
SunXTL 1.1 Remote Client Manager
Guide

Part No.: 802-4935-11
Revision A, December 1995

The Network Is the Computer™

Sun Microsystems Computer Company
2550 Garcia Avenue
Mountain View, CA 94043 USA
415 960-1300 fax 415 969-9131

Please
Recycle

Copyright 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution,
and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system and from the Berkeley 4.3 BSD system, licensed from the University of
California. UNIX is a registered trademark in the United States and in other countries and is exclusively licensed by X/Open Company Lt.d.
Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii)
of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, SunXTL, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and in other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc. in the United States and in other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

Copyright 1995 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie
et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous aucune forme, par quelque moyen
que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Des parties de ce produit pourront être derivées du système UNIX® et du système Berkeley 4.3 BSD licencié par l’Université de Californie. UNIX
est une marque enregistrée aux Etats-Unis et dans d’autres pays, et licenciée exclusivement par X/Open Company Ltd. Le logiciel détenu par des
tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, SunXTL, et Solaris sont des marques déposées ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et
dans d’autres pays. Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems,
Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés de Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique, cette licence
couvrant aussi les licenciés de Sun qui mettent en place les utilisateurs d’interfaces graphiques OPEN LOOKet qui en outre se conforment aux
licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y COMPRIS, ET
SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DES
PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE SOIENT PAS CONTREFAISANTS DE PRODUITS
DE TIERS.

iii

Contents

1. Introduction . 1

RCM and SunXTL . 1

Software Components . 3

Remote Client . 3

RCM. 3

inetd . 3

SunXTL API . 4

SunXTL MPI . 4

SunXTL Server . 4

SunXTL Provider . 4

Telephony Device. 4

2. RCM Requests and Indications . 5

Data Types . 5

Strings . 6

Numbers . 6

iv SunXTL 1.1 Remote Client Manager Guide—December 1995

Lists . 6

Enumerations . 7

Requests . 7

Object Creation and Destruction Requests 8

Provider Object Requests . 9

Call Object Requests . 10

Monitoring and Filtering Requests . 12

Indications . 13

Provider Object Indications . 13

Call Object Indications . 15

Monitoring and Filtering Indications 17

Errors . 18

A. Remote Client Sample Sessions . 19

Sample Sessions . 19

Making an Outgoing Call, Local Party Disconnects 21

Receiving an Incoming Call, Remote Party Disconnects . . 24

v

Figures

Figure 1-1 Remote Client Manager and SunXTL Architecture 2

Figure A-1 Configuration for Sample Sessions . 20

vi SunXTL 1.1 Remote Client Manager Guide—December 1995

vii

Tables

Table 2-1 RCM Object Create and Destroy Requests 8

Table 2-2 RCM Provider Object Requests . 9

Table 2-3 RCM Call Object requests. 10

Table 2-4 RCM Monitoring and Filtering Requests. 12

Table 2-5 Provider Object Indications . 13

Table 2-6 Call Object Indications . 15

Table 2-7 RCM Monitoring and Filtering Requests. 17

viii SunXTL 1.1 Remote Client Manager Guide—December 1995

ix

Preface

This book documents the SunXTL Remote Client Manager (RCM).

Note that all references to Solaris in this book apply only to the SPARC version
of Solaris.

Who Should Use This Book
This book is intended for Solaris programmers who are knowledgeable in C++
and have an understanding of the SunXTL framework, which is described in
the Sun XTL 1.1 Architecture Guide. You should be familiar with the SunXTL
API to understand the syntax and semantics of the requests and indications.
Refer to the Sun XTL 1.1 Application Programmer’s Guide for more details on the
SunXTL API.

How This Book Is Organized
Chapter 1, “Introduction,” introduces concepts of the Remote Client Manager
and how it works with the SunXTL architecture.

Chapter 2, “RCM Requests and Indications,” presents a high-level description
of the Remote Client Manager requests and indications.

Appendix A, “Remote Client Sample Sessions,” provides sample sessions
between a remote client and the Remote Client Manager.

x SunXTL 1.1 Remote Client Manager Guide—December 1995

Related Books
The following books are part of the SunXTL documentation set:

• Sun XTL 1.1 Architecture Guide

• Sun XTL 1.1 Administrator’s Guide

• Sun XTL 1.1 Application Programmer’s Guide

• Sun XTL 1.1 Provider Programmer’s Guide

What Typographic Changes and Symbols Mean
Table P-1 describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

Also used to highlight class
methods in tables

system% su
Password::

virtual XtelPProvider();

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

Preface xi

$ UNIX Bourne and Korn shell
prompt

system$

Superuser prompt, all shells system#

Highlight A highlighted table row means
the method must be overriden
with your implementation code.

virtual void cleanup()=0;

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

xii SunXTL 1.1 Remote Client Manager Guide—December 1995

1

Introduction 1

The SunXTL™ 1.1 Remote Client Manager (RCM) provides an Internet
Protocol (IP) interface to SunXTL Teleservices. The RCM enables remote clients
to use SunXTL Teleservices (excluding data streams) over the network.

In SunXTL 1.0, the Remote Client Manager was named xtlparser . The
Remote Client Manager provides the full functionality of xtlparser , and is
fully compatible with xtlparser .

RCM and SunXTL
Since the Remote Client Manger (RCM) is a SunXTL application, it should be
installed on the SPARC machine where SunXTL Teleservices is installed. Refer
to the SunXTL 1.1 CD insert for more details on the RCM and SunXTL 1.1
installation. After installing the RCM and SunXTL 1.1, you should configure
the RCM as described in the README file located in /opt/SUNWxtl/src/rcm .

The RCM runs as a daemon with a port number of 4242. It provides a set of
requests and indications for remote clients to communicate with it. The RCM’s
requests and indications correspond to a subset of the requests and events of
the SunXTL API. The RCM’s requests and indications are described in
Chapter 2, “RCM Requests and Indications”. Refer to the Sun XTL 1.1
Application Programmer’s Guide for more details on SunXTL API.

2 SunXTL 1.1 Remote Client Manager Guide—December 1995

1

Remote clients communicate with the RCM, first, by opening a TCP network
connection to the RCM, and then sending the RCM’s requests over the
connection for call control management. The RCM sends indications to the
clients in response to the requests it receives.

Appendix A, “Remote Client Sample Sessions,” shows sample sessions of a
client sending requests to the RCM. The next section describes the software
components of the RCM and the SunXTL architecture shown in Figure 1-1.

Figure 1-1 Remote Client Manager and SunXTL Architecture

SunXTL server

SunXTL MPI

inetd

Telephony Device (PBX, etc.)

RCM

Remote client

RCM/SunXTL/Solaris Remote Node

SunXTL Provider

SunXTL API RCM protocol (Requests and Indications)

Introduction 3

1

Software Components
The software components of the Remote Client Manager, remote clients, and
SunXTL architecture, shown in Figure 1-1, are

• Remote client
• RCM
• SunXTL API
• SunXTL server
• SunXTL MPI
• SunXTL provider
• Telephony Device.

Remote Client

The Remote Client manages incoming and outgoing calls. It does call control
management by sending the RCM’s requests over the network. Note that the
remote client runs on a remote node. The remote node can be a Solaris/SPARC
platform, a Windows/IBM PC platform, or any other platform. The client can
establish a connection with the RCM irrespective of the platform type as long
as it has a means to open a TCP/IP network connection to the Solaris/SPARC
machine on which the RCM is installed.

Chapter 2, “RCM Requests and Indications,” provides the details of the RCM’s
requests and indications.

RCM

The Remote Client Manager interprets the requests sent by the client, and
maps the requests to the SunXTL API. It sends indications to the client in
response to the requests.

inetd

inetd is the Internet superserver in Solaris. inetd accepts TCP connections
from remote clients on the address (port number) of the RCM, and forks RCM
processes. There is one instance (process) of RCM for every remote client.

4 SunXTL 1.1 Remote Client Manager Guide—December 1995

1

SunXTL API

SunXTL API is the Application Programming Interface of SunXTL Teleservices.
It provides connection management and control over telephony and voice
services through an object-oriented interface. The API is suitable for
implementing telephony applications that make, receive, control, and
terminate phone calls. Refer to the Sun XTL 1.1 Application Programmer’s Guide
for more details on SunXTL API.

SunXTL MPI

SunXTL MPI is the Media Programming Interface of SunXTL Teleservices. It is
an object-oriented interface for developing SunXTL providers that control and
manage telephony devices. It handles message passing and dispatching
between SunXTL server and SunXTL providers. Refer to the Sun XTL 1.1
Provider Programmer’s Guide for more details on SunXTL MPI.

SunXTL Server

SunXTL Server handles interprocess message passing between SunXTL API
and SunXTL MPI. It also handles asynchronous event notification between
SunXTL API and SunXTL MPI. SunXTL Server is completely transparent to
SunXTL applications and SunXTL providers. Refer to Sun XTL 1.1 Architecture
Guide for more details on SunXTL server.

SunXTL Provider

SunXTL Provider manages and controls a telephony device. It uses SunXTL
MPI to communicate with SunXTL server. It uses software libraries associated
with the telephony device for communicating with the telephony device. Refer
to Sun XTL 1.1 Provider Programmer’s Guide for more details on developing a
SunXTL Provider.

Telephony Device

Telephony device can be either hardware (such as a PBX), software, or some
combination thereof, that is capable of communicating with a telephone
network.

5

RCM Requests and Indications 2

Remote clients communicate with the SunXTL Remote Client Manager (RCM)
with a set of requests and indications for call control management. The
requests and indications correspond to a subset of the requests and events of
the SunXTL API. The requests and indications are asynchronous, and not all
requests have indications.

Remote clients open a TCP connection to the RCM for exchanging the requests
and indications. The clients use a transport layer interface such as sockets for
establishing a connection with the RCM. Refer to Appendix A, “Remote Client
Sample Sessions”, for more details on establishing a connection with the RCM.
This chapter explains the syntax and semantics of requests and indications.
You should be familiar with the SunXTL API to fully comprehend the syntax
and semantics of the requests and indications. Refer to the Sun XTL 1.1
Application Programmer’s Guide for more details on the SunXTL API.

Data Types
The RCM requests and indications use the representations of the
XtlByteArray , XtlString , and XtlKVList objects; XtlByteArray ,
XtlString , and XtlKVList are the utility classes of SunXTL API. Refer to the
Sun XTL 1.1 Application Programmer’s Guide for more details on the utility
classes.

6 SunXTL 1.1 Remote Client Manager Guide—December 1995

2

Strings

In RCM requests and indications, XtlByteArray or XtlString are
represented as a sequence of characters enclosed in double quotes. A double
quote can be embedded in a string if preceded by a backslash. The syntax for a
string is as follows:

Strings are noted as “provider_name “, while empty strings are entered as ““.

Numbers

In RCM requests and indications, numbers have u_long precision, and are
used as integers such as 0 or 31415926 :

Lists

In RCM requests and indications, XtlKVList objects are represented as lists.
The basic syntax for a list is as follows:

((keystring1 value1) (keystring2 value2)...)

keystring is a string as described above. value is either an integer, string, or
another list; an example is given below:

((“key1” 1)
 (“key2” “string”)
 (“key3” ((“key4” 3) (“key5” “last value”))))

RCM Requests and Indications 7

2

Enumerations

In RCM requests and indications, enumerations are represented as tokens. For
example:

Xtl::PROCEEDING_EVENT, an enumeration of the SunXTL API

is represented as

PROCEEDING_EVENT

This symbol should not be in double quotes, nor should it be quoted. The RCM
enumerations are equivalent to the SunXTL API enumerations. Refer to the Sun
XTL 1.1 Application Programmer’s Guide for more details on SunXTL API request
and event enumerations.

Requests
The RCM has two types of requests:

• Requests that remote clients send to the RCM
• Requests that the RCM sends to remote clients.

Object creation and destruction, provider object, and call objects requests are
the requests that the remote clients send to the RCM. Monitoring and filtering
requests are the requests that the RCM sends to the remote clients.

8 SunXTL 1.1 Remote Client Manager Guide—December 1995

2

Object Creation and Destruction Requests

The RCM provides requests for creating and destroying XtlProvider and
XtlCall objects. An XtlProvider object represents the service provider that
manages connections between a network and a telephone device. An XtlCall
object represents a call. Refer to the Sun XTL 1.1 Application Programmer’s Guide
for more details on XtlProvider and XtlCall . The requests for creating and
destroying XtlProvider and XtlCall objects are detailed in Table 2-1.

Table 2-1 RCM Object Create and Destroy Requests

Create and Destroy Object Requests Description

(create_provider provider_name) Creates a XtlProvider object for the provider specified by the
provider_name parameter. The provider_name should be a valid
provider alias. The provider_name should be used in all the requests
sent to the provider.

(destroy_provider provider_name) Destroys the XtlProvider object of a provider specified by the
provider_name . The provider_name should be a valid provider alias.

(create_call call_ident
provider_name args)

Creates a XtlCall object. The call_ident parameter is an arbitrary
string chosen by the application to be an identification for the XtlCall
object. The provider_name parameter is the same as the
provider_name specified with the create_provider request. The
args parameter specifies a XtlKVList .

(destroy_call call_ident) Destroys the XtlCall object specified by the call_ident . The
call_ident is the arbitrary string chosen by the application to be an
identification for a XtlCall object.

RCM Requests and Indications 9

2

Provider Object Requests

The RCM provides a set of requests for managing provider objects. Table 2-2
details the RCM requests of a provider object. The RCM provider requests are
equivalent to the appropriate XtlProvider request methods of SunXTL API.
Refer to the Sun XTL 1.1 Application Programmer’s Guide for the XtlProvider
request methods of SunXTL API.

Table 2-2 RCM Provider Object Requests

Provider Object Requests Description

(list_calls_req provider_name) Requests a list of active calls on the provider specified by
provider_name .

(enable_offer_event_req provider_name on
args)

Allows the provider specified by provider_name to receive
call offer events. To register for offer indications, set on
parameter to #t ; to unregister set on to #f . The optional args
parameter is a list, and can be used to specify provider-specific
information.

(listen_req provider_name listenFor args) Allows the provider specified by provider_name to listen for
a named event specified by listenFor . By default provider
objects are not registered for any events. The optional args
parameter specifies provider-specific information.

(ignore_req provider_name toIgnore args) Unregisters an event specified by toIgnore with the provider
specified by provider_name . The optional args parameter
specifies provider-specific information.

(extension_req provider_name feature
args)

Requests a provider-specific feature to be activated, such as call
forwarding, speed dialing, and so on. feature specifies the
name of the provider-specific feature, and args contains the
necessary arguments for the feature.

(get_call_state_req provider_name
call_ref)

Gets the state of a call specified by call_ref . call_ref is
XtlCallReference string that was listed in a
list_calls_ind indication.

10 SunXTL 1.1 Remote Client Manager Guide—December 1995

2

Call Object Requests

The RCM provides a set of requests for managing call objects. Table 2-3 details
the RCM requests of a call object. The RCM call requests are equivalent to the
appropriate XtlCall request methods of SunXTL API. Refer to the Sun XTL
1.1 Application Programmer’s Guide for the XtlCall request methods of SunXTL
API.

Table 2-3 RCM Call Object requests

Call Object Requests Description

(connect_req call_ident local remote
media_format args)

Dials a number to create an outgoing call. The call_ident
parameter is the string chosen by the application in a create_call
request. The local parameter specifies the address (or telephone
number) of the calling party; remote is the called party;
media_format specifies the desired media channel data format.
media_format is a list (XtlKVlist), and all of the standard constants
defined in <xtl/constants.h> are valid and have symbol bindings. args
is an optional list of provider-specific information.

(claim_call call_ident call_ref) The call specified by call_ident takes ownership of an offered call
specified by call_ref . The call_ident parameter is an arbitrary
string chosen by the application to be an identification for a XtlCall
object. The call_ref is a string, that corresponds to
XtlCallReference , extracted from an offer indication.

(add_to_address_req call_ident
addition args)

Lets you append additional addressing information to the initial
address given in a previous connect_req . The call_ident is the
string chosen by the application to be an identification for a XtlCall
object. The addition parameter specifies a piece of the complete
address, and args is an optional list of provider-specific information.

(answer_req call_ident args) Answers, or establishes connection with an incoming call; the
call_ident parameter is the string chosen by the application in a
claim_call request. args is an optional list of provider-specific
information.

(disconnect_req call_ident args) Hangs up a call. The call_ident parameter is the string chosen by
the application to be an identification for a XtlCall object. args is
an optional list of provider-specific information.

(hold_req call_ident args) Puts a call on hold. The call_ident parameter is the string chosen
by the application to be an identification for a XtlCall object; args is
an optional list of provider-specific information.

RCM Requests and Indications 11

2

(unhold_req call_ident args) Takes a call off hold. The call_ident parameter is the string chosen
by the application to be an identification for a XtlCall object; args
is an optional list of provider-specific information.

(transfer_req call_ident
transfer_call_ident args)

Transfers a call by connecting the call, specified by call_ident , to
another call specified by transfer_call_ident . The call_ident
and transfer_call_ident parameters are the strings chosen by
the application in previous requests. The other call must be active;
args is an optional list of provider-specific information.

(redirect_req call_ident redirect_to
args)

Redirects the call, specified by call_ident , to the address (or
telephone number) specified by redirect_to . redirect_to is a
string, and args is an optional list of provider-specific information.

(conference_req call_ident
conferee_call_ident args)

Conferences in another call, specified by
conferee_call_ident .The call_ident and
conferee_call_ident parameters are the strings chosen by the
application in previous requests; args is an optional list of provider-
specific information.

(drop_req call_ident args) Drops the last call connected to the conference; args is an optional
list of provider-specific information.

(offer_req call_ident args) Offers the call specified by call_ident to other clients and thereby
relinquishes ownership of the call if claimed by another client. The
call_ident parameter is the string chosen by the application to be
an identification for a XtlCall object; args is an optional list of
provider-specific information.

(set_client_state_req call_ident
client_state)

Sets the client state of the call specified by call_ident with client-
specific information given by client_state . The call_ident
parameter is the string chosen by the application to be an
identification for a XtlCall object. client_state is a list
(XtlKVlist).

Table 2-3 RCM Call Object requests (Continued)

Call Object Requests Description

12 SunXTL 1.1 Remote Client Manager Guide—December 1995

2

Monitoring and Filtering Requests

The RCM has one request for monitoring remote clients and another request
for filtering messages. Table 2-4 describes the two requests.

(extension_req call_ident feature
args)

Requests a provider-specific feature; call_ident parameter is the
string chosen by the application to be an identification for a XtlCall
object. feature is a string, and args is an optional list of provider-
specific information.

(configuration_req call_ident
requested_configuration)

Configures or opens a call’s data stream with
requested_configuration . call_ident is the string chosen by
the application to be an identification for a XtlCall object.
requested_configuration is a list. args is an optional list of
provider-specific information.

(generate_dtmf_req call_ident digits
args)

Generates one or more DTMF tones. call_ident parameter is the
string chosen by the application to be an identification for a XtlCall
object. digits is a string, and args is an optional list of provider-
specific information.

Table 2-4 RCM Monitoring and Filtering Requests

Monitoring and Filtering Requests Description

(Parser::heartbeat_req) The RCM sends heartbeat_req to remote clients periodically to check
whether remote clients are alive or not. The remote client should send an
indication, heartbeat_ind , as a response to the request. The
heartbeat_ind is described in“Monitoring and Filtering Indications”. The
RCM determines the frequency of the heartbeat_req based on the
arguments specified at its start-up time; refer to
/opt/SUNWxtl/src/rcm/README for more details on the RCM’s input
arguments.

(Parser::notify_req) The RCM sends a notify_req to clients immediately after sending a
Provider::activated_ind . Provider::activated_ind is a provider
indication, and is described in “Provider Object Indications”. The clients can
send a notify_ind , a filtering indication, to specify the events to be filtered
by the provider object. The notify_ind is described in “Monitoring and
Filtering Indications”.

Table 2-3 RCM Call Object requests (Continued)

Call Object Requests Description

RCM Requests and Indications 13

2

Indications
The RCM sends indications to remote clients in response to the requests it
receives from the remote clients. Also the RCM expects indications from the
clients for the requests it sends to the clients. Note that requests and
indications are asynchronous, and not all requests have indications.

Provider Object Indications

The RCM sends indications for the provider object requests it receives.
Table 2-5 lists the RCM provider object indications. The RCM provider
indications are equivalent to the appropriate XtlProvider indication
methods of the SunXTL API. Refer to the Sun XTL 1.1 Application Programmer’s
Guide for the XtlProvider indication methods of the SunXTL API.

Table 2-5 Provider Object Indications

Provider Object Indications Description

(Provider::activated_ind
provider_name args)

Confirms that the provider object is created for a create_provider
request. provider_name is the provider alias specified with a
create_provider request, and args is an optional list.

(Provider::deactivated_ind
provider_name args)

Confirms that the provider object is destroyed for a
destroy_provider request. provider_name is the provider alias
specified with a create_provider request. args is an optional list.

(Provider::list_calls_ind
provider_name call_list)

Lists active calls of the provider. provider_name is the provider
specified in a list_calls_req . call_list is a list of call_states .
A call_state is represented as a list where the key is the name of an
XtlCallState accessor function, and the value is the appropriately-
typed value from the XtlCallState .

(Provider::enable_offer_event_ind
provider_name on);

Confirms the enable_offer_event_req if the on parameter is
returned as #t . provider_name is the provider alias specified in a
enable_offer_event_req .

(Provider::listen_ind
provider_name event)

Confirms that the provider is registered to receive the event specified by
event. provider_name is the provider alias specified in a listen_req .
event is CallEvent enumeration. Refer to Sun XTL 1.1 Application
Programmer’s Guide for more details on CallEvent .

(Provider::ignore_ind
provider_name event)

Confirms that the provider will no longer receive the event specified by
event. provider_name is the provider alias specified in a listen_req .
event is CallEvent enumeration. Refer to Sun XTL 1.1 Application
Programmer’s Guide for more details on CallEvent .

14 SunXTL 1.1 Remote Client Manager Guide—December 1995

2

(Provider::get_call_state_ind
provider_name call_state args)

Returns the call state of a call and any provider-specific arguments.
provider_name is the provider alias specified in a
get_call_state_req ; call_state is represented as a list where the
key is the name of an XtlCallState accessor function, and the value is
the appropriately typed value from the XtlCallState . args is an
optional list.

(Provider::call_event_ind
provider_name call_state event
cause args)

Returns the event that has occurred on the call specified by the
call_state value. A call_state is represented as a list where the
key is the name of an XtlCallState accessor function, and the value is
the appropriately typed value from the XtlCallState . event and
cause are CallEvent and Cause enumerations, respectively. args is
an optional list of provider-specific information.

When a client receives this indication, the call_state argument only
provides up-to-date XtlCallReference and CallState information.
If a client needs complete state information, it my invoke
get_call_state_req . Refer to the Sun XTL 1.1 Application
Programmer’s Guide for more details on CallEvent , Cause , and
CallState .

(Provider::offer_ind
provider_name call_state args)

Notifies the provider that a call (whose XtlCallReference is specified
in call_state) is available to be claimed. call_state is represented
as a list where the key is the name of an XtlCallState accessor
function, and the value is the appropriately typed value from the
XtlCallState . Additional provider-specific arguments are given by
args .

(Provider::info_ind provider_name
args)

Notifies that provider state has changed for the provider alias given in
provider_name . Additional provider-specific arguments are given by
args . If a client needs complete state information, it my invoke
get_call_state_req .

(Provider::error_ind
provider_name request error args)

An error has occurred in a given request for the provider alias given in
provider_name . request and error are enumerations of provider
requests and errors. Refer to Sun XTL 1.1 Application Programmer’s Guide
for more details on error. args contains provider-specific details.

(Provider::extension_ind
provider_name feature args)

Confirms that the provider has received the message sent by
extension_req . provider_name is the provider alias specified in the
extension_req . feature is a string, and args contains provider-
specific details

Table 2-5 Provider Object Indications (Continued)

Provider Object Indications Description

RCM Requests and Indications 15

2

Call Object Indications

The RCM sends indications for the call object requests it receives. Table 2-6 lists
the RCM call indications. The RCM call indications are equivalent to the
appropriate XtlCall indication methods of the SunXTL API. Refer to the Sun
XTL 1.1 Application Programmer’s Guide for the XtlCall indication methods of
the SunXTL API.

Table 2-6 Call Object Indications

Call Object Indications Description

(Call::activated_ind call_ident
args)

Confirms the activation of a call object for a create_call request,
and the call object can receive events. call_ident is the string
chosen by the application in the create_call request. args is an
optional list of provider-specific information.

(Call::deactivated_ind call_ident
args)

Confirms the deactivation of a call object for a destroy_call
request. The call object can no longer receive events; call_ident is
the string specified in the destroy_call request; args is an optional
list of provider-specific information.

(Call::configuraton_ind call_ident
configuration)

Confirms a new configuration for a configuration_req .
call_ident is the string specified in the configuration_req .
configuration is a list that contains the new media channel
configuration.

(Call::event_ind call_ident event
cause args)

Indicates arrival of an event with a related cause code. call_ident
is the string chosen by the application in a request. event and cause
are CallEvent and Cause enumerations respectively; args is an
optional list of provider-specific information.

Refer to the Sun XTL 1.1 Application Programmer’s Guide for more
details on CallEvent and Cause.

(Call::error_ind call_ident request
error args)

Indicates an error condition for a request. Shows the possible errors
values. call_ident is the string chosen by the application in a
request, and args is an optional list of provider-specific information.
Refer to the Sun XTL 1.1 Application Programmer’s Guide for more
details on error .

16 SunXTL 1.1 Remote Client Manager Guide—December 1995

2

(Call::extension_ind call_ident
feature args)

Indicates an extension indication for a extension_req ; it
returns the newly activated provider-specific feature and its
argument list. call_ident is the string specified in the
extension_req , feature is a string, and args is an optional list of
provider-specific information.

(Call::detect_dtmf_ind call_ident
value args)

Indicates a DTMF event. call_ident is the string chosen by the
application in a request. value is a string, and args is an optional list
of provider-specific information.

(Call::configuration call_ident
configuration)

Returns the requested configuration information in response to a
get_configuration request. call_ident is the string specified in
the get_configuration , and configuration is a list.

Table 2-6 Call Object Indications (Continued)

Call Object Indications Description

RCM Requests and Indications 17

2

Monitoring and Filtering Indications

The RCM receives monitoring and filtering indications from remote clients in
response to monitoring and filtering requests. Table 2-7 describes monitoring
and filtering indications.

Table 2-7 RCM Monitoring and Filtering Requests

Monitoring and Filtering Requests Description

(heartbeat_ind) Remote clients should send a heartbeat_ind in response to a
heartbeat_req from the RCM. If the RCM does not receive a
heartbeat_ind within a time-out period, it assumes that the client has
exited and the RCM will exit. The time-out period is determined by the
arguments given to the RCM at the start-up time; refer to
/opt/SUNWxtl/src/rcm/README for more details on the RCM’s input
arguments.

(notify_ind args) If remote clients do not want to receive all the events sent by a provider object
by default, the clients should send a notify_ind . The clients can send a
notify_ind at any time after receiving a notify_req from the RCM. The
RCM sends a notify_req to clients immediately after sending a
Provider::activated_ind .

args is a list and it can have one of the two following forms:
(client_ident ident _number) or
(client_ident ident_string)

client_ident is the string specified by the application. number is a number,
and ident_string is a string. After receiving the indication the RCM filters
out client-bound messages which do not contain a key-value pair specified in
the args .

18 SunXTL 1.1 Remote Client Manager Guide—December 1995

2

Errors
The RCM reports errors in two ways: the first mechanism is the normal
error_ind indication that is sent to the appropriate object as described in
provider object and call object indications. The second mechanism is
unknown_object indication. The RCM sends the unknown_object indication
when an argument, such as provider_name or call_ident of a request is not
bound to a valid object. The unknown_object indication has the following
form:

(unknown_object request_name object_name)

For example,
(unknown_object “create_call ” “invalid_provider_alias ”)
indicates that the “invalid_provider_alias ” argument of the
create_call request is not a valid provider alias.

Currently, the RCM does not forward the exceptions it receives from the
SunXTL API to remote clients. Remote clients should wait for appropriate
indications before sending new requests. In particular, after sending a
create_provider or a create_call request, the clients should not send
any requests on the new object until the appropriate activated_ind is
received.

19

Remote Client Sample Sessions A

This chapter shows two sample sessions between a remote client and the
Remote Client Manager (RCM). The first session shows how the remote client
makes an outgoing call, and the second session shows how the remote client
receives an incoming call. telnet(1) is used as the remote client in the
sample sessions.

If you want to develope a remote client, refer to the source code of a remote
client example available in the SunXTL 1.1 distribution. After installing the
Remote Client Manager package, SUNWxtlsp , you can find the source code
and a README for the remote client example in
/opt/SUNWxtl/src/rcm_client .

Sample Sessions
telnet(1) is used as a remote client in the following sample sessions; both
sessions use the Internet Protocol (IP) provider for call management. Refer to
the telnet(1) and xtlp_sun_ip(7) man pages for more details on the
telnet and the IP provider. The configuration for the sample sessions is shown
in Figure A-1: the remote client (telnet) runs on node1 , the RCM and
SunXTL teleservices are installed on node2 , and SunXTL is installed on node3 .
Note that node1 does not have SunXTL.

20 SunXTL 1.1 Remote Client Manager Guide—December 1995

A

Figure A-1 Configuration for Sample Sessions

RCM/SunXTL 1.1

Remote Client (telnet)

Node2

Node1

SunXTL 1.1

Node3

Remote Client Sample Sessions 21

A

Making an Outgoing Call, Local Party Disconnects

In this session the remote client (telnet) manages an outgoing call from node2
to node3 using the RCM. Make sure that you run an application on node3 to
receive the call; you can run the file_play example program, located in
/opt/SUNWxtl/bin , with the IP provider on node3 .

Type the following on node1 to open a connection to the RCM:

You should see the following if the telnet opens a connection to the RCM
successfully:

Now you can send requests to the RCM. Send a request to create an IP
provider object:

You should not send any requests until you get the following indication from
the RCM:

Notice that the RCM has sent a notify_req immediately after the
activated_ind . You can send notify_ind to filter messages from the
provider object. In this session you should not send a notify_ind in order to
see all the messages from the provider object.

Send a request to create a call object on the IP provider:

node1% telnet node2 4242

Trying ...
Connected to node2.
Escape character is '^]'.

(create_provider "ip")

(Provider::activated_ind "ip" ())
(Parser::notify_req)

(create_call "call1" "ip" ())

22 SunXTL 1.1 Remote Client Manager Guide—December 1995

A

You get the following indication from the RCM:

Send a request to establish a call on node3 ; Make sure you are running an
application to receive the call on node3 ; you can run file_play example
program located in /opt/SUNWxtl/bin on node3 .

(Call::activated_ind "call1" (("call_reference" "24 xtlp_sun_ip.0")
("state" "IDLE") ("local_address" "") ("remote_address" "")
("media_channel_available" #f) ("owner" #t) ("incoming" #f)
("claimable" #f) ("extended_state" ()) ("client_state" ()) ("format" ())
("display" "")) ())

(connect_req "call1" "" "node3" () ())
You get the following event indications from the RCM:
(Call::event_ind "call1" (("call_reference" "24 xtlp_sun_ip.0")
("state" "PROCEEDING") ("local_address" "node2")
("remote_address" "node3") ("media_channel_available" #f) ("owner" #t)
("incoming" #f) ("claimable" #f) ("extended_state" ()) ("client_state" ())
("format" ()) ("display" "")) PROCEEDING_EVENT CAUSE_NORMAL ())
(Call::event_ind "call1" (("call_reference" "24 xtlp_sun_ip.0")
("state" "ALERTING") ("local_address" "node2")
("remote_address" "node3") ("media_channel_available" #f) ("owner" #t)
("incoming" #f) ("claimable" #f) ("extended_state" ()) ("client_state" ())
("format" ()) ("display" "")) ALERTING_EVENT CAUSE_NORMAL ())
(Call::event_ind "call1" (("call_reference" "24 xtlp_sun_ip.0") ("state"
"CONNECTED") ("local_address" "node2") ("remote_address" "node3")
 ("media_channel_available" #f) ("owner" #t) ("incoming" #f)
 ("claimable" #f) ("extended_state" ()) ("client_state" ()) ("format" ())
("display" "")) CONNECT_EVENT CAUSE_NORMAL ())
(Call::event_ind "call1" (("call_reference" "24 xtlp_sun_ip.0") ("state"
"CONNECTED") ("local_address" "node2") ("remote_address" "node3")
("media_channel_available" #t) ("owner" #t) ("incoming" #f)
("claimable" #f) ("extended_state" ()) ("client_state" ()) ("format" ())
("display" "")) CHANNEL_AVAILABLE_EVENT CAUSE_NORMAL ())
(Call::event_ind "call1" (("call_reference" "24 xtlp_sun_ip.0") ("state"
"CONNECTED") ("local_address" "node2") ("remote_address" "node3")
("media_channel_available" #t) ("owner" #t) ("incoming" #f)
("claimable" #f) ("extended_state" ()) ("client_state" ())
("format" (("Encoding" "ULaw") ("SampleSize" 8) ("SampleRate" 8000)))
("display" "")) INFO_EVENT CAUSE_NORMAL ())

Remote Client Sample Sessions 23

A

Configure the call to generate DTMF tones:

The RCM sends the following indication in response to configuration_req:

You can now send DTMF tones:

The RCM sends the following indication:

Similarly you can send other requests for controlling the call. When you no
longer need the call you can hang-up the call with a disconnect_req:

(configuration_req "call1" (("INPUT" "STREAM") ("OUTPUT" "STREAM")
("OUTPUT" "DTMF_DETECTOR") ("INPUT" "DTMF_GENERATOR")))

(Call::configuration_ind "call1" (("call_reference" "24 xtlp_sun_ip.0")
("state" "CONNECTED") ("local_address" "node2") ("remote_address"
"node3") ("media_channel_available" #t) ("owner" #t)
("incoming" #f) ("claimable" #f) ("extended_state" ()) ("client_state" ())
("format" (("Encoding" "ULaw") ("SampleSize" 8) ("SampleRate" 8000)))
("display" "")) (("INPUT" "DTMF_GENERATOR") ("OUTPUT"
"DTMF_DETECTOR") ("INPUT" "STREAM") ("INPUT_STREAM_FD" 8)
("OUTPUT" "STREAM") ("OUTPUT_STREAM_FD" 8)))
(Call::event_ind "call1" (("call_reference" "24 xtlp_sun_ip.0") ("state"
"CONNECTED") ("local_address" "node2") ("remote_address" "node3")
("media_channel_available" #t) ("owner" #t) ("incoming" #f) ("claimable" #f)
("extended_state" ()) ("client_state" ()) ("format" (("Encoding" "ULaw")
("SampleSize" 8) ("SampleRate" 8000))) ("display" "")) INFO_EVENT
CAUSE_NORMAL ())

(generate_dtmf_req "call1" "123" ())

(Call::extension_ind "call1" (("call_reference" "24 xtlp_sun_ip.0")
("state" "CONNECTED") ("local_address" "node2") ("remote_address"
"node3") ("media_channel_available" #t) ("owner" #t) ("incoming" #f)
("claimable" #f) ("extended_state" ()) ("client_state" ()) ("format" (("Encoding"
"ULaw") ("SampleSize" 8) ("SampleRate" 8000))) ("display" ""))
"DTMF_GENERATOR" (("DTMF_STRING" "123")))

(disconnect_req "call1" ())

24 SunXTL 1.1 Remote Client Manager Guide—December 1995

A

At the end, destroy the call and the provider objects:

Finally close the connection with the RCM:

The RCM closes the connection, and the telnet exits.

Receiving an Incoming Call, Remote Party Disconnects

In this session the remote client (telnet) manages an incoming call from node3
to node2 using the RCM. You have to run an application on node3 to establish
a call from node3 to node2 ; you can use dial_pad example program, located
in /opt/SUNWxtl/bin , with the IP provider on node3 .

Type the following on node1 to open a connection to the RCM:

You should see the following if the telnet opens a connection to the RCM
successfully:

Now you can send requests to the RCM. Send a request to create an IP
provider object:

(destroy_call "call1")
(destroy_provider "ip")

(exit)

Connection closed by foreign host
node1%

node1% telnet node2 4242

Trying ...
Connected to node2.
Escape character is '^]'.

(create_provider "ip")

Remote Client Sample Sessions 25

A

You should not send any requests until you get the following indication from
the RCM:

To receive incoming calls, enable the provider object to receive call offer events.
Send the following request to the IP provider object:

You get the following indication from the RCM:

Now if you establish a call from node3 to node2 using the IP provider, you
should get an offer_ind indication from the RCM. As mentioned earlier, you
can use the dial_pad example program located in /opt/SUNWxtl/bin to
establish a call from node3 to node2 .

After receiving the offer_ind indication you should claim the call to take
ownership of the call with a claim_call request; note that you have to use
the call reference specified in the offer_ind to claim the call. Here the call
reference is "27 xtlp_sun_ip.0 ".

(Provider::activated_ind "ip" ())
(Parser::notify_req)

(enable_offer_event_req "ip" #t ())

(Provider::enable_offer_event_ind "ip" #t)

(Provider::offer_ind "ip" (("call_reference" "27 xtlp_sun_ip.0")
("state" "INCOMING") ("local_address" "node2")
("remote_address" "node3") ("media_channel_available" #f)
("owner" #f)
("incoming" #t) ("claimable" #t) ("extended_state" ())
("client_state" (("XtlKVList" "UNKNOWN")))
("format" (("XtlKVList" "UNKNOWN"))) ("display" "")) ())

(claim_call "call2" "27 xtlp_sun_ip.0")

26 SunXTL 1.1 Remote Client Manager Guide—December 1995

A

You should get the following activated_ind indication for the call object,
call2 , creation:

After claiming the call you should answer the remote party which is trying to
establish the call from node3:

You get the following event indications from the RCM if the call is established
successfully:

Now the call is established between node3 and node2 , and you can control the
call as you wish by sending other requests and indications to the RCM.

(Call::activated_ind "call2" (("call_reference" "27
xtlp_sun_ip.0")
("state" "INCOMING") ("local_address" "node2")
("remote_address" "node3") ("media_channel_available" #f)
("owner" #t)
("incoming" #t) ("claimable" #f) ("extended_state" ())
("client_state" ())
("format" ()) ("display" "")) ())

(answer_req "call2" ())

(Call::event_ind "call2" (("call_reference" "27 xtlp_sun_ip.0")
("state" "CONNECTED") ("local_address" "node2")
("remote_address" "node3") ("media_channel_available" #f)
("owner" #t) ("incoming" #t) ("claimable" #f) ("extended_state" ())
("client_state" ()) ("format" ()) ("display" "")) CONNECT_EVENT
CAUSE_NORMAL ())
(Call::event_ind "call2" (("call_reference" "27 xtlp_sun_ip.0")
("state" "CONNECTED") ("local_address" "node2")
("remote_address" "node3") ("media_channel_available" #t) ("owner" #t)
("incoming" #t) ("claimable" #f) ("extended_state" ()) ("client_state" ())
("format" ()) ("display" "")) CHANNEL_AVAILABLE_EVENT
CAUSE_NORMAL ())
(Call::event_ind "call2" (("call_reference" "27 xtlp_sun_ip.0")
("state" "CONNECTED") ("local_address" "node2")
("remote_address" "node3") ("media_channel_available" #t) ("owner" #t)
("incoming" #t) ("claimable" #f) ("extended_state" ()) ("client_state" ())
("format" (("Encoding" "ULaw") ("SampleSize" 8) ("SampleRate" 8000)))
("display" "")) INFO_EVENT CAUSE_NORMAL ())

Remote Client Sample Sessions 27

A

In this session, assume that the remote party from node3 disconnects the call;
you get the following indication when the remote party disconnects the call:

Now you can destroy the call and provider objects:

Finally close the connection with the RCM:

The RCM closes the connection, and the telnet exits:

(Call::event_ind "call2" (("call_reference" "27 xtlp_sun_ip.0")
("state" "DISCONNECTED") ("local_address" "node2")
("remote_address" "node3") ("media_channel_available" #f) ("owner" #t)
("incoming" #t) ("claimable" #f) ("extended_state" ()) ("client_state" ())
("format" (("Encoding" "ULaw") ("SampleSize" 8) ("SampleRate" 8000)))
("display" "")) DISCONNECT_EVENT CAUSE_NORMAL ())
(Call::deactivated_ind "call2" (("call_reference" "27 xtlp_sun_ip.0")
("state" "INVALID") ("local_address" "node2") ("remote_address" "node3")
("media_channel_available" #f) ("owner" #t) ("incoming" #t) ("claimable" #f)
("extended_state" ()) ("client_state" ()) ("format" (("Encoding" "ULaw")
("SampleSize" 8) ("SampleRate" 8000))) ("display" "")) ())

(destroy_call "call2")
(destroy_provider "ip")

(exit)

Connection closed by foreign host.
node1%

28 SunXTL 1.1 Remote Client Manager Guide—December 1995

A

Reader Comments

We welcome your comments and suggestions to help improve this manual. Please let us
know what you think about theSunXTL 1.1 Remote Client Manager Guide,part number
802-4935.-10

■ The procedures were well documented.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ The tasks were easy to follow.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ The illustrations were clear.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ The information was complete and easy to find.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ Do you have additional comments about theSunXTL 1.1 Remote Client Manager
Guide?

Name:

Title:

Company:

Address:

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 1 MOUNTAIN VIEW, CA

POSTAGE WILL BE PAID BY ADDRESSEE

SUN MICROSYSTEMS, INC.
Attn: Manager, Publications
MS MPK 14-101
2550 Garcia Avenue
Mt. View, CA 94043-9850

