domain?

	Traffic Generation
	How Do I Stop Traffic Generation?

	Oracle Solaris TIPC Application
	What Should I Do When the Oracle Solaris TIPC Application Is Not Able to Create a Socket and Does a Core Dump?

	Glossary
	Index

