
Deployment Guide
Sun ONE Meta-Directory

Version 5.1

January 2003

Copyright © 2003 Sun Microsystems, Inc. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Sun ONE, Solaris, Java and Sun ONE Meta-Directory are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.Federal Acquisitions: Commercial Software -- Government Users
Subject to Standard License Terms and Conditions. The product described in this document is distributed under licenses restricting
its use, copying, distribution, and decompilation. No part of the product or this document may be reproduced in any form by any
means without prior written authorization of the Sun Microsystems, Inc. and its licensers, if any.

THIS DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc. Tous droits réservés.

Sun, Sun Microsystems, le Sun logo, Sun ONE, Solaris, Java et Sun ONE Meta-Directory sont des marques de fabrique ou des
marques déposées de SunMicrosystems, Inc. aux Etats-Unis et dans d'autres pays.

Le produit dé crit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la
distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut être reproduite sous quelque forme ou par
quelque moyen que ce soit sans l'autorisation écrite préalable de Sun Microsystems, Inc., le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE "EN L'ÉTAT", ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRÉSENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À
UN BUT PARTICULIER OU DE NON CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

3

Contents

About This Guide . 7
What You Are Expected to Know . 7
The Sun ONE Meta-Directory Documentation Set . 8
Organization of This Guide . 8
Documentation Conventions . 9

Typographic Conventions . 9
Terminology . 10

Where to Find Additional Information . 11

Chapter 1 Meta-Directory Concepts . 13
The Importance of Sun ONE Meta-Directory . 13

The Sun ONE Meta-Directory Solution . 14
An Example Application . 15

Synchronizing and Joining Entries . 15
A Meta-Directory Deployment . 18

Sun ONE Meta-Directory Components . 19
Sun ONE Meta-Directory Console . 20

Sun ONE Console and iPlanet Directory Server Console . 20
The Join Engine and the Meta View . 21

The Join Engine . 21
Meta View Services . 22

Connectors and Connector Views . 22
Indirect Connectors . 22
Direct Connectors . 24

How Sun ONE Meta-Directory Works . 26
How Connectors Work . 26

Indirect Connector Rules . 27
Attribute Flow Rules . 28
Default Value Rules . 31
Filtering Rules . 31

How the Join Engine Works . 32

4 Sun ONE Meta-Directory Deployment Guide • January 2003

The Join Process Rules . 32
Join Rules . 33
Attribute Flow Rules . 33
Filters . 35
Distinguished Name (DN) Mapping Rules . 35
Constructed Attributes . 35

Manually Joining Entries . 36

Chapter 2 Planning the Meta-Directory System . 37
Designing Your Meta-Directory System . 38

Beginning the System Design . 38
Installing Directory Server to Support Meta-Directory . 39
Directory Server Design and Deployment . 40

Performing a Site Survey . 40
Determining Data Sources and Authoritative Attributes . 40
Determining Data Flow . 42

Determining the Data Design for Your Views . 43
Setting Up the Meta-Directory DIT . 44

Planning the LDAP Schema Used in Your Views . 45
Planning System Security . 45
Allocating the Necessary Resources . 45
Deploying Your System and Creating a Maintenance Plan . 46

Deploying Your Meta-Directory System . 46
Data Entry Size and RAM Considerations . 47

RAM Sizing . 47
Directory Sizing for Windows NT . 50

System Topology . 50
Operating System Configuration . 51
Directory Server Instances . 51
Planning the Layout of Your System . 52
Server Groups . 54
Non-Participating Connector Views . 57
Locating the Log Files . 57

Changelog . 57
Multi-Master Replication . 58
Cascading Meta Views . 59

Steps for setting up Cascading Meta views . 60
Recommendations . 71
Limitations . 72

Bringing the System On Line . 72
Piloting . 72
Tuning . 73
Going Production . 73

5

Maintaining Your Meta-Directory System . 74
Performing Data Backups . 74
Monitoring the System . 74
Planning for System Expansion . 75

Chapter 3 Directory Server Configuration Settings for Meta-Directory 77
Installing and Configuring Directory Server . 77

Directory Server Configuration Steps . 78
Modifying Directory Server Settings . 79
Configuring UTF8 Support . 79

Enabling the Retro Change Log . 80
Enabling the iPlanet Directory Server Change Log . 80
Enabling the Netscape Directory Server Change Log . 81
Retro Change Log Location . 82

Setting Write Permissions on Solaris Systems . 83
Changing the db location of the retro changelog . 83

Loading Meta-Directory Schema . 84
Manually Loading the Meta-Directory Schema . 85
Adjusting Write Permissions (Solaris Only) . 86

Adjusting Directory Server Plug-Ins . 86
Setting uid-uniqueness Plug-In . 86

Disabling the uid-uniqueness Plug-In . 87
Setting the Referential Integrity Postoperation Plug-In . 87

Disabling the Referential Integrity Postoperation Plug-In . 88

Chapter 4 Meta-Directory Performance Tuning . 89
Adding Meta-Directory Indexes . 90

Determining Which Indexes to Create . 90
To Add Indexes From the Directory Server Console . 91

Adding Indexes From the Command Line . 92
Bulk Loading Data . 93

Adjusting the Database Cache Size . 93
To Set the Maximum Cache Size . 93

Adjusting the All IDs Threshold . 94
Tuning the Data Servers . 94

DCNS Scheduler . 95
Configuring the Time of Search . 95

Tuning the I/O Block Time-Out Setting . 96

Chapter 5 Tuning Directory Server . 99
Directory Server Write Performance Tuning . 100

Managing the Information Written to Disk . 101

6 Sun ONE Meta-Directory Deployment Guide • January 2003

Optimizing Indexes . 101
The Transaction Log . 102
The Access, Error, and Audit Log Files . 102
The Replication Change Log . 103

Summary of Write Tuning . 103
Tuning Directory Server Read Performance . 104

Directory Server Back-End Settings . 104
Tuning the Directory Server Caches . 105
Sizing the Database and Entry Cache Settings . 106
Computing the Database . 107
Monitoring the Database Cache . 109
Monitoring Performance From the Command Line . 109
Sizing the Entry Cache to Prevent Over-Allocation of Memory . 110
Tuning the Directory Server Indexes . 110
Tuning the All IDs Threshold . 112

Directory Server Front-End Settings . 112
To Modify the Directory Server Settings . 113

Index . 115

7

About This Guide

The Sun ONE Meta-Directory Deployment Guide offers an introduction to Sun ONE
Meta-Directory and describes how to plan and implement an Sun ONE
Meat-Directory system.

This preface contains the following sections:

• What You Are Expected to Know

• The Sun ONE Meta-Directory Documentation Set

• Organization of This Guide

• Documentation Conventions

• Where to Find Additional Information

What You Are Expected to Know
This book is considered the “first” book in the documentation series provided with
Sun ONE Meat-Directory. While it’s not essential that you understand directory
technologies, you will get the most out of this guide if you are familiar with
directory servers, databases, and Lightweight Directory Access Protocol (LDAP).
Particularly, you should be familiar with planet Directory Server and the
documentation provided with that product.

This guide is intended for use by IT professionals who want to join different
directory repositories into one unified view. The functionality contained in Sun
ONE Meta-Directory allows you to join the different directory information your
organization maintains, thus making it easier to view and maintain the
information you have spread across different directory and database applications.

Once you understand the concepts described in this guide, you will be ready to
install, configure, and administer an Sun ONE Meat-Directory system, as described
in the Sun ONE Meta-Directory Installation Guide and the Sun ONE Meta-Directory
Configuration and Administration Guide.

The Sun ONE Meta-Directory Documentation Set

8 Sun ONE Meta-Directory Deployment Guide • January 2003

The Sun ONE Meta-Directory Documentation Set
The Sun ONE Meta-Directory, v5.1 documentation set contains the following titles:

• Sun ONE Meta-Directory Deployment Guide (this guide) describes Sun ONE
Meat-Directory and details how to plan and implement a Meta-Directory
system.

• Sun ONE Meta-Directory Installation Guide gives instructions on how to install
the Sun ONE Meta-Directory software on both Solaris and Windows NT
systems.

• Sun ONE Meta-Directory Configuration and Administration Guide documents
how to configure and administer an Sun ONE Meta-Directory system once it
has been installed. Configuring and administering Meta-Directory from both
the Meta-Directory console and the command line are addressed.

• The Release Notes file gathers an assortment of information, including a
description of what is new in this release, last minute installation notes, known
problems and limitations, and how to report problems.

Organization of This Guide
Table 1 describes the organization of this book:

NOTE Be sure to check the Meta-Directory documentation web site for
updates to the release notes and for revisions of guides. Updated
documents will be marked with the revision date.

http://docs.sun.com/prod/s1metadir

Table 1 Layout of This Manual

Chapter Title Chapter Description

“About This Guide” The chapter you are reading, it gives an outline of
this guide and describes the Sun ONE
Meta-Directory documentation set. It also
provides sources for additional information
related to Sun ONE Meta-Directory.

http://docs.sun.com/prod/s1metadir

Documentation Conventions

About This Guide 9

Documentation Conventions
In the Sun ONE Meta-Directory documentation (such as this guide) there are
certain typographic and terminology conventions used to simplify discussion and
to help you better understand the material. These conventions are described below.

Typographic Conventions
This book uses the following typographic conventions:

Chapter 1, “Meta-Directory
Concepts”

This chapter provides a high-level overview that
describes the need for Sun ONE Meta-Directory,
the components provided with the software
package, and the features provided by the
components.

Chapter 2, “Planning the
Meta-Directory System”

This chapter describes planning your
Meta-Directory system. The three phases of
planning are described: designing, deploying, and
maintaining the system. This includes planning
the topology of servers, the structuring of data,
server load balancing, and so on.

Chapter 3, “Directory Server
Configuration Settings for
Meta-Directory”

This chapter discusses configuring the Sun ONE
Meta-Directory system (as opposed to configuring
the component instances which you instantiate,
which is discussed in the Sun ONE Meta-Directory
Configuration and Administration Guide). Included
in this chapter are the steps that need to be taken
to configure iPlanet Directory Server so that it can
correctly support Meta-Directory, the schemas
that need to be installed, enabling the Directory
Server change log, and so on.

Chapter 4, “Meta-Directory
Performance Tuning”

This chapter discusses some of the approaches
you can take to increase the performance of
Directory Server with regards to how it interacts
with Sun ONE Meta-Directory.

Chapter 5, “Tuning Directory
Server”

This chapter provides a guide to the important
iPlanet Directory Server settings a that can effect
the performance of Sun ONE Meta-Directory.

Table 1 Layout of This Manual

Chapter Title Chapter Description

Documentation Conventions

10 Sun ONE Meta-Directory Deployment Guide • January 2003

• Italic type is used within text for book titles, new terminology, emphasis, and
words used in the literal sense.

• Monospace font is used for sample code and code listings, API and language
elements (such as function names and class names), filenames, pathnames,
directory names, HTML tags, and any text that must be typed on the screen.

• Italic serif font is used within code and code fragments to indicate variable
placeholders. For example, the following command uses filename as a variable
placeholder for an argument to the gunzip command:

gunzip -d filename .tar.gz

Terminology
Below is a list of the general terms that are used in the Sun ONE Meta-Directory
documentation set:

• Meta-Directory refers to Sun ONE Meta-Directory and any installed instances of
the iPlanet or Sun ONE Meta-Directory software.

• Meta-Directory components refers to the collective set of Sun ONE
Meta-Directory components and software you have installed and running on
your system, including the join engine and any connectors.

• External data source refers to any user data that originates outside of the core
Meta-Directory components, whether the data is coming from another
database, directory server, data file, or other source of data.

• Directory Server refers to an installed instance of iPlanet Directory Server or
Netscape Directory Server.

The term Directory Server refers to the instances of iPlanet Directory Server and
Netscape Directory Server that you have installed to work with Sun ONE
Meta-Directory.

• Similarly the term Administration Server refers to an installed instance of Sun
ONE Administration Server, whether it be used with the Meta-Directory
components or another iPlanet or Sun ONE server.

• NETSITE_ROOT is a variable placeholder for the home directory where you
have installed Sun ONE Meta-Directory and any other Sun ONE servers
installed into the same server group.

Where to Find Additional Information

About This Guide 11

• The term flow is used rather loosely to refer to the process of synchronizing
data between an external data source and the meta view. You “flow” data
through a connector to the connector view and then “flow” it to the meta view.
The contrary is also true; you “flow” data from the meta view back to the
connector views and out to the external data sources.

Where to Find Additional Information
In addition to Sun ONE Meta-Directory documentation set, you should be familiar
with the documentation for products that are used in conjunction with it. Of
particular interest are the Sun ONE Console and Sun ONE Directory Server
documentation sets. This section lists additional sources of information you may
find helpful as you use Sun ONE Meta-Directory.

Sun ONE Console Documentation
You can find the Sun ONE Console documentation at the following site:

http://docs.sun.com/prod/s1.ipconsole.2

Sun ONE Directory Server Documentation
You can find the Sun ONE Directory Server documentation at the following site:

http://docs.sun.com/prod/s1dirsrv

Directory Server Developer Information
In addition to the Directory Server documentation, you can find information on
Meta-Directory, LDAP, the Sun ONE Directory Server, and associated technologies
at the following Sun ONE developer sites:

http://www.sun.com/developers

Other Sun ONE Product Documentation
Documentation for all Sun ONE servers and technologies can be found at the
following web site:

http://docs.sun.com/prod/sunone

Sun ONE Support
Other Useful Sun ONE information can be found at the following Internet
locations:

• Sun ONE Training--- http://www.sun.com/training

http://docs.sun.com/prod/s1.ipconsole.2
http://docs.sun.com/prod/s1dirsrv
http://www.sun.com/developers
http://docs.sun.com/prod/sunone
http://suned.sun.com
http://www.sun.com/training

Where to Find Additional Information

12 Sun ONE Meta-Directory Deployment Guide • January 2003

• Sun ONE Support information ---http://www.sun.com/support

• Sun ONE Product Information--http://www.sun.com/products

http://www.sun.com/support
http://www.sun.com/products

13

Chapter 1

Meta-Directory Concepts

This chapter provides an overview of Sun ONE Meta-Directory and its
components and describes why it is an essential application in today’s directory
environment.

The chapter contains the following top-level sections:

• The Importance of Sun ONE Meta-Directory

• Sun ONE Meta-Directory Components

• How Sun ONE Meta-Directory Works

The Importance of Sun ONE Meta-Directory
A typical business enterprise today uses a myriad of directory system types. Often,
the different systems collect information on the same entries (for example,
information about a company employee), but each system will host different types
of information for the entries. Think of the difference between the information
contained in a Human Resource database as opposed to the employee information
compiled by the Information Technologies (IT) department. As each of the systems
gather data about a particular entity, there is an acute need for one product to
integrate the various systems and link together their pertinent, authoritative
information.

Sun ONE Meta-Directory joins dissimilar data repositories into a single LDAP
database so you can effectively manage, modify, and search the information that is
distributed among different directory and database systems. With Sun ONE
Meta-Directory, you can create an “Enterprise LDAP Directory” that you can use
as the central point for directory access and administration.

The Importance of Sun ONE Meta-Directory

14 Sun ONE Meta-Directory Deployment Guide • January 2003

Historically, it has been extremely difficult to manage the data contained in
differing data repositories due to dissimilar formats. Directory information stored
in systems such as e-mail applications, human resources databases, various
relational databases, and online directories makes it difficult to update and
maintain the information for any one particular entity. The authoritative data
source for a particular user attribute may exist in any one of many different user
directories.

In a frequently repeated scenario, the Windows NT security accounts manager
(SAM) stores account information for Windows users, the Network Information
Server (NIS) stores user account information for UNIX users, a human resources
database will likely store specific information for employees and contractors, the
payroll database is maintained in SQL, the facilities database stores employee
building information, and the PBX system is the definitive source for employee
phone numbers.

The Sun ONE Meta-Directory Solution
Sun ONE Meta-Directory integrates the disparate directory systems within an
enterprise so their joined information can be accessed and managed from a single
location, the meta view. The meta view is contained in an LDAP directory that is
hosted by an instance of iPlanet Directory Server.

Meta-Directory creates an enterprise LDAP directory that contains a concentrated
“view” of the external data repositories that it links. Since the meta view is
LDAPv3-compliant, the directory overcomes the limitations of system-specific
directory name spaces. This integration provides functions and capabilities that
give directory planners the flexibility they need to maintain and upgrade their
existing enterprise directory structure.

The meta view is a fully-functional Directory Server database. Using using the API
built into LDAP, you can create applications to access the information stored in the
meta view. In fact, all features available in iPlanet Directory Server (access control,
data back-ups, and so on) are available in the meta view.

The Sun ONE Meta-Directory’s meta view combines diverse details about a data
entity into a single LDAP directory entry. This provides a centralized system of
gathering information on an entity that may have different details scattered
throughout multiple data repositories. Sun ONE Meta-Directory can copy data
from one data repository to another data repository. During this process,
Meta-Directory controls information flow, including what to copy, and where and
when to copy it. You can update all of the records for a single entity either through
the Meta-Directory meta view or through the individual data repositories.

The Importance of Sun ONE Meta-Directory

Chapter 1 Meta-Directory Concepts 15

In addition to unifying systems, you can use Meta-Directory to restructure the
architecture of your enterprise directory system by combining and integrating
legacy systems into state-of-the-art LDAP directories. By integrating these systems,
you have greater control, flexibility, and access to the information stored in each
directory.

An Example Application
Suppose an organization has information for one of its employees, Micki Guzman,
in a number of different data repositories (for example, a human resource database,
an e-mail system, and IS directory system). Not only would there be a lot of
duplicate information on Micki between the systems, but the job of managing the
changes rests with multiple administrators across the organization. Changing the
telephone number or job title of Micki Guzman would require administrators to
change records in each system on which Micki is registered. On top of this, finding
the authoritative value for one of Micki’s attributes (an e-mail address, for
example) can be time consuming and resource intensive.

With Sun ONE Meta-Directory, the details for Micki Guzman are stored in a single
entry in the meta view, which presents a single view of all her directory attributes.
Using the meta view, you can view and manage all of Micki Guzman’s attribute
values from a single location. Modified details are propagated back to each of the
data repositories. Likewise, changing attribute values in one system will
propagate, through Meta-Directory, to all connected systems.

Synchronizing and Joining Entries
Through the process of synchronizing and joining, Meta-Directory integrates and
unifies directory information maintained in the different directory systems
implemented across an enterprise. With Meta-Directory, directory entries are
unified into a single, common LDAP directory.

Figure 1-1 illustrates the difficulty of accessing data that is stored in several
different data repositories. The figure is a simplified look at a problem that faces
many organizations. In this simple scenario, there are three databases that store
different information about a singe object, a person in the company. In this case, if a
user wants to get the phone number, the location, and the email address of an
employee, they must search though an assortment of different database systems.

The Importance of Sun ONE Meta-Directory

16 Sun ONE Meta-Directory Deployment Guide • January 2003

Figure 1-1 Manual Data Synchronization Without Meta-Directory

Figure 1-2 shows the highly automated data flow implemented in the
Meta-Directory join process. Meta-Directory serves as the central repository and
propagation facility for commonly updated user attributes. Here, users are able to
query a single LDAP database (the meta view) to obtain information associated
with a user. With Meta-Directory, users are assured that the information they are
retrieving is the “authoritative” information for that user. Without Meta-Directory,
a user would have to query several different databases, possibly retrieving several
pieces of conflicting information.

The Importance of Sun ONE Meta-Directory

Chapter 1 Meta-Directory Concepts 17

Figure 1-2 Automatic Data Synchronization Provided by Meta-Directory

Through the Meta-Directory synchronization process, a copy of the entries stored in
an external database is provided in a LDAP format. Meta-Directory provides a
“view” of the external data in what is known as a connector view. The connector
view contains information from an external data source after it has been mapped
into LDAP format.

The Meta-Directory join process completes the unification of synchronized user
entries by joining the entries in the central LDAP repository (the meta view). The
join process is managed by the Meta-Directory join engine which, through the join
rules you write, synchronizes information from the authoritative data source for
each of the joined attributes. The join engine is also able to propagate changes
made in the meta view back to the external data sources.

The join engine accomplishes the synchronization and joining by linking entries in
the meta view with those in the participating connector views.

The Importance of Sun ONE Meta-Directory

18 Sun ONE Meta-Directory Deployment Guide • January 2003

The specific information contained in the meta view (the attribute values for each
entry) is configured when you set up the join process. You control the information
contained in the meta view by specifying which attributes to accept or reject from
each external data source. In addition, you configure which external data sources
can accept changes made in (or propagated through) the meta view.

A Meta-Directory Deployment
Successfully deployed, Meta-Directory provides a consistent view of all directory
databases in the enterprise. As shown in Figure 1-3, Meta-Directory leverages the
iPlanet Directory Server, which it uses to store component configuration data and
the meta view itself. The Directory Server also provides user authentication, access
control to directory data, and replication and referral services.

In this figure, the join engine and the Meta-Directory console configuration are
stored in one directory information table (DIT), while the meta view (the unified
LDAP directory) is stored in another DIT. Connector views (LDAP copies of
foreign directory data) may be combined in one directory instance or maintained in
separate instances, depending on the directory requirements. All Meta-Directory
components, including the connector views that participate in the meta view, are
administered as one server group through the Sun ONE Console.

Sun ONE Meta-Directory Components

Chapter 1 Meta-Directory Concepts 19

Figure 1-3 The Meta-Directory Solution

The following sections explain in more detail how the Meta-Directory components
interact and work with each other. The Sun ONE Meta-Directory configuration
process (setting up the meta view, the join engine, the directory connectors, and
connector views) is fully explained in the Sun ONE Meta-Directory Configuration
and Administration Guide.

Sun ONE Meta-Directory Components
Sun ONE Meta-Directory works in conjunction with Sun ONE Console, Sun ONE
Administration Server, and iPlanet Directory Server. You use Sun ONE Console to
manage the different Sun ONE server groups that you have installed in your
Meta-Directory system. You use Sun ONE Administration Server to administer

Sun ONE Meta-Directory Components

20 Sun ONE Meta-Directory Deployment Guide • January 2003

instances of iPlanet Directory Server and any installed Meta-Directory
components. You use iPlanet Directory Server to provide support for the
Meta-Directory configuration files and to provide the directory instance for the
populated meta view.

With the mixing and matching of these software products and components, it can
be difficult to draw a distinct line where one product ends and another begins.
However, simply put, Sun ONE Meta-Directory consists of the following
components:

• The Meta-Directory console

• The join engine (and its associated meta view)

• The supported connectors (and their associated connector views)

Sun ONE Meta-Directory Console
The Meta-Directory console provides a graphical user interface (GUI) that you use to
configure Meta-Directory components and manage the flow of information to and
from the meta view and connector views.

The Meta-Directory console contains both left and right panes. The left pane
displays a navigation tree, which uses icons to represent the components installed in
your Meta-Directory system. When you select a particular Meta-Directory
component in the navigation tree, an interface to a set of administration tasks
displays in the right pane of the console. Refer to the Sun ONE Meta-Directory
Configuration and Administration Guide for detailed information on managing the
Meta-Directory components through the Meta-Directory console.

Sun ONE Console and iPlanet Directory Server Console
In addition to the Meta-Directory console, you will also be working with the Sun
ONE Console and the iPlanet Directory Server console.

The Sun ONE Console
The Sun ONE Console is used to administer the Sun ONE server groups that you
have installed. A server group is an installed set of Sun ONE servers that are
administered by a single Sun ONE Administration Server. It is likely that you will
have more than a single Sun ONE server group, with each server group being
installed into a separate directory structure. For example, if you install iPlanet
Directory Server into one directory structure and Sun ONE Meta-Directory into
another, they will each be represented in the Sun ONE Console as different server
groups.

Sun ONE Meta-Directory Components

Chapter 1 Meta-Directory Concepts 21

An Sun ONE Administration Server is installed into each server group. Sun ONE
Administration Server allows remote administration through the Sun ONE
Console, including the ability to view and modify Meta-Directory component
configurations, start and stop agents, and view component status. For more
information on the Sun ONE Console, refer to the iPlanet Console and
Administration Server 5.0 Server Management Guide, which can be found at the
following Sun ONE web site:

http://docs.sun.com/db/prod/s1.ipconsole.2

In addition to administering server groups, you also use the Sun ONE Console to
access both the Meta-Directory console and the Directory Server console. From the
Sun ONE console, double-click the Directory Server icon or an icon for a
Meta-Directory component to display the associated product console.

The Directory Server Console
Before you install Meta-Directory, you must first install iPlanet Directory Server.
Directory Server has its own console, the iPlanet Directory Server console.
Centralized LDAP directory administration services—including access control,
authentication, backup, and replication—are implemented using the iPlanet
Directory Server console. For more information about the Directory Server, the
Directory Server console, and LDAP, refer to the iPlanet Directory Server
Administrator’s Guide and the other documents located at the iPlanet Directory
Server web site:

http://docs.sun.com/db/prod/s1dirsrv

The Join Engine and the Meta View
The core service of Sun ONE Meta-Directory is the join engine, responsible for
managing and controlling the flow of information into and out of the meta view. Its
job is to maintain the meta view by synchronizing its information with the external
data repositories.

The Join Engine
The join engine uses a configurable sequence of searches to automatically join (or
link) entries in external data repositories with corresponding entries in the meta
view. These searches are called rule sets, which consist of ordered sets of rules that
you configure. When information from an external data repository is propagated to
the connector view, the join engine “links” that information with the
corresponding entry that exists in the meta view, if it is configured to do so.

http://docs.sun.com/db/prod/s1.ipconsole.2
http://docs.sun.com/db/prod/s1dirsrv

Sun ONE Meta-Directory Components

22 Sun ONE Meta-Directory Deployment Guide • January 2003

In addition to joining participating connector views into the meta view, the join
engine is also responsible for controlling the flow of information from the unified
meta view to external data sources.

Meta View Services
In addition to containing the joined data of the participating directories and
databases, the meta view provides the following centralized directory services:

• Incremental updates. External directories and databases can be updated
incrementally as they are modified in the meta view.

• Object modification. The meta view can reflect modifications made to an entry
in an external directory or database.

• Object creation. Objects in external directories and databases can be created
from the meta view.

• Object deletion. Objects can be deleted from the meta view and from the
external directory or database, depending on entity ownership.

Connectors and Connector Views
Connectors provide to the join engine the data contained in an external data source.
The data is provided in the form of a physical directory, called the connector view.
Once a connector populates a connector view, the join engine can flow the data to
the meta view. There are two types of connectors: indirect and direct.

Indirect Connectors
An indirect connector provides an LDAP-based copy of the entries that reside in an
external data repository. The indirect connector presents the information in a
corresponding connector view. The join engine communicates with a connector view
over LDAP and consolidates this information into the meta view.

Using the Meta-Directory Universal connector, indirect connectors convert data
contained in an external data repository into LDAP. The LDAP copy of this data is
stored in a connector view that is hosted by iPlanet Directory Server. The join
engine can then link the entries in the connector view with the entries contained in
the meta view.

Sun ONE Meta-Directory Version 5.1 provides the following indirect connectors:

Sun ONE Meta-Directory Components

Chapter 1 Meta-Directory Concepts 23

• The Universal Text Parser (UTP) is a text-file processor that parses and
generates ASCII text files. Using the Universal Text Parser, you can build
indirect connectors that interface with text-based data sources, such as an
application that outputs a comma-separated value text file.

• The NT Domain connector provides bidirectional synchronization of user and
group data from a Windows NT SAM database into a connector view.

• The Active Directory connector provides bidirectional synchronization of user
and group data from an Active Directory database into a connector view.

• The Microsoft Exchange connector provides bidirectional synchronization of
user and group data from a Microsoft Exchange database into a connector
view.

• The Novell Directory Connector provides bidirectional synchronization of user
and group data between a Novell directory server and a connector view in
iPlanet Directory Server.

• The Lotus Notes Connector provides bidirectional synchronization of user and
group data from a Lotus Notes address book into a connector view.

An indirect connector asynchronously copies entries between the external data
repository and its corresponding indirect connector view, as shown in Figure 1-4.

Sun ONE Meta-Directory Components

24 Sun ONE Meta-Directory Deployment Guide • January 2003

Figure 1-4 Indirect Connector Views

Directory Change Notification System
The Directory Change Notification System (DCNS) is a service provided by
Meta-Directory as a shared library. The join engine and Universal Connector use
DCNS to detect changes in indirect connector views and in the meta view. The
Meta-Directory components also uses this service to provide change notification to
the connected data sources that can accept notifications.

DCNS relies on the change log files that are generated by the Directory Server
instances that host your Meta-Directory views. Without the DCNS service, the join
engine and your connectors would not be able to react to the changes made to any
of the Meta-Directory views. If the change log is not enabled, the DCNS will be
unable to function and the error message mds_controller_unavailable will be
written to the Meta-Directory logs.

Direct Connectors
The join engine communicates directly with external data sources that format their
data using the LDAP protocol (such as iPlanet Directory Server). Because of this,
the join engine forms a direct connection with applications that provide data in
LDAP format. In addition to LDAP, the join engine also “speaks” SQL. With this,
the join engine can also form a direct connection with SQL-based data sources.

Sun ONE Meta-Directory Components

Chapter 1 Meta-Directory Concepts 25

The LDAP and SQL direct connectors are actually a part of the join engine. Because
the join engine can directly connect to LDAP and SQL data repositories,
Meta-Directory does not require a separate connector component to copy the data
into an LDAP-based connector view. Instead, the join engine provides a direct
“view” of the data that resides in the external data repository. With the LDAP and
SQL direct connections, the join engine is able to synchronously access entries in
both the meta view and the connector view that resides on the external data source.
Note: Oracle connector uses the o=netscaperoot to act as an object cache, so
deployments using Oracle direct connector may consider special attention to the
location of this directory instance.

The Meta-Directory direct connectors are shown in Figure 1-5.

NOTE Sun ONE Meta-Directory Version 5.1 does not support all LDAP
and SQL directories and databases. Sun ONE Meta-Directory 5.1
should support all versions of the Sun ONE Directory Server 5.x.
However, for versions of the Sun ONE Directory Server 4.x the
connector view and not the Metaview is supported.

In addition, Meta-Directory can make SQL connections only
through the Oracle Call Interface (OCI). Specifically, Meta-Directory
supports connections to Oracle version 8.1.5 and 8.1.7 databases
using the OCI programming interface.

How Sun ONE Meta-Directory Works

26 Sun ONE Meta-Directory Deployment Guide • January 2003

Figure 1-5 Direct Connectors

How Sun ONE Meta-Directory Works
Two types of services integrate information from different data repository systems
into and out of Sun ONE Meta-Directory:

• The connectors, which transfer entries to and from disparate external data
repositories into the Meta-Directory views.

• The join engine, which unifies entries contained in connector views with those
in the meta view.

These services act upon data created and stored within two types of
Meta-Directory views: the meta view and the connector views.

How Connectors Work
While there are inherent differences between direct and indirect connectors, they
both perform the same basic function: connectors allow the join engine to
sychronize entries between the meta view and the disparate connector views. With
direct connectors, the associated connector view is located on the external data
source. On the contrary, indirect connectors must first flow data to an LDAP-based
connector view before the join engine can synchronize data.

How Sun ONE Meta-Directory Works

Chapter 1 Meta-Directory Concepts 27

Figure 1-6 shows the process of transferring information between external data
repositories, the connectors, and the meta view. Note that LDAP and SQL data
repositories do not use a connector component to populate the associated
connector view.

Figure 1-6 Sun ONE Meta-Directory Component Overview

With direct connectors, the join process rules that you define are enough to
synchronize data between the external data source and the meta view. However,
with indirect connectors, you need to configure a separate set of indirect connector
rules to define what attributes should flow between the external data source and
the indirect connector view. Once the entries are in the connector view, the join
engine can link them to the meta view.

Indirect Connector Rules
When you configure indirect connectors, you specify the entries and attributes that
should flow between an external data source and its associated connector view
using indirect connector rules. Indirect connector rules consist of the following rule
sets:

How Sun ONE Meta-Directory Works

28 Sun ONE Meta-Directory Deployment Guide • January 2003

• Attribute flow rules specify which attributes should be synchronized between
the external data source and the connector view. With attribute flow rules, you
specify attribute name mapping, attribute filtering, and modification
propagation.

• Default value rules specify attribute values to use for a destination value when
the value of the source attribute is empty or when the source attribute itself is
not present.

• Filtering rules specify particular domains, containers, or user entries to
include or exclude from the synchronization process.

However, these rules are not supported by the Novell Directory Connector and
Lotus Notes Connector. It is recommended that the same features are achieved via
the "Attribute Construction" and "Filters" features of the Join-Engine configuration
when the Connector View corresponding to either a Novell Directory Connector or
Lotus Notes Connector is enabled as a predicating view and configured wrt the
Join-Engine.

Indirect connector rules are similar to the join process rules used by the join engine
(which are described on page 32). However, while the join engine uses its rule sets
to determine what flows between the meta view and the participating connector
views, connectors use attribute flow rules to determine what should be
synchronized between an external data source and the indirect connector view.

Attribute Flow Rules
With attribute flow rules, you specify the actual attributes that you want to
synchronize between the external data source and the connector view. In addition,
attribute flow rules specify how modifications flow between the views.

Attribute flow rules specify the following:

• Attribute name mapping specifies how attribute names are mapped between
the external data source and the connector view. You control both how the
names are mapped from the external data source to the connector view and
how they are mapped from the connector view back to the external data
source.

• Attribute filtering specifies which attributes will flow from the external data
source into the connector view. Attribute filtering works one way in that
Meta-Directory does not filter any attributes output by the connector view to
the external data source; all attributes contained in the connector view will be
flowed out to the external data source.

How Sun ONE Meta-Directory Works

Chapter 1 Meta-Directory Concepts 29

• Modification propagation specifies how modifications to attributes are
handled. Depending on the attribute flow granularity, modifications to
existing data can be restricted to the owner of the object or they can be allowed
by either the external data source or the connector view.

Attribute Name Mapping
Attribute mappings specify attribute names and they specify how attributes should
be matched between two different data repositories. When you define attribute
flow rules, you map the attributes from one data repository to another. For
example, you might specify that an external database field LastName will map into
the indirect connector view attribute sn. If you are flowing data to an external data
source, you can also specify how the attribute names will map from the connector
view to the external data source.

Because an indirect connector view is an LDAP DIT, information stored in a
connector view must conform to a declared LDAP schema. Because of this, all
attribute names must be conform with the schema that is loaded into that view. In
contrast, an external database will likely contain data fields that do not conform to
an LDAP schema. Attribute name mapping ensures that the attribute names are
correctly named between the two data sources.

For example, Table 1-1 shows possible external database field names and the
names that they could be mapped to in the connector view, (the connector view
attribute names are part of the LDAP schema inetOrgPerson):

In this example, when flowing entries between an external data source and the
connector view, the attribute LastName in the external data source maps to the
attribute name sn in the Meta-Directory connector view. Once mapped into an
LDAP schema, the attribute sn can be propagated to the meta view, which is also
stored in LDAP format.

Table 1-1 Sample Name Mapping

External Database Field Name Mapped Connector View Attribute Name

LastName sn

Firstname givenname

FullName cn

Position title

PhoneNumber telephoneNumber

How Sun ONE Meta-Directory Works

30 Sun ONE Meta-Directory Deployment Guide • January 2003

Attribute Filtering
Attribute filtering controls the flow of object attributes from an external data source
to its associated connector view. When you map the attribute names from the
external data source to the connector view, you specify only those attributes whose
values you want to flow to the connector view. External attributes whose names
you do not specify will not be flowed to the connector view.

Attribute filtering is a one-way filter, it filters only the attributes that will be flowed
to the connector view from the external data source. If you are flowing data out of
the connector view back to the external data source, no filtering will take place; the
connector view will flow all the data that it contains. You control the filtering at
this stage through the import function of your external data source.

Modification Propagation
Modification propagation specifies how modifications to existing data will be
propagated between the connector view and its associated external data source.

Modification propagation is determined by the attribute flow granularity, which is
defined as follows:

• Entry-level granularity is the default. If you do not specify any attribute flow
rules, Meta-Directory will use this level of granularity when if flows data that
has been modified.

• Attribute-level granularity used if you define any attribute flow rules.

Meta-Directory uses the defined attribute flow granularity to determine how it will
propagate entries that contain modified attribute values. If a connector view has
entry-level granularity defined, then Meta-Directory will only flow the entries
whose data was modified by the source that owns the entry (Meta-Directory will
not flow a modified entry if the entry was modified by a data source other than the
one that created it). However, if you have defined any attribute flow rules for the
connector view, then attribute-level granularity prevails and Meta-Directory will
flow all modified entries between the connector view and its associated external
data source, regardless of who owns the entries.

The Novell Directory Connector and Lotus Notes Connector require the user to
always select one of the attribute flow rules (the preset rules or user-created custom
rules). Hence, there is no support for entry-level granularity.

Object Class Flow Rules
The Novell Directory Connector and Lotus Notes Connector use object class flow
rules to specify the mapping between external data source object classes and the
corresponding connector view object classes. Novell Directory Connector and
Lotus Notes Connector provide a single preset configuration for Object Class Flow:

How Sun ONE Meta-Directory Works

Chapter 1 Meta-Directory Concepts 31

• Object Class Set for Default Schema, that represents mappings for the default
user and group object classes present in both Novell Directory Server or Lotus
Notes and iPlanet Directory Server (external data source and connector view).

By default "Object Class Set for Default Schema" is selected as the "Object Class
Flow Configuration". In addition to the preset object class flow configuration, you
can also create new/custom object class flow rules manually. This allows you to
flow entries belonging to any object class (not just those corresponding to user and
group) in both directions.

For more details, please refer the sections - "Object Class Flow", "To add Object
Classes for Novell Directory connectors", "To add Object Classes for Lotus Notes
connectors" and "To Configure an Object Class Flow Rule" in the administration
and configuration guide.

Default Value Rules
A default attribute value is a pre-configured value that Meta-Directory will use in a
connector view if an entry in the external data source has no value for the
corresponding attribute, or if the attribute has no value.

When updating a connector view or external data source, Meta-Directory updates
all attributes or fields in the external directory that have associated values.
Normally, if an field has no value in the external directory, it is not added to the
connector view, and vice versa. To make sure that the connector view or external
directory contains appropriate attributes and values, you can define a default
attribute value to use with a particular attribute or field.

For example, if the PhoneNumber field in an external data source has no value, but
you want the telephoneNumber attribute in the connector view to contain a valid
phone number, you can specify a default attribute value (such as the main office
telephone number) to be used in the connector view whenever the field is empty or
missing in the external data source.

Filtering Rules
By default, all entries in both the connector view and the external data source are
included in the synchronization process. However, you can set up filters to
designate that particular entries are to be included or excluded from the
synchronization. With filtering rules, you have the control to specify which level of
a directory tree you want to include (or exclude) from the synchronization process.
Within that tree, you can then exclude (or include) specific groups of entries.

How Sun ONE Meta-Directory Works

32 Sun ONE Meta-Directory Deployment Guide • January 2003

How the Join Engine Works
The Sun ONE Meta-Directory join process, which the join engine performs, is the
key to unifying directory and database entries into the meta view. The join process
links entries that exist in each of the connector views with an entry in the meta
view. A link between an entry in the meta view and the entries in one or more
connector views allows attributes to flow between the views.

The outcome of the join process depends on the join engine applying the sets of join
process rules that you define. After the join process occurs, entries between the
views are either linked or not linked, depending on how well they match the
criteria defined in your join process rules.

When creating the join process rules, you have a lot of flexibility in determining
which entries become linked between the different views. In addition, many
elements of the join engine configuration are shared between views, making it easy
to administer the rules that are shared between connector views.

The Join Process Rules
When the join engine synchronizes one view with another, it uses a set
configuration settings, or join process rules, to determine the correct join and data
flow. The following join engine settings are configurable from the Meta-Directory
console:

Join rules enable you to specify the rules for joining entries between a connector
view and the meta view.

Attribute flow rules enable you to specify which attributes should be propagated
between a connector view and the meta view.

Filters enable you to include or exclude entries from a connector view by a subtree
or a specific entry in a subtree. With filters, you specify groups of entries that you
want to include or exclude from the connector view.

Distinguished Name (DN) mapping rules let you specify where you will map
entries between a connector view and a meta view. Using DN mapping rules, you
create an RDN under a connector view or meta view which you can populate with
data. You can also create a DN mapping rule to calculate the primary key of an
Oracle table.

Constructed attributes enable you to create attributes in entries stored in the meta
view or connector view by combining and manipulating entry information.

A general description of these items is given in the sections below; for complete
information on how to configure these items, refer to the Sun ONE Meta-Directory
Configuration and Administration Guide.

How Sun ONE Meta-Directory Works

Chapter 1 Meta-Directory Concepts 33

Join Rules
Join rules specify which entries will be linked between the participating connector
views and the meta view. When Meta-Directory applies the join rules, the result
will be a one-to-one correspondence between the entries that are linked the
respective views. If a join rule is applied against a view, and the rule results in
more than one candidate entry being selected from a view, no entries will be joined
(links between views cannot be one-to-many).

Filters can be built to select an entry, or set of entries, from the opposing view. A
filter is an LDAP search rule (or an SQL query) that when applied against a meta or
connector view, result in a set of entries being selected to flow to the opposing
view.

Join rules are applied in sets. When creating your join rules, you will add
individual rules in a particular sequence to form a join rule set. A join rule set
specifies an ordered list of join rules that are sequentially tested until either an
individual join rule identifies a single entry or until all rules fail.

Each rule in the join rule is fully evaluated, one rule at a time, until a rule returns
one or more entry matches. If the evaluation of a join rule results in more than a
single candidate match, then no entries will be joined by that rule. In addition, no
entries will be joined if the evaluation of the entire join rule set fails to match any
entry. In each of these cases, you can manually join specific entries using the Fix-It
Tool. See “Manually Joining Entries” on page 36 for more information.

Attribute Flow Rules
Passing data from an external data source, through a connector to a connector
view, and to the meta view is known as flowing data. You specify the authoritative
attributes, those that flow to the meta view, using attribute flow rules. Attribute flow
rules enable you to specify the specific data source for each of the attributes
represented in the meta view. They also let you specify which external data
repositories can be modified when an entry or attribute value changes.

Attribute flow defines the flow of attributes between connector view and meta
view entries. An attribute flow rule lists the attributes that flow between two linked
entries and provides pairs of source/target attribute names.

Multiple attribute flow rules may be grouped together into an attribute flow set. The
join engine scans through the attribute flow set and selects the first attribute flow
rule that matches the selection criteria. The join engine then applies all the attribute
flow pairs from the selected rule.

Attribute flow sets provide ordered sets of rules that the join engine scans until it
finds a match in the connector view or meta view it is searching. Each rule set is
applied in order until a valid rule is found.

How Sun ONE Meta-Directory Works

34 Sun ONE Meta-Directory Deployment Guide • January 2003

Types of Attribute Flow
The selection criteria for attribute flow is based on two types of attributes: entry
attributes and context attributes. While entry attributes deal strictly with the source
entry and the target entry, context attributes are involved with the context of the
operation the join engine is performing. Context attributes are based on a selection
of items from the following list:

• Ownership of entry

• Membership of entry

• Operation (add, update, or delete)

• Flow direction (connector view to meta view, or vice-versa)

Entry Ownership and Membership
The ownership and membership of entries are key concepts when working with
the propagation of changes through Sun ONE Meta-Directory. The join engine
updates entries based on entry ownership. Entry membership allows the join
engine to work with sets of entries.

Entry ownership dictates the way the join engine decides which data source has
ultimate control over an entry. Entry ownership is configurable from the
Meta-Directory console—using the console, you specify who will own the entry
when the entry is created in one of the Meta-Directory views.

The ability to delete an entry from a view (either the meta view or a connector
view) depends on who “owns” the entry. If a view does not “own” an entry, and
you delete the entry from that view, the entry will be added back to the view
during the next synchronization process.

NOTE It’s important to note that data contained in indirect connector views
is an LDAP representation of the data contained in the
corresponding external data source. In most cases, the owner of the
data is the external data source. As such, you should always use the
services of the external data repository to modify (add, delete, or
modify) the objects that it owns; you should not modify the objects
in the corresponding connector view. Making sure that
modifications are made by the owner of the data ensures that the
modifications will properly flow through the Meta-Directory
system.

How Sun ONE Meta-Directory Works

Chapter 1 Meta-Directory Concepts 35

In Meta-Directory, it is possible to have a connector view that contains data from a
variety of data sources. Membership identifies an entry within a connector view that
is native to the data source represented by that connector view. Rules can then be
configured and applied based on the attributes that are already present in the data
source. Membership can be used to control the flow of attributes to and from a
view. Membership can also be used when you create selection criteria rules. For
example, you can specify that only members of a view can flow from that view to
other views, or that a view will take modifications only if the object being modified
is a member of that view.

Filters
Filters are used to explicitly include or exclude entries within specific directory
subtrees during synchronization. Filters enable you to configure the meta view or
connector view to exclude specific subtrees or entries from the unification process.

Distinguished Name (DN) Mapping Rules
Distinguished Name (DN) mapping rules identify where to create a new entry in the
destination view (either the meta view or a connector view) given a source entry.
The input into a DN mapping rule is the source entry, and the result is a partial
DN, which the join engine concatenates with the view location DN to produce a
fully qualified DN. The DN mapping rule actually creates an RDN for a specific
entry, placing it in the appropriate place under the root of the associated meta view
or connector view.

Multiple DN mapping rules may be grouped into a DN Mapping Rule Set to allow
for an ordered testing of rules. These rules can be defined differently for entries
originating from each different connector view connected to Meta-Directory.

Constructed Attributes
The term constructed attribute refers to the broader scope of any additional attribute
that is not explicitly part of a source entry, but that may be derived in a target entry
given source data. A simple example would be as follows: if a user has an attribute
“state equals New York,” a constructed country attribute of “country equals USA”
can be created.

The real functionality of constructed attributes comes into play when you use them
in the creation of attribute flow settings. You can use constructed attributes in the
join rules you write, giving you flexibility when flowing data between two data
sources.

How Sun ONE Meta-Directory Works

36 Sun ONE Meta-Directory Deployment Guide • January 2003

Manually Joining Entries
When you add, delete, or modify an entry in a connector view, a search is
performed on the meta view for a matching user entry using the configured join
rules. If a match is found, a link is made between the two views and any changes
made to the entry in either view will be reflected in the other view (of course,
depending on the attribute flow configurations).

For example, if an entry for the user David Lewis appears in the Human Resource’s
database connector view and the join engine links the David Lewis entry in the
meta view, user information for David Lewis may be modified in the meta view.
Likewise, any Human Resource database attribute changes for David Lewis that
are made in the meta view will flow to the Human Resource database.

However, if while evaluating a join rule, the join engine returns more than a single
candidate entry, the join will fail (joins can only exist between a single entry in the
meta view and an associated connector view). For example, if a join rule links
entries based on the sn attribute, and there happens to be two entries in the
connector view that have the same sn attribute, the join rule will return multiple
candidate entries after processing the rule. Because of this, it is possible for an entry
to be left out of the join process. Using the Query Fix-It Tool, you can manually link
entries that your join rules miss.

It’s good practice to examine the Meta-Directory logs after each synchronization
cycle to ensure that no entries were left out of the synchronization cycle. If you find
that the cycle missed an entry, you can use the Query Fix-It Tool. The Query Fix-It
Tool enables you to manually control the joining process. With this tool, you can
link, exclude, unlink, or create entries on an individual basis. For information on
using the Query Fix-It Tool, refer to the Sun ONE Meta-Directory Configuration and
Administration Guide.

37

Chapter 2

Planning the Meta-Directory System

The Meta-Directory solution involves planning, installing, and configuring the
iPlanet Directory Server and Sun ONE Meta-Directory systems so they can
produce the meta view you have designed. In addition to these software
components, you might also need to consider the installation and configuration of
any additional services that your external directory data sources might need to
operate.

Successful integration of Meta-Directory in the enterprise occurs in three phases:
Design, Deployment, and Maintenance:

• In the design phase, you analyze your existing system and establish the
architecture and requirements of the Meta-Directory system you will deploy.
In this phase, you must take a careful look at your existing directory data
sources and plan how to incorporate these into a single meta view.

• In the deployment phase, you devise a systematic approach to the
configuration of components and the implementation of servers and services
in the enterprise. This phase deals with how to set up a Meta-Directory system,
the different servers and services you need to install, and the topology of the
hardware that you will be employing.

• In the maintenance phase, you provide a plan for maintaining the
Meta-directory system once it has been deployed. This third and last phase
deals with what needs to be done to keep your Meta-Directory system
properly tuned and maintained.

This chapter contains the following sections:

• Designing Your Meta-Directory System

• Deploying Your Meta-Directory System

• Maintaining Your Meta-Directory System

Designing Your Meta-Directory System

38 Sun ONE Meta-Directory Deployment Guide • January 2003

Designing Your Meta-Directory System
Ideally, all of your directory data would be contained in one integrated iPlanet
Directory Server system, and the system would be spread evenly through the
entire enterprise. We know, however, that such an ideal system is rarely in place.
More often than not, many different types of directory systems are implemented
across a large corporate network. Although the ideal of a single LDAP directory
system is often out of reach, you can use Meta-Directory to join the heterogeneous
types of directory systems running across your organization, and thus create a
single LDAP directory of the information.

This section addresses the different tasks that you need to perform to design a
robust Meta-Directory system. Included in this section are the following
subsections:

• Beginning the System Design

• Performing a Site Survey

• Determining the Data Design for Your Views

• Planning the LDAP Schema Used in Your Views

• Planning System Security

• Allocating the Necessary Resources

Beginning the System Design
When reviewing the systems that are implemented across your organization, it’s
likely that you will see iPlanet Directory Server already being used as part of the
directory system mix. When you add Meta-Directory to the directory architecture,
you will be adding at least another instance of iPlanet Directory Server to the
mixture of directory systems already in place. When you begin to address
Meta-Directory system design, it’s a good idea to separate the Directory Server
instances that host organizational data and the Directory Server instances that host
any of the Meta-Directory views. Its also advised to store configuration data
c=netscaperoot in a separate directory server.

Before you can begin to design your Meta-Directory system, you must clearly
define and design the Directory Server system(s) you will use to host your
organization’s user directories. To help with this task, the iPlanet Directory Server
Deployment Guide details the planning steps that you should follow to successfully
deploy Directory Server in your organization.

Designing Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 39

Although the entire iPlanet Directory Server Deployment Guide is devoted to
designing and implementing your user directory system, most of the principles
and concepts described in that guide are also valid for designing and deploying a
Meta-Directory system (Meta-Directory is built on iPlanet Directory Server). This
guide assumes that you understand the concepts presented in the iPlanet Directory
Server Deployment Guide and that you are familiar with configuring and running
Directory Server, as explained in the iPlanet Directory Server Administrator’s Guide.

The design of Meta-Directory begins with a site survey to gather information about
the existing data sources and how you want to incorporate them into a single
LDAP directory (the meta view). The next steps are to determine the data flow
(selecting the attributes you want to use from each database) and plan the physical
design of the system.

When designing the system, keep in mind the impact the new system will have on
existing directory structures.

Installing Directory Server to Support Meta-Directory
Meta-Directory stores its configuration data in a Directory Server directory
information tree (DIT). Like other iPlanet or Sun ONE servers and components,
Meta-Directory stores its configuration under the suffix o=netscaperoot.

When you install both iPlanet Directory Server and Sun ONE Meta-Directory, the
following components store their configuration data under o=netscaperoot:

• Sun ONE Console

• iPlanet Directory Server

• Sun ONE Meta-Directory

• Sun ONE Administration Server

To optimize system performance, it is best to use a dedicated Directory Server
instance for the Meta-Directory configuration database and a separate dedicated
Directory Server instance for the meta view (which contains the user data that you
will be synchronizing with Meta-Directory). Often, the Directory Server instance
that hosts the Meta-Directory configuration is called the “config server.”

NOTE If you are synchronizing data contained in an Oracle database,
Meta-Directory will use o=netscaperoot to store link information
generated for the Oracle entries. In this case, it is possible that
o=netscaperoot will house a large number of entries.

Designing Your Meta-Directory System

40 Sun ONE Meta-Directory Deployment Guide • January 2003

In addition to using separate Directory Server instances, it is also recommended
that you use a dedicated disk partition to store the directory information tree that
hosts the meta view. In production scenarios where you plan to synchronize large
amounts of user data in the meta view, using dedicated systems for the individual
Directory Server instances can greatly increase system performance. For more
information on setting up your Meta-Directory components and services, refer to
“System Topology,” on page 50.

Directory Server Design and Deployment
Detailed information describing the design of LDAP directory services abounds. In
addition to the iPlanet Directory Server documentation, refer to the following
references for more information on deploying Directory Server in your
organization:

• Understanding and Deploying LDAP Directory Services
by Mark Smith, Tim Howes, and Gordon Good (Macmillan Technical
Publishing, January 1999)

• Implementing LDAP, by Mark Wilcox (Wrox Press, March, 1999)

Performing a Site Survey
The first stage of planning your Meta-Directory system is to perform a site survey.

Determining Data Sources and Authoritative Attributes
In the site survey, you will, among other things, determine the following:

• The data sources you want to join in the meta view.

• Which data sources contain the “authoritative” user attributes you want to
flow to the connector and meta views.

The first stage of planning your Meta-Directory system design is to determine the
different data sources that you wish to link with Meta-Directory. While this might
at first seem obvious, it is a good idea to poll the different organizations in your
enterprise to see if they have implemented any directories or databases that contain
information that you want to join with the meta view.

Once you have determined each of the data sources you want to join in the meta
view, you will need to compile a list of the attributes or fields contained in each
directory or database. From this list, you can begin the process of defining which
attributes or fields you will use from each of the directories or databases in your
organization.

Designing Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 41

Authoritative attributes are the attributes that you will use to populate your meta
view. For example, suppose you have two external data sources that flow attributes
to the meta view: a Human Resources database and an Information Systems (IS)
directory DIT. Consider that both data sources contain information on the
company’s employees. You will need to decide which attributes (fields) will be the
authoritative source for each of the attributes contained in the meta view. It is likely
that both data sources will contain the first and last names of the employees.
However, it’s likely that the Human Resources database will contain the most
up-to-date and correct names. On the other hand, it’s likely that the IS directory
will contain the correct network IDs for each of the users.

Determining the authoritative attributes in your Meta-Directory system is a bit like
going through the normalization process when you design a relational database.
You must make sure to keep track of the authoritative attributes as you flow them
from different data sources and join them in the meta view. Be especially attentive
when you design how modified data flows back out to the various external data
repositories. When designing your system, anticipate events that could affect
system performance and stability. Minimize problems that could occur if a
database goes down and keep enough flexibility in your plan to allow for the
changes that could occur when a new data source comes on line. When planning,
be sure that modifications made to one data source will not adversely affect the
data contained in another.

In the example shown in Table 2-1, several data sources provide the authoritative
attribute data.

Table 2-1 Data Sources From the Site Survey

Data Source Purpose Provide
Changes?

Accept
Changes?

Connector
Type/Protocol

Human
Resources
database
(Oracle)

Maintains all the people
entries for regular
employees and
contractors, including
location, employment
status, and so on.

Yes Yes Direct Oracle
connector

 PBX Stores employee and
contractor telephone
numbers. Depends on
HR to provide
information about
changes in employment
status.

Yes Yes Customized text
connector (UTP)

Designing Your Meta-Directory System

42 Sun ONE Meta-Directory Deployment Guide • January 2003

Determining Data Flow
In addition to determining the data sources and attributes you will use to populate
the connector and meta views, you will also need to define the flow of the
attributes into and out of the different Meta-Directory views. To help you
determine this, you should collect all of the following information during the
Meta-Directory planning phase:

• The data sources you want to join into your meta view.

• The user attributes (or database fields) contained in each of the external data
repositories.

• The user attributes that need to flow to and from the unified directory (the
meta view). These are often the authoritative attributes from each data source.

• The frequency that attributes need to flow to and from the meta view.

The following questions should be answered during your site survey:

❍ How often are updates made to each external data repository?

IS database 1 --
NT Domain

NT Domain stores user
information for
Windows users

Yes No NT Domain
connector

IS database 2 --
NIS (Network
Information
Server)

NIS contains UNIX user
account information.

Yes No Customized text
connector (UTP)

Netscape
Phone book

Contains location,
phone number, and
email address
information. This is a
Directory Server
application that enables
the searching, browsing,
and editing, of user
information.

No Yes Direct LDAP
connector

Table 2-1 Data Sources From the Site Survey (Continued)

Data Source Purpose Provide
Changes?

Accept
Changes?

Connector
Type/Protocol

Designing Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 43

❍ How often will modifications be made to the attributes contained in the
meta view?

Determining the update frequency will help you schedule the frequency of the
synchronization cycles for your connector and meta views.

• The mapping of user attributes from the external data source to the connector
view, and vice-versa. Mapping specifies which attributes from the external
data sources flow to the specific attributes in the connector views, and
vice-versa.

• The direction of attribute flow. Attributes may flow from the external data
source to the connector view, from the meta view to the connector view, or
both.

• The data ownership. Data ownership defines who owns a data object: the meta
view or the external data source that populates a connector view. Data objects
can be deleted only by the “owner” of the object. While you might be able to
temporarily delete an object from a Meta-Directory view own the object, the
object will reappear when the data is refreshed.

Data Flow Worksheet
Once you have collected the data needed to determine the data flow, you should
create a data flow worksheet. The worksheet will list all the data sources you plan
to include in your Meta-Directory system, the attributes in each data source, the
attributes that you will flow from each data source and their name mappings, any
constructed attributes that you plan to incorporate in your join rules, and so forth.

Determining the Data Design for Your Views
You should determine the design of the directory information trees (DITs) that host
your Meta-Directory views during the planning phase. Whether you use one or
more Directory Server instances, best performance will be achieved if you dedicate
a directory suffix (namespace) for each view that you create. This means that the
meta view will have its own directory suffix, as well as the individual connector
views that you instantiate in your Meta-Directory system.

If you use individual Directory Server instances for your meta and connector
views, this recommendation is moot. However, if you are instantiating different
views on a single instance of Directory Server, then you will want to pay close
attention to how you set up the DIT.

Designing Your Meta-Directory System

44 Sun ONE Meta-Directory Deployment Guide • January 2003

System performance is not influenced much by whether you create a relatively flat
tree structure or a more vertical tree. However, a flat tree structure is easier to
manipulate as you administer the different branches in your directory tree. In
addition, should the need arise, troubleshooting the system will be a bit easier if
you have a flat tree structure rather than a vertical tree structure.

For example, consider the following flat tree structures for hosting a meta view and
three connector views:

o=metaview o=notesCV4
o=oracleCV1 o=ndsCV5
o=ldapCV2 o=excCV6
o=adCV3

Compare this flat tree structure to a tree structure that has more levels, as the one
shown below:

ou=metaview, ou=metadir, o=siroe

ou=oracleCV1, ou=connectorviews, ou=metadir, o=siroe

ou=ldapCV2, ou=connectorviews, ou=metadir, o=siroe

ou=adCV3, ou=connectorviews, ou=metadir, o=siroe

ou=notesCV4, ou=connectorviews, ou=metadir, o=siroe

ou=ndsCV5, ou=connectorviews, ou=metadir, o=siroe

ou=excCV6, ou=connectorviews, ou=metadir, o=siroe

When you determining the structure of the directory trees that host your different
Meta-Directory views, need to determine the base dn for your meta view as well as
the base dn for each of the connector views in your system.

Setting Up the Meta-Directory DIT
You set up the namespaces for your Meta-Directory views through the Directory
Server console that hosts the views.

In Directory Server 5.x, do the following:

1. From the Directory Server console, select the Configuration tab.

2. In the navigation tree in the left pane, right-click the Data icon and choose
Create New Root Suffix.

3. Enter the dn for the root entries for the directory tree. In the dn specified, make
sure there are no leading spaces or spaces between commas and attribute
types.

Designing Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 45

Planning the LDAP Schema Used in Your Views
In the system you design, Directory Server and Meta-Directory will likely exist to
support one or more directory-enabled applications. These applications have
requirements concerning the data contained in the directory, its format, and how
the data is interpreted.

It is always best to use an existing LDAP schema to represent the data you are
hosting in your Meta-Directory views. Using an existing schema will allow your
data to be more portable to other applications if the need arises. If you do need to
customize an existing schema, be sure to consider carefully any custom attributes
you will add. Once you move forward with a custom schema, it is difficult to undo
your modifications and return to a standard set of LDAP attributes.

Planning System Security
Many Meta-Directory design decisions have security implications. Just as with all
applications that deal with a company’s proprietary data, you want to ensure that
the Meta-Directory system you deploy provides a secure environment for the data
it manipulates. System security for Meta-Directory includes (but is not limited to)
physical access to the systems used by Meta-Directory, network access to those
systems, binding under commonly used accounts (for example, cn=directory
manager), non-Meta-Directory client access to the directory server instances, and so
on.

You can use the user authentication and access control mechanisms that Directory
Server provides to protect the data that you host in the different Meta-Directory
views. Using Directory Server services, you should be able to meet the security and
privacy requirements of your system administrators, as well as the users of the
applications that access the Meta-Directory views.

Between instances of Directory Server, you can use LDAPS for secure
communication. However, it’s important to note that Meta-Directory components
do not use LDAPS to communicate between the components and views.

Allocating the Necessary Resources
Allocating resources includes obtaining the hardware and software necessary to
support Meta-Directory and the other services you will use with your
Meta-Directory system (this might include messaging systems, relational
databases, network monitoring tools, and any special programs or utilities).

Deploying Your Meta-Directory System

46 Sun ONE Meta-Directory Deployment Guide • January 2003

Choosing hardware and software that satisfies design requirements for scaling and
performance is crucial to successful deployment. Special attention to fast disk
subsystems is key to overall system performance as often Sun ONE Meta-Directory
systems suffer from slow overloaded disks.

In addition to hardware and software, consider the human resources that you
might need to get your system up and running, and the resources that you will
need to maintain the system that you design.

Deploying Your System and Creating a
Maintenance Plan
At this point, the design phase is over and it is time that you begin to deploy the
system you have planned. The remaining sections in this chapter cover
deployment and what you need to plan for once your system is up and running.

As part of the Planning phase, you should create a maintenance plan. While some
of the items to consider are discussed on page 74, you should make sure to
properly plan for the growth and expansion of your Meta-Directory system.

Deploying Your Meta-Directory System
Deploying your Meta-Directory system consists of implementing the system you
mapped out in the design phase, as described in the preceding section, “Designing
Your Meta-Directory System.”

Effective Meta-Directory deployment centers around the use of system resources
(your system hardware) to set up the instances of iPlanet Directory Server needed
to host the different Meta-Directory components. When sizing system needs, you
must also consider the services provided by any external data repositories and the
resources they use.

A careful, systematic approach to your Meta-Directory deployment is strongly
advised. By deploying your system incrementally, you can make sure each discrete
portion of the system works before moving on to the next part of the deployment
phase. For example, with indirect connectors, first prove flow rules work before
installing the Join Engine and defining Joins.

The deployment phase of Meta-Directory consists of properly sizing your host
systems and effectively locating them on the network. Once your systems are up
and running, tuning issues, system maintenance, and scaling the system for growth
become the system administrator’s biggest concern.

Deploying Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 47

Data Entry Size and RAM Considerations
The size of the data objects that you will be flowing through your Meta-Directory
system plays an important part in the overall design of your system setup. For
example, you might be flowing entries that are relatively small (for example,
1024 Kb per entry) or you may be flowing larger entries that contain binaries, such
as photos or digital signatures. Entry size plays an important role in the resources
that the join engine uses to synchronize entries between views. Throughput of the
system depends on having the available system resources to meet the demands of
your setup.

In general, you can calculate the size of an entry by exporting it to LDIF and
counting the number of characters it takes to represent the entry in text form. Add
two characters for each line in the entry to account for the carriage return and line
feed.

If your data contains binary data, you can use a different method to calculate the
size of entries. Binary data is base64 encoded, meaning that binary data is stored in
the Directory Server database as text characters. To calculate the size of an entry,
export the entry to LDIF, then check the size of the LDIF file. On a UNIX system,
you can use the following command to report the size of an LDIF file:

ls -l LDIF_file

On Windows NT systems, use the DIR command to view file size.

If you are estimating the size of entries for sizing information, you will likely want
to average the size of several different entries to get a better idea of your database
needs.

RAM Sizing
Not surprisingly, join engine performance is directly related to system resources:
the more system memory (RAM), the faster the join engine will be able to
synchronize entries between the Meta-Directory views. While you can supplement
system RAM with virtual memory (swap space), you must keep in mind that
overloading virtual memory will impact the performance of other system
processes, such as other applications running on the system.

This section offers some simple examples to help you judge the amount of system
RAM you will need in the units you deploy in your system. The database entries
used in the examples below are relatively small, around 1024 Kb per entry. While
this is a normal size for most data contained in a DIT of object class
inetorgPerson, the size of the entries synchronized in the system you are
designing might be vastly different, especially if you are flowing binary data.

Deploying Your Meta-Directory System

48 Sun ONE Meta-Directory Deployment Guide • January 2003

When sizing the RAM requirements for your system units, consider the following
data points observed from system testing:

• When synchronizing 300,000 entries, the join engine used roughly 400 Mb of
memory.

Note that in this scenario, Directory Server was actually hosting 600,000
entries: 300,000 in the meta view and 300,000 in the connector view. Here, both
the meta view and the connector view were hosted by a single Directory Server
instance located on a single machine, however, the join engine was hosted on a
different machine.

• When synchronizing 500,000 entries, the join engine used roughly 665 Mb of
memory. In this scenario, there were 1 million data entries hosted by Directory
Server, with each entry being 1024 Kb. Both the meta view and the connector
view were hosted by a single Directory Server instance located on a single
machine, however, the join engine was hosted on a different machine.

When you start the join engine, the memory consumption will increase rapidly
until it reaches the load where it begins to level off.

The minimum hardware requirement for Meta-Directory is 256 Mb of RAM (or
512 Mb if you are hosting Directory Server on the same machine). However, keep
in mind that a larger production system will require more RAM, and perhaps more
system units, than the established minimum requirements. Also, it is
recommended that you hose the Meta-Directory components (the join engine and
any components you have installed) on a different machine that the ones that host
your Directory Server instances.

Table 2-2 gives additional examples on the memory used to synchronize entries
between a connector view and a meta view. In this table, the average entry size is
1024 Kb, or 1 mega-byte of data per entry, per view.

Table 2-2 Estimating System RAM Size

System RAM Number of Entries
Synchronized

Notes

512 Mb 1000 -> 10,000 Sun ONE Console, join engine, and Directory
Server hosted on the same machine.

Deploying Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 49

There is a delicate balance that needs to be achieved when you have large amounts
of data. For details on the adjustments that you can make to customize your
Meta-Directory setup, see Chapter 4, “Meta-Directory Performance Tuning.” You
should also refer to the Directory Server Deployment guide for further details
about hardware requirements.

512 Mb 10,000 -> 100,000 Sun ONE Console, join engine, and Directory
Server hosted on the same machine.

Directory Server heavily tuned for 100,000 entries
(a total of 200,000 entries).

Synchronization might be slow and may time out.
You must adjust the time-outs of the Directory
Server that hosts the join engine.

512 Mb 100,000 to 300,000 Use this to test-pilot a system only! Directory
Server would have to be heavily tuned in favor of
300,000 Kb of data. Synchronization times are long
and time-outs are likely.

1024 Mb > 100,000 Sun ONE Console, join engine, and Directory
Server hosted on the same machine.

Comfortable performance, Directory Server
settings need to be tuned, but time-outs are
unlikely.

 1024 Mb 100,000 Sun ONE Console, join engine, and Directory
Server hosted on the same machine.

To sync 100,000 entries, Directory Server must be
heavily tuned for 100 Kb of data. This would be
much better than a 256 Kb system, but the join
engine would still need longer than the default
time-outs.

2 Gb 500,000
(1 million hosted
data entries)

Sun ONE Console and join engine hosted on the
same machine; Directory Server hosted on a
separate system.

The directory server needs to be heavily tuned in
favor of this high volume of data entries.

Table 2-2 Estimating System RAM Size

System RAM Number of Entries
Synchronized

Notes

Deploying Your Meta-Directory System

50 Sun ONE Meta-Directory Deployment Guide • January 2003

Directory Sizing for Windows NT
Calculating the number of Windows NT Domain entries that will be synchronized
is useful for determining the RAM and disk space required for the directory service
(for optimal performance, the Directory Server needs to hold the entire directory
data in RAM).

In this case, entry size is not the only consideration. It is equally important to
determine how often the data will be changing in each of the supported Windows
NT Domains, how many systems the changed data will have to flow to, and the
complexity of the data transformation (for example, attribute mapping, DN
mapping, and the filter and rule sets that need to be established).

System Topology
The Meta-Directory system topology is the physical layout and locations on the
network of the machines that you use to host all the servers and services in your
Meta-Directory system. When designing the system topology, you are concerned
with the physical implementation of the Meta-Directory components and where
you place them on the network. In designing the system, you want to strike a
balance between resource use and growth potential.

When you perform a site survey during the Meta-Directory planning phase, you
will determine (among other things) the network location of the applications that
will provide user information to your connector views and, ultimately, the meta
view. Into this network layout, you will add the Meta-Directory components and
services (the join engine, the meta view, connectors, and the associated connector
views; plus the servers and services that support these components).

When deploying Meta-Directory, you must plan the topology of the system by
looking at the types and amounts of data you plan to flow through the
Meta-Directory connectors and join engine. Best performance is achieved when
you design the topology to ensure that the set of hardware hosting the
Meta-Directory components is properly load balanced. Network latency can also
have an impact on synchronization times. It is possible for a smaller number of
system units to outperform a larger set of system units if the smaller system is sized
correctly.

Deploying Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 51

Operating System Configuration
The configurations of the operating systems involved in your deployment is an
important factor to consider when designing the Meta-Directory topology. When
designing the system, you must take into account the physical memory (RAM) of
the systems used, operating system settings (such as the amount of swap space
used), and hard disk partitioning and configuration.

The slapd Processes
In Meta-Directory, individual processes are used to manage the main
Meta-Directory components:

• nsmds runs the join engine.

• nsperlconn runs the Universal connector (UTC).

• Perl scripts are used by the Active Directory and NT Domain connectors.

• javaserver runs the Novell Directory Connector and the Lotus Notes Connector

Depending on your needs, you can host some of these processes on separate
machines.

Directory Server Instances
When you are synchronizing large databases, it is best to create separate iPlanet
Directory Server instances for the connector views, as well as using a different
Directory Server instance for the meta view. Because of this, it is likely that your
Meta-Directory system will contain a number of different instances of iPlanet
Directory Server.

Hosting connector views on separate Directory Server instances allows you to
balance the load of processing across different servers and machines. When
designing the layout of the Directory Sever instances, distinguish between
connector views that are populated by indirect connectors and the connector views
that are directly updated by the join engine through the LDAP direct connector.
Making this distinction is important when you tune the different Directory Server
instances incorporated in your Meta-Directory system—Directory Server instances
that host indirect connector views should be tuned for write performance while
those that host “external” data should be tuned for read performance.

In determining the number and location of the Directory Server instances, keep in
mind the Meta-Directory configuration is normally stored in the same Directory
Server instance and DIT as the configuration for all other Sun ONE servers used in
your Meta-Directory setup.

Deploying Your Meta-Directory System

52 Sun ONE Meta-Directory Deployment Guide • January 2003

When creating different Directory Server instances to be used in a single
Meta-Directory system, be sure to give the different instances different names as
you create them.

Data Servers
Within the Meta-Directory console, each Directory Server instance is configured
through the Data Server tab. To view the currently configured Directory Server
instances:

1. Open the Meta-Directory console and highlight Meta-Directory in the
navigation tree. The right pane displays six tabs.

2. Select the Data Servers tab to view the currently configured Directory Server
instances.

Refer to Sun ONE Meta-Directory Configuration and Administration Guide for
instructions on how to add a new Directory Server instance to the Meta-Directory
configuration.

Planning the Layout of Your System
There are three basic scenarios for deploying the Sun One Meta-Directory system:

• The ideal, separate Meta-Directory views (either a meta view or a connector
views) on dedicated Directory Server instances ideally on separate machines
(or Solaris domains).

• The compromise, separate the meta view from the other Meta-Directory views
and connectors. The meta view and its host system will typically require
different performance characteristics than the other meta components.
Combine the connector views and configuration directory on the same
machine in separate Directory instances.

• The consolidated view, is where all connector views, meta view and
configuration all stored in one Directory Server instance using separate
namespaces.

In a large deployment, it is likely you will employ a combination of these setups.

Locating Meta-directory views on separate machines can increase the performance
of the services, but you must balance any gains with the loss incurred through the
added network latency. Through system analysis and comparisons with projected
loads, you must decide on the setup that is needed for your particular
implementation. However, using separate systems for each Directory Server
instance on separate hosts is the best choice. If your system resources are limited,
consider hosting at least the meta view on a dedicated system.

Deploying Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 53

Whether more than one Meta-Directory view should be hosted on a single machine
is ultimately dependent on the machine’s processing capacity, the memory
allocated to each of the system units, availability of disk space, the load on disk
controllers and file systems, and the volume of data flowing between connector
views and the meta view. System profiling and piloting swill provide the data
required to judge the performance of your particular Meta-Directory set up.

Requirements for Hosting the Meta View
The meta view presents the final “image” of the collected data to end users. Most
likely, client applications will retrieve the information stored in the meta view.
Because of this, the meta view normally has a higher performance requirement
than does the typical connector view. While search indexes must be built for the
meta view to speed up the different types of search operations performed by the
applications accessing the meta view, the same level of searches are not generally
used in connector views that are dedicated to the Sun ONE Meta-Directory system.

See “Determining Which Indexes to Create,” on page 90 for a list of the different
indexes you should create for the different views in your deployment.

Requirements for Hosting Connector Views
The task of any connector view is to host an LDAP copy of the data contained in an
external data source. Connector views should not be used for dual purpose tasks.
The primary operations performed on the connector view are more heavily
weighted on add, delete, and modify; searching through connector views is not a
priority as it is with the meta view. With a lighter demand for searches, there is a
lesser need for indexes in the connector view. This directly affects your design for
system performance: the fewer indexes that need to be updated in the connector
view directory, the better the performance will be.

Reasons for Choosing a Multiple-Instance Configuration
Hosting the meta view and connector views on different Directory Server instances
will result in better performance and diminish the likelihood that the failure of one
component will greatly affect the performance of another.

A multiple Directory Server configuration makes it easier to track log file data for a
component. This also makes it easier to maximize the overall Meta-Directory
performance since you will be able to optimize components individually. For more
information about Directory Server optimization for Meta-Directory, refer to
Chapter 4, “Meta-Directory Performance Tuning.”

Deploying Your Meta-Directory System

54 Sun ONE Meta-Directory Deployment Guide • January 2003

Using Different Directory Server Instances for the Configuration Database
and the Meta View
It is often desirable to use one Directory Server instances for the Meta-Directory
configuration database and a different one for the meta view. By default,
Meta-Directory expects these two DITs to exists on the same Directory Server
instance. To use separate Directory Server instances for these databases, do the
following:

1. Install two iPlanet Directory Server instances: one for the meta view and one
for the configuration database. These instances can be on the same machine or
they can be on different machines. Be sure to give the different instances
different names.

2. Install Sun ONE Meta-Directory. Make sure you reference the Directory Server
instance that you want to host the configuration database during the
Meta-Directory installation.

3. Start the Sun ONE Console from the Directory Server instance that will host
the configuration database. Notice that the Sun ONE Console shows several
Server Groups.

4. Create an instance of the join engine:

a. Select the Server Group that represents Meta-Directory.

b. Right click the Server Group, then choose Create Instance of the Join
Engine.

c. When supplying information for the join engine, type in the information for
the Directory Server instance that you want to host the join engine and the
meta view (this Directory Server instance will not be in the drop down list
of available Data Servers until you specify it when creating an instance of a
Meta-Directory component).

Once you have configured several Directory Server instances, you can
view them in the Data Servers tab from the Meta-Directory console.

Server Groups
Sun ONE Console uses “server groups” to represents the different sets of Sun ONE
servers and services installed in your Meta-Directory system.

NOTE It is recommended that the join engine bind to the Directory Server
as a Directory Manager client. This will give the join engine the
permissions it needs to perform its tasks.

Deploying Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 55

When you install different instances of Administration Server, each one is
represented as a server group within Sun ONE Console. In your Meta-Directory
system, you will have at least one server group displayed in your Sun ONE
Console. However, it is possible to have several, depending on your
Meta-Directory system setup.

For example, suppose you are using iPlanet Directory Server 5.x to host your
Meta-Directory views. In this case, you will first install iPlanet Directory Server
then Sun ONE Meta-Directory. Sun One Meta-Directory is supported by Sun ONE
Administration Server 5.2. iPlanet Directory Server is managed by Sun ONE
AdministrationServer 5.0

Suppose you then use Netscape Directory Server 4.15 to host a direct connector
view. Netscape Directory Server 4.15 is supported by Netscape Administration
Server 4.2.

In this scenario, there are three versions of Administration Server. When you open
Sun ONE Console to administer your Meta-Directory system, you will see three
server groups, one for each Administration Server.

The figure below shows three server groups. In this setup, the configuration
database and the meta view are hosted by different Directory Server instances,
with each instance supported by its own Administration Server. A third server
group was created for the Meta-Directory components because a third
Administration Server was installed when Meta-Directory was installed. Here, the
join engine uses the Directory Server instance in Server Group (2) to host the meta
view.

Deploying Your Meta-Directory System

56 Sun ONE Meta-Directory Deployment Guide • January 2003

Figure 2-1 Multiple Server Groups in Sun ONE Console

Different versions of Administration Server must be installed into different file
paths—you cannot install Sun ONE software into the same file path if the
components use different versions of Administration Server.

NOTE Do not attempt to start the Meta-Directory console or any of its
components using Netscape Console 4.x or Netscape
Administration Server. Also, do not use Netscape Administration
Server to administer Meta-Directory components. However, it is
possible (and recommended) to administer Netscape components
using Sun ONE Console 5.x.

Sun ONE Meta-Directory 5.1 must be managed using its own
Administration Server and not the 5.0 or 4.x versions installed with
iPlanet Directory Server 4.x or 5.1

Deploying Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 57

Non-Participating Connector Views
In Meta-Directory, it is possible to populate a connector view, but you may choose
to not synchronize the data in that view with the meta view. For example, you
might wish to flow entries from an Active Directory data repository to those
contained in an LDAP connector view for the sake of having the entries available in
an LDAP directory. In this configuration, you would not configure the connector
view to be a participating view of the meta view, since you would not be flowing
entries from this view to the meta view.

If you find a need to populate a connector view, but do not wish to make it a
participating view of the meta view, you should use a Directory Server instance
other than the one that hosts the meta view as the host for the non-participating
connector view.

The reason for this recommendation is that the join engine processes all the change
log entries of the connector views that participate in the meta view. If you have a
non-participating connector view sharing a Directory Server instance with the meta
view, the join engine will waste time processing the change log entries generated
by the non-participating view when there is no need to do so.

Locating the Log Files
During the initial phases of deployment, you will likely have verbose logging
turned on to help you ensure that things are running smoothly. In these stages of
deployment, Meta-Directory can generate copious log files. Setting up your system
so that it writes log files to different file systems on separate partitions, can
improve performance when system logging is tuned to a high level.

It’s important to note that in addition to increased controller traffic on a partition,
increasing the logging level of your Meta-Directory components can result in a
performance hit on your synchronization times. A higher level of logging will
generate more disk write operations. These extra disk write operations use
processor cycles that could otherwise be spent on synchronization. Once your
system is running smoothly, you might see a gain in performance when you reduce
the level of system logging.

Changelog
iPlanet Directory Server version 5.x implements two different change log
mechanisms. One is used for multi-master replication and the other tracks updates
made to the Directory Server database

Deploying Your Meta-Directory System

58 Sun ONE Meta-Directory Deployment Guide • January 2003

• Enabling the Directory Server change log (cn=changelog5,cn=config) allows
Meta-Directory to participate in replication agreements (e.g. MMR) with other
5.x Directory Servers.

• Enabling the Directory Server retro change log (cn=changelog) allows
Meta-Directory to participate in change notifications with other components. If
it is not enabled, Meta-Directory will not function. If the Directory Server retro
change log is not enabled, Meta-Directory will display a dialog that prompts
you to enable the change log when you create an instance of a Meta-Directory
component.

Locating the retro change log on dedicated disk partitions can improve overall
performance.

Multi-Master Replication
Meta-Directory supports iPlanet Directory Server 5.x in an MMR configuration.
However, failover via MMR is not supported.That is, the Meta-View can reside on
one and only one master. The join-engine is configured to point to this master.
Then via MMR the master meta-view data can be replicated to another master and,
if required, 1-n consumers. When MMR is configured, two kinds of change log
must be utilised in order to allow Meta-Directory and MMR to function correctly:

• retro changelog

The join engine in Meta-Directory depends on the architecture of the change log
facility that was implemented in Netscape Directory Server 4.1x. This is known as
the retro change log plug-in within iPlanet Directory Server 5.x. See the Sun ONE
Meta Directory Configuration and Administration guide for details of how to
configure the default and also the next section if you wish to change the default
location of your retro changelog.

• changelog

To synchronize two master directory servers, the new change log in iPlanet
Directory Server 5.x architecture is also utilised. See the Directory Server
Administration guide on how to configure this.

Deploying Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 59

Cascading Meta Views
The idea of cascading metaview comes into use, when there is a need to
synchronize data from various Sun ONE Meta-Directory installations into one
single repository. The diagram below illustrates a typical setup with three Meta
Directory Installations.Two subordinate or delegate Meta installations connected
to one main Corporate Meta installation.

Each entry in a Meta-Directory installation is owned by a particular view. This
ownership information is stored in the attribute mdsEntityOwner. Any
modifications made to an entry in any of the views flows to all the views. However,
only the owner view has the right to delete an entry. If an entry is deleted from any
other view, it should get added back. A non-owner, however, can modify an entry.
In a cascading Meta-View setup, such as the one shown above in the figure,
deletion of entries even by owner views was not happening in the previous release.

This was reported in the problem (#4636032) "Entries failed to delete from cascade
meta view setting". This problem has now been fixed. Now entries can be deleted
from the owner views, across all the Meta-Directory installations. If an entry is
deleted by a non-owner, it gets added back.

Deploying Your Meta-Directory System

60 Sun ONE Meta-Directory Deployment Guide • January 2003

Steps for setting up Cascading Meta views
This set up consists of 2 Delegation Installations and 1 Corporate Installation. The
idea is to synchronize the data from various views to Corporate Meta View. All
these 3 installations have separate iPlanet Directory Server installations.

1. Install Sun ONE Meta-Directory on the first machine (refer this installation as
delegation 1 installation) and create the Join Engine instance and give the view
name as Del1MV.

Table 3 Del1MV

Deploying Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 61

2. Create a Connector view 1 (refer this as Del1CV1 or UTC CV1, use any UTC
connector or Oracle connector) and populate data into connector view.

Table 4 Del1CV1

Deploying Your Meta-Directory System

62 Sun ONE Meta-Directory Deployment Guide • January 2003

3. Create a Connector view 2 (refer this as Del1CV2 or UTC CV2, use any UTC
connector or Oracle connector) and populate data into connector view.

Table 5 Del1CV2

Deploying Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 63

4. Add Del1CV1 & Del1CV2 as JoinEngine’s participating views and enable the
participating views. Assume contents of Del1MV is present under suffix
o=Del1MV.

Table 6 Del1 Predicating View

Deploying Your Meta-Directory System

64 Sun ONE Meta-Directory Deployment Guide • January 2003

5. Do another Delegation installation of Meta-Directory on the second machine
(refer this as Delegation 2 installation) and create the Join Engine instance and
give the view name as Del2MV.

Table 7 Del2MV

Deploying Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 65

6. Create a Connector view 3 (refer this as Del2CV1 or UTC CV3, use any
connector and populate data into connector view.

Table 8 Del2CV1

Deploying Your Meta-Directory System

66 Sun ONE Meta-Directory Deployment Guide • January 2003

7. Create a Connector view 3 (refer this as Del2CV2 or UTC CV4, use any
connector and populate data into connector view.

Table 9 Del2CV2

Deploying Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 67

8. Add Del2CV1 & Del2CV2 as Join Engine’s participating views and enable the
participating views. Assume contents of Del2MV is present under suffix
o=Del2MV.

Table 10 Del2 Participating View

Deploying Your Meta-Directory System

68 Sun ONE Meta-Directory Deployment Guide • January 2003

9. Now, do Corporate Installation of Sun ONE Meta-Directory on the third
machine (refer this as Corporate installation) and create the Join Engine
instance and give the view name as CorpMV.

Table 11 CorpMV

Deploying Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 69

10. Create a Corporate Connector view1 (refer this as CorpCV1) and populate data
into connector view. To create the Connector View, you have two options

Either (a) Create a LDAP data server from Sun ONE Meta-Directory - Data
Servers, and use this URL while creating the CorpCV1

host name -- host name of the system where delegation mds
installation(Del1MV) is running.

port -- port number that stores contents of o=Del1MV.

Bind dn and password for that ids instance. (Assume that data server created
as a result of this operation as baba.india.sun.com:389)

or (b) Create a new connector (refer this cv as CorpCV1) on corporate mds
installation which actually points to delegation 1 installation’s MV (For example,
give baba.india.sun.com:389 as data server url. enter o=Del1MV as base view dn).

Table 12 CorpCV1

Deploying Your Meta-Directory System

70 Sun ONE Meta-Directory Deployment Guide • January 2003

11. Create a Corporate Connector view2 (refer this as CorpCV2) and populate data
into connector view. To create the Connector View, you have two options

Either (a) Create a LDAP data server from Sun ONE Meta-Directory - Data
Servers, and use this URL while creating the CorpCV2

host name -- host name of the system where delegation mds
installation(Del2MV) is running.

port -- port number that stores contents of o=Del2MV.

Bind dn and password for that ids instance. (Assume that data server created
as a result of this operation as baba.india.sun.com:389)

or (b) Create a new connector (refer this cv as CorpCV2) on corporate Sun ONE
Meta-Directory installation which actually points to delegation 2 installation’s MV
(For example, give baba.india.sun.com:389 as data server url. enter o=Del2MV as
base view dn).

Table 13 CorpCV2

Deploying Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 71

12. Add CorpCV1 & CorpCV2 as participating views of corporate Sun ONE
Meta-Directory installation and enable the participating views. Assume
contents of CorpMV is present under suffix o=CorpMV

Table 14 Corporate Participating View

With this configuration, data flows properly between Del1MV, Del1CV1, Del1CV2,
Del2MV, Del2CV1, Del2CV2, CorpMV, CorpCV1 and CorpCV2.

Recommendations
1. It is recommended that the view IDs of all the Connector-Views be unique

across all the Meta-Directory installations.

2. All capabilities must be selected. The cascaded view functionality requires that
the capabilities to be on in both sides; i.e. the Connector View as well as the
Meta View. This is required for the add backs to happen when an entry, owned
by a view outside this Meta-Directory installation, is deleted.

Deploying Your Meta-Directory System

72 Sun ONE Meta-Directory Deployment Guide • January 2003

Limitations
1. Deletion of entries owned by delegation Meta-Views or Corporate

Connector-Views results in inconsistent behavior. However, by default, the
entries are owned by the data source connector views and as such this
limitation should not normally affect use.

2. All the View IDs of the Meta-Views of all the Meta-Directory installation in the
cascaded setup must be unique.

Bringing the System On Line
At this point you have gone through the process of planning and physically
deploying your Meta-Directory system. You have finished buying system
resources (for the time being, at least) and have installed all the software needed to
bring the system on line. To open the Sun ONE Console so you can begin
instantiating and configuring the various components in your Meta-Directory
system, you will need to start the following servers and services:

1. Start the slapd process that will host your Meta-Directory configuration, then
start the Administration Server that administers the slapd process.

2. Start the Sun ONE Console that will host your Meta-Directory components.

At this point, you can use Sun ONE Console to configure your Meta-Directory
system, as described in the Sun ONE Meta-Directory Configuration and
Administration Guide. However, before you begin the configuration process,
consider piloting and tuning your system before going into production.

Piloting
The best way to determine how Meta-Directory will perform in your particular
scenario is to run a pilot test of the proposed deployment and measure the system
performance. By piloting the system you have designed, you will gain the
information needed to properly gauge the production system you will need to put
in place. In a pilot deployment, you set up a smaller scale version of the
Meta-Directory system you have designed.

During the pilot run, you not only test system topology configurations, but you can
also test the different sets of rules that you will use to synchronize data from the
disparate data sources. Running and tuning the rules you set up is a key ingredient
to achieving the best possible system performance in your production system.

Deploying Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 73

During the pilot run, test one connector at a time before attempting to merge
additional connectors into the mix. The purpose is to test your Meta-Directory
design, including the data flow, the application of join rules and DN mapping
rules, the attribute flow and filtering of entries, and the functionality of constructed
attributes. Ideally, your pilot run will give you the confidence to move the system
into the complete system that you will bring on line.

Tuning
By monitoring network status and join engine performance, you can look for
bottlenecks and other inefficiencies in system performance. Are the system links to
external directories working consistently? Are the links between Directory Server
instances that host connector views operating optimally?

For more information about tuning Directory Server performance for
Meta-Directory, refer to Chapter 4, “Meta-Directory Performance Tuning.”

Going Production
When it is time to finally go into production, the best course of action is to begin by
synchronizing your main source of data, first into a connector view, then into the
meta view. From there, flow other external data sources into connector views, one
at a time. Once you have populated a second connector view, go ahead and link the
entries with the ones contained in the meta view.

Check your logs to ensure things are flowing correctly by looking for failed join
rules. A join rule failure will result in an entry being orphaned; entries are missed
when a join rule fails, when a join rule returns more than a single object, or when a
join rule encounters bad data. Use the Query Fix-It Tool to search for any unlinked
entries and fix them whenever needed. Also, you can search the logs files with
using the following commands:

grep -i fail *
grep -i error *

If you move one view at a time, running the system and checking the logs after
each incremental step, you can more easily identify the location of performance
bottlenecks. More importantly, you can address and fix any potential problems as
you bring up the system.

Maintaining Your Meta-Directory System

74 Sun ONE Meta-Directory Deployment Guide • January 2003

Maintaining Your Meta-Directory System
During the system design phase, a maintenance plan should be created for
maintaining the system once it has been deployed. Meta-Directory system
maintenance includes (but is not limited to) the following items:

• Performing Data Backups

• Monitoring the System

• Planning for System Expansion

Performing Data Backups
It should almost go without saying: Perform regular backups of Meta-Directory
data. At a minimum, plans should be in place to back up the meta view on a
regular basis. In a more elaborate system, you should also consider backing up any
connector views that you have populated.

In Meta-Directory, all the views are hosted by Directory Server (except when you
use Oracle to host a Direct connector view). The Directory Server provides inherent
replication capabilities that can be used to fulfill the task of data backup. Refer to
Directory Server documentation for details on this feature.

Monitoring the System
How will you assure reliability and availability in your Meta-Directory system?
You should design into the maintenance plan the structure needed to insure that
system resources are available and the throughput of the system can be maintained
at the needed level. Your enterprise may have an existing structure in place that
monitors system resources such as the network traffic and individual system loads.
If possible, use this existing infrastructure to monitor your Meta-Directory
deployment. In other cases, you may need to set up an individual monitoring
system as part of the Meta-Directory maintenance plan.

Monitoring your system resources also encompasses the task of trimming old log
files to free up disk space. Provide a schedule for monitoring the log file directories
and a procedure for deleting the old, outdated files.

Network security might also be a concern. The maintenance plan should have an
eye toward future needs and include a section on how the system security will be
kept at required levels.

Maintaining Your Meta-Directory System

Chapter 2 Planning the Meta-Directory System 75

Planning for System Expansion
In the course of monitoring system loads, you might find that faster performance is
needed. Plans should be in place to add more resources in case you need to scale
the system.

When does CPU utilization reach the point where additional processing power is
required? Should one consider installing additional/faster performing disks to
offset performance degradation? When does network bandwidth utilization reach
the point where additional bandwidth is required? Through the analysis of the
system load and performance, you should be able to gauge the resources that are
necessary to support the needs of your system.

While it is the job of the system administrator to make sure the system is available,
it is the job of the system planners to ensure that the proper resources are on line to
fulfill the needs of the system they design. For more information on the
requirements of Directory Server, refer to the iPlanet Directory Server Deployment
Guide.

Maintaining Your Meta-Directory System

76 Sun ONE Meta-Directory Deployment Guide • January 2003

77

Chapter 3

Directory Server Configuration
Settings for Meta-Directory

Once the iPlanet Directory Server and Meta-Directory software is installed, you
must modify several Directory Server configuration settings to support the
Meta-Directory system. This chapter describes the various configuration settings
you need to make before you can begin using Meta-Directory.

Although the Meta-Directory console provides automatic support for making
some of the configuration settings, this chapter explains in detail what is needed to
configure Directory Server instances hosting Meta-Directory components, and it
describes how to manually configure these settings.

The topics covered in this chapter are:

• Installing and Configuring Directory Server

• Enabling the Retro Change Log

• Loading Meta-Directory Schema

• Adjusting Directory Server Plug-Ins

Installing and Configuring Directory Server
Directory Server must be installed and configured before you can run
Meta-Directory. Detailed documentation for the iPlanet Directory Servers,
including installation and configuration instructions, can be found at the following
Sun ONE web site:

http://docs.sun.com/db/prod/s1dirsrv

To support the Sun ONE Meta-Directory components, you must modify several
iPlanet Directory Server server settings. In particular, you must:

http://docs.sun.com/db/prod/s1dirsrv

Installing and Configuring Directory Server

78 Sun ONE Meta-Directory Deployment Guide • January 2003

• Enable the retro change log plugin

• Load the Meta-Directory schema

• Adjust the Directory Server plug-ins, if required

• Modify/create necessary Directory Server indexes

Directory Server Configuration Steps
The following steps describe what is needed to correctly install and configure
iPlanet Directory Server so it can properly support Meta-Directory:

1. Install and start the Directory Server instance that will host the Meta-Directory
configuration database (o=netscaperoot) or one of its components.

See Chapter 2, “Planning the Meta-Directory System” for considerations on
planning your Meta-Directory system setup.

2. Configure the Directory Server instance for use with Meta-Directory by
performing the following tasks (these tasks are described in the sections that
follow):

a. Enable the Retro change log plugin

b. Load the Meta-Directory schema. This is done automatically if prompted
when creating Sun ONE Meta-Directory meta view or connector view

c. Adjust the Directory Server plug-ins, if required.

d. Modify/Create necessary Directory Server indexes.

NOTE The Meta-Directory console will automatically make several of these
configuration settings when you create instances of the
Meta-Directory components. However, the sections in this chapter
explain the details of these configuration settings and show how to
manually make the settings.

Installing and Configuring Directory Server

Chapter 3 Directory Server Configuration Settings for Meta-Directory 79

3. Shut down and restart the Directory Server instance.

The Directory Server instance is now ready to support Meta-Directory
components. Depending on your system setup, you might locate a meta view,
or one or more connector views, on this instance. In addition, you will have a
Directory Server instance supporting the Meta-Directory configuration files.

The configuration for all Sun ONE servers and components are stored in the
directory tree under NETSITE_ROOT. This directory tree is configured when
you install the Meta-Directory software.

4. Edit the configuration parameters of the user Directory Server instance to tune
its performance.

Once it is configured, you can fine tune the Directory Server settings to
optimize its performance with Meta-Directory. Fine tuning Directory Server is
described in Chapter 4, “Meta-Directory Performance Tuning.”

Modifying Directory Server Settings
There are three ways in which you can edit the Directory Server configuration
settings. The following list ranks these three methods from the easiest to the
technically most difficult:

• Edit the configuration settings from the Directory Server console.

• Export the configuration settings to an LDIF file and modify the configuration
settings using a text editor. Save the new configuration, reload the LDIF, and
restart the server.

• Issue commands to modify the configuration database using the ldapmodify
utility.

Configuring UTF8 Support
Earlier versions of the Meta-Directory only consistently supported ASCII
characters. Sun ONE Meta-Directory 5.1 synchronizes attribute values which
contain UTF-8 encoded Unicode characters as well. Please consult the Sun ONE
Meta-Directory Configuration and Administration Guide for more information about
this.

Enabling the Retro Change Log

80 Sun ONE Meta-Directory Deployment Guide • January 2003

Enabling the Retro Change Log
Enabling the Directory Server change log (cn=changelog) allows Meta-Directory
to participate in change notifications with other components. If it is not enabled,
Meta-Directory will not function.

If the Directory Server Retro change log is not enabled, Meta-Directory will display
a dialog that prompts you to enable the change log when you create an instance of
a Meta-Directory component. The procedures in the section describe how to
manually enable this Directory Server feature.

Enabling the iPlanet Directory Server Change
Log
iPlanet Directory Server version 5.x implements two different change log
mechanisms. One is used for multi-master replication and the other tracks updates
made to the Directory Server database. The latter, the retro change log, must be
enabled to support Meta-Directory processing.

In iPlanet Directory Server, the retro change log is implemented as a plug-in. To
enable it, do the following:

1. Open the iPlanet Directory Server console.

2. Select the Configuration tab; the Configuration window appears.

3. In the navigation tree, expand the Plug-Ins node.

4. In the list of plug-ins, select the Retro Changelog Plug-In.

The settings for the retro change log display in the right pane, as shown in
Figure 3-1.

5. Check the Enable Plug-In box and choose Save to save the setting.

6. Once you enable the change log, you must restart the Directory Server for the
settings to take effect.

Enabling the Retro Change Log

Chapter 3 Directory Server Configuration Settings for Meta-Directory 81

Figure 3-1 Enabling the Change Log in iPlanet Directory Server

Enabling the Netscape Directory Server Change
Log
To enable the change log for Netscape Directory Server version 4.1x:

1. Open the Directory Server console.

2. Select the Configuration tab; the Configuration window appears.

3. Select the Replication Agreements node in the navigation tree, then select the
Supplier Settings tab in the right pane (shown in Figure 3-2).

4. Click the Use Default button to specify the default file path for the change log
files.

5. Check the Max Changelog Records and Max Changelog Age settings so these
parameters are set to “unlimited.”

6. Once you enable the change log, you must restart the Directory Server for the
settings to take effect.

Enabling the Retro Change Log

82 Sun ONE Meta-Directory Deployment Guide • January 2003

Figure 3-2 Enabling the Change Log in Netscape Directory Server

Retro Change Log Location
The location of the change log is important with regard to system performance.
Since the change log can potentially produce many writes, you do not want activity
to the change log to conflict with activity to other Directory Server databases. You
might consider configuring Directory Server so that it creates and stores the change
log in a disk partition that is different from where your LDAP databases are stored.
Specifying a separate disk partition for the change log will reduce the seek time
and disk latency of the disk(s) housing other LDAP databases.

Setting Write Permissions on Solaris Systems
On Solaris systems, Directory Server is normally installed by a user with root
privileges. Because of this, the directory containing Directory Server and all its
subdirectories will contain a file permission mask of 755. If you create a special
directory for the change log, you must ensure that Meta-Directory can write to this
directory. It is recommended that the directory containing the change log has a file
permission mask of 777. The following UNIX command will change the file
permission of a directory to the desired 777:

chmod -R 777

Enabling the Retro Change Log

Chapter 3 Directory Server Configuration Settings for Meta-Directory 83

Changing the db location of the retro changelog
The standard way of keeping your retro changelog partition from overflowing, is
trimming with nsslapd-changelogmaxage, in which the default is no limit. See

http://docs.sun.com/source/816-5608-10/plugconfig.htm#19649

However, the following procedure illustrates how to change the location of the
retro changelog.

1. When Retro CL is enabled Manually

a. When enabling the Retro CL manually, the default location where it gets
created is <slapd-instance>/db/changelog

b. However, in this method no nsslapd-changelogdir entry is made in the
dse.ldif file. Nor any location attribute can be seen in cn=Retro Changelog
Plugin,cn=plugins,cn=config object.

c. If you have enabled Retro CL manually, and then created the CV, and at a
later stage want to change the location, then:

d. Stop the slapd

e. Backup the original dse.ldif file

f. Make an entry "nsslapd-changelogdir=<new location>" below
"nsslapd-pluginDescription: Retrocl Plugin" entry.

g. Edit the attribute value "nsslapd-directory" to point to the new location

h. Ensure that the location directory has a chmod 777

i. Start slapd

j. Check for this location attribute and value in the cn=Retro Changelog
Plugin,cn=plugins,cn=config object thru the console.

k. Also check that the new location now is populated with the Retro CL’s .db3
files

2. When Retro CL is enabled through Meta Install

a. If Retro CL is Enabled from Meta Connector Install -- Ensure that the
directory supplied has chmod -R 777 done on it. Otherwise it will fail.

b. In this method the location entry (nsslapd-changelogdir=<specified
location>) is created, below the "nsslapd-pluginDescription: Retrocl
Plugin" entry, in <slapd-instance>/config/dse.ldif file. Aslo this attribute
can be seen in the cn=Retro Changelog Plugin,cn=plugins,cn=config object
through the console.

http://docs.sun.com/source/816-5608-10/plugconfig.htm#19649

Loading Meta-Directory Schema

84 Sun ONE Meta-Directory Deployment Guide • January 2003

c. To change to new location:

d. Stop the slapd

e. Backup the original dse.ldif file

f. Edit the entry "nsslapd-changelogdir=<new location>"

g. You also need to edit the attribute value "nsslapd-directory" to point to the
new location, in the dse.ldif file

h. Ensure that the new location has a chmod -R 777

i. Start slapd

j. Check for this location attribute and value in the cn=Retro Changelog
Plugin,cn=plugins,cn=config object thru the console.

k. Also check that the new location now is populated with the Retro CL’s .db3
files

The following points should be noted:

• Whenever sladp is stopped, dse.ldif.bak is copied to dse.ldif

• Whenever slapd is started, dse.ldif is copied to dse.ldif.bak

• The nsslapd-directory attribute in the dse.ldif could be viewed through the
console in the following object: cn=changelog,cn=ldbm
database,cn=plugins,cn=config. But you cant change the value directly from
the console.

Loading Meta-Directory Schema
To process Meta-Directory requests, Directory Server must recognize the extended
schema (LDAP object classes and attributes) used by Meta-Directory components.
Loading the Meta-Directory schema into Directory Server allows the
Meta-Directory components to communicate with the Directory Server over LDAP.

Whenever you create an new instance of a Meta-Directory component, the
Meta-Directory console will prompt you to load the extended schema into the
Directory Server hosting the component.

The schema needs to be loaded into each Directory Server instance only once; after
it is loaded, you need not reload it. However, because Sun ONE Console cannot
verify that the schema has been loaded, it will prompt you to do so, even if it has
already been loaded.

Loading Meta-Directory Schema

Chapter 3 Directory Server Configuration Settings for Meta-Directory 85

Manually Loading the Meta-Directory Schema
The Meta-Directory schema is provided in the LDIF file md-schema.ldif, which is
located in the NETSITE_ROOT/bin/join50/install/templates subdirectory of
your Meta-Directory installation. You can manually add the Meta-Directory
schema to the Directory Server configuration directory (NETSITE_ROOT\config)
using either ldapmodify or through the Directory Server console.

Use the following command as an example if you want to add the Meta-Directory
schema to a Directory Server instance using ldapmodify:

ldapmodify -h hostname -p 389 -D “cn=directory manager”
-w password -a -c -v -f md-schema.ldif

The Meta-Directory schema contained in md-schema.ldif can also be imported
using the Directory Server console. For more information on importing schema,
refer to the iPlanet Directory Server Administrator’s Guide.

Adjusting Write Permissions (Solaris Only)
On Solaris, the Directory Server instance may run with an identity different from
its managing Administration Server. To grant Directory Server the permissions
necessary to modify the Directory Server schema, issue the following commands
from the UNIX command line:

% cd NETSITE_ROOT
% chmod ugo+w slapd-*/config/slapd-user_*.conf

NOTE While possible, it is not necessary to add the Meta-Directory schema
to an instance of Directory Server that does not host a
Meta-Directory component. (For example, if you directly connect to
a Directory Server instance to populate a connector view, that
Directory Server instance does not host a Meta-Directory join engine
or indirect connector component). If you do load the Meta-Directory
schema into such an instance of Directory Server, you will get a
string of error messages stating No Such Attribute ... Cannot
delete. These messages do not indicate a problem—they are
generated because the ldapmodify tool is attempting to delete the
Meta-Directory attribute before it adds a new copy of the attribute.

Adjusting Directory Server Plug-Ins

86 Sun ONE Meta-Directory Deployment Guide • January 2003

Adjusting Directory Server Plug-Ins
There are two Directory Server plug-ins that need to be disabled in most
Meta-Directory deployments: uid-uniqueness and referential integrity
postoperation.

Setting uid-uniqueness Plug-In
If the data for the connector view and the meta view are in the same Directory
Server instance, it may be required to turn off the Directory Server uid-uniqueness
plug-in. You can turn off the plug-in from the Directory Server console.

The setting of the uid-uniqueness plug-in depends on the data you are hosting on a
particular Directory Server instance. The uid-uniqueness plug-in applies a check to
a particular suffix in a Directory Server instance. If you are flowing entries that
have identical uid attributes in the same suffix, then you must turn off the
uid-uniqueness plug-in in the Directory Server. Turning off the plug-in prevents
errors arising from the check. Errors arising from a uid-uniqueness violation will
be written to the join engine logs with an OBJECT_VIOLATION message.

For example, if you have the entry uid=x,ou=cv1 in a connector view containing
the suffix o=siroe.com, and you flow the entry to the meta view, o=mv, the
uid-uniqueness can remain enabled because the uid-uniqueness applies to a
particular suffix and there is no conflict. You will be creating uid=x,o=mv for the
meta-view entry and uid=x,o=sunone for the connector view.

However, if the meta view has ou=mv1,o=siroe.com, then there will be a conflict
with the connector view under the same o=siroe.com suffix:
uid=x,ou=cv1,o=siroe.com. In this case, you must disable the uid-uniqueness
plug-in if the data contains a uid attribute.

Disabling the uid-uniqueness Plug-In
1. Open the Directory Server console.

2. Choose the Configuration tab and select Plug-Ins in the navigation tree.

The list of available Directory Server plug-ins displays in the navigation tree.

3. Select the uid-uniqueness plug-in.

Details for the plug-in display in the right pane.

4. Deselect the Enable Plug-In check box.

5. Click Save and restart the Directory Server.

Adjusting Directory Server Plug-Ins

Chapter 3 Directory Server Configuration Settings for Meta-Directory 87

Setting the Referential Integrity Postoperation
Plug-In
Normally, you will need to disable the Directory Server referential integrity
plug-in in the Directory Server instance(s) that host Meta-Directory components.

When referential integrity is enabled, Directory Server will not write the changes
that it makes to the change log. As a result, changes made to data cannot be
detected by the Meta-Directory components and the Meta-Directory views will not
be properly updated.

In very special circumstances, it is possible to keep the referential integrity plug-in
enabled. Specifically, you can enable the referential integrity plug-in if all changes
to data occur in one Meta-Directory view (for example, if all modifications are
made in the meta view or if they are made in an external data source that populates
a connector view). In this scenario, data modifications made in one view will be
synchronized to the other Meta-Directory views when that view is refreshed. Here,
data modifications do not rely on the change log to be synchronized to other views
since all changes will flow from a single out to the other views. Note, however, that
there may be a significant lag time between the refresh and the clean up done by
the plug-in. Because of this, it is best to manually refresh the view after you make
any data modifications.

Disabling the Referential Integrity Postoperation Plug-In
1. Open the Directory Server console.

2. Choose the Configuration tab and select Plug-Ins in the navigation tree.

The list of available Directory Server plug-ins displays in the navigation tree.

3. Select the referential integrity postoperation plug-in.

Details for the plug-in display in the right pane.

CAUTION In cases where there are users and groups, you must watch out for a
side effect when you disable the referential integrity plug-in.

If you delete users belonging to a group (the user entries, as opposed
to their group memberships), the group will still list the
memberships of the users you have deleted. In these cases, you must
manually delete the respective memberships from any groups listing
the deleted users.

Adjusting Directory Server Plug-Ins

88 Sun ONE Meta-Directory Deployment Guide • January 2003

4. Deselect the Enable Plug-In check box.

5. Click Save and restart the Directory Server.

89

Chapter 4

Meta-Directory Performance Tuning

There are several ways to tune the processing performance of Meta-Directory. In
tuning, the overall goal is always to speed the flow of data through the
Meta-Directory system. However, there are several systems to consider when you
tune performance. For example, there are various configuration settings that affect
the flow of data through the Meta-Directory components. Also, there are
configuration settings that you can adjust to fine tune the performance of the
Directory Server instances that you use in conjunction with your Meta-Directory
system.

This chapter focuses specifically on the settings you can configure to speed the
flow of data through the Meta-Directory components. The next chapter, Chapter 5,
“Tuning Directory Server,” discusses the particular things you can do to tune the
performance of the different Directory Sever instances running in your
Meta-Directory system.

When configuring the Meta-Directory components and the Directory Server
instances that host them, keep in mind that, compared to other Directory Server
clients, Meta-Directory is particularly write intensive (especially to the meta view).
Because of this, it’s particularly important to optimize the write performance of the
Directory Server instance that’s hosting the Meta-Directory components. This is
very different than tuning the performance of a Directory Server instance that is
hosting a user directory. These are normally optimized for read performance.

This chapter contains the following topics:

• Adding Meta-Directory Indexes

• Bulk Loading Data

• Tuning the Data Servers

• Tuning the I/O Block Time-Out Setting

Adding Meta-Directory Indexes

90 Sun ONE Meta-Directory Deployment Guide • January 2003

Adding Meta-Directory Indexes
To improve the performance of the Meta-Directory system, you should create
indexes for certain attributes in the Meta-Directory object class. The Meta-Directory
object class attributes are contained in the Meta-Directory schema—you must first
load the Meta-Directory schema before you can index these attributes. This is
discussed in the section “Loading Meta-Directory Schema,” on page 84.

The Meta-Directory indexes are created and maintained by Directory Server. You
create the indexes on each Directory Server instance based on the Meta-Directory
views that are hosted by that Directory Server instance. In all, you can create
indexes on the following five Meta-Directory object class attributes:

• hasSubordinates

• mdsLinkToCV

• mdsLinkToMV

• mdsExcludedCVs

• mdsExcludedMVs

You can add these indexes through either the Directory Server console or from the
command line.

Determining Which Indexes to Create
You create the indexes only on Directory Server instances that host Meta-Directory
components. For example, if a particular Directory Server instance hosts only a
meta view, then you should create and maintain the following Meta-Directory
indexes on that Directory Server instance:

Table 4-1 Indexes for Directory Server Instances That Host a Meta View

Index Attribute Index Settings

hasSubordinates Equality

mdsLinkToCV Presence and equality

mdsExcludedCVs Presence and equality

Adding Meta-Directory Indexes

Chapter 4 Meta-Directory Performance Tuning 91

Likewise, if a Directory Server instance hosts only Meta-Directory connector views,
then you need to create the following indexes on that Directory Server instance:

In addition to the above guidelines, you should also add the connector view
indexes listed in Table 4-2 to a Directory Server instance that hosts the
Meta-Directory configuration (o=NetscapeRoot) if that Directory Server instance
also hosts a database (Oracle) connector view.

To Add Indexes From the Directory Server
Console
To index attributes from the Directory Server 4.1x console, do the following:

1. Open the Directory Server console.

2. Navigate to the database index pane:

❍ In the iPlanet Directory Server 5.x console, choose the Configuration tab,
expand the Data node, then select Database Settings in the navigation tree.

❍ In the Netscape Directory Server 4.1x console, choose the Configuration
tab and select the Database node in the navigation tree.

The right-hand pane will display the attributes that are currently indexed.

3. In the right-hand pane, click Add Attribute.

4. Select the attribute name you want to index and click OK.

5. Select the indexes you want to create for the attribute (see Figure 4-1).

6. Repeat Steps 3 through 5 for each attribute listed in Table 4-1 and Table 4-2.

7. Click Save to apply changes.

8. Stop and restart the server.

Table 4-2 Indexes for Directory Server Instances That Host Connector Views

Index Attribute Index Settings

hasSubordinates Equality

mdsLinkToMV Presence and equality

mdsExcludedMVs Presence and equality

Adding Meta-Directory Indexes

92 Sun ONE Meta-Directory Deployment Guide • January 2003

Figure 4-1 Adding Indexes for Meta-Directory Attributes

Adding Indexes From the Command Line
In iDS 5.0, you load dse.ldif, indexes must be in LDIF, not as below. It’s highly
recommended that you only do this from the Console.

To add the necessary index attributes from the command line, open and modify the
file slapd.ldbm.conf:

1. From a command prompt, stop the Directory Server using the stop-slapd
command.

2. Open the file slapd.ldbm.conf (located in the directory
NETSITE_ROOT/slapd-ServerInstance/config) and add the following lines in
accordance with the guidelines listed in “Determining Which Indexes to
Create”:

“index hasSubordinates eq”

“index mdsLinkToCv pres,eq”

“index mdsLinkToMv pres,eq”

“index mdsExcludedCvs pres,eq”

Bulk Loading Data

Chapter 4 Meta-Directory Performance Tuning 93

“index mdsExcludedMvs pres,eq”

3. Save and close the file.

4. Restart the server.

Bulk Loading Data
There are certain adjustments that you can make to speed the time it takes to
populate a meta view with entries from a new data source.

In particular, you should adjust the database cache sizes and the All IDs Threshold
before you begin to load your initial sets of data into Meta-Directory.

Adjusting the Database Cache Size
If you are importing a very large database from LDIF, set the Maximum Cache Size
parameter as large as possible. The larger you can set this parameter, the faster
your database will be imported.

Use the following rule-of-thumb to calculate the maximum cache size:

1. Determine how much free memory you have on your system.

2. Divide the amount of free RAM by two and subtract 1 Mb from the subtotal.

For example, if you have 50 Mb of free memory on your system, divide 50 by 2
(giving a subtotal of 25 Mb) and subtract 1 MB, giving you a final total of 24 Mb.
Here, you would set the Maximum Cache Size in Bytes parameter to 24000000.

At a minimum, you should set the database cache size to 10Mb.

To Set the Maximum Cache Size
To set the Maximum Cache Size in the iPlanet Directory Server console:

1. Open the iPlanet Directory Server console.

2. Choose the Configuration tab, expand the Data node, then select Database
Settings in the navigation tree.

3. In the right pane, choose the LDBM Plug-in Setting tab.

4. Enter your new setting in the Maximum Cache Size input box.

5. Choose Save to save the new setting.

Tuning the Data Servers

94 Sun ONE Meta-Directory Deployment Guide • January 2003

To set the Maximum Cache Size in the Netscape Directory Server 4.1x console:

1. Open the Directory Server console.

2. Choose the Configuration tab and select the Database node in the navigation
tree.

3. In the right pane, choose the Performance tab.

4. Enter your new setting in the Maximum Cache Size input box.

5. Choose Save to save the new setting.

Adjusting the All IDs Threshold
The All IDs Threshold is used to limit the size of Directory Server indexes (for a full
description of this feature, see “Tuning the All IDs Threshold,” on page 112).

Directory Server sets the default value for All IDs Threshold to 4,000. For
Meta-Directory, this number is usually too low. For example, if you are flowing
100,000 entries from a connector view to an empty meta view, the recommended
All IDs Threshold setting is 100,100. If you are flowing 300,000 entries, then set the
All IDs Threshold to 300,100.

You should not bulk-load data into a Meta-Directory view until you have adjusted
this setting.

For information on tuning the All IDs Threshold, refer to the iPlanet Directory
Server Administrator’s Guide.

Tuning the Data Servers
Meta-Directory has tuning parameters that pertain to the data servers that
Meta-Directory accesses. You can configure these settings through the
Data Server > Tuning tab in the Meta-Directory console.

NOTE The All IDs Threshold setting alters the way indexes are written, so
you must rebuild the indexes after adjusting this setting.
Re-importing the data is the fastest and most direct way to create a
fresh set of indexes.

Tuning the Data Servers

Chapter 4 Meta-Directory Performance Tuning 95

In particular, you should configure the Time of Search to fit your specific system
needs.

You can configure the following data server settings:

• DCNS Scheduler

• Configuring the Time of Search

DCNS Scheduler
To configure and tune the Data Change Notification System (DCNS), use the
DCNS Schedule tab in the Data Server window of the iPlanet Console. The
parameters in this window specify the change log polling schedule and the
maximum number of entries to be obtained for each poll of the change log.

The default settings specify that a change log poll will be issued every 15 seconds
with a maximum number of 1024 entries to be obtained per poll. To optimize these
settings for Meta-Directory, you should adjust the change log settings so it is polled
after the join engine has processed at least 50 to 60 percent of the entries that it
obtained from the previous poll. This setting will reduce memory consumption
because it reduces the number of unprocessed entries added to the queue.

Although you should calculate your system performance, you can form a rough
estimate by assuming the average time it takes to move an entry from the change
log to the destination connector view is one second.

For example, if you pull 1024 entries from the change log with each poll, the poll
interval should be 512 seconds or more. Another way to reduce the amount of
entries queued (and thus reduce memory consumption) would be to increase the
polling interval, giving the join engine more time to process entries in the queue
before the next poll.

When tuning the polling interval, consider the number of entries being obtained
per poll rather than something such as the change log size. Results from queries are
maintained internally. Results can overflow the heap when relatively large
numbers of entries are obtained per poll.

Configuring the Time of Search
From the Meta-Directory Console, you can specify several tuning parameters for
the different Directory Server instances that you have running in your
Meta-Directory setup. Of particular interest is the amount of time that a data server
should spend before timing-out on a specific search.

Tuning the I/O Block Time-Out Setting

96 Sun ONE Meta-Directory Deployment Guide • January 2003

By default, the search time is set to 3,600 seconds (one hour). While this should be
enough for most situations, you might need to adjust this setting if your system is
deprived of resources.

If a system time-out occurs, the Directory Server in question will stop processing. If
the log level is set to dataaccess=3, the following message will be written to the
log file: DA_USER_TIMELIMIT_EXCEEDED.

To adjust the time of search:

1. Open the Meta-Directory console.

2. In the left pane, select Meta-Directory in the navigation tree.

3. In the right pane, choose the Data Servers tab to view the list of Directory
Server instances used in your Meta-Directory setup.

4. Select the Directory Server instance which you need to adjust. A list of tabs will
appear in the pane below.

5. Select the Tuning tab, then specify the new time-out setting in the Maximum
Operation Result Time input box.

6. Click Save.

Tuning the I/O Block Time-Out Setting
In Directory Server 4.1x, you should adjust the IO Block Time Out setting to
prevent the Directory Server from timing out during the time it takes the join
engine to synchronize Meta-Directory views. This setting is located in the Directory
Server configuration file, found at the following location:

slapd_SERVER_ROOT/config/slapd.ldbm.conf

The IO Block Time Out setting controls the time-out period for stalled clients. The
default setting for the Directory Server’s ioblocktimeout parameter (180,000,000
ticks on the computer’s system clock) may not be great enough to allow the
synchronization of a large number of entries. As a result, the Directory Server may
time out the synchronization process before your data is fully synchronized. You
are more likely to see this on slower clients.

The default value of the ioblocktimeout parameter (stored in slapd.conf) of
180,000,000 ticks is usually enough. However, keep in mind that the number of
ticks per second is computer and platform-dependent. If you see time-out errors,
you may need to increase this value.

Tuning the I/O Block Time-Out Setting

Chapter 4 Meta-Directory Performance Tuning 97

For more information about the ioblocktimeout parameter, refer to the iPlanet
Directory Server Administrator’s Guide.

Tuning the I/O Block Time-Out Setting

98 Sun ONE Meta-Directory Deployment Guide • January 2003

99

Chapter 5

Tuning Directory Server

Sun ONE Meta-Directory uses iPlanet Directory Server to store its configuration
settings. Meta-Directory also uses the Directory Server to store the entries
contained in the meta view. In addition to these required uses of the Directory
Server, it’s likely you will also use Meta-Directory to synchronize one or more
Directory Server user databases.

This chapter describes how to optimize the Directory Server performance when
you use it in conjunction with Meta-Directory.

While there are several ways to configure and tune the performance of iPlanet
Directory Server, performance tuning can be grouped into two broad categories:

• Write performance tuning

• Read performance tuning

The main goal of optimizing Directory Server performance with regard to
Meta-Directory is to maximize the number of Directory Server operations per
second. In light of this, consider the following:

• A single search (read) request takes about 50 to 250 Directory Server
operations.

• A single modify (write) request takes about 200 to 1,000 Directory Server
operations.

In addition to the number of operations it takes per request, take into consideration
that disk access is thousands of times slower than physical memory access. The
nature of write requests dictates that they access the disk for each request. This
makes them many times slower than read operations, which can often be
completed quickly by accessing physical memory caches.

Directory Server Write Performance Tuning

100 Sun ONE Meta-Directory Deployment Guide • January 2003

Compared to other Directory Server clients, Meta-Directory is particularly write
intensive. Because of this, it is important to optimize the write performance of the
Directory Server that’s being used in conjunction with Meta-Directory. This
chapter begins with a section on how to optimize the performance of Directory
Server write operations, then it discusses optimizing Directory Server read
performance.

Directory Server Write Performance Tuning
Simply put, write performance is the amount of time it takes to make an update to
the Directory Server data stored on disk. When optimizing write performance, you
must consider not only the database entry containing you’re modifying, but also
the many different files that reference the entry. When you add or modify a
Directory Server entry, the following write operations take place:

• The new data is written to the entry.

• Any indexes containing attributes in the entry are updated.

• The update is noted in the transaction log.

• The access and audit logs are updated.

• The replication change log is updated if replication is to be performed.

• The Retro Changelog is updated.

Since write performance is directly related to the amount of information that must
be written to disk, anything that reduces or eliminates disk traffic will speed
updates. This being the case, write-tuning efforts are centered around optimizing
the traffic into and out of the disk subsystem. This optimization comes in the
following two forms:

• Minimize the amount of information that must be written to disk - such as
reducing logging levels.

• Increase the throughput of disk write operations by using faster disks or by
spreading the load across multiple disks.

Directory Server Write Performance Tuning

Chapter 5 Tuning Directory Server 101

Managing the Information Written to Disk
Although there is not much you can do about optimizing the actual database file (it
must be modified whenever there is a change), there are ways that you can
minimize the amount of disk writes by carefully selecting the files that are
maintained by the Directory Server. These files can often be spread over multiple
disks and controllers to improve performance.

Optimizing Indexes
While indexing makes searches much faster, they must be updated by the directory
for each write operation. When creating indexes, you must balance the needs of fast
data access to directory write performance.

You can make the biggest gain by removing any indexes that are unneeded. If your
applications never search on a particular attribute or do so infrequently, then
putting an index on that attribute will only slow directory writes without
providing any search performance gains. When you first install Directory Server, it
is configured with a certain set of default indexes. You should always examine the
list of default indexes and remove any that are unnecessary.

It is also important to consider the types of indexes the directory is maintaining.
Each type of index, while useful for optimizing particular types of queries, is also
associated with a particular cost whenever that index must be maintained. Table
5-1 illustrates the relative cost of maintaining certain types of indexes. The cost is
expressed in terms of the number of logical database writes associated with
maintaining the index for a given value.

From the table above you can see that substring indexes are far more expensive to
maintain than equality or presence indexes.

Table 5-1 Relative Cost to Index a Value

Index Type Cost of Indexing a Value Example Value
“first, middle, last”

Presence 1 (binary) 1

Equality 1 (binary) 1

Approximate Number of words in value 3

Sub-string Number of characters in
value

17

Directory Server Write Performance Tuning

102 Sun ONE Meta-Directory Deployment Guide • January 2003

To optimize indexes, always use the least expensive type of index based on the
types of queries being made to an attribute. For example, if you rarely expect to
execute a wildcard search on a "uid" attribute, then you should not maintain a
substring index for that attribute.

For more information on indexes and their types, refer to the chapter “Introduction
to Directory Server” in the iPlanet Directory Server Deployment Guide. In addition,
the “Managing Indexes” chapter in the iPlanet Directory Server Administrator’s
Guide contains details on how to configure Directory Server indexes.

The Transaction Log
iPlanet Directory Server keeps a transaction log that tracks the operations of all the
databases it manages. Whenever a database operation (such as a write) is
performed, the server logs the operation to the transaction log. If the Directory
Server experiences a failure, it uses the transaction log to recover any affected
databases.

In a system that performs many writes (such as a with a Meta-Directory system),
activity to the transaction log can become significant. To optimize system
performance, you want to specify a location for the transaction log that is different
from the user database accessed by the Directory Server. This will minimize
conflicting disk seeks and writes between the two files.

You can also increase Directory Server write performance by specifying the log
file’s checkpoint tag. For details on configuring the transaction log, see the “Tuning
Directory Server Performance” chapter of the iPlanet Directory Server
Administrator’s Guide.

The Access, Error, and Audit Log Files
The Directory Server also maintains several user log files. Unlike the transaction
log, which is stored in DB2 format, the user logs are stored in ASCII text.
Specifically, the Directory Server has the following user logs:

• The access log tracks front-end Directory Server events such as authentication
and binding.

• The error log tracks back-end Directory Server events.

• The audit log is similar to the transaction log, except it is kept in user-readable
ASCII text.

While you can configure each of these logs in various ways, the most import
optimization concern is the placement of the logs. Similar to the transaction log,
you should locate the user logs in a disk partition that is different from the
partition containing the user database.

Directory Server Write Performance Tuning

Chapter 5 Tuning Directory Server 103

In addition to controlling the location of the logs, you can also control the size of
the logs (based on number of entries per log file or length of time before a new log
file is opened), level of verbosity in the logs, and sometimes the deletion of the log
files.

For details on configuring the Directory Server user logs, refer to the chapter titled
“Monitoring Server and Database Activity” in the iPlanet Directory Server
Administrator’s Guide.

The Replication Change Log
The Directory Server can be configured for database replication, however this is
not required for Sun ONE Meta-Directory to function. In replication, every
supplier server maintains a change log. A change log is a record that describes the
modifications that have occurred on a replica. When an entry is modified, a change
record describing the LDAP operation is recorded in the change log for the
respective replica. The supplier server uses the change log to pass modifications
made on one replica to the other consumer servers (or in the case of multi-master
replication, on other master servers).

Like the user log files, you can specify the location of the change log and how large
it should grow before a new change log file is opened. For details on replication
and the change log, refer to the chapter “Managing Replication” in the iPlanet
Directory Server Administrator’s Guide.

Summary of Write Tuning
While this section deals almost entirely with how to configure iPlanet Directory
Server, there are some important considerations to keep in mind when tuning
Directory Server with regard to Sun ONE Meta-Directory. To summarize:

• As much as possible, keep the user directory information tree (DIT) on a disk
partition that is separate from the partition storing configuration, index, and
log files.

• Remove any unnecessary indexes. Many of the default indexes supplied in the
directory might not be necessary for your specific database needs. Pay special
attention to substring indexes.

• Minimize or eliminate logging. Turn off the access or audit logs if you don't use
them on a regular basis or require them for audit purposes.

Tuning Directory Server Read Performance

104 Sun ONE Meta-Directory Deployment Guide • January 2003

Tuning Directory Server Read Performance
By design, iPlanet Directory Server is tuned to perform fast read (search)
operations. However, by carefully adjusting some of the Directory Server settings,
you can optimize the read performance. Read performance settings can be grouped
into the following categories:

• Back-end (database) settings

• Front-end settings

Back-end settings affect the physical make up of the caches and indexes while
front-end settings can be used to tune the ways in which clients access the
Directory Server indexes and database.

Directory Server Back-End Settings
The iPlanet Directory Server read and search performance is based on two key
back-end technologies: database caching and indexing.

Virtually all of your read and search performance efforts should be directed at
optimizing the performance of the Directory Server caches and indexes. Tuning
other aspects of the Directory Server will provide minimal benefits if the indexes
and caches are not properly tuned.

• Caching speeds the processing of searches by storing indexes and entries in
physical memory as opposed to on a disk. You tune the performance of the
Directory Server by reducing the number of database reads the server has to
perform in order to retrieve the desired entries. You can increase Directory
Server performance by optimizing the index-to-entry cache ratio.

• Indexing speeds the processing of searches by storing the values of specified
attributes. If you perform a search on an attribute that has been indexed, the
Directory Server can quickly search the index for the entries that meet the
search criteria. You can configure the indexes created, tuning the Directory
Server based on the specific types of queries the directory has historically been
asked to perform.

When optimizing the performance of the Directory Server back-end, you must
balancing the configuration of the following cache and index settings:

• Cache settings

❍ Database cache

❍ Entry cache

Tuning Directory Server Read Performance

Chapter 5 Tuning Directory Server 105

• Index settings

❍ All IDs threshold

Tuning the Directory Server Caches
The Directory Server utilizes caches to speed search performance by storing
database information in physical memory. In addition to faster reads, caches
increase the speed of query returns because entries stored in the entry cache have
already been converted from DB2 database format to LDAP format.

iPlanet Directory Servers has two distinct types of caches:

• The database cache stores pages from the database, caching both indexes and
data.

• The entry cache stores the most recently access entries form the directory. It uses
a least-recently-used algorithm to ensure that the most frequently accessed
directory entries are available in physical memory.

While the database cache is set to the size of the maximum amount of physical
memory it should consume, the entry cache setting is based on the maximum
number of entries it should hold.

To maximize directory read performance, you must cache as much directory data
in physical memory as possible. By preventing the directory from having to read
information from disk, you can increase read performance by eliminating the disk
subsystem. When sizing the cache settings, there are three rules you must follow:

• Your database cache must always be large enough to hold the databases
indexes.

While the database cache should hold more than just the indexes, you must
always ensure that it is at least big enough to hold the directory indexes. If it
isn't, the directory will be forced to read indexes from disk for every search
request, which will quickly bring directory throughput to a virtual halt.

• Your database and entry caches must always fit into available, physical
memory.

If the size of the two caches combined is bigger than the amount of available
physical memory on the machine, the operating system will begin to use
virtual memory, swapping the cache to and from disk. This can cause a
significant amount of disk "thrashing" that will quickly bring not just the
directory, but the entire system to a virtual halt.

Tuning Directory Server Read Performance

106 Sun ONE Meta-Directory Deployment Guide • January 2003

• The database cache is more important than the entry cache.

When given a choice between allocating memory to the database cache or to
the entry cache, you should generally favor the database over the entry cache.

Sizing the Database and Entry Cache Settings
To maximize Directory Server read performance, you will want to allocate as much
available memory as possible to the caches. As very general rule, efficient
operation can be achieved by allocating memory between the caches in the ratio of
75 percent for the database cache and 25 percent for the entry cache.

Sizing the Database Cache
The size of the database cache can be set through the Sun ONE Console. It is
important to note, however, that the actual amount of memory used by the
database cache can exceed the size you specify by up to 25 percent. This is due to
additional memory required to manage the cache itself. Also, it is important that
the database cache (with overhead) should not be set to consume over two
gigabytes (2 Gb) of memory. It is not capable of using more memory than that.

Sizing the Entry Cache
Unlike the database cache, the entry cache size is set not by the amount of memory
you would like it to consume but by the maximum number of entries you would
like it to hold. The actual amount of memory it will consume is a function of the
average entry size.

For example, if your average entry size is 1Kb, and you specify that the entry cache
should hold a maximum of 10,000 entries, then the amount of memory the entry
cache will consume will be 12.5 Mb, calculated as follows:

(1 Kb / entry * 10,000 entries) = 10 Mb + 25 percent for cache management
overhead.

To determine the average entry size, you will need to use your best judgment of the
data the directory will hold. You can determine the size of an entry by adding the
number of characters needed to list the entry and adding a carriage-return and
line-feed for each line in the entry. For example, the entry below for Lenny
Riceman is 398 bytes.

dn: uid=lriceman, ou=People, o=siroe.com
cn: Lenny Riceman
sn: Riceman
givenname: Lenny
objectclass: top
objectclass: person
objectclass: organizationalPerson

Tuning Directory Server Read Performance

Chapter 5 Tuning Directory Server 107

objectclass: inetOrgPerson
ou: Accounting
ou: People
l: Sunnyvale
uid: lriceman
mail: lriceman@siroe.com
telephonenumber: +1 408 555 4798
facsimiletelephonenumber: +1 408 555 9751
roomnumber: 4612
userpassword: cocoloco

Computing the Database
While bigger caches are usually better, performance can degrade if dbcachesize is
too large. The database cache size exceeds the available free memory, the process
will begin to thrash virtual memory as it writes clean and dirty pages to disk,
resulting in severe performance degradation. (You can detect this behavior by
using one of the system monitoring tools such as vmstat on Solaris that provides
statistics for virtual memory usage.)

To size your database and entry caches, use the following technique:

• database cache (assuming 100% of your free memory can be given to iPlanet
Directory Server)

1. Identify the amount of free memory available when your system configuration
is operating normally (use system monitoring tools).

2. Take 75 percent of your free memory as the base of your database cache size.

3. Divide the base database cache size (computed above) by 1.25 to account for
the cache overhead, and use the result as the database cache size value.

If the result is larger than 1.6 Gb, reduce it to 1.6 Gb, the maximum dbcache
size.

If the result is smaller than the size of all database indexes, increase the
database cache to cover the size of all the indexes without exceeding available
memory. Calculate the total index size (add up the sizes of *.db2 files in the
Directory Server database directory and subtract the size of user database file
id2entry.db2).

• entry cache

1. Take 25 percent of your free memory and use this as the base for your entry
cache size.

2. Divide the base entry cache size by 1.25 to account for cache overhead.

Tuning Directory Server Read Performance

108 Sun ONE Meta-Directory Deployment Guide • January 2003

3. Divide the result by the average entry size and use the result as the entry cache
size (maximum number of cache entries).

Determine the size of an entry by adding up the size of all its attributes.
Examine your data closely to determine average entry size.

A Short Example
As an example, assume your system has the following properties:

• 150 Mb of available physical memory (RAM)

• An estimated entry size of 1Kb / entry

To size the database cache:

150 Mb * .75 = 112 Mb to allocate to the base database cache

112 Mb / 1.25 = 90 Mb for the Database cache

To size the entry cache:

150 Mb - 112 Mb = 38 Mb for base entry cache

38 Mb / 1.25 = 30 Mb avail for entries

30 Mb / 1 Kb = max 30,000 cache entries

To configure Directory Serve cache sizes, do the following:

1. From the Directory Server console, select the Configuration tab.

2. Navigate to the database performance configuration settings:

❍ In the iPlanet Directory Server console, expand the Data node in the
navigation tree, then select Database Settings. In the right pane, choose the
LDBM Plug-In Setting tab.

❍ In the Netscape Directory Server console, select Database node in the
navigation tree, then select the Performance tab in the right pane.

The current database performance settings appear.

3. Enter the amount of memory you want to make available for open index files
in the Maximum Cache Size text box.

4. In Directory Server 4.1x, enter the number of entries you want the server to
keep in memory in the Maximum Entries in Cache text box (note that iPlanet
Directory Server does not support this configuration setting).

Tuning Directory Server Read Performance

Chapter 5 Tuning Directory Server 109

Monitoring the Database Cache
Once you have set your initial cache sizes, you should monitor your cache
utilization from time to time to ensure your caches are being used efficiently. You
can determine the effectiveness of your caches by examining the Database
Performance Counters available through the Sun ONE Console. you can view the
performance counters by selecting the Status tab in the Directory Serve console.

Under optimal conditions, both the entry and the database cache hit ratios will be
above 95 percent. If either hit ratio is less than 95 percent, and you have additional
available physical memory, you should consider increasing your cache size to
increase the hit ratio.

If you have been running the Directory Server for several days and find that your
entry cache is not filled to the maximum level, you might also consider lowering
the size of your entry cache to just above the high-water mark and giving any freed
memory to the database cache.

For information about changing entry cache settings using the Sun ONE Console,
refer to the iPlanet Directory Server Administrator’s Guide.

Monitoring Performance From the Command Line
In Netscape Directory server 4.1x, you can also monitor the database cache settings
through the entry "cn=monitor, cn=ldbm". To read the database monitor entry
from the command line, use the following command:

ldapsearch -b "cn=monitor,cn=ldbm" -s base "objectclass=*"

The cache parameters are listed in Table 5-2:

Table 5-2 Cache Parameters for ldapsearch Command

Console Label Monitor Entry Attribute Description

Entry cache hits entrycachehits Number of requests filled
from the entry cache.

Entry cache tries entrycachetries Number of total requests
to the entry cache.

Entry cache hit ratio entrycachehitratio Percentage of requests
filled from the entry
cache.

Current number of
entries in entry

currententrycachesize Current number of entries
in the entry cache.

Tuning Directory Server Read Performance

110 Sun ONE Meta-Directory Deployment Guide • January 2003

Sizing the Entry Cache to Prevent Over-Allocation of Memory
In some cases, the Directory Server entry cache settings may be set to a value that
results in the over-allocation of memory to the ns-slapd process, resulting in the
slow but consistent growth of the ns-slapd process until it is so large that it causes
every operation of the machine to require an excessive amount of time, and the
Directory Server needs to be restarted because of the memory over-allocation.

The entry cache, which is used to store a copy of LDAP entries as they are being
read, is most useful when the same entries are being pulled up repeatedly within a
reasonable period of time. In the case of an ISP, at a given time there are usually
fewer repeats of previously searched LDAP entries than there are original searches.
In this case, or in similar situations where there are large numbers of users
performing searches, it may be desirable to lower the entry cache, especially if the
size of the entry cache is occasionally contributing to the over allocation of memory
to the ns-slapd process.

Tuning the Directory Server Indexes
Proper indexing is the most important thing you can do to improve the Directory
Server read performance. To optimize the indexing of your database, you need to
understand the types of searches that are being submitted to your Directory Server
database. Knowing this, you can create indexes for the attributes that are used in
the searches.

For example, if your only application is a mail server, it will most likely search only
for an exact match on the UID attribute. You would therefore set an index on the
UID attribute. Setting indexes on other attributes would be necessary only if your
Directory Server is accessed by other types of applications.

 Hits (under the
Database Cache
heading)

dbcachehits Number of requests filled
from the database cache.

Tries (under the
Database Cache
heading)

dbcachetries Number of total requests
to the database cache.

Hit ratio (under the
Database Cache
heading)

dbcachehitratio Percentage of requests
filled from the database
cache.

Table 5-2 Cache Parameters for ldapsearch Command

Console Label Monitor Entry Attribute Description

Tuning Directory Server Read Performance

Chapter 5 Tuning Directory Server 111

You can determine the types of searches your directory is handling by examining
the access log. The access log records search requests in SRCH records. For example,
you might see the following log entry:

[05/Mar/2001:09:23:35 -0800] conn=4 op=6
SRCH base="ou=People,o=siroe.com" scope=2 filter="(uid=jsmith)"

By looking through the access log for all search requests, you can determine the
type and frequency of the queries being performed. Your goal is to ensure that all
commonly performed searches are fully indexed, meaning all attributes used in a
search has a corresponding index.

It’s important to keep in mind that any search on an unindexed attribute will
require the server to physically look at each entry in the directory tree (DIT) to
determine if it meets the search criteria. Searching the entire DIT is slow and
expensive.

With iPlanet Directory Server, you can use the access log to directly locate searches
that referenced unindexed attributes. Do this by searching the access log for
RESULT records that contain a notes=U entry. For example:

[02/Mar/1999:11:42:49 -0800] conn=4 op=6 RESULT err=0 tag=101
nentries=1 etime=0 notes=U

By matching the connection (conn) and operation number (op) fields with the
corresponding SRCH record, you can determine which searches are being
performed without indexes.

When configuring indexes, it is also important to use the correct type of index to
match the types of searches being performed. Using incorrect index types will at
best impact the write-performance of the directory; at worst, incorrect index types
provide the equivalent of using no indexes at all.

NOTE While indexing makes searches much faster, the server must
manage the indexes you create whenever it writes an entry. As a
result, maintaining indexes causes adds, modifies, deletes, and
imports to be slower than they would be without indexes. Because
of this, you must strike a balance between read performance and
write performance. Write performance, and how indexing affects it,
is discussed in the section above, “Directory Server Write
Performance Tuning.”

Tuning Directory Server Read Performance

112 Sun ONE Meta-Directory Deployment Guide • January 2003

Indexing and index types are described in depth in the iPlanet Directory Server
documentation. Specifically, the “Introduction to Directory Server” chapter in the
iPlanet Directory Server Deployment Guide contains an overview of indexing and
index types, while the “Managing Indexes” chapter in the iPlanet Directory Server
Administrator’s Guide provides details of creating and maintaining indexes.

Tuning the All IDs Threshold
Each index that the directory server uses is comprised of a table of index keys and
matching list of entry IDs. That is, for each index key there is a list of directory
entry IDs that match the key. This entry ID list is used by Directory Server to build
a list of candidate entries that may match a specified search filter.

Directory Server sets a size limit for each entry ID list. This size limit is globally
applied to every index key managed by the server and it is called the All IDs
Threshold. When the size of an individual entry ID list reaches this boundary, the
server replaces that entry ID list with an All IDs token.

The All IDs token causes the server to assume that all directory entries match the
index key. In effect, the All IDs token causes the server to behave as if no index was
available for that particular key and a search on it will cause the server to search
the entire directory database. The assumption is that some other aspect of the
search filter will allow the server to narrow its candidate list before processing the
list.

For more details on the All IDs threshold and how to calculate the best setting,
refer to the chapter titled “Managing Indexes” in the iPlanet Directory Server
Administrator’s Guide.

Directory Server Front-End Settings
The front-end server settings let you manage your server’s performance by limiting
the amount of resources the Directory Server puts into client search requests.
Although LDAP clients can specify that the server use smaller values for the Size
Limit and Time Limit settings, you should review the following configuration
settings to optimize system performance:

• Size limit specifies the maximum number of entries the server will return to
the client in response to a search operation. If this limit is reached, the server
returns any entries it has located that match the search request, as well as an
exceeded size limit error. The default value for this parameter is 2,000.
Decreasing this value could reduce your average search time but will also limit
the number of results returned on very large searches.

Tuning Directory Server Read Performance

Chapter 5 Tuning Directory Server 113

• Time limit specifies the maximum amount of real time (in seconds) you want
the server to spend performing a search request. If this limit is reached during
a search, the server returns any entries it has located that match the search
request, as well as an exceeded time limit error. The default value for this
parameter is 3,600 (1 hour). Decreasing this value will produce similar results
to decreasing Size Limit.

• Idle Time-out specifies the time (in seconds) you want the server to maintain
an idle connection before terminating.

• Look-through limit specifies the maximum number of entries the server will
check when seeking candidate entries in response to a search request. If this
limit is reached, the server returns any entries it has located that match the
search request as well as an exceeded size limit error.

The default value for this parameter is 5,000. Decreasing this value could
reduce the average search time per request but will also produce more
exceeded size limit errors and empty search requests.

As a guideline, set this parameter 10 percent above your value for Size Limit.

• Maximum file descriptors sets the maximum number of file descriptors
available to the Directory Server. This setting effects the number of
simultaneous connection that can be made to Directory Server.

To Modify the Directory Server Settings
1. Open the Directory Server console and select the Configuration tab.

2. From the Configuration tab, select the root entry in the navigation tree in the
left pane.

The server-wide configuration tabs appear in the right pane.

3. Select the Performance tab in the right pane.

The current front-end server performance settings appear.

4. Specify the maximum number of entries the server will return to the client in
response to a search operation by entering a new value in the Size Limit text
box. If you do not want to set a limit, type -1 in this text box.

5. Specify the maximum amount of real time (in seconds) you want the server to
spend performing a search request in the Time Limit text box. If you do not
want to set a limit, enter a zero (0) in this text box.

6. Specify the time (in seconds) you want the server to maintain an idle
connection it terminates in the Idle Timeout text box. If you do not want to set a
limit, enter a zero (0) in this text box.

Tuning Directory Server Read Performance

114 Sun ONE Meta-Directory Deployment Guide • January 2003

7. Set the maximum number of file descriptors available to the Directory Server
in the Max Number of File Descriptors text box. (Note that this option is not
available on Windows NT or IBM AIX systems.)

While the values set on these parameters are hard limits on the resources that the
server will apply to each request, they are not enforced on the root DN. For further
details on how these parameters impact your server’s searching performance, refer
to the “Managing Indexes” chapter in the iPlanet Directory Server Administrator’s
Guide.

115

Index

A
Administration Guide 8
Administration Server

defined 10
All IDs threshold 94

tuning 112
attribute flow 32
attribute flow rules 33
attribute name mapping 29

C
Cascading Meta Views 59
change log

enabling 80
components

defined 10
configuration

attribute flow 32
constructed attributes 32
DN mapping rules 32
filters 32
join rules 32

connectors
default values 28

constructed attributes 32, 35

D
database cache size

monitoring 109

116 Sun ONE Meta-Directory Deployment Guide • January 2003

default attribute valuess 28
directory information tree

setting up 44
Directory Server

adding Meta-Directory indexes 90
change log 80
defined 10
loading Meta-Directory schema 84
monitoring IO block timeout setting 96
write permissions 86

DN mapping rules 32, 35
documentation

audience 7
Deployment Guide overview 8
iPlanet Directory Server 11
release notes 8
Sun ONE Console 11
Sun ONE Meta-Directory Configuration and Administration Guide 8
Sun ONE Meta-Directory Deployment Guide 8
Sun ONE Meta-Directory Installation Guide 8
typographic conventions 9

E
external data source

defined 10

F
filters

join engine 32, 35
flow

defined 11
flow rules 33

I
indexes

adding 90

Index 117

installation
adding indexes 90
enabling the changelog 80
loading schema 84
Solaris write permissions 86

Installation Guide 8
IO Block Time Out 96
iPlanet Directory Server

documentation 11

J
join engine

attribute flow 32
constructed attributes 32
definition and purpose 21
DN mapping rules 32
filters 32, 35
join rules 32
manually joining 36

join process 17
join rules 32

M
manualing joining 36
mapping attribute names 29
meta view 14
Meta-Directory

components 10
defined 10
directory information tree 44
documentation 8
introduction 13–15
meta view 14
schema 84
settings

All IDs threshold 94
IO Block Time Out 96

118 Sun ONE Meta-Directory Deployment Guide • January 2003

N
NETSITE_ROOT

defined 10

O
overview

of guide 8

S
schema

loading 84
Solaris

write permissions 86
Sun ONE Console

documentation 11
synchronization process 17

T
terminology

Administration Server 10
components 10
Directory Server 10
external data source 10
flow 11
Meta-Directory 10
NETSITE_ROOT 10

	About This Guide
	What You Are Expected to Know
	The Sun ONE Meta-Directory Documentation Set
	Organization of This Guide
	Documentation Conventions
	Typographic Conventions
	Terminology

	Where to Find Additional Information

	Meta-Directory Concepts
	The Importance of Sun ONE Meta-Directory
	The Sun ONE Meta-Directory Solution
	An Example Application

	Synchronizing and Joining Entries
	A Meta-Directory Deployment

	Sun ONE Meta-Directory Components
	Sun ONE Meta-Directory Console
	Sun ONE Console and iPlanet Directory Server Console

	The Join Engine and the Meta View
	The Join Engine
	Meta View Services

	Connectors and Connector Views
	Indirect Connectors
	Direct Connectors

	How Sun ONE Meta-Directory Works
	How Connectors Work
	Indirect Connector Rules
	Attribute Flow Rules
	Default Value Rules
	Filtering Rules

	How the Join Engine Works
	The Join Process Rules
	Join Rules
	Attribute Flow Rules
	Filters
	Distinguished Name (DN) Mapping Rules
	Constructed Attributes

	Manually Joining Entries

	Planning the Meta-Directory System
	Designing Your Meta-Directory System
	Beginning the System Design
	Installing Directory Server to Support Meta-Directory
	Directory Server Design and Deployment

	Performing a Site Survey
	Determining Data Sources and Authoritative Attributes
	Determining Data Flow

	Determining the Data Design for Your Views
	Setting Up the Meta-Directory DIT

	Planning the LDAP Schema Used in Your Views
	Planning System Security
	Allocating the Necessary Resources
	Deploying Your System and Creating a Maintenance Plan

	Deploying Your Meta-Directory System
	Data Entry Size and RAM Considerations
	RAM Sizing
	Directory Sizing for Windows NT

	System Topology
	Operating System Configuration
	Directory Server Instances
	Planning the Layout of Your System
	Server Groups
	Non-Participating Connector Views
	Locating the Log Files

	Changelog
	Multi-Master Replication
	Cascading Meta Views
	Steps for setting up Cascading Meta views
	Recommendations
	Limitations

	Bringing the System On Line
	Piloting
	Tuning
	Going Production

	Maintaining Your Meta-Directory System
	Performing Data Backups
	Monitoring the System
	Planning for System Expansion

	Directory Server Configuration Settings for Meta-Directory
	Installing and Configuring Directory Server
	Directory Server Configuration Steps
	Modifying Directory Server Settings
	Configuring UTF8 Support

	Enabling the Retro Change Log
	Retro Change Log Location
	Setting Write Permissions on Solaris Systems
	Changing the db location of the retro changelog

	Loading Meta-Directory Schema
	Manually Loading the Meta-Directory Schema
	Adjusting Write Permissions (Solaris Only)

	Adjusting Directory Server Plug-Ins
	Setting uid-uniqueness Plug-In
	Setting the Referential Integrity Postoperation Plug-In

	Meta-Directory Performance Tuning
	Adding Meta-Directory Indexes
	Determining Which Indexes to Create
	Adding Indexes From the Command Line

	Bulk Loading Data
	Adjusting the Database Cache Size
	Adjusting the All IDs Threshold

	Tuning the Data Servers
	DCNS Scheduler
	Configuring the Time of Search

	Tuning the I/O Block Time-Out Setting

	Tuning Directory Server
	Directory Server Write Performance Tuning
	Managing the Information Written to Disk
	Optimizing Indexes
	The Transaction Log
	The Access, Error, and Audit Log Files
	The Replication Change Log

	Summary of Write Tuning

	Tuning Directory Server Read Performance
	Directory Server Back-End Settings
	Tuning the Directory Server Caches
	Sizing the Database and Entry Cache Settings
	Computing the Database
	Monitoring the Database Cache
	Monitoring Performance From the Command Line
	Sizing the Entry Cache to Prevent Over-Allocation of Memory
	Tuning the Directory Server Indexes
	Tuning the All IDs Threshold

	Directory Server Front-End Settings

