SunXTL 1.1 Architecture Guide

Sun

The Network Is the Computer™

Sun Microsystems Computer Company
2550 Garcia Avenue

Mountain View, CA 94043 USA
415960-1300 fax 415 969-9131

Part No.: 801-7048-11
Revision A, December 1995

&E
Please
Recycle

Copyright 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

Allrights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution,
and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sunand its licensors, if any.

Portions of this product may be derived from the UN Ix® system and from the Berkeley 4.3 BSD system, licensed from the University of
California. UNIX is a registered trademark in the United States and in other countries and is exclusively licensed by X/Open Company Lt.d.
Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii)
of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, SunXTL, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and in other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc. in the United States and in other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

Copyright 1995 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie
et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut étre reproduite sous aucune forme, par quelque moyen
que ce soit, sans I"autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Des parties de ce produit pourront étre derivées du systeme UNIX®etdu systeme Berkeley 4.3 BSD licencié par I’'Université de Californie. UNIX
est une marque enregistrée aux Etats-Unis et dans d’autres pays, et licenciée exclusivement par X/Open Company Ltd. Le logiciel détenu par des
tiers, et qui comprend la technologie relative aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, SunXTL, et Solaris sont des marques déposées ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et
dans d’autres pays. Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems,
Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés de Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique, cette licence
couvrant aussi les licenciés de Sun qui mettent en place les utilisateurs d’interfaces graphiques OPEN LOOKet qui en outre se conforment aux
licences écrites de Sun.

Le systeme X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y COMPRIS, ET
SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DES
PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE SOIENT PAS CONTREFAISANTS DE PRODUITS
DE TIERS.

‘(‘.

Adobe PostScript

Contents

Preface. . .o

1.

Introduction to SunXTL Teleservices
Workstation Computer-Telephony Integration
SunXTL Applications and Their Market.
General Features of SunXTL Teleservices..................
Overview of SunXTL Teleservices.
Goals of SUNXTL Teleservices.
Components of the SunXTL Subsystem
Objects and Processes in the SunXTL Subsystem
MESSagING . . . oottt

CallOwnership ...

© ©O© 00 ~N o o g N N DN e <

SECUNILY . o e
Media Channel ACCESS 10
Extensibility 10

Provider Configuration Database 11

3. The SUNXTL APL. ... o e
Distributed Object Activation.
Select SUNXTL Objects and Methods.

Methods of the Provider Object.......................
Methods of the Call Object.

4. SunXTL
Provider Developer'sKit...........

Providing Access to Additional Teleservices Technologies . . .

SunXTL 1.1 Architecture Guide—December 1995

13
14
15
15
15

17
18
18
19

Preface

The SunXTL 1.1 Architecture Guide describes the architecture of the SunXTL™
Teleservices for Solaris™ platform. This book serves as an introduction to the
services and resources provided by SunXTL to enable developers to write
teleservices applications and technology providers. Note that all references to
Solaris in this book apply only to the SPARC version of Solaris.

Who Should Use This Book

This book is intended for readers interested in Sun Microsystems™ software
architecture for desktop teleservices.

How This Book is Organized

Chapter 1, “Introduction to SunXTL Teleservices,” provides background for
teleservices on the desktop, defines the SunXTL platform audience, and
introduces the general features of SunXTL.

Chapter 2, “Overview of SunXTL Teleservices,” presents an overview of the
SunXTL platform, its components, and its features.

Chapter 3, “The SunXTL API,” goes into further detail to describe the SunXTL
classes provided by the SunXTL APl and MPI programming libraries.

Chapter 4, “SunXTL Provider Developer’s Kit,” describes the task of writing
providers for the SunXTL platform.

Related Documentation

The following documents are part of the SunXTL documentation set:

® Sun XTL 1.1 Administrator’s Guide

® Sun XTL 1.1 Application Programmer’s Guide

® Sun XTL 1.1 Provider Programmer’s Guide

® Sun XTL 1.1 Remote Client Mgr Guide

What the Typographic Changes and Symbols Mean

Vi

The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or

Symbol Meaning Example
AaBbCc123 The names of commands, files, Edit your .login file.
and directories; on-screen Usels -a to list all files.
computer output system% You have mail.
AaBbCcl123 What you type, contrasted with system% su
on-screen computer output
AaBbCc123 Command-line placeholder: To delete a file, type rm filename.
replace with a real name or
value
AaBbCc123 Book titles, new words or terms, Read Chapter 6 in User’s Guide.

or words to be emphasized

These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

%
$

UNIX C shell prompt

UNIX Bourne and Korn shell
prompt

Superuser prompt, all shells

system%

system$

system#

SunXTL 1.1 Architecture Guide—December 1995

IntroductiontoSunXTL
Teleservices 1

Computer workstations capable of connecting to wide area networks are
becoming increasingly common. As the hardware and software components for
supporting modems, ISDN, Asynchronous Transfer Mode (ATM) and analog
telephony increasingly proliferate onto the computer desktop, new
applications will become available to exploit them.

The impact of these new applications will likely be felt throughout all areas of
computing—from commercial users in the largest corporations, to home users
in small, remote communities. The widespread proliferation of the telephone,
followed recently by the personal computer, will be joined in the near future by
integration between them. As result, the demand for telephony-based
applications in the computer-telephony integration (CTI) market will be
enormous.

Developers of teleservices applications will confront a large range of
communication implementation technologies, hardware and software
considerations and other complicating factors. To reduce the effort required by
developers, while simultaneously freeing them to utilize virtually any
communication medium, Sun Microsystems has developed a teleservices
product delivery vehicle known as the SunXTL Teleservices Platform for Solaris.
The SunXTL platform includes support for teleservices applications, as well as
software providers for specific device implementations. The SunXTL platform
provides a stable and robust platform for teleservices applications on the
client-server, distributed computing desktop.

Workstation Computer-Telephony Integration

CTI brings together the two most widely used desktop tools (telephones and
workstations), enhancing the power and utility of each. Workstations are
empowered with access to the wide area, public switched network, while
telephony applications are enhanced by access to end users environment and
data bases.

The key to enabling CTI on workstations is a good architecture and
programming platform to allow applications to access telephone technology—
independent of the particular topology, telephony interface, or type of phone
system being used. Ideally, an application can be written once, and it should
work with various wiring configurations and (within reason) with any
telephony technology.

SunXTL Applications and Their Market

SunXTL Teleservices is particularly suited for creating personal desktop
telephony services: automatic dialing, answering machine, voice mail,
automatic call transfers, and so on. With appropriate interface cards, SunXTL
Teleservices can turn a workstation into a personal fax machine. Another
common usage would be to use SunXTL Teleservices to manage connections
from the workstation to other network servers for Internet (IP) connectivity.

As network technologies transition to ISDN and ATM, SunXTL Teleservices
provides an ideal platform for multimedia applications. Because SunXTL
Teleservices provides access to a variety of network technologies and data
types, it is well positioned for developing multimedia applications.

General Features of SunXTL Teleservices

SunXTL Teleservices for Solaris is the foundation library for applications that
use or control telecom data streams. The SunXTL subsystem and API includes
call control functions that establish a call or connection, and data stream access
methods to control the flow of data over that connection.

On the workstation desktop SunXTL Teleservices can be used to control an
ISDN line and manage phone calls for various voice applications like a
personal answering machine with voice-mail/email integration, a user-friendly
GUI for controlling the many features of a typical phone, or speed dialing

SunXTL 1.1 Architecture Guide—December 1995

[EEN
I

integrated with local databases. SUnXTL Teleservices can also be used by non-
voice applications like setting up desktop video conference calls, wide area
datacomm, or fax.

SunXTL Teleservices is designed to allow multiple desktop applications to
share access to workstation telephone interfaces and also to allow multiple
applications to cooperate in managing an individual call without sacrificing
data integrity or security. One application can create or receive a call and pass
it to another application for voice processing. SunXTL Teleservices allows, but
does not require, a single “call manager” application to own all calls and
impose a user- or site-defined policy on the disposition of calls.

SunXTL Teleservices does not impose constraints on the content or format of
the data stream; the stream is delivered to an application for interpretation.
SunXTL Teleservices works equally well for audio/voice, FAX, video, IP, or
other data communications protocols. SunXTL Teleservices is the control API
for establishing connections on wide-area networks for future multimedia
applications.

Introduction to SunXTL Teleservices 3

SunXTL 1.1 Architecture Guide—December 1995

Overview of SunXTL Teleservices 2=

The SunXTL Teleservices platform realizes a solid foundation for desktop
telephone applications. Through object-oriented design, modular interfaces,
and easy extensibility, the SunXTL platform provides standardized interfaces
and services for software and hardware developers. This chapter describes the
design goals of SunXTL Teleservices and how its architecture facilitates the
development of desktop teleservices applications.

Goals of SunXTL Teleservices

The design and architecture of SunXTL Teleservices was driven by five goals:

®* Provide an API for developing personal desktop applications. Applications
such as an on-screen phone GUI, remote workstation access via DTMF,
personal voice mail, etc. can share access to a workstation’s telephony
hardware.

® Provide transparent porting between analog, ISDN, ATM and other
technologies. Applications should not need to be recompiled as network
technology is upgraded.

® Provide easy access to common voice services. The building blocks of voice
applications, like DTMF and silence detection must be available easily and
efficiently, using “onboard” resources if available.

® Enable specialized or non-voice services. Many telephony boards also
provide fax, modem, or video capabilities.

® Specify an open, third-party extensible, distributed-object model. The API
and system capabilities must be dynamically extensible to utilize new
technologies and new protocols as they become available.

The SunXTL system architecture achieves these goals by defining a clean
separation between the application that uses telephony services and the
provider of those services. The SunXTL system services provide object
management, message passing and an event notification infrastructure that
combine to bind an application to the appropriate teleservices provider.

Components of the SunXTL Subsystem

The SunXTL architecture consists of applications that use the SunXTL API,
providers of SunXTL services, and the SunXTL libraries and system services;
see Figure 2-1. The details of the system services are hidden from applications
and providers by the APl and Media Platform Interface (MPI) libraries. The
system services include a message passing “server”, a data stream multiplexor
streams driver, a provider configuration database, and a tool for administration
of that database.

SunXTL 1.1 Architecture Guide—December 1995

N
1]

Interface

Application

Application

Application

xtltool M Server Data Stream Mux
_
Provider e ; ; ;
Provider| |Provider Provider
Driver ATM Analog ISDN

Figure 2-1 Components of the SUunXTL Subsystem

Objects and Processes in the SunXTL Subsystem

Application developers use the SUnXTL API to create C++ XtlCall objects.
Each XtICall object corresponds to a telephone call. An XtICall object has
command methods that query the current state of the call or request a change
in state (for example, to put a call on hold). An XtlCall object also has
callback methods for the asynchronous notification of state changes (for
example, when a call is disconnected).

An XtlCall object includes accessor methods to determine the local and
remote directory numbers associated with the call, the current call-progress
state of the call, and the data type or media class associated with the call. Other

Overview of SunXTL Teleservices 7

1]l
N

Messaging

attributes can be associated with the XtlCall by either the provider or the
controlling application. For example, an application may chose to annotate the
call object with a customer name and account number.

The SunXTL API is primarily concerned with call control and the associated
capabilities to provide security or shared management of calls when desired by
the applications. A secondary aspect of the XtICall object allows the
application to gain access to the data stream associated with the call. The
SunXTL API defines an interface for common usage of voice calls, like
detecting DTMF tones or connecting a call to a convenient
speaker/microphone. As other media types are utilized (like FAX or Video),
the SunXTL API can be extended to provide access to the required features.

The SunXTL system defines the general semantics of a call object and the call
establishment protocol, but the actual implementation of a call object depends
on the particular telephony technology being used. For this reason, the
bSunXTLsystem delegates the control of the call object to the XtIProvider
object. The XtlCall objects follow the specifications and protocol of the
SunXTL API. The provider executable is typically a UNIX process or driver
supplied by the telephony hardware vendor. Because all SunXTL providers
present the same interface to the application, they can be used interchangeably.
The implementation characteristics (latency, bandwidth) may change, but an
application can port to a new network Provider without recompilation.

The SunXTL system services act as the intermediary between the application
view of a call object, and the provider’s implementation of the call. The
SunXTL server, along with the application and provider libraries, handles the
interprocess message passing, object identification and creation, call
ownership, security, and asynchronous event notification. The SunXTL
subsystem also manages a database of available providers and helps manage
data stream routing and access. A GUI tool, xtltool(1) , iIs supplied to
browse and edit the provider configuration database.

The SunXTL components communicate using asynchronous messages. In the
vernacular of RPC, all messages are “one-way”. Typically, when an application
invokes a command method on a XtICall object, a message is sent to the
XtIProvider object. When the XtlProvider object detects a change of state
in the call, it sends a message up to the application. When an application
receives an event, the corresponding event method of the XtICall object is

SunXTL 1.1 Architecture Guide—December 1995

2

Call Ownership

Security

invoked. The event methods are C++ virtual functions that the application
writer overrides to specify the appropriate processing. The APl and provider
libraries include routines to manage 1/0 signal handling, upcall and downcall
dispatching, message marshalling, and the event wait loop.

Implementation Note — The SunXTL notification framework is based on the
InterViews dispatcher library. In addition, the interprocess (over the wire)
packets are generated by an asynchronous messaging protocol compiler based
on an abstract definition of the message names and argument types. Once the
message set is defined, the C++ code for marshalling and dispatch is generated
automatically.

The SunXTL system insures that only one application at a time is allowed to
control a call. The controlling application is referred to as the “owner” of the
call. When an application makes an outgoing call, that application becomes the
owner. An incoming call is initially “owned” by the provider, but the provider
immediately “offers” that call to any and all interested applications. An
application gains control of an incoming call by issuing a “claim” request. If
the claim is successful, the application becomes the owner and the
application’s Call object is instantiated. The SunXTL system ensures that only
the first claim request is honored for any offer (i.e. “first come, first served”).

Applications can share management of calls by passing ownership. The
original owner “offers” the call, and another application can “claim” it. The
same rules and protocol are used for application-to-application transfer of
ownership as for claiming an incoming call.

Note — Claiming an incoming call is separate from answering the call. Once
claimed, the unanswered call can be answered, dropped, or redirected. Or, the
call may be annotated, and then offered to another application.

The SunXTL system was designed to operate on networked personal
workstations, and in that environment, security and authentication of users is
critical. The SunXTL system uses the standard UNIX and UNIX File System

Overview of SunXTL Teleservices 9

1]l
N

Media Channel Access

Extensibility

10

security features, making it easy to configure the system to restrict telephone

usage to the authorized owner of the workstation and telephone. The SunXTL
system can also be configured as a network resource, allowing multiple users
to share access to telephony resources.

Several layers of security are provided, allowing the user or system
administrator to tailor the system to the specific security needs of the site. The
first layer of security is access to the SunXTL server. This is controlled by the
UFS permissions on the named pipe used to make contact with the server. By
default, only root applications can use the SunXTL server. A simple script is
provided to allow access to particular UNIX group; typically that group would
include the workstation owner/user, or a larger group if the workstation is
configured as a departmental server. The server limits access to each provider
based on an access control list maintained per provider. Therefore, individual
line interfaces can be reserved for specific users. When used as a network
server, security is provided by the usual ONC/RPC mechanisms.

For each XtICall object there is a corresponding media channel that contains
a call’s data stream. The capabilities and utility of the media channel vary
depending on the provider and the type of call. Some providers may perform
only switching of calls, and not allow application access to the media channel.
Other providers may have DSP capability and provide numerous services for
voice/analog calls (e.g. DTMF tones, modem, ASR). Typically, the media
channel provides a bidirectional UNIX stream that the application can read and
write.

The SunXTL provider interface is open for third-party developers and
Independent Hardware Vendors (IHVs). Using the SunXTL provider library
ensures compliance with the basic system protocols. However, the SunXTL
message set can be extended to allow access to provider-specific, technology-
specific, or call-type-specific features.

Every API call and every message includes an optional argument that is a list
of arbitrary key-value pairs (an XtIKVlist). The contents and use of the
XtIKVlist is determined by the provider, and documented by the provider

SunXTL 1.1 Architecture Guide—December 1995

2

for the benefit of the application developer. Portable applications may not use
the XtIKVlist | but applications that use specific provider features can access
them within the SunXTL framework using the XtIKVlist extensions.

The SunXTL API and message set also include a universal extension message,
independent of any SunXTL protocol semantics. By specializing this message
and its XtIKVlist argument, any provider-specific features can be accessed.

To avoid a proliferation of provider-specific enhancements and to increase the
portability of applications, SunXTL Teleservices will be periodically updated to
include standards for common features as they become known and used.

Provider Configuration Database

When providers are installed on a system, they are registered in a provider
configuration database. The database shows the existence of each provider,
how to invoke it (used by the SunXTL system internally) and describes the
specific capabilities and features of that provider. For example, the database
would indicate the number of simultaneous lines available, the bandwidth
available for datacomm, the types of voice or DSP processing available, etc. If
an application has specific requirements, it can query the database to
determine the most appropriate provider for its needs.

Overview of SunXTL Teleservices 11

12

SunXTL 1.1 Architecture Guide—December 1995

TheSUnXTL API 3

The SunXTL API is an object-oriented interface accessed using the C++
language. The API includes XtlProvider , XtlCall , XtlCallState , and
XtIMonitor ~ objects. These base objects define the command and callback
methods of SunXTL Teleservices. There are three types of methods on these
objects: synchronous requests, asynchronous commands, and asynchronous
events. Synchronous requests modify or query information cached in the local
C++ object. Command methods send messages to the provider. Results or
status changes are reported back to the application via the event methods.

An XtIProvider object is the application’s representation of an SunXTL
provider. The application registers with the provider object to receive
notification of incoming calls, and specifies the provider when creating
outgoing calls.

XtlCallState objects represent the identity and a snapshot of the state of a
call. When a provider has an incoming call, the registered applications receive
a XtlCallState object corresponding to that call. The XtlCallState object
is not “active”; it does not have command or event methods. If an application
wants to monitor or control a call, it creates a XtIMonitor ~ or XtICall object
based on the XtlCallState . In addition to incoming call notifications, an
application can get a list of XtICallState objects corresponding to all the
calls currently active on a provider.

Monitor objects allow an application to track the status of a call (for logging,
statistics, billing, etc.) without actually controlling the call. The XtIMonitor
object has notification methods that track the state changes of the call, but there
are no command methods to control the call.

13

An XtlCall object represents a call that is “owned” by the application, with
complete command repertoire and event/status notification. In addition to
controlling call progress, a XtICall object enables an application to configure
or get direct access to the data stream. Call objects and call ownership can be
passed between cooperating applications.

The SunXTL API also allows the application to manage the data stream for a
call. This can be as simple as providing a UNIX stream for the data being sent
and received, or can be a request to connect the call to various hardware or
software resources to, for example, detect DTMF tones. The particular data
stream capabilities available depend on the provider and the type of data being
transmitted by the call. All data stream configuration requests are handled by
the provider, allowing it to do data routing and signal processing as efficiently
as it can. For example, the provider may use onboard DSPs, special data
busses, or other directly connected hardware resources without the application
knowing the specifics.

Distributed Object Activation

14

When an application creates an XtlCall ~ object, a C++ object is allocated and
returned to the application. The actual state and implementation of an

XtICall object is maintained in the provider. Until the provider has created
its portion of the object, the command methods of the XtICall object in the
application cannot be meaningfully used.

As part of object creation in the API, a creation request message is sent to the
XtlProvider object. When the XtIProvider object has completed its object
creation and initialization, the application is notified via the

activation_ind() method of the XtlCall object. The application’s
implementation of the activation method typically begins processing of the
call.

If the remote aspect of an object should become unreachable (e.g. network or
server failure) the application is notified that the object is no longer accessible
via the deactivation_ind() . The application’s implementation of the
deactivation method typically cleans up references and deletes the C++ object.

SunXTL 1.1 Architecture Guide—December 1995

w
1]

Select SunXTL Objects and Methods

This section shows a few of the important methods of the XtIProvider and
XtICall objects. For complete information on the SunXTL API and the
SunXTL MPI, see the Sun XTL 1.1 Application Programmer’s Guide and the Sun
XTL 1.1 Provider Programmer’s Guide respectively.

Methods of the Provider Object

Command Methods:

list_calls_req();

enable_offer_event_req(boolean_t on_off, KVList& args);
listen_req(CallEvent listenFor, KVList& args)

Notification Methods:
list_calls_ind(CallState *const * call_list, u_int call_count);

call_event_ind(
CallState& call, CallEvent event, Cause cause, KVList& args);

offer_ind(CallState& offeredCall, KVList& args);

Methods of the Call Object

Command Methods:

connect_req(Address& local, Address& remote, Format& media_format,
KVList& args);

answer_req(KVList& args);

disconnect_req(KVList& args);

hold_req(KVList& args);

unhold_req(KVList& args);

transfer_req(CallState& transfer_to, KVList& args);
redirect_req(Addressé& redirect_to, KVList& args);
conference_req(CallState& conferenc_in, KVList& args);
drop_req(KVList& args);

offer_req(KVList& args);

configuration_req(KVList& requested_configuration);
application_info_req(KVList& info);

The SunXTL API 15

16

Notification Methods:
event_ind(CallEvent event, Cause cause, KVList& args);

CallEvent is an enum of possible state changes:

PROCEEDING, ALERTING, CONNECT, FAILURE, DISCONNECT, INFO, TRANSFER,
REDIRECT, CONFERENCE, DROP

SunXTL 1.1 Architecture Guide—December 1995

SunXTL
Provider Developer’s Kit 4

SunXTL Teleservices for Solaris provides an Internet Protocol (IP) provider and
a provider simulator as part of its distribution. Other network or telephony
technologies may easily be integrated into SunXTL Teleservices. Developers of
teleservices hardware devices to be integrated into Solaris-based systems
typically supply two components: a device driver and provider; see Figure 4-1
on page 17. The device driver handles low-level details of the underlying
network transfer scheme or telephony device (e.g. ISDN, ATM, FDDI, analog
telephony, etc.), and is written to conform to UNIX System V Release 4
standards. The provider is the code necessary to manage the interface between
the SunXTL subsystem and the associated device-specific driver.

xtltool ’%ﬁ Server Data Stream Mux
Provider \K ‘ /
Interface A MPI)
XTL Pr ovider

]

| Device Driver |

|

| Sbus Device |

Figure 4-1 SunXTL Provider and Device Driver

17

Providing Access to Additional Teleservices Technologies

The task of writing an SunXTL provider is simplified by using the SunXTL
Media Platform Interface (MPI) library. The provider process uses the MPI to
handle all communication and messaging to the SunXTL system components.
The provider developer’s sole concern is to translate between the SunXTL
protocol and whatever interface is supplied by the device driver.

When devices have additional features not defined by the SunXTL API/MPI,
the provider extension messages can be used to define the mechanism to allow
an application to access the device’s features. This extension mechanism is
described in detail in the Sun XTL 1.1 Provider Programmer’s Guide.

SunXTL Provider Library

18

The SunXTL provider library (MPI) isolates the provider code from the
intricacies of the SunXTL system services. Specifically the library supplies
interfaces to the provider database, the server messaging system for commands
and callbacks, and the mechanisms for making device data streams accessible
to applications. For complete information, see the Sun XTL 1.1 Provider
Programmer’s Guide.

SunXTL 1.1 Architecture Guide—December 1995

Index

A desktop applications, 3
desktop telephony services, 2
developer’s kit, 17

device driver, 18

activating objects, 14
applications, 2

asynchronous
commands, 13 DTMF tones, 8
events, 13
messages, 8 E
event methods, 9
C events, 13
call extensibility, 10
claiming, 9 extension mechanism, 18
control, 8
offering, 9 F
ownership, 9
call state Object’ 13 features of SunXTL 1.1, 2
callback methods, 13
claiming calls, 9 G
commands, 13 goals of SunXTL 1.1, 5
components of SunXTL 1.1, 6
computer-telephony integration, 2 I
control functions, 2 .
CTI. 2 Internet (IP) connectivity, 2
InterViews dispatcher library, 9
D

M

data stream, 3
market for SunXTL 1.1, 2

20

marshalling, 9 market, 2

media channel access, 10 processes, 7
Media Platform Interface, 18 server, 10
messaging, 8 synchronous requests, 13
monitor object, 13
multimedia applications, 2 V
virtual functions, 9
N
notification framework, 9 X
XTL
O messaging, 8

XtlCall object, 7, 14

XtlCallState object, 13
XtIMonitor object, 13
XtIProvider object, 13

object activation, 14
offering calls, 9
owner of acall, 9

P

porting between technologies, 5
processes, 7
provider, 6
configuration database, 11
library, 18
object, 13
registering, 11

R

registering providers, 11
requests, 13
RPC, 8

S

security, 9

server, 10

streams driver, 6

SunXTL 1.1
applications, 2
components, 6
control functions, 2
extensibility, 10
features, 2
goals, 5

SunXTL 1.1 Architecture Guide—December 1995

Reader Comments

We welcome your comments and suggestions to help improve this manual. Please let us
know what you think about teunXTL 1.1 Architecture Guidpart number
801-7048-11

The procedures were well documented.

Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
[U [U [
Comments

The tasks were easy to follow.

Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
0 U 0 U 0
Comments

The illustrations were clear.

Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
H 0 H 0 H
Comments

The information was complete and easy to find.

Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
[U [U [
Comments

Do you have additional comments about&umXTL 1.1 Architecture Guide

Name:

Title:

Company:

Address:

Telephone:

Email address:

BUSINESS REPY MAIL

FIRST CLASS MAIL PERMIT NO. 1 MOUNTAIN VIEW, CA

POSTAGE WILL BE PAID BY ADDRESSEE

%@ SUN MICROSYSTEMS, INC.
Attn: Manager, Publications
MS MPK 14-101
2550 Garcia Avenue
Mt. View, CA 94043-9850

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

