
SunXTL 1.1
Application Programmer’s Guide

Part No.: 801-7046-11
Revision A, December 1995

The Network Is the Computer™

Sun Microsystems Computer Company
2550 Garcia Avenue
Mountain View, CA 94043 USA
415 960-1300 fax 415 969-9131

Please
Recycle

Copyright 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution,
and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system and from the Berkeley 4.3 BSD system, licensed from the University of
California. UNIX is a registered trademark in the United States and in other countries and is exclusively licensed by X/Open Company Lt.d.
Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii)
of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, SunXTL, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and in other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc. in the United States and in other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

Copyright 1995 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie
et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous aucune forme, par quelque moyen
que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Des parties de ce produit pourront être derivées du système UNIX® et du système Berkeley 4.3 BSD licencié par l’Université de Californie. UNIX
est une marque enregistrée aux Etats-Unis et dans d’autres pays, et licenciée exclusivement par X/Open Company Ltd. Le logiciel détenu par des
tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, SunXTL, et Solaris sont des marques déposées ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et
dans d’autres pays. Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems,
Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés de Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique, cette licence
couvrant aussi les licenciés de Sun qui mettent en place les utilisateurs d’interfaces graphiques OPEN LOOKet qui en outre se conforment aux
licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y COMPRIS, ET
SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DES
PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE SOIENT PAS CONTREFAISANTS DE PRODUITS
DE TIERS.

iii

Contents

Preface . xi

1. Introduction . 1

The SunXTL API . 2

SunXTL API Characteristics . 2

SunXTL Events . 3

Event Registration. 3

SunXTL Object Methods . 3

Request Methods . 4

Indication Methods. 4

Overview of SunXTL Classes . 4

2. Getting Started With SunXTL Programming 7

Compiling SunXTL Applications . 7

Creating a Makefile . 7

How the SunXTL Programming Interface Works 10

Some General Concepts . 10

iv SunXTL 1.1 Application Programmer’s Guide—December 1995

Program Examples . 11

Example Program outcall.cc . 11

Additional Program Examples . 16

3. Utility Classes . 17

Using XtlByteArray . 17

Using XtlString . 19

Using XtlKVList . 21

Copying an XtlKVList . 26

Creating a Hierarchical XtlKVList . 26

Traversing XtlKVList s. 27

Using the Event Dispatcher . 28

Initializing the Dispatcher . 30

Using dpIOHandler . 32

Using the Database Query Functions . 33

Using XtlFormat . 35

Requesting Formats . 38

Usage Examples . 39

Using XtlCallReference . 40

4. SunXTL API Classes. 41

The SunXTL Programming Model . 41

Listening for Events . 42

Event Codes. 42

SunXTL Class Relationships . 44

Initializing Objects . 44

Contents v

Interface and Implementation Objects 45

Activating and Deactivating Messaging Objects 46

SunXTL Classes . 47

Cause Codes . 48

Exception Codes . 49

Error Codes . 50

Using XtlProvider . 51

Using XtlCall . 56

Transferring Call Ownership . 57

Claiming Calls . 58

Constructing a Call Object . 59

Using XtlCallState . 64

Call State and Transitions . 65

Using XtlMonitor . 71

5. Creating SunXTL Applications . 73

Creating an SunXTL Application . 73

Using Header Files . 74

Deriving SunXTL Classes. 75

Program Example outcall.cc . 75

6. Using Media Channels. 85

Configuring Media Channels . 86

Composing a Configuration . 86

Configuring Audio-specific Channels . 88

Using DTMF Extensions . 89

vi SunXTL 1.1 Application Programmer’s Guide—December 1995

Generating DTMF Tones. 89

DTMF Tone Detection . 90

DTMF Silence Detection . 91

Configuring Channels With File Descriptors 92

A. Program Examples . 95

Handling Audio . 95

Answering Incoming Calls . 101

Using the Dispatcher and Notifier Interfaces 105

Creating an Answering Machine . 106

Monitoring Calls . 126

Index . 133

vii

Figures

Figure 3-1 XtlKVList Structure . 22

Figure 3-2 dpDispatcher and dpIOHandler Interactions 28

Figure 3-3 Voice Format Specification Example . 36

Figure 4-1 Relationship Between Interface and Implementation Objects 45

Figure 4-2 Normal Call State Transitions . 67

Figure 6-1 Media Channel Input and Output Types. 87

viii SunXTL 1.1 Application Programmer’s Guide—December 1995

ix

Tables

Table 3-1 XtlByteArray Methods (from bytearray.h) 18

Table 3-2 XtlString Methods (from bytearray.h) 19

Table 3-3 XtlKVList Methods (from kvlist.h) 23

Table 3-4 dpDispatcher Methods (from dispatcher.h). 29

Table 3-5 dpIOHandler Methods (from iohandler.h) 32

Table 3-6 Database Query Functions (from xtldb.h) 33

Table 3-7 Predefined XtlFormat Keys and Values 37

Table 4-1 CallEvent Events (from xtl_globals.h) 43

Table 4-2 Cause Codes (from xtl_globals.h). 48

Table 4-3 Exception Codes (from xtl_globals.h) 49

Table 4-4 Error Codes (from xtl_globals.h) . 50

Table 4-5 XtlProvider Class Request Methods
(from xtlprovider.h). 52

Table 4-6 XtlProvider Class Slot Methods
(from xtlprovider.h). 53

Table 4-7 XtlProvider Class Indication Methods
(from xtlprovider.h). 53

x SunXTL 1.1 Application Programmer’s Guide—December 1995

Table 4-8 XtlProvider Event and Request Values (from
xtlprovider.h) . 56

Table 4-9 XtlCall Class Request Methods (from xtlcall.h) 60

Table 4-10 XtlCall Class Slot Methods (from xtlcall.h) 62

Table 4-11 XtlCall Class Indication Methods (from xtlcall.h) 62

Table 4-12 XtlCall Request Values (from xtlcall.h) 63

Table 4-13 XtlCallState Slot Methods. 64

Table 4-14 Call State Enumerations (from xtl_globals.h) 68

Table 4-15 Valid Requests for Call States . 70

Table 4-16 Valid Indication Events for Call Status Transitions 71

Table 4-17 XtlMonitor Methods . 72

Table 5-1 SunXTL Header Files . 74

Table 6-1 Audio-specific Key-Value Combinations. 88

Table 6-2 DTMF Tone Generation Key-Value Pairs 90

Table 6-3 DTMF Silence Detection Key-Value Pairs 91

Table 6-4 File Descriptor Input and Output Key-value Pairs 93

xi

Preface

The SunXTL 1.1 Application Programmer’s Guide provides information on
programming teleservices applications with the SunXTL Application
Programmer’s Interface (API). The SunXTL API allows you to create
applications to make, receive, control, and terminate phone calls in a consistent
manner using a variety of telephone switch or network technologies. Note that
all references to Solaris in this book apply only to the SPARC version of Solaris.

Audience
This manual is for programmers who have a good understanding of C++ and
UNIX, and who wish to develop teleservices applications. You should also be
familiar with X-Windows programming concepts such as events, callbacks, and
dispatchers.

Purpose of This Manual
This manual describes the classes and methods provided by the SunXTL
library. In addition it explains how to use the SunXTL API to write applications
that:

• Place or answer multiple calls
• Hold, drop, transfer, and conference calls
• Provide access to media channels
• Enable security and sharing of calls between processes

xii SunXTL 1.1 Application Programmer’s Guide—December 1995

Structure of This Manual
The chapters in this manual are organized as follows:

Chapter 1, “Introduction,” introduces the SunXTL API and SunXTL objects.

Chapter 2, “Getting Started With SunXTL Programming,” explains how to
compile and run an SunXTL application. It explains configuration and run-
time information, and provides programming tips and an example program.

Chapter 3, “Utility Classes,” describes the SunXTL utility classes and the
event dispatcher classes.

Chapter 4, “SunXTL API Classes,” explains the SunXTL programming model.
It defines object-oriented programming and describes the SunXTL messaging
classes.

Chapter 5, “Creating SunXTL Applications,” explains the basic code skeleton
necessary for an SunXTL application.

Chapter 6, “Using Media Channels,” describes how to access and use media
channels between different inputs and outputs.

Appendix A, “Program Examples,” provides listings of programs to
demonstrate various types of SunXTL applications.

Related Manuals
The SunXTL documentation set also includes these manuals:

• Sun XTL 1.1 Architecture Guide

• Sun XTL 1.1 Administrator’s Guide

• Sun XTL 1.1 Provider Programmer’s Guide

• Sun XTL 1.1 Remote Client Mgr Guide

Preface xiii

What Typographic Changes and Symbols Mean
Table P-1 describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell
prompt

system$

Superuser prompt, all shells system#

Highlight A highlighted table row means
the method must be overriden
with your implementation code.

virtual void cleanup ()=0;

xiv SunXTL 1.1 Application Programmer’s Guide—December 1995

1

Introduction 1

The SunXTL application programming interface (API) is a software library that
provides connection management and control over telephony and voice
services through an object-oriented interface. The API is suitable for
implementing telephony applications that make, receive, control, and
terminate phone calls.

The SunXTL API is a component of the larger SunXTL platform, which consists
of the API, a media platform interface (MPI) library, providers, and
configuration databases. The platform is designed to operate with any switch
or telephone technology. This platform independence is facilitated by providers,
which hide the details of the underlying transmission technology; for more
information about providers, see the Sun XTL 1.1 Provider Programmer’s Guide.

Through SunXTL Teleservices, you have access to services that allow your
applications to:

• Hold, transfer, conference, and drop telephone calls
• Indicate the progress of a call
• Enable out-of-band call control for automatic call distribution
• Enable audio connections to microphones and speakers
• Detect and generate dual-tone modulated-frequency (DTMF) tones,

otherwise known as Touch Tones™

2 SunXTL 1.1 Application Programmer’s Guide—December 1995

1

The SunXTL API
The SunXTL API uses several important abstractions to represent telephony
services and connections. These abstractions are implemented as objects that
are created and destroyed with each call. The primary SunXTL classes from
which your client applications must derive their classes include:

• XtlCall
• XtlCallState
• XtlMonitor
• XtlProvider

Chapter 4, “SunXTL API Classes,” describes these classes in detail. There is a
loose correspondence between the SunXTL classes and the physical
components of a telephone platform: an XtlProvider provides access to a
telephone technology, an XtlMonitor object allows clients to monitor the
activities of a call, and XtlCall objects with associated XtlCallState objects
represent the information relevant to a phone call.

The SunXTL platform uses these classes to represent the fundamental elements
of a basic telephone platform. These elements are a phone device and the calls
made using that device. An XtlProvider object represents a valid initialized
phone device ready to make and receive calls. It hides the specific device-
dependent code driving the telephone device and enables your client
application to interact with the telephone device in a device-independent
manner.

Your workstation’s telephone resources can be shared by many applications.
The SunXTL platform controls access to these resources and maintains call data
security while enabling cooperating applications to share telephony devices.

SunXTL clients use media channels to send and receive data. Media channels can
transport various kinds of data such as voice, video, and fax; the type of media
and the number of media channels are dependent on the provider. Chapter 6,
“Using Media Channels,” describes how media channels are used and
configured.

SunXTL API Characteristics
The SunXTL API uses an event-driven paradigm where your application is
notified of asynchronous events generated by the SunXTL platform. The
SunXTL API operates across an asynchronous message-passing interface.

Introduction 3

1

Sending a message to the platform does not guarantee a response. Messages
sent from the platform to the application indicate errors and state changes. The
cause of a state change is indeterminable—your application will only know
that the state has changed.

You should never assume a request will cause a state change, only that it is
likely to change to the requested state. Instead, write programs that react to all
possible state change messages that are of interest to your client application.
Aside from the possible events generated by a network, user input can also
cause a program to react. For example, your program should not make the
assumption that when a user requests to put a call on hold that the call will be
put on hold; the network may have disconnected the call for other reasons.

SunXTL Events
SunXTL applications are driven by events. Each object receives events through
its indication methods. Events are messages sent by the provider to notify an
application of changes in call state or call progress. For example, a client can be
notified if a call becomes active, on hold, or disconnected.

Event Registration
In order for indication methods to receive events, you must register the events
that you are interested in receiving. This is done with the
XtlProvider::listen_req() method. Later you can choose to disregard
certain events by using the XtlProvider::ignore_req() method. These
methods are described in Table 4-5 on page 52.

SunXTL Object Methods
SunXTL classes provide two types of virtual functions called request methods
and indication methods. These methods generate basic call-control requests that
are sent to the provider. Depending on the available telephone resources, the
provider may or may not fulfill a request.

4 SunXTL 1.1 Application Programmer’s Guide—December 1995

1

Request Methods

Each SunXTL messaging class uses a set of request methods to make service
requests to the provider. These methods have names with the suffix _req , such
as connect_req() . An application invokes these methods to manipulate an
object. For example, an application program that needs to put a call on hold
uses the XtlCall object’s hold_req() request method to change the status of
the XtlCall object when the call is put on hold.

Indication Methods

Objects receive events from the provider through indication methods. The
events notify your application of errors or changes of state on a given call. To
handle an event, you must override the indication method of a class. These
methods have the suffix _ind , such as event_ind() . In overriding the
indication method, you change the behavior of the class so that it can perform
distinct tasks. For example, you can derive the XtlCall class to answer a call,
play a greeting, and record a message; this behavior imitates an answering
machine.

Overview of SunXTL Classes
The SunXTL API features a set of C++ classes to represent various telephony
resources. There are two distinct base SunXTL classes: messaging classes and
utility classes. These include:

• Messaging Classes: XtlProvider , XtlCall , and XtlMonitor

• Utility Classes: XtlCallState , XtlKVList , XtlByteArray , XtlString ,
dpIOHandler , and dpDispatcher

Each SunXTL class is an abstraction of a telephony resource. Each class is
designed to perform a specific telephony function. For instance, an
XtlProvider object represents an active telephone device that enables a
system to make and receive calls. An XtlCall object represents a call in
progress, and an XtlMonitor object continuously updates and monitors the
current state of a call. From these base classes, you can create subclasses to
customize their behavior.

Introduction 5

1

Be aware that the messaging classes contain pure virtual functions, which
requires implementation to define specific behavior. The utility classes may be
instantiated directly. Further information about each class is provided in
subsequent chapters, but here is a brief description of each class:

XtlProvider

An XtlProvider represents an association with a phone device that enables
the system to make and receive calls. You must create provider objects in order
to create and receive calls. See “Using XtlProvider” on page 51.

XtlCall

An XtlCall represents a call in progress and provides an access method to the
call’s data stream. XtlCall objects can set up, manipulate, and terminate calls.
See “Using XtlCall” on page 56.

XtlMonitor

An XtlMonitor enables clients to monitor events on a call. The XtlMonitor
object allows a client to monitor all call events on a specific call, which it may
or may not own.

XtlMonitor objects cannot perform call control functions. When an
XtlMonitor object is created, it is automatically registered to receive all
events on a specific call. See “Using XtlMonitor” on page 71.

XtlCallState

The XtlCallState class contains state and identification information of a call
associated with a specific provider. This information applies to a specific
instance of the call only, so an application can use an XtlCallState object for
immediate status only. XtlCallState objects cannot be copied or saved;
instead, an XtlMonitor object should be used to save the state of the call.

These objects are like handles that enable you to change the ownership of a call
and accept incoming calls. All XtlCallState object methods return state
values only; XtlCallState objects do not control calls. See “Using
XtlCallState” on page 64.

6 SunXTL 1.1 Application Programmer’s Guide—December 1995

1

XtlKVList

An XtlKVList is a singly-linked list of key-value pairs, which are used to pass
parameters to the API. Keys are of type XtlString and values may contain
various types. The XtlKVList object is often used to pass provider-specific
extension information that may not conform to the standard SunXTL interface.
See “Using XtlKVList” on page 21.

XtlByteArray

An XtlByteArray is a reference-counted array of bytes. The reference count
allows for efficient use of memory because a single XtlByteArray can be
shared among a number of objects without concern about memory allocation.
The array is deallocated when its reference count is zero. See “Using
XtlByteArray” on page 17.

XtlString

An XtlString contains a null-terminated string of characters. Like the
XtlByteArray object, it is reference-counted to ease memory management
when strings are passed by reference between other objects. See “Using
XtlString” on page 19.

dpDispatcher

The dpDispatcher class detects new data on multiple UNIX file descriptors
and dispatches the data to the appropriate input and output handlers. See
“Using the Event Dispatcher” on page 28.

dpIOHandler

The dpIOHandler class is a simple object that gets called by the dispatcher
when data is available on a UNIX file descriptor. If you are familiar with the
Interviews dispatcher library, this mechanism of handling I/O is similar. See
“Using dpIOHandler” on page 32.

7

Getting Started With SunXTL
Programming 2

This chapter shows you how to compile the SunXTL code example programs
provided with the SunXTL package. This chapter also presents the
programming concepts and the basic structure used in SunXTL programs,
provides some programming tips, and shows an example program that makes
outgoing calls.

Compiling SunXTL Applications
Before compiling your applications, be sure that the SUNWxtlb package has
been installed (check that the /opt/SUNWxtl/lib directory exists). SunXTL
applications need to link with two libraries in that directory: libxtl and
libxtlutil .

Note – To use the SunXTL libraries, your development system must be current.
For SPARC systems, SunXTL Teleservices requires C++ 4.0.1, available in
SPARCompilers 3.0.1.

Creating a Makefile
A makefile greatly automates and eases the compilation and linking process
for you. Code Example 2-1 lists the makefile for some of the example
programs provided in the SUNWxtl package. The XTLHOME variable is set to

8 SunXTL 1.1 Application Programmer’s Guide—December 1995

2

the /opt/SUNWxtl directory where the package was installed. From XTLHOME,
the location for the library and header files are derived and defined for the
INCLUDES and LDFLAGS compiler flags.

Code Example 2-1

Copyright 1993 by Sun Microsystems, Inc.
@(#)Makefile.demo 1.23

Parameters.

OPENWINHOME$(OPENWINHOME)=/usr/openwin

#ifdef BUNDLED
XTL_INCLUDES:sh=echo ‘pkginfo -r SUNWxtlh‘/SUNWxtl/include
XTLDEMO:sh=echo ‘pkginfo -r SUNWxtls‘/SUNWxtl/src
XTLLIBDIR:sh=echo ‘pkginfo -r SUNWxtlb‘/usr/xtl/lib
SDK_INCLUDES:sh=echo ‘pkginfo -r SUNWxtls‘/SUNWxtl
#else (!BUNDLED)
XTL_INCLUDES:sh=echo ‘pkginfo -r SUNWxtlh‘/SUNWxtl/include
XTLDEMO:sh=echo ‘pkginfo -r SUNWxtls‘/SUNWxtl/src
XTLLIBDIR:sh=echo ‘pkginfo -r SUNWxtlb‘/SUNWxtl/lib
SDK_INCLUDES:sh=echo ‘pkginfo -r SUNWxtls‘/SUNWxtl/include
#endif (BUNDLED)

Compiler flags.

INCLUDES += -I$(XTL_INCLUDES) -I$(XTLDEMO) \
 -I/usr/demo/SOUND/include

CPPFLAGS += $(INCLUDES)
LDFLAGS += -L$(XTLDEMO)/datapump -L$(OPENWINHOME)/lib \
 -L$(XTLLIBDIR) -L/usr/demo/SOUND/lib

LDLIBS += -lxtl -lxtlutil -ldispatch -lnsl \
 -lxview -lolgx -lX11 -lintl -laudio

DEPENDS = \

Getting Started With SunXTL Programming 9

2

.KEEP_STATE:

.INIT: $(DEPENDS)

TARGETS = outcall incall monitorcalls machine detect
all: $(TARGETS)

program rules

LINK.cc = \
LD_RUN_PATH=$(XTLLIBDIR):$(OPENWINHOME)/lib; export LD_RUN_PATH;

outcall: outcall.o voicecall.o
 $(LINK.cc) -o $@ outcall.o voicecall.o $(LDLIBS)

incall: voicecall.o incall.o
 $(LINK.cc) -o $@ incall.o voicecall.o $(LDLIBS)

monitorcalls: monitorcalls.o
 $(LINK.cc) -o $@ monitorcalls.o $(LDLIBS)

detect: filter.o detect.o
 $(LINK.cc) -o $@ detect.o filter.o $(LDLIBS)

#
machine program and msgcall.cc use datapump library. This rule will
make the library if it does not exist.
#
datapump.lib:
 -@if [! -f $(XTLDEMO)/datapump/libdatapump.a] ; then \
 fi

Copyright 1993 by Sun Microsystems, Inc.

10 SunXTL 1.1 Application Programmer’s Guide—December 1995

2

How the SunXTL Programming Interface Works
All SunXTL programs use a similar skeleton of code, but differ mainly in the
code used for each of the class interface methods. As a minimum, certain
classes must be derived to implement the pure virtual functions in a class. The
following steps outline the parts of a minimal SunXTL client program. Much of
the coding is done in implementing the notification methods and is not shown.

1. Derive subclasses from the XtlProvider and XtlCall classes.

2. Implement the notification methods in your subclass to receive events.

3. To be ready to respond to events, use command methods and create new
objects.

Code Example 2-2 on page 11 uses these steps to create an application that
makes an outgoing call.

Some General Concepts
The SunXTL programming paradigm closely follows an X Window
programming style. It uses an event model to drive objects and uses a
dispatcher (derived from the InterViews™ library) to service those events.
Superimpose concepts from telephony and call management and you have the
SunXTL programming paradigm. Because we assume you have some X
Window programming background, our text concentrates on new concepts
introduced by the SunXTL framework.

machine: machine.o msgcall.o datapump.lib
 $(LINK.cc) -o $@ machine.o msgcall.o -Bstatic -ldatapump
 -Bdynamic $(LDLIBS)

clean:
 -@$(RM) *.o $(TARGETS) *.BAK *.delta

Copyright 1993 by Sun Microsystems, Inc.

Getting Started With SunXTL Programming 11

2

Program Examples
Before you create new classes, you should consider the kinds of calls your
application needs, and the desired behavior for those calls. For example, a
program might answer calls in three ways:

• Copy data to an audio device for a human conversation

• Take a message

• Interpret DTMF

In these cases, you can derive three different XtlCall classes and implement
the three behaviors separately. Then when a provider object gets the incoming
call event, it simply creates the call object with the appropriate behavior.

Example Program outcall.cc

Code Example 2-2 shows how to make an outgoing call by creating a provider
object and call objects. This program creates a provider object that is associated
with a device, creates a call object to make calls, registers the provider for
incoming call events, and uses a switch statement to act on the events it
receives.

For a more detailed explanation of this example program, see “Program
Example outcall.cc” on page 75. For now, try compiling the program to verify
that your programming environment is set up correctly.

Code Example 2-2 Listing of outcall.cc

// Copyright 1995 by Sun Microsystems, Inc.

// outcall
//
// usage: outcall <remote_number> [provider_name]
//
// This example creates a single outgoing call to an address
// specified on the command line.
//

#include <stdio.h>

12 SunXTL 1.1 Application Programmer’s Guide—December 1995

2

#include <stdlib.h>

#include <xtl/xtlprovider.h>
#include <xtl/xtlcall.h>
#include <Dispatch/sldispatcher.h>

#include "voicecall.h"

// Class Declarations

// The following classes are derived from XtlProvider and
// DirectAudioCall (defined in voicecall.h) in order to provide
// implementations for the notification callbacks in each class.

//
// MyProvider
//

class MyProvider: public XtlProvider
{
 public:
 MyProvider(Exception*, XtlString, XtlAddress);
 virtual void activated_ind(XtlKVList&);
 virtual void deactivated_ind(XtlKVList&);
 virtual void error_ind(Request, Xtl::Error, XtlKVList&);

 private:
 XtlAddress remote_number;
 class MyCall* current_call;
};

//
// MyCall
//

class MyCall : public DirectAudioCall {
public:
 MyCall(XtlProvider& xtlpv, XtlAddress remoteNumber)
 : DirectAudioCall(xtlpv, remoteNumber) {}
 virtual void deactivated_ind(XtlKVList&);
 virtual void event_ind(CallEvent, XtlKVList&);
};

Code Example 2-2 Listing of outcall.cc (Continued)

Getting Started With SunXTL Programming 13

2

//
// Class Definitions
//

///////////////////////// MyProvider /////////////////////////

// MyProvider Constructor

MyProvider::MyProvider(
 Exception* err,
 XtlString name,// name of provider to start
 XtlAddress number)// remote number to dial
: XtlProvider(err, name),
 remote_number(number),
 current_call(NULL)
{
}

// The activated method is invoked when the provider is successfully
// initialized. MyProvider::activated creates a new call and attempts
// to dial the number specified on the command line.

void
MyProvider::activated_ind(XtlKVList&)
{
 fprintf(stderr, "Using provider: %s\n", (name())());

 current_call = new MyCall(*this, remote_number);
}

// The deactivated method is invoked when the provider is terminated
// by the system. MyProvider::deactivated exits the program because
// the call will not be completed once the provider has been
// deactivated.

void
MyProvider::deactivated_ind(XtlKVList&)
{
 fprintf(stderr, "Provider died.\n");
 exit(1);
}

Code Example 2-2 Listing of outcall.cc (Continued)

14 SunXTL 1.1 Application Programmer’s Guide—December 1995

2

// The error method is invoked when the provider detects an error
// condition. MyProvider::error prints the error message and
// the request which caused the error.

void
MyProvider::error_ind(Request req, Xtl::Error err, XtlKVList&)
{
 // convert the request and error values into human readable strings
 XtlStringrequest = XtlProvider::string(req);
 XtlStringerror = Xtl::string(err);

 fprintf(stderr, "Provider error Request %s failed: %s\n",
 request(), error());

}

///////////////////////// MyCall /////////////////////////

// The event method is invoked when "something interesting" happens to
// a call. MyCall::event invokes the default behavior of
// DirectAudioCall to set up the audio device. If the call
// has been disconnected, then MyCall exits the program.

void
MyCall::event_ind(CallEvent event, XtlKVList& kvl)
{
 // preserve DirectAudioCall behavior
 DirectAudioCall::event_ind(event, kvl);

 // exit when call is disconnected
 if (event == DISCONNECT_EVENT)

exit (0);
}

void
MyCall::deactivated_ind(XtlKVList& kvl)
{

fprintf(stderr, "Call was destroyed.\n");
exit (0);

}

///////////////////////// main /////////////////////////

void

Code Example 2-2 Listing of outcall.cc (Continued)

Getting Started With SunXTL Programming 15

2

main(int argc, char* argv[])
{
 XtlProvider::Exceptionerr;
 XtlAddress address;
 XtlStringprovider_name;
 MyProvider*provider;

 dpDispatcher::instance(new dpSLDispatcher);
 dpDispatcher& d = dpDispatcher::instance();

 // Parse arguments
 if ((argc < 2) || (argc > 3)) {

fprintf(stderr, "usage: %s <number> [provider]", argv[0]);
exit(1);

 }

 // save the address and provider name information
 address = XtlByteArray(argv[1]);

 if (argc == 3) {
provider_name = XtlString(argv[2]);

 }

 // Create a new provider object
 provider = new MyProvider(&err, provider_name, address);

 if (err != MyProvider::EXCEPTION_SUCCESS) {
fprintf(stderr, "could not connect to provider: %s\n",
 (provider_name() == NULL) ? "default" : provider_name());
exit(1);

 }

 // enter the dispatch loop
 while(1)

d.dispatch();
}

Code Example 2-2 Listing of outcall.cc (Continued)

16 SunXTL 1.1 Application Programmer’s Guide—December 1995

2

Additional Program Examples

The SunXTL package includes additional program examples you can study to
better see how the various classes are used together to perform specific
functions such as a dialer, answering machine, or call monitor. These examples
are listed in Appendix A, “Program Examples.” The program examples
include:

• “Handling Audio” on page 95

• “Answering Incoming Calls” on page 101

• “Using the Dispatcher and Notifier Interfaces” on page 105

• “Creating an Answering Machine” on page 106

• “Monitoring Calls” on page 126

17

Utility Classes 3

The utility classes provide the data structures and event-handling objects that
are used throughout the API and MPI libraries. These utility classes define the
structures necessary to convey simple and aggregate data, which can be passed
among Xtl objects; these containers of data include the classes XtlByteArray ,
XtlString , and XtlKVList . The remaining utility classes are dpDispatcher
and dpIOHandler , which handle file descriptor I/O events; if you have
worked with the InterViews library, these classes should be familiar because
they are derived from those classes.

Using XtlByteArray

An XtlByteArray object is a byte array structure with the addition of
convenient operators, such as assignment, length count, and equality
comparison of array elements. An XtlByteArray is typically used to hold
XtlAddress values and provider-specific values in XtlKVList objects.
Table 3-1 shows the methods provided by the XtlByteArray class.

18 SunXTL 1.1 Application Programmer’s Guide—December 1995

3

XtlByteArray offers some flexible ways of assigning and initializing
elements in the array. An XtlByteArray can be shared and passed to
functions without concern for memory management because it is reference
counted. Code Example 3-1 shows several ways to initialize and manipulate an
XtlByteArray .

Table 3-1 XtlByteArray Methods (from bytearray.h)

Method Description

Constructors

XtlByteArray(); Constructs a zero-length XtlByteArray .

XtlByteArray(const XtlByteArray& a); Constructs a copy of a given XtlByteArray .

XtlByteArray(const char* bytes,
u_int len);

Constructs an XtlByteArray from a buffer of len bytes.

XtlByteArray(const char* string); Constructs an XtlByteArray from a null-terminated
string.

Operators

const char* bytes() const; Returns the contents of an XtlByteArray as a pointer to
a buffer.

u_int length() const; Returns the number of bytes in the array.

const char* operator()() const; Like bytes() , this operator returns the contents of the
XtlByteArray as a string. This operator is provided to
be consistent with XtlString::operator() .

boolean_t operator==
(const XtlByteArray&) const;

Compares two XtlByteArrays for equality.

boolean_t operator!=
(const XtlByteArray&) const;

Compares two XtlByteArrays for inequality.

XtlByteArray& operator=
(const XtlByteArray&);

Assigns contents of one XtlByteArray to another.

Utility Classes 19

3

Note – There are no data alignment guarantees when using XtlByteArray
except that byte order and byte boundaries are preserved. If you need to store
structured data in an XtlByteArray , you must convert the structure to a byte
format first by using an xdr(3N) conversion routine; this helps to maintain
code portability.

Code Example 3-1 XtlByteArray Usage Examples

Using XtlString

An XtlString encapsulates a reference-counted string in much the same way
as XtlByteArray does an array. The main difference is that XtlString s are
null terminated while XtlByteArray s may contain embedded null values.
You can assign XtlString s in the same manner as char * strings and pass
XtlString s without de-referencing them. Table 3-2 shows the methods
provided by the XtlString class. Code Example 3-2 shows some examples of
XtlString usage.

#include <xtl/bytearray.h>

// XtlByteArray Examples

 char buffer[256];
 // pretend buffer was initialized with a 23-byte structured value
 XtlByteArray array(buffer,23);

 // print total size of array and second byte in array
 printf("size=%d, array[1] = %d\n", array.length(),
array.bytes()[1]);

 // an alternate syntax would use operator() instead of bytes()
 printf("size=%d, array[1] = %d\n", array.length(), array()[1]);

Table 3-2 XtlString Methods (from bytearray.h)

Method Description

Constructors

XtlString(); Constructs an empty XtlString .

XtlString(const char* str); Constructs an XtlString from a regular string.

XtlString(const XtlString& s); Constructs a copy of a given XtlString .

20 SunXTL 1.1 Application Programmer’s Guide—December 1995

3

XtlString(const XtlByteArray& s); Constructs an XtlString from an
XtlByteArray . Only bytes up to the first null
are copied.

Operators

const char* bytes() const Returns the contents of an XtlString as a
pointer to a buffer.

u_int length() const; Returns length of an XtlString .

const char* operator()() const; Returns the contents of an XtlString as a
string.

boolean_t operator==
(const XtlString&) const;

Compares two XtlStrings for equality.

boolean_t operator==
(const char*) const;

Compares XtlString to a string for equality.

boolean_t operator!=
(const XtlString&) const;

Compares two XtlStrings for inequality.

boolean_t operator!=
(const char*) const;

Compares an XtlString to a string for
inequality.

XtlString& operator=
(const XtlString& str);

Assigns one XtlString to another.

Code Example 3-2 XtlString Usage Examples

#include <xtl/bytearray.h>

extern "C" int printf(const char *, ...);

void print_xtlstring(const XtlString& str) {
 printf("XtlString=’%s’\n", str());
}

main() {

// XtlString Examples

XtlString mystr("foobar"); // construct a string on the stack.

Table 3-2 XtlString Methods (from bytearray.h) (Continued)

Method Description

Utility Classes 21

3

Using XtlKVList

XtlKVList objects are used mainly as method arguments to pass parameters
in the form of lists. An XtlKVList object is an ordered list of key and value
pairs as shown in Figure 3-1; it may also contain other XtlKVList objects. In a
key-value pair, the key is always an XtlString while the corresponding value
can be of type u_long , XtlString , XtlByteArray , or a nested XtlKVList .

Some characteristics of an XtlKVList object are:

• An XtlKVList is ordered and traversed sequentially. An internal pointer
points to the current position in the list.

• XtlKVList objects are reference counted to relieve you of memory
management chores. The copy and assignment operators perform lazy
copies, so that an actual copy operation only occurs if the list is modified.

 print_xtlstring(mystr);// pass an xtlstring as an arg.

 print_xtlstring("baz");// construct a temporary string and pass it.
// the literal is converted to XtlString.

 mystr = "blat"; // change the value of the variable mystr.

 print_xtlstring(mystr);// pass the new value to print_xtlstring()

 XtlString newstring = "foobar2"; // construct a null XtlString
// then assign a string value

 mystr = newstring; // make mystr the same as newstring
 print_xtlstring(mystr);

 printf("length=%d\n", mystr.length());// print length of XtlString

 XtlString anotherstring(newstring);// duplicate an XtlString
 XtlString nullstring; // create a null XtlString
}

Code Example 3-2 XtlString Usage Examples (Continued)

22 SunXTL 1.1 Application Programmer’s Guide—December 1995

3

• You can add() and remove() key-value pairs, move to the first () pair,
next () pair, or reset() the current pointer position to the beginning of
the list. You can also get() the value or retrieve the key() from a key-
value pair.

• Key-value pairs may be removed from the list, relative to the current
position. The current position is specified by the current pointer, which is a
reference to a key-value pair on the list; that key-value pair can also be
thought of as the current key-value pair.

• Key-value pairs are retrieved in the same order they were added. That is, in
a first-in, first-out manner.

• Key-value pairs are always added to the end of the list without changing the
current position.

• Removing a key-value pair moves the current pointer to the preceding pair.
That is, removing the third pair causes the current pointer to point to the
second pair. Removing the first pair puts you at the beginning of the list (the
same position in which a reset() leaves you).

Figure 3-1 XtlKVList Structure

BEGIN key-value
1

key-value
2

XtlKVList

3

Current Pointer

key-value
4

ENDkey-value

Utility Classes 23

3

The XtlKVList class offers the command methods listed in Table 3-3.

Table 3-3 XtlKVList Methods (from kvlist.h)

Method Description

boolean_t add(const XtlString& key,
u_long value)

The add() methods add a specified key-value pair
to the end of the XtlKVList structure. The methods
differ only in the type of value that is appended.
B_TRUE is returned upon success; otherwise
B_FALSE is returned.

boolean_t add(const XtlString& key,
const XtlString& value)

Adds an XtlString value; the XtlString is
copied, so the list does not reference the value
argument. B_TRUE is returned upon success;
otherwise B_FALSE is returned.

boolean_t add(const XtlString& key,
const XtlByteArray& value)

Adds an XtlByteArray value; the XtlByteArray
is copied, so the list does not reference the value
argument. B_TRUE is returned upon success;
otherwise B_FALSE is returned.

boolean_t add(const XtlString& key,
const char* value)

Adds a null-terminated string value; the value is
stored as an XtlString . B_TRUE is returned upon
success; otherwise B_FALSE is returned.

boolean_t add(const XtlString& key,
const XtlKVList& list)

Adds an XtlKVList to the current list; it does not
affect the internal pointers that point to the current
key-value pair in each list. B_TRUE is returned upon
success; otherwise B_FALSE is returned.

boolean_t remove() Removes the current key-value pair from the list.

boolean_t get(u_long& val) Gets the value of the current key-value pair. If the
value is a u_long , val is set to that value and
B_TRUE is returned. If the value is of another type,
val is undefined and B_FALSE is returned.

boolean_t get(XtlString& val) Gets the value of the current key-value pair. If the
value is an XtlString , val is set to that value and
B_TRUE is returned. If the value is of another type,
val is undefined and B_FALSE is returned.

boolean_t get(XtlByteArray& val) Gets the value of the current key-value pair. If the
value is an XtlByteArray , val is set to the value
and B_TRUE is returned. If the value is of another
type, val is undefined and B_FALSE is returned.

24 SunXTL 1.1 Application Programmer’s Guide—December 1995

3

boolean_t get(XtlKVList& list) Gets the value of the current key-value pair. If the
value is an XtlKVList , val is set to the value and
B_TRUE is returned. If the value is of another type,
val is undefined and B_FALSE is returned.

u_long count() Returns the number of key-value pairs in the list.

boolean_t key(XtlString& key) Gets the key of the current key-value pair. If there is
no current pair (such as at the beginning or end of a
list), key is undefined and B_FALSE is returned.
Otherwise, key is a reference to the key and B_TRUE
is returned.

boolean_t type(Type& t) Returns the type of the value in the current key-
value pair. If the current pointer is at the head or tail
of the list, B_FALSE is returned; otherwise, B_TRUE
is returned. You can use the type value in switch()
statements to perform conditional actions. The Type
enumeration has the values: ULONG, STRING,
BYTEARRAY, KVLIST .

boolean_t first() This method is a shorthand equivalent to using
reset () followed by a next() . The return code is
the return code from next() .

boolean_t first(const XtlString& key) This method is a shorthand equivalent to using
reset () followed by a next(key) ; the pointer is
placed on the first key-value pair whose key
matches the key argument. The return code is the
return code from next().

void reset() Sets the current pointer to the beginning of the list,
before the first key-value pair. Note that you need to
use next() to set the pointer to the first key-value
pair. This also means that get() and remove() will
fail after a reset () unless a next() is first
performed.

boolean_t next() Advances the current pointer to the next key-value
pair in the list. B_TRUE is returned upon success. If
you are at the end of the list and there is no next
pair, B_FALSE is returned and the current pointer
moves off the list.

Table 3-3 XtlKVList Methods (from kvlist.h) (Continued)

Method Description

Utility Classes 25

3

boolean_t next(const XtlString& key) Advances the current pointer to the next key-value
pair that has a key equal to the key argument.
B_TRUE is returned upon success. If the list contains
no matching pairs after the current pointer, then
B_FALSE is returned, and the current pointer is
positioned at the end of the list.

Table 3-3 XtlKVList Methods (from kvlist.h) (Continued)

Method Description

26 SunXTL 1.1 Application Programmer’s Guide—December 1995

3

Copying an XtlKVList

A program can make a copy of an XtlKVList by using either of the following
XtlKVList methods:

boolean_t subset(const XtlKVList&,
XtlKVListCompareFunc = NULL)

Compares this list with the argument list and
returns B_TRUE if this list is a subset of the
argument. The lists are treated as sets, thus order
and duplicates are not considered in the
comparison; for example, two lists, a and b, are set
equivalent if a.subset(b) and b.subset(a) both
return B_TRUE. In basic use, subset() compares
the value types ULONG, STRING, and BYTEARRAY; if
either list contains embedded lists, the comparison
fails.

However, you can specify an optional comparison
function to compare lists that have embedded lists.
The arguments to your custom comparison function
must have the form:

boolean_t kvlist_compare_fn(
const XtlString key,
const XtlKVList& a_list,
const XtlKVList& b_list)

where a_list is an embedded list in this list and
b_list is an embedded list from the argument to
subset() . The comparison function should return
B_TRUE if a_list is a subset of b_list .

void print(int fd) Prints the contents of the list in a structured format.
The output is directed to the specified file descriptor.
See “Creating a Hierarchical XtlKVList” on page 26
for an example of usage and output.

extern "C" void print_kvlist(
const XtlKVList*);

Like print() , this external C function prints the
contents of the list in a structured format to standard
output (stdout). It is intended for use in debuggers
that may have difficulty calling
XtlKVList::print() .

Table 3-3 XtlKVList Methods (from kvlist.h) (Continued)

Method Description

Utility Classes 27

3

XtlKVList(const XtlKVList& r);

XtlKVList& operator=(const XtlKVList& r);

Creating a Hierarchical XtlKVList

The add(const XtlString& key,const XtlKVList& list) method
allows you to create XtlKVList s that have a hierarchical or recursive
structure.

The print routine accommodates hierarchical XtlKVList s by displaying the
number of elements in the embedded XtlKVList , followed by the key-value
pairs, which are indented from the previous level. For example, the code:

#include <xtl/kvlist.h>

XtlKVList kvlist;
XtlKVList kvlist1;

XtlKVList kvlist2;

kvlist.add("key1","val1");
kvlist.add("key2",3);

kvlist1.add("key4","val4");
kvlist1.add("key5","val5");

kvlist2 = kvlist1;

kvlist1.add("kvlistkey",kvlist2);
kvlist1.add("key6",6);

kvlist.add("kvlistkey",kvlist1);
kvlist.add("key3","val3");
kvlist.print(1);

results in the following output:

key="key1" value="val1"
key="key2" value=3
key="kvlistkey" kvlist.count=4

key="key4" value="val4"
key="key5" value="val5"
key="kvlistkey" kvlist.count=2

28 SunXTL 1.1 Application Programmer’s Guide—December 1995

3

key="key4" value="val4"
key="key5" value="val5"

key="key6" value=6
key="key3" value="val3"

Traversing XtlKVList s

A common task your programs need to perform is to traverse and examine the
contents of an XtlKVList . The following code shows how to traverse a list:

XtlKVList kvlist;
Type type;

kvlist.reset();

while (kvlist.next()) {
kvlist.type(type);

switch(type) {
case XtlKVList::ULONG {

u_long u;
kvlist.get(u);
// do something

}

case XtlKVList::STRING {
XtlString string;
kvlist.get(string);
// do something

}

case XtlKVList::BYTEARRAY {
XtlByteArray array;
kvlist.get(array);
// do something

}

case XtlKVList::KVLIST {
XtlKVList list;
kvlist.get(list);
// do something

}
}

Utility Classes 29

3

Using the Event Dispatcher
The event dispatcher (dpDispatcher) and I/O handler (dpIOHandler)
classes used in the SunXTL libraries are derived from the InterViews library
classes. The dpDispatcher class works closely with the dpIOHandler class,
which is associated with file descriptors. When I/O handlers are linked to a
dispatcher (using dpDispatcher::link()), the dispatcher polls each I/O
handler in round-robin manner. When new data appears on any of the file
descriptors, the dispatcher passes control to the I/O handler. In this context,
new data means there is new input or output ready on a file descriptor, or that
an exception (timer expiration) occurred; see the select(3C) man page.
Figure 3-2 helps to illustrate these concepts.

Figure 3-2 dpDispatcher and dpIOHandler Interactions

Again, the dispatcher used in the SunXTL platform is derived from the
InterViews dispatcher class. For SunXTL Teleservices, a subclass of
dpDispatcher called dpSLDispatcher is defined, where SL signifies the
name Solaris Live! Unlike the standard dpDispatcher class, this subclass
allows more than 20 file descriptors, and allows you to unlink a dpIOHandler
from within another dpIOHandler without problem.

The dispatcher library is called libdispatch.so and should be linked with
-ldispatch in addition to -lxtlutil and -lxtl or -lxtlp .

The standard InterViews dispatcher does not work with SunXTL Teleservices.
To program in SunXTL Teleservices, you must use one of the following
dispatchers:

• dpSLDispatcher for command line environments
• dpXVDispatcher for use with XView™

fd

Dispatcher

fd

polling

data ready write pending timer expired

dpIOHandlers
fdcontaining

file descriptors

I/O conditions:

30 SunXTL 1.1 Application Programmer’s Guide—December 1995

3

• dpXtDispatcher for use with OLIT™ or Motif®)

You should use dpSLDispatcher for programs that do not need to interact
with the window system (for example, if you are writing providers or
command-line-based applications). If you are using XView, use
dpXVDispatcher from xvdispatcher.h . If you are using OLIT or Motif, use
dpXtDispatcher from xtdispatcher.h .

An application only needs one instance of a dispatcher. The static member
function, dpDispatcher::instance() , is available to create an instance of
the dispatcher and then return a reference to it. If a dispatcher already exists, a
reference to the existing dispatcher is returned. Table 3-4 shows the
dpDispatcher class methods.

Table 3-4 dpDispatcher Methods (from dispatcher.h)

Method Description

virtual void link (
int fd,
DispatcherMask mask,
dpIOHandler* ioh)

Attaches a dpIOHandler , given its file descriptor and a
DispatcherMask . The DispatcherMask describes the I/O
conditions that the dpIOHandler is interested in, such as whether the
file descriptor has new data available for reading. The possible mask
values are: ReadMask, WriteMask , and ExceptMask .

When an I/O condition occurs, the dpIOHandler is expected to read
data from the file descriptor, write data to the file descriptor, or handle
the exception depending on the I/O condition.

virtual dpIOHandler* handler (
int fd,
DispatcherMask mask)

Returns the dpIOHandler for a given file descriptor.

virtual void unlink (int fd) Detaches the dpIOHandler associated with the file descriptor
argument.

virtual void startTimer (
long sec,
long usec,
dpIOHandler* ioh)

Starts the timer for the specified dpIOHandler . The time specified by
sec and usec is relative; that is, you can tell the timer to expire in five
minutes, but you cannot tell it to expire at 5 P.M.

virtual void stopTimer (dpIOHandler*) Stops the timer for the specified dpIOHandler .

Utility Classes 31

3

Initializing the Dispatcher
The dispatcher must be initialized before use. The following code shows how
to do this:

#include <Dispatch/iohandler.h>
#include <Dispatch/sldispatcher.h>

void main() {
dpSLDispatcher d; // create SolarisLive dispatcher
dpDispatcher::instance(&d); // install dispatcher instance

// do other Xtl initialization

// enter main dispatch loop

for (;;) {
d->dispatch();

}
}

virtual unsigned setReady (
int fd,
DispatcherMask)

Allows you to artificially set a file descriptor as ready, which triggers a
dispatch.

virtual void dispatch() The dispatch routine blocks all registered dpIOHandler objects until
an event occurs. Internally, dispatch() calls the system call
select(3C) ; once select() returns, dispatch() invokes the
appropriate dpIOHandler and returns. Your program should loop on
dispatch() to continuously handle events.

virtual unsigned dispatch(
long& sec,
long& usec)

Calling dispatch() with a time value causes dispatch() to block
until an event occurs on one of its IOHandlers or until the specified
time elapses. This is useful if you need to regain control after a fixed
period of time.

static dpDispatcher& instance() Returns a reference to the static, global dispatcher object.

static void instance(dpDispatcher*) Installs the specified dispatcher to act as the global dispatcher.

Table 3-4 dpDispatcher Methods (from dispatcher.h) (Continued)

Method Description

32 SunXTL 1.1 Application Programmer’s Guide—December 1995

3

Note – The initialization code for the dispatcher must be called before any
other SunXTL code. If it is not, two dispatcher processes are created, but only
one will run. As a result, certain internal routines will have registered their
handlers with the old dispatcher before the new one is started by your
program—this can cause your code to break.

However, for the Xt and XView dispatchers, you should not call dispatch()
in your dispatch loop. Instead, use the appropriate window toolkit mechanism,
such as xv_main_loop() .

#include <Dispatch/iohandler>
#include <Dispatch/xvdispatcher.h>

void main() {

// initialize xview

dpXVDispatcher d; // create specific dispatcher
dpDispatcher::instance(&d); // install dispatcher instance

// do other Xtl initialization

// enter xview notifier loop

xv_main_loop();
}

For a Motif application, do the following:

#include <Dispatch/iohandler>
#include <Dispatch/xtdispatcher.h>

void main() {

XtAppContext context;

// initialize Xt intrinsics

// create specific dispatcher
dpXtDispatcher d(default_app_context);
dpDispatcher::instance(&d); // install dispatcher instance

// do other Xtl initialization

// enter Xt notifier loop

XtAppMainLoop(context);

}

Utility Classes 33

3

Using dpIOHandler

The dpIOHandler class is used with the dispatcher as described in “Using the
Event Dispatcher” on page 28. A dpIOHandler manages read, write, and
exception handling operations for a file descriptor. The dispatcher calls a
dpIOHandler when the I/O condition for a file descriptor changes.

Note – dpIOHandler objects return values that affect the behavior of the
dispatcher. If a dpIOHandler returns a negative value, the dispatcher initiates
the unlink() command and ignores the file descriptor. If a positive value is
returned, the dispatcher marks the file descriptor as ready and goes through
the dispatch loop again. If zero is returned, the dispatcher assumes the callback
is finished with the file descriptor, and continues normally.

The dpIOHandler() constructor creates the dpIOHandler object. This object
consists of the callback functions: inputReady() , outputReady() ,
exceptionRaised() , and timerExpired() . The timerExpired()
function is called when a timer started with the dispatcher has expired. You
should avoid using UNIX timers such as setitimer(2) ; UNIX timers are
asynchronous and can be disruptive if the timer expires during an SunXTL call.
Instead, you should use synchronous dpDispatcher timers.

Table 3-5 shows the dpIOHandler class methods. By default the methods are
empty, so you need to override the method(s) for which the handler will use.

Table 3-5 dpIOHandler Methods (from iohandler.h)

Callback Method Description

virtual int
inputReady (int fd)

Called when there is input ready on the file
descriptor.

virtual int
outputReady (int fd)

Called when there is output ready on the file
descriptor.

virtual int
exceptionRaised (int fd)

Called when an exception is raised on the file
descriptor.

virtual void
timerExpired (
long sec, long usec)

The dpIOHandler timer expired; sec and usec
represent the actual time it waited before the timer
expired (actual timeout period versus specified time
out).

34 SunXTL 1.1 Application Programmer’s Guide—December 1995

3

Using the Database Query Functions
The database query functions allow a client or provider program to query the
provider configuration file. The configuration file is a simple database
containing fields that correspond to the key-value pairs in an XtlKVList .
Each key-value pair describes an aspect of how a provider has been configured
on the host. Each query should reference a specific provider alias, which the
administrator has defined. See the Sun XTL 1.1 Administrator’s Guide for more
information about provider configuration files and aliases. Table 3-6 shows the
database query functions.

Code Example 3-3 shows an example of querying the provider configuration
database to discover a provider’s default speaker and microphone values. The
values are then used to configure the call’s media channel.

Code Example 3-3 Querying the Database

Table 3-6 Database Query Functions (from xtldb.h)

Function Description

extern int
xtl_db_verify(void)

Checks the SunXTL configuration database to ensure that it is valid.

extern int
xtl_provider_names(

XtlKVList& names)

Retrieves a list of all configured provider names and returns it in the XtlKVList
parameter. Within the XtlKVList , the key specifies the provider’s secondary
alias while the value element contains the primary alias of that provider. Values
are of type XtlString . The xtl_provider_names() function returns a count
of provider names retrieved, otherwise it returns -1 upon error.

int xtl_provider_info(
const XtlString& alias,
XtlKVList& info)

Retrieves all configuration information about the provider specified by alias
(primary or secondary) and returns the information in an XtlKVList . This
function returns a count of key-value pairs that were successfully retrieved from
the configuration database about the provider, otherwise it returns -1 upon error.

// This code queries the provider configuration database for the default speaker
// and microphone values, and composes a configuration specification to configure
// the media channel through configure_req().

 XtlString input;
 XtlString output;
 XtlKVList defaults;

// pass a provider name and get the provider attributes (keys and values)

Utility Classes 35

3

Using XtlFormat

When a client accesses a call’s data, it is useful to know the characteristics of
that data to properly interpret it—characteristics such as encoding, sample
rate, and sample size. SunXTL Teleservices defines several common data
formats and characteristics that your program can use. Providers can also
define and publish provider-specific data formats for use by the client.

A client can only initialize the data format of a call when it passes the
media_format parameter to XtlCall::connect_req() . After which, the
provider associates a format that best matches the requested format. The
format that is set can be examined by calling XtlCallState::format() .
From then on, only the provider can change the format through some provider-

if (xtl_provider_info(call_state(excp).provider()->name(excp), defaults) < 0) {
fprintf(stderr, "Provider Database not configured?\n");
return;

}

// find first default microphone key and get its value,
// print error message if not found or not a string.
if (!defaults.first(XtlDBDefaultMicrophoneK) || !defaults.get(input)) {

fprintf(stderr, "Default Input not found.\n");
return;

}

// find first default speaker key and get its value
if (!defaults.first(XtlDBDefaultSpeakerK) || !defaults.get(output)) {

fprintf(stderr, "Default Output not found.\n");
return;

}

// compose the configuration
default_config.add(XtlConfigInputK, input());
default_config.add(XtlConfigOutputK, output());

// This configuration request configures the data stream
// using the key-value pairs contained in the default_config
// argument.
configuration_req(default_config);

36 SunXTL 1.1 Application Programmer’s Guide—December 1995

3

specific extension or the provider may be able to determine the data coming
over a call and change the format state slot appropriately. For example, an
initial voice call may be directed to fax a message and then return to a human
conversation. As the format changes, the provider changes the format slot and
informs the client, which can then query the format slot.

A call’s data format is described by the XtlFormat data type, which is defined
as an XtlKVList . A format object describes the various characteristics of the
call data. A format specification always starts with a format class key-value pair
(for example, key=XtlFormatClassK and value=XtlVoiceC), followed by
optional key-value pairs that further describe the characteristics of the data.
For example, Figure 3-3 shows an XtlFormat list that describes an 8 kB
sample of µ-law encoded voice data sampled at 8 Hz.

Figure 3-3 Voice Format Specification Example

Table 3-7 shows the predefined format keys and values that programs can use;
all types are XtlString unless otherwise specified. These well-known keys
and values are defined in the <xtl/constants.h> header file. If provider-
specific keys and values are used, they should be defined in the vendor’s
provider documentation.

XtlFormatClassK XtlFormatVoiceC

XtlFormatEncodingK XtlFormatULawC

XtlFormatSampleSizeK 8

XtlFormatSampleRateK 8000

XtlFormat

End

Key Value

Utility Classes 37

3

Table 3-7 Predefined XtlFormat Keys and Values

Class and Formats Description

XtlFormatClassK This key is required in all format requests and specifies the
general format class. It must be paired with one of the
following format values:

XtlFormatVoiceC The media channel contains voice quality audio. This format
may specify additional key-value pairs, such as
XtlFormatEncodingK , XtlFormatSampleSizeK , and
XtlFormatSampleRateK .

XtlFormatDataC Media channel contains uninterpreted data (for example, a raw
modem connection). This format contains
XtlFormatBandwidthK , XtlFormatFramingK , and
XtlFormatProtocolK .

XtlFormatFaxC The media channel contains fax data. This format contains
XtlFormatProtocolK .

XtlFormatEncodingK Audio data is encoded in one of the following standard
formats:

XtlFormatULawC CCITT G.711 µ-law encoding.

XtlFormatALawC CITT G.711 A-law encoding.

XtlFormatLinearC Linear Pulse Code Modulation encoding.

XtlFormatG721C CCITT G.721 compression. This encoding uses Adaptive Delta
Pulse Code Modulation with 4-bit precision.

XtlFormatG723C CCITT G.723 compression format. This encoding uses Adaptive
Delta Pulse Code Modulation with 3-bit precision.

XtlFormatSampleSizeK Number of bits per sample (stored as an unsigned long in the
list).

XtlFormatSampleRateK Rate of sampling flow in samples per second (value is stored as
an unsigned long type in the list).

XtlFormatBandwidthK Estimated speed of media channel in bits per second (value is
stored as an unsigned long in the list).

38 SunXTL 1.1 Application Programmer’s Guide—December 1995

3

Requesting Formats

The underlying technology that a provider uses can support several possible
formats for a call. The client can request that a new outgoing call have a
particular format by specifying a format pattern in the
XtlCall::connect_req() media format parameter.

The format pattern is an XtlKVList that does not have to be a complete
format specification; a partial format specification can be passed to the
provider. That is, given an incomplete specification, the provider should select
a format that most closely satisfies all of the parameters in the format pattern.
To do so, the provider uses the XtlKVList::subset() method to compare
the request with its set of predefined formats. If no matching format can be
found, the provider should send an ERROR_FORMAT_NOT_SUPPORTED error
indication to the call object.

XtlFormatFramingK Data link framing protocol used by a data call.

XtlFormatHDLC HDLC framing.

XtlFormatProtocolK Higher-level protocol used to interpret data.

XtlFormatIPC IP protocol is being sent over a data call.

XtlFormatG4C Group 4 fax protocol is being used for a fax call.

XtlFormatG3C Group 3 fax protocol is being used for a fax call.

XtlFormatUnknownC Use this when a value associated with a particular key is
unknown; that is, the protocol is unknown.

Table 3-7 Predefined XtlFormat Keys and Values (Continued)

Class and Formats Description

Utility Classes 39

3

Usage Examples

The following examples show various format request scenarios.

Example 1
Suppose a provider supports both G3 and G4 fax protocols. If the client only
wants to make a G3 fax call, it would send the following format pattern:

where the first key-value pair identifies a fax format class, followed by the
specific G3 fax format.

Example 2
A provider supports both µ-law and A-law voice data encodings. The client
wants to place a voice call and is capable of handling both µ-law and A-law
data. It would send the following format pattern:

This format specification would match either µ-law or A-law. Once the
provider has chosen an encoding, the client examines the format slot in the call
object to determine which encoding to use.

Example 3
A provider uses a 2400 bps modem for data communication, but the client
wants to place a high-speed data connection. It would send the following
format pattern:

Because the provider cannot satisfy the request, it returns
error_ind(ERROR_FORMAT_NOT_SUPPORTED).

XtlFormatClassK XtlFormatFaxC XtlFormatProtocolK XtlFormatG3C

Key Value Key Value

XtlFormatClassK XtlFormatVoiceC

Key Value

XtlFormatClassK XtlFormatDataC XtlFormatBandwidthK 9600

Key Value Key Value

40 SunXTL 1.1 Application Programmer’s Guide—December 1995

3

Using XtlCallReference

An XtlCallReference value is a unique host-wide ID that identifies a call.
This ID provides a process-independent handle to a call, thus applications on a
host can pass call ownership through any interprocess communication (IPC)
mechanism. Having an XtlCallReference value also allows your code to
identify the XtlCallState object associated with a call; with the call state
object, clients can then claim or monitor the call.

At the API level, you can obtain a call’s reference value by invoking
XtlCallState::call_reference() . You can then pass the reference value
to XtlProvider::get_call_state_req() to retrieve the related
XtlCallState object, or you can pass the reference value to
XtlCallState::provider_name() to obtain the name of the provider that
owns the call.

At the provider level, you obtain a call’s reference value by invoking
XtlPCall::get_call_reference() . You can then pass the reference value
to XtlProvider::get_call_object() to obtain a pointer to a call object,
or you can pass it to XtlPFactory::get_provider_name() to find the
name of the call’s provider. You can then pass the provider name to
XtlPFactory::get_provider_obj() to get a pointer to the provider
object.

41

SunXTL API Classes 4

The SunXTL API classes offer methods that perform basic telephone
operations, such as making, receiving, holding, and transferring calls. After an
object completes its function, the client can delete it, which frees any resources
the object may have used.

You can use this chapter to become familiar with the overall function of each
class SunXTL Teleservices provides. For introductory information on using
these classes, see “Getting Started With SunXTL Programming” on page 7. For
more detailed information on writing specific SunXTL programs see “Creating
SunXTL Applications” on page 73. This chapter describes the programming
model and methods of each SunXTL class in detail.

Note – The classes and data types in the API library are not multithread safe.

The SunXTL Programming Model
The SunXTL architecture is a message-passing, distributed-object architecture.
As such, the model is asynchronous in nature. That is, messages can be sent
and received at anytime, objects may come and go at any time. Thus it is
important that your programming also be asynchronous in style. Your code
should not expect events to occur at a given time or a certain order, and more
importantly, your code should not wait or block on events.

The following sections describe the various events that may occur and explain
how the SunXTL classes relate and interact.

42 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

Listening for Events

Because SunXTL clients are event driven, you must decide which events are of
interest and then override the indication (callback) methods that will handle
the events when they occur. XtlCall and XtlCallState objects are
automatically registered to receive all events when they are constructed;
however, XtlProvider objects are not registered for any events by default.
The listen_req() and ignore_req() methods allow you to select events of
interest.

Note – XtlProvider objects cannot receive CHANNEL_AVAILABLE_EVENT
and CHANNEL_UNAVAILABLE_EVENT events directly in the same manner as
other SunXTL events. Instead, if the client owns a call, it can listen for these
events through its call object. If the client does not own the call, it can create an
XtlMonitor object to listen for these events. For information about media
channels, see Chapter 6, “Using Media Channels.”

Note – listen_req() cannot be called on CHANNEL_AVAILABLE_EVENT or
CHANNEL_UNAVAILABLE_EVENT.

Events are global enumerated types that indicate a call’s change of state. A
client can only receive specific events for which it has registered. Events that
are not registered will not be sent to the client.

After registering for the events, you need to either override the relevant
methods with your own event handler, or do nothing and accept the default
behavior. For methods that must be overridden because their default behavior
does not adequately handle an event, the default_method () method is called
automatically, which prints a warning message to stdout to indicate that a
required method was not overridden.

Event Codes

The XtlCall class is the only class that uses events. A client can use an
XtlCall object to register for events on a particular call, after which, the
events are returned on XtlCall:event_ind() . Table 4-1 lists the CallEvent
events. These are events the client may want to listen for and respond to when
they occur.

SunXTL API Classes 43

4

Table 4-1 CallEvent Events (from xtl_globals.h)

Events Descriptions

UNKNOWN_EVENT The event parameter was not initialized to any value in this table. A call
event should never be set to this value.

Call Progress Events Call progress events indicate a change in the status of a call. These events
can be received by any XtlCall object and are guaranteed to be sent when
the defined events occur.

PROCEEDING_EVENT An address has been accepted.

ALERTING_EVENT The other end of the call is ringing.

CONNECT_EVENT The call has been connected.

TRANSFER_EVENT A call has been transferred. This event is received by the call object that
transferred the call.

REDIRECT_EVENT The call has been redirected.

CONFERENCE_EVENT A call has been connected to a conference.

DROP_EVENT A call has been dropped.

INFO_EVENT The call object has received an information packet from the switch.

FAILURE_EVENT The call has failed to connect.

DISCONNECT_EVENT The call has been disconnected.

Call Ownership Events Call ownership events occur when a call is first created, changes owner, or
becomes invalid (disconnected). These events can only be seen by the
XtlProvider object, with the exception of the CHANGE_OWNER_EVENT,
which XtlMonitor objects can also receive.

CHANGE_OWNER_EVENT The call now has a new owner. This event causes the associated call object to
be deactivated (that is, its deactivated_ind() method is invoked).

CREATE_CALL_EVENT A call has been created and its activated_ind() method invoked. Only
XtlCall objects receive this event. Generally, this event implies an outgoing
call. This event does not appear for incoming calls where, instead, the client
receives an offer_ind() and the call state is INCOMING.

INVALIDATE_CALL_EVENT A call is no longer valid and the object’s deactivated_ind() method has
been invoked. Only XtlProvider objects receive this event.

44 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

SunXTL Class Relationships
The SunXTL classes consist of messaging classes (XtlProvider , XtlCall ,
and XtlMonitor), which share a common base class called XtlObject . The
remaining utility classes, such as XtlString and XtlKVList , are stand-alone
classes and are used as needed. Some SunXTL objects, however, do interact
closely. For instance, XtlProvider and XtlCall objects are the only objects
that can create XtlCallState objects. XtlCallState objects do not control
calls, but contain state information that pertains to a call.

There is also a close relationship between XtlCallState objects and
XtlMonitor objects. An XtlCallState object provides information on a
specific instance of a call. However, that information is static and provides only
a snapshot of a call state in time. The information is static because
XtlCallState objects cannot send and receive messages. The static nature of
the information means you should not copy or save the information. Instead,
you must reference the XtlCallState through an XtlMonitor to retrieve
up-to-date call state information.

Initializing Objects

When defining the constructor of a subclass of any of the messaging classes
(XtlProvider , XtlCall , and XtlMonitor), you must call the related parent
class constructor to initialize the object correctly. If you forget and try to
compile a program with an uninitialized parent object, the compile fails with a
constructor access error, such as:

can’t access private constructor XtlProvider()

Media Channel Events Calls have associated media channels that contain the media stream (data) of
the call. A call must acquire a media channel before it can communicate.

CHANNEL_AVAILABLE_EVENT The media channel associated with the call is available.

CHANNEL_UNAVAILABLE_EVENT The media channel associated with the call is not available.

Table 4-1 CallEvent Events (from xtl_globals.h) (Continued)

Events Descriptions

SunXTL API Classes 45

4

Interface and Implementation Objects

The SunXTL architecture is based on a message-passing, distributed-object
framework that is entirely asynchonous. Thus your programming style must
adapt for this environment where messages (requests and indications) may be
sent and received at any time, and objects may be destroyed at any time.

Although you are only exposed to the messaging classes, such as XtlCall and
XtlProvider , there are other objects working behind the scene; see Figure 4-1.
For each messaging object you instantiate, the API creates a corresponding one,
if necessary. The two types of objects are known as interface objects and
implementation objects. Instances of SunXTL messaging classes are referred to as
interface objects because they provide a handle, or interface, to corresponding
implementation objects, which are hidden. This division allows multiple
handles to refer to the same object for efficiency and data sharing purposes.
For example, Figure 4-1 shows two interface objects associated (bound) to a
single implementation object; the XtlMonitor interface object is bound to the
same XtlCall implementation object in order to monitor the call’s activities.

Figure 4-1 Relationship Between Interface and Implementation Objects

When an interface object (also known as a messaging object) is constructed, it
must be associated with an implementation object. The API handles this
binding automatically through an activation process. Correspondingly, a
deactivation process removes the binding when the implementation object is
destroyed; when the binding is removed, the interface object is no longer valid

XtlCall

Xtl
Monitor

XtlCall
Impl

Interface Objects Implementation Objects
(Messaging Classes) (Hidden)

Objects are bound by

Invokes activated_ind()
after interface objects are constructed

 the API when activated.

46 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

and must be destroyed. The activation and deactivation processes are handled
by the callbacks activated_ind() and deactivated_ind() , which must
be overridden for each messaging class.

Because implementation objects are hidden, you do not manipulate them
directly. But it is helpful to know about them to understand what happens
when the API deletes implementation objects; typically, the API invokes the
deactivated_ind() method to allow you to clean up and delete your
interface object; if you do not delete the interface object, any attempt to use it
(that is, access the implementation object) results in an
EXCEPTION_INVALID_OBJECT error.

Activating and Deactivating Messaging Objects

All classes derived from the XtlObject class are capable of exchanging
messages with a provider to make requests and receive indications—this
includes the XtlProvider , XtlCall , and XtlMonitor classes. When you
instantiate one of these messaging classes, the object will be activated by the
API. This activation occurs automatically after the object is successfully
constructed. By activating the object, the object is able to exchange messages
with a provider. Likewise, when a provider is done with an object and no
longer wants to send and receive messages, it deactivates the object.

The process of activating and deactivating messaging objects is done through
two indication methods common to each class: activated_ind() and
deactivated_ind() . These methods are called by the API to notify your
client of the state of the object. The API will only invoke these callbacks once in
the life of the object. You must override each of these methods.

When you instantiate an object using new() , the API automatically registers
the object (so that the API can manage it) and invokes the activated_ind()
method when the object has been registered. Your activated_ind()
implementation should perform any necessary initialization for the object.

When implementation objects are destroyed, the API automatically unregisters
the object and calls the object’s deactivated_ind() method; within the
deactivated_ind() method, the object has the opportunity to free resources
and clean up any related state information. The object must then destroy itself
using delete() .

SunXTL API Classes 47

4

Note – As a rule, the API never deletes memory allocated by an client, nor
does it allocate memory and expect the client to delete it. Therefore, it is your
responsibility to match new() and delete() calls for the objects you use.

If you need to delete an object that has not been deactivated by a provider, it is
your responsibility to clean up any resources and state information related to
the object before calling delete() because delete() will not call
deactivated_ind() .

SunXTL Classes
The following SunXTL classes are available:

• Messaging Classes
• XtlProvider

• XtlCall

• XtlMonitor

• Utility Classes (described in Chapter 3, “Utility Classes”)
• XtlKVList

• XtlByteArray

• XtlByteString

• XtlCallState

• dpIOHandler

• Dispatcher

When reading about these methods, notice the correspondence between certain
request and indication methods. For example, listen_req() and
listen_ind() , or get_call_state_req() and get_call_state_ind() ,
are paired request and indication methods. The suffix indicates the request-
indication relationship. For example, when a listen_req() request is given,
SunXTL Teleservices invokes the listen_ind() indication method to return
the result and status of the listen_req() method. Other methods follow this
same convention.

48 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

The following sections describe each messaging class’s request and indication
methods, and the cause, exception, and error codes returned by event_ind()
and error_ind() methods. The utility classes were described in chapter 3.

Cause Codes

Cause codes are sent with normal events through the event_ind() method.
Cause codes provide additional information about an event; for example, a
failure event should be accompanied by a cause code to explain why the
provider is entering the failed state. Not all events have meaningful causes, so
the value CAUSE_NORMAL is used in those cases. Table 4-2 lists the possible
cause codes.

Table 4-2 Cause Codes (from xtl_globals.h)

Cause Codes Meaning

CAUSE_UNKNOWN The cause code was not initialized to any of the values in this table;
this code should never be used.

CAUSE_NORMAL This is a normal call control event.

CAUSE_USER_BUSY Remote user terminal was in use.

CAUSE_NETWORK_BUSY Network was unable to reach the remote party.

CAUSE_REJECTED Call was rejected by the remote party.

CAUSE_ERROR State change was caused by an error.

SunXTL API Classes 49

4

Exception Codes

Exception codes inform the provider of errors resulting from method calls.
Each method returns, through its first parameter, one of the exception values
shown in Table 4-3. When a method returns, you should check the Exception
parameter for EXCEPTION_SUCCESS; any other value indicates an error
condition.

Table 4-3 Exception Codes (from xtl_globals.h)

Exception Codes Meaning

EXCEPTION_UNKNOWN The exception code was not initialized to any of the values
in this table; this code should never be used.

EXCEPTION_SUCCESS No exception occurred, the operation was successful.

EXCEPTION_INVALID_PROVIDER A bad provider object was passed to the call constructor.
This error indicates an unrecognized provider name or a
problem with reading the provider configuration database.

EXCEPTION_INVALID_ARGUMENT An invalid parameter was passed to the method.

EXCEPTION_INVALID_OBJECT The object for which the method was called is invalid. This
error typically follows a memory allocation failure or
indicates that the memory holding the object has been
corrupted, thus making the object invalid.

EXCEPTION_INVALID_DATABASE The method was unable to open the configuration database.
There may be a problem with the location or permissions of
the database.

EXCEPTION_OUT_OF_MEMORY System is out of memory.

EXCEPTION_PROTOCOL_VIOLATION Returned by event_ind() when you try to send an event
indication while in the wrong state; for example, an invalid
state transition occurs if you send a PROCEEDING_EVENT
while in the CONNECTED state.

EXCEPTION_INTERNAL_ERROR A non-recoverable error has occurred.

50 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

Error Codes

Error codes are sent as a parameter in the error_ind() method. An error
indicates an error in a request or an error from the attempt to fulfill a request.
Table 4-4 shows the possible error codes.

Table 4-4 Error Codes (from xtl_globals.h)

Error Code Meaning

ERROR_UNKNOWN = 0 The error code was not initialized to any of the values in
this table; this code should never be used.

ERROR_INVALID_PROVIDER The provider name was not recognized because it was
not specified correctly, the provider configuration
database is corrupt or missing, or the provider was not
installed or configured.

ERROR_INVALID_OBJECT A message was sent to an object that no longer exists.
This is an internal error due to a race condition. You may
safely ignore this error unless it occurs repeatedly; if so,
please report this bug.

ERROR_INVALID_ARGUMENT A bad argument was passed in an XtlKVList .

ERROR_INVALID_ADDRESS The provider could not recognize the address.

ERROR_PERMISSION_DENIED A client request required access to a resource for which it
did not have permission, such as /dev/audio .

ERROR_RESOURCE_NOT_AVAILABLE A resource was unavailable while attempting to fulfill a
request, such as a configuration or extension request.

ERROR_RESOURCE_NOT_AVAILABLE_ON_INCOMINGThere was an incoming call, but there were no resources
available to accept the call.

ERROR_PROVIDER_SPECIFIC An internal provider-specific error occurred.

ERROR_PROTOCOL_VIOLATION The call is in a state where the attempted request would
cause an invalid call state transition.

ERROR_MISSING_PARAMETER A parameter is missing.

ERROR_SERVICE_NOT_IMPLEMENTED An unimplemented service was requested.

ERROR_SERVICE_NOT_AVAILABLE The requested service is not available.

ERROR_SERVICE_NOT_CONFIGURED The requested service must be configured (by the system
administrator) before the client can use it.

ERROR_NETWORK_NOT_RESPONDING The network is ignoring attempts to communicate with it.

SunXTL API Classes 51

4

Using XtlProvider

An XtlProvider object represents the service provider that manages
connections between a network and a telephone device. XtlProvider objects
are required for both the creation and reception of connections. Table 4-5 lists
the XtlProvider class request methods and Table 4-6 shows its slot methods.

The XtlProvider constructor accepts an exception parameter, which returns
an error code, and an XtlString that specifies a provider name. By default, a
provider object is not registered to receive any events when it is constructed.
You should call listen_req() to register for events of interest.

ERROR_FORMAT_NOT_SUPPORTED You specified an unsupported format. See “Using
XtlFormat” on page 35.

ERROR_TIMER_EXPIRY A timer within the provider timed out. Typically a
request may have timed out. For example, a transfer
request that gets no response from the destination will
receive this error code.

ERROR_REQUEST_CURRENTLY_SATISFIED This request is a duplicate request for an action that was
previously performed. For example, if a hold request
comes for a call that is already on hold, or, frequently,
duplicate configuration requests are sent. In the latter
case, it is better to send this error rather than an empty
event_ind(INFO_EVENT) event because the call state
has not changed.

XtlProvider* p = new XtlProvider(Exception& exception,
 XtlString provider_name);

Table 4-4 Error Codes (from xtl_globals.h) (Continued)

Error Code Meaning

52 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

Table 4-5 XtlProvider Class Request Methods (from xtlprovider.h)

Request Methods Description

virtual Exception list_calls_req() Requests a list of active calls on this provider.

virtual Exception
enable_offer_event_req(

boolean_t on,
const XtlKVList& args =
XtlNullKVListC)

Allows the provider object to receive call offer
events. To register for offer indications, set the
on parameter to B_TRUE; the optional args
parameter can be used to specify provider-
specific information.

virtual Exception listen_req(
CallEvent listenFor,
const XtlKVList& args =
XtlNullKVListC)

By default, provider objects are not registered
for any events. Use this method to listen for a
named event, specified by listenFor (see
Table 4-1 on page 43 for list of events). The
optional args parameter specifies provider-
specific information.

By design, provider objects cannot listen for
CHANNEL_AVAILABLE_EVENT and
CHANNEL_UNAVAILABLE_EVENT events
directly in the same manner as other SunXTL
events. Instead, if the client owns a call, it can
listen for these events through its call object. If
the client does not own the call, it can create an
XtlMonitor object to listen for these events.
For information about media channels, see
Chapter 6, “Using Media Channels.”

virtual Exception ignore_req(
CallEvent toIgnore,
const XtlKVList& args =
XtlNullKVListC)

Unregisters an event, specified by toIgnore ,
with this provider (see Table 4-1 on page 43 for
list of events). The optional args parameter
specifies provider-specific information.

virtual Exception extension_req(
const XtlString& feature,
const XtlKVList& args =
XtlNullKVListC)

Requests a provider-specific feature to be
activated, such as call forwarding, speed
dialing, and so on. You must specify the name
of the feature in feature and any necessary
arguments for the feature in args .

virtual Exception get_call_state_req(
const XtlCallReference& ref)

Gets the state of a call, which is specified by the
XtlCallReference value.

SunXTL API Classes 53

4

Table 4-6 XtlProvider Class Slot Methods (from xtlprovider.h)

Your client program must implement the indication (callback) methods in your
derived XtlProvider subclass. Your implementation determines the behavior
of the provider object when it receives events of interest. You only need to
implement the indications for those events. By default, unimplemented
indication methods call default_method() , which prints a message to warn
you that the callback has not been implemented (overridden). Table 4-7 lists the
indication methods.

Slot Methods Description

virtual XtlString name(
Exception& exception)

Returns the primary alias for this provider.

virtual XtlKVList extended_state(
Exception& exception)

Returns the provider-specific extension state
that has been set by the provider.

XtlString string(Request req)
XtlString string(Error error)
XtlString string(CallEvent event)
XtlString string(CallState state)

Converts specified enumeration to an
XtlString .

Table 4-7 XtlProvider Class Indication Methods (from xtlprovider.h)

Indication Methods Description

virtual void activated_ind(
XtlKVList& args)

Activates object so that it can receive
messages.

virtual void deactivated_ind(
XtlKVList& args)

Deactivates object so that it can no longer
receive messages.

virtual void list_calls_ind(
XtlCallState* const* call_list,
int call_count);

Gets list of active calls. The list is returned in a
two-dimensional array of length call_count .
You may not copy or modify the contents of
the array (see “Using XtlCallState” on
page 64).

virtual void enable_offer_event_ind(
boolean_t on);

Confirms the enable_offer_event_req()
if on is returned as B_TRUE.

virtual void listen_ind(
CallEvent listeningTo)

Confirms that the provider is registered to
receive the event specified by listeningTo
(see Table 4-1 on page 43 for list of events).

54 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

virtual void ignore_ind(
CallEvent ignoring)

Confirms that the provider will no longer
receive the event specified by ignoring (see
Table 4-1 on page 43 for list of events).

virtual void get_call_state_ind(
XtlCallState& state,
XtlKVList& args)

Returns the call state of a call and any
provider-specific arguments.

virtual void call_event_ind(
XtlCallState& callstate,
CallEvent event,
XtlKVList& args)

Returns the event that has occurred on the
call specified by the callstate value.
Additional provider-specific arguments are
given by args .

When a client receives this indication, the
XtlCallState argument only provides up-
to-date call_reference() and state()
slot information; all other states, such as
media_channel_available() and
client_state() , are not set. If a client needs
complete state information, it my invoke
XtlProvider::get_call_state_req()
with a call reference value, or create an
XtlMonitor for the call using the
XtlCallState value.

virtual void offer_ind(
XtlCallState& offeredCall,
XtlKVList& args);

Notifies the provider that a call offeredCall
is available to be claimed. Additional
provider-specific arguments are given by
args .

virtual void info_ind(
XtlKVList& args);

Notifies the provider that the provider state
has changed; the extended_state() method
should be called to examine what has
changed.

Table 4-7 XtlProvider Class Indication Methods (from xtlprovider.h)

Indication Methods Description

SunXTL API Classes 55

4

virtual void error_ind(
Request request,
Error err,
XtlKVList& args)

An error err occurred in a given request
request . Table 4-8 on page 56 shows the
values for Request and Table 4-4 on page 50
shows the possible error values. Additional
provider-specific arguments are given by
args .

virtual void extension_ind(
const XtlString& feature,
XtlKVList& args)

Confirms that the provider has received the
message sent by extension_req() .

virtual void default_method(
const char* methodname)

This method is called when an indication
method has not been overridden. This
warning occurs because the default behavior
of the method does not appropriately handle
an event. When invoked, default_method()
prints the message:
object_name:: method_name() invoked but
not overridden, obj= this_address.

Table 4-7 XtlProvider Class Indication Methods (from xtlprovider.h)

Indication Methods Description

56 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

The Request and Exception parameters in Table 4-7 are enumerated types,
and can have the values listed in Table 4-8. The Request values identify the
offending request and correspond to the respective request method names. The
Exception values explain the type or cause of an error.

Using XtlCall

An XtlCall object represents a call. The object contains state information
about a call and provides access to a call’s data through its media channel.
Closely associated with XtlCall objects are XtlCallState objects, which
hold state information pertaining to a call; see “Using XtlCallState” on page 64
about the XtlCallState class.

The request methods of an XtlCall object generate requests and may cause
responses for call control functions such as establishing, answering, and
releasing calls. They can also transfer, hold, unhold, conference, and drop calls.

The XtlCall indication methods (xxx_ind() callbacks) are called to indicate
state changes or may be triggered by requests generated by corresponding
request methods (such as configuration_ind() is called in response to a
configuration_req()). You must override the indication methods to
implement client-specific behavior.

Table 4-8 XtlProvider Event and Request Values (from xtlprovider.h)

Type Enumerations Description

enum Event UNKNOWN_EVENT = 0 This value indicates an uninitialized event value. This
value should never be used.

INFO_EVENT This event is sent through event_ind() to indicate that
one of the slot values has changed.

enum Request UNKNOWN_REQ=0
CREATE_REQ
LISTEN_REQ
IGNORE_REQ
LIST_CALLS_REQ
EXTENSION_REQ
GET_CALL_STATE_REQ

Request values correspond to the offending request
method name. The value UNKNOWN_REQ means that the
request value was uninitialized; it should never be
intentionally set to that value.

SunXTL API Classes 57

4

Transferring Call Ownership

XtlCall objects are unique in that they are the only objects that can be owned.
The specific client that creates a call object is the sole owner of that call and it
alone has permission to manipulate the call. However, in situations where
there are several SunXTL clients running, a client may claim a call and decide
to pass ownership of the call to another client, the owning client can then offer
the call by using XtlCall::offer_req() .

There are several things to be aware of when a call is offered:

• A call can be offered while in any state.

• All clients listening for offer events will receive an offer event (through
XtlProvider::offer_ind() or XtlMonitor::offer_ind()),
including the client that made the offer. A client can test whether it is
already the owner by calling XtlCallState::owner() .

• All call state information is passed along with the call, except that any file
descriptors associated with its media channel becomes invalid and must be
reconfigured using XtlCall::configuration_req() ; the media channel
will have a STREAM-STREAM configuration to show that it is invalid (see
“Configuring Channels With File Descriptors” on page 92 for a discussion of
media channel configurations). However, all other information, such as
client state and provider-specific state information, is passed intact. If
provider-specific channel inputs and outputs were previously configured,
the provider must determine whether the media channel is still valid when
call ownership changes.

When a call is offered, every SunXTL client on the host that is listening for
offer events receives an offer_ind() . The first to claim the offer takes
ownership. This means there is no deterministic way to pass call ownership to
a specific client. To overcome this, SunXTL clients must cooperate and agree on
a procedure to recognize client-directed offers. The client state slot is one way
to specify the recipient of a call offer.

For example, an SunXTL client, answer_center, is designed to dispatch calls that
may go to either of two other running clients called info_line and
emergency_line. Suppose a call needs to be directed to the emergency_line client.
The answer_center client can specify a key-value pair in the
XtlCallState::client_state() with a mutually recognized key, such as

58 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

"CLIENT_NAME" , and a value, which contains the name of the target client,
"emergency_line." When a call is claimed, the claiming client should check
the client state to check that it is the intended recipient of the call.

Claiming Calls

When a call is offered, any client that is listening for offer events (that is, has
invoked XtlProvider::enable_offer_event_req()) will receive an offer
event indication.

When you claim a call, the state of the call does not change from when it was
offered. You can check the state of the call by calling
XtlCallState::state() . If you need to access the call’s media channel (see
“Configuring Media Channels” on page 86), remember that the previous owner
may have already set a configuration. Thus your code should account for this
situation. Three scenarios are possible:

• If the call object’s CallState is INCOMING, the media channel is
guaranteed to have a null configuration (XtlNullKVList), and you can
proceed normally.

• If the call object is in any other state, the media channel configuration is
unknown because it may have been previously configured. You can verify
that the configuration is satisfactory by calling
XtlCall::configuration() .

However, the media channel is invalid if the previous configuration used
file descriptors for its input and output. Because file descriptors cannot be
passed between clients, the media channel is set to a STREAM-STREAM
input/output configuration to indicate that the configuration is invalid.

• You can configure the media channel by calling
XtlCall::configuration_req() . If you send down a configuration
request and the media channel is already configured as requested (this is
likely to occur for common configurations such as voice), then your client
will receive an XtlCall::error_ind() with the error
ERROR_REQUEST_CURRENTLY_SATISFIED. Your code should handle this
appropriately; in this situation, it should ignore the error. One way to avoid
the error is to request a null configuration (which effectively resets the
channel configuration) before configuring the channel as desired.

SunXTL API Classes 59

4

Constructing a Call Object

A call object is automatically registered to receive all call events pertaining to
the call. The XtlCall base class offers the request methods listed in Table 4-9.

Clients can construct an XtlCall object in several ways:

• XtlCall(Exception& exception, XtlProvider& provider,
const XtlKVList& args=XtlNullKVListC)

This constructor creates a new call object on the specified provider ; this is
how outgoing call objects are created. Provider-specific arguments can be
specified in the args parameter. Check the exception parameter for
EXCEPTION_SUCCESS.

• XtlCall(Exception& exception, XtlCallState& callstate)

This constructor claims an existing call. The call state can be gotten from
offer_ind() or a call reference value that was passed from another client
(a call state can be derived from a call reference value by using
XtlProvider::get_call_state_req()). Check the exception
parameter for EXCEPTION_SUCCESS.

• XtlCall(Exception& exception,
XtlCall& call_with_old_behavior)

This form of the constructor modifies the behavior of an existing call to
follow the behavior of a new call subclass; for example, you might want to
take an interactive voice call and modify it to behave as a recorded voice
call. Check the exception parameter for EXCEPTION_SUCCESS.

60 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

Table 4-9 XtlCall Class Request Methods (from xtlcall.h)

Request Methods Description

virtual Exception connect_req(
const XtlAddress& local,
const XtlAddress& remote,
const XtlFormat media_format,
const XtlKVList& args =
XtlNullKVListC);

Dials a number to create an outgoing call.
The local parameter specifies the address
(or telephone number) of the calling party;
remote is the called party; media_format
specifies the desired media channel data
format (see “Using XtlFormat” on page 35);
and args is an optional list of provider-
specific information.

virtual Exception
add_to_address_req(

const XtlAddress& addition,
const XtlKVList& args =
XtlNullKVListC);

Certain providers accept addressing
information in parts. This method allows
you to append additional addressing
information to the initial address given in a
previous connect_req() . The addition
parameter specifies a piece of the complete
address and args is an optional list of
provider-specific information.

virtual Exception answer_req(
 const XtlKVList& args =
 XtlNullKVListC);

Answers, or establishes connection with an
incoming call; args is an optional list of
provider-specific information.

virtual Exception disconnect_req(
 const XtlKVList& args =
 XtlNullKVListC);

Hangs up a call; args is an optional list of
provider-specific information.

virtual Exception hold_req(
 const XtlKVList& args =
 XtlNullKVListC);

Puts a call on hold; args is an optional list
of provider-specific information.

virtual Exception unhold_req(
 const XtlKVList& args =
 XtlNullKVListC);

Takes a call off hold; args is an optional list
of provider-specific information.

virtual Exception transfer_req(
XtlCallState& transfer_call,
const XtlKVList& args =
XtlNullKVListC);

Transfers a call by connecting this call to
another call, specified by transfer_call .
The other call must be active (that is,
media_channel_available==B_TRUE);
args is an optional list of provider-specific
information.

SunXTL API Classes 61

4

virtual Exception redirect_req(
const XtlAddress& redirect_to,
const XtlKVList& args =
XtlNullKVListC);

Redirects this call to the specified
redirect_to address; args is an optional
list of provider-specific information.

virtual Exception conference_req(
XtlCallState& conferee,
const XtlKVList& args =
 XtlNullKVListC);

Conferences in another call, specified by
conferee ; args is an optional list of
provider-specific information.

virtual Exception drop_req(
const XtlKVList& args =
 XtlNullKVListC);

Drops last call connected to the conference;
args is an optional list of provider-specific
information.

virtual Exception offer_req(
const XtlKVList& args =
XtlNullKVListC);

Offers this call to other clients and thereby
relinquishes ownership of the call if
claimed by another client; args is an
optional list of provider-specific
information.

virtual Exception
set_client_state_req(

const XtlKVList& client_state =
XtlNullKVListC);

Sets the client state of the call with client-
specific information given by
client_state . See client_state() in
Table 4-13 on page 64.

virtual Exception extension_req(
const XtlString& feature,
const XtlKVList& args =
XtlNullKVListC);

Requests a provider-specific feature ;
args is an optional list of provider-specific
information.

virtual int configuration_req(
const XtlKVList& requested_cfg)

Configures or opens a call’s data stream
with requested_cfg . Chapter 6, “Using
Media Channels” describes how to specify
media channel configurations.

virtual Exception generate_dtmf_req(
XtlString& digits,
const XtlKVList& args =
XtlNullKVListC);

Generates one or more DTMF tones. This
method is provided for backward
compatibility only. To generate DTMF
tones, new programs should use the DTMF
extension mechanism described in
Chapter 6, “Using Media Channels.”

Table 4-9 XtlCall Class Request Methods (from xtlcall.h) (Continued)

Request Methods Description

62 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

Table 4-10 XtlCall Class Slot Methods (from xtlcall.h)

Clients must override the XtlCall indication methods in Table 4-11 to receive
call events and errors. These indications all occur asynchornously.

Slot Methods Description

virtual XtlCallState& call_state(
Exception& exception)

Returns reference to CallState object.

virtual XtlKVList& configuration(
Exception& exception))

Returns the current media channel
configuration.

XtlString string(Request req)
XtlString string(Error error)
XtlString string(CallEvent event)
XtlString string(CallState state)

Converts the specified enumeration to an
XtlString .

Table 4-11 XtlCall Class Indication Methods (from xtlcall.h)

Indication Methods Description

virtual void activated_ind(
XtlKVList& args)

Indicates the activation of a call object which is
then able to receive events; args is an optional
list of provider-specific information.

virtual void deactivated_ind(
XtlKVList& args)

Indicates the deactivation of a call object which
can no longer receive events; args is an optional
list of provider-specific information.

virtual void configuraton_ind(
XtlKVList& current_config)

Indicates a new configuration indication
and returns the new media channel
configuration.

virtual void event_ind(
CallEvent event,
Cause cause,
XtlKVList& args)

Indicates arrival of an event with a related
cause code; args is an optional list of provider-
specific information.

virtual void error_ind(
Request request,
Error error,
XtlKVList& args)

Indicates an error condition with a given request;
Table 4-4 on page 50 shows the possible errors
values; args is an optional list of provider-
specific information.

SunXTL API Classes 63

4

The XtlCall class indication methods include Request parameters that are
enumerated types, and can have the values listed in Table 4-12:

virtual void extension_ind (
const XtlString& feature,
XtlKVList& args)

Indicates an extension indication and
returns the newly activated provider-specific
feature and its argument list .

virtual void detect_dtmf_ind (
char value,
XtlKVList&)

Indicates a DTMF event. This method is
provided for backward compatibility only. To
generate DTMF tones, new programs should use
the DTMF extension mechanism described in
Chapter 6, “Using Media Channels.”

virtual void default_method (
const char* method)

This method is called when an indication
method has not been overridden. This warning
occurs because the default behavior of the
method does not appropriately handle an event.
When invoked, default_method() prints the
message: object_name:: method_name()
invoked but not overridden,
obj= this_address.

Table 4-12 XtlCall Request Values (from xtlcall.h)

Enumeration Possible Values

Request UNKNOWN_REQ = 0
CREATE_REQ
CONNECT_REQ
ANSWER_REQ
DISCONNECT_REQ
HOLD_REQ
UNHOLD_REQ
TRANSFER_REQ,
CONFERENCE_REQ
DROP_REQ
OFFER_REQ
CONFIGURATION_REQ
EXTENSION_REQ
GENERATE_DTMF_REQ

Table 4-11 XtlCall Class Indication Methods (from xtlcall.h) (Continued)

Indication Methods Description

64 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

Using XtlCallState

An XtlCallState object is different from other objects in that it is not created
directly; it does not have a public constructor. Instead it is created by the
XtlProvider and XtlCall objects as needed. XtlCallState objects contain
read-only state information about a call and the information is retrieved
through its state slot methods. XtlCallState objects should never be copied
or saved because their information is not automatically updated when the state
of the call changes. You need to create an XtlMonitor object to get continuous
updates on a call’s state.

Within the client, XtlCallState objects are typically used in transfer and
conference operations where the second call is passed as an XtlCallState
object rather than a call object; see Table 4-9 on page 60.

The XtlCallState class offers slot methods that return all call-related
progress, state, and media channel information. Clients can access this
information by calling the XtlCallState slot methods listed in Table 4-13.

Table 4-13 XtlCallState Slot Methods

Slot Methods Description

static XtlString provider_name(
XtlCallReference& callref)

Returns the name of the provider managing this
call. The call object is specified by its call reference.

class XtlProvider& provider() Gets reference to provider object.

CallState state() Gets call’s progress: connected, alerting, and so on.

XtlAddress local_address() Gets local number.

XtlAddress remote_address() Gets remote number.

XtlString display() Returns the string currently displayed on the
phone’s display, if any.

boolean_t media_channel_available() Gets status of media channel availability. The
availability of the media channel is independent of
a call’s call progress state. That is, the availability
of the media channel may change at any time.

boolean_t owner() True if you own the call.

boolean_t incoming() True if the call is an incoming call.

boolean_t claimable() Finds out if call can be claimed.

SunXTL API Classes 65

4

Call State and Transitions

When making or receiving a call, a call object travels a path of call progress
states. These states are defined by XtlCallState . The state of a call is
important to the client because it acts based on the current state of a call.

To change the state of a call, the client sends a request to the provider. The
provider in turn manipulates the telephone device in an attempt to satisfy the
request. When the request is completed, the provider sends an indication to the
client.

boolean_t held() Gets status of hold status. Returns true if the call is
currently on hold, which also means that the media
channel is not available.

XtlCallReference call_reference() Returns a value that identifies this call. A client can
pass this function to another client to exchange
information about the call.

XtlKVList extended_state() Returns provider-specific state information about a
call. Unlike the client state, which is set by the
client, the extended state is set by the provider and
is read-only for the client.

XtlKVList client_state() Returns client-specific state information about a
call. The client state allows a client to attach client-
related information to a call that is not otherwise
maintained, such as a time stamp of when a call
was initially received, a call’s duration, and so on.

If a client wishes to pass ownership of a call to
another client (through offer_req()), the client
state is preserved so that it can be examined by the
other client.

XtlFormat format() Returns data format of the call media stream.

Table 4-13 XtlCallState Slot Methods (Continued)

Slot Methods Description

66 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

Figure 4-2 shows some of the possible state transitions of a call. Starting from
an unknown status, an incoming call takes the left path while an outgoing call
takes the right path. As the call moves from one state to the next, the client
receives the appropriate indication event, such as CREATE_EVENT or
INCOMING_EVENT. Table 4-14 on page 68 defines the possible call progress
state values.

SunXTL API Classes 67

4

Incoming

Alerting

Connected

Idle

Proceeding

Unknown CREATE_EVENT

PROCEEDING_EVENT

ALERTING_EVENT

CONNECT_EVENT

INCOMING_EVENT

CONNECT_EVENT

Incoming
Calls

Disconnected

*from any state

DISCONNECT_EVENT
Failed

*from any state

FAILURE_EVENT

Outgoing
Calls

DISCONNECT_EVENT

Figure 4-2 Normal Call State Transitions

68 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

In the normal course of making or receiving a call, a call object can be expected
to follow a normal course of state transitions. Of course, other events may
occur that cause the transition to deviate; for example, if the call is busy or

Table 4-14 Call State Enumerations (from xtl_globals.h)

Call Status Meaning

UNKNOWN When an XtlPCall object is created, it starts in an unknown
status. At this point the call object is neither incoming nor
outgoing.

INCOMING A remote party is requesting a connection (incoming call).

IDLE For outgoing calls, after a call object is created, a
CREATE_EVENT event is sent to the client and the call is ready
to receive a connection request.

PROCEEDING A complete address has been passed to the call object and an
attempt to connect to the remote party is in progress.

ALERTING The remote party has been notified of the connection attempt;
that is, the remote phone is ringing.

CONNECTED An end-to-end connection has been established; that is, the
remote party has answered.

FAILED A connection attempt has failed. There may be several causes
such as a busy condition, a switch error, or an incomplete
address argument. For that reason, this state can be entered
from any of the other states. The call then enters the
DISCONNECTED state where it may be destroyed.

DISCONNECTED The connection has been terminated and the call object is
ready to be destroyed. You may not reuse this call object to
make another call.

CONFERENCED Another call has been conferenced into the current call.

INVALID This is not a call state, but rather reflects the state of the
CallState object. The call may be invalid because the
binding to the implementation object has been severed or the
object has been deactivated. For a description of object
deactivation, see “Activating and Deactivating Messaging
Objects” on page 46.

SunXTL API Classes 69

4

unexpectedly disconnected. To handle these situations and to ensure that
abnormal transitions do not occur (such as going from an INCOMING status to
an ALERTING status), the lower-level MPI (provider) validates each transition
so that in a given state, only certain requests may be sent to the provider and
only certain event indications may be sent to the client.

Table 4-15 shows the valid client requests that a provider can expect to receive
for each call state. Table 4-16 presents a corresponding matrix that shows the
valid indication events that can be sent to the client for each call status, and the
resulting status transition, if any. The MPI layer enforces these transitions and
generates an EXCEPTION_PROTOCOL_VIOLATION exception if an
inappropriate transition is attempted; exceptions are described in “Exception
Codes” on page 49.

70 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

Table 4-15 Valid Requests for Call States

Call State1

Requests Unkn Idle Proc Alrt Fail Conn In Dis Conf

CONNECT_REQ - Y - - - - - - -

ADD_TO_ADDRES_REQ - Y - - - - - - -

ANSWER_REQ - - - - - - Y - -

ALERT_REQ - - - - - - Y - --

DISCONNECT_REQ - Y Y Y Y Y Y - Y

REDIRECT_REQ - - Y Y Y Y Y - Y

TRANSFER_REQ - - Y Y Y Y Y - Y

CONFERENCE_REQ - - Y Y Y Y - - Y

DROP_REQ - - - - - - - - Y

HOLD_REQ - Y Y Y Y Y Y Y Y

UNHOLD_REQ - Y Y Y Y Y Y Y Y

CONFIGURATION_REQ - Y Y Y Y Y Y Y Y

EXTENSION_REQ - Y Y Y Y Y Y Y Y

NOTES:

(1) The call status enumeration equivalents are: Unkn=UNKNOWN, Idle=IDLE ,
Proc=PROCEEDING, Alrt=ALERTING, Fail=FAILED , Conn=CONNECTED, In=INCOMING,
Dis=DISCONNECTED, Conf=CONFERENCED.

(2) A “-” entry in this table means that the MPI guarantees that the request will never be
sent in the given state.

SunXTL API Classes 71

4

Using XtlMonitor

A monitor object is primarily used to log call activity and monitor the status of
incoming calls. It cannot perform call control functions. When a monitor object
is created, it is automatically registered to receive all events. Table 4-17 shows
the XtlMonitor methods.

The XtlMonitor constructor:

XtlMonitor(Exception& exception, XtlCallState& callstate);

Table 4-16 Valid Indication Events for Call Status Transitions

Events Current Call Status

Unkn Idle Proc Alert Fail Conn In Dis Conf

CREATE_EVENT Idle - - - - - - - -

INCOMING_EVENT In - - - - - - - -

PROCEEDING_EVENT - Proc - - - - - - -

ALERTING_EVENT - - Alert - - - - - -

CONNECT_EVENT - Conn Conn Conn - - Conn - -

FAILURE_EVENT - Fail Fail Fail - Fail Fail - Fail

DISCONNECT_EVENT - Dis Dis Dis Dis Dis Dis - Dis

INFO_EVENT - Idle Proc Alert Fail Conn In Dis Conf

TRANSFER_EVENT - - Proc Alert Fail Conn In - Conf

CONFERENCE_EVENT- - Conf Conf Conf Conf - - Conf

REDIRECT_EVENT - - Proc Alert Fail Conn In - Conf

DROP_EVENT - - - - - - - - Conf

NOTE: This table shows the resulting status after an event. A “-” entry means that a
EXCEPTION_PROTOCOL_VIOLATION exception will be sent to the client and the call will stay in
the same state.

72 SunXTL 1.1 Application Programmer’s Guide—December 1995

4

accepts a callstate value, which can be gotten from either offer_ind() or
a call reference value that was passed from another client (a call state can be
derived from a call reference value by using
XtlProvider::get_call_state_req()). You should also check the
exception parameter for EXCEPTION_SUCCESS.

Table 4-17 XtlMonitor Methods

Methods Description

virtual XtlCallState& call_state(
Exception& exception)

Returns the call state of the call being monitored. The
exception parameter returns any error conditions.

virtual void activated_ind(
XtlKVList& args)

Activates the monitor object so that it can receive events;
args is an optional list of provider-specific information.

virtual void deactivated_ind(
XtlKVList& args)

Deactivates the monitor object so that it no longer receives
events; args is an optional list of provider-specific
information.

virtual void offer_ind(
XtlCallState& offeredCall,
XtlKVList& args);

Notifies the monitor that a call offeredCall is
available to be claimed. Additional provider-specific
arguments are given by args .

virtual void event_ind(
CallEvent event,
Cause cause,
XtlKVList& args);

Indicates arrival of an event with a related cause code;
args is an optional list of provider-specific information.

virtual void error_ind(
Request request,
Error err,
XtlKVList& args)

Sends an error code for a given request. The Request
value is an enumeration with the values: UNKNOWN_REQ
and CREATE_REQ.

virtual void default_method(
const char* method);

This method is called when an indication method has
not been overridden. This warning occurs because the
default behavior of the method does not appropriately
handle an event. When invoked, default_method()
prints the message: object_name:: method_name()
invoked but not overridden, obj= this_address.

73

Creating SunXTL Applications 5

The SunXTL API insulates you from the intricacies of the SunXTL platform and
the telephone hardware installed on your system. To run the example
programs discussed in this chapter, your system should be configured with the
appropriate providers for the telephone hardware attached to your system.
Consult your system administrator about your system configuration.

This chapter explains how to create and compile SunXTL applications. For a
complete description of each SunXTL object, see “SunXTL Classes” on page 47.
For introductory information on writing SunXTL applications, see “Getting
Started With SunXTL Programming” on page 7.

Creating an SunXTL Application
To create an SunXTL client application requires the following basic steps:

1. Include SunXTL-specific header files in your source.

2. Derive the messaging classes to create your own classes.

3. Override the class methods to handle events of interest.

74 SunXTL 1.1 Application Programmer’s Guide—December 1995

5

Using Header Files
Several SunXTL header files are available for use in SunXTL applications. To
include all the SunXTL header files, simply include the xtl/xtl.h header.
Some header files are optional, such as xtl/xtldb.h , while others, such as
xtl/xtl_globals.h , are mandatory. Table 5-1 lists the SunXTL header files.

Table 5-1 SunXTL Header Files

Header File Description

xtl/xtl.h Includes all the headers files shown in this table.

xtl/bytearray.h Defines XtlByteArray class.

xtl/dispatcher.h Defines Dispatcher class.

xtl/iohandler.h Defines IOHandler class.

xtl/kvlist.h Defines XtlKVList class.

xtl/types.h Defines simple types such as NULL, nil, true, and false. Also includes the
standard <sys/types.h > header file.

xtl/xtl_globals.h Defines fundamental SunXTL data types and structures, such as global
symbols, event types, and error types.

xtl/xtlcall.h Defines the XtlCall class, request types, and request error types.

xtl/xtlcallstate.h Defines XtlCallState class.

xtl/xtldb.h Declares database query functions.

xtl/xtlmonitor.h Defines XtlMonitor class.

xtl/xtlprovider.h Defines XtlProvider class.

Creating SunXTL Applications 75

5

Deriving SunXTL Classes
To design your own classes within an application, you derive behavior from
the SunXTL messaging classes. For instance, the following code derives a class
from the XtlProvider class. The new provider subclass, called MyProvider ,
will be activated when its activated() method is invoked by the API; that is,
it will be activated to send and receive messages.

Because MyProvider is derived from XtlProvider , MyProvider inherits all
of the XtlProvider class’s functionality. The subclass function declarations
specify the behavior of the new class, MyProvider .

In addition, the activated_ind() and deactivated_ind() state methods
are defined. You must define these methods for every messaging object you
derive so that the object is properly initialized when activated and is able to
perform any cleanup operations when deactivated.

Note – In order for an application to receive SunXTL events, the class you
create to receive that event must derive one of the SunXTL messaging classes:
XtlProvider , XtlCall , or XtlMonitor .

Program Example outcall.cc

To illustrate the basic code used in an bSunXTL application, the example
program outcall.cc is explained; Code Example 5-1 presents a listing of the
program. The program creates an outgoing call by deriving the SunXTL
classes, MyProvider and MyCall from XtlProvider and
DirrectAudioCall , respectively.

class MyProvider : public XtlProvider {
public:
MyProvider(Exception* err, XtlString pname):XtlProvider(err,
pname) {}

virtual void activated_ind(XtlKVList&);
virtual void deactivated_ind(XtlKVList&);

};

76 SunXTL 1.1 Application Programmer’s Guide—December 1995

5

Code Example 5-1 Listing of outcall.cc

// Copyright 1993 by Sun Microsystems, Inc.
#pragma ident "@(#)outcall.cc1.2493/11/17SMI"

// outcall
//
// usage: outcall <remote_number> [provider_name]
//
// This example creates a single outgoing call to an address
// specified on the command line.
//

#include <stdio.h>
#include <stdlib.h>

#include <xtl/xtlprovider.h>
#include <xtl/xtlcall.h>
#include <Dispatch/sldispatcher.h>

#include "voicecall.h"

// Class Declarations

// The following classes are derived from XtlProvider and
// DirectAudioCall (defined in voicecall.h) in order to provide
// implementations for the notification callbacks in each class.

//
// MyProvider
//

class MyProvider: public XtlProvider
{
 public:
 MyProvider(Exception*, XtlString, XtlAddress);
 virtual void activated_ind(XtlKVList&);
 virtual void deactivated_ind(XtlKVList&);
 virtual void error_ind(Request, Xtl::Error, XtlKVList&);

 private:

Creating SunXTL Applications 77

5

 XtlAddress remote_number;
 class MyCall* current_call;
};

//
// MyCall
//

class MyCall : public DirectAudioCall {
public:
 MyCall(XtlProvider& xtlpv, XtlAddress remoteNumber)
 : DirectAudioCall(xtlpv, remoteNumber) {}
 virtual void deactivated_ind(XtlKVList&);
 virtual void event_ind(CallEvent, XtlKVList&);
};

//
// Class Definitions
//

///////////////////////// MyProvider /////////////////////////

// MyProvider Constructor

MyProvider::MyProvider(
 Exception* err,
 XtlString name,// name of provider to start
 XtlAddress number)// remote number to dial
: XtlProvider(err, name),
 remote_number(number),
 current_call(NULL)
{
}

// The activated method is invoked when the provider is successfully
// initialized. MyProvider::activated creates a new call and attempts
// to dial the number specified on the command line.

void
MyProvider::activated_ind(XtlKVList&)
{
 fprintf(stderr, "Using provider: %s\n", (name())());

Code Example 5-1 Listing of outcall.cc (Continued)

78 SunXTL 1.1 Application Programmer’s Guide—December 1995

5

 current_call = new MyCall(*this, remote_number);
}

// The deactivated method is invoked when the provider is terminated
// by the system. MyProvider::deactivated exits the program because
// the call will not be completed once the provider has been
// deactivated.

void
MyProvider::deactivated_ind(XtlKVList&)
{
 fprintf(stderr, "Provider died.\n");
 exit(1);
}

// The error method is invoked when the provider detects an error
// condition. MyProvider::error prints the error message and
// the request that caused the error.

void
MyProvider::error_ind(Request req, Xtl::Error err, XtlKVList&)
{
 // convert the request and error values into human readable strings
 XtlStringrequest = XtlProvider::string(req);
 XtlStringerror = Xtl::string(err);

 fprintf(stderr, "Provider error Request %s failed: %s\n",
 request(), error());

}

///////////////////////// MyCall /////////////////////////

// The event method is invoked when "something interesting" happens to
// a call. MyCall::event invokes the default behavior of
// DirectAudioCall in order to set up the audio device. If the call
// has been disconnected, then MyCall exits the program.

void
MyCall::event_ind(CallEvent event, XtlKVList& kvl)
{
 // preserve DirectAudioCall behavior
 DirectAudioCall::event_ind(event, kvl);

Code Example 5-1 Listing of outcall.cc (Continued)

Creating SunXTL Applications 79

5

 // exit when call is disconnected
 if (event == DISCONNECT_EVENT)

exit (0);
}

void
MyCall::deactivated_ind(XtlKVList& kvl)
{

fprintf(stderr, "Call was destroyed.\n");
exit (0);

}

///////////////////////// main /////////////////////////

void
main(int argc, char* argv[])
{
 XtlProvider::Exceptionerr;
 XtlAddress address;
 XtlString provider_name;
 MyProvider*provider;

 dpDispatcher::instance(new dpSLDispatcher);
 dpDispatcher& d = dpDispatcher::instance();

 // Parse arguments
 if ((argc < 2) || (argc > 3)) {

fprintf(stderr, "usage: %s <number> [provider]", argv[0]);
exit(1);

 }

 // save the address and provider name information
 address = XtlByteArray(argv[1]);

 if (argc == 3) {
provider_name = XtlString(argv[2]);

 }

 // Create a new provider object
 provider = new MyProvider(&err, provider_name, address);

 if (err != MyProvider::EXCEPTION_SUCCESS) {

Code Example 5-1 Listing of outcall.cc (Continued)

80 SunXTL 1.1 Application Programmer’s Guide—December 1995

5

Most of the SunXTL header files are used in this example with the addition of
a custom header file called voicecall.h , which defines a class called
DirectAudioCall . This header file will be used in later examples also.

The first step in the program is to define the MyProvider and MyCall classes.
The partial listing of the MyProvider class which follows shows the
provider and two event callbacks which signal state changes on the object.
The provider object is activated when activated_ind() is called and
deactivated when deactivated_ind() is called.

The MyCall class is derived from the DirectAudioCall class, and if you
look at the voicecall.h file, you can see that DirectAudioCall is derived
from the XtlCall class. Furthermore, MyCall ’s functionality is extended in

fprintf(stderr, "could not connect to provider: %s\n",
 (provider_name() == NULL) ? "default" : provider_name());
exit(1);

 }

 // enter the dispatch loop
 while(1)

d.dispatch();
}

class MyProvider : public XtlProvider {
public:

MyProvider(Exception* err, XtlString pname) :
XtlProvider(err, pname) {}

virtual void activated_ind(XtlKVList&);
virtual void deactivated_ind(XtlKVList&);

};

Code Example 5-1 Listing of outcall.cc (Continued)

Creating SunXTL Applications 81

5

the following listing by defining it to receive call events through event() .
MyCall also implicitly inherits the behavior of the activated_ind() and
deactivated_ind() methods from the DirectAudioCall class.

The next step in this program defines an array (number[80]) to store the
telephone number from the command line argument, and defines a pointer to
the current call (currentCall).

The following code then defines a MyProvider object’s response to being
activated by activated_ind() . This notification is accomplished by
overriding the XtlProvider object’s activated_ind() notification function.
The SunXTL platform calls MyProvider::activated_ind() to print the
provider’s primary alias to stderr . Then the outgoing call is made by creating
the MyCall object. This sequence is shown in the following code.

class MyCall : public DirectAudioCall {
public:

MyCall(XtlProvider& xp, XtlAddress rn) :
DirectAudioCall(xp, rn) {}

virtual void event_ind(CallEvent, XtlKVList&);
};

char number[80];
MyCall* currentCall=NULL;

void
MyProvider::activated_ind(XtlKVList&)
{

Exception ex;

fprintf(stderr, "Using provider: %s\n", name(ex)());

// Make outgoing call
currentCall = new MyCall(*this, number);

}

82 SunXTL 1.1 Application Programmer’s Guide—December 1995

5

Note – The name() function always returns the primary alias for the provider
even if you specify a secondary alias. Aliases are defined with the
xtltool(1) configuration utility. For more information on provider aliases,
see the Sun XTL 1.1 Administrator’s Guide.

The following code defines a MyProvider object’s response to being
deactivated.

The MyCall event handler uses DirectAudioCall to establish an audio
connection and calls exit() if the connection is disconnected. To customize an
application’s response to events, you need to override the XtlCall object’s
event() method; in this example, event() takes on DirectAudioCall ’s
functionality.

void
MyProvider::deactivated_ind(XtlKVList&)
{

fprintf(stderr, "Provider died.\n");
exit(1);

}

void MyCall::event_ind(CallEvent event, Cause, XtlKVList& kvl)
{

// preserve DirectAudioCall behavior
DirectAudioCall::event_ind(event, kvl);

// exit when call is disconnected
if (event == DISCONNECT_EVENT)

exit (0);
}

Creating SunXTL Applications 83

5

Now that everything is defined, the main() function is introduced. The
argument to main() is a provider name. It then sets up the dispatcher and
creates a MyProvider object. When MyProvider is created, and successfully
activated, it creates the MyCall object to invoke the connect_req() call.

main(int argc, char* argv[])
{

XtlProvider::Exceptionerr;
MyProvider* Pv;
Dispatcher& d = Dispatcher::instance();
char* pvname;

// Parse arguments
if ((argc < 2) || (argc > 3)) {

fprintf(stderr, "usage: %s <number> [provider]\n",
argv[0]);

exit(1);
}
strcpy(number, argv[1]);

if (argc == 3) {
pvname = argv[2];

} else {
pvname = NULL;

}

// Connect to provider
Pv = new MyProvider(&err, XtlString(pvname));
if (err != XtlProvider::EXCEPTION_SUCCESS) {

fprintf(stderr, "could not connect to provider\n");
exit(1);

}

while(1)
d.dispatch();

}

84 SunXTL 1.1 Application Programmer’s Guide—December 1995

5

85

Using Media Channels 6

In the SunXTL framework, each call has a stream of data associated with it.
The data may be voice, fax, video, or some other media. To access this data, a
client needs a media channel, which is a configurable port (or handle) to a
call’s data. This chapter covers concepts concerning SunXTL clients that need
to:

• Configure media channels
• Access call data
• Redirect call data between various inputs and outputs

In particular, configuring media channels to access and direct audio data and
DTMF information is discussed.

Media channels are automatically allocated for you when you create a call
object and deallocated when you destroy the call object. When the media
channel is available, the provider sends a MEDIA_CHANNEL_AVAILABLE event
on the call’s event_ind() method. It is important to understand that a call’s
call-progress state is independent of the availability of its media channel.
Because media channels are a limited resource, they can be allocated and
deallocated at anytime; its availability is notified through event_ind() and
reflected by the slot method XtlCall::media_channel_available() . For
example, putting a call in a hold state automatically deallocates the media
channel.

86 SunXTL 1.1 Application Programmer’s Guide—December 1995

6

Configuring Media Channels
To configure media channels, use these methods from the XtlCall class:

• virtual Exception configuration_req(
XtlKVList& new_configuration)

This method configures the media channel as described by the values in the
new_configuration argument. When the media channel is successfully
configured, the provider invokes the configuration_ind () callback and
returns the media channel’s current configuration; otherwise the client
receives an error_ind() event.

• virtual void configuraton_ind(
XtlKVList& current_configuration)

The provider invokes this notification method whenever the media channel
configuration changes. Normally the configuration only changes after a
configuration_req() request has been fulfilled. However, a provider
can send a configuraton_ind() at any time, so clients must always be
prepared to receive this event.

When a client receives a configuration_ind() event, it should compare
the returned current_configuration with the new_configuration
that was submitted with the previous configuration_req() request. If
the configurations are different, you must handle the unexpected
configuration appropriately by adapting to the current configuration or
trying another configuration_req() .

• virtual XtlKVList& configuration(Exception& exception)

This method retrieves the current media channel configuration for your
inspection.

Composing a Configuration
A media channel configuration specifies what to connect to the ends of a media
channel; that is, its inputs and outputs. To configure a media channel, you need
to specify its configuration in an XtlKVList and pass it to the
configuration_req() method. The key-value pairs in the configuration
specify the input (data source) and output (data sink) that will be connected to
the ends of a media channel. The possible input and output keys and values
are defined in the <xtl/constants.h> file. Figure 6-1 on page 87 shows the

Using Media Channels 87

6

possible inputs and outputs and how the provider device directs call data
through a media channel; there may be several media channels depending on
the provider device and each channel can be configured independently.

A configuration is a non-ordered list of inputs and outputs. You can specify
multiple outputs, which directs the same data to each output value. Specifying
multiple inputs means there are multiple data sources and those sources are
merged according to the data type; for example, audio input sources would be
mixed.

Figure 6-1 Media Channel Input and Output Types

When you submit a configuration through
XtlCall::configuration_req() , the provider either accepts the request
by invoking configuration_ind() or it denies the request by invoking
error_ind() . If the request is accepted, configuration_ind() returns the
requested configuration as an argument to confirm to request; you might
compare this configuration with the one you requested.

A successful configuration request nullifies the previous configuration; that is,
you cannot modify parts of a configuration, you must specify a new and
complete configuration each time you need to make a configuration change.

Note – A provider may asynchronously change a media channel configuration
at any time. This can happen when the provider determines that a call needs to
be put on hold or disconnected for resource purposes—for example, to service
a higher priority request. The specific behavior or policy adopted by a provider
is described in its documentation.

Media Channel

INPUTS

MICROPHONE

(provider-specific input)

XtlDTMFGenerateC

File Descriptor

/dev/ <device>

XtlConfigStreamC

OUTPUTS

SPEAKER

(provider-specific output)

XtlDTMFDetectC

File Descriptor

/dev/ <device>

XtlConfigStreamC

XtlSilenceDetectC

Provider Device

88 SunXTL 1.1 Application Programmer’s Guide—December 1995

6

In either situation, the provider should notify the client using
XtlCall::event_ind() with either CHANNEL_UNAVAILABLE_EVENT or
DISCONNECT_EVENT. These events are equivalent to a configuraton_ind()
with an empty XtlKVList argument. In other words, before the provider
dispatches either event, the media channel is set to a null configuration.

Configuring Audio-specific Channels
Media channels are typically configured for audio data. Such configurations
can be used for voice calls, playing sound files, and handling DTMF tones.
Audio-specific media channels are also flexible in that multiple inputs and
outputs can be configured on the channel. The effect is to overlay or mix the
sources so that one hears the various audio data simultaneously. Table 6-1
shows the possible input and output key-value pairs for audio channels. You
can configure a media channel with any number or combination of these
inputs and outputs.

Table 6-1 Audio-specific Key-Value Combinations

Key Value Description

XtlConfigInputK /dev/sound/0 Directs audio input from the system audio device.

XtlConfigOutputK /dev/sound/0 Directs audio output to the system audio device.

XtlConfigInputK microphone Directs audio input from the default microphone; the
microphone value should be obtained from the provider
configuration file by using
xtl_provider_info(XtlDBDefaultSpeakerK ; for an
example, see “Using the Database Query Functions” on
page 33.

XtlConfigOutputK speaker Directs audio output to the default speaker; the speaker
value should be obtained from the provider configuration file
by using
xtl_provider_info(XtlDBDefaultMicrophoneK) ; for
an example, see “Using the Database Query Functions” on
page 33.

XtlConfigInputK (provider-specific input) Directs audio input from a provider-specific input device. By
convention, provider-specific device values should be
enclosed in parenthesis; for example, a provider-specific
microphone might be called "(xyz_microphone) ".

Using Media Channels 89

6

Using DTMF Extensions

Configuring channels to handle DTMF tones is related to audio-specific
channel configurations. Composing your configuration request to include
DTMF-specific keys and values from the <xtl/constants.h> file, together
with the extension_req() and extension_ind() mechanism, allows your
client program to perform DTMF tone generation, tone detection, and silence
detection.

Because using DTMF tones is an audio operation, you can configure channels
with any combination of other inputs and outputs shown previously in
Table 6-1 on page 88. Any exceptions should be described in the provider
documentation. For example, certain providers cannot perform tone and
silence detection simultaneously because a single digital signal processor (DSP)
is used to perform both operations.

The following sections describe the steps for using each DTMF configuration.

Generating DTMF Tones

To generate DTMF tones, compose a configuration request that includes the
key-value pair:

Key Value
XtlConfigInputK XtlDTMFGenerateC

XtlConfigOutputK (provider-specific output) Directs audio output to a provider-specific output device. By
convention, provider-specific device values should be
enclosed in parenthesis; for example, a provider-specific
speaker might be called "(xyz_speaker) ".

XtlConfigInputK XtlDTMFGenerateC Directs input from a DTMF tone generator.

XtlConfigOutputK XtlDTMFDetectC Directs audio output to a DTMF tone detector.

XtlConfigOutputK XtlSilenceDetectC Directs audio output to a DTMF silence detector.

Table 6-1 Audio-specific Key-Value Combinations (Continued)

Key Value Description

90 SunXTL 1.1 Application Programmer’s Guide—December 1995

6

After a configuration_ind() confirms the configuration, generate DTMF
tones by invoking:

extension_req(XtlDTMFGenerateC, args)

where args is an XtlKVList that contains either a key-value pair whose key
is either XtlDTMFToneK or XtlDTMFStringK , but not both. Table 6-2
describes these keys and their corresponding values.

Table 6-2 DTMF Tone Generation Key-Value Pairs

DTMF Tone Detection

To detect a DTMF tone, compose a configuration request that includes the key-
value pair:

Key Value
XtlConfigOutputK XtlDTMFDetectC

Key Value Description

XtlDTMFToneK [0-9*#ABCD_] Passed as an argument to extension_req() to generate a single
DTMF tone. The tone plays until the next extension_req() is sent
with an underbar (’_’) value. This key-value pair cannot be used with
XtlDTMFStringK .

XtlDTMFStringK [0-9*#ABCD,]* Passed as an argument to extension_req() to generate a string of
DTMF tones; a comma represents a pause. This key-value pair cannot
be used with XtlDTMFToneK .

Several tone attributes (duration, off time, and pause time) can be
defined by specifying these additional key-value pairs:

Key Value
XtlDTMFPauseK ulong (milliseconds)
XtlDTMFOnTimeK ulong (milliseconds)
XtlDTMFOffTimeK ulong (milliseconds)

XtlDTMFPauseK defines the pause time for a comma (,).
XtlDTMFOnTimeK defines the duration of each tone.
XtlDTMFOffTimeK defines the pause between each tone.

Using Media Channels 91

6

After a configuration_ind() confirms the configuration, your program
receives an extension_ind() callback when a DTMF tone is detected. The
feature parameter on the callback contains the value XtlDTMFDetectC ,
and the args parameter can contain any of the key-value pairs shown in
Table 6-2.

DTMF Silence Detection

To detect DTMF silence, compose a configuration request that includes the key-
value pair:

KEY VALUE
XtlConfigOutputK XtlSilenceDetectC
XtlSilenceMinLengthK u_long (milliseconds)

The XtlSilenceMinLengthK key-value pair is optional. It specifies the
minimum amount of silence that qualifies as a silence event.

After a configuration_ind() confirms the configuration, your program
receives an extension_ind() callback each time a DTMF signal changes
from a tone to silence to a tone; that is, your program receives an event each
time a tone appears or silence is detected.

The feature parameter on the extension_ind() callback contains the
value XtlSilenceDetectC , and the args parameter can contain any of
the key-value pairs shown in Table 6-3.

Table 6-3 DTMF Silence Detection Key-Value Pairs

Key Value Meaning

XtlSilenceEventK XtlSilenceEventSilenceC Silence was detected on the media channel.

XtlSilenceEventK XtlSilenceEventSignalC A tone was detected on the media channel.

92 SunXTL 1.1 Application Programmer’s Guide—December 1995

6

Configuring Channels With File Descriptors

In another variation of channel configuration, you can select channel inputs
and outputs that are associated with a file descriptor. These include standard
file descriptors, handles to devices, and handles to streams.

In using file descriptors as input and output, you must observe these rules:

• You cannot combine file descriptor input or output with audio-specific input
and output.

• You must specify the same file descriptor value for both input and output
keys. This is because file descriptors are inherently bidirectional and can
serve both input and output functions; that is, a single file descriptor can be
read and written with data.

• Unlike audio-specific channel configurations, you can only specify one input
and one output per media channel. This is because this data type doesn’t
allow for logical merging, such as for audio data.

• Any file descriptors returned from a previous configuraton_ind() are
closed when a configuration is changed.

Note – When you transfer ownership of a call whose media channel is
configured with file descriptors, the file descriptors are not carried over.
Rather, the file descriptors become invalid and the API resets the configuration
to a STREAM-STREAM input/output configuration to indicate that the file
descriptors are invalid. The new owner must reconfigure the media channel.
See “Transferring Call Ownership” on page 57.

Table 6-4 shows the possible input and output key-value pairs for file
descriptors.

Using Media Channels 93

6

Table 6-4 File Descriptor Input and Output Key-value Pairs

Key Value Description

XtlConfigInputK
XtlConfigOutputK

<file descriptor>
<file descriptor>

Directs input and output from a file descriptor you have
opened. The file descriptor is valid until the next
configuration_ind() . When a call is on hold, read and write
operations will block until the call is taken off hold.

XtlConfigInputK
XtlConfigOutputK

/dev/ device
/dev/ device

Directs input and output from a device, where device is a device
file. The API opens the device for you. The configuration request
fails if the device is not available at the time. If you need finer
control of resources, you should open the device yourself and
pass a file descriptor.

XtlConfigInputK
XtlConfigOutputK

XtlConfigStreamC
XtlConfigStreamC

Directs input and output from a stream. The API opens the
stream for you and returns a file descriptor. A successful
configuration request causes a configuration_ind() to
return the key-value pairs:

Key Value
XtlConfigInputK XtlConfigStreamC
XtlConfigOutputK XtlConfigStreamC
XtlConfigInputFdK <file descriptor>
XtlConfigOutputFdK <file descriptor>

94 SunXTL 1.1 Application Programmer’s Guide—December 1995

6

95

Program Examples A

This chapter lists the program examples provided with the SunXTL software
package. To compile these programs, your development system must be
current. For SPARC systems, use C++ 3.0.1, in SPARCompilers 2.0.1. For Intel
systems, use C++ 3.0.1, in ProWorks 2.0.1.

When installed, the program example files can be found under
/opt/SUNWxtl/src/examples . There is also a makefile that compiles each of
the programs for you:

$ cd /opt/SUNWxtl/src/examples
$ make

Handling Audio
Code Example A-1 and Code Example A-2 show an example of an SunXTL
audio implementation. This program’s header file contains a useful data
structure, DirectAudioCall , which is also used in the other SunXTL
programming examples.

Code Example A-1 Listing of voicecall.h

/* Copyright 1993 by Sun Microsystems, Inc. */
#pragma ident "@(#)voicecall.h1.1994/02/08SMI"

#ifndef _XTL_VOICECALL_H
#define _XTL_VOICECALL_H

// Copyright (c) 1992 by Sun Microsystems, Inc.

96 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

#pragma ident "@(#)voicecall.h1.1994/02/08SMI"

#include <xtl/xtlcall.h>
#include <xtl/bytearray.h>

//
// DirectAudioCall is an example of a higher level, easier to
// use XtlCall object.
//
// The primary function of DirectAudioCall is to automatically connect a
// calls data stream to the provider’s default microphone and speaker.
//
// The DirectAudioCall outgoing call constructor will also automatically
// dial the outgoing number after being created.
//
// The DirectAudioCall claim call constructor claims on "offered" call.
// If the call is an incoming call, the object will automatically
// answer the incoming call.
// If the call is in another state the object will correctly configure
// the data stream of the call.
//
// The default implementation of DirectAudioCall configures the data
// stream using default values in the provider data base. This behavior
// is easily modified by subclassing DirectAudioCall and overriding
// send_desired_config() so it will send the desired configuration.
//
// DirectAudioCall also prints asynchronous errors to stderr.
//
class DirectAudioCall : public XtlCall {
public:

DirectAudioCall(// Outgoing Call constructor
 Xtl::Exception& err,
 XtlProvider& xtlpv,
 XtlAddress& remoteNumber)
 : XtlCall(err, xtlpv), _remoteNumber(remoteNumber) {}
DirectAudioCall(// Claim Call constructor
 Xtl::Exception& err,
 XtlCallState& call)
 : XtlCall(err, call), _remoteNumber("") {}
virtual void activated_ind(XtlKVList&);
virtual void event_ind(CallEvent, Cause, XtlKVList&);
virtual voidsend_desired_config();
virtual void extension_ind(const XtlString&, XtlKVList&);

Code Example A-1 Listing of voicecall.h (Continued)

/* Copyright 1993 by Sun Microsystems, Inc. */

Program Examples 97

A

virtual voidconfiguration_ind(XtlKVList&);
virtual void error_ind(Request, Xtl::Error, XtlKVList&);

private:
XtlAddress _remoteNumber;

};

#endif /* _XTL_VOICECALL_H */

Code Example A-2 Listing of voicecall.cc

// Copyright 1993 by Sun Microsystems, Inc.
#pragma ident "@(#)voicecall.cc1.2894/02/22SMI"

//
//
// DirectAudioCall is an example of a higher level, easier to
// use XtlCall object. It simplifies the process of making
// and receiving a call, and configuring the call’s data stream.
//

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>

#include <xtl/xtl.h>
#include "voicecall.h"

// The following code defines an XTL DirectAudioCall object’s
// response to being activated_ind(). The XTL platform calls
// DirectAudioCall::activated_ind() when this call is activated.
//
// Switching on the state of this call this function either
// makes an outgoing call, answers an incoming call,
// or correctly configures the data stream for the given state.
//
void
DirectAudioCall::activated_ind(XtlKVList&)
{

XtlFormatempty_format;

Code Example A-1 Listing of voicecall.h (Continued)

/* Copyright 1993 by Sun Microsystems, Inc. */

98 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

Exception excp;
switch (call_state(excp).state()) {
case IDLE:
connect_req(
 "",
 _remoteNumber,
 empty_format);
break;
case INCOMING:
answer_req();
break;
// unsupported by DirectAudioCall
case DISCONNECTED:
case INVALID:
default:
fprintf(stderr,
 "DirectAudioCall: given call in unsupported state\n");
}

if (call_state(excp).media_channel_available()) {
send_desired_config();
}

}

// The DirectAudioCall event handler is a notification method.
// It is called whenever the call’s state changes.
//
void
DirectAudioCall::event_ind(CallEvent ev, Cause, XtlKVList&)
{

// if data stream is available, then configure the data stream
if (ev == CHANNEL_AVAILABLE_EVENT)
send_desired_config();

// ignore all other events
}

// Send the desired data stream configuration based on the
// call state.
// The standard configuration is to connect to the providers
// default microphone and speaker, but applications

Code Example A-2 Listing of voicecall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 99

A

// can override this function and set up their own
// configuration as well.
//
void
DirectAudioCall::send_desired_config()
{

// ACTIVE_CALL indicates that the data stream is available.
// Attempt to connect data stream to the providers
// default microphone and speaker.
//
XtlKVList default_config;
Exception excp;
if (call_state(excp).media_channel_available()) {
XtlStringinput;
XtlStringoutput;
XtlKVListdefaults;
if (xtl_provider_info(call_state(excp).provider()->name(excp),
 defaults) < 0) {

fprintf(stderr, "Provider Database not configured?\n");
return;

}
if (!defaults.first("DEFAULT_MICROPHONE") ||
 !defaults.get(input)) {

fprintf(stderr, "Default Input not found.\n");
return;

}
if (!defaults.first("DEFAULT_SPEAKER") ||
 !defaults.get(output)) {

fprintf(stderr, "Default Output not found.\n");
return;

}

default_config.add(XtlConfigInputK, input());
default_config.add(XtlConfigOutputK, output());

// This configureDataStream method configures the data stream
// using the key-value pairs contained in the default_config
// argument.
configuration_req(default_config);
}

}

// this returns the new valid configurations, else error() is called.

Code Example A-2 Listing of voicecall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

100 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

void
DirectAudioCall::configuration_ind(XtlKVList& new_config)
{

fprintf(stderr, "New Data Steam Configuration:\n");
new_config.print(STDERR_FILENO);

}

void
DirectAudioCall::extension_ind(

const XtlString& message_name,
XtlKVList& provider_extension)

{
fprintf(stderr,
 "Unexpected Extension message: \"%s\"\n", message_name());
provider_extension.print(STDERR_FILENO);

}

// prints asynchronous errors to stderr.
void
DirectAudioCall::error_ind(Request req, Xtl::Error err, XtlKVList&)
{

XtlStringrequest = string(req);
XtlStringerror = Xtl::string(err);

fprintf(stderr, "Request %s failed: %s\n", request(), error());
}

Code Example A-2 Listing of voicecall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 101

A

Answering Incoming Calls
Code Example A-3 shows the incall.cc program, which answers an
incoming voice call. This program uses the voicecall.h header file described
in “Handling Audio” on page 95.

Code Example A-3 Listing of incall.cc

// Copyright 1993 by Sun Microsystems, Inc.
#pragma ident "@(#)incall.cc1.2694/02/22SMI"

//
// incall
//
// Usage:incall [provider_name]
//
// This is a short example which starts up a provider (either
// specified on the command line, or the default provider),
// listens for calls coming in through that provider, and
// answers incoming calls.
//

#include <xtl/xtl.h>
#include <xtl/xtlprovider.h>
#include <xtl/xtlcall.h>
#include <xtl/xtlcallstate.h>
#include <Dispatch/sldispatcher.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>

#include "voicecall.h"

//
// DirectAudioCall (defined in voicecall.h) is derived from the
// XtlCall class. We will keep one call for our provider.
//

DirectAudioCall*audiocall=0;

//
// MyProvider class declaration
//

102 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

//
// The MyProvider class is derived from the XtlProvider class (defined
// in xtlprovider.h) and provides implementations for methods to claim
// the call, watch its state progress, and become activated or
// deactivated. The MyProvider constructor invokes the XtlProvider
// constructor to get proper behavior.
//

class MyProvider : public XtlProvider {
public:

MyProvider(Xtl::Exception& err, XtlString pname) : XtlProvider(err, pname)
{}

virtual void activated_ind(XtlKVList&);
virtual void deactivated_ind(XtlKVList&);
virtual void offer_ind(XtlCallState& cs, XtlKVList&);
virtual void call_event_ind(
 XtlCallState&, CallEvent, Cause, XtlKVList&);

};

//
//
// MyProvider class definition /////////////////////////////////
//
//

//
// The callOfferEvent method is invoked when a call becomes available.
// When this occurs, MyProvider::callOfferEvent destroys any previously
// existing call and accepts the new call in its place.
//
void
MyProvider::offer_ind(XtlCallState& call, XtlKVList&)
{

// pick up any call offered to us
if (audiocall)
delete audiocall;
Xtl::Exception e;
audiocall = new DirectAudioCall(e, call);

}

//
// The activated method is invoked when an instance of the MyProvider
// class is successfully initialized. It prints out notice of what

Code Example A-3 Listing of incall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 103

A

// provider it has used, and then expresses interest in any incoming
// call.
//
void
MyProvider::activated_ind(XtlKVList&)
{

// get provider name and print it out
Exception excp;
XtlStringprovider_name = name(excp);
fprintf(stderr, "Using provider: %s\n", provider_name());

// register for incoming call events
enable_offer_event_req(B_TRUE);

// listen for any call being disconnected
listen_req(DISCONNECT_EVENT);

}

//
// The deactivated method is invoked when the provider goes away. It
// prints an appropriate notification message.
//
void
MyProvider::deactivated_ind(XtlKVList&)
{

fprintf(stderr, "Provider died.\n");
exit (1);

}

//
// The callevent method is invoked when the state of a call changes
// The provider receives notification identifing the call, and
// the event which identifies the state that changed.
//
void
MyProvider::call_event_ind(
 XtlCallState& ,
 CallEvent ev,
 Cause,
 XtlKVList&)
{
 // convert the event values into human readable string
 XtlStringevent = Xtl::string(ev);

Code Example A-3 Listing of incall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

104 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

 fprintf(stderr, "Provider event = %s\n", event());
}

main(int argc, char* argv[])
{

MyProvider::Exceptionerr;// To hold provider creation error
MyProvider*Pv;
dpDispatcher::instance(new dpSLDispatcher);
dpDispatcher& d = dpDispatcher::instance();

// Parse arguments
if (argc > 2) {
fprintf(stderr, "usage: %s [provider]", argv[0]);
exit(1);
}

char* pvname;
if (argc == 2) {
pvname = argv[1];// Use specified provider
} else {
pvname = NULL;// Use default provider
}

// Connect to provider
Pv = new MyProvider(err, pvname);
if (err != MyProvider::EXCEPTION_SUCCESS) {
fprintf(stderr, "could not connect to provider\n");
exit(1);
}

// enter the dispatch loop
while(1)
 d.dispatch();

}

Code Example A-3 Listing of incall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 105

A

Using the Dispatcher and Notifier Interfaces
Code Example A-4 shows how to use the dispatcher.

Code Example A-4 Dispatcher Example.

#include "xv_dispatch.h"
extern "C" {
#include <xview/notify.h>
}

Notify_value input_wrapper(Notify_client, int fd) {
 dpSLDispatcher& d = Dispatcher::instance();

 if (d.setReady(fd, Dispatcher::ReadMask))
d.dispatch();

 return NOTIFY_DONE;
}

Notify_value output_wrapper(Notify_client, int fd) {
 Dispatcher& d = Dispatcher::instance();

 if (d.setReady(fd, Dispatcher::WriteMask))
d.dispatch();

 return NOTIFY_DONE;
}

void XVDispatcher::attach(int fd, Dispatcher::DispatcherMask mask, IOHandler*
handler) {
 Dispatcher::attach(fd, mask, handler);

 switch (mask) {
 case Dispatcher::ReadMask:

 notify_set_input_func((Notify_client) this,
 (Notify_func) input_wrapper,
 fd);

 break;
 case Dispatcher::WriteMask:

 notify_set_output_func((Notify_client) this,

106 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

Creating an Answering Machine
Code Example A-6 (machine.cc) creates an answering machine client; it uses
the msgcall.h header file shown in Code Example A-5.

 (Notify_func) output_wrapper,
 fd);

 break;
 }
}

void XVDispatcher::detach(int fd) {
 Dispatcher::detach(fd);

 notify_set_input_func((Notify_client) this, NOTIFY_FUNC_NULL, fd);
 notify_set_output_func((Notify_client) this, NOTIFY_FUNC_NULL, fd);
}

Code Example A-5 Listing of msgcall.h

/* Copyright 1993 by Sun Microsystems, Inc. */
#pragma ident "@(#)msgcall.h1.2394/02/08SMI"

#ifndef _XTL_MSGCALL_H
#define _XTL_MSGCALL_H

#include <xtl/xtlcall.h>
#include <datapump/datapump.h>
#include <Dispatch/iohandler.h>
#include <datapump/dtmfdet.h>

class AudioWriter;
class DTMFHandler;

// MsgCall is simple object for recording and playing Sun
// audio files using a call’s data stream.
// Play and record can not be done simultaneously.
//
// playDone()Detects the end of a playAnnc(). Relies on Sun
// audio (4) driver interface. Only known to work on
// xtlp_sun_5e5 provider.

Program Examples 107

A

// playAnnc() Starts playing the announcement file.
// recordMsg() Recording into the message file AFTER TRUNCATING IT.
// stopPlayAnnc()Stops the play.
// stopRecordMsg()Stops recording, closes file, and adds an audio header.
//
class MsgCall : public XtlCall {
public:

MsgCall(
 Xtl::Exception e,
 XtlCallState& cs, // Claimable call
 char* announcement, // Full path to audio file to play
 char* message);// Full path to record file
virtual ~MsgCall();
virtual void configuration_ind(XtlKVList& newconfig);
virtual void error_ind(Request req, Xtl::Error err, XtlKVList&);
virtual void playDone()=0;
virtual boolean_t playAnnc();
virtual void stopPlayAnnc();
virtual boolean_t recordMsg();
virtual void stopRecordMsg();
XtlString messageFile();
XtlString announcementFile();

private:
void start_play();
void start_record();
int _audioFd;
int _anncFd;
int _msgFd;
XtlString_anncAudioFile;
XtlString_msgAudioFile;

DataPump*audioPump;
AudioWriter*player;
CopyReader*recorder;
boolean_trecord_requested;
boolean_tplay_requested;
DTMFHandler*dtmf;

};

inline XtlString MsgCall::messageFile() { return _msgAudioFile; }
inline XtlString MsgCall::announcementFile() { return _anncAudioFile; }

// DTMFHandler is used by MsgCall to detect dtmf.

Code Example A-5 Listing of msgcall.h (Continued)

/* Copyright 1993 by Sun Microsystems, Inc. */

108 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

// If just the dtmf tone or sting detected.
//
class DTMFHandler : public DTMFReader {
public:

DTMFHandler(DataPump& audioPump) : DTMFReader(audioPump) {}
virtual void detectedToneUp(char c);
virtual void detectedToneDown(char c);
virtual void detectedToneString(XtlString& tones);

};

//
// AudioWriter is used to play a Sun audio file to a Sun audio device.
//
// NOTE:AudioWriter is designed to work on the Sun /dev/audio
// (audio (4)) interface. Some providers configurations
// may not support the ioctls used by AudioWriter. This
// example is only known to work on the xtlp_sun_5e5
// configured as INPUT = STREAM, and OUTPUT = STREAM.
//
// The AudioWriter client_data is a pointer to a composite object that
// is using the AudioWriter. It is used in donePlaying() to notify the
// composite object that the play has finished. By default the
// AudioWriter assumes the composite object is MsgCall, but AudioWriter
// could be subclassed, and donePlaying could be overridden to call
// a different composite object.
//
class AudioWriter : public CopyWriter, public dpIOHandler {
public:

AudioWriter(DataPump& audio, int file_fd, void* client_data = NULL,
 int bufsize = 1024);
virtual ~AudioWriter();
virtual void donePlaying();
virtual void* clientData();

protected:
boolean_t playedZeroLengthBuffer(int fd);
virtual void timerExpired(long sec, long usec);

private:
int audio_device;
void*client_data;

};

#endif /* _XTL_MSGCALL_H */

Code Example A-5 Listing of msgcall.h (Continued)

/* Copyright 1993 by Sun Microsystems, Inc. */

Program Examples 109

A

Code Example A-6 Listing of machine.cc

// Copyright 1993 by Sun Microsystems, Inc.
#pragma ident "@(#)machine.cc1.2094/02/22SMI"

#include <xtl/xtl.h>
#include <xtl/xtlprovider.h>
#include <xtl/xtlcall.h>
#include <xtl/xtlcallstate.h>
#include <Dispatch/sldispatcher.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>

#include "msgcall.h"

//
// usage: machine [provider]
//
// Machine immediately answers all incoming calls, plays a
// greeting file from the /usr/demo/SOUND directory, and
// then records a mesage.
//

MsgCall*msgcall; // We only handle one global call at a time

// MyCall is a class which will claim and answer a call,
// play a greeting, then take a message.

class MyCall : public MsgCall {
public:

MyCall(
 Xtl::Exception& e,
 XtlCallState& cs,
 char* announcement,
 char* message) :
 MsgCall(e, cs, announcement, message) {}
virtual void playDone();
virtual void activated_ind(XtlKVList&);

110 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

virtual void event_ind(CallEvent ev, Cause, XtlKVList&);
};

// This is a notification which has been overridden.
// The call object now has ownership of the call. The "activated_ind()"
// notification only gets called once during the lifetime of a call object.

void
MyCall::activated_ind(XtlKVList&)
{
 fprintf(stderr,

"MyCall: activated \n");

Exception excp;
switch (call_state(excp).state()) {
case INCOMING:
// The call is incoming and has not been
// answered by another call object.
answer_req();
break;

// unsupported by MsgCall
case UNKNOWN:
case IDLE:
case DISCONNECTED:
case INVALID:
default:
fprintf(stderr,
 "MyCall: given call in unsupported state\n");
}

// The phone call may have been previously answered by another
// call object but then had its ownership offered. This call
// object now has claimed ownership of the call and will play
// the greeting. It is not necessary to call "answer_req()" the
// call because it is not incoming or in one of the inactive states.
// Just check if the data channel is available, if so start play
if (call_state(excp).media_channel_available())
playAnnc();

}

Code Example A-6 Listing of machine.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 111

A

// This notification method gets called when the greeting file has finished
// playing. It is now time to record the caller’s message.
void
MyCall::playDone()
{

recordMsg();
}

// The "event()" notification function gets called when there is a
// change in the state of a call. This function will be called after
// the "activated_ind()" function has been called. The event notification
// is usually called several times during the course of a call. The
// sequence of events for a given call is considered to be
// indeterminate.

void
MyCall::event_ind(CallEvent ev, Cause, XtlKVList&)
{

switch(ev) {
case CHANNEL_AVAILABLE_EVENT:
 // The call object may now attempt to acquire a
// data stream fd and play a greeting.
playAnnc();
break;
// ignored by MsgCall
case CONNECT_EVENT:
case ALERTING_EVENT:
case PROCEEDING_EVENT:
break;
case DISCONNECT_EVENT:
// The call has been disconnected and it is time
// to stop recording the call’s data stream and
// delete this object.
stopRecordMsg();

// this code only manages one call at a time, delete
// only call and reset global pointer
delete this;
msgcall = NULL; // Set the global msgcall pointer to null.
break;

// unsupported by MyCall
case CHANNEL_UNAVAILABLE_EVENT:

Code Example A-6 Listing of machine.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

112 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

default:
fprintf(stderr,
 "MyCall: ignoring %s Event\n", Xtl::string(ev)());
}

}

///

// MyProvider is a subclass of XtlProvider designed to wait for an offered
// call and then claim it and take a message.

class MyProvider : public XtlProvider {
public:

MyProvider(Xtl::Exception& err, XtlString pname) : XtlProvider(err, pname)
{}

virtual void activated_ind(XtlKVList&);
virtual void deactivated_ind(XtlKVList&);
virtual void offer_ind(XtlCallState& cs, XtlKVList&);
virtual void call_event_ind(
 XtlCallState&, CallEvent, Cause, XtlKVList&);

};

// A call has been offered for ownership and the MyProvider object will
// attempt to claim it by creating a new call object using the call state
// of the offered call.
void
MyProvider::offer_ind(XtlCallState& call, XtlKVList&)
{

fprintf(stderr, "got callOfferEvent\n");

// pick up incoming call
if (call.state() == INCOMING) {
fprintf(stderr, "incoming call....\n");
// Claim the call and tell it to use train.au for the greeting
// message and msg.au for the message file.
Xtl::Exception e;
msgcall = new MyCall(e, call,
 "/usr/demo/SOUND/sounds/train.au", "/tmp/msg.au");
}

}

// This notification is called when the provider object has finished

Code Example A-6 Listing of machine.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 113

A

// its internal setup and is ready for commands or further notifications.
void
MyProvider::activated_ind(XtlKVList&)
{

Exception excp;
fprintf(stderr, "Using provider: %s\n", (name(excp))());

// register for offer events
enable_offer_event_req(B_TRUE);

}

// This notification is called when the provider process associated with this
// provider object dies.
void
MyProvider::deactivated_ind(XtlKVList&)
{

fprintf(stderr, "Provider died.\n");
exit(1);

}

// This provider object could be instructed to listen for call events
// using the listen_req() command. Such call events would be observed
// using this notification.
void
MyProvider::call_event_ind(XtlCallState& , CallEvent ev, Cause, XtlKVList&)
{

// Not currently listening for any provider events
//
fprintf(stderr, "MyProvider:: Ignoring %s provider event\n",
 Xtl::string(ev)());

}

main(int argc, char* argv[])
{

MyProvider::Exceptionerr;
MyProvider*Pv;
dpDispatcher::instance(new dpSLDispatcher);
dpDispatcher& d = dpDispatcher::instance();

// Parse arguments
if (argc > 2) {
fprintf(stderr, "usage: %s [provider]", argv[0]);
exit(1);

Code Example A-6 Listing of machine.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

114 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

}

// Assume that the second argument (if it exists) to the program
 // is the provider name.

char* pvname;
if (argc == 2) {
pvname = argv[1];
} else {
pvname = NULL;
}

// Connect to the provider specified by pvname. If pvname is NULL
// then XTL will attempt to start up the default system provider.
Pv = new MyProvider(err, pvname);
if (err != MyProvider::EXCEPTION_SUCCESS) {
fprintf(stderr, "could not connect to provider\n");
exit(1);
}

// Sit in the dispatcher loop
while(B_TRUE)
d.dispatch();

}

Code Example A-6 Listing of machine.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 115

A

To test the answering machine from Code Example A-6, use the msgcall.cc
program shown in Code Example A-7, which makes calls to the answering
machine; refer to Code Example A-5 on page 106 for the header file for
msgcall.cc.

Code Example A-7 Listing of msgcall.cc

// Copyright 1993 by Sun Microsystems, Inc.
#pragma ident "@(#)msgcall.cc1.3094/02/22SMI"

#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <stdio.h>
#include <strings.h>
#include <stropts.h>

#include <multimedia/libaudio.h>

#include <xtl/xtl.h>

#include "msgcall.h"

//
// AudioWriter is used to play a Sun audio file to a Sun audio device.
//
// audio = DataPump attached to a Sun audio STREAMS device
// audio_file = file descriptor to a Sun audio file.
// bufsize = size of buffer to use when copying from file to device
//
// NOTE:AudioWriter is designed to work on the Sun /dev/audio
// (audio (4)) interface. Some providers configurations
// may not support the ioctls used by AudioWriter. This
// example is only known to work on the xtlp_sun_5e5
// configured as INPUT = STREAM, and OUTPUT = STREAM.
//
// The AudioWriter client_data is a pointer to a composite object that
// is using the AudioWriter. It is used in donePlaying() to notify the
// composite object that the play has finished. By default the
// AudioWriter assumes the composite object is MsgCall, but AudioWriter
// could be subclassed, and donePlaying could be overridden to call
// a different composite object.
//

116 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

AudioWriter::AudioWriter(
DataPump& audio,
int audio_file,
void* data,
int bufsize)
: CopyWriter(audio, audio_file, bufsize),
 audio_device(audio.fd()),
 client_data(data)// a MsgCall

{
dpDispatcher& d = dpDispatcher::instance();

// clear eof flag of audio device, so we can detect end of play
audio_info_t audioinfo;
AUDIO_INITINFO(&audioinfo);// init info struct
audioinfo.play.eof = 0;// clear eof flag
audio_setinfo(audio.fd(), &audioinfo);

d.startTimer(0, 100, this);
}

AudioWriter::~AudioWriter()
{

dpDispatcher& d = dpDispatcher::instance();

// Stop the timer
d.stopTimer(this);

}

void* AudioWriter::clientData() { return client_data; }

//
// The outgoing message is done playing.
//
void
AudioWriter::donePlaying()
{

// Specific to using MsgCall, subclass and override this function
// to call a different composite object
MsgCall* msgcall = (MsgCall*) clientData();
msgcall->stopPlayAnnc();
msgcall->playDone();

}

Code Example A-7 Listing of msgcall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 117

A

//
// AudioWriter determines that the outgoing message has been completely
// played if the audioinfo.play.eof bit associated with the fd
// is 1.
//
boolean_t
AudioWriter::playedZeroLengthBuffer(int fd)
{
 audio_info_t audioinfo;
 int err;

 err = audio_getinfo(fd, &audioinfo);
 if ((err == 0) && (audioinfo.play.eof >= 1)) {
 /* done playing */

return(B_TRUE);
 }

 return(B_FALSE);
}

//
// Interrupt handler for the timer set in the AudioWriter constructor.
// Check to see if the outgoing message is done playing. If it hasn’t
// reset the timer.
//
void
AudioWriter::timerExpired(long, long)
{

if (playedZeroLengthBuffer(audio_device) == B_TRUE)
donePlaying();
else {
// reset timer
dpDispatcher& d = dpDispatcher::instance();
d.startTimer(0, 100, this);
}

}

// MsgCall will play a message (from a file referenced by the announce
// parameter. or record a message (to a file referenced by the message
// parameter) over a call’s data channel. It plays a message when

Code Example A-7 Listing of msgcall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

118 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

// MsgCall::playAnnc is called and records a message when MsgCall::recordMsg
//is called.
//
MsgCall::MsgCall(

Xtl::Exception e,
XtlCallState&cs,
char* announcement,
char*message)
: XtlCall(e, cs), _audioFd(-1), _anncFd(0), _msgFd(0), audioPump(0),
player(0), recorder(0), record_requested(B_FALSE),
play_requested(B_FALSE), dtmf(0), _anncAudioFile(announcement),
_msgAudioFile(message)

{
}

MsgCall::~MsgCall()
{

fprintf(stderr, "MsgCall: cleaning up\n");

// stop any records or plays that may be going on
stopPlayAnnc();
stopRecordMsg();

close(_audioFd);
close(_anncFd);
close(_msgFd);

}

void
MsgCall::error_ind(Request req, Xtl::Error err, XtlKVList&)
{

XtlStringrequest = string(req);
XtlStringerror = Xtl::string(err);

fprintf(stderr, "Request %s failed: %s\n", request(), error());
}

//
// find_kv_string_pair is an auxiliary function used to search an XtlKVList
// for a kv pair whose key is <key> and whose value (an XtlKVString)
// is <value>.
//
boolean_t

Code Example A-7 Listing of msgcall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 119

A

find_kv_string_pair(
XtlKVList kv_list,
const XtlString &key,
const XtlString &value)

{
XtlStringthis_value;

kv_list.reset();
while (kv_list.next(key) == B_TRUE) {
if (kv_list.get(this_value) == B_FALSE) {

continue;
}
if (this_value == value) {

return(B_TRUE);
}
}
return(B_FALSE);

}

//
// When the call’s data stream is reconfigured to include INPUT=STREAM and
// OUTPUT=STREAM then play the greeting message or record an
// imcoming message depending on whether record_requested or play_requested
// is set (set during playAnnc and recordMsg, respectively).
//
// If the data stream configuration is not INPUT=STREAM and OUTPUT=STREAM,
// there is trouble. The record or play machinery should be cleaned up.
// But for simplicity sake, we just exit instead.
//
void
MsgCall::configuration_ind(XtlKVList& config)
{

// ignore null configuration event
if (!config.first())
return;

if ((find_kv_string_pair(config, XtlConfigInputK, XtlConfigStreamC) !=
B_TRUE) &&

 (find_kv_string_pair(config, XtlConfigOutputK, XtlConfigStreamC) !=
B_TRUE)) {

fprintf(stderr, "Warning: Unsupported configuration:\n");

Code Example A-7 Listing of msgcall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

120 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

config.print(STDERR_FILENO);
fprintf(stderr, "Exiting\n");
exit(1);
}

// pull input and output fds out of congfiguration, and save them
config.first("INPUT_STREAM_FD");
u_longinput_fd;
config.get(input_fd);
config.first("OUTPUT_STREAM_FD");
u_longoutput_fd;
config.get(output_fd);

// MsgCall code assumes we have a bidirectional stream. If
// we don’t get a bidirectional stream back, exit
//
if (output_fd != input_fd) {
fprintf(stderr,
 "detected unidirectional stream, exiting.\n");
exit(1);
}

// save valid audio fd
_audioFd = int(output_fd);

// Sanitiy test
if ((record_requested == B_TRUE) && (play_requested == B_TRUE)) {
fprintf(stderr,
 "internal error: recording and playing simultaneously\n");
exit(1);
}

// proceed with existing request
if (record_requested) {
start_record();
} else if (play_requested){
start_play();
}

}

//

Code Example A-7 Listing of msgcall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 121

A

// Start recording (or prepare the data configuration to record) the
// callers message.
//
// RETURNs B_FALSE if object is already busy, B_TRUE on success.
//
boolean_t
MsgCall::recordMsg()
{

XtlKVListread_write_stream_config;

// If we are already doing something return an error
Exception excp;
if ((play_requested) || (record_requested) ||
 !call_state(excp).media_channel_available()) {
return B_FALSE;
}

record_requested = B_TRUE;

// _audioFd is a file descritor to the call’s data channel.
// If it is not a valid fd, configure the data stream
// to INPUT=STREAM and OUTPUT=STREAM mode. configuration_ind
// will set _audioFd approriately.
// Otherwise start recording.
if (_audioFd < 0) {
read_write_stream_config.add(XtlConfigInputK, XtlConfigStreamC);
read_write_stream_config.add(XtlConfigOutputK, XtlConfigStreamC);

configuration_req(read_write_stream_config);
} else {
start_record();
}

return B_TRUE;
}

//
// Start playing (or prepare the data configuration to play) the outgoing
// (greeting) message
//
// RETURNs B_FALSE if object is already busy, B_TRUE on success.
//
boolean_t

Code Example A-7 Listing of msgcall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

122 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

MsgCall::playAnnc()
{

XtlKVListread_write_stream_config;

// If we are already doing something return an error
Exception excp;
if ((play_requested) || (record_requested) ||
 !call_state(excp).media_channel_available()) {
return B_FALSE;
}

play_requested = B_TRUE;

// _audioFd is a file descriptor to the call’s data channel.
// If it is not a valid fd, configure the data stream
// to INPUT=STREAM and OUTPUT=STREAM mode. configuration_ind
// will set _audioFd appropriately.
// Otherwise start playing.
if (_audioFd < 0) {
read_write_stream_config.add(XtlConfigInputK, XtlConfigStreamC);
read_write_stream_config.add(XtlConfigOutputK, XtlConfigStreamC);

configuration_req(read_write_stream_config);
} else {
start_play();
}

return B_TRUE;
}

//
// Start recording an incoming message to _msgAudioFile (as initialized
// in MsgCall constructor).
//
void
MsgCall::start_record()
{

if ((_msgFd =
 open(_msgAudioFile(), O_WRONLY|O_TRUNC|O_CREAT, 0664)) < 0) {
perror("MsgCall:: could not open message file");
disconnect_req();
}

Code Example A-7 Listing of msgcall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 123

A

fprintf(stderr, "recording message...\n");

// Use a DataPump and CopyReader to do the work
audioPump = new DataPump(_audioFd);
ioctl(_audioFd, I_FLUSH, FLUSHRW);
recorder = new CopyReader(*audioPump, _msgFd);

// add software dtmf filter
dtmf = new DTMFHandler(*audioPump);

}

//
// Start playing the greeting message _anncAudioFile
//
void
MsgCall::start_play()
{

// open outgoing announcement file
if ((_anncFd <= 0)
 && (_anncFd = open(_anncAudioFile(), O_RDONLY)) < 0) {
perror("could not open announcement file");
disconnect_req();
}

// NOTE:
//We assume that the file is a Sun audio format file, and
//the device is a Sun audio device interface. This is
//not very portable. For example, it would break if
//the device was alaw and the file was ulaw. Ideally,
//we would get the format of the data, and verify the
//device can handle the format. Then if there were
//an incompatiblity we could either convert the file format
//to something the device could handle or change
//the device’s format mode.
//

// seek past audio file header
Audio_hdraudio_header;
if (AUDIO_SUCCESS !=
 audio_read_filehdr(_anncFd, &audio_header, NULL, 0)) {
fprintf(stderr, "WARNING: not a Sun audio file\n");
}

Code Example A-7 Listing of msgcall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

124 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

fprintf(stderr, "playing message...\n");

// create Xtl data stream pump, and flush Xtl data stream
audioPump = new DataPump(_audioFd);
ioctl(_audioFd, I_FLUSH, FLUSHRW);
player = new AudioWriter(*audioPump, _anncFd, this);

// add software dtmf filter
dtmf = new DTMFHandler(*audioPump);

}

//
// When done recording the incoming message, add an audio header
// and clean up the recording machinery.
//
void
MsgCall::stopRecordMsg()
{

// clean up must be done in this order
close(_msgFd);
_msgFd = -1;

if (recorder) {
// add header to raw audio file
char cmd[256];
sprintf(cmd,
 "audioconvert -f voice -p -i rate=8k,channels=mono,encoding=ulaw %s",
 _msgAudioFile());
if (system(cmd) < 0) {

perror("could not convert message file");
}
}

delete dtmf;
dtmf = NULL;

delete recorder;
recorder = NULL;

delete audioPump;
audioPump = NULL;

record_requested = B_FALSE;

Code Example A-7 Listing of msgcall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 125

A

}

//
// Clean up machinery used to play the greeting
//
void
MsgCall::stopPlayAnnc()
{

// clean up must be done in this order
close(_anncFd);
_anncFd = -1;

delete dtmf;
dtmf = NULL;

delete player;
player = NULL;

delete audioPump;
audioPump = NULL;

play_requested = B_FALSE;
}

//
// Detect when DTMF goes off (is released)
//
void
DTMFHandler::detectedToneUp(char c)
{

fprintf(stderr, "detected up %c\n", c);
}

//
// Detect a string of DTMF tones (called when the "#" is detected)
//
void
DTMFHandler::detectedToneString(XtlString& tones)
{

fprintf(stderr, "detected tone string %s\n", tones());
}

//

Code Example A-7 Listing of msgcall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

126 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

Monitoring Calls
Code Example A-8 uses the XtlMonitor class to monitor calls.

// Detect when DTMF goes on (is pressed)
//
void
DTMFHandler::detectedToneDown(char c)
{

fprintf(stderr, "detected down %c ...", c);
}

Code Example A-8 Listing of monitorcalls.cc

// Copyright 1993 by Sun Microsystems, Inc.
#pragma ident "@(#)monitorcalls.cc1.3294/02/22SMI"

#include <xtl/xtl.h>
#include <xtl/xtlprovider.h>
#include <xtl/xtlmonitor.h>
#include <xtl/xtlcallstate.h>
#include <Dispatch/sldispatcher.h>
#include <stdio.h>
#include <stdlib.h>

//
// This program monitors all calls for a specified provider.
// It registers interest in all existing calls at start up, and
// then registers all future incoming and outgoing calls.
// If no provider is given the default provider is used.
//
// usage: monitorcalls [<provider-name>]
//

class myProvider : public XtlProvider {
public:

myProvider(Xtl::Exception& err, XtlString pname) : XtlProvider(err, pname)
{}

virtual void activated_ind(XtlKVList&);

Code Example A-7 Listing of msgcall.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 127

A

virtual void deactivated_ind(XtlKVList&);
virtual void offer_ind(XtlCallState&, XtlKVList&);
virtual void call_event_ind(
 XtlCallState&, CallEvent, Cause, XtlKVList&);
virtual void list_calls_ind(
 XtlCallState *const * list,
 u_int length);

};

class myMonitor : public XtlMonitor {
public:

myMonitor(Xtl::Exception& e, XtlCallState& cs)
 : XtlMonitor(e, cs) {}
virtual void activated_ind(XtlKVList&);
virtual void deactivated_ind(XtlKVList&);
virtual void event_ind(CallEvent, Cause, XtlKVList&);

};

//
// When the provider object is activated, request a list of all the
// existing calls, and register interest in the creation of any new calls.
//
void
myProvider::activated_ind(XtlKVList&)
{

Exception excp;
fprintf(stdout, "Using provider: %s\n", (name(excp))());

// get list of existing calls
list_calls_req();

// register for calls available for ownership
enable_offer_event_req(B_TRUE);

// register for new call creation
listen_req(Xtl::CREATE_CALL_EVENT);

// register for these events on any call
//listen_req(Xtl::PROCEEDING_EVENT);
//listen_req(Xtl::ALERTING_EVENT);
//listen_req(Xtl::CONNECT_EVENT);
//listen_req(Xtl::FAILURE_EVENT);
//listen_req(Xtl::DISCONNECT_EVENT);

Code Example A-8 Listing of monitorcalls.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

128 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

//listen_req(Xtl::CHANGE_OWNER_EVENT);
//listen_req(Xtl::TRANSFER_EVENT);
//listen_req(Xtl::REDIRECT_EVENT);
//listen_req(Xtl::CONFERENCE_EVENT);
//listen_req(Xtl::DROP_EVENT);
//listen_req(Xtl::INFO_EVENT);

//listen_req(Xtl::INVALIDATE_CALL_EVENT);
}

// Exit if the provider dies.
void
myProvider::deactivated_ind(XtlKVList&)
{

fprintf(stderr, "Provider died.\n");
exit(1);

}

// All incoming calls will be offered to the provider call for ownership.
// If the state of the call is incoming, it is a new call, so create
// another monitor. Any other state means we are already monitoring this
// call so ignore the event.
// NOTE: monitor object is deleted when its call is destroyed
//
void
myProvider::offer_ind(XtlCallState& cs, XtlKVList&)
{

fprintf(stdout, "Offered Call Event,\tstate = %s\n",
 (Xtl::string(cs.state()))());
if (cs.state() == INCOMING) {
myMonitor*monitor;
Xtl::Exception e;
monitor = new myMonitor(e, cs);
fprintf(stdout,
 "\nCallReference = \"%s\"\twas created (INCOMING)\n\n",
 (cs.call_reference())());
}

}

// All outgoing calls will start with a created call event.
// If we detect a created call event, it is a new call, so create
// another monitor. Any other event means we are already monitoring this

Code Example A-8 Listing of monitorcalls.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 129

A

// call so ignore the event.
// NOTE: monitor object is deleted when its call is destroyed
//
void
myProvider::call_event_ind(
 XtlCallState& cs,
 CallEvent cev,
 Cause,
 XtlKVList&)
{

// Monitor all events on *this* call
if (cev == CREATE_CALL_EVENT) {
myMonitor*monitor;
Xtl::Exception e;
monitor = new myMonitor(e, cs);
}

// Print provider event for any call
fprintf(stderr, "Provider Caught: %s,\ton CallReference: \"%s\"\n",
 Xtl::string(cev)(), cs.call_reference()());

}

// At provider start up we requested a list of all existing calls.
// This is the reply. Create a monitor for each existing call.
//
void
myProvider::list_calls_ind(

XtlCallState *const * list,
u_int length)

{
myMonitor*monitor;

// if no calls exist , return
if (length == 0) {
fprintf(stdout, "Waiting for new calls...\n");
return;
}

fprintf(stdout, "Creating Monitors for these existing calls:\n");

for (int i = 0; i < length; i++) {
fprintf(stdout, "CallReference = \"%s\"\tstate = %s%s\n",
 list[i]->call_reference()(),

Code Example A-8 Listing of monitorcalls.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

130 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

 Xtl::string(list[i]->state())(),
 list[i]->held() ? ", HELD" : "");

// create a monitor for this call
Xtl::Exception e;
monitor = new myMonitor(e, *list[i]);
}
fprintf(stdout, "Waiting for new calls...\n");

}

void
myMonitor::activated_ind(XtlKVList&)
{

Exception excp;
XtlCallState&cs = call_state(excp);
if (cs.state() == IDLE) {
fprintf(stdout, "\nCallReference = \"%s\"\twas created\n\n",
 (cs.call_reference())());
}

}

// If the call this object is monitoring is destroyed, or the provider dies,
// delete this object.
//
void
myMonitor::deactivated_ind(XtlKVList&)
{

Exception excp;
XtlCallState&cs = call_state(excp);
fprintf(stdout, "\nCallReference = \"%s\"\twas destroyed\n\n",
 (cs.call_reference())());

// self-deleting object
delete this;

}

// This function gets notified of every event on its call.
// For each event, print the global call reference and the event.
//
void
myMonitor::event_ind(CallEvent ev, Cause, XtlKVList&)
{

Exception excp;

Code Example A-8 Listing of monitorcalls.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

Program Examples 131

A

XtlCallState&cs = call_state(excp);

fprintf(stdout, "CallReference = \"%s\"\tgot event = %s\n",
 (cs.call_reference())(), (Xtl::string(ev))());

}

// Main body.
// Parse command line arguments, and create a provider.
// Then wait for events.
//
void
main(int argc, char* argv[])
{

Xtl::Exceptionerr;
myProvider*Pv;
dpDispatcher::instance(new dpSLDispatcher);
dpDispatcher& d = dpDispatcher::instance();
char* pvname;

// Parse arguments
if (argc > 2) {
fprintf(stderr, "usage: %s [provider]", argv[0]);
exit(1);
}

if (argc == 2) {
pvname = argv[1];
} else {
pvname = NULL;
}

// Connect to provider
Pv = new myProvider(err, pvname);
if (err != myProvider::EXCEPTION_SUCCESS) {
fprintf(stderr, "could not connect to provider\n");
exit(1);
}

while(1)
d.dispatch();

}

Code Example A-8 Listing of monitorcalls.cc (Continued)

// Copyright 1993 by Sun Microsystems, Inc.

132 SunXTL 1.1 Application Programmer’s Guide—December 1995

A

133

Index

Symbols
/dev/device, 93
/dev/sound/0, 88

Numerics
3-bit precision ADPCM, 37
4-bit precision ADPCM, 37

A
activated_ind(), 46, 53, 62, 72
activating objects, 46
activation process, 45
Adaptive Delta Pulse Code

Modulation, 37
add(), 22, 23
add_to_address_req(), 60
addressing information, 60
A-law encoding, 37, 39
ALERTING_EVENT, 43
alias, 33
allocating memory, 47
answer_req(), 60
answering incoming calls, 101
answering machine client, 106
answering machine program, 106

API classes, 41
append additional addressing, 60
applications

compiling, 7
creating, 73
Motif, 31
skeleton code, 10

audio data, 88
audio program example, 95
audio-specific configurations, 88

B
binding interface and implementation

objects, 45
bits per sample, 37
busy condition, 68
bytearray.h, 74
bytes(), 18

C
call_event_ind(), 54
call_reference(), 40, 65
call_state(), 62, 72
callback functions, 42
calls

answering, 60

134 SunXTL 1.1 Application Programmer’s Guide—December 1995

changing the state of, 65
check for incoming, 64
claimable, 64
claiming, 58, 59
client state, 65
conferencing, 61, 68
configuring media channels, 61
connecting, 60
current format, 65
destroyed, 68
disconnecting, 60
dropping, 61
getting call reference value, 65
getting call state, 72
getting state of, 64
held, 65
holding, 60
making, 115
modifying behavior, 59
monitoring, 126
offering, 57, 61
outgoing, 60
ownership, 57
ownership events, 43
progress events, 43
redirecting, 61
state, 65
state enumerations, 68
state values, 66
transferring, 60
transitions, 65
unholding, 60
verifying ownership, 64

CallState
getting reference to, 62

cause codes, 48
CCITT G.711, 37
CHANGE_OWNER_EVENT, 43
CHANNEL_AVAILABLE_EVENT, 44
CHANNEL_UNAVAILABLE_EVENT, 44
claimable(), 64
claiming calls, 58, 59, 64
classes

dpDispatcher, 28

messaging, 4
utility, 4, 17
XtlByteArray, 17
XtlKVList, 21
XtlString, 19

client state, 61
getting current state, 65

client_state(), 65
codes

causes, 48
errors, 50
exceptions, 49

command line environment, 29
comparison function, 25
compiler flags, 8
compiling code, 7
CONFERENCE_EVENT, 43
conference_req(), 61
configuration(), 62
configuration_ind(), 86
configuration_req(), 61, 86
configurations

audio, 88
specifying, 86
using devices, 93
using file descriptors, 92
using streams, 93

configuraton_ind(), 62
CONNECT_EVENT, 43
connect_req(), 38, 60
connecting to the remote party, 68
constants.h, 36, 89
conventions

naming, 47
conversion routines, 19
converting enumerations, 53
count(), 24
CREATE_CALL_EVENT, 43
CREATE_EVENT, 68
creating a makefile, 7
current pointer, 22
current position, 21

Index 135

D
data alignment, 19
data formats, 35
data link framing protocol, 38
database query functions, 33
deactivated_ind(), 46, 53, 62, 72
deactivating objects, 46
deactivation processes, 46
default_method(), 42, 55, 63, 72
detect_dtmf_ind(), 63
detecting DTMF silence, 91
detecting DTMF tones, 90
development system requirements, 7, 95
devices for channel configuration, 93
DirectAudioCall subclass, 80
DISCONNECT_EVENT, 43
disconnect_req(), 60
dispatch loop, 30
dispatch(), 30
dispatcher

example, 105
initializing, 30
installing an instance, 31
loop, 31

dispatcher example, 105
dispatcher,See dpDispatcher, 28
dispatcher.h, 74
dispatcher.h header file, 29
DispatcherMask, 29
dpDispatcher, 28

dispatch(), 30
global dispatcher, 30
handler(), 29
instance(), 29, 30
link(), 29
setReady(), 30
startTimer(), 30
stopTimer(), 30
unlink(), 29

dpDispatcher methods, 29
dpIOHandler, 28

exceptionRaised(), 33
inputReady(), 32
methods, 32
outputReady(), 33
timerExpired(), 33

dpSLDispatcher, 29
dpXtDispatcher, 29
dpXVDispatcher, 29
DROP_EVENT, 43
drop_req(), 61
DTMF

composing configurations, 89
detecting silence, 91
detecting tones, 90
extensions, 89
generating tones, 89
silence detection, 91
tone generation, 89
using extensions, 89

DTMF tones, 89
dual-tone modulated frequency (see

DTMF), 89

E
embedded lists, 25
enable_offer_event_ind(), 53
enable_offer_event_req(), 52
enumerations

converting to XtlString, 53
environment

OLIT, 29
environments

command line, 29
Motif, 29
XView, 29

error codes, 50
ERROR_FORMAT_NOT_

SUPPORTED, 38, 39
error_ind(), 50, 55, 62, 72
event dispatcher, 28
event_ind(), 48, 62, 72
events

136 SunXTL 1.1 Application Programmer’s Guide—December 1995

ALERTING_EVENT, 43
call ownership, 43
call progress, 43
CHANGE_OWNER_EVENT, 43
CHANNEL_AVAILABLE_

EVENT, 44
CHANNEL_UNAVAILABLE_

EVENT, 44
codes, 42
CONFERENCE_EVENT, 43
CONNECT_EVENT, 43
CREATE_CALL_EVENT, 43
DISCONNECT_EVENT, 43
DROP_EVENT, 43
FAILURE_EVENT, 43
INFO_EVENT, 43
INVALIDATE_CALL_EVENT, 43
listening for, 42
media channel, 44
PROCEEDING_EVENT, 43
REDIRECT_EVENT, 43
registering, 42, 71
registration, 3
select, 42
selection, 42
TRANSFER_EVENT, 43

example programs, 7
examples

answering machine, 106
audio, 95
dispatcher, 105
formats, 39
makefile, 7
monitoring calls, 126
outcall.cc, 11, 75
programs, 11
querying the provider database, 34
XtlByteArray, 19
XtlString, 20

exception codes, 49
EXCEPTION_INVALID_OBJECT, 46
exceptionRaised(), 33
ExceptMask, 29
extended_state(), 53, 65

extension_ind(), 55, 63
extension_req(), 52, 61
extensions

DTMF, 89
getting current state, 65

extensions for DTMF, 89

F
FAILURE_EVENT, 43
fax format class, 39
fax protocols, 39
file descriptors for configuration, 92
first(), 22, 24
format(), 65
formats

getting current format, 65
pattern, 38
requesting, 38
specifying, 60
usage, 39

framing
HDLC, 38

framing protocol, 38

G
G.721 compression format, 37
G.723 compression format, 37
general concepts, 10
generate DTMF tones, 89
generate_dtmf_req(), 61
generating DTMF tones, 89
get(), 22, 23
get_call_object(), 40
get_call_reference(), 40
get_call_state_ind(), 54
get_call_state_req(), 40, 52, 59
get_provider_name(), 40
get_provider_obj(), 40
global dispatcher object, 30
Group 3 fax protocol, 38

Index 137

H
handler(), 29
HDLC framing, 38
header files, 74
held(), 65
hidden objects, 46
hierarchical XtlKVLists, 26
hold_req(), 60
holding calls, 65

I
ignore_ind(), 54
ignore_req(), 52
implementation objects, 45
incall.cc, 101
INCLUDES flag, 8
incoming calls, 64, 71

answering, 101
incoming voice call, 101
incoming(), 64
indication methods, 4
indications

valid indication events, 71
INFO_EVENT, 43
info_ind(), 54
initializing objects, 44
initializing the dispatcher, 30
inputReady(), 32
inputs to channels, 87
instance(), 29, 30
interface objects, 45
InterViews dispatcher, 29
InterViews library, 17, 28
INVALIDATE_CALL_EVENT, 43
iohandler.h, 74
iohandler.h header file, 32
IP protocol, 38

K
key(), 22, 24
key-value pairs, 21
kvlist.h, 74

L
lazy copies, 21
LDFLAGS flag, 8
length(), 18, 20
libdispatch library, 28
libraries

libdispatch, 28
libxtl, 7
libxtlutil, 7

libxtl library, 7
libxtlutil library, 7
Linear Pulse Code Modulation

encoding, 37
link(), 29
list_calls_ind(), 53
list_calls_req(), 52
listen_ind(), 53
listen_req(), 52
listening for events, 42
local address

getting, 64
local number, 60
local_address(), 64
logging call activity, 71

M
machine.cc, 109
makefile example, 7
making calls, 115
masks

DispatcherMask, 29
ExceptMask, 29
ReadMask, 29
WriteMask, 29

media chanels

138 SunXTL 1.1 Application Programmer’s Guide—December 1995

inputs, 87
media channel

availability, 64
confirming configurations, 62
getting current configuration, 62

media channel events, 44
media channels

audio configuration, 88
configuring, 61, 86
outputs, 87
specifying a configuration, 86
streams configuration, 93
using file descriptors, 92

media format, 60
media_channel_available(), 64
memory allocation, 47
messaging classes, 4
methods

indication, 4
request, 4

methods of
dpIOHandler, 32
XtlByteArray, 18
XtlKVList, 23
XtlString, 19

microphone input, 88
m-law encoding, 37, 39
modem communications, 39
modifying call behavior, 59
monitorcalls.cc, 126
monitoring call status, 71
monitoring calls, 126
Motif application, 31
Motif environment, 29
msgcall.cc, 115
msgcall.h, 106
multithread safe, 41

N
name(), 53
naming convention, 47
new, 46

new(), 46
next(), 22, 24

O
objects

activating, 46
deactivating, 46

offer_ind(), 54, 59, 72
offer_req(), 57, 61
offering a call, 61
offering calls, 57
OLIT environment, 29
outcall.cc, 75
outcall.cc example, 11
outgoing call, 60
outgoing call example, 11
outgoing calls, 68, 75
outputReady(), 33
outputs from channels, 87
owner(), 64
ownership of calls, 57, 64

P
path of call states, 65
primary alias, 33
print(), 25
printing XtlKVList, 26
PROCEEDING_EVENT, 43
program examples, 11
programming paradigm, 10
progress states, 65
protocol violation exception, 69, 71
protocols

Group 3 fax, 38
IP, 38

provider
names, 33

provider configuration files, 33
provider- specific input, 88
provider(), 64

Index 139

provider_name(), 40, 64
providers

getting name of, 64
getting pointer to object, 64

provider-specific output, 89
ProWorks version, 95

Q
query functions, 33

R
ReadMask, 29
receiving a connection request, 68
REDIRECT_EVENT, 43
redirect_req(), 61
registered events, 42
registering for events, 42
relationships between classes, 44
remote number, 60
remove(), 22, 23
request

valid requests, 70
request methods, 4
requesting a connection, 68
requesting formats, 38
reset(), 22, 24
ringing, 68

S
select events, 42
select(3C), 28, 30
set_client_state_req(), 61
setitimer(2), 32
setReady(), 30
silence detection, 91
silence detector, 89
skeleton code, 10
slot methods, 64
SPARCompilers version, 7, 95

speaker output, 88
startTimer(), 30
state enumerations, 68
state of a call, 65
state slot methods, 64
state values of calls, 66
state(), 64
status of a call, 43
stopTimer(), 30
streams, 93
string(), 53, 62
subclassing SunXTL 1.1 classes, 75
subset(), 25, 38
SunXTL 1.1

classes, 4
general concepts, 10
programming interface, 10

SunXTL 1.1 class relationships, 44
SunXTL 1.1 classes

subclassing, 75

T
timerExpired(), 33
tone detector, 89
tone generator, 89
TRANSFER_EVENT, 43
transfer_req(), 60
transitions in call state, 65
traversing XtlKVLists, 27
type(), 24
types.h, 74

U
unhold_req(), 60
UNKNOWN_EVENT, 43
unlink(), 29
utility classes, 4, 17

V
voice call, 101

140 SunXTL 1.1 Application Programmer’s Guide—December 1995

voice format specification, 36
voicecall.cc, 97
voicecall.h, 95

W
WriteMask, 29

X
xdr(3N) conversion routine, 19
Xt dispatcher, 31
xtdispatcher.h header file, 29
XTL

programming paradigm, 10
xtl.h, 74
xtl_db_verify(), 33
xtl_globals.h, 74
xtl_provider_info, 33
xtl_provider_info(), 88
xtl_provider_names(), 33
XtlByteArray

bytes(), 18
class, 17
constructor, 18
length(), 18
methods, 18
usage examples, 19

XtlCall, 56
connect_req(), 38
constructing, 59
events, 42
indication methods, 62
request enumerations, 63
slot methods, 62

xtlcall.h, 60, 74
XtlCallReference, 40, 65
XtlCallState, 44, 64

call_reference(), 40
events, 42
provider_name(), 40
slot methods, 64

xtlcallstate.h, 74

XtlConfigInputFdK, 93
XtlConfigInputK, 88
XtlConfigOutputFdK, 93
XtlConfigOutputK, 88
XtlConfigStreamC, 93
xtldb.h, 74
XtlDTMFDetectC, 89, 90, 91
XtlDTMFGenerateC, 89, 90
XtlDTMFOffTimeK, 90
XtlDTMFOnTimeK, 90
XtlDTMFPauseK, 90
XtlDTMFStringK, 90
XtlDTMFToneK, 90
XtlFormat, 35
XtlFormatALawC, 37
XtlFormatBandwidthK, 37
XtlFormatClassK, 37
XtlFormatDataC, 37
XtlFormatEncodingK, 37
XtlFormatFaxC, 37
XtlFormatFramingK, 38
XtlFormatG3C, 38
XtlFormatG4C, 38
XtlFormatG721C, 37
XtlFormatG723C, 37
XtlFormatHDLCC, 38
XtlFormatIPC, 38
XtlFormatLinearC, 37
XtlFormatProtocolK, 38
XtlFormatSampleRateK, 37
XtlFormatSampleSizeK, 37
XtlFormatULawC, 37
XtlFormatVoiceC, 37
XtlKVList

add(), 22, 23
characteristics, 21
comparison function, 25
count(), 24
current pointer, 22
current position, 21
first(), 22, 24

Index 141

get(), 22, 23
hierarchical lists, 26
key(), 22, 24
next(), 22, 24
print(), 25
remove(), 22, 23
reset(), 22, 24
subset(), 25, 38
traversing, 27
type(), 24

XtlKVList class, 21
XtlKVList methods, 23
XtlMonitor, 44, 71

methods, 72
xtlmonitor.h, 74
XtlObject, 46
XtlPCall

get_call_reference(), 40
XtlPFactory

get_provider_name(), 40
get_provider_obj(), 40

XtlPProvider
get_call_object(), 40

XtlProvider, 51
events, 42, 56
get_call_state_req(), 40
indication methods, 53
request methods, 52
requests, 56
slot methods, 53

xtlprovider.h, 52, 74
XtlSilenceDetectC, 89, 91
XtlSilenceEventK, 91
XtlSilenceEventSignalC, 91
XtlSilenceEventSilenceC, 91
XtlSilenceMinLengthK, 91
XtlString

class description, 19
converting enumerations, 53
length(), 20
methods, 19

XtlString usage examples, 20
xv_main_loop(), 31

xvdispatcher.h header file, 29
XView dispatcher, 31
XView environment, 29

142 SunXTL 1.1 Application Programmer’s Guide—December 1995

Reader Comments

We welcome your comments and suggestions to help improve this manual. Please let us
know what you think about theSunXTL1.1 Application Programmer’s Guide,part
number 801-7046-11

■ The procedures were well documented.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ The tasks were easy to follow.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ The illustrations were clear.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ The information was complete and easy to find.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ Do you have additional comments about theSunXTL1.1 Application Programmer’s
Guide?

Name:

Title:

Company:

Address:

Telephone:

Email address:

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 1 MOUNTAIN VIEW, CA

POSTAGE WILL BE PAID BY ADDRESSEE

SUN MICROSYSTEMS, INC.
Attn: Manager, Publications
MS MPK 14-101
2550 Garcia Avenue
Mt. View, CA 94043-9850

