
SunXTL 1.1 Provider Programmer’s Guide

Part No.: 801-7049-11
Revision A, December 1995

The Network Is the Computer™

Sun Microsystems Computer Company
2550 Garcia Avenue
Mountain View, CA 94043 USA
415 960-1300 fax 415 969-9131

Please
Recycle

Copyright 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution,
and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system and from the Berkeley 4.3 BSD system, licensed from the University of
California. UNIX is a registered trademark in the United States and in other countries and is exclusively licensed by X/Open Company Lt.d.
Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii)
of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, SunXTL, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and in other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc. in the United States and in other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

Copyright 1995 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie
et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous aucune forme, par quelque moyen
que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Des parties de ce produit pourront être derivées du système UNIX® et du système Berkeley 4.3 BSD licencié par l’Université de Californie. UNIX
est une marque enregistrée aux Etats-Unis et dans d’autres pays, et licenciée exclusivement par X/Open Company Ltd. Le logiciel détenu par des
tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, SunXTL, et Solaris sont des marques déposées ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et
dans d’autres pays. Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems,
Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés de Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique, cette licence
couvrant aussi les licenciés de Sun qui mettent en place les utilisateurs d’interfaces graphiques OPEN LOOKet qui en outre se conforment aux
licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y COMPRIS, ET
SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DES
PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE SOIENT PAS CONTREFAISANTS DE PRODUITS
DE TIERS.

iii

Contents

Preface. xi

1. Introduction to SunXTL Providers. 1

Role of Providers in SunXTL Teleservices 1

The XtlP Classes . 4

2. Provider Framework and Concepts . 7

The Provider Framework . 7

The Provider Programming Model . 8

Requests and Event Indications . 9

Relationships Between XtlP Classes 10

XtlP Classes—Factories, Providers, and Calls 11

Setting and Getting State Slots 11

Receiving Requests From the Client 11

Sending Indications to the Client 12

Call Status and Transitions . 12

Interfacing to the Underlying Telephone Technology. 18

iv SunXTL 1.1 Provider Programmer’s Guide—December 1995

Starting Your Provider Process . 19

Creating Providers. 20

Performing Call Operations . 22

Making an Outgoing Call . 22

Creating a Call . 23

Starting an Outgoing Call . 24

Monitoring Call Progress . 25

Receiving Incoming Calls . 26

Disconnecting Calls . 28

Putting Calls On and Taking Calls Off Hold 30

Transferring a Call . 31

Conferencing a Call . 32

Guaranteeing Conference Indications 33

Dropping a Call From a Conference 37

Configuring Media Channels . 38

Presenting Media Channels to the Client 39

3. Creating a Provider Package . 43

Writing a Provider Program . 43

Quick Start to Writing a Provider . 43

Writing a Provider from the Beginning. 44

Linking to the SunXTL Libraries . 46

Compiling the Provider Simulator . 46

Creating a Provider Package . 46

Creating Relocatable Packages. 47

Contents v

Creating Provider Templates . 47

Creating Template Files at Installation. 49

Template File Format. 49

4. Utility Classes . 53

Using XtlByteArray . 53

Using XtlString . 55

Using XtlKVList . 57

Copying an XtlKVList . 62

Creating a Hierarchical XtlKVList 62

Traversing XtlKVList s . 63

Using the Event Dispatcher . 64

Initializing the Dispatcher . 66

Using dpIOHandler . 68

Using the Database Query Functions . 69

Using XtlFormat . 70

Requesting Formats . 73

Usage Examples . 73

Using XtlCallReference . 75

5. XtlP Classes . 77

XtlP Base Class . 78

Exception Codes. 78

Error Codes. 79

Cause Codes . 80

State Slots . 81

vi SunXTL 1.1 Provider Programmer’s Guide—December 1995

XtlPFactory Methods . 83

XtlPProvider Methods . 85

XtlPCall Methods . 88

Call Event and Request Enumerations . 94

XtlPPort Methods . 96

Configuring Media Channels With configuration_req() . 96

Handling Media Channel Configurations. 97

Some Typical Configuration Pairs 98

Index . 101

vii

Figures

Figure 1-1 XTL Platform Architecture. 2

Figure 1-2 Provider Programming Framework . 3

Figure 1-3 XtlP Class Hierarchy . 4

Figure 2-1 Sources of Stimuli to a Provider . 9

Figure 2-2 Provider Object Instantiation Relationships 10

Figure 2-3 Normal Call Status Transitions . 14

Figure 2-4 Outgoing Call Scenario. 23

Figure 2-5 Incoming Call Scenario . 26

Figure 2-6 Call Disconnection Scenario. 28

Figure 2-7 Call Hold and Unhold Scenario . 30

Figure 2-8 Call Conference Scenario . 33

Figure 2-9 Conference Call Scenario With Handle Swapping. 35

Figure 2-10 Drop Call Scenario. 38

Figure 4-1 XtlKVList Structure . 58

Figure 4-2 dpDispatcher and dpIOHandler Interactions 64

Figure 4-3 Voice Format Specification Example . 71

viii SunXTL 1.1 Provider Programmer’s Guide—December 1995

Figure 5-1 XtlP Class Hierarchy . 77

ix

Tables

Table 1-1 Additional MPI Classes and Data Types 5

Table 2-1 Call Status Enumerations . 15

Table 2-2 Valid Requests for Call Status . 17

Table 2-3 Valid Indication Events for Call Status Transitions 18

Table 3-1 Generic Provider Code Files . 44

Table 3-2 Library Names and Functions . 46

Table 3-3 Key-Value Pairs for Provider Template Files 48

Table 4-1 XtlByteArray Methods (from bytearray.h) 54

Table 4-2 XtlString Methods (from bytearray.h) 55

Table 4-3 XtlKVList Methods (from kvlist.h) 59

Table 4-4 dpDispatcher Methods (from dispatcher.h). 65

Table 4-5 dpIOHandler Methods (from iohandler.h) 68

Table 4-6 Database Query Functions (from xtldb.h) 69

Table 4-7 Predefined XtlFormat Keys and Values 72

Table 5-1 Exception Codes (from xtlp_globals.h) 78

Table 5-2 Error Codes (from xtlp_globals.h) 79

x SunXTL 1.1 Provider Programmer’s Guide—December 1995

Table 5-3 Cause Codes (from xtlp_globals.h) 80

Table 5-4 State Slots for XtlP Classes . 82

Table 5-5 XtlPFactory Class Methods (from xtlp_factory.h) . . . 83

Table 5-6 XtlPFactory Request and Event Codes (from
xtlp_factory.h) . 84

Table 5-7 XtlPProvider Interface Methods (from xtlp_provider.h) 85

Table 5-8 XtlPProvider Request and Event Codes (from
xtlp_provider.h). 87

Table 5-9 XtlPCall Class Methods (from xtlp_call.h) 88

Table 5-10 Call Event Codes (from xtlp_call.h) 94

Table 5-11 XtlPCall Class Request Enumerations (from xtlp_call.h) 95

Table 5-12 Configuration Pairs for configuration_req() 98

xi

Preface

This book documents the SunXTL media platform interface (MPI) library and
describes how to create an SunXTL provider package for end users. The MPI is
one of two interfaces provided by the SunXTL Teleservices for the Solaris™
platform; the other is the application programming interface (API), which is
described in the Sun XTL 1.1 Application Programmer’s Guide.

Note – The term telephone device is used in this manual. However, SunXTL
Teleservices can be used with any teleservices device. If you are not using a
telephone device, replace the term telephone device with teleservices device.

The MPI enables you to write an SunXTL provider for your telephone device.
By using your SunXTL provider, SunXTL applications can access the
teleservices provided by your telephone device. A telephone device can be
either hardware, software, or some combination thereof, that is capable of
communicating with a telephone network.

Note that all references to Solaris in this book apply only to the SPARC version
of Solaris.

Who Should Use This Book
This book helps you to write and package SunXTL providers that enable your
telephone device (either hardware or software) to act as the teleservices
technology of choice for SunXTL applications.

xii SunXTL 1.1 Provider Programmer’s Guide—December 1995

This book is intended for Solaris programmers who are knowledgeable in C++
and have an understanding of the SunXTL framework, which is described in
the Sun XTL 1.1 Architecture Guide. This manual also assumes you have a
thorough understanding of the telephone device for which you are writing an
SunXTL provider.

How This Book Is Organized
Chapter 1, “Introduction to SunXTL Providers,” introduces the concept of
providers and the role providers play in the SunXTL architecture. An overview
of the media platform interface is also given.

Chapter 2, “Provider Framework and Concepts,” presents a high-level
description of the provider framework and how the various MPI objects
interact with each other.

Chapter 3, “Creating a Provider Package,” describes the general structure of a
provider program and the process of creating a provider package, including
binaries, templates, and provider-specific documentation.

Chapter 4, “Utility Classes,” describes the supporting classes, or utilities, that
help tie the larger pieces together, such as global data types, data structures,
and event handlers.

Chapter 5, “XtlP Classes,” provides reference material for the interface
methods of each MPI class.

Related Books
The following books are part of the SunXTL documentation set:

• Sun XTL 1.1 Architecture Guide

• Sun XTL 1.1 Administrator’s Guide

• Sun XTL 1.1 Application Programmer’s Guide

• Sun XTL 1.1 Remote Client Mgr Guide

Preface xiii

What Typographic Changes and Symbols Mean
Table P-1 describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

Also used to highlight class
methods in tables

system% su
Password::

virtual XtelPProvider();

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell
prompt

system$

Superuser prompt, all shells system#

Highlight A highlighted table row means
the method must be overriden
with your implementation code.

virtual void cleanup()=0;

xiv SunXTL 1.1 Provider Programmer’s Guide—December 1995

1

Introduction to SunXTL Providers 1

The SunXTL media platform interface (MPI) is a standard programming
interface for writing SunXTL providers. The MPI is implemented as a library
called XTLP. This chapter describes the use and role of providers in the
SunXTL architecture and introduces the classes in the XTLP library.

Role of Providers in SunXTL Teleservices
An SunXTL provider is a software entity that enables your telephone device to
communicate with the SunXTL platform and provides SunXTL applications
(herein referred to as clients) access to the services of your telephone device.
And for your provider, the MPI is its interface to the SunXTL platform. In
writing your provider, you only need to understand the MPI—in-depth
understanding of the API and clients, while useful, is not required.

Providers allow SunXTL clients to set up, control, and terminate phone calls in
a consistent manner. Providers also give clients access to the data associated
with a call in a uniform manner. Additionally, value-added capabilities
available from your telephone device are accessible to SunXTL clients through
a simple, but powerful extension mechanism. These features and other
important concepts are presented in Chapter 2, “Provider Framework and
Concepts.”

Figure 1-1 shows the overall SunXTL architecture. A provider has two entry
points (interfaces) to the SunXTL platform—the MPI and the SunXTL database
interface (see “Using the Database Query Functions” on page 69). Consequently,

2 SunXTL 1.1 Provider Programmer’s Guide—December 1995

1

as a minimum, you do not need to be concerned with the other interfaces in the
SunXTL platform. The only other assumption is that you have a thorough
understanding of the telephone device for which you are writing a provider.

Figure 1-1 XTL Platform Architecture

In the SunXTL framework, the MPI acts as an intermediary between your
provider and the rest of the SunXTL platform. Consequently, all communication
between SunXTL clients and your provider is relayed through the MPI.
However, you can simplify your view of the provider framework during your
programming to the one shown in Figure 1-2, which shows only two entities of
concern: an abstract entity called the client and the underlying technology
(telephone device).

Q.9x1

DBRI

ATT-5e5

MPI

TCP

Analog

Driver

Ethernet

MPI MPIMPI

ATM

Driver

ISDN

ISDN Switch

POTS

Telephone

XTL Providers

Client

API

Server

Client

xtltool DB

API

XTL
Clients

Media Platform
Interface

XTL Teleservices

Media
Channels

Provider
Configurations

Network

Provider Provider Provider Provider

POTS

Telephone
Network

Telephone
Technologies

Introduction to SunXTL Providers 3

1

The MPI (implemented as the XTLP library) is the interface to the client. All
communication between the client and the provider occurs through messages,
which conveys call request and indications. The programming model dictates
that clients make requests for services to your provider through the MPI, and
your provider indicates whether or not it can satisfy such requests by sending
indications back to the client through the MPI. When a client makes a request,
the MPI invokes a corresponding callback method on an object; when the
request has been serviced, the object invokes another method to indicate the
success or failure of fulfilling the request. See “Requests and Event
Indications” on page 9 for additional description of requests and indications.

The client entity encapsulates all the parts of the SunXTL platform above the
MPI. It is the client that makes requests for the services of your provider and
receives the indications your provider sends. The client abstraction is
important because it allows you to think of requests as originating from a
single source, even though several clients may be making requests.

Figure 1-2 Provider Programming Framework

Client

MPI

Provider
Implementation

Telephone Device

IndicationsRequests

XTLP Library

4 SunXTL 1.1 Provider Programmer’s Guide—December 1995

1

The XtlP Classes

There are four main classes derived from the XtlP base class. Figure 1-3 shows
the XtlP class hierarchy.

Figure 1-3 XtlP Class Hierarchy

Note – The classes in the XTLP library are not multithread safe.

The XtlP class and its subclasses are described in Chapter 5, “XtlP Classes.”
The XtlPFactory , XtlPProvider , and XtlPCall classes contain virtual
methods called request methods that you must implement. A request method is
a callback handler whose implementation satisfies some provider service that a
client may request. Callback methods that connect, put on hold, or disconnect
a phone call are examples of request methods. The derived XtlP classes
contain callback methods that you must override with code that implements
the functionality of your provider.

XtlPCall
XtlP

Provider
XtlP

XtlP

Factory XtlPPort

Introduction to SunXTL Providers 5

1

There are also classes and data types that you can use directly without deriving
them. Table 1-1 shows the other classes and data types you will use in the
process of writing a provider.

Table 1-1 Additional MPI Classes and Data Types

Classes Description

Utility Classes

XtlByteArray A reference-counted byte array. See page 53.

XtlString A reference-counted string type. See page 55

XtlKVList An ordered list structure used to pass parameters
between objects. See page 57.

Dispatcher Classes

dpSLDispatcher
dpXtDispatcher
dpXVDispatcher

Event dispatchers (derived from the InterViews™ library)
for use in various user interface environments. See
page 64.

dpIOHandler An abstract I/O handler for managing events on a file
descriptor (this class is also taken from the InterViews
library); however, the dpIOHandler must be derived. See
page 68.

Global Data Types

XtlFormat Data type to describe the format of data being transmitted
over a call. See page 70.

XtlCallReference A unique identifier assigned to a call. See page 75.

6 SunXTL 1.1 Provider Programmer’s Guide—December 1995

1

7

Provider Framework and Concepts 2

The MPI is one layer in the larger SunXTL architecture. Each layer in the
architecture is modular in that the specifics of each layer are invisible to the
other. This allows you to program at the provider level without in-depth
knowledge of the other layers. For a complete discussion of the architecture,
see the Sun XTL 1.1 Architecture Guide.

This chapter describes the overall provider framework, helps you to
understand the relationships between the XtlP classes, and provides several
typical call scenarios that can serve as useful examples for writing providers.

The Provider Framework
The provider exists between the MPI and the telephone device, as shown in
Figure 1-1 on page 2. Above the MPI is a client entity that makes requests on
your provider for call management services. Conceptually, the client represents
everything above the provider. The provider is only aware of the client above
and the device below. The basic function of the provider is to accept requests
from the client and to send indications that convey the results of requests back
to the client. In other words, the provider is a consumer of requests and a
producer of indications.

So far we have used the term provider to name the enabling piece of software
that allows a client (encapsulated in the client entity) to manage phone calls
using a particular underlying technology. However, providers involve several
subtly different and overlapping parts. To better understand the provider
framework, it helps to be familiar with the terminology used in this guide:

8 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

• Provider
A high-level term used to describe the software entity that manages a
telephone resource; a resource is the device or underlying technology that
you wish SunXTL clients to use to communicate.

• Provider object
A C++ object that is instantiated from a class derived from the
XtlPProvider class. A provider object has request methods (to carry out
requests) and indication methods (to send events to the client). To define the
behavior of a provider object, its request methods must be overridden with
provider-specific code.

• Provider process
The address space in which one or more provider objects exist.

• Provider family
A collection of providers that run in the same provider process and share a
common provider family name; you define the provider family name in the
template file in the provider package. Provider families are useful when a
provider process needs to support multiple physical devices and where it
would be convenient to have individual providers manage each device.

• Provider package
A collection of files, primarily a provider executable and a provider
template file, that is installed by the end user to make use of your specific
device or underlying technology.

In general, providers manage calls, which are represented by XtlPCall
objects. A provider can control one or more calls, which only exist in the
context of the provider; a call is always associated with a provider.

The Provider Programming Model
SunXTL providers are event driven in a manner similar to X Windows System
clients. In such a programming model, objects wait for stimuli from external
sources and perform an action to carry out a request. The SunXTL dispatcher
library provides the necessary classes to support this event-driven
programming model; see “Using the Event Dispatcher” on page 64.

Provider Framework and Concepts 9

2

For an SunXTL provider, an external stimulus may be a client request or a state
change in the underlying telephone technology as shown in Figure 2-1. The
provider sends information back to clients (that is, it informs clients of changes
in the state of the client, provider, or call objects) by sending the client one of
the following indications:

• Event indications through event_ind()
• Error indications through error_ind()
• Provider-specific extension indications through extension_ind()

Figure 2-1 Sources of Stimuli to a Provider

Requests and Event Indications

XtlP classes communicate with the client through requests and indications as
described in “Role of Providers in SunXTL Teleservices” on page 1. Requests
from the client cause the MPI to invoke the callback methods of an XtlP object.
After the provider services a request, the object notifies the client of its success
or failure through its indication methods. Your provider program must be able
to accept requests from the client and send indications to notify the client of
various events. To determine how your provider handles requests and sends
indications, you must override the methods in the XtlP classes. These classes
are described in Chapter 5, “XtlP Classes.”

Client

Provider

Stimuli
in form of
requests

Stimuli in form
of state changes

Telephone
Device

Indications through
event_ind() , error_ind() , or extension_ind()

Control
manipulations

10 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

Relationships Between XtlP Classes

The primary relationships between XtlP classes can be seen in Figure 2-2.
Within a process, there is an XtlPFactory object that instantiates provider
objects; in turn, the provider objects instantiate call objects, which represent
individual teleservices connections.

Figure 2-2 Provider Object Instantiation Relationships

The more subtle relationships and behavior require further description and a
better understanding of other events that can come into play. The following
sections describe those relationships.

XtlPProvider XtlPProvider

XtlPFactory

XtlPCall

XtlPCall

XtlPCall

XtlPCall

. . .

.

Provider Family

1

1

m 1

n

N

running in a provider process

Provider Framework and Concepts 11

2

XtlP Classes—Factories, Providers, and Calls

The main classes in the MPI library are: XtlPFactory , XtlPProvider ,
XtlPCall , and XtlPPort . In writing your provider, you must create
subclasses from each of the base classes and implement the callback methods
for each class. In general, each class has the following types of methods:

• State slots methods (set and get methods)
• Request callback methods
• Indication methods

Setting and Getting State Slots

State slots hold the attributes of an XtlP object and in a call object, they
describe the complete state of a call. Each class has a collection of
set_ slotname() and get_ slotname() methods that allow you to set and
retrieve the state slots of an object; the slotname in the method name
corresponds to the name of the state slot. However, certain slots, such as the
call_status slot, are read-only and therefore do not have a corresponding
set method.

In invoking these methods, you do not need to be aware of the implementation
of the slots; if you like, you can view slots as member variables of the class.
However, the type of the slot value is defined in the signature (argument list)
of the slot methods. Specific state slot methods for each class are described in
“State Slots” on page 81.”

Receiving Requests From the Client

In the provider programming model, XtlP objects receive requests from the
client and return indications to the client. Requests are serviced by the callback
methods in XtlP -derived objects. When the client makes a request, the MPI
invokes the appropriate request callback method in your objects. For example,
when the client requests a new call object, the MPI invokes the
create_call_req() callback as implemented in your XtlPProvider object.

All request callbacks are pure virtual methods in the base XtlP classes.
Therefore, you must supply provider-specific implementations for each request
callback when you derive from the XtlPFactory , XtlPProvider , and
XtlPCall classes.

12 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

Sending Indications to the Client

When call states change, errors occur, or extension messages need to be passed
to the client, providers must notify the client through one of the following
indications:

• Event indications

Event indications are sent using the event_ind() method. Changes in the
provider changes a call’s state slots. To inform the client of the change, the
appropriate state slot must be set and event_ind() called; the client will
not see the state slot change until your provider calls event_ind() .
Therefore, your provider is required to call event_ind() whenever it
changes the state slot of a call, provider, or factory; event_ind() is a
method relative to a call, provider, or factory object.

• Error indications

Error indications are sent using the error_ind() method when the
provider detects an error—such as errors in allocation, protocol, or
parameter specification.

If your provider cannot satisfy a request because of such errors, it should
call error_ind() on the appropriate object. Additionally, an impatient
client may make duplicate requests on a provider. If a request is already
satisfied by the current state of the provider, error_ind() should be called
with the error parameter set to ERROR_REQUEST_CURRENTLY_SATISFIED.

• Extension indications

Extension indications are sent using the extension_ind() method to pass
an XtlKVList containing provider-specific extension values.

Call Status and Transitions

When making or receiving a call, a call object travels a path of call states. These
states are defined by a call object’s call status. The status of a call is important
to the client because the client acts based on the current status of a call object.

Note – The use of the terms state and status in this chapter may be confusing at
first. In telephony vernacular, calls have a state; that is, a call can be idle, on
hold, conferenced, and so on. However, in the programming abstraction of a
call, there are several attributes that describe the state of a call object—status

Provider Framework and Concepts 13

2

being one of several (the others are described in “Setting and Getting State
Slots” on page 11). For that reason, the term status is used in place of the more
general term, state.

To change the status of a call, the client sends a request to the provider. The
provider in turn manipulates the telephone device in an attempt to satisfy the
request. When the request is completed, the provider sends an indication to the
client. If the request was successfully serviced, the status of the XtlPCall
object is changed, and not before.

14 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

Figure 2-3 shows some of the possible status transitions of a call. Starting from
an unknown status, an incoming call takes the left path while an outgoing call
takes the right path. As the provider moves from one status to the next, the
appropriate indication event is generated, such as CREATE_EVENT or
INCOMING_EVENT. Table 2-1 on page 15 defines the possible call status values.

Figure 2-3 Normal Call Status Transitions

Incoming

Alerting

Connected

Idle

Proceeding

Unknown
CREATE_EVENT

PROCEEDING_EVENT

ALERTING_EVENT

CONNECT_EVENT

INCOMING_EVENT

CONNECT_EVENT

Incoming
Calls

Disconnected

*from any state

DISCONNECT_EVENT
Failed

*from any state

FAILURE_EVENT

Outgoing
Calls

DISCONNECT_EVENT

Provider Framework and Concepts 15

2

In the normal course of making or receiving a call, a call object can be expected
to follow a normal course of status transitions. Of course, other events may
occur that cause the transition to deviate; for example, if the call is busy or
unexpectedly disconnected. To handle these situations and to ensure that
abnormal transitions do not occur (such as going from an INCOMING status to
an ALERTING status), the MPI validates each transition so that in a given
status, only certain requests may be sent to the provider and only certain event
indications may be sent to the client.

Table 2-1 Call Status Enumerations

Call Status Meaning

UNKNOWN When an XtlPCall object is created, it starts in an unknown
status. At this point the call object is neither incoming nor
outgoing.

INCOMING A remote party is requesting a connection (incoming call).

IDLE For outgoing calls, after a call object is created, a
CREATE_EVENT event is sent to the client and the call is ready
to receive a connection request.

PROCEEDING A complete address has been passed to the call object and an
attempt to connect to the remote party is in progress.

ALERTING The remote party has been notified of the connection attempt;
that is, the remote phone is ringing.

CONNECTED An end-to-end connection has been established; that is, the
remote party has answered.

FAILED A connection attempt has failed. There may be several causes,
such as a busy condition, a switch error, or an incomplete
address argument. For that reason, this state can be entered
from any of the other states. The call then enters the
DISCONNECTED state where it is destroyed.

DISCONNECTED The connection has been terminated and the call object is
ready to be destroyed. You may not reuse this call object to
make another call.

CONFERENCED Another call has been conferenced into the current call.

16 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

Table 2-2 shows the valid client requests that a provider can expect to receive
for each call status. Table 2-3 presents a corresponding matrix that shows the
valid indication events that can be sent to the client for each call status, and the
resulting status transition, if any. The MPI layer enforces these transitions and
generates an EXCEPTION_PROTOCOL_VIOLATION exception if an
inappropriate transition is attempted; exceptions are described in “Exception
Codes” on page 78.

Provider Framework and Concepts 17

2

Table 2-2 Valid Requests for Call Status

Call Status1

Requests Unkn Idle Proc Alrt Fail Conn In Dis Conf

CONNECT_REQ - Y - - - - - - -

ADD_TO_ADDRES_REQ - Y - - - - - - -

ANSWER_REQ - - - - - - Y - -

ALERT_REQ - - - - - - Y - -

DISCONNECT_REQ - Y Y Y Y Y Y - Y

REDIRECT_REQ - - Y Y Y Y Y - Y

TRANSFER_REQ2 - - Y Y Y Y Y - Y

CONFERENCE_REQ2 - - Y Y Y Y - - Y

DROP_REQ - - - - - - - - Y

HOLD_REQ - Y Y Y Y Y Y Y Y

UNHOLD_REQ - Y Y Y Y Y Y Y Y

CONFIGURATION_REQ - Y Y Y Y Y Y Y Y

EXTENSION_REQ - Y Y Y Y Y Y Y Y

NOTES:

(1) The call status enumeration equivalents are: Unkn=UNKNOWN, Idle=IDLE ,
Proc=PROCEEDING, Alrt=ALERTING, Fail=FAILED , Conn=CONNECTED, In=INCOMING,
Dis=DISCONNECTED, Conf=CONFERENCED.

(2) The call associated with this request has its status in {Proc, Alrt, Conn, In, Fail, Conf}
for TRANSFER_REQ or in {Proc, Alrt, Conn, Fail, Conf} for CONFERENCE_REQ.
Furthermore, the call argument is likely to be in an active state (that is, its
media_channel_available slot is set to B_TRUE); however, the API does not
guarantee this. If the call is inactive, your provider should still attempt to transfer the
call, otherwise it should return from the method.

(3) A “-” entry in this table means that the MPI guarantees that the request will never be
sent in the given state.

18 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

Interfacing to the Underlying Telephone Technology

The MPI library uses an event dispatcher to dispatch control to I/O handlers,
which manage file descriptors; see “Using the Event Dispatcher” on page 64,
which describes the event dispatcher and I/O handlers in detail.

Your provider should use the dispatcher to interface to the underlying
telephone technology. The provider framework assumes that your provider
communicates with the underlying telephone technology through a file
descriptor, which is used to set up, control, and tear down telephone calls. If
your provider does not, you must create such an interface. You can do so by
creating a dpIOHandler subclass and using the dispatcher’s link() method
to associate an instance of your subclass with a file descriptor. Your

Table 2-3 Valid Indication Events for Call Status Transitions

Events Current Call Status

Unkn Idle Proc Alert Fail Conn In Dis Conf

CREATE_EVENT Idle - - - - - - - -

INCOMING_EVENT In - - - - - - - -

PROCEEDING_EVENT - Proc - - - - - - -

ALERTING_EVENT - - Alert - - - - - -

CONNECT_EVENT - Conn Conn Conn - - Conn - -

FAILURE_EVENT - Fail Fail Fail - Fail Fail - Fail

DISCONNECT_EVENT - Dis Dis Dis Dis Dis Dis - Dis

INFO_EVENT - Idle Proc Alert Fail Conn In Dis Conf

TRANSFER_EVENT - - Proc Alert Fail Conn In - Conf

CONFERENCE_EVENT- - Conf Conf Conf Conf - - Conf

REDIRECT_EVENT - - Proc Alert Fail Conn In - Conf

DROP_EVENT - - - - - - - - Conf

NOTE: This table shows the resulting status after an event. A “-” entry means that a
EXCEPTION_PROTOCOL_VIOLATION exception will be sent to the client and the call will stay in
the same state.

Provider Framework and Concepts 19

2

implementation of the dpIOHandler then allows your provider to
communicate with the underlying technology. An example class derived from
a dpIOHandler is presented in “Starting Your Provider Process.”

To create an I/O handler, create a subclass from the dpIOHandler base class
and define read, write, and/or exception callback handlers for a file descriptor.
The dispatcher’s link() method allows you to associate your dpIOHandler
with a specific file descriptor. The dispatcher calls the appropriate callback
handler for a given file descriptor when any of these conditions arise:

• Data becomes available on the file descriptor
• A write will not block on a file descriptor
• There is an exception on the file descriptor

When your provider receives stimulus from either the client or the underlying
technology, it should spend as little time as possible in the callback and return
to the dispatcher loop. For example, when your provider receives a
connect_req() , it should initiate the outgoing call and immediately return to
the dispatcher. It should not block and wait for call progress information from
the underlying technology. Rather, as stated above, your provider should
create a dpIOHandler and file descriptor to handle stimuli from the
underlying technology and link the dpIOHandler and file descriptor to the
dispatcher. When the underlying technology stimulates the provider (that is,
presents call progress information), the dpIOHandler ’s inputReady()
callback handler is called.

Starting Your Provider Process

Given this event-driven programming model and the dispatcher library
routines, the main routine of a typical provider should look similar to:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <xtl/xtlp/xtlp.h>

// The sim_factory.h header file declares a class SimFactory that
// you have derived from XtlPFactory. (There are also
// sim_provider.h and sim_call.h header files which declare
// SimProvider, derived from XtlPProvider and SimCall

#include "sim_factory.h"

20 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

void main(int argc, char *argv[]) {

// Declare err to hold exception values from MPI library calls

XtlP::Exception err;

// Get the provider family name from the environment to be
// passed to the SimFactory constructor.

XtlString family_name(getenv("XTL_FAMILY_NAME"));

// Create the SolarisLive dispatcher.
 dpDispatcher::instance(new dpSLDispatcher);
 dpDispatcher& d = dpSLDispatcher::instance();

 // Verify the Xtl Database

 if (xtl_db_verify() < 0) {
printf(stderr, "%s: could not verify xtl database\n", argv[0]);
exit(1);

 }
 // Create a factory object
SimFactory factory(err, family_name);

if (err != XtlP::EXCEPTION_SUCCESS) {
fprintf(stderr, "Could not create XtlPFactory

object...exiting\n");
exit(1);

 }

while(B_TRUE)
d.dispatch();

}

Creating Providers

When a provider process is started, it instantiates a factory object and blocks in
a dispatch loop until it receives stimuli from either the client or the underlying
technology. Typically, the factory object receives a request from the client to
create a new provider. The process of creating a provider follows these steps:

1. Implement the create_provider_req() callback in the XtlPFactory
object. The MPI will invoke this method when your provider is executed.

Provider Framework and Concepts 21

2

2. Implement the create_provider_req() callback. This method
constructs a new provider object and performs any provider-specific
initialization.

3. After the provider object is created, the create_provider_req()
method sends a CREATE_EVENT indication by calling
XtlPFactory::event_ind() .

Your create_provider_req() callback should look similar to:

void SimFactory::create_provider_req(const XtlString& name,
XtlKVList&)
{

XtlP::Exception exception;
XtlKVList null_args;
SimProvider *provider = new SimProvider(exception, *this, name);

if ((provider == NULL) ||
(exception != XtlP::EXCEPTION_SUCCESS)) {
printf("SimFactory::create_provider_req ERROR is %d\n",

exception);
delete provider; // It's ok to delete a NULL pointer
error_ind(exception, ERROR_UNKNOWN, CREATE_PROVIDER_REQ,

 name, null_args);
return;

}

if(provider != NULL)
provider->event_ind(exception, XtlPProvider::CREATE_EVENT,

 XtlP::CAUSE_NORMAL, null_args);
}

The create_provider_req() method instantiates a provider object. Because
the class for the instantiated provider is derived from the XtlPProvider
class, the constructor makes the MPI aware of the existence of that object, and
allows the MPI to invoke the object’s methods to service requests from the
client.

Once the provider object is successfully constructed, the provider process must
send an event_ind(CREATED_EVENT) to inform the client of the event;
otherwise, the provider object will not receive any requests from the client.

A typical provider constructor looks similar to:

22 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

SimProvider::SimProvider(
Exception& err,
XtlPFactory& factory,
const XtlString& name):XtlPProvider(err, factory, name)

{
// Provider-specific Initialization code ...

}

Note – As you might expect, communicating with an underlying technology is
highly dependent on that underlying technology. Consequently, as the
provider writer, you might instantiate and register a dpIOHandler with the
dispatcher on a per-provider-basis, rather than having a global dpIOHandler
for all providers, as done in this example. Whether you do so or not depends
on the interface to the underlying technology.

Performing Call Operations
Once a provider is instantiated, the client may use the provider to control calls.
This section describes various scenarios for initiating outgoing calls, receiving
incoming calls, disconnecting calls, and accessing services (hold, transfer,
conference, and drop available to a call). Additionally, a scenario for
manipulating the data stream is given.

Note – The figures in this section illustrate the flow of requests and indications
that occur during each operation. However, be aware that the method
parameters (such as event_ind()) shown are not complete, but highlight the
critical information that is passed between the MPI and the provider.

Making an Outgoing Call

Figure 2-4 illustrates the exchange of messages and events that occur in the
process of making an outgoing call. The following sections provide code
examples of how to handle each stage of the process.

Provider Framework and Concepts 23

2

Figure 2-4 Outgoing Call Scenario

Creating a Call

When a client requests an outgoing call, the client and/or MPI determines
which provider to use for the call. The MPI then calls the selected provider’s
create_call_req() callback method. As the provider writer, you must
supply the implementation of the callback in your derived provider class. A
typical create_call_req() looks similar to:

void SimProvider::create_call_req(XtlKVList& args)
{

XtlPCall::Exception err;
SimCall* call = new SimCall(err, *this);
if ((call != NULL) && (err == XtlPCall::EXCEPTION_SUCCESS)) {

call->event_ind(err,
XtlPCall::CREATE_EVENT,
CAUSE_NORMAL,
XtlNullKVListC);

} else {
delete call;

MPI Provider
provider->create_call_req()

call() constructor

call->connect_req()

call->set_media_channel_available(B_TRUE)

call->event_ind(PROCEEDING_EVENT)

call->event_ind(ALERTING_EVENT)

call->event_ind(CONNECTED_EVENT)

24 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

XtlPProvider::Exception perr;
error_ind(perr, ERROR_RESOURCE_NOT_AVAILABLE,

CREATE_CALL_REQ,
XtlNullKVListC);

}
}

You should test exception parameter for event_ind() and error_ind() for
XtlP::EXCEPTION_SUCCESS ; if some other exception is returned, you should
handle the exception condition appropriately.

The create_call_req() routine constructs a call object for the call. Because
the class for the instantiated call is derived from the XtlPCall class, the
instantiation of the call object implicitly registers the existence of the call with
the MPI. Once an outgoing call is constructed, the provider must send an
event_ind(CREATE_EVENT) to inform the client of the successful creation of
an outgoing call. A typical constructor for your derived call class looks similar
to:

void SimCall::SimCall(XtlP::Exception exception,
 const XtlPProvider& xtlp_provider){

// supply provider-specific code to initialize and
// prepare the provider for the call

}

Starting an Outgoing Call

Once a call object is constructed, it receives a connect_req() from the MPI
when the client wants to initiate an outgoing call. The details of an
implementation for connect_req() are highly dependent on the underlying
telephone technology and so the provider-specific code is deliberately absent
in this example:

void SimCall::connect_req(
const XtlAddress& local,
const XtlAddress& remote,
const XtlFormat& format_name,
XtlKVList& args)

{
// check the state of the call by calling get_xxx()
// send messages down to the device to start up your call.
}

Provider Framework and Concepts 25

2

Monitoring Call Progress

Presumably, after the provider initiates an outgoing call, the provider receives
call progress information from the underlying technology. Typical call progress
information includes indications of when:

• Enough addressing information has been received to complete a call (call
proceeding)

• The remote party associated with a phone call is alerting (ringing)
• The call has been answered by the remote party (connected)

The provider informs the MPI and client of the call progress through the call
object’s event_ind() method.

The underlying technology provides call progress information in the form of
callback routines registered by the provider. From these callbacks, the provider
informs the MPI (and client) of call progress through the event_ind()
method.

For example, if a call is proceeding, the upstream callback invokes the call
object’s event_ind() method as follows:

event_ind(exception,
 XtlPCall::PROCEEDING_EVENT,
 CAUSE_NORMAL,
 XtlNullKVListC);

where exception is an output parameter of type XtlP::Exception , which
indicates any problems in calling event_ind() ;
XtlPCall::PROCEEDING_EVENT is a literal in the XtlPCall::Event
enumeration; CAUSE_NORMAL indicates a normal event; and XtlNullKVListC
is an empty XtlKVList .

If there are changes in the state of the call, in addition to the call progress
status, the appropriate state slots in the call object should be set before calling
event_ind() . For example, if the media channel for the call is available when
the provider is informed that the call is proceeding, the method
set_media_channel_available() should be called. For example:

example_call->set_media_channel_available(exception, B_TRUE);

Note that if the provider detects that the state of the call changes but there is
no appropriate event for event_ind() , the event may be set to
XtlPCall::INFO_EVENT .

26 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

Receiving Incoming Calls

Figure 2-5 shows a typical exchange of messages and events when a provider
receives an incoming call.

Figure 2-5 Incoming Call Scenario

When the underlying telephone technology detects an incoming call, it informs
the provider process through the callback handler associated with the
underlying technology. To inform the client of the incoming call, you need to
construct a call object for the call and send an event_ind(INCOMING_EVENT) .
Hence, somewhere within your callback routine, you need code similar to:

my_incoming_handler() {
XtlPCall::Exception err;
SimProvider* sim_provider;

// get the provider object associated with the incoming call
sim_provider = get_provider();

SimCall* call = new SimCall(err, *sim_provider);
if ((call != NULL) && (err == XtlPCall::EXCEPTION_SUCCESS)) {

MPI Provider

call provider constructor

call->event_ind(INCOMING_EVENT)

call->alert_req()

call->answer_req()

call->set_media_channel_available(B_TRUE)

call->event_ind(CONNECT_EVENT)

Provider Framework and Concepts 27

2

 call->event_ind(err,
 XtlPCall::INCOMING_EVENT,
 CAUSE_NORMAL,
 XtlNullKVListC);

 } else {
// add code to execute error handling routine
//and delete call object
return;

}

Once the MPI is informed of the incoming call, the provider should return to
the dispatch() loop and wait for further stimulus to indicate how the call
should be handled. Typically, the MPI informs the provider that a client has
been informed of the incoming call by calling the alert_req() callback for
the call. Your callback for the alert request should look similar to:

void SimCall::alert_req(XtlKVList& args) {
// Add code to inform the underlying technology that this
// "phone is ringing"

}

After the callback executes, the provider returns to the dispatch() loop. If
the client wants to answer the call, the MPI invokes the call object’s
answer_req() callback. The callback for the request looks similar to:

void SimCall::answer_req(XtlKVList& args)
{

XtlP::Exception err;

// Insert code to inform the underlying technology that
// this phone wants to answer the call

// Send up an event if this was successful
event_ind(err, CONNECT_EVENT, CAUSE_NORMAL, XtlNullKVListC);

// Check to see if the event_ind() call was successful
 if(err != XtlPCall::EXCEPTION_SUCCESS) {

// execute error handling routine
return;

}
}

After answer_req() executes, the provider returns to the dispatch() loop.
If all goes well, the underlying technology informs the provider that it has
connected with the calling party. As usual, this is handled through the input

28 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

IOHandler callback associated with the underlying technology. Within the call
object, you should write code to inform clients of the availability of the data
channel and of the end-to-end connection. The code looks similar to:

// From within the call object:
set_media_channel_available(exception, B_TRUE);
event_ind(exception, XtlPCall::CONNECT_EVENT,

XtlP::CAUSE_NORMAL, XtlNullKVListC);

Note that in this example, the provider has been able to determine that the
media channel associated with the call is available, and it informs the MPI and
clients of this fact by setting the call’s media_channel_available slot.

Disconnecting Calls

Calls can be disconnected for a variety of reasons. A disconnect can be
requested by the underlying technology (usually when the remote party
“hangs up”), by the client, by the MPI, or by the provider itself. Figure 2-6
shows a typical call disconnection scenario.

Figure 2-6 Call Disconnection Scenario

MPI Provider

call->disconnect_req()

call->event_ind(DISCONNECT_EVENT)

call->cleanup()

delete call

Provider Framework and Concepts 29

2

When the client requests to disconnect a call, the MPI invokes the call’s
disconnect_req() callback. Your implementation of this callback should
look similar to:

void SimCall::disconnect_req(XtlKVList& args) {
// add provider-specific code to initiate the release of the call

}

When a provider detects that a call has been successfully disconnected (usually
though the callback associated with the underlying technology), the provider
should inform the MPI of this by sending an event_ind() :

sim_call->event_ind(exception,
XtlPCall::DISCONNECT_EVENT,
XtlP::CAUSE_NORMAL,
XtlNullKVListC);

After the disconnect event is sent to the MPI, the MPI eventually invokes the
call’s cleanup() callback. Once the call’s cleanup method has been called, the
MPI will no longer call any of the call’s callbacks. At this point, the provider
usually deletes the call object associated with the call:

SimCall::cleanup() {
if (call_has_been_cleared) {

delete this;
} else {

// initiate clear process

delete this;
}

}

Note – The MPI can call the cleanup() callback on a call at any time. In
particular, it is not necessary that the MPI call the disconnect_req()
callback or wait for the event_ind(DISCONNECT_EVENT) before calling
cleanup() . Because the MPI specifies that no call request callbacks will be
called after cleanup() is called, the provider must now take complete control
of the call. In particular, once the cleanup() callback is called, the provider is
responsible for clearing the call.

Furthermore, the provider may delete a call at anytime. However, it is
recommended that the provider clear the call, send an
event_ind(DISCONNECT_EVENT) and wait for a cleanup() callback before
deleting a call.

30 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

Putting Calls On and Taking Calls Off Hold

Figure 2-7 shows how calls are put on hold and taken off hold. A hold_req()
is a request to release the media channel associated with a call while
unhold_req() reacquires the media channel for the call’s use.

Figure 2-7 Call Hold and Unhold Scenario

Your hold_req() callback should look similar to:

void SimCall::hold_req(XtlKVList& args) {
// add provider-specific code to request call be put on hold

}

When the provider determines that the call is on hold (the media stream
channel for the call has been released), the provider should invoke the call
object’s methods:

mycall::set_media_channel_available(exception, B_FALSE);
mycall::event_ind(exception,

INFO_EVENT,
HOLD_REQ,
XtlPCause::CAUSE_NORMAL,
XtlNullKVListC);

MPI Provider

call->hold_req()

call->set_media_channel_available(B_FALSE)

call->event_ind(INFO_EVENT)

call->set_media_channel_available(B_TRUE)

call->event_ind(INFO_EVENT)

call->unhold_req()

Provider Framework and Concepts 31

2

If a client wants to take a call off hold (that is, reacquire a media channel for
the call), the MPI invokes the unhold_req() callback:

void SimCall::unhold_req(XtlKVList& args) {
// add provider-specific code to request call be taken off hold.

}

When a media channel is again available for the call, your provider should:

set_media_channel_available(exception, B_TRUE);
event_ind(exception,

INFO_EVENT,
XtlPCause::CAUSE_NORMAL,
XtlNullKVListC);

Transferring a Call

A request to transfer a call is a request to establish a communication path
between the remote party associated with the call and the remote party
associated with the transferee parameter (an XtlCallReference &) of the
transfer request. The transfer makes it appear as if a call was made from one
remote party to the other. Typically, once a call is successfully transferred, both
this call and the call associated with the transferee are disconnected. The code
for your transfer_req() callback should be similar to:

void SimCall::transfer_req(
const XtlCallReference& transferee,
XtlKVList& args)

{

XtlP::Exception err;
XtlPCall *transferee_call=0;

// _provider points to the call’s provider object
_provider->get_call_object(err, transferee, transferee_call);

if (err != XtlP::EXCEPTION_SUCCESS) {
error_ind(err,

 ERROR_SERVICE_NOT_AVAILABLE,
 TRANSFER_REQ,
 XtlNullKVListC);

return;

}

// Add code here to transfer the call and

32 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

// Notify the client that the calls have been transferred and
// that both call objects are now in the disconnected state.

transferee_call->event_ind(err,
DISCONNECT_EVENT, CAUSE_NORMAL,
XtlNullKVListC);

event_ind(err, TRANSFER_EVENT, CAUSE_NORMAL, XtlNullKVListC);
event_ind(err, DISCONNECT_EVENT, CAUSE_NORMAL, XtlNullKVListC);
delete transferee_call;
delete this;

}

If the transferee is a call that belongs to the same provider as this call, the call
to _provider->get_call_object() gets the call. Because
get_call_object() returns a pointer to an XtlPCall , the transferee is
narrowed to an ExampleCall . Note that as of the last indication sent to the
transferee object, the media channel for it was available. Furthermore, the
transfer_req() will be received by the provider only if the call_status is
either PROCEEDING, ALERTING, CONNECTED, FAILED , or CONFERENCED.

Conferencing a Call

A request to conference a call is a request to establish a communication path
between the remote party associated with the call and the remote party
associated with the conferee parameter of the conference request (an
XtlCallReference). Figure 2-8 shows the call conference scenario.

Conferencing a call is different from transferring a call in that the
communication path between the call and both remote parties remain intact,
whereas transferring a call destroys the communication path between the call
and both parties. Consequently, the media stream associated with the call is a
shared communication medium between the local party (client), the call’s
remote party, and the other remote party that is to be conferenced.

In conferencing, communication occurs over a handle that is agreed upon
between the switch and the underlying technology; this handle is a mechanism
of the switch and is not controlled by the SunXTL platform. For example, in
ISDN, the call reference value represents the handle for a call.

Provider Framework and Concepts 33

2

In the context of this section, the object whose conference_req() method
was invoked is referred to as the call object that represents the call being
conferenced. The call object associated with the conferee parameter is called
the conferee object. The call associated with the conferee object (and the conferee
parameter) is referred to as the conferee.

Figure 2-8 Call Conference Scenario

Guaranteeing Conference Indications

Providers have the responsibility of guaranteeing that conferences appear on
the same call object through which the conference request was made. The
CONFERENCE_EVENT is always indicated on the call object that received the
conference request. If the underlying technology you are using cannot
guarantee that, then your provider must make it appear as if it does. The
CONFERENCE_EVENT should never be sent up on the deleted conferee call
object.

Assume that once a call is successfully conferenced, the underlying telephone
technology arbitrarily clears either the call or the conferee. If it is the call that is
cleared, then all attributes of the call object and the conferee object must be
swapped (with the exception of the media stream configuration and the
call_status , but including all states in the derived class in which the call
objects were instantiated). However, the conferee’s media channel is not
disconnected.

MPI Provider

call->conference_req(conferee)

call->event_ind(CONFERENCE_EVENT)

conferee_call->event_ind(DISCONNECT_EVENT)

34 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

When a call object is successfully conferenced, you invoke
event_ind(CONFERENCE_EVENT) on the call object and invoke
event_ind(DISCONNECT_EVENT) on the conferee object. Figure 2-9 shows the
swapping process.

Note that as of the last indication sent to the conferee object before the
conference_req() was sent to the call object, the media channel for the
conferee was available. Further, the conference_req() of a call is invoked
by the MPI only if the call_status for the call is either PROCEEDING,
ALERTING, CONNECTED, FAILED , or CONFERENCED.

Swapping the attributes of the call object and conferee object is required to ease
the programming burden on SunXTL client writers. If a client writer wants to
create a conference (that is, have a single communication channel to multiple
parties), a call is designated as the conference. All other calls are merely added
to the conference. Acknowledgement of the conference request is always
acknowledged on the call object making the request for the conference. Further,
the configuration of the media stream associated with the conference does not
change as new calls are added to the conference. Hence, reconfiguration of the
data stream is never needed as calls are added to a conference.

Provider Framework and Concepts 35

2

Figure 2-9 Conference Call Scenario With Handle Swapping

Call1

H2

Call2

H1

H1 H2

Call1

H1

Call2

H2

con f erence_req(con f eree_parm)

H1 H2

Swap
Attributes

SWITCH

SWITCH

Call1

H2

Call2

H1

H1 H2

3. Once the calls are conferenced, the call
handle H1 is destroyed, Call2 sends up a

SWITCH

event_ind
(CONFERENCE_EVENT)

event_ind
(DISCONNECT_EVENT)

disconnect event, and Call1 sends up a
conference event. The calls are now
conferenced through the Call1 call object.

1. A client requests a conference
call through Call1, which causes
the MPI to invoke the
conference_req() callback on
the call object Call1 with a conferee
parameter Call2. The calls initially
occur over the switch’s handles H1
and H2, respectively.

2. The switch decides to use H2 for
the conference, and discard H1. Be-
cause the request came through
Call1, the provider must maintain
Call1 by swapping attributes and
call handles.

36 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

The code for your conference_req() callback should be similar to:

void SimCall::conference_req(
const XtlCallReference& conferee,
XtlKVList& args) {

XtlP::Exception exception;
SimCall * other_call;
XtlPCall * temp_call;

// _provider is a pointer to the provider object, saved from
// the arguments passed to the SimCall constructor
_provider.get_call_object(exception, transferee, temp_call);

if (exception != XtlP::EXCEPTION_SUCCESS) {
this->error_ind(exception,

XtlP::ERROR_INVALID_ARGUMENT,
XtlPCall::CONFERENCE_REQ,
XtlNullKVListC);

return;
}

other_call = (SimCall*) temp_call;// narrow to SimCall

// add code to conference the call
}

If the conferee object belongs to the same provider as the call object, the
procedure call to the _provider.get_call_object() method will get the
call. Because get_call_object() returns a pointer to an XtlPCall , the
conferee object is narrowed to an ExampleCall .

If the conference request succeeds, your code should implement the following
pseudo code:

SimCall * call = call_that_survives;
SimCall * other_call = call_that_will_be_cleared;

if (other_call == call_that_requested_the_conference) {
SimCall temp_call;

// swap attributes of call and other call
// exception data stream configuration and call_status
temp_call.attributes = call->attributes;
call->attributes = other_call->attributes;
other_call->attributes = temp_call.attributes;

Provider Framework and Concepts 37

2

}

call->event_ind(CONFERENCE_EVENT);
other_call->event_ind(DISCONNECT_EVENT);
delete other_call;

Dropping a Call From a Conference

A conference can be viewed as a call in which several parties communicate
over a common medium that has been set up by your provider. Input by any
participant in the conference is available to all participants in the conference.
Many underlying telephone technologies allow parties to be dropped from the
conference—typically the last party added. Consequently, the drop_req()
callback allows clients to drop parties from a conference.

The MPI does not provide explicit means for a client to specify which party
should be dropped from the conference. If your technology supports such
capabilities, the XtlKVList on the drop_req() should be used to allow
clients to make such a specification. If your technology only supports the
dropping of the last party, there is some ambiguity as to which party will be
dropped because of the potential swapping of call object attributes when the
conference was set up; refer to “Guaranteeing Conference Indications” on
page 33. Under these circumstances, you may not have control over which
party is dropped.

Note – If a remote party chooses to drop from a conference, the switch will
disconnect the party, however, your call object might not be notified of this
event. This is switch-specific behavior.

Figure 2-10 shows the drop call scenario. Your drop_req() callback should
implement the following pseudo-code:

void SimCall::drop_req(XtlKVList& args) {

// supply code to drop the last party in a conference

}

If the drop succeeds, your provider then calls event_ind() on the conference
call:

38 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

event_ind(exception,
 DROP_EVENT,
 XtlPCause::CAUSE_NORMAL,
 XtlNullKVListC);

Figure 2-10 Drop Call Scenario

Configuring Media Channels

If a client wants to configure the media channel associated with a call, the MPI
invokes the call’s configuration_req() callback. If the media channel for
the call is available, your provider should try to put the media channel into the
requested configuration. If the media channel for the call is not currently
available, your provider must check to see if the requested configuration
differs from the current configuration. If so, the provider should cache the
request, set the call’s configuration slot, and send an
event_ind(CONFIGURATION_EVENT) to indicate how it will attempt to
configure the media channel when it becomes available.

When the media channel becomes available, the provider should attempt to set
up the media channel as prescribed by the configuration slot. If the provider
cannot configure the media channel as prescribed by the configuration slot, the
provider should set the configuration slot to the current configuration and
send an event_ind(CONFIGURATION_EVENT) .

Hence, your callback for the configuration_req() should look similar to:

MPI Provider

call->drop_req()

call->event_ind(DROP_EVENT)

Provider Framework and Concepts 39

2

void SimCall::configuration_req(XtlKVList& args) {
XtlKVList configuration;
boolean_t media_channel_available;
XtlP::Exception exception;

get_media_channel_available(exception,
media_channel_available);

configuration = validate_configuration(exception, args);

if (exception != XtlP::EXCEPTION_SUCCESS) {
error_ind(err,

 XtlP::ERROR_INVALID_ARGUMENT,
 CONFIGURATION_REQ,
 XtlNullKVListC);

}
}

Note that the exception output parameter for event_ind() and
error_ind() should be checked, and, if not equal to XtlP::SUCCESS , the
exception should be handled appropriately.

Presenting Media Channels to the Client

In designing your provider, you may want to allow the client access to the
media channel associated with a call so that it can read, write, redirect, filter, or
perform some manipulation on a call’s data. A provider can give the client
control of the media channel by using the following procedure:

1. Construct an XtlPPort object.

2. Use the call object’s update_port_ind() method to register the port.

3. Configure the call’s media stream using the call object’s
set_configuration() method.

4. Send an event by calling the call’s event_ind() method.

Your provider must be able to access a call’s data as a STREAMS® stream.
When your provider wants to give clients access to the data, it must construct
an XtlPPort object. The argument to the constructor is the file descriptor of
the stream associated with the call’s data. Constructing the XtlPPort object
gives the MPI access to the data associated with the stream through the
standard STREAMS mechanisms. Your provider can revoke the MPI’s access to
the data by destroying the XtlPPort object.

40 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

Between the time your provider constructs an XtlPPort object and the time it
destroys it, it is not valid for your provider to manipulate (for example, read or
write) the stream associated with the XtlPPort . Furthermore, if multiple
XtlPPorts are constructed for a given stream head, it is invalid for your
provider to manipulate the associated stream until the destructor for each port
object has been called.

Note – XtlPPorts do not distinguish between stream heads that are opened
with different modes. Hence, if your provider wants to provide read and write
access to a call’s data, it must do so by creating a single XtlPPort for the
stream, and then the stream can be opened in read/write mode.

The code you write should look similar to:

int example_fd;
XtlPPort * example_xtlp_port;
XtlP::Exception exception;
example_fd = open("/dev/streams_data_channel", O_RDWR);

example_xtlp_port = new XtlPPort;
. . .

// until delete, access to fd is not valid
. . .

delete example_xtlp_port;

Constructing an XtlPPort for a stream head only informs the MPI of a
STREAM that it can manipulate. The STREAM must now be associated with a
call. This is done through the update_port_ind() method of a call. Hence,
once the XtlPPort for the call’s data is constructed you must call:

SimCall * sim_call
sim_call->update_port_ind(exception, example_xtlp_port);

In addition to constructing the XtlPPort and calling update_port_ind()
for the call, your provider must update the data stream configuration for the
call. To do so:

1. Create an XtlKVList for the configuration with the appropriate
<XtlConfigInputK, XtlConfigStreamC> and/or
<XtlConfigOutputK, XtlConfigStreamC> pair(s).

2. Configure the media stream using set_configuration() .

3. Send an event_ind(INFO_EVENT) .

Provider Framework and Concepts 41

2

For example, you might write code that looks similar to:

XtlKVList configuration;
sim_call->get_configuration(exception, configuration);
configuration->add(XtlConfigInputK, XtlConfigStreamC);
configuration->add(XtlConfigOutputK, XtlConfigStreamC);
sim_call->set_configuration(exception, configuration);

sim_call->event_ind(exception,
XtlPCall::INFO_EVENT,
XtlPPCall::CAUSE_NORMAL,
XtlNullKVListC);

The ordering of activities described above is the way your provider will
usually sequence activities to present data stream access to the MPI. However,
this need not be the case. For example, if a client asks to configure a media
channel that is currently unavailable (see “Handling Media Channel
Configurations” on page 97), your provider might choose to call
set_configuration() for the desired media channel and send an
event_ind(INFO_EVENT) immediately, even though the media stream is not
available. This allows the client to proceed without waiting on this event.
When the media stream does become available, it merely constructs the port
and calls update_port_ind() . Setting the configuration and calling
event_ind() to inform the MPI of the media stream configuration is not
necessary because this was previously done in the preconfiguration dialog.

42 SunXTL 1.1 Provider Programmer’s Guide—December 1995

2

43

Creating a Provider Package 3

This chapter describes how to create a provider executable and how to package
your provider product for end-users.

Note – To use the SunXTL libraries, your development system must be current.
For SPARC systems, use C++ 3.0.1 in SPARCompilers 2.0.1. For x86 systems,
use C++ 3.0.1 in ProWorks 2.0.1.

Writing a Provider Program
The process of writing a provider is straightforward and well defined. It
involves creating subclasses from the XtlPFactory , XtlPProvider , and
XtlPCall classes, and implementing their pure virtual functions. You can
begin this writing process from nothing or from a set of files that contains
generic provider code.

Quick Start to Writing a Provider

The most time-consuming part of writing a provider is implementing code for
the pure virtual functions in your subclasses. For that reason, files containing
generic skeleton code to create any provider is supplied to help you begin the
writing process quickly. The generic code declares the necessary data types and

44 SunXTL 1.1 Provider Programmer’s Guide—December 1995

3

main() function—you need only fill in the empty methods with functionality
to define your provider’s behavior. Table 3-1 shows the files you can use to
begin writing a provider.

Writing a Provider from the Beginning

If you want to create your provider program from the beginning, follow these
steps:

1. Include the header file <xtl/xtlp/xtlp.h.> .
This header file contains all necessary MPI header files in one:

• xtlp_globals.h
• xtlp_call.h
• xtlp_factory.h
• xtlp_provider.h
• xtlp_port.h
• bytearray.h
• kvlist.h
• xtldb.h

Table 3-1 Generic Provider Code Files

File Description

call.h Defines a subclass named Call .

call.cc Declares empty methods for Call .

factory.h Defines a subclass named Factory .

factory.cc Declares empty methods for Factory .

provider.h Defines a subclass named Provider .

provider.cc Decleares empty methods for Provider .

debug.h Includes <assert.h> and <syslog.h> headers and defines
SYSLOG()

main.cc Defines a signal handler, initializes the dispatcher, and
instantiates a factory object to start off the provider.

Makefile A makefile to create a provider executable. This makefile can be
customized by changing the variables: PROG_NAME,
PROJECT_CCFLAGS, PROJECT_CPPFLAGS, PROJECT_LDFLAGS,
and PROJECT_LDLIBS.

Creating a Provider Package 45

3

2. Include the necessary bytearray.h , kvlist.h , and xtldb.h header
files.

3. Include <Dispatch/iohandler.h> and the appropriate dispatcher
header file <Dispatch/sldispatcher.h> ,
<Dispatch/xtdispatcher.h> , or <Dispatch/xvdispatcher.h> .

4. Derive the XtlPCall class; see “XtlPCall Methods” on page 88

a. Override the cleanup() method.

b. Override the request callback methods.

5. Derive the XtlPProvider class; see “XtlPProvider Methods” on page 85.

a. Override the cleanup() method with code to delete any private
structures, reset the hardware state, and so on.

b. Override the request callback methods. You must supply your
implementations for the create_call_req() and extension_req()
callbacks.

6. Derive the XtlPFactory class; see “XtlPFactory Methods” on page 83.

a. Override the cleanup() method.

b. Override the create_provider_req() method.

7. Create the main() loop.

8. Within the main() loop, instantiate a dispatcher object and define it as
the global dispatcher by calling dpDispatcher::instance() .

9. Within the main() loop, instantiate your XtlPFactory object; providers
and call objects will be instantiated dynamically when requested by the
client.

10. Enter the event loop for your dispatcher.

46 SunXTL 1.1 Provider Programmer’s Guide—December 1995

3

Linking to the SunXTL Libraries

Table 3-2 shows the various libraries you should link for each of the classes
that your provider uses.

Compiling the Provider Simulator

The SunXTL package provides example code in the directory
/opt/SUNWxtl/src/simulator .

The directory contains a makefile that creates two executables: the provider
xtlp_sun_sim and a test program xtl_provider_test .

Creating a Provider Package
As a provider writer, you must package your provider so that users can install
it using pkgadd(1M) and configure it using the SunXTL administration tool
xtltool(1) . You can assume that users have already installed the SunXTL
runtime package before they attempt to install your provider package.
However, you may not assume that the SunXTL package has been installed in
its default path; thus your provider package must be relocatable; see “Creating
Relocatable Packages” on page 47. A basic provider package should contain:

• All necessary scripts to install a package (for example, preinstall, postinstall,
and prototype description files as used by pkgadd)

• A provider executable
• A template file
• Any other provider-specific files and directories

Table 3-2 Library Names and Functions

Name Function LD_FLAGS

libxtlutil.so Utility classes (XtlString ,
XtlByteArray , XtlKVList , and so on)

-lxtlutil

libxtlp.so MPI classes library -lxtlp

libdispatch.so Dispatcher and I/O handler classes -ldispatch

Creating a Provider Package 47

3

Creating Relocatable Packages

All provider packages should be constructed so that they are fully relocatable
in case the SunXTL platform is not installed in its default location. The default
location for the SunXTL runtime package is /opt/SUNWxtl . However, because
system administrators have the freedom to install the package elsewhere, your
provider package must be relocatable. For your provider to adapt to different
installations, you need to supply a start-up script that can examine its
environment and pass that information to your provider executable when it
starts.

The start-up script is pointed to by the XTL_START key in the provider
configuration file and in the template file; Table 3-3 describes the XTL_START
key. XTL_START should always point to an intermediate script that performs
any needed setup before actually invoking the provider executable. This allows
such environment variables as PATH and LD_LIBRARY_PATH to be set before
the provider is invoked.

For example, the following Bourne shell code uses pkginfo(1) to query the
location of the SunXTL package. Once the location is discovered, the location
of SunXTL libraries is set so that the provider executable can run.

XTLB_ROOT=‘pkginfo -r SUNWxtlb 2> /dev/null‘
[-z "$XTLB_ROOT"] && XTLB_ROOT=/
["$XTLB_ROOT" = /] && XTLDIR=/opt/SUNWxtl ||
XTLDIR=${XTLB_ROOT}/SUNWxtl

exec env LD_LIBRARY_PATH=$XTLDIR/lib $XTLDIR/bin/xtlp_my_provider

Creating Provider Templates

The SunXTL platform uses a template file from which it creates configuration
files for providers. The template file contains defaults for several mandatory
keys and allows you to define your own provider-specific keys. These keys
define provider attributes, such as the provider family name, a version
number, paths to documentation, and so on. Table 3-3 shows the keys and
values that you must specify in your template file.

To create a template file, use any ASCII editor. The template file is simply an
ASCII file containing key-value pairs. To help users configure your provider,
you need to supply default values for the keys described in Table 3-3. When

48 SunXTL 1.1 Provider Programmer’s Guide—December 1995

3

users configure a provider, xtltool(1) creates a default configuration file for
the provider based on your template. Using xtltool , the user can then
change the configuration with the aid of documentation that you provide.

Table 3-3 Key-Value Pairs for Provider Template Files

Key Name Description of Value

XTL_FAMILY_NAME The XTL_FAMILY_NAME value is a unique, system-wide
name of the provider’s provider family.

XTL_PROVIDER_NAME The XTL_PROVIDER_NAME value is a unique, system-
wide name for the provider. The XTL_PROVIDER_NAME
value can be changed by changing the provider’s
primary alias using xtltool . See the Sun XTL 1.1
Administrator’s Guide for information about aliases.

XTL_START The value of XTL_START is a fully qualified path name
to a start-up script that executes your provider
executable, with any necessary parameters; the
XTL_START value cannot be empty. The script may be a
blocking or non-blocking script. At any given time, only
one instance of the provider script will be executing.
Consequently, the XTL_START value must be the same
for all providers of the same family.

If the SunXTL platform cannot communicate with your
provider process, it invokes the XTL_START script again.
When the SunXTL platform starts your provider, it does
so with the following environment:

XTL_FAMILY_NAME=
<family name from configuration file>

It is important to note that the XTL_FAMILY_NAME value
is all that is passed in the environment. This means that
any additional environment variables such as PATH and
LD_LIBRARY_PATH must be set by the XTL_START start-
up script.

Creating a Provider Package 49

3

Creating Template Files at Installation

If your provider package has dependencies on other software packages, you
could write a script that creates a template file to reflect the configuration of
the user’s host; for example, your script could create a template based on
certain environment variables or the location (paths) of other packages. This
can be done using preinstallation scripts that are used in the pkgadd
installation process.

Template File Format

Your documentation should fully describe how users configure a provider; that
is, the documentation should describe all provider-specific key-value pairs that
the provider recognizes as well as the required keys.

XTL_DOCUMENTATION This key is intended for presenting documentation about
the provider to the user. The value is a fully qualified
path to an executable along with parameters for the
executable; xtltool provides an Execute Document
Command button. When the button is pressed, the value
of the XTL_DOCUMENTATION key is executed. The
documentation command is executed with the same
environment as xtltool .

XTL_SETUP This key is intended for doing arbitrary provider-specific
initialization. The XTL_SETUP value is a fully qualified
path to an executable along with parameters for the
executable; xtltool provides an Excute Setup
Command button. When the button is pressed, the value
of the XTL_SETUP key is executed. The XTL_SETUP
command is executed with the same environment from
which xtltool was run.

XTL_VERSION The value of XTL_VERSION should reflect the current
SunXTL platform release level for which the provider
runs; for example, 1.0.

Other provider-specific
key-value pairs
(optional)

A template file may also contain other default key-value
pairs that describe configuration information that is
specific to your provider.

Table 3-3 Key-Value Pairs for Provider Template Files

Key Name Description of Value

50 SunXTL 1.1 Provider Programmer’s Guide—December 1995

3

When your provider package is installed, a template file must be copied to, or
created in, the /etc/xtl/templates directory. The name of the template file
should be <provider_family_name>.template , where <provider_family_name> is
a unique, system-wide name.

The key-value pairs in the template file are represented in ASCII. The value
portion of the key-value pair can only be of type XtlString . A line in the
template file is either a key-value pair, a comment (a line that begins with a
“#”), or white space (a line consisting only of the characters in
[\t\n] —space, tab, or newline characters). If a line is a key-value pair, it is
essentially a string (a sequence of ASCII characters with no white space)
followed by a colon (:), followed by zero or more strings (the value). Formally,
a line representing a key-value pair in the template file has the following form:

<kv_pair> == space key space ":" space value "\n"

where:

<space> == [|\t]*
<key> == [any non-space ASCII character except for colons]+
<value> == NULL or

[a non-space ASCII character][an ASCII character except \n]*

An example of a line in a template file representing a key-value pair would be:

XTL_START : /opt/MYCOxtl/bin/my_provider -a -b -c

where the key is XTL_START and the value, an XtlString , is
/opt/MYCOxtl/bin/my_provider -a -b -c .

Creating a Provider Package 51

3

Thus, when the user installs your provider, it will be configured with this key-
value pair. Code Example 3-1 shows a template file example for a 5e5 provider.

Code Example 3-1 Sample Provider Template

Key Value
--- -----

XTL_VERSION: 1.0
XTL_START: /opt/SUNWx5e5p/scripts/xtlp_sun_5e5.start
XTL_CLEANUP: RELOCDIR/OPT_OR_USR/scripts/xtlp_sun_5e5.cleanup
XTL_FAMILY_NAME: xtlp_sun_5e5
XTL_PROVIDER_NAME: xtlp_sun_5e5
XTL_SETUP: /opt/SUNWconn/bin/isdntool
XTL_DOCUMENTATION: pageview /opt/SUNWx5e5p/doc/xtlp_sun_5e5_doc.ps

Provider-specific key-value pairs
DEFAULT_SPEAKER: SPEAKER
DEFAULT_MICROPHONE: MICROPHONE
B1: /dev/isdn/0/te/b1
B2: /dev/isdn/0/te/b2
DBRI_MANAGEMENT_CHANNEL: /dev/isdn/0/mgt
UMUX: /dev/xtl/umux
SWITCH_TYPE: 5E5
TERMINAL_TYPE: B
NUMBER_OF_CALL_APPEARANCES:3
NAI: 0

52 SunXTL 1.1 Provider Programmer’s Guide—December 1995

3

53

Utility Classes 4

The utility classes provide the data structures and event-handling objects that
are used throughout the API and MPI libraries. These utility classes define the
structures necessary to convey simple and aggregate data, which can be passed
among Xtl objects; these containers of data include the classes XtlByteArray ,
XtlString , and XtlKVList . The remaining utility classes are dpDispatcher
and dpIOHandler , which handle file descriptor I/O events; if you have
worked with the InterViews library, these classes should be familiar because
they are derived from those classes.

Using XtlByteArray

An XtlByteArray object is a byte array structure with the addition of
convenient operators, such as assignment, length count, and equality
comparison of array elements. An XtlByteArray is typically used to hold
XtlAddress values and provider-specific values in XtlKVList objects.
Table 4-1 shows the methods provided by the XtlByteArray class.

54 SunXTL 1.1 Provider Programmer’s Guide—December 1995

4

XtlByteArray offers some flexible ways of assigning and initializing
elements in the array. An XtlByteArray can be shared and passed to
functions without concern for memory management because it is reference
counted. Code Example 4-1 shows several ways to initialize and manipulate an
XtlByteArray .

Table 4-1 XtlByteArray Methods (from bytearray.h)

Method Description

Constructors

XtlByteArray(); Constructs a zero-length XtlByteArray .

XtlByteArray(const XtlByteArray& a); Constructs a copy of a given XtlByteArray .

XtlByteArray(const char* bytes,
u_int len);

Constructs an XtlByteArray from a buffer of len bytes.

XtlByteArray(const char* string); Constructs an XtlByteArray from a null-terminated
string.

Operators

const char* bytes() const; Returns the contents of an XtlByteArray as a pointer to
a buffer.

u_int length() const; Returns the number of bytes in the array.

const char* operator()() const; Like bytes() , this operator returns the contents of the
XtlByteArray as a string. This operator is provided to
be consistent with XtlString::operator() .

boolean_t operator==
(const XtlByteArray&) const;

Compares two XtlByteArrays for equality.

boolean_t operator!=
(const XtlByteArray&) const;

Compares two XtlByteArrays for inequality.

XtlByteArray& operator=
(const XtlByteArray&);

Assigns contents of one XtlByteArray to another.

Utility Classes 55

4

Note – There are no data alignment guarantees when using XtlByteArray
except that byte order and byte boundaries are preserved. If you need to store
structured data in an XtlByteArray , you must convert the structure to a byte
format first by using an xdr(3N) conversion routine; this helps to maintain
code portability.

Code Example 4-1 XtlByteArray Usage Examples

Using XtlString

An XtlString encapsulates a reference-counted string in much the same way
as XtlByteArray does an array. The main difference is that XtlString s are
null terminated while XtlByteArray s may contain embedded null values.
You can assign XtlString s in the same manner as char * strings and pass
XtlString s without de-referencing them. Table 4-2 shows the methods
provided by the XtlString class. Code Example 4-2 shows some examples of
XtlString usage.

#include <xtl/bytearray.h>

// XtlByteArray Examples

 char buffer[256];
 // pretend buffer was initialized with a 23-byte structured value
 XtlByteArray array(buffer,23);

 // print total size of array and second byte in array
 printf("size=%d, array[1] = %d\n", array.length(),
array.bytes()[1]);

 // an alternate syntax would use operator() instead of bytes()
 printf("size=%d, array[1] = %d\n", array.length(),
array.operator()[1]);

Table 4-2 XtlString Methods (from bytearray.h)

Method Description

Constructors

XtlString(); Constructs an empty XtlString .

XtlString(const char* str); Constructs an XtlString from a regular string.

56 SunXTL 1.1 Provider Programmer’s Guide—December 1995

4

XtlString(const XtlString& s); Constructs a copy of a given XtlString .

XtlString(const XtlByteArray& s); Constructs an XtlString from an
XtlByteArray . Only bytes up to the first null
are copied.

Operators

const char* bytes() const Returns the contents of an XtlString as a
pointer to a buffer.

u_int length() const; Returns length of an XtlString .

const char* operator()() const; Returns the contents of an XtlString as a
string.

boolean_t operator==
(const XtlString&) const;

Compares two XtlStrings for equality.

boolean_t operator==
(const char*) const;

Compares XtlString to a string for equality.

boolean_t operator!=
(const XtlString&) const;

Compares two XtlStrings for inequality.

boolean_t operator!=
(const char*) const;

Compares an XtlString to a string for
inequality.

XtlString& operator=
(const XtlString& str);

Assigns one XtlString to another.

Code Example 4-2 XtlString Usage Examples

#include <xtl/bytearray.h>

extern "C" int printf(const char *, ...);

void print_xtlstring(const XtlString& str) {
 printf("XtlString=’%s’\n", str());
}

main() {

Table 4-2 XtlString Methods (from bytearray.h) (Continued)

Method Description

Utility Classes 57

4

Using XtlKVList

XtlKVList objects are used mainly as method arguments to pass parameters
in the form of lists. An XtlKVList object is an ordered list of key and value
pairs as shown in Figure 4-1; it may also contain other XtlKVList objects. In a
key-value pair, the key is always an XtlString while the corresponding value
can be of type u_long , XtlString , XtlByteArray , or a nested XtlKVList .

// XtlString Examples

XtlString mystr("foobar"); // construct a string on the stack.

 print_xtlstring(mystr);// pass an xtlstring as an arg.

 print_xtlstring("baz");// construct a temporary string and pass it.
// the literal is converted to XtlString.

 mystr = "blat"; // change the value of the variable mystr.

 print_xtlstring(mystr);// pass the new value to print_xtlstring()

 XtlString newstring = "foobar2"; // construct a null XtlString
// then assign a string value

 mystr = newstring; // make mystr the same as newstring
 print_xtlstring(mystr);

 printf("length=%d\n", mystr.length());// print length of XtlString

 XtlString anotherstring(newstring);// duplicate an XtlString
 XtlString nullstring; // create a null XtlString
}

Code Example 4-2 XtlString Usage Examples (Continued)

58 SunXTL 1.1 Provider Programmer’s Guide—December 1995

4

Some characteristics of an XtlKVList object are:

• An XtlKVList is ordered and traversed sequentially. An internal pointer
points to the current position in the list.

• XtlKVList objects are reference counted to relieve you of memory
management chores. The copy and assignment operators perform lazy
copies, so that an actual copy operation only occurs if the list is modified.

• You can add() and remove() key-value pairs, move to the first () pair,
next () pair, or reset() the current pointer position to the beginning of
the list. You can also get() the value or retrieve the key() from a key-
value pair.

• Key-value pairs may be removed from the list, relative to the current
position. The current position is specified by the current pointer, which is a
reference to a key-value pair on the list; that key-value pair can also be
thought of as the current key-value pair.

• Key-value pairs are retrieved in the same order they were added. That is, in
a first-in, first-out manner.

• Key-value pairs are always added to the end of the list without changing the
current position.

• Removing a key-value pair moves the current pointer to the preceding pair.
That is, removing the third pair causes the current pointer to point to the
second pair. Removing the first pair puts you at the beginning of the list (the
same position in which a reset() leaves you).

Figure 4-1 XtlKVList Structure

BEGIN key-value
1

key-value
2

XtlKVList

3

Current Pointer

key-value
4

ENDkey-value

Utility Classes 59

4

The XtlKVList class offers the command methods listed in Table 4-3.

Table 4-3 XtlKVList Methods (from kvlist.h)

Method Description

boolean_t add(const XtlString& key,
u_long value)

The add() methods add a specified key-value pair
to the end of the XtlKVList structure. The methods
differ only in the type of value that is appended.
B_TRUE is returned upon success; otherwise
B_FALSE is returned.

boolean_t add(const XtlString& key,
const XtlString& value)

Adds an XtlString value; the XtlString is
copied, so the list does not reference the value
argument. B_TRUE is returned upon success;
otherwise B_FALSE is returned.

boolean_t add(const XtlString& key,
const XtlByteArray& value)

Adds an XtlByteArray value; the XtlByteArray
is copied, so the list does not reference the value
argument. B_TRUE is returned upon success;
otherwise B_FALSE is returned.

boolean_t add(const XtlString& key,
const char* value)

Adds a null-terminated string value; the value is
stored as an XtlString . B_TRUE is returned upon
success; otherwise B_FALSE is returned.

boolean_t add(const XtlString& key,
const XtlKVList& list)

Adds an XtlKVList to the current list; it does not
affect the internal pointers that point to the current
key-value pair in each list. B_TRUE is returned upon
success; otherwise B_FALSE is returned.

boolean_t remove() Removes the current key-value pair from the list.

boolean_t get(u_long& val) Gets the value of the current key-value pair. If the
value is a u_long , val is set to that value and
B_TRUE is returned. If the value is of another type,
val is undefined and B_FALSE is returned.

boolean_t get(XtlString& val) Gets the value of the current key-value pair. If the
value is an XtlString , val is set to that value and
B_TRUE is returned. If the value is of another type,
val is undefined and B_FALSE is returned.

boolean_t get(XtlByteArray& val) Gets the value of the current key-value pair. If the
value is an XtlByteArray , val is set to the value
and B_TRUE is returned. If the value is of another
type, val is undefined and B_FALSE is returned.

60 SunXTL 1.1 Provider Programmer’s Guide—December 1995

4

boolean_t get(XtlKVList& list) Gets the value of the current key-value pair. If the
value is an XtlKVList , val is set to the value and
B_TRUE is returned. If the value is of another type,
val is undefined and B_FALSE is returned.

u_long count() Returns the number of key-value pairs in the list.

boolean_t key(XtlString& key) Gets the key of the current key-value pair. If there is
no current pair (such as at the beginning or end of a
list), key is undefined and B_FALSE is returned.
Otherwise, key is a reference to the key and B_TRUE
is returned.

boolean_t type(Type& t) Returns the type of the value in the current key-
value pair. If the current pointer is at the head or tail
of the list, B_FALSE is returned; otherwise, B_TRUE
is returned. You can use the type value in switch()
statements to perform conditional actions. The Type
enumeration has the values: ULONG, STRING,
BYTEARRAY, KVLIST .

boolean_t first() This method is a shorthand equivalent to using
reset () followed by a next() . The return code is
the return code from next() .

boolean_t first(const XtlString& key) This method is a shorthand equivalent to using
reset () followed by a next(key) ; the pointer is
placed on the first key-value pair whose key
matches the key argument. The return code is the
return code from next().

void reset() Sets the current pointer to the beginning of the list,
before the first key-value pair. Note that you need to
use next() to set the pointer to the first key-value
pair. This also means that get() and remove() will
fail after a reset () unless a next() is first
performed.

boolean_t next() Advances the current pointer to the next key-value
pair in the list. B_TRUE is returned upon success. If
you are at the end of the list and there is no next
pair, B_FALSE is returned and the current pointer
moves off the list.

Table 4-3 XtlKVList Methods (from kvlist.h) (Continued)

Method Description

Utility Classes 61

4

boolean_t next(const XtlString& key) Advances the current pointer to the next key-value
pair that has a key equal to the key argument.
B_TRUE is returned upon success. If the list contains
no matching pairs after the current pointer, then
B_FALSE is returned, and the current pointer is
positioned at the end of the list.

Table 4-3 XtlKVList Methods (from kvlist.h) (Continued)

Method Description

62 SunXTL 1.1 Provider Programmer’s Guide—December 1995

4

Copying an XtlKVList

A program can make a copy of an XtlKVList by using either of the following
XtlKVList methods:

boolean_t subset(const XtlKVList&,
XtlKVListCompareFunc = NULL)

Compares this list with the argument list and
returns B_TRUE if this list is a subset of the
argument. The lists are treated as sets, thus order
and duplicates are not considered in the
comparison; for example, two lists, a and b, are set
equivalent if a.subset(b) and b.subset(a) both
return B_TRUE. In basic use, subset() compares
the value types ULONG, STRING, and BYTEARRAY; if
either list contains embedded lists, the comparison
fails.

However, you can specify an optional comparison
function to compare lists that have embedded lists.
The arguments to your custom comparison function
must have the form:

boolean_t kvlist_compare_fn(
const XtlString key,
const XtlKVList& a_list,
const XtlKVList& b_list)

where a_list is an embedded list in this list and
b_list is an embedded list from the argument to
subset() . The comparison function should return
B_TRUE if a_list is a subset of b_list .

void print(int fd) Prints the contents of the list in a structured format.
The output is directed to the specified file descriptor.
See “Creating a Hierarchical XtlKVList” on page 62
for an example of usage and output.

extern "C" void print_kvlist(
const XtlKVList*);

Like print() , this external C function prints the
contents of the list in a structured format to standard
output (stdout). It is intended for use in debuggers
that may have difficulty calling
XtlKVList::print() .

Table 4-3 XtlKVList Methods (from kvlist.h) (Continued)

Method Description

Utility Classes 63

4

XtlKVList(const XtlKVList& r);

XtlKVList& operator=(const XtlKVList& r);

Creating a Hierarchical XtlKVList

The add(const XtlString& key,const XtlKVList& list) method
allows you to create XtlKVList s that have a hierarchical or recursive
structure.

The print routine accommodates hierarchical XtlKVList s by displaying the
number of elements in the embedded XtlKVList , followed by the key-value
pairs, which are indented from the previous level. For example, the code:

#include <xtl/kvlist.h>

XtlKVList kvlist;
XtlKVList kvlist2;

kvlist.add("key1","val1");
kvlist.add("key2",3);

kvlist2.add("key4","val4");
kvlist2.add("key5","val5");
kvlist2.add("kvlistkey",kvl2);
kvlist2.add("key6",6);

kvlist.add("kvlistkey",kvl2);
kvlist.add("key3","val3");
kvlist.print(1);

results in the following output:

key="key1" value="val1"
key="key2" value=3
key="kvlistkey" kvlist.count=4

key="key4" value="val4"
key="key5" value="val5"
key="kvlistkey" kvlist.count=2

key="key4" value="val4"
key="key5" value="val5"

key="key6" value=6
key="key3" value="val3"

64 SunXTL 1.1 Provider Programmer’s Guide—December 1995

4

Traversing XtlKVList s

A common task your programs need to perform is to traverse and examine the
contents of an XtlKVList . The following code shows how to traverse a list:

XtlKVList kvlist;
Type type;

kvlist.reset();

while (kvlist.next()) {
kvlist.type(type);

switch(type) {
case XtlKVList::ULONG {

u_long u;
kvlist.get(u);
// do something

}

case XtlKVList::STRING {
XtlString string;
kvlist.get(string);
// do something

}

case XtlKVList::BYTEARRAY {
XtlByteArray array;
kvlist.get(array);
// do something

}

case XtlKVList::KVLIST {
XtlKVList list;
kvlist.get(list);
// do something

}
}

Using the Event Dispatcher
The event dispatcher (dpDispatcher) and I/O handler (dpIOHandler)
classes used in the SunXTL libraries are derived from the InterViews library
classes. The dpDispatcher class works closely with the dpIOHandler class,

Utility Classes 65

4

which is associated with file descriptors. When I/O handlers are linked to a
dispatcher (using dpDispatcher::link()), the dispatcher polls each I/O
handler in round-robin manner. When new data appears on any of the file
descriptors, the dispatcher passes control to the I/O handler. In this context,
new data means there is new input or output ready on a file descriptor, or that
an exception (timer expiration) occurred; see the select(3C) man page.
Figure 4-2 helps to illustrate these concepts.

Figure 4-2 dpDispatcher and dpIOHandler Interactions

Again, the dispatcher used in the SunXTL platform is derived from the
InterViews dispatcher class. For SunXTL Teleservices, a subclass of
dpDispatcher called dpSLDispatcher is defined, where SL signifies the
name Solaris Live! Unlike the standard dpDispatcher class, this subclass
allows more than 20 file descriptors, and allows you to unlink a dpIOHandler
from within another dpIOHandler without problem.

The dispatcher library is called libdispatch.so and should be linked with
-ldispatch in addition to -lxtlutil and -lxtl or -lxtlp .

fd

Dispatcher

fd

polling

data ready write pending timer expired

dpIOHandlers
fdcontaining

file descriptors

I/O conditions:

66 SunXTL 1.1 Provider Programmer’s Guide—December 1995

4

The standard InterViews dispatcher does not work with SunXTL Teleservices.
To program in SunXTL Teleservices, you must use one of the following
dispatchers:

• dpSLDispatcher for command line environments
• dpXVDispatcher for use with XView™
• dpXtDispatcher for use with OLIT™ or Motif®)

You should use dpSLDispatcher for programs that do not need to interact
with the window system (for example, if you are writing providers or
command-line-based applications). If you are using XView, use
dpXVDispatcher from xvdispatcher.h . If you are using OLIT or Motif, use
dpXtDispatcher from xtdispatcher.h .

An application only needs one instance of a dispatcher. The static member
function, dpDispatcher::instance() , is available to create an instance of
the dispatcher and then return a reference to it. If a dispatcher already exists, a
reference to the existing dispatcher is returned. Table 4-4 shows the
dpDispatcher class methods.

Table 4-4 dpDispatcher Methods (from dispatcher.h)

Method Description

virtual void link (
int fd,
DispatcherMask mask,
dpIOHandler* ioh)

Attaches a dpIOHandler , given its file descriptor and a
DispatcherMask . The DispatcherMask describes the I/O
conditions that the dpIOHandler is interested in, such as whether the
file descriptor has new data available for reading. The possible mask
values are: ReadMask, WriteMask , and ExceptMask .

When an I/O condition occurs, the dpIOHandler is expected to read
data from the file descriptor, write data to the file descriptor, or handle
the exception depending on the I/O condition.

virtual dpIOHandler* handler (
int fd,
DispatcherMask mask)

Returns the dpIOHandler for a given file descriptor.

virtual void unlink (int fd) Detaches the dpIOHandler associated with the file descriptor
argument.

Utility Classes 67

4

Initializing the Dispatcher
The dispatcher must be initialized before use. The following code shows how
to do this:

#include <Dispatch/iohandler.h>
#include <Dispatch/sldispatcher.h>

void main() {
dpSLDispatcher d; // create SolarisLive dispatcher
dpDispatcher::instance(&d); // install dispatcher instance

// do other Xtl initialization

// enter main dispatch loop

virtual void startTimer (
long sec,
long usec,
dpIOHandler* ioh)

Starts the timer for the specified dpIOHandler . The time specified by
sec and usec is relative; that is, you can tell the timer to expire in five
minutes, but you cannot tell it to expire at 5 P.M.

virtual void stopTimer (dpIOHandler*) Stops the timer for the specified dpIOHandler .

virtual unsigned setReady (
int fd,
DispatcherMask)

Allows you to artificially set a file descriptor as ready, which triggers a
dispatch.

virtual void dispatch() The dispatch routine blocks all registered dpIOHandler objects until
an event occurs. Internally, dispatch() calls the system call
select(3C) ; once select() returns, dispatch() invokes the
appropriate dpIOHandler and returns. Your program should loop on
dispatch() to continuously handle events.

virtual unsigned dispatch(
long& sec,
long& usec)

Calling dispatch() with a time value causes dispatch() to block
until an event occurs on one of its IOHandlers or until the specified
time elapses. This is useful if you need to regain control after a fixed
period of time.

static dpDispatcher& instance() Returns a reference to the static, global dispatcher object.

static void instance(dpDispatcher*) Installs the specified dispatcher to act as the global dispatcher.

Table 4-4 dpDispatcher Methods (from dispatcher.h) (Continued)

Method Description

68 SunXTL 1.1 Provider Programmer’s Guide—December 1995

4

for (;;) {
d->dispatch();

}
}

Note – The initialization code for the dispatcher must be called before any
other SunXTL code. If it is not, two dispatcher processes are created, but only
one will run. As a result, certain internal routines will have registered their
handlers with the old dispatcher before the new one is started by your
program—this can cause your code to break.

However, for the Xt and XView dispatchers, you should not call dispatch()
in your dispatch loop. Instead, use the appropriate window toolkit mechanism,
such as xv_main_loop() .

#include <Dispatch/iohandler>
#include <Dispatch/xvdispatcher.h>

void main() {

// initialize xview

dpXVDispatcher d; // create specific dispatcher
dpDispatcher::instance(&d); // install dispatcher instance

// do other Xtl initialization

// enter xview notifier loop

xv_main_loop();
}

For a Motif application, do the following:

#include <Dispatch/iohandler>
#include <Dispatch/xtdispatcher.h>

void main() {

XtAppContext context;

// initialize Xt intrinsics

// create specific dispatcher
dpXtDispatcher d(default_app_context);
dpDispatcher::instance(&d); // install dispatcher instance

// do other Xtl initialization

// enter Xt notifier loop

XtAppMainLoop(context);

}

Utility Classes 69

4

Using dpIOHandler

The dpIOHandler class is used with the dispatcher as described in “Using the
Event Dispatcher” on page 64. A dpIOHandler manages read, write, and
exception handling operations for a file descriptor. The dispatcher calls a
dpIOHandler when the I/O condition for a file descriptor changes.

Note – dpIOHandler objects return values that affect the behavior of the
dispatcher. If a dpIOHandler returns a negative value, the dispatcher initiates
the unlink() command and ignores the file descriptor. If a positive value is
returned, the dispatcher marks the file descriptor as ready and goes through
the dispatch loop again. If zero is returned, the dispatcher assumes the callback
is finished with the file descriptor, and continues normally.

The dpIOHandler() constructor creates the dpIOHandler object. This object
consists of the callback functions: inputReady() , outputReady() ,
exceptionRaised() , and timerExpired() . The timerExpired()
function is called when a timer started with the dispatcher has expired. You
should avoid using UNIX timers such as setitimer(2) ; UNIX timers are
asynchronous and can be disruptive if the timer expires during an SunXTL call.
Instead, you should use synchronous dpDispatcher timers.

Table 4-5 shows the dpIOHandler class methods. By default the methods are
empty, so you need to override the method(s) for which the handler will use.

Table 4-5 dpIOHandler Methods (from iohandler.h)

Callback Method Description

virtual int
inputReady (int fd)

Called when there is input ready on the file
descriptor.

virtual int
outputReady (int fd)

Called when there is output ready on the file
descriptor.

virtual int
exceptionRaised (int fd)

Called when an exception is raised on the file
descriptor.

virtual void
timerExpired (
long sec, long usec)

The dpIOHandler timer expired; sec and usec
represent the actual time it waited before the timer
expired (actual timeout period versus specified time
out).

70 SunXTL 1.1 Provider Programmer’s Guide—December 1995

4

Using the Database Query Functions
The database query functions allow a client or provider program to query the
provider configuration file. The configuration file is a simple database
containing fields that correspond to the key-value pairs in an XtlKVList .
Each key-value pair describes an aspect of how a provider has been configured
on the host. Each query should reference a specific provider alias, which the
administrator has defined. See the Sun XTL 1.1 Administrator’s Guide for more
information about provider configuration files and aliases. Table 4-6 shows the
database query functions.

Code Example 4-3 shows an example of querying the provider configuration
database to discover a provider’s default speaker and microphone values. The
values are then used to configure the call’s media channel.

Code Example 4-3 Querying the Database

Table 4-6 Database Query Functions (from xtldb.h)

Function Description

extern int
xtl_db_verify(void)

Checks the SunXTL configuration database to ensure that it is valid.

extern int
xtl_provider_names(

XtlKVList& names)

Retrieves a list of all configured provider names and returns it in the XtlKVList
parameter. Within the XtlKVList , the key specifies the provider’s secondary
alias while the value element contains the primary alias of that provider. Values
are of type XtlString . The xtl_provider_names() function returns a count
of provider names retrieved, otherwise it returns -1 upon error.

int xtl_provider_info(
const XtlString& alias,
XtlKVList& info)

Retrieves all configuration information about the provider specified by alias
(primary or secondary) and returns the information in an XtlKVList . This
function returns a count of key-value pairs that were successfully retrieved from
the configuration database about the provider, otherwise it returns -1 upon error.

// This code queries the provider configuration database for the default speaker
// and microphone values, and composes a configuration specification to configure
// the media channel through configure_req().

 XtlString input;
 XtlString output;
 XtlKVList defaults;

// pass a provider name and get the provider attributes (keys and values)

Utility Classes 71

4

Using XtlFormat

When a client accesses a call’s data, it is useful to know the characteristics of
that data to properly interpret it—characteristics such as encoding, sample
rate, and sample size. SunXTL Teleservices defines several common data
formats and characteristics that your program can use. Providers can also
define and publish provider-specific data formats for use by the client.

A client can only initialize the data format of a call when it passes the
media_format parameter to XtlCall::connect_req() . After which, the
provider associates a format that best matches the requested format. The
format that is set can be examined by calling XtlCallState::format() .
From then on, only the provider can change the format through some provider-
specific extension or the provider may be able to determine the data coming
over a call and change the format state slot appropriately. For example, an

if (xtl_provider_info(call_state(excp).provider()->name(excp), defaults) < 0) {
fprintf(stderr, "Provider Database not configured?\n");
return;

}

// find first default microphone key and get its value,
// print error message if not found or not a string.
if (!defaults.first(XtlDBDefaultMicrophoneK) || !defaults.get(input)) {

fprintf(stderr, "Default Input not found.\n");
return;

}

// find first default speaker key and get its value
if (!defaults.first(XtlDBDefaultSpeakerK) || !defaults.get(output)) {

fprintf(stderr, "Default Output not found.\n");
return;

}

// compose the configuration
default_config.add(XtlConfigInputK, input());
default_config.add(XtlConfigOutputK, output());

// This configuration request configures the data stream
// using the key-value pairs contained in the default_config
// argument.
configuration_req(default_config);

72 SunXTL 1.1 Provider Programmer’s Guide—December 1995

4

initial voice call may be directed to fax a message and then return to a human
conversation. As the format changes, the provider changes the format slot and
informs the client, which can then query the format slot.

A call’s data format is described by the XtlFormat data type, which is defined
as an XtlKVList . A format object describes the various characteristics of the
call data. A format specification always starts with a format class key-value pair
(for example, key=XtlFormatClassK and value=XtlVoiceC), followed by
optional key-value pairs that further describe the characteristics of the data.
For example, Figure 4-3 shows an XtlFormat list that describes an 8 kB
sample of µ-law encoded voice data sampled at 8 Hz.

Figure 4-3 Voice Format Specification Example

Table 4-7 shows the predefined format keys and values that programs can use;
all types are XtlString unless otherwise specified. These well-known keys
and values are defined in the <xtl/constants.h> header file. If provider-
specific keys and values are used, they should be defined in the vendor’s
provider documentation.

XtlFormatClassK XtlFormatVoiceC

XtlFormatEncodingK XtlFormatULawC

XtlFormatSampleSizeK 8

XtlFormatSampleRateK 8000

XtlFormat

End

Key Value

Utility Classes 73

4

Table 4-7 Predefined XtlFormat Keys and Values

Class and Formats Description

XtlFormatClassK This key is required in all format requests and specifies the
general format class. It must be paired with one of the
following format values:

XtlFormatVoiceC The media channel contains voice quality audio. This format
may specify additional key-value pairs, such as
XtlFormatEncodingK , XtlFormatSampleSizeK , and
XtlFormatSampleRateK .

XtlFormatDataC Media channel contains uninterpreted data (for example, a raw
modem connection). This format contains
XtlFormatBandwidthK , XtlFormatFramingK , and
XtlFormatProtocolK .

XtlFormatFaxC The media channel contains fax data. This format contains
XtlFormatProtocolK .

XtlFormatEncodingK Audio data is encoded in one of the following standard
formats:

XtlFormatULawC CCITT G.711 µ-law encoding.

XtlFormatALawC CITT G.711 A-law encoding.

XtlFormatLinearC Linear Pulse Code Modulation encoding.

XtlFormatG721C CCITT G.721 compression. This encoding uses Adaptive Delta
Pulse Code Modulation with 4-bit precision.

XtlFormatG723C CCITT G.723 compression format. This encoding uses Adaptive
Delta Pulse Code Modulation with 3-bit precision.

XtlFormatSampleSizeK Number of bits per sample (stored as an unsigned long in the
list).

XtlFormatSampleRateK Rate of sampling flow in samples per second (value is stored as
an unsigned long type in the list).

XtlFormatBandwidthK Estimated speed of media channel in bits per second (value is
stored as an unsigned long in the list).

74 SunXTL 1.1 Provider Programmer’s Guide—December 1995

4

Requesting Formats

The underlying technology that a provider uses can support several possible
formats for a call. The client can request that a new outgoing call have a
particular format by specifying a format pattern in the
XtlCall::connect_req() media format parameter.

The format pattern is an XtlKVList that does not have to be a complete
format specification; a partial format specification can be passed to the
provider. That is, given an incomplete specification, the provider should select
a format that most closely satisfies all of the parameters in the format pattern.
To do so, the provider uses the XtlKVList::subset() method to compare
the request with its set of predefined formats. If no matching format can be
found, the provider should send an ERROR_FORMAT_NOT_SUPPORTED error
indication to the call object.

Usage Examples

The following examples show various format request scenarios.

XtlFormatFramingK Data link framing protocol used by a data call.

XtlFormatHDLC HDLC framing.

XtlFormatProtocolK Higher-level protocol used to interpret data.

XtlFormatIPC IP protocol is being sent over a data call.

XtlFormatG4C Group 4 fax protocol is being used for a fax call.

XtlFormatG3C Group 3 fax protocol is being used for a fax call.

XtlFormatUnknownC Use this when a value associated with a particular key is
unknown; that is, the protocol is unknown.

Table 4-7 Predefined XtlFormat Keys and Values (Continued)

Class and Formats Description

Utility Classes 75

4

Example 1
Suppose a provider supports both G3 and G4 fax protocols. If the client only
wants to make a G3 fax call, it would send the following format pattern:

where the first key-value pair identifies a fax format class, followed by the
specific G3 fax format.

Example 2
A provider supports both µ-law and A-law voice data encodings. The client
wants to place a voice call and is capable of handling both µ-law and A-law
data. It would send the following format pattern:

This format specification would match either µ-law or A-law. Once the
provider has chosen an encoding, the client examines the format slot in the call
object to determine which encoding to use.

Example 3
A provider uses a 2400 bps modem for data communication, but the client
wants to place a high-speed data connection. It would send the following
format pattern:

Because the provider cannot satisfy the request, it returns
error_ind(ERROR_FORMAT_NOT_SUPPORTED).

XtlFormatClassK XtlFormatFaxC XtlFormatProtocolK XtlFormatG3C

Key Value Key Value

XtlFormatClassK XtlFormatVoiceC

Key Value

XtlFormatClassK XtlFormatDataC XtlFormatBandwidthK 9600

Key Value Key Value

76 SunXTL 1.1 Provider Programmer’s Guide—December 1995

4

Using XtlCallReference

An XtlCallReference value is a unique host-wide ID that identifies a call.
This ID provides a process-independent handle to a call, thus applications on a
host can pass call ownership through any interprocess communication (IPC)
mechanism. Having an XtlCallReference value also allows your code to
identify the XtlCallState object associated with a call; with the call state
object, clients can then claim or monitor the call.

At the API level, you can obtain a call’s reference value by invoking
XtlCallState::call_reference() . You can then pass the reference value
to XtlProvider::get_call_state_req() to retrieve the related
XtlCallState object, or you can pass the reference value to
XtlCallState::provider_name() to obtain the name of the provider that
owns the call.

At the provider level, you obtain a call’s reference value by invoking
XtlPCall::get_call_reference() . You can then pass the reference value
to XtlPProvider::get_call_object() to obtain a pointer to a call object,
or you can pass it to XtlPFactory::get_provider_name() to find the
name of the call’s provider. You can then pass the provider name to
XtlPFactory::get_provider_obj() to get a pointer to the provider
object.

77

XtlP Classes 5

This chapter describes the primary XtlP classes in detail (XtlPFactory ,
XtlPCall , XtlPProvider , and XtlPPort). Figure 5-1 shows the XtlP class
hierarchy. Each of the derived classes contain callback methods. For each of these
methods, you must provide code to implement the functionality of your provider.

In addition, there are secondary classes that are used as global data types, such
as XtlFormat and XtlCallReference . The information in this chapter
serves as a reference for the interfaces to each of these classes. See Chapter 2,
“Provider Framework and Concepts” for a description of the relationships
between the XtlP classes.

Figure 5-1 XtlP Class Hierarchy

XtlPCall
XtlP

Provider
XtlP

XtlP

Factory XtlPPort

78 SunXTL 1.1 Provider Programmer’s Guide—December 1995

5

XtlP Base Class
The XtlP class is the base class from which the XtlPFactory ,
XtlPProvider , XtlPCall , and XtlPPort classes are derived. Although the
XtlP class does not contain any interface methods, it does encapsulate
enumerated values that define exception, error, and cause codes. Table 5-1,
Table 5-2, and Table 5-3 list the XtlP class enumerations.

Exception Codes

Exception codes inform the provider of errors resulting from method calls.
Each method returns, through its first parameter, one of the exception values
shown in Table 5-1. When a method returns, you should check the Exception
parameter for EXCEPTION_SUCCESS; any other value indicates an error
condition.

Table 5-1 Exception Codes (from xtlp_globals.h)

Exception Codes Meaning

EXCEPTION_UNKNOWN The exception code was not initialized to any value in this
table; this code should never be used.

EXCEPTION_SUCCESS No exception occurred, the operation was successful.

EXCEPTION_INVALID_FACTORY A bad factory object was passed to the provider constructor.

EXCEPTION_INVALID_PROVIDER A bad provider object was passed to the XtlPCall
constructor. This error indicates an unrecognized provider
name or a problem with reading the provider configuration
database.

EXCEPTION_INVALID_ARGUMENT An invalid parameter was passed to the method.

EXCEPTION_INVALID_OBJECT The object on which the method was invoked is invalid. This
error typically indicates a memory allocation failure, an
object initialization error, or a memory corruption error.

EXCEPTION_INVALID_DATABASE The XtlPFactory constructor was unable to open the
provider configuration database. There may be a problem
with the location or permissions of the database.

EXCEPTION_PROVIDER_NAME_IN_USE Returned by the provider constructor when an attempt is
made to create a provider with the name of a currently
running provider.

XtlP Classes 79

5

Error Codes

Error codes are sent to the client as a parameter in the error_ind() method.
An error indicates an error in a request or an error from the attempt to fulfill a
request. Note that error_ind() is used only when you need to indicate an
error, it does not inform the client of any state changes; you need to use
event_ind() to inform the client of state changes. Table 5-2 shows the
possible error codes.

EXCEPTION_OUT_OF_MEMORY System is out of memory.

EXCEPTION_PROTOCOL_VIOLATION Returned by event_ind() when you try to send an event
indication while in the wrong state; for example, an invalid
state transition occurs if you send a PROCEEDING_EVENT
while in the CONNECTED state. See Table 2-3 on page 18.

EXCEPTION_INTERNAL_ERROR An irrecoverable error has occurred. You should return from
the current method and allow the dispatcher to invoke the
object’s cleanup() method.

Table 5-2 Error Codes (from xtlp_globals.h)

Error Codes Meaning

ERROR_UNKNOWN The error code was not initialized to any value in this table;
this code should never be used.

ERROR_INVALID_ARGUMENT Bad argument passed in an XtlKVList .

ERROR_INVALID_ADDRESS Could not recognize the address.

ERROR_RESOURCE_NOT_AVAILABLE A resource was unavailable while attempting to fulfill a
request, such as a configuration or extension request.

ERROR_RESOURCE_NOT_AVAILABLE_ON_INCOMINGThere was an incoming call, but there were no resources
available to accept the call.

ERROR_PROVIDER_SPECIFIC An internal provider-specific error occurred.

ERROR_PROTOCOL_VIOLATION The call is in a state where the attempted request would cause
an invalid call state transition; see Figure 2-3 on page 14.

ERROR_MISSING_PARAMETER A parameter is missing.

Table 5-1 Exception Codes (from xtlp_globals.h) (Continued)

Exception Codes Meaning

80 SunXTL 1.1 Provider Programmer’s Guide—December 1995

5

Cause Codes

Cause codes are sent with normal events through the event_ind() method.
Cause codes provide additional information about an event; for example, a
failure event should be accompanied by a cause code to explain why the
provider is entering the failed state. Not all events have meaningful causes, so
the value CAUSE_NORMAL is used in those cases. Table 5-3 lists the possible
cause codes.

ERROR_SERVICE_NOT_IMPLEMENTED A request was made for a service that has not been
implemented.

ERROR_SERVICE_NOT_AVAILABLE The service requested is unavailable.

ERROR_SERVICE_NOT_CONFIGURED The service was not configured before requesting its use.

ERROR_NETWORK_NOT_RESPONDING The network is ignoring attempts to communicate with it.

ERROR_FORMAT_NOT_SUPPORTED You specified an unsupported format. See “Using XtlFormat”
on page 70.

ERROR_TIMER_EXPIRY A timer within the provider timed out. Typically a request
may have timed out. For example, a transfer request that gets
no response from the destination receives this error code.

ERROR_REQUEST_CURRENTLY_SATISFIED This is a duplicate request for an action that was previously
performed. For example, a hold request comes for a call that
is already on hold; or, frequently, duplicate configuration
requests are sent. In the latter case, it is better to send this
error rather than an empty event_ind(INFO_EVENT) event
because the call state has not changed.

Table 5-3 Cause Codes (from xtlp_globals.h)

Cause Codes Meaning

CAUSE_UNKNOWN The cause code was not initialized to any value in this table; this code
should never be used.

CAUSE_NORMAL This is a normal call control event.

CAUSE_USER_BUSY Remote user terminal was in use.

Table 5-2 Error Codes (from xtlp_globals.h) (Continued)

Error Codes Meaning

XtlP Classes 81

5

State Slots
State slots hold the attributes of an XtlP object and in a call object, they
describe the complete state of a call. The XtlPProvider and XtlPCall
classes have a collection of set_ slotname() and get_ slotname() methods that
allow you to set and get the state slots of an object. Slot methods do not take
arguments and the slotname in the method name corresponds to the name of
the state slot. However, certain slots, such as the call_status slot, are read-
only and therefore do not have a corresponding set method.

Table 5-4 describes the state slots of those classes and shows their default
values.This table does not show method arguments, they are shown in the
tables for the respective classes (Table 5-7 on page 85 and Table 5-9 on page 88).

Note – There are other method names that begin with get_ , but are not true
slot methods. Rather they take an argument and return a pointer to an object.
These non-slot methods include: XtlPFactory::get_provider_name() ,
get_provider_object() , get_provider_list() ,
XtlPProvider::get_call_object() , and get_call_list() .

CAUSE_NETWORK_BUSY Network was unable to reach the remote party.

CAUSE_REJECTED Call was rejected by the remote party.

CAUSE_ERROR State change was caused by an error.

CAUSE_ADDRESS_CHANGED Provider detected that the remote party’s address has changed.

Table 5-3 Cause Codes (from xtlp_globals.h)

Cause Codes Meaning

82 SunXTL 1.1 Provider Programmer’s Guide—December 1995

5

Table 5-4 State Slots for XtlP Classes

State Slot Methods Default Value Description

XtlPProvider

get_provider_name() “primary_alias” Returns the provider name (primary alias) of this
provider object. Typically, this is the same name
as passed to the XtlPProvider constructor;
however, if a secondary alias was passed, it is
resolved to its primary alias.

set_extended_state()
get_extended_state()

XtlNullKVListC Sets and gets the XtlKVList that describes the
extended state for this provider object.

XtlPCall

get_call_status() XtlPCall::UNKNOWN Returns the CallStatus for this call object. The
call status is set when this call object sends an
event using XtlCall::event_ind() .

get_call_reference() XtlCallReference Returns a unique XtlCallReference for this
call object; the unique value is generated by the
MPI.

get_provider() NULL Returns the provider associated with this call
object.

set_local_address()
get_local_address()

Zero-length
XtlAddress

Sets and gets the local address.

set_remote_address()
get_remote_address()

Zero-length
XtlAddress

Sets and gets the remote address.

set_format()
get_format()

XtlNullKVListC Sets and gets the XtlFormat .

set_media_channel_available()
get_media_channel_available()

B_FALSE Sets and gets the availability of the media
channel (true or false).

set_display()
get_display()

Null XtlString Sets and gets the XtlString shown on the
telephone device’s display element.

set_configuration()
get_configuration()

XtlNullKVListC Sets and gets the XtlKVList that describes the
media channel configuration for this call object.

set_extended_state()
get_extended_state()

XtlNullKVListC Sets and gets the XtlKVList that describes the
extensions used by this call object.

XtlP Classes 83

5

XtlPFactory Methods
The XtlPFactory class is used to instantiate provider objects when the client
requests a provider. Table 5-5 shows the XtlPFactory class methods, and
Table 5-6 shows the class request and event enumerations.

Table 5-5 XtlPFactory Class Methods (from xtlp_factory.h)

Method How to Use

XtlPFactory(
Exception&,
const XtlString& provider_family);

The object constructor accepts a provider family name as
defined in the template file in the provider package.

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_OUT_OF_MEMORY
EXCEPTION_INVALID_DATABASE
EXCEPTION_INTERNAL_ERROR

virtual ~XtlPFactory() Object destructor.

virtual void cleanup() = 0; This method is invoked when the client no longer wishes to use
this provider family. After cleaning up any resources and all
providers it has allocated, this method should call exit() . This
method must be overridden.

virtual void create_provider_req(
const XtlString& provider_name,
XtlKVList& args) = 0;

Method for instantiating a provider object. This method must
be overridden.

virtual void get_provider_name(
Exception&,
const XtlCallReference&,
XtlString& provider_name);

Returns the string name of a provider given the global call ID in
the XtlCallReference parameter; see “Using
XtlCallReference” on page 75.

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_INVALID_ARGUMENT
EXCEPTION_INVALID_OBJECT

84 SunXTL 1.1 Provider Programmer’s Guide—December 1995

5

Table 5-6 XtlPFactory Request and Event Codes (from xtlp_factory.h)

virtual void get_provider_object(
Exception&,
const XtlString&,
XtlPProvider*&);

Returns a pointer to a provider object given the string name of
the provider.

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_INVALID_ARGUMENT
EXCEPTION_INVALID_PROVIDER
EXCEPTION_INVALID_OBJECT

virtual void get_provider_list(
Exception&,
XtlPProvider**& array,
long & size);

Returns a list of current provider objects on the host. The list is
stored in an array that may be scanned as follows:

for (int i=0; i < size; i++) {
myProvider = (myProvider *) array[i];
// ...operate on the provider object

}

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_OUT_OF_MEMORY
EXCEPTION_INVALID_OBJECT

virtual void error_ind(
Exception&,
Error error,
FactoryRequest providerRequest,
const XtlString& providerName,
const XtlKVList& args);

Notification method for reporting errors. FactoryRequest is
an enumeration with the values: UNKNOWN_REQ or
CREATE_PROVIDER_REQ.

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_INVALID_OBJECT
EXCEPTION_INTERNAL_ERROR

Provider Event Codes Description

Requests

UNKNOWN_REQ The request code was not initialized to any request in this table.

CREATE_PROVIDER_REQ Request to create a new provider.

Events

UNKNOWN_EVENT The event code was not initialized to any event in this table.

CREATE_EVENT Provider object successfully created.

INFO_EVENT A state slot has changed.

Method How to Use

XtlP Classes 85

5

XtlPProvider Methods
Table 5-7 presents the interface methods for the XtlPProvider class. Provider
objects manage XtlPCall objects, which in turn control individual telephone
calls. Table 5-8 shows the request and event enumerations for this class. As a
programming note, shaded boxes represent methods that you must implement.

Table 5-7 XtlPProvider Interface Methods (from xtlp_provider.h)

Method How to Use

XtlPProvider(
Exception,
XtlFactory&,
const XtlString& provider_name);

Constructs a provider object with the specified provider name.

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_INVALID_FACTORY
EXCEPTION_INVALID_PROVIDER
EXCEPTION_OUT_OF_MEMORY

virtual ~XtlPProvider(); Object destructor.

virtual void cleanup() = 0; This cleanup method is called when the client is no longer
interested in using this provider. No additional requests will be sent
to this provider and sending indication events is considered an
error. Your implementation should clean up any provider states,
reset your provider hardware, and invoke exit() .

virtual void set_extended_state(
Exception&,
const XtlKVList&);

Sets the public provider-specific global state. The state is kept in an
XtlKVList that can be passed between the client and the provider.

Possible exception (see Table 5-1 on page 78):
EXCEPTION_INVALID_OBJECT

virtual void get_extended_state(
Exception&,
XtlKVList&)

Retrieves the provider-specific global state in the list argument.

Possible exception (see Table 5-1 on page 78):
EXCEPTION_INVALID_OBJECT

virtual void get_provider_name(
Exception&,
XtlString&)

Retrieves the family name of the provider object.

Possible exception (see Table 5-1 on page 78):
EXCEPTION_INVALID_OBJECT

86 SunXTL 1.1 Provider Programmer’s Guide—December 1995

5

virtual void get_call_object(
Exception&,
const XtlCallReference& callId,
XtlPCall*& call) const;

Takes the global call ID and retrieves the associated XtlPCall
object.

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_INVALID_ARGUMENT
EXCEPTION_INVALID_OBJECT

virtual void get_call_list(
Exception&,
XtlPCall**& array,
long& size) const;

Retrieves a list of calls associated with this provider. The list is
stored in an array that may be scanned as follows:

for (int i=0; i < size; i++) {
myCall= (myCall *) array[i];
// ...operate on the call object

}

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_OUT_OF_MEMORY
EXCEPTION_INVALID_OBJECT

NOTIFICATION METHODS

virtual void event_ind(
Exception&,
XtlPProvider::Eventevent,
XtlP::Cause cause,
const XtlKVList& args);

Sends an event indication to the client. Supply a value for the event
that occurred (from Table 5-10 on page 94) and a cause of the event
(from Table 5-3 on page 80), plus any information you might need
to return through the XtlKVList .

The only event indication you should send is CREATE_EVENT. Valid
cause codes that may be sent include: CAUSE_NORMAL or
CAUSE_ERROR.

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_INTERNAL_ERROR
EXCEPTION_INVALID_OBJECT

virtual void extension_ind(
Exception&,
const XtlString&extension,
const XtlKVList& args);

Sends a provider-specific extension indication to the client. The
XtlString contains the name of the provider-specific feature.

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_INTERNAL_ERROR
EXCEPTION_INVALID_OBJECT

Table 5-7 XtlPProvider Interface Methods (from xtlp_provider.h) (Continued)

Method How to Use

XtlP Classes 87

5

Table 5-8 XtlPProvider Request and Event Codes (from xtlp_provider.h)

virtual void error_ind(
Exception&,
XtlP::Error error,
ProviderRequestproviderRequest,
const XtlKVList& args);

Sends an error indication to the client. Use an error value from
Table 5-2 on page 79 and a provider request value from Table 5-8.

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_INTERNAL_ERROR
EXCEPTION_INVALID_OBJECT

 COMMAND METHOD CALLBACKS

virtual void create_call_req(
XtlKVList& args) = 0;

Implementation of behavior when client requests a new call.

virtual void extension_req(
const XtlString& extension,
XtlKVList& args) = 0;

Implementation of behavior when client issues a provider-specific
request.

Provider Enumerations Meaning

Requests

UNKNOWN_REQ The request value was not initialized to any request in this table;
this value should never be used.

CREATE_CALL_REQ Create a call request.

EXTENSION_REQ Provider-specific request.

Events

UNKNOWN_EVENT The event code was not initialized to any event in this table.

CREATE_EVENT Provider object successfully created.

INFO_EVENT A state slot has changed.

Table 5-7 XtlPProvider Interface Methods (from xtlp_provider.h) (Continued)

Method How to Use

88 SunXTL 1.1 Provider Programmer’s Guide—December 1995

5

XtlPCall Methods
The XtlPCall class encapsulates the components of a call. A call object comes
into existence when the provider needs to make a connection and goes away
when the provider disconnects a call. Call objects have attributes that may be
set and retrieved by using the respective state slot methods: set_ slotname()
and get_ slotname() methods. When a client sets an attribute, it will not see
the change until the provider sends the next event. This is so that changes to
call objects can be viewed as a single action with respect to events. Table 5-9
presents the interface methods for the XtlPCall class.

As a programming note, shaded boxes represent pure virtual functions that
you must implement. Also, all set_ slotname() and get_ slotname() slot
methods return either EXCEPTION_SUCCESS or
EXCEPTION_INVALID_OBJECT.

Table 5-9 XtlPCall Class Methods (from xtlp_call.h)

Method Description

XtlPCall(Exception&, XtlPProvider&); Call object constructor accepts a reference to the provider that is
creating the call.

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_OUT_OF_MEMORY
EXCEPTION_INVALID_PROVIDER

virtual ~XtlPCall(); Call object destructor.

virtual void cleanup() = 0;

This cleanup method is called when the client is no longer
interested in using this call. No additional requests will be sent
to this call and sending indication events is considered an error.
Your implementation should perform the necessary provider-
specific code to disconnect the call and free up any resources
allocated for this call before invoking exit() .

XtlP Classes 89

5

virtual void update_port_ind(
Exception&,
XtlPPort* port);

Registers a port object with the MPI so that a client may access a
call’s media channel; see “Presenting Media Channels to the
Client” on page 39.

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_INVALID_ARGUMENT
EXCEPTION_INVALID_OBJECT
EXCEPTION_INTERNAL_ERROR
An internal error indicates that the MPI was unable to bind the
port to the call’s media channel; because the error is
irrecoverable, the provider should send the client an
error_ind(ERROR_RESOURCE_NOT_AVAILABLE).

virtual void set_local_address(
Exception&,
const XtlAddress& localAddress);

Sets the local address from which the call is made.
Possible exception (see Table 5-1 on page 78):
EXCEPTION_INVALID_OBJECT

virtual void set_remote_address(
Exception&,
const XtlAddress& remoteAddress);

Sets the remote address of the destination to call.

virtual void set_format(
Exception&,
const XtlFormat & format);

Sets the data format used by the call. See “Using XtlFormat” on
page 70.

virtual void
set_media_channel_available(

Exception&,
boolean_t mediaChannelAvailable);

Turns the media channel on (B_TRUE) or off (B_FALSE). For
information about input/output configurations, see
“Configuring Media Channels With configuration_req()” on
page 96.

virtual void set_display(
Exception&,
const XtlString& display);

Sets the message to be displayed on the telephone display, such
as an LCD display.

virtual void set_configuration(
Exception&,
const XtlKVList& configuration);

Sets the media channel configuration for the call. See “Some
Typical Configuration Pairs” on page 98.

virtual void set_extended_state(
Exception&,
const XtlKVList& extendedState);

Sets any provider-specific states using provider-specific key-
value pairs.

Table 5-9 XtlPCall Class Methods (from xtlp_call.h) (Continued)

Method Description

90 SunXTL 1.1 Provider Programmer’s Guide—December 1995

5

virtual void get_local_address(
Exception&,
XtlAddress&);

Gets the local address of this call.

virtual void get_remote_address(
Exception&,
XtlAddress&);

Gets the remote address of this call.

virtual void get_format(
Exception&,
XtlFormat&);

Gets the data format used by this call.

virtual void
get_media_channel_available(

Exception&,
boolean_t&);

Finds out whether the media channel is available for this call.

virtual void get_display(
Exception&,
XtlString&);

Gets the string that is displayed for this call.

virtual void get_configuration(
Exception&,
XtlKVList&);

Gets the current data channel configuration for this call.

virtual void get_extended_state(
Exception&,
XtlKVList&);

Gets the provider-specific state set for this call.

virtual void get_call_status(
Exception&,
CallStatus&);

Finds out what state this call is in. See “Call Status and
Transitions” on page 12.

virtual void get_call_reference(
Exception&,
XtlCallReference&);

Gets the reference ID that identifies this call.

virtual void get_provider(
 Exception&,
 XtlPProvider*&);

Gets the provider that created this call.

Table 5-9 XtlPCall Class Methods (from xtlp_call.h) (Continued)

Method Description

XtlP Classes 91

5

virtual void event_ind(
Exception&,
XtlP::Event,
XtlP::Cause,
const XtlKVList& args);

Sends an event indication to the client. This informs the client
that the state or status of the call has changed. The change may
be a change in state or a change in a call attribute such as its
quality of service. Any of the events and cause codes can be
used; see Table 5-10 on page 94 and Table 5-3 on page 80.

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_PROTOCOL_VIOLATION
EXCEPTION_INVALID_OBJECT
EXCEPTION_INTERNAL_ERROR

virtual void extension_ind(
Exception&,
const XtlString& ext_name,
const XtlKVList& args);

Sends a provider-specific extension indication to the client to
inform it of the results of a provider-specific request.

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_INVALID_OBJECT
EXCEPTION_INTERNAL_ERROR

virtual void error_ind(
Exception&,
XtlP::Error,
CallRequest,
const XtlKVList& args);

Notifies the client that an error has occurred. You can send any
of the codes shown in Table 5-2 on page 79.

Possible exceptions (see Table 5-1 on page 78):
EXCEPTION_INVALID_OBJECT
EXCEPTION_INTERNAL_ERROR

 COMMAND METHOD CALLBACKS

virtual void connect_req(
const XtlAddress& local,
const XtlAddress& remote,
const XtlFormat&,
XtlKVList& args) = 0;

Use connect_req() to establish a connection with the
specified remote host. This request is received by the provider
only once for a given instance of a call object, and only during
the idle state. You need to specify the local address of your
device (the caller) and the address of the remote party to be
called.

The provider is responsible for selecting among its predefined
formats for one that is most comparable to the requested format.
This behavior is described in “Using XtlFormat” on page 70.

Table 5-9 XtlPCall Class Methods (from xtlp_call.h) (Continued)

Method Description

92 SunXTL 1.1 Provider Programmer’s Guide—December 1995

5

virtual void add_to_address_req(
const XtlAddress& remote,
XtlKVList& args) = 0;

Use this to add to a partial address and to support overlap-
send-mode and other address composition features. An
add_to_address_req is valid only after the connect_req
has been sent; add_to_address_req sends additional
addressing information to the provider. Multiple
add_to_address_req requests may be sent.

virtual void alert_req(
 XtlKVList& args) = 0;

Generates an alert (ring) to inform the remote party that the
local client has recognized the incoming call. This request is
informational only, thus a provider may generate an alert
without first receiving this request. For example, certain
technologies (such as ISDN) have a short timeout between an
incoming call and a responding alert, after which the call is
disconnected. In these situations, your provider may choose to
set a timer; if an alert request is not received in that time, it may
generate an alert to prevent the call from becoming
disconnected. Alert request may be slow in arriving because the
client process has been temporarily swapped out of memory.

virtual void answer_req(
XtlKVList& args) = 0;

Answers an incoming call.

virtual void disconnect_req(
XtlKVList& args) = 0;

Disconnects a call.

virtual void hold_req(
XtlKVList& args) = 0;

Requests to release the media channel associated with a call.

virtual void unhold_req(
XtlKVList& args) = 0;

Requests that the media channel associated with a call be
reacquired.

virtual void transfer_req(
const XtlCallReference& transferee,
XtlKVList& args) = 0;

Connects this call to a different call as specified by the
transferee parameter. See “Transferring a Call” on page 31.

virtual void conference_req(
const XtlCallReference& conferencee,
XtlKVList& args) = 0;

Creates a conference or adds a call to a conference. See
“Conferencing a Call” on page 32.

virtual void redirect_req(
const XtlAddress& redirect_number,
XtlKVList& args) = 0;

Sends an incoming call to a different address without answering
it.

Table 5-9 XtlPCall Class Methods (from xtlp_call.h) (Continued)

Method Description

XtlP Classes 93

5

virtual void drop_req(
XtlKVList& args) = 0;

Removes the last call added to this conference.

virtual void configuration_req(
XtlKVList& args) = 0;

Configures the media channel. See “Configuring Media
Channels With configuration_req()” on page 96.

virtual void extension_req(
const XtlString& extension,
XtlKVList& args) = 0;

Requests a provider-specific feature.

Table 5-9 XtlPCall Class Methods (from xtlp_call.h) (Continued)

Method Description

94 SunXTL 1.1 Provider Programmer’s Guide—December 1995

5

Call Event and Request Enumerations
Call request and event enumerations are defined in the XtlPCall class; the
specific enumerations are shown in Table 5-10 and were also discussed earlier
in “Call Status and Transitions” on page 12.

Event codes are defined in the XtlPCall and XtlPProvider classes and are
sent as a parameter in the event_ind() method. Event codes inform the
client of changes in the call status (see Figure 2-3 on page 14) or state slots (see
“Setting and Getting State Slots” on page 11). Most of the event codes
correspond to a call status, which should be sent when a call makes a transition
from one status to another. However, if the change only affects a state slot, you
should use the INFO_EVENT code to inform the client. Status changes have
precedence over slot changes, so in a case where both call status and slots have
changed, you should send the status event.

The provider only generates these events after the fact; that is, after a request
or stimuli from the underlying technology causes a change in the call state.
There is no guaranteed one-to-one correspondence between a client request
and a given event. The basic idea is that events should be treated as
independent, asynchronous indications from the provider that the call state has
changed. Table 5-10 shows the event codes for the XtlPCall class.

Table 5-10 Call Event Codes (from xtlp_call.h)

Call Event Codes Description

UNKNOWN_EVENT The event code was not initialized to any of the values in this table.

CREATE_EVENT Outgoing call created.

INCOMING_EVENT Incoming call created.

PROCEEDING_EVENT The provider has sufficient addressing information to attempt to
connect the call.

ALERTING_EVENT Remote party has been notified of the attempt to connect.

CONNECT_EVENT End-to-end connection established.

FAILURE_EVENT Unable to connect because of a failure condition.

DISCONNECT_EVENT Connection terminated

INFO_EVENT A state slot has changed.

TRANSFER_EVENT Call was successfully transferred.

XtlP Classes 95

5

Table 5-11 lists the XtlPCall enumerations for call requests. To see the call
status and corresponding indication events that are generated when a call
makes a transition from one status to another, see Table 2-3 on page 18.

CONFERENCE_EVENT Call is now part of a conference call.

REDIRECT_EVENT Call has been redirected.

DROP_EVENT Call has been dropped from this conference.

Table 5-11 XtlPCall Class Request Enumerations (from xtlp_call.h)

Enumeration Meaning

UNKNOWN_REQ The call request slot was not initialized with any of the following
values:

CONNECT_REQ Request to connect.

ALERT_REQ Request to alert remote part of connection attempt.

ANSWER_REQ Request to answer incoming call.

DISCONNECT_REQ Request to disconnect call.

HOLD_REQ Request to put call on hold.

UNHOLD_REQ Request to take call off hold.

TRANSFER_REQ Request to transfer call to another address.

CONFERENCE_REQ Request to conference this call to another address.

REDIRECT_REQ Request to redirect this call to another address without answering
the call.

DROP_REQ Request to drop this call from a conference.

ADD_TO_ADDRESS_REQ Request to add additional addressing information to the call.

CONFIGURATION_REQ Request to configure the media channel.

EXTENSION_REQ Request for provider-specific service.

Table 5-10 Call Event Codes (from xtlp_call.h) (Continued)

Call Event Codes Description

96 SunXTL 1.1 Provider Programmer’s Guide—December 1995

5

XtlPPort Methods
When your provider receives a configuration request that asks for client access
to a call’s media stream, you need to create an XtlPPort object to provide that
access. The XtlPPort class encapsulates a STREAM file descriptor that allows a
client to access a call’s media stream directly; thus a port object is always
associated with a call object. The file descriptor should be opened in read and
write modes. The XtlPPort class interface consists of a constructor and a
destructor:

XtlPPort (Exception&, int fd);
~XtlPPort();

The constructor accepts an exception output parameter and a file descriptor
associated with a STREAM. The possible exceptions that might be returned
include: EXCEPTION_INVALID_ARGUMENT, EXCEPTION_OUT_OF_MEMORY,
EXCEPTION_INTERNAL_ERROR (see Table 5-1 on page 78 for a description of
these exceptions).

Once a port object is created, you associate it with a call by invoking a call
object’s update_port_ind() method. To disassociate a port from a call (and
thus disallow the client from accessing the call’s media stream), you invoke
update_port_ind(exception, NULL) with a null port object pointer.

Note – The client synchronizes itself by flushing the port object when it first
accesses a call’s media stream. For that reason, your provider should make
sure any pending data in the port has been used; for example, if your provider
writes audio data to a port, allow enough time for the audio to play before
invoking update_port_ind() .

Configuring Media Channels With configuration_req()

The configuration_req() method allows the provider to configure the
media channel associated with a call. You must override this method before
instantiating a call object. The configuration_req() method accepts a
single argument, an XtlKVList , which contains parameters for the desired
call configuration.

XtlP Classes 97

5

All call configurations are defined in an XtlKVList data type. A key-value
pair (KV pair) in an XtlKVList , whose key is either XtlConfigInputK or
XtlConfigOutputK , is called a configuration pair. If the key for a pair is
XtlConfigInputK , the configuration element manipulates the input of the
media stream. Likewise, if the key for a pair is XtlConfigOutputK , the
configuration pair manipulates the output of the media stream. The value of a
configuration pair is called a configuration element. Other KV pairs in the
configuration are usually parameters to a configuration pair.

The configuration element whose key is XtlConfigInputK can be
XtlConfigStreamC or a provider-specific value. For example, a provider-
specific value for audio media streams might be XtlDTMFGenerateC .

The configuration element whose key is XtlConfigOutputK may be
XtlConfigStreamC or a provider-specific value. For example, audio media
streams might use the provider-specific value XtlDTMFDetectC or
XtlSilenceDetectC .

To configure and use a provider extension configuration, you would:

1. Call set_configuration() with a provider-specific key-value pair.
For example, the key XtlConfigInputK and the value
XtlDTMFGenerateC .

2. Later, to use the provider extension, call extension_req() with the
proper extension name.
For example, you might call extension_req(XtlDTMFToneK,
kv_args) , where kv_args would contain the appropriate key-value pairs
for generating the tone.

Handling Media Channel Configurations

A configuration_req() can be received at any time. If the media stream
associated with the call is available at the time the provider receives a
configuration_req(), the media stream should be configured as
requested. The provider then calls set_configuration() (passing the
configuration in the KVList parameter) and sends an event (most likely
INFO_EVENT) to inform the MPI of the new configuration.

If the media stream associated with the call is not available at the time a
configuration_req() is received, the provider should decide how it will
attempt to configure the media stream when it does become available. It then

98 SunXTL 1.1 Provider Programmer’s Guide—December 1995

5

informs the MPI of this configuration by calling set_configuration() and
sending an event (most likely INFO_EVENT). When the data channel becomes
available, the provider configures the media stream. If the configuration differs
from the one specified in the last set_configuration() , the provider must
indicate this change in configuration by calling set_configuration() and
sending an event (most likely INFO_EVENT).

Some Typical Configuration Pairs

Each configuration pair specifies how the media stream should be processed.
Typically, a processing module (either a software or hardware entity or
combination thereof) is used to process the media stream. The
extension_req() method is invoked when a request is made of a processing
module. The status of the data processing is reported to the client through the
extension_ind() method. Table 5-12 describes the semantics of some
common configuration processing pairs that your provider might receive from
the client. Your provider may also support additional configurations that you
would need to document in your provider package.

Table 5-12 Configuration Pairs for configuration_req()

Configuration Pair Purpose

<XtlConfigInputK,
XtlConfigStreamC>

This is a configuration request to provide a file descriptor that gives the client write
input to the media channel. For a description of how to obtain a stream for a media
channel, see “Presenting Media Channels to the Client” on page 39.

<XtlConfigInputK,
XtlDTMFGenerateC>

This configuration pair requests a DTMF tone generator. When the provider receives
an extension_req whose extension is DTMF_GENERATOR, the XtlKVList will
contain a KV pair whose key is either DTMF_TONE or DTMF_STRING (but not both).

If the key is DTMF_TONE, the value is a char cast to a u_long . The char will be a
single character in the set '[0-9#*ABCD_] '. The provider then puts the appropriate
DTMF tone in the media channel. An underscore character ('_') stops the DTMF tone
requested by any previous request; if your device caches tones, it should be flushed.
If the XtlKVList contains a KV pair with a key DTMF_STRING, the XtlKVList will
contain the following additional KV pairs:

KEY VALUE
XtlDTMFStringK XtlString (any chars in "[0-9*#ABCD,]*")
XtlDTMFOffTimeK u_long (milliseconds)
XtlDTMFOnTimeK u_long (milliseconds)
XtlDTMFPauseK u_long (milliseconds)

XtlP Classes 99

5

This is a request to send a string of DTMF tones with the characteristics given, all
durations are in milliseconds. The pause duration specifies how long to pause for any
commas (',') in the string; any characters not in the legal set will be silently stripped.

<XtlConfigOutputK,
XtlConfigStreamC>

This is a configuration request to provide a file descriptor that allows the client to
read the output from the media channel. For a description of how to obtain a stream
for a media channel, see “Presenting Media Channels to the Client” on page 39.

<XtlConfigOutputK,
XtlDTMFDetectC>

The DTMF_DETECTOR module detects DTMF tones on the data channel. It informs
XTLP of DTMF tones by calling extension_ind() with the extension set to
DTMF_DETECTOR, and includes the following KV pair in its XtlKVList :

KEY VALUE
XtlDTMFToneK : u_long <char in '[0-9*#ABCD]'>

This indicates a single DTMF character, where the first occurrence of a character
indicates the rising edge and the next character indicates a transition ('_' indicates a
transition to silence).

<XtlConfigOutputK,
XtlSilenceDetectC>

The SILENCE_DETECTOR module detects the silence or signal on a data channel. If
this configuration pair is present in a configuration, the following KV pair must also
be present in the configuration:

KEY VALUE
XtlSilenceMinLengthKu_long (milliseconds)

The silence or signal must be present for at least the number of milliseconds specified
by the threshold parameter to be considered valid.

Transitions between silence and signal are indicated by calling extension_ind()
with extension set to SILENCE_DETECTOR. The XtlKVList will contain either a KV
pair with the key SILENCE or SIGNAL, depending on whether there is silence or a
signal on the line. The type of the value must be a u_long , otherwise its value is
undefined.

Table 5-12 Configuration Pairs for configuration_req() (Continued)

Configuration Pair Purpose

100 SunXTL 1.1 Provider Programmer’s Guide—December 1995

5

101

Index

Numerics
3-bit precision ADPCM, 72
4-bit precision ADPCM, 72

A
Adaptive Delta Pulse Code

Modulation, 72
add(), 58, 59
add_to_address_req(), 92
A-law encoding, 72, 74
alert_req(), 92
alert_req() example, 27
alias, 69
answer_req(), 92
answer_req() example, 27
applications

Motif, 67
architecture, 2
attribute swapping, 34

B
bits per sample, 72
busy condition, 15
bytes(), 54

C
call

attribute swapping, 34
changing the status of, 13
conferencing, 15, 32
configuring media channels, 96
creating, 23
destroyed, 15
disconnecting, 28
dropping from conference, 37
events, 94
implicitly register, 24
operations, 22
putting off hold, 30
putting on hold, 30
requests, 95
state of, 11, 81
state vs. status, 12
status, 12
status enumerations, 15
status values, 14
transferring, 31
transitions, 12

call progress
information, 19, 25
monitoring, 25

call_reference(), 75
callback handler, 4, 19

102 SunXTL 1.1 Provider Programmer’s Guide—December 1995

cause codes, 80
CCITT G.711, 72
class hierarchy, 4
classes

dpDispatcher, 64
utility, 53
XtlByteArray, 53
XtlKVList, 57
XtlPCall, 88
XtlPFactory, 83
XtlPPort, 96
XtlPProvider, 85
XtlString, 55

cleanup(), 83
cleanup() example, 29
client entity, 3
code enumerations, 78
command line environment, 65
comparison function, 61
compiler requirements, 43
compiling the example code, 46
conferee object, 33, 36
conferee parameter, 32
conference call dropping, 37
conference indications, 33
CONFERENCE_EVENT, 33
CONFERENCE_REQ, 17
conference_req(), 92
conference_req() example, 36
conferencing a call, 32
configuration file, 48
configuration pairs, 40, 98
CONFIGURATION_EVENT, 38
configuration_req(), 38, 93, 96
configuring media channels, 38, 96
connect_req(), 73, 91
connecting to the remote party, 15
constants.h, 71
conversion routines, 55
count(), 60
create_call_req(), 87

example, 23
CREATE_EVENT, 15, 21
create_provider_req(), 20, 21, 83

example, 21
creating a provider package, 46
creating provider templates, 47
creating providers, 20
creating relocatable packages, 47
current pointer, 58
current position, 58

D
data alignment, 55
data formats, 70
data link framing protocol, 73
database query functions, 69
dependencies in template files, 49
development system requirements, 43
disconnect_req(), 29, 92
disconnecting calls, 28
dispatch loop, 66
dispatch(), 66
dispatch() loop, 27
dispatcher

initializing, 66
installing an instance, 67
loop, 66

dispatcher,See also dpDispatcher, 64
dispatcher.h header file, 65
DispatcherMask, 65
documentation, 49
dpDispatcher, 64

dispatch(), 66
global dispatcher, 66
handler(), 65
instance(), 65, 66
link(), 65
setReady(), 66
startTimer(), 66
stopTimer(), 66
unlink(), 65

Index 103

dpDispatcher methods, 65
dpIOHandler, 64

exceptionRaised(), 68
inputReady(), 68
methods, 68
outputReady(), 68
timerExpired(), 68

dpSLDispatcher, 65
dpXtDispatcher, 65
dpXVDispatcher, 65
drop_req(), 37, 93
drop_req() example, 37
dropping a conference call, 37

E
embedded lists, 61
environment

OLIT, 65
environment variables, 49
environments

command line, 65
Motif, 65
XView, 65

error codes, 79
error indications, 9, 12
ERROR_FORMAT_NOT_

SUPPORTED, 73, 74
error_ind(), 9, 12, 84, 87, 91
ERROR_REQUEST_CURRENTLY_

SATISFIED, 12
event dispatcher, 18, 64
event enumerations, 94
event indications, 9, 12
event loop, 45
event_ind(), 9, 12, 25, 86, 91
event-driven programming model, 8
examples

alert_req(), 27
answer_req(), 27
cleanup(), 29
compiling, 46
conference_req(), 36

drop_req(), 37
formats, 73
querying the provider database, 69
template file, 51
transfer_req(), 31
XtlByteArray, 55
XtlString, 56

exception codes, 78
exception on file descriptor, 19
exceptionRaised(), 68
ExceptMask, 65
executable provider, 43
extension indications, 9, 12
extension_ind(), 9, 12, 86, 91
extension_req(), 87, 93

F
fax format class, 74
fax protocols, 74
file descriptor, 19
file descriptor exception, 19
first(), 58, 60
format of template files, 49
formats

pattern, 73
requesting, 73
usage, 73

framework for providers, 7
framing

HDLC, 73
framing protocol, 73

G
G.721 compression format, 72
G.723 compression format, 72
get methods, 11
get(), 58, 59
get_call_list(), 86
get_call_object(), 75, 86
get_call_reference(), 75, 90
get_call_state_req(), 75

104 SunXTL 1.1 Provider Programmer’s Guide—December 1995

get_call_status(), 90
get_configuration(), 90
get_display(), 90
get_extended_state(), 85, 90
get_format(), 90
get_local_address(), 90
get_media_channel_available(), 90
get_provider(), 90
get_provider_list(), 84
get_provider_name(), 75, 83, 85
get_provider_obj(), 75
get_provider_object(), 84
get_remote_address(), 90
getting state slots, 11
global dispatcher object, 66
Group 3 fax protocol, 73
guaranteeing conference indications, 33

H
handle in the switch, 32
handler for incoming calls, 26
handler(), 65
HDLC framing, 73
header files, 44
hierarchical XtlKVLists, 62
hierarchy, 4
hold_req(), 30, 92
holding calls, 30

I
incoming calls

handler, 26
receiving, 26

indication methods, 9, 11
indications

sending, 12
valid indication events, 18

INFO_EVENT, 25
initialization

provider-specific, 21

initialization for providers, 49
initializing the dispatcher, 66
inputReady(), 19, 68
instance(), 65, 66
interface to the client, 3
InterViews dispatcher, 65
InterViews libary, 53
InterViews library, 64
iohandler.h header file, 68
IP protocol, 73

K
key(), 58, 60
key-value pairs, 48, 57

L
lazy copies, 58
LD_LIBRARY_PATH variable, 47, 48
length(), 54, 56
libdispatch library, 64
libdispatch.so, 46
libraries

libdispatch, 64
libraries of SunXTL 1.1, 46
libxtlp.so, 46
libxtlutil.so, 46
Linear Pulse Code Modulation

encoding, 72
link(), 18, 65
linking to SunXTL 1.1 libraries, 46

M
main routine, 19
main() loop, 45
masks

DispatcherMask, 65
ExceptMask, 65
ReadMask, 65
WriteMask, 65

media channels

Index 105

configuring, 38, 96
presenting to the client, 38

media_channel_available slot, 17
methods of

dpIOHandler, 68
XtlByteArray, 54
XtlKVList, 59
XtlPCall, 88
XtlPFactory, 83
XtlPPort, 96
XtlPProvider, 85
XtlString, 55

m-law encoding, 72, 74
modem communications, 74
monitoring call progress, 25
Motif application, 67
Motif environment, 65
multithread, 4

N
next(), 58, 60

O
OLIT environment, 65
outgoing call

starting, 24
outgoing calls, 15

initiating, 22
outputReady(), 68

P
packaging providers, 43
path of call states, 12
pkgadd(1M), 46
pkginfo(1), 47
primary alias, 69
print(), 61
printing XtlKVList, 62
programming model, 3, 8
protocol violation exception, 16, 18

protocols
Group 3 fax, 73
IP, 73

provider, 8
configuration file, 48
constructor example, 21
creating, 20
creating a package, 46
creating an executable, 43
defined, 7
documentation, 49
family, 8
framework, 7
initialization, 21
initialization script, 49
key-value pairs, 48
names, 69
object, 8
package, 8
packaging, 43
process, 8
programming model, 8
relocatable packages, 47
role of, 1
simulator, 46
template creation at installation, 49
template file example, 51
template file format, 49
templates, 47
writing, 43

provider configuration files, 69
provider_name(), 75
provider-specific extension, 9
provider-specific keys, 47
pure virtual methods, 11

Q
query functions, 69

R
ReadMask, 65
read-only slots, 11, 81
receiving a connection request, 15

106 SunXTL 1.1 Provider Programmer’s Guide—December 1995

receiving requests, 11
redirect_req(), 92
relationships between XtlP classes, 10
relocatable packages, 47
remove(), 58, 59
request, 9

callback methods, 11
enumerations, 95
enumerations call

request enumerations, 94
receiving, 11
valid requests, 17

request methods, 4
requesting a connection, 15
requesting formats, 73
reset(), 58, 60
ringing, 15

S
select(3C), 64, 66
sending indications, 12
set methods, 11
set_configuration(), 39, 89
set_display(), 89
set_extended_state(), 85, 89
set_format(), 89
set_local_address(), 89
set_media_channel_available(), 25, 89
set_remote_address(), 89
setitimer(2), 68
setReady(), 66
setting state slots, 11
simulator provider, 46
startTimer(), 66
state of a call, 11, 81
state slot methods, 88
state slots, 25, 94

getting, 11
methods, 11
read-only, 11, 81
setting, 11

status enumerations, 15
status of a call, 12
status values, 14
stimuli, 8
stopTimer(), 66
stream head, 40
subset(), 61, 73
SunXTL 1.1 libraries, 43, 46

linking, 46
SunXTL 1.1 architecture, 2
swapping attributes, 34

T
template file, 47

creating at installation, 49
example, 51
format, 49

timerExpired(), 68
TRANSFER_REQ, 17
transfer_req(), 92
transfer_req() example, 31
transferee parameter, 31
transferring a call, 31
traversing XtlKVLists, 63
type(), 60

U
unhold_req(), 31, 92
unlink(), 65
update_port_ind(), 39, 40, 89, 96
utility classes, 53

V
version value, 49
voice format specification, 71

W
WriteMask, 65
writing a provider program, 43

Index 107

X
xdr(3N) conversion routine, 55
Xt dispatcher, 67
xtdispatcher.h header file, 65
xtl_db_verify(), 69
xtl_provider_info, 69
xtl_provider_names(), 69
XTL_START key, 47
XtlByteArray

bytes(), 54
class, 53
constructor, 54
length(), 54
methods, 54
usage examples, 55

XtlCall
connect_req(), 73

XtlCallReference, 31, 32, 75
XtlCallState

call_reference(), 75
provider_name(), 75

XtlFormat, 70
XtlFormatALawC, 72
XtlFormatBandwidthK, 72
XtlFormatClassK, 72
XtlFormatDataC, 72
XtlFormatEncodingK, 72
XtlFormatFaxC, 72
XtlFormatFramingK, 73
XtlFormatG3C, 73
XtlFormatG4C, 73
XtlFormatG721C, 72
XtlFormatG723C, 72
XtlFormatHDLCC, 73
XtlFormatIPC, 73
XtlFormatLinearC, 72
XtlFormatProtocolK, 73
XtlFormatSampleRateK, 72
XtlFormatSampleSizeK, 72
XtlFormatULawC, 72
XtlFormatVoiceC, 72

XtlKVList
add(), 58, 59
characteristics, 58
comparison function, 61
count(), 60
current pointer, 58
current position, 58
first(), 58, 60
get(), 58, 59
hierarchical lists, 62
key(), 58, 60
next(), 58, 60
print(), 61
remove(), 58, 59
reset(), 58, 60
subset(), 61, 73
traversing, 63
type(), 60

XtlKVList class, 57
XtlKVList methods, 59
XtlP class, 78
XtlP classes, 10
XtlPCall

get_call_reference(), 75
XtlPCall methods, 88
XtlPCall(), 88
XtlPFactory

event_ind(), 21
get_provider_name(), 75
get_provider_obj(), 75

XtlPFactory methods, 83
XtlPFactory(), 83
XtlPPort, 39
XtlPPort methods, 96
XtlPPort(), 96
XtlPProvider

get_call_object(), 75
XtlPProvider methods, 85
XtlPProvider(), 85
XtlProvider

get_call_state_req(), 75
XtlString

class description, 55

108 SunXTL 1.1 Provider Programmer’s Guide—December 1995

length(), 56
methods, 55

XtlString usage examples, 56
xtltool(1), 46, 48
xv_main_loop(), 67
xvdispatcher.h header file, 65
XView dispatcher, 67
XView environment, 65

Reader Comments

We welcome your comments and suggestions to help improve this manual. Please let us
know what you think about theSunXTL1.1 Provider Programmer’s Guide,part number
801-7049-11.

■ The procedures were well documented.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ The tasks were easy to follow.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ The illustrations were clear.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ The information was complete and easy to find.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ Do you have additional comments about theSunXTL1.1 Provider Programmer’s
Guide?

Name:

Title:

Company:

Address:

Telephone:

Email address:

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 1 MOUNTAIN VIEW, CA

POSTAGE WILL BE PAID BY ADDRESSEE

SUN MICROSYSTEMS, INC.
Attn: Manager, Publications
MS MPK 14-101
2550 Garcia Avenue
Mt. View, CA 94043-9850

