
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Solstice DiskSuite 4.0
Administration Guide

Part No: 802-2422-10
Revision A, March 1995

A Sun Microsystems, Inc. Business

Please
Recycle

 1995 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, Online: DiskSuite, Solstice DiskSuite, ONC, ONC+, and NFS are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered trademark of Novell, Inc., in
the United States and other countries; X/Open Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a
registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. All other
product names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xv

1. Introduction . 1

Getting Help . 2

Supported Peripherals. 2

Disk Naming . 3

Definition of Terms . 3

2. Installation and Setup . 7

Converting to Solstice DiskSuite 4.0 . 8

Before You Begin the Installation. 8

After the Installation . 10

Preparing for Installation . 11

Local Installation . 11

Remote Installation . 12

Adding Packages . 13

Viewing Installed Packages . 20

iv Solstice DiskSuite 4.0 Administration Guide—March 1995

Removing Packages. 21

Path Requirements. 21

Viewing AnswerBook Online Documentation. 22

Creating Replicas of the Metadevice State Database. 22

Creating Space for Metadevice State Database Replicas. . . 22

Creating Replicas on Metadevice Components 24

Allocating Space From the swap Partition for Replicas . . . 25

Creating Replicas on Unused Disk Partitions 33

What to Do Next . 35

3. Overview of Solstice DiskSuite . 37

Elements of the Metadisk Driver . 38

Metadevices . 39

Concatenation and Striping . 40

Mirroring . 41

UNIX File System Logging . 42

Hot Spares . 45

Disksets . 45

RAID Devices . 45

State Database Replicas. 46

Expanding Mounted File Systems . 47

DiskSuite Commands and Utilities . 47

System Files Associated with DiskSuite 49

4. Concatenating and Striping . 51

Using Concatenations and Stripes . 51

Contents v

Defining Metadevice Configurations . 53

Concatenated Metadevices . 53

Striped Metadevices . 54

Metadevices Defined as Concatenated Stripes. 56

Replacing Failed Components . 57

Clearing Concatenations and Stripes . 58

Hardware and Software Considerations. 59

Assigning Interlace Values . 59

Mixing Different Size Components . 59

Using Components With Different Geometry 60

Controllers . 60

Bus Load . 60

Examples. 61

Striping Three Components . 61

Concatenating Eight Components. 62

Concatenating Stripes of Components 63

5. Mirroring . 65

Operation of Mirrors . 66

Defining Metamirrors . 69

Metamirror Options . 70

Resyncing Mirrors . 72

Checking the Status of Mirrors . 73

Mirroring Existing File Systems. 77

Unmirroring File Systems. 77

vi Solstice DiskSuite 4.0 Administration Guide—March 1995

root , swap, and /usr Mirroring . 78

Mirroring /usr . 79

Mirroring root . 81

Mirroring swap . 91

Unmirroring root and swap File Systems. 92

Reconfiguring Submirrors . 94

Attaching and Detaching Submirrors 95

Placing Submirrors Online and Offline. 95

Replacing and Enabling Submirror Components 96

Changing Metamirror and Submirror Options 97

Using Mirrors for Online Backup . 98

Performing Online Backups — for Mirrors 98

Performing Online Backups — for Nonmirrors. 100

Examples. 103

Mirroring an Existing File System . 103

Adding Submirrors . 105

Watching the Progress of a Resync Using metastat 106

6. UFS Logging . 109

Overview of UFS Logging . 110

Setting Up UFS Logging . 110

How Much Log Space is Required?. 111

Which File Systems Should Be Logged? 111

Where Should the Log Be Located?. 112

How To Set Up UFS Logging . 112

Contents vii

How to Share a Log Between File Systems. 114

Removing UFS Logging . 115

Logging a File System That Cannot Be Unmounted 117

Removing Logging from a File System That Cannot be
Unmounted . 118

Creating Metatrans Namespace for Exported File Systems . . . 119

How DiskSuite Commands Relate to Logging. 120

Using Metadevices and Metamirrors . 121

Metatrans Device States . 122

Recovering from Device Errors . 122

Recovering from File System Panics . 124

7. Hot Spares . 125

Overview of Hot Spares . 125

Defining Hot Spares. 126

Hot Spare Conditions to Avoid . 128

Manipulating Hot Spare Pools . 128

Adding Hot Spares . 129

Deleting Hot Spares. 129

Replacing Hot Spares . 130

Enabling Hot Spares . 131

Changing the Associated Hot Spare Pool 131

Checking the Status of Hot Spares . 132

Examples. 132

Setting up Hot Spare Pools. 133

viii Solstice DiskSuite 4.0 Administration Guide—March 1995

Adding Hot Spares to Hot Spare Pools. 134

Deleting Hot Spares From Hot Spare Pools 134

Replacing Hot Spares Within Hot Spare Pools 135

8. Disksets . 137

Overview of Disksets. 138

Database Replicas and Disksets . 139

Naming Conventions . 139

DiskSuite Commands and Disksets. 140

Defining Disksets . 141

Administering Disksets. 144

Reserving a Diskset . 144

Releasing a Diskset . 145

Removing Hosts and Drives From a Diskset 146

Adding Drives or Hosts to an Existing Diskset 148

9. RAID Devices . 151

RAID Overview . 151

Operation of RAID. 152

Creating RAID Metadevices . 153

Resyncing RAID Devices . 153

Reconfiguring RAID Devices . 154

Concatenating Components . 154

Replacing Components . 155

Changing Hot Spare Pool Association 156

Checking Status . 156

Contents ix

Hardware and Software Considerations. 158

Assigning Interlace Values . 158

Concatenating to a Device . 158

Write Performance . 159

Performance of a Degraded Device. 159

RAID as a Component to a Device . 159

Mixing Different Size Components . 159

Using Components with Different Geometry 160

Controllers . 160

Examples. 160

Defining a RAID device . 161

Concatenating to a RAID Device . 162

Recovering from Component Errors 164

10. State Database Replicas . 167

Overview of the State Database Replicas 168

Basic State Database Operation . 169

Planning Locations of Replicas . 170

Creating a State Database . 171

Creating Replicas . 171

Removing Replicas . 172

Checking the Status of Replicas . 173

Examples. 174

State Database Replicas on a New System 174

State Databases on Existing Systems. 175

x Solstice DiskSuite 4.0 Administration Guide—March 1995

11. Expanding a File System . 177

File System Expansion Overview . 177

Nonexpandable File Systems . 178

Adding Components . 178

The growfs Command. 179

Examples. 179

Expanding a Nonmetadevice Component 179

Expanding a Mounted File System . 181

Expanding a Mounted File System
 to an Existing Metamirror . 181

Expanding an Unmounted File System 182

Expanding a Mounted File System Using Stripes 183

12. Configuration Guidelines . 185

Performance Considerations . 185

Availability Considerations . 187

Capacity Considerations . 189

Labeled Partitions . 190

Security Considerations . 190

Compatibility Considerations . 190

A. Solstice DiskSuite Files . 191

B. Solstice DiskSuite Messages . 197

C. Recovery From Failed Boots . 231

D. Upgrading to Other Solaris Versions. 247

E. Using Solstice DiskSuite 4.0 with the
SPARCstorage Array 100 . 251

Contents xi

F. Man Pages . 255

Index . 257

xii Solstice DiskSuite 4.0 Administration Guide—March 1995

xiii

Figures

Figure 3-1 Location of the metadisk driver in the kernel hierarchy 38

Figure 3-2 Concatenation of three 327-Mbyte drives 40

Figure 3-3 Striping of three 327-Mbyte drives with an interlace of 8 Kbytes 41

Figure 3-4 UFS Logging. 43

Figure 3-5 Shared logging device. 44

Figure 4-1 Concatenated Metadevice . 54

Figure 4-2 Striped Metadevice . 55

Figure 4-3 Concatenation of Two Stripes Into a Metadevice 56

Figure 8-1 Example of a Diskset. 139

xiv Solstice DiskSuite 4.0 Administration Guide—March 1995

xv

Preface

Solstice DiskSuite™ is an unbundled software package that offers a pseudo
device driver (called a metadisk driver) providing better performance, greater
capacity, and improved availability of data.

Solstice DiskSuite allows for up to three-way mirroring of any file system
including /usr , root , and swap. Other features of Solstice DiskSuite include
online concatenation of physical drives, online expansion of file systems, disk
striping, hot spares, UFS logging, and RAID Level 5 support. Also included is
a diskset feature which provides facilities for hosts to share disks in a high
availabilty environment.

Solstice DiskSuite 4.0 runs on all SPARC® systems running Solaris™ 2.3 or a
later Solaris 2.x release, and on all x86 systems running Solaris 2.4 or a later
Solaris 2.x release. To use the UFS logging facilility, you must be running
Solaris 2.4 or a later Solaris 2.x release.

The diskset feature is supported on SPARC Solaris 2.4 or a later SPARC Solaris
2.x release. This feature is not supported on x86 systems.

Who Should Use This Book
System administrators and others with the task of administering disk
configurations and maintenance will find this manual to be a valuable
resource. Much of the information in this book is targeted towards
administrators with experience performing disk maintenance.

xvi Solstice DiskSuite 4.0 Administration Guide—March 1995

How This Book Is Organized
This document has an introduction, twelve chapters, and six appendixes.
Examples are included at the end of chapters, where appropriate.

Chapter 1, “Introduction,” introduces you to the basic concepts of Solstice
DiskSuite, lists the peripherals supported, and defines some of the general
terminology used in this document.

Chapter 2, “Installation and Setup,” provides information on what you need
to do before using Solstice DiskSuite, including installation and initial setup
instructions for the software. This chapter also describes how to create the
initial state database.

Chapter 3, “Overview of Solstice DiskSuite,” offers a high-level overview of
the functionality included with Solstice DiskSuite. The interaction between the
various parts of Solstice DiskSuite is also discussed.

Chapter 4, “Concatenating and Striping,” provides conceptual details and
procedures for using the Solstice DiskSuite facilities that enable you to create
metadevices consisting of either concatenated or striped disk partitions.

Chapter 5, “Mirroring,” includes information on the operation of mirrors,
using mirrors to recover from a single-component failure, the reconfiguration
of mirrors, and the use of mirroring for online backups of file systems.

Chapter 6, “UFS Logging,” provides information on how to set up and use the
UNIX file system logging facility included with Solstice DiskSuite.

Chapter 7, “Hot Spares,” describes how to define and use hot spares and
includes information on conditions to avoid when using hot spares.

Chapter 8, “Disksets,” provides information on how to set up and use the
diskset utility included with Solstice DiskSuite. This feature provides facilities
for hosts to share disks in a high availabilty environment.

Chapter 9, “RAID Devices,” provides information on RAID (Redundant
Arrays of Inexpensive Disks) Level 5, including hardware and software
considerations and examples for the RAID 5 support in software.

Chapter 10, “State Database Replicas,” provides an overview of the state
database and discusses proper use.

Preface xvii

Chapter 11, “Expanding a File System,” provides instructions for expanding
mounted and unmounted UFS file systems.

Chapter 12, “Configuration Guidelines,” provides performance, capacity, and
availability configuration tips.

Appendix A, “Solstice DiskSuite Files,” discusses the format of the three
system files associated with Solstice DiskSuite.

Appendix B, “Solstice DiskSuite Messages,” explains the most common
Solstice DiskSuite error messages.

Appendix C, “Recovery From Failed Boots,” provides detailed information
on how to recover from failed boots and other common errors.

Appendix D, “Upgrading to Other Solaris Versions,” outlines a procedure for
upgrading Solstice DiskSuite configurations to later versions of Solaris. This
procedure is provided as an alternative to completely reinstalling the Solaris
and Solstice DiskSuite packages.

Appendix E, “Using Solstice DiskSuite 4.0 with the SPARCstorage Array
100,” describes the characteristics of the SPARCstorage Array (SSA) with which
DiskSuite users should be familiar and explains how DiskSuite should be
configured and used to take advantage of the SSA.

Appendix F, “Man Pages,” is a printed copy of the associated manual pages,
which are also included on the installation CD.

Related Books
Sun documentation related to the Solstice DiskSuite product and disk
maintenance and configuration includes the following:

• Solstice DiskSuite Tool 4.0 User’s Guide
• Solaris 2.4 File System Administration

xviii Solstice DiskSuite 4.0 Administration Guide—March 1995

What Typographic Changes and Symbols Mean
The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

% su
password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt %

$ UNIX Bourne shell prompt $

Superuser prompt, either shell

1

Introduction 1

The Solstice DiskSuite software product offers better performance, greater
capacity, easier administration, and improved availability of disk storage on
SPARC and x86 systems.

With Solstice DiskSuite, data availability and reliability are improved with
three-way mirroring. You can mirror swap or any file system, including root
and /usr . You can mirror existing file systems and automatically replace failed
components within a mirror using hot spare facilities. Resynchronization time
for mirrors is greatly reduced by optimized copying.

The UNIX file system (UFS) logging facility provides faster local directory
operations, speeds up reboots, and decreases synchronous disk writes by
recording file system updates in a log before they are applied to the UFS file
system.

In addition, DiskSuite’s disk striping and concatenation can increase
performance. Striping spreads data requests over multiple components.
Concatenation and stripes increase capacity by grouping several components
into a single large logical device.

The information about the configuration and state of all metadevices is
preserved in a replicated state database. This further ensures the integrity of
data.

Administration is simplified by the hot spare facility and the dynamic growth
of metadevices and file systems. New functionality included in the Solstice
DiskSuite 4.0 release includes the creation of RAID (level 5) configurations and

2 Solstice DiskSuite 4.0 Administration Guide—March 1995

1

disksets. A diskset is a grouping of two hosts and disk drives in which all the
drives are accessible by both hosts. RAID provides recovery from disk failure
in a more cost effective way than disk mirroring.

This introductory chapter provides the following:

• Information on how to get help

• A list of the peripherals supported by Solstice DiskSuite

• A list of DiskSuite terms and their definitions

Getting Help
If you have problems installing or using Solstice DiskSuite, call the distributor
from which you purchased the software and provide the following
information:

• Your name and electronic mail address (if available)

• Your company name, address, and phone number

• The model and serial number of your system

• The release number of the operating system (for example, Solaris 2.3 or
Solaris 2.4)

• Any additional information that will help diagnose the problem

Supported Peripherals
Solstice DiskSuite 4.0 runs on all SPARC systems running Solaris 2.3 or a later
Solaris 2.x release and on all x86 systems running Solaris 2.4 or a later Solaris
2.x release. (You must run Solaris 2.4 or a later Solaris 2.x release to use the UFS
logging facility.)

The peripherals supported by DiskSuite include:

• IPI disk drives

• SCSI disk drives

• IDE disk drives (x86 only)

Note – The root file system cannot be mirrored on an IDE drive.

Introduction 3

1

Disk Naming

Backup Copilot uses the normal disk naming convention for all drives. This
naming is, cnt ndnsn, where c is the controller number, t is the target, d is the
disk, and s is the slice. However it is important to be aware that on x86
systems, IDE drives do not have a target number. All the examples and
instructions in this manual are from a SPARC system and show the target
number.

Definition of Terms
The following are general definitions for Solstice DiskSuite:

Attach submirror - to add a submirror to an existing metamirror by using the
metattach(1M) command. The attached submirror is then resynced with
other submirrors.

Attach logging device - to add a logging device to an existing metatrans
device by using the metattach(1M) command.

Component - the physical partition that is part of a metadevice.

Concatenated Stripe - a metadevice that is made up of both concatenated and
striped components.

Concatenation - the act of combining two or more physical components into a
single metadevice. The partitions are accessed sequentially (treated as a single
device) rather than interlaced (as with stripes).

Detach submirror - to remove a submirror from an existing metamirror by
using the metadetach(1M) command.

Detach logging device - to remove a logging device from a metatrans device
by using the metadetach(1M) command.

Diskset - a grouping of two hosts and disk drives in which all the drives are
accessible by both hosts. This feature provides facilities for hosts to share disks
in a high availabilty environment.

Hot spare - a component set up to be automatically substituted for a failed
component of a mirrored or RAID metadevice.

4 Solstice DiskSuite 4.0 Administration Guide—March 1995

1

Hot spare pool - a group of spare components which automatically replace
failed components.

Interlace - the number of blocks on a component of a striped or RAID
metadevice that can be accessed simultaneously with the same number of
blocks from other components. The interlace value tells DiskSuite how much
data to place on a component of a striped or RAID metadevice before moving
on to the next component.

Local diskset - a diskset for a host consisting of all drives which are not part of
a shared diskset.

Logging - recording UNIX file system (UFS) updates in a log (the logging
device) before they are applied to the UNIX file system (the master device).

Logging device - the component of a metatrans device that contains the log.

Master device - the component of a metatrans device that contains the file
system.

Metadevice - a group of components accessed as a single logical device
through concatenating, striping, mirroring, logging the physical devices, or
setting up RAID devices.

Metadevice state database - information kept in nonvolatile storage (on disk)
for preserving the state and configuration of metadevices.

Metadriver - a pseudo device driver that maps operations on a metadevice
into operations on its components.

Metamirror - a special type of metadevice (also referred to as a “Mirror”),
composed of one or more other metadevices called submirrors.

Metatrans device - a special type of metadevice which implements UFS
logging (also referred to as a “Trans device”). A metatrans device is composed
of one or more other metadevices or components. This pseudo device is made
up of a master device and, optionally, a logging device.

md.tab - the metadevice workspace file for metainit . Note that this file is
maintained by the user.

Mirroring - replicating all writes to a single logical device (the metamirror) to
multiple devices (the submirrors) while distributing read operations. This
provides redundancy of data in the event of a failure.

Introduction 5

1

Optimized resync - an update of only the submirror regions that are not in
sync when the system reboots. Because DiskSuite keeps track of regions of all
metamirrors, the metadisk driver knows which regions of the submirrors are
not identical (in sync) on all submirrors after a crash.

Partial resync - resyncing only a replaced component of a submirror or RAID
device, rather than the entire submirror or RAID device.

RAID - an acronym for Redundant Arrays of Inexpensive Disks.

Replica - a copy of the state database. Keeping copies of the state database
protects against the loss of state and configuration information. This
information is critical to the operation of all metadevices.

Resync region - a division of a metamirror that enables DiskSuite to track
changes by region rather than over the entire metamirror. By dividing the
metamirror into regions, resync time may be reduced.

Resyncing - copying data from one submirror to another after system crashes,
submirror failures, or after using the metattach command to add a submirror.
Resyncing ensures the data on all submirrors is identical.

State database - a dedicated portion of a disk reserved exclusively for the
metadisk driver. It cannot be used for any other purpose.

Stripe - similar to concatenation, except the addressing of the component
blocks is interlaced on the partitions, rather than addressed sequentially.
Striping is used to gain performance. By striping data across disks, multiple
controllers can access data simultaneously.

Submirror - a metadevice that is part of a metamirror.

UFS - an acronym for the UNIX file system.

UFS logging - recording UNIX file system updates to a log (the logging device)
before the updates are applied to the UFS (the master device).

6 Solstice DiskSuite 4.0 Administration Guide—March 1995

1

7

Installation and Setup 2

This chapter provides the information necessary to perform the basic Solstice
DiskSuite 4.0 installation.

It is assumed that you have a CD-ROM drive already installed on a machine.
For a full description of the Solaris 2.4 system software installation, refer to
Installing Solaris Software.

The basic steps to install software from CD-ROM include:
• Making sure you have enough space for the packages
• Adding the software packages
• Setting the system path variables

Use the following table to locate specific information in this chapter.

Converting to Solstice DiskSuite 4.0 page 8

Before You Begin the Installation page 8

After the Installation page 10

Preparing for Installation page 11

Local Installation page 11

Remote Installation page 12

Adding Packages page 13

Viewing Installed Packages page 20

Removing Packages page 21

8 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

Converting to Solstice DiskSuite 4.0
The format of the metadevice state database replicas in Solstice DiskSuite 4.0 is
incompatible with that of Online: DiskSuite 3.0 (or earlier DiskSuite versions).
Because of this, Solstice DiskSuite 4.0 will not recognize or read database
replicas created by Online: DiskSuite 3.0. This means that you must completely
de-install any previous version of Online: DiskSuite before installing Solstice
DiskSuite 4.0. The procedures provided in the following sections will guide
you in this process.

If no version of DiskSuite has not been previously installed on this system, skip
ahead to “Preparing for Installation” on page 11.

Before You Begin the Installation

Complete the following procedure before you start the installation procedures
for Solstice DiskSuite 4.0.

1. Back up all filesystems that currently reside on metadevices.
Note that this is only to ensure that no data is lost during the installation
process. You will most likely not have to restore your filesystems from these
backups.

2. Save the existing state information.
You’ll need to create a new /etc/opt/SUNWmd/md.tab file from the state
information displayed by the metastat command. Use the metastat
command with the -p option to create an md.tab file. You must examine
the metastat output to discover which, if any, devices are currently in
“Needs Maintenance” state. This initial md.tab file will need to be edited,
depending on the state of your metadevices.

3. Edit the md.tab file.
You’ll need to make the following changes to the initial md.tab file:

• Use the metastat command with no arguments to determine which (if
any) metadevices are in the “Needs Maintenance” state.

Path Requirements page 21

Viewing AnswerBook Online Documentation page 22

Creating Replicas of the Metadevice State Database page 22

Installation and Setup 9

2

• Remove any submirrors that are in the “Needs Maintenance ” state. These
should be fixed and then attached (using metattach) after Solstice
DiskSuite 4.0 is installed, and after the initial mirror is created.

Note – If both submirrors in a mirror are in the “Needs Maintenance ” state,
you will not be able to use this mirror with Solstice DiskSuite 4.0 until at least
one of the submirrors is repaired.

• Delete all but the first submirror in the “OK” state from any remaining
mirror lines. All mirror lines in the md.tab file should be in the form:

Note that all mirrors are one-way mirrors. These will be created, and other
submirrors attached, after the installation is complete.

4. Record the location of all existing metadevice state database replicas in
the md.tab file
 The individual lines should be of the form:

You can determine the location of all existing state database replicas by
using the command metadb -i. Be careful to note the possible existence
of multiple database replicas per device. Please refer to the md.tab(4)
man page for the correct syntax of the mddb lines.

5. Save the resulting md.tab file under a different name so it is not
overwritten when you install DiskSuite 4.0.
You may want to copy the md.tab file to a floppy or another machine to be
absolutely certain that no data is lost.

6. Detach the log from all metatrans devices
You can use the metadetach command to detach the log. This flushes all
data from the log onto the master device. Clearing the metatrans device
with metaclear will accomplish this also, but the metatrans device will
have to be unmounted before it can be cleared.

name -m submirror [pass_number]

mddb<nnn> slice1 [slice2 slice3 ...]

10 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

7. Unmount all of the file systems that are currently mounted on
metadevices, and comment entries for metadevices out of /etc/vfstab.
If / , swap, or /usr are mirrored, you will need to un-mirror those devices
and reboot onto physical devices before proceeding. For more information
on performing these procedures, see Chapter 5, “Mirroring.” Similarly, if
/usr is logged (is a metatrans device), you will need to “unlog” it by
detaching the log and rebooting onto a physical device before proceeding.

8. Delete all metadevice state database replicas using the metadb command
with the -df options.

9. Remove the product by typing:

Note that you must be superuser to run this command.

10. Reboot the machine.
You have now completed the process for removing the previous version of
Online: DiskSuite.

11. Install Solstice DiskSuite 4.0 according to the instructions under the
sections for local or remote installation.
After the installation is complete, reboot the machine and proceed with the
post-installation instructions given below.

After the Installation

When you are finished installing Solstice DiskSuite 4.0, complete the following
procedure to reinstate your former DiskSuite configuration.

1. Copy the md.tab file you saved in the previous section to
/etc/opt/SUNWmd/md.tab .
You may wish to run metainit -n to check the syntax of your md.tab file.

pkgrm SUNWmd

Installation and Setup 11

2

2. Re-create all of your state database replicas using the metadb command
with the -a option for each of the mddb<nnn> entries in your md.tab file
as follows.
Note that, for the first replica, you will also need to add the -f option:

Note that if you want multiple database replicas per device, you must use
the -c option to metadb .

3. Re-create the metadevices using metainit -a .

4. Un-comment the entries in /etc/vfstab for metadevices that you
commented out in step 6 above. Use the mount -a command to remount
these file systems.

5. Reboot.
You should now be running the same metadevice configuration as you were
before beginning the installation, except that you will have only one-way
mirrors.

6. Use metattach to attach the submirrors to all mirrors that previously had
two (or more) submirrors.
If you have lots of these, it may be more convenient to prepare a shell script
to perform the metattach operations.

Preparing for Installation
The following sections describe how to get ready for a local or remote
DiskSuite installation.

Local Installation

To prepare for a local installation:

1. Insert the CD containing the software into a caddy. Then put the caddy
into the CD-ROM drive.

metadb -a -f mddb< nnn>

12 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

2. Change directories to /cdrom/cdrom0 as follows:

You are now ready to install the software on your local machine. Skip to the
section “Adding Packages” on page 13 and follow the instructions provided.

Remote Installation

To prepare for a remote installation:

1. On the remote machine, insert the CD containing the software into a
caddy. Then put the caddy into the CD-ROM drive.

2. Put a line similar to the following into the file /etc/dfs/dfstab :

This line may be different, depending on how your system is networked.

3. Export the /cdrom/cdrom0 directory with the shareall command:

4. On the local machine, log in as root and create the directory
/cdrom/cdrom0 (if it doesn’t already exist):

You may choose another directory besides /cdrom/cdrom0 .

5. Mount the CD-ROM as follows:

You’re now ready to install the software onto your local machine. Skip to the
section “Adding Packages” on page 13 and follow the instructions provided.

local% cd /cdrom/cdrom0

share -F nfs -o ro -d ” CD-ROM Directory” /cdrom/cdrom0

remote# shareall

local% su
Password: root-password
local# mkdir -p /cdrom/cdrom0

local# mount remote_machinename:/cdrom/cdrom0 /cdrom/cdrom0

Installation and Setup 13

2

Adding Packages
1. Become root (if you haven’t already).

2. Change to the directory on which the CD-ROM is mounted.
(The section, “Mounting the CD-ROM,” called this directory
/cdrom/cdrom0 . You may have chosen a different name.)

3. Run pkgadd to install packages.

Note – If the pkgadd command is not in your current path, you must specify
the full path to the command (/usr/sbin/pkgadd).

4. Choose the package you want to install.
pkgadd displays the available packages and prompts you to enter the
number associated with a package. Select 1 to install the AnswerBook®

online documentation only (see “Viewing AnswerBook Online
Documentation” on page 22 for details on how to proceed), select 2 to install
the DiskSuite package only, or select 'all ' (as illustrated in the following
example) to install both packages. The program loops until you press q to
quit.

Note – Do not be concerned if the screens displayed when you install this
product do not appear exactly as shown in the following example.

local% su
Password: root-password

local# cd /cdrom/cdrom0

local# pkgadd -d .

14 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

pkgadd -d .

The following packages are available:
 1 SUNWabmd Solstice DiskSuite 4.0 Administration Guide AnswerBook
 (all) 24.2.7
 2 SUNWmd Solstice DiskSuite
 (all) 4.0,REV=1.0
 3 SUNWmdg Solstice DiskSuite Tool
 (all) 4.0,REV=1.0

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]: all

Processing package instance <SUNWabmd> from </cdrom>

Solstice DiskSuite 4.0 Administration Guide AnswerBook
(all) 24.2.7
 Copyright 1994 Sun Microsystems, Inc. All Rights Reserved
 Printed in the United States of America
2550 Garcia Avenue, Mountain View, California, 94043-1100 U.S.A.

... (miscellaneous copyright information)...

Using </opt> as the package base directory.

The installation options are as follows:
Option: Description:
--
1. nil: less than 1 Megabyte disk space required [slowest
performance].
2. heavy: 1.88 Megabytes disk space required [best performance].

Note: If the install option which you choose fails
 due to lack of space, try another location, or
 choose a lower install option number.
Enter the number of an installation option from the list above (1 or
2):

Select an installation option: 2
Installation option: heavy selected.

(continued on following page)

Installation and Setup 15

2

Specify the parent of the AnswerBook home directory:
 For the heavy option all files will be placed under /opt/SUNWabmd.
Processing package information.
Processing system information.
Verifying package dependencies.
Verifying disk space requirements.
Checking for conflicts with packages already installed.
Checking for setuid/setgid programs.

This package contains scripts which will be executed with super-user
permission during the process of installing this package.

Do you want to continue with the installation of this package [y,n,?] y

Installing Solstice DiskSuite 4.0 Administration Guide AnswerBook as
<SUNWabmd>

Installing part 1 of 1.
/opt/SUNWabmd/spot-help/README
[verifying class <HelpFiles>]
/opt/SUNWabmd/_data/DISKSUITEADMIN/01.Introduction
/opt/SUNWabmd/_data/DISKSUITEADMIN/02.Getting_Started
/opt/SUNWabmd/_data/DISKSUITEADMIN/03.Overview_of_Sun_OnlineDiskSuite
/opt/SUNWabmd/_data/DISKSUITEADMIN/04.Concatenating_and_Striping
/opt/SUNWabmd/_data/DISKSUITEADMIN/05.Mirroring
/opt/SUNWabmd/_data/DISKSUITEADMIN/06.UFS_Logging
/opt/SUNWabmd/_data/DISKSUITEADMIN/07.Hot_Spares
/opt/SUNWabmd/_data/DISKSUITEADMIN/08.Disksets
/opt/SUNWabmd/_data/DISKSUITEADMIN/09.RAID_Devices
/opt/SUNWabmd/_data/DISKSUITEADMIN/10.State_Database_Replicas
/opt/SUNWabmd/_data/DISKSUITEADMIN/11.Expanding_a_File_System
/opt/SUNWabmd/_data/DISKSUITEADMIN/12.Configuration_Guidelines
/opt/SUNWabmd/_data/DISKSUITEADMIN/A.Sun_Online_DiskSuite_Files
/opt/SUNWabmd/_data/DISKSUITEADMIN/B.Sun_Online_DiskSuite_...
/opt/SUNWabmd/_data/DISKSUITEADMIN/C.Recovery_From_Failed_Boots
/opt/SUNWabmd/_data/DISKSUITEADMIN/Contents
/opt/SUNWabmd/_data/DISKSUITEADMIN/Cover
/opt/SUNWabmd/_data/DISKSUITEADMIN/Credits
/opt/SUNWabmd/_data/DISKSUITEADMIN/D.Upgrading_to_Other_...
/opt/SUNWabmd/_data/DISKSUITEADMIN/E.Using_Solstice_DiskSuite...
/opt/SUNWabmd/_data/DISKSUITEADMIN/F.Man_Pages

(continued on following page)

16 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

/opt/SUNWabmd/_data/DISKSUITEADMIN/Preface
/opt/SUNWabmd/_data/DISKSUITEADMIN/files_to_print
/opt/SUNWabmd/_data/SUNWab_24_1.xtoc
/opt/SUNWabmd/_data/SUNWab_24_1/ManPagesEntryPoint
/opt/SUNWabmd/_data/SUNWab_24_1/SUNWab_24_1.titlepage
/opt/SUNWabmd/_data/SUNWab_24_1/SystemLink.SUNWab_24_1
/opt/SUNWabmd/_data/SUNWab_24_1/abmerge
/opt/SUNWabmd/_data/SUNWab_24_1/abunmerge
/opt/SUNWabmd/_data/SUNWab_24_1/dbgen
/opt/SUNWabmd/_data/SUNWab_24_1/domerge
/opt/SUNWabmd/_data/SUNWab_24_1/initial.page
/opt/SUNWabmd/_data/SUNWab_24_1/make_ab_script
/opt/SUNWabmd/_data/SUNWab_24_1/xtocmerge
/opt/SUNWabmd/_data/list_of_books
/opt/SUNWabmd/_data/sr_index/Keys
/opt/SUNWabmd/_data/sr_index/SUNW24_1.cat
/opt/SUNWabmd/_data/sr_index/SUNW24_1.cfg
/opt/SUNWabmd/_data/sr_index/SUNW24_1.cix
/opt/SUNWabmd/_data/sr_index/SUNW24_1.dct
/opt/SUNWabmd/_data/sr_index/SUNW24_1.log
/opt/SUNWabmd/_data/sr_index/SUNW24_1.ref
/opt/SUNWabmd/_data/sr_index/ascii.xtoc
[verifying class <PostScript>]
Executing postinstall script.
----- Installing 2 Book Contents databases -----

The destination for the Book Contents databases is
/opt/SUNWabmd/_data

After installation, use /opt/SUNWabmd/answerbook to start the AB.

Installation of <SUNWabmd> was successful.
Processing package instance <SUNWmd> from </cdrom>

Solstice Disksuite
(sparc i386) OLDS_4.0
Solstice DiskSuite 4.0 SUNBIN
CD-ROM (HSFS Format)
Part Number 258-3523-10

Copyright 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California, 94043-1100 U.S.A.

 (continued on following page)

Installation and Setup 17

2

All rights reserved... (miscellaneous copyright information)...

Using </> as the package base directory.
Processing package information.
Processing system information.
 4 package pathnames are already properly installed.
Verifying package dependencies.
Verifying disk space requirements.
Checking for conflicts with packages already installed.
Checking for setuid/setgid programs.

This package contains scripts which will be executed with super-
user permission during the process of installing this package.

Do you want to continue with the installation of this package
[y,n,?] y

Installing Solstice DiskSuite as <SUNWmd>

##Executing preinstall script.
Installing part 1 of 1.
/etc/init.d/SUNWmd.init
/etc/init.d/SUNWmd.sync
/etc/rc2.d/S95SUNWmd.sync <symbolic link>
/etc/rcS.d/S35SUNWmd.init <symbolic link>
/kernel/drv/md
/kernel/drv/md.conf
/kernel/misc/md_hotspares
/kernel/misc/md_mirror
/kernel/misc/md_stripe
/usr/lib/drv/preen_md.so.1
/usr/opt/SUNWmd/etc <symbolic link>
/usr/opt/SUNWmd/locale/C/LC_MESSAGES/SUNWmd.po
/usr/opt/SUNWmd/man/man1m/growfs.1m
/usr/opt/SUNWmd/man/man1m/metaclear.1m
/usr/opt/SUNWmd/man/man1m/metadb.1m
/usr/opt/SUNWmd/man/man1m/metadetach.1m
/usr/opt/SUNWmd/man/man1m/metahs.1m
/usr/opt/SUNWmd/man/man1m/metainit.1m
/usr/opt/SUNWmd/man/man1m/metaoffline.1m
/usr/opt/SUNWmd/man/man1m/metaonline.1m
/usr/opt/SUNWmd/man/man1m/metaparam.1m

(continued on following page)

18 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

/usr/opt/SUNWmd/man/man1m/metareplace.1m
/usr/opt/SUNWmd/man/man1m/metaroot.1m
/usr/opt/SUNWmd/man/man1m/metastat.1m
/usr/opt/SUNWmd/man/man1m/metasync.1m
/usr/opt/SUNWmd/man/man1m/metattach.1m
/usr/opt/SUNWmd/man/man4/md.cf.4
/usr/opt/SUNWmd/man/man4/md.tab.4
/usr/opt/SUNWmd/man/man4/mddb.cf.4
/usr/opt/SUNWmd/man/man7/md.7
/usr/opt/SUNWmd/sbin/growfs
[verifying class <none>]
cp /cdrom/SUNWmd/reloc/etc/opt/SUNWmd/md.cf
/etc/opt/SUNWmd/md.cf
cp /cdrom/SUNWmd/reloc/etc/opt/SUNWmd/md.tab
/etc/opt/SUNWmd/md.tab
cp /cdrom/SUNWmd/reloc/etc/opt/SUNWmd/mddb.cf
/etc/opt/SUNWmd/mddb.cf
cp /cdrom/SUNWmd/reloc/kernel/drv/md.conf /kernel/drv/md.conf
[verifying class <preserve>]
/kernel/drv/md
/kernel/misc/md_hotspares
/kernel/misc/md_mirror
/kernel/misc/md_stripe
/kernel/misc/md_trans
/usr/lib/drv/preen_md.so.1
/usr/opt/SUNWmd/sbin/metaclear
/usr/opt/SUNWmd/sbin/metadb
/usr/opt/SUNWmd/sbin/metadetach
/usr/opt/SUNWmd/sbin/metahs
/usr/opt/SUNWmd/sbin/metainit
/usr/opt/SUNWmd/sbin/metaoffline
/usr/opt/SUNWmd/sbin/metaonline
/usr/opt/SUNWmd/sbin/metaparam
/usr/opt/SUNWmd/sbin/metareplace
/usr/opt/SUNWmd/sbin/metaroot
/usr/opt/SUNWmd/sbin/metastat
/usr/opt/SUNWmd/sbin/metasync
/usr/opt/SUNWmd/sbin/metattach
[verifying class <sparc>]

 (continued on following page)

Installation and Setup 19

2

5. Respond with a y to any prompts about changing modes on directories.
pkgadd installs the DiskSuite files in the /usr/opt/SUNWmd directory, as
well as in other system directories. pkgadd does not overwrite any software
included with the standard Solaris 2.4 release.

6. Reboot the system as directed to build the metadevices.

Executing postinstall script.
(various other manpage, command, help, and gui files installed here)
.
.
.
Installation of <SUNWmd> was successful.
.
.
.
Installation of <SUNWmdg> was successful.
The following packages are available:
 1 SUNWabmd Solstice DiskSuite 4.0 Administration Guide AnswerBook
 (all) 24.2.7
 2 SUNWmd Solstice DiskSuite
 (all) 4.0,REV=1.0
 3 SUNWmdg Solstice DiskSuite Tool
 (all) 4.0,REV=1.0

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]: q

*** IMPORTANT NOTICE ***
 This machine must now be rebooted in order to ensure
 sane operation. Execute shutdown -y -i6 -g0
 and wait for the “Console Login:” prompt.

20 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

Viewing Installed Packages
You can confirm that the DiskSuite software and AnswerBook have been
installed by using the pkginfo command:

The -l option gives detailed information about packages:

demo$ pkginfo
application SUNWabmd AnswerBook
SPARCompile SUNWC++ SPARCompilers 2.0 C++ 3.0
system SUNWaccr System Accounting, (Root)
system SUNWaccu System Accounting, (Usr)
SPARCompile SUNWacomp SPARCompilers 2.0 Sun C 2.0
system SUNWarc Archive Libraries
system SUNWast Automated Security Enhancement Tools
system SUNWaudio Audio applications
system SUNWbcp Binary Compatibility
system SUNWbnur Networking UUCP Utilities, (Root)
system SUNWbnuu Networking UUCP Utilities, (Usr)
system SUNWmd Solstice DiskSuite
. . .

demo$ pkginfo -l SUNWmd
 PKGINST: SUNWmd
 NAME: Solstice DiskSuite
 CATEGORY: system
 ARCH: sparc_and_i386
 VERSION: SDS_4.0
 BASEDIR: /
 VENDOR: SunSoft, a Sun Microsystems, Inc. Business
 DESC: SunSoft’s Solstice DiskSuite
 PSTAMP: ########
 INSTDATE: Jan 10 1995 11:26
 HOTLINE: Please contact your local service provider
 STATUS: completely installed
 FILES: 70 installed pathnames
 10 shared pathnames
 22 directories
 21 executables
 11 package information files
 1929 blocks used (approx)
. . .

Installation and Setup 21

2

Removing Packages
If you decide to remove either the DiskSuite or AnswerBook packages, simply
remove the installed files using the pkgrm command. For example, to remove
the AnswerBook package (as superuser), type:

Note – Do not remove DiskSuite or AnswerBook files using the rm command.
Using pkgrm is the only valid way to remove these files.

Path Requirements
After installing the software, you must set the environment variables PATH and
MANPATH.

The general requirements are as follows:

• Insert /usr/opt/SUNWmd/sbin either before or after PATH.

If you do not set this path, you may get other versions of the software.

• Insert /usr/opt/SUNWmd/man either before or after your MANPATH.

If you do not set this path, you could get man pages for the wrong release,
or no man pages at all.

You can set these paths by using an editor to change your $HOME/.profile or
~/.cshrc file, as follows.

If you installed into the default directory, then:

• If you’re using the Bourne shell, your $HOME/.profile file should have
lines like this:

pkgrm SUNWabmd

PATH=/usr/opt/SUNWmd/sbin:$PATH
MANPATH=/usr/opt/SUNWmd/man:$MANPATH
export PATH MANPATH

22 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

• If you’re using the C shell (csh), the ~/.cshrc file should have lines that
look something like this:

Viewing AnswerBook Online Documentation
To view the AnswerBook online documentation:

1. Type /usr/openwin/bin/answerbook and press Return.

2. The AnswerBook Navigator is displayed.
Follow the online instructions to use the AnswerBook online
documentation.

Creating Replicas of the Metadevice State Database
Before you can use the DiskSuite software, you must create the metadevice
state database. The metadevice state database replicas can exist on dedicated
disk partitions or within a concatenated, striped, or logging metadevice.

It is strongly recommended you make a replica on each available unused
partition. There must be at least three replicas or the DiskSuite software can
not be used. Read the following section for instructions on creating space for
metadevice state database replicas.

Creating Space for Metadevice State Database Replicas

Before using any DiskSuite functionality, you must create at least three replicas
(copies) of the metadevice state database. The three replicas ensure the loss of
any one replica will not cause a failure of DiskSuite.

A replica is a dedicated portion of a disk, similar to a disk label. The space
occupied by the replica is reserved for the exclusive use of the metadevice state
database; it should not be used for any other purpose.

set path = (/usr/opt/SUNWmd/sbin $path)
setenv MANPATH /usr/opt/SUNWmd/man:$MANPATH

Installation and Setup 23

2

State database replicas are critical to the operation of all metadevices because
they provide nonvolatile storage for DiskSuite. The replicas keep track of all
configuration and status information about mirrors, submirrors,
concatenations, stripes, hot spares, logging devices, and master devices. The
replicas also keep track of error conditions.

The replicated state database information keeps DiskSuite operating. Without
replicas of the same information for comparison, DiskSuite does not know the
current running state of metadevices. Chapter 8, “Disksets,” and the metadb
(1M) manual page discuss how the replicas are used by the metadisk driver.

Each replica may exist on either a dedicated disk partition or within space
specifically reserved for a replica within a striped or concatenated metadevice;
or within a logging or a RAID device. Multiple replicas can be stored in a
single disk partition. However, placing all replicas on a single disk reduces
reliability. Each replica occupies 517 kilobytes (Kbytes) or 1034 disk blocks of
the partition by default.

Note – Before you create replicas, make sure you have a current backup of all
data.

 There are three procedures you can use for creating replicas. These procedures
are:

• Creating replicas on metadevice components. Use this procedure if you have
at least three unused components on which you can create replicas.

• Creating a new disk partition. Use this procedure if you have no unused
disk partitions and are forced to repartition the disk to create the space for
replicas.

• Creating replicas on unused disk partitions. Use this procedure if you have
only one unused disk partition on which you can create replicas.

The first and third procedures on this list are actually the preferred methods
for creating replicas. The second procedure is described in the event neither of
the other two can be used at your site. The following sections detail the three
procedures.

24 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

Creating Replicas on Metadevice Components

This section describes how to create three replicas on unused components that
will be used within a metadevice. Unused components are disk partitions that
have no active data on them (for example, no file systems, swap, or databases
reside on the partition).

For a detailed discussion of what metadevices are and how you would use
them at your site, refer to Chapter 3, “Overview of Solstice DiskSuite.’’

Note – If you plan to use the components within a new metadevice, consider
placing replicas on at least three of the physical components of the new
metadevice. This will prevent the failure of a single disk from causing
DiskSuite to fail.

The following procedure describes how to create three replicas on three
components that will be part of a metadevice.

♦ Determine which components will be part of a metadevice and use the
metadb command to create replicas on the components.
For instance, if you have three components, /dev/dsk/c0t1d0s3 ,
/dev/dsk/c1t1d0s3 , and /dev/dsk/c2t1d0s3 , that you plan to
concatenate or use as logging devices, you would enter the following as
root:

The metadb command creates one replica on each of the components,
/dev/dsk/c0t1d0s3 , /dev/dsk/c1t1d0s3 , and /dev/dsk/c2t1d0s3 .

When you run metadb for the first time, the following message is displayed:

You have just created the first state database replicas so you can ignore this
message.

/usr/opt/SUNWmd/sbin/metadb -a -f /dev/dsk/c0t1d0s3 \
/dev/dsk/c1t1d0s3 /dev/dsk/c2t1d0s3

metadb: There are no existing databases

Installation and Setup 25

2

In this case, running metadb creates empty replicas. The replicas will not
contain any configuration information until other DiskSuite utilities are used to
manipulate metadevices.

Allocating Space From the swap Partition for Replicas

If there are no unused disk partitions, you can create a new partition by taking
space from the end of the swap partition and assigning it to an unused
partition name.

The procedure for allocating space from the swap partition is as follows:

1. As root, halt the system using the halt command.

halt
Oct 29 14:23:56 demo halt: halted by root
Oct 29 14:23:58 1992
 demo syslogd: going down on signal 15
Halted

Program terminated
Type help for more information

26 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

2. Boot the system to single-user mode as follows:

3. Turn off swapping to the partition from which you intend to use blocks.
For example:

<#3> ok boot -s
Resetting ...

SPARCsystem 600MP (4 X 390Z55), No Keyboard
ROM Rev. 2.8, 128 MB memory installed, Serial #4200929.
Ethernet address 8:0:20:10:cb:ee, Host ID: 714019e1.

Initializing Memory ...
Boot device: /iommu/sbus/dma@f,81000/esp@f,80000/sd@3,0 File
and args: -s
SunOS Release 5.1 Version beta_1.2 [UNIX(R) System V Release 4.0]
Copyright (c) 1983-1992, Sun Microsystems, Inc.
Hostname: demo

INIT: SINGLE USER MODE

Type Ctrl-d to proceed with normal startup,
(or give root password for system maintenance): <root-password>
Entering System Maintenance Mode

SunOS Release 5.1 Version beta_1.2 [UNIX(R) System V Release 4.0]
#

swap -l
swapfile dev swaplo blocks free
swapfs - 0 751552 750136
/dev/dsk/c0t3d0s1 32,25 8 524952 524952
swap -d /dev/dsk/c0t3d0s1
swap -l
swapfile dev swaplo blocks free
swapfs - 0 226600 225176
#

Installation and Setup 27

2

4. Changing the disk partitions involves editing the disk label. Use the
format command to repartition the disk.
For example:

format
Searching for disks...done

AVAILABLE DISK SELECTIONS:
 0. c0t2d0 <SUN1.3G cyl 1965 alt 2 hd 17 sec 80>
 /iommu@f,e0000000/sbus@f,e0001000/esp@f,80000/sd@2,0
 1. c0t3d0 <SUN1.3G cyl 1965 alt 2 hd 17 sec 80>
 /iommu@f,e0000000/sbus@f,e0001000/esp@f,80000/sd@3,0
 2. c1t1d0 <SUN1.3G cyl 1965 alt 2 hd 17 sec 80>
 /iommu@f,e0000000/sbus@f,e0001000/esp@0,200000/sd@1,0
 3. c1t3d0 <SUN1.3G cyl 1965 alt 2 hd 17 sec 80>
 /iommu@f,e0000000/sbus@f,e0001000/esp@0,200000/sd@3,0
 4. c2t1d0 <SUN1.3G cyl 1965 alt 2 hd 17 sec 80>
 /iommu@f,e0000000/sbus@f,e0001000/esp@1,200000/sd@1,0
 5. c2t3d0 <SUN1.3G cyl 1965 alt 2 hd 17 sec 80>
 /iommu@f,e0000000/sbus@f,e0001000/esp@1,200000/sd@3,0
Specify disk (enter its number): 1
selecting c0t3d0
[disk formatted]
Warning: Current Disk has mounted partitions.

FORMAT MENU:
 disk - select a disk
 type - select (define) a disk type
 partition - select (define) a partition table
 current - describe the current disk
 format - format and analyze the disk
 repair - repair a defective sector
 label - write label to the disk
 analyze - surface analysis
 defect - defect list management
 backup - search for backup labels
 verify - read and display labels
 save - save new disk/partition definitions
 inquiry - show vendor, product and revision
 volname - set 8-character volume name
 quit

28 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

5. Next, use the partition command to delete the cylinders from the swap
partition that you intend to use for your database.
For example, to delete six cylinders from swap partition 1 to use for a
database on slice 3, you would do the following:

format> partition

PARTITION MENU:
 0 - change ‘0' partition
 1 - change ‘1' partition
 2 - change ‘2' partition
 3 - change ‘3' partition
 4 - change ‘4' partition
 5 - change ‘5' partition
 6 - change ‘6' partition
 7 - change ‘7' partition
 select - select a predefined table
 modify - modify a predefined partition table
 name - name the current table
 print - display the current table
 label - write partition map and label to the disk
 quit
partition> print
Current partition table (original sd3):
Part Tag Flag Cylinders Size Blocks
 0 root wm 0 - 150 100.27MB (151/0/0)
 1 swap wu 151 - 536 256.33MB (386/0/0)
 2 unassigned wm 0 0 (0/0/0)
 3 unassigned wm 0 0 (0/0/0)
 4 unassigned wm 0 0 (0/0/0)
 5 - wm 537 - 838 200.55MB (302/0/0)
 6 usr wm 839 - 1290 300.16MB (452/0/0)
 7 - wm 1291 - 1964 447.58MB (674/0/0)

partition> 1
Part Tag Flag Cylinders Size Blocks
 1 swap wu 151 - 536 256.33MB (386/0/0)

Enter partition id tag[swap]: <RETURN>
Enter partition permission flags[wu]: <RETURN>
Enter new starting cyl[151]: <RETURN>
Enter partition size[524960b, 386c, 256.33mb]: 380c

Installation and Setup 29

2

6. Add the cylinders to the new partition.
Continuing the example from the previous step, you would add the six
cylinders to the new partition 3 as follows:

7. Verify the addition of the cylinders using the print command as follows:

8. Write the new label to the disk.

partition> 3
Part Tag Flag Cylinders Size Blocks
 3 unassigned wm 0 0 (0/0/0)

Enter partition id tag[unassigned]: <RETURN>
Enter partition permission flags[wm]: <RETURN>
Enter new starting cyl[0]: 531
Enter partition size[0b, 0c, 0.00mb]: 6c

partition> print
Current partition table (unnamed):
Part Tag Flag Cylinders Size Blocks
 0 root wm 0 - 150 100.27MB (151/0/0)
 1 swap wu 151 - 530 252.34MB (380/0/0)
 2 unassigned wm 0 0 (0/0/0)
 3 unassigned wm 531 - 536 3.98MB (6/0/0)
 4 unassigned wm 0 0 (0/0/0)
 5 - wm 537 - 838 200.55MB (302/0/0)
 6 usr wm 839 - 1290 300.16MB (452/0/0)
 7 - wm 1291 - 1964 447.58MB (674/0/0)

partition> label
Ready to label disk, continue? y

30 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

9. Exit from the partition menu and then the format program by typing
the quit command twice.
For example:

10. Reboot the machine.

Warning – Re-allocating space for a new partition can be done only on the
swap partition. Attempting this process on a file system will cause the loss of
data.

partition> quit

FORMAT MENU:
 disk - select a disk
 type - select (define) a disk type
 partition - select (define) a partition table
 current - describe the current disk
 format - format and analyze the disk
 repair - repair a defective sector
 label - write label to the disk
 analyze - surface analysis
 defect - defect list management
 backup - search for backup labels
 verify - read and display labels
 save - save new disk/partition definitions
 inquiry - show vendor, product and revision
 volname - set 8-character volume name
 quit
format> quit

reboot
rebooting...
Resetting...

Installation and Setup 31

2

11. Log back in to the system and check that the new partition exists.

12. Create the desired number of replicas on the new partition.
For example, to create three replicas on the new slice 3:

In this example, the –c 3 is used to specify that three replicas of the
database are being put on the same partition.

demo console login: root
Password: <root-password>
Last login: Fri Oct 23 14:23:50 on console
SunOS Release 5.1 Version beta_1.2 [UNIX(R) System V Release 4.0]
you have mail

demo# prtvtoc /dev/rdsk/c0t3d0s0
* /dev/rdsk/c0t3d0s0 partition map
*
* Dimensions:
* 512 bytes/sector
* 80 sectors/track
* 17 tracks/cylinder
* 1360 sectors/cylinder
* 3500 cylinders
* 1965 accessible cylinders
*
* Flags:
* 1: unmountable
* 10: read-only
*
* First Sector Last
* Partition Tag Flags Sector Count Sector Mount
Directory
 0 2 00 0 205360 205359 /
 1 3 01 205360 516800 722159
 3 0 00 722160 8160 730319
 5 6 00 730320 410720 1141039 /opt
 6 4 00 1141040 614720 1755759 /usr
 7 6 00 1755760 916640 2672399 /export

demo# /usr/opt/SUNWmd/sbin/metadb -c 3 -a -f /dev/dsk/c0t3d0s3

32 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

When you use metadb for the first time, the following message is displayed:

You have just created the first state database replicas so you can ignore this
message.

Running metadb creates empty replicas. The replicas will not contain any
configuration information until other DiskSuite utilities are used to
manipulate metadevices.

Warning – It is strongly recommended that you do not place all replicas of the
state database on the same partition. If the partition is corrupted or the device
fails, all replicas will be lost and DiskSuite will lose access to all metadevices.

metadb: There are no existing databases

Installation and Setup 33

2

Creating Replicas on Unused Disk Partitions

Most disk partitions are likely to be much larger than what is required for a
replica. To prevent the waste of large amounts of disk space, you could take
space from one partition and allocate it to an unused disk partition name or a
new disk partition.

However, if you plan to use this disk partition in a metadevice, you don’t need
to reallocate space to a new disk partition. You need only create replicas on the
disk partitions, as shown in Step 4 in the following procedure.

For a detailed discussion of what metadevices are and how you would use
them at your site, refer to the “Metadevices” section in Chapter 3.

An example of the procedure you would use for allocating disk space and
creating a small disk partition (2 Mbytes) follows:

1. Run cat on /etc/vfstab to view the currently mounted file systems.
For example:

cat /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
/dev/dsk/c0t3d0s0 /dev/rdsk/c0t3d0s0 / ufs 1 no -
/dev/dsk/c0t3d0s6 /dev/rdsk/c0t3d0s6 /usr ufs 2 no -
/dev/dsk/c0t3d0s5 /dev/rdsk/c0t3d0s5 /opt ufs 4 yes -
/dev/dsk/c0t3d0s1 - - swap - no -
#
/proc - /proc proc - no -
fd - /dev/fd fd - no -
swap - /tmp - yes -

34 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

2. Use the prtvtoc command to find the names of available partitions on
the device. For example:

From the above output you can see that /dev/dsk/c0t3d0s7 has space
available, and you also know from the contents of /etc/vfstab (in Step 1)
that /dev/dsk/c0t3d0s7 is not in use as a file system or swap space.
Partition c0t3d0s7 could be used for replicas of the metadevice state
database. However, partition c0t3d0s7 is approximately 458 Mbytes
(916,640 sectors at 512 bytes per sector). If you place three replicas on
c0t3d0s7 , you are wasting more than 450 Mbytes. This space could be
reclaimed by placing a metadevice on this partition.

Because the partition names c0t3d0s3 and c0t3d0s4 are not being used
(they do not correspond to any sector range on the disk) any one of these
could be used for the database. If you take 2 Mbytes of space from
/dev/dsk/c0t3d0s7 and create a new partition, c0t3d0s3 , containing
this space, you can place the replicas there.

On this disk, each cylinder occupies 680 Kbytes, thus you can allocate one
cylinder per replica.

prtvtoc /dev/rdsk/c0t3d0s0
/dev/rdsk/c0t3d0s0 partition map

Dimensions:
 512 bytes/sector
 80 sectors/track
 17 tracks/cylinder
 1360 sectors/cylinder
 3500 cylinders
 1965 accessible cylinders

Flags:
 1: unmountable
 10: read-only

 First Sector Last
Partition Tag Flags Sector Count Sector Mount Directory
 0 2 00 0 205360 205359 /
 1 3 01 205360 524960 730319
 5 6 00 730320 410720 1141039 /opt
 6 4 00 1141040 614720 1755759 /usr
 7 6 00 1755760 916640 2672399

Installation and Setup 35

2

3. Next, use the format command to repartition the disk as shown in Step 4
of the previous section.
Make sure the disk space assigned to the partition you are creating for the
metadevice state database is not shared with another partition. For example,
a common partitioning scheme has the 3, 4, and 5 partitions overlapping the
6 partition. If you plan to put the state database on the 3 partition, make
sure that the 6 partition is never used.

4. Now that the space has been taken from /dev/dsk/c0t3d0s7 and
allocated to /dev/dsk/c0t3d0s3 , create three replicas on the partition.
To create the replicas, use the metadb command as follows:

In the above example, the –c 3 specifies that three replicas of the database
are being put on the same partition.

When metadb is run for the first time, the following message is displayed.

You have just created the first state database replicas so you can ignore this
message.

Running metadb creates empty replicas. The replicas will not contain any
configuration information until other DiskSuite utilities are used to
manipulate metadevices.

Warning – It is strongly recommended that you do not place all replicas of the
state database on the same partition. If the partition is corrupted or the device
fails, all replicas will be lost and DiskSuite will lose access to all metadevices.

What to Do Next

Now that the DiskSuite software is set up on your system, you can begin to use
the new functionality provided. DiskSuite provides considerable new
functionality. Read Chapter 3, “Overview of Solstice DiskSuite,” to familiarize
yourself with the product.

/usr/opt/SUNWmd/sbin/metadb -c 3 -a -f /dev/dsk/c0t3d0s3

metadb: There are no existing databases

36 Solstice DiskSuite 4.0 Administration Guide—March 1995

2

37

Overview of Solstice DiskSuite 3

Solstice DiskSuite is an unbundled software package that offers enhanced
availability, performance, capacity, reliability, and administration.

DiskSuite provides higher data availability and reliability by supporting the
mirroring of any file systems, including root , swap, and /usr . Disk striping
increases performance by spreading requests over multiple components. A
combination of concatenation and striping increases capacity by grouping
components into a single large logical device. Administration is simplified by
the automatic replacement of failed components within a mirror and the
dynamic growth of metadevices and file systems. UNIX file system (UFS)
logging speeds up local directory operations and reboots and decreases the
number of synchronous disk writes.

This chapter provides a high level overview of the features included with the
DiskSuite software package. Use the following table to locate specific
information.

Elements of the Metadisk Driver page 38

Metadevices page 39

Concatenation and Striping page 40

Mirroring page 41

UNIX File System Logging page 42

Hot Spares page 45

Disksets page 45

RAID Devices page 45

38 Solstice DiskSuite 4.0 Administration Guide—March 1995

3

Elements of the Metadisk Driver
The metadisk driver is implemented as a set of loadable, pseudo device
drivers. The metadisk driver uses other physical device drivers to pass I/O
requests to and from the underlying devices.

The metadisk driver resides between the file system interface and the device
driver interface and interprets information from both above and below. After
passing through the metadisk driver, information is received in the expected
form by both the file system and by the device drivers. The metadisk is a
loadable device driver and has all the same interfaces as any other device
driver.

Figure 3-1 illustrates the position of a metadevice driver in the kernel
hierarchy.

Figure 3-1 Location of the metadisk driver in the kernel hierarchy

State Database Replicas page 46

Expanding Mounted File Systems page 47

DiskSuite Commands and Utilities page 47

System Files Associated with DiskSuite page 49

User
Programs

Kernel

Programs
User

File System

Metadisk Driver

Physical Device Drivers

Overview of Solstice DiskSuite 39

3

An overview of the primary elements of the metadisk driver is provided in the
following sections. These elements include:

• Metadevices

• Concatenation and striping

• Mirroring (metamirrors and submirrors)

• UFS logging

• Hot spares

• Disksets

• RAID devices

Metadevices

Metadevices are the basic functional unit of the metadisk driver. After you
create metadevices, you can use them like physical disk partitions. These
logical devices can be made up of one or more component partitions. You can
configure the component partitions to use a single device, a concatenation of
stripes, or stripe of devices.

Metadevices can provide increased capacity, higher availability, and better
performance. To gain increased capacity, you create metadevices that are either
concatenations or stripes. Mirroring and UFS logging provide higher
availability and striping can help performance.

Metadevices are transparent to applications software and to component and
controller hardware.

The standard metadevice name begins with ‘‘d’’ and is followed by a number.
By default, there are 128 unique metadevices in the range 0-to-127. Additional
metadevices can be added. Metadevice names are located in /dev/md/dsk
and /dev/md/rdsk .

When using DiskSuite commands such as metastat(1M) and metainit(1M)
or when setting up metadevices in the md.tab file, the metadevice name does
not need to be fully qualified. For example, you can enter d1 rather than
/dev/md/dsk/d1 . The examples presented in this manual use the short and
long forms for metadevice names interchangeably.

40 Solstice DiskSuite 4.0 Administration Guide—March 1995

3

Metadevices can be configured from IPI and SCSI devices on all SPARC
systems and on SCSI and IDE devices on all x86 systems.

Concatenation and Striping

Each metadevice is either a concatenation or a stripe of component partitions.
Concatenations and stripes work much the way the cat (1) program is used to
concatenate two or more files together to create one larger file. When partitions
are concatenated the addressing of the component blocks is done on the
components sequentially. The file system can use the entire concatenation.

You can use a concatenated or striped metadevice for any file system with the
exceptions of root , swap, /usr , /var , /opt , or any file system accessed
during a Solaris upgrade or install.

Figure 3-2 illustrates the concatenation of three 327 Mbyte components. The
block size is 512 bytes. The logical block address ranges are listed below the
drives. The physical block address range for each of the three drives would be
0 to 669695. When concatenated, the logical block address range is sequential
from 0-to-2009087. In this illustration the disk labels are not part of the logical
block addresses.

Figure 3-2 Concatenation of three 327-Mbyte drives

Striping is similar to concatenation, except the addressing of the metadevice
blocks is interlaced on the components, rather than addressed sequentially.
When stripes are defined, an interlace size is specified following the –i option.
The interlace size is a number (for example, 8, 16, 32, etc.) followed by ‘‘k’’ for
kilobytes, ‘‘m’’ for megabytes, or ‘‘b’’ for (512-byte) blocks. The units can be

Concatenation
of three 327
Mbyte disks

Logical Block
Address Range

0-669695 669696-1339391 1339392-2009087

327
Mbyte

327
Mbyte

327
Mbyte

Overview of Solstice DiskSuite 41

3

specified in either uppercase or lowercase. If the size is not specified, it defaults
to 16Kbytes. The interlace value tells DiskSuite how much data is placed on a
component before moving to the next component of the stripe.

Because data is spread across a stripe, you gain increased performance as reads
and writes are spread across multiple disk arms. Also, concurrent I/O requests
may use different disk arms. This may be true of concatenation as well.

In Figure 3-3, three 327 Mbyte components are used to illustrate a stripe of
component partitions. The block size is 512 bytes. The interlace value is 8
Kbytes (or 16 512-byte blocks). The same logical address range as shown for
the concatenation in Figure 3-2 (0 to 2009087) applies to a stripe of the same
component configuration. However, in striping, the logical block addresses on
each component are alternated according to the interlace size specified. In this
illustration the disk labels are not part of the logical block addresses.

Figure 3-3 Striping of three 327-Mbyte drives with an interlace of 8 Kbytes

Figure 3-3 further illustrates how improved performance is gained through
striping. For example, if a one Mbyte request were issued to this configuration,
the data would be spread across the three components and the component
arms on all components would be used to retrieve the data concurrently.

Mirroring

DiskSuite supports mirroring to as many as three separate metadevices. This
enables the system to tolerate single-component failures with two-way
mirroring and double failures with three-way mirroring. Mirroring can also be
used for online backups of file systems.

Striping of
three 327
Mbyte disks

Logical Block
Address Range

327
Mbyte

327
Mbyte

327
Mbyte

 0-15
48-63
 ...

2009040-2009055

16-31
64-79
 ...

2009056-2009071

32-47
80-95
 ...

2009072-2009087

42 Solstice DiskSuite 4.0 Administration Guide—March 1995

3

To set up mirroring, you create a metamirror. A metamirror is a special type of
metadevice made up of one or more other metadevices. Each metadevice
within a metamirror is called a submirror.

Metamirrors can be given names such as d0 . The same naming convention
used for metamirrors is used for metadevices. For example, a metamirror could
have the name d1 and a metadevice might have the name d2 , or visa versa.

After you define a metamirror (with the metainit command for example),
you can add additional submirrors at a later date without bringing the system
down or disrupting writes and reads to existing metamirrors. Submirrors are
added with the metattach(1M) command, which attaches a submirror to the
metamirror.

When the submirror is attached, all the data from another submirror in the
metamirror is automatically written to the newly attached submirror. This is
called resyncing. After the resyncing is complete, the new submirror is
readable and writable. Once a metattach is performed, the submirrors remain
attached (even when the system is rebooted) until they are explicitly detached
with the metadetach(1M) command.

You can use other DiskSuite utilities to perform maintenance on metamirrors
and submirrors. If a controller fails, any submirrors on that controller can be
taken offline with the metaoffline(1M) utility. While a submirror is offline,
DiskSuite keeps track of all writes to the metamirror. When the submirror is
brought back online with the metaonline(1M) command, only the portions
of the metamirror that were written (called resync regions) are resynced.

UNIX File System Logging

The UNIX file system (UFS) logging facility included with DiskSuite provides
faster local directory operations, speeds up reboots, and decreases synchronous
disk writes by safely recording file system updates in a log before they are
applied to the UFS file system.

Note – The UFS logging facility can only be used with Solaris 2.4 or later
releases.

UFS is the standard Solaris file system. UFS file systems are created when
Solaris is installed or by users with the newfs(1M) command.

Overview of Solstice DiskSuite 43

3

Because a system crash can interrupt system calls that are already in progress
and thereby introduce inconsistencies, UFS file systems should be checked
before they are mounted again. Mounting a UFS file system without first
checking it and repairing any inconsistencies can cause panics or data
corruption. Checking large file systems is a slow operation because it requires
reading and verifying the file system data. With the UFS logging facility, UFS
file systems do not have to be checked at boot time because the changes from
unfinished system calls are discarded.

A pseudo device, called the metatrans device, is responsible for managing the
contents of the log of file system updates. Like other metadevices, the
metatrans device behaves the same as an ordinary disk device. The metatrans
device is made up of two subdevices: the logging device and the master device.
These can be disk partitions, metadevices, and metamirrors; but not metatrans
devices.

Figure 3-4 illustrates the metatrans device /dev/md/dsk/d1 and the two
subdevices of which it’s comprised. /dev/dsk/c0t0d0s3 is the master device
and /dev/dsk/c1t0d0s3 is the logging device.

Figure 3-4 UFS Logging

As shown in Figure 3-4, the same naming convention used for metamirrors and
metadevices is used for metatrans devices. For example, a metatrans device
could have the name d1 and a metamirror might have the name d2 , or visa
versa.

The logging device contains the log of file system updates. This log consists of
a sequence of records, each of which describes a change to a file system. The
master device contains an existing or a newly created UFS file system.

/dev/dsk/c1t0d0s3/dev/dsk/c0t0d0s3/dev/md/dsk/d1

Logging deviceMaster deviceMetatrans device

44 Solstice DiskSuite 4.0 Administration Guide—March 1995

3

The master device can contain an existing UFS file system because creating a
metatrans device does not alter the master device. The difference is that updates
to the file system are written to the log before being “rolled forward” to the UFS
file system. Likewise, clearing a metatrans device leaves the UFS file system on
the master device intact.

As illustrated in Figure 3-5, a logging device can also be shared among
metatrans devices. The figure shows the first metatrans device
/dev/md/dsk/d1 and the two subdevices of which it’s comprised.
/dev/dsk/c0t0d0s3 is the master device and /dev/dsk/c1t0d0s3 is the
logging device. The second metatrans device /dev/md/dsk/d2 is shown with
its own master device /dev/dsk/c2t0d0s3 and the logging device
/dev/dsk/c1t0d0s3 it shares with the first metatrans device.

Figure 3-5 Shared logging device

/dev/dsk/c1t0d0s3/dev/dsk/c0t0d0s3/dev/md/dsk/d1

Logging deviceMaster deviceMetatrans device

Metatrans device

/dev/md/dsk/d2

Master device

/dev/dsk/c2t0d0s3

Overview of Solstice DiskSuite 45

3

Hot Spares

DiskSuite’s hot spare facility automatically replaces failed submirror or RAID
components, provided that a spare component is available and reserved. Hot
spares are temporary fixes, used until failed components are either repaired or
replaced. Hot spares provide further security from downtime due to hardware
failures.

The analogy that best describes hot spares is spare tires for cars. However,
when a component fails, you do not have to stop and change to the hot spare
component manually. This occurs automatically and without interruption of
service. When a component fails, the replicated data is simply copied from any
of the other submirrors or regenerated from the other components in a RAID
device. Writes continue to the other components of the submirror or RAID
device containing the failed component.

Hot spares are defined within hot spare pools, which can be a shared resource
for all the submirrors and RAID devices you have configured. Individual hot
spares can be included in one or more hot spare pools. For example, you may
have three submirrors and three hot spares. The three hot spares can be
arranged as three hot spare pools, with each pool having the three hot spares
in a different order of preference. This enables you to specify which hot spare
is used first. It also improves availability by having more hot spares available.

Disksets

DiskSuite’s diskset feature lets you set up groups of host machines and disk
drives in which all of the hosts in the set are connected to all the drives in the
set. A diskset is a grouping of two hosts and disk drives in which all the drives
are accessible by both hosts. DiskSuite requires that the device name be
identical on each host in the diskset. There is one metadevice state database
per shared diskset, as well as the one on the local diskset.

RAID Devices

DiskSuite’s RAID feature provides support for RAID devices. RAID stands for
“Redundant Arrays of Inexpensive Disks.” DiskSuite RAID devices support
RAID Level 5.

46 Solstice DiskSuite 4.0 Administration Guide—March 1995

3

RAID devices are comprised of three or more physical partitions. Each
partition is referred to as a column. A RAID metadevice can be grown by
concatenating additional partitions to the metadevice.

RAID level 5 uses multiple physical partitions used to simulate a single large
slice (partition). A single sector on one of these physical slices contain either a
sector’s worth of contiguous data, or parity information relating to the data on
the same sector of all other slices in the array.

In order to eliminate a parity partition as a bottleneck, no one physical
partition will hold all of the parity information; it will be placed on different
partitions for different sectors.

The advantages of a RAID Level 5 configuration are that it can recover from a
single disk failure and that it can be more cost effective than mirroring disks.

State Database Replicas
State database replicas provide the non-volatile storage necessary to keep track
of configuration and status information for all metadevices, metamirrors,
metatrans devices, hot spares, and RAID devices. The replicas also keep track
of error conditions that have occurred.

After a metadevice is configured, it is necessary for the metadevice driver to
remember its configuration and status information. The metadevice state
database is the metadevice driver’s long term memory. The metadevice driver
stores all the metadevice configuration information in the state database. This
includes the configuration information about mirrors, submirrors,
concatenations, stripes, metatrans devices, and hot spares.

If the replicated metadevice state database were to be lost, the metadevice
driver would have no way of knowing any configuration information. This
could result in the loss of all data stored on metadevices. To protect against
losing the metadevice state database because of hardware failures, multiple
replicas (copies) of the state database are kept.

These multiple replicas also protect the state database against corruption that
can result from a system crash. Each replica of the state database contains a
checksum. When the state database is updated, each replica is modified one at
a time. If a crash occurs while the database is being updated, only one of the

Overview of Solstice DiskSuite 47

3

replicas will be corrupted. When the system reboots, the metadevice driver
uses the checksum embedded in the replicas to determine if a replica has been
corrupted. Any replicas that have been corrupted are ignored.

If a disk that contains the metadevice state database is turned off, the
metadevices remain fully functional because the database is retrieved from one
of the replicas still in operation. Changes made to the configuration following
the reboot are stored only in the replicas that are in operation when the system
comes back up. If the disk drive that was turned off is later turned back on, the
data contained in the replica stored on that disk is ignored. This is
accomplished by comparing it with other replicas.

Expanding Mounted File Systems
You can expand mounted or unmounted UFS file systems with the DiskSuite
concatenation facilities and the growfs(1M) command. The expansion can be
performed without bringing down the system or performing a backup.

Mounted or unmounted file systems can be expanded up to the new size of the
metadevice on which the file system resides.

Note – Once you have expanded a file system, it cannot be shrunk.

DiskSuite Commands and Utilities
There are several new utilities included with the DiskSuite package. An
overview of the DiskSuite utilities follows. For a complete definition of the
functionality and options associated with the utilities, refer to Appendix D.

• metaclear(1M) - Clears (deletes) all (or only specified) metadevices
and/or hot spare pools from the configuration. After a metadevice is
cleared, it must be reconfigured again with the metainit utility.
metaclear does not clear metadevices that are currently in use (open). You
can never clear root and swap metadevices.

• metadb(1M) - Reserves or releases space for the metadevice state databases,
which are used in the event of a system failure to determine the status and
configuration of the metadevices. All metadevice state databases contain

48 Solstice DiskSuite 4.0 Administration Guide—March 1995

3

identical information, which guards against the loss of configuration
information. If the status and configuration information is lost, the
metadevices will no longer operate.

• metadetach(1M) - Detaches a submirror from a metamirror. After a
submirror is detached, reads and writes to the detached metadevice are no
longer performed. The command does not allow detaching the last
remaining submirror.

metadetach detaches a logging device from a metatrans device. Logging is
disabled while the metatrans device lacks a logging device.

• metahs(1M) - The management utility for hot spares and hot spare pools.

• metainit(1M) - Configures the metadevices and hot spares according to
the configuration specified either on the command line or in the md.tab
file. This is the first command run before using metadevices.

• metaoffline(1M) - Prevents DiskSuite from reading and writing the
offlined submirror. While the submirror is offline, all writes to the
metamirror are recorded and are written when the submirror is brought
back online. This command is only used on submirrors.

• metaonline(1M) - Resumes accesses to a submirror. When the command is
specified, a resync is automatically invoked to resync only the regions
written to while the submirror was offline. This command is used only on a
submirror that has been taken offline by metaoffline .

• metaparam(1M) - Modifies parameters of metadevices and metamirrors.
The parameters that can be modified are those displayed by either the
metaparam or the metastat command. The interlace value of a striped
metadevice can not be changed by metaparam .

• metareplace(1M) - Replaces a component of a submirror or RAID device
with a new component. The utility automatically begins a resync operation
to the new component.

• metaroot(1M) - Edits the system files, /etc/vfstab and /etc/system ,
so the system can be booted with the root file system on a metadevice.

• metaset(1M) - Administers sets of disks (disksets) shared for exclusive
access between hosts.

• metastat(1M) - Reports the current status for the active metadevice(s) and
hot spare pools that are specified. If a metadevice is not specified, the status
of all metadevices and hot spare pools is reported.

Overview of Solstice DiskSuite 49

3

• metasync(1M) - Performs mirror resync operation on submirrors in a
metamirror or components in a RAID device. Applications have access to
the metamirror or RAID device while the resyncs are in progress in the
background. You will rarely need to run this command directly, as it is
invoked at boot time.

• metattach(1M) - Attaches a metadevice to a metamirror as a new
submirror. The utility automatically begins a resync operation to the new
submirror. It can also be used to concatenate a new component to an
existing metadevice without interrupting service.

metattach attaches a logging device to a metatrans device.

One other utility associated with DiskSuite is:

• growfs(1M) - Nondestructively expands a mounted or unmounted file
system up to the size of the physical device allocated for the file system.

System Files Associated with DiskSuite
There are three system files associated with DiskSuite that are used by the
various utilities:

• md.tab - Used by the metainit and metadb commands as a workspace
file. Each metadevice may have a unique entry in this file. Tabs, spaces,
comments (using the pound sign (#) character), and continuation of lines
(using the backslash (\) character) can be used in the file.

Note – The md.tab file is used only when creating metadevices, hot spares, or
database replicas. This file is not automatically updated by the DiskSuite
utilities. This file may have little or no correspondence with actual
metadevices, hot spares, or replicas.

• md.cf - Automatically updated whenever the configuration is changed by
the user. This is basically a disaster recovery file and should never be edited
by the user. This file should never be used blindly after a disaster as the
md.tab file. Be sure to carefully examine the file first.

Note – The md.cf file does not get updated when hot sparing occurs.

50 Solstice DiskSuite 4.0 Administration Guide—March 1995

3

• mddb.cf - Created whenever the metadb command is run and is used by
metainit to find the locations of the metadevice state database. You should
never edit this file. Each metadevice state database replica has a unique
entry in this file. Each entry contains the driver name and minor unit
numbers associated with the block physical device where the replica is
stored. Each entry also contains the block number of the master block,
which contains a list of all other blocks in the replica.

51

Concatenating and Striping 4

This chapter discusses the specifics of the DiskSuite facilities for creating
metadevices consisting of either concatenated or striped disk partitions. Refer
to Chapter 3, “Overview of Solstice DiskSuite,” for overview information on
concatenations and stripes.

Use the following table to locate specific information in this chapter.

Using Concatenations and Stripes
Concatenating disk partitions enables you to create a single metadevice with
large capacity. This provides a solution for the space limitation a single
partition poses. The logical disk block addresses are allocated sequentially to
concatenated disk partitions.

You can use a concatenated or striped metadevice for any file system with the
exception of root , swap, /usr, /var, /opt, or any other file system
accessed during a Solaris upgrade or installation.

Using Concatenations and Stripes page 51

Defining Metadevice Configurations page 53

Replacing Failed Components page 57

Clearing Concatenations and Stripes page 58

Hardware and Software Considerations page 59

Examples page 61

52 Solstice DiskSuite 4.0 Administration Guide—March 1995

4

Striping performs the same function as concatenation, enabling you to create a
single metadevice with large capacity. But striping differs from concatenation
because the logical disk block addresses are allocated in an interlaced fashion,
which can provide improved performance.

The interlace value for striping is user defined. The interlace size is a number
(for example, 8, 16, 32) followed by either k for kilobytes, m for megabytes, or b
for disk blocks. The suffix can be either uppercase or lowercase. If the interlace
size is not specified, the size defaults to 16 Kbytes. A performance gain occurs
when the I/O request is larger than the interlace size, because more disk arms
are used to retrieve data or multiple requests spread over more disk arms.

DiskSuite supports concatenations consisting of a single component partition.
This is supported to allow temporarily defining single component
configuration in anticipation of adding more components in the future.
Another use of a single component configuration is to enable mirroring of that
component. Additional information on mirroring is provided in Chapter 5,
“Mirroring.”

After the metadevice is configured, it can be used just as if it were a physical
partition. As with physical partitions, a file system can be created on the
metadevice. Most UNIX disk utilities will work normally on metadevices, with
the exception of format(1M) .

In addition, all usual file system operations can be performed on a metadevice.
The following list offers examples of file system operations:

• mount(1M) the metadevice on a directory

• umount(1M) a mounted metadevice

• Copy files to the metadevice

• Read and write files from and to the metadevice

• ufsdump(1M) and ufsrestore(1M) the metadevice

Concatenating and Striping 53

4

Defining Metadevice Configurations
There are two methods of defining either a concatenated or striped metadevice:

• Edit the md.tab file to define the concatenation or stripe, then run the
metainit(1M) command; or

• Include the definition of the concatenation or stripe on the command line
with the metainit(1M) command.

The information that you include either on the command line or in md.tab
will differ depending on whether the configuration is a concatenation or a
stripe. For a complete discussion of the md.tab file, refer to Appendix A,
“Solstice DiskSuite Files.”

A drawback of concatenations, stripes, and concatenated stripes is that the loss
of a single physical partition can cause the loss of service to the entire
metadevice. This can be solved through mirroring and the use of hot spares.
These two topics are discussed in subsequent chapters.

The following sections show how to define concatenations, stripes, and
concatenated stripes. Additional step-by-step examples are given in this
chapter that show the entire procedure for setting up metadevices.

Concatenated Metadevices

Concatenation can help solve the single partition capacity limitation. For
example, a single database could exist on a single metadevice spanning
multiple physical partitions.

Figure 4-1 shows two physical components and a metadevice. The physical
components are /dev/dsk/c0t0d0s2 and /dev/dsk/c1t1d0s2 and the
metadevice is /dev/md/dsk/d7 . As illustrated in Figure 4-1, a metadevice is a
‘‘virtual disk’’ and can be used like a physical disk partition.

Following the illustration are examples of the information that would be
required, either on the command line or in your md.tab file, to define a
concatenation of the configuration shown.

54 Solstice DiskSuite 4.0 Administration Guide—March 1995

4

Figure 4-1 Concatenated Metadevice

To set up a concatenation of the two physical components shown in Figure 4-1,
the following would be added to your md.tab file, or specified directly as
arguments to metainit on the command line.

In the above entry, the number 2 represents the two stripes of devices that are
being concatenated together to create the metadevice. In this case, each stripe is
made up of one component, thus the number 1 must be displayed in front of
each component.

Striped Metadevices

When components are configured into stripes, faster I/O throughput can be
obtained. The ideal configuration of stripes would have each component on a
separate disk controller. This configuration would deliver the best
performance.

A configuration that delivers good performance would have the components
on separate disks, but perhaps on the same controller.

Note – Striping the partitions on a single disk should be avoided. This will
hurt performance.

d7 2 1 /dev/dsk/c0t0d0s2 1 /dev/dsk/c1t1d0s2

/dev/dsk/c0t0d0s2 /dev/dsk/c1t1d0s2

Physical Components
Metadevice

/dev/md/dsk/d7

Concatenating and Striping 55

4

Changing the interlace values of an existing stripe is not supported. In order to
change the value, the metadevice must be backed up, redefined with a
different value, and restored.

Figure 4-2 shows two physical components and a metadevice. The physical
components are /dev/dsk/c0t0d0s2 and /dev/dsk/c1t0d0s2 and the
metadevice is d1 . The 16 Kbyte stripe defined in this example is shown as a
dotted rectangle.

Following the illustration are examples of the information that would be
required, either in the /etc/opt/SUNWmd/md.tab file or on the command
line as arguments to metainit , to define a stripe of the configuration shown.

Figure 4-2 Striped Metadevice

To create a stripe of the two physical components shown in Figure 4-2, enter
the following as arguments to the metainit command on the command line,
or add the following to your /etc/opt/SUNWmd/md.tab file.

In the above entry, the number 1 represents the one row of devices that is
being striped to create the metadevice. In this case, the row is made up of the
two components, thus the number 2 must be displayed in front of the two
components. The optional -i 16k sets the striped interlace value at 16
kilobytes. If the -i and a value are left off, the interlace size defaults to 16
Kbytes.

d1 1 2 /dev/dsk/c0t0d0s2 /dev/dsk/c1t0d0s2 -i 16k

/dev/dsk/c0t0d0s2 /dev/dsk/c1t0d0s2

Physical Components
Metadevice

/dev/md/dsk/d1

16 Kbyte
Stripe

56 Solstice DiskSuite 4.0 Administration Guide—March 1995

4

Metadevices Defined as Concatenated Stripes

Concatenated stripes enable you to expand an existing stripe and provide some
improved performance over simple concatenations.

Figure 4-3 shows three physical components and a metadevice. The physical
components are /dev/dsk/c0t0d0s2 , /dev/dsk/c1t0d0s2 , and
/dev/dsk/c2t0d0s2 . The metadevice is d1 .

In Figure 4-3, the three physical components make up a metadevice that is a
concatenation of two stripes. The first stripe (shown as a dotted rectangle) is
made up of two physical components and the second stripe is one component.

Following the illustration is an example of the information that would be
required, either on the command line or in your /etc/opt/SUNWmd/md.tab
file, to define the concatenation of stripes shown.

Figure 4-3 Concatenation of Two Stripes Into a Metadevice

/dev/dsk/c0t0d0s2 /dev/dsk/c1t0d0s2

Physical Components

Metadevice

/dev/md/dsk/d1

16 Kbyte
Stripe

/dev/dsk/c2t0d0s2

Concatenating and Striping 57

4

To create a concatenation of two stripes of the three physical components
shown in Figure 4-3, add the following to your md.tab file, or specify the
following on the command line as arguments to metainit .

In the above entry, the first number 2 represents the two rows of devices that
are being concatenated to create the metadevice. The first row is made up of
/dev/dsk/c0t0d0s2 and /dev/dsk/c1t0d0s2 , thus the second number 2
is in front of these component names. The second row is made up of
/dev/dsk/c2t0d0s2 , which is preceded by the number 1. The optional -i
16k sets the striped interlace value at 16 kilobytes for the first row. Because
there is only one component in the second row, there is no interlace value.

If there were more than one component, they would have the same interlace
value as the previous row, unless a different value is specified.

Replacing Failed Components
A situation at your site could arise that would require removing a component
from a concatenation or a stripe (for example, if a component is reporting soft
errors). There are two solutions available for replacing a component:

1. If you already have the metadevice mirrored (described in Chapter 5,
“Mirroring”), the faulty component can be replaced by running the
metareplace(1M) command. metareplace automatically starts a resync
on the new component.

2. If you do not have the metadevice mirrored, use the following basic
procedure to replace the failing component (if another disk is already
attached to the system):

a. Unmount the file system (umount), if there is one on the metadevice.

b. Run the ufsdump command on the metadevice.

c. Run the metaclear command on the metadevice.

d1 2 2 /dev/dsk/c0t0d0s2 /dev/dsk/c1t0d0s2 -i 16k \
 1 /dev/dsk/c2t0d0s2

58 Solstice DiskSuite 4.0 Administration Guide—March 1995

4

d. Edit the md.tab file to change the name of the failing component in the
metadevice. (If the metadevice is a stripe, the new component must be
the same size as the failed one. If the metadevice is a concatenation, the
new component must have at least the same capacity as the failed
component.)

e. Run metainit on the metadevice.

f. Run newfs on the metadevice.

g. Run ufsrestore to put the data back online.

Clearing Concatenations and Stripes
If you decide to clear (delete) a concatenation or stripe and use the components
in a traditional fashion, the procedure requires very little effort.

Warning – Any data that is on the concatenation or stripes will be lost when
the metadevice is cleared. The data should be backed up to tape or disk.

The procedure for clearing concatenations or stripes is described in the
following example. In this example, the metadevice that is being cleared is
named d8 .

1. Back up the data currently on the components that make up the
metadevice (either the stripe or concatenation).

2. Stop access to the data on the metadevice.
For example, if a file system resides on the metadevice, unmount the file
system.

3. Clear the metadevice, using the metaclear command.
For example:

/sbin/umount /dev/md/dsk/d8

/usr/opt/SUNWmd/sbin/metaclear d8

Concatenating and Striping 59

4

4. You may want to remove the definition from the
/etc/opt/SUNWmd/md.tab file.
For example, you would remove the following line:

Hardware and Software Considerations
There are both hardware and software considerations that affect concatenations
and stripes. The only software consideration involves the values assigned to
the interlace size when building a stripe.

The hardware considerations include mixing different size components,
number of controllers, mixing components with different geometry, and the
I/O load on the bus.

Assigning Interlace Values

The key to the improved performance using striping is the interlace value. The
value is user configurable at the time a metadevice is created. Thereafter, the
value cannot be modified.

The interlace value defaults to 16 Kbytes. This is a reasonable value for most
applications. In general, a smaller interlace value increases CPU time while a
larger interlace value decreases CPU time.

Mixing Different Size Components

When different size disk components are used in a stripe, some disk space will
be unused unless you assign the unused portion to another metadevice.

This is because the stripe is limited by the smallest partition in the
configuration (n times the smallest component, where n is the number of
components in the stripe). For example, if you have two 327-Mbyte partitions
and one 661-Mbyte partition in a stripe the stripe, will only use 327 Mbytes of
the space on the 661-Mbyte partition.

To assign the unused disk space to another metadevice, the component must
be repartitioned (using format(1M)).

d8 3 1 /dev/dsk/c0t0d0s0 1 /dev/dsk/c0t1d0s0 1 /dev/dsk/c0t2d0s0

60 Solstice DiskSuite 4.0 Administration Guide—March 1995

4

Using Components With Different Geometry

All components in a stripe or concatenation should have the same number of
sectors and tracks per cylinder. This is referred to as the disk geometry. The
geometry is related to the capacity of the drive. Disk geometry varies
depending on the manufacturer and type.

The problem with the differing component geometries is that the UFS file
system attempts to lay out file blocks in an efficient manner. UNIX counts on a
knowledge of the component geometry and uses cylinder groups to attempt to
minimize seek distances. If all components do not have the same geometry, the
geometry of the first component is what is reported to the file system. This
may cause the efficiency of the file system to suffer.

Controllers

Building a stripe with all the component partitions on the same controller will
adversely affect I/O performance. Also, creating a stripe of components on
different controller types can affect performance, because some controllers are
faster than others. The I/O throughput will be limited by the slowest
controller.

An example of a controller limiting performance occurs when several devices
(for example, 3-Mbyte per second disks) are attached to the same controller. In
this instance, the throughput may be limited to the throughput of the controller
and not the sum of the devices.

Bus Load

The data traffic load on the VMEbus or SBus can subtract from the
performance gains you receive with the addition of controllers. This can be
especially noticeable when stripes are defined. For example, a configuration of
four disk controllers all connected to the same VMEbus may not give the
maximum speed increase (four times the performance). This is because the
bandwidth of the VMEbus might limit the throughput.

An example of this would be a VMEbus system with a throughput of
approximately 7 Mbytes per second. A configuration on this system that adds
four IPI controllers with a throughput of 6 Mbytes per second each would not
increase throughput performance with striping.

Concatenating and Striping 61

4

However, on another VMEbus system with throughput of 22 Mbytes per
second, a striping configuration that includes additional controllers would
increase performance.

High transfer rate components on the SBus might encounter similar
limitations.

Examples
Examples of three types of configurations are provided in this section.

These examples include:

• Striping three components
• Concatenating eight components
• Concatenating stripes of components

Striping Three Components

The following example shows how to define a stripe of three components. The
stripe will have an interlace value of 32 Kbytes.

In the following example, the three components being striped are named
/dev/dsk/c0t3d0s7 , /dev/dsk/c0t1d0s7 , and /dev/dsk/c0t2d0s7 .
The striped metadevice is named d8 .

1. Edit the /etc/opt/SUNWmd/md.tab file, adding a line that defines the
striped metadevice.

2. Use metainit -n to verify that the information in the
/etc/opt/SUNWmd/md.tab file is accurate.
The -n option enables you to check your entry.

d8 1 3 /dev/dsk/c0t3d0s7 /dev/dsk/c0t1d0s7 \
 /dev/dsk/c0t2d0s7 -i 32k

/usr/opt/SUNWmd/sbin/metainit -n d8

62 Solstice DiskSuite 4.0 Administration Guide—March 1995

4

3. If the configuration is accurate, run metainit to begin using the striped
metadevice.

Concatenating Eight Components

The following example shows how to define a concatenation of eight
components.

In the following example, the eight components being concatenated are named
/dev/dsk/c0t0d0s2 , /dev/dsk/c0t1d0s2 , /dev/dsk/c0t2d0s2 ,
/dev/dsk/c0t3d0s2 , /dev/dsk/c2t0d0s2 , /dev/dsk/c2t1d0s2 ,
/dev/dsk/c2t2d0s2 , and /dev/dsk/c2t3d0s2 . The metadevice being
defined is named d16 .

1. Edit the /etc/opt/SUNWmd/md.tab file, adding the names of the
components and the name of the concatenated metadevice.

2. Use metainit -n to verify that the information in the
/etc/opt/SUNWmd/md.tab file is accurate.
Using the -n option enables you to check your entry.

3. If the configuration is accurate, run metainit to begin using the
concatenated metadevice.

/usr/opt/SUNWmd/sbin/metainit d8

d16 8 1 /dev/dsk/c0t0d0s2 1 /dev/dsk/c0t1d0s2 \
 1 /dev/dsk/c0t2d0s2 1 /dev/dsk/c0t3d0s2 \
 1 /dev/dsk/c2t0d0s2 1 /dev/dsk/c2t1d0s2 \
 1 /dev/dsk/c2t2d0s2 1 /dev/dsk/c2t3d0s2

/usr/opt/SUNWmd/sbin/metainit -n d16

/usr/opt/SUNWmd/sbin/metainit d16

Concatenating and Striping 63

4

Concatenating Stripes of Components

The following example shows how to define a concatenation of two stripes.
Each stripe consists of four 1-Gbyte components. The interlace value being
assigned in this example is 16 Kbytes.

In the following example, the two sets of four components being striped are
named /dev/dsk/c0t0d0s7 , /dev/dsk/c0t1d0s7 , /dev/dsk/c0t2d0s7 ,
/dev/dsk/c0t3d0s7 , /dev/dsk/c2t0d0s2 , /dev/dsk/c2t1d0s2 ,
/dev/dsk/c2t2d0s2 , and /dev/dsk/c2t3d0s2 . The striped metadevice
being defined is named d24 .

1. Edit the /etc/opt/SUNWmd/md.tab file, adding the names of the
components and the name of the metadevice.

2. Use metainit -n to verify that the information in the
/etc/opt/SUNWmd/md.tab file is accurate.
The -n option enables you to check your entry.

3. If the configuration is accurate, run metainit to begin using the
concatenated metadevice.

d24 2 4 /dev/dsk/c0t0d0s7 /dev/dsk/c0t1d0s7 \
 /dev/dsk/c0t2d0s7 /dev/dsk/c0t3d0s7 -i 16k \
 4 /dev/dsk/c2t0d0s2 /dev/dsk/c2t1d0s2 \
 /dev/dsk/c2t2d0s2 /dev/dsk/c2t3d0s2

/usr/opt/SUNWmd/sbin/metainit -n d24

/usr/opt/SUNWmd/sbin/metainit d24

64 Solstice DiskSuite 4.0 Administration Guide—March 1995

4

65

Mirroring 5

DiskSuite provides the ability to replicate data stored on a particular
metadevice onto as many as two additional (for a total of three) metadevices,
referred to as submirrors. By setting up a minimum configuration of a two-way
mirror you can recover from a single-component failure and perform online
backups of file systems.

Mirroring components improves data reliability. An error on a component does
not cause the entire mirror to fail. For further reliability, DiskSuite provides a
facility for creating hot spare components. For further information on this
utility, see Chapter 7, “Hot Spares.”

Although mirroring helps ensure data reliability, the I/O performance can
suffer on some systems. However, the performance penalty can be minimized
by the correct configuration of the mirrors.

To get maximum protection and performance, place mirrored metadevices on
different physical components (disks) and on different disk controllers. Since
the primary purpose of mirroring is to maintain availability of data, defining
mirrored metadevices on the same disk is not recommended. If the disk were
to fail, both metadevices would fail.

66 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

This chapter provides information and procedures for mirroring components
using the DiskSuite software. Use the following table to locate information
specific to your task.

Operation of Mirrors
Mirroring is accomplished by the creation of metamirrors. A metamirror is a
special type of metadevice that is made up of one or more other metadevices
(concatenations or stripes). Each metadevice within a metamirror is called a
submirror.

Mirrors or metamirrors use the same naming convention used for other
metadevices. After a metamirror is defined, additional submirrors can be
added at any time without disruption of writes or reads to the existing
metamirror.

Metamirrors should be defined with a single submirror using the metainit
command. Additional submirrors must be added with the metattach
command. Metamirrors can also be defined in the /etc/opt/SUNWmd/md.tab
file, but you must run metainit to activate them. When you are mirroring
existing file systems or data, be sure that the existing data is contained on the
submirror initially defined with the metamirror. When a second submirror is
subsequently attached, data from the initial submirror is copied onto the
attached submirror.

Operation of Mirrors page 66

Defining Metamirrors page 69

Metamirror Options page 70

Resyncing Mirrors page 72

Checking the Status of Mirrors page 73

Mirroring Existing File Systems page 77

Unmirroring File Systems page 77

root, swap, and /usr Mirroring page 78

Reconfiguring Submirrors page 94

Using Mirrors for Online Backup page 98

Examples page 103

Mirroring 67

5

In general, it is best to avoid creating multi-way metamirrors using the
metainit command without attaching the other submirrors. For example, the
following use of the metainit command is not recommended:

When you use metainit in this manner, the following message is displayed:

When the metattach command is not used to attach the additional
submirrors, no resync operation occurs.

Caution – In cases where you are mirroring existing data, be sure that the
initial submirror contains the data.

One-way metamirrors (containing a single submirror), can be defined either in
the /etc/opt/SUNWmd/md.tab file, or with the metainit command directly
from the command line. For convenience, it is recommended that all simple
metadevices be defined using the /etc/opt/SUNWmd/md.tab file. This will
make manual operations (attaching, detaching, and replacing metadevices)
easier to deal with.

There are basically two ways in which you can set up metamirrors:

• By defining one-way metamirrors in the /etc/opt/SUNWmd/md.tab file,
running the metainit command with the -a option, and then performing
subsequent instances of the metattach command (or use a shell script) to
attach the submirrors.

• By defining one-way mirrors using the metainit command either
manually or from a shell script, and then performing subsequent additions
of submirrors using the metattach command.

The examples in this chapter show metadevices and one-way metamirrors
defined in the /etc/opt/SUNWmd/md.tab file. Subsequent submirror
additions are shown separately below the md.tab file definitions.

metainit d0 -m d1 d2

WARNING: This form of metainit is not recommended.
 The submirrors may not have the same data.
 Please see ERRORS in metainit(1M) for additional
information.

!

68 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

Note – Remember that definitions in the /etc/opt/SUNWmd/md.tab file do
not become effective until they are activated using the metainit command.

An example is a metamirror that is made up of four physical components and
two submirrors (metadevices). The physical components are named
/dev/dsk/c0t0d0s0 , /dev/dsk/c1t0d0s0 , /dev/dsk/c2t0d0s0 , and
/dev/dsk/c3t0d0s0 . The two submirrors are named /dev/md/dsk/d1 and
/dev/md/dsk/d2 . The metamirror is named /dev/md/dsk/d50.

To set up this metamirror using the /etc/opt/SUNWmd/md.tab file, you
would add the following:

In the above /etc/opt/SUNWmd/md.tab entry, the -m specifies the one-way
mirror consists of the metadevice, /dev/md/dsk/d1 . The two metadevices to
be used as submirrors are then defined in the two lines that follow. (The
metadevices are concatenations, as explained in Chapter 4, “Concatenating and
Striping.”)

To activate the metamirror you’ve defined, you would use the metainit
command with the -a option as follows::

The second metadevice is then attached with the metattach command as
follows:

The metadevice, /dev/md/dsk/d2 is now a submirror for the metamirror
/dev/md/dsk/d50 .

#
mirror concatenation of two components
#
/dev/md/dsk/d50 -m /dev/md/dsk/d1
/dev/md/dsk/d1 2 1 /dev/dsk/c0t0d0s0 1 /dev/dsk/c1t0d0s0
/dev/md/dsk/d2 2 1 /dev/dsk/c2t0d0s0 1 /dev/dsk/c3t0d0s0

metainit -a

metattach d50 d2

Mirroring 69

5

Defining Metamirrors

All metamirrors that have been defined in the /etc/opt/SUNWmd/md.tab file
can be configured at the same time or they can be configured individually
using the metainit(1M) command. metainit configures the metadevices
according to the configurations specified either on the command line or in the
/etc/opt/SUNWmd/md.tab file.

When used with the -a option, metainit configures all metadevices defined
in the /etc/opt/SUNWmd/md.tab file. If metainit -a is used, all submirrors
are configured before the metamirror, regardless of the order in which the
entries are made in the /etc/opt/SUNWmd/md.tab file.

If metainit is used to configure a metamirror and any of the submirrors are
not configured at the time, metainit fails. For example, assume the following
entries are made in the /etc/opt/SUNWmd/md.tab file.

Running metainit -a would activate the submirrors /dev/md/dsk/d26
and /dev/md/dsk/d27 and then activate the one-way mirror
/dev/md/dsk/d25 . If the submirrors and metamirror are activated
individually, they should be done as follows:

Next, you would use the metattach command to attach the submirror
/dev/md/dsk/d27 to the metamirror /dev/md/dsk/d25 as follows:

/dev/md/dsk/d25 -m /dev/md/dsk/d26
/dev/md/dsk/d26 1 1 /dev/dsk/c0t1d0s0
/dev/md/dsk/d27 1 1 /dev/dsk/c0t2d0s0

/usr/etc/metainit /dev/md/dsk/d27
/usr/etc/metainit /dev/md/dsk/d26
/usr/etc/metainit /dev/md/dsk/d25

/usr/etc/metattach /dev/md/dsk/d25 /dev/md/dsk/d27

70 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

Metamirror Options

DiskSuite supports several options to optimize metamirror performance for
needs at individual sites. These options deal with:

• Setting the order in which metamirrors are resynced during reboot

• Read policy for metamirrors

• Write policy for metamirrors

You define these options using the metainit command when you initially
configure a metamirror, or using the metaparam command after the
metamirror has been set up. For more information regarding using the
metaparam command, see “Changing Metamirror and Submirror Options” on
page 97 or the metaparam(1M) manpage.

Resync Options

A pass number in the range 0-9 at the end of an entry defining a metamirror
determines the order in which that mirror is resynced during a system reboot.
The default is 1. Smaller pass numbers are resynced first. If 0 is used, the
resync is skipped. A 0 should only be used for metamirrors mounted as read
only. If different metamirrors have the same pass number, they are resynced
concurrently. The following example shows three metamirrors defined in a
/etc/opt/SUNWmd/md.tab file.

In the above example, the metamirror /dev/md/dsk/d71 is resynced first,
then /dev/md/dsk/d51 and /dev/md/dsk/d61 are resynced concurrently.

Read Options

There are three kinds of read options associated with metamirrors. The default
read option is ‘‘balanced load.’’ The balanced load means all reads are made in
a round-robin order from all the submirrors in the metamirror.

/dev/md/dsk/d51 -m /dev/md/dsk/d52 2
/dev/md/dsk/d61 -m /dev/md/dsk/d62 2
/dev/md/dsk/d71 -m /dev/md/dsk/d72

Mirroring 71

5

If a -g is specified following a metamirror entry in the
/etc/opt/SUNWmd/md.tab file or following a command line metamirror
entry with the metainit utility, the metadisk driver performs ‘‘geometric’’
reads. This option provides faster performance on sequential reads or when
you’re using disks with track buffering.

Geometric reads allow read operations to be divided among submirrors on the
basis of a logical disk block address. For instance, with a three-way submirror
the disk space on the metamirror is divided into three (equally sized) logical
address ranges. Reads from the three regions are then performed by separate
submirrors (for example, reads to the first region are performed by the first
submirror).

If a -r option is specified, all reads are directed to the first submirror. This
option cannot be used in conjunction with a -g .

The following example illustrates the use of the -r and -g options:

In the above example, reads from the /dev/md/dsk/d75 metamirror will be
performed geometrically from the two submirrors (/dev/md/dsk/d76 and
/dev/md/dsk/d77). When reads are made from the /dev/md/dsk/d80
metamirror the submirror, /dev/md/dsk/d81 , will be used.

Write Options

Writes to the submirror of a metamirror are either performed in parallel or
serially. Parallel writes are the default action of the metadisk driver, meaning
the writes are dispatched to all submirrors simultaneously. If a -S (uppercase
‘s’) option is specified following a metamirror, the writes happen serially in the
order in which the submirrors are specified in the metamirror. The following is
an example of a metamirror defined with the -S option.

metainit /dev/md/dsk/d75 -m /dev/md/dsk/d76 -g
metattach /dev/md/dsk/d75 /dev/md/dsk/d77
metainit /dev/md/dsk/d80 -m /dev/md/dsk/d81 -r
metattach /dev/md/dsk/d80 /dev/md/dsk/d82

metainit /dev/md/dsk/d90 -m /dev/md/dsk/d91 -S
metattach /dev/md/dsk/d90 /dev/md/dsk/d92
metattach /dev/md/dsk/d90 /dev/md/dsk/d93

72 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

In the above example, a write to /dev/md/dsk/d90 will first write the data to
/dev/md/dsk/d91 . Once the write to /dev/md/dsk/d91 is complete, a write
to /dev/md/dsk/d92 begins and after it finishes, the write to the third
submirror, /dev/md/dsk/d93 , will be made.

Resyncing Mirrors

If submirrors need to be replaced, attached, or taken offline for other reasons,
the submirrors must be resynced. Resyncing is the act of copying data from
one submirror to another and ensures the data on all submirrors is identical.
DiskSuite offers two types of resyncing:

• Full resync
• Optimized resync

These resyncs both perform the basic function of copying data from a readable
submirror to another submirror. While this copy takes place, the metamirror
remains readable and writable by users.

A full resync must be performed when a new submirror is added to a
metamirror and the user wants to bring it in sync with other submirrors that
are part of that metamirror. Full resyncs are performed whenever the
metattach(1M) command is used.

metattach attaches metadevices to metamirrors and resyncs the newly
attached submirror to the mirror. The metadevices remain attached, even
during system reboots, until the metadetach command is run.

If the system crashes while any resync is in progress, DiskSuite will finish the
resync when the system comes back up.

An optimized resync occurs when the system boots following a crash or a
reboot. Metamirror resyncs following a system crash are necessary because the
crash may have interrupted a mirror write, thus some submirrors in the
metamirror may be out of sync.

DiskSuite keeps track of regions of all mirrors. When a crash occurs, the
metadisk driver knows which regions are not in sync. Subsequently, when the
system reboots, only the regions that are not in sync are updated during this
type of resync. For large metamirrors, this could be time consuming. This does
not cause major problems during reboot, because system activity, including
fsck(1M) , can continue. However, system throughput is degraded.

Mirroring 73

5

metaonline(1M) performs an optimized resync similar to the type of
optimized resync that is normally performed at boot time. metaonline only
resyncs the data that was written to the metamirror while that submirror was
offline.

Checking the Status of Mirrors

The metastat(1M) command is used to display the current status for each
metadevice or hot spare pool, or of specified metadevices or hot spare pools.
By default, all information pertaining to metadevices and hot spare pools is
displayed by metastat .

The -p option can be used with metastat . When you specify the -p option,
the output format is similar to that of the /etc/opt/SUNWmd/md.tab file.
This option is mainly for viewing the metadevive configuration only; without
status information.

The name of a metadevice or hot spare pool can be specified on the command
line as an argument to the metastat command. If one is specified, only the
information pertaining to that metadevice or hot spare pool is displayed.

If no metadevice or hot spare pool is specified, metastat displays information
for all active metadevices and hot spare pools. An example of the default
output from metastat follows:

/usr/opt/SUNWmd/sbin/metastat
d13: Mirror
 Submirror 0: d14
 State: Needs maintenance
 Submirror 1: d15
 State: Okay
 Submirror 2: d16
 State: Okay
 Pass: 1
 Read option: roundrobin (default)
 Write option: parallel (default)
 Size: 183750 blocks
 .
 .
 .

74 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

In the above output, information about the metamirror, /dev/md/dsk/d13, is
displayed. metastat shows that the three submirrors, /dev/md/dsk/d14 ,
/dev/md/dsk/d15 , and /dev/md/dsk/d16 are configured. The state of each
submirror is also provided. There are three possible states: ‘‘Okay,’’
‘‘Resyncing,’’ and ‘‘Needs maintenance.’’

The next four lines deal with options that are set for the mirror. The ‘‘Pass’’
number defines when the mirrored metadevices will be resynced when the
system reboots. The ‘‘Read option’’ specifies round-robin reads (the default).
The ‘‘Write option’’ specifies parallel writes (the default). See “Metamirror
Options” on page 70 and Appendix A, “Solstice DiskSuite Files” for additional
information on setting up the /etc/opt/SUNWmd/md.tab file.

The size information is the total number of blocks included in the metamirror.

Output from metastat continues below with a submirror display.

In the above output, information about the submirror is displayed. metastat
shows the metamirror (/dev/md/dsk/d13) which contains the submirror
/dev/md/dsk/d14 . The state of the submirror is shown on the second line.

 .
 .
 .
d14: Submirror of d13
 State: Needs maintenance
 Invoke: metareplace /dev/md/dsk/d13 /dev/dsk/c0t3d0s0 \
 <new device>
 Hot spare pool: hsp003
 Size: 183750 blocks
 Stripe 0:
 Device Start Block Dbase State Hot Spare
 c0t2d0s0 0 No Okay
 Stripe 1: (Interlace = 16 blocks)
 Device Start Block Dbase State Hot Spare
 c0t3d0s0 630 Yes Maintenance
 c0t4d0s0 630 Yes Maintenance
 Stripe 2:
 Device Start Block Dbase State Hot Spare
 c0t0d0s0 0 No Maintenance
 .
 .
 .

Mirroring 75

5

There are four possible states: ‘‘Okay,’’ ‘‘Resyncing,’’ ‘‘Maintenance,’’ and “Last
Erred.” If ‘‘Maintenance’’ is displayed, the next line, ‘‘Invoke’’ specifies which
command should be run to eliminate the problem. The interlace value is only
shown if there are two or more devices in the stripe.

For example, to correct the maintenance required in the above example, the
following command might be run:

In this example, the device, /dev/dsk/c0t5d0s0 , is used for the “<new
device> .” It is possible that you may have to run metastat again to see if
additional commands are needed to solve the ‘‘Needs maintenance’’ state.

The hot spare pool that has been assigned to the submirror is displayed on the
following line. Next, the size of the submirror (in blocks) is displayed.

metastat also displays information about each component in the stripe, as
shown with a separate entry. Each entry consists of the ‘‘Device,’’ ‘‘Start
Block,’’ ‘‘Dbase,’’ ‘‘State,’’ and ‘‘Hot Spare.’’

The ‘‘Device’’ is the name of the device that is in the stripe.

The ‘‘State’’ is the state of the device, which is either ‘‘Okay,’’ ‘‘Resyncing,’’
‘‘Maintenance,’’ or “Last Erred.” These states are defined as follows:

• “Okay” - The component is operating properly.

• “Resyncing” - The component is actively being resync’ed.

• “Maintenance” - The component has encountered an I/O error or an open
error. All reads and writes to and from this component have been
discontinued. See “Replacing and Enabling Submirror Components” on
page 96 for information on component replacement.

• “Last Erred” - The component has encountered an I/O error or an open
error, however, the data is not replicated elsewhere due to another
component failure. I/O is still performed on the component. If I/O errors
result, the mirror I/O will fail. See “Replacing and Enabling Submirror
Components” on page 96 for information on component replacement.

The ‘‘Start Block’’ is the block on which the component begins.

/usr/opt/SUNWmd/sbin/metareplace /dev/md/dsk/d13 \
 /dev/dsk/c0t3d0s0 /dev/dsk/c0t5d0s0

76 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

The ‘‘Dbase’’ field specifies whether or not a database resides on the
component.

The final field is ‘‘Hot Spare’’ which specifies the device name of the hot spare
that has been used for a replacement when the device failed.

Output from metastat continues below with a metadevice display.

First, the metadevice output contains the device name of the metadevice,
/dev/md/dsk/d60 . The size of the metadevice in blocks is shown on the
second line.

The components, which are shown as a concatenation of stripes, are shown on
separate lines. Information about each component in the stripe is shown with a
separate entry followed by the size, in blocks, of the stripe. Each entry consists
of the ‘‘Device,’’ ‘‘Start Block,’’ and ‘‘Dbase.’’

The ‘‘Device’’ is the name of the device that is in the stripe. The ‘‘Start Block’’
is the block on which the component begins. The ‘‘Dbase’’ field specifies
whether or not a database resides on the component.

Note – State and hot spare information for stripes which are not submirrors is
not retained by DiskSuite.

 .
 .
 .
d60: Concat/Stripe
 Size: 183750 blocks
 Stripe 0: (61250 blocks)
 Device Start Block Dbase
 c1t1d0s1 0 No
 Stripe 1: (61250 blocks)
 Device Start Block Dbase
 c1t2d0s1 1034 Yes
 Stripe 2: (61250 blocks)
 Device Start Block Dbase
 c1t3d0s1 0 No
 .
 .
 .

Mirroring 77

5

Mirroring Existing File Systems

Once the DiskSuite software package is installed, you can mirror existing file
systems without backing up data or reconfiguring devices.

To mirror an existing file system, you must use an additional component of
equal or greater size. It is possible to use a concatenation of two or more
components that have adequate space available to contain the mirror. For
example, if /export/home is mounted on a 1-Gbyte component named
/dev/dsk/c0t0d0s0 , at least 1-Gbyte of space must be available on the
metadevice that is being defined for the new submirror.

When you mirror an existing file system, be sure that you initially configure a
one-way metamirror with a submirror containing the existing file system. A
submirror that you add subsequently with the metattach command should
not contain any data that is needed, since it will overwritten by the resync
following the metattach command. For a more detailed explanation of this
process, see “Mirroring an Existing File System” in the “Examples” section at
the end of this chapter.

Unmirroring File Systems

The procedure for unmirroring a file system that is not root , swap, or /usr ,
consists of the following steps:

1. Unmounting the file system

2. Running metadetach(1M) on the submirror that will continue to be used
for the file system

3. Running metaclear(1M) on the mirror

4. Changing the file system entry in the /etc/vfstab file to use a nonmirror
device, if the file system entry appears there

5. Removing the metamirror and submirror entries from the
/etc/opt/SUNWmd/md.tab file

6. Remounting the file system

78 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

Example of Unmirroring a File System

The following is an example of unmirroring the /var file system. In this
example, /var is made up of a two-way mirror with the names d2 and d3 in a
mirror named, d4 . The names of the components are /dev/dsk/c0t0d0s0
and /dev/dsk/c1t0d0s0 .

After you run the above commands, you must change the entry in the
/etc/vfstab file (if one appears for /var). For example, the following line:

should be changed to read:

By using the metadevice name, /dev/md/dsk/d2 instead of
/dev/md/dsk/d4 , you have performed the unmirroring. By using
/dev/md/dsk/d2 rather than the component name (for example,
/dev/dsk/c0t0d0s0), you can continue to have the device support either a
concatenation or a stripe.

The /var file system can be remounted.

root , swap, and /usr Mirroring
The key feature that makes mirroring of the root , swap, and /usr file systems
possible is that the state database locations are patched into the metadisk
driver via the /etc/system file. Since the kernel has knowledge of the state
database early in the boot process, it can obtain all the information it needs
about all metadevices. This is explained further in Chapter 2, “Installation and
Setup” and Chapter 8, “Disksets.” Additional information about the mddb.cf
file is provided in Appendix A, “Solstice DiskSuite Files.”

/sbin/umount /var
/usr/opt/SUNWmd/sbin/metadetach /dev/md/dsk/d4 /dev/md/dsk/d2
/usr/opt/SUNWmd/sbin/metaclear -r /dev/md/dsk/d4

/dev/md/dsk/d4 /dev/md/rdsk/d4 /var ufs 4 yes —

/dev/md/dsk/d2 /dev/md/rdsk/d2 /var ufs 4 yes —

/sbin/mount /var

Mirroring 79

5

Note – If problems occur when mirroring root , swap, and /usr , refer to
Appendix C, “Recovery From Failed Boots.’’

Mirroring /usr

There are seven basic steps involved with mirroring the /usr file system. In
the following example, /dev/dsk/c0t3d0s6 is the existing device where
/usr resides. The component used for the mirror of this file system is
/dev/dsk/c1t0d0s6 . The steps used to mirror /usr are:

1. Specify a metadevice for the existing file system by making an entry in
the /etc/opt/SUNWmd/md.tab file.

2. Specify the one-way mirror in the /etc/opt/SUNWmd/md.tab file by
inserting the following line:

3. Specify a metadevice for the new submirror on the other half of the
mirror by entering the following in the /etc/opt/SUNWmd/md.tab file:

The number of blocks in /dev/dsk/c1t3d0s6 must be greater or equal to
the number of blocks in /dev/dsk/c0t3d0s6 . Otherwise, the metattach
command in Step 7 of this procedure will fail.

/dev/md/dsk/d12 1 1 /dev/dsk/c0t3d0s6

/dev/md/dsk/d2 -m /dev/md/dsk/d12

/dev/md/dsk/d22 1 1 /dev/dsk/c1t3d0s6

80 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

4. Run the metainit command for each of the metadevices and the
metamirror defined in the /etc/opt/SUNWmd/md.tab file.
Note that a -f option is used with metainit for /dev/md/dsk/d12
because the component being used has /usr currently mounted (see Step 1).
metainit normally fails if the component has a file system currently
mounted, but the -f force option allows the metadevice to be activated.

5. Edit the /etc/vfstab file to change the entry for the /usr file system to
be the newly defined metadevice name rather than the component name.
For example, change the following line:

to read:

6. Reboot the system using the reboot(1M) command.

7. Attach the new metadevice to the one-way mirror, using the
metattach(1M) command.

Once the above steps are performed, a resync of the mirror begins
automatically, which copies all the data that exists on d12
(/dev/dsk/c0t3d0s6) to the submirror d2 (/dev/dsk/c1t3d0s6).

/usr/opt/SUNWmd/sbin/metainit /dev/md/dsk/d22
/usr/opt/SUNWmd/sbin/metainit -f /dev/md/dsk/d12
/usr/opt/SUNWmd/sbin/metainit /dev/md/dsk/d2

/dev/dsk/c0t3d0s6 /dev/rdsk/c0t3d0s6 /usr ufs 2 no -

/dev/md/dsk/d2 /dev/md/rdsk/d2 /usr ufs 2 no -

/usr/sbin/reboot

/usr/opt/SUNWmd/sbin/metattach /dev/md/dsk/d2 /dev/md/dsk/d22

Mirroring 81

5

Mirroring root

The procedure for mirroring root on an x86 system is somewhat different from
the procedure used for a SPARC system. Use the procedure described in one of
the following two sections to set up root mirroring on your system.

Caution – When you are mirroring the root file system it is essential that you
record the secondary root slice name in order to reboot the system if the
primary submirror fails. This information should be written down, not
recorded on the system which may not be available. Read either the section,
“Booting From the Alternate Device — SPARC System” on page 83 or “Booting
From the Alternate Device — x86 System” on page 89 for details.

Mirroring root on a SPARC System

There are eight basic steps involved with mirroring the root file system on a
SPARC system. In the following example, /dev/dsk/c0t3d0s0 is the existing
device where root resides. The component used to mirror this component is
/dev/dsk/c1t3d0s0 .

Setting Up a Root Mirror — SPARC System
Follow these steps to mirror root on a SPARC system:

1. Create a metadevice for the existing file system by making an entry in the
/etc/opt/SUNWmd/md.tab file.

2. Create the one-way mirror in the /etc/opt/SUNWmd/md.tab file by
inserting the following line:

3. Create a metadevice for the new component on the other half of the
mirror by entering the following in the /etc/opt/SUNWmd/md.tab file:

/dev/md/dsk/d10 1 1 /dev/dsk/c0t3d0s0

/dev/md/dsk/d0 -m /dev/md/dsk/d10

/dev/md/dsk/d20 1 1 /dev/dsk/c1t3d0s0

!

82 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

4. Run the metainit(1M) command for each of the metadevices and the
metamirror defined in the /etc/opt/SUNWmd/md.tab file.
Note that a -f option is used with metainit for d10 because the
component being used has root currently mounted (see Step 1). metainit
normally fails if the component has a file system currently mounted, but the
-f force option allows the metadevice to be activated.

5. Run the metaroot(1M) command. metaroot edits the /etc/system and
/etc/vfstab to add information necessary to mirror root .

6. Reboot the system using the reboot(1M) command.

7. Attach the new metadevice to the one-way mirror, using the metattach
command.

Once the above steps are performed, a resync of the mirror begins
automatically, which copies all the data that exists on d10
(/dev/dsk/c0t3d0s0) to the submirror d20 (the component named
/dev/dsk/c1t3d0s0).

/usr/opt/SUNWmd/sbin/metainit /dev/md/dsk/d20
/usr/opt/SUNWmd/sbin/metainit -f /dev/md/dsk/d10
/usr/opt/SUNWmd/sbin/metainit /dev/md/dsk/d0

/usr/opt/SUNWmd/sbin/metaroot /dev/md/dsk/d0

/usr/sbin/reboot

/usr/opt/SUNWmd/sbin/metattach /dev/md/dsk/d0 /dev/md/dsk/d20

Mirroring 83

5

8. Record the path to the alternate root device. You may need this later if the
primary device fails.
In this example, you would determine the path to the alternate root device
by entering:

So you would record: /sbus@1,f8000000/esp@1,200000/sd@3,0:a

Booting From the Alternate Device — SPARC System
To boot your SPARC system from the alternate boot device, you would type:

Note – Backup Copilot users who are using system with open boot prom can
use the OpenBoot nvalias command to define a “backup root” devalias for
the secondary root mirror. For example:
 ok nvalias backup_root /sbus@1,f8000000/esp@1,200000/sd@3,0:a
In the event of primary root disk failure, you then would only enter:
 ok boot backup_root

Mirroring root on an x86 System

Before mirroring the root file system on an x86 system, you must first set up a
Solaris partition large enough for your root mirror. For the purpose of the
following procedures, we’ll assume that the alternate disk is c0t1d0 .

Creating a Solaris Partition
Follow these steps to create a Solaris partition on an x86 system:

ls -l /dev/rdsk/c1t3d0s0
lrwxrwxrwx 1 root root 55 Mar 5 12:54 /dev/rdsk/c1t3d0s0 ->
../.
./devices/sbus@1,f8000000/esp@1,200000/sd@3,0:a

boot /sbus@1,f8000000/esp@1,200000/sd@3,0:a

84 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

1. Create the disk partition using the fdisk command as follows:

• If this is the first time you have run fdisk , the following is displayed:

• If you have previously run fdisk , you see a menu similar to the following:

2. Select menu items to ensure that you have a Solaris partition large enough
for your root mirror. Your Solaris partition should be five cylinders
larger than the size needed to hold your root slice.

Note – Make sure that the Solaris partition is active. Otherwise, you will be
unable to boot from it.

fdisk /dev/rdsk/c0t1d0p0

The recommended default partitioning for your disk is:

a 100% “SOLARIS System” partition

To select this, please type “y”. To partition your disk
differently, type “n” and the “fdisk” program will let you
select other partitions.

 Total disk size is 1855 cylinders
 Cylinder size is 1110 (512 byte) blocks

Partition Status Type Start End Length %
========= ====== ======== ===== === ====== ===
 1 Active SOLARIS 1 1854 1854 100

SELECT ONE OF THE FOLLOWING:

 1. Create a partition
 2. Change Active (Boot from) partion
 3. Delete a partition
 4. Exit (Update disk configuration and exit)
 5. Cancel (Exit without updating disk configuration)
Enter Selection:

Mirroring 85

5

3. Use the format program to format the Solaris partition and create a slice
for your root mirror as follows:

format
Searching for disks...done

AVAILABLE DISK SELECTIONS:
 0. c0t0d0 <drive type unknown>
 /eisa/eha@1000,0/cmdk@0,0
 1. c0t1d0 <DEFAULT cyl 1852 alt 2 hd 15 sec 74>
 /eisa/eha@1000,0/cmdk@1,0
 2. c0t2d0 <SUN0207 cyl 1254 alt 2 hd 9 sec 36>
 /eisa/eha@1000,0/cmdk@2,0
Specifiy disk (enter its number): 1

selecting c0t1d0
[disk formatted]

FORMAT MENU:
disk - select a disk
type - select (define) a disk type
partition - select (define) a partition table
current - describe the current disk
format - format and analyze the disk
fdisk - run the fdisk program
repair - repair a defective sector
label - write label to the disk
analyze - surface analysis
defect - defect list management
backup - search for backup labels
verify - read and display labels
save - save new disk/partition definitions
inquiry - show vendor, product and revision
volname - set 8-character volume name
quit

86 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

4. Use the partition command to define a partition as follows:

format> partition

PARTITION MENU:
 0 - change ‘0' partition
 1 - change ‘1' partition
 2 - change ‘2' partition
 3 - change ‘3' partition
 4 - change ‘4' partition
 5 - change ‘5' partition
 6 - change ‘6' partition
 7 - change ‘7' partition
 select - select a predefined table
 modify - modify a predefined partition table
 name - name the current table
 print - display the current table
 label - write partition map and label to the disk
 quit
partition> 0
Part Tag Flag Cylinders Size Blocks
 0 unassigned wm 0 0 (0/0/0)

Enter partition id tag [unassigned]: root
Enter partition permission flags [wm]: wm
Enter new starting cyl [0]: 4
Enter partition size [0b, 0c, 0.00mb]: 400mb
partition> label
Ready to label disk, continue? y
partition>

Mirroring 87

5

5. Exit from the partition menu and the format program by typing the
quit command twice.
For example:

Note the following important points about your Solaris root partition:

• Its id tag must be “root ”
• Its size must be greater than or equal to the size of the original root

partition
• It should not use cylinders 0-2

6. Install the boot information on the alternate boot disk as follows:

partition> quit

FORMAT MENU:
 disk - select a disk
 type - select (define) a disk type
 partition - select (define) a partition table
 current - describe the current disk
 format - format and analyze the disk
 repair - repair a defective sector
 label - write label to the disk
 analyze - surface analysis
 defect - defect list management
 backup - search for backup labels
 verify - read and display labels
 save - save new disk/partition definitions
 inquiry - show vendor, product and revision
 volname - set 8-character volume name
 quit
format> quit

installboot /usr/lib/fs/ufs/pboot \
 /usr/lib/fs/ufs/bootblk \
 /dev/rdsk/c0t1d0s2

88 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

Setting Up a Root Mirror — x86 System
After you have completed the above procedure for creating a Solaris partition,
you can mirror the root file system. The steps to mirror root on an x86
system are as follows:

1. Create a metadevice for the existing file system by making an entry in the
/etc/opt/SUNWmd/md.tab file.

2. Create the one-way mirror in the /etc/opt/SUNWmd/md.tab file by
inserting the following line:

3. Create a metadevice for the new component on the other half of the
mirror by entering the following in the /etc/opt/SUNWmd/md.tab file:

4. Run the metainit(1M) command for each of the metadevices and the
metamirror defined in the /etc/opt/SUNWmd/md.tab file.
Note that a -f option is used with metainit for d10 because the
component being used has root currently mounted (see Step 1). metainit
normally fails if the component has a file system currently mounted, but the
-f force option allows the metadevice to be activated.

5. Run metaroot(1M) command. metaroot edits the /etc/system and
/etc/vfstab to add information necessary to mirror root .

/dev/md/dsk/d10 1 1 /dev/dsk/c0t0d0s0

/dev/md/dsk/d0 -m /dev/md/dsk/d10

/dev/md/dsk/d20 1 1 /dev/dsk/c1t0d0s0

/usr/opt/SUNWmd/sbin/metainit /dev/md/dsk/d20
/usr/opt/SUNWmd/sbin/metainit -f /dev/md/dsk/d10
/usr/opt/SUNWmd/sbin/metainit /dev/md/dsk/d0

/usr/opt/SUNWmd/sbin/metaroot /dev/md/dsk/d0

Mirroring 89

5

6. Reboot the system using the reboot(1M) command.

7. Attach the new metadevice to the one-way mirror, using the metattach
command.

Once the above steps are performed, a resync of the mirror begins
automatically, which copies all the data that exists on d10
(/dev/dsk/c0t0d0s0) to the submirror d20 (the component named
/dev/dsk/c1t0d0s0).

8. Record the path to the alternate root device. You may need this later if
the primary device fails.
In this example, you would determine the path to the alternate root device
by:

So you would record: /eisa/eha@1000,0/cmdk@1,0:a

Booting From the Alternate Device — x86 System
To boot your x86 system from the alternate boot device, complete the
following steps:

/usr/sbin/reboot

/usr/opt/SUNWmd/sbin/metattach /dev/md/dsk/d0 /dev/md/dsk/d20

ls -l /dev/rdsk/c1t0d0s0
lrwxrwxrwx 1 root root 55 Mar 5 12:54 /dev/rdsk/c1t0d0s0 ->
../.
./devices/eisa/eha@1000,0/cmdk@1,0:a

90 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

1. Boot your system from the Multiple Device Boot (MDB) diskette.
After a moment, a screen similar to the following is displayed:

2. Select your alternate disk from the above screen.
The following is displayed:

3. Type i to select the interpreter.

4. Enter the following commands:

Solaris/x86 Multiple Device Boot Menu
Code Device Vendor Model/Desc Rev
==

10 DISK COMPAQ C2244 0BC4
11 DISK SEAGATE ST11200N SUN1.05 8808
12 DISK MAXTOR LXT-213S SUN0207 4.24
13 CD SONY CD-ROM CDU-8812 3.0a
14 NET SMC/WD I/O=300 IRQ=5
80 DISK First IDE drive (Drive C:)
81 DISK Second IDE drive (Drive D:)

Enter the boot device code: 11

Solaris 2.4 for x86 Secondary Boot Subsystem,vsn 2.11

 <<<Current Boot Parameters>>>
Boot path:/eisa/eha@1000,0/cmdk@0,0:a
Boot args:/kernel/unix

Type b[file-name] [boot-flags] <ENTER> to boot with options
or i<ENTER> to enter boot interpreter
or <ENTER> to boot with defaults

 <<<timeout in 5 seconds>>>

>setprop boot-path /eisa/eha@1000,0/cmdk@1,0:a
>^D

Mirroring 91

5

Mirroring swap

There are seven basic steps involved with mirroring the swap partition. In the
following example, /dev/dsk/c0t0d0s1 is the existing device where swap
resides. The component used to mirror this component is
/dev/dsk/c1t0d0s1 . The steps used to mirror swap are:

1. Create a metadevice for the existing file system by making an entry in the
/etc/opt/SUNWmd/md.tab file.

2. Create the one-way mirror in the /etc/opt/SUNWmd/md.tab file by
inserting the following line:

3. Create a metadevice for the new component on the other half of the
mirror by entering the following in the /etc/opt/SUNWmd/md.tab file:

4. Run the metainit command for each of the metadevices and the
metamirror defined in the /etc/opt/SUNWmd/md.tab file.
Note that the -f option is used with metainit for d10 because the
component being used is currently being used as a swap device.

/dev/md/dsk/d11 1 1 /dev/dsk/c0t0d0s1

/dev/md/dsk/d1 -m /dev/md/dsk/d11

/dev/md/dsk/d21 1 1 /dev/dsk/c1t0d0s1

/usr/opt/SUNWmd/sbin/metainit /dev/md/dsk/d21
/usr/opt/SUNWmd/sbin/metainit -f /dev/md/dsk/d11
/usr/opt/SUNWmd/sbin/metainit /dev/md/dsk/d1

92 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

5. If an entry exists in the /etc/vfstab file that matches the partition on
which the system was swapping, the file must be edited. (If such an entry
does not exist, do not add one.) Change the name of the partition to the
newly defined metadevice name rather than the partition name.
For example, change the following line:

to read:

6. Reboot the system using the reboot(1M) command.

7. Attach the new metadevice to the one-way mirror, using the metattach
command.

Once these steps are performed, a resync of the mirror begins automatically.
The resync copies all the data that exists on d11 (/dev/dsk/c0t0d0s1) to the
submirror d21 (the component named /dev/dsk/c1t0d0s1).

Unmirroring root and swap File Systems

To unmirror any file system that is not root or swap, follow the instructions
provided in “Unmirroring File Systems” on page 77. The procedure for
unmirroring the root or swap file systems consists of six basic steps:

1. Making the metamirror that contains root , swap, or /usr into a one-way
mirror

2. Changing the file system entry in the /etc/vfstab file to use a non-
DiskSuite device

3. If you’re unmirroring root , running the metaroot command

4. Rebooting the system

/dev/dsk/c0t3d0s1 - - swap - no -

/dev/md/dsk/d1 - - swap - no -

/usr/sbin/reboot

/usr/opt/SUNWmd/sbin/metattach /dev/md/dsk/d1 /dev/md/dsk/d21

Mirroring 93

5

5. Using the metaclear command, to clear the metamirrors and submirrors
that were used by root , swap, or /usr

6. Removing the entries from the /etc/opt/SUNWmd/md.tab file

Example of Unmirroring Both root and swap

The following is an example of unmirroring both the root and swap file
systems. In this example, root is a two-way mirror (/dev/md/dsk/d0) with
submirrors d10 and d20 , which are made up of the components named
/dev/dsk/c0t3d0s0 and /dev/dsk/c1t3d0s0 , respectively. swap is a
two-way mirror (/dev/md/dsk/d1) with submirrors d11 and d21 , which are
made up of the components named /dev/dsk/c0t3d0s1 and
/dev/dsk/c1t3d0s1 , respectively.

1. Make the metamirrors into a one-way mirror by using the
metadetach(1M) command.

The submirrors are detached at this time because the machine is currently
using the mirrors, thus the mirrors can not be cleared (using metaclear) at
this time. By detaching and making the mirror one-way, no resync can occur,
which could cause incorrect data to be written to the component that will be
used following the unmirroring.

2. Run the metaroot(1M) command which edits the /etc/system and
/etc/vfstab files to remove information specifying the mirroring root .

/usr/opt/SUNWmd/sbin/metadetach /dev/md/dsk/d0 /dev/md/dsk/d20
/usr/opt/SUNWmd/sbin/metadetach /dev/md/dsk/d1 /dev/md/dsk/d21

/usr/opt/SUNWmd/sbin/metaroot /dev/dsk/c0t3d0s0

94 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

3. Edit the /etc/vfstab file to change the entry for the swap file system.
The entry must be changed to remove the metadevice name and replace it
with the component name. For example, change the following line:

to read:

4. Reboot the system using the reboot(1M) command.

5. Use the metaclear command to clear the metadevices.

6. Remove all entries for root and swap from the
/etc/opt/SUNWmd/md.tab file.

Reconfiguring Submirrors
Several DiskSuite commands are available that make the reconfiguration of
submirrors possible with little or no disruption of service. The functionality
includes utilities to attach or detachsubmirrors, or bring submirrors online and
offline. The replacement of components within submirrors is also explained.
The uses of these utilities are explained in the following sections. For a
complete description of all the options associated with the commands, refer to
Appendix E, “Using Solstice DiskSuite 4.0 with the SPARCstorage Array 100.”

/dev/md/dsk/d1 - - swap - no -

/dev/dsk/c0t3d0s1 - - swap - no -

/usr/sbin/reboot

/usr/opt/SUNWmd/sbin/metaclear -r /dev/md/dsk/d0
/usr/opt/SUNWmd/sbin/metaclear -r /dev/md/dsk/d1
/usr/opt/SUNWmd/sbin/metaclear /dev/md/dsk/d20
/usr/opt/SUNWmd/sbin/metaclear /dev/md/dsk/d21

Mirroring 95

5

Attaching and Detaching Submirrors

Metadevices (concatenations or stripes) are attached to a metamirror as a
submirror beneath the metamirror with the metattach(1M) command. The
DiskSuite software supports up to three-way mirroring, thus a submirror can
be attached only if fewer than three are already attached to the metamirror.

After a new metadevice is attached, metattach automatically starts a resync
operation to the newly added submirror. metattach can also be used to add
components to an existing concatenated metadevice without interrupting
service.

Metadevices are separated (detached) from the metamirror with the
metadetach(1M) command. Once detached, the metadevice is no longer a
part of the metamirror. Reads from and writes to the metamirror no longer go
to the detached metadevices. However, the metadevice can be used for other
purposes. To help protect your data, DiskSuite does not allow the last
remaining submirror to be detached.

An example of detaching a metadevice might occur when errors are being
reported. You could run metadetach to detach that submirror component
without disruption of service from the system. The downtime to replace the
drive could be scheduled at a more convenient time.

Placing Submirrors Online and Offline

The DiskSuite commands, metaonline(1M) and metaoffline(1M) are used
to place submirrors online and offline.

These commands are useful when, for instance, one component in a physical
SCSI chain fails. In this case, all other components on the chain could be taken
offline while the broken component is replaced. After replacing the component,
the other components in the SCSI chain can be brought back online, using
metaonline .

When metaoffline is used on a submirror, the metadisk is prevented from
reading from and writing to the submirror. While the submirror is offline,
DiskSuite keeps track of all writes to the metamirror and they are written to
the submirror when it is brought back online.

96 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

The metaoffline command’s functionality is similar to that offered by
metadetach , however metaoffline does not sever the logical association
between the submirror and the metamirror.

metaonline can be used only when a submirror was taken offline using the
metaoffline command. When metaonline is run, reading from and writing
to the submirror resumes. A resync is automatically performed to resync the
regions of the metamirror that were written to while the submirror was offline.
Writes are directed to the submirror during the resync. Reads, however, will
come from a different submirror during the resync operation. Once the resync
is complete, reads and writes are performed on the submirror previously taken
offline.

Replacing and Enabling Submirror Components

Before you replace or enable a component, you should first check to be sure it
is partitioned correctly. See the fmthard(1M) and prtvtoc(1M) man pages
for details.

Note – The partitioning information for any disk used by DiskSuite should be
saved in a safe place before any errors occur.

A component being used as a replacement in a submirror must be as large as
the component it is replacing.

If a component is in the “Last Erred” state, you cannot replace it until you first
replace all of the other mirrored components in the “Maintenance” state.
Remember, however, that replacing or enabling a component in the “Last
Erred” state usually means that some data has been lost. Be sure to validate the
data on the mirror be reusing it (see fsck(1M)). If components are in the
“Maintenance” state, no data has been lost and you can safely replace or enable
components in any order.

Always check the metadevice state database replicas (using metadb -i) when
repairing components. Any database replica shown to be in error should be
deleted (using metadb -d) and added back (using metadb -a) to repair it.

You can replace components within a submirror with the metareplace(1M)
command. metareplace automatically starts a resync to get the new
component in sync with the rest of the metamirror.

Mirroring 97

5

Enabling components within a submirror is also performed using the
metareplace command. metareplace -e changes the state of a failed
component and automatically starts a resync to get the component in sync with
the rest of the metamirror.

This command is useful when a component fails due to human error (for
example, write-protecting an active disk), because a cable was loose and
retightened, or because the component was physically replaced. When a
component is replaced, the component used for replacement must have the
same attributes as the component that was replaced. For example, if SCSI
target 3 (/dev/dsk/c2t3d0s1) was physically replaced with a disk that was
also SCSI target 3, then metareplace -e should be used to enable the
component.

Changing Metamirror and Submirror Options

You can use the metaparam(1M) command to change most submirror options
while DiskSuite is running. The options that can be changed include the read
and write options, pass numbers, and hot spare pools.

metaparam allows you to change all metamirror options from the command
line, with the exception of the interlace value. To change the interlace value,
you must run the metainit command. On existing metadevices the
metaclear command must be run prior to using metainit to change the
interlace value.

The options are the same as those reported by either the metastat or the
metaparam commands. For example:

Entering the following command would change the read option to geometric,
the write option to serial, and the pass number to five.

/usr/opt/SUNWmd/sbin/metaparam /dev/md/dsk/d25
d25: metamirror
Pass = 1
Read option = round robin
Write option = parallel

/usr/opt/SUNWmd/sbin/metaparam -r geometric \
-w serial -p 5 /dev/md/dsk/d25

98 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

Note – The above command will not change any entry in the
/etc/opt/SUNWmd/md.tab file. However the information is automatically
modified in the state database and also in the /etc/opt/SUNWmd/md.cf file.

Using Mirrors for Online Backup
Mirroring enables you to perform online backups. Because each submirror is
an exact copy of the file system, it can be taken offline and backed up to tape.
This eliminates taking the system down to make a backup of the system. With
the DiskSuite software package, file system locking functionality also
eliminates the need to run fsck(1M) after taking the metadevice offline.

There are drawbacks, however, to using mirrors for backup purposes. For
instance, if the backup is of a two-way mirror, all data redundancy is lost while
one submirror is taken offline for backup. This problem can be overcome by
adding hardware to create a mirror containing three submirrors. There is also
the overhead of bringing the submirror back online after the backup is
complete.

If your site uses procedures for online backup like the ones described in the
following sections, you should combine the commands into a script.

The following sections provide instructions for performing online backups of
both mirrored and non-mirrored metadevices.

Performing Online Backups — for Mirrors

A mirrored metadevice can be backed up (archived) without unmounting it or
taking the entire mirror offline. One of the submirrors must be taken offline
temporarily, thus losing mirroring, but it can be placed online and resynced as
soon as the backup is complete — without halting the system or denying user
access to the data.

There are five steps in the procedure for backing up a file system that is being
mirrored. The steps listed here are described in detail in the example below.

1. Write locking the file system

2. Using the metaoffline command to take one metadevice offline from the
metamirror

Mirroring 99

5

3. Unlocking the file system

4. Backing up the data on the offlined metadevice

5. Using the metaonline command to place the offlined metadevice back
online

Using mirrors to perform online backups creates a backup that is a ‘‘snapshot’’
of an active file system. For example, a problem will occur if a user is editing a
file with vi and uses a :w immediately before the lockfs command is run. In
this case, since the vi file is being written from the top, it is possible that the
file will appear completely empty on the backup. It is also possible that only
the first 100 characters of a 10 Kbyte text file are written to the backup.

In the example procedure that follows, the metamirror (/dev/md/dsk/d1)
consists of the three metadevices (/dev/md/dsk/d2 , /dev/md/dsk/d3 , and
/dev/md/dsk/d4).

Note – Do not perform this procedure on the root file system.

To take one side of the mirror offline and perform a backup, you would follow
these steps:

1. Use lockfs with the -w option to lock the file system from writes.
You need to lock the file system only if a UFS file system resides on the
metamirror. For example, if the metadevice is set up as a raw device for
database management software or some other specific application, it would
not be necessary to use lockfs . (You may, however, want to run the
appropriate vender-dependent utility to flush any buffers and lock access.)

/usr/sbin/lockfs -w mount_point

100 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

2. Take one submirror offline from the metamirror.

Reads will continue to be made from /dev/md/dsk/d2 and
/dev/md/dsk/d3 . However, /dev/md/dsk/d4 will be out of sync as soon
as the first write is made to the metamirror. This inconsistency is corrected
when /dev/md/dsk/d4 is onlined in Step 5.

You don’t need to run fsck on the offlined file system. The only possible
inconsistency would be that files that have been deleted but were open at
the time lockfs -w was run would still occupy file space on the file system.

3. Use lockfs with the –u option to unlock the file systems and allow
writes to continue.
(You may need to perform necessary unlocking procedures based on
vendor-dependent utilities used in Step 1 above.)

4. Perform a backup, using ufsdump or whatever other backup utility is
normally used to copy the offlined metadevice to tape or another medium.

Note – To ensure a proper backup, make certain you use the raw device (in this
case, /dev/md/rdsk/d4). Using “rdsk ” allows greater than 2GB access.

5. Place the metadevice back online using the metaonline command.

When /dev/md/dsk/d4 is placed online, it is automatically resynced with
the metamirror.

Performing Online Backups — for Nonmirrors

DiskSuite allows you to attach or detach submirror while the product is
operating. This functionality can be used to temporarily attach another
metadevice to the one-way mirror, take the mirror offline, and then perform
the backup without interrupting service to users.

/usr/opt/SUNWmd/sbin/metaoffline /dev/md/dsk/d1 /dev/md/dsk/d4

/usr/sbin/lockfs -u mount_point

/usr/opt/SUNWmd/sbin/metaonline /dev/md/dsk/d1 /dev/md/dsk/d4

Mirroring 101

5

While this approach to online backup is not the usual use for mirroring (since
it is not being used to provide replication of data), it does offer a method of
performing online backups.

In the following example, a server has four disk drives attached. Three of the
components are configured as one-way mirrors, while the fourth component is
defined as an unused (spare) metadevice. The spare metadevice is attached to
each of the mirrors in turn and a backup is performed.

Note – This is not a recommended configuration or use of DiskSuite. This
example is included only to illustrate a method of performing online backups.

The steps to use the mirroring facility to back up the file system are:

1. Making sure all the metadevices and metamirrors are defined

2. Defining the spare metadevice

3. Attaching the spare metadevice to the metamirror and waiting for the
resync to finish

4. Using lockfs -w to write-lock the file system.

5. Taking the spare metadevice offline

6. Using lockfs -u to unlock the file system

7. Performing the backup

8. Placing the spare metadevice back online

9. Clearing the spare metadevice

In the example procedure that follows, /dev/md/dsk/d11 is the spare
metadevice, and /dev/md/dsk/d1 is the metamirror to be backed up.

Complete the following procedure to backup a file system using the mirroring
facility:

1. Activate the spare metadevice.
This is not necessary if the spare metadevice already active.

/usr/opt/SUNWmd/sbin/metainit /dev/md/dsk/d11

102 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

2. Attach the spare metadevice to a metamirror.
When you run the metattach command, a resync is automatically started.
(This may take some time to complete.)

3. Wait for the device to synchronize.
Using the metastat command periodically as follows, you’ll be able to tell
when the synchronization is complete.

4. Use the lockfs command with the -w option to lock the file system from
writes.

You need to lock the file system only if a UFS file system resides on the
metamirror. For example, if the metadevice is set up as a raw device for
database management software or some other specific application, it would
not be necessary to use lockfs (though you may want to synchronize data
in some other vender-dependent way). In this case, however, it may be
desirable to take the database offline temporarily to synchronize the data.

5. Take the spare metadevice offline from the metamirror using the
metaoffline command.

6. Use lockfs with the –u option to unlock the file systems and allow
writes to continue.

7. Perform the backup, using ufsdump or whatever other backup utility is
normally used to copy the detached metadevice to tape or another
medium.

/usr/opt/SUNWmd/sbin/metattach /dev/md/dsk/d1 /dev/md/dsk/d11

metastat d1

/usr/sbin/lockfs -w mount_point

/usr/opt/SUNWmd/sbin/metaoffline /dev/md/dsk/d1 /dev/md/dsk/d11

/usr/sbin/lockfs -u mount_point

Mirroring 103

5

Note – To ensure a proper backup, make certain you use the raw device (in this
case, /dev/md/rdsk/d11). Using “rdsk ” allows greater than 2GB access.

8. Place the spare metadevice back online.

9. Detach the spare metadevice.

10. Clear the spare metadevice.

Examples
Several examples are offered in this section that show, in a step-by-step
fashion, how to set up mirrors in various configurations. These examples
include:

• Mirroring an existing file system
• Adding submirrors
• Watching the progress of a resync using metastat

Mirroring an Existing File System

This example shows how to set up a mirror of the file system located on
/dev/dsk/c1t0d0s0 . This example is typical for any existing file systems,
except /usr , root , and swap. The steps to follow are:

/usr/opt/SUNWmd/sbin/metaonline /dev/md/dsk/d1 /dev/md/dsk/d11

/usr/opt/SUNWmd/sbin/metadetach /dev/md/dsk/d1 /dev/md/dsk/d11

/usr/opt/SUNWmd/sbin/metaclear /dev/md/dsk/d11

104 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

1. Create two metadevices for the existing file system by making the
following entries in the /etc/opt/SUNWmd/md.tab file.
The first two entries create the metadevices, named /dev/md/dsk/d1 and
/dev/md/dsk/d2 , that will be used as submirrors. The third line creates a
one-way metamirror, using only the first metadevice. The first metadevice is
the existing component which contains the /master file system.

2. Unmount the file system.

If the file system is busy, an error message is displayed.

3. Initialize the metadevices and metamirror.

4. Edit the /etc/vfstab file to change the entry for /master to be
/dev/md/dsk/d0 .
For example, if the entry was:

change the entry to read:

5. Mount the /master file system.
When it is mounted, it is a one-way mirror.

/dev/md/dsk/d1 1 1 /dev/dsk/c1t0d0s0
/dev/md/dsk/d2 1 1 /dev/dsk/c2t0d0s0
/dev/md/dsk/d0 -m /dev/md/dsk/d1

/sbin/umount /master

/usr/opt/SUNWmd/sbin/metainit /dev/md/dsk/d1
/usr/opt/SUNWmd/sbin/metainit /dev/md/dsk/d2
/usr/opt/SUNWmd/sbin/metainit /dev/md/dsk/d0

/dev/dsk/c1t0d0s0 /dev/rdsk/c1t0d0s0 /master ufs 5 yes -

/dev/md/dsk/d0 /dev/md/rdsk/d0 /master ufs 5 yes -

/sbin/mount /master

Mirroring 105

5

6. Now attach the second metadevice, /dev/md/dsk/d2 , to the mirror
/dev/md/dsk/d0 , using the metattach command.

When you run the metattach command, a resync of the mirror is started.
Once the resync completes, /master is mirrored.

Adding Submirrors

In the following example, two submirrors are being added to the metamirror,
/dev/md/dsk/d30 . In this example, the metamirror already exists.

The metamirror, /dev/md/dsk/d30 , appears as follows when you run
metastat :

Note the size in the metastat output is 183750 blocks, thus each of the two
submirrors being added must be 183750 blocks or larger to be added as
submirrors. If the submirrors are larger, the extra space will be unused and
unavailable.

Follow these steps to add the two submirrors from the command line:

/usr/opt/SUNWmd/sbin/metattach /dev/md/dsk/d0 /dev/md/dsk/d2

/usr/etc/metastat /dev/md/dsk/d30
d30: metamirror
 Submirror 0: d15
 State: Okay
 Regions which are dirty: 0%
 Pass = 1
 Read option = geometric (-g)
 Write option = parallel (default)
 Size: 183750 blocks
 .
 .
 .

106 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

1. Use metainit to create the two new submirrors.
For example:

2. Use the metattach command to attach each of the new submirrors to the
metamirror.
When metattach is run, the new submirrors are synced with the existing
metamirror.

If you wish to view the metamirror after adding the two submirrors, you
can run the metastat command again. The output in this example would
appear as follows:

Watching the Progress of a Resync Using metastat

In this example, the metadevice /dev/md/dsk/d22 is being attached to the
metamirror /dev/md/dsk/d21 .

/usr/opt/SUNWmd/sbin/metainit /dev/md/dsk/d70 1 1 \
/dev/dsk/c0t3d0s0

/usr/opt/SUNWmd/sbin/metainit /dev/md/dsk/d80 1 1 \
 /dev/dsk/c1t2d0s0

/usr/opt/SUNWmd/sbin/metattach /dev/md/dsk/d30 /dev/md/dsk/d70
/usr/opt/SUNWmd/sbin/metattach /dev/md/dsk/d30 /dev/md/dsk/d80

/usr/etc/metastat /dev/md/dsk/d30
d30: metamirror
 Submirror 0: d15
 State: Okay
 Submirror 1: d70
 State: Okay
 Submirror 2: d80
 State: Okay
 Regions which are dirty: 0%
 Pass = 1
 Read option = geometric (-g)
 Write option = parallel (default)
 Size: 183750 blocks
 .
 .
 .

Mirroring 107

5

Follow these steps to attach the metadevice:

1. Define the metadevice either in the /etc/opt/SUNWmd/md.tab file or on
the command line.

2. Run metainit on the metadevices.

3. Use metattach to attach the new metadevices to the metamirror.

4. Use the metastat command with the metamirror name as an argument to
view the status of the new metadevice.

To view the progress, you can run the metastat command again.

/usr/opt/SUNWmd/sbin/metattach /dev/md/dsk/d21 /dev/md/dsk/d22

/usr/etc/metastat /dev/md/dsk/d21
d21: metamirror
 Submirror 0: d30
 State: Okay
 Submirror 1: d22
 State: Resyncing
 Regions which are dirty: 3%
 Resync in progress: 30% done
 Pass = 1
 Read option = geometric (-g)
 Write option = parallel (default)
 Size: 183750 blocks

/usr/etc/metastat /dev/md/dsk/d21
d21: metamirror
 Submirror 0: d30
 State: Okay
 Submirror 1: d22
 State: Resyncing
 Regions which are dirty: 6%
 Resync in progress: 50% done
 .
 .
 .

108 Solstice DiskSuite 4.0 Administration Guide—March 1995

5

109

UFS Logging 6

DiskSuite’s UFS logging facility speeds up reboots, provides faster local
directory operations, and decreases synchronous disk writes. UFS file system
updates are safely recorded in a log before they are applied to the file system
itself.

This chapter provides information on how to use DiskSuite’s UFS logging
facility. Use the following table to locate specific information.

Overview of UFS Logging page 110

Setting Up UFS Logging page 110

How To Set Up UFS Logging page 112

How to Share a Log Between File Systems page 114

Removing UFS Logging page 115

Logging a File System That Cannot Be Unmounted page 117

Removing Logging from a File System That Cannot be Unmounted page 118

Creating Metatrans Namespace for Exported File Systems page 119

How DiskSuite Commands Relate to Logging page 120

Using Metadevices and Metamirrors page 121

Metatrans Device States page 122

Recovering from Device Errors page 122

Recovering from File System Panics page 124

110 Solstice DiskSuite 4.0 Administration Guide—March 1995

6

Overview of UFS Logging
UFS file systems are checked at boot time because unscheduled system
downtime can interrupt file system updates. These partially completed updates
can leave inconsistences in a file system. Mounting a file system without first
checking it and repairing any inconsistencies can cause panics or data
corruption. Checking consistency for large file systems can be a time
consuming process. With the UFS logging feature, file systems do not have to
be checked at boot time because the changes from unfinished system calls are
discarded.

A pseudo device, called the metatrans device, is responsible for managing the
contents of the log. Like other metadevices, the metatrans device behaves the
same as an ordinary disk partition. The metatrans device is made up of two
subdevices: the logging device and the master device. These can be disk
partitions, metadevices, or metamirrors, but not metatrans devices.

The logging device can be shared by several file systems. The logging device
contains the log. This log is a sequence of records, each of which describes a
change to a file system. The master device contains the file system itself. The
master device can either contain a file system initially, or you can create a file
system on the metatrans device. Logging begins automatically when the
metatrans device is mounted.

Setting Up UFS Logging
You set up and configure a metatrans device using the standard DiskSuite
utilities. The configuration of the device and other state information is stored
in the metadevice state database. DiskSuite’s dynamic concatenation facility
provides dynamic concatenation of both the master and logging devices.

Metatrans devices can be defined either from the command line or in the
/etc/opt/SUNWmd/md.tab file, and are given names such as
/dev/md/dsk/d1 . This is the same naming convention used for other
metadevices.

After a metatrans device is configured, it can be used just as if it were a
physical partition. This means it can be used as a device (up to one terabyte). A
file system can be created on the metatrans device if the master device doesn’t
already have a file system. Most UNIX disk utilities will work normally on
metatrans devices, with the exception of format (1M).

UFS Logging 111

6

In addition, all usual file system operations can be performed on a metatrans
device. The following list offers examples of file system operations:

• mount (1M) the metatrans device on a directory

• umount (1M) a mounted metatrans device

• Copy files to the metatrans device

• Read and write files from and to the metatrans device

• ufsdump (1M) and ufsrestore (1M) the metatrans device

The following sections provide answers to some of the questions you’ll need to
resolve before you begin setting up UFS logging on your system.

How Much Log Space is Required?

The minimum size for a logging device is 1 Mbyte of disk space. Larger logs
allow for greater concurrency (more simultaneous file system operations per
second). As a general rule, you need about 1Mbyte of log space for every 100
Mbyte of file system space being logged.

Note – Logs larger than 64 Mbyte are a waste of disk space.

Which File Systems Should Be Logged?

It is possible to log any UFS file system with the exception of root (/). The
root file system cannot be a metatrans device. In addition, it is probably not
necessary to log small file systems with mostly read activity.

Warning – When you are logging /usr , /var , /opt , or any other system file
systems used during a Solaris upgrade/installation, logging must be disabled
before you can perform a Solaris upgrade/installation.

In general, you will want to log your largest UFS file systems and the UFS file
systems whose data is changed most frequently.

All logged file systems can share the same log. For performance
considerations, however, the file systems with the heaviest loads should have
separate logs.

112 Solstice DiskSuite 4.0 Administration Guide—March 1995

6

Note – It is strongly recommended that you mirror all logs. Losing the data in
a log to device errors can leave a file system in a corrupt state.

Where Should the Log Be Located?

Before you begin the procedures for setting up UFS logging, you should
determine where you want to place the logs. You have two options for
placement of logs:

• On unused partitions

• On the partitions containing the state databases

The second of these options can be a practical solution if you are unable to
commit an unused partition to logging. See Chapter 8, “Disksets,” for further
information on using the state database with DiskSuite and Chapter 2,
“Installation and Setup” for information on creating space for metadevice state
database replicas.

How To Set Up UFS Logging

After you have determined which file systems you want to log and where the
log will be located, follow the steps in this section to set up UFS logging.

There are two methods of defining a metatrans device:

• Edit the md.tab file to define the metatrans device, then run the
metainit(1M) command; or

• Include the definition of the metatrans device on the command line with the
metainit(1M) command.

For a complete discussion of the md.tab file, refer to Appendix A, “Solstice
DiskSuite Files.”

In the following example, the metatrans device is defined from the command
line. For the purpose of this example, we’ll assume that the partition you’ve
selected for logging is /dev/dsk/c2t2d0s1 and you want to enable logging
on /abcfs . Assume the /etc/vfstab entry for /abcfs is:

/dev/dsk/c0t2d0s6 /dev/rdsk/c0t2d0s6 /abcfs ufs 5 yes —

UFS Logging 113

6

In this case, you would do the following to set up UFS logging on /abcfs :

1. As root , use the umount command to unmount /abcfs :

2. Use the metainit command to create the metatrans device:

This creates the metatrans device /dev/md/dsk/d64 . This metatrans device
is composed of the master device c0t2d0s6 and the logging device
c2t2d0s1.

3. Edit the /etc/vfstab file to include the new metatrans device.
In this case, you would change the line:

to read:

4. Use the mount command to mount /abcfs :

/abcfs is now a logging file system. When you reboot the system, fsck will
notice that this is a logging file system and will not check it. Instead, fsck will
display:

umount /abcfs

metainit d64 -t c0t2d0s6 c2t2d0s1

/dev/dsk/c0t2d0s6 /dev/rdsk/c0t2d0s6 /abcfs ufs 5 yes —

/dev/md/dsk/d64 /dev/md/rdsk/d64 /abcfs ufs 5 yes —

mount /abcfs

/dev/md/rdsk/d64: is logging.

114 Solstice DiskSuite 4.0 Administration Guide—March 1995

6

How to Share a Log Between File Systems

It may be practical in your situation to share a log among several or all file
systems. This section provides the procedure for sharing a log between file
systems.

In this example, we’ll assume that you have set up /abcfs as described in the
previous section and you want to set up /xyzfs to share the same log as
/abcfs . Assume that the entry in the /etc/vfstab file for /xyzfs is:

In this case, you would do the following to set up /xyzfs to share the same
log with /abcfs :

1. Use the umount command to unmount /xyzfs .

2. Use the metainit command to create the metatrans device:

This creates the metatrans device /dev/md/dsk/d63 . This metatrans device
is composed of the master device c0t2d0s4 and the now shared logging
device c2t2d0s1 .

3. Edit the /etc/vfstab file to include the new metatrans device.
In this case, you would change the line:

to read:

/dev/dsk/c0t2d0s4 /dev/rdsk/c0t2d0s4 /xyzfs ufs 5 yes —

umount /xyzfs

metainit d63 -t c0t2d0s4 c2t2d0s1

/dev/dsk/c0t2d0s4 /dev/rdsk/c0t2d0s4 /xyzfs ufs 5 yes —

/dev/md/dsk/d63 /dev/md/rdsk/d63 /xyzfs ufs 5 yes —

UFS Logging 115

6

4. Use the mount command to mount /xyzfs :

5. /xyzfs is now a logging file system. When you reboot the system, fsck
will notice that /abcfs and /xyzfs are logging file systems and will not
check them. Instead, fsck will display:

Removing UFS Logging

If you decide you want to remove UFS logging from a particular file system,
use the steps in this section to complete the procedure.

Assume that the current /etc/vfstab entry for /abcfs is as follows:

To remove UFS logging from /abcfs, you would do the following:

1. Use the umount command to unmount /abcfs :

2. Use the metaclear command to clear the metatrans device:

This clears the metatrans device /dev/md/dsk/d64 . Any information
pertaining to the master device is rolled from the log prior to clearing the
device.

mount /xyzfs

/dev/md/rdsk/d64: is logging.
/dev/md/rdsk/d63: is logging.

/dev/md/dsk/d64 /dev/md/rdsk/d64 /abcfs ufs 5 yes —

umount /abcfs

metaclear d64

116 Solstice DiskSuite 4.0 Administration Guide—March 1995

6

3. Edit the /etc/vfstab file to remove the metatrans device information.
In this case, you would change the line:

to read:

4. Because /abcfs is no longer a logging file system, you must run fsck
before you can mount it. The following output is generated when you run
fsck :

The correct response for this output is “y”.

5. Mount /abcfs using the mount command:

The /abcfs file system is no longer logging.

/dev/md/dsk/d64 /dev/md/rdsk/d64 /abcfs ufs 5 yes —

/dev/dsk/c0t2d0s6 /dev/rdsk/c0t2d0s6 /abcfs ufs 5 yes —

fsck /dev/rdsk/c0t2d0s6
FILE SYSTEM STATE IN SUPERBLOCK IS WRONG; FIX? y

mount /abcfs

UFS Logging 117

6

Logging a File System That Cannot Be Unmounted

You may want to log a file system that cannot be unmounted. An example of
this is /usr .

Using the /abcfs example from the previous section on setting up logging,
use the following procedure to set up logging on a file system that cannot be
unmounted. In this example, we’ll assume that /abcfs cannot be unmounted.

1. Use the metainit command to create the metatrans device:

This creates the metatrans device /dev/md/dsk/d64 . This metatrans device
is composed of the master device c0t2d0s6 and the logging device
c2t2d0s1.

2. Edit the /etc/vfstab file to include the new metatrans device.
In this case, you would change the line:

to read:

3. Reboot the system.
fsck will not notice that /abcfs is a logging file system until the system is
rebooted again.

metainit d64 -t c0t2d0s6 c2t2d0s1

/dev/dsk/c0t2d0s6 /dev/rdsk/c0t2d0s6 /abcfs ufs 5 yes —

/dev/md/dsk/d64 /dev/md/rdsk/d64 /abcfs ufs 5 yes —

118 Solstice DiskSuite 4.0 Administration Guide—March 1995

6

Removing Logging from a File System That Cannot be Unmounted

Using the /abcfs file system example from above, use the following
procedure to remove logging on a file system that cannot be unmounted.
Again in this example, we’ll assume that /abcfs cannot be unmounted.

1. Use the metadetach command to detach the logging device:

2. Reboot the system

3. Edit the /etc/vfstab file to remove the metatrans device.
In this case, you would change the line:

to read:

4. Reboot the system.

5. Use the metaclear command to clear the metatrans device:

This clears the metatrans device /dev/md/dsk/d64 . Any information
pertaining to the master device is rolled from the log prior to clearing the
device.

metadetach d64

/dev/md/dsk/d64 /dev/md/rdsk/d64 /abcfs ufs 5 yes —

/dev/dsk/c0t2d0s6 /dev/rdsk/c0t2d0s6 /abcfs ufs 5 yes —

metaclear d64

UFS Logging 119

6

Creating Metatrans Namespace for Exported File Systems
Even if you don’t have a spare partition available for a logging device, you can
still set up your metatrans devices without a logging device. This is a useful
feature if you plan to enable logging on exported file systems, but do not have
a spare partition available for the logging device.

To do this, you set up all the metatrans devices and then reboot your clients
once. You have to reboot your clients because the device number changes when
you convert the master device into a metatrans device. The changed device
number results in ESTALE errors being returned to your clients when they
attempt to reference files on the converted file system.

The following procedure creates a metatrans device without a logging device.
For the purpose of this example, we’ll assume the selected file system is
/abcfs , the master device is /dev/dsk/c0t2d0s3 , and the metatrans device
is d64 .

1. Unmount the selected file system:

2. Use the metainit command to create the metatrans device:

3. Edit the /etc/vfstab file to include the new metatrans device.
In this case, you would change the line:

to read:

umount /abcfs

metainit d64 -t c0t2d0s3

/dev/dsk/c0t2d0s3 /dev/rdsk/c0t2d0s3 /abcfs ufs 5 yes —

/dev/md/dsk/d64 /dev/md/rdsk/d64 /abcfs ufs 5 yes —

120 Solstice DiskSuite 4.0 Administration Guide—March 1995

6

4. Remount the file system:

Left as is, the metatrans device you’ve created has no logging capabilities. You
can add a logging device later using the metattach command when you have
a spare partition.

How DiskSuite Commands Relate to Logging
After you have set up the UFS logging facility on your system, you’ll notice
some minor differences in how some of the DiskSuite commands function.

• metaclear rolls every applicable change from the log and to the master
device before clearing the metatrans device.

• metastat reports the current status of the metatrans device, the status of
the metatrans’ master device, and the status of the metatrans’ logging
device.

• metainit creates metatrans devices when the -t option is used.

• metattach attaches a log to a metatrans device. If the metatrans device is
mounted, the log is actually attached when the file system is unmounted or
when the system is rebooted.

• metadetach removes a log from a metatrans device. If the metatrans device
is mounted, the log is actually detached when the file system is unmounted
or when the system is rebooted. All of the changes in the log for this master
device are rolled forward before the log is detached.

For a complete description and the usage for each of these commands refer to
Appendix E, “Using Solstice DiskSuite 4.0 with the SPARCstorage Array 100.”

mount /abcfs

UFS Logging 121

6

Using Metadevices and Metamirrors
A logging device and/or a master device can be a physical component or a
metadevice. Physical components have been used as logging and master
devices in the example procedures provided in this chapter. See Chapter 4,
“Concatenating and Striping” and Chapter 5, “Mirroring” for examples of how
to set up metadevices.

For the sake of reliability and availability, it is strongly recommended that you
use metamirrors for logging devices. A device error on the logging device that
is a physical component could cause a significant loss of the file system’s data.

Using metadevices for logging or master devices can increase performance and
provides you with more configuration options. For example, a striped logging
or master device may improve performance. You might want to expand the
master device and grow its file system while the metatrans device is still
mounted and in use. You could also expand the logging device.

Even if you are unable to mirror the logging and master devices, it is
recommended that you configure the logging and master devices as one-way
mirrors.

In the example from the section, “How To Set Up UFS Logging” on page 112, in
which the logging device was c2t2d0s1 and the master device was
c0t2d0s6 , we used the metainit command as follows:

to create the metatrans device /dev/md/dsk/d64 . If the logging device were
the metamirror or metadevice /dev/md/dsk/d12 , you would use the
metainit command as follows:

Likewise, if the master device were the metamirror or metadevice
/dev/md/dsk/d5 , the metainit command would be:

metainit d64 -t c0t2d0s6 c2t2d0s1

metainit d64 -t c0t2d0s6 d12

metainit d64 -t d5 d12

122 Solstice DiskSuite 4.0 Administration Guide—March 1995

6

See Chapter 5, “Mirroring” for information on how to create metamirrors.

Metatrans Device States
You can determine the state of a metatrans device or a logging device by
running the metastat(1M) command. The following is a list of the possible
states for metatrans and logging devices:

• Okay — The device is functioning properly. If mounted, the file system is
logging and will not be checked at boot.

• Hard Error — A device error or file system panic has occured while the
device was in use. An EIO is returned for every read or write until the
device is closed or unmounted. The first open causes the device to transition
to the Error state.

• Error — The device can be read and written. The file system can be
mounted read-only. However, an EIO is returned for every read or write
that actually gets a device error. The device does not transition back to the
Hard Error state, even when a later device error or file system panic
occurs. Successfully completing fsck or newfs will transition the device
into the Okay state. When the device is in the Hard Error or Error state,
fsck automatically checks and repairs the file system at boot time. newfs
will destroy whatever data may be on the device.

• Detached — The metatrans device does not have a logging device. All
benefits from UFS logging are disabled. fsck automatically checks the
device at boot time. See the manual reference page for metadetach (1M)
for complete information.

• Detaching — The logging device will be detached from the metatrans
device when the metatrans device is closed or unmounted. When this
occurs, the device transitions to the Detached state. See the manual
reference page for metadetach (1M) for complete information.

• Attaching — The logging device will be attached to the metatrans device
when the metatrans device is closed or unmounted. When this occurs, the
device transitions to the Okay state. See the manual reference page for
metattach (1M) for complete information.

Recovering from Device Errors
Device errors can cause data loss. Read errors occuring on a logging device can
cause significant data loss. For this reason, it is strongly recommended that you
mirror the logging device.

UFS Logging 123

6

If a device error occurs on either the master device or the logging device while
the metatrans device is processing logged data, the device will transition from
the Okay state to the Hard Error state. If running the metastat (1M)
command shows that the device is in the Hard Error or Error state, either a
device error has occured or the file system has detected an error in its data and
panic’ed. In either case, the recovery process is the same.

To transition the device back into the Okay state, use the following steps:

1. Unmount the affected file system.
To determine the affected file system, run the lockfs (1M) command.
lockfs will display the affected file system’s lock type as hard .

Every file system sharing the same logging device will be hard locked. You
can unmount these file systems even if they were in use when the error
occured. If the affected processes try to access an opened file or directory on
the hard locked or unmounted file system, an EIO error will be returned.

2. Backup any accessable data.
Before attempting to fix the device error, you may want to recover as much
data as possible. If your backup procedure requires a mounted file system
(such as tar or cpio), you can mount the file system read-only. If your
backup procedure does not require a mounted file system (such as dump or
volcopy), you can access the metatrans device directly.

3. Fix the device error.
At this point, any attempt to open or mount the metatrans device for
read/write access will start rolling all accessable data on the logging device
to the appropriate master device(s). Any data that cannot be read or written
is discarded. However, if you open or mount the the metatrans device for
read-only access, the log is simply rescanned and not rolled forward to the
master device(s). In other words, all of the data on the master and logging
devices remains unchanged until the first read/write open or mount.

4. Repair the file system with fsck (1M) or newfs(1M) .
After successfully repairing the file system, fsck will automatically
transition the file system back to the Okay state.

The newfs command will also transition the file system back to the Okay
state, but will destroy all of the data on the file system. newfs is generally
used when you plan to restore file systems from backup.

124 Solstice DiskSuite 4.0 Administration Guide—March 1995

6

Warning – newfs will destroy all existing files and directories currently on the
file system.

Note – The fsck or newfs commands must be run on all of the metatrans
devices sharing the same logging device before these devices revert back to the
Okay state.

Recovering from File System Panics
If a file system detects any internal inconsistencies while it’s in use, it will
panic the system. If the file system is logging, it will notify the metatrans
device that it needs to be checked at reboot. The metatrans device transitions
itself to the Hard Error state. All other metatrans devices sharing the same
logging device also go into the Hard Error state.

At reboot, fsck checks and repairs the file system and transitions the file
system back to the Okay state. fsck does this for all metatrans devices listed in
the vfstab file for the affected logging device.

If fsck cannot repair one of the file systems, then fsck must be run manually
on each of the metatrans devices whose file systems were sharing the affected
logging device. Only after all of the affected metatrans devices have been
checked and successfully repaired will fsck reset the state of the errored
metatrans device to Okay.

125

Hot Spares 7

The hot spare facility included with DiskSuite allows for automatic
replacement of failed submirror and RAID components, provided spare
components are available and reserved. Because component replacement and
the resyncing of failed components is automatic, hot spares provide additional
security from downtime due to hardware failure.

This chapter provides the following information about the use of hot spares
with the DiskSuite software package. Use the following table to locate specific
information:

Overview of Hot Spares
A hot spare is a component that is running (but not being used) which can be
substituted for a broken component in a submirror of a two- or three-way
metamirror or RAID device. Failed components in a one-way metamirror
cannot be replaced by a hot spare, since no other copy of the data is available.

Overview of Hot Spares page 125

Defining Hot Spares page 126

Hot Spare Conditions to Avoid page 128

Manipulating Hot Spare Pools page 128

Examples page 132

126 Solstice DiskSuite 4.0 Administration Guide—March 1995

7

A hot spare is to a metamirror or RAID device what a spare tire is to a car. A
spare is meant to quickly replace a flat tire, thus increasing the availability of
your car. A spare tire is a temporary fix that is made with the intention that the
flat tire will be fixed or replaced with a new one and the spare returned to the
trunk.

This is exactly how hot spares should be treated. They are not intended to be
used as permanent ‘‘fixes’’ when a component has failed. They are temporary
fixes that can be used until a failed component is either fixed or replaced.

Components designated as hot spares cannot be used in submirrors or another
metadevice in the md.tab file. They must remain ready for immediate use in
the event of a component failure.

Hot spares are always in one of three states:

• ‘‘Available’’ hot spares are running and ready to accept data, but are not
currently being written to or read from.

• ‘‘In-use’’ hot spares are currently being written to and read from.

• ‘‘Broken’’ hot spares are out of service. A hot spare is placed in the broken
state when an I/O error occurs.

You display the states by running the metahs command with the –i option.

Hot spares can be defined as part of a hot spare pool in the md.tab file. This is
performed by editing the md.tab file to create hot spares and hot spare pools
and then running the metainit(1M) command.

Hot spare definitions, replacements, additions, and deletions can also be
performed by using the metahs(1M) utility. The number of hot spare pools is
limited to 1000.

Defining Hot Spares
After a hot spare pool is defined, it can be associated with one or more
submirrors. Hot spare pools are named hsp nnn where nnn is a number in the
range 000-999. A metadevice cannot be configured as a hot spare.

A hot spare can be used in one or more hot spare pools, thus allowing for the
maximum amount of security from the minimum number of components.
DiskSuite looks for the first available hot spare from the designated pool when
errors are reported.

Hot Spares 127

7

With DiskSuite, you can also define empty hot spare pools so hot spares can be
added when they become available.

The procedure for defining hot spare pools is provided below. Note that the
hot spares used as examples in these steps are shared in the three defined hot
spare pools.

1. Determine the names of the devices that you are designating as hot
spares.
In the following steps, the names /dev/dsk/c0t0d0s2 ,
/dev/dsk/c1t0d0s2 , and /dev/dsk/c2t0d0s2 are used as examples.

2. Edit the md.tab file and set up the hot spare pool(s) using the devices that
have been chosen as hot spares.
In this example, the hot spare pools are named: hsp001 , hsp002 , and
hsp003 . Note that the same hot spares are used in each hot spare pool, but
the order is changed.

3. Once the hot spare pools are defined, you associate the pools with
submirrors using the metaparam command with the -h option.

Once the hot spare pools are defined and associated with a submirror, the hot
spares are ‘‘available’’ for use. If a component failure occurs, DiskSuite
searches through the list of hot spares in the assigned pool and selects the first
‘‘available’’ component that is equal or greater in disk capacity to the failed
component.

If a hot spare of adequate size is found, the hot spare’s state changes to
‘‘in-use’’ and a resync operation is automatically performed. The resync
operation brings the hot spare into sync with the other submirrors.

If a component of adequate size is not found in the list of hot spares, the
submirror that failed is considered erred and that portion of the submirror no
longer replicates the data.

hsp001 /dev/dsk/c0t0d0s2 /dev/dsk/c1t0d0s2 /dev/dsk/c2t0d0s2
hsp002 /dev/dsk/c1t0d0s2 /dev/dsk/c2t0d0s2 /dev/dsk/c0t0d0s2
hsp003 /dev/dsk/c2t0d0s2 /dev/dsk/c0t0d0s2 /dev/dsk/c1t0d0s2

metaparam -h hsp002 d9
metaparam -h hsp003 d10
metaparam -h hsp001 d11

128 Solstice DiskSuite 4.0 Administration Guide—March 1995

7

Hot Spare Conditions to Avoid
As stated earlier, hot spares are intended to be a temporary remedy for a failed
submirror or RAID component. They are not meant to be used as a permanent
replacement. Additionally, there are three conditions that should be avoided
when using hot spares:

• Associating hot spares of the wrong size with submirrors. This condition
occurs when hot spare pools are defined and associated with a submirror
and none of the hot spares in the hot spare pool are equal to or greater than
the smallest component in the submirror. This would occur, for example,
when 661-Mbyte disk drives make up the hot spare pool that is associated
with a submirror that is made up of a 1-Gbyte drive.

• Having all hot spares within the hot spare pool in-use. When the
administrator notices that all hot spares are in-use, immediate action is
required. There are two possible solutions when this occurs. The first is to
add additional hot spares. The second is to repair some of the components
that have been hot spare replaced. If all hot spares are in use and a
submirror fails due to errors, that portion of the mirror will no longer be
replicated.

• Assigning a hot spare pool to a submirror in a one-way metamirror.

Manipulating Hot Spare Pools
DiskSuite offers facilities to dynamically add, delete, replace, and enable hot
spares within existing hot spare pools. The command used to perform these
functions is metahs .

metahs is the primary command used to manipulate hot spares and hot spare
pools. This command provides the following utilities:

• Adding hot spares to hot spare pools
• Deleting hot spares from hot spare pools
• Replacing hot spares in hot spare pools
• Enabling hot spares
• Checking the status of hot spares

The metaparam command is used to add or change the hot spare pool
associated with a metamirror or RAID device.

Hot Spares 129

7

Adding Hot Spares

A hot spare can be added to one or more hot spare pools, using the metahs
command with the -a option. When a hot spare is added, the existing order of
the hot spares already in the pool is preserved. The new hot spare is added at
the end of list of hot spares in the hot spare pool that is specified.

The following example illustrates adding a hot spare (/dev/dsk/c0t0d0s7)
to a hot spare pool (hsp003).

If the hot spare pool, hsp003 , was defined with two hot spares (for example,
/dev/dsk/c0t1d0s7 and /dev/dsk/c0t2d0s7), the hot spare added
(/dev/dsk/c0t0d0s7) would follow the two that were already associated
with that hot spare pool. If the hot spare pool, hsp003 , didn’t already exist, it
would be automatically created.

To add a hot spare to the hot spare pools that are currently defined, enter the
following:

The keyword all in the above example specifies adding the hot spare,
/dev/dsk/c0t0d0s7 , to all the hot spare pools.

Deleting Hot Spares

Hot spares can be deleted from any or all the hot spare pools to which they
have been associated, using the metahs command with the -d option.
DiskSuite will not allow a hot spare to be deleted if it is in the ‘‘in-use’’ state.

When a hot spare is deleted from a hot spare pool, the position of the
remaining hot spares changes to reflect the new position. For example, if the
second of three hot spares in a hot spare pool is deleted, the third hot spare
moves to the second position.

/usr/opt/SUNWmd/sbin/metahs -a hsp003 /dev/dsk/c0t0d0s7

/usr/opt/SUNWmd/sbin/metahs -a all /dev/dsk/c0t0d0s7

130 Solstice DiskSuite 4.0 Administration Guide—March 1995

7

The following example shows the deletion of the hot spare,
/dev/dsk/c0t0d0s7 , from the hot spare pool, hsp003 .

If the hot spare, /dev/dsk/c0t0d0s7 , is associated with other hot spare
pools, it would be removed from all of them if the all option is used. For
example:

The -d option can also be used to delete a hot spare pool. Before deleting a hot
spare pool, all hot spares associated with the hot spare pool must first be
deleted. A hot spare pool can not be deleted if it is associated with a submirror.

In the following example, three hot spares (/dev/dsk/c0t0d0s1 ,
/dev/dsk/c1t0d0s1 , and /dev/dsk/c2t0d0s1) are associated with hot
spare pool hsp001 . The hot spare pool is currently associated with the
metadevice, d16 . In this example, the metadevice is disassociated with the hot
spare pool with the metaparam command. Each of the three hot spares are
then deleted from the hot spare pool, using metahs . Finally, the hot spare pool
is deleted.

Replacing Hot Spares

Hot spares can be replaced in any or all the hot spare pools to which they have
been associated, using the metahs command with the -r option. However, hot
spares that are in the in-use state cannot be replaced by other hot spares.

The order of hot spares in the hot spare pools is not changed when a
replacement occurs.

/usr/opt/SUNWmd/sbin/metahs -d hsp003 /dev/dsk/c0t0d0s7

/usr/opt/SUNWmd/sbin/metahs -d all /dev/dsk/c0t0d0s7

/usr/opt/SUNWmd/sbin/metaparam -h none d16
/usr/opt/SUNWmd/sbin/metahs -d hsp001 /dev/dsk/c0t0d0s1
/usr/opt/SUNWmd/sbin/metahs -d hsp001 /dev/dsk/c1t0d0s1
/usr/opt/SUNWmd/sbin/metahs -d hsp001 /dev/dsk/c2t0d0s1
/usr/opt/SUNWmd/sbin/metahs -d hsp001

Hot Spares 131

7

The following example shows the replacement of hot spare
/dev/dsk/c0t0d0s1 with the component /dev/dsk/c0t1d0s1 in the
hsp003 hot spare pool.

The metahs command with the -r command can also be used to replace a hot
spare in all the hot spare pools where it is associated. The following example
shows the replacement of hot spare /dev/dsk/c0t0d0s2 with
/dev/dsk/c0t1d0s2 .

The keyword all in the above example specifies replacing the hot spare,
/dev/dsk/c0t0d0s2 , with /dev/dsk/c0t1d0s2 in all the hot spare pools.

Enabling Hot Spares

When a hot spare that has been placed in the ‘‘broken’’ state is repaired, it is
brought back to the ‘‘available’’ state by using the metahs command with the
–e option. Hot spares are placed in the ‘‘broken’’ state after an I/O error
occurs. After the hardware is repaired, the component can be brought back to
the available state.

The following example illustrates placing the hot spare /dev/dsk/c0t0d0s2
in the available state after it has been repaired.

Changing the Associated Hot Spare Pool

Each submirror or RAID component can optionally be associated with a hot
spare pool. The hot spare pool association can be changed with the metaparam
command while the system is running, providing none of the hot spares in the
current hot spare pool are currently being used by the submirror or RAID
component.

/usr/opt/SUNWmd/sbin/metahs -r hsp003 /dev/dsk/c0t0d0s1 \
/dev/dsk/c0t1d0s1

/usr/opt/SUNWmd/sbin/metahs -r all /dev/dsk/c0t0d0s2 \
/dev/dsk/c0t1d0s2

/usr/opt/SUNWmd/sbin/metahs -e /dev/dsk/c0t0d0s2

132 Solstice DiskSuite 4.0 Administration Guide—March 1995

7

In the following example, the hot spare pool, hsp005 , is currently associated
with d80 . This command changes the hot spare pool association to hsp001 .

Checking the Status of Hot Spares

The metahs command can be used to display the status of hot spare pools.
When the –i option is used, metahs displays the status for all hot spare pools
if one is not specified. For example:

The above example shows three hot spare pools (hsp001 , hsp002 , and
hsp003) and gives the status of the components. If one of the three hot spare
pools had been specified at the command line, only that hot spare pool would
have been displayed.

Examples
A series of examples are provided in this section that show, in a step-by-step
fashion, how to define hot spares and set up hot spare pools. These examples
first define a hot spare pool in the /etc/opt/SUNWmd/md.tab file, then add,
delete, and replace hot spares in that pool. The examples are:

• Setting up hot spare pools
• Adding hot spares to hot spare pools
• Deleting hot spares from hot spare pools
• Replacing hot spares within hot spare pools

/usr/opt/SUNWmd/sbin/metaparam -h hsp005 d80

/usr/opt/SUNWmd/sbin/metahs -i
hsp001: 1 hot spare
 /dev/dsk/c0t0d0s0 (Available) blocks 263220
hsp002: 1 hot spare
 /dev/dsk/c0t1d0s0 (In-use) blocks 263220
hsp003: 1 hot spare
 /dev/dsk/c0t2d0s0 (Broken) blocks 263220

Hot Spares 133

7

Setting up Hot Spare Pools

Hot spare pools can be defined with or without hot spares. The following steps
show how to define the hot spare pool, attach two hot spares, and associate the
hot spares with submirrors.

1. Empty hot spare pools can be defined in the /etc/opt/SUNWmd/md.tab
file, as follows:

If you are defining an empty hot spare pool, skip attaching hot spares to the
hot spare pool and go to Step 3.

2. You can attach hot spares to the hot spare pool by entering the following:

3. Associate the hot spare pool with a metadevice that will use the hot
spares.
In this example, the previously defined hot spare pool is associated with
both sides of a submirror.

hsp001
hsp002

hsp001 /dev/dsk/c0t1d0s0
hsp002 /dev/dsk/c0t2d0s0

d8 -m d9
d9 1 1 /dev/dsk/c0t2d0s7 -h hsp001
d10 1 1 /dev/dsk/c0t3d0s7 -h hsp002
hsp001 /dev/dsk/c0t1d0s0
hsp002 /dev/dsk/c0t2d0s0

134 Solstice DiskSuite 4.0 Administration Guide—March 1995

7

4. Use the metainit command to initialize the two hot spare pools.
The submirrors d9 and d10 must also be initialized for the hot spares to
take affect.

Adding Hot Spares to Hot Spare Pools

This section shows how to add one hot spare to the previously defined hot
spare pools. In this example, the hot spare /dev/dsk/c0t3d0s0 is added to
both hsp001 and hsp002 .

♦ Use the following command to add the hot spare to both hot spare pools:

Using metahs -i , the two hot spare pools, hsp001 and hsp002 , would
appear as follows:

Deleting Hot Spares From Hot Spare Pools

This section shows how to delete a hot spare that was previously added to the
two hot spare pools. In this example, the hot spare /dev/dsk/c0t3d0s0 is
being deleted from both hsp001 and hsp002 .

/usr/opt/SUNWmd/sbin/metainit hsp001
/usr/opt/SUNWmd/sbin/metainit hsp002
/usr/opt/SUNWmd/sbin/metainit d9
/usr/opt/SUNWmd/sbin/metainit d10
/usr/opt/SUNWmd/sbin/metainit d8
metattach d8 d10

/usr/opt/SUNWmd/sbin/metahs -a all /dev/dsk/c0t3d0s0

/usr/opt/SUNWmd/sbin/metahs -i
hsp001: 2 hot spares
 /dev/dsk/c0t1d0s0 (Available) blocks 263220
 /dev/dsk/c0t3d0s0 (Available) blocks 263220
hsp002: 2 hot spares
 /dev/dsk/c0t2d0s0 (Available) blocks 263220
 /dev/dsk/c0t3d0s0 (Available) blocks 263220

Hot Spares 135

7

♦ Use the following command to delete the hot spare from both hot spare
pools:

Using metahs -i , the two hot spare pools, hsp001 and hsp002 , would
appear as follows:

Replacing Hot Spares Within Hot Spare Pools

This section shows how to replace a hot spare that was previously associated
with a hot spare pool in the /etc/opt/SUNWmd/md.tab file. In this example,
the hot spare /dev/dsk/c0t1d0s0 is replaced with /dev/dsk/c0t3d0s0 .

♦ Use the following command to replace a hot spare in a hot spare pool:

Using metahs -i , the hot spare pool hsp001 would appear as follows:

/usr/opt/SUNWmd/sbin/metahs -d all /dev/dsk/c0t3d0s0

/usr/opt/SUNWmd/sbin/metahs -i
hsp001: 1 hot spare
 /dev/dsk/c0t1d0s0 (Available) blocks 263220
hsp002: 1 hot spare
 /dev/dsk/c0t2d0s0 (Available) blocks 263220

/usr/opt/SUNWmd/sbin/metahs -r hsp001 /dev/dsk/c0t1d0s0 \
 /dev/dsk/c0t3d0s0

/usr/opt/SUNWmd/sbin/metahs -i hsp001
hsp001: 1 hot spare
 /dev/dsk/c0t3d0s0 (Available) blocks 263220

136 Solstice DiskSuite 4.0 Administration Guide—March 1995

7

137

Disksets 8

Solstice DiskSuite’s diskset feature lets you set up groups of host machines and
disk drives in which all of the hosts in the set are connected to all the drives in
the set. These facilities are intended for use in a high-availabilty, fail-over
environment, such as the one offered by SunSoft.

Note – While DiskSuite’s diskset feature enables a high-availability
configuration, DiskSuite itself does not actually provide a high-availability
environment.

This chapter provides general information about DiskSuite’s diskset feature.
Specific information for using this feature within a high-availability
environment would be contained in the documentation for the particular high-
availability product you are using.

Use the following table to locate specific information in this chapter.

Overview of Disksets page 138

Database Replicas and Disksets page 139

Naming Conventions page 139

DiskSuite Commands and Disksets page 140

Defining Disksets page 141

Administering Disksets page 144

Reserving a Diskset page 144

138 Solstice DiskSuite 4.0 Administration Guide—March 1995

8

Overview of Disksets
A shared diskset is a grouping of two hosts and disk drives in which all the
drives are accessible by both hosts. DiskSuite requires that the device name be
identical on each host in the diskset. There is one metadevice state database
per shared diskset and one on the local diskset of each host.

Each host in a diskset must have a local diskset that is seperate from the shared
diskset. A local diskset for a host consists of all drives which are not part of a
shared diskset. The host’s local metadevice configuration is contained within
this local diskset in the local metadevice state database replicas. Refer to
Chapter 10, “State Database Replicas,” for more information. Only the host
knows about its local diskset.

Drives in a shared diskset must not be in any other diskset. None of the
partitions on any of the drives in a diskset can be mounted on, swapped on, or
part of a local metadevice. Also, all of the drives in a shared diskset must be
accessible by both hosts in the diskset.

Figure 8-1 illustrates an example of a diskset shared between two host
machines, named red and blue. The shared diskset is named relo-red. Each host’s
local diskset is shown. Note that this example configuration will be used to
describe the procedures in this chapter.

Releasing a Diskset page 145

Removing Hosts and Drives From a Diskset page 146

Adding Drives or Hosts to an Existing Diskset page 148

Disksets 139

8

Figure 8-1 Example of a Diskset

Metadevices and hot spare pools in any diskset must consist of drives within
that diskset. Likewise, metadevices and hot spare pools in the local diskset
must be made up of drives from within the local diskset.

Database Replicas and Disksets

In past releases, DiskSuite has been set up to allow only one metadevice state
database per host. The diskset feature actually extends DiskSuite to allow more
than one metadevice state database per host. This means that each host in a
diskset has a state database for each shared diskset and a seperate state
database for its local diskset. This way, if the shared diskset is in use by one
host in the set, the other host still can access data from its local diskset.

Naming Conventions

Metadevices within the local diskset use the standard DiskSuite naming
conventions. Metadevices within a shared diskset use the following naming
conventions:

relo-red

local diskset
(red)

local diskset
(blue)

bluered

140 Solstice DiskSuite 4.0 Administration Guide—March 1995

8

/dev/md/ setname/{dsk|rdsk}/d number

where setname is the name of the diskset, and number is the number of the
metadevice (usually 0-127).

Hot spare pools within the local diskset use the standard DiskSuite naming
conventions. Hot spare pools within a shared diskset use the following naming
conventions:

setname/hspnumber

where setname is the name of the diskset, and number is the number of the hot
spare pool (0 - 999).

DiskSuite Commands and Disksets

The -s option is used with the standard DiskSuite commands to create,
remove, and administer metadevices and hot spare pools within a specific
shared diskset. The -s option is available with the following commands:

• metaclear
• metadb
• metdetach
• metahs
• metainit
• metaoffline
• metaonline
• metaparam
• metareplace
• metastat
• metasync
• metattach

Using the -s option specifies the diskset that the command will administer. If
the -s option is not used, the command affects only the local diskset.

Disksets 141

8

Defining Disksets
Before you can begin to create or administer disksets, the DiskSuite 4.0
software must be installed on each host in the diskset and each host must have
local database replicas set up. In addition, all disks that you plan to share
between hosts in the diskset must be connected to each host and must have the
same name on each host.

This section describes how to define disksets from the command line using the
metaset command with the -a option. Additional step-by-step procedures for
administering disksets are provided later in this chapter.

There are two basic operations involved in defining disksets:

1. Adding hosts (adding the first host defines the diskset)

2. Adding drives

The host names and diskset name used in the following procedures are from
the example illustrated in Figure 8-1.

To define a diskset, you begin by naming the two hosts connected to the shared
disks:

1. Enter the following on the command line:

where relo-red is the name of the diskset and red and blue are the
names of the first and second hosts you are adding to the set. (The hostname
is the same name found in /etc/nodename .)

Adding the first host creates the diskset. It is okay if you create a diskset
with just one host to start with, and then add the second host at a later time.
The last host cannot be deleted until all of the drives within the set have
been deleted.

metaset -s relo-red -a -h red blue

142 Solstice DiskSuite 4.0 Administration Guide—March 1995

8

Note – A host name is not accepted if all drives within the diskset cannot be
found on each specified host. In addition, a drive is not accepted if it cannot be
found on all the hosts in the diskset.

You can look at the status of the new diskset using the metaset command
with no arguments:

2. Next, you add drives to the diskset by entering the following:

where relo-red is the name of the previously named diskset and c2t0d0 ,
c2t1d0 , c2t2d0 , c2t3d0 , c2t4d0 , and c2t5d0 are the names of the drives
you are adding to the set.

Note – These are drives names. There is no slice indentifier (“sx”) at the end of
the names.

For a drive to be accepted into a diskset, the drive must not be in use within
another metadevice. It must not be currently mounted or swapped on.
When a drive is accepted into the diskset, it is repartitioned and the
metadevice state database replica for the diskset can be placed on the drive.

metaset

Set name = relo-red, Set number = 1

Host Owner
 red
 blue

metaset -s relo-red -a c2t0d0 c2t1d0 c2t2d0 c2t3d0 c2t4d0 c2t5d0

Disksets 143

8

Note – A drive name is not accepted if it cannot be found on all hosts specified
as part of the diskset.

Once again, you can check the status of the diskset as follows:

The metaset command shows that the 6 drives have been added to the
diskset. In addition, the current host red is shown as the owner of the diskset.
This means the drives in the diskset have been “reserved” for host red ’s
exclusive use.

Note – The first host to add a drive to a diskset becomes the implicit owner of
the diskset.

Drives are repartitioned when they are added to a diskset only if Slice 7 is not
set up correctly. A small portion of each drive is reserved in Slice 7 for use by
DiskSuite. The remainder of the space on each drive is placed into Slice 0. Any
existing data on the disks will be lost by the repartitioning. After adding a
drive to a diskset, your system administrator can repartition the drive using
fmthard(1M) as necessary, with the exception that Slice 7 is not altered
(moved, resized, etc.) in any way.

If a database has been placed automatically on a drive (in Slice 7), metaset
indicates this with a “Yes” in the Dbase column.

metaset

Set name = relo-red, Set number = 1

Host Owner
 red Yes
 blue

Drive Dbase
 c2t0d0 Yes
 c2t1d0 Yes
 c2t2d0 Yes
 c2t3d0 Yes
 c2t4d0 Yes
 c2t5d0 Yes

144 Solstice DiskSuite 4.0 Administration Guide—March 1995

8

Unlike local metadevice administration, it is not necessary to create or delete
state database replicas manually. The DiskSuite software tries to balance a
reasonable number of replicas across all drives in a diskset.

Administering Disksets
After drives are added to a diskset, the diskset can be reserved (or taken) and
released by hosts in the diskset. When a diskset is reserved by a host, the other
host in the diskset cannot access the data on the drives in the diskset. In order
to perform maintenance on a diskset, a host must be the owner of the diskset
or have reserved the diskset. In the example shown previously, host red took
implicit ownership of the diskset by putting the first drives into the set.

The SCSI reserve command is issued to each drive in the diskset to reserve it
for exclusive use by the current host. Each drive in the diskset is probed once
every second to determine that it is still reserved.

Note – If a drive has been determined unexpectedly not to be reserved, the
host will panic. This behavior helps to minimize data loss which would occur
if two hosts were to simultaneously access the same drive.

Reserving a Diskset

Before a host can use drives in a diskset, the host must reserve the diskset.
There are two methods of reserving a diskset:

• Safely - When you safely reserve a diskset, metaset checks to see if another
host currently has the set reserved. If another host has the diskset reserved,
your host will not be allowed to reserve the set.

• Forcibly - When you forcibly reserve a diskset, metaset reserves the diskset
whether or not another host currently has the set reserved. This method is
generally used when a host in the diskset is down or not communicating.
All disks within the set are taken over and FailFast is enabled. The
metadevice state database is read in and the shared metadevices configured
in the set become accessible. If the other host had the diskset reserved at this
point, it would panic due to reservation loss.

Disksets 145

8

Normally, two hosts in a diskset cooperate with each other to ensure that
drives in a diskset are reserved by only one host at a time. A normal situation
is defined as both hosts up and communicating with each other.

♦ To safely reserve a diskset, enter the following:

where relo-red is the name of the diskset.

In this case, host red communicates with host blue and ensures that host
blue has released any reservation of the diskset before host red attempts to
reserve the set.

In some cases, a host in the diskset may be down or not communicating. In
order to reserve a diskset under these circumstances, the diskset must be
forcibly reserved.

♦ To forcibly reserve a diskset, enter the following:

where relo-red is the name of the diskset.

In this case, host red does not communicate with host blue . Instead, the
drives in the diskset are reserved without warning. If host blue had the
diskset reserved, it would now panic due to reservation loss.

Note – If you are fairly certain that the hosts in the diskset are communicating,
it is normally a good idea to perform a safe reservation.

Releasing a Diskset

Sometimes it may be desirable to release a diskset. Releasing a diskset can be
useful when performing maintenance on the drives in the set. When a diskset
is released, it cannot be accessed by the host. If both hosts in a diskset release
the set, neither host in the diskset can access the drives in the set.

metaset -s relo-red -t

metaset -s relo-red -t -f

146 Solstice DiskSuite 4.0 Administration Guide—March 1995

8

You can release a diskset by entering the following:

where relo-red is the name of the diskset you are releasing.

You can verify that the diskset has been released on this host by using the
metaset command with no arguments as follows:

Note that there is no owner of the diskset. Viewing status from host red could
be misleading. A host can only determine if it does or does not own a diskset.
For example, if host blue were to reserve the diskset, it would not appear so
from host red ; though it would from host blue .

Removing Hosts and Drives From a Diskset

After a drive is added to a diskset, it can be removed using the metaset
command with the -d option. For example, to remove c2t5d0 from diskset
relo-red , you would type the following:

metaset -s relo-red -r

metaset

Set name = relo-red, Set number = 1

Host Owner
 red
 blue

Drive Dbase
 c2t0d0 Yes
 c2t1d0 Yes
 c2t2d0 Yes
 c2t3d0 Yes
 c2t4d0 Yes
 c2t5d0 Yes

metaset -s relo-red -d c2t5d0

Disksets 147

8

When drives are removed from a diskset, DiskSuite re-balances the metadevice
state database replicas across the remaining drives.

Note – The -f option must be specified when you are deleting the last drive in
a set, since this drive would implicitly contain the last state database replica.

You can also remove hosts from a diskset. The last host can be removed from a
diskset only after all drives in the diskset have been removed. Removing the
last host from a diskset destroys the diskset.

For example, to remove host blue from the diskset relo-red , you would type
the following:

You can verify that host blue has been removed from the diskset using the
metaset command as follows:

As you can see, host blue is no longer part of the diskset.

metaset -s relo-red -d -h blue

metaset

Set name = relo-red, Set number = 1

Host Owner
 red Yes

Drive Dbase
 c2t0d0 Yes
 c2t1d0 Yes
 c2t2d0 Yes
 c2t3d0 Yes
 c2t4d0 Yes
 c2t5d0 Yes

148 Solstice DiskSuite 4.0 Administration Guide—March 1995

8

Adding Drives or Hosts to an Existing Diskset

Drives can be added to a diskset after the diskset has been defined. To add a
drive to an existing diskset, enter the following:

where relo-red is the name of the diskset and c2t5d0 is the drive being
added.

When drives are added to a diskset, DiskSuite re-balances the metadevice state
database replicas across the remaining drives.

Note – When drives are added to a diskset, they are repartitioned as described
in “Defining Disksets” on page 141.

You can also add a host to an existing diskset. With DiskSuite, a maximum of
two hosts per diskset are supported. For example, to add host blue back to the
diskset relo-red , you would enter the following:

metaset -s relo-red -a c2t5d0

metaset -s relo-red -a -h blue

Disksets 149

8

You can verify that host blue has been added to the diskset using the
metaset command as follows:

metaset

Set name = relo-red, Set number = 1

Host Owner
 red Yes
 blue

Drive Dbase
 c2t0d0 Yes
 c2t1d0 Yes
 c2t2d0 Yes
 c2t3d0 Yes
 c2t4d0 Yes
 c2t5d0 Yes

150 Solstice DiskSuite 4.0 Administration Guide—March 1995

8

151

RAID Devices 9

This chapter discusses RAID (Redundant Arrays of Inexpensive Disks) device
configuration information. The information provided includes hardware and
software considerations along with instructions for managing RAID devices.
Use the following table to locate specific information.

RAID Overview
DiskSuite RAID devices support RAID Level 5. RAID Level 5 configuration
allows you to recover from a single disk failure. It can also be more cost
effective than mirroring disks, especially when it comes to hardware costs.

RAID Overview page 151

Operation of RAID page 152

Creating RAID Metadevices page 153

Resyncing RAID Devices page 153

Reconfiguring RAID Devices page 154

Concatenating Components page 154

Replacing Components page 155

Changing Hot Spare Pool Association page 156

Checking Status page 156

Hardware and Software Considerations page 158

Examples page 160

152 Solstice DiskSuite 4.0 Administration Guide—March 1995

9

RAID must be comprised of three or more physical partitions. Each partition is
referred to as a component. A RAID metadevice can be grown by
concatenating additional partitions to the metadevice.

RAID level 5 includes multiple physical partitions used to simulate a single
large slice (partition). A single sector on one of these physical slices contain
either a sector’s worth of data, or parity information relating to the data on the
same sector of all other slices in the array.

In order to eliminate a parity partition as a bottleneck, no one physical
partition will hold all of the parity information; it will be placed on different
partitions for different sectors.

Warning – Because RAID devices require the parity to be intermingled with
data, running metainit on devices that comprise a RAID device destroys
existing data.

Operation of RAID
The following operations are supported for RAID metadevices using Soltice
DiskSuite 4.0:

• Configuring and defining RAID metadevices.

• Concatenating new components to existing RAID metadevices.

• Allocating hot spare pools to RAID metadevices to provide component
backup in the event of original component failures.

• Replacing errored components or in-use hot spare components with a new
component.

• Resynchronizing components during reboot.

• Viewing the status of RAID metadevices.

• Clearing RAID metadevices.

Each of these operations is discussed in more detail in the following sections.

RAID Devices 153

9

Creating RAID Metadevices
In defining a RAID metadevice, the definition of the metadevice is included on
the command line as options and parameters to the metainit command. The
following is an example of a RAID metadevice command line definition:

The option parameters specified in the example above define the characteristics
of the RAID metadevice. The -r option informs the metainit utility that the
metadevice being defined is a RAID metadevice. The -i option defines the
interlace size (8 kilobytes) that is to be used when configuring the RAID
metadevice for striping of the data and parity regions of the components
defined on the command line, /dev/dsk/c0t0d0s1, /dev/dsk/c1t0d0s1,
and /dev/dsk/c2t0d0s1 in the example above.

The following sections describe how to check the status of RAID metadevices
and how to alter their configuration. Step-by-step examples demonstrate the
entire procedure for setting up RAID metadevices.

Resyncing RAID Devices
All RAID metadevices are resynchronized during reboot via the
metasync -r (1M) command. During the resync operation, the state of the
RAID metadevice is validated and any operations that may have been halted
due to a system panic, a system reboot, or a failure to complete (possibly due
to an I/O error on an individual component) are restarted. Any of the states
defined in “Checking Status” on page 156, are valid unless components are
found to be either in the Initializing or Resyncing state and the overall RAID
metadevice state contradicts this information. Upon validation of a RAID
metadevice, if the state of any components of the metadevice are in the
Initializing or Resyncing state, the appropriate operation (init or resync,
respectively) will be reinitiated on the component(s) necessary.

Once the metasync operation completes, the state of the metadevice may
either be in the “Okay” state, indicating full component availability, or in one
of the two maintenance states (“Maintenance” or “Last Erred”), indicating

metainit /dev/md/dsk/d80 -r /dev/dsk/c0t0d0s1 \
/dev/dsk/c1t0d0s1 /dev/dsk/c2t0d0s1 -i 8k

154 Solstice DiskSuite 4.0 Administration Guide—March 1995

9

errors were encountered on component(s) during the resync operation. If one
of the latter states prevails, use the metareplace(1M) command to perform
the appropriate level of data recovery.

Reconfiguring RAID Devices
Reconfiguration of a RAID metadevice means altering the original composition
of the metadevice either by concatenating additional components, replacing
components (error or non-errored), or assigning a hot spare pool to the
metadevice (to provide a backup in the event that errors are encountered on
any of the components of the metadevice). Each of these reconfiguration
options is discussed in more detail in the following sections.

Concatenating Components

Concatenation is the appending of new components to an existing metadevice.
Concatenation of a component to a RAID metadevice allows the device to grow
by allocating additional disk space from the concatenated components.

Note – No parity information is stored on the newly appended components.

The following steps “grow” an existing metadevice by adding a single
concatenated component:

1. Use metattach(1M) specifying the RAID metadevice to grow and the new
component(s) to add to the metadevice configuration.

2. If a UFS filesystem exists on the RAID metadevice, run growfs(1M) to
update the filesystem so that the additional space is allocated and
recognized by the filesystem.

At this point the new component has been attached to the metadevice and may
be used as though it were an original component.

Note – Once a component is attached to a RAID device, it cannot be removed.

RAID Devices 155

9

Replacing Components

Once an I/O error is detected on a component of a RAID metadevice, no
further I/O’s will be performed on that component (unless the component is in
the “Last Erred” state, refer to “Checking Status” on page 156). In this
situation, the administrator would most likely want to perform some type of
error recovery such that the state of the RAID device is non-errored and the
possibility of data loss is reduced.

There are two methods for performing recovery:

• attempt to recover from possible soft errors by enabling the currently
errored component

• replace the existing errored component with a new component

Both of these methods involve the use of the metareplace(1M) utility to
perform component replacement and data recovery. During component
replacement, data is recovered. If a hot spare is currently in use, the data is
copied from the hot spare. When no hot spare is in use, data is rebuilt using the
parity.

The following steps demonstrate how to replace an errored component of a
RAID metadevice in which only one component is errored.

1. Determine if you have any additional components that are available to be
used to replace the errored component.

2. If other device components are available, run metareplace with the new
component.

3. If no other components are available, run metareplace with the -e option
to attempt to recover from possible soft errors by resyncing the errored
device.

If multiple errors exist, the device in the “Maintenance” state must first be
replaced or enabled.

Caution – Replacing an errored component when multiple components are in
error may cause data to be fabricated. The integrity of the data in this instance
is questionable.

156 Solstice DiskSuite 4.0 Administration Guide—March 1995

9

Note that you can use the metareplace command on non-errored devices to
change a disk. This can be useful for tuning performance of RAID devices.

Changing Hot Spare Pool Association

The only parameter of a RAID metadevice that may be altered is the allocation
of hot spare pools. The hot spare pool association can be changed on an
existing RAID metadevice regardless of whether the metadevice is in use or
not. Hot spare pools may be allocated, deallocated, or reassigned at anytime
unless a component in the hot spare pool is currently being used to replace an
errored component in the RAID metadevice.

The following steps describe how to allocate a hot spare pool to a RAID
metadevice:

1. Create and configure a RAID metadevice.

2. Create a hot spare pool of unused disk partitions

3. Run the metaparam(1M) utility to assign this hot spare pool to an existing
RAID metadevice.

Once the hot spare pool has been assigned to the metadevice, any components
that are currently errored or error in the future will be replaced by a
component in the hot spare pool as long as hot spare components are available
and are at least as large as the smallest component in the metadevice.

Note – To avoid data fabrication, DiskSuite will not allow hot sparing of a
metadevice if any devices within that metadevice are in the “Last Erred” state.

Checking Status
Like other metadevices --mirrors, stripes and concatenations-- the status of
RAID metadevices may be observed using the metastat (1M) command. The
states of RAID metadevices vary as do the components of RAID metadevices.
The following are brief descriptions of the possible states of RAID metadevices.

• Initializing - This state indicates that the components are in the process of
having all disk blocks zeroed. This is necessary due to the nature of RAID
metadevices with respect to data and parity interlace striping. If an I/O

RAID Devices 157

9

error occurs during this process, the device will go into the “Maintenance”
state. If the initialization fails, the metadevice is in the “Init Failed” state
and the component is in the “Maintenance” state.

To recover from this condition, run metaclear(1M) to clear the RAID
metadevice and reinitialize the RAID metadevice with a new component to
replace the one in error.

Once the state of the RAID metadevice changes to the “Okay” state, the
initialization process is complete and you are once again able to open to
RAID device. Up to this point, applications will continue getting the error
message.

• Okay - This state indicates that the RAID metadevice is ready for use and is
currently error free. In this state, components may be added
(metattach(1M)) or replaced (metareplace(1M)).

• Maintenance - This state indicates that a single component has been marked
as errored due to I/O or open errors encountered during a read or a write
operation on the component. If this situation occurs, an invoke recovery
message is displayed which helps the administrator determine the
appropriate action to clear this error condition. For RAID metadevices, the
only appropriate corrective action is to metareplace(1M) the errored
component with a new component. Once the replacement completes
successfully, the new component will be displayed and the state of the
metadevice and the component will be “Okay”.

• Maintenance/Last Erred - This state indicates that multiple components in the
RAID metadevice have encountered errors. The state of the errored
components will be marked either “Maintenance” or “Last Erred”. In this
state, no I/O will be attempted on the component that is in the
“Maintenance” state, but I/O will be attempted to the component marked
“Last Erred” with the outcome being the overall status of I/O request. Once
in this state, recovery may still be accomplished by invoking the
metareplace command as described on the invoke line of the status
output. The metareplace command must be issued with the -f flag; this
indicates that the administrator knows that data may be fabricated due to
the multiple errored components.

Note that if a device is in the “Last Erred” state and an attempt is made to
replace the device, data may be fabricated.

158 Solstice DiskSuite 4.0 Administration Guide—March 1995

9

Hardware and Software Considerations
There are both hardware and software considerations that affect RAID
metadevices.

The software considerations include:

• The values assigned to the interlace size when building a RAID metadevice
• Concatenation
• Performance
• The use of a RAID metadevice as a component of another metadevice

The hardware considerations include:

• Mixing different size components
• The number of controllers
• Mixing components with different geometry
• The I/O load on the bus

Assigning Interlace Values

The key to performance using RAID is the interlace value. The value is user
configurable at the time a metadevice is created. Thereafter, the value cannot
be modified.

The interlace value defaults to 16Kbytes. This is a reasonable value for most
applications. If the different components in the RAID metadevice reside on
different controllers and the accesses to the metadevice are primarily large
sequential accesses, then a interlace value of 32Kbytes may have better
performance.

Concatenating to a Device

Concatenating a new component to an existing RAID metadevice will have an
impact on the overall performance of the metadevice because the data on
concatenated components is sequential; data is not striped across all
components. The original components of the metadevice, as discussed in the
introduction, have data and parity striped across all components. This striping
is lost for the concatenated component, although the data will still be
recoverable if this component errors since the parity will still be used during
component I/O.

RAID Devices 159

9

Concatenated components also differ in the sense that they will not have parity
striped on any of the regions, thereby, allowing the entire contents of the
component (up to the current component size) to be available for data.

Any performance enhancements for large or sequential writes are lost when
components are concatenated.

Write Performance

A RAID metadevice maintains parity for multiple partitions. When a write is
issued to a RAID metadevice, multiple I/Os are performed to adjust the parity.
For this reason, the type of application should be considered; applications with
a high ratio of reads to writes will perform better on a RAID device.

Performance of a Degraded Device

When a RAID metadevice requires maintenance due to a failed disk, the parity
is used to reconstruct the data; this requires reading multiple partitions to
reconstruct the data. The more components assigned to a RAID metadevice
with a failed disk, the longer a read or write operation will take. This applies to
resyncing the metadevice as well as normal I/O activity.

RAID as a Component to a Device

A RAID metadevice cannot be used as a submirror or as a component to a
concatenation or stripe. A RAID metadevice may be used as either the master
or log device of a metatrans device.

Mixing Different Size Components

When different size disk components are used in a RAID metadevice, some
disk space will be unused unless the unused portion is assigned to another
metadevice. This is because the metadevice is limited by the smallest partition
in the configuration (n times the smallest component, where n is the number of
components in the metadevice). For example, if there are two 327 Mbyte
partitions and one 661 Mbyte partition in a RAID metadevice, the metadevice
will only use 327 Mbytes of the space on the 661 Mbyte partition.

To assign the unused disk space to another metadevice, the component must
be repartitioned (use format (1M)).

160 Solstice DiskSuite 4.0 Administration Guide—March 1995

9

Note – You should never repartition a component which is in a RAID device.

Using Components with Different Geometry

All components in a RAID metadevice should have the same number of sectors
and tracks per cylinder. This is referred to as the disk geometry. The geometry
is related to the capacity of the drive. Disk geometry varies depending on the
manufacturer and type.

The problem with the differing component geometries is that the UFS file
system attempts to lay out file blocks in an efficient manner. UNIX counts on a
knowledge of the component geometry and uses cylinder groups to attempt to
minimize seek distances. If all components do not have the same geometry, the
geometry of the first component is reported to the file system. This may cause
the efficiency of the file system to suffer.

Controllers

Building a RAID metadevice with all the component partitions on the same
controller will adversely affect I/O performance. Also, creating a metadevice
of components on different controller types can affect performance because
some controllers are faster than others. The I/O throughput will be limited by
the slowest controller.

An example of a controller limiting performance is when several devices (e.g.,
3 Mbyte per second disks) are attached to the same controller. In this instance,
the throughput may be limited to the throughput of the controller and not the
sum of the devices.

Another factor to consider when configuring RAID metadevices with respect to
controllers is the possibility of the controller being the single-point-of-failure.
RAID provides the capability to recover data when a single errored component
exists within the configured metadevice, but when multiple components are
errored (that is, controller failure) the task of data recovery may or may not
succeed.

Examples
Examples of the basic RAID operations are defined in this section.

RAID Devices 161

9

The examples include:

• Configuring a RAID metadevice and monitoring its status during
initialization

• Concatenating a new component to an existing RAID metadevice

• Replacing an errored component and monitoring the progress of the
component resync process

Defining a RAID device

The following example shows how to define a RAID metadevice of four
components with a interlace size of 10 Megabytes.

In the following example, the four components comprising the RAID
metadevice are /dev/dsk/c1t0d0s2, /dev/dsk/c2t0d0s2,
/dev/dsk/c3t0d0s2, and /dev/dsk/c4t0d0s2 . The RAID metadevice will
be identified by d10 .

1. Verify that the components and RAID definition are valid using
metainit -n .

The -n option validates of the command line syntax without performing
actual metadevice initialization.

2. If the configuration is accurate, run metainit to initialize the RAID
metadevice.

/usr/opt/SUNWmd/sbin/metainit -n d10 -r /dev/dsk/c1t0d0s2 \
/dev/dsk/c2t0d0s2 /dev/dsk/c3t0d0s2 /dev/dsk/c4t0d0s2 -i 10m

/usr/opt/SUNWmd/sbin/metainit d10 -r /dev/dsk/c1t0d0s2 \
/dev/dsk/c2t0d0s2 /dev/dsk/c3t0d0s2 /dev/dsk/c4t0d0s2 -i 10m

162 Solstice DiskSuite 4.0 Administration Guide—March 1995

9

3. While the metadevice is initializing, you can use metastat to view the
progress.
The RAID metadevice will not be available for use until the completion of
the initialization cycle. At this point the state of the metadevice will
transition from “Initializing” to “Okay”.

Concatenating to a RAID Device

The following example shows how to concatenate a new component to an
existing RAID metadevice on which a file system exists.

In the following example, the RAID metadevice is d10, and the new
component to attach is /dev/dsk/c5t0d0s2 .

metastat d1 0
d80: RAID
 State : Initializing
Initialization in progress: 16% done
 Size : 16608 blocks
Original device:
 Size : 16608 blocks
Device Start Block Dbase State Hot Spare
c1t0d0s2 471 No Initializing
c2t0d0s2 170 No Initializing
c3t0d0s2 170 No Initializing
c4t0d0s2 170 No Initializing

metastat d10
d80: RAID
 State : Okay
 Size : 16608 blocks
Original device:
 Size : 16608 blocks
Device Start Block Dbase State Hot Spare
c1t0d0s2 471 No Okay
c2t0d0s2 170 No Okay
c3t0d0s2 170 No Okay
c4t0d0s2 170 No Okay

RAID Devices 163

9

1. Use metastat to check the status of the RAID metadevice to which the
new component will be attached.

2. If the state of the RAID configuration is stable, use metattach to attach
the new component to this metadevice.

metastat d10
d80: RAID
 State : Okay
 Size : 16608 blocks
Original device:
 Size : 16608 blocks
Device Start Block Dbase State Hot Spare
c1t0d0s2 471 No Okay
c2t0d0s2 170 No Okay
c3t0d0s2 170 No Okay
c4t0d0s2 170 No Okay

metattach d10 /dev/dsk/c5t0d0s2

164 Solstice DiskSuite 4.0 Administration Guide—March 1995

9

3. While the new component is initializing, you can use metastat to view
the progress.
The new RAID component will not be available for use until the completion
of the initialization cycle. At this point the state of the component will
transition from “Initializing” to “Okay”.

4. Use the growfs command to expand the mounted file system.
growfs is a non-destructive utility and may be issued while the file system
is mounted.

where /foo is the mount point.

Recovering from Component Errors

The following example shows how to recover when a single component in a
RAID metadevice is errored.

In the following example, the RAID metadevice is d10, and the component
that will be used to replace the errored component is /dev/dsk/c5t0d0s2 .

metastat d10
d80: RAID
 State : Okay
 Size : 27680 blocks
Original device:
 Size : 16608 blocks
Device Start Block Dbase State Hot Spare
c1t1d0s2 471 No Okay
c2t0d0s2 170 No Okay
c3t0d0s2 170 No Okay
c4t0d0s2 170 No Okay
Concatenated Devices:
 Size : 11072 blocks
Device Start Block Dbase State Hot Spare
c0t2d0s0 935 No Okay

growfs /dev/md/rdsk/d10 -M /foo

RAID Devices 165

9

1. Using metastat , identify the component that is errored and needs to be
replaced.
The state of the metadevice and the errored component will be
“Maintenance”. When in this state, a line will be displayed with the action
that should be taken to recover from this state.

2. Use the metareplace command to perform the replacement of the
errored component as follows.

metastat d10
d80: RAID
 State : Maintenance
Invoke :metareplace d10 /dev/dsk/c0t2d0s5 <new device>”
 Size : 16608 blocks
Original device:
 Size : 16608 blocks
Device Start Block Dbase State Hot Spare
c1t0d0s2 471 No Okay
c2t0d0s2 170 No Okay
c3t0d0s2 170 No Maintenance
c4t0d0s2 170 No Okay

metareplace d10 c3t0d0s2 c5t0d0s2

166 Solstice DiskSuite 4.0 Administration Guide—March 1995

9

3. Use metastat to monitor the progress of the replacement.
During the replacement of the errored component the state of the
metadevice and the new component will be “Resyncing”. While in this state,
you may continue the metadevice.

metastat d10
d80: RAID
 State : Resyncing
Resync in process : 21% done
 Size : 16608 blocks
Original device:
 Size : 16608 blocks
Device Start Block Dbase State Hot Spare
c1t0d0s2 471 No Okay
c2t0d0s2 170 No Okay
c5t0d0s2 170 No Resyncing
c4t0d0s2 170 No Okay

167

State Database Replicas 10

The DiskSuite state database replicas are dedicated portions of a disk, similar
to a disk label. The space occupied by the replica is reserved for the exclusive
use of the metadevice state database; it cannot be used for any other purpose.

State database replicas are critical to the operation of all metadevices because
they provide a memory service for DiskSuite. The replicas keep track of
configuration and status information for all metadevices, metamirrors,
metatrans devices, and hot spares. The replicas also keep track of error
conditions that have occurred.

The replicated state database information keeps DiskSuite operating. Without
replicas (copies) of the same information for comparison, DiskSuite does not
know the current running state of metadevices. This chapter and the
metadb(1M) manual page provide a detailed discussion of how the replicas
are used by the metadisk driver.

Each replica can exist on either a dedicated disk partition or within space
specifically reserved for a replica within a striped or concatenated metadevice,
or a logging device. You can store multiple replicas in a single disk partition,
however, placing multiple replicas on a single disk reduces reliability. Each
replica occupies 517 Kbytes or 1034 disk blocks of the partition.

The state database must be initialized before any metadevices are configured.
See Chapter 2, “Installation and Setup,’’ for information about setting up the
initial state database.

168 Solstice DiskSuite 4.0 Administration Guide—March 1995

10

This chapter provides information on how to use the state database and its
associated replicas with the DiskSuite software package. Use the following
table to locate specific information.

Overview of the State Database Replicas
After you have configured metadevices, the metadevice driver must
“remember” this configuration and status information. The metadevice state
database is the metadevice driver’s long-term memory. The metadevice driver
stores all the metadevice configuration information in the state database. This
includes the configuration information about metadevices, metamirrors,
metatrans devices, and hot spares. This is possibly the same information that
exists in the /etc/opt/SUNWmd/md.tab and /etc/opt/SUNWmd/md.cf
files, but may differ if the /etc/opt/SUNWmd/md.tab file has not been kept
up to date or if failed submirror components have been replaced with hot
spares.

If the replicated metadevice state database were lost, the metadevice driver
would have no way of knowing any configuration information. This could
result in the loss of all data stored on metadevices. To protect against losing the
metadevice state database because of hardware failures, multiple replicas
(copies) of the state database are kept.

These multiple replicas also protect the state database against corruption that
can result from a system crash. Each replica of the state database contains a
checksum. When the state database is updated, each replica is modified, one at
a time. If a crash occurs while the database is being updated, only one of the
replicas will be corrupted. When the system reboots, the metadevice driver
uses the checksum embedded in the replicas to determine if a replica has been
corrupted. Any replicas that have been corrupted are ignored.

Overview of the State Database Replicas page 168

Basic State Database Operation page 169

Planning Locations of Replicas page 170

Creating a State Database page 171

Creating Replicas page 171

Removing Replicas page 172

Checking the Status of Replicas page 173

Examples page 174

State Database Replicas 169

10

If a disk containing the metadevice state database is turned off, the
metadevices remain fully functional because the database is retrieved from one
of the replicas still in operation. Changes made to the configuration following
the reboot are stored only in those replicas that are running when the system
comes back up. If the disk drive that was turned off is later turned back on, the
data contained in the replica stored on that disk will be ignored.

Basic State Database Operation
The locator block contains the location and status of all known replicas. The
primary information contained in the status is whether a particular replica is
up to date. A single commit counter is also contained in the locator block. This
commit counter is incremented every time the status of any replica changes.
The metadevice driver uses this commit counter to select replicas that have the
latest locator block. It then uses the data contained in a replica that is both up
to date and has not been corrupted by a system crash.

The following are the basic steps a system goes through when the metadevice
state database is accessed:

1. The locator block is read from all database replicas that have been patched
into /etc/system or passed in from /etc/opt/SUNWmd/mddb.cf .

2. The locator block is read from any replicas mentioned in previously read
locator blocks but not patched into /etc/system or passed in from
/etc/opt/SUNWmd/mddb.cf by metainit .

3. One of the locator blocks with a commit counter equal to the highest commit
counter is used to select which replicas are up to date.

4. One of the up-to-date replicas is read.

5. If the checksum is correct, the state database is set up.

6. If the checksum is not correct, another of the up-to-date replicas is read and
tested for the correctness of the checksum. This continues until a correct
replica is found.

If there are no more replicas to test for correctness, DiskSuite gives up and an
error message is displayed stating that a usable replica cannot be found. If no
replicas can be found that pass the checksum test, the database has been lost
and you must start over building the initial state database and redefining all
metadevices.

170 Solstice DiskSuite 4.0 Administration Guide—March 1995

10

If half or more of the replicas referenced in the locator block were not valid, the
metadevices are marked read only. One cause of this situation could be that a
component was accidentally turned off or disconnected. If this is the case, you
must turn on drives that contain other replicas and reboot the system. The
replicas located on these components will be found and checked when the
system reboots.

It is also possible that half or more of the replicas were lost due to hardware
failure. For instance, if there were five replicas and three were lost, DiskSuite
will report that the system cannot boot. The references to the three other
replicas can be deleted (using the metadb –d command), and the two
remaining replicas would be updated to say they are the only two replicas. The
system would then boot.

Planning Locations of Replicas
Planning the location of replicas on a system where DiskSuite has just been
loaded involves several considerations. These considerations include:

• Database replicas can reside on any unused partition or on any partition
which will also be part of a metadevice or logging device with the exception
of root , swap, /usr , or an existing file system.

• If multiple controllers exist, replicas should be spread as evenly as possible
across the controllers.

• If multiple disks exist on a controller, at least two of the disks on each
controller should store a replica of the metadevice state database.

• At least three replicas should be created. For instance, if you have three
components, a replica should be created on each. That way, if one
component fails, you will have the necessary two replicas to continue
running. When you have less than two replicas, DiskSuite will not function.

Note – In a two-component configuration, you should always create two
replicas on each component. For example, assume you create two replicas on
one component and only one replica on the other. If the component with two
replicas fails, DiskSuite will not function because the remaining component
only has one replica.

• No more than one replica should be placed on a single disk unless that is
the only way to reach the minimum number (three) of replicas.

State Database Replicas 171

10

Creating a State Database
You create the initial state database by using the metadb command with both
the -a and -f options, followed by the device name where the replica is to
reside. For example:

The -a option specifies that a replica (in this case, the initial) state database
should be created. When the -a option is used, the /etc/system file is
automatically patched with the new information about the state database or
replica location and the /etc/opt/SUNWmd/mddb.cf file is updated. The -f
option forces the creation to occur, even though a state database does not exist.

The -a and -f options should only be used together when no state databases
exist.

There must be at least two replicas located on the system at any time.
Otherwise, if the system crashes, it is possible all metadevice configuration
data may be lost.

Creating Replicas
Additional replicas, containing identical information, are necessary to prevent
the loss of the configuration information. Losing this information would make
operation of the metadevices impossible.

You can add replicas from the command line or by editing the
/etc/opt/SUNWmd/md.tab file.

When the /etc/opt/SUNWmd/md.tab is edited, a line of the form:

is entered, and the metadb -a command is run as follows:

/usr/opt/SUNWmd/sbin/metadb -a -f /dev/dsk/c0t1d0s0

mddb01 /dev/dsk/c0t2d0s0

/usr/opt/SUNWmd/sbin/metadb -a mddb01

172 Solstice DiskSuite 4.0 Administration Guide—March 1995

10

To create additional replicas from the command line using the metadb -a
command, the following would be entered:

In either of the above cases, a replica of the state database is created on
/dev/dsk/c0t2d0s0 .

All replicas that are located on the same partition of a physical device must be
created at the same time. Thus, if additional replicas were to be created on
/dev/dsk/c0t2d0s0 , they would need to be created when the first one is
defined. For example:

The above command would create two replicas on /dev/dsk/c0t2d0s0 .

Removing Replicas
With DiskSuite, you can remove all replicas of the state database. Although all
replicas of the state database can be removed, this should never be done if
metadevices are still configured. If all the replicas are removed, all metadevices
will become inoperable.

Removal is done from the command line using the metadb -d command
followed by the name of the replica to be removed. Editing the
/etc/opt/SUNWmd/md.tab file and removing the entry for a replica does not
remove the replica.

For example, if replicas had been set up on /dev/dsk/c0t2d0s0 and
/dev/dsk/c0t1d0s0 , they could be removed by entering:

/usr/opt/SUNWmd/sbin/metadb -a /dev/dsk/c0t2d0s0

/usr/opt/SUNWmd/sbin/metadb -a -c 2 /dev/dsk/c0t2d0s0

/usr/opt/SUNWmd/sbin/metadb -d /dev/dsk/c0t2d0s0 \
/dev/dsk/c0t1d0s0

State Database Replicas 173

10

If the replicas, /dev/dsk/c0t2d0s0 and /dev/dsk/c0t1d0s0 , had been
defined in the /etc/opt/SUNWmd/md.tab file and aliased as mddb01, they
could also be removed with the following command:

Checking the Status of Replicas
You can use metadb to view the status of all replicas by using the -i option.
An example of output from the metadb -i command follows:

In the example above, the characters in front of the device name represent the
status of the state database. A legend follows the replica status.

/usr/opt/SUNWmd/sbin/metadb -d mddb01

example# /usr/opt/SUNWmd/sbin/metadb -i
 flags first blk block count
 a m p luo 16 1034 /dev/dsk/c0t3d0s3
 a p luo 1050 1034 /dev/dsk/c0t3d0s3
 a p luo 16 1034 /dev/dsk/c1t3d0s3
 a p luo 1050 1034 /dev/dsk/c1t3d0s3
 a p luo 16 1034 /dev/dsk/c0t2d0s3
 a p luo 1050 1034 /dev/dsk/c0t2d0s3
o - replica active prior to last mddb configuration change
u - replica is up to date
l - locator for this replica was read successfully
c - replica’s location was in /etc/opt/SUNWmd/mddb.cf
p - replica’s location was patched in kernel
m - replica is master, this is replica selected as input
W - replica has device write errors
a - replica is active, commits are occurring to this replica
M - replica had problem with master blocks
D - replica had problem with data blocks
F - replica had format problems
S - replica is to small to hold current data base
R - replica had device read errors
example#

174 Solstice DiskSuite 4.0 Administration Guide—March 1995

10

Examples
The following two examples show how to set up the initial state database and
create replicas. The first example describes the procedure for a new system,
and the second describes the procedure for an existing system.

State Database Replicas on a New System

This example shows how to set up an initial state database and several replicas
on a new system that has been delivered with four disks for user’s data.

This example assumes that DiskSuite is installed. It is also assumed that
/dev/dsk/c0t0d0s7 and /dev/dsk/c0t1d0s2 will contain all the user
data. The other two disks, /dev/dsk/c1t0d0s7 and /dev/dsk/c1t1d0s2 ,
will mirror the disks that contain the user data.

To set up the initial state database follow these steps:

1. Edit the /etc/opt/SUNWmd/md.tab file and add the following line:

2. Use the metadb command with the -a and -f options to activate the state
database.
For example:

3. Concatenate the components into two submirrors by adding the following
lines to the /etc/opt/SUNWmd/md.tab file:

mddb01 /dev/dsk/c0t0d0s7 /dev/dsk/c0t1d0s2 /dev/dsk/c1t0d0s7 \
 /dev/dsk/c1t1d0s2

/usr/opt/SUNWmd/sbin/metadb -a -f mddb01

d10 2 1 /dev/dsk/c0t0d0s7 1 /dev/dsk/c0t1d0s2
d11 2 1 /dev/dsk/c1t0d0s7 1 /dev/dsk/c1t1d0s2
d12 -m d10

State Database Replicas 175

10

4. Use the metainit command to initialize the concatenated submirrors and
create the mirror.

State Databases on Existing Systems

This example shows how to add replicas on new disks that have been
connected to a system that is currently running DiskSuite. In this example, the
system already has been configured as shown in the previous example.

Two drives, /dev/dsk/c0t2d0s2 and /dev/dsk/c1t1d0s2 , are being
added to the configuration. Two additional replicas are being added to the
existing four replicas.

To add the drives and replicas, follow these steps:

1. Edit the /etc/opt/SUNWmd/md.tab file and add the following line:

2. Use the metadb command with only the -a option to activate the replicas.
For example:

Or, to add the drives and replicas in one step:

♦ Type the following on the command line:

/usr/opt/SUNWmd/sbin/metainit d10
/usr/opt/SUNWmd/sbin/metainit d11
/usr/opt/SUNWmd/sbin/metainit d12
/usr/opt/SUNWmd/sbin/metattach d12 d11

mddb02 /dev/dsk/c0t2d0s2 /dev/dsk/c1t1d0s2

/usr/opt/SUNWmd/sbin/metadb -a mddb02

/usr/opt/SUNWmd/sbin/metadb -a \
 /dev/dsk/c0t2d0s2 /dev/dsk/c1t1d0s2

176 Solstice DiskSuite 4.0 Administration Guide—March 1995

10

177

Expanding a File System 11

You can expand a mounted or unmounted UFS file system by using the
utilities provided with DiskSuite. Only UFS file systems can be expanded using
these utilities.

This chapter provides information about file system expansion with the
DiskSuite software package. Use the following table to locate specific
information.

File System Expansion Overview
Basically, expanding a file system occurs in two steps.

1. Disk space is added at the end of the metadevice using the DiskSuite
dynamic concatenation facilities.

2. The file system is expanded using the growfs command.

Note – Once a file system is expanded, it cannot be shrunk.

File System Expansion Overview page 177

Nonexpandable File Systems page 178

Adding Components page 178

The growfs Command page 179

Examples page 179

178 Solstice DiskSuite 4.0 Administration Guide—March 1995

11

Aborting a growfs(1M) command may cause a temporary loss of free space.
The space can be recovered using the fsck(1M) command after the file system
is unmounted using umount(1M) .

For metamirrors, each of the submirrors must be increased in size before you
can expand the file system. If an error is reported while growing any of the
submirrors, that error must be resolved before you can expand the file systems.

For metatrans devices, only the logging device or master device can be
expanded; not the metatrans device itself. However, the growfs(1M)
command should be run on the metatrans device.

Nonexpandable File Systems
A mounted file system cannot be expanded if any of the following conditions
exist:

• When acct(1M) is activated and the accounting file is on the target file
system.

• There is a local swap file in the target file system.

• C2 security is activated and the logging file is on the target file system.

• The file system is root , /usr , or swap.

Adding Components
When a component is available, the metattach command is used to add the
component to the existing metadevice without interrupting service.

If more than one component is added in a single use of metattach , those
components are striped. This stripe is then concatenated onto the metadevice.

Disk space can be expanded by one or all of the following:

• Adding a physical partition to a metadevice.

• Adding a stripe to a metadevice.

• Adding a physical partition or stripe to all submirrors of a metamirror.

• Adding partitions to a RAID device.

Expanding a File System 179

11

The growfs Command
The growfs command nondestructively expands a file system up to the size of
the file system’s physical device or metadevice. The growfs command is
actually a ‘‘friendly’’ front-end to the mkfs(1M) command.

growfs write-locks (see lockfs(1M)) the file system when expanding a
mounted file system. Access times are not kept while the file system is write-
locked. The lockfs command can be used to check the file system lock status
and unlock the file system in the unlikely event that growfs aborts without
unlocking the file system.

The file system can be expanded to use only part of the additional disk space
using the growfs -s option.

Examples
Several step-by-step examples that show how to expand a file system are
provided in this section. These examples include:

• Expanding a nonmetadevice component

• Expanding a mounted file system

• Expanding a mounted file system to an existing metamirror

• Expanding an unmounted file system

• Expanding a mounted file system using stripes

Expanding a Nonmetadevice Component

The following example shows the expansion of a nonmetadevice component.
In this example, the existing component is converted to a metadevice so
additional components can be concatenated. This procedure necessitates
unmounting the file system (/var is used as the example) and remounting the
file system under the new metadevice.

180 Solstice DiskSuite 4.0 Administration Guide—March 1995

11

1. Edit the /etc/opt/SUNWmd/md.tab file, adding a line that defines the
metadevice that will consist of the existing component
(/dev/dsk/c1t0d0s3) and a new component (/dev/dsk/c2t0d0s3) to
be concatenated onto the existing one.

2. The file system on /var must now be unmounted, using the following
command:

3. metainit is now used to create the new metadevice.

4. Edit the /etc/vfstab file to change the entry for the /var file system to
be the newly defined metadevice name rather than the component name.
For instance, change the following line:

to read:

5. The file system can now be remounted, using mount .

6. Use the growfs command to expand the file system.

All of /dev/md/rdsk/d8 will be used to expand the file system. The –M
option allows growfs to expand a mounted file system. The –s option can be
used to limit the size. During this expansion /var is not available for write

d8 2 1 /dev/dsk/c1t0d0s3 1 /dev/dsk/c2t0d0s3

/sbin/umount /var

/usr/opt/SUNWmd/sbin/metainit d8

/dev/dsk/c1t0d0s3 /dev/rdsk/c1t0d0s3 /var ufs 4 yes —

/dev/md/dsk/d8 /dev/md/rdsk/d8 /var ufs 4 yes —

/sbin/mount /var

/usr/opt/SUNWmd/sbin/growfs -M /var /dev/md/rdsk/d8

Expanding a File System 181

11

access because of the write-lock. Write accesses are transparently suspended
and are restarted when growfs unlocks the file system. Read accesses are not
affected, though access times are not kept while the lock is in effect.

Expanding a Mounted File System

The following example shows how to expand a file system mounted on /var
by concatenating a single disk drive to an existing metadevice. In this example,
the metadevice is named d8 . The metadevice is not a metamirror.

1. Use the metattach command to dynamically concatenate the new drive
to the end of the existing metadevice.

2. Use the growfs command to expand the file system.

All of /dev/md/rdsk/d8 will be used to expand the file system. The –M
option allows growfs to expand a mounted file system. The –s option can be
used to limit the size. During this expansion /var is not available for write
access because of the write-lock. Write accesses are transparently suspended
and are restarted when growfs unlocks the file system. Read accesses are not
affected, though access times are not kept when the lock is in effect.

Expanding a Mounted File System
 to an Existing Metamirror

The following example shows how to expand a mounted file system by
concatenating three disk drives to an existing three-way metamirror. In this
example, the metamirror is named d8 and contains three submirrors named
d9 , d10 , and d11 .

/usr/opt/SUNWmd/sbin/metattach d8 /dev/dsk/c0t1d0s2

/usr/opt/SUNWmd/sbin/growfs -M /var /dev/md/rdsk/d8

182 Solstice DiskSuite 4.0 Administration Guide—March 1995

11

1. Use the metattach command to dynamically concatenate the new drives
to the end of each existing submirror within the metamirror.
metattach must be run for each of the submirrors.

The metamirror will automatically grow when the last submirror is
dynamically concatenated. The metamirror grows to the size of the smallest
submirror.

2. Use the growfs command to expand the file system.

All of /dev/md/rdsk/d8 will be used to expand the file system. The –M
option allows growfs to expand a mounted file system. The –s option can be
used to limit the size. During this expansion /var is not available for write
access because of the write-lock. Write accesses are transparently suspended
and are restarted when growfs unlocks the file system. Read accesses are not
affected, though access times are not kept when the lock is in effect.

Expanding an Unmounted File System

The following example shows how to expand an unmounted file system. This
example has a single disk drive, like the first example. Because the file system
is not mounted, no file system locking occurs. The metadevices in this example
must have already been initialized using metainit .

1. Use the metattach command to dynamically concatenate the new drive
to the end of the existing metadevice.

2. Use the growfs command to grow the file system.

/usr/opt/SUNWmd/sbin/metattach d9 /dev/dsk/c0t2d0s5
/usr/opt/SUNWmd/sbin/metattach d10 /dev/dsk/c0t3d0s5
/usr/opt/SUNWmd/sbin/metattach d11 /dev/dsk/c0t4d0s5

/usr/opt/SUNWmd/sbin/growfs -M /var /dev/md/rdsk/d8

/usr/opt/SUNWmd/sbin/metattach d8 /dev/dsk/c0t1d0s5

/usr/opt/SUNWmd/sbin/growfs /dev/md/rdsk/d8

Expanding a File System 183

11

Expanding a Mounted File System Using Stripes

The following example shows how to expand a mounted file system by
concatenating four disk drives to an existing metadevice. These four drives
will be added to the metadevice as a stripe. In this example, the metadevice is
named d8 .

1. Use the metattach command to dynamically concatenate the new IPI
drive to the end of the existing metadevice.

2. Use the growfs command to exapnd the file system.

All of /dev/md/dsk/d8 will be used to expand the file system. The –M option
allows growfs to expand a mounted file system. The –s option can be used to
limit the size. During this expansion /var is not available for write access
because of the write-lock. Write accesses are transparently suspended and are
restarted when growfs unlocks the file system. Read accesses are not affected,
though access times are not kept when the lock is in effect.

/usr/opt/SUNWmd/sbin/metattach d8 /dev/dsk/c0t1d0s5 \
 /dev/dsk/c0t2d0s5 /dev/dsk/c0t3d0s5 /dev/dsk/c0t4d0s5

/usr/opt/SUNWmd/sbin/growfs -M /var /dev/md/rdsk/d8

184 Solstice DiskSuite 4.0 Administration Guide—March 1995

11

185

Configuration Guidelines 12

This chapter discusses configuration information for the Solstice DiskSuite
product. Use the following table to locate specific information.

Performance Considerations
DiskSuite is not intended primarily to improve disk performance. It may do so
in some cases, but it is also possible that a badly designed configuration will
degrade performance. This section offers tips for getting good performance
from DiskSuite.

Performance Considerations page 185

Availability Considerations page 187

Capacity Considerations page 189

Security Considerations page 190

Compatibility Considerations page 190

Labeled Partitions page 190

186 Solstice DiskSuite 4.0 Administration Guide—March 1995

12

Some performance considerations include the following:

• When concatenating, don’t concatenate partitions on a single drive. For
example, don’t concatenate /dev/dsk/c0t1d0s4 and
/dev/dsk/c0t1d0s7 ; you can do so, but it will hurt performance. If you
want to concatenate these devices, make sure they are far apart in the list of
devices in the md.tab file. For example:

will tend to have better performance than:

due to behavior of concatenations.

• When mirroring, don’t have multiple copies of the data on the same drive.
Always try to use at least two different drives for mirroring, since writes to
the same drive contend for the same resources, and the failure of the one
drive would mean the loss of all data.

• When logging UFS file systems, try to have the logging and master devices
on different drives.

However, if one of the disks or controllers in a metamirror is heavily loaded
by other activity (for example, it contains another file system on another of
its partitions), you may want to use the -r option. This mode will force the
metadisk driver to read only from one partition, thus avoiding further
overloading the other partition. (Note that the metadisk driver does not
automatically choose the least loaded partition. You must specify this by
making the less heavily-loaded metadevice the first submirror.)

• Try to have all drives in a metadevice on separate data paths. For SCSI
drives, this means separate host adaptors. For IPI drives, this means
separate controllers. By having the metadevice spread the I/O load over
several controllers, performance and availability will be improved.

• Experiment with the read options of the metadisk driver in a metamirror.
The default mode is to alternate reads in a round-robin fashion among the
disks. This is the default because it tends to work best for UFS multi-user,
multi-process activity.

d8 4 1 /dev/dsk/c0t1d0s4 1 /dev/dsk/c0t2d0s0 \
 1 /dev/dsk/c0t1d0s7 1 /dev/dsk/c0t0d0s0

d8 4 1 /dev/dsk/c0t1d0s4 1 /dev/dsk/c0t1d0s7 \
 1 /dev/dsk/c0t2d0s0 1 /dev/dsk/c0t0d0s0

Configuration Guidelines 187

12

• In some circumstances, using the -g option will improve performance by
minimizing head motion and access times. This option is most effective
when there is only one partition per disk, when only one process at a time is
using the partition/file system, and when I/O patterns are highly sequential
or when all accesses are reads.

• Don’t mix disks or controllers of widely varying performance or
technologies in a single metadevice or metamirror. Particularly in old SCSI
or SMD storage devices, different models or brands of disk or controller can
have widely varying performance. Mixing the different performance levels
in a single metadevice or metamirror can cause performance to degrade
significantly.

Availability Considerations
The metadisk driver’s mirroring capability provides insurance against data
loss with single point failures in a UNIX system. This section provides a few
tips to ensure that you’ll actually realize that safety.

Some considerations to be followed to ensure availability of data are:

• The /etc/opt/SUNwmd/mddb.cf or /etc/opt/SUNWmd/md.cf files
should never be edited or removed.

• Make sure that the /etc/opt/SUNWmd/md.cf file is backed up frequently.

• When concatenating or striping components, mirror them if you have the
spare disk capacity. Concatenating partitions reduces effective reliability
somewhat, so mirroring any critical data stored in a concatenated
metadevice is a good idea.

• When logging UFS file systems, mirror the logging device.

• When mirroring, keep the components of different submirrors on separate
disks. Data protection is diminished considerably if components of two or
more submirrors of the same mirrored metadevice are on the same disk.

• When mirroring, define the metadevices with components on separate
controllers, if possible. Controllers and associated cables may fail more often
than disks, so organize the submirrors of your metamirrors so that the
submirrors are as independent as possible. This also helps performance.

188 Solstice DiskSuite 4.0 Administration Guide—March 1995

12

• When creating RAID devices, define with components on separate
controllers, if possible. Controllers and associated cables may fail more often
than disks, so organize the submirrors of your metamirrors so that the
submirrors are as independent as possible. This also helps performance.

• If the metadisk driver takes a metadevice offline, consider unmounting
other file systems mounted on the disk where the failure occurred. Since
each disk partition is independent, up to eight file systems may be mounted
on a single disk. If the metadisk driver has “trapped” a failure (as indicated
by metastat), other partitions on the same disk will likely experience
failures soon. File systems mounted directly on disk partitions do not have
the protection of metadisk driver error handling, and leaving such file
systems mounted can leave you vulnerable to crashing the system and
losing data.

• Minimize the amount of time you run with submirrors disabled or offline.
During resyncing and online backup intervals, you do not have the full
protection of mirroring. Your system administrator should run metastat
regularly on any servers using the metadisk driver to check for metadevices
that are not functioning properly.

• Do not mount file systems on an underlying component of a metadevice. If
a physical partition is used for a metadevice of any kind, you must not
mount that partition as a file system. If possible, unmount any physical
device you intend to use as a metadevice before you activate it.

• After a component is defined as a metadevice and activated, do not use it
for another purpose.

• Use the block device name (for example, /dev/md/dsk/d8) for block
device functions such as mount(1M) and umount(1M) ; use the raw device
name (/dev/md/rdsk/d8) for raw device functions such as newfs(1M),
dd(1M) , or fsck(1M) .

• Stripes and concatenations cannot be defined using a metadevice as a
component; only physical partitions can be used as components of a stripe
or concatenation.

• For mirrored metadevices, only the metamirror can be mounted. An error
message is returned if you try to mount a submirror directly, unless the
submirror is offline and mounted read-only. However, you will not get an
error message if you try to mount a physical partition that is a component of
a metadevice; this could destroy data and crash the system.

Configuration Guidelines 189

12

• Two DiskSuite startup files are installed in system startup directories to
effect automatic rebooting and resyncing of metadevices:
/etc/rcS.d/S35SUNWmd.init and /etc/rc2.d/S95SUNWmd.sync . See
Chapter 2, “Installation and Setup,” for detailed instructions on setting up
DiskSuite.

• If you want all swap space to be mirrored, you should use swap -l to check
for swap devices. Partitions specified as swap must be mirrored separately.

Capacity Considerations
DiskSuite increases system capacity by supporting the concatenation, striping,
or RAIDing of components into metadevices. These metadevices can then be
used as either file systems or raw devices.

Some considerations that deal with capacity are:

• Components of differing physical size or geometry can be used effectively
with the metadisk driver; what is important in defining metamirrors is that
the mirrored metadevices be the same size, or nearly so. If you define a
metamirror with two different sized metadevices, the metamirror will be the
size of the smaller of the two metadevices; the extra space on the larger
metadevice is unused.

If you define a metamirror with one metadevice, the metamirror will be the
size of that metadevice, regardless of the size of metadevices attached later.
You will not be allowed to attach a smaller metadevice.

• When metadevice state database replicas are placed on a component used
by a metadevice, the capacity of that metadevice is reduced. The space
occupied by a replica is rounded up to the next cylinder boundary and this
space is skipped by the metadevice.

• On components with labels (those starting at cylinder 0), the first cylinder of
a component is skipped when the component is not the first component of a
metadevice.

• All components of a stripe are the size of the smallest component. The
components are rounded down to the nearest multiple of interlace size. So,
if different size components are used within in a stripe, then disk capacity
will be limited to a multiple of the smallest.

• When you’re using the file system logging facility, remember that larger logs
result in greater concurrency.

190 Solstice DiskSuite 4.0 Administration Guide—March 1995

12

Labeled Partitions
All physical devices must have one disk label. The label is normally created by
the install software, the format program, or the fmthard program. The
label can appear on more than one of the logical partitions that are defined in
the label.

Physical partitions that contain a label should not allow a user to write to the
block that contains the label. Normally this is block 0. UNIX device drivers
allow a user to overwrite this label.

Security Considerations
DiskSuite does not provide an audit trail for any reconfiguration of
metadevices that may be performed on the system. This means that DiskSuite
does not support C2 security.

Compatibility Considerations
DiskSuite is compatible with most other Sun Microsystem products. However,
there are some limitations and considerations.

Some considerations that deal with compatibility are:

• Machines using Solstice DiskSuite 4.0 must be running the Solaris 2.1 release
or a later Solaris 2.x release.

• To use the DiskSuite UFS file logging or diskset features, you must be
running the Solaris 2.4 or a later Solaris 2.x release.

• When using Sun Prestoserve™ on a system running DiskSuite, you should
not use Prestoserve features on metamirrors or their submirrors; or on
metatrans devices if the logging or master devices are mirrored.

• DiskSuite is compatible with the Online: Backup 2.0 unbundled product.

• The DiskSuite diskset feature is not supported on x86 systems.

191

Solstice DiskSuite Files A

Introduction
There are four system files associated with DiskSuite. These files are used by
the various programs. This appendix gives a description of each file, offers
instructions for creating these files, and provides some basic examples.

Three system files associated with DiskSuite are located in /etc/opt/SUNWmd .
These include:

• mddb.cf

• md.tab

• md.cf

The fourth system file associated with DiskSuite is located in /kernel/drv :

• md.conf

The mddb.cf File
The mddb.cf file keeps track of metadevice state database replica locations.
Each metadevice state database has a unique entry in this file. This file is
automatically generated. No action on the part of the user is required.

Warning – The mddb.cf file should never be edited or removed.

192 Solstice DiskSuite 4.0 Administration Guide—March 1995

A

When the layout of the state database locations change, two actions occur:

• An entry is made in the mddb.cf file that tells the locations of all the state
databases.

• The identical information is edited into the /etc/system file.

In the following example, there are two state database replicas located on each
of the devices entered in the mddb.cf file. On /dev/dsk/c0t0d0s0 , state
database replicas start on block 16 and on block 1050. The default size for state
database is 1034 blocks.

An example of a mddb.cf file follows:

The driver field indicates the device driver for the disk. The minor_t field
represents the device and the partition on which the state database replica
resides. The daddr_t field is the first block used by the state database replica.
The checksum field is used to insure the other fields are valid.

The md.tab File
The md.tab file is the input file used by metainit , metadb , and metahs .
Each metadevice and each hot spare pool may have unique entries in this file.

The standard metadevice entry name begins with d and is followed by a
number. By default, there are 128 unique metadevices in the range 0 to 127.

A metadevice may be a concatenation or a stripe of component partitions.

Metamirrors can also be defined in the md.tab file. A metamirror is a special
type of metadevice that is made up of one or more other metadevices. Each
metadevice within a metamirror is a called a submirror. Metamirrors have
names of the same form as other metadevices.

#metadevice database location file do not hand edit
#driver minor_t daddr_t checksum
 sd 27 16 -216
 sd 27 1050 -1250
 sd 83 16 -272
 sd 83 1050 -1306
 sd 19 16 -208
 sd 19 1050 -1242

Solstice DiskSuite Files 193

A

Hot spare pools may also be defined in the md.tab file. Hot spares can be
added as part of a hot spare pool. If a component is designated as a hot spare
it can not be used in a submirror or another metadevice.

Once metadevices are specified in the md.tab file, they can be activated using
the metainit command.

The md.tab file might not contain an entry for all initialized metadevices,
since metadevices can be initialized using metainit command line options.

An example md.tab file is shown below. The example shows numerous
metadevices, metamirrors, hot spares, and hot spare pools.

As shown in the example, the use of tabs, spaces, comments (using the pound
sign character) and continuation of lines (using the backslash character) are
accepted.

For additional information on setting up a md.tab file, refer to the Chapter 4,
“Concatenating and Striping,’’ Chapter 5, “Mirroring,’’ Chapter 6, “UFS
Logging,’’ Chapter 7, “Hot Spares,” and the md.tab(4) manual page.

DiskSuite configuration file

mirror of root
d1 -m d5 2
d5 1 1 /dev/dsk/c0t3d0s0
d6 1 1 /dev/dsk/c1t3d0s0

mirror of swap
d0 -m d7
d7 1 1 /dev/dsk/c0t3d0s1
d8 1 1 /dev/dsk/c1t3d0s1

mirror of /usr
geometric reads are selected
d9 -m d11 -g
d11 1 1 /dev/dsk/c0t3d0s6 -h hsp001
d12 1 1 /dev/dsk/c1t3d0s6 -h hsp002

define hot spare pools
hsp001 /dev/dsk/c1t1d0s2
hsp002 /dev/dsk/c0t1d0s2

194 Solstice DiskSuite 4.0 Administration Guide—March 1995

A

The md.cf File
The md.cf file is automatically updated whenever the configuration is
changed by the user. This is basically a backup file intended for disaster
recovery only.

Warning – The md.cf file should never be manually edited.

The output from this file is similar to that displayed when you run
metastat -p .

The md.conf File
The md.conf file is used by the metadisk driver when it is initially loaded. The
only modifiable field in this file is “nmd ,” which represents the number of
metadevices supported by the driver. An example of the default entry follows:

If you modify the nmd field, you must perform a reconfiguration boot
(boot -r) to build the metadevice names.

Warning – If you lower this number, any metadevice existing between the old
number and the new number may not be persistent.

The default nmd value is 128. Other values are supported up to 1024.

If you create a large number of metadevices, the state database replicas may
eventually be too small. If this happens, try adding larger replicas (with the -l
option and metadb command) and then removing the smaller replicas. For
example, if you create 1024 metadevices, database replicas should be increased
with to 2500 sectors.

Note – When you add larger numbers of metadevices, you may begin to see
some performance degradation while administering metadevices.

name=”md” parent=”pseudo” nmd=128 md_nsets=4;

Solstice DiskSuite Files 195

A

If you are increasing the number of metadevices to gain a larger namespace for
partitioning the types of devices within certain numeric ranges, but you are
creating fewer than 128 metadevices, you should not see any performance
degradation. In this case, you should not have to add larger replicas.

196 Solstice DiskSuite 4.0 Administration Guide—March 1995

A

197

Solstice DiskSuite Messages B

Introduction
This appendix contains the error and log messages displayed by the
metadevice utilities of DiskSuite 4.0.

Errors that deal with command usage and other simple error messages are not
documented in this appendix. All DiskSuite error messages are displayed in
the following format:

where:

• program name: is the name of the application name and version being used
(for example, DiskSuite 4.0).

• host: is the host name of the machine on which the error occured (for
example, blue).

• [optional1]: is an optional field containing contextual information for the
specific error displayed (ie. mountpoint or which daemon returned the
error).

• name: is the command name which generated the error message (for
example, metainit).

• [optional2]: is a second optional field containing additional contextual
information for the specific error displayed

• error message... is the error message itself (as listed in this appendix).

program name: host: [optional1:] name: [optional2]:
error message...

198 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

For the purpose of this appendix, only the final portion (error message...) of each
error message is listed.

The log messages listed near the back of this appendix are divided into three
categories:

• Notice log messages
• Warning log messages
• Panic log messages

Error Messages
The error messages displayed by DiskSuite are listed in alphabetical order
below. The message is preceded by some or all of the variables described in the
previous section. Other variables included in these messages indicate the
following:

• nodename is the name of a specific host.
• drivename is the name of a specific drive.
• metadevice is the number of a specific metadevice device or hot spare pool.
• setname is the name of a specific diskset.
• num is a number.

The hot spare that is being added or replaced is already in the hot spare pool.

The host which owns the diskset cannot be deleted from the diskset without
using the -f option to override this restriction. When the -f option is used, all
knowledge of the diskset is removed from the local host. Other hosts within
the diskset are unaware of this change.

add or replace failed, hot spare is already in use

administrator host nodename can't be deleted, other hosts still in
set. Use -f to override

Solstice DiskSuite Messages 199

B

The administrator host is the host which has executed the command. This host
cannot be deleted from the diskset if one or more host in the diskset are
unreachable.

The specified metatrans device already has an attached logging device.

The specified component is currently being used in the metadevice.

An attempt was made to detach the last submirror. The operation would result
in an unusable mirror. DiskSuite does not allow a metadetach to be
performed on the last submirror.

An attempt was made to take a submirror offline or detach a submirror that
contains the data. The other submirrors have erred components. If this
operation were allowed, the mirror would be unusable.

administrator host nodename deletion disallowed in one host admin
mode

already has log

already used in metadevice

attempt to detach last running submirror

attempt an operation on a submirror that has erred components

200 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

An attempt was made to take a submirror offline that is not in the OKAY state
or to online a submirror that is not in the offlined state. Use the -f option if
you really need to offline a submirror that is in a state other than OKAY.

An attempt was made to replace a component in a one-way mirror.

The user attempted to use the metaclear command on a metamirror that
contained submirrors that weren’t in the OKAY state (Needs maintenance
state). If the metamirror must be cleared, the submirrors must also be cleared.
Use -r (recursive) to clear all the submirrors, or use -f (force) to clear a
metamirror containing submirrors in the Needs maintenance state.

An attempt was made to attach a labeled submirror to an unlabeled mirror. A
labeled metadevice is a device whose first component starts at cylinder 0. To
prevent the submirror’s label from being corrupted, DiskSuite does not allow
labeled submirrors to be attached to unlabeled mirrors.

An attempt was made to replace or enable a component that did not exist in
the specified metadevice.

attempt an operation on a submirror in illegal state

attempt to replace a component on the last running submirror

attempted to clear mirror with submirror(s) in invalid state

can’t attach labeled submirror to unlabeled mirror

can’t find component in unit

Solstice DiskSuite Messages 201

B

An attempt was made to either metaonline(1M) , metaoffline(1M) , or
metadetach(1M) the submirror, dnum. The submirror is not currently
attached to the specified metamirror causing the command to fail.

An attempt was made to use the device dev in a new metadevice and it already
is used in the metadevice dnum.

The user has attempted to use device dev in a new metadevice which overlaps
an underlying device in the metadevice, dnum.

An attempt was made to delete the last database replica in a diskset. To remove
all database replicas from a diskset, delete all drives from the diskset.

An attempt was made to perform a metareplace -e (enable) on an
underlying device which is currently hot spared. Try enabling the hot spare
component instead.

can’t find submirror in mirror

can’t include device dev, it already exists in d num

can’t include device dev, it overlaps with a device in d num

cannot delete the last database replica in the diskset

cannot enable hotspared device

202 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

An attempt was made to modify the associated hot spare pool of a submirror,
but the submirror is currently using a hot spare contained within the pool.

The /etc/opt/SUNWmd/mddb.cf file has probably been corrupted or user-
edited. The checksum this file contains is currently invalid. To remedy this
situation: 1. Delete the mddb.cf file. 2. Delete a database replica. 3. Add back
the database replica.

An attempt was made to replace a component that contains the only copy of
the data. The other submirrors have erred components. If this operation were
allowed, the mirror would be unusable.

After a replica of the state database is first created, it is read to make sure it
was created correctly. If the data read does not equal the data written this
message is returned. This results from unreported device errors.

can’t modify hot spare pool, hot spare in use

checksum error in mddb.cf file

component in invalid state to replace \
 - replace “Maintenance” components first

data not returned correctly from disk

Solstice DiskSuite Messages 203

B

An attempt was made to use a component for a shared metadevice or shared
hot spare pool whose drive is not contained within the diskset.

An attempt was made to use a component for a local metadevice or local hot
spare pool whose drive is contained within the diskset. The drives in the local
diskset are all those which are not in any shared disksets.

A component (dev) in stripe num is smaller than the interlace size specified
with the -i flag in the md.tab file.

An attempt was made to put a database replica on a partition that is not large
enough to contain it.

An attempt was made to metainit a RAID device using the -k option. Either
some of the devices were not a part of this RAID device, or the devices were
specified in a different order than they were originally specified.

device not in set

device in shared set

device is too small

device size num is too small for metadevice database replica

devices were not RAIDed previously or are specified in the wrong
order

204 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

An attempt was made to add the drive drivename to a diskset which is already
contained in the diskset setname.

An attempt was made to add the drive drivename to a diskset, however a slice
on the drive is in use.

An attempt was made to add the drive drivename to a diskset, however, the
device name or device number is not identical on the local host and the
specified nodename; or the drive is not physically connected to both hosts.

An attempt was made to delete the drive drivename from a diskset and the
diskset does contain the specified drive.

The same drive (drivename) was specifed more than once in the command line.

drive drivename is in set setname

drive drivename is in use

drive drivename is not common with host nodename

drive drivename is not in set

drive drivename is specified more than once

Solstice DiskSuite Messages 205

B

The utilities and the drivers are from different versions of the DiskSuite
package. It is possible that either the last SUNWmd package added did not get
fully installed (try running pkgchk(1M)), or the system on which DiskSuite
was recently installed has not been rebooted since the installation.

Reservation of a majority of the drives was unsuccessful. It is possible that
more than one host was concurrently attempting to take ownership of the same
diskset. One host will succeed, and the other will receive this message.

The attempted growth of a submirror has been delayed until a mirror resync
finishes. The metamirror will be grown automatically upon completion of the
resync operation.

An attempt was made to use a component (ie. for a hot spare) which contains
a database replica.

driver version mismatch

failed to take ownership of a majority of the drives

growing of metadevice delayed

has a metadevice database replica

206 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

An attempt was made to add a host nodename to a diskset which has a
conflicting setnumber. Either create a new diskset with both hosts in the diskset,
or delete one of the conflicting disksets.

An attempt was made to add a host nodename to a diskset which has a different
diskset using the same name. Delete one of the disksets and recreate the
diskset using a different name.

An attempt was made to delete a host or drive from a set, but the host
nodename has an inconsistent view of the diskset. This host should probably be
forcibly (-f) deleted.

An attempt was made to add a host nodename which already exists within the
diskset.

host nodename already has a set numbered setnumber

host nodename already has set

host nodename does not have set

host nodename is already in the set

Solstice DiskSuite Messages 207

B

Either an attempt was made to perform an operation on a diskset at the same
time as someone else, or a previous operation dropped core and the
rpc.metad daemon should be restarted on host nodename.

An attempt was made to delete the host nodename from a diskset which does
not contain the host.

The same host (nodename) was specifed more than once in the command line.

The name used for the host nodename is longer than DiskSuite accepts.

An attempt was made to perform an operation on the hot spare dev and the
specified hot spare does not exist.

host nodename is modifying set - try later or restart rpc.metad

host nodename is not in the set

host nodename is specified more than once

host name nodename is too long

hotspare doesn’t exist

208 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

An attempt was made to perform an operation on the hot spare dev and the
specified hot spare is in use.

An attempt was made to enable a hot spare that is not in the broken state.

An attempt to create a hot spare record in the metadevice state database failed.
Run metadb -i to determine the cause of the failure.

An attempt to create a hot spare pool record in the metadevice state database
failed. Run metadb -i to determine the cause of the failure.

An attempt was made to delete the hot spare pool hsp nnn before removing all
the hot spares associated with the specified hot spare pool.

hotspare in use

hotspare isn’t broken, can’t enable

hotspare database create failure

hotspare pool database create failure

hotspare pool is busy

Solstice DiskSuite Messages 209

B

An attempt was made to delete the hot spare pool, hsp nnn, that is associated
with a metadevice.

An attempt was made to metaclear(1M) a hotspare pool without first
removing its association with metadevices.

An attempt was made to create a hot spare pool which already exists.

An attempt was made to use an option which is not valid in the context of the
specified metadevice or command.

An attempt was made to replace or enable a component of a mirror in the “Last
Erred” state when other components are in the “Erred” state. You must first
replace or enable all of the components in the “Erred” state.

hotspare pool is referenced

hotspare pool in use

hotspare pool is already setup

illegal option

in Last Erred state, errored components must be replaced

210 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

An invalid RAID device configuration entry was supplied to metainit , either
from the command line or via the md.tab file.

An attempt was made to use an argument which is not valid in the context of
the specified metadevice or command.

An invalid RAID configuration entry was supplied to metainit , either from
the command line or via the md.tab file. Specifically, an invalid argument was
provided with the -o option.

An unsupported interlace value follows the –i option on a metadevice
configuration line. The –i specifies the interlace size. The interlace size is a
number (8, 16, 32) followed by either k for kilobytes, m for megabytes, or b for
blocks. The units can be either uppercase or lowercase. This message will also
appear if the interlace size specified is greater than 100 Mbytes.

invalid RAID configuration

invalid argument

invalid column count

invalid interlace

Solstice DiskSuite Messages 211

B

An invalid mirror configuration entry was supplied to metainit , either from
the command line or via the md.tab file.

An attempt was made to use a pass number for a mirror that is within the 0 - 9
range.

An invalid stripe configuration entry was supplied to metainit , either from
the command line or via the md.tab file.

An invalid trans configuration entry was supplied to metainit , either from
the command line or via the md.tab file.

An attempt was made to change the write option on a mirror using an invalid
option. The legal strings are “serial” and “parallel.”

invalid mirror configuration

invalid pass number

invalid stripe configuration

invalid trans configuration

invalid write option

212 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

The metadevice configuration entry in the md.tab file has a -h hsp nnn and a
metainit has not been performed on the hot spare pool.

The user has specified both the -r and -g options on the same metamirror.

The metadevice (submirror) passed to metattach is already a submirror. The
metadevice may already be a submirror for another metamirror.

The device dev being used is a metadevice and it should be a physical
component.

The device dev in the metadevice configuration has a file system mounted on it.

invalid hotspare pool

invalid read option

invalid unit

is a metadevice

is mounted on

Solstice DiskSuite Messages 213

B

An attempt was made to add a host to a diskset without using the nodename
found in the /etc/nodename file.

The device in the metadevice configuration is currently being used as a swap
device.

An attempt was made to add more nodenames than DiskSuite allows in a
diskset.

An attempt was made to add a component to a RAID device whose
maxtransfer is smaller than the other components in the RAID device.

An attempt was made to metaclear(1M) a submirror without first running
metaclear on the metamirror in which it is contained.

hostname is not a nodename, but a network name

is swapped on

maximum number of nodenames exceeded

maxtransfer is too small

metadevice in use

214 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

The metadevice (submirror) passed to metattach is already open (in-use) as a
metadevice.

An attempt was made to add more databases (num1) than the maximum
allowed (num2).

An attempt to create a metadevice record in the metadevice state database
failed. Run metadb -a to add more database replicas.

An attempt to create a metadevice record in the metadevice state database
failed. Run metadb -a (and -s) to add larger database replicas. Then delete
the smaller replicas.

An attempt was made to use a component (ie. for a hot spare) which contains
a database replica.

metadevice is open

num1 metadevice database replicas is too many;the maximum is num2

metadevice database has too few replicas, can’t create new
records

metadevice database is full, can’t create new records

metadevice database replica exists on device

Solstice DiskSuite Messages 215

B

An attempt was made to attach more than the supported number of
submirrors. The maximum supported number of submirrors is three.

An attempt was made to perform an operation on a diskset or a shared
metadevice on a host which is not the owner of the diskset.

An attempt was made to delete database replicas, reducing the number of
database replicas to a number less than two. To override this restriction, use
the -f option.

An attempt was made to replace or enable a component of a mirror in the “Last
Erred” state when other components are in the “Erred” state. You must first
replace or enable all of the components in the “Erred” state.

An attempt was made to create more disksets than DiskSuite allows.

mirror has maximum number of submirrors

must be owner of the set for this command

must have at least 2 databases (-f overrides)

must replace errored component first

no available set numbers

216 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

An metahs operation was attempted using the “all ” argument when no hot
spare pools meet the criteria for the operation.

An attempt was made to delete non-existent database replicas.

An attempt was made to perform an operation on a diskset or a shared
metadevice using a non-existent set name.

An attempt was made to create a diskset on the local host without adding the
name of the local host to the diskset.

The component name specified is not a disk device name. For example, a CD-
ROM device doesn’t have the characteristics of a disk device.

no hotspare pools found

no metadevice database replica on device

no such set

nodename of host nodename creating the set must be included

not a disk device

Solstice DiskSuite Messages 217

B

An invalid stripe configuration entry was supplied to metainit , either from
the command line or via the md.tab file.

Invalid stripe configuration entry was supplied to metainit , either from the
command line or via the md.tab file.

Invalid mirror configuration entry was supplied to metainit , either from the
command line or via the md.tab file.

An attempt was made to create a local metadevice or local hot spare pool with
a component whose drive is contained in a shared diskset.

The specified device is not a metadevice. DiskSuite expected a metadevice
name.

not enough components specified

not enough stripes specified

not enough submirrors specified

not in local set

not a metadevice

218 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

An attempt was made to add a database replica for a shared diskset on a
component other than Slice 7.

An attempt was made to perform an operation on a diskset or a shared
metadevice on a host which is not the owner of the diskset.

The initialization of a RAID device has failed. Use the metaclear command to
clear the RAID device.

An operation was attempted on a component or submirror that contains the
only copy of the data. The other submirrors have erred components. If this
operation were allowed, the mirror would be unusable.

Due to the components within the RAID device being in the “Maintenance” or
“Last Erred” state, the force flag (-f) is required to complete the operation.

only slice 7 is usable for a diskset database replica

only the current owner nodename may operate on this set

only valid action is metaclear

operation would result in no readable submirrors

operation requires -f (force) flag

Solstice DiskSuite Messages 219

B

Overlapping slices are not allowed in metadevices or hot spare pools.

An attempt to use metareplace failed because the new component is too
small to replace the old component.

An attempt was made to add a currently reserved drive to a diskset.

The mirror operation failed because a resync is being performed on the
specified metamirror. Retry this operation when the resync is finished.

The diskset setname is out of data with respect to the other host’s view. This
error should occur only after one-host administration.

overlaps with device in metadevice

replace failure, new component is too small

reserved by another host

resync in progress

set setname is out of date - cleaning up - take failed

220 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

Either an operation on a diskset is currently being performed by another host,
or an operation on a diskset was aborted. In the latter case, rpc.metad should
be killed.

An attempt was made to use illegal characters to name a diskset.

The diskset name selected is already in use on host nodename or contains
characters not considered valid in a diskset name.

An attempt was made to create a diskset using more characters in the diskset
name than DiskSuite will accept.

The diskset is locked and the user does not have the key. This may require
killing rpc.metad .

set lock failed - bad key

set name contains invalid characters

set name is in-use or invalid on host nodename

set name is too long

set unlock failed - bad key

Solstice DiskSuite Messages 221

B

The diskset is incomplete. Kill rpc.metad on all hosts and then retry the
operation.

An attempt was made to use Slice 7 in a shared metadevice or shared hot spare
pool. Slice 7 is reserved for database replicas only.

The metadevice passed to metattach is smaller than the metamirror to which
it is being attached.

The user attempted to modify the configuration of a metadevice when at least
half the metadevice state database replicas were not accessible.

An invalid metadevice confguration entry was provided to metainit from the
command line or via the md.tab file.

side information missing for host nodename

slice 7 is not usable as a metadevice component

submirror too small to attach

stale databases

syntax error

222 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

To create any metadevices or hot spare pools, database replicas must exist. See
metadb(1M) for information on the creation of database replicas.

An attempt was made to delete the last remaining host from a diskset while
drives still exist in the diskset.

The user requested that a metadevice dnum be initialized when dnum is
already set up.

An attempt was made to perform a concat/stripe specific operation on a
metadevice that is not a concat/stripe.

An attempt was made to perform a mirror specific operation on a metadevice
that is not a mirror.

there are no existing databases

unable to delete set, it still has drives

unit already set up

unit is not a concat/stripe

unit is not a mirror

Solstice DiskSuite Messages 223

B

An attempt was made to perform a RAID specific operation on a metadevice
that is not a RAID device.

An attempt was made to perform a metatrans specific operation on a
metadevice that is not a metatrans device.

An attempt was made to perform an operation on a non-existent metadevice.

An attempt was made to perform an operation on a non-existent metadevice.

Some other metadevice utility is currently in progress and the lock cannot be
accessed at this time. DiskSuite utilities are serialized using the
/tmp/.mdlock file as a lock. If you determine that there are no other utilities
currently running, you may want to remove this lock file.

unit is not a RAID

unit is not a trans

unit not found

unit not set up

waiting on /tmp/.mdlock

224 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

Log Messages
The log messages displayed by DiskSuite are listed in alphabetical order below.
Each message is always preceded with “md: ” The variables in these messages
indicate the following:

• dev is a device name.
• dnum is a metadevice name.
• num is a number.
• state is a metatrans device state
• trans is either “logging” or “master”

Note – When the initial portion of a message begins with a variable, the
message is alphabetized by the first word following the variable.

Notice Log Messages

The named misc module is not loadable. It is possibly missing, or something
else has been copied over it.

The set command in /etc/system for the mddb.bootlist <number> is not in
the correct format. Run metadb -p to place the correct set commands into the
/etc/system file.

The first device name listed has been hot spare replaced with the second device
name listed.

Could not load misc / dev

db: Parsing error on ‘ dev’

dnum: Hotspared device dev with dev

Solstice DiskSuite Messages 225

B

The first device number listed has been hot spare replaced with the second
device number listed.

Memory could not be allocated in the prop_op entry point.

dnum: Hotspared device dev(num, num) with dev(num, num)

dnum: no mem for property dev

226 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

Warning Log Messages

The underlying named driver module is not loadable (for example, sd , id , xy ,
or a third-party driver). This could indicate that the driver module has been
removed.

The named hot spare is not openable, or the underlying driver is not loadable.

A read or write error has occurred on the specified metadevice at the specified
device name. This happens if any read or write errors occur on a metadevice.

A read or write error has occurred on the specified metadevice at the specified
device number. This happens if any read or write errors occur on a metadevice.

dnum: Cannot load dev driver

Open error of hotspare dev
Open error of hotspare dev(num, num)

dnum: read error on dev
dnum: write error on dev

dnum: read error on dev(num, num)
dnum: write error on dev(num, num)

Solstice DiskSuite Messages 227

B

A read or write error has occurred on the specified metadevice at the specified
device number. This happens if any read or write errors occur on a metadevice.

These messages occur when there have been device errors on components
where the state database replicas reside. These errors only occur when more
than half of the replicas have had errors returned to them. For example, if you
have three components with state database replicas and two of the components
report errors, than these errors may occur. The state database commit or delete
is retried periodically. If the replica is added, the commit or delete will finish
and the system will be operational. Otherwise, the system will time out and
panic.

This message occurs when there are not enough usable replicas for the state
database to be able to update records in the database. All accesses to the
metadevice driver will fail. To fix this problem, add more replicas or delete
unaccessible replicas.

dnum: read error on d num
dnum: write error on d num

State database commit failed
State database delete failed

State database is stale

228 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

A read or write error has occurred on the specified logging or master device at
the specified metadevice. This happens if any read or write errors occur on a
logging or master device.

A read or write error has occurred on the specified logging or master device at
the specified device name. This happens if any read or write errors occur on a
logging or master device.

A read or write error has occurred on the specified logging or master device at
the specified device number. This happens if any read or write errors occur on
a logging or master device.

The logging device and its associated master device(s) have changed to the
specified state(s).

trans device: read error on d num
trans device: write error on d num

trans device: read error on dev
trans device: write error on dev

trans device: read error on dev(num, num)
trans device: write error on dev(num, num)

logging device: d num changed state to state
logging device: dev changed state to state
logging device: dev(num, num) changed state to state

Solstice DiskSuite Messages 229

B

Panic Log Messages

A failed metadevice state database commit or deletion has been retried the
default 100 times.

A metadevice is being opened/closed with an unknown open type (OTYP).

State database problem

dnum: Unknown close type
dnum: Unknown open type

230 Solstice DiskSuite 4.0 Administration Guide—March 1995

B

231

Recovery From Failed Boots C

Introduction
Because DiskSuite enables you to mirror root , swap, and /usr , special
problems can arise when you are booting your system, either if a hardware
failure occurs or through operator error. This appendix presents examples of
such problems and provides possible solutions.

Improper /etc/vfstab Entries
A common problem that prevents the system from booting is failing to make
proper entries in the /etc/vfstab file. While this problem may seem
disastrous, the solution is actually fairly simple. The following example shows
how you can edit the /etc/vfstab file to recover from a failed boot.

If you have failed to make the proper entry in the /etc/vfstab file when
mirroring root , the machine will appear at first to be booting properly. In the
following example, root is mirrored with a two-way mirror. The root entry in
/etc/vfstab has somehow reverted back to the original component of the
file system, but the information in /etc/system still shows booting to be off
of a metadevice. The most likely reason for this to occur is that the metaroot
command was not used to maintain /etc/system and /etc/vfstab , or an
old copy of /etc/vfstab was copied back.

To remedy this situation, you need to edit /etc/vfstab while in single-user
mode.

232 Solstice DiskSuite 4.0 Administration Guide—March 1995

C

The incorrect /etc/vfstab file would look something like the following:

Because of the errors, you automatically go into single-user mode when the
machine is booted:

At this point, root and /usr are mounted read-only. Follow these steps:

#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot
options
#
/dev/dsk/c0t3d0s0 /dev/rdsk/c0t3d0s0 / ufs 1 no —
/dev/dsk/c0t3d0s1 — — swap — no —
/dev/dsk/c0t3d0s6 /dev/rdsk/c0t3d0s6 /usr ufs 2 no —
#
/proc — /proc proc — no —
fd — /dev/fd fd — no —
swap — /tmp tmpfs— yes —

ok boot
Booting from: sd(0,0,0)
SunOS Release 5.1 Version Generic [UNIX(R) System V Release 4.0]
Copyright (c) 1983-1992, Sun Microsystems, Inc.
...
Hostname: demo
dump on /dev/dsk/c0t3d0s1 size 34816K
mount: /dev/dsk/c0t3d0s0 is not this fstype.
setmnt: Cannot open /etc/mnttab for writing

INIT: Cannot create /var/adm/utmp or /var/adm/utmpx

INIT: failed write of utmpx entry:" "

INIT: failed write of utmpx entry:" "

INIT: SINGLE USER MODE

Type Ctrl-d to proceed with normal startup,
(or give root password for system maintenance):
Entering System Maintenance Mode

SunOS Release 5.1 Version Generic [UNIX(R) System V Release 4.0]

Recovery From Failed Boots 233

C

1. Run fsck and remount root read/write so you can edit the /etc/vfstab
file.

Note – Be careful to use the correct metadevice for root.

2. Edit the /etc/vfstab file to contain the correct metadevice entries.

The root entry in the /etc/vfstab file should be edited to appear as
follows:

fsck /dev/md/rdsk/d0
** /dev/md/rdsk/d0
** Currently Mounted on /
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
2274 files, 11815 used, 10302 free (158 frags, 1268 blocks, 0.7%
fragmentation)

mount -o rw,remount /dev/md/dsk/d0 /
mount: warning: cannot lock temp file </etc/.mnt.lock>

vi /etc/vfstab

#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot
options
#
/dev/md/dsk/d0 /dev/md/rdsk/d0 / ufs 1 no —
/dev/dsk/c0t3d0s1 — — swap — no —
/dev/dsk/c0t3d0s6 /dev/rdsk/c0t3d0s6 /usr ufs 2 no —
#
/proc — /proc proc — no —
fd — /dev/fd fd — no —
swap — /tmp tmpfs— yes —

234 Solstice DiskSuite 4.0 Administration Guide—March 1995

C

3. Reboot the machine with the reboot command.

Stale Metadevice Database
In this example, a disk which contains half of the database replicas and
submirrors for root , swap, and /usr fails. Because half of the replicas are
missing, the system cannot be rebooted.

Solving this problem involves::

1. Deleting the stale replicas and reboot

2. Repairing the disk

3. Adding back the database replicas

4. Re-enabling the broken submirrors

To remedy the example situation, you would perform the following steps:

1. Boot the machine to determine which replicas are down.

reboot

ok boot
Booting from: sd(0,0,0)
...
SunOS Release 5.1 Version Generic [UNIX(R) System V Release 4.0]
Copyright (c) 1983-1992, Sun Microsystems, Inc.
...
WARNING: md: State database is stale
...
metainit: stale databases
Insufficient metadevice database replicas
located. Use metadb to delete databases which
are no longer in existence. Exit the shell
when done to continue the boot process.

Type Ctrl-d to proceed with normal startup,
(or give root password for system maintenance):
Entering System Maintenance Mode

SunOS Release 5.1 Version Generic [UNIX(R) System V Release 4.0]

Recovery From Failed Boots 235

C

2. Use the metadb command to look at the database.

/usr/opt/SUNWmd/sbin/metadb -i
 flags first blk block count
 a m p lu 16 1034 /dev/dsk/c0t3d0s3
 a p l 1050 1034 /dev/dsk/c0t3d0s3
 M p unknown unknown /dev/dsk/c1t2d0s3
 M p unknown unknown /dev/dsk/c1t2d0s3
 o - replica active prior to last mddb configuration change
 u - replica is up to date
 l - locator for this replica was read successfully
 c - replica's location was in /etc/opt/SUNWmd/mddb.cf
 p - replica's location was patched in kernel
 m - replica is master, this is replica selected as input
 W - replica has device write errors
 a - replica is active, commits are occurring to this replica
 M - replica had problem with master blocks
 D - replica had problem with data blocks
 F - replica had format problems
 S - replica is too small to hold current data base
 R - replica had device read errors

236 Solstice DiskSuite 4.0 Administration Guide—March 1995

C

3. Delete the stale database replicas using the -d option to the metadb
command.
Since, at this point, the root file system is read-only, ignore the mddb.cf
error messages:

4. Reboot the system.

/usr/opt/SUNWmd/sbin/metadb -d /dev/dsk/c1t2d0s3
metadb: stale databases
metadb: /etc/opt/SUNWmd/mddb.cf.new: Read-only file system
metadb: databases installed but kernel not patched
 and new mddb.cf file not generated
metadb: could not open temp mddb.cf
Usage: metadb [-s setname] -a [options] mddbnnn
 metadb [-s setname] -a [options] device ...
 metadb [-s setname] -d [options] mddbnnn
 metadb [-s setname] -d [options] device ...
 metadb [-s setname] -i
 metadb -p [options] [mddb.cf-file]
options:
-c count number of replicas (for use with -a only)
-f force adding or deleting of replicas
-k filename alternate /etc/system file
-l length specify size of replica (for use with -a only)
/usr/opt/SUNWmd/sbin/metadb
 flags first blk block count
 a m p lu 16 1034 /dev/dsk/c0t3d0s3
 a p l 1050 1034 /dev/dsk/c0t3d0s3

reboot
rebooting...

Recovery From Failed Boots 237

C

5. Once you have a replacement disk, halt the system, replace the failed
disk, and once again, reboot the system. Use the format command to
partition the disk as it was before the failure.

6. Use the metadb command to add back the database replicas and to
determine that the replicas are correct.

7. Use the metareplace command to re-enable the submirrors.

The submirrors will now resync.

halt
...
boot
...
format /dev/rdsk/c1t2d0s0
...

/usr/opt/SUNWmd/sbin/metadb -c 2 -a /dev/dsk/c1t2d0s3
/usr/opt/SUNWmd/sbin/metadb
 flags first blk block count
 a m p luo 16 1034 /dev/dsk/c0t3d0s3
 a p luo 1050 1034 /dev/dsk/c0t3d0s3
 a u 16 1034 /dev/dsk/c1t2d0s3
 a u 1050 1034 /dev/dsk/c1t2d0s3

/usr/opt/SUNWmd/sbin/metareplace -e d0 /dev/dsk/c1t2d0s0
Device /dev/dsk/c1t2d0s0 is enabled

/usr/opt/SUNWmd/sbin/metareplace -e d1 /dev/dsk/c1t2d0s1
Device /dev/dsk/c1t2d0s1 is enabled

/usr/opt/SUNWmd/sbin/metareplace -e d2 /dev/dsk/c1t2d0s6
Device /dev/dsk/c1t2d0s6 is enabled

238 Solstice DiskSuite 4.0 Administration Guide—March 1995

C

Boot Device Fails
If your boot device fails, you’ll need to set up an alternate boot device. In the
following example, the boot device containing two of the six database replicas
and the root , swap, and /usr submirrors fails. The basic procedure is to
repair the disk, boot from another root submirror, and then restore the
database and mirrors to their original state.

Initially, when the boot device fails, you’ll see a message similar to the
following. This message may differ among various architectures.

When you see this message, it would be a very good idea to make a note of the
device. Then, follow these steps:

1. Boot from another root submirror.
Since only two of the six database replicas in this example are in error, you
can still boot. If this were not the case, you would need to delete the
database replicas in single-user mode. This procedure is described in “Stale
Metadevice Database” on page 234.

Note – Having database replicas on at least three disks would make this
procedure unnecessary in the case of a single disk failure.

Booting from: sd(0,0,0)/kernel/unix
The selected SCSI device is not responding
Can’t open boot device
...

ok boot sd(0,2,0)
Booting from: sd(0,2,0)
...
Copyright (c) 1983-1992, Sun Microsystems, Inc.
Hostname: demo
...
demo console login: root
Password:
Last login: Wed Dec 16 13:15:42 on console
SunOS Release 5.1 Version Generic [UNIX(R) System V Release 4.0]
...
#

Recovery From Failed Boots 239

C

2. Use the metadb command to determine that two database replicas have
failed.

3. Use the metastat command to determine that half of the root , swap, and
/usr mirrors have failed.

/usr/opt/SUNWmd/sbin/metadb
 flags first blk block count
 M p unknown unknown /dev/dsk/c0t3d0s3
 M p unknown unknown /dev/dsk/c0t3d0s3
 a m p luo 16 1034 /dev/dsk/c0t2d0s3
 a p luo 1050 1034 /dev/dsk/c0t2d0s3
 a p luo 16 1034 /dev/dsk/c0t1d0s3
 a p luo 1050 1034 /dev/dsk/c0t1d0s3

/usr/opt/SUNWmd/sbin/metastat
d0: Mirror
 Submirror 0: d10
 State: Needs maintenance
 Submirror 1: d20
 State: Okay
 Pass: 1
 Read option: roundrobin (default)
 Write option: parallel (default)
 Size: 47628 blocks

d10: Submirror of d0
 State: Needs maintenance
 Invoke: "metareplace d0 /dev/dsk/c0t3d0s0 <new device>"
 Size: 47628 blocks
 Stripe 0:

Device Start Block Dbase State Hot Spare
/dev/dsk/c0t3d0s0 0 No Maintenance

d20: Submirror of d0
 State: Okay
 Size: 47628 blocks
 Stripe 0:

Device Start Block Dbase State Hot Spare
/dev/dsk/c0t2d0s0 0 No Okay

240 Solstice DiskSuite 4.0 Administration Guide—March 1995

C

(continued from previous page)

d1: Mirror
 Submirror 0: d11
 State: Needs maintenance
 Submirror 1: d21
 State: Okay
 Pass: 2
 Read option: roundrobin (default)
 Write option: parallel (default)
 Size: 69660 blocks

d11: Submirror of d1
 State: Needs maintenance
 Invoke: "metareplace d1 /dev/dsk/c0t3d0s1 <new device>"
 Size: 69660 blocks
 Stripe 0:

Device Start Block Dbase State Hot Spare
/dev/dsk/c0t3d0s1 0 No Maintenance

d21: Submirror of d1
 State: Okay
 Size: 69660 blocks
 Stripe 0:

Device Start Block Dbase State Hot Spare
/dev/dsk/c0t2d0s1 0 No Okay

d2: Mirror
 Submirror 0: d12
 State: Needs maintenance
 Submirror 1: d22
 State: Okay
 Pass: 3
 Read option: roundrobin (default)
 Write option: parallel (default)
 Size: 286740 blocks

Recovery From Failed Boots 241

C

(continued from previous page)

d2: Mirror
 Submirror 0: d12
 State: Needs maintenance
 Submirror 1: d22
 State: Okay
 Pass: 3
 Read option: roundrobin (default)
 Write option: parallel (default)
 Size: 286740 blocks

d12: Submirror of d2
 State: Needs maintenance
 Invoke: "metareplace d2 /dev/dsk/c0t3d0s6 <new device>"
 Size: 286740 blocks
 Stripe 0:

Device Start Block Dbase State Hot Spare
/dev/dsk/c0t3d0s6 0 No Maintenance

d22: Submirror of d2
 State: Okay
 Size: 286740 blocks
 Stripe 0:

Device Start Block Dbase State Hot Spare
/dev/dsk/c0t2d0s6 0 No Okay

242 Solstice DiskSuite 4.0 Administration Guide—March 1995

C

4. Halt the system, repair the disk, and reboot.
Note that you must reboot from the other half of the root mirror.

halt
...
Halted
...
ok boot sd(0,2,0)
Booting from: sd(0,2,0)
...
SunOS Release 5.1 Version Generic [UNIX(R) System V Release 4.0]
Copyright (c) 1983-1992, Sun Microsystems, Inc.
...
Hostname: demo
The system is coming up. Please wait.
...
The system is ready.

demo console login: root
Password:
Last login: Wed Dec 16 13:36:29 on console
SunOS Release 5.1 Version Generic [UNIX(R) System V Release 4.0]
#

Recovery From Failed Boots 243

C

5. Use the metadb command to delete the failed replicas and then add them
back.

6. Use the metareplace command to re-enable the submirrors.

After some time, the resyncs will complete. You can now return to booting
from the original device.

/usr/opt/SUNWmd/sbin/metadb
 flags first blk block count
 M p unknown unknown /dev/dsk/c0t3d0s3
 M p unknown unknown /dev/dsk/c0t3d0s3
 a m p luo 16 1034 /dev/dsk/c0t2d0s3
 a p luo 1050 1034 /dev/dsk/c0t2d0s3
 a p luo 16 1034 /dev/dsk/c0t1d0s3
 a p luo 1050 1034 /dev/dsk/c0t1d0s3
/usr/optSUNWmd/sbin/metadb -d c0t3d0s3
/usr/optSUNWmd/sbin/metadb -c2 -a /dev/dsk/c0t3d0s3
/usr/optSUNWmd/sbin/metadb
 flags first blk block count
 a u 16 1034 /dev/dsk/c0t3d0s3
 a u 1050 1034 /dev/dsk/c0t3d0s3
 a m p luo 16 1034 /dev/dsk/c0t2d0s3
 a p luo 1050 1034 /dev/dsk/c0t2d0s3
 a p luo 16 1034 /dev/dsk/c0t1d0s3
 a p luo 1050 1034 /dev/dsk/c0t1d0s3

/usr/opt/SUNWmd/sbin/metareplace -e d0 /dev/dsk/c0t3d0s0
Device /dev/dsk/c0t3d0s0 is enabled

/usr/opt/SUNWmd/sbin/metareplace -e d1 /dev/dsk/c0t3d0s1
Device /dev/dsk/c0t3d0s1 is enabled

/usr/opt/SUNWmd/sbin/metareplace -e d2 /dev/dsk/c0t3d0s6
Device /dev/dsk/c0t3d0s6 is enabled

244 Solstice DiskSuite 4.0 Administration Guide—March 1995

C

At this point, running the metastat command would display the following:

/usr/opt/SUNWmd/sbin/metastat
d0: Mirror
 Submirror 0: d10
 State: Okay
 Submirror 1: d20
 State: Okay
 Pass: 1
 Read option: roundrobin (default)
 Write option: parallel (default)
 Size: 47628 blocks

d10: Submirror of d0
 State: Okay
 Size: 47628 blocks
 Stripe 0:

Device Start Block Dbase State Hot Spare
/dev/dsk/c0t3d0s0 0 No Okay

d20: Submirror of d0
 State: Okay
 Size: 47628 blocks
 Stripe 0:

Device Start Block Dbase State Hot Spare
/dev/dsk/c0t2d0s0 0 No Okay

d1: Mirror
 Submirror 0: d11
 State: Okay
 Submirror 1: d21
 State: Okay
 Pass: 2
 Read option: roundrobin (default)
 Write option: parallel (default)
 Size: 69660 blocks

Recovery From Failed Boots 245

C

(continued from previous page)

d11: Submirror of d1
 State: Okay
 Size: 69660 blocks
 Stripe 0:

Device Start Block Dbase State Hot Spare
/dev/dsk/c0t3d0s1 0 No Okay

d21: Submirror of d1
 State: Okay
 Size: 69660 blocks
 Stripe 0:

Device Start Block Dbase State Hot Spare
/dev/dsk/c0t2d0s1 0 No Okay

d2: Mirror
 Submirror 0: d12
 State: Okay
 Submirror 1: d22
 State: Okay
 Pass: 3
 Read option: roundrobin (default)
 Write option: parallel (default)
 Size: 286740 blocks

d12: Submirror of d2
 State: Okay
 Size: 286740 blocks
 Stripe 0:

Device Start Block Dbase State Hot Spare
/dev/dsk/c0t3d0s6 0 No Okay

d22: Submirror of d2
 State: Okay
 Size: 286740 blocks
 Stripe 0:

Device Start Block Dbase State Hot Spare
/dev/dsk/c0t2d0s6 0 No Okay

246 Solstice DiskSuite 4.0 Administration Guide—March 1995

C

247

Upgrading to Other Solaris Versions D

Introduction
Upgrading to later versions of the Solaris environment while using
metadevices requires steps not currently outlined in the Solaris documentation.
The current Solaris upgrade procedure is incompatible with DiskSuite. The
following supplemental procedure is provided as an alternative to completely
reinstalling the Solaris and DiskSuite packages.

Note – You must have the media to upgrade Solaris (and DiskSuite if
necessary).

Upgrading Solaris With Solstice DiskSuite

Warning – Before you begin this procedure, back up all file systems. See the
ufsdump(1M) manual page for details.

1. Repair any mirrors that have errors.

2. Save /etc/vfstab for later use.

248 Solstice DiskSuite 4.0 Administration Guide—March 1995

D

3. Clear any metatrans devices that may be used during the Solaris upgrade
(for example, /usr , /var , and /opt).
See Chapter 6, “UFS Logging” for information on clearing (removing
logging from) metatrans devices. If you are uncertain which metatrans
devices should be cleared, clear all metatrans devices.

4. Comment out file systems in /etc/vfstab mounted on metadevices that
are not simple metadevices or simple mirrors.
A simple metadevice is composed of a single component with a Start
Block of 0. A simple mirror is composed of submirrors, all of which are
simple metadevices.

5. Convert the remaining (simple) mirrors to one-way mirrors with the
metadetach command.
Upgrade will be performed on a single submirror of each mirror. The other
submirrors will be synced up with metattach after the upgrade.

6. If root is mounted on a metadevice or mirror, set the root file system to
be mounted on the underlying component of the metadevice or the
underlying component of the remaining attached submirror.
Use the metaroot command to do this safely.

7. Edit the /etc/vfstab file to change any file systems or swap devices still
mounted on metadevices or mirrors after Step 3.
Mount the file systems on the underlying component of the metadevices or
the underlying component of the remaining attached submirrors

8. Remove symbolic links to the DiskSuite startup files so that it is no
longer initialized at boot time.

These links will be added back later by reinstalling DiskSuite after the
Solaris upgrade.

9. Halt the machine and upgrade Solaris, then reboot the machine.

10. Reinstall DiskSuite, then reboot the machine.
This will re-establish the symbolic links removed in Step 7.

demo# rm /etc/rcS.d/S35SUNWmd.init /etc/rc2.d/S95SUNWmd.sync

Upgrading to Other Solaris Versions 249

D

Note – Make certain that the version of Solaris you are installing is compatible
with DiskSuite 4.0.

11. If root was originally mounted on a metadevice or mirror, set the root
file system to be mounted back on the original metadevice or mirror.
Use the metaroot command to do this safely.

12. Edit the /etc/vfstab file to change any file systems or swap devices
edited in Step 6 to be mounted back on their original metadevice or
mirror.

13. Edit the /etc/vfstab file to uncomment the file systems commented out
in Step 3.

14. Reboot the machine to remount the file systems.

15. Use the metattach command to reattach and resync any submirrors
broken off in Step 4.

16. Recreate the cleared metatrans devices. See Chapter 6, “UFS Logging” for
information on creating metatrans devices.

250 Solstice DiskSuite 4.0 Administration Guide—March 1995

D

251

Using Solstice DiskSuite 4.0 with
the SPARCstorage Array 100 E

Solstice DiskSuite 4.0 is fully compatible with SPARCstorage Array 100
(SSA-100). In most situations, using SSA-100 disks with DiskSuite is just like
using any other disks. There are, however, some characteristics of the SSA-100
of which DiskSuite users should be aware. The following sections detail these
characteristics and explain how DiskSuite should be configured and used to
take advantage of the SSA-100. This appendix assumes that you have Version
2.0 of the SPARCstorage Array software.

For situations not covered in this appendix, please refer to the SPARCstorage
Array User's Guide for more information.

Installation
The SSA-100 should be installed according to the instructions in the SSA User's
Guide. In particular, when using Solaris 2.4 or earlier releases, the SSA drivers
contained in the SSA software distribution must be installed prior to using the
SSA-100 with DiskSuite. The SSA Volume Manager need not be installed if you
are only using DiskSuite.

252 Solstice DiskSuite 4.0 Administration Guide—March 1995

E

SSA Specific Operations
Solstice DiskSuite 4.0 does not currently feature a graphical interface for
accessing the SSA specific operations. To use these operations, you must use
the SSA command line interface (CLI) provided with the SSA software
distribution. Please refer to the sections describing SSA specific CLI operations
in the SSA User's Guide for instructions on how to use these commands.

Device Naming
DiskSuite accesses SSA-100 disks exactly like any other disks, with one
important exception: the disk names differ from non-SSA disks.

The SSA-100 disk naming convention is:

c[0-n]t[0-5]d[0-4]s[0-7]

where:

• c indicates the controller attached to an SSA unit
• t indicates one of the 6 SCSI strings within an SSA
• d indicates one of the 5 disks on an internal SCSI string
• s indicates the disk slice number
• Strings t0 and t1 are contained in tray 1, t2 and t3 in tray 2, and t4 and t5

are in tray 3

Configuring for Online Replacement
If you want to take advantage of the SSA-100's online replacement capabilities,
you must use either mirrors or RAID metadevices in order to provide data
redundancy. The following sections describe how to set up mirrors and RAID
devices so that failed drives can be replaced without loss of service.

Mirrors
When setting up mirrors on an SSA-100, you should configure the submirrors
within a mirror from disks in different trays. This way, if a disk within a
submirror fails, it will be possible to remove the tray and replace the drive
without impacting the other submirror.

Using Solstice DiskSuite 4.0 with the SPARCstorage Array 100 253

E

For example, consider a two-way mirror with each submirror composed of a
concatenation of three SSA-100 disks. The following commands initialize this
mirror using the first three drives from tray 1 and the first three drives in
tray 2.

 Replacing a Disk Drive in a Mirror
Use the following steps to replace a SPARCstorage Array 100 drive when using
DiskSuite. Where appropriate, the instructions give the DiskSuite CLI
command required to perform the task. Each of these steps may also be
performed using DiskSuite Tool. In this case, use the DiskSuite Tool operation
corresponding to the given CLI command. You may want to consult the
DiskSuite Tool User's Guide if you are unsure of which graphical operation
corresponds to a given command.

Note – The following procedure is for Solaris 2.4 and previous Solaris versions
only.

1. Use the metaoffline DiskSuite command to instruct DiskSuite to stop
using all drives in the tray containing the failed drive.
This may require offlining drives in submirrors unrelated to the submirror
being repaired.

Warning – Any applications using non-replicated disks in this tray should now
be suspended or terminated.

2. Use the ssacli sync_cache <ctlr> SSA command to flush outstanding
SSA writes in NVRAM.

3. Use the ssacli -t<1|2|3> stop <ctlr> SSA command to spin down all
drives in the tray containing the failed drive.

4. Remove the tray containing the failed drive and replace the drive.

metainit d1 3 1 c0t0d0s2 1 c0t0d1s2 1 c0t0d2s2
metainit d2 3 1 c0t2d0s2 1 c0t2d1s2 1 c0t2d2s2
metainit d0 -m d1
metattach d0 d2

254 Solstice DiskSuite 4.0 Administration Guide—March 1995

E

5. Use the ssacli -t<1|2|3> start <ctlr> SSA command to spin up the
drives in the tray.

6. Using format(1M) or fmthard(1M) , correctly partition the new drive.

7. Use the metaonline DiskSuite command to instruct DiskSuite to start
using the drives in the tray again.

8. Use the metareplace -e command to enable the new drive.

RAID-5 Metadevices
When setting up RAID-5 metadevices for online repair, you will have to use a
minimum RAID-5 width of 3 components. While this is not an optimal
configuration for RAID-5, it is still slightly less expensive than mirroring, in
terms of the overhead of the redundant data. You should place each of the 3
components of each RAID-5 metadevice within a separate tray. If all disks in an
SSA-100 are configured this way (or in combination with mirrors as described
above), the tray containing the failed component may be removed without
losing access to any of the data.

Replacing a Disk Drive in a RAID-5 Metadevice

Warning – Any applications using non-replicated disks in the tray containing
the failed drive should first be suspended or terminated.

1. Use the ssacli sync_cache <ctlr> SSA command to flush outstanding
SSA writes in NVRAM.

2. Use the ssacli -t<1|2|3> stop <ctlr> SSA command to spin down all
drives in the tray containing the failed drive.

3. Remove the tray containing the failed drive and replace the drive.

4. Use the ssacli -t<1|2|3> start <ctlr> SSA command to spin up the
drives in the tray.

5. Using format(1M) or fmthard(1M) , correctly partition the new drive.

6. Use the metareplace -e command to enable the new drive in the tray.

255

Man Pages F

Introduction
This appendix contains the manual pages associated with DiskSuite in the
format of the SunOS Reference Manual. The manual pages included in this
appendix are:

md.tab(4) – metadisk configuration file

mddb.cf(4) - metadevice state database replica locations

md(7) - user configurable pseudo device driver for metadevices

growfs(1M) – nondestructively expand a mounted file system

metaclear(1M) – clear active metadevices

metadb(1M) – create and delete replicas of the metadevice state database

metahs(1M) – manage metadisk hot spares and hot spare pools

metainit(1M) – configure metadevices specified in md.tab

metaoffline(1M) – offline and online submirrors

metaparam(1M) – modify parameters of metadevices and metamirrors

metareplace(1M) – replace components of submirrors

metaroot (1M) – setup system files for root metadevice

256 Solstice DiskSuite 4.0 Administration Guide—March 1995

F

metaset(1M) – configure metadevice disksets

metastat(1M) – print status for metadevice

metasync(1M) – handle mirror resync during reboot

metattach(1M) – attach or detach metadevice to or from metamirror

Note – The manual pages described above are included only in the printed
version of this document. These manual pages are not available when you use
the AnswerBook online documentation to view this manual.

257

Index

Symbols
/etc/vfstab file, 33

improper entries, 231 to 234
/rc2.d/S95SUNWmd.sync file, 189
/rcS.d/S35SUNWmd.init file, 189
/usr , 178

mirroring, 79 to 80

A
adding hot spares, 129, 134
allocating space for replicas, 22 to 35
alternate boot device, 238

SPARC, 83
x86, 89 to 90

alternate root device, 83
AnswerBook, 22
assigning interlace values, 59
attaching submirrors, 3, 95
availability considerations, 187 to 189

B
backing up nonmirrors, 100 to 103
backup file, 194
block address, 51 to 52

range, 40

block device name, 188
boot device fails, 238 to 245
bus load, 60 to 61

C
capicity considerations, 189
checking status of mirrors, 73 to 76
clearing metadevices, 47, 58 to 59
commit counter, 169
compatability considerations, 190
component, 3

expanding nonmetadevice, 179 to 181
replacing within a submirror, 96

concatenated stripe, 56 to 57
definition, 3

concatenation
and disk geometry, 60
and partitions on single drive, 186
clearing, 58 to 59
compared to striping, 52
conceptual overview, 40 to 41
definition, 3
example with eight components, 62
example with stripes, 63
methods for defining, 53
of metadevices, 53 to 54
of stripes, 56 to 57

258 Solstice DiskSuite 4.0 Administration Guide—March 1995

on single component partitions, 52
performance considerations, 186
to RAID devices, 154, 158, 162 to 164

concatenation of stripes
example, 63

configuration storage, 168
controller, 170

and availability considerations, 188
and RAID considerations, 160
performance considerations, 186 to

187
conversion to DiskSuite 4.0, 8 to 11
creating replicas, 171
customer service, 2

D
data availability, 187 to 189
definitions, 3 to 5
detaching submirrors, 3, 95
disaster recovery, 194
disk drives supported, 2
disk geometry, 60, 160, 189
diskset

adding drives to, 148 to 149
adding hosts to, 148 to 149
administration, 144 to 149
and database replicas, 139
and drive partitioning, 143
checking status, 142 to 143
conceptual overview, 45, 137 to 139
defining, 141 to 144
definition, 3
forced reservation, 144 to 145
naming conventions, 139 to 140
releasing, 145 to 146
removing drives from, 146 to 147
removing hosts from, 146 to 147
reservation, 144 to 145
safe reservation, 144 to 145

E
enabling submirror components, 97
error messages, 197 to 223

and format, 197
indication of variables, 198

error threshold, 97
expanding disk space, 178
expanding file systems, 47

and growfs , 49

F
failed boot device, 238
failed boots

and the /etc/vfstab file, 231 to 234
file system

expanding mounted, 181 to 182
expanding nonmetadevice, 179 to 181
expanding unmounted, 182
expanding with stripes, 183
expansion overview, 177 to 178
nonexpandable, 178
panic recovery, 124
UFS, 177

format command, 27, 35
fsck command, 178
full resync, 72

G
growfs command, 47, 49, 177, 179 to 183

H
high availability, 137
host name, 141
hot spare

adding, 129, 134
and checking status, 132
and the metahs command, 48
and the metastat command, 75
conceptual overview, 45, 125 to 126
conditions to avoid, 128
defining, 126 to 127

Index 259

definition, 3
deleting, 129 to 130, 134 to 135
enabling, 131
order of preference, 45
replacing, 130 to 131, 135
states, 126

hot spare pool
and adding hot spares, 129, 134
and checking status, 132
and RAID devices, 156
and removing hot spares, 129 to 130,

134 to 135
and replacing hot spares, 130 to 131,

135
and the md.tab file, 192 to 193
conceptual overview, 45, 126
defining, 127
definition, 4
naming conventions, 126
setup (example), 133

I
interlace

and concatenated stripes, 57
and RAID devices, 158
and the metastat command, 75
assigning values, 59
changing the value, 55, 97
default, 52
definition, 4
specifying, 41

L
labeled partitions, 190
local diskset, 138
locator block, 169
lockfs command, 99, 102, 179
locking file systems, 98 to 99, 102
log messages

and types, 198
notice, 224
panic, 229
warning, 226 to 228

logging
and exported file systems, 119
and log location, 112
conceptual overview, 42 to 44, 110
definition, 4
removing, 115 to 116, 118
setting up, 110 to 118

logging device, 43 to 44
and determining states, 122
and exported file systems, 119
and space required, 111
attaching, 3
creating, 113
definition, 4
detaching, 3, 115 to 116, 118
shared, 110, 114 to 115

M
MANPATH variable, 21
manual page listing, 255 to 256
master device, 43 to 44

definition, 4
md.cf file, 49, 187

description, 194
md.conf file, 194
md.tab file, 48, 49, 53, 112

and the state database, 168
definition, 4
description, 192 to 193

mddb.cf file, 50, 187
description, 191 to 192

metaclear command, 47, 97
and logging, 120

metadb command, 24, 32, 35, 48, 171 to
173

and the mddb.cf file, 50
metadetach command, 48, 95

and logging, 120
metadetach command, 3
metadevice

and adding components, 178
and availability considerations, 188
and creating replicas, 24 to 25

260 Solstice DiskSuite 4.0 Administration Guide—March 1995

and file system commands, 52
and online backups, 98 to 100
and the md.tab file, 192 to 193
as concatenated stripes, 56 to 57
as logging devices, 121
clearing, 47, 58 to 59
concatenated, 53 to 54
conceptual overview, 39
definition, 4
modifying parameters, 48
naming conventions, 39
performance considerations, 186
reporting status, 48
striped, 54 to 55
used as a raw device, 52

metadevice state database
See also state database
definition, 4

metadisk driver
conceptual structure, 38
performance considerations, 186

metadriver, 4
metahs command, 48, 128 to 132
metainit command, 48, 53, 55, 112

and activating metamirrors, 69
and hot spare pools, 134
and logging, 120
and mirroring /usr , 80
and mirroring root , 82, 88
and mirroring swap, 91
and state database setup, 175
and the md.tab file, 193

metamirror
See also submirror
activating, 69
and availability considerations, 188
and capacity considerations, 189
and expanding file systems, 181 to

182
and failed component

replacement, 126
and Prestoserve, 190
and read options, 70
and resync options, 70
and the md.tab file, 192

and write options, 71 to 72
as logging devices, 121
conceptual overview, 41 to 42
defining, 70 to 72
definition, 4
modifying parameters, 48
naming conventions, 42
size information, 74

metaoffline command, 48, 95 to 96
metaonline command, 48, 73, 95 to 96
metaparam command, 48, 97, 127, 128,

131 to 132
metareplace command, 48, 57, 96
metaroot command, 48, 82, 88
metaset command, 141

adding disksets, 142
metastat command, 48, 73 to 76

and checking a resync, 106 to 107
and logging, 120
sample output, 73, 105 to 107

metasync command, 49, 153
metatrans device, 43 to 44

and creating namespace, 119 to 120
and error recovery, 122 to 124
and exported file systems, 119
and file system commands, 111
and file system panics, 124
and panic recovery, 124
and the md.tab file, 110
creating, 113 to ??, 113, ?? to 113
definition, 4
determining states, 122
methods for defining, 112
naming conventions, 43

metattach command, 3, 49, 72, 95, 178,
181 to 183

and logging, 120
mirroring

/usr , 79 to 80
and availability considerations, 187
and capacity considerations, 189
and checking status, 73 to 76
and multiple copies on a single

drive, 186

Index 261

and online backups, 98 to 100
and read options, 70
and resync options, 70
and resyncing, 72 to 73
and the md.tab file, 66
and the vfstab file, 231
and write options, 71 to 72
components on the same disk, 65
conceptual overview, 41 to 42, 65 to

68
definition, 4
existing file system (example), 103 to

105
existing file systems, 77
performance considerations, 186
root , 81 to 89
swap, 91 to 92
swap partitions, 189

mkfs command, 179
mount command

and metatrans devices, 111

N
naming conventions

disksets, 139 to 140
for logging devices, 43
for master devices, 43
for metadevices, 39
for metamirrors, 42
for metatrans devices, 43, 110

newfs command, 42
nonexpandable file systems, 178
notice log messages, 224

O
online backups, 98 to 103
Online: Backup product, 190
optimized resync, 72

P
panic log messages, 229
parallel writes, 71

parity partition, 152
partition

and concatenations on a single
drive, 186

labeled, 190
striping different sizes, 59
swap, 25 to 32
used for replicas, 170

partition command, 28
pass number, 74

changing, 97
path requirements, 21 to 22
PATH variable, 21
performance considerations, 185 to 187
peripherals supported, 2
pkgadd command, 13
pkginfo command, 20
pkgrm command, 21
Prestoserve, 190
protection against data loss, 168
prtvtoc command, 34

R
RAID

and checking status, 156 to 157
and component geometry, 160
and concatenation, 154, 158, 162 to

164
and creating devices, 153
and degraded device

performance, 159
and interlace values, 158
and Level 5 support, 151 to 152
and mixing components, 159
and parity partitioning, 152
and replacing components, 155
and resyncing devices, 153 to 154
and supported operations, 152
and write performance, 159
component error recovery, 164 to 166
conceptual overview, 45 to 46, 151 to

152
defining devices, 153

262 Solstice DiskSuite 4.0 Administration Guide—March 1995

definition, 5
device definition example, 161 to 162
device states, 157
hardware considerations, 158 to 160
hot spare pool association, 156
software considerations, 158 to 160

raw device name, 188
read options, 70, 74, 186

changing, 97
reconfiguring submirrors, 94 to 98
releasing disksets, 145 to 146
removing

hot spares, 129 to 130, 134 to 135
replicas, 172

removing Online: DiskSuite product, 21
replacing

components, 57 to 58
hot spares, 130 to 131, 135
submirror components, 96

replicas
See also state database
and capacity considerations, 189
and checking status, 173
and methods of placement, 23
and planning locations, 170
and reserved space, 167
conceptual overview, 46 to 47, 167 to

169
creating, 171
creating in swap partition, 25 to 32
creating on metadevice

components, 24 to 25
creating on unused partitions, 33 to

35
definition, 5
minimum number, 170
missing, 234
removing, 172
setup on a new system (example), 174
setup on an existing system, 175

reserve command, 144
resync

optimized, 5
partial, 5

region, 5, 42
resync options, 70
resyncing mirrors, 72 to 73
resyncing RAID devices, 153 to 154
resyncing submirrors, 49
root

mirroring, 81 to 89
unmirroring, 92 to 94

root file system, 178

S
security considerations, 190
serial writes, 71
shareall command, 12
shared diskset, 138
shared logging device, 44
sharing logging devices, 114 to 115
slice, See partition
SPARCstorage Array, 251 to 254
stale database, 234 to 237
startup files, 189
state database

See also replicas
and adding replicas, 171
and capacity considerations, 189
and checking replica status, 173
and creating replicas, 22 to 35
and disksets, 139
and removing replicas, 172
and reserved space, 167
and the mddb.cf file, 192
basic operation, 169 to 170
commit counter, 169
conceptual overview, 46 to 47, 167 to

169
creation, 171
definition, 5
locator block, 169
setup on a new system (example), 174
setup on an existing system, 175
stale, 234 to 237

Index 263

stripe
See also striping
and capacity considerations, 189
and file system expansion, 183
clearing, 58 to 59
concatenated, 56 to 57
definition, 5
methods for defining, 53
of different size partitions, 59
performance considerations, 186

striped metadevices, 54 to 57
striping

See also stripe
and bus load, 60 to 61
and controllers, 60
and disk geometry, 60
compared to concatenation, 52
conceptual overview, 40 to 41
example with three components, 61

to 62
metadevices, 54 to 55

submirror
See also metamirror
adding (example), 105 to 106
and availability considerations, 188
and enabling components, 97
and file system expansion, 178
and hot spare pools, 131 to 132
and Prestoserve, 190
and replacing components, 96
and resyncing, 72 to 73
attaching, 95
changing parameters, 97
conceptual overview, 42
definition, 5
detaching, 3, 48, 95
offlining, 48, 95 to 96
onlining, 95 to 96
possible states, 74
resuming access, 48
resyncing, 49

submirrors
replacement of components, 48

swap
mirroring, 91 to 92

unmirroring, 92 to 94
swap partition, 178

and creating replicas, 25 to 32
mirroring, 189

system files, 49, 191 to 195

T
technical support, 2

U
UFS logging

and determining device states, 122
and DiskSuite commands, 120
and exported file systems, 119
and log location, 112
and shared devices, 114 to 115
conceptual overview, 42 to 44, 110
definition, 5
removing, 115 to 116, 118
setting up, 110 to 118

ufsdump command, 111
ufsrestore command, 111
umount command, 178

and metatrans devices, 111
unlocking file systems, 100, 102
unmirroring

file systems, 77 to 78
root and swap, 92 to 94

upgrading Solaris, 247 to 249
upgrading to DiskSuite 4.0, 8 to 11

V
variables in error messages, 198
vfstab file, 180

W
warning log messages, 226 to 228
write options, 71 to 72, 74

changing, 97

264 Solstice DiskSuite 4.0 Administration Guide—March 1995

